Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universitét Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/)

TECHNISCHE

I UNIVERSITAT
I WIEN

VIENNA

WIEN UNIVERSITY OF

TECHNOLOGY

DISSERTATION

Managing Event Streams for Querying
Complex Events

Ausgefiihrt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften am Institut fiir

Software Technology and Interactive Systems

der Technischen Universitdat Wien

unter Anleitung von

Ao.Univ.Prof. Dr. Stefan Biffl
Ao.Univ.Prof. Dr. Christian Huemer
Dipl.-Ing. Dr. Alexander Schatten

durch
Dipl.-Ing. Mag. rer. soc. oec. Szabolcs ROZSNYAI

Godlewskig. 18/1
A-1220 Wien

Ort, Datum Unterschrift

Kurzfassung

Um den heutigen Anforderungen einer agilen und adaptiven Geschiftswelt gerecht zu
werden, haben sich Unternehmensprozesse zunehmend zu vernetzten und hochgradig
komplexen Abldufen entwickelt, die parallel und mit wenig menschlicher Einflussnahme
ausgefithrt werden [55]. Organisationen miissen ihre Prozesse immer schneller den
Marktgegebenheiten anpassen, um Verdnderungen rascher zu adaptieren als ihre
Konkurrenten. Daher verlangen zeitgemdSSe Geschéftsprozesse nach Agilitédt, Flexi-
bilitat und nach Serviceorientierung.

Die Eckpfeiler derartiger Geschiftsmodelle sind lose gekoppelte, verteilte und
Service/Ereignis-getriebene (Service and Event Driven-Oriented) Systeme, die groSSe
Mengen von Events auf verschiedenen Granularititsebenen erzeugen. Events zu
erfassen, zu verfolgen, Aggregierungen aus Eventketten zu bilden und Korrelierungen
zwischen Events zu erkennen und zu verwalten stellen einen Untersuchungsinhalt dar,
mit dem sich bereits verschiedene Forschungsgruppen beschéftigen [6][54][79].

Ein viel versprechender Losungsansatz fiir diese Art von Problemen ist Complex
Event Processing (CEP). Der Begriff Complex Event Processing wurde erstmals von
David Luckham in seinem Buch The Power of Events [54] erwdhnt und definiert eine
Reihe von Technologien zur Verarbeitung groSSer Mengen von Ereignissen mit dem
Nutzen diese zu iiberwachen, um Prozesse in Echtzeit zu optimieren und zu steuern.
Ein CEP-System sollte in der Lage sein, Daten aus Ereignissen kontinuierlich in
Echtzeit zu verarbeiten und zu integrieren ohne ETL-Batchprozesse zu verwenden,
wie sie bei Data Warehouse Losungen iiblich sind.

Die Beitrdge dieser Dissertation liegen im Forschungsbereich von Event Process-
ing Systems mit einem speziellen Fokus auf CEP und Event-Processing/Query
Languages.

Event-Based Component Model: Die hier présentierte Arbeit stellt ein Event
Component Model vor, das Event-Based Systems in einen breiteren Kontext von
Ereignisverarbeitung setzt. Ls definiert die Grenzen von solchen Systemen und
beschreibt den Rahmen von Event-Driven Components. Im Besonderen entkoppelt
das Modell, Event-Based Systems von der Kommunikationsinfrastruktur und bringt
somit den Vorteil, dass die Féahigkeiten von der Ereignisverarbeitungsumgebung nicht
durch die Kommunikationstechnologien beschrinkt werden.

Event-Processing Models: Event Models haben einen starken Einfluss auf
die Fidhigkeiten von Event Processing Query Languages, auf die Flexibilitit und die
Usability von Event-Based Systems. In dieser Arbeit werden daher unterschiedliche
Arten von Event Model Konzepten vorgestellt, diskutiert und evaluiert. Im speziellen
wird in dieser Dissertation auf Event-Driven Sense and Respond Rules eingegangen,
mit deren Hilfe man in der Lage ist Event-Action Entscheidungsbdume innerhalb des
Ereignisverabeitungsmodells zu modellieren.

SARI-SQL Query Language: Der Hauptbeitrag dieser Arbeit ist die Vorstellung
der Syntax und der Semantik sowie die Evaluierung der Event-Query Language
SARI-SQL und ihrer Subsprache EAExpression. SARI-SQL ist der Gruppe der
Domain-Specific Languages zuzuordnen und ist daher in der Lage die speziellen
Anforderungen und Charakteristika von Events und deren Beziehungen zu erfiillen.
Die Abfragesprache zum Abrufen von Real-Time Events und zum Erstellen von
Verbindungen mit historischen Events, Metrics und Scores ist im Gegensatz zum
Event Clouds Indizierungsansatz [76][73]|[90] eine formal strukturierte Losung, die
ANSI-SQL erweitert. SARI-SQL erstellt eine Abstraktion des Event-Typen Modells
durch die Kapselung der internen Datenreprisentierung. Der Benutzer dieser Sprache
kann sich daher direkt auf die Formulierung der gewiinschten Ergebnisse konzentrieren
anstatt sich vor allem damit zu beschéftigen, die Dinge zum Laufen zu bringen.
Dadurch wird es Doménen-Experten moglich, einfach und schnell Erkenntnisse
aufgrund der Abstraktionsebene des spezifischen Problems zu gewinnen.

Die Ergebnisse dieser Dissertation stellt der Forschungsgemeinschaft und inter-
essierten Gruppen ein generisches Komponentenmodell fiir Event-Based Systems
bereit. Das vorgestellte Modell ist erfolgreich mit der Implementierung der Event-Base
evaluiert worden, wobei SARI-SQL ein integraler Bestandteil der Event-Base ist und
dessen Implementierung eine groSSe Herausforderung im Sinne einer performanten
Abfrage von Events und der Korrelierungen war. FEin spezieller Fokus in dieser
Arbeit ist auf die Sauberkeit und die Ausdrucksfdhigkeit des Sprachdesigns gelegt
worden, damit alle Event-zugehdrigen Entitdten beriicksichtigt werden kdnnen. Des
Weiteren ist ein Schwerpunkt auf ein effizientes Design der Query Vorbereitung
und der Ausfithrungs- und Auswertungsarchitektur gelegt worden mit deren Hilfe
man verschiedene Query Optimizer Strategien einbinden kann. Mit der - in dieser
Arbeit vorgestellten - Optimizer Strategie korreliert die Performance von Queries auf
sogenannten Single-Value Types direkt mit der Performance des darunterliegenden
RDBMS.

Zukiinftige Forschungsarbeiten basierend auf SARI-SQL umfassen die Verbesserung der
Optimierungsstrategien im Zusammenhang mit Nested-Attribute Types von Events.
Dies inkludiert Query Analyseprozeduren und Strategien fiir Ausfithrungspline damit

die Anzahl von In-Memory Post-Evaluierungsoperationen reduziert wird und somit
die Performance steigt.

Die hier présentierte Arbeit ist Teil von ldngerfristigen Forschungsbemiihungen
mit dem Ziel ein umfassendes Set von Analysewerkzeugen zu designen und zu
entwickeln. Diese Werkzeuge sollen den Benutzern erlauben ein groSSes Repository
von Real-Time und historischen Events von verschiedenen Quellen abfragen und
analysieren zu konnen. Zusdtzlich ist das Ziel eine Konsolidierung und die Schaffung
eines vereinheitlichten Event Models fiir Event-Based Systems, die eine breite Palette
von Ereignisverarbeitenden Systemen unterstiitzt. Im Forschungsfokus steht dabei
auch der Aspekt der Visualisierung von Events, deren temporaler Ordnung, den
Korrelationen zu anderen Events und Event-Clustern.

Abstract

Nowadays, business processes evolved to networked workflows that are complex and
executed in parallel with little human involvement to meet the needs of today’s agile
and adaptive business [55]. Contemporary business requirements yaw for agility,
flexibility and service orientation. A simplified summarization of this widely discussed
and necessary business trend can be reduced to the demand, that today’s businesses
have to adapt their processes and organizations faster than their competitors. Busi-
ness organizations that are able to handle critical business events faster than their
competitors will end up us winners in today’s globalized and fast business.

The pillars of such business models are loosely coupled, distributed and service-
or event driven-oriented systems that generate huge amounts of events at various
granularity levels. The lack of tracking those events and maintaining the causal
relationships and traceability between those events, as well as aggregating them to
high level events or correlating them, is a problem that is currently investigated by
many research groups [6][54]|79].

Event-based systems are increasingly gaining a widespread attention for such
classes of problems, that require integration with loosely coupled and distributed sys-
tems for time-critical business solutions. The field of event-based or event-processing
systems is a quite young area of research and is mainly influenced by the publish-
subscribe paradigm and relational database and later on by Active- and Zerolatency
data warehousing.

A promising solution for these problems is Complex Event Processing (CEP).
The term of Complex Event Processing (CEP) was first introduced by David Luckham
in his book The Power of Events [54| and defines a set of technologies to process large
amounts of events, utilizing them to monitor, steer and optimize the business in real
time. A CEP system continuously processes and integrates the data included in events
without any batch processes for extracting and loading data from different sources
and storing it to a data warehouse for further processing or analysis. CEP solutions
capture events from different sources, with different time order and take events with
various relationships between eachother into account.

The contributions of this dissertation are settled in the research area of event
processing systems with a special focus on CEP and Event Processing- and Query
Languages.

Event-Based Component Model: The presented work introduces an event
component model that puts event-based systems into a broader context of event
processing, defines the boundaries of such systems and the scope of event-driven
components. In particular the introduced model decouples event-based system
completely from the communication infrastructure, which offers the advantage that
the capabilities of an event processing realm are not constrained by the underlying
communication technology.

Event-Processing Models: Several new concepts of event models are intro-
duced as their design strongly constraints the capabilities of event processing query
languages. Further they have a major impact on the flexibility and usability of
event-based systems. A special attention in this thesis was also set on event-driven
sense and respond rules, which can be used to model trees with event actions within
the event processing model.

Event-Base: This thesis introduces the design and the concepts of the Event-
Base which is an extension of the event processing system SARI [81]. SARI allows
to observe relevant business events to identify exceptional situations, indicates
opportunities or problems combined with low latency times in decision making for
supportive or counter measures. The Event-Base, on the other hand, provides an
efficient up-to-date operational storage together with retrieval mechanisms for business
events for analytical as well as operational purposes without the costly data staging
processes known from established data warehousing solution.

SARI-SQL Query Language: The major contribution is the introduction of
the syntax, semantics and the evaluation of the event query language SARI-SQL
and its sub-language the EAExpression. SARI-SQL can be allocated to the group
of domain-specific languages. The query language allows to retrieve near real-time
events and create conjunctions with historical events, metrics and scores. Further-
more, it is in contrast to Event Clouds indexing approach [76][73]|90] a formally
structured solution that extends ANSI-SQL. SARI-SQL creates an abstraction of the
event type model by encapsulating a lot of overhead and creating an abstraction
layer over events and their internal data structures. The user of this language can
concentrate on only expressing the required results instead of putting effort into
making the "things run". As a consequence it allows domain experts to easily gain
insights due to the level of abstraction of the specific problem domain. So for instance
it allows retrieving events according to several constraints and access event correlations.

The results of this dissertation provide the research community as well as in-
terested parties with a generic component model for event-based systems. The

introduced model has been successfully evaluated through the implementation of the
Event-Base. SARI-SQL is an integral part of the Event-Base and its implementation
was a major challenge in terms retrieving events and their correlations in a reasonable
time. The presented work set a special focus on a clean and expressive language design
in order to encapsulate all the event-related entities. Furthermore an emphasis was
set on an efficient design of the query preparation and evaluation architecture that
allows attaching different query optimizer strategies. With the introduced optimizer
strategies the performance of queries on single-value types (which applies in 80% of
the cases) is directly correlating with the underlying RDBMS performance constraints
and thus creates only a small overhead.

The future work on SARI-SQL includes efforts in optimizing the strategies of
handling nested attribute types of events. This includes query analysis procedures
and execution planning strategies in order to reduce the number of in-memory
post-evaluation operations.

The presented work is part of a long-term research effort aiming at designing
and developing a comprehensive event analysis toolset that allows users to query and
analyze large repositories of real-time and historical events from various sources. In
addition the goal is to consolidate and create a rich unified event model for event-based
systems which can be supported by a wide range of event-based systems. A key focus
of future research is also set on the aspect of the visualization of events with respect
to their temporal occurrence, their correlation with other events, and event clusters.

10

Eidesstattliche Erklarung

Ich erkldre an Eides statt, dass ich die vorliegende Arbeit selbstéindig und ohne fremde
Hilfe verfasst, andere als die angegebenen Quellen nicht beniitzt und die den benutzten
Quellen wortlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht
habe.

August 18, 2008

11

12

Acknowledgments

I would like to thank Josef Schiefer, Stefan Biffl and Alexander Schatten for the men-
toring throughout the PhD thesis. Moreover I would like to thank my parents for all
the support during my studies.

13

14

Contents

1

Introduction and Research Statement
1.1 Dissertation Outline

Fundamentals

2.1

2.2

2.3 Summary

Discussion about Events
Definition of Events
2.1.2 Representation of Events.
2.1.3 Advanced Event Characteristics
Communication and Interaction
Basic Communication Models . . .
2.2.2 Models of Interaction

2.1.1

2.2.1

2221
2222
2223
2224
2.2.2.5

Request/Reply

Anonymous Request/Reply
Callback /Point-to-Point Messaging
Event-Based Communication

Communication Mediator

Event-Based Messaging Middleware

Message-oriented Middleware - MOM . . .
Types of Middleware
Middleware Requirements
Message Oriented Middleware
Terminology Clarifications
Types of Messages
Publish /Subscribe Paradigm . . .

3.1

3.1.1
3.1.2
3.1.3
3.14
3.1.5
3.1.6

3.1.7

3.1.6.0.1 Channel-Based .

3.1.6.0.2 Topic- or Subject-

3.1.6.0.3 Type-Based . . .
3.1.6.04 Content-Based .

Based

Event-Driven versus Service-Oriented Architecture
Service-Oriented Architecture

3.1.7.1
3.1.7.2

Event-Driven Architecture

21
22

25
26
26
29
30
32
33
34
34
35
35
36
37
37

39
41
42
43
44
47
47
48
20
50
52
52
93
o4
95

15

Contents

3.1.7.3 SOA and EDA Comparison 56

3.1.7.4 SOA and EDA Application Scenarios 57

3.2 Event-Based Systems L o8
3.2.1 Events for Event-Based Systems versus Events in Software En-

gineering 59

3.2.2 Components of an Event-Based System 60

3.2.2.1 Event Sources 63

3.2.2.2 Event Producers 63

3.2.2.3 Notification Service Interface 65

3.2.2.4 Communication Infrastructure 66

3.2.2.5 Event Consumers 69

3.22.6 Event Type Library 70

3.2.27 LEvent Processing Realm 71

3.3 Summaryo 73

4 Emerging Event Processing Paradigms 75

4.1 Complex Event Processing 80

4.1.1 Example of a CEP Supported Scenario 82

4.2 Event Stream Processing o 84

4.3 SUmMMmMary e e e e e 87

5 Event-Base 89

5.1 Architecture 90

5.1.1 Event Source/Operational Systems 92

5.1.2 Event Adapter Sockets 92

5.1.3 Event Processing Maps 93

5.1.3.1 Propagating Processing Maps with Events 94

5.1.3.2 Interconnecting Map Components 94

5.1.3.3 Event Services 95

5.1.3.4 Rule Services 96

5.1.3.5 Scoring Services 96

5.1.4 FEvent-Baseo 98

5.1.5 Real-Time Management Cockpit 102

5.1.6 Event Analysis and Mining 103

5.2 Event Model Concepts 106

5.2.1 Event TypeModel o o 109

5.2.2 Attribute Modelo 111

5.2.3 Inheritance 113

5.2.4 Exheritance L 113

525 Duck Typing 114

5.2.6 Extensibility o 116

16

Contents

5.2.7 Namespacing and Addressing 116
5.2.8 Language for Accessing Event Objects 117
5.2.9 Comparison of Event Models 118

5.3 Event Correlation 119
5.3.1 Types of Correlations 122
5.3.1.1 Primal Correlation 122

5.3.1.2 Bridged Correlation 123

5.3.2 Correlation Meta Model L. 124
5.3.3 Correlation Evaluation 125

54 FEvent-Driven Rules oo 126
5.4.1 FEvent-Driven Rules 128
5.4.1.1 Definitions of Sense and Respond 129

54.1.2 Meta Model 130

54.1.2.1 Event Conditions. 130

5.4.1.2.2 FEvent patterns. oL 131

5.4.1.2.3 Response Events. 133

54.1.3 Rule Example 134

5.4.2 Comparison and Key Benefits 135
5.4.3 Service-Oriented Rule Processing 136
5.4.3.1 Rule Evaluation 138

5.5 Data Management o oL 139
5.6 Summary 141
6 SARI-SQL Query Language 145
6.1 General note on the Syntax Definition 147
6.2 EAExpression 149
6.2.1 EAExpression Syntax Definition 149
6.2.1.1 Accessing Event Object Types 149

6.2.1.2 Accessing Header Attributes 151

6.2.1.3 Accessing Collections 152

6.2.1.4 Accessing Dictionaries 152

6.2.1.5 Expressing Event Object Aggregations 153

6.2.1.6 Functions Lo 154

6.2.1.7 Multi-Value Operators 155

6.2.1.8 Boolean Operators 156

6.2.1.9 Comparison Operators 156

6.2.1.10 Arithmetic Operators 156

6.2.2 EAExpression Syntax Tree Model 157
6.2.2.1 Event Object Type AST Representation 159

6.2.2.2 Header Access AST Representation 159

6.2.2.3 Collection AST Representation 160

17

Contents

6.3

6.2.3

6.2.2.4
6.2.2.5
6.2.2.6
6.2.2.7
6.2.2.8
6.2.2.9

Dictionary AST Representation.
Event Object Aggregation Filter AST Representation
Function AST Representation
Boolean Expression AST Representation
Comparison Expression AST Representation
Arithmetic Expression AST Representation

EAExpression Evaluation Model

6.2.3.1
6.2.3.2
6.2.3.3
6.2.3.4

SARI-SQL . .
SARI-SQL Syntax Definition

6.3.1

6.3.2

6.3.3

6.3.1.1
6.3.1.2
6.3.1.3
6.3.1.4
6.3.1.5
6.3.1.6
6.3.1.7

Expression Input oo L.
Expression Decomposition
Expression Processing L
Expression Result

Retrieving Event Object Types, Scores and Metrics
Projecting Event Object Type Attributes
Defining Conditions
Defining Implicit Time Windows
Defining Joinso L oo oL
Retrieving Event Object Types of Correlations
Additional Constructs

SARI-SQL Syntax Tree Model

6.3.2.1
6.3.2.2

6.3.2.3
6.3.2.4
6.3.2.5
6.3.2.6

Top-Level Construct AST Representation
FROM Clause AST Representation

6.3.2.2.1 FROM Construct
6.3.2.2.2 Join Constructs

SELECT Clause AST Representation
WHERE Clause AST Representation
OVERCORR Clause AST Representation
Additional Constructs AST Representation

SARI-SQL Evaluation Model

6.3.3.1
6.3.3.2

6.3.3.3

6.3.3.4

Query Inputo
Query Decomposition

6.3.3.2.1 Parser
6.3.3.2.2 TreeParser
6.3.3.2.3 Model Optimizer

Query Planning o oo

6.3.3.3.1 Analyze and Rewrite WHERE Clause
6.3.3.3.2 Analyze and Rewrite SELECT Clause
6.3.3.3.3 Analyze and Rewrite FROM Clause
6.3.3.3.4 Analyze and Rewrite Correlation Clause . . .

Execution, Evaluation and Rendering

. 161

162
163
164
164
166
167
167
167
169
169
169

171

172
174
175
176
177
178
179
179
180
180
181
183
184
185
185
187
189
191
192
193
200
203
204
205
207

. 208

18

Contents

6.4 Summary 213
7 Related Work and Comparison 215
7.1 SIENA . . . e 215
7.2 Gryphon 217
7.3 JEDIL 218
74 HERMES 219
75 REBECA 221
7.6 Aurora 222
7.7 Medusa 224
7.8 Borealis e 225
7.9 SASE . . 226
710 Esper . . .o 228
TA1 Amit oL 229
7.12 Summary and Comparison 230
8 Conclusion 235
9 Appendix 237
9.1 EAExpression Syntax Definition 237
9.2 EAFExpression Abstract Syntax Tree Definition 239
9.3 SARI-SQL Syntax Definition 241
9.4 SARI-SQL Abstract Syntax Tree Definition 243
9.5 List of Publications oo 245
9.6 Curriculum Vitae 246

19

Contents

20

1 Introduction and Research Statement

Nowadays, business processes evolved to networked workflows that are complex and
executed in parallel with little human involvement to meet the needs of today’s agile
and adaptive business environments [55]. Such contemporary business requirements
yaw for agility, flexibility and service orientation. A simplified summarization of
this widely discussed and necessary trend can be reduced to the demand that
today’s businesses have to adapt their processes and organizations faster than
their competitors. Organizations that are able to handle critical events faster than
their competitors will end up us winners in today’s globalized and fast paced businesses.

The pillars of such agile models are loosely coupled, distributed and service- or
event driven-oriented systems that generate huge amounts of events at various
granularity levels. The lack of tracking those events and maintaining the causal
relationships and traceability between those events, as well as aggregating them to
high level events or correlating them, is a problem that is currently investigated by
many research groups [6][54][79].

Event-based systems are increasingly gaining a widespread attention for classes
of problems that require integration with loosely coupled and distributed systems for
time-critical business solutions. The field of event-based or event-processing systems
is a quite young area of research and is mainly influenced by the publish-subscribe
paradigm, relational databases and later on by active- and zerolatency data warehous-
ing.

A promising solution for these problems is complex event processing (CEP).
The term of complex event processing was first introduced by David Luckham [54]
and defines a set of technologies to process large amounts of events, utilizing them to
monitor, steer and optimize the business in real time. A CEP system continuously
processes and integrates the data included in events without any batch processes for
extracting and loading data from different sources and storing it to a data warehouse
for further processing or analysis. CEP solutions capture events from different sources,
with different time order and take events with various relationships between each
other into account.

21

Chapter 1. Introduction and Research Statement

This dissertation introduces the CEP system SARI [81] and its processing com-
ponents. SARI is a solution that is capable of processing large amounts of events,
providing facilities with the capability to monitor, steer and optimize business
processes in real-time. The major contribution of this thesis is the introduction
of the Event-Base, which extends SARI’s event processing model with an efficient
up-to-date operational storage, together with retrieval mechanisms for business events
for analytical as well as operational purposes. The query language for retrieving near
real-time events and create conjunctions with historical events, metrics and scores
is SARI-SQL and is in contrast to Event Clouds indexing approach [76][73][90] a
formally structured solution that extends ANSI-SQL. SARI-SQL can be allocated
to the group of domain-specific languages and therefore it is capable to satisfy the
special requirements and meet the characteristics of events and their relationships.
SARI-SQL creates an abstraction of the event type model by encapsulating a lot of
overhead and by creating an abstraction layer over events and their internal data
structures. The user of this language can concentrate on only expressing the required
results instead of putting effort into making the “things run”. As a consequence it
allows domain experts to easily gain insights due to the level of abstraction of the
specific problem domain.

1.1 Dissertation Outline
The structure of this dissertation is organized in six parts:

Fundamentals. The first chapter provides the reader with essential background
information on terminologies to gain a common vocabulary and understanding for the
topics discussed throughout this dissertation.

Event-Based Messaging Middleware. This chapter discusses various mid-
dleware concepts that provide means to decouple communication parties in order
to assure flexibility, scalability and fault tolerance. These concepts lay the essential
foundations for event-based systems. Further, the chapter introduces a generic
component model of an event-based system.

Emerging Event Processing Paradigms. This chapter discusses and compares
the concepts of complex event processing and event stream processing. Furthermore,
it describes their importance in low latency decision making and how these concepts
can be utilized to detect and react on exceptional business situations in real-time.

Event-Base. This chapter introduces and discusses the components of the CEP
system SARI and its extension the Event-Base. In addition it pays attention to special

22

Chapter 1. Introduction and Research Statement

aspects of the event processing models such as event models or event correlations.

SARI-SQL Query Language. This section introduces the two domain-specific
languages EAExpression and SARI-SQL which allow to define queries over streams of
events. The languages are built upon the event management systems introduced in
the Event-Base chapter.

Related Work and Comparison. The last chapter provides a comprehensive
overview of various research efforts from the field of event-based systems. A special
focus was set on their language capabilities especially in comparison with the solution
introduced in this dissertation.

23

Chapter 1. Introduction and Research Statement

24

2 Fundamentals

The aim of this chapter is to provide the reader with the essential background on
terminologies to gain a common vocabulary and understanding for the topics of the
subsequent chapters. The reader might ask himself, why it is important to start
with such basic topics like the clarification of the term event or communication
and interaction models, although the main issue of this thesis is the query language
SARI-SQL.

The research for this thesis has shown that the field of event-based systems is
quite young and still in a consolidation phase. The result is that many terms and
aspects of this field are ambiguous and depending on, from which field of research the
reader comes from, different meanings can be easily associated to various topics.

For instance, the roots of event-based systems come basically from two different
fields. The first one has grown out of append-only databases and can be seen in the
world of triggers and zero/active data warehousing. The second root can be allocated
to the development of middleware systems, the publish/subscribe paradigm and the
various filtering and subscription techniques. Such subscription efforts formed the first
rudimentary event processing engines including languages comparable to a certain
extent to SARI-SQL. Each of those fields formed event-based systems with a partly
different terminology and understanding. However, at the end of the day the solutions
mostly provide the same capabilities. An ongoing debate that reflects this issue is cur-
rently about event stream processing and complex event processing where both provide
comparable functionalities, but their roots and their event processing approaches are
different. Another example is the view of event processing systems and their scope.
Solutions coming from the publish /subscribe field tend to consider the communication
infrastructure as an essential part of an event-based system as they usually aim for
wide-scale event processing with the trade-off for expressive event processing languages.

The goal of the first couple of chapters is to discuss the ambiguous meaning of
various topic in order to create a common ground of understanding, that is required
to precede with the more sophisticated issues introduced in this thesis. Especially the
frequently used term ewvent in context of event processing systems is highly ambiguous.
At this point of time there is no formal and generally accepted definition. Therefore,

25

Chapter 2. Fundamentals

the section will give the reader a definition of events that is valid throughout this
thesis.

2.1 Discussion about Events

2.1.1 Definition of Events

The term event is an often used synonym in computer sciences and it is mostly known
by software developers as means to control and steer the program flow influenced by
interrupts coming from other components - like in graphical user interfaces where user
inputs trigger events to start corresponding processes.

The reader will encounter the term event many times throughout in this thesis
and in literature related to the topics of event-based systems, complex event process-
ing (CEP) and event stream processing (ESP). The problem with this term is actually
that it has an ambiguous meaning. At this point of time there is no formal and
generally accepted definition of the term event in context of event processing systems.
Thus the definition of events is under an ongoing discussion in the event processing
community. The definition of the scope and the domain of this term is important to
get a common understanding about the characteristics it reflects. The goal of this
section is to provide a broader introduction of this frequently used term in order to
clarify it’s meaning within the context of event processing.

The field of temporal databases, active- and zero-latency data warehousing can
be seen as one of the roots of the field of event processing (CEP and ESP) and hence
the terminology of the event processing domain was strongly influenced by these areas
of work.

Jensen et al. [52] introduced in their work about temporal database concepts
(A glossary of temporal database concepts), one of the earliest definitions of events in
this context. They defined events as a single and closed occurrence of some happening
at a specific point in time:

An event is an isolated instant in time. An event is said to occur at time t
if it occurs at any time during the chronon represented by t. [52]

A chronon is considered by the authors as a non-decomposable unit of time. They spin
the event definition further by expanding the term event to intervals:

An interval is the time between two events. It may be represented by a set
of contiguous chronon. |52]

26

Chapter 2. Fundamentals

Another work from the active database management systems field [94] by Zimmer and
Unland pinpoints the occurrence of an event to a specific point in time - similar to
Jensen et al. [52]. An additional event characteristic, defined by Zimmer and Unland,
is an atomic constraint around the events:

A primitive event is assumed to be instantaneous and atomic; i.e., it cannot
be further dismantled and happens completely or not at all. It is bound to
a specific point in time. |94]

The work by Makkonen et al. about Applying Semantic Classes in Fvent Detection
and Tracking |58] contains a comprehensive compilation of definitions of events related
to the domains of event detection and tracking as well as topic detection and tracking
(TDT). Although this work sets the term event in relation to real-world happenings,
like political occurrences in a foreign country, it provides three event definitions that
are directly reusable in the field of event processing. Basically the definitions provided
by Makkonen et al. [58] and Yiming Yang el al. [91] are comparable to the definitions
from Jensen et al. [52] and D. Zimmer and Unland [94] coming from the database area
of work.

An event is something that happens at some specific time and place [91].

An event is a specific thing that happens at a specific time and place along
with all necessary preconditions and unavoidable consequences [29].

However, the third definition by Makkonen et al. [58] provides the essences that an
event might be composed and is capable of forking as a consequence to further events
during time.

An event is a dynamic topic that evolves and might later fork into several
distinct events.|58]

David Luckham, the author of the book “Power Of Events” (covers the fundamentals
of complex event processing) [54], maintains, together with the Gartner analyst Roy
Schulte, a comprehensive glossary of CEP and ESP terminology with descriptions and
definitions on the website complezevents.com |56].

David Luckham proposes following event definition in his online CEP glossary:

An object that represents, encodes or records an event, generally for the
purpose of computer processing. [50]

In addition the definition from David Luckhams book Power of Evenis:

27

Chapter 2. Fundamentals

An event is an object that is a record of an activity in a system. The event
signifies the activity. An event may be related to other events. [51]

Both definitions from Luckham [56][54] consider an event as a subject of interest and
as a container for data processing.

Ludger Fiege presents a definition which is comparable to Luckhams understanding of
events:

Any happening of interest that can be observed from within a computer is
considered an event.|11]

Since this thesis scope is not aiming at providing a universally valid and formal
definition of events, this section only aims to provide a clarification of the term “event”
valid and relevant within this thesis and applied to the CEP and ESP processing
terminologies.

The following event definitions are derived from the previously discussed defini-
tions and describe the term event in context of CEP and ESP applications:

Definition 1: FEwvents are defined as observable actions or relevant state
changes that can be absorbed by IT systems. |41][53][54].

Definition 2: Fvents can be decomposed to several causally related events.
Several events can be aggregated to a high level events.

Definition 3: FEwvents mark a specific point in time or in an aggregated
form the timespan of an activity.

A relevant state change is usually a subjective occurrence and so are events. In most
cases events mark a specific point in time, however often several events can mark
the starting and ending point of intervals which then can be treated as events again
although they haven’t happened “physically” in the real world.

An example would be the transport of goods, shown in Figure 2.1, from one
place to another. A transport consists of a start event (TransportStart) and end
event (TransportEnd). In between the timeframe of the occurrence of the two
events TransportStart and TransportEnd there are events that are generated by a
thermometer. The thermometer continuously tracks the temperature of the delivery
goods of the transport. If the TransportEnd event has been captured, the sequence of
the related events (correlated events) can be evaluated. If the thermometer events of
the transport exceed a specific threshold, the whole transport and the related events
can be aggregated to an event that can be called as TransportFailed. In literature
these type of aggregated events are often referred to composite events. This small
examples shows that events don’t necessarily have an atomic characteristics.

28

Chapter 2. Fundamentals

O TransportFailed

N
4 N

TransportStart TransportEnd
More than 5% of the
Temperature OK measurements have
been above the
. Temperature above Limits temperature treshold

Figure 2.1: Transport Example

2.1.2 Representation of Events

The representation of information about the occurred activity is reflected through the
attributes of events. The attributes are typed parameters and contain information
about the specific action or state change. There are events that might have a high
value to someone and, on the other hand, the same events don’t necessarily have a
meaning to other parties.

An important aspect of the events relevance to interested parties is their gran-
ularity level. If events are fine grained they do not necessarily deliver the right
information to interested parties. People might only be interested on aggregated infor-
mation or in calculated metrics for instance of a set of events. An illustrative example
would be a HT'TP client request and the corresponding response from a HTTP server.
Looking at the OSI model where data flows across low level layers might not be a
point of interest if the context of browsing web pages is taken into account. An event
in the context of a HTTP request might be that the server application (a web-shop
for instance) failed to process the order by the user. An event signalizing that some
checksums failed in a lower layer is not a point of interest following the HT'TP request
context. This does not mean that the context cannot be accordingly expanded. If
a HTTP request fails, events from the TCP/IP layer stack might be taken into account.

In the most common cases events are materialized or instantiated as messages,
represented as semi-structured data like XML. XML was designed for the purpose of
structuring data for electronic exchange which is the main reason why it has proven
to be a good choice for middleware solutions.

29

Chapter 2. Fundamentals

2.1.3 Advanced Event Characteristics

In the following some event characteristics are reintroduced that were already accu-
mulated and discussed in my previous diploma thesis Efficient indexing and searching
in correlated business event streams [73].

Following David Luckham [|54] events expose three key characteristics:

e Form: An event is an object containing attributes or data components.
e Significance: An event signifies an activity.

e Relativity: An activity is related to other activities by time, causality and ag-
gregation.

Further on Luckham [54] defines three different types of relationships that events can
have:

e Time: Relates events according to their temporal occurrence.

e Cause: Relates events according to their causal relationships. A causal rela-
tionship is given when an event A caused another event B in a direct or indirect
way.

e Aggregation: Aggregates events to high level events based upon different cri-
teria like time, causality or content patterns.

Following Luckham’s [54] proposal that a timestamp defines the time relationship be-
tween events is not as easy as he says that you can determine by the time dimension
that event A happened before event B. Leslie Lamport addresses this problem [53]:

In a distributed system, it is sometimes impossible to say that one of two
events occurred first. The relationship “happened before” is therefore only a
partial ordering of the events in the system. |53]

The happens-before relation — can be defined for following situations:

e If a and b are events in the same process, and a comes before b, then a — b.

e If a is an event sending a message from one process and b is an event receiving
the message from another process then a — b.

e The happens-before relation — is transitive: a — b and b — ¢ then a — c.

e If two events, a and b, are distinct, they are called concurrent which means that
you can’t say which event happened first. In other words it means that if the
events a and b happen in different processes and they do not exchange messages,
then a 4 b and b 4 a.

30

Chapter 2. Fundamentals

Corporate
Level

Application § . |
Layer S L

strators Cell P

Collaboration
Layer

Middleware t

Information Buses ’
Layer ey

!

i [(Neworks) (Gateways] (Firewalls jJ

Layer

Figure 2.2: Enterprise Layers showing the flow of events according to [54]

As discussed in the diploma thesis [73] an additional important topic is addressed by
Martin Fowler regarding timing issues [43]. Date and time information can come in
different precision formats. You could get a date on a daily precision and you could
get it on milliseconds precision level depending on your application. But as you work
with events collected from different sources this could become a problem especially in
distributed environments over the Internet where different time zones come in too.
Furthermore, the question arises which event time is considered? The one where the
event happened physically on a machine or when it has been processed somewhere
else? This kind of questions have to be considered when building a system to process
or collect events from different distributed sources. The aspect of different temporal
characterizations have been discussed by Bruckner et al in [20].

In general a causal relationship determines that an event A caused another
event B to fire. In the layered enterprise introduced by David Luckham [54] (shown in

31

Chapter 2. Fundamentals

Figure 2.2), events flow through several layers triggered by the user or another system
at the top level. They are consequently transformed into lower level events down to
the bottom causing other events to fire. This event flow is called wertical causality
and tracks down how high level events beginning from the business level manifest in
lower layers. This is important to understand how these events are decomposed the
way down in order to be able to create meaningful aggregations out of the masses of
low level events. On the other hand Luckham talks about horizontal causality that
tracks the causal relationships between events at the same level. Causal relationships
are transitive and asymmetric and can be represented as directed acyclic graphs.

Recognizing or detecting a significant group of lower-level events from
among all the enterprise event traffic, and creating a single event that sum-
marizes in its data their significance, is called event aggregation. |51

Aggregating events is a difficult task as it needs a technology that can recognize pat-
terns of events through different layers. But if such an aggregation facility is set up
and running, it can be a powerful source of tracking down causalities between events.

2.2 Communication and Interaction

Following Ludger Fiege’s [11] distinction of interaction models, that were derived from
an “Evaluation of cooperation models for electronic business” [63], this section will
summarize the characterization of event-based systems.

Fiege, Miihl und Buchmann evaluated cooperation models for electronic busi-
ness [63] back in 2000. In their work they referred to second generation e-commerce
systems. Second generation e-commerce systems are characterized by a service-centric
design to support the flexible composition of services to support frequently changing
processes. They address virtual enterprises of the information-driven Internet economy
whereas rigid cooperation models would not scale up with the agile requirements. In
their work they state that event-based cooperation models would satisfy the flexible
business requirements for such applications. Further they discuss several aspects if
QoS parameters.

Virtual enterprises are an alliance, of possibly world-wide distributed compa-
nies, temporarily linked together, sharing their core competencies to exploit business
opportunities [63]. This type of business model is usually characterized by short-term
cooperations where every sub-service deliverer is concentrating on it’s core compe-
tencies and after the business opportunity has been finished, reconfigurations of the
business operations are required. The success of a virtual enterprise largely depends on
the efficiency to adapt the core services to changing demands of this environment [63].

32

Chapter 2. Fundamentals

Although virtual enterprises do not exist today in such extensions, service cen-
tric IT infrastructure became one of the key points on the agenda in todays
enterprises. Service-oriented architecture (SOA) is one of the most frequently used
and misused terms. Basgically, SOA is covering the topic of service centric, easily
reconfigurable processes and transparently distributed IT infrastructure.

The infrastructure for enabling a flexible reconfiguration of services in order to
support the implementation of frequently changing processes and organizations is
a key success factor. An asynchronous way of delivering messages in distributed
heterogeneous environments created a reliable and transparent solution of exchanging
data between peers. The asynchronous messaging communication paradigm abstracts
the underlying network complexities, hides the problems of different heterogeneous
partners, allows loose coupling of peers, scales well with growing demands and brings
the flexibility to meet today’s requirements of agile organizations.

2.2.1 Basic Communication Models

Before getting into the details of interaction models there are six different communi-
cation models that should be noted:

e Transient communication: A transient communication is characterized by the
elusive style of storing messages exchanged between a receiver and a sender. A
message is only stored or held as long as the receiver and the sender are running.
If one of the communication peers is not available anymore then the message is
gone as well.

e Persistent communication: A persistent communication is the opposite to
the transient communication as it stores exchanged messages in a persistent way.
This guarantees, that in case the receiver or the sender stops working the message
is not lost after a restart of the systems.

e Asynchronous communication: Asynchronous communication is character-
ized by having several parties that are exchanging messages. If a message sender
is announcing a message, the message is delivered by the communication infras-
tructure in a transparent way to the receiver(s). The sender does not wait for
any notification from the receivers and thus it can keep on working.

e Synchronous communication: Synchronous communication is the opposite
of asynchronous communication as the sender is on hold until a notification is
delivered by the receiver.

33

Chapter 2. Fundamentals

e Broadcast: Broadcasting messages is determined by a sender that is producing
and sending out messages to multiple receivers. In contrast to other communica-
tion models the broadcast enforces that every available receivers gets a copy of
a message.

Detailed information about communication paradigms, models and distributed systems
can be found in [86].

2.2.2 Models of Interaction

The cooperation models according to [63] and [41] consist of the four interaction models
Request /Reply, Anonymous Request/Reply, Callback and Event-Based. The cooper-
ation model is distinguished by two attributes - the initiator and the addressee. The
initiator can be either the consumer or the responder (e.g. provider) of an interaction.
The initiator sends information about its own state, but it has no information about
the recipients intention of what it is going to do with the state information. The second
attribute is the addressee which determines if the addresses (e.g. the interacting peers)
are known. In case there are not target addresses provided, a loosely coupling is given
as the responder to service requests are chosen in an transparent way. By providing
direct addressing a tight coupling is given, but the service functionality would be able
to incorporate the information of the interaction partner into it’s functionality.

Initiator
Consumer | Provider

Addressee | Direct Request /Reply | Pt-to-Pt Messaging

Anonymous
Request /Reply

Indirect Fvent-Based

Figure 2.3: Cooperation Models according to |41]

2.2.2.1 Request/Reply

The Request/Reply interaction is usually related to classical client/server or com-
mand/control patterns. The initiator, a client system, requests a service, functionality
or data from a provider. The request is processed and an answer delivered back to
the request initiator. In this case the initiator is the consumer and the provider is the
response system. Usually this type of interaction is done synchronously as the client
awaits the response immediately. If request message is treated transient or persistent
depends on the implementation of the communication infrastructure. Request/Reply

34

Chapter 2. Fundamentals

interactions are well known as RPC or Java-RMI calls. Request/Reply creates a tight
coupling between the communication parties.

] Request Resource >
Initiator/Client Responder/Server
Consumer - Reply Producer

Figure 2.4: Request/Reply Interaction Model

2.2.2.2 Anonymous Request/Reply

From a behavior point of view, the anonymous Request/Reply interaction is compara-
ble to the previously described Request /Reply interaction. The main difference is that
the client, the consumer, is not addressing a specific provider with its request. The
request is delivered, in a transparent way, to the corresponding producers. This type
of request may result in one or more replies.

Responder/Server
Producer

Initiator/Client
Consumer

Figure 2.5: Anonymouse Request/Reply Interaction Model

2.2.2.3 Callback/Point-to-Point Messaging

The callback interaction model consists of a consumer and a producer whereas the
producer is the initiator of a communication. The initiator is continuously produc-
ing and sending out notification about state changes - if they occur. The consumers,
can announce their interest by registering to notification generating producers. The
consumer can register itself to more than one producer. The producer is in charge of
managing the registered consumers. This type of interaction is known as the observer
pattern [15] and shows typical characteristics for an event-based communication. How-
ever, the producers and the consumers must manage the registration on both sides of
established communications links. This solution leads to a tight coupling between the
communication parties and thus significantly reduces the ability to adopt fast changing
requirements.

35

Chapter 2. Fundamentals

Step 2: Send notifications
about own state

Step 1: Register

-] Register | .] P [
Initiator & "o Initiator Notification
-4 Consumer - ¥ Consumer
Producer 1 Registe!-~” Producer
i ot
" s
Initiator Initiator |~
.1 Consumer r v Consumer
Producer 2 Registe’ -~ Producer S0~
e oV
— 4 Register -
Initiator 1 Initiator | " notificati
Consumer OUicalton _ym. Consumer
Producer 3 Producer

Figure 2.6: Callback/Point-to-Point Messaging Interaction Model

2.2.2.4 Event-Based Communication

The event-based communication model is similar to the callback model previously
introduced. This type of model includes a producer and consumer while the producer
is the initiator by sending notifications about its state. The main difference to the
callback model is that the sender is not addressing a receiver explicitly. In the callback
model the producer is maintaining a list of registered consumer that are updated about
state changes. In the event-based model the producer fires notifications about state
changes and an underlying communication infrastructure transparently distributes the
notifications to the consumers. The key point here is that producers do not know
anything about the consumers. Further, in the event-based communication model, the
consumer is not registering itself directly to producing components. Consumers create
subscriptions to specific events that they are interested in. Therefore, the consumer
also does not know anything about the event-producing components. This leads to a
high degree of loosely coupling between interacting components. Event notifications
and their processing are done asynchronously. However, the main complexity instance
in this communication model is the infrastructure that is coordinating the delivery of
the messages. This infrastructure must meet several requirements that are especially
addressed by message-oriented middleware (MOM) systems.

Notification [| Subscribe -
Initiator [®] N
Not. Prod. 1,
p Consumer
Producer 1 Not. Prod. 2,
No:r‘ﬁca(:‘o;_ Subscribe
Initiator | |
Not. Prod. 2
Producer 2 Not Prod. 3' Consumer
-
No:r‘ﬁcan’oi < Subscribe
Initiator W TN
Not. Prod. 3| Consumer
Producer 3 -

Figure 2.7: Event-Based Interaction Model

36

Chapter 2. Fundamentals

2.2.2.5 Communication Mediator

The infrastructure dealing with the management and coordination of the delivery of
messages is often associated with the term “event service” [22][61] or event notification
service [71][41] in the literature. An event (notification) service is often related to an
event dispatcher that is responsible of coordinating the delivery of event notifications
to the corresponding consumers. Consumers are subscribed to specific event notifica-
tions where the event service is managing those subscriptions.

There are several strategies of event (notification) service approaches.

e Channels: Consumer can subscribe themselves to specific channels that they
have an interest in. The producers create notifications on specific channels.

e Subjects: Consumers can subscribe to several subjects. The event service for-
wards the notifications according to their subject classification to the correspond-
ing authorities. Every notification emitted by a producer must contain a subject
in such coordination environments.

e Patterns: There are more sophisticated approaches for event subscriptions like
introduced by JEDI [34] where subscriptions can be expressed as event patterns.

At this point the reader should note that the term event services or event notification
services will not be associated with the same meaning like described in the preceding
paragraphs in order to be consistent with literature from this field. In the subsequent
sections, after an overview was given and the prerequisites were discussed, this thesis
will introduce an event-based architecture that is slightly different to already intro-
duced concepts. The term “event (notification) services” is not associated with the
same meaning. Event (notification) services are labeled with the term communication
infrastructure in our proposed architecture.

2.3 Summary

This chapter outlined the basic terminologies that are required to understand the
domain of event processing systems. In particular the term event was under a strong
discussion as there is no formal definition of events available, in context of event
processing, at this time. Therefore several works were introduced to clarify the scope
and the domain of events. In addition a definition of events was given, that defines
them as actions or state changes, whereas events can be decomposed, aggregated, can
define a timespan and share relationships with each other.

Several prerequisites of communication models were introduced ranging from

37

Chapter 2. Fundamentals

basics like asynchronous/synchronous communication to patterns and models, like
callback messaging and event-based communication. This was the first occurrence
where event-based communication was described. The key here is that communication
models were developed to allow a loosely coupling between communication peers
through a mediator that is in between them.

38

3 Event-Based Messaging Middleware

Messaging middleware systems play an important role in event-based systems as
they provide means to decouple communication parties in order to assure flexibility,
scalability and fault tolerance. Therefore, a section of this chapter will introduce
important concepts for messaging middleware related to event-based systems.

The publish/subscribe paradigm has crystallized out to be a good choice for
supporting event-driven solutions as they are loosely coupled, asynchronous and easily
integratable into heterogeneous environments. Therefore a section in this chapter
pays a strong attention to the publish /subscribe paradigm. Especially various filtering
techniques are discussed as the content-based filtering technique contains elements
that are the predecessor of what is called event-stream processing.

Service-oriented and event-driven architectures have gained a lot of attention
both from technical point of view as well as from the marketing side. Especially
SOA was hyped quite heavily in the past years from different analysts and praised
to be an architecture that is going to replace tightly coupled and heavy to maintain
monolithically designed applications. A section regarding architectural topics defines
a distinction and presents a comparison of these two complementary concepts.

The component model of an event-based system is introduced and explained
with detailed illustrations. It puts event-based systems into a broader context of
event processing, defines the boundaries of such systems and defines the scope of each
components. Event-stream processing and complex event processing will be defined
and compared in a dedicated section as they might create confusion due to todays
efforts by marketeers of various software vendors and business analysts that want to
create a branding for this field.

At the end of this chapter the reader should have gained enough background
knowledge to understand the building blocks of event-based systems that will be

discussed in the next chapters and are the conceptual basis of the Event-Base.

Client/server and request/reply application architectures, where system compo-
nents access remote infrastructure and functionality to accomplish their own tasks,

39

Chapter 3. Event-Based Messaging Middleware

have led to the requirement for decoupling the communication parties in order to
assure flexibility, scalability, and fault tolerance in the communication infrastructure.
An additional middleware layer helps to hide the heterogeneity of the underlying
platforms and improves transparency. The possibility to exchange messages in
distributed heterogeneous environments in an asynchronous persistent way [80]
enables a reliable and transparent solution of exchanging data between peers. The
message-oriented middleware paradigm has become one of the communication pillars
of today’s enterprise system and in particular for event-based systems.

The demand for the above described requirements can be found in daily business-
scenarios. Many organizations invested a vast amount of money during time into
their IT systems and applications creating a number of legacy components. For
instance when companies are facing mergers or acquisitions, the problem of aligning
their IT systems with the newly added organizations arises. Different departments
might provide services or processes supported by various IT systems that need to
be reorganized. In these scenarios it is important to integrate and reorganize the IT
systems with low efforts which is in practice a difficult tasks due to the heterogeneous
or legacy nature of such systems. Building new systems from scratch is rarely an
alternative as it consumes too much time and reduce the time to market. Further
developing applications or customizing package based solutions is a costly undertaking.

Event-based system architectures are distributed software components contain-
ing two interacting parties - an event producer and an event consumer. The
communication model of event-based systems rely on asynchronous interconnections
between the components [61]. An event producer is creating event notifications that
are forwarded through a communication infrastructure to event consumers in an
asynchronous way. One or more consumers can signalize their interest in specific
events. The announcement of an interest establishes an anonymous communication
link between independent components without making a central control authority
necessary. The consumers are components that react on received events. This
communication architecture allows event-based systems to enable a dynamic, fast and
relatively easy reconfiguration of interacting components.

Ludger Fiege points out in his dissertation [41] that, although the term event-
based system is widely used in computer sciences, there are quite a lot of ambiguous
definitions and terminologies. Therefore, this section aims to give the reader the nec-
essary background information on communication, in particular messaging paradigms
that are prerequisites for understanding event-based systems and architecture concepts.

40

Chapter 3. Event-Based Messaging Middleware

3.1 Message-oriented Middleware - MOM

As mentioned in the introduction of this chapter, client/server and request/reply
communication patterns do not satisfy the requirements of decoupling communication
parties in order assure flexibility, scalability and fault tolerance in communication
infrastructures.

Client /server architectures are easier to build and maintain as their interaction
complexity is relatively low in most cases and thus are easier to handle by software
developers and designers. When trying to design and build distributed systems to
meet the above requirements it becomes a difficult tasks as there are several points of
failures which themselves are difficult to test and debug.

Machine A Machine B Machine C
L [

Distributed applications

Middleware services

Network OS Network OS Network OS
services services services
Kernel Kernel Kernel

Network

Figure 3.1: Ilustration of a Middelware 86|

Therefore an additional middleware layer has been introduced to improve trans-
parency and to hide the heterogeneity of the underlying system platforms. Figure 3.1
shows an illustration of a typical middleware [36] where different physically separated
machines share resources. A middleware layer significantly reduces complexity and
simplifies the development and integration of systems or applications into a distributed
environment. Further, it allows a fast adoption of new requirements and preserves
investments in legacy applications that can be reused as components for instance in
new solutions to meet upcoming requirements. As shown in figure 3.1 each of the
machines A, B and C can have their own, to each other different, operating systems
and network operating systems (NOS). Almost every operating system provides a
wide set of tools to manage local resources over the network. These tools are often

41

Chapter 3. Event-Based Messaging Middleware

associated with the term of a network operating system which can not provide a
coherent view over various systems. The kernel, or the operating system in common,
is only responsible for managing the local resources of one machine. Using the
network operating systems for solving problems of distributed systems is highly
time consuming, error prone and thus an expensive undertaking. In heterogeneous
application landscapes it takes great efforts to develop and maintain applications that
provide truly distributed functionalities. The heterogeneity makes it difficult to create
an interoperability that satisfies the requirements of distributed communication in
terms of flexibility, scalability and fault tolerance.

In literature, there are several definitions of middleware systems. Sternberger
created in his diploma thesis [83] a comprehensive compilation of definitions about
middleware. Sternberger uses a workaround for providing a definition of middleware by
creating a collection of definitions found in literature. The compilation of definitions
shows that there is no generally valid definition of middleware systems. This is
because of the nature of middleware systems that have a wide set of applications and
differentiates itself by them.

However, in the following a definition of middleware systems is valid throughout
this thesis and describes the characteristics of middleware systems relevant for
event-based systems.

Middleware can be defined as a mediator, between distributed and possibly
heterogeneous software components, that is managing the communicalion
by creating an abstraction layer to hide the interacting platforms.

3.1.1 Types of Middleware

Tanenbaum’s book on distributed systems [86] is a comprehensive work covering
different topics and aspects of distributed systems including middleware. This sections
gives the reader a summary of various types of middleware solutions. More on the
topic of distributed systems and early middleware solutions can be found in [32] and
[26].

e Remote Procedure Calls (RPC): One of the earliest approaches towards a
middleware are Remote Procedure Calls (RPC). RPCs allow to call functions,
including passing over parameters to remote machines. The major enhancement
with RPCs was that they were capable of hiding the physical location of the
remote machine. The RPC server provides an interface towards its clients and
the server can participate as a client itself towards other RPC servers as well.

42

Chapter 3. Event-Based Messaging Middleware

RPC services are usually implemented following the request /reply paradigm with
the drawback of synchronous communication.

e File-Based: File-based middleware models are characterized by providing a dis-
tributed and scalable file system. Plan 9 was the predecessor of such a distributed
file system centric middleware. In Plan 9 every resource is organized and treaded
as files which then can be shared by processes and the communication interaction
is limited to file accesses. File-based middleware models are very popular in the
Unix world.

e Distributed Objects: Middleware models based on distributed objects mostly
rely on remote object invocations. The distributed interaction between the inter-
acting peers are represented as accesses to objects on remote hosts. The remote
hosts provide interfaces for those objects. This model is related to Object Re-
quest Brokers known from CORBA.

e Service-Oriented: Service-oriented models are related to service oriented ar-
chitecture (SOA) where web services are one of the most prominent concepts.
They are based on distributing and bundling services with the goal to replace
tightly coupled and heavy to maintain monolithically designed applications.

e Message-Oriented: Message-oriented models allow different heterogeneous
parties to interact with each other through a middelware layer that provides
a common infrastructure for exchanging messages. This type of middleware is
completely ignoring the contents of the messages as it is only responsible of pro-
viding the infrastructure to exchange them.

3.1.2 Middleware Requirements

The goal of middleware systems is to solve the problem of integrating components
into a heterogeneous application landscape without developing new communication
interfaces for each of the components and thus reducing the development time,
complexity and error proneness.

Following [36] there are five requirements that a middleware systems must ful-
fill:

e Network Communication: Due to the nature of distributed systems applica-
tions, components can be split up to several physical machines. As the applica-
tions have to communicate to each other through networks, distributed systems
should be built on top the transport layer of the OSI model. They should encap-
sulate the session and presentation layer of the OSI model and provide interfaces
or service towards application developers.

43

Chapter 3. Event-Based Messaging Middleware

e Coordination: Components are distributed over different hosts, which requires
some sort of synchronization techniques. If a client requests a service, the server
can acknowledge the request and keep on performing other operations. Later
on time the server processes the client’s request and syncs itself with client or
requestor. This type of behavior is referred to asynchronous communication
discussed in the Section 2.2.1 Basic Communication Models. Synchronization
mechanisms should be provided by middleware systems and implemented at the
session layer.

e Reliability: Reliability, in terms of fail-safeness, error detection and correction
are requirements that goes on the account of performance. Therefore it needs a
trade-off between reliability and performance [36]. Fail-safeness can be achieved
by providing means of replicating components. Reliability, in terms of guarantee-
ing the communication delivery is required for middleware systems. Middleware
systems should be capable to execute transactions with ACID characteristics.

e Scalability: Scalability is one of the major issues that I'T systems have to deal
with. With growing demands, for instance from the business side, the systems
need to scale up accordingly. A way to achieve this is to create an abstraction
of the access to hosts. By making the location of hosts transparent, clients can
access components or services without minding their real physical location or
their identity. This allows to easily apply load balancing or replication services
to scale up with growing demands or to catch load spikes.

e Heterogeneity: The IT landscape of large IT organization consists usually
a wide range of different system components. Most of that systems need to
interact with each other. The problems lies often in the fact that they have
grown historically and thus they form a heterogeneous ring of systems in terms
of operating systems, programming languages that software was written with and
hardware. Some of these components might be open software with a rich set of
interfaces, but on the other hand there are old legacy systems with proprietary
interfaces. The middleware’s job is to provide an abstraction of the heterogeneity
instead of leaving this task to software developers.

3.1.3 Message Oriented Middleware

Message-oriented middleware (MOM) systems are a special type of middleware sys-
tems satisfying the requirements of network communication, coordination, reliability,
scalability and heterogeneity introduced in the Section 3.1.2. A MOM is as a mediator
component between interacting components providing an infrastructure for exchanging
messages. Following Tanenbaum and van Steen a MOM provides an extensive support
for persistent asynchronous communication |86].

44

Chapter 3. Event-Based Messaging Middleware

Client Server

Request

Idle Time

Reply

Figure 3.2: Client/Server communication paradigm idle time

The problem of the synchronous request/reply communication paradigm is basi-
cally that it requires both communication parties to be on-line or alive at the same
time. This behavior causes a number of problems. Figure 3.2 shows the interaction
model where a client sends a requests or a message to a server and the servers sends
back an answer. The point in this figure is that the client is blocked or in an idle state
until the server sends back its response. This type of synchronous communication
leads to difficult error handling and creates a high connection overhead when trying
to resolve failures. A simple error handling scenario for instance is when a server is
not reacting on calls, the client has to retry to connect itself to the server until the
request succeeded or the number of retries exceed a defined threshold.

One solution of this problem is to directly improve the synchronous communica-
tion paradigm by enhancing it with more sophisticated functionalities like load
balancing or transactions. The other solution is to switch to asynchronous persistent
communication paradigms. With such a communication paradigm the client sends a
request and can keep on working until it receives a response. The client does not have
to be running or ready for receiving the response as the response is stored until it
is fetched. On the other side the request is stored until the server is alive or able to
processes the request.

Asynchronous persistent communication paradigms can be realized with mes-
sage queuing systems. Queuing systems allow components to communicate with
each other through persistent queues. Persistent queues store messages in a robust
way, that are fault tolerant and support transactions in order to catch exceptional
situations and guarantee the integrity of messages. Message queues allow several
components to access and read from queues. This enables failover through adding
service replication and load balancing.

45

Chapter 3. Event-Based Messaging Middleware

Message queues allow to model complex interaction patterns in completion to
the Section 2.2.2. The queues can form a virtual connection between components
that are called channels. Channels represent a communication connection between
interacting components. The sender does not necessarily need to know who is the
receiver of its messages and vice verse.

e One-To-One: One-To-One or Point-To-Point channels guarantee that a pro-
duced message is delivered to one and only one receiver. However the sender
does not know to which receiver the message is delivered. This results in the
situation that a producing component (e.g. sender) is issuing messages to the
same channel, but the messages are not delivered to the same receivers.

e One-To-Many: One-To-Many channels allow to distribute one message to sev-
eral receivers at the same time. In contrast to one-to-one channels this allows a
producer to send one message and every listening component will get a copy of
that message. Listening components are called subscribers. We will refer to this
this type of channel as Publish/Subscribe later on in this chapter.

MOMs allow to define message queues for one or more interacting components. Often
several components or applications share the same queue as they are interested in
the same type of messages. By specifying such queues, components can interact with
each other by sending messages to those queues. The messages are then enqueued and
pending until another component (e.g. the receiver of the message) fetches the mes-
sages. This type of interaction is asynchronous and therefore the sender and receiver
of the messages don’t have to be in sync. Due to asynchronous communication MOMs
provide persistence mechanisms for messages. MOMs don’t care about the content
of messages. They are only responsible of providing the necessary infrastructure
for exchanging the messages and satisfying the requirements of middleware systems
described in the previous Section 3.1.2.

The drawbacks of MOMs are related to asynchronous communication which can
become a problem in time critical applications. They are not addressing security
concepts especially in publish/subscribe systems.

Figure 3.3 shows an illustration of a message oriented middleware. There are
four interacting components (A, B, C, D) and three message queues (X, Y, 7Z) in this
illustration. The component A is sending messages to the queue X and the component
B is sending messages to the queue Y. When the messages from the two components
have been enqueued the component D is capable of fetching them from the queues X
and Y. In this scenario, there is no designated producer or consumer for messages. At
the first glance, the component D would qualify itself as a consumer. However, the
component is not only fetching messages and consuming them, it is also producing

46

Chapter 3. Event-Based Messaging Middleware

MOM
i | Queue X

Component A ¢ Message L Msssé'gral-

o ~a Queve ¥ -+ | ™ Component D

- I a T VA 7

| g [y .
Component B Message L L) Message
Component C 4 Messore!

essage

Figure 3.3: Illustration of a Messaging Middleware

messages and issuing them to the queue Z which is then consumed by the component
C. The key in this illustration is that there are no designated producer and consumer
roles. The MOM is encapsulating the interaction and providing message queues to
the components. This enables loosely coupling and hides the heterogeneity of the peers.

Figure 3.3 shows a simple scenario of exchanging messages. The reader should
bear in mind that MOMSs have to perform tasks like routing messages to their desti-
nation. Sometimes routing of messages can become a complex task where messages
are delivered through several queues until they reach their destination. Furthermore,
MOMs have to deal with issues like data transformation in order to bridge the
heterogeneity.

3.1.4 Terminology Clarifications

The following important terminology clarifications should be noted for the subsequent
sections:

e Event: An event is an observable action or a relevant state change that can be
absorbed by IT systems. In this case the IT system is the producer. Please refer
to the Section 2.1 Discussion About Events for a detailed discussion .

e Notification: A notification represents an event, defines the encoding and the
data structure.

e Message: The term message is related to concrete materialization of the notifi-
cation. This can be for instance XML for representing a notification.
3.1.56 Types of Messages

A message is basically nothing else than a package containing data produced by a
component and that is forwarded to a receiver. Typically, a message consists of a

47

Chapter 3. Event-Based Messaging Middleware

header and a body.

The header contains data relevant for the MOM in order to deliver the message
to it’s destination. It can contain data about the sender, timestamp and priority.

The body contains the “actual” content that is created by the producing com-
ponent. Usually the body is of no interest to the MOM.

The MOM is not directly interested in the message body, but from the consumers point
of view the messages can be differentiated by following types [62]:

Command Message: Command messages are used to call functions or ser-
vices of a system. For instance RPCs can be packed into messages to call the
functionality.

Document Message: Document messages can be used to transfer documents
to other components for further processing.

Event Message: Event messages are used to provide reliable notifications about
events to other components.

Reply Message: A reply message is issued to propagate back results to re-
quested services or functions.

Message Sequence: Message sequences are used to split up huge data amounts
into several messages in order to be able to deliver them to its destination.

A lot of the message types introduced in this section and further described in [62] are
related to the well-known design patterns [415]. Messaging can be used to implement
design patterns such as the observer pattern for issuing event messages.

3.1.6 Publish/Subscribe Paradigm

Producer | Publish_| I Sujscnbe I comeumer
— .
J . 1 otify >
2 _
| Publish) Unsubscribe |
Producer T Consumer
[+
; = Subscribe
Publish otr
otify >

A

Figure 3.4: Publish/Subscribe Overview

48

Chapter 3. Event-Based Messaging Middleware

The publish/subscribe Paradigm, or short pub/sub, is referring to many-to-many
channels where a message producer is sending (e.g. publishing) messages through a
channel. A channel is the simplest form of describing a virtual connection between
peers. Channels are used in the beginning to introduce the basic concepts and later
on more sophisticated concepts will be introduced.

The message consumer subscribes itself to a channel and receives the messages
issued through the specific channel. There can be more than one consumer subscribed
to one channel and thus one message is distributed to each of the subscribed parties.
A message is considered as consumed when every subscribed party has received its
copy of the message.

A pub/sub systems consists of following components:

e Producer - Publisher: This component is producing notifications or messages
and distributes them to the mediator service which is basically a pub/sub mid-
dleware. In literature the term mediator is also called event notification service
or event service.

e Consumer - Subscriber: This component is the consumer of notifications or
messages. It signalizes its interest by subscribing to specific channels. A consumer
can subscribe itself to more than one channel. The consumer component does not
know anything about other consumers that are subscribed to the same channel for
instance and thus receiving the same messages. Furthermore it is not explicitly
aware of the implications that are cause by messages or notifications that are
consumed by other components. A consumer can take in the role of a producer
and act as a publisher.

e Subscription: A subscription is indicating the interest of a consumer /subscriber
to a specific notification.

e Mediator: The mediator is the component that is responsible of delivering the
right notifications to the corresponding consumers. This component is often
referred to notification service.

One of the most important component of the pub/sub paradigm is the subscription
mechanism that is managed by the mediator. Therefore some attention has to be
spent on the various aspects and techniques of subscription types. The introduced
concepts and techniques are used in event-based systems to provide an infrastructure
for event-driven processing.

According to [37] the main strength of the publish/subscribe communication

49

Chapter 3. Event-Based Messaging Middleware

paradigm lies in the full decoupling of time, space and synchronization between the
producers/publishers and consumers/subscribers:

e Time: The publish/subscribe communication paradigm is an asynchronous com-
munication model which does not required the communication parties to be be
on-line or alive at the same time while exchanging communication.

e Space: The consumers and producers don’t have to know about each other and
hence components in pub/sub messaging solutions are loosely coupled. The only
interacting party for those two components is the mediator in this model.

e Synchronization: The consumers and producers are not blocked while produc-
ing or receiving notifications.

The characteristics described by [37] can be generalized to different types of messaging
middleware (see Section 3.1.3).

3.1.6.0.1 Channel-Based

) 4Subscﬁbe
| Publish Channel Notify Consumer
Producer — / >
o i
§ - be |
‘E:; _‘Subscnbe
Channel Noti Consumer
) otify >

Figure 3.5: Channel-Based Subscription

As already mentioned in the beginning of this section and described in the sec-
tion 3.1.3, channels are the basic concept of representing subscriptions. A channel
is used by producers/publishers to distribute their notifications where the mediator
redistributes them to the subscribed consumers. The drawback of this concepts is
basically that there is no mechanism of filtering to different granularity levels which
might result in an overhead of information that the consumer receives.

3.1.6.0.2 Topic- or Subject-Based

Topic-based subscriptions are a more advanced concept of controlling the distri-
bution of notifications within a pub/sub middleware system. A topic can be seen as
a label that is attached to notifications to classify their content. A notification can

a0

Chapter 3. Event-Based Messaging Middleware

" Topic A \

Publish
Producer | to Topic B/

\}T i B A
ANOPEE Subscribe to Topic B |

-
. / / Notify

p» Consumer

Figure 3.6: Topic-Based Subscription

now be categorized according to those labels. The consumers don’t need to subscribe
themselves directly to channels anymore, but to topics which are a more specific filter
mechanism to control the potential flood of notifications.

An additional extension to these topics are hierarchies that are somewhat com-
parable to object oriented hierarchies. Hierarchies in topic-based subscription models
don’t have the characteristics of object-oriented concepts like inheritance and infor-
mation hiding, but they allow to treat and access notification according to the set
theory. However the notification selection/filtering is performed through matching
strings [67] to the labels in ordered to divide the space of notifications.

Consider following topics topicA C topicB where topicB is a sub-topic of fop-
icA. If a consumer is subscribed to topicB it will receive all notifications that are
addressed directly to topicB but none of the notifications addressed to topic topicA. On
the other hand a consumer that is subscribed to topicA will also receive notifications
that are directly labeled as topicB.

It is often possible to parametrize topic-based subscriptions with wildcards. Let’s
consider following example:

topicA C topicX C topicB
topicA C topicY C topicB

In this case there is a specialization that is the same at the lowest hierarchy levels.
For instance if the consumer wants to subscribe itself to the lowest hierarchy level (e.g
receive only topicB notifications from every specialized branch) it can use wildcards:

topicA C * C topicB

Topic-based subscription are part of many commerical pub/sub messaging solutions.
Their roots of topic-based approaches can be found in the context of group communi-
cation [18][19]

ol

Chapter 3. Event-Based Messaging Middleware

3.1.6.0.3 Type-Based

. Notification Type Definition

i Subscribe to TopicA |

. Publish | TypeA - | P |
Producer TypeB - | > Consumer
f :] Notify |

TypeE TypeEh

[tn this case notify about |
TypeB due to inheritance
definition

Figure 3.7: Type-Based Subscription

A type-based notification selection is relating to the classification of notifications
according to notification types [15][10][37][67]. Notifications can be classified through
different predefined types. The type definition is comparable to class definitions
in object-oriented programming languages. Therefore type-based filter mechanisms
support inheritance structures that allow to create generalization selections. The
basic idea of this concepts is comparable to the topic-based approach with the
main difference that in this case the notification service is not matching labels and
their hierarchies against selection strings, but inferencing notifications against the
predefined types and their inheritance hierarchies.

3.1.6.0.4 Content-Based

TransportStart - Schema

: Publish ~ \ o :
» \ _ Subscribe
Producer B | (ocation="Vienna", Product="Toslanum" &
=) p Consumer

Notify

Notifications that
matched the created
subscription filter on the
TransportStart
notification types

Figure 3.8: Content-Based Subscription

Due to the limited expressiveness of topic-based filter mechanisms, content-based
subscriptions provide the ability to access the actual content of the notification itself
[72][4]. That means that the consumer is capable of defining subscriptions, based on
the internal data structures or attributes of the messages itself. This allows the media-
tor to provide a facility to create subscriptions, based on detailed notification-internal
criteria instead of classification data that is attached to the notification like “labeling”

92

Chapter 3. Event-Based Messaging Middleware

them in topic-based approaches.

Content-based subscriptions provide means of specifying filters that can be de-
fined through a filter language. Constraints can be created by defining key-value pairs,
applying comparison operators and combining them arbitrarily with logical operators.
By using these simple mechanism it is possible to form complex subscription patterns.

An important concept in content-based systems is the requirement of defining
types of notifications and thus defining a detailed data structure of events. This data
schema or data model encodes and represents events in form of notifications. This type
of schema definition in combination with content-based filtering is the predecessor
of event models we know from complex event processing. Event models for complex
event-based systems will be discussed in detailed in the subsequent sections.

In topic-based subscription models the notifications are label with a topic which
is a static schema and can’t be used for filtering on finer granularity levels. Through
matching notifications to defined schemas or types, the notification processing instance
has information about the data structure of the notifications and thus it is possible to
access their content.

Subscription languages are tightly coupled to the underlying event model and
therefore their expressiveness is also strongly coupled to the underlying model. The
authors of [24] are highlighting an interesting point coherence of expressiveness of
subscriptions languages and scalability. The expressiveness of subscription languages
goes to the account of the scalability of the pub/sub system due to additional
overhead. A trade-off between the subscriptions languages and scalability has to be
considered while designing such languages.

Bacon et al. [7] go one step further by introducing the concept of event corre-
lations. The composite of these capabilities can be seen as the predecessor of event
stream processing where you have a flow of messages that are matched by their
content against specified patterns or expressions in the simplest case. Messages that
are matching will be sorted out for further processing.

3.1.7 Event-Driven versus Service-Oriented Architecture

In the previous sections the reader was introduced to basic communication paradigms
and infrastructural concepts. These concepts were explained with the meaning to
provide essential background information on event-driven system, it’s roots and their
conceptual development. Before switching directly over to event-based systems this
section aims to provide an understanding of event-driven architectures and it’s char-

23

Chapter 3. Event-Based Messaging Middleware

acteristics especially in comparison to service-oriented architectures (SOA).

3.1.7.1 Service-Oriented Architecture

Service-oriented Architectures (SOA) have gained a wide spread attention both from
technical point of view as well as from the marketing side. Without a doubt SOA
was hyped quite heavily from different analysts and praised to be an architecture that
is going to replace tightly coupled and heavy to maintain monolithically designed
applications. Then the Event-Driven Architecture (EDA) was thrown into the pit
[66]. The distinction and comparison of these two complementary concepts and their
integration with each other is important to understand the basic differences, their
special abilities, strengths and drawbacks.

Service Provider
" (Producer)

A
A 3
=
g 8 g
= & [
=] D o
=] 1
= y
Service Requestor
(Consumer)

Figure 3.9: Service-Oriented Architecture Interaction Model

SOA is relying on the previously introduced request/reply mechanism where a
consumer requests a service and awaits the reply from the service producer. The
service-oriented architectural concepts are based on distributing and bundling services,
in sense of making them accessible across organizational and technical boundaries.
This type of architecture offers common interfaces, throughout heterogeneous plat-
forms. The main goal is to accelerate the agility of software development and
integration projects and thus enhancing the agility of organizations. SOA solutions
are characterized as loosely coupled components, the communication is one-to-one
and done in a synchronous way. Similar to RPC components in SOA-based solutions
determine when another components service is called.

Figure 3.9 shows an illustration of a SOA based interaction model. A consumer
or service-requestor is capable of looking up services that are registered and sharing a
common interface towards service consumers. The consumer can call services through

o4

Chapter 3. Event-Based Messaging Middleware

standard interfaces and and receives the results after the request has been processed
and an answer has been generated by the service provider.

Consumer

g Ao
5 5
e 4 \ A

\\

A

>

o

2

Producer

Figure 3.10: Event-Driven Architecture Interaction Model

3.1.7.2 Event-Driven Architecture

The event-driven architecture (EDA) is a complementary approach to SOA that can
be described as an interaction model between decoupled and potentially heterogeneous
components. The key in EDA is that components interact with each other through
exchanging events that represent state changes in observations. The communication
is done asynchronously, in contrast to SOA-based solutions, and therefore the com-
munication parties don’t have to be online and alive while exchanging information.
The events are the communication drivers. If they occur all interested parties will
be notified through many-to-many channels. A reliable, loosely coupled, scalable and
fault tolerant middleware is required to support this type of architecture. The major
difference to SOA is that the components are more loosely coupled and they are more
fault tolerant through their asynchronous communication behavior. Mentioned earlier
in this thesis, messaging middleware, in particular pub/sub messaging proofed to be
one of the best solutions to support EDA.

Figure 3.10 shows an illustration of an EDA based interaction model. The con-
sumers can register themselves through a mediator/middleware to events they want to
receive notifications about. The producer publishes notifications of events while the
mediator is responsible of re-distributing them to the interested parties. The figure
shows an indication that EDA is strongly related to messaging middleware systems.
Especially the publish /subscribe paradigm plays an important role with sophisticated
subscription mechanisms.

95

Chapter 3. Event-Based Messaging Middleware

3.1.7.3 SOA and EDA Comparison

The article [60] provides an interesting tabular comparison of SOA and EDA charac-
teristics that pinpoints the main characteristics of SOA and EDA in the tables 3.1
and 3.2. The tables show the main highlights and differences of SOA and EDA at a
glance. In the Table 3.1 however the attribute Loosely coupled interactions is not a
dedicated SOA feature. Moreover EDA solutions are actually even more loosely cou-
pled which is taken into account for EDA under the point Decoupled interactions in 3.2.

Gregor Hohpe compiled a list characteristic for EDA [50] that consists of the
subsequent items. Most of the characteristics for EDA proposed by [60].

e Broadcast Communication: A communication model where a sender that is
producing and sending out messages to multiple receivers. This point can be
referred to the point many-to-many communication receivers.

e Timeliness: No intentional delays are involved. Events are fired whenever they
occur. Hohpe is alluding to batch cycle processes with this point.

e Asynchrony: The producer and consumer don’t have to be in sync. This point
is mentioned in the Table 3.2 under the attribute Asynchronous.

e Fine Grained Events: Hohpe states that applications tend to publish individ-
ual events as opposed to a single event [50]. This might be true in a lot of cases,
however especially in context of complex event processing (CEP) systems this
item might not be fully accurate as it is capable of creating and maintaining rela-
tionships between events and aggregating them to higher level events. Under the
last point in this list, Hohpe lists complex event processing as a key characteristic.

CEP components can also take in the role of event producers. One of the
abilities of CEP solutions is that they are capable of aggregating events to
more higher and abstract levels. For instance the events TransportStart and
TransportEnd could be aggregated to a higher level event GoodsDeliveredInTime
which is fired if the agreed delivery time in TransportStart is smaller or equals
the delivery time in TransportEnd. In this case the CEP component injects
an event that has a lower granularity and aggregated attributes derived from
lower-level events.

e Ontology: Ontologies or other an other categorization method that are used to
classify events and determine the interest in group of events or events that fulfill
some constraints.

e Complex Event Processing: This point mentions the ability to understand

o6

Chapter 3. Event-Based Messaging Middleware

and monitor relationships between events in terms of causality and creating ag-
gregations [50][54].

Gregor Hohpe created an explanation of EDA in [50] that is using the programming
metaphor call-stack to describe the features of EDA and creating a distinction to
SOA. According to his point of view in [50], stack-based interactions consists of three
main features: coordination, continuation and context. Call-stack based computing
requires components to be in sync when executing or calling methods. This is directly
resulting from tight coupling where one component must know details about the other
component.

An additional layer can be put between the components to reduce the level of
coupling, like a messaging solution that is an enabler for asynchronous communica-
tion. In this case the service requestor does not have to know which components
provide the requested functionalities anymore. The downside is still that in SOA-based
solutions the components still await a response on a request although they are more
loosely coupled. If the request has been received the requestor can continue with the
instructions on the “stack” for this fork. But requestor does not know which other
component is satisfying its request.

EDA on the other hand is just producing events, not caring about which and
how many components are consuming that information. Further it does not await any
explicit response on a generated event notifications.

3.1.7.4 SOA and EDA Application Scenarios

The command and control or request/reply behavior of SOA suites best for integrating
with existing functionalities by wrapping away or replacing legacy applications within
organizations with a more flexible and sustainable solution. Application scenarios that
require transactional capabilities in order to be able to roll back committed actions fit
as well for SOA-based approaches.

EDA on the other hand comes into play with its strengths in long taking busi-
ness processes that need to be offline from time to time due to their nature. For
instance a workflow that is interrupted for input or other activities that will oc-
cur later on time need to be set to inactive. Therefore, the interacting systems
collaborate with each other in an asynchronous way. If the state of the process or
workflow interruption has changed the interacting components are informed through
an event that is representing that state change. None of the components has to be
aware of each other, moreover the event itself is driving the interaction. In contrast
to EDA, the caller component must know the provider from which it requests a service.

o7

Chapter 3. Event-Based Messaging Middleware

Capability Description
Loosely coupled interactions | Services are invoked independently of
their technology and location

One-to-one communications | One specific service is invoked by one consumer at
a time. The communications are bidirectional
Consumer-based trigger The flow of control is initiated by the client

(the service consumer)

Synchronous Replies are sent back to the consumer in a

synchronous way

Table 3.1: Fundamental SOA characteristics [60]

Capability Description

Decoupled interactions Event publishers are not aware of the existence
of event subscribers

Many-to-many communications | Publish/Subscribe messaging where one specific
event can impact many subscribers

Event-based trigger Flow of control that is determined by the
recipient, based on an event posted

Asynchronous Supports asynchronous operations through event
messaging

Table 3.2: Fundamental EDA characteristics [60]

EDA is especially helpful in application scenarios where different information
sources must be attached for a global awareness [26] of ongoing state changes. This
has to be done in order to be able to analyze ongoing situations that are reflected
through events and to be able to react on them in a timely manner.

3.2 Event-Based Systems

Event-based systems are seeing increasingly widespread use in applications ranging
from time-critical systems, system management and control, to e-commerce. Event-
based systems can capture information from various sources (producers) and distribute
it in a timely manner to interested consumers.

They can be used to integrate a wide range of components into a loosely-coupled

o8

Chapter 3. Event-Based Messaging Middleware

distributed system with event producers which can be application components,
post-commit triggers in a database, sensors, or system monitors, and event consumers
which can be application components, device controllers, databases or workflow queues.

This section introduces generic concepts of event-based system to the reader.
Further it describes the various participating components of such an event-based sys-
tem and how they work together with the surrounding environment and infrastructure.
SARI [81] is an event-based and complex event processing (CEP) solution that is used
to describe and illustrate some of the concepts introduced in this section. SARI is
capable of processing large amounts of events, providing facilities with the capability
to monitor, steer and optimize business processes in real-time. It allows to observe
relevant business events to identify exceptional situations, indicate opportunities
or problems combined with low latency times in decision making for supportive or
counter measures.

Event-based systems rely heavily on event-driven architectures, where each of
the components interact with each other through exchanging events that represent
state changes in observations. Events are the communication drivers in event-based
systems and if they occur all interested parties will be notified about their creation.
A key characteristic in event-based systems is that their communication model is
asynchronous and therefore the communication parties don’t have to be online and
alive while exchanging information.

3.2.1 Events for Event-Based Systems versus Events in Software
Engineering

Events are a common metaphor in graphical user interfaces (GUI) for representing
user inputs (e.g. interactions with the graphical user interface - GUI). GUIs accept
input from user controls and create, asynchronously notifications about action in the
user interface that are referred to events.

Components of such GUI applications are registered to interested events and
thus they are notified in case an event fires at the GUI. The main benefit of this
approach is to decouple the components that interact with each other and thus to
enhance the code quality in terms of maintainability and reusability. This type of
events are called local events.

The Model-View-Controller (MVC) pattern is a common pattern in software en-
gineering for assembling user interactions with the back-end. This pattern was
originally popularized in Smalltalk and is now common practice. The MVC pattern
consists of three components:

29

Chapter 3. Event-Based Messaging Middleware

e Model: This component represents the domain knowledge that is reflected
through a data structure. Often this component is used to encapsulate database
access.

e View: This component is responsible of rendering the information and managing
only the presentation of the user interface.

e Controller: The controller component is responsible of controlling the states and
the workflow of the user inputs and the communication with backend components.

This small excursion to software-engineering patterns is necessary to clarify the
domain of events and event-based systems that this thesis is addressing. In case of
GUIs the MVC is handling the user interface through its controller components. The
controller component is maintaining and managing the state of an application. If a
state change triggers an event the corresponding controller component is notified. For
example a user clicked a button on a web-page, which caused an event to fire that
causes the execution of a database query. In this thesis such events are considered as
local events.

The term local event is actually misleading as the event can lead to different
and actually distributed actions. Therefore it is difficult to draw the line between
between local events and events that are used in the domain of event-based systems.
However, such user input events create one-to-one event notifications or potentially
one-to-many if different components are updated. Either way the communication
applied by this pattern is usually realized synchronously as the user awaits response
on its request immediately.

When we talk about event-based systems throughout this thesis these local event
handles are not in scope. This thesis is addressing event-based systems in a dis-
tributed environment, which allows multiple, distribute and possibly heterogeneous
components to exchange notifications about events and provide an infrastructure to
manage subscriptions. Distributed event-based systems can be seen as an extension
to the local event notification model.

3.2.2 Components of an Event-Based System

The goal of this section is to give the reader an understanding what an event-based
system is about, which components exist and how they work together. Further it
aims at giving the reader the picture how all of the previously introduced topics fit
together.

This section gives subsequently a detailed overview of an event-based system

60

Chapter 3. Event-Based Messaging Middleware

Event Type
Library

. Event-Based e BN

/ ?ystem
I SV \/ i (9}

Consumer | | Consumer | | Consumer

6 .

| Pra g -‘“._'_\" i

Business Computer Production Logistica External Systems of v
Processes Sysiems Systems Transportation Business Pariners y RESDOI‘IS’E

(r—

Producer 9

S = | T e S

Notification Service 9 6 Notification Service
Interia:‘_,e Interface

[

Communication
Infrastructure

Figure 3.11: Event-Based Messaging Middleware

which is illustrated in Figure 3.11. The figure shows an event-based system consisting
of several components that will be describe in details later on in this section. The
message of this figure, and the introduction of its components, is to provide the reader
with a delimitation of an event-based system in context of our research project SARIL.

Event-based systems are characterized by having two interacting components
like known from messaging solutions described in the previous sections - the consumer
and the producer. Figure 3.11 illustrates the architecture of a distributed messaging
solution that connects producers and consumers together through a communication
infrastructure which can be seen as mediator between those two components.

The producer (2) takes relevant observations into account and decides if they
should be published. The notification service interface, respectively the communi-
cation infrastructure, creates a notification including the event which represents the
observation and distributes this event to the peers that might have an interest in this
occurrence.

The peers can register their interest on events by subscribing to specific event
notifications. The concrete registration and the expressiveness of formulating an
interest by a consumer on a event notifications depends on the underlying commu-
nication infrastructure. In case of publish/subscribe solutions several methods have

61

Chapter 3. Event-Based Messaging Middleware

been described in Section 3.1.6.

The publish/subscribe paradigm has crystallized out to be a good choice for
supporting event-driven solutions as they are loosely coupled, asynchronous and easily
integratable into heterogeneous environments. Further they support different types
of selecting and delivering event notifications to interested parties. For example a
consumer can announce its interest in specific events or patterns of events (see also
Section 3.1.6).

However, attaching an event-based system to several communication infrastruc-
tures requires own mechanisms to handle the subscription of events. Therefore,
event-based systems (6) provide adapters which are consumers of event notifications
and can correlate and aggregate events in order to discover and respond to event
patterns. Event-based systems classify the events by using event types which are
managed in an event type library (7).

The notification service interface (3)(5) is a prerequisite for loosely coupled sys-
tems since it provides a transparent abstraction layer for programming languages
that hide the communication details. A channel (4) represents a bundle of event
notifications that a consumer can subscribe to or a producer could select to distribute
its notifications.

The following list contains an overview of all components of an event-based sys-
tem. Each of the items will be described in details in the subsequent sections:

e Event Sources (1): The event sources represent the source systems and the
outside world that is producing events.

e Event Producers (2): The event producers are the instances that publish event
notifications about occurred events from the Event Sources.

e Notification Service Interface (3)(5): The notification service Interface is
an interface towards the communication infrastructure and is used by the event
producers to distribute their event notifications.

e Event Notifications (4): An event notification is generated by event producers
and represents an event, defines the encoding and the data structure.

e Communication infrastructure (11): The communication infrastructure is
the underlying communication infrastructure that is in charged of distributing
Event notifications to the desired destination.

62

Chapter 3. Event-Based Messaging Middleware

e Event Consumers (6): Event consumers are components of an event-based
system. They can be seen adapters that are attached to the mediators whereas
the notification services provide the interfaces towards the communication infras-
tructures.

e Event Processing Realm (7): The event processing realm of an event-based
system represents the mechanisms and components for processing event notifica-
tions.

e Event Type Library (8): The event type library contains the information
about the structure of event types for the event processing realm.

3.2.2.1 Event Sources

e ml—— -
o 3or0) N Y 000 — |
. O qfeee—L, L
X TR0

| Business Computer Production Logistics External Systems of |
\, Processes Systems Systems Transportation ~ Business Partners

Figure 3.12: Typical Event Sources

Referring to Section 2.1 Discussion About Fvents, events can be defined as observable
actions or relevant state changes that can be absorbed by IT systems in first place.
Event sources can be arbitrarily everything that can be observed by a computer
or an IT system. Such source systems can be for instance sensors, ERP systems,
BPM systems, production systems or systems in charged of logistics operations. In
Figure 3.11 event sources are represented in the upper left area (1) with symbolic
representations of event sources like business processes, computer systems and so on.

An important point here is that the source system need some kind of a connec-
tion to the event producers (2), that take the observations into account and produce
corresponding event notifications. The event sources and the producers are often
tightly coupled as they need to be able to exchange the information that specifies
an event. Basically event sources and event producers go hand in hand where the
producer itself is the component that is actually creating the notification of an event
whereas the event sources create the events itself.

3.2.2.2 Event Producers

Event producer components (see Figure 3.13 and Figure 3.11) take actions and relevant
state changes from event sources into account and produce notifications of those events.

63

Chapter 3. Event-Based Messaging Middleware

“ny
N\ . /
'\\ J v
iy 4
\ Vi
(7 =

| | Producer e
; qﬂt Notification

Notification Service
Interface

Figure 3.13: Event Producers

Event notifications are created by packing the observed events into messages ac-
cording to a defined data structure which is also defined by the used interface of the
underlying communication infrastructure. Such event notification messages contain a
header and body with structured information that is often XML-based.

The event notification, created by an event producer component, is passed for-
ward through an interface towards the underlying communication infrastructure that
is taking care about handling the delivery of the message to its destination.

The event producer does not have any mediator capabilities, which is provided
by middleware solutions for distributing those notifications and meeting the require-
ments of distributed systems. An event producer is only creating a notification
and then using an interface for publishing or triggering the delivery of the event to
interested parties. Failures from the producer components can not be captured by an
event-based system at this place Therefore, the event-based systems processing realm
must cope with possible malfunctions.

Going back to the discussion about event-driven architectures and service-oriented
architectures in Section 3.1.7, one of the main characteristics to distinct the two archi-
tectural concepts is by the type of synchronicity and the degree of coupling between
the communicating parties. Therefore, if the event producers work synchronously
(e.g. sending off an event and waiting for a result to get back in sync with) they
actually break with the concept of EDA. However, this is often the case in legacy
applications and also with SOA-based applications which is not necessarily an issue
for event-based systems in first place, but one for the architectural concept for whole
solution landscapes.

64

Chapter 3. Event-Based Messaging Middleware

In the event-based system component overview, presented in Figure 3.11, there
is an arrow (10) directed from the event-based system towards the event sources
(1). This arrow represents the characteristic that an event-based system itself can be
both an event source and an event producer. The difference to other event sources
and producers is, that the event-based systems event producers are within the scope
of the event processing system itself. The event producer can be an integral part
of the event processing system and attached to the event processing realm. This
is because the event processing realm has its own event model, defining the syn-
tax and semantics that are used to describe events, in order to be able to process them.

The result of the event processing in the processing realm can be another gen-
erated event that should be propagated back to other systems. To be able to emit
created events it is necessary to transform the internal event data models into the
required external data structure and then to pass it through to the implementation
infrastructure (11). It is necessary to have mechanisms in place that allow to wrap the
internal events into the correct format that is required by the targeted communication
infrastructure. Depending on the targeted communication infrastructure for the event
notification it is necessary to invoke the specific functionalities of that infrastructure
which is exposed by the notification service interface.

In SARI, event producers within the scope of the event processing realm are
called response adapters. The event adapter concept of SARI is discussed in detail in
the Section 5.1. It basically consists of a transformation component that is in charge
of converting and transforming the internal events to a desired target data structure
and a response adapter that is then emitting the created event notification. This can
be again another messaging middleware or in a simple case an insert of a record into
a database.

3.2.2.3 Notification Service Interface

i Event Notification
Notification Service |

Intg_ﬁace _ e

Interface

Communication
Implementation

Figure 3.14: Notification Service Interface

The event notification service interface shown in Figure 3.14 is an interface between

65

Chapter 3. Event-Based Messaging Middleware

the event producers/consumers and the underlying communication infrastructure.

The event notification service interface is used by the communicating compo-
nents (e.g. consumer and producer) to delivery and on the consumer side to receive
the event notifications. In case of a consumer notification service interface, the
expressiveness of advertising interests in events is limited by the communication
infrastructure which is exposed by the interface.

Depending on the communication infrastructure that is attached to the event
producers/consumers and the underlying technology (the programming language
for instance), the notification service interface provides interfaces for the developers
in order to enable the access to functionalities of the connected communication
infrastructure.

In case of a publish/subscribe solution, the interface would provide access to
functions like adv(), pub(), sub(), unsub() and notify().

The reader should note at this point, that in this thesis the term event noti-
fication is used in terms of an interface towards an underlying communication
infrastructure. In literature event notification components are sometimes associated
as components containing already intelligence for distributing event notifications to
the designated locations. Examples for notification services used in another meaning
is the CORBA event notification [68], SIENA [23] which is an internet-scale system
consisting of a multi-broker event notification service. Therefore in this thesis the
term event notification interface is preferred instead of event notification.

3.2.2.4 Communication Infrastructure

L, . - o . P~ S

f/__._“ e o [T R e T
Notification Service . . 6: Notification Servic

‘ Interface E Communication [Interface [

= - Infrastructure : T ' '

Figure 3.15: Communication Infrastructure components

The communication infrastructure (11) shown in Figure 3.15 is a component that
is the core enabler for event-based systems. It provides the basic functionalities for
exchanging events in a distributed and heterogeneous environment between event
producers and consumers.

66

Chapter 3. Event-Based Messaging Middleware

A communication infrastructure must satisfy the requirements for middleware
systems to enable an easy integration of interacting components into a heterogeneous
infrastructure. In this case the interacting components are the consumer (2) and
producer (6) components which can be arbitrarily distributed and can be embedded
into different types of environments. The communication infrastructure must fulfill
the requirements based on [36] of network communication, coordination, reliability,
scalability and heterogeneity introduced in Section 3.1.2.

In contrast to other work done in this field, especially work related to messag-
ing middleware like pub/sub middleware solutions, tend to treat the communication
infrastructure as a part of an event-based systems. The term communication infras-
tructure is often associated with the term event service [22]|[61] or event notification
service [T1][41].

So for instance [41] describes a notification service as a mediator which alone is
responsible for conveying notifications and it must deliver every published notification
to all consumers having registered matching subscriptions whereas the communication
implementation itself is decoupled from the notification service. Pietzuch |[71] however
is not explicitly using the term of a notification service. In his work he is associating
the communication infrastructure with the term ewent brokers that contain the
complete implementation of the middleware parts.

People coming from the field of pub/sub middleware systems tend to consider
the pub/sub as an essential part of an event-based system. Depending on the scoping
of an event-based system this claim is not wrong. Even a primitive filter mechanism
for event notifications can already be considered as a simple event processing system.
Taking the more sophisticated approaches into account like type-based or content-
based filter with an expressive subscription language we can already talk about
event-based systems. Therefore, pub/sub middleware extended with sophisticated
filtering /processing mechanisms are often considered to be an essential part of the
event processing solution.

In Figure 3.15 the communication infrastructure is not labeled with an explicit
communication paradigm and is set outside of the boundaries of the event-based
systems. That is done because the communication paradigms and the infrastructure
must be completely decoupled from the event processing realm. The connection
between the event processing and the communication infrastructure is carried out
through the event notification interfaces whereas SARI contains adapters (6) (called
consumers in Figure 3.11) taking the role of event sinks to consume the incoming events.

67

Chapter 3. Event-Based Messaging Middleware

Placing the communication infrastructure outside the boundaries of the event-
based system, has the advantage that the event processing realm is not constrained
by the limits of the underlying communication technology. Further it can be attached
to other and different types of communication infrastructures. The major point
here is that the event sinks/consumers of the event-based system can obtain the
event notifications from arbitrarily different sources passed through different types
of communication paradigms. This is especially useful in application scenarios with
many different event sources in an heterogeneous IT environment.

If the communication infrastructure is an integral part of the event-based sys-
tem it is more difficult to integrate a wide set of source systems. This can be a big
issue especially with legacy systems. In case of a pub/sub middleware system, that has
a content-based filtering extended with some other special capabilities like correlation,
the event producer components of the event sources would have to be modified in
order to integrate their event notifications into the event processing realm.

The drawback is with both approaches of scoping the components for event-based
systems is that either way the event producers have to be able to interface with the
communication middleware. In case of SARI it is easier to integrate event source as it
already interface themselves with some kind of communication infrastructure as a lot
of contemporary systems exchange information through standards. So there is often
no big issue with attaching the event processing realm to the used communication
infrastructure. If event sources don’t explicitly use an appropriate communication
infrastructure for event processing they might just store away events as records to
a database. Then an event processing system, such as SARI, has to be attached
directly to the corresponding database relations from where it can processes new
records as events (a record represents one event). In that case the used communication
infrastructure would be from a high level perspective the database system with its
transactional capabilities.

For instance lets consider the scenario where there are not only messaging mid-
dleware systems, that attach the adapters of the event-based system to a queue.
Lets imagine that the scenario requires to integrate sensors, like CCTV combined
with motion detection. That system is potentially not open and does not have event
producers out of the box that is implementing the notification service interfaces
towards a messaging middleware. Potentially it is using a proprietary, encrypted and
closed protocol to publish events that have been recognized by the motion detection
software. Therefore it is necessary to be able to attach the event-based system to
this type of event sources and infrastructure. In case the scenario requires more than
one event source to be taken into account, it is easy to create new event sinks of the
event-based system and attach them to the communication infrastructure used by

68

Chapter 3. Event-Based Messaging Middleware

the event sources. While on the other hand if the communication infrastructure, like
pub/sub middleware, is an integral part of an event-based system, the event producers
must be created or adapted that are capable to interface themselves (e.g. using the
notification interface) with the underlying communication infrastructure. This can be
a difficult task and can become a task with high efforts to perform modifications at
the source-side.

3.2.2.5 Event Consumers

|Consumer Consumer | | Consumer

Event Notifications

e | Notification Ser\.ﬂce
Interface

Figure 3.16: Event Consumer Components

The Figure 3.16 shows an illustration of the event consumer components (6) of an
event-based system. The event consumer is the event sink of an event-based system
and is connected to the event producers through a communication infrastructure (11)
(see Figure 3.11) which is the mediator between those two interacting components.
The mediator, described in the previous section, provides the functionalities and the
infrastructure to deliver events from the event producer to the interested consumers.

A consumer can advertise its interest in specific event notifications by making
use of the capabilities of the underlying infrastructure and in consequence the
interfaces provided by the notification service interface (5). Depending on the
communication infrastructure (to which the event consumer component is attached
to) the notification service interface exposes the corresponding functionalities to the
attached consumer. Therefore the expressiveness of creating subscription requests for
a consumer depends on the mediator capabilities and its exposed functionalities.

In case of a pub/sub middleware system the consumer can place sophisticated
subscriptions to receive event notifications. If another consumer however is registered

69

Chapter 3. Event-Based Messaging Middleware

to a simple POP3 mail service it can make use only of the limited functionalities
expose by POP3. So for instance it can consume incoming e-mails, but filtering out
messages for consumption with a specific sender name is not possible. This type of
processing is then in scope of the event processing realm.

In this proposed event-based system component model the consumer is consid-
ered to be as an integral part of an event-based system. In SARI event consumers
are called adapters. There are two types of adapters in SARI, there is a 1) sense
adapter and a 2) response adapter. The first one is the equivalent to the event
consumer in this component model and the second one is the event producer that is
capable of propagating back events to the mediator. More on SARI’s event processing
architecture will be introduced and discussed in Section 5.1.

Further, in this proposed model an event notification is delivered through the
mediator, the communication infrastructure, to the corresponding event sink. The
exposed functionality by the notification service interface is used by the consumer to
express its interest in specific events. The event notification delivered to the consumer
consists of a specific data structure with a defined encoding. The data structure holds
the actual content of an event and further it carries additional data for the middleware.
This additional data is required by the middleware in order to be able to process
and deliver the event notification. The consumers job in this event-based component
model is to transform the encoded event notification into the event processing realm’s
own data structure. In case of SARI this is an event type library (8), shown in Figure
3.11. Based on the typing information of the event-based system, the consumer has
to disassemble the event notification in order to transform the enclosed event data to
a correct event type. SARI contains a concept of transformers that can be attached
to the event adapters to perform this task. Details on this topic will be discussed in
Section 5.1.

3.2.2.6 Event Type Library

The goal behind the concept of an event type library component (8), illustrated in
Figure 3.17, is to provide a facility to define the schema and semantics for different
types of events that should be valid in the given event processing realm. By creating
and maintaining an event type library, the event processing realm can process events
with data structures which correspond to uniquely addressable event types.

The main purpose of the event type library is to classify the event notifications,
received by consumers, by using event types which are managed in an event type
library.

70

Chapter 3. Event-Based Messaging Middleware

Event Type
Library
[_
Event-Based e \.Q
System [| |
|]
&~
N A i

| Consumer
Figure 3.17: Event Type Library

Every event processing solution contains its own data structure to express the
syntax and semantics of events that can be processed by the event processing engine.
Some solutions have rather simple conventions and others have complex and rich
underlying data models. Therefore, an event type library component can be found in
many event processing solution, with respect to different kind of characteristics and
thus it is a generic component of event-based systems.

A detailed discussion on event types in SARI can be found in Section 5.2.

3.2.2.7 Event Processing Realm

Event Type
Lubrary
L__

-'-_-'-": Event-Based ¥ Q

System = U |

9 ’T;:' Nl
..?f

/"\

Consumer Consumer Consumer‘

Y

oy [~

./,
=

Figure 3.18: Event Processing Realm

Figure 3.18 shows a simplified illustration of an event-based system which is the
core event processing component and defines the scoping of the interacting systems.

71

Chapter 3. Event-Based Messaging Middleware

The scoping is defined in terms of which component can be seen as a part of the
event-based system and which is outside the context of the event processing realm.

The event-based system, with its event processing realm, is docked to the “outside-
world” through its event consumers and producers. The consumers (6) receives
events through a communication infrastructure and transform them into their own
event representation in terms of syntax and semantics. The data structures for
events are maintained in the event type library (8), introduced in the previous Section
(3.2.2.6), whereas the concrete manifestation of it depends on the event-based solution.

The communication from the event-based system to other components and the
outside-world is conducted through event producer components. Referring to the
sections about event consumer components 3.2.2.5 and event producing components
3.2.2.2 in SARI they are associated with the term adapters and sockets that will be
discussed in detail in Section 5.1.

Basically every event processing system architecture contains some sort of an
event sink that is receiving and consuming event notifications delivered through
communication channels. In some solutions this consumer component might be
strongly coupled with the event processing algorithm itself. For instance the consumer
is responsible for receiving OrderPlaced events (e.g. representing a placed order for
goods that should be delivered) and at the same time in charge of performing some
action based on the attributes of the received event.

However, most of the solutions follow a flexible event processing approach which allow
to model event processing steps or apply event rules. The event processing steps are
represented by the connected circles (7) in Figure 3.18. SARI has event processing
maps (described in details in Section 5.1.3) with various components, so called event
services, that can perform different tasks on events. Further, there can be additional
data sources (9) available to support the event processing procedures or to enrich
events with additional information.

The conceptual representation of the event processing steps differs from solution
to solution. However, most of these components can be found in some sort in all of
them. The main goal is to give the reader of this thesis a basic sense for the big
picture and potentials. In the subsequent chapters and sections several event-based
systems and research projects will be introduced and described. Furthermore a special
emphasis will be set at the research project SARI and the Event-Base concept.

72

Chapter 3. Event-Based Messaging Middleware

3.3 Summary

In this chapter an event-based component model is introduced that set the communi-
cation infrastructure outside of the event-based systems boundaries. This decouples
the event-based system completely from the communication infrastructure. Putting
the communication infrastructure outside the boundaries of the event-based system,
brings the advantage that the capabilities of the event processing realm are not con-
strained by the underlying communication technology. Furthermore, this component
model allows to attach several and different types of communication infrastructures.
This brings the advantage of consuming and processing events from a wide range of
event sources.

Publish /subscribe middleware systems have revealed themselves to be a good
choice to support event-driven architectures and event-based solutions as a commu-
nication middleware (e.g. mediator). Research coming from the field of pub/sub
middleware systems tend to consider this communication paradigm as an essential
part of an event-based system. Depending on the scoping of an event-based system
it is not wrong. Even a primitive filter mechanism for event notifications can already
be considered as a simple event processing system. Taking the more sophisticated
approaches into account like type-based or content-based filter with an expressive
subscription language we can already talk about event-based systems. Therefore
pub/sub middleware, extended with sophisticated filtering/processing mechanisms,
are often considered to be an essential part of the event processing solution.

73

Chapter 3. Event-Based Messaging Middleware

74

4 Emerging Event Processing
Paradigms

Introduced in Section 3.2, event-based systems gained an increasingly widespread use
in a large set of applications, especially in time-critical systems, system management
and control and e-commerce. Event-based systems can be attached to a number
of heterogeneous and distributed source systems and dispatch events in a timely
manner to interested consumers. They can be used to integrate a wide range of
components into a loosely-coupled distributed system with event producers which
can be application components, post-commit triggers in a database, sensors, or
system monitors, and event consumers which can be application components, device
controllers, databases, or workflow queues.

Nowadays, business processes evolved to networked workflows that are complex
and executed in parallel with little human involvement to meet the needs of todayés
agile and adaptive business environments [55]. The pillars of business models are
loosely coupled, distributed and service-oriented or event driven systems that generate
huge amounts of events at various granularity levels.

The lack of tracking these events and maintaining the causal relationships and
traceability between those events, as well as aggregating them to high level events or
correlating them, is a problem that is currently investigated by many research groups

[6][541[79]-

Contemporary business requirements yaw for agility, flexibility and service ori-
entation. A simplified summarization of this wide discussed and necessary business
trend can be reduced to the demand that today’s businesses have to adapt their
processes and organizations faster than their competitors. Business organizations that
are capable to handle critical business events faster than their competitors will end up
us winners in today’s globalized market pace.

Traditional data warehousing approaches do a good job as a decision-making

tool at a strategic level and for understanding the business situation based on a
collection of historical data [17].

75

Chapter 4. Emerging Event Processing Paradigms

— Strategy / 0

Hepons and - > f \
Analysis _Data Mining Strategical
. A /
| :.’_._’— 0
o " OLAP 6 Tactical \
| DWH - ’- ,n‘zz{/ _h‘ \
"1‘.‘3) "‘:a _— —ll-)
Data Data Dala Operational
| Marts Marts] Marts
A | A e Levels of Decision Making
Y v v \/ S A
== = D= e | e
G0I)0) == b famst 5
= oo
OWFE"OHE‘F Business Computer Production Loglstlcs External Systems of
Databases Processes Systems Systems Transportation Business Partners /

N

Operational IT Systems

Figure 4.1: Decision Making Pyramid adapted from [17]

The IT systems of an enterprise define its ability to support closed loop deci-
sion making processes throughout its organizations. Figure 4.1 shows the loop of
information that is currently in place in most of the organizations to support decision
making. Figure 4.1 is an adapted illustration from Golfarelli et al [47]. At the bottom
of the figure there is a list of exemplary IT systems from various organizations working
together to accomplish a task. Further, most of these systems contain some sort of
data storage managed by operational databases (2) (shown in the lower left side of
the figure). All these systems can be attached to ETL (extract, transform and load)
processes to extract data for either local data marts (3) of specific organizations or
for data warehouses (4) containing global information. The data integration process
(ETL) is a time and resource consuming task which is often performed regularly
overnight in order to not disturb the daily business operations. Further, this task
requires high efforts of adaption in case the underlying systems change their data
structure.

To extract valuable information from the collected data it is required to per-
form analysis over the data collections. There is a wide range of business intelligence
tools on the market to perform the tasks of data analysis (6). Users of such systems

76

Chapter 4. Emerging Event Processing Paradigms

can place custom queries, create reports or dig around in the data by performing
data mining tasks. By exercising these tasks the users of such systems are able to
extract valuable information, perform analysis on them and at the end interpret the
information and apply the gained insights to business.

Figure 4.1 shows a decision pyramid in relation with IT systems. This figure explains
the flow and the sources of information that are required for the decision-making
processes in an enterprise. On the right side there is a pyramid (10) representing the
levels of decision making. On the very top, there is an enterprise vision and strategy
(9) formulated by clear goals including objectives, concrete numbers and formulated
means how to reach these goals - in short quantitative and qualitative goals underlined
with actions to be taken to a certain level of abstraction.

As a necessary byproduct of a strategy there are means for measuring the per-
formance and the status of the objectives of an organization. These key performance
indicators (KPIs) are metrics to quantify the targets in order to be able to measure
the progress and grasp the current status in reasonable information chunks. The
KPIs are usually calculated out of data provided by the organizations IT systems
like found in data warehouses. KPIs are one tool that can be used as an informa-
tion source for making decisions. So for instance if the progress is not as expected
in comparison to the KPI goals, decisions have to be made and actions need to be taken.

According to Golfarelli [47] the pyramid is described as follows:

At the strategic level, the global strateqy of the enterprise is decided. The
tactical level 1s usually composed by multiple divisions, each controlling a
set of functions; the decisions taken here are related to the correspond-
ing functions and must comply with the strateqy defined at the upper level.
Finally, at the operational level, the core activities are carried out; the de-
ciston power is limited to optimizing the specific production activities in
accordance with the main strategy.

Depending on the level of decision making information from different sources are
required on different aggregation levels. The level of decision making defines also
the requirements of the freshness of the data used for decision making. Decisions
made on a strategic level require less fresh data than decisions made on an operation
level. Further the time of making a decision is an important key factor on lower
levels of the pyramid. Decisions that take long on operational levels bear the
potential to cause severe losses of business opportunities. Of course this value depends
on the concrete business case, but in general the manifestation of delayed decision
has a higher negative impact on operational or tactical levels than on the strategic level.

7

Chapter 4. Emerging Event Processing Paradigms

Although analyses on historical data, using OLAP for instance, are a way to
gain deeper insights, data warehouses are not meant to provide process knowledge
in the first place and regularly they often donSt provide data in a real-time fashion
[76]. This leads to the lack of making decision on a tactical or operational level in a
timely manner in order to preserve the value of the information until an action has
been taken. Today business requires a fast paced decision making on operational and

Information
delivered

value

action taken

response latency

| | m >
\ J time

action distance

Figure 4.2: The decrease of the business value of events over time according to [19]

tactical decision making levels. Hackathorn presented in [49] an interesting graphic
shown in Figure 4.2 that basically says that the business value of an event decreases
by the amount of time that passes by until an appropriate action is taken. Of course
in reality not every event has the same value loss over time, but basically the decrease
of business value over time is a common characteristic.

The figure shows the four main latency drivers starting from the occurrence of
the business event itself to the point when an action is taken.

e Data Latency: The data latency describes the time it takes to prepare the
events for analysis. This is usually relating to the time it takes to store the
events and to perform data transformation tasks.

e Analysis Latency: The analysis latency is the time that is required to complete

78

Chapter 4. Emerging Event Processing Paradigms

that analysis process to extract valuable and meaningful information out of the
given data.

e Decision Latency: The decision latency is the time it takes for the decision
makers to select the appropriate action that should be taken.

e Response Latency: The response latency covers the time for taking the decision
and making the execution of the decided action possible.

One of the most promising concepts that approaches the problems of gaining real-time
business knowledge, enable closed loop decision-making on operative levels and
delivering real-time information on processes is complex event processing (CEP) and
event stream processing (ESP).

The subsequent sections will try to clarify both terms that were hyped in cer-
tain industries in recent times. Because of the gaining popularity of those technologies
both terms have been used by vendors in a confusing way. The marketeers of some
commercial vendors that used to call their products event stream processing solution
switch over to use the term of CEP now. Often the ESP is associated with high-volume
and high-throughput attributes while CEP is often associate with more sophisticated
event processing capabilities. Further the formal distinction of both techniques is still
under heavy discussion in scientific communities.

In CEP/ESP-community discussions, CEP solutions are often described by their
capability that allows the handling of complez events in terms of correlating them and
creating abstractions (e.g. aggregations) while ESP solutions are considered to be
linearly ordered. Linear ordering in context of ESP means that the incoming stream of
events has some type of ordering which could be the time for instance. CEP solutions
are considered to be a partially set of events sharing relationships like causality or
other types.

Tim Bass introduced a good metaphor in a presentation at the DEBS07 confer-
ence [14] that explains the basic characteristics and differences between ESP and CEP.

In Figure 4.3 events are represented by dust particles flying around in the air.
Those dust particles are the colored circles in the figure where each color represents a
certain type of event. Now several air streams carry the particles into the cloud and
form a partially ordered set of particles that are collected inside the cloud. In terms
of ESP the streams of air that carry the particles into the cloud represent the event
streams that ESP solutions are processing. The particles are ordered for instance by
their arrival time in the cloud while the particles inside the cloud are randomly spread
across the space at the first glance. The cloud is the space where CEP solutions

79

Chapter 4. Emerging Event Processing Paradigms

_ [. o O I'—— ———————

5 0 80, ® |0 CEP :
® Cloud of Events , ¢ |

° O e o I« @ I
® et I _ = __ ’

_______________ J
° o
o ' ® o e @
°
e o

Figure 4.3: Metaphor to explain Complex Event Processing and Event Stream Pro-
cessing. Illustration adapted from [14].

maintain the correlations or causal relationships between events, create aggregations
and in general provide access to the cloud of events. A cloud may consist of the results
from several streams (e.g. sources).

In the next two sections, a detailed explanation of CEP and ESP will be pro-
vided. As mentioned earlier these two terms are partly determined by marketeers
nowadays. However, the sections will provide an explanation based on literature from
the field and clarify the distinction of the two terms.

4.1 Complex Event Processing

The term of complex event processing (CEP) was first introduced by David Luck-
ham in his book The Power of Events [54] and defines a set of technologies to
process large amounts of events, utilizing them to monitor, steer and optimize the
business in real time. The main application field for CEP is generally in areas
where someone needs low latency times in decision cycles [19] combined with a high
event throughput for observing relevant business events of predefined or exceptional
situations, indicating opportunities or problems. Typically, these are areas like

80

Chapter 4. Emerging Event Processing Paradigms

financial market analysis, trading, security, fraud detection, logistics like tracking
shipments, compliance checks, customer care and relationship management and, in
general, the monitoring of business processes and the reaction to them with a low delay.

A CEP gsystem continuously processes and integrates the data included in events
without any batch processes for extracting and loading data from different sources
and storing it to a data warehouse for further processing or analysis. CEP solutions
capture events from different sources, with different time order and take events with
various relationships between each other into account.

In terms of business intelligence, active or zero latency data warehouses can sig-
nificantly reduce the refresh cycles, but the missing process knowledge that is
implicitly provided by events is still absent. The main gap that CEP solutions are
addressing is the delay in analysis and thus, in taking actions, which can result in a
loss of business value [19] (see Figure 4.2).

The key characteristic of a CEP system is its capability of handling complex
event situations, detecting patterns, creating correlations, aggregating events and
making use of time windows.

The question at this point is what is a complex event exactly and where is the
line that separates a simple event from a complex event. The term of complex events
was not mentioned in the previous Section 2.1.1 although it seems to be the core of
complex event processing. Basically a complex event can be seen as an event that
is an aggregation of other events whereas the CEP system is capable of handling,
creating and processing such events.

According to the CEP glossary [56] Complex Event Processing is defined as:

Computing that performs operations on complexr events, including reading,
creating, transforming or abstracting them.

The metaphorical Figure 4.3 shown in the introduction of this section is used to
explain the difference between CEP and ESP. It shows a cloud where the dust particles
in it represent the events and differentiate their types through their coloring. All
of those events could come from different sources from IT systems in an enterprise.
An arbitrarily different number of IT systems can be attached to event CEP Engine
and thus filling the cloud with events at different granularity levels. That means
that the cloud can contain low level events, like HI'TP requests or already high level
events that signalize an order made on the online web-shop. Depending on the event
producer the events may differ in terms of they granularity and information density.
Reduced to the essential task of a CEP solution, its job is to process those events,

81

Chapter 4. Emerging Event Processing Paradigms

by creating and maintaining relationships between the events, aggregating them to
meaning full levels, perform analyses, create enrichments, detect patterns and provide
an infrastructure that allows to react on detected situations by propagating back
actions to IT systems in the organizations.

Going back to the decision pyramid Figure 4.1 in Section 4 where the key mes-
sage was that the tactical and operational decision making levels require a fast paced
working with possibly fresh information. CEP solutions are capable of reducing the
latency significantly if deployed properly.

CEP systems can handle the flood and the noise of events coming from opera-
tional systems and are able to bring in order, so that they are capable of making
use of them. Based on this characteristic they have the capability to calculate
for instance KPIs based on fresh data from operational systems and provide them
directly to decision makers. Further, they are capable of enriching the information
from historical sources (for instance gained insights from statistical analyses) and
performing decisions and actions automatically if desired.

Looking at the pyramid Figure 4.1 a CEP solution is placed directly between
the operational IT Systems (1), the data warehouses and the decision making
instances. Further they are capable of covering the operational and tactical levels of
decision making with various sophisticated techniques.

4.1.1 Example of a CEP Supported Scenario

For instance lets consider the given situation where different I'T systems of a logistics
company produce events relating to transports of goods. Figure 4.4 shows the source
systems on the left side consisting of four divisions, with the assumption that their
operation is supported by IT systems that are event producers. The logistics company
has several warehouses spread across the country to be able to deliver goods in a fast
and efficient manner to the customers (e.g. factories).

e Warehouse: Transports are loaded with the goods at the warehouse. If a ship-
ment is created, loaded on a truck and ready for transport the event ShipmentCre-
ated will be fired.

e Truck: The truck is the vehicle that is conducting the transport. It continuously
sends its location (received through a GPS device) to the home base. If the truck
is loaded and starts its route the TransportStart event is triggered. After the
truck has unloaded the goods at the destination the TransportEnd event will be
fired.

82

Chapter 4. Emerging Event Processing Paradigms

Event Producers

-k

Warehouse

¥

Truck

Accounting

TransportStart

TransportEnd

Demand

NewTransport

Delivered _ _ -~
77" Damaged
Success

NotinTime

CEP - Engine

ShipmentCreated TransportEnd
Demand

O/"'

Events representing
a transport

Create/Maintain Relationships
Calculate Metrics

Analyze Events

Enrich Events

Perform Actions

TransportStart

Figure 4.4: High Level Example of a Complex Event Processing Engine

e Factory: The factory’s system is issuing Demand events for specific goods that
should be delivered just-in-time to ensure the smoothness of the production. In
case a demand is discovered the system triggers a Demand event containing the
name of the goods, the amount and the due date that should be delivered to the

location.

e Accounting: The accounting division, supported by an IT system, is receiving
and evaluating the outcomes of transports. Following events are consumed and
processed by the accounting system:

— NewTransport: This event is created when a demand has been detected
by the CEP-Engine containing the warehouse location from which the goods
should be picked up and delivered to the which factory.

— Delivered: The Delivered event is issued whenever a transport has reached
its location and was unloaded from the truck.

— Damaged: This event indicates the occurrence when the goods were un-
loaded, checked and they are damaged.

— Success: This event indicates the occurrence when the goods were un-
loaded, checked and everything is fine.

— NotOnTime: The NotinTime event indicates if the goods were delivered
too late (e.g. after the due date/time of the delivery).

83

Chapter 4. Emerging Event Processing Paradigms

Whenever the CEP engine receives a Demand event for a specific good by a factory,
it decides based on rules which location is the nearest one. It also checks if they
have the goods in the right amount in place and triggers a NewTransport event. The
NewTransport event is processed by the accounting and a new transport assignment is
created. In case that the warehouses don’t have a good capacity utilization the CEP
system creates transports to relocate good surpluses from other warehouses in order
to be able to satisfy the customer needs on time.

If the goods have been prepared for the transport and the truck starts the events
ShipmentCreated and TransportStarts will be issued to the CEP engine. After the
goods have been delivered and checked the CEP system sends events of the transport
outcome. If a transport failed because the goods were damaged it can trigger a new
transport to satisfy the customer needs. If the transport for a specific customer was
several times in row not on time it triggers a promotion for that specific customer.

The point in this example is that it should show that various events are pro-
duced by different systems. All of them are attached to the CEP engine and form a
kind of cloud. The CEP engine is capable of bringing an ordered into such huge noise
of events. For instance a CEP engine should be able to maintain relations between
events. In the simplest case it collects events relating to a transport like shown in
Figure 4.4 where all the events belonging to a specific transport are highlighted. Based
on those events it is capable of calculating metrics like the duration of that transport
or the average transport duration of similar transports. Furthermore it is capable of
analyzing those events and related events and is able to create aggregations out of
them. For instance if a transport has been complete successfully it triggers an event
ShipmentCompleted that contains the relevant aggregation of information from all the
transport events.

4.2 Event Stream Processing

The roots of event stream processing (ESP) can be found in the field of relational
databases and later in active- and zero latency data warehousing. Back in 1992 Terry
et al [87] introduced their work on continuous queries. In their approach they provided
the ability to specify so called continuous queries. Whenever a new record was added
to the database it was analyzed and matched against a placed continuous query. If
the query matched an interested user could be informed.

In traditional database approaches there are queries in place that can be ex-
ecuted on already persisted data records. In case of a usage scenario, where
the records are updated with a high frequency and also inserted with high volume,

84

Chapter 4. Emerging Event Processing Paradigms

Time Window

' Continuous Query Filter

Conditions

et | [em |i|em1| |en2| [em1| e]| En2| [ET3]

ET2
[Attrib1 [Attrib2]Attrib3]...
ET1 A A 1 10
‘Attrib1 Attrib2/Attrib3]... | B > | 20
1 | A |10 - o 3 5
1 { B | 20 - A D 4 | 25
:‘ 2 C 5 | !
2 [D |25 }7. |

Continuous Query:
SELECT ET1.Attrib1, ET2.Attrib2 FROM ET1, ET2
WHERE ET1.Attrib1 = ET2.Attrib2 AND ET1.Attrib3 > 15

Attrib1 [Attrib2
> 1 B
2 | D

Figure 4.5: Event Stream Processing Example

it is hard to perform the queries to extract the desired information in a reasonable time.

The application scenario of this type of queries is in areas where data is chang-
ing constantly and comes in high volumes. This is the case especially in financial
sector with stock tickers and sensor monitoring for instance.

Mentioned in the introduction of this section the terms event stream processing
(ESP) and complex event processing (CEP) are a highly discussed topic in the event
processing community. ESP solutions are characterized by processing a linearly
ordered set of events. The linear ordering of events defines that a stream of events
coming in into the ESP-Engine has an ordering by time for instance.

Shown in the metaphorical Figure 4.3 the streams are the red, green and blue
dotted lines carrying up the events into a cloud of events. The ESP-Engine is set

85

Chapter 4. Emerging Event Processing Paradigms

before the events are entering the cloud and plays out it’s capabilities on the several
streams of incoming events.

The CEP glossary [56] clarifies the ESP/CEP terminology with following com-

ment:

The terminologies ESP and CEP are conceptual classifications. They can
be useful in delineating philosophies of event processing and intended ap-
plications, but seldom specify accurately the underlying capabilities of event
processing engines. It is possible for an event processing application to be
reasonably described as both an ESP application and a CEP application.|56]

Mark Palmer describes in an article [69] ESP as follows:

Event stream processing (ESP) deals with the task of processing multiple
streams of event data with the goal of identifying the meaningful events
within those streams with almost no latency - milliseconds matter for
ESP.[69]

Figure 4.5 shows an illustration of the event processing technique that most of the
ESP-based solutions have in common. The first noticeable characteristic is that they
are capable of attaching themselves, usually through adapters, to multiple streams of
events. Each of the events flowing into the event processing realm has a corresponding
type. In the example shown in the figure there are three event types labeled as ET1,
ET2 and ETS8 where each of them have several attributes representing the event data.

Continuous queries shown in this example can be defined on those incoming
streams of events: In this query example the FROM clause contains the event types

SELECT ET1.Attribl, ET2.Attrib2 FROM ET1, ET2
WHERE ET1.Attribl = ET2.Attrib2
AND ET1.Attrib3 > 15

Figure 4.6: Continuous Query Example

(here ET1 and ET2) that should be taken out of the stream. The SELECT clause
contains a projection known from ANSI SQL and a WHERE clause which sets filer
constraints and a join between attributes of two event types.

For performance reasons ESP solutions often make use of a limited time frame.
That means that the query is only applying the continuous query to a specified time
interval. This could be for instance a query that is calculating the average amount of
attributes in a time frame of 15 minutes. This type of frame limitation is necessary in

86

Chapter 4. Emerging Event Processing Paradigms

order to keep the performance up, because otherwise the temporary operation tables
will grow rapidly and especially join operations will take very long.

Let’s consider the given example where the query picks out the event types
ET1 and ET2. 1t creates in-memory tables for those two event types and adds those
records to that tables that are inside the specified time window. The attributes of
the table are the event attributes. The query contains a join over Attrib! from ET1
and Attrib2 from ET2 and creates a new table that will contain the query evaluation
results according the defined projection.

This small example is just for illustration purposes for the reader of this thesis
in order to give an impression how most of the ESP systems work. However not every
ESP-based system is working internally the exact same way, but it pretty grasps
the basic event processing concept. Further it explains why most of the ESP-based
solutions provide SQL-like query languages. The reason is simply because they use as
the underlying event model representation relational tables.

4.3 Summary

This section introduced the importance of I'T systems that support closed loop decision
making processes in order to satisfy the organizational requirements for agility, flexi-
bility and service orientation. The level of decision making defines the requirements
of the freshness of data. Traditional approaches such as data warehouses and QOLAP
do a good job to gain deeper insights based on a collection of historical data. However
they don'’t provide data in a real-time fashion which is required on tactical and opera-
tional levels of decision making. This is an important issue as the value of a business
event decreases by the amount of time that passes by until an appropriate action is
taken. Therefore this chapter defined and discussed CEP, ESP and their differences.
Both approaches offer the same event processing capabilities and are the most promis-
ing solutions for the class of problems of gaining real-time business knowledge, enable
closed loop decision-making on operative levels and delivering real-time information on
processes.

87

Chapter 4. Emerging Event Processing Paradigms

88

5 Event-Base

This chapter introduces the event-based system SARI and its extension the Event-
Base. SARI [81] is a system that is capable of processing large amounts of events,
providing facilities with the capability to monitor, steer and optimize business pro-
cesses in real-time. It allows observing relevant business events to identify exceptional
situations, indicate opportunities or problems combined with low latency times in
decision making for supportive or counter measures. This chapter is intended to
introduce the event processing models of SARI and their application. For a better
understanding of the models and concepts are illustrated with a fictive fraud detection
scenario.

The Event-Base extends SARID’s event processing model with an efficient up-to-
date operational storage together with retrieval mechanisms for business events for
analytical as well as operational purposes. The query language for retrieving near
real-time events and creating conjunctions with historical events, metrics and scores is
SARI-SQL and is in contrast to Event Clouds indexing approach [76][73][90] a formally
structured solution that extends ANSI-SQL. The language is tailored to satisfy the
special requirements and meet the characteristics of events and their relationships.

This chapter also discusses special aspects of the event processing models in
SARI and the Event-Base. The underlying event model and its various event typing
concepts are discussed intensively as the design and the nature of the event model
strongly constraints the capabilities of event processing query languages. Further,
different event correlation concepts (e.g. mechanisms for creating and maintaining
relationships between events) are introduced and described in detail. Special attention
is set on event-driven rules, which are components that can be used to model decision
trees with event actions in the event processing model. Looking deeper at this special
concept, it reveals that they are using the domain-specific language EAFExpressions
for accessing and performing operations on events. That language is a subset of the
SARI-SQL language introduced later on in this thesis. EAExpressions in event-driven
rules allow to access event details and perform basic operations with a required
Boolean return value. So for instance conditions, expressed with EAFxpressions,
can be applied on events with a resulting action. By extending this component with
SARI-SQL it would be possible to additionally integrate historical event data, event

89

Chapter 5. Event-Base

correlations or metrics into the decision process. This integration with SARI-SQL
significantly increases the expressiveness of event-driven rules and further they avoid
the work around of creating enrichments steps of events before processing rules.

Finally, the data management concept of the Event-Base is described with a
special focus on the internal data representation of events and their correlations.
Topics are introduced how events and their correlations are processed and persisted to
the underlying data structures and further how the events are maintained for access

by SARI-SQL.

5.1 Architecture

Real-Time Manage:

{ Requests) [bervesti

ment Cockpit

['-‘\‘l.nll'l-m\:)

Alerts Investigate
Scores Analyse
Querying

Event Processing Maps Event Analysis & Mining

o Event-Base

= }_l = j\\ Illrr @) @@ L%Q_m. i‘;&)

h\:,\\ L I_,J\arms
‘\\hf(‘ = . ..\J\;p:catDr‘}.

Sense M [nterpret b Anahyze i Decide e Respond

[-
o

B0 oq‘.(_.l. = O‘ L .
Wy

3

50

Reporting Root Case Analysis Event Search/Tracking

2 o
Q
Real-Time Data Staging Customer Profiling o Q
Real-Time Analytics Stream SQL Scoring o Visualization of Causal and Temporal Relationships
Sense & Respond Rules 8 8 g Fraud Pattern Mining
T 8 8 Q
Transactional Automated =} ¢ 2 i
Q H al
Data Actions | g g6 fstorieal Data
& Operarion.al Systems it) g (_ Information Systems)
Financial |/ Betting %/ Mobile \/CRM Systems, . - - . ;
System Engine Services E-Commerce . Operational Data Stores Data Warchouse
i CER ,
— Correlations Business Rules
Metrics Scoring
Event-Base
Repository

Figure 5.1: Event-Base high-level view architecture including its system components

The goal of this section is to give the reader an introduction of the architecture of
the Event-Base starting with an overall high-level view of the system components and
then dig down to details of the system architecture step-by-step in the subsequent
sections. Each component of SARI, ranging from event adapters consuming events, to
metric calculations and dashboard capabilities, are introduced and put into context of
event-based systems discussed in section 3.2.2. Furthermore additional research efforts

90

Chapter 5. Event-Base

and components are introduced that are not an essential part of the Event-Base, but
make use of its exposed capabilities and services. For instance analysis services can
attach themselves to the Event-Base and query for interested data that is processed
and persisted by the underlying systems.

In the following, the components will be reviewed subsequently and additional
important concepts, like event models, of SARI will be discussed in detail. The
concepts and models introduced are underlaid with the use case scenario of a the
fraud detection solution |75] with the intention to provide an easy understandable and
example-driven explanation. The Figure 5.1 shows the big picture of the Event-Base
set into context of the fraud detection scenario. This fraud use case scenario follows
an event-driven architecture (EDA) for preventing and managing fraud situations in
the online betting domain. The architecture uses a rule-based solution for discovering
and responding to fraud patterns. The system is supported by a business intelligence
tool called EventTunnel for visualizing and analyzing fraud patterns, which allows
users to investigate and discover fraud patterns. Thereby, the gained knowledge can
be used to adapt or create rules to effectively close the gap between fraud analysis
and fraud prevention.

In the following section the main building blocks belonging to the Event-Base
will be discussed and introduced in detail:

e Event Source/Operational Systems: The operational systems create and
emit events which are then absorbed by the event processing realm.

e Event Adapters Sockets: FEvents from the source systems are gathered
through a communication infrastructure and transformed into a target typing
schema.

e Event Processing Maps: The event processing maps are the main event pro-
cessing instance and define the process of how events are evaluated.

e Event-Base: The event-base repository is the main storage for instance for
maintaining and tracking event correlations, metrics and scores mainly for anal-
ysis and mining functionalities, but also for a continuous access and integration
into the event processing maps.

e Real-Time Management Cockpit: The cockpit is a front-end component that
can be used to present information about the current state of business.

e Event Analysis and Mining: Analysis and Mining tools are integrated
with the Event-Base for discovering causal relationships between events, min-
ing events, finding patterns within events and provide a facility for visualizing
events, their relationships and patterns

91

Chapter 5. Event-Base

5.1.1 Event Source/Operational Systems

The underlying business scenario, illustrated in the Figure 5.1, is based on an online
gambling platform that consists of several system components. The group of the
operational systems represent the event producers that can be attached to the
event processing realm in either a push or pull way. Event producers, in context
of event-based system component model, only create notifications and make use of
interfaces to deliver the produced events. The communication mediator, which acts as
a mediator between the event producing components and the event processing realm
is not, explicitly pictured in this illustration for purpose of simplicity.

However, in real-world application scenarios the various event producers might
use different communication infrastructures to deliver their event notifications. Figure
5.1 shows the four event producing components of the gambling system on the bottom.
A betting engine dealing with the processing of bets, a financial system processing
financial transactions like cash-ins and cash-outs, mobile services for placing bets from
mobile devices like cell phones and marketing relevant systems like CRM and other
e-commerce related subsystems. So for instance, some of the event producer could use
an enterprise service bus, while others make use of a messaging middleware.

Besides the operational event producing components, more static data sources
could be integrated for purpose of enriching events with additional data during
processing.

All of the event producing components are attached to SARI through adapters.
SARI provides a flexible mechanism for docking the processing instances to source
systems in a bi-directional way.

5.1.2 Event Adapter Sockets

The event producing components are interconnected with SARIs event processing
engine through adapter sockets in a bi-directional way. Adapters can be docked
directly to certain systems or communication infrastructures to sense (e.g. receive and
consume) relevant events. These adapters are called sense adapters and are consumers
of event notifications. The events are gathered either through a push or pull process
that depends on the type of the system or the communication infrastructure. If the
event producer for instance is an e-mail system, the adapters would pull out new mails
in a periodically recurring cycle. The adapters contain transformations components
that are in charge of converting and transforming the incoming event notifications to
a given event object type.

92

Chapter 5. Event-Base

On the other hand there are output adapters that re-inject specific events to
the source systems to trigger some action in order to encounter detected situations like
business opportunities. The output adapters are called respond adapters. The event-
based architecture can be seamlessly integrated into distributed and service-oriented
type of system landscapes. In case of legacy or proprietary systems SARI provides
the facilities to easily add new adapters. The response adapters are also containing
a transformation component to convert the internal events to a desired target data
structure in ordered to emit the created event notification. This can be again another
messaging middleware or in a simple case an insert of a record into a database.

5.1.3 Event Processing Maps

SportEventEnded
portEventEn 6 AnalyzedBetPlaced

SporEventStarted 1
Official dentification AnalyzedCashin @
BetPlaced
o r | Financial and Registration
l /"

AnalyzedOpenAccount

Blnrk}\(,oount

Rme-Based Scoring
/—/ Block Account
(Frsud Detection Rules g Cancel Bet

Starl Investigation

AnalyzedCashOut Scoring Service
Mismatch Identification

!;atr.ing Engine Adapter e ‘ |
e r i T Cashin
|— Financial System [CashOut

Adapter

.

OpenAccount

| Every event is relayed on
this port

CancelBet

Startinvestigation

Figure 5.2: Event Processing Map

The actual event processing in SARI is executed within so called Event Processing
Maps (EPM). A typical map is shown in Figure 5.2 and consist of several different
components that can be interwoven to define the process of how events are evaluated
to satisfy the requirements of a scenario. Event processing maps and their components
can be modeled and configured through a graphical user interface to create logical
event processing flows to detect business scenarios, like opportunities or threats
and trigger counter measures. An EPM allows to integrate multiple services and
adapters which can be used to implement event-driven processes. Depending on the
requirements and the business problem, the event services and adapters can be flexibly
conjoined or disconnected. Links between the components and services represent a
flow of events from one service to the next.

93

Chapter 5. Event-Base

Figure 5.2 shows an event processing map for fraud detection use case with the
intention to illustrate the concept of the EPMs. A processing map can be built
by using adapters, event services and hubs. FEach of those components can be
interconnected to define and steer the flow of events.

5.1.3.1 Propagating Processing Maps with Events

Events are propagated through event adapters (1)(2) (see Figure 5.2) from various
source systems into the event processing maps. Propagated events that are processed
by adapters are transformed into event objects that match corresponding event type
definitions [74].

In the fraud detection example, there are two event adapters where (1) is at-
tached to the betting engine and (2) is attached to the financial system of the betting
platform. The betting engine is in charge of handling all betting related issues
like betting orders, processing bookmaking data and game tracking. The financial
system is responsible of handling all kinds of money transaction which includes user
cash-ins/cash outs that are especially relevant for fraud detection.

The adapters continuously receive events from the source systems, transform
them to their according event types and propagate the instantiated event objects into
the processing map. The source systems might produce a large number of events
with different types, but only a part of these types are relevant for fraud detection
processing.

5.1.3.2 Interconnecting Map Components

The round elements in the map in Figure 5.2 are hubs (3) that allow to route event
streams from adapters to event services. Every event service must have one or more
input and output ports for receiving and emitting events. Each port must correspond
to an event type.

In this use case, there are dozens of events emitted by the event adapters from
the source systems, but only several are required for detecting fraud in this processing
map. The events SportEventStarted, SportEventEnded, BetPlaced, Cashln, CashOut
and OpenAccount are routed to event services for special treatment.

The rounded rectangles in Figure 5.2 represent event services (5)(6)(9) that are
custom components for processing events. This fraud detection use case has five
different event services. The first two are used to analyse specific events and enrich
them with data for further processing. The last three event services are responsive

94

Chapter 5. Event-Base

services that perform specific actions that are propagated back to source systems like
the betting engine or the financial system.

5.1.3.3 Event Services

The event service Official Identification (5) can receive three types of events that
are produced by the betting engine: SportEventStarted, SportEventEnded and
BetPlaced. The SportEvents contain information about a started or finished sport
event including a unique ID that references a sport event. The BetPlaced event
contains information about the bet that has been placed by a user including infor-
mation like an unique BetID, the users AccountlID, a reference to the SportEvent,
the amount and the odds for the bet that has been pre-calculated by the betting engine.

The Official Identifications task is to analyze those events for any betting activ-
ity of officials. There is a book making tool, at the backend of this service, that
provides information about all officials including sport events with officials. When the
user places a bet, the services checks if the user has an official role or function in that
sport event where the bet was placed on. This kind of role or function could be for
instance a player, a manager or a physiotherapist of a sport team. Such an official is
allowed to place any bets at any time, but bets that are placed in a suspicious way,
for instance on games, where he is involved, should be caught by the system. If the
service catches an official that places a bet on an event, where he is involved, the
BetPlaced event is enriched with the information that this bet has been identified as
an official and emitted for further processing.

The event service Financial and Registration Mismatch Identification (6) job is
to check financial related events (Cashin, CashOut) for any suspicious behavior. If a
user creates transactions to or from accounts whose owner is an official, the service
enriches the event with the information that an official has been detected; otherwise
it adds information to the analyzed event that a payment name mismatch has been
detected. This means if a user pays out money to an account whose owner differs
to the registered user, the service automatically recognizes that there is a payment
account/name mismatch. This is not fraudulent in first place but can be used to
score the fraudulent behavior. On the other hand this event service checks every new
registration (OpenAccount) for any official and matches this information with the
payment information.

The event services Block Account, Cancel Bet and Start Investigation (9) re-
ceive events created by rule services previously in the map and perform actions.
The Block Account event contains the AccountID of a user whose account should be
blocked and the corresponding reason. The service propagates an action to the betting

95

Chapter 5. Event-Base

engine to block further actions by this user. The StartInvestigation event contains the
AccountID, a reason and corresponding authority that should investigate the user. The
message reveals detailed information about the reason of an investigation. Based on
the previous rules the investigations are often combined with blocked accounts. The
CancelBet event triggers the CancelBet service to perform an action that signalizes
the betting engine to cancel the bet of a user.

5.1.3.4 Rule Services

The rounded rectangles (7)(8) in Figure 5.2 are rule services containing business rules
to steer the process flow. The rules are comparable to decision trees to a limited
extend and can be customized by the user through a graphical user interface. Like
hubs, event services and rule services have ports that can be restricted to event types.

Behind the rule services, there is a sophisticated rule management system that
is discussed in detail in Section 5.4 as it is an important concept for event processing
and was introduced in the conference paper [80]. The rules are designed for business
users and domain experts to allow them to model business situations.

The task of the Rule-Based Scoring service (7) is to check events for any anomalies
and to create new scoring events that are routed to the Scoring Service (10). The
rule service contains several rules that can be altered by business users or domain
experts. For instance, there are rules that check if an AnalyzedBetPlaced event has
been flagged as official. If such a rule matches a fraudulent behavior a domain user is
able to weight the behavior within the rule.

The Fraud Detection Rules (8) rule service contains the rules for fraud detec-
tion based on tracked scores and other events that trigger conditions. Following up
the example from the Rule-Based Scoring service where a detected official placed a bet
and the users score has been increased significantly according to the rules specified.
In this service if the same PlacedBet event is consumed a rule checks if the user with
the AccountID from the PlacedBet has a high FraudulentBehavior score. In such a
case, counter measures can be taken like canceling the bet, blocking the account and
starting an investigation.

5.1.3.5 Scoring Services

The Scoring Service (10) in Figure 5.2 is a service that receives so-called scoring events.
Basically, there are two main event types that are consumed by the Scoring Service.
An IncrementScore lets the service increment the score value and a DecrementScore
that decrements the specified score. A scoring event contains following attributes:

96

Chapter 5. Event-Base

1. A ScoreType that is an identifier for the score.
2. A Classifier that can be used to relate a score to a user by its AccountID.
3. A SubClassifier that can be used to create sub category for a score.

4. A Value that increments or decrements the specified score corresponding to the
classifier and sub classifier.

A

’-v_/ - Fraudulent Area
Y]
S
> ’ 3 v
e F) =~ Suspicious Area
[*] ‘,' ‘- i (] J
o | el 18 SENEL A SSSPREEERS)
(73} 2 . <t [) ? 5

T ’] r

14.¢ \},° Ve 1 ;

4 ’ - = Everything OK
- ’ J
L
—t -
012 .
Time

e e Score for User1
=== Score for User2
------ Thresholds

Figure 5.3: Scoring Example

Scoring can be used to provide an infrastructure for rating and tracking specific states
throughout the event processing map. A concrete application scenario for scoring is
the fraud use case, in which a FraudulentBehavior score is tracked for every user.
The fraud potential of every user can be rated through domain experts by adjusting
specific rules in rule service that can generate scores increasing or decreasing for users.
If special events or event patterns occur and specific scores reached defined thresholds,
it is possible to respond to the detected situations in real time.

For instance, if a user is regularly cashing in and out high amounts, the system
increases the FraudulentBehavior score in small steps. This situation is basically
nothing to worry about except the fact that the amounts are unusually high. Further,
if the user always bets on games with extremely good odds, the score is increased
further. If the user sticks to this behavior and the FraudulentBehavior score reaches a
threshold, the system, depending on the rules, might inform an authority to start an
investigation, because this might be a potential money laundering case.

97

Chapter 5. Event-Base

5.1.4 Event-Base

Full-Text
Index

Correlation
Index

" Metrics
[

Event g

| Integration

™ " r'a
Correlation |

00000000
"000 00000
H 0000000

Mining

SARI-SQL

| | Query User interface |

1
|
|

[eo———=————————
|

Query Engine

Rendering

Evaluator

Query Optimizer

Query Rewriter

—r o Nr r 5

Parser

I | [Query Interface (API)

IF g g e e o
1l

Respond Layer

Event Processing Maps

L———

| I
| [.
| | :
‘U ! : Adapters
' |
| |
-ZU Communication Infrastructure
’/ 50 T e
[| ! T i
200 My 899 = ===
S) lcc.“cr;-—&
Business Computer Production Logistics, Business Partners
Processes Systems Systems Transportation

Figure 5.4: Event-Base Processing Schematics

The Event-Base is a data repository that can be considered as a next-generation
database for the purpose of managing events, their correlations, continuously cal-

98

Chapter 5. Event-Base

culated metrics and correlations between events. It provides an efficient up-to-date
operational storage together with retrieval mechanisms for business events for analyt-
ical as well as operational purposes without the costly data staging processes known
from established data warehousing solutions. By providing access to such processed
and prepared real-time events, it is possible to derive and generate new knowledge in
order to provide facilities for decision making with low latency and thus allow to catch
business opportunities or threats in a timely manner.

Current solutions for the analysis of business events are usually a combination
of several tools, whereas the tools are not capable to provide a unified view on
real-time events of an organization out of the box. This drawback of existing solutions
means that the data integration of events requires large efforts and possibly extensive
use of consulting services, and thus leads to high costs. Thus the adaptability of
changing requirements is aggregated as well.

The Event-Base architecture, shown in a schematic illustration in Figure 5.4,
provides, in contrast to other traditional data warehousing approaches, the ability to
store and maintain events in real-time in a central repository, together with historical
and analytical data. This type of persistent organization of events allows a seamless
access towards real-time and historical event data. Furthermore the typical ETL steps
of the data warehousing and analytical solutions are dispensed.

The Event-Base consists of following key characteristics:

Continuous data integration and adaption. Going back to the introduc-
tion of CEP/ESP in section 4 Emerging Event Processing Paradigms the Figure 4.1
of a Decision Making Pyramid shows the classical concept of an information system
architecture. On the bottom of the picture, there are several operational systems
whereas most of those system contain some sort of a data storage which is regularly an
operational database. On top of those data storages and operational systems there are
ETL processes to extract data for either local data marts (3) of specific organizations
or for data warehouses.

In either case, such ETL processes are a highly time and resource consuming
task and they are usually performed in cyclic recurring jobs in order to not disturb
the daily business operations. These integration tasks are often done in nightly
operations. Now in case of a change of the underlying systems or the data schema of
the underlying data stores, adoptions in the above lying systems are difficult to make
and require high efforts. The Event-Base is capable of adopting the event models
automatically in case of a change or if new event types are added.

99

Chapter 5. Event-Base

Query Language. The Event-Base provides a SQL-like query language for
placing queries against near real-time events and historical events that have been
processed by the Event-Base. Events captured from the event processing maps can
be integrated into the Event-Base repository and accesses by the query language to
retrieve correlated events, metrics and to perform event mining functions. In contrast
to Event Cloud [76] the query language is formally structured to be able to exactly
define a query with conditions to retrieve the desired events. Furthermore, SARI-SQL
is decoupled from the internal data preparation and maintenance in contrast to the
indexing approach of Event Cloud where the expressiveness of the search parameters
is highly relying on the document based indexing approach |[76][73][90].

Metric Calculation. The Event-Base allows its users to define metrics on
specific events (e.g. event types) that are calculated dynamically during runtime.
Such a metric for instance can be the average duration of transports. During a
transport several events are involved and share a relationship (e.g. correlation over an
OrderID or ShipmentID for instance). Therefore the Event-Base allows the definition
of event correlations to express complex metrics. The execution of the calculation of
metrics is managed by the system. Metrics can be calculated on 1) the occurrence of
specific events, 2) by a user request, 3) periodically, 4) on request by a query or by 5)
event data updates (e.g. data changes). In addition to metrics, that are defined by
the users, the scoring is also an integral part of the Event-Base and can be seen as a
derivative of metrics.

Event Mining Support. Event mining is an application of quantitative statistical
methods on a set of events with the purpose of knowledge discovery. The result of an
event-mining process is derived knowledge based on the interpretation of the mining
activities and their results. This procedure requires event data to be selected and pre-
pared. The Event-Base provides access to the event repositories to third party software
components for such analysis purposes. The access itself is encapsulated through a
data access layer that can be used to place SARI-SQL queries against processed events.

Response Mechanisms. Events of existing business environment can be re-
ceived and consumed through event adapters that are then routed through the
internal data exchange infrastructure for event integration and processing. The event
processing and integration model is based on a sense and respond system. This
allows to create new events in the processing model (for instance based on detected
exceptional situations) and propagate them back to the business environments in
order to trigger actions or countermeasures.

Distributed Data Management and Processing. The Event-Base is designed to
conduct the event processing through a transparently distributed network of event pro-

100

Chapter 5. Event-Base

cessing and integration nodes. This ensures scalability, fault tolerance and enables load
balancing. As a consequence it hides the complexity of distributed operations and thus
allows developers of event-driven applications to focus directly on the problem domain.

The Figure 5.4 illustrates the overall components and the collaboration of the
event processing instances within the Event-Base. On the bottom of the figure shown
source system (i.e. the event producing components) continuously generate event
notifications. The Sense Layer represents the adapters of SARI that can be docked
to the event producing systems or the communication infrastructure. The adapters
can gather events in either a push or pull process and propagate them into the event
processing realms. The concrete event processing is performed in the event processing
maps, previously introduced in 5.1.3, where the event processing flow is modeled with
various components according to the business requirements.

The previous section 5.1.2 described SARIs adapter component model that are
directly connected to the event processing maps. The Event-Base extends this concept
with a logical layer of an exchange infrastructure (XI) separated into a sense and
respond layer. This XI infrastructure can be seen as an event bus delivering the
event notifications to the corresponding event consuming maps. The sockets allow
to retrieve event notifications from adapters and redistribute them to arbitrary event
processing maps. This allows a more flexible interconnection of event sources with
the corresponding event consumers. For instance a socket that is connected to the
event adapter of a source system A, retrieves all events from the source system. That
particular socket can be taken and placed into event processing maps just like any
event adapter. The difference is that the events are distributed to all sockets docked
to the source system A through the XI infrastructure.

In the event processing engine, that evaluates the event processing maps, there
is an Fvent-Base Publishing Component that is responsible for propagating the events
into the Event-Base. This special event component can be arbitrarily connected, in
a declarative way, to event services, hubs or adapters. An Fvent-Base Publishing
Component is consuming events by applying filters, creating correlations between
events, calculating metrics and then mapping those events with the preserved special
event characteristics information to the Event-Bases data repository. This processes
is highlighted in the Figure 5.4 by the term FEwvent Integration which is represented
as a flow of events from the event processing maps to the Event-Base repository for
further application. During the flow of the events the correlations are created and the
metrics are calculated.

The events branched off from the event processing maps are stored in a specific
data structure introduced in the subsequent Section 5.5. Basically there can be

101

Chapter 5. Event-Base

created different numbers of Event-Bases for various event processing applications.
Each of the Event-Bases contain application data and the infrastructure for processing
events. The events stored to the Event-Base are preprocessed by a full-text indexing
engine for providing a fast access to them and to preserve also the correlational
relationships between the events. The processes of indexing events, their relationships
and performance discussions can be found in [90] [76].

The core access component is a query engine, which supports SARI-SQL, that
is set on top of the Event-Base repositories and exposes its services through pro-
gramming interfaces and a graphical user interface. SARI-SQL is a structure query
language and from syntactical point of view it is comparable to ANSI SQL. However
SARI-SQL is extending the common SQL capabilities with special semantics that
take the special nature of events into account. The query engine consists of six logical
components, an API, a SARI-SQL language parser, a query-rewriter and -optimizer, a
result evaluator and at the end a rendering engine for returning the results of a placed
query. Details of SARI-SQL are under a detailed discussion in the section 6 Query
Languages.

5.1.5 Real-Time Management Cockpit

The real-time management cockpit is a front-end component that can be used to
present aggregated information about the current state of business. Dashboards
or other information systems for data representation can access the Event-Base or
display various kinds of information regarding the event processing stages. A good
usage scenario are real-time dashboards for providing up-to-date information about
the current fraudulent behaviors that have been detected by the system or to highlight
sport events that might contain potential of abuse or service misusage.

The event processing map, shown in Figure 5.2, contains three response events
(9) that trigger counter measures based on previously detected and evaluated fraud-
ulent situations. So for instance an action can be triggered to block the account of a
specific user that has shown a fraudulent behavior to a certain extent that exceeded the
define score threshold limits. If such a “user block” action is executed the information
about this situation, encapsulated in a Block Account event, is additionally stored as
a record into a database. A dashboard application for monitoring fraudulent cases
can now be built on top of such event processing cycles to accumulate, aggregate and
present statistics or the states of the current business.

Figure 5.5 shows a screenshot of the management cockpit for the introduced
fraud detection use-case. The left table displays the latest blocked accounts along
with the reason. The right pie charts shows the distribution of the reasons of blocked

102

Chapter 5. Event-Base

accounts. This view is updated continuously while processing events in the event
processing maps and the pane is updated in the second that an account is blocked.

Event-Driven Fraud Detection
Online Betting

o . -
Business Status | Promotion Status | Block Accounts | Cancel Bets | Start Investigation | Fraud Overview

Block Account - Report
Latest Block Accounts:

Accourt ID Reason Firstname Lastriame Time Mook Roasnns
1370 Fraudulent Behavior in Combination with Placed Bet Belen Almario 23012008 14:50:43
1369 Fraudulent Behavior in Combination with Placed Bet Bee Offutt 23.01.2008 14:50:43
1368 Fraudulent Behavior in Combination with Placed Bet Bee Mecvean 23.071.2008 14:50:43
1367 Fraudulent Behavier in Combination with Placed Bet Becky Aparicio 23.01.2008 14:50:43
1366 Fraudulent Behavior in Combination with Placed Bal. Beckis | Inlow 23.01.2008 14:50.42
1050 Fraudulent Behavior in Combination with Placed Bet Ahmed Muna 23.01.2008 14:50:42
1049 Fraudulent Behavior in Combination with Placed Bet Agustina Wasaure 23.01.2008 14:50:42
1048 Fraudulent Behavior in Combination with Placed Bet Agustina Chemosky 23.01.2008 14:50:42
5742 Fraudulent Behavior in Combination with Placed Bet Valentine Russ 23.01.2008 14:50.42
5445 Fraudulent Behavior in Combination with Placed Bet Suzanne Bamhil 23.01.2008 14:50.42

= Fraudulent Behavior in Combination
with Placed Bet

[High CashlIn Detected

I High CashOut detected

Figure 5.5: Cockpit Screenshot of the Fraud Use-Case

5.1.6 Event Analysis and Mining

Analysis and mining tools [85][76] are integrated with the Event-Base for discovering
causal relationships between events, mining events, finding patterns within events and
they provide a facility for visualizing events, their relationships and patterns.

Current solutions that exist today, especially in the field of business intelligence
and data mining, relating to the analysis of historical data and/or the appliance of
OLAP, are capable of providing deeper insights into business operations. However
these traditional analysis tools are not capable of providing process knowledge and
they regularly lack of providing data in a real time fashion. This leads also to a
lack of decision making at operational and tactical levels in order to preserve the
value of information which is decreasing by time [49]. Furthermore the traditional
approaches don’t consider the special characteristics of events that represent the flow
of information in businesses, instead they align collections of historical data along
dimensions for further evaluation. The relationships (e.g. correlations) and specific

103

Chapter 5. Event-Base

aspects of events are not available anymore in classical representations.

David Luckham presents in [54] a compilation of requirements for CEP analysis
tools, whereas the requirements for those tools are addressed by the Event Analyzer.
The list of requirements from Luckham were reduced by Vecera in [89] to the most
relevant points.

e Display parameters and attributes of an event. This requires that a user
needs to have facility to examine events, their attributes and their relationships
at different granularity level without being overloaded. Further the item requires
the (graphical) representation of events according their temporal order.

e Trace the causal history of an event in an event execution. Requirement
that allows the backtracking of causal event chains that made a specific event to
fire.

e Graphically present events, event timelines and event correlation. An
event analysis tool should be capable of graphically represent events, their rela-
tionships to each other (e.g. correlations) and some way the temporal propagation
during time.

e Search Patterns. This is one is possibly the mightiest functionalities that
is required by an event analysis tool. An analysis tool should be capable of
searching through large repositories of events in order to detect patterns that
represent some sort of exceptional situations.

e Drill-Down. The tool should support event granularity abstraction mechanisms.
Such mechanisms should allow the users to create mind-size large abstractions of
given situations and then allow to drill down deeper to more detailed levels.

Event Cloud [76][73][90]|29] was one of the first approaches to allow users to search for
business events and patterns of business events within a repository of historical events.
Event Cloud processes events, thereby creating an index for events and correlations
between events in order to enable an effective event search. It provides a historic view
of events with Sdrill-downT capabilities to explore and discover different aspects of
business processes based on event correlations. Event Cloud allows users to investigate
events, such as picking up single events and displaying their content and discovering
related events or event patterns

The Event Analyzer is a research effort, coupled to SARI and the Kvent-Base,
that provides a toolset, for visualizing streams of events making use of tunnel
metaphor, to address following problem statements according Suntinger: Where did
irreqularities occur in my business? Did processes change over time? Does my business

104

Chapter 5. Event-Base

slow down, or can certain processes be executed more effectively? Which of different
execution paths of a process is most effective? Which contributors to my business
process are most valuable? Upon which data were past, automated decisions made?
Did errors occur in the automated decision process? Whal happened at a certain poini
in time at a certain location and who was involved ?|85].

The Event Analyzer is based on retrieving the desired information from the
Event-Base through placing SARI-SQL queries against the Event-Base. By applying
queries the Event Analyzer users are capable of retrieving events, persevered with
their correlations, in order to create a tunnel like visualization.

The Figure 5.6 presented in [85] illustrates the basic concept of the visualiza-
tion technique of the event tunnel. The top picture shows a cylinder where the events
flow from the left to right in a temporal order. Correlations between events are
represented through connectors between event instances. The top and the side views
provide arrangement space for organizing events along the axes according to various
placement policies to support pattern detection. A detailed discussion of event mining
with the Event Analyzer can be found in [85].

Event tunnel

; coo0o0 00 o oo
Unassigned 000 000 ‘
Time

000000 © 000 0O,

o000 ©OO0O \
0000 0O 0O 00 0090

Event-tunnel / \ Event-tunnel

Side-view Top-view

A Unassigned Unassigned
0000 OO0 [+] oo
000 000 00 O OO
o—0—00
000000 o 00O 0O
000 COO]
cooo 0o © 00 000 Time
>
(@) (b) Time

Figure 5.6: The event-tunnel visualization: Side view and top view onto the stream
of events. The unassigned axis of a tunnel are utilized to show temporal relationships
between correlated event sequences. [85]

105

Chapter 5. Event-Base

5.2 Event Model Concepts

This section introduces the data structures that are representing the events and their
attributes reflecting the content and the context of events. The event model of the
event-based system SARI, is illustrated and its various event typing concepts are
discussed in detail throughout this section.

The research on event-based systems focuses on typical usage patterns, such as
the publish-subscribe paradigm as well as on stream processing, continuous queries,
and rule-based event correlation. The developed systems used various ways of
representing, filtering and querying events. In many cases, event models have been
influenced by query languages, distributed platforms or architectures for integrating
systems.

This section aims at describing and discussing the typing concepts and their
applications within SARI. The design and the nature of the event model strongly
influences the capabilities of event processing query languages [74]. Therefore this
section pays attention to existing event models in the field, in order to highlight the
model capabilities of SARI in contrast to other approaches and solutions. This is
especially important to understand the key features and benefits of the event access
language FEAExpressions and the query language SARI-SQL that will be introduced
in the next chapters.

The key characteristics of CEP/ESP systems are their capabilities of handling
complex event situations, detecting patterns, creating correlations, aggregating events
and making use of time windows.

Research has shown that the underlying event model can provide insights into
the capabilities of event processing engines. Despite the discussions about a dis-
tinction between CEP and ESP solutions, the event models have shown that ESP
solutions usually treat events in the form of tuples, while CEP solutions make use of
more complex data structures.

Compared to other IT systems, event-based systems still lack in the support of
tools that allow users to easily reconfigure a system or to refactor service and
components. An event model has a major impact on the flexibility and usability of
tools. In the following, the role and importance of an event model will be shown with
some illustrative examples.

e Development Tools: An event model can be used by development tools to
check the consistency of linked processing tasks or for offering auto-completition

106

Chapter 5. Event-Base

capabilities (which are common in integrated development environments) for
event-related expressions. Such capabilities can significantly facilitate the def-
inition queries, event-triggered rules or data mappings.

e Integration Tools: Typically, the producer of an event is a business system
which has to be integrated with the event-based system. With the rising pop-
ularity of XML, events are often represented as XML messages which are sent
from a producer to a consumer. Many existing event-based systems have origi-
nally started with a SQL-based approach for querying event streams which come
along with certain limitations when querying hierarchical data.

e Event Data Management: The integration and management of events, that
paves the way for event analysis applications, is strongly influenced by the capa-
bilities of the event typing model.

e Event Mining: An event model has a significant impact on how event patterns
can be discovered in event streams or within historical event traces [65][59]. For
many statistical analyses, it is necessary to capture sample sets for events that
have specific characteristics. Thereby, many event mining approaches require
event types for classifying, ranking or analyzing temporal sequence patterns.

e Query and Rule Management: The definition of queries and rules is in many
event-based systems challenging for users. Graphical tools for building queries
and rules require an event model that is easy to understand for (business) users.

Decoupling producers and consumers leads to a number of advantages previously
discussed in Section 3 Event-Based Messaging Middleware. However, as they share a
common interest in exchanging data about notified occurrences the producer does not
deal with any details of consumers for processing the events. The drawback is that
the consumer must find a way to understand received events what entails the need for
an universal event model.

An event model tries to address this problem by providing a definition of event
types with a detailed description of the nature and structure for the events. On
the one hand, event types facilitate the event processing on the consumer side, but
on the other hand, it raises the question how to deal with unknown attributes in
events. Enabling unknown attributes or untyped events in the event model requires
a strategy to deal with potentially missing event attributes and ambiguous event types.

The scope of an event model is defined as follows:

e Description of a valid schema that defines the attributes of events and can be
identified by an event processing consumer.

107

Chapter 5. Event-Base

e Mechanisms to extend an existing schema for aggregating or specializing events.

e Possibility to classify event types that can be processed by the event consumer
for subscription purposes.

e Definition of relationships between events.

Historically, the first event models arose in business activity monitoring and complex
event processing. FEarly models haven been mainly influenced by publish/subscribe
systems, in particular those which supported content-based filtering mechanisms |51].

Distributed pub/sub architectures such as Hermes [8], Gryphon [51][11], and
Siena [23] only provide parameterized primitive events. Since these systems focus on
implementing messaging middleware which delivers events to consumers based upon
their previously specified interest, however leave the event processing to the application
programmer. Hermes [8] is a distributed event-based middleware architecture making
use of a typed event model and supporting features known from object-oriented
programming languages.

The type-based publish/subscribe was first introduced by Eugster [39][38]. Eu-
gster proposes an event type model that integrates with the type model of an
object-oriented programming language. Events are treated as first-class (Java)
objects, and subscribers specify the class of objects they are willing to receive. No
attribute-based filtering is supported, as this would break encapsulation principles.
Instead, arbitrary methods can be called on the event object to provide a filtering
condition.

Chen et al. [27] show an approach for rule-based event correlation. In their
approach, they correlate and adapt complex/structural XML events corresponding
to an XML schema. The authors describe an approach for translating hierarchical
structured events into an event model which uses name-value pairs for storing event
attributes.

Esper [30] is an Open Source event stream processing solution for analyzing
event streams. The event processing engine represents its events through simple
POJOs whereas the attributes and their types are determined through the Java class
attributes. It supports also nested type structures through dictionaries or collections
and supports inheritance structures that are considered by the query statements.
Esper furthermore requires an event type definition in XML and thus supports
validation through XML. It is possible to access events through the event query
language, through XPath or programmatically through Java code.

108

Chapter 5. Event-Base

AMIT [3] is an event stream engine whose goal is to provide high-performance
situation detection mechanisms. AMIT distincts between “concrete events” and “in-
ferred events”. The “concrete events” represents state change that has been observed
in the real-world while the “inferred event” is an artificially created event such as
a conclusion drawn out of real-world events. An event is the base entity and can
be specified with a set of typed attributes. FEvents are represented through event
instances which can share relationships among each other. Every event corresponds
to an event type that defines the schema of attributes.

Borealis and Aurora [2| are stream processing engines for SQL-based queries
over streaming data with efficient scheduling and QoS delivery mechanisms. Medusa
[92] focuses on extending Auroras stream processing engine to distribute the event
processing. Auroras stream data model is represented by a sequence of tuples, con-
taining attribute-value pairs, where each tuple is marked by a timestamps that defines
the entrance time of the event in the aurora network. Borealis extends Aurora’s event
stream processing engines with dynamic query modification and revision capabilities
and makes use of Medusas distributed extensions. Borealis data model was extend
in contrast to Aurora with the ability to support the revision of data from incoming
streams. Therefore there are now three types of message available. An insertion
message (which are tuples known from Aurora), Deletion messages and replacement
messages. The processing graphs from Aurora have been reused and are explained in
Section 7.6.

The next sections will introduce various event model concepts and illustrate
them with examples from the SARI system [81].

5.2.1 Event Type Model

The centerpiece of the event model in SARI is a library which manages the event
types of a system. The library is a repository which manages metadata for describing
events and their attributes. An event definition that is maintained in the library
is further called an ewvent object type in SARI. The concrete instantiation of events
during runtime are event objects that must be valid to a defined event object type.

The idea behind the library is to provide a facility to specify the schema and
semantics for all types of events that should be valid in the given event processing
system. By using event type libraries, it is possible to create uniquely addressable
event types that can be used to match incoming events to its own processing realm in
an event-based application that is deployed in the system. The library stores event
object types in a database and allows to share them among a set of applications or
systems.

109

Chapter 5. Event-Base

Event Object
Type Library

0

I I[BI._ Event Object n
Type -

View Event || Virtual Event ﬁ: 0
Object Type
0

Object Type
| ¥p 'z

Attribute

Schema-Driven
EOT

Attribute
Mapping

1

[
Single Value
1 Type

1 1 1 /\

‘ ‘ Collection ‘ Dictionary ‘

Integer String

]

Figure 5.7: Event Object Type Model

Figure 5.7 shows the meta model of SARI’s event object type library and event
object type meta model. An event object type library can contain a set of event
object types. An event object type can be inherited from other event object types.
Event object types can contain several attributes. Each of those attributes have
to correspond to an attribute type. An attribute type can be either a single-value
type, collection type or a dictionary. A special case of an event object type is a
schema-driven EOT. This event object type has all characteristic of its super-type.
The difference is that these types and their attributes are generated out of a schema
definition. This is a useful feature that allows to exchange typing definitions between
systems.

At the lowest level, an attribute value has to correspond to a runtime type (In-
teger, String, ...). A more advanced concept that can be realized within SARI is
exheritance where virtual or view event objects can be created with attributes that
are mapped to attributes of existing event object types. Exheritance and view /virtual
event object types will be explained in detail in the subsequent sections. The definition
of an event object type contains following items:

e event object type namespace

110

Chapter 5. Event-Base

e event object type name and display name

e event implementation type

e attributes of the event object type

e parent event object type (in case of an inheritance)

e cvent object types which are virtual roots (in case of an exheritance)

The event object type namespace and the event object name make the event object
type globally unique. This allows the reuse of event object types across multiple
event-based systems. SARI’s event model supports type inheritances for specializing
event object types by inheriting its attributes. Every event object type and attribute
type is identified by a uniform resource identifier (URI), which allows to define
namespaces for event types in a way similar to programming languages (e.g. Java

namespaces).
<EventObjectType>
Order
<Event>
CustomerlD = String Product
OrderlD = String
OrderDate = DateTime ProductiID=Tonsalumn
Products = Collection —— | Amount : 150
Price : 120.23

Figure 5.8: Event Object Type Example

Figure 5.8 shows a definition of an order event object type. The order event
object type contains four attributes. CustomerID, OrderID and OrderDate have a
runtime type. In addition, the attribute Products has a collection type, whose items
must correspond to the Product event object type.

Figure 5.9 shows the previously defined event object type during runtime. The
event is instantiated and filled with data according to its definition. Further, the
collection of the attribute Products contains a set of products which are instances of
the event object type Product. SARI allows to define event object types which can be
used to define hierarchically structured events.

5.2.2 Attribute Model

SARI's event model supports the following three event attribute types: single-value
types, collection types and dictionary types. The subsequent section will illustrate the

111

Chapter 5. Event-Base

<Event> —
Order 5 :
<Event>
CustomerlD = cst012311 H | Product

OrderlD = 0d34234 .
OrderDate = 05.01.2007
Products = Collection

ProductiD=Tonsalumn
Amount : 150
] Price : 120.23

Figure 5.9: Event Object at Runtime

<Event Object Type>
Package

PackagelD : Stringo e
[...] Key Value

Orders : Dictionary String /@

<Event Object Type=>
Order <Event Object Type>
Product

\J

CustomerlD : String
OrderlD : String ProductID : String
OrderDate : DateTime E’ Amount : Integer

Products : Collection Price : Decimal

Figure 5.10: Attribute Model Example

supported event attribute types through an example presented in Figure 5.10.

e Single-Value Types: Single-value types represent attributes which have a run-
time type such as a string, character, numeric and Boolean values. Additionally,
single-value types can also represent another event object type (e.g. a customer
event object type within an Order Submitted event object type). Figure 5.10
(Point 1) shows the attribute PackagelD which is a single-value type of the run-
time String type.

e Collection Types: Collections contain lists of values either corresponding to
runtime types or to event object types. In either way, the collection values have
to be typed. Figure 5.10 (Point 2) shows a collection attribute Products, where
the items of the collection are typed as single-value types of the event object
type Product. This attribute is a collection that can hold a list of Product event
objects during runtime.

112

Chapter 5. Event-Base

e Dictionary Types: Dictionaries are lists of key-value pairs containing either a
value represented as a runtime type or as an event object type. The key, which
is the accessor for the list element, must be defined as a runtime type. Figure
5.10 (Point 3) represents a dictionary attribute type containing a String as the
key type and the Product event object type as value types. Please note that it
is possible to nest every available type into dictionaries and collections as value
types. By defining a collection type instead as the value element, the key-value
pairs would contain a substructure holding collections.

5.2.3 Inheritance

<Event Object Type=> <Event Object Type> <Event Object Type>
BaseEvent q Order | Order Canceled
N
CreationTime (*) CreationTime (*) CreationTime (*)
GUID (%) GUID (%) GUID (%)
CustomerlD : String CustomerlD : String
. , OrderlD : String OrderlD : String
(*) Header Attributes OrderDate : DateTime OrderDate : DateTime
Products : Collection Products : Collection

Figure 5.11: Inheritance Example

The root of all event object types is the BaseEvent type from where every event object
type is derived. The BaseFvent type defines the header attributes that every event
object type must have. SARI’s event model allows specializing event object types
by inheriting attributes from parent types similar to object-oriented programming
languages. When using inheritance, it is not allowed to define a new attribute which
has the same name as an attribute in a parent type. In SARI, inheritance can be
defined by simply defining a parent URI in the event object type definition.

Figure 5.11 shows a simple inheritance example where an OrderCanceled event
object type is inherited from an Order event object type. Both event object types are
inherited from the BaseEvent type.

5.2.4 Exheritance

Another supported concept is exheritance which allows to create generalizations from
event object types (see also [77] and [70]). Exheritance is the opposite of inheritance
and allows to define generalization of event object types without modifying any exist-
ing event object type. In SARI, exheritance is provided by wirtual event object types

113

Chapter 5. Event-Base

<Event Object Type>
BaseEvent

<Event Object Type=> <Event Object Type=>
OrderPlaced <Event Object Type> ShippmentDelivered
Order
ProcessinstID : String ProcesslInstlD : String
ActivitylD : String CustomerlD : String ActivitylD : String
SourceSystem : String _ OrderlD : String SourceSystem : String
Order : Order (EventType)} OrderDate : DateTime ShipmentID : String
Product : Collection Products : Collection ShipmentArrivalDate : Date

Virtual Event Types

<Virtual Event Object Type> <Virtual Event Object Type=>
ActivityStarted ActivityCompleted
) Activityldentiﬁer:IString Activityldentifier : String »
| StartDate : DateTime CompletitionDate : DateTime [*

Figure 5.12: Exheritance Example

and view event object types which can be used to generalize existing types by mapping
their attributes. The attributes of virtual event object types can be seen as a view on
attributes of the generalized event object types that are mapped explicitly to a new
type. Figure 5.12 shows an example containing three different event object types (Or-
derPlaced, ShipmentShipped and ShipmentDelivered). By making use of virtual event
object types it is possible to generalize several attributes to a new event object type. In
this example, the attributes from OrderPlaced and Order are generalized to a new Ac-
tivityStarted event object type and ShipmentDelivered form a new ActivityCompleted
event object type. The view event object calculates the mapping automatically by
inferencing the attributes with the same name and type of event object types.

5.2.5 Duck Typing

The concept of duck typing goes back to the support of dynamic typing in programming
language concepts. Duck typing allows to implement interfaces dynamically at runtime
and is part of programming languages like Ruby and Python.

114

Chapter 5. Event-Base

: Untyped Ports

Typed Input Port |

be mapped

SAP Adapter e
| (Order Management) y B 3 _.-"/_
o (I Hub }—p—l Other Service
‘ MQSeries Adapter | | e ad
(Shipment) ? *
] Catch events that cannot

Other Service |

If the untyped event object
cannot be mapped, |

an exception is thrown Special

CycleTimeType

Figure 5.13: DuckTyping in Event Processing Maps

If it walks like a duck and quacks like a duck, it must be a duck. [11]

The idea behind duck typing for events is to allow event services to process untyped
event objects. By untyped events it is meant that the event object type has not
been previously defined in the event object type library. Every event in SARI is
automatically derived from the BaseFvent type without declaration. The BaseFvent
type enforces only header attributes for the event object during runtime.

The advantage of applying duck typing to event processing systems is to allow
the developers of event-driven applications to directly reuse event data from source
systems for processing. Otherwise the raw event data would have to be mapped to the
event typing realm of the event processing system. This allows developers to focus on
the problem domain in first place and allows to make changes during runtime without
investing high efforts in integration tasks.

Figure 5.13 shows an example of duck typing in SARI. SARI uses event pro-
cessing maps (see Figure 5.13) for processing event objects with event services
(represented as rounded rectangles in Figure 5.13). Hubs (2) allow to route event
streams from adapters and event services. Every event service must have one or more
input and output ports for receiving and emitting events. Each port must correspond
to an event object. By enabling duck typing of events, it is possible to emit un-typed
events to typed ports. The system automatically checks whether un-typed event

115

Chapter 5. Event-Base

object are compatible to the event object type of a service port. Hubs can be used as
routing mechanism to find out whether the system has not been able to infer a type
from an un-typed event object.

Figure 5.13 illustrates this mechanism by propagating events from two different
sources: an Order Management source and from a Shipment source (1). The input
sources emit un-typed event objects. Point 3 in Figure 5.13 shows the input ports
for event services whose ports expect typed event objects as input. By inferencing
the incoming event object type, the service is able to process previously un-typed
events during runtime. Hubs can be used to capture and reroute events which do not
correspond to the input port of the event service.

5.2.6 Extensibility

Event object types are instantiated during runtime as event objects according to
their type definition. SARI’s event object types can allow “unknown” attributes,
which allows to add any attribute with arbitrary attribute name and value to the
event object. This is especially helpful if an event processing application wants to
enrich the events with information additional information that is not known in advance.

As mentioned before, every event object in SARI contains event header attributes

which are inherited from the BaseEvent type. Any event object type can add
additional header attributes for capturing metadata about the event object.

5.2.7 Namespacing and Addressing

www.company-a.com/eventobjecttype www.company-b.com/eventobjecttype
Event Type Event Type
Library Library
l Event Exchange

Company A Company B

Figure 5.14: Sharing Event Object Types

Namespaces have found their way into object-oriented programming languages to
organize components and its resources. SARI uses URI namespace for every event
object type and for every attribute type. The objective behind using URIs as event
object type and attribute identifier is to provide an unambiguous way to globally

116

Chapter 5. Event-Base

address types and attributes. Globally unique identifiers allow reusing event object
types across system borders.

Figure 5.14 shows an example of two companies exchanging events. Fach of
those companies has their own event-based system with event object type libraries.
Namespaces not only help to structure applications inside the company, they also
help to share event object types between multiple organizations. In this example,
the companies can share the event object types of both libraries. In such a business
scenario, it is crucial that event object types are globally unique.

5.2.8 Language for Accessing Event Objects

When processing events, various ways for accessing the data in event objects are re-
quired. There is no single language which can sufficiently cover all requirements for
processing events (such as listed above). Therefore, SARI supports the following 3
ways for accessing event objects:

e Event-Access Expressions (EA-Expressions) which have been designed for busi-
ness users in order to flexibly access event data and to perform calculations. For
instance, SARI uses EAExpressions for defining rules and for mapping event data
to database tables, as well as for defining metrics and filters for analysis purposes.
EAExpressions are under a detailed discussion, in terms of syntax and semantics,
in the chapter 6.

e SARI allows to access event objects as XML documents and a user can use
XPath for extracting data from the event object. XPath is strong in flexibly
selecting elements from an XML document. Representing event objects as XML
documents can be very useful for the integration with external systems, since
they don’t have to know any proprietary details of the event objects.

e Development of services which require complex or efficient event processing.
SARI offers an API for directly accessing event objects in Java or C#. It is
the most efficient way for retrieving data from the event object, since no expres-
sions have to be parsed or interpreted.

There are various ways for accessing event objects with trade-offs for each approach.
In the following, a list of typical examples are shown where different approaches for
accessing event objects are needed.

e Definition of event-triggered rules: It should be easy to understand and to
use for business users to model event-triggered business rules. Event-triggered
rules typically require the definition of a set of event conditions and event patterns
which can trigger an action.

117

Chapter 5. Event-Base

e Calculation of business metrics: When monitoring business processes or
making automated decisions with rules, it is essential to support operators and
aggregation functions for calculating business metrics.

Filtering of event objects: Filters are essential for event consumers in order
to select only the relevant events from a stream of events.

Data mappings: Event data often have to be combined with data originating
from relational database systems. When inserting event data into database tables
or for making database lookups, it is necessary to flexibly select attribute values
from an event object.

Processing events with services: Event processing tasks might also require
the development of code in a programming language, such as JAVA or C#. An
event model should provide a flexible and efficient API for using event objects
in user-defined services. In the following, there are some typical examples for
application scenarios shown for the previously discussed approaches accessing

event objects:

Application Scenario

Example

Definition of condition for a rule
which checks the total of the UMTS

service usage for a particular customer.

Event access expression:
Sum(ServiceUsage(Type="UMTS").Minutes) = 500

The order items of an OrderSubmitted
event should be extracted and used in
an XSLT transformation.

XPath expression:
//OrderItems

Development of a service which
processes ServiceUsage events.

The service can directly access event
information such as the type of
service used.

Code in Java:
void process(ServiceUsage eventToProcess) {
if(event ToProcess. Type=="UMTS") {E}

}

5.2.9 Comparison of Event Models

In this section a table is represented with a comparison of event type models of
several existing event processing systems. The table includes six event-based systems
analyzed according to their event typing concepts. The solutions that where selected
consider themselves as complex event processing and event stream processing systems.
The selection was done with the intention to highlight the major differences between
various approaches. The comparison in the table reveals commonalities and trends
in event models of event processing systems. For instances, systems making use
of SQL-like syntax represent events as data tuples, which cannot be hierarchically

118

Chapter 5. Event-Base

structured in many systems. Tuple-based event models bring the drawback that more
advanced typing concepts are difficult to realize and thus, they are missing in such
event processing systems.

Other systems, such as Esper, make use of more object-oriented approaches for
typing and representing events. This allows a more natural realization of concepts like
type hierarchies. A commonality that all event processing systems has is that they
use XML for structuring, typing or representing events. Clearly, XML has proven to
be the best choice for structuring event data or maintaining their meta information.

5.3 Event Correlation

A key characteristic of event-based systems is that they are capable of attaching
themselves to a wide range of event producing sources. Thus large amounts of different
types of events and at different granularity levels are consumed by the event processing
realm. Defining and managing the relationships of those events is an important and
integral part of SARI. The relationship between events is called correlation and
defines a collection of semantic rules to describe how specific events are related to
each other. Often single events may not contain all the information that is required to
detect specific patterns in order to optimize the businesses or trigger countermeasures
on exceptional situations. Furthermore, correlated events can be used to calculate
metrics out of related events or metrics out of groups of correlating events.

Transport - Correlation
"\ Diff = TransportEnd.DateTime

| TransportStart TransportEnd |~ _ 1ansportStart. DateTime

o0000

; . —w = Average Delivery Time
Transport - Correlation :

TransportStart TransportEnd .I
OO0000

Transport - Correlation

Figure 5.15: Simple Correlation Metric Calculation Example

119

Chapter 5. Event-Base

Event Type Model

Attribute Model

Inheritance /Exheritance

SARI Repository for event Single-value types; Inheritance supported;
type definitions; Collection types; Exheritance supported;
Globally addressable Dictionary types;
event types; Support of unknown attributes;
Event type
definition in XML;
Validation through XSD;
Esper Event type definition Attribute types are determined | Inheritance supported
in XML; by POJOs following the through OO concepts in
Supports structured events; JavaBean conventions; Java;
Validation through XSD; Dictionary and collection
types are supported;
Hermes Event type XML representation that can be | Inheritance supported
definition in XML;
Validation through XSD; bound to Java classes;
Borealis Schema defines valid tuples; Single-value types supporting
Validation through XSD; number, date and string values;
RuleCore | Event type definition Single-value types supporting
in XML; number, date and string values;
Validation through XSD;
AMIT Event type definition in XML; | Single-value types supporting Inheritance supported

Validation through XSD;

number, date and string values;

120

Chapter 5. Event-Base

‘TINX {IOTTIUOPT U oARY
:s300(q() eaer xXRJuAS oI TOS sodAy queay ILINV
‘sosse uoy)LJ ‘qredX | Aporndur sedlofue 9q ue) 910Ny
8100198 40 XRJUAS oI TOS sireaaoq
‘qredX | ‘SIOTFUO0O FUIIRU JUIPIOAR
s300(q() earr | (A[eoryewiuRISOIg 103 9oedsewreu TINY SHINHAH
1dV
TINX qredx ‘AR SNOITY) S[RIeAR
s300(q() earr XRIUAS oI TOS Apyordur soedsewreN Sursery JuoAy Tadsy
TINX 1dV
:$309[q O 1N qredx
is300(q() eaer ‘suorssordxq v 4N SuidA T, spngg TIVS
sydaouo))
uorjejuasaIday JuUaAy SS9J0Y JUIAT 3uisseappy | SurdAJ, peoueapy

121

Chapter 5. Event-Base

For instance events could be used to calculate the average delivery time of transports
(illustration in Figure 5.15). A Transport is a correlation consisting of several events
that signalize different activities during a transport process. Each of the transport
correlations contains at least a TransportStart and a TransportEnd event. The time
difference between the TransportStart and TransportEnd events, of each transports,
is used to calculate the average delivery time. The ability to perform such calcula-
tion operations is enabled through the technique of correlations discussed subsequently.

ESP solutions, based on the concept of continuous queries, realize correlations
usually through join operations (7) similar to relational databases. This means that
events are brought into relationship by defining joins over specific attributes, whereas
the resulting records, defined by the projection clauses, represent the result of correla-
tions. To preserve the correlated events it would be required to form foreign-key related
data structures. This approach is limited by the nature of attribute-relationships and
by the sliding time-windows of such solutions. Events, like in a transport scenario,
occur often only throughout a long lasting duration. This means that maintaining
correlations in such ways would become a high resources consuming task due to the
complexity nature of relational operations.

The correlation technique applied in rules, event processing maps, data mining
applications and queries would be a difficult task to perform. SARI applies a
correlation method describe by Schiefer et al. [79] which is introduced in this section.

5.3.1 Types of Correlations

The definition of a correlation between event types is called a correlation set. Correla-
tions are defined through specifying correlating attributes between event types. SARI
supports two types of correlation sets primal correlations and bridged correlations. A
correlation set consists of an unique name, the event types that participate in this
correlation set, and the event attributes that relate to each other. In the following the
correlation types will be described in detail.

5.3.1.1 Primal Correlation

A primal correlation set is the simplest correlation type and forms the basis for
other correlation conjunctions between events. Events that enter the event processing
realm are typed against the event object type library, holding all the event typing
information, and are instantiated as event objects during runtime. An event type
consists of several event attributes, which are of a specific defined type. A correlation
between events can be defined by defining a relationship between the attributes of
specific event types.

122

Chapter 5. Event-Base

<Event>

<Event>
TransportEnd TransportStart
Transportld=T2000 Transportld=T2000

Shipmentld=2006-05-10
Accepted=TRUE
EndLocation=Madrid
Success=TRUE
Acceptor=Jane Smith

Shipmentld=14554
DateTime=2006-05-07
StartLocation=Vienna
Type=TRAIN

ojujpodsuel |

Figure 5.16: Example of a Primal Correlation

Figure 5.16 shows a relationship between TransportEnd and TransportStart events.
The relationship is defined by the associated attributes Transportld of those two
event types. A correlation set may include one or more event types which define
relationships by correlation tuples. A correlation tuple defines attributes from different
event types which have to match in order to correlate. A relationship may include one
or more correlating attributes which are part of correlation tuples.

A primal correlation may also contain a correlation set consisting of a on corre-
lation tuple referencing one attribute of one event type. That correlation definition
is called self-correlation. For instance, if the event type TransportEnd has a self
correlation defined on the EndLocation, all TransportEnd events with the same end
locations would share a relationship. A concrete application scenario would be if a
user wants to collect all outgoing transports and then wants to evaluate how many
transports have failed grouped by their delivery locations.

5.3.1.2 Bridged Correlation

The primal correlation set defines direct correlational relationships between event
types and their attributes. The bridged correlation extends this model by allowing to
define correlations between several primal correlation. This type of correlation allows
to form indirect relationships between events through defining bridging attributes
between primal sets of correlations.

A bridged correlation set consists of a set of primal correlation sets that are
linked together. The example in Figure 5.17 extends the previous primal correlation
set example (Transportinfo), shown in Figure 5.16, with an additional correlation
set (DemandToShipment). The bridged correlation allows to create a relationship
between those two primal correlation sets by defining a link between the attributes
Shipmentld and Orderld. This link now bridges two different primal correlation sets

123

Chapter 5. Event-Base

<Event= <Event=
Demand ShipmentCreated
‘Demandld=16123 == Demandld=16123 |
‘DateTime=2006-05-05 o [Qrderld=14554
SatisfyUntil=2006-05-12 | & | Shipper=Nighty Trucks
Location=Madrid 8 | DateTime=2006-05-06
Product=ProductA E] Planned Delivery =2006-05-09
Amount=700 cojn LatestDeIivery =2006-05-12
% | ResponsibleEmployee =John Woods
§ PlannedCosts4350
<Event> Eorts
TransportEnd TransportStart
‘Transportld=T2000 i Transportid=T2000
"Shipmentid=2006-05-10 — [[Shipmentid=14554 '
Accepted=TRUE S [DateTime=2006-05-07
EndLocation=Madrid § StartLocation=Vienna
Success=TRUE = | Type=TRAIN
Acceptor=Jane Smith z

Figure 5.17: Example of a Bridged Correlation

and thus they extend the correlation scope.

5.3.2 Correlation Meta Model

BridgedCorrelationSet | ! » PrimalCorrelationSet

1

v
CorrelationTupel
[
¢
CorrelationDataSelector
[
! 1 1 !

EAExpressionDataSelector XPathDataSelector

Figure 5.18: Correlation Meta Model

ojujjuswdiysg

124

Chapter 5. Event-Base

The correlation meta model, illustrated in Figure 5.18, is a straight forward nested
structure for defining correlations for event processing model components. A Bridged-
CorrelationSet is the main entry point for hanging on correlation definition information.
Each BridgedCorrelationSet is described by a unique identifier and optionally through
a display name. A BridgedCorrelationSet containg an arbitrary number, but at least
one, of PrimalCorrelationSets. The PrimalCorrelationSet is identified by a unique id
and can hold more than one CorrelationTuple whereas the CorrelationTuple contains

object type that is under a correlation selection. Further, the CorrelationDataSelec-

tor contains a query expression for selecting the correlation attribute. The attribute
selection can either be done using EA Ezpressions or XPath.

5.3.3 Correlation Evaluation

Correlation Set
Event Types
TR S isger Selectors for Event Types
Eveni Type T, - Inieger H Selector 10r= Event Attribute B,,
Event Type M: A, — Char —I Selector (orm Event Attribute A,
o

Applying Selector for Event Type T Applying Selecto\rfor Event Type S

= & | |
S® = = ¥ =
™ T L) W T 5
© O[EiS] ES=] Edet | Eiwt | Es1] Els | Erz | Eot |
T < - : il
— e, I e o /.-"
e, ""------_-_'::.'M'.:'_: B -
™ s ™ - N S
| Correlated Events | ‘ Correlated Events | I Correlated Events I

v v v
(Indexing) [Indexing) (Indexing J
v

Fullk Text Index:
Attributes of Ea =4
Attributes of E5,-4

Session1(value =1) Session2 (value =2)

Fulk Text Index:
Attributes of Ea, =1
Attributes of E§, -1

FullF Text Index:
Attributes of Eg, =2

Attributes of Ep, -2

Figure 5.19: Correlation Evaluation during Runtime

The correlation evaluation technique, introduced and described in [79], that is applied
during runtime uses defined correlation sets to collect attribute values of correlating
events for business activities. The gathered attribute values are held in a data

125

Chapter 5. Event-Base

container which we define as correlation session. In other words, a correlation session
is a container with a set of data items that exists for each relationship between events.
Figure 5.19 illustrates the whole life cycle of the correlation evaluation process. On
the top there is a correlation set definition (either a primal or bridged correlation)
that consists of tuples of event selectors. Those selectors define the event object types
and their attributes that are linked together. In this example the event object types
S and T are correlated through their attributes B1 A;. The event object type M is
not part of the shown correlation set definition.

The event stream in the middle of the picture represents the flow of events F
with the types S, T and M. The events streaming through are concrete instantiations
of event object types and thus the attributes By Ay contain values. An event correlation
is defined by a correlation set which consists of a set of selectors for various event types.

According to [76] the correlation is described: For a given event of an event
stream, an event correlation is performed successfully if

1. the event type of the given event conforms to the event type of one of the selectors
of the correlation set,

2. this selector is used to extract one or more event attributes from the events, and

3. the extracted event data is used to assess the events as correlating if the attributes
extracted by the responding selectors match.

In Event Cloud [76] the correlation approach described by Schiefer and McGregor [79]
was extended by an indexing approach to provide an acceleration of a full text search
of historical events. Therefore, correlation sessions (shown in the bottom of the figure)
are coupled to an indexing approach that is continuously updated as new events are
gathered by the sessions.

5.4 Event-Driven Rules

Information is critical to make well-informed decisions. This is true not only in real
life, but also in computing and especially critical in several areas, such as finance,
fraud detection, business intelligence or business process management. Information
flows in from different sources in the form of messages or events, giving a hint of the
state at a given time, such as the completion of shipping an order.

Business Process Management (BPM) systems are software solutions that sup-
port the management of the lifecycle of a business process. For the execution of

126

Chapter 5. Event-Base

business processes, many organizations are increasingly using process engines support-
ing standard-based process models (such as WSBPEL) to improve the efficiency of
their processes and keep the testing independent from specific middleware.

A major challenge of current BPM solutions is to continuously monitor ongoing
activities in a business environment [78] and to respond to business events with
minimal latency.

In SARI, business situations and exceptions are modeled with sense and respond rules
which have been designed to be created and modified by business users. SARI offers a
user-friendly modeling interface for event-triggered rules, which allows to model rules
by breaking them down into simple, understandable elements. The main advantage
lies in a new model for constructing rules with a correlation model and a graph for
representing business situations with a combination of event conditions and event
patterns. The proposed model can be seamlessly integrated into the distributed and
service-oriented event processing platform of SARI.

Related work can be divided into work on active event processing and event al-
gebras in the active database community and work on event/action logics, updates,
state processing/transitions and temporal reasoning in the knowledge representation
domain.

There has been a lot of research and development concerning knowledge updates and
active rules in the area of active databases and several techniques based on syntactic
(e.g. triggering graphs or activation graphs [12]|) and semantics analysis (e.g. [9]) of
rules have been proposed to ensure termination of active rules (no cycles between rules)
and confluence of update programs (always one unique outcome). The combination of
deductive and active rules has been also investigated in different approaches manly
based on the simulation of active rules by means of deductive rules [57]. However,
in contrast to this model, these approaches often assume a very simplified opera-
tional model for active rules without complex events and ECA-related event processing.

RuleCore [82] is an event driven rule processing engine supporting Event Con-
dition Action (ECA) rules, and providing a user interface for rule building and
composite event definition.

Wu et al. [17] proposes event correlation approach with rules in the "conclu-
sion if condition" form which are used to match incoming events often via an inference
engine. Based on the results of each test, and the combination of events in the system,
the rule-processing engine analyzes data until it reaches a final state.

127

Chapter 5. Event-Base

Chen et al. [27] show an approach for rule-based event correlation. In their
approach, they correlate and adapted complex/structural XML events corresponding
to an XML schema. The authors describe an approach for translating hierarchical
structured events into an event model which uses name-value pairs for storing event
attributes.

ECA rules have been also proposed by several authors for workflow execution,
e.g., [13][21]|35][46]. In event-driven workflow execution, events and event-condition-
action rules are the fundamental mechanisms for defining and enforcing workflow
logic. Processing entities enact workflows by reacting to and generating new events.
The foundation on events facilitates the integration of processing entities into coherent
systems. Some of these systems [13]|[35] use composite events to detect complex
workflow situations. EVE [16] is a system using ECA rules for workflow management
addressing the problem of distributed event-based workflow execution.

5.4.1 Event-Driven Rules

Sense and respond rules allow to describe and discover business situations and can
automatically trigger responses such as generating early warnings, preventing damage,
loss or excessive cost, exploiting time-critical business opportunities, or adapting busi-
ness systems with minimal latency. The key requirements of sense and respond rules
can be summarized as follows:

¢ Event-triggered Rule Evaluation: Sense and respond rules enable compa-
nies to monitor their business, [T and organizational processes in real-time, and
respond to exceptions and capitalize on time-sensitive business opportunities as
soon as new events occur within the business environment. In other words, the
evaluation of sense and respond rules is triggered by events delivering the most
recent state and information from the business environment.

e User-friendly Rule Modeling: Sense and respond rules support the graphic
modeling of decision-making scenarios. Decision trees proved to be very under-
standable for human beings. For modeling business situations, sense and respond
rules use decision graphs which are an extension of decision trees for representing
rules, thereby enhancing the understandability and expressiveness of rules, and
shortening the learning curve for users.

¢ Building Complex Rules with Divide and Conquer: Sense and respond
rules can break down complex business situations in simple understandable con-
ditions, which can be combined with eachother for composing more complex
conditions. The input of sense and respond rules are events and also the out-
put are also so called response events, which are raised when a rule fires. The

128

Chapter 5. Event-Base

fired events can be used as input for other (or even the same) rule for further
evaluation, thereby effectively combining multiple rules.

e Event Pattern Recognition: Event patterns are discovered when an event or
multiple events occur that match the pattern’s definition. Sense and respond
rules allow to combine one or more event pattern with arbitrary event conditions
in order to describe complex business situations.

e Adaptability: Due to the graphical model and modular approach for construct-
ing rules, sense and respond rules can be easily adapted to business changes. New
event conditions or event patterns can be added or removed from the rule model
in order to model changing business situations.

e Service-oriented Rule Processing: Sense and respond rules are executed
by event services, which supply the rule engine with events and process the
evaluation result. Event services can run distributed on multiple machines and
facilitate the integration with external systems.

5.4.1.1 Definitions of Sense and Respond

Sense and respond rules separate multiple aspects for the definition of rules which are
specified and modeled separately. These three aspects are as follows:

e Correlation. The definition of relationships and dependencies between events
that are relevant for the rule processing are performed declaratively with corre-
lation sets. With correlation sets, a rule engine is able to construct sequences of
events that are applied to the condition defined in the rule. A business activity
spanning a period of time can be represented by the interval between two or
more events. For example, a transport might have a TransportStart and Trans-
portEnd event-pair. Similarly, a shipment could be represented by the events
ShipmentCreated, ShipmentDelivered and multiple transport event-pairs. A cor-
relation set allows to associate such events by using the events context data (e.g.
ShipmentiD, or TransportlD).

e Event/Condition/Action (ECA) Model. Sense and respond rules use a
graphical model for describing constraints of events for business situations. ECA
rules automatically perform actions in response to events provided stated con-
ditions hold. The actions of sense and respond rules generate response events,
which can be used triggering business activities or evaluating further rules.

e Event Patterns. Event patterns complement the ECA sets and are able to
match temporal event sequences. They allow to describe business situations
where the order and occurrences of events are relevant, such as the discovery of
missing events (e.g. a door is opened without closing it on time).

129

Chapter 5. Event-Base

5.4.1.2 Meta Model

Rule Set S Rule G Response Event AND
) Precondition
1 R |
Correlation Set | . ! s OR
Rule T
u eﬁ;lgger - _ Precondition Precondition
[| XOR
Event Condition Event Pattern Precondition
|\l Triggering J
Event Type

Figure 5.20: Meta Model for Sense and Respond Rules

Sense and respond rules are organized in rule sets and allow to construct decision
scenarios, which use event conditions and event patterns for triggering response events.
Event conditions and event patterns can be arbitrarily combined with logical operators
in order to model complex situations. Response events are generated when event
conditions or event patterns evaluate to true. Figure 5.20 shows the meta model of
sense and respond rules.

Title oy Precondition Port

Customer is high or premium

Triggering
Event Type "4/ Churn Alarm
[=] Conditions (OR)

) CustomerValue="high"
Conditions CustomerValue="premium"

True Port False Port

Figure 5.21: Event Conditions

5.4.1.2.1 Event Conditions. Event conditions have a triggering event and a list of
Boolean expressions that are evaluated when the triggering event was received. Figure
5.21 shows an example for a "Churn Alarm" event with a list of two conditions which
are combined with a logical OR operator. The event condition evaluates to true if the
customer value is high or premium. When evaluating the rule, event conditions do
not require to maintain any kind of state in runtime.

130

Chapter 5. Event-Base

Event conditions have the following elements:

Title: Defines in natural language a summary of the conditions.

Triggering Fvent Type: Defines the type of events which can trigger the evalua-
tion of the conditions.

Conditions: Defines a list of conditions for the trigger event. For the definition
of a condition, SARI uses event access expressions, which are defined in an own
language that was designed for easy use by business users. The language used
for defining the conditions is called EAExpression and is under a discussion in
the section 6. The conditions can be combined with the logical operators AND,
OR, or XOR.

True Port: This port can be used to connect other event conditions, event pat-
terns, and/or response events in case the event conditions evaluate to true.

False Port: This port can be used to connect other event conditions, event pat-
terns, and/or response events in case the event conditions evaluate to false.

Precondition Port: This port can be used to connect other event conditions and
event patterns, which should be used as a precondition for the current event
conditions box. Preconditions can be combined with the logical operators AND
or OR.

Title m Precondition Port

\
High Cash-Out with Closed Account

Triggering
Event Types 4 Jackpot, CashOut, AccountClosed
=] Pattern Definition

Jackpot(TotalAmount>1000) = CashOut
Pattern = AccountClosed

Definition

Matched Port

Figure 5.22: Event Pattern

5.4.1.2.2 Event patterns. FEvent patterns describe business situations which have
to be detected from a series of events that occur over a period of time. Event patterns
require state machines [1][30] for maintaining internal state information in order to
determine whether an event pattern has been matched in an event stream. Examples

131

Chapter 5. Event-Base

for event patterns are the detection of temporal event sequences [25] as well as the
discovery of missing events. A key characteristic for event patterns in sense and
respond rules is that they are time-based, meaning that they maintain their own
internal state. An event pattern only has a “matched” state as an outcome in the case
where the event pattern has been matched.

Figure 5.22 shows an example for an event pattern which matches situations of
users who win a large jackpot and close their account after cashing out their winnings.
During the pattern matching in runtime, the rule engine has to maintain state
information on which events have been processed for a particular user.

Event patterns have the following elements:
e Title: Defines in natural language a summary of the event pattern.

e Triggering Event Types: Defines a list of types of events which can trigger the
evaluation of the conditions.

e Pattern Definition: Defines a pattern expression which uses the triggering events
for the pattern matching. For the event pattern definition, SARI uses the event
pattern language (EPL) from the Esper stream engine [30].

o Matched Port: This port can be used to connect event conditions, other event
patterns, and/or response events in case the event patterns evaluate to true.

e Precondition Port: This port can be used to connect event conditions or other
event patterns that should be used as precondition for the current event pattern.
Preconditions can be combined with the logical operators AND or OR.

Title Precondition Port

Notify customer with SMS

Customer Notification
CustomerlD (ChurnAlarm.CustomerlD)
Time (ChurnAlarm.DateTime)
Channel ("SMS")

Response
Event

J
Attribute Bindings

Figure 5.23: Response Events

132

Chapter 5. Event-Base

5.4.1.2.3 Response Events. Response events represent actions which should be ini-
tiated when event conditions evaluate to true and/or event patterns match. Response
events can be arbitrary events with attributes that can be bound to attributes of
triggering events. In other words, response events can capture event data from trigger-
ing events in order to maintain context information for initiating an appropriate action.

Figure 5.23 shows a response event for notifying a customer with an SMS mes-
sage. Two attributes of the response events are bound to the triggering event, and
the attribute for the channel is set with a constant value. A response event can be
connected to existing event conditions or patterns which become that precondition for
firing the response event.

Response events have the following elements:

e Title: Defines in natural language what the response event is about

e Response Fvent: Shows the name and attributes of the response service. The
root node shows the name of the event type which has event attributes as the
child nodes.

o Attribute Bindings: Each event attribute shows in brackets binding information
on how the attribute value should be calculated or set. This can be constants,
calculation expression, or an attribute binding to a triggering event.

e Precondition Port: This port can be used to connect event conditions or other
event patterns, which should be used as a precondition for the current event
pattern. Preconditions can be combined with the logical operators AND or OR.

133

Chapter 5. Event-Base

5.4.1.3 Rule Example

Order not shipped on time]

(Payment of large order] | .

4 OrderSubmitted, OrderShipped
[=] Pattern Definition
OrderSubmitied
timerat{Ox i ipDate)
AMD MOT OrdarShipped

Cmatchod)

4 OrderPayment
— Caonditions
TotalAmount==100

rdder delay nofification @ 1

= Order Dalay Notification
fo! 0 (O CustomeriD)
DataTime (Now{}}
CrderlD (OrderSubmitted. OrderiD)

& OrderPayment
[= Cenditions (OR)
CustomerType="Platinum®
CustomerType="Gold™

: order discount or goody $} fuce shipment costs *W

=] Order Update
OrderD (OrderSubmitted OrdarD)

= Call Agent Notification
CustomeriD {OrderSubmitied. CustomeriD)
DateTime {(Nowi))
Typa (.Transport Costs”)
Amount (OrderSubmitied_ShipmeniCosts)

DateTime (Now())
OrdediD (OrderSubmitted OrderlD)
Reason (.Ovder Delay™)

Figure 5.24: Sense and respond rule for responding to order delays

In the following, sense and respond rules are shown in context of an example for
monitoring order delays. For this example, it is assumed, that the rule should discover
orders which are not shipped on time. For delayed orders, the system should always
send a delay notification to the customer. If the customer has been already charged
for the ordered products and it was a larger order, the customer should receive a
compensation for the inconvenience of the order delay. If the customer is a premium
customer, he or she should be called by a call agent, who offers a discount for the
order or, as an alternative, a goody such as some extra item which will be added to
the order. On the other hand, non-premium customers should get a free shipment for
the order.

When modeling a rule for the above-stated business problem, first the events
have to be identified that which will be evaluated for the rule processing. For example,
the following event types are considered:

o Order Submitted: Triggered when a customer places an order.
o Order Shipped: Signals that an order is shipped.

o Order Payment: A customer was charged for the ordered items.

134

Chapter 5. Event-Base

Before defining a rule, the identified event types need to be linked, so that the rule
service is able to correlate the events during the rule processing. Figure 5.16 in section
5.3 shows a correlation set which declaratively defines dependencies between event
types that are relevant for the rule processing.

Figure 5.24 show a sense and respond rule for the above-stated business sce-
nario. An event pattern box is used to match a situation for detecting orders which
are not shipped on time. The event pattern requires the events OrderSubmitted and
OrderShipped for discovering the order delays. In the case that an event pattern was
matched, a response event OrderDelayNotification is generated. The response event
includes a set of attributes with bindings to the source events (e.g. CustomerID,
OrderID) and a function for setting the current date.

The event condition defined in the box on the top left corner checks whether
the customer has already paid for the order. In the case of an order amount larger
than € 100,—, the event condition will evaluate to true. The event condition box in
the middle checks whether the customer is a gold or platinum customer. The box has
an AND precondition, with connections to the previously discussed event condition
and event pattern. The precondition will become part of the stated condition meaning
that the middle condition only evaluates to true 1) the order has not been shipped on
time, 2) the order has been paid and the order total was larger than € 100,—, and 3)
the customer type was gold or platinum. If all conditions and preconditions evaluate
to true, a response event is generated which notifies the call agent for giving the
customer an order discount or a goody. If the customer type is not gold or platinum,
a response event is generated for reducing the shipment costs from the order.

5.4.2 Comparison and Key Benefits

Sense and respond rules offer a way for business users to define and manage the
response to typical patterns of business events. A key advantage of sense and respond
rules is that they allow to graphically model a comprehensive set of event conditions
and event patterns without using nested or complex expressions. In contrast, SQL-
based system for querying event streams require technical knowledge for specifying
and changing event queries which makes them difficult to use for a wider range of users.

Preconditions allow the combination of multiple event conditions and event pat-
tern, thereby extending the scope of event conditions and event patterns. By
combining event conditions and event patterns every element of the rule model can
cover a single concern.

Sense and respond rules combine event conditions and event patterns which can

135

Chapter 5. Event-Base

be used to define IF-THEN-ELSE decisions. Event conditions can be checked for a
true or false evaluation, which facilitates the implementation of “otherwise” situations.
In other words, with sense and respond rules the outcome of evaluations for event
conditions and event patterns can be used for multiple decision scenarios. This signif-
icantly facilitates the modeling of complex business situations with many dependent
event conditions and event patterns.

By describing correlation aspects in a separate model, the definition of event
conditions and patterns are simplified. Correlation sets capture the relationships
between events and can also be defined with a graphical model.

The service-oriented event processing system of SARI allows to flexibly link a
rule service, processing sense and respond rules with other services. Event services
are executed in parallel and controlled by the system. Services can be used to
prepare the data for the rule processing as well as to process the response events
generated by the rule service. The input and output for sense and respond rules
are events which are delivered and processed by event services. Sense and respond
rules, therefore, allow an easy integration within a service-oriented system environment.

However, the SARI system also has a drawback compared to SQL-based ap-
proaches for event stream processing. Using SQL for event stream queries allows
to seamlessly integrate relational database systems by joining database tables with
events that stream into the system. SARI requires services for preparing event data
for the rule processing.

5.4.3 Service-Oriented Rule Processing

The SARI system uses an event processing model (EPM) for modeling event-driven
processes. An EPM allows to integrate multiple services and adapters which can
be used to implement event-driven processes. Dependent on the requirements and
the business problem, the event services and adapters can be flexibly conjoined or
disconnected. Links between the components and services represent a flow of events
from one service to the next.

The following issues are defined with the EPM:

e Structure for the processed events and data

e Configuration of services and adapters for processing steps, including their input
and output parameters

e Interfaces to external systems for receiving data (Sense) and also for responding
by executing business transactions (Respond)

136

Chapter 5. Event-Base

e Data transformations, data analysis and persistence

A rule service is part of an EPM and can be configured with rule sets and linked
with other services. EPMs allow to model which events should be processed by the
rule service and how the response events should be forwarded to other event services.
Figure 5.25 shows an EPM for the previous example. Data is collected and received
from adapters which forward events to event services that consume them. Initially
the events are enriched in order to prepare the event data for the rule processing. A
typical example would be the attachment of information about the customer value
(e.g. whether the customer is a platinum or gold customer). The rule service processes
the enriched events according to the sense and respond rules and generates response
events when a rule fires. The fired response events are published on the output port
of the rule service and can be forwarded to other services. As shown in Figure 5.25,
the response events are sent to a service for sending notifications to a call agent, or
to services which transmit order delay notifications and order updates back to the
order management system. Sense and respond rules are stored and managed with a
rule repository. SARI includes authoring and management tools which can be used
by business users for graphically defining and modifying rule sets as introduced in the
previous sections.

. | Order Delay
Adapter »———(Enrichment Service | /' Notification Service

(Order Events) _\‘
E ¢ . > Call Agent L
] { RuleService p—¥(\yiification Service
Adapter | /' \

| Enrichment Service |
Rule
Repository

I (Payment Events) |
Figure 5.25: Event Processing Model with Rule Service

Order Update

Adapter | Sanice

Rule Authoring and
Management Tools

137

Chapter 5. Event-Base

5.4.3.1 Rule Evaluation

(a Reduce shipment costs j
_Qo Give order discount or goody)
(o Order delay notification)

I—} Matched: Order not shipped in time
—» Matched: Order not shipped in time
——3 True: Payment of large order

L—— True: Platinum or gold customer
——» Matched: Order not shipped in time
————3 True: Payment of large order
—— 3 False: Platinum or gold customer

Figure 5.26: Dependencies for Response Events

During runtime, a rule service automatically correlates events emitted to the SARI
system. Correlated event data is managed with correlation sessions [79], which
are automatically activated before a triggering event is used for evaluating event
conditions or patterns. Correlation sessions can be persistent and are used to maintain
the current rule state. Event conditions and patterns can use the captured event data
for accessing data of correlated events which has been previously processed.

The rule service uses a list of precondition dependencies for each response event
which is created before the rule processing starts. Figure 5.26 shows the depen-
dency list from the previously shown example. If the current evaluation state of
a rule matches a state represented in the dependency list, a response event will be fired.

Please note, the rule service does not consider the order of the processed events
during the rule evaluation. In other words, it does not matter in this example in which
order the event conditions or patterns are evaluated. The current evaluation state of
the rule is always used to match with the dependency lists of response events.

138

Chapter 5. Event-Base

5.5 Data Management

EBEvents EBCorrelation2Events EBCorrelations
—— PK _Guid guid 1:n PK | CorrelationGuid guid >_I—F’K CorrelationGuid | guid
_TimeStamp datetime PK | EventGuid guid PK | CorrelationSetld nvarchar(255)
_TypeUri nvarchar(2000)

EventObjectXml nvarchar(max) -

| Views |
| I
I . I
» Event Object Type | EventObjectType X | |
: [; I
PK | _Guid guid [—g,"’d !
TimeStamp datetime :’ A ".“‘s'j"'p ;
Attribute-1 Any DB type | ttribute- |
| I
- I Attribute-n !
Aftribute- DBt
ribute-n any US lype <ok et EventObjectXml |
I I
| I
I |
I
\ |
. | |
Event Object Type : EventObjectType_V }
PK | _Guid guid | _Guid 1
_TimeStamp datetime ...pe _TimeStamp |
—_— Attribute-1 Any DB type : = Attribute-1 }
I |
Attribute-n any DB type | Attribute-n }
i ‘
I I

Figure 5.27: EventBase Data Model

This section pays attention to how events and their correlations are processed on a
conceptual level to persists them to the underlying data structures and further how the
events are maintained for further access. This topic is highly relevant for SARI-SQL
as it is the data repository that is used by the SARI-SQL engine to retrieve the data
that is requested by the given query.

Figure 5.27 shows the Entity-Relationship (ER) diagram of the underlying data
structure of the EventBase for managing the events and their correlations. The cen-
terpiece is formed by the event object type relations shown in the middle of the figure.
Referring back to the meta model shown in Figure 5.4 of event object types in the Sec-
tion 5.2.1, each event object type consists of one or more attributes. An attribute type
can be either a single-value type, collection/dictionary type or another nested event
object type. Single value types correspond to a ordinary runtime types such as Integer,
String and so forth. During execution runtime of the EventBase relations for all event
object types maintained in the event object type library are created. Single value type

139

Chapter 5. Event-Base

attributes are represented by relational-attributes with a database type corresponding
to the event object attribute type. In contemporary RDBMS there is for every
runtime type a corresponding relational attribute type available. For each event ob-
ject type there is a unique identifier and a timestamp defined during execution runtime.

For nested event object types and collection/dictionary types there are no addi-
tional relational-attributes created. The representation of such nested types is solved
by the EwentObjectXml attribute in the relation EBFEwvents which also contains a
unique type resource identifier with a reference to the corresponding EventBase
repository that it belongs to. The EBFvents contains a 1:1 mapping to the corre-
sponding event object type over the unique identifier =~ Guid of the Event Object.
The relational-attribute FventObjectXml contains the raw XML representation of the
event objects including the nested types like dictionaries, event object type attributes
or unknown attributes.

The relation EBCorrelations represents correlation sets and consists of a unique

(e.g. mame). The two relations EBCorrelations and CorrelationGuid form a n:m
relationship which is resolved by EBCorrelation2Events.

For example, let’s consider TransportStart and a TransportEnd events that cor-
related over an Orderld attribute with eachother. During event processing runtime
the event objects of both events are inserted into the FEBFEwvents relations and in
parallel into their corresponding event object type relation for the TransportStart and
TransportEnd events. Correlated TransportStart and TransportEnd events are brought
into relationship through an entry in the EBCorrelation2Events relation whereas
the events in a specific correlation can be retrieved through the EBCorrelations by
querying for the CorrelationSetld.

Now that the event type specific relations don’t contain the whole event ob-
ject data, like nested types or any other specific header attributes, the extended
EventObjectType X View is introduced. Such a view exists for every event object
type maintained in the event object type Library. The view contains every “flat®
attribute (e.g. single value type attribute) of an event and in addition it offers
the FEventObjectTypeXml, including the nested types, for access. Basically, the
EventObjectType X can be accessed to retrieve the full information of an event.

140

Chapter 5. Event-Base

The Event Objects stored in
the Event Object Type B
are selected by the view, but

Event Object Type A only the attributes that are
inherited from its super-type.

PK | _Guid guid
_TimeStamp datetime N
AttributeA Any DB type . R N e
AttributeB [N Views
any DB type A
EventObjectTypeA_V
_Guid
_TimeStamp
- AttributeA
. Event Object.Type B AttributeB
PK | _Guid quid |
_TimeStamp datetime | EventObjectTypeB_V
AttributeA String |
AttributeB String | _Guid
AttributeC String L _TimeStamp
' ' T AttributeA
Ty AttributeB
I AttributeC
|
|
I

Figure 5.28: Event Object Type Inheritance Data Management

The last issue of this topic is the management of event object type inheritances. Ad-
vanced event typing concepts were discussed in detail in Section 5.2.1. Event object
types can be specialized by inheriting attributes from parent types similar to object-
oriented programming languages. Figure 5.28 shows an illustration of two event object
types where the Fvent Object Type B is inherited from Event Object Type A. Originally,
the Event Object Type A contains the two attributes (AttributeA and AttributeB). The
Event Object Type B introduces additionally the AttributeC. In case of inherited types
the attributes of the super-types are duplicated in the relations of the specialized types.
If the view of the super-types are accessed, every event object is included from all de-
rived types, but with the difference that only the attributes of the super-types are
available.

5.6 Summary

This chapter introduced the CEP solution SARI with a special attention to its
extension the Event-Base. SARI allows observing relevant business events to identify
exceptional situations, indicate opportunities or problems combined with low latency
times in decision making for supportive or counter measures. The Event-Base on the
other hand provides an efficient up-to-date operational storage together with retrieval
mechanisms for business events for analytical as well as operational purposes without
the costly data staging processes known from established data warehousing solution.

141

Chapter 5. Event-Base

Event models have a major impact on the flexibility and usability. Furthermore
the underlying event model and its various event typing concepts were discussed
intensively as the design and the nature of the event model strongly constraints
the capabilities of event processing query languages. Therefore a dedicated section
introduced concepts and approaches for representing, structuring and typing event
data and introduced event models of existing event-based solutions. Several concepts
of organizing event models, basic typing concepts for structuring event data, as well
as more advanced typing concepts such as inheritance, exheritance and dynamic type
inferencing were discussed. The various typing concepts were illustrated with the
event-based system SARI and compared with existing event-based systems. So for,
ESP solutions provide SQL-like query languages, because they use as the underlying
event model representation relational tables.

A special attention was also set on event-driven sense and respond rules, which
can be used to model trees with event actions within the event processing model. Such
rules allow to compose business situations with event conditions and event patterns
which can be arbitrary combined and trigger respond events when a rule fires. Sense
and respond rules can be graphically modeled which makes it easier for business
users to adapt rules for business changes. In runtime, the rules are processed by
event services running on multiple machines and which can be seamlessly integrated
with other existing services. However, at first glance those rules might not have fit
into the concept of this chapter as they are a special aspect of the event processing
model of SARI. But looking closer, it reveals that they are using the domain-specific
language EAExpressions for accessing and performing operations on events, which is
a subset of the query language SARI-SQL. As a consequence the extension of this
rule component with SARI-SQL would allow to integrate historical event data, whole
event correlations or metrics into the decision process.

A section focused on the data management in the Event-Base described how
events and their correlations are processed efficiently on a conceptual level to persist
them to the underlying data structures and further how the events are maintained for
further access. The data management is an important component of the Event-Base
as it is the data repository that is used by the SARI-SQL engine to retrieve the data
that is requested by the given query. Several issues were discussed on how events and
their correlations are processed and persisted to the underlying data structures and
further how the events are maintained for access by SARI-SQL.

The event processing concepts of SARI and the Event-Base were explained with
the help of a use-case scenario for preventing and managing fraud situations in the
online betting domain. The scenario follows event-driven architecture principles and
applies event-driven rules for discovering and responding to fraud patterns. This

142

Chapter 5. Event-Base

use-case also revealed the capability of the introduced event-based system to enable
real-time fraud detection and providing tools to domain experts to model and define
fraud prevention requirements.

143

Chapter 5. Event-Base

144

6 SARI-SQL Query Language

This chapter introduces the two languages KEAExpression and SARI-SQL for event-
based systems. Both languages belong to the group of so called domain-specific
languages (DSL), which addresses the specific nature and the problem domain of
event-based and in particular complex event processing systems. Before discussing the
details of the languages subsequently in this chapter, it is necessary to clarify some
background on the nature of such languages. This is a vital information that provides
the reader insights why it is necessary to design such languages, especially why it is

an important feature for event processing systems.

EAExpression and SARI-SQL are two languages independent from each other.
However, SARI-SQL includes EAExpressions in order to be able to express the access
of events in its queries.

EAExpression is an expressive and easy to understand language for accessing
events, both during the design phase of event processing applications and also during
runtime to perform evaluations on events. The difference is, that during the design
phase event object types, known to the event processing realm, are under evaluation.
The event object types define the data structure of events including their attributes
and their types. This information is stored in event object type libraries of the
corresponding Event-Bases. The EAExpression processor is capable of using library
maintained event type information to validate a given expressions according to the
accessed event types.

The EAExpression language pays a special attention to the nature of events
and their specific characteristics. The access language is tightly coupled to SARIs
underlying event object type model (compare with Section 5.2) and during runtime
to the evaluation of expressions on event objects. However, the syntax and semantics
of the language can be decoupled completely from the underlying models with certain
efforts. EAExpressions play an important role in the event processing models of
SARI introduced in Section 5.1. Possibly the most important application is in
the event-driven rules described in Section 5.4. EAExpressions are applied in the
conditions, the components that trigger on specific event object types, as conditional
evaluations. So for instance EAFExpressions can be used to check attributes for some

145

Chapter 6. SARI-SQL Query Language

conditions. In response events (compare with Section 5.4) the EAExpressions are
used to map event attributes from one event object to another event object that is
emitted due to an evaluation state in the event driven rules. Further, EAExpressions
can be used to define filters in event processing maps (compare with Section 5.1.3).
There is also the concept of modifiers in event processing maps where EAFxpressions
can be used to define conditions on events. If they apply, the attributes of those
events can be modified (e.g. recalculated for instance) with the help of EAExpressions.

SARI-SQL on the other hand is a query language that can be used to retrieve
events, correlations, metrics and scoring information from the Event-Base. The
language is from a syntactical point of view comparable to ANSI-SQL and is also a
declarative language. Special attention was paid to extend the concepts of ANSI-SQL
by special event processing related concepts, such as providing an easy access to
correlated events without breaking too much with the syntax-style of ANSI-SQL. This
is because SARI-SQL is aimed on one hand at power users applying queries through
APIs in their programs and on the other hand at domain experts (e.g. business users)
that try to retrieve knowledge from the Event-Base. As SQL is an industry wide
standard and is part of many business related applications, a lot of non-technical
people know the language. Therefore, SARI-SQL might be familiar at the first glance.
The special capabilities and extensions that are offered can be found very intuitively.

Both of the languages EAExpressions as well as SARI-SQL can be allocated to
the group of domain-specific languages. According to the comprehensive annotated

bibliography on Domain-Specific Languages [388] these class of languages can be
defined as:

A domain-specific language (DSL) is a programming language or executable
specification language that offers, through appropriate notations and ab-
stractions, expressive power focused on, and usually restricted to, a partic-
ular problem domain.[38]

Domain-specific languages have usually a declarative nature, whereas their focus is
set on providing expressive language constructs that can be applied to the problem
domain that they are addressing. Several considerations have been taken into account
to create a more mighty event processing language instead of “just” designing an
access language for events. Usually DSLs are realized through a framework that
allows to translate the DSL instructions into another form of library operations of
existing programming languages. These DSL languages consist of a lexical scanner, a
parser component that builds up an abstract syntax tree (AST) and an AST walker
component for evaluating (e.g. executing) the DSL.

146

Chapter 6. SARI-SQL Query Language

According to [88] the advantage of DSL approaches are:

e DSLs allow to create expressions that represent abstractions of a specific problem
domain. So for instance EAExpressions create an abstraction of the event type
model. Other possibilities could be the use of XPath or a programmatic access
to event objects. However, these access forms completely ignore the metaphor of
events and thus they create an overhead to the developers and users that is not
relevant to the access of events.

e DSLs allow easy insight for domain experts due to the level of abstraction. SARI-
SQL for instance allows to easily access correlations of events by also defining
several constraints. The results can then be used by domain experts to analyze
and gain insight of the actual problems.

e DSLs increase the productivity. Both SARI-SQL and EAExpression encapsulate
a lot of overhead and create an abstraction layer over events, their relationships
and the internal data structures. Therefore, the user of these languages can
concentrate on only expressing the required results instead of putting effort into
making the “things run”.

However, the drawbacks can be according to [88] following points:

e Designing, implementing and maintaining DSL languages is an expensive task
in terms of development time. The benefit of creating such languages must be
evaluated against the costs of such undertakings.

e During the design phase of SARI-SQL and EAExpressions a special attention
was paid at making them very user-friendly. However it is fact that there is some
effort required for training purposes or at least time is required that the user or
developer works himself into the languages.

e Sometimes the level of abstraction and the expressiveness of DSL languages is a
trade-off between normal hand-crafted code. So for instance DSLs might create
round trips during execution that can be avoided if the underlying code is written
by hand. However, sometimes it can also be the opposite. So for instance SQL
has optimizers in place that take the user created statements, decompose them
and create an optimal execution plan for the query.

6.1 General note on the Syntax Definition

The EAExpression and the SARI-SQL syntax is defined with the help of a modified
EBNF (Extended Backus-Naur-Form) notation and later on was translated into

147

Chapter 6. SARI-SQL Query Language

ANTLRs grammar syntax during the implementation phase. ANTLR (ANother
Tool for Language Recognition) is a language tool that provides a framework for
constructing recognizers, interpreters, compilers, and translators from grammatical
descriptions containing actions in o variety of target languages. ANTLR provides
excellent support for tree construction, tree walking, translation, error recovery, and
error reporting.[5]. EBNF is a formal meta-syntax for representing context-free
grammars (Type-2 grammar according to the Chomsky Hierarchy) and is a common
formal notation for computer language grammars. The original notation BNF was
restricted by the limitation that it is not possible to express compact recurring
elements in a grammar.

The syntactical rules for the languages introduced in this chapter consist of a
rule-header, a non-terminal symbol, followed by a list of sequences of terminal or
non-terminal symbols. Symbols are non-terminal if they don’t occur in a rule-header.
The rule-header and the rule-body is separated by a = symbol.

Address = Recipient Street ZIP
Recipient = FirstName LastName
V LastName FirstName \V FirstName (LastName)*
StreetName = Name HouseNumber
ZIP = (Country PostalCode

The example above describes rules for creating a postal address. The entry rule
is the Address which defines a rule containing substitution rules for a Recipient, a
StreetName and a ZIP postal-code. Each of the three symbols are non-terminals
as they occur in rule-headers. The next rule, Recipient defines the naming syntax
choices. In this rule it is possible to swap the first name and the last name of a
recipient. The choices are separated by V symbol. Further the last choice in the rule
encapsulates the LastName into braces followed by the * symbol. This star indicates
that there can arbitrarily any number of last names. This is of course very simplified
as in reality the creation of another rule would be required and further double names
are usually separated by a “-”. However for the sake of simplicity deeper considerations
were not taken into account in this particular example. The last two rules are straight
forward. The StreetName defines the syntactical rule of a street name and a house
number and the ZIP rule requires a country and a postal code number.

In addition to the * operator there are also two other operators in use to en-
capsulate rule entities.

e The * operator says that an expression in the preceding braces can occur arbi-
trarily often.

148

Chapter 6. SARI-SQL Query Language

e The + operator defines that the expression must occur at least once.
e The ¢ operator says that an expression can either occur once or not at all.

Throughout this chapter the EAExpression and SARI-SQL syntax will be introduced
step-by-step in a top down style and illustrated with example.

6.2 EAExpression

6.2.1 EAExpression Syntax Definition

The root entry point of the EAExpression syntax is a boolean expression (boolEzpr)
and defines boolean operators that allow to combine arbitrary expressions. A boolean
expression is at the highest level of the operator binding hierarchy of expressions, which
means that a boolean expression has the lightest binding characteristic of all other
operator types. The deeper the syntax rules go the more stronger the binding is. So for
instance a plus binds two expressions stronger than a boolean operator such as an AND.

eaEzxpression = boolExpr

The preceding section will explain in detail the syntax of EAExpressions and
its capabilities step-by-step. The Section 9.1 in the appendix contains a complete
syntax definition including syntax diagrams for a better understanding. The language
concepts are explained with examples based on an event object type definition
illustrated in Figure 6.1.

6.2.1.1 Accessing Event Object Types

Before digging too deep into the syntax hierarchy it is essential to understand the
lowest constructs from which outgoing higher levels of language aggregates/constructs
can be formed. Those lower constructs allow the user to access event object types and
their specific properties.

The event model concepts of SARI were introduced in the Section 5.2 in the
previous chapter 5. The typing concept is basically a definition of event types with a
detailed description of the nature and structure for the events. The description model
of an event is called event object type whereas events are instantiated during runtime
as event objects which must be valid to a defined event object type. The event typing
model supports three types of attributes. The single-value types represent attributes
which have a runtime type such as a string, character, numeric and Boolean values.
Collection types contain lists of values either corresponding to runtime types or to
event object types. In either way, the collection values have to be typed. Dictionary

149

Chapter 6. SARI-SQL Query Language

<EventObjectType=>
Transportinfo

Y

<EventObjectType=>
ShipmentCreated

Destination:String
DeliveryTime:DateTime

ShipmentID:String
Transportinfo:EOT
Shipmentltems:Dictionary Key Value
Products:Collection - String DateTime
Costs:Double (ContainerlD) (DeliveryTime)
FreightValue:Double

<EventObjectType>
- Product

ProductlID:Int32
ProductName:String
Price:Double

Figure 6.1: Event Object Type Example for the EAExpressions

Types contain key-value pairs where the key is the accessor for the list element and
corresponds to a a runtime type. The value part is either a runtime type or an event
object type.

dotExzpr = eventAtom (DOT dotExpr)? V
eventEzprSpecial V
functionExpr

eventExzpr = eventAtom (DOT dotEzpr)? V

eventExrprSpecial
eventAtom = IDENTIFIER

Event Object Types can be accessed by EAExpressions through a dot notation
called dotEzpr and eventEzpr in the syntax rules. The difference between those two
rules will be explained in Section 6.2.1.5. A dot is normally a separator between
event object types and their attributes. The first rule definition eventAtom (DOT
dotEzpr)? allows to define an arbitrarily long combination of dot notations. The
eventAtom itself is just an identifier in terms of a syntax. During the language
evaluation this eventAtom must correspond to a valid event object type identifier. An
event object type however is also addressable through a complete namespace which
can be expressed through a set of dots (compare with Section 5.2.7). The following
example shows a simple access of attributes of the ShipmentCreated event object type:

150

Chapter 6. SARI-SQL Query Language

Example:
a) ShipmentCreated. Costs
b) ShipmentCreated. Freight Value

To access attributes of event object types it is not always necessary to write so
called full-qualified attributes that consist of the form eventAtom (DOT dotExpr)?
(i.,e. EOT.Attribute). In case that there is only one event object type available it
is possible to directly access the attributes without defining the event object type
identifier. Let’s consider the example where we have only one ShipmentCreated event
type for access available:

Example:
a) Costs — 1.5d
b) Shipmentld = 12313

The above example simply checks if the Costs equal the double type value 1.5d. As
there is only the ShipmentCreated type available it is not necessary to address its type
explicitly. The comparison capabilities such as the equals operator will be discussed
later on in this chapter.

6.2.1.2 Accessing Header Attributes

eventExprSpecial = eventAtom AT IDENTIFIER Vv
AT IDENTIFIER Vv
eventAtom LBRACK plusMinFEzpr RBRACK
(DOT eventExpr)?

Event object types contain also header attributes to encapsulate special attributes
for capturing metadata such as the creation time or priority of an event. To provide
access to those header attributes there is the rule eventEzprSpecial in place. The
header attributes of event types can be accessed just like attributes, but instead of the
dot the at symbol is used to separate the type and the attribute.

Example:
a) ShipmentCreated@priority

The example above shows the access to the header attribute priority of the
event object type ShipmentCreated. In case that there is only one event object type
available, it is not necessary to write full-qualified attributes just like with the normal
attribute access.

151

Chapter 6. SARI-SQL Query Language

6.2.1.3 Accessing Collections

Mentioned earlier in the introduction, the EAExpressions support multi-value types
such as collections and dictionaries as attribute types. The following two rule expression
paths are used to represent collection access. During the evaluation process of a given
EAExpression the query processor checks if the accessed attribute is really a collection.

dotExzpr = eventAtom (DOT dotExpr)? V
eventExprSpecial V

[.]

eventExpr = eventAtom (DOT dotExpr)? V

[.]

eventEzprSpecial = |[...]
eventAtom LBRACK plusMinEzpr RBRACK

[i]

The rule expression eventAtom LBRACK plusMinFzpr RBRACK allows to place
brackets after an attribute to access the index of an identifier.

Example:
a) ShipmentCreated. Products[0]. ProductName

The above example accesses the collection attribute Products of the event ob-
ject type ShipmentCreated at the index 0. The Products attribute is a nested type of
the event object type Product that contains additional attributes such as a name, id
and a price. Thus the ProductName is an attribute of the event object type Product.

6.2.1.4 Accessing Dictionaries

Dictionary attributes are lists of key-value pairs containing either a value represented
as a runtime type or as an event object type. The key, which is the accessor for the
dictionary value element, must be defined as a runtime type such as an integer or a
string. From the syntax definition perspective, dictionaries are accesses through the
same bracket enclosure notation like collections. The evaluation check, if the attribute
is a valid dictionary and the key accessor is of the same type as the key type, is
performed during the evaluation of the query.

Example:
a) ShipmentCreated.Shipmentltems[‘55532°]

Lets consider the above example where we have an ShipmentCreated event ob-
ject type containing an attribute Shipmentltems. In contrast to the previous collection
example the Shipmentliems attribute is now a dictionary type, where the key is a
string containing the container-id and the value containing the delivery date/time

152

Chapter 6. SARI-SQL Query Language

value. The above expression selects the Shipmentitem item with the key ‘55532’ and
returns the corresponding date/time value.

6.2.1.5 Expressing Event Object Aggregations

dotExpr = eventAtom (DOT dotExpr)? V
eventEzprSpecial V
functionEzxpr
eventExpr = eventAtom (DOT dotExpr)? V
eventErprSpecial
functionEzxzpr = functionAtom LPAREN parameterList RPAREN
(eventFunction)?
functionAtom = IDENTIFIER
parameterList = boolEzpr (COMMA boolEzpr)*

According to the syntax definition there are two rules, the dotEzpr and the
eventFzpr, which consist of almost the same rule expressions. The difference is that
the dotEzpr extends the rule body with the additional functionEzpr path that allows
to access so called event object aggregations and to define function constructs. In the
latter case this it is omitted in certain syntax constellations such as after brackets in
index accessors.

An event object aggregation comes to application if a query should access mul-
tiple instantiated event objects during runtime such as filtering out event object
types with specific attributes. This can be the case inside correlations where there
are several ShipmentCreated event objects that contain a self-correlation on their
ShipmentCreated. TransportInfo. Destination attribute. Such a correlation collects all
ShipmentCreated events during runtime that have the same transport destination.

Example:
a) ShipmentCreated(Costs > 150).ProductName
b) ShipmentCreated(Costs > 150)@priorily

The above example shows who EAExpression can be used to formulate an ex-
pression that filters all ShipmentCreated events from a correlation where the Costs
are greater than 150. The result of this expression would be a list of ProductNames.
The aggregations can be seen as a kind of filter where it is possible to place inside the
braces an arbitrary boolean resulting expression.

In order to be able to access the attributes of an aggregation result there is the
additional rule eventFunction in place:

153

Chapter 6. SARI-SQL Query Language

eventFunction = DOT eventEzpr vV
AT IDENTIFIER Vv
LBRACK plusMinExpr RBRACK (DOT eventExpr)?

This rule makes a distinction between three types of cases that can be applied
after aggregation and function expressions.

e The first is a simple event object type attribute access with the dot notation.
e The second allows to access the header attribute of the result of an aggregation.

e The last one allows to access a specific index of a resulting event object collection
followed by an optional attribute access.

The rule name functionExpr might be misleading in this context, but from a syntactical
point of view aggregations and functions are ambiguous. Therefore they have the same
syntax definition. The difference is made during evaluation phase of the abstract syntax
tree by checking if the identifier left of the opening brace is an available event object

type.

6.2.1.6 Functions

Mentioned in the previous section the difference of the syntactical definition of aggre-
gations and functions are equal and the decision between functions or aggregations
is made during the evaluation of the expression. A function expression consists of
a functionAtom, which is the function name, a list of comma-separated parameters
whereas each parameter allows the full expressiveness of EAExpressions and a return
type as the result of a function.

Example:
a) Awvg(ShipmentCreated(ProductName = ‘Tonsalumn’).Costs))

The above example shows a combination of an aggregation filter applied to the
ShipmentCreated type and a function call that calculates the average value out of
a given collection of values. In this example the ShipmeniCreated events with the
product name Tonsalumn are filtered (out of a correlation set for instance). The
returned result of this filter is a collection of the costs which then is added as a
parameter to the function Awg. This function takes one collection attribute with
numeric values as a parameter and returns the average of that collection.

This is one of many functions offered by EAExpressions. They provide a large
set of pre-implemented functions containing various mathematical, statistical and
other common functions such as type converters or list operators.

154

Chapter 6. SARI-SQL Query Language

6.2.1.7 Multi-Value Operators

collectionExpr = LCURLY parameterList RCURLY
specialKeywordExpr = defExpr ((CONTAINS vV CONTAINSVALUE Vv
CONTAINSANY vV COLON) specialKeywordEzpr)?

EAExpressions ship, besides various collection related functions, also a set of
native language operators for accessing multi-value operators. So for example there is
the possibility to create collections out of attributes by placing curly brackets around
expressions like shown in the following example:

Example:
a) {‘item1’, ‘item2’}

The COLON operator allows to merge lists or values together. The first exam-
ple shows the result of two merged lists and the second example merges three separate
values. This operator allows to merge every type of values or objects that are
supported by collection attributes.

Example:

a) {12} {34} : 65— {1,2,8,4,5)

b) 1:2:5— {1,25)

c) ShipmentCreated : ShipmentCreated — {EventObject, EventObject}

The CONTAINS operator checks if a collection contains a given value or a col-
lection of values. If this operator is applied to a dictionary it checks whether the
dictionaries key contains a given value or not.

Example:
a) ShipmentCreated.Shipmentltems CONTAINS ‘234235’
b) ShipmentCreated.Shipmentitems CONTAINS {‘234235°, 284335}

The CONTAINSVALUE operator can be applied to dictionaries to check if a
value is contained in the value part of a dictionary. In the following example the
Shipmentltems value is checked if it contains the date ‘10-01-2008’.

Example:
a) ShipmentCreated.Shipmentltems CONTAINSVALUE ToDateTime(‘10-01-2008’)

The CONTAINSANY operator can be applied both to collections and dictionaries.
In contrast to the CONTAINS operator only one value of a list of values must be
found. In the following example the list of {1,2,3} is checked if the values 2 or § occur.

Example:
a) {1,2,8}) CONTAINSANY {2,5}

155

Chapter 6. SARI-SQL Query Language

6.2.1.8 Boolean Operators

boolExpr = conditionEzpr ((AND vV OR V XOR) boolExpr)?
V NOT boolEzxpr

The boolean expression provides three binary boolean operators AND, OR and
XOR for evaluating combinations of additional expressions. Further it offers the unary
NOT operator for applying negations against boolean expressions. With such boolean
expression it is possible to create expression such as:

Example:
a) expression AND expression OR expression NOT expression

6.2.1.9 Comparison Operators

The definition of the next operator levels are shown below and include conditional
expressions for comparing expressions. The conditionExpr defines the binding levels
for the binary operators =, >, >, < and <.

conditionExzpr = isEzpr ((EQUAL NV NOTEQUAL VvV GTHAN Vv
GEQUALTHAN vV LTHAN V LEQUALTHAN)
conditionExpr)?

isExpr = plusMinEzpr (IS_OP typeEzpr)?

A level deeper and thus with a higher binding between expressions is the IS OP
operator. This operator is intended to allow the comparison of evaluation results of
subexpression. This is sometimes necessary in order to determine the result value of
an operation.

Example:
a) ShipmentCreated > 12

6.2.1.10 Arithmetic Operators

plusMinEzpr = prodDiwEzpr ((PLUS NV MINUS) plusMinExpr)?

prodDivExpr = prodDivEzprMod (STAR prodDivEzpr)?
prodDivExprMod = prodDivExprDiv (MOD prodDivEzprMod)?
prodDivExprDiv = specialKeywordEzpr (DIV prodDivExprDiv)?

The rules starting from plusMinFEzpr represent the arithmetic operations plus,
minus, multiplication, division and modulo. Arithmetic operations are defined
within a structure that nests prodDivEzprDiw = prodDivExprMod = prodDiv-

156

Chapter 6. SARI-SQL Query Language

Expr = plusMinFEzpr into each other. This is done to preserve the binding nature of
operators such as a multiplication has a higher priority for evaluation than an addition.

Example:

a) expression + erpression - expression / erpression

b) expression % expression * erpression / erpression

c) expression = expression AND expression > expression > 5

The EAExpression syntax preserves the binding strength through the syntax
level definition. The farther the rules go down the stronger their bind becomes. By
applying parentheses, the binding can rearranged just like in common mathematics.
Expressions enclosed by parentheses are evaluated before the other operators are
applied.

defExpr = constValue V

dotExpr V
collectionExpr (LBRACK plusMinExpr RBRACK)? V
LPAREN boolExpr RPAREN Vv
MINUS defExpr vV
PLUS defExpr V

constValue = STRING LITERALV
CONSTANT v
TRUE Vv
FALSE v

constNumeric Value

Further, EAExpressions allow to define constants that can be string literals or
some defined identifier. They can be defined while setting up the EAExpression query
processing instances. From the start away there are the two constants TRUE and
FALSE as an equivalent for the logical true and false in boolean environments.

6.2.2 EAExpression Syntax Tree Model

The ANTLR parser uses the EAExpression syntax definition rules, introduced in the
previous section, to build up an abstract syntax tree in memory for further validation
and evaluation during runtime. This section introduces the EAExpression abstract
syntax tree for the language constructs that can be expressed. For validating the
syntax, the tree is traversed through for checking its semantic correctness. So for
instance, if a dot notation is used to access the attributes of an event object type,
the query engine has to check, besides its syntactical correctness, if the event object
type and the accessed attribute exists. Further validations like compatible types in
comparisons or in arithmetic operations have to be taken into consideration.

157

Chapter 6. SARI-SQL Query Language

ANTLR supports a declarative prefix notation for describing the structure of
abstract syntax trees (AST). The syntax tree is built up based on the EBNF rules.
Each non-terminal in a rule causes an expansion of a subtree. However ANTLR
extends the EBNF with several special functionalities that allow to enrich the nodes
with additional metadata or to ignore tree expansions.

Figure 6.2 shows an illustration of a syntax tree that represents the simple arithmetic
expression: 1 + 2 + &8 A tree parser rule that describes the token constellations
would like as follows:

arithmetic = PLUS arithmetic arithmetic V
MINUS arithmetic arithmetic V
NUMERIC

The syntax trees are described with a prefix notation whereas the outermost
left token is a root and the rest of the tokens are leafs. Each sub rule, like the recursive
call of the arithmetic rule in this example, results in one step deeper of the tree. The
termination (i.e. the stop rule) is a terminal, like in this case the NUMERIC symbol.
Basically the rules define the tree patterns and their meanings. ANTLR uses those
patterns to trigger the evaluation of specific operations to evaluate the related nodes
of an AST. If the arithmetic rule matches, a function can be called to add the two
parameters together. If there is still a node left, it is recursively called and the result
is put on the stack and worked down later.

In the following sections the event object type example presented in Figure 6.1
will be reused for explanatory purposes.

+ 1+ 1+5=6
- A
1| +

AN

AN

Figure 6.2: Example of a simple arithmetic tree

158

Chapter 6. SARI-SQL Query Language

6.2.2.1 Event Object Type AST Representation

There are basically two types of event object type accesses. The first one is the access
of attribute in a full qualified attribute manner - that is by providing the event object
type identifier followed by a dot. The abstract syntax tree for the following expressions
are illustrated in Figure 6.3.

Example:
a) ShipmentCreated. Costs
b) ShipmentCreated. Transportinfo. Destination

The AST parser rules are defined as follows. The root node is always a dot
symbol from where subexpressions (dotFzpr) are hung on to the left and the right
side. Due to the recursive definition an arbitrary deep tree can be described whereas
the right leaf would be another dot root for two expressions.

dotExzpr = IDENTIFIER V
DOT dotExpr dotExpr V
eventExprSpecial Vv
functionExpr V

ShipmentCreated. Transportinfo.Destination

[.]

ShipmentCreated.Costs

m Shipment .

Created

Shipment
Created

Transportinfo Destination

Costs

Figure 6.3: Event Object Type AST Representation

6.2.2.2 Header Access AST Representation

The header attributes are represented as a binary tree just like the normal dot notation
described in the previous section. Further there is a full qualified atiribule notation
where the event object type is mandatory.

159

Chapter 6. SARI-SQL Query Language

eventExprSpecial = AT dotEzpr IDENTIFIER V
AT IDENTIFIER Vv
LBRACK defExpr plusMinFExpr

The representation of the following example is illustrated as an abstract syntax
tree in Figure 6.4.

Example:
a) ShipmentCreated@priority

ShipmentCreated@priority

Shipment

Created Priority

Figure 6.4: Header Access AST Representation

6.2.2.3 Collection AST Representation

Collections are represented in the abstract syntax tree truncated as not every symbol
is required to be represented for validation and evaluation. The previously introduced
rule eventFExprSpecial with the body rule LBRACK defExpr plusMinExpr represents
the tree pattern for collections. For identifying an index accessor it is enough to have
one opening bracket as the root node in place.

Example:
a) ShipmentCreated. Products[12]. ProductID

The tree representation of the above example is illustrated in Figure 6.5. In
this example the collection type attribute of the event object type ShipmentCreated is
accessed at the index 12. To provide a better view how these AST rules play together
the dot notation was combined.

Custom created collections are defined through the meta annotation COLLEC-
TION in a node and contain a parameter list annotated as PARAMETER LIST
while they have an arbitrary number of children containing the list elements. Figure
6.6 shows this special annotation tree construct resulting from the parser execution.

collectionExpr = COLLECTION parameterList
parameterList = PARAMETER_LIST (boolExpr)*

160

Chapter 6. SARI-SQL Query Language

ShipmentCreated.Products[12].ProductID

[.]

Shipment
Created

[ProductID

Products 12

Figure 6.5: Collection Access AST Representation

{1, 2 3}

COLLECTION

l

PARAMETER_LIST

1 ‘ 2 3

Figure 6.6: Custom Created Collection AST Representation

6.2.2.4 Dictionary AST Representation

The representation of the dictionary AST is similar to the collections tree represen-
tation. The syntax definition itself does not restrict the content enclosed by brackets
to numeric values. Therefore from the syntactical and the AST point of view there
is no difference between accessing collections and dictionaries. However, during the
evaluation of the tree, the attribute type is checked and in case of a syntax error an
exception with a detailed problem description is thrown.

6.2.2.5 Event Object Aggregation Filter AST Representation

Event Object Aggregations are treated as functions from a syntactical and abstract
syntax tree point of view. The aggregation has the semantic meaning of a filter that
allows to apply filtering conditions on attributes of sets of event objects. During syntax
parsing the ANTLR rules enrich the abstract syntax tree with additional meta data in
order to be able to make a distinction between several special cases of function creation.

161

Chapter 6. SARI-SQL Query Language

functionExpr = FUNCT IDENTIFIER parameterList (functionEzpFuval)?
functionExpFEval = FUNCTION EVENT EVAL dotExpr VvV
FUNCTION EVENT HEADER EVAL headAtirl v
FUNCTION COLLECTION EVAL plusMinEzpr
(plusMinEzpr)?

The simplest form of a resulting aggregation is a node with children containing
the parameter expressions. A function node is flagged with a FUNCT label. In case
that the attribute of a resulting aggregation collection is accessed the node is flagged
as FUNCTION EVENT EVAL, if the header attributes are accessed, the node is
flagged as FUNCTION EVENT EVAL and if the index is accessed it is labeled
as FUNCTION COLLECTION_ EVAL. For better understanding lets consider the
following example:

Example:
a) ShipmentCreated(Costs > 5).Products. ProductID

The Figure 6.7 illustrates the corresponding abstract syntax tree to the above
stated example. The PARAMETER_ LIST node contains the filter expressions inside
the braces whereas the FUNCTION EVENT EVAL holds accessors after the the
closing braces as children.

ShipmentCreated(Costs > 5).Products.Product/D

FUNCT
Shipment PARAMETER FUNCTION
Created LIST EVENT_EVAL
Costs 5 Products ProductiD

Figure 6.7: Aggregation Access AST Representation

6.2.2.6 Function AST Representation

The abstract syntax tree definition for the function is exactly the same as for aggre-
gations, but with a different semantic meaning. So for instance the tree is allowed
to hold more than one parameter according to the functions definition. The validity
of the function signature, such as type correctness, is represented by the tree and

162

Chapter 6. SARI-SQL Query Language

checked during the evaluation processes. The EAExpression functions can be extended
by inheriting new functions from an abstract base class and then implementing the
methods according to the functions requirements.

Example:
a) If(ShipmentCreated. Costs >~ 50.0, 'Expensive’, 'Cheap’)

Lets consider the above example making use of functions. The Figure 6.8 illus-
trates the corresponding AST representation. The If-function take three arguments
where the first one requires a condition, evaluating to a boolean result, the second
parameter is the result on if the condition evaluates to true and the last one is the
result on a false evaluation. The PARAMETER_LIST holds three nodes, each one
for the parameters separated by a comma.

If(ShipmentCreated.Costs == 50.0, 'Expensive’, 'Cheap’)

FUNCT

PARAMETER
LIST

“Expensive"” “Cheap”

50

ShipmentCreated Costs

Figure 6.8: Function AST Representation

6.2.2.7 Boolean Expression AST Representation

The boolean operators representation is a straight forward binary tree where the root
is the operator and the two child nodes are the expressions on which the operators
are applied. The only exception is the NOT operator which only has one child element.

boolExpr = AND boolEzpr boolEzpr V
OR boolExpr boolExzpr V
XOR boolEzxpr boolEzpr V
NOT boolExpr V
conditionExpr

Figure 6.9 shows the tree representation of the example stated below.

163

Chapter 6. SARI-SQL Query Language

Example:
a) true AND true OR NOT false

AND

true

OR

AN

true

NOT

false

Figure 6.9: Boolean Expression AST Representation

6.2.2.8 Comparison Expression AST Representation

The comparison operator representation is also a binary tree where the root is the
operator and the two child nodes are the expressions on which the operators are applied.

conditionExpr = FEQUAL boolEzpr boolExpr V
NOT EQUAL boolEzpr boolExpr V
LTHAN boolEzpr boolEzpr V
LEQUALTHAN boolExpr boolExpr V
GTHAN boolExpr boolExpr V
GEQUALTHAN boolExpr boolExpr V

1sErpr

isExpr = IS OP boolExpr typeExpr V

plusMinEzxpr

Figure 6.10 shows the tree representation of the example stated below.

Example:
a) 8> 2> 1

6.2.2.9 Arithmetic Expression AST Representation

The arithmetic operators are represented in a binary tree style whereas the operator
is the root node for the child expressions.

164

Chapter 6. SARI-SQL Query Language

AN

2 1

Figure 6.10: Comparison Expression AST Representation

plusMinExpr = PLUS boolExpr typeExpr V
MINUS prodDivEzpr V
prodDivFExpr

prodDiwFExpr = STAR boolExpr typeExpr V
DIV boolExpr typeExpr V
MODE boolExpr type Expr V
special Keyword Expr

Figure 6.11 shows the tree representation of the example stated below. This
example also highlights the operator binding strengths as well as the overload of the
binding by enclosing expressions with braces.

Example:

a) (1+2)*%4/5

1 2 2 5

Figure 6.11: Arithmetic Expression AST Representation

165

Chapter 6. SARI-SQL Query Language

Expression

J— API - Interface

N gV

Expression [. <<uses>> :
Decomposition EAExpression - Parser —— & EAExpression - Lexer

¢

EAExpression - TreeParser

Single Type Multi Type Event Object | Event Objects | Same Type

| Expression |
l Processing |

|
| | |
| Validate Evaluate |
| . | | |
l — v v v v |
: Single Multi Multi EOs |
|

|
: |

EAExpression Validation

|
|
|
|
|
: Information
|
|
|
|

Figure 6.12: EAExpression Processing Overview

6.2.3 EAExpression Evaluation Model

The EAExpression evaluation process is described from a high-level perspective and
illustrated in a simplified form in Figure 6.12. The expression processing procedures
can be split up into four layers. Due to the extremely high implementation complexity
of the EAExpressions this section only introduces an overview of the validation and
evaluation processes of EAExpressions. EAExpressions are a domain specific subset
language in context of the SARI-SQL query languages. As the main focus of this dis-
sertation is the query language itself, EAExpressions can be treated from a validation
and evaluation point of view as a black-box. The important concepts of EAExpres-
sions are the syntax and semantic definitions and furthermore the abstract syntax tree
representation as some concepts are overridden by SARI-SQL in order to be able to
define constraints. However, this section provides the basic overview of the black-box

166

Chapter 6. SARI-SQL Query Language

validation and evaluation process of EAExpressions for the sake of completeness.

6.2.3.1 Expression Input

The Ezpression Input process layer provides an API interfaces towards the processing
engine and the result delivery. EAExpressions can be triggered for evaluation or vali-
dation through this API. The main building blocks of the Ezpression Processing layer
also defines the signature variations of the API input. So for instance it is possible to
validate an EAExpression against several event object types or against only one. The
latter case does not require a full qualified notation (compare with Section 6.2.1.1).

6.2.3.2 Expression Decomposition

The Fzpression Decomposition layer is responsible for parsing the EAFxpressions
according to predefined rules and transforming it into an abstract syntax tree,
leaving away unnecessary symbols for processing and enriching nodes with additional
meta-data. The abstract syntax tree parser is then in charged of traversing through
the tree elements and depending on the type of the expression processing either
validating or evaluating the given expression.

The EAExpression decomposition consists of three main components. A lexer
(lexical analyzer, string tokenizer), a parser and an abstract syntax tree parser that
walks through the syntax tree.

The lexer is the component that scans a text stream character by character and
creates token quantifications of recognized character sets. A token is a defined group
of text. Characters that have no semantic meaning for the language such as white
spaces or comments are removed. Recognized character sets (i.e. tokens) can than be
used later on in the syntax to define rules for parsing an expression or in general the
language. While the characters are tokenized they receive a meaning. Such tokens are
for operators, keywords or identifiers. For instance an IDENTIFIER is defined as a
set of coherent literal characters. Errors are generated if the lexer detects sequences
of character that do not match the lexical rules.

6.2.3.3 Expression Processing

The Ezpression Processing process layer is separated into two major processing types.
The first is the validation, which basically checks the semantics of an expression
against event object types to ensure the typing correctness for instance. The second
is the evaluation, which is applied during runtime against instantiated event object.
The class hierarchy of the access points is shown in figure 6.13

167

Chapter 6. SARI-SQL Query Language

| EAContextBase ¥ |
| Abstract Class !
La
EAContextEventObject) | EAContextEventObjectType E
Class Class
= EAContextBase = EAContextBase
-3]

:) ¢

[EAContextEventObjectTypes

(EAContextEventObjectSetAttribute 5 (EAContextEventObjects ®)
Class Class Class
- EAContextEventObject = EAContextEventObjedt - EACantextEventObjedTipe

= | 2

k. \ J \ p.

« |

EAContextEventObjectsSameType i
Class

=+ EAContextEventObjeds

=)

Figure 6.13: EAExpression Tree Parser Class Diagram

Finer granularity levels in the options of validating and evaluating events are
available for validation as well as evaluation of EAExpressions. The validation can be
performed with the following two options:

Single Type (EAContextEventObjectType): This option validates an EA-
Expression against a single event object type. It allows to express EAExpressions
without addressing event object types in a full qualified notation (compare with
Section 6.2.1.1).

Multi Type (EAContextEventObjectTypes): This option validates an EA-
Expression against several event object types. This means that EAExpressions
have to be expressed in a full qualified notation and thus require that an event
object type identifier has to be placed before the accessed attribute separated by
a dot.

The evaluation against event object instances during runtime can be performed through
the following four evaluations options:

168

Chapter 6. SARI-SQL Query Language

e Single Event Object (EAContextEventObject): This evaluation option
allows to evaluate exactly one event object instance against an EAFxpression.
The corresponding event object type is resolved from the given event object
instance (i.e. retrieved from the type library). This option is mainly used for
debugging and testing purposes.

e Multi Event Object (EAContextEventObjects): This evaluation options
is used to evaluate several event object instances against an EAExpressions. It
is applied whenever a set of events with different event object types must be
evaluated on given expression. This option resolves the event object types by
itself as there is a full qualified notation in place which enforces the use of the
corresponding event object types.

e Multi EOs Same Type (EAContextEventObjectsSameType): This op-
tion evaluates a set of event object instances against one specific event object type
that must be provided. It allows to apply an EAExpression against several event
objects that have the same type and thus don’t need full qualified notations.

e SetAttribute (EAContextEventObjectSetAttribute): This option is a
specialty that allows to run an EAExpression for evaluation against one event
object in order to set an attribute to a different value. This evaluation option is

used to modify event attributes in the event processing maps of SARI (compare
with Section 5.1.3).

6.2.3.4 Expression Result

The result of an EAExpression validation process is a detailed listing of syntactical or
semantical errors in case that an error occurred. The evaluation results are a list ob
objects of a specific type have been retrieved through an EAExpression.

6.3 SARI-SQL

6.3.1 SARI-SQL Syntax Definition

In the preceding sections the capabilities and features, that can be expressed by the
SARI-SQLs syntax, will be introduced and discussed in detail. The SARI-SQL syntax
structure is basically relying on four main key clause-constructs:

e SELECT. The SELECT clause represents the projection part of the query like
known from ANSI-SQL. It allows to select attributes, but in contrast to normal
SQL these are attributes of event object types instead of tables (i.e. relations).
Furthermore, each of the projections in this clause allow to define EAFExpressions
with certain restrictions that will be explained later on in this chapter.

169

Chapter 6. SARI-SQL Query Language

e FROM. The FROM clause defines the data sources, that can be either an event
object type, a metric or a score information, that are under examination in terms
of applicable in the projection (SELECT) clause and the condition (WHERE)
clause. In the relational database SQL world the FROM clause allows to select
relations that consist of attributes (e.g. columns). In SARI-SQL these are the
attributes of event object types or metrics and scores of a specific type.

e WHERE. The WHERE clause is the conditional part of an SARI-SQL query
and allows to define filters upon attributes and further it allows to create inner
joins over event object type attributes similar to the relational model.

e OVERCORR. The OVERCORR construct allows to define a kind of a prese-
lector over events by restricting the space of available event object types. The
space restriction is determined by the selected correlation in the clause.

The preceding section will explain in detail the syntax of SARI-SQL and itSs ca-
pabilities step-by-step. Like with EAExpressions in the previous sections, there is
the full syntax definition and a complete syntax diagram collection available in the
appendix in Section 9.3. SARI-SQLs syntactical capabilities and the semantics will
be explained with the help of examples. In contrast to EAExpressions the concepts
of the SARI-SQL language is much more compact because a lot of functionalities are
encapsulated inside the EAExpressions that are nested within SARI-SQL constructs.
The complexity of SARI-SQL is lying under the hood within the evaluation process
of a given query. Therefore, special attention will be paid to the evaluation and
optimization processes.

Figure 6.14 shows a compilation of three event object types (ShipmentCreated,
TransportStart, TransportEnd) forming the two correlations ShipmentTo Transport
and Transportinfo. This example will be used to explain the syntactical concepts of
SARI-SQL throughout in this chapter.

The following syntactical definition shows the main entry point for the SARI-
SQL syntax. The selectExpression defines the four main clauses whereas only the
SELECT (e.g. the projection) and the FROM clause is required. Selecting events
from correlations or applying filters or creating joins is not mandatory just like in
common ANSI-SQL.

sariSQL = (selectExpression)
selectExpression = ((SELECT selectClause) (FROM fromConstruct)
(OVERCORR overCorrClause)?
(WHERE whereCondition)?)
(ORDER_ BY orderByCondition)?)

170

Chapter 6. SARI-SQL Query Language

<EventObjectType>
Transportinfo

Y

<EventObjectType>

ShipmentCreated

Destination:String
DeliveryTime:DateTime

Transportinfo:EOT
Shipmentltems:Dictionary Key Value
Products:Collection | String DateTime
W Costs:Double (ContainerlD) (DeliveryTime)
Z | FreightValue:Double
% <EventObjectType>
- = Product
=
o
é <EventObjectType> ProductID:Int32
] TransportStart o ProductName:String
__________________________ g Price:Double
‘TransportID:String - 8
.ShipmentID:String | 2 <EventObjectType>
g

‘DateTime:DateTime TransportEnd
StartLocation:Vienna

Type:String TransportID:String!
ShipmentID:String
Accepted:Boolean
EndLocation:Madrid
Success:Boolean
Acceptor:String

Figure 6.14: Event Object Type Example for the SARI-SQL

6.3.1.1 Retrieving Event Object Types, Scores and Metrics

fromConstruct = fromList V joinClause
fromList = fromltem (COMMA fromlItem)*
fromItem = reducedDotEzpr (fromAlias)? V
functionExpr (fromAlias)?
reducedDotErpr= eventAtom (DOT reducedDotExpr)?

The FROM clause is the construct that allows to define the accessible event
object types, their attributes, metrics and scores. The clause takes a list of arguments
defined in the fromList rule and allows to create various join constructs defined by the
rule joinClause. The join constructs are excluded in this section and will be explained
later on in detail in the proceeding sections. There are two alternatives for defining

171

Chapter 6. SARI-SQL Query Language

the fromlitem. The first one defines a list of comma separated items that represent
the identifier of an event object type. The second one takes a functionExpr a comma
separated list of function like expressions that define the identifier of metrics and
scores. The fromAlias item is an optional identifier for defining alias names for event
object types and metrics/scores. This aliasing is comparable to the table aliasing
in SQL. In SARI-SQL aliasing is mandatory if more than one event object type or
scores/metrics are in the from clause. The fromltem rules take a reducedDotEzpr
for allowing to create a concatenation of dots with identifiers. That is required in
order to place and alias accessor of correlations before an event object type. This
feature is covered and discussed later on with the OVERCORR clause in Section 6.3.1.6.

Example:

a) SELECT * FROM TransportStart

b) SELECT start. TransportID FROM TransportStart start, TransportEnd end
¢) SELECT * FROM Metric(’Avg TransportDuration’)

The first query of the above examples selects all in the Event-Base available
events of the type TransportStart. The second example selects all available events of
the types TransportStart and TransportEnd. In addition the two types are aliased with
the labels start and stop. Aliasing is used to handle the ambiguity of items defined
in the FROM. For instance both types TransportStart and TransportEnd contain an
attribute that is called the same (TransportID). In this example the TransportID of
the TransportStart event object type in the SELECT clause is retrieved. The last
example selects all classifiers from the metric AvgTransportDuration. Each classifier of
the metric is treaded as a column in the SELECT clause and thus it is also possible
to define joins or constraints in the WHERE clause on them.

6.3.1.2 Projecting Event Object Type Attributes

selectClause = selectList
selectList = ((selectltem) (COMMA selectList)?)
selectItem = plusMinExpr (AS displayName)?
displayName = STRING _LITERAL V
IDENTIFIER

The SELECT clause consists of a list, defined by the rule selectList, of one or
more selectltems that are separated by a comma. Each of the list items represent one
projection clause that is materialized as a column in the resulting table similar to
SQL. A selectltem is defined by the syntax of a plusMinFEzpr which is a rule that is
part of the EAExpression syntax.

The SARI-SQL syntax definition is derived from the EAExpression syntax and

172

Chapter 6. SARI-SQL Query Language

therefore every rule definition from it is reusable. The idea behind placing EAExpres-
sions into the projection clause is to pay a special attention to the nature of the event
typing concepts of SARI. The reader should bear in mind that, in contrast to SQL,
there are event objects, respectively event object types, that are under examination
with their special characteristics. Those special event related characteristics were
discussed in detail in Section 5.2 like the attribute structures. In SARI-SQL however,
the EAExpression in projections clauses exclude the ability to express boolean
and conditional expressions as they both result to a boolean value. Therefore the
starting rule for projections is set to plusMinEzpr and not to a higher level rule of
EAExpressions such as conditionExpr or boolEzpr.

Example:

a) SELECT TransportID, StartLocation FROM TransportStart

b) SELECT start.StartLocation, end.EndLocation
FROM TransportStart start, TransportEnd end

¢) SELECT ShipmentID, FreightValue - Costs, Avg(Product.Price)
FROM ShipmentCreated

The first of the above examples returns a list consisting of two attributes (i.e.
columns) whereas the columns are the attributes TransportID and StartLocation
of the event object type TransportStart. The second example selects two different
attributes (StartLocation and EndLocation) from two different event object types
(TransportStart, TransportEnd). As there is more than one event object type in the
FROM clause it is required to define an alias for them. As aliasing is activated it
is also mandatory to apply it in every other clause in order to be able to access the
attributes of event object types and avoid ambiguity. This is an important point,
as in EAExpressions, the dot notation separates event object type identifiers from
the attributes. In SARI-SQL the outer most left identifier in a dot concatenated
expression is an alias if there is more than one event object type in the FROM clause.
The last example illustrates the possibility of applying EAExpressions in the SELECT
clause items such as the Awgerage function on the collection of Prices.

The SELECT clause also allows to apply the star (*) operator to select items.
The star operator is comparable to the star in the SELECT clause of standard SQL.
It selects every attribute of the defined event object types in the FROM clause. By
applying aliases to the star, it is possible to define on which event object type the star
should be applied. In case that there is more than one item in the FROM clause and
one star operator is in the SELECT clause, then every attribute of every available
event object type will be selected for projection.

However there is one major specialty with the star operator in SARI-SQL. The

173

Chapter 6. SARI-SQL Query Language

nature of event object types describes that there are so called multi-value attributes
types where dictionaries, collections and nested event object types as attributes belong
to. As these type of attributes represent multidimensional data they are returned as
data objects preserving the data dimensions. This is an important difference to the
relational model where the structures (i.e. relations) are “flat”.

Example:
a) SELECT * FROM TransportStart
b) SELECT start.*, end.*
FROM TransportStart start, TransportEnd end

The above example shows two examples of the star syntax usage in the SELECT
clause.

6.3.1.3 Defining Conditions

whereCondition = boolExpr
boolExpr = LPAREN selectEzpression RPAREN V
conditionExpr ((AND NV OR NV XOR) boolExpr)? V
NOT boolEzxpr
textitconditionExpr = isEzpr ((EQUAL NV NOTEQUAL N GTHAN Vv
GEQUALTHAN VvV LTHAN VvV LEQUALTHAN)
conditionExpr)?

The WHERFE clause is similar to SQL which represents a condition that can be
applied to a set of tuples to reduce the results or to perform joins over sets of tuples.
However in SARI-SQL the tuples are defined by event object types and their attributes
and not by relations. The WHERE clause is defined by the boolEzpr which overrides
the boolExzpr of EAExpressions. The original EAExpression boolFzpr is defined as:

boolExpr = conditionExpr ((AND vV OR V XOR) boolExpr)?
V NOT boolEzxpr

The main difference is that the overridden SARI-SQL boolEzpr extends the original
syntax by allowing to define sub-selects in WHERE clauses similar to SQL. In general
every WHERFE clause must result in a boolean return value which means that either
a comparator or boolean operator must be applied. Defining a WHERE clause that
contains only an arithmetic operation is omitted. Inner joins over attributes of event
object types can be defined, similar to standard SQL, by applying an equals operator
on the attributes of types that should be joined. Every EAExpression feature and
function is fully available in WHERF clauses.

174

Chapter 6. SARI-SQL Query Language

Example:
a) SELECT * FROM ShipmentCreated
WHERE Costs > 20 AND FreightValue < 100 AND

TransportInfo. Destination = "Vienna’

The above example selects all ShipmentCreated events that are designated to be
delivered to Vienna and where the shipment costs are greater than 20,— while the value
of the freight is smaller than 100,-. This simple example illustrates the application of
the WHERF clause with EAExpressions and exposes the ease of use of event object
types specific characteristics.

6.3.1.4 Defining Implicit Time Windows

Event processing solutions, such as Esper [30], Aurora [1][92] or SASE [18], make use of
continuous query languages for the purpose of creating queries over streams of events.
For performance reasons these type of solutions provide means to define a time frame
in which the events are valid to be ran against a query. This could be for instance a
query that is calculating the average amount of attributes in a time frame of 15 minutes.

Events represent usually real world happenings and often information about the
date and time is explicitly available as attributes in events. For instance a Ship-
mentCreated or a TransportStart event contain a DateTime attribute that represents
when such a shipment has been created or when a transport went out.

Example:
a) SELECT * FROM TransportStart
WHERE 01.02.2008 < DateTime < 29.02.2008

The above example selects all TransportStart events that were conducted in
February. This is the simplest way to create a time frame over a selection of events.
However often information about timing is not explicitly modeled. This is were
header attributes come into play (compare with section 5.2). Every event object in
SARI contains event header attributes which are inherited from the BaseFEvent type
and capture metadata such as the creation time or priority of an event. The header
attribute timeCreated contains the timestamp of the event creation.

Example:
a) SELECT * FROM TransportStart
WHERE 01.02.2008 < @timeCreated < 29.02.2008

This example shows how the timeCreated header attribute can be used to set a
time frame over events independent from explicitly modeled timing related attributes.

175

Chapter 6. SARI-SQL Query Language

6.3.1.5 Defining Joins

SARI-SQL supports five ways of defining join constructs and four different types of
join operations. Just like in ANSI-SQL, SARI-SQL makes a distinction between inner
joins and left /right /full outer joins with the same relational behavior.

joinClause = fromSpecForJoin INNER JOIN fromSpecForJoin
ON onJoinClause V
fromSpecForJoin FULL OUTER JOIN fromSpecForJoin
ON onJoinClause V
fromSpecForJoin LEFT OUTER JOIN fromSpecForJoin
ON onJoinClause V
fromSpecForJoin RIGHT OUTER JOIN fromSpecForJoin
ON onJoinClause
fromSpecForJoin = (fromSpec fromAlias)
fromSpec = IDENTIFIER (IDENTIFIER)?
fromAlias = IDENTIFIER
onJoinClause = onJoinltem
onJoinltem = dotExpr EQUAL dotExpr ((AND Vv OR) onJoinltem)?

A join can be defined always in the WHERE clause of a SARI-SQL statement
simply by placing an equals operator between attributes of event object types. The
following example illustrates a join between TransportStart and TransportEnd events:

Example:
a) SELECT start.* FROM TransportStart start, TransportEnd end
WHERE start. Transportld — end. Transportld

Inner joins, left-, right- and full-outer joins can be defined similar to SQL by
placing the corresponding join type into the FROM clause. Additionaly the ON
keyword defines which join conditions should be applied. The ON part of the clause
is restricted by the rule onJoinltem to EAExpression dot notations that can be
combined with the operators OR, AND or EQUAL. The following list of examples
illustrates the usage of the join constructs:

176

Chapter 6. SARI-SQL Query Language

Example:

a) SELECT start.*
FROM TransportStart start INNER JOIN TransportEnd end
ON start. Transportld = end. Transportld

b) SELECT start.*
FROM TransportStart start RIGHT OUTER JOIN TransportEnd end
ON start. Transportld — end. Transportld

¢) SELECT start.*
FROM TransportStart start LEFT OUTER JOIN TransportEnd end
ON start. Transportld = end. Transportld

d) SELECT start.*
FROM TransportStart start FULL OUTER JOIN TransportEnd end
ON start. Transportld = end. Transportld

6.3.1.6 Retrieving Event Object Types of Correlations

Mentioned earlier in the Section 5.3, the concept of correlation, defining and managing
the relationships of events, is a key characteristic of event processing solutions. A
correlation defines a collection of semantic rules to describe how specific events are
related to eachother. Such correlated events can be used to track causal relationships
to calculate metrics. The internal representation and organization of correlations
in the Event-Base is described in detail in Section 5.5 and is the underlying data
structure for SARI-SQL.

From a SARI-SQL syntactical point of view correlations are described through
a unique identifier such as ShipmentToTransport or TransportInfo like shown in Figure
6.14. The semantics of correlations in SARI-SQL is that they basically reduce the
space of selectable event object types to the ones that have been gathered according
to the correlation definition (compare with Section 5.3). That means that in case of
a Transportinfo correlation only the TransportStart and TransportEnd event object
types are selectable in the FROM clause and further, the set of event objects in
the result, are restricted to correlated event objects that correspond to the selected
correlation.

overCorrClause = corrList
corrList = corrltem (COMMA corrltem)*
corrltem = corrSpec (corrAlias)?

In terms of the syntax the definition of correlation elements in SARI-SQL is
quite simple. After the keyword OVERCORR the correlation name must be set. In
case that the user wants to apply more than one correlation set, aliasing has to be
applied, just like in the FROM clause. Otherwise the aliasing is optional. In case

177

Chapter 6. SARI-SQL Query Language

that no aliasing is provided and therefore only one correlation set is selected, all event
object types in the FROM clause refer to the given correlation set. However if aliasing
is activated the correlational aliases must be applied to the event object types in the
FROM clauses as the first part of the dot notation. If a correlation alias is not applied
to an event object type then the type is not retrieved from the correlation set and
every event of that type is taken into account. This might be a handy feature when
trying to create joins between already correlated events and events that have, from
a correlation definition point of view, no relationship. From a certain standpoint the
OVERCORR can be seen as a FROM clause that is at a higher hierarchy level.

Example:
a) SELECT start.StartLocation, end.EndLocation
FROM TransportStart start, TransportEnd end
OVERCORR Transportinfo WHERE start.StartLocation = ’Vienna’
b) SELECT start.StartLocation, end.EndLocation
FROM Corrl. TransportStart start, Corr2. TransportEnd end
OVERCORR Transportinfo Corrl, Transportinfo Corr

The first example selects the StartLocation and FEndLocation from the types
TransportStart and TransportEnd. Both event object types must be contained in
sessions of a TransportInfo correlation, with the restriction that the StartLocation of
a transport is settled in Vienna. The second example takes two correlation sets which
results in a cartesian product because of the two event object types in the FROM
clause. This example is meant for illustrating the usage of aliasing with more than
one correlation set used in a query.

6.3.1.7 Additional Constructs

orderByCondition = orderBylList
orderByList = orderByltem (COMMA orderByltem)*
orderByltem = reducedDotEzpr (ASC VC DESC)?
groupByCondition = groupByList
groupByList = groupByltem (COMMA groupByltem)*
groupByltem = reducedDotExpr
havingCondition = boolExpr

SARI-SQL supports also additional query constructs such as ORDER BY, GROUP
BY or HAVING whereas the HAVING clause is granting EAExpressions as conditions
and thus allows to apply their rich function set. From a syntactical point of view
both ORDER BY and GROUP BY have almost similar syntactical rules whereas the
condition of HAVING is represented through the boolEzpr rule of the EAFxpressions.
From their semantical behavior these constructs are the same as in ANSI-SQL with
the difference that event object types and their attributes are applied. Therefore

178

Chapter 6. SARI-SQL Query Language

additional information about the behavior of these functions can be found in contem-
porary literature about SQL.

Nevertheless here are a couple of examples about the usage:

Example:

a) SELECT TransportID, StartLocation, Type
FROM TransportStart
ORDER BY StartLocation, Type

b) SELECT TransportlD, StartLocation
FROM TransportStart
GROUP BY StartLocation

¢) SELECT ShipmentID, Transportinfo.Destination, Sum(Costs)
FROM ShipmentCreated
GROUP BY TransportInfo. Destination
HAVING Sum/(Costs) > 100

6.3.2 SARI-SQL Syntax Tree Model

Just like with the EAExpressions, the ANTLR parser uses the syntax definition rules
to build an abstract syntax tree in memory for validating and evaluating a given
query. The goal of this section is to introduce the abstract syntax tree for the query
constructs of SARI-SQL. Information about the nature of the notation, examples and
the general structure can be found in Section 6.2.2. Basically SARI-SQL uses the
AST representation of a query for traversing through the elements and creating an
internal model of the query constructs for optimization and rewriting purposes. So
actually, in SARI-SQL, only the AST representation itself is not sufficient. Topics
such as evaluation and optimization processes will be discussed later on in Section 6.3.3.

In the following sections the event object type example presented in Figure 6.14
will be reused for explanatory purposes.

6.3.2.1 Top-Level Construct AST Representation

sariSQL = QUERY selectClause fromConstruct (overCorrClause)?
(where Condition)?
(orderByCondition)?
(groupByCondition)?
(havingCondition)?

Every SARI-SQL query has a root entry point of the syntax which is labeled as
QUERY. The SELECT and the FROM clauses are the only mandatory constructs in

179

Chapter 6. SARI-SQL Query Language

SARI-SQL and therefore they must appear in the abstract syntax tree. The WHERE,
OVERCORR, ORDER BY, GROUP BY and HAVING clauses are optional but they
must appear in the above stated order of the rule sariSQL.

The following example pretty much covers the most important constructs and is
for the purpose of illustrating the top level AST structure shown in Figure 6.15. For
the sake of completeness the clauses GROUP BY and HAVING are shown as well as
dotted boxes as they don’t appear in the provided example. In the following section
each sub-AST will be introduced, described, brought into context with EAFxpressions
and is explained with examples.

Example:

a) SELECT start. TransportID, start.StartLocation, end. EndLocation
FROM TransportStart start, TransportEnd end
OVERCORR TransportiInfo
ORDER BY start.StartLocation ASC

HAVING

Figure 6.15: Overall SARI-SQL AST representation

6.3.2.2 FROM Clause AST Representation
6.3.2.2.1 FROM Construct

fromConstruct = fromList V
joinClause
fromList = FROM LIST (fromItem)*
fromItem = FROM ITEM reducedDotExpr (fromAlias)? V
SPECIAL FROM ITEM ¢ (fromAlias)?

The FROM AST structure is defined by the FROM LIST that is a top level
node. This node contains all comma separated items which define the event object
types and the metrics/scores for the query. Each reference to an event object type
is encapsulated by a FROM ITEM node, where the left child node is the type
identifier and the right node is the corresponding alias. The alternative rule, of

the fromlitem, defines the tree structure for metrics and scores hold by the node
SPECIAL FROM ITEM. The ¢ element contains the structure for a function whose

180

Chapter 6. SARI-SQL Query Language

name-identifier is either Metric or Score. The parameter list is restricted to one
parameter that defines the name of the corresponding type. Mentioned in the previous
section, it is always necessary to alias the types if there is more than one item in the
FROM clause.

In the following SARI-SQL example all attributes of the event object types Transpori-
Start and TransportEnd are selected. Furthermore, the metric AvgTransportDuration
is included. The corresponding AST representation for this selection is illustrated in
Figure 6.16

Example:
a) SELECT * FROM TransportStart start, Transportlnd end,
Metric(’Avg TransportDuration’) mAuvg

QUERY

[SELECT_LISTH FROM_LIST]

7 ‘ I SPECIAL_FROM_ITEM ‘
| FROM_ITEM | [FROM_ITEM |

| FUNCT| | PARAMETER_LIST |

| TransportStart || start || TransportEnd || end ‘ j i
Metric

Figure 6.16: Simple FROM clause AST representation

6.3.2.2.2 Join Constructs

The advanced join constructs INNER JOIN, LEFT/RIGHT/FULL OUTER JOIN
in the FROM clause are represented by the joinClause rule which is nested as an
alternative in the fromConstruct. In contrast to normal FROM expressions the top
level node FROM_ITEM is replaced by the corresponding join type (e.g. annotation
for outer join, inner join, ...). So for instance a full outer join is represented by the
node FULL OUTER_JOIN. The first two left child nodes represent the two event
object types that are joined including also their alias. The third child element holds
the comparison expression that determines on which attribute the join is performed
independent from the type of the join.

181

Chapter 6. SARI-SQL Query Language

joinClause = INNER_JOIN FROM ITEM FROM ITEM onJoinClause V
FULL OUTER_JOIN FROM ITEM FROM ITEM
fullOuterJoinClause V
LEFT OUTER_JOIN FROM ITEM FROM ITEM
leftOuterJoinClause V
RIGHT OUTER_JOIN FROM ITEM FROM ITEM
rightOQuterJoinClause V

The following query performs a full outer join over the TransportID attributes
of the event object types TransportStart and TransportEnd. The resulting AST is
illustrated in Figure 6.17. The ON_JOIN CLAUSE represents the ON conditional
part of the join. This AST tree contains an EAExpression dot notation that can be
combined with the operators OR, AND or EQUALL. In the example an equals-join
is performed over the TransportID attribute. Every other join construct (inner,
left /right outer join) in SARI-SQL is represented in the AST the same way. The only
difference is always the label of the join node (e.g. instead of FULL OUTER_ JOIN
it contains LEFT OUTER_JOIN, RIGHT OUTER_JOIN or INNER_JOIN.

Example:
a) SELECT * FROM TransportStart start FULL OUTER JOIN TransportEnd end
ON start. TransportID = end. TransportlD

|
i INNER_JOIN
|

QUERY

LEFT_OUTER_JOIN

RIGHT_OUTER_JOIN

SELECT_LIST | | FULL_ OUTER JOIN | Yoo)

I
~
#
#

FROM_ITEM FROM_ITEM ON_JOIN_CLAUSE

N

TransportStart || start || TransportEnd end

n

T

start TransportlD start TransportID

Figure 6.17: Outer Join construct in FROM clause AST representation

182

Chapter 6. SARI-SQL Query Language

6.3.2.3 SELECT Clause AST Representation

The SELECT clause consists of a list of one or more items separated by a comma,
from a syntactical point of view, where each of the items is a projection that is
represented as a column in the result. The AST representation of a SELECT clause is
aset of SELECT ITEM child nodes, assigned to the top level SELECT LIST node.
The items themselves are EAExpression ASTs that are hung to the SELECT LIST.
In case that aliasing is used in the SELECT LIST then the outermost left node is
always the aliasing identifier in the tree. This special case is addressed during the
evaluation of the query and will be explained in Section 6.3.3. Labels that are applied
to an item are represented as the right child node of a SELECT ITEM. An important
challenge here is the EAExpression validation and evaluation. In EAExpressions the
outermost left identifier in dot notations is referring to the event object type identifier.

selectClause = SELECT LIST (selectitem)*
selectltem = SELECT ITEM ¢ (displayName)?
displayName = STRING LITERAL Vv
IDENTIFIER

The Figure 6.18 shows the AST representation of the query example below.
This example covers the elements of aliasing, shows how EAExpressions are nested
into the SARI-SQL AST and the position of labels.

Example:

a) SELECT created.ShipmentID as 'ID’, created.Freight Value - created.Costs as 'Diff’

FROM ShipmentCreated created

QUERY
SELECT_LIST
SELECT_ITEM SELECT _ITEM
I
'ID’ - 'Diff’
created || ShipmentID) .
AN \

created | | FreightValue || created || FreightValue

Figure 6.18: SELECT clause AST representation

183

Chapter 6. SARI-SQL Query Language

6.3.2.4 WHERE Clause AST Representation

whereCondition = WHERE CLAUSE boolExpr
boolExpr = LPAREN selectErpression RPAREN V
conditionExpr ((AND v OR vV XOR) boolEzpr)? v
NOT boolExpr
boolExpr = AND boolExpr boolExpr V
OR boolEzpr boolExrpr V
EQUAL boolEzpr boolExpr vV

¢

The WHERE clause is the conditional part of an SARI-SQL query and must
result in a boolean return value. The sub nodes of the top level WHERE CLAUSE
are EAExpression ASTs whereas the syntax rules are overridden and have been slightly
modified to enforce boolean return types. Therefore, only arithmetic operations are
suppressed and result in an error. The following example filters out the events that
don’t have Vienna and Madrid as start and end locations of transports and the
corresponding AST representation is shown in Figure 6.19. As with the SELECT
clause, if aliasing is used then the outermost left node represents the alias, which
results in a complication with the originial dot notation in EAExpressions. The
solution to this issue is discussed in Section 6.3.3.

Example:
a) SELECT * FROM TransportStart start, TransportEnd end
WHERE start.StartLocation — "Vienna’ AND end.EndLocation — "Madrid’

QUERY

WHERE_CLAUSE

|

AND
Vienna'’ . 'Madrid’
start StartLocation end EndLocation

Figure 6.19: WHERE clause AST representation

184

Chapter 6. SARI-SQL Query Language

6.3.2.5 OVERCORR Clause AST Representation

overCorrClause = overCorrList
overCorrList = OVERCORR (overCorrltem)*
overCorrltem = OVERCORR_ITEM corrName (corrAlias)?
corrName = IDENTIFIER
corrAlias = IDENTIFIER

The access of correlations, which is a key characteristic of event processing so-
lutions, is in terms of its syntax straight and simple. The keyword OVERCORR
can be applied after the FROM clause and defines the correlation identifer. If more
than one item is given in the OVERCORR clause list, aliasing must be applied like
in the FROM clause. Otherwise it is optional. From the AST point of view the
representation is similar to FROM-items. However, if aliasing is used in correla-
tions, the items (e.g. event object types) in the FROM clause can have correlational
aliases which mean that the event object type is then selected from the correlation sets.

The following example accesses the Transportinfo correlation that consists of
the two event object types TransportStart and TransportEnd. In the FROM clause
the TransportStart event object type is part of the Transportinfo correlation (defined
through the alias), while every ShipmentCreated event is taken into account regardless
of correlations. An illustration of the AST representation is shown in Figure 6.20. In
reality the query would have to be adapted with conditional expressions to reduce the
resultset to a reasonable size in order to create a meaningful result. However a trade
off has been made for simplicity reasons and therefore the SELECT and WHERE
clause has been neglected in this example.

Example:
a) SELECT * FROM infoCorr. TransportStart start, ShipmentCreated created
OVERCORR TransportInfo infoCorr

6.3.2.6 Additional Constructs AST Representation

SARI-SQL supports common SQL constructs such as ORDER BY, GROUP BY or
HAVING. All of these three clauses are represented by top-level nodes that are hung
directly as children to the QUERY root node. The HAVING clause AST construct is
represented by the EAExpression boolExpr AST, while the ORDER BY and GROUP
BY have almost similar representations.

185

Chapter 6. SARI-SQL Query Language

QUERY
SELECT_LIST FROM_LIST OVERCORR
FROM_ITEM FROM_ITEM CORR_ITEM

N N

start || ShipmentCreated || created || Transportinfo ||infoCorr

infoCorr TransportStart

‘\

Figure 6.20: OVERCORR clause AST representation

orderByCondition = orderBylList
orderByList == ORDERBY (orderByltem)*
orderByltem = ORDERBY ITEM reducedDotExpr (ASC VC DESC)?
groupByCondition = groupBylList
groupByList = GROUPBY (groupByltem)*
groupByltem = GROUPBY ITEM reducedDotEzpr
havingCondition = HAVING boolFzpr

The AST of the following examples are represented in Figure 6.21.
Example:

a) SELECT TransportID, StartLocation, Type
FROM TransportStart
ORDER BY StartLocation ASC
b) SELECT TransportID, StartLocation
FROM TransportStart
GROUP BY StartLocation
c) SELECT ShipmentID, Transportinfo.Destination, Sum(Costs)
FROM ShipmentCreated
GROUP BY Transportinfo.Destination HAVING Sum(Costs) > 100

186

Chapter 6. SARI-SQL Query Language

a) QUERY b) QUERY

| seLeCT_LisT |[FRoM_LIsT|[oRDER BY | SELECT_LIST |[FROM_LIST|| GROUP_BY
T T

i ! -
! ! «
] i g

| ORDERBY_ITEM ‘

GROUPBY_ITEM

StartLocation

[StartLocation H ASC ‘

c) QUERY

‘SELECT_LIST HFROM_LIST“ ORDER_BY H HAVING |

7
! /

/ ! , [>‘

‘ Transportinfo H Destination ‘ ‘FUNCTH 100 ‘

‘ SUM ‘ ‘PARAMETER_LIST‘
Costs

Figure 6.21: Additional Constructs AST representation

6.3.3 SARI-SQL Evaluation Model

The evaluation process of SARI-SQL is split up into four stages where, in contrast
to EAExpressions, the validation and evaluation process is not explicitly divided from
eachother. The four stages of the SARI-SQL query engine processes are introduced
subsequently in this chapter. The concrete implementation is not in scope of this
thesis, therefore the query engine is described from a conceptual point of view to
create a separation from implementation details. However some challenging issues in
the implementation and their solutions will be discussed at the end of this section. A
short overview is provided hereafter:

e Query Input: The query input consists of an API to access and propagate the
query statement to the underlying SARI-SQL query engine. Further it manages
and returns syntax, semantic and evaluation (e.g. query execution) error states,
query engine messages (e.g. "explain") for tracking the internal query processing

187

Chapter 6. SARI-SQL Query Language

| Query Input 1
| SARI-SQL Query :
I I
: v :
: API :
I $ I
e e J
M Auery Decomposition [—— — — | <<extendss> [———————————
Query Decomposition SARI-SQL - Parser %t ¢ EAExpression - Parser

‘L«uses”

EAExpression - Lexer

T‘C <extends==>

SARI-SQL - Lexer

'

SARI-SQL - TreeParser

|

|

|

I

|

|

: Strategies \%, |

1| (/oé, ¢
A 4&

. Model Optimizer
! .

[

<<8S35MN>>

|

I

I

| v
| Rewriter
: E—
|

|

|

|

Execution Planning

|
|
Execution . :
+ . <<uses>> EAExpression :
|
I
I
I

Evaluation
Evaluation/Rendering

Figure 6.22: SARI-SQL Query Processing Overview

steps and the query result retrieval.

e Query Decomposition: The query decomposition covers the SARI-SQL parser,
which partly uses the EAExpression Parser rules, that builds an abstract syntax
tree out of a given query. The tree parser walks through the syntax tree, checks
the correctness of event object types, their attributes, typing correctness and
transforms the abstract syntax tree into an internal model representation. The
transformed model is then used for query optimization whereas various strategies
can be implemented and attached to the query optimizer.

188

Chapter 6. SARI-SQL Query Language

e Query Planning: The query planner components analyzes the query model,
which was previously assembled and optimized in the query decomposition stage,
and performs a rewriting of the query into the target Event-Base repository
schema. The rewriting itself adapts the query to the target RDBMS system of
the Event-Base and is therefore database vendor independent. The analyzer com-
ponents further determine the execution strategy whose information is required
to post processing the result set.

e Query Evaluation: The query evaluation block is in charge of executing the
prepared and pre-processed SARI-SQL query. Due to the analysis and rewrit-
ing strategies in the previous Query Planning processing steps, it is necessary
to reevaluate the returned results from the Event-Base in order to deliver the
required results. The EAFExpressions evaluation processes are partly used in this
stage. Therefore this SARI-SQL processing block can also be seen as a post-
processing step before the result is turned over to the API.

The SARI-SQL wvalidation processes consists a syntax parsers, that checks the
syntactical correctness of a given query, and the abstract syntax tree parser, that
handles the semantic correctness of the query. The semantically correctness of a query
checks for instance if the accessed event object types and their attributes exist in
the Event-Base. The query validation processes is more comparable to a prepared
statement from the Java-World. The SARI-SQL query engine prepares the query for
execution by transforming the given query from an abstract syntax model into a more
efficient internal data structure that is then used to perform optimization strategies
and apply more optimal query rewriting methods. This prepared query model is then
available and can be reused during runtime for several executions. If a specific query
has to be reused more than once it can save significant time during execution.

The preceding sections will introduce the four SARI-SQL evaluation blocks and
the query processing from a conceptual point of view.

6.3.3.1 Query Input

The query input block of the SARI-SQL evaluations processes is schematically illus-
trated in Figure 6.23 in order to highlight the main access components. Further the
flow and usage of the query propagation and the result retrieval is illustrated in the
same figure and explained in this section. The SARI-SQL query input consists of an
API interface EB Query Executor API, which must be parameterized in order to point
to the desired Event-Base (compare with Section 5). The EB Query Executor API
provides the two methods PrepareQuery and EzecuteQuery.

e PrepareQuery: The PrepareQuery interface takes a SARI-SQL string and trig-
gers the validation procedures which parses the query, builds up an abstract

189

Chapter 6. SARI-SQL Query Language

Query User Interface SW Components

Event-Base(s)

A >
PQ || PQ A

o)
006 —L 7 g

LA v :_
PrepareQuery ExecuteQuery = 0

EB Query Executor API

Figure 6.23: SARI-SQL Query Input

syntax tree, reworks that tree into a more efficient internal data representation
and then performs optimizations techniques. These are the underlying SARI-
SQL steps that are covered by the SARI-SQL query processing blocks Query
Decomposition. From the API point of view this interface takes a string and
returns an object of the class that contains a detailed listing of errors including
the line and character position in case a syntactical error happened or if an event
object type was misspelled. After successfully (e.g. without errors) completing
this procedure the SARI-SQL query statement is pre-processed, optimized and
ready for execution.

e ExecuteQuery: The EzecuteQuery interface executes the evaluation of the pre-
viously prepared and validated query against the selected Event-Base. The un-
derlying SARI-SQL query processing blocks that perform these tasks are the
Query Planning and the Query Evaluation. These blocks apply basically analy-
sis and rewriting strategies and then reevaluate the returned results from the
Event-Base. From the API point of view this interface requires a validated
SARI-SQL query and returns a DataTable containing the results of the query
in a column/row manner where the columns represent the items defined in the
SELECT clause of a query. Further the API allows to retrieve query engine
messages for explaining and tracking the internal query processings steps such as
the rewriting of the query that is propagated to the underlying RDBMS system
and error messages.

190

Chapter 6. SARI-SQL Query Language

Basically the main accessors of the API can be split into two groups. The first one is
a human user that is placing queries through a graphical user interface, that supports
the query creation with syntax auto-completition and highlighting, and retrieve a
graphical representation of the results. The second group are software components
that place queries through the EB Query Executor API to the Event-Base and process
the results further on. Those two groups are represented at the top of the Figure 6.23.

In the first case, the query user interface, the user places a query and triggers
the PrepareQuery to retrieve potential errors (1). Usually there are always roundtrips,
caused by errors, until a query is in a valid state. The status of the query (e.g. an
error occurred or the query is valid) is returned to the user interface and prepared
for a visual representation (2). If the query is in a valid state the user can execute
the query against the Event-Base that returns the query results to the user interface
which sets up tabular representation (3).

In the second case, the software components, the query execution steps are the
same as with the user interface, with the difference that such software components
or modules might often place the same queries several times during runtime of an
application. Therefore it is possible to prepare a collection of queries for execution by
using the PrepareQuery and hold the validated and pre-processed state (4). These
Prepared Queries (PQ) are represented by rectangles below the SW Components
block in Figure 6.23. During execution runtime these prepared queries can be
executed (5) much faster as several preparation steps are dispensed. The results (6)
are returned as DataTable objects (6) and can be further processed by the components.

From a certain point of view the user interface is also a software component
that is reusing the SARI-SQL results for graphical representation. However the
separation in this illustration is done for the reason that user interfaces are for
explorative purposes, which usually result in several roundtrips due to errors. SW
components however must already use a valid query to avoid errors which is achieved
through pre-validating them through a GUI by a developer. In either case the EB
Query Ezecutor API must be initialized by providing the parameter that sets the
pointer to the desired Event-Base.

6.3.3.2 Query Decompaosition

The query decomposition block of the SARI-SQL evaluations processes is schematically
illustrated in Figure 6.24. The main job of the decomposition block is to prepare
a given SARI-SQL query statement for execution (e.g. the query is pre-processed,
optimized and made ready for execution against an Event-Base) and to catch errors
within the query. The decomposition block consists of the SARI-SQL parser, that

191

Chapter 6. SARI-SQL Query Language

o | Parser . Tree Parser Model Optimizer
2 |
= H H
as | SARI-SQL Tree Walker Optimized
UB; 5 Select Item Optimizer Maddi
[1]
o
% Select Item Reference %
@ Opt|m|zer

EAExpressmn

3

Opnmlzer Validate

Join Item Reference
Optimizer

J
{ J
[Where Ciause]
[]

Figure 6.24: SARI-SQL Query Decomposition

creates an abstract syntax tree out of a given query. An abstract syntax tree walker
traverses through the previously created AST and validates the correctness of the
event object types, their attributes, checks the typing correctness and transforms the
abstract syntax tree into an internal model representation. This section describes the
query decomposition process step-by-step whereas the internal model creation and the
optimization procedures are the most interesting topic for discussion.

6.3.3.2.1 Parser

The query parser, extends the EAFxpression syntax rules, introduced in Section
6.2.1, by the SARI-SQL syntax rules, described in the Section 6.3.1, wheras certain
rules are overridden to handle specific characteristics that apply to SARI-SQL, but
are allowed with EAFxpressions. So for instance the WHERE clause overrides the
rule boolExpr to omit the creation of arithmetic resulting operations in that clause
while every other EAExpression feature and function is available.

In Figure 6.24 the query input, the SARI-SQL query statement, enters the parser
realm from the left side. The input itself is triggered by the PrepareQuery interface
of the EB Query Fzecutor API in the query input block. The parser builds up an
abstract syntax tree by making use of the SARI-SQL syntax definition rules. The
AST creation processes is completely handled by ANTLR and uses the defined rule
declarations of SARI-SQL and the EAExpressions. The basic tree building concepts
of ANTLR have been introduced in the Section 6.1. The formal definition of the
resulting tree constellations are defined in the Section 6.3.2.

If the parser encounters any syntactical errors it throws an error message with
a detailed corresponding description about the encountered problem including the line

192

Chapter 6. SARI-SQL Query Language

and character position of the syntactical error. The error message is passed back to
the query input as a result for further investigation by the user.

6.3.3.2.2 Tree Parser

The SARI-SQL tree parser is one of the most interesting parts of the query
processing. After the parser spanned up an abstract syntax tree, the tree parser
or walker traverses through the tree. The way the traversing is done is again
defined declaratively by the rules introduced in 6.3.2. ANTLR uses those rules
to walk through the tree and if certain rules match specific AST patterns then
actions can be executed on those tree elements. The rules that match tree patterns,
trigger the creation processes of the internal model representation of the query. Ev-
ery rule evaluates the patterns and their meta-data, perform checks and set up a model.

The interface definition of the model is shown in Figure 6.25. Every main SARI-SQL
clause is represented by a class definition. All four classes SelectClause, FromClause,
CorrelationClause and WhereClause are attributes of the SARISQLModel and
implement a BaseCollectionModel abstract class that allows to manage the items of
those clauses such as the select or from items that are comma separated. Every class
contains the whole corresponding original AST node and service methods such as the
infix generator in the WhereClause. Subsequently the model creation processes of the
model will be explained.

Select Clause

The Figure 6.26 shows the simplified processes of how select items for the Se-
lectClause model are generated. First, every select item is checked if it contains a
star operator. If it is a star operator a SelectltemStar is generated. If the select item
does not correspond to a star, a normal ltemAtiribute creation is triggered. Either
way both items are added to the SelectClause and the aliasing is extracted if there is
one applied. The SelectClause itself expects as an item in the list an object of the
type ISelectltem. The structure of the resulting objects are shown in Figure 6.27.
The reason why IltemAttribute is not derived from Selectltem is because the generated
ItemAttribute implements on a higher abstraction level the ISelectltem (compare with
Figure 6.29). The select item can be labeled, which is extracted and stored into the
model, if there is one available.

Item Attribute Creation

The specialty about the I[temAttribute is that it makes a distinction between

193

Chapter 6. SARI-SQL Query Language
InTimeSQLModel El
| :;;:maa ‘
HF Select B From ' OverCon F Where |
(e — (& : [WhereClause ‘ &

Class
3Molmnm¢el=berm>

Class
- BaseCollectionModel < ICverConfiam>
3

Class
-+ BaseCollectionModel<IFrombem
A

[FromClause @) ‘ CorrelationClause @)

Class
~# BaseCollectionModei = Wherekam:
3

| E Methods 5 Properties = Methods 5 Properties
@ SelectClause]) B hAliased : bool @ CorrelationClause() ' ItemDic : IDictionary <string, ItemExpression >
El Mathods - 4 75 NonDETypeDetected : boal
)) ' WhereRootitem : IDissemi
% FindltemForiliasi) : Fromitem L
@ FromClause B Methods
- A @ GetlnfixRepresentation] : striing
ey % Validate) : void
. — % WhereClause()
JoinClause =
Class
=» FromClause
“
El propertias
F loinldentifierString : string
7 LeftFromitem : Fromktem
' OnloinClauseNode : ASTNode
R Onloink <10 il
" RightFromitem : [Fromitem
& Methods
@ GetlnfixRepresentationCFONPart(] : sting
% loinClause]}
@ Validate() : void

Figure 6.25: Class Diagram of the SARI-SQL Model

yes no

r- Is Selectltem a Star? w
i’e—s- Is Aliased? iﬁ Is Aliased?
Extract Alias no Extract Alias no

— I

v v

[Create Create

SelectltemStar ltemAttribute
L |

v

Add ltem to
SelectClause

Figure 6.26: Select Item Generation

normal identifiers and EAFExpressions. Figure 6.28 shows the item creation processes
that is reused also in the WHERE and in the ON clause. The first step is that it

194

Chapter 6. SARI-SQL Query Language

O ISelectitem
[BaseModel

E.Selerfﬂem @)
i Abstract Clas f = et
: _P;a::M:::; | SelectitemStar 2
- o Class
e : i -b Selectitem
¢ = Properties ! =
i ™ BelongsTo: [Fromltem i | & Methods

" ExpressionMode : ASTNode ! @ SelectitemStar()
i B Label:string @ Validate() : void
i = Methods i —
© @ Selectltem() {

Figure 6.27: Select Item Class Diagram

Header Attribute Detact liem Type Default
Jdentfﬁer¢
\ 4
IltemHeaderAttribute ‘ ‘ ItemAttribute l Greate infix ‘

Representation of Item

‘ Compile EAExpression

v

ItemEAExpression

|

\/

Return Item

Figure 6.28: Item Attribute Generation

determines the type of the item AST. If it is a header attribute the corresponding
ItemHeaderAttribute is created and in case of an identifier an ItemAtiribute is
instantiated. However if none of them applied the AST nodes representing that item
are transformed into an infix representation and than compiled by the EAExpression
parser. The compiled EAExpression statement is then used to create an ItemFEAFEx-
pression. These specialization of classes is alter on used to distinct the item types in
the model during query rewriting and the post-evaluation phase.

FROM Clause

The Figure 6.30 shows the processes of how from items are created. The given
AST node is checked for whether what type of source it is. The tuple source can be
either an event object type, a metric or a score. In case of an event object type, the

195

Chapter 6. SARI-SQL Query Language

O IDisseminationltem
[Whereltemn
ICnJoinltem
[Selectitem

[BaseMedel

ItemExpression
i AbstractClass

. b BaseModel

HEE = |

= Properties
i = BelongsTo : IFromlitem
1 ExpressionNode : ASTNode
ﬁ‘ Label : string
| # RuntimeType: Type
| & Methods
@ Create() : ltemExpression
@ CreateEAExpressionltem() : temExpression
‘@ ltemExpression() (+ 1 overload)

)

. ItemEAExpression
Class
<+ ItemAttribute
3
& Properties
' Expression : EAExpression
E Methods

@ ltemEAExpression()
@ Validate() : void

» |

{ ItemAttributeBase ® |
i AbstractClas
i | = [temExpression
] i
457 = Properties
i] ﬁ AttributeMame : stnng
- & Methods
| =% ItemAttributeBase{)
1
1
(ItemAttribute B [ItemHeaderAttribute
Class Class
= Item AttributeBase - ItemAttributeBase
-2 = |
= = Methods = Methods
‘@ ItemAttribute() @ TtemHeaderAttribute()
9 Validate() : void @ Validate() : void

») |

Figure 6.29: Item Expression Class Diagram

corresponding type is resolved from the Event-Base and a FromltemTable object is
created containing the event object type information from the EOT library. In case of
the special constructs of metrics and scores, dummy event object types are generated
with the attributes corresponding to the classifier types of the selected scores and
metrics. The result of the processes is a ScoreFromltem or MetricFromltem object.
The aliases of the items are extracted if they are available and at the end the created
item model objects are added to the FromClause. Figure 6.31 shows the class diagram
of the Fromltem. The specializations are used later on during the rewriting phase
and post-evaluation to distinct between the different types just like with the item

attributes.

JOIN Clauses

196

Chapter 6. SARI-SQL Query Language

Eor Detect From Type Yegic
Score ¢
Find EOT for | Create Dummy Create Dummy
Fromltem Score EOT Metric EOT
\J Y i
es .
+y_ Is Aliased? YeS | |s Aliased? iﬁ Is Aliased?
Extract Alias no| Extract Alias no | Extract Alias no
—— I
Y \ 4
Create Create Create
FromltemTable ScoreFromltem MetricFromltem
Add Item to
FromClause
Figure 6.30: From Item Generation
) IFromltem
T [BaseModel
Fromitem A | FromltemTable ®) MetricFromitem (2|
i Abstract Class Class Class
| = BaseModel i = Fromltem = FromltemTable
= | 2 1 2
Properties “}—— = Properties & Methods
' 2 Alias { =5 Type W MetricFromltem
i B Methods = Methods
I 3% Fromitem ‘@ FromltemTable - —
S s & Validate 1 ScoreFromltem a
-3 Class
= FromltemTable
o |
= Methods
‘@ ScoreFromltem

Figure 6.31: FromItem Class Diagram

197

Chapter 6. SARI-SQL Query Language

Create Left Create Right ' _ pregte
FromltemTable FromltemTable Disseminationltem for
ON-Part

I

Y

Detect Join Type

Y

Create ‘ Create I Create

InnerJoin FullOuterJoin RightOuterJoin LeftOuterJoin

‘ Create

Figure 6.32: Join From Item Generation

The join clause fragments are defined in the FROM clause of SARI-SQL and
the corresponding AST, with its meta-data, indicates their existence (compare with
Section 6.3.2). A join construct in SARI-SQL, independent of its join-type, must
contain two data source items (e.g. an event object type for instance) and an ON
clause that represents the conditional EAExpression part of the join operation. The
tree parser extracts the two items that are joined with each other, labeled as Left/Right
FromItemTable in Figure 6.32. Based on the join-type (e.g. InnerJoin, FullOuterJoin,
RightOuterJoin or LeftOuterJoin) the corresponding instance of a derived JoinClause
is created. Those instances contain the two event object types that are joined with
each other and the IDisseminationltem that represents the recursive structure of the
conditional clause. The dissemination item process is described in the next paragraph
about the WHERE Clause. The class diagram representing the basic structure of joins
is shown in Figure 6.33.

WHERE Clause

The WHERE clause of SARI-SQL contains an EAExpression that must result
into a boolean return value and therefore only arithmetic operations are suppressed
in that clause. Currently the model creation process strategy performs a recursive
decomposition of the WHERE clause AST where the breakdown is performed at
OR, AND and FQUALS operator nodes. These decomposition points are important
later during the rewriting phase. The rewriter can use those points to optimize the
execution strategy. For instance when an equals operator is applied in the WHERFE
clause the left expression of the operator can be fully evaluated by the database
system, while the right part must be partly post-evaluated in memory. FEspecially
this decomposition granularity strategy is an important point of future work that can
significantly increase the efficiency of the query engine.

198

Chapter 6. SARI-SQL Query Language

»|

(‘JoinClause
" 5" Class
| FromClause ! B CaLse
Class a
- BaseCollectionModel<IFromlem> = 7
e Properties
= Properties P JoinldentifierString : string
PR [sAlissed : bool K— "'_;‘E LeftFromltem : IFromltem
B Methods ' OnloinClauseNode : ASTNode
I = i ' OnloinRootltem : IDisseminationltem
: Izu'u:!ltcelmFan\?\llzns():Iqu'ﬂI['(er\'| i RightFromitem : IFromitem
¥ tomCianed | & Methods
‘@ GetlnfixRepresentationOfONPart() : string
@ JoinClause()
@ Validate{) : void
|
(FullouterJoin B) RightOuterJoin (& (LeftOuterJoin @Y [Inserioin ®&
Class Class Class Class
= JoinClause =+ JoinClause = JoinClause —+ JoinClause
| e | =} 2 2
= Methods E Methods & Methods & Methods
| 9 FullQuterloin() | @ RightQuterloin() | @ LeftOuterloin() @ Innerloin()
Figure 6.33: FromJoinStructure Class Diagram
AST Rules WHERE Clause Post-Evaluation
I Pop Right Pop Left I . Pop
|Disseminationltem IDisseminationltem Atitrany book=xpr IDisseminationltem
from Stack from Stack from Stack
1] ¥
Create
r - s ItemAttribute
| Determine
boolExpr Type Create WHERE
L i A Lo il
OR y AND Y EQUALSY '
Create Orltem Create Andltem Create
EqualsOperatorltem

Push Item on
Stack

Figure 6.34: Where Clause Dissemination Generation

The dissemination process is illustrated in Figure 6.34. The process is basically

based on stack operations where in the processes for arbitrary boolEzpr ItemAttributes

199

Chapter 6. SARI-SQL Query Language

are created and pushed on the stack. As the operators OR, AND and EQUALS
are binary operators the expressions have a left and right part separated by the
operator. The corresponding parts are poped from the stack and based on their type
the corresponding instances are generated and again pushed on the stack. The class
diagram is shown in Figure 6.35. The result of this process is an object compatible
to the interface IDisseminationltem containing a left and a right Disseminationltem
part and the concrete implementation determines the operator type.

':;' IDisseminationltem

IWhereltem

10nJoinltem

IBaseModel

" Disseminationitem = { Boolitem @)
Abstract Class i i Abstract Clas |
-+ BaseModel { - Disseminationtem
- 1} e |
= Methods E Properties
‘@ Disseminationltem() = Left: IDisseminationltem

5 OperatorRepresentation : string
ﬁ} Right : IDisseminationltem

= Methods

¥ Boolltem()
Vv Validate() : void

EqualsOperatorltem

»i|
»|

= 1 =
| Anditem | Orltem

Class Class Class

=t Boolitem - Boolltem =t Boolltem
2 a2 2

= Methods = Methods = Methods

¥ Andltem() ¢ Orltem() ¥ EqualsOperatoritem()

Figure 6.35: Disseminationltem Class Diagram

6.3.3.2.3 Model Optimizer
StarOptimizer

The job of the StarOptimizer process (illustrated in Figure 6.36) is to trans-
form the star operator in the SELECT clause into concrete Selectltems of the
corresponding attributes of event object type. The process iterates through the
Selectltems of the SELECT clause. If a star is detected the event object type is tried
to resolve and the ltemAttribute creation process is performed for every attribute of
the event object type. For instance the query SELECT * FROM TransportStart is

200

Chapter 6. SARI-SQL Query Language

Iterate through |

Selectitems
yes | | no SELECT * FROM TransportStart
Is SelectitemStar? Selectltems Selectitems
') Before After
yes Is Aliased? L1 | | — : Transportld :
L | Shipmentid
Find EOT . DateTime
for Alias | StartLocation |
Y StartLocation |
Create i .
ltemAttribute for every
Attribute of EOT
Y
Next
Selectitem

Figure 6.36: StarOptimizer Process

translated internally into all available attributes of TransportStart.

ItemAttributeOptimizer

no

YeS | s Aliased? —+
Find EOT ' '
for Alias Use EOT

| Extract Aliasing
from ltem
I

Create Infix
Representation of Item

v

Is Item Attribute of EOT
yes AND s Item no
SingleValueType
Create Create

ItemEAExpression

ItemExpression

Add EOT to
BelongTo of Item

Figure 6.37: ItemAttributeOptimizer Process

201

Chapter 6. SARI-SQL Query Language

TItemAtiributeOptimizer process is reused in several other optimizers as its main
job is determine the type of an item. So for instance every item of the SELECT clause
is checked whether it is a Single Value Type attribute of an event object type. This
is the first determination if the item can be directly executed against the database.
Remember that “flat” structures are directly accessible and more complex attribute
types, like nested event object types or dictionaries must be post evaluated (compare
with Section 5.5). If the item is not a SingleValue Type the infix representation is
used to create an [ltemFAFExpression by compiling its EAExpression. At last the
corresponding event object type of the item is added to the item.

SelectltemBelongToOptimizer

I [Iterate through |
| Selectltems

Perform
ItemAttributeOptimizer

Figure 6.38: SelectItemBelongToOptimizer Process

The SelectltemBelongToOptimizer iterates through the Selectltems that have
been preprocessed by the StarOptimizer and applies the ItemAttributeOptimizer
to all of its items. This process pre-determines if an item is directly accessible
on the database or if it has to be post-evaluated. Either way the reference to the
corresponding data source (e.g. event object type) is created.

WhereltemBelongToOptimizer and JoinltemBelongToOptimizer

The WhereltemBelongToOptimizer and JoinltemBelongToOptimizer apply the
TItemAttributeOptimizer to the leafs of the IDisseminationltemn. But the ON and the
WHERE clause contain a root item that has a left and a right item. Those items
represent the structure of the conditional expression, possibly containing aliases and
expressions that can not be pushed directly to the database. Therefore the optimizer
traverses through the model recursevily and applies the ltemAttributeOptimizer that
creates the link between the corresponding event object type and item and determines
if it is an EAExpression that must be post-evaluated.

202

Chapter 6. SARI-SQL Query Language

WhereRootltem OndJoinRootltem

v

ItemAttributeOptimizer

S

Perform

Step out of Recursion

< Perform
= OptimizeDissemination
35
=1
2 yes | IsBoolltem | o
= AND
has Left Item ‘

=
£ es
2e Y%® s Boolltem?
b
© =
£x
g & Is Boolltem
@ es no
&« 4 AND

has Left Item

’ Return Item ‘

Figure 6.39: WhereltemBelongToOptimizer Process

Model Analysis 5 Rewriter
Analyze |
| Where Model
- A* I .;L Perform Rewriting]
=— nalyze
Optimized % Select Model | |
Model \ 7
% ’8% Analyze Execution Planning
From Model | |
- ¥ - [Perform Execution
&; Analyze i Planning
L Correlation Model)

Figure 6.40: SARI-SQL Query Planning

6.3.3.3 Query Planning

In the previous SARI-SQL query decomposition block, the given query statement was
pre-processed and optimized by creating an abstract syntax tree, traversing through the
AST, validating it, transforming the AST into a more efficient internal data structure
and at last applying an optimization strategy to the model. The created and optimized

203

Chapter 6. SARI-SQL Query Language

SARI-SQL query model is now used by the query planning stage for the final processing
step before execution. The planning analyses the model, performs rewriting according
to the target Event-Base repository schema, taking into account the target RDBMS
systems, and setting up an execution plan. The high level process is outlined in Figure
6.40. The process itself takes the SARI-SQL model analyzes the various clauses (Select,
From, Where, ...) and performs the rewriting and execution planning based on the
results.

6.3.3.3.1 Analyze and Rewrite WHERE Clause

The first SARI-SQL model component that is analyzed is the WHERFE clause.

EOT XML is used for post-

evaluating non-db Types

ShipmentlD| Costs | Transportinfo.Destination| |ShipmentID| Costs| EventObjectXml
Vienna <?xml..... />
Madrid <?xml/>
\\ J
Yo

Non-DB since it is nested type

Figure 6.41: Where Clause Analysis and RewritingProcess

As mentioned earlier in the Section 6.3.3.2 the WHERFE clause AST is broken down at
OR, AND and EQUALS operator nodes, in order to span up at these decomposition
points a dissemination of items that now can be used to check if it is possible to push
the expressions of the items directly onto the Event-Base. The process is illustrated in
Figure 6.44. The WHERE clause model has a root item that marks the split point of
a boolltem (e.g. OR, AND and EQUALS with the current strategy). Every boolltem
contains a left and a right Whereltem that are iterated through recursevily. If a non
boolltem is hit, the containing expression of item is checked against the Event-Base if it
is representable (e.g. it is a non-DB Type). In case that every item is representable by
the Event-Base a rewriting is performed into the target Event-Base repository schema
taking the special nature of the applied RDBMS systems into account. However if an
item is not representable (such as nested attributes in event object types), a unique
label is created for it and stored for further evaluation. After all WHERE clause items

204

Chapter 6. SARI-SQL Query Language

are checked the list with the non-DB items is taken and they are flagged as non-DB
Executables and pushed into the list of SELECT clause items. These newly created
SELECT clause items are used in the post-evaluation process to apply in-memory
filtering and joins according to the WHERFE clause expression part that could not be
performed directly by the Event-Base. After the post-evaluation has been successfully
finished these type of items are excluded from the projects. items are used in the
post-evaluation process

SELECT ShipmentID, Costs FROM ShipmentCreated
WHERE Transportinfo.Destination = “Vienna"

Extended SELECT Clause:

Post-Evaluation

ShipmentID| Costs | Transportinfo.Destination I]SEEEIE?:..?.....: —‘— e e *\I
Vienna - 1 i Transportinfo.Destination = “Vienna“ |
Madrid | Mercscsnaciisicaansinesansasaosecans .)

k I\ J [e

N | Transportinfo.Destination

Y 1
Reaa =¥ emmemmm——— e J
SELECT Clause For Post-Evaluation Non-DB Type

Vienna

Figure 6.42: Where Clause Planning Example

Figure 6.44 provides an example to explain the concept of non-DB item han-
dling. In the example a query is executed that selects the ShipmentID and Costs
attributes out of the ShipmentCreated event object type. Further the WHERE clause
restricts the space of tuples by the constraint TransportInfo.Destination — ‘Vienna.
The left part of this WHERE clause constraint is detected as a non-DB type as it is a
nested type. Therefore an additional SELECT clause item is added that represents the
item expressions that can’t be pushed directly to the Event-Base for evaluation. Later
on, in the post-evaluation the the newly created column is filled up with the data taken
from the corresponding event object type XML (i.e. ShipmentCreated. Destination).
These tuples are evaluated against the previously non-DB item expressions. The
evaluation itself is an EAExpression procedure.

6.3.3.3.2 Analyze and Rewrite SELECT Clause

The SELECT clause model consists of several items that were built out of the
abstract syntax tree and later on optimized in the query decomposition block. Each

205

Chapter 6. SARI-SQL Query Language

of those items represent a projection expression. A projection expression can be in
the simplest case just an attribute of an event object type or in a more complex
case a calculation that can be defined by EAExpressions. The type of each item
(e.g. ItemHeaderAttribute, ItemAttribute or ItemEA Fxpression - compare with Figure
6.29) was determined during the transformation processes of the AST to the internal
model and is represented through an inheritance hierarchy described in Section 6.3.3.2.

| Mark as
yes | > Non-DB
Iterate through the | Determine ' Any Item ' i}”as ’:g’ corresponding
Selectitems ItemAttribute Type » non DB Type? L; 1’;’;’,”;””’ ce.
Special treatment of —
Header attributes no > Perform Rewriting of
required ltems for SelectClause
_ 1
Iterate through Add XML Selector
found Non-DB Items for Non-DB Types

Figure 6.43: Select Clause Analysis and Rewriting Process

Now these types are required during the the SELECT clause planning process
as the first step is to iterate over the SELECT clause model items. A simplified
illustration of the process itself is shown in Figure 6.43. Every select item is checked
first, which item type it is - this is required for rewriting purposes to determine the
specific characteristics of the item. The next step is to check whether the expression of
the particular item is not representable directly by the Event-Base (i.e. it is a non-DB
Type). If the item is not representable, the corresponding FROM source, referenced
in the internal model, is stored to a list for later processing (i.e. BlongsTo attribute of
the item). The items that are representable by the database receive in the rewriting
process the right alias of their corresponding FROM source and transformed into the
target Event-Base repository schema taking the special nature of the applied RDBMS
system into account. Basically the rewriting process just translates the items with
their expressions into the target RDBMS SQL dialect and takes care about the right
usage of the aliases.

At last the previously created list of FROM items is worked through. The
rewriter creates for every source item of that list an additional projection in the target
RDBMS SQL dialect. That projection item accesses the EventObjectXml attribute of
the corresponding type (compare with Section 5.5).

Figure 6.44 shows an example of the processing of non-DB types for better un-

206

Chapter 6. SARI-SQL Query Language

derstanding. This example accesses following three items of the event object
type ShipmentCreated in the SELECT clause: ShipmentID, Costs and Transport-
Info.Destination. As the Transportinfo.Destination is a nested type it is not possible
to push it directly to the database. Therefore the rewriter creates an access to
EventObjectXml of the ShipmentCreated event.

EOT XML is used for post-

evaluating non-db Types

ShipmentID| Costs | Transportinfo.Destination| |[ShipmentID| Costs| EventObjectXml
Vienna <?2xml />
Madrid <?xml />
\\ o
h'd

Non-DB as it is nested type

Figure 6.44: Where Clause Analysis and Rewriting Process

To provide a better idea of what the query rewriter creates when dealing with
nested types or in general non-DB types, the subsequent SARI-SQL example (a)
shows the translation (b) performed by the query rewriter. In this example the target
RDBMS is MS SQL Server 2005.

Example:

a) SELECT ShipmentID, Costs, TransportInfo.Destination FROM ShipmentCreated

b) SELECT dbo.[ShipmentCreated_ X].EventObjectXml AS ShipmentCreated_ EventObjectXml
FROM dbo.[ShipmentCreated X]

6.3.3.3.3 Analyze and Rewrite FROM Clause

The FROM clause is the construct that defines the data sources that are under
examination in the projection (SELECT) clause or the condition (WHERE) clause.
In particular the FROM clause consists of several items (compare with Figure
6.31) which defines event object types and the metrics or scores for the query. The
internal model of a normal FROM clause representation (e.g. without containing join
constructs) holds basically the corresponding event object type and an alias that is

207

Chapter 6. SARI-SQL Query Language

used through out the rest of the SARI-SQL query. In case of metrics and scores an
internal dummy event object type is used to represent their structures. SARI-SQL
model items hold references to their corresponding FROM items.

In case of advanced join constructs such as INNER JOIN or LEFT/RIGHT/FULL
OUTER JOIN the model contains (compare with Figure 6.33) two data source
items (e.g. an event object type for instance) and an ON clause that represents the
conditional EAExpression part of the join operation. Just like the WHERE clause the
ON clause is presented through a root item that marks the split point of a boolltem
(e.g. OR, AND and EQUALS with the current strategy.

Inner Join | Performing |

Rewriting

Full Outer

yes ' Iterate through | | Determine | Join » —l

! the Fromltems ! Type | Left Outer —
: . ; Join I l
. 1 " - e
From Clause —®» Is Join Clause? Right Outer

Join > [

Metric From :
Performing
Rewriting

Score From

no | lterate through | | Determine
the Fromltems Type -
‘ ! L Normal From r 1

Right Outer
Join

LT E——

Figure 6.45: From Clause Analysis and Rewriting Process

The simplified process of analyzing and rewriting the FROM clause is illustrated
in Figure 6.45. This process is pretty simple, in terms of complexity, as it makes a
distinction between normal join constructs and the constructs that contain join. Then
it iterates over all FROM items and, determines the type of the item and applies the
corresponding rewriting procedures. The rewriting translates the SARI-SQL FROM
items into the corresponding RDBMS dialect of the Event-Base and applies the
correct aliasing. For the ON clause of join constructs currently the same strategies
are applied as for the WHERE clause.

6.3.3.3.4 Analyze and Rewrite Correlation Clause

The access of correlations in SARI-SQL is defined by the OVERCORR clause

208

Chapter 6. SARI-SQL Query Language

and allows to define pre-selector over events by restricting the space of available
event object types in the FROM clause. The OVERCORR clause is applied after
the FROM clause and holds a list of correlation name items. In case that more then
one correlation is used aliasing is applied in order to be able to define which event
object type in the FROM clause belongs to which correlation to avoid ambiguity. In
case that a FROM item is not aliased, but aliasing is used for correlations, then all
event objects of the corresponding types are selected. The internal representation and
organization of correlations in the Event-Base is described in detail in Section 5.5 and
is the underlying data structure for SARI-SQL.

' Iterate through the '
—® corresponding —
J From items

Rewrite EOTs in
the From Clause

Iterate through the
OverCorr items

Figure 6.46: Correlation Clause Analysis and Rewriting Process

The planning process of the correlation clause evaluation is illustrated in Figure
6.46. The process itself is again quite simply structured. For every correlation item
the corresponding referenced items are walked through and a rewriting strategy is
applied. The most complex part of this process is to perform the rewriting for corre-
lations and their corresponding FROM items according to the described correlation
management in Section 5.5.

To give an impression of the resulting rewriting (&) the reader should consider
following simple SARI-SQL query example (a) containing a correlation access, where
the target RDBMS of the Event-Base is the MS SQL Server 2005. This SARI-SQL
query example depends on the example shown Figure 6.14 that was introduced at the
beginning of this chapter in Section 6.3.1.

209

Chapter 6. SARI-SQL Query Language

Example:
a) SELECT start.StartLocation, end.EndLocation
FROM TransportStart start, TransportEnd end
OVERCORR Transportinfo
b) SELECT start. TransportStart, end. Attrint2 FROM
(SELECT ETgeneratedld0.*, corr.*
FROM EBCorrelations corr, EBCorrelations2Events corr2event,
dbo.[TransportStart X] ETgeneratedld0
WHERE corr.CorrelationSetld — "TransportInfo’
AND corr2event. CorrelationGuid = corr. Correlation Guid
AND corr2event.eventquid = ETgeneratedld0. guid) start
FULL OUTER JOIN
(SELECT ETgeneratedld1.*, corr.*
FROM EBCorrelations corr, EBCorrelations2Events corr2event,
dbo.[TransportEnd_ X] ETgeneratedld1
WHERE corr.CorrelationSetld — "TransportInfo’
AND corr2event. CorrelationGuid = corr. Correlation Guid
AND corr2event.eventquid — ETgeneratedId]. quid) end
ON start. CorrelationGuid = end. CorrelationGuid

6.3.3.4 Execution, Evaluation and Rendering

The Query Fvaluation is the last SARI-SQL query evaluation step. The previous
block used an optimized internal SARI-SQL query model for query planning which
consists of several rewriting strategies that are heavily based on previously applied
model analysis procedures. The result of the Query Planning block is an SQL query
statement compliant to the FEvent-Base repository schema, described in Section 5.5,
and taking into account the target RDBMS systems.

The Query FEwvaluation block is now responsible of executing the prepared and
pre-processed SARI-SQL query. This process block basically consists of an ex-
ecution phase and a post-evaluation phase of the results, which is referred as
FEvaluation/Rendering in Figure 6.22. The execution phase itself is just executes the
rewritten query statement, previously created in the Query Planning block, against
the Event-Base. The result of this execution is a table with columns according to the
rewritten projection items. As the analysis and rewriting strategies created a result
overhead for handling not representable items such as nested types it is necessary
to post-process the result table. So for instance the SARI-SQL WHERE and ON
clauses broke down OR, AND and EQUALS operator nodes, in order to span up
decomposition points for a sub-expression dissemination. Parts of those the expres-

210

Chapter 6. SARI-SQL Query Language

sions could be directly pushed onto the Event-Base and parts of the conditions and
joins must be post-evaluated in this phase in memory with the help of EAExpressions.

Create and Prepare I Iterate through Iterate through the Create Filter for the

new Result Table —»= Rows of original —»= Columns acclording to Where Clause that is
+ b Result Table | | Selectitems in Model | applied in-memory on the

. new table, whereas the
Iterate through the yes [Is Column |no Non-DB chunks are

Selectitems replaced with the
MNon-DB? .
* _ 6 } Column-Labels in the

Load Event Object Set Table Cell Result Table
Prepare Column XML from Content with original
corresponding Result
column

Evaluate EAExpression
and set the Result in the
Table Cell

Figure 6.47: Result Post-Evaluation Process

In the following the major process steps (shown in Figure 6.47) of the post-
evaluation of the results will be described and for better understanding the example
of the WHERE clause shown in Figure 6.42 in Section 6.3.3.3 will be extended for
explanatory purposes.

The post-evaluation process itself is based on iterating through the row of the
returned result table. But before the iteration of the rows is conducted, a new and
clear result table is created in memory. The columns of that newly created table are
determined by the items SELECT clause part of the SARI-SQL model, which also
holds the overhead items such as on the Event-Base unrepresentable nested types.
Such an item is for instance the item Transportinfo.Destination shown in the example
Figure 6.48. Bear in mind that the original result table does not contain these type
of overhead columns anymore as they have been rewritten to retrieve the whole
EventObject Type Xml therefore they have to be recreated.

The next major step in the process is to walk through every SELECT clause
item (i.e. the columns in the newly created table) and check whether it is a non-DB
type or not - just like in the previous analysis step of the Query Planning block. If
it is a non-DB type the corresponding BelongTo XML representation of the event
object is loaded from cell of the original result table. The loaded XML event object
is then used to evaluate the EAExpression of the Selectltem. The result is then
written away into the corresponding result table cell. Otherwise, if it is a DB type,
the content of the corresponding orginial table cell is written to the new result table cell.

211

Chapter 6. SARI-SQL Query Language

At the end of the process, a table is set up containing all data that is required
to post-evaluate conditional items and joins that are not directly representable by
the Event-Base. For that purpose the previously not evaluated parts of the WHERE
clause are rewritten to match the column labels/names of the new evaluated result
table. By doing that it is possible to apply an in memory filter or to create joins over
such non-DB type items.

SELECT ShipmentID, Costs FROM ShipmentCreated
WHERE Transportinfo.Destination = “Vienna*

o
£ ShipmentlD| Costs | Transportinfo.Destination ShipmentID| Costs| EventObjectXml
=
g Vienna <xml ... [>
o Madrid <?xml>
iy
Q
=
e
Event-Base Result Table Set-Up new Table
¥ 4 according to Model and Evaluate EAExpression
ShipmentlD| Costs| EventObjectXml ShipmentlD| Costs | Transportinfo.Destination
o <?xml ...Madrid... />}---1" A Madrid
© <2xml ...Vienna.. [>}---1""" A Vienna
=
1]
>
w
E T 7
=5 Remove temp tables hd
o - - Apply filter on Column
ShipmentID| Costs Transportinfo.Destination = “Vienna*

Figure 6.48: Post-Evaluation Process Example

In order to ease the understanding of this process the steps are illustrated with
an example in Figure 6.48. The first action was taken in the Query Planning block
where the Transportinfo.Destination item of the SELECT clause was created as it
is a nested type and thus a non-DB type. Further that item was rewritten to access
the corresponding EventObjectX ML, which is in this example the ShipmentCreated

212

Chapter 6. SARI-SQL Query Language

event object type. The result table in the Query FEwvaluation block contains the
ShipmentID, Costs and the FEwventObjectXml holding the event object instances
wrapped into a XML structure. Now the new result table is created holding the
original Transportinfo.Destination instead of the FventObjectXml. During the process
every row of the original result table is walked through and as the first two columns
were DB types they can be taken directly into the final result table. However the
third column (i.e. the TransportInfo.Destination) is treated as an EAExpression that
is evaluated against the event object, wrapped inside XML, of the corresponding
row. The result of the EAExpression evaluation process is then stored into the new
result table. At the end of the process the WHERE clause is rewritten to match the
label of the TransportInfo.Destination column. Then it is applied as a conditional
filter against the new result table and every tuple is excluded that does not contain
“Vienna” in the third column. Finally the overhead helper columns are stripped away,
so that only the explicitly defined projection items of the SARI-SQL SELECT clause
are left over in the result table.

6.4 Summary

This SARI-SQL Query Language chapter introduced the two languages SARI-SQL
and EAExpression, which are an important feature for event processing systems in
particular for the complex event processing system SARI [81], its processing compo-
nents and the efficient up-to-date operational storage extension - the Event-Base.

SARI-SQL is a query language for retrieving near real-time events and create
conjunctions with historical events, metrics and scores and is in contrast to Event
Clouds indexing approach [76][73][90] a formally structured solution that extends
ANSI-SQL. Tt creates an abstraction of the event type model by encapsulating a
lot of overhead and putting a layer over events and their internal data structures.
EAExpressions on the other hand pay a special attention to the nature of events and
their special characteristics such as providing an expressive and easy to understand
language for accessing events, both during the design phase of event processing appli-
cations and also during runtime to perform evaluations on events. The EAExpression
language is a subset of the SARI-SQL language and can be used independently from
SARI-SQL.

The chapter is mainly organized in a pragmatic way to explain in iterative steps
the general concepts, applications, syntax, semantic and how the two languages are
interwoven and play together. The syntax of both languages were described by the
help of a modified Extended Backus-Naur-Form (EBNF) notation and illustrated
with examples based on concrete scenarios for better understanding. In case of

213

Chapter 6. SARI-SQL Query Language

EAExpressions the syntactical and semantical concepts were discussed such as how
event object types, their headers, how to work with multi-value attributes such as
collections and dictionaries and other miscellaneous term constructs. In case of
SARI-SQL the integration of the EAExpression syntax into the main query blocks
were introduced and further the usage of functionalities were described such as how to
retrieve events, access correlations and how to define joins. In addition the abstract
syntax tree for the language constructs were formalized and described in detail as
they are an important concept for the languages evaluation processes. Furthermore
syntactical and AST parts of the EAExpressions were overridden by SARI-SQL in
order to be able to define constraints for steer the expressiveness. At last the validation
and evaluation processes of both languages were explained. The main focus was set
to the evaluation of SARI-SQL queries itself as EAExpressions can be treated from a
validation and evaluation point of view as a black-box.

The main advantage of SARI-SQL is that is enhances the main building blocks
of the well known ANSI-SQL syntax (SELECT, FROM, WHERE, ...) in order to
encapsulate details of the event processing domain. Therefore SARI-SQL allows to
access and reference (by aliasing) event object types through the FROM clause. The
SELECT clause allows user to directly access event objects types and their attributes
without knowing anything about their internal representation. Furthermore it provides
a simple access to the different attributes types such as header attributes, collection
items and dictionaries. In a WHERFE clause it is possible to apply conditions in order
to reduce the set of resulting tuples. Comparable to ANSI-SQL it is also possible to
define joins (also left, right and full outer joins) between attributes of event object
types. The language also ships a rich set of pre-implemented functions containing
various mathematical, statistical and other common functions such as type converters
or list operators. One of the most important features of SARI-SQL is the possibility
to define specific correlations within a query by using the OVERCORR clause. A
correlation allows to retrieve events that share a certain relationship. This enables
to track down causal relationships for instance, detect patterns and perform event
mining tasks. At last SARI-SQL also allows to access metrics and scores maintained
in the Event-Base.

Nevertheless the chapter provided a comprehensive introduction, of the main
contribution of this dissertation, the SARI-SQL query language and its related
concepts and constraints. To set the contribution of this chapter into relation and
context with other work, in the field of event processing languages, a comparison of
several important aspects is introduced.

214

7 Related Work and Comparison

7.1 SIENA
(_)biect of interest interested party
advertise subscribe
~ publish notify

access point

servers event service

Figure 7.1: SIENA Distributed Event Notification Service [23]

SIENA (Scalable Internet Event Notification Architecture) [23] is a multi-broker event
notification service (shown in Figure 7.1), based on the publish/subscribe paradigm,
focusing on maximizing the expressiveness and maintaining the scalability in wide-area
networks.

The main problem instance in such wide-area networks is the big number of in-
teracting components that goes hand in hand with a potentially high number of
notifications between those interacting communication partners.

SIENA (shown in Figure 7.1) provides a pub/sub notification interface towards
the interacting clients and works as a kind of access point where the publishing, or
in terms of event-based interaction, the producing components can use them to place
advertisements of future event notifications. On the other side of the communication,
the consuming components, can issue their interest in event notification through
specifying filters.

215

Chapter 7. Related Work and Comparison

An advertisement is broadcasted over the whole broker network and it is used
to prepare the routing of event notification in such a network. A subscription is
issued internally to the brokers by going back the previously defined path of the
advertisement. The advertisements and subscriptions create routing entries that are
used for event notifications to match the subscription and their routing direction.
This also brings a drawback with it a the advertisements have to be processed by all
brokers in the network. In large networks this may lead to unpredictable delays until
the advertisements have been processed.

An important beneficial aspect with the subscription distribution towards the
notification producer is that event notification can be filtered out early. This early
filtering could save network bandwidth as events, in which no consumers are interested
in, can be filtered out immediately.

The underlying data model is a notable asset of SIENA as the data model con-
sists of typed attributes. Each attribute consists of a tuple containing the attributes
type, name and walue. Attributes of a notifications belong to a set of predefined
types that are available in common programming languages. This event typing has be
chosen in order to preserve scalability in wide-area networks. If the event is an explicit
notification type a global authority would be required to manage those types.

string what >* finance/exchanges/

string symbol = MSFT

float change > 0
]

string what >* finance/exchanges/

string symbol = NSCP

float change > 0

Figure 7.2: Example of an event pattern in STENA [23]

SIENA allows to define filters and patterns for retrieving event notifications
(e.g. defining subscriptions).

e Filters in SIENA are matched against the attributes of one event notification.
They are basically simple constraints on attributes with operators for equality,
ordering relations, strings and for defining wildcards.

e Patterns are executed against one or more event notifications which allows to
define patterns that can correlated events. However the syntax of the pattern
language is limited to the definition of a list of filters on events that are temporar-
ily ordered. Figure 7.2 shows a pattern example taken from [23]. This pattern

216

Chapter 7. Related Work and Comparison

detects a price increase of the stock MSFT followed by an increased of the stock
NSCP.

7.2 Gryphon

NASDAQ NYSE
" by

(COMBINED |
tranistorii [price, volume] =>
[capital: price*volume]
CAPITAL
select [capital >= 1000000]

LARGE
TRADES

v

ANALYST

i

Figure 7.3: Information Flow in Gryphon [84]

Gryphon [51] is a project at the IBM Research IBM T. J. Watson Research Center
and is a content-based publish/subscribe notification system. Interacting components
can attach themselves to the system by making use if the Java Message Service (JMS)
interface API. A special focus was set on creating a redundant broker network for
routing notifications with the ability of providing guaranteed delivery while preserving
scalability and availability.

Gryphon is described by the authors of [84] as an augmentation of the pub-
lish /subscribe with following features:

e Content-based subscription which means that the consumer is capable of
defining subscriptions based on the internal data structures or attributes of the
messages itself.

e Event transformations that allow to manipulate events.

e Event stream interpretation which allows to collapse and expand back se-
quences of events.

e Reflection that provides meta-events to manage the system.

217

Chapter 7. Related Work and Comparison

The Gryphon system is based on information flow graphs (acyclic directed graphs)
which are used to define the exchange of event notifications between the producers
and consumers. Each of the nodes in the graph can contain specific types of events
whereas the edges are capable of selecting/filtering or transforming them.

The example in Figure 7.3 shows the two different stock tickers NASDAQ and
NYSE. Those two event producers are combined in the information flow graphs to one
event notification stream. The first edge transforms the the event notifications, while
the second one is applying a filter to the event notifications that selects out events
with a capital less than 1.000.000,-.

The nodes in such a graph are partitioned into several brokers, that don’t nec-
essarily have to be physical brokers. There are three types of brokers in Gryphon.
The first one is a a broker that is connected to event producers - e.g. components
that are publishing event notifications. The second type is connected to consuming
components - e.g. components that are subscribed to event notifications and the last
type of brokers are intermediate brokers. The mapping is defined before deployment
which makes changes and adoptions during runtime difficult. However, as the physical
implementation of the flow graphs is open, it is possible to alter the flow of patterns
and transformations.

7.3 JEDI

| DS [ps | [bps |
f AO ¢ f
A0 40 40

Figure 7.4: JEDI’s Hierarchical Strategy [34]

JEDI (Java Event-based Distributed Infrastructure) [33] is a distributed communica-
tion middleware based on the publish/subscribe communication paradigm. The main
characteristics of JEDI is that it is based on multicast, nor the destination or the

218

Chapter 7. Related Work and Comparison

producing source is defined, the notification delivery is guaranteed and mobility is
ensured through the concept of reactive objects [34].

The event notification routing is carried out through so called event dispatch-
ers, which is physically either organized as a central component or by multiple
distributed components that are then interconnected through a hierarchical topology.
Subscriptions are forwarded from the issuing nodes to the top root node. The
dispatching servers store the subscriptions in internal data tables. If a notification
has been received by a dispatching server it forwards it to components that provided
the dispatcher with a matching subscriptions. This forwarding is executed until
the consumer component, that published a subscription, have received their event
notification. In contrast to SIENA, advertisement of notifications are not used by JEDI.

JEDI introduces the notion of active objects (AO) which is a component that
is producing or consuming events. Figure 7.4 shows an illustration of the event notifi-
cation distribution strategy where an AO on the top is producing event notifications
and the event dispatchers are distributing them down to the subscribed AO consuming
components.

The data model of JEDI is built upon key-value pairs where each of event noti-
fication consists of a name and attributes. Subscriptions are called event profiles
in JEDI and contain filters also based on key value pairs. Lets consider an event
TransportStart with the attributes DepartureLocation, DateTime and Product.

A subscriptions in JEDI would contain following collection of tuples: <FEuvent-
Name, TransportStart>; <DepartureLocation, *>; <DateTime, *>, <Producl,
Tonsalumn>. In this case all TransportStart event notifications would be filtered out
that contains the product Tonsalumn regardless of the content of the DepartureLoca-
tion or DateTime attributes.

JEDI supports mobility of components and their temporal disconnection. If a
component is disconnected from the distribution network all subscribed notifications
are stored. If the component is later online again the notifications will be flushed to
the previously absent component.

7.4 HERMES

Pietzuch and Bacon introduced Hermes [71] [8] that considers itself a distributed
event-based middleware. The system is aiming at covering traditional middleware
functions like type-checking of invocations, reliability, access control and transac-

219

Chapter 7. Related Work and Comparison

P Event Publisher
S) Event Subscriber

Figure 7.5: Application Built in Hermes [8]

tions. Hermes is based on the publish/subscribe paradigm making use of type- and
attribute-based subscription mechanisms. Furthermore, Hermes is taking traditional
middleware features like interoperability, reliability and usability into account.

Figure 7.5 shows an illustration of a Hermes application. The two main com-
ponents are so-called event clients and event brokers. The event clients are the
producing and consuming components in this model and thus they exchange event
notifications through subscriptions and publications. The event brokers provide the
necessary middleware functionalities. The event clients can connect themselves to
the brokers and issue subscriptions or send event notifications. The broker nodes are
interconnected with each other and they deliver the published event notifications to
the corresponding subscribed consumers.

The event brokers form a logical routing network for event notifications. Adver-
tisements are used to construct an event dissemination tree for between publishers and
subscribers of event notifications. Hermes introduces so called rendezvous nodes as a
meeting point for advertisements and subscriptions. There exists one of these special
rendezvous nodes for each event type in the network and each of the nodes is known
to publishing and subscribing components. These nodes are replicated throughout the
network to ensure fail-over scenarios. Event subscriptions are distributed through the
network in reverse order of the way that the advertisements took. Each broker that is
passed stores the subscription (e.g. filter) internally and applies it whenever an event
notification passes by.

In contrast to other publish/subscribe systems Hermes is using type-based ap-
proach for event notifications instead of simple key-value pairs. Every event in
the system corresponds a specific event type that helps to secure robustness of the
system as type-safety can be ensured during runtime. The event types can be defined

220

Chapter 7. Related Work and Comparison

in a hierarchical inheritance structure like known in object-oriented programming
languages. Subscriptions can then be applied to parent types which will also take
inherited children into account.

The subscription language itself is a message that selects an event type and de-
fines a attribute filters on the specified event type. The filter is an XPath expression
that is evaluated against incoming event notifications. Such a subscription including
an attribute filter is shown in Figure 7.6.

<?xml version="1.0" encoding="UTF-8"7>
<h:hermes xmlns:h="http://www.cl.cam.ac.uk/opera/hermes">
<subscription>
<subscribe typename="LocationEvent">
<typeattr>
<xpath>child::*[child::id>314l and child::position="FE02"]</xpath>
</typeattr>
</subscribe>

</subscription>
</h:hermes>

Figure 7.6: Hermes Subscription Message Definition [71]

7.5 REBECA

REBECA [412] is a distributed publish/subscribe event notification system especially
aiming at large-scale e-commerce applications. The main design effort of the architec-
ture was laid on system scalability and the optimization and evaluation of notification
routing algorithms. In REBECA new routing algorithms can be added in terms of
advertisement and subscription forwarding in the overlay network. The interface
towards the client components is decoupled from the underlying routing algorithm.

REBECA is relying on acyclic graphs representing the overlay network of bro-
kers partly comparable to SIENA. To preserve the scalability and fail-over scenarios
of such a network, redundancies can be applied of components can be applied. The
constituents of the network are shown in Figure 7.7. The network is built up by three
different types of components:

e Local Broker: The local broker acts as an access point and is usually part of
an application library. Such a broker is connected to a border broker and is not
considered as a regular part of the broker network

e Border Broker: The border brokers form the logical borders of the overlay
network and are directly connected to the clients.

221

Chapter 7. Related Work and Comparison

X1| ... Client_—___

"~ . Border Broker
' " K?f_)\BrokerNetwork (BQ\\
/,

S
Vo) X

! Inner Broker
X4's Access Broker

Figure 7.7: The Router Network of REBECA [93]

e Inner Broker: The inner brokers form the inner circle of the system and have
no outside (e.g. client) connections.

Subscriptions are propagated through the network of brokers and forming a delivery
path through routing tables. Those routing tables contain a filter and link pair, where
the link contains the reference to the source of the subscription. In the simples routing
case all brokers maintain a global knowledge about active subscription which has the
advantage that it can reduce the network traffic as it pushes the filters towards the
notification producing components (comparable to STENA). However it also creates
a huge amount of overhead as large routing tables have to be maintained on every
node. In addition there is a concept subscription merging introduced [64] to reduce
the amount of states kept on brokers.

The data model of an event notification in REBECA consists of key-value pairs
representing attributes. The attributes can be of simple runtime types like (int, string,
bool, ...). Subscriptions can be defined through creating filters that set constraints
on attributes. A filter can contain several attribute filters where one attribute filter
is constraining a specific attribute of a notification. Such an attribute constraint can
apply operators like equality, inequality and comparison operators.

7.6 Aurora

The Aurora project [1||92] is an event stream processing engine designed and
developed at the Brown University together in cooperation with the MIT and

222

Chapter 7. Related Work and Comparison

Michael Stonebreaker. The systems considers itself as a high performance stream
processing engine that ships with a set of extensible stream operators and a workflow
oriented processing approach including a GUI tool for manipulating workflow diagrams.

The fundamental idea behind the development of Aurora was to encounter the
flaws of traditional RDBMS systems, that follow the HADP (human-active, DBMS-
passive)[l] model which is not able to cope with the requirements of monitoring
applications. Monitoring applications need to process large amounts of data streams,
with imprecise data (for instance coming from sensors) and computation latency is an
important requirement (e.g. real-time processing).

Aurora aims at integrating multiple streams coming from data sources into a
graphical modeled workflow graph. The workflow system is a directed and loop-free
graph containing operators where the processing steps are represented through arrows
and boxes. Further Aurora is providing a features that allows to maintain and access
historical data and perform ad-hoc queries.

QOS spec
S1 S2
I I I
storage storage
5 b, * b, by app
view
Comwci;'on EbZI
point QOS spec
Persistence spec: o
Ko 2’ [Eunnn] by b Persistence spec:
S3 “Keep | hr”

Figure 7.8: The Aurora Query Model [1]

Figure 7.8 shows a conceptual illustration of Auroras processing workflow and
how continuous queries can be applied on incoming data streams. On the top left side
of the figure is the entrance point for data streams. The boxes represent operators
that can be applied to the data streams. Data that has been processed through the
graph is usually gone. There are black dots on the map that work as a persistence
container and are capable of storing data for a specific amount of time. The persisted
historical data can be retrieved by placing ad-hoc queries against the containers. Paths

223

Chapter 7. Related Work and Comparison

without connected applications (shown in the middle of the figure) can also persist
data for later processing. So for instance if an application is attached later in time to
the processing graph it is still capable of absorbing events from the processing network.

Auroras stream data model is represented by a sequence of tuples, containing
attribute-value pairs, where each tuple is marked by a timestamps that defines the
entrance time of the event in the aurora network. The query language SQuAl (Stream
Query Algebra) contains seven operators that are comparable to operators known
from the relational databases with regards to the requirements of stream processing.

There are two groups of operators in in Aurora. The first one are order-agnostic
operators and the second one are order-sensitive operators. This is because Aurora is
not guaranteeing the delivery order, which is an advantage when processing tuples by
priority.

e Order-agnostic operators

— Filter: Matches incoming tuples against predicates. In case they satisfy
them the tuples is diverted to a specified output stream.

— Map: Is a projection operator that basically transforms input tuples.

— Union: Is used to merge several input streams into one output stream.

e Order-sensitive operators

— BSort: Is an operator that sorts an input stream based on buffering the
items as it is hard to sort an infinite stream of data.

— Aggregate: Defines a sliding window over data streams to calculate for
instance the average price of stock ticks in the last hour.

— Join: This operator is comparable to inner joins known from relation
databases. It allows to select attributes from two streams and let them
join.

7.7 Medusa

Medusa is stream processing system basically using Auroras query capabilities
[28][10][92] with the goal to enable the distribution of evaluation of Aurora queries.
Medusa if focusing, contrast to the Aurora project, on developing a distributed
infrastructure in order to create a loosely coupled network of stream processing
components.

According to [10] the major benefits and improvements of Medusa are that is

224

Chapter 7. Related Work and Comparison

capable of scaling up the stream processing on multiple distributed nodes, providing
fail-over handling and securing a high-availability, providing services to integrate a
wide set of source streams and handling high peaks of load. This is achieved by setting
up an overlay network of distributed nodes.

Window Operator Stream

©(a) 3 Medusa/Aurora Node

— Agg. seg| - (c) (d) Toll
I min d - : ificati
) . avg speed L ; - — Join | |Notification
Car Imin 1 . -
. . location
Sightings —Agg. seg
min| "SS" 7TE

avg vol.

Participant 1

() Participant 2
Tminl AUU car F] ter (h)
min -

avg speed speed = 0 —— I: Join
L min| ~

Filter . location| | Tow Truck

tow truck Dispatch

(2) Medusa/Aurora Node

Figure 7.9: Example of a distributed Medusa Query [10]

Figure 7.9 shows an example from the report [10] how event streams are pro-
cessed with Medusa making use of Aurora. In this example the input stream of “car
sightings” and splits them into “toll notifications” and “tow truck dispatch”. The first
boxes above are calculating the average speed and the average volume of the traffic.
Taking those two results are used to calculate the toll of the segment. The result is
then joined with the lower participant that is filtering out tow trucks and cars that
are not moving (e.g. maybe broken down).

7.8 Borealis

Borealis [2] is a distributed stream processing engine build upon Aurora [1][92] and
can be seen as its successor. The project addressed several requirement for the
development of the new stream processing engine which were driven by insights and
experiences gained from previous projects.

The project explicitly addresses [2] the problem of dynamic revision of query
results which sometimes necessary to correct errors in previously received data. Fur-
ther Borealis is aiming at providing support for query modifications during runtime
with a low overhead, fast and automatic modifications and providing high scalability

225

Chapter 7. Related Work and Comparison

with growing demands in heterogeneous environments including optimization strate-
gies and fault tolerance.

Borealis data model was extend in contrast to Aurora with the ability to sup-
port the revision of data from incoming streams. Therefore there are now three types
of message available. An insertion message (which are tuples known from Aurora),
Deletion messages and replacement messages. The processing graphs from Aurora
have been reused and are explained in Section 7.6.

o Local
P, tent
;:—z:s e: Query Processor
Borealis Node)
Load
Global NH Local . Shedder
Catalog HA Optimizer | | Monitor Admin | | QueryProcessor o Box
rocessor q—l
Storage Manager t
’ Transport Independent RPC (XML, TCP,Local)] I IOQueues| N Buffers and CP data) Priority Local Optimizer
: I i ’ Scheduler
Meta-data Control Data
‘ Data Interface | Control Interface ‘
1 1

B |

Figure 7.10: Borealis Architecture [2]

Figure 7.10 shows the Borealis architecture explained in detail in the article [2].
The most interesting constituents in context of this thesis is the Query Processor
which is the execution place for queries and contains several other supporting
components. So for instance it holds a local optimizer that is handling performance
improvements during runtime by communicating with other components ans so for
instance is capable of prioritizing events in case of peak load. Basically the query
engine from a conceptual point of view is comparable to Aurora. There is also a
storage manager in place that is persisting data streams that are required during
processing steps in the graph known from Aurora.

7.9 SASE

SASE considers itself as a complex event processing systems which was recently
introduced in the article [18] with a RFID application scenario for event stream
processing. SASE offers an expressive and user-friendly continuous query language
that allows to define sequence patterns which takes temporal order of events into
account. Further it supports sliding time windows that can be spanned over long
durations (hours or days) and allows to retrieve intermediate result sets. Further it is

226

Chapter 7. Related Work and Comparison

capable of persisting event processing results and perform combinations of continuous
query results with database queries.

(SASE) User Interface (SQL)
Continuous = Ad hoc
queries | queries

Results B Results

U

Event
Event Stream Event
Processor Database
(SASE) (MySQL)
Querying over streams Querying over history

I Cleaning and Association I|

Devices

RFID Readers
e

e
—E E
o - Tags

Communication over socket

Figure 7.11: SASE Architecture [4§]

The Figure 7.11 shows the overall SASE architecture within the RFID applica-
tion scenario. The lowest layer is the event producer that is reading the RFID tags.
The second layer performs data cleansing like removing duplicates, adding timestamps
and generating the event according to a predefined schema. These events are then
pushed into SASEs CEP engine where they are running against continuous queries.
Filtered events can be transformed by rules to archiving purposes. At the top there
is a user interface that allows to define continuous queries and let them place ad-hoc
queries against the data repository.

[FROM <stream name:>>|
EVENT <event pattern>
[WHERE <qualification>]
[WITHIN <window:>|

[RETURN <return event pattern|

Figure 7.12: SASE Query Syntax|[18]

The continuous query language described in detail in [18] is on the first glance
comparable to ANSI-SQL. The Figure 7.12 shows the query syntax of SASEs lan-
guage. The FROM clause defines the input event streams that should be processed

227

Chapter 7. Related Work and Comparison

while the EVENT clause defines the event-pattern that is matched against the stream.
The WHERE clause allows to impose predicates on attributes of events. That allows
some kind of inner join constructs. The WITHIN defines the length of the sliding
time window in which the patterns are active. The last clause is the RETURN which
transforms the streams for output.

7.10 Esper

Esper [30][16] is an Open Source event stream processing solution for analyzing event
streams. Esper supports conditional triggers on event patterns, event correlations and
SQL queries for event streams. It has a lightweight processing engine and is currently
available under GPL licence.

Event Stream Intelligence for real-time EDA
High-speed high-

volume real-time | e X
data streams . > eee :%
------------ D> Event Stream Statements -------D>(| POJOs Output
..DI> connectors& | 777 > ' adapters
adapters
T Esper engines
-¢--p Historical data Event Query & Causality Pattern Language
access layer
Core Container

Esper: Lightweight ESP/CEP container

Figure 7.13: ESPER Architecture|31]

Figure 7.13 shows the high level architecture of Esper consisting of event source
adapters that can be attached to the event producing components and output
adapters which allow to write away data to custom data sources for instance. Further
it contains a data access layer that encapsulates the historical data repository.

Esper is a lightweight event processing engine that represents its events through
simple POJOs (Plain Old Java Objects) whereas the attributes and their types are
determined through the Java class attributes. It supports also nested type structures
through dictionaries or collections and supports inheritance structures that are con-
sidered by the query statements. Esper furthermore requires an event type definition
in XML and thus supports validation through XML. It is possible to access events
through the event query language, through XPath or programmatically through Java
code.

228

Chapter 7. Related Work and Comparison

Espers query language EQL is comparable to ANSI-SQL but is extended with
concepts to conform the requirements of event processing. Such features are for
instance moving time windows and the support of aggregations. Figure 7.14 shows
the EQL syntax declaration which is comparable to SASEs introduced in the previous
section.

The SELECT clause is a projection of an event type that is resulting from the
query. The FROM clause in the statement defines one or more event streams that
are under evaluation. The WHERE clause a filter with a set of comparator operators
that can be applied on event attributes. Further it allows to create joins, similar to
inner join, upon events. The OUTPUT clause is used to control the output rate of
events in intervals. Time Windows are defined in the FROM clause upon selected
event streams. A complete documentation of the queries abilities can be found in the
Esper documentation [30].

SELECT select_list

FROM stream_def [as name] [, stream_def [as namel] [,...]
[WHERE search_conditions]

[OUTPUT output_specification]

Figure 7.14: Simple Esper Query Example

7.11 Amit

Amit (active middleware technology) [3] is an event stream engine whose goal is
to provide high-performance situation detection mechanisms. The intention of the
development of Amit was to close the gap between the identification of events and
the detection of situations that require a corresponding reaction. Amit is both a
development framework and an application that allows the users and developers
to build fast and relatively easy situation detection and reaction applications. For
these purposes Amit offers a sophisticated user interface for modeling business situa-
tions based on the following four types of entities: events, situations, lifespans and keys.

Figure 7.15 shows the high-level architecture of Amit. Amit distincts two
types and two source classes of events. The “concrete event” is an event that occurs
in the real-world and reflects a significant state change that has been observed. An
“inferred event” on the other hand is more or less and artificially created event, based
the occurrence of concrete events and the conclusions drawn out of those events. An
event is the base entity and can be specified with a set of typed attributes. Events

229

Chapter 7. Related Work and Comparison

Event

Source Event

Event e N >
Event Situation Manager Situations

Souree >
Event

Event

Source

Figure 7.15: Amit Situation Manager’s High Level Architecture [3]

are represented through event instances which can share relationships among each
other. Every event corresponds to an event type that defines the schema of attributes.
“External events” are event clagses that in Amit that have been received by the
situation manager from external sources. “Internal events” are events are fired upon
detected situations by the situation manager. The concept of lifespans allow the
definition of time intervals wherein specific situations can be detected. A situation
is the main instance for specifying queries. Detected situations are signalized by
propagating internal events.

Amits situation detection is split up into three phases. The first phase collects
event instances during runtime. In the second phase specific event instances are
selected that could play a role in the situation detection and the last step events that
play a role in the situation are removed from the collection. The situation detection
itself can be defined through the usage of a number of operators. Amit supports
quantifier attributes, join operators, counter functions, temporal operators and also
event absence operators that can be applied within a define lifespan.

7.12 Summary and Comparison

In the following section a categorized overview of the solutions from this chapter is
presents. A fine grained comparison and classification of the various solutions and
research projects is not possible due to several reasons described in the Sections 2
and 3. For instance the development of event-based systems can be originated to the
fields of append-only databases, zero/active data warehousing, the publish/subscribe
paradigm and were strongly influenced by middleware concepts. During time, different
approaches for processing events forked apart - each approach addressing specific

230

Chapter 7. Related Work and Comparison

issues such as an expressive subscription language, scalability of event processing
systems or a sophisticated event processing model. Therefore the table presents a map
that allows the reader to allocate the solutions according to main concepts.

The meaning of the categorization elements will be explained in the preceding
paragraph.

Pub/Sub Model: This item determines if the solution is relying on pub/sub
paradigm (compare with Section 3.1.6).

Wide-Scale Processing: Wide-Scale processing is referring to solutions that
yaw for scalability, high-availability, fault tolerance and efficient event notification
distribution.

Multi-Broker Model: Solutions that are focusing on wide-scale event process-
ing try to maximize the expressiveness and the scalability in wide-area networks.
The enablers of such solutions are broker networks that provide the infrastructure
for optimal notification routing and processing.

Attribute-Based Filter Language: Basic filter language with simple expres-
siveness - mostly focusing on filtering events.

Attribute-Based Pattern Language: More advanced filter language that
allows to express patterns or complex filters - mostly focusing on filtering events.

Type-Based Filter Language: Support of sophisticated event notification
filters (compare with Section 3.1.6).

Content-Based Subscription: Support of sophisticated event notification fil-
ters (compare with Section 3.1.6).

Event Transformation: Language allows to transform or manipulate event
notifications. Usually a rudimentary event processing feature.

CEP/ESP: This item defines if the solution determines the characteristics of
complex event or event stream processing solutions.

Workflow Oriented Processing: The workflow oriented processing defines if
the solution provides an event processing model that allows to define the process
of how events are evaluated - possibly supported by a query language (compare
with Section 5.1.3).

Rule-based Oriented Processing: Defines if the rule processing can be per-
formed following an event-condition-action paradigm.

231

Chapter 7. Related Work and Comparison

e Event Data Management: Event data management determines that the so-
lution is capable of maintaining and persisting events for further use such as for
ad hoc queries, for enrichment or for later analysis and mining purposes.

e Event Stream Joins: Determines if it is possible to merge several event pro-
ducing sources (i.e. streams of events) for processing,.

e Event Stream Aggregation: Determines if it is possible to define event ag-
gregations.

e Event Correlation: Determines if the solution offers capabilities to define cor-
relations over events.

e Sliding Time-Window: Determines if the solution requires the use of sliding
time-windows for processing.

e SQL-like Continuous Query Language: Determines if the syntax of the
event query language is comparable to ANSI-SQL

232

Chapter 7. Related Work and Comparison

10D MI-10S

MOPUIAN -OUILT,
Suipyg

‘[81100) JUSAT]

uo11e30I33 Yy
urea1)§ JUeAH

sutof
WROI)G JUSAT

JuowedeUR N
eJR(] JUSAT

Burssed01J
PajuaLI()
poseq-a[ny

dSd/ddan

UOT)RUWLIOJSURIT,
JTUOAG]

uorjdiuosqng
pasedg-1uejuo))

‘Suer 1091
poseg-odA],

‘Suer uiveJ
poseq-oInquiyy

o8enguer] 101
poseg-oInquiy

X

X

X

[PPOIN
10301 -1

X

X

X

X

Burss0001J
O[BIG-9PIM

X

X

X

[PPOIN qug/qund

I4vs

dSVS

vOdHdHY

SHINYHH

1adr

uoydAaxn)

VNHIS

Jodsy

sifeaJoyg

LINV

233

Chapter 7. Related Work and Comparison

234

8 Conclusion

This dissertation presents a comprehensive and detailed discussion of the funda-
mentals on event-based systems, their processing concepts and models. In contrast
to event-based solutions, especially solutions originating in the field of pub/sub
middleware paradigms, this component model is a generic proposal and independent
of an underlying communication infrastructure. SARI is a solution that aims at
providing event processing capabilities, that are capable of processing large amounts of
events, providing facilities with the capability to monitor, steer and optimize business
processes in real-time. The Event-Base, extends SARISs event processing model with
an efficient up-to-date operational storage, together with retrieval mechanisms for
business events for analytical as well as operational purposes. The event processing
solution SARI and its extension the Event-Base are introduced to illustrate event
processing solutions that follow the paradigms and best practices of event-based
system. In addition, this thesis introduces the domain specific language SARI-SQL
and its sub-language EAExpressions that address the problem domain of event-based
and in particular complex event processing systems. The query language offers
an expressive way for retrieving near real-time events and creating conjunctions
between historical events, metrics and scores. SARI-SQL is a formally structured solu-
tion that extends ANSI-SQL and is allocated in the group of domain-specific languages.

The summarization of the main contributions is presented in the following;:

Event-Based Component Model. In this dissertation an event component
model is introduced that puts event-based systems into a broader context of event
processing, defines the boundaries of such systems and the scope of event-driven
components. This model decouples event-based system completely from the commu-
nication infrastructure, which offers the advantage that the capabilities of the event
processing realm are not constrained by the underlying communication technology.
In addition this component model allows to attach several and different types of
communication infrastructures and this allows to consume and process events from a
wide range of event sources.

Several Event Processing Models and Concepts of the solutions SARI
and the Event-Base. One of the main contributions introduced, is the event

235

Chapter 8. Conclusion

processing system SARI and its extension the Event-Base. SARI allows to observe
relevant business events to identify exceptional situations, indicates opportunities or
problems combined with low latency times in decision making for supportive or counter
measures. The Event-Base, on the other hand, provides an efficient up-to-date oper-
ational storage together with retrieval mechanisms for business events for analytical
as well as operational purposes without the costly data staging processes known from
established data warehousing solution. The design and the nature of the event models
strongly constraints the capabilities of event processing query languages and thus
they have a major impact on the flexibility and usability of such event-based systems.
Therefore several new concepts of organizing event models are introduced such as
advanced typing concepts like inheritance, exheritance and dynamic type inferencing
(duck typing). A special attention was also set on event-driven sense and respond rules,
which can be used to model trees with event actions within the event processing model.

SARI-SQL Query Language. A dedicated section introduced the syntax and
semantics of the event query language SARI-SQL and its sub-type the EAFxpressions.
SARI-SQL is a domain specific language which is an important feature for event
processing systems in particular for the complex event processing system SARI and
the efficient up-to-date operational storage extension - the Event-Base. SARI-SQL
is a query language for retrieving near real-time events and create conjunctions with
historical events, metrics and scores and is in contrast to Event Clouds indexing
approach a formally structured solution that extends ANSI-SQL. It creates an
abstraction of the event type model by encapsulating a lot of overhead and putting
a layer over events and their internal data structures. EAExpressions on the other
hand pay a special attention to the nature of events and their special characteristics
such as providing an expressive and easy to understand language for accessing events,
both during the design phase of event processing applications and also during runtime
to perform evaluations on events. The EAExpression language is a subset of the
SARI-SQL language and can be used independently from SARI-SQL.

236

9 Appendix

9.1 EAExpression Syntax Definition

eaFEzxpression
boolExpr

conditionEzxpr

isExpr

plusMinFExpr
prodDivExpr
prodDivExzprMod
prodDivEzxprDiv
typeExpr
specialKeyword Expr

defExpr

collection Expr
parameterList
dotExpr

eventExpr

4y

R A 2 4

4

Uy

boolExpr Street ZIP

conditionExpr ((AND vV OR vV XOR) boolEzpr)?
V NOT boolExpr

isExpr ((EQUAL vV NOTEQUAL N GTHAN V
GEQUALTHAN V LTHAN VvV LEQUALTHAN)
conditionExpr)?

plusMinEzpr (IS OP typeExpr)?

prodDivEzpr ((PLUS vV MINUS) plusMinExpr)?
prodDivEzprMod (STAR prodDivExpr)?
prodDivExprDiv (MOD prodDivEzprMod)?
special KeywordEzpr (DIV prodDivExprDiv)?
IDENTIFIER (DOT typeExpr)?

defExpr ((CONTAINS Vv CONTAINSVALUE Vv
CONTAINSANY VCOLON) specialKeywordEzpr)?
constValue V

dotEzpr vV

collectionEzpr (LBRACK plusMinExpr RBRACK)? V
LPAREN boolExpr RPAREN V

MINUS defExpr v

PLUS defExpr v

LCURLY parameterList RCURLY

boolExpr (COMMA boolExpr)*

eventAtom (DOT dotEzpr)? V

eventExprSpecial vV

functionExpr

eventAtom (DOT dotEzpr)? V

eventExprSpecial

237

Chapter 9. Appendix

eventExprSpecial

functionExpr

eventFunction

constValue

constValue

eventAtom
functionAtom

=

=

=

4y

eventAtom AT IDENTIFIER Vv

AT IDENTIFIER v

eventAtom LBRACK plusMinEzpr RBRACK
(DOT eventExpr)?

functionAtom LPAREN parameterList RPAREN

(eventFunction)?

DOT eventExpr V

AT IDENTIFIER Vv
LBRACK plusMinExpr RBRACK (DOT eventExpr)?
STRING_LITERAL VvV
CONSTANT v

TRUE Vv

FALSE Vv
constNumeric Value
NUM_INT Vv

NUM _FLOAT v
NUM_DOUBLE v
NUM LONG v
HEX DIGIT
IDENTIFIER
IDENTIFIER

238

Chapter 9. Appendix

9.2 EAExpression Abstract Syntax Tree Definition

boolExpr = AND boolExpr boolExpr V
OR boolExpr boolExpr V
XOR boolExpr boolExzpr V
NOT boolExpr V
conditionExpr
conditionExpr = FEQUAL boolExpr boolExpr V
NOT EQUAL boolEzpr boolExzpr V
LTHAN boolEzpr boolErpr V
LEQUALTHAN boolExpr boolExpr V
GTHAN boolExpr boolExpr V
GEQUALTHAN boolExpr boolExpr V
1sExpr
isExpr = IS OP boolExpr typeEzpr V
plusMinEzpr
plusMinExpr = PLUS boolExpr typeExpr V
MINUS prodDivEzpr V
prodDivExpr
prodDiwvExpr = STAR boolExpr typeExpr V
DIV boolExpr typeExpr V
MODE boolEzpr typeEzpr V
special KeywordFExpr
specialKeywordExpr = CONTAINS boolExpr typeExpr V
CONTAINSVALUE boolExpr typeErpr V
CONTAINSANY boolExpr typeExpr V
COLON boolExpr typeExpr V
defEzpr
typeExpr = IDENTIFIER V
DOT typeExpr typeExpr

239

Chapter 9. Appendix

eventExprSpecial

functionExpr
functionExpFEval

constValue

constNumeric Value

defExpr

collectionExpr
parameterList
dotExpr

=

=
=

L4y

AT dotExzpr IDENTIFIER V

AT IDENTIFIER Vv

LBRACK defExpr plusMinFExpr

FUNCT IDENTIFIER parameterList (functionEzpEval)?
FUNCTION EVENT EVAL dotEzpr Vv
FUNCTION EVENT HEADER_EVAL headAttrl v
FUNCTION COLLECTION EVAL plusMinEzpr
(plusMinEzpr)?

STRING LITERAL Vv

CHAR_LITERAL VvV

CONSTANT v

TRUE Vv

FALSE v

constNumeric Value

NUM_INT VvV

NUM FLOAT YV

NUM_DOUBLE Vv

NUM LONGYV

HEX DIGIT Vv

constValue V

dotEzpr V

NEGATION defEzpr

COLLECTION parameterList

PARAMETER _LIST (boolEzpr)*

IDENTIFIER Vv

DOT dotEzpr dotEzpr V

eventErprSpecial vV

functionEzpr

240

Chapter 9. Appendix

9.3 SARI-SQL Syntax Definition

sartSQL
selectExpression

selectClause
selectList
selectItem
fromConstruct
joinClause

fromSpecForJoin
onJoinClause
onJoinltem
fromUList
fromItem

whereCondition
overCorrClause
corrList

corrltem
orderByCondition
orderByList
orderByltem

=
=

=
=
=
=
=

R R

Fe el

=
=
=

(selectExpression)

((SELECT selectClause) (FROM fromConstruct)
(OVERCORR overCorrClause)?

(WHERE whereCondition)?)

(ORDER_ BY orderByCondition)?)

((GROUP_BY groupByCondition (HAVING havingCondition)?)?)
selectList

((selectltem) (COMMA selectList)?)

plusMinEzpr (AS displayName)?

fromList V joinClause

fromSpecForJoin INNER JOIN fromSpecForJoin

ON onJoinClause V

fromSpecForJoin FULL OUTER JOIN fromSpecForJoin
ON ondJoinClause V

fromSpecForJoin LEFT OUTER JOIN fromSpecForJoin
ON ondJoinClause V

fromSpecForJoin RIGHT OUTER JOIN fromSpecForJoin
ON onJoinClause

(reducedDotEzpr fromAlias)

onJoinltem

dotEzpr EQUAL dotEzpr ((AND vV OR) onJoinltem)?
fromItem (COMMA fromlItem)*

reducedDotExpr (fromAlias)? V

functionExpr (fromAlias)?

boolExpr

corrList

corrltem (COMMA corrltem)*

corrSpec (corrAlias)?

orderByList

orderByltem (COMMA orderByltem)*

reducedDotEzpr (ASC vV C DESC)?

241

Chapter 9. Appendix

groupByCondition
groupBylList
groupByltem
boolExpr

dotExpr

reducedDotExpr
havingCondition
fromSpec
corrSpec
tableName
fromAlias
corrAlias
displayName

R

4

R A

groupByList

groupByltem (COMMA groupByltem)*
reducedDotFxpr

LPAREN selectExpression RPAREN Vv
conditionExpr ((AND vV OR vV XOR) boolEzpr)? V
NOT boolExpr

STAR Vv

eventAtom (DOT dotExpr)? V
eventExrprSpecial vV

functionExpr

eventAtom (DOT reducedDotExpr)?
boolExpr

IDENTIFIER (IDENTIFIER)?
IDENTIFIER (IDENTIFIER)?
IDENTIFIER

IDENTIFIER

IDENTIFIER,

STRING LITERAL V

IDENTIFIER

242

Chapter 9. Appendix

9.4 SARI-SQL Abstract Syntax Tree Definition

sartSQL

selectClause
selectItem
fromConstruct

joinClause

fromList
fromlItem

whereCondition
onJoinClause
overCorrClause
overCorrList
overCorrltem
orderByCondition
orderByList
orderByltem
groupByCondition
groupByList
groupByltem
havingCondition

=

Lu

44

N I I O R R

QUERY selectClause fromConstruct (overCorrClause)?
(where Condition)?

(orderByCondition)?

(groupByCondition)?

(having Condition)?

SELECT LIST (selectitem)*

SELECT ITEM ¢ (displayName)?

fromList V

joinClause

INNER_JOIN FROM ITEM FROM ITEM onJoinClause V
FULL OUTER JOIN FROM ITEM FROM ITEM
fullOuterJoinClause V

LEFT OUTER JOIN FROM ITEM FROM ITEM
leftOuterJoinClause V

RIGHT OUTER JOIN FROM ITEM FROM ITEM
rightOuterJoinClause V

FROM _LIST (fromltem)*

FROM _ITEM reducedDotEzpr (fromAlias)? Vv
SPECIAL FROM ITEM ¢ (fromAlias)?

WHERE CLAUSE boolEzxpr

ON_JOIN CLAUSE boolEzpr

overCorrList

OVERCORR (overCorrltem)*

OVERCORR_ITEM corrName (corrAlias)?
orderByList

ORDERBY (orderByltem)*

ORDERBY ITEM reducedDotExpr (ASC VC DESC)?
groupByList

GROUPBY (groupByltem)*

GROUPBY _ITEM reducedDotExpr

HAVING boolEzpr

243

Chapter 9. Appendix

boolExpr = AND boolExpr boolExpr V
OR boolExpr boolExpr V
EQUAL boolEzpr boolExpr V

¢
tableName = IDENTIFIER
corrName = IDENTIFIER

displayName = STRING LITERAL YV
IDENTIFIER
fromAlias = IDENTIFIER
corrAlias = IDENTIFIER
orderByName = IDENTIFIER
reducedDotExpr = eventAtom V

DOT eventAtom reducedDotExpr

244

Chapter 9. Appendix

9.5 List of Publications

Szabolcs Rozsnyai, Josef Schiefer, and Alexander Schatten. Concepts and Models for
Typing Events for Event-Based Systems. In DEBS, pages 62 U 70. ACM, 2007.

Szabolcs Rozsnyai, Josef Schiefer, and Alexander Schatten. Detecting and Pre-
venting Fraud. In ICDIMO07. The Second International Conference on Digital
Information Management, 2007.

Szabolcs Rozsnyai, Roland Vecera, Josef Schiefer, and Alexander Schatten. Event
Cloud - Searching for correlated business events. In CEC/EEE, pages 409 U 420.
IEEE Computer Society, 2007 - BEST PAPER AWARD.

Josef Schiefer, Szabolcs Rozsnyai, Christian Rauscher, and Gerd Saurer. FEvent-
Driven Rules for Sensing and Responding to Business Situations. In DEBS, pages 198
U 205. ACM, 2007.

Roland Vecera, Szabolcs Rozsnyai, and Heinz Roth. Indexing and Search of
Correlated Business Events. Ares, pages 1124 U 1134, 2007.

245

Chapter 9. Appendix

9.6 Curriculum Vitae

Personal Information:

Name: Szabolcs Rozsnyai
Birthday: 16.10.1981
Birthplace: Cluj-Napoca (Klausenburg)

Education:

since 2006 PhD studies of computer science at University of Technology Vienna
2004-2006 Computer Science - MSc (Information and Knowledge Management)
at University of Technology Vienna - Graduation with Honors
2004-2007 Computer Science - MSc (Informatikmanagement)
at University of Technology Vienna - Graduation with Honors
2002-2004 Computer Science - BSc (Software and Information Engineering)
at University of Technology Vienna
1996-2001 Secondary College for data processing and organisation
1992-1969 Gymnasium with a focus on mathematics and science
1988-1992 Elementary School

Work Experience:

since Dec. 2006 Senactive IT-Dienstleistungs GmbH
Product development and research in the field of
event-based systems and complex event processing.

May 2006 - Dec 2006 Capgemini Consulting Austria

Engaged as a CRM/DWH consultant working on a
CRM/B2B project for an international client in CEE. My
responsibilities covered: preparing and performing require-
ments workshops with international clients in CEE, con-
ducting requirements analyses, coordinating the alignment
of involved projects, responsible for test- and training man-
agement including coordination of intercultural team mem-
bers. Further involved in several acquisition efforts.

246

Chapter 9. Appendix

June 2004 - Dec 2005

2004

2004

2003-2004

2002
3 Months Internship

2001
21/2 Months Internship

2000-2001

Insilico Software GmbH

Product development of life science and bioinformatics
products. Data Integration, Design and Prototyping of a
Data Warehouse-LIMS-System for DNA-Microarray exper-
iments. Maintenance and development of the API, the web
front-end and the MS Office Plug-in for the MASI (Meta
Annotated Sequence Investigation) product. Visualization
of clone libraries based on the GeneOntology including ref-
erences to genes with relevant annotations.

UNION Versicherungs- AG
Department of I'T and Organisation mainly focusing on SW
development and maintenance tasks and user support.

Wolf Office Team
Development of a warehouse/stock management system for
a building service engineering company.

Institute of Software Technology and Interactive
Systems

Working on a web-based project management and com-
munication tool that supports (scientific) cooperation, re-
source management, project monitoring and information
distribution.

DPW H.R. Software GmbH

Development of a SW prototype that allows a dynamic
function and interface generation of an existing software
which scales over a Progress database. Development of a
SW application that generates organigrams out of given
enterprise structures and plots them into the PDF format
with a sheet scaling feature.

Delphi Software GmbH
Revision of Greiner Verpackungen’s existing B2B platform.

Delphi Software GmbH
Webadministrator

247

Chapter 9. Appendix

1999-2001

1999-2001
1 Month Internship

UNION Versicherungs- AG

Department of IT and Organisation mainly focusing on SW de-
velopment and maintenance tasks and user support. Further
development and maintenance of a broker and customer admin-
istration tool with a set of reporting and analysis functions.

UNION Versicherungs- AG
Department of IT and Organisation. Development of a manage-
ment system for software and hardware installations.

248

Bibliography

1]

[10]

Daniel Abadi, Donald Carney, Ugur Cetintemel, Mitch Cherniack, Christian Con-
vey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik.

Aurora: a new model and architecture for data stream management. VLDB J,
12(2):120-139, 2003.

Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch
Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin,
Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B. Zdonik. The design
of the borealis stream processing engine. In CIDR, pages 277-289, 2005.

Asaf Adi and Opher Etzion. Amit - the situation manager. VLDB J, 13(2):177-
203, 2004.

Aguilera, Strom, Sturman, Astley, and Chandra. Matching events in a content-
based subscription system. In PODC: 18th ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, 1999.

ANTLR. Antlr webpage. http://www.antlr.org/, 02 2008.

Shivnath Babu and Jennifer Widom. Continuous queries over data streams. SIG-
MOD Record, 30(3):109-120, 2001.

Jean Bacon, Ken Moody, John Bates, Richard Hayton, Chaoying Ma, Andrew
McNeil, Oliver Seidel, and Mark D. Spiteri. Generic support for distributed ap-
plications. IEEE Computer, 33(3):68-76, 2000.

J.M. Bacon and P.R. Pietzuch. Hermes: a distributed event-based middleware
architecture. Distributed Computing Systems Workshops, 2002. Proceedings. 22nd
International Conference on, 2002.

J. Bailey, L. Crnogorac, K. Ramamohanarao, and H. Sondergaard. Abstract in-
terpretation of active rules and its use in termination analysis. In Proceedings of
the 6th International Conference on Database Theory (ICDT’97), volume 1186 of
Lecture Notes in Computer Science, pages 188-202. Springer, 1997.

Magdalena Balazinska, Hari Balakrishnan, Jon Salz, and Michael
Stonebreaker. The medusa distributed stream-processing system.
http://nms.les.mit.edu/projects/medusa, 01 2008.

249

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

G. Banavar, M. Kaplan, K. Shaw, R. Strom, D. Sturman, and W. Tao. Infor-
mation flow based event distribution middleware. In 19th International Confer-
ence on Distributed Computing Systems (19th ICDCS’99) Workshop on Electronic
Commerce and Web-Based Applications. IEEE, 1999.

Baralis and Widom. An algebraic approach to rule analysis by means of triggering
and activation graphs. In VLDB’9/, 2002.

D. Barbara, S. Mehrotra, and M. Rusinkiewicz. Incas: A computation model for
dynamic workflows in autonomous distributed environments. Technical report,
1994.

Tim Bass. Mythbusters: Esp vs. cep. http://thecepblog.com/2007/06/23/debs-
2007-mythbusters-esp-v-cep/, 01 2008.

John Bates, Jean Bacon, Ken Moody, and Mark D. Spiteri. Using events for
the scalable federation of heterogeneous components. In Paulo Guedes and Jean
Bacon, editors, ACM SIGOPS European Workshop, pages 58 65. ACM, 1998.

Thomas Bernhardt and Alexandre Vasseur. Esper: Event stream processing and
correlation. http://www.onjava.com/lpt/a/6955, 01 2008.

M. Bhandaru, R. Bhatnagar, .. Epshtein, Peng Wu, and Zhongwen Shi. Alarm
correlation engine (ace). Network Operations and Management Symposium, 1998.
NOMS 98., IEEE, 3.

K. P. Birman. The process group approach to reliable distributed computing.
Communications of the ACM, 36(12):36-53, 1993.

K. P. Birman, R. Cooper, T. A. Jospeh, K. P. Kane, F. Schmuck, and M. Wood.
ISIS-a distributed programming environment. Cornell University, Ithaca, NY, June
1990. in User’s Guide and Reference Manual.

Robert M. Bruckner, Beate List, Josef Schiefer, and A. Min Tjoa. Modeling
temporal consistency in data warechouses. In A. Min Tjoa and Roland Wagner,
editors, DEXA Workshops, pages 901-905. IEEE Computer Society, 2001.

Christoph Bussler and Stefan Jablonski. Implementing agent coordination for
workflow management systems using active database systems. In RIDE-ADS,
pages 53-59, 1994.

Antonio Carzaniga, Elisabetta Di Nitto, David S. Rosenblum, and Alexander L.
Wolf. Issues in supporting event-based architectural styles. In Third International
Software Architecture Workshop, pages 17 20, Orlando, Florida, November 1998.

250

Bibliography

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and eval-
uation of a wide-area event notification service. ACM Transactions on Computer
Systems, 19(3):332-383, 2001.

Antonio Carzanigay, David S. Rosenblum, and Alexander L. Wolfy. Challenges
for distributed event services: Scalability vs. expressiveness, July 31 1999.

Ceglar, Roddick, and Mooney. From rule visualisation to guided knowledge dis-
covery. In Proc. Second Australasian Data Mining Workshop, Canberra, 2003.

Mani Chandy. Event-driven applications: Where they apply and how they are
built. www.infospheres.caltech.edu/papers/gartner05.pdf, 11 2007.

Shyh-Kwei Chen, Jun-Jang Jeng, and Henry Chang. Complex event processing
using simple rule-based event correlation engines for business performance man-
agement. In CEC/EEE. IEEE Computer Society, 2006.

Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald Carney, Ugur
Cetintemel, Ying Xing, and Stanley B. Zdonik. Scalable distributed stream pro-
cessing. In CIDR, 2003.

C. Cieri. Multiple annotations of reusable data resources: Corpora for topic de-
tection and tracking, 2000.

Esper Codehaus. Esper. http://esper.codehaus.org/, 01 2008.

Esper Codehaus. Esper wiki. http://docs.codehaus.org/display/ESPER/Home,
01 2008.

G. F. Coulouris and J. Dollimore. Addison-Wesley, 2005.

G. Cugola, E. Di Nitto, and A. Fuggetta. The jedi event-based infrastructure and
its application to the development of the opss wfms. Software Engineering, IEEE
Transactions on, 27, 2001.

Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. Exploiting an event-
based infrastructure to develop complex distributed systems. In ICSE, 1998.

U. Dayal, M. Hsu, and R. Ladin. Organizing long-running activities with trig-
gers and transactions. In 19 ACM SIGMOD Conf. on the Management of Data,
Atlantic City, 1990.

Wolfgang Emmerich. Software engineering and middleware: a roadmap. In ICSE
- Future of SE Track, pages 117 129, 2000.

251

Bibliography

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

Eugster, Felber, Guerraoui, and Kermarrec. The many faces of publish /subscribe.
CSURV: Computing Surveys, 35, 2003.

Patrick Eugster. Type-based publish /subscribe: Concepts and experiences. ACM
Trans. Program. Lang. Syst, 29(1), 2007.

Patrick Th. Eugster and Rachid Guerraoui. Content-based publish /subscribe with
structural reflection. In COOTS, pages 131-146. USENIX, 2001.

Patrick Th. Eugster, Rachid Guerraoui, and Christian Heide Damm. On objects
and events. In OOPSLA, pages 254-269, 2001.

Ludger Fiege. Visibility in Event-Based Systems. PhD thesis, Technische Univer-
sitdt Darmstadt, 2005.

Ludger Fiege, Gero Miihl, and Alejandro P. Buchmann. An architectural frame-
work for electronic commerce applications. In GI Jahrestagung (2), pages 928-938,
2001.

Martin Fowler. Time point. http://martinfowler.com/eaaDev/TimePoint.html,
03 2006.

Hal Fulton. Ruby Way. Addison-Wesley Professional, 2007.

Erich Gamma, Richard Helm, and Ralph Johnson. Design Patterns. Addison-
Wesley Professional, 1997.

Andreas Geppert and Dimitrios Tombros. Event-based distributed workflow exe-
cution with eve. Technical report, Department of Computer Science, University
of Zurich, 1996.

Matteo Golfarelli, Stefano Rizzi, and Iuris Cella. Beyond data warehousing:
what’s next in business intelligence? In Il-Yeol Song and Karen C. Davis, ed-
itors, DOLAP, pages 1-6. ACM, 2004.

Daniel Gyllstrom, Eugene Wu 0002, Hee-Jin Chae, Yanlei Diao, Patrick Stahlberg,
and Gordon Anderson. SASE: Complex event processing over streams. CoRR,
abs/cs/0612128, 2006.

Richard Hackathorn. Current practices in active data warehousing. DMReview,
2002.

Gregor Hohpe. Programming without a call stack - event-driven architectures.
www.enterpriseintegrationpatterns.com/docs/EDA.pdf, 11 2007.

IBM. Publish/subscribe over public networks. Technical Report, 2001.

252

Bibliography

[52] C. S. Jensen, J. Clifford, R. Elmasri, S. K. Gadia, P. Hayes, and S. Jajodia [eds].
A glossary of temporal database concepts. sigmod, 23(1):52-64, March 1994.

[53] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 1978.

[54] David Luckham. The Power Of Events. Addison Wesley, 2005.

[55] David Luckham, Antoine Manens, Sumit Bhansali, Woosang Park, and Susheel
Daswani. Modeling and causal event simulations of electronic business processes.
2005.

[56] David Luckham and Roy Schulte. Event processing glossary.
http://complexevents.com/?p=195, 01 2008.

[57] Bertram Ludaescher. Integration of Active and Deductive Database Rules. PhD
thesis, University of Freiburg.

[58] Juha Makkonen, Helena Ahonen-Myka, and Marko Salmenkivi. Applying semantic
classes in event detection and tracking. In Rajeev Sangal and S. M. Bendre,
editors, Proceedings of International Conference on Natural Language Process ing
(ICON 2002), pages 175-183, Mumbai, India, 2002.

[59] Heikki Mannila and Pirjo Moen. Similarity between event types in sequences. In
Mukesh K. Mohania and A. Min Tjoa, editors, DaWaK, volume 1676 of Lecture
Notes in Computer Science, pages 271-280. Springer, 1999.

[60] Jean-Louis Maréchaux. Combining service-oriented architecture and
event-driven architecture using an enterprise service bus. http://www-
128.ibm.com /developerworks/webservices/library /ws-soa-eda-esb/index.html,

11 2007.

[61] René Meier and Vinny Cahill. Taxonomy of distributed event-based program-
ming systems. In International Workshop on Distributed Fvent-Based Systems
(DEBS’02), pages 585-588. IEEE, July 2002. short paper session.

[62] Enterprise Messaging, Bobby Woolf, and Kyle Brown. Patterns of system inte-
gration with enterprise messaging, July 24 2002.

[63] G. Miihl, L. Fiege, and A. P. Buchmann. Evaluation of cooperation models for
electronic business. In Information Systems for E-Commerce, Conference of Ger-
man Society for Computer Science, pages 81-94, November 2000.

[64] Gregor Miihl, Ludger Fiege, and Alejandro Buchmann. Filter similarities in
content-based publish/subscribe systems. Lecture Notes in Computer Science,
2299:224 77, 2002.

253

Bibliography

[65]

|66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

77]

78]

Pirjo Moen. Attribute, Fvent Sequence, and Event Type Similarity Notions for
Data Mining. PhD thesis, University of Helsinki.

Yefim V. Natis. Service-oriented architecture scenario.
www.gartner.com /resources/114300/114358/114358.pdf, 11 2007.

Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. The information bus:
an architecture for extensible distributed systems. SIGOPS Oper. Syst. Rev.,
27(5):58 68, December 1993.

OMG. Object management group. management of event domains specification.
http://www.omg.org/cgi-bin/doc?formal /2001-06-03, 11 2007.

Mark Palmer. Event stream processing - a new physics of software. DMReview,
2005.

Claus H. Pedersen. Extending ordinary inheritance schemes to include general-
ization. In OOPSLA, pages 407 417, 1989.

Peter Robert Pietzuch. Hermes: A Scalable Event-Based Middleware. PhD thesis,
University of Cambridge, 2004.

D. S. Rosenblum and A. L. Wolf. A design framework for Internet-scale event
observation and notification. Lecture Notes in Computer Science, 1301:344-77,
1997.

Szabolcs Rozsnyai. Efficient indexing and searching in correlated business events.
PhD thesis, Technische Universitdt Wien, 2006.

Szabolcs Rozsnyai, Josef Schiefer, and Alexander Schatten. Concepts and models
for typing events for event-based systems. In DEBS, pages 62 70. ACM, 2007.

Szabolcs Rozsnyai, Josef Schiefer, and Alexander Schatten. Detecting and pre-
venting fraud. In JCDIMO7. The Second International Conference on Digital In-
formation Management, 2007.

Szabolcs Rozsnyai, Roland Vecera, Josef Schiefer, and Alexander Schatten. Event
cloud - searching for correlated business events. In CEC/EEE, pages 409-420.
IEEE Computer Society, 2007.

Markku Sakkinen. Exheritance - class generalization revived. In Inheritance Work-
shop at ECOOP 2002. ECOOP, 2002.

M. Sayal, F. Casati, U. Dayal, and M. C. Shan. Business process cockpit. In Pro-
ceedings of 28th International Conference on Very Large Data Bases (VLDB’02),
pages 880 883. Morgan Kaufmann, 2002.

254

Bibliography

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

Josef Schiefer and Carolyn McGregor. Correlating events for monitoring business
processes. In ICEIS (1), pages 320-327, 2004.

Josef Schiefer, Szabolcs Rozsnyai, Christian Rauscher, and Gerd Saurer. Event-
driven rules for sensing and responding to business situations. In DEBS, pages
198-205. ACM, 2007.

Josef Schiefer and Andreas Seufert. Management and controlling of time-sensitive
business processes with sense & respond. In CIMCA /IAWTIC, pages 77-82. IEEE
Computer Society, 2005.

Marco Seirié and Mikael Berndtsson. Design and implementation of an ECA rule
markup language. In Rule ML, volume 3791, pages 98-112. Springer, 2005.

David Sternberger. Ewaluierung, Implementierung und Testen von Message Ori-
ented Middleware. PhD thesis, Technische Universitdt Wien, 2006.

Robert Strom, Guruduth Banavar, Tushar Ch, Marc Kaplan, Kevan Miller, Bodhi
Mukherjee, Daniel Sturman, and Michael Ward. Gryphon: An information flow
based approach to message brokering. 2001.

Martin Suntinger, Hannes Obweger, Josef Schiefer, and Groeller. The event tun-
nel: Interactive visualization of complex event streams for business process pattern
analysis. Technical report, Institute of Computer Graphics and Algorithms - Vi-
enna University of Technology, 2007.

A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and
Paradigms. Prentice Hall, 2002.

Douglas Terry, David Goldberg, David Nichols, and Brian Oki. Continuous queries
over append-only databases. In SIGMOD ’92: Proceedings of the 1992 ACM
SIGMOD international conference on Management of data, pages 321-330, New
York, NY, USA, 1992. ACM.

A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An annotated
bibliography. ACM SIGPLAN Notices, 35(6):26-36, June 2000.

Roland Vecera. Efficient indexing, Searching and Analysis of Fvent Streams. PhD
thesis, Technische Universitit Wien, 2007.

Roland Vecera, Szabolcs Rozsnyai, and Heinz Roth. Indexing and search of cor-
related business events. Ares, pages 1124-1134, 2007.

Yiming Yang, Jaime Carbonell, Ralf Brown, Tom Pierce, Brian T. Archibald, and
Xin Liu. Learning approaches for detecting and tracking news events, 1999.

255

Bibliography

[92] Stan Zdonik, Michael Stonebraker, Mitch Cherniack, Ugur C Etintemel, Mag-
dalena Balazinska, and Hari Balakrishnan. The aurora and medusa projects,
May 06 2003.

[93] Andreas Zeidler. Distributed Publish/Subscribe Notification Service for Pervasive
Environments. PhD thesis, Technischen Universitdt Darmstadt, 2004.

[94] D. Zimmer and R. Unland. On the semantics of complex events in active database
management systems. In 15th International Conference on Data Engineering
(ICDE ’99), pages 392-399, Washington - Brussels - Tokyo, March 1999. IEEE.

256

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

4.1
4.2
4.3

4.4
4.5
4.6

Transport Example o o 29
Enterprise Layers showing the flow of events according to [54] 31
Cooperation Models according to [41] 34
Request/Reply Interaction Model 35
Anonymouse Request/Reply Interaction Model 35
Callback /Point-to-Point Messaging Interaction Model 36
Event-Based Interaction Model 36
Mlustration of a Middelware [86] 41
Client /Server communication paradigm idle time 45
Ilustration of a Messaging Middleware 47
Publish/Subscribe Overview Lo 48
Channel-Bagsed Subscription 0oL 50
Topic-Based Subscription o oo a1
Type-Based Subscription Lo 52
Content-Based Subscription 00000 52
Service-Oriented Architecture Interaction Model 54
Event-Driven Architecture Interaction Model 55
Event-Based Messaging Middleware 61
Typical Event Sources oo 63
Event Producers 64
Notification Service Interface 0oL, 65
Communication Infrastructure components 66
Event Consumer Components 69
Event Type Library o o 71
Event Processing Realm 71
Decision Making Pyramid adapted from [47] 76

The decrease of the business value of events over time according to [49] . 78
Metaphor to explain Complex Event Processing and Event Stream Pro-

cessing. Illustration adapted from [14]. 80
High Level Example of a Complex Event Processing Engine &3
Event Stream Processing Example o000 85
Continuous Query Example L L. 86

257

List of Figures

5.1
5.2
9.3
5.4
9.5
5.6

2.7

2.8

2.9

5.10
5.11
5.12
5.13
5.14
0.15
5.16
0.17
5.18
5.19
5.20
5.21
0.22
5.23
5.24
5.25
5.26
5.27
5.28

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Event-Base high-level view architecture including its system components 90

Fvent Processing Mapo 93
Scoring Exampleo 97
Event-Base Processing Schematics 98
Cockpit Screenshot of the Fraud Use-Case 103

The event-tunnel visualization: Side view and top view onto the stream
of events. The unassigned axis of a tunnel are utilized to show temporal

relationships between correlated event sequences. [85]. 105
Event Object Type Model 110
Event Object Type Example 111
Event Object at Runtime 0oL 112
Attribute Model Exampleo 112
Inheritance Exampleo Lo 113
Exheritance Exampleo o000 114
DuckTyping in Event Processing Maps 115
Sharing Event Object Types 116
Simple Correlation Metric Calculation Example 119
Example of a Primal Correlation 123
Example of a Bridged Correlation 124
Correlation Meta Model L o 124
Correlation Evaluation during Runtime 125
Meta Model for Sense and Respond Rules 130
Event Conditions 130
Event Pattern o 131
Response Events 132
Sense and respond rule for responding to order delays 134
Event Processing Model with Rule Service 137
Dependencies for Response Events 138
EventBase Data Model 139
Event Object Type Inheritance Data Management 141
Event Object Type Example for the EAExpressions 150
Example of a simple arithmetic tree 158
Event Object Type AST Representation 159
Header Access AST Representation 160
Collection Access AST Representation 161
Custom Created Collection AST Representation 161
Aggregation Access AST Representation 162
Function AST Representation 163
Boolean Expression AST Representation 164
Comparison Expression AST Representation 165

258

List of Figures

6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48

7.1
7.2

Arithmetic Expression AST Representation 165
EAExpression Processing Overview 166
EAExpression Tree Parser Class Diagram 168
Event Object Type Example for the SARI-SQL 171
Overall SARI-SQL AST representation 180
Simple FROM clause AST representation 181
Outer Join construct in FROM clause AST representation 182
SELECT clause AST representation 183
WHERE clause AST representation 184
OVERCORR clause AST representation 186
Additional Constructs AST representation 187
SARI-SQL Query Processing Overview 188
SARI-SQL Query Input 190
SARI-SQL Query Decomposition 192
Clags Diagram of the SARI-SQL Model 194
Select Ttem Generation 194
Select Ttem Class Diagram 195
Item Attribute Generation 195
Item Expression Class Diagram 196
From Item Generation 197
Fromltem Class Diagram 197
Join From Item Generation 198
FromJoinStructure Class Diagram 199
Where Clause Dissemination Generation 199
Disseminationltem Class Diagram 200
StarOptimizer Process o L 201
ItemAttributeOptimizer Process. 201
SelectltemBelongToOptimizer Process 202
WhereltemBelongToOptimizer Process 203
SARI-SQL Query Planning 203
Where Clause Analysis and RewritingProcess 204
Where Clause Planning Example 205
Select Clause Analysis and Rewriting Process 206
Where Clause Analysis and Rewriting Process 207
From Clause Analysis and Rewriting Process 208
Correlation Clause Analysis and Rewriting Process 209
Result Post-Evaluation Process 211
Post-Evaluation Process Example 212
SIENA Distributed Event Notification Service [23] 215
Example of an event pattern in SIENA [23] 216

259

List of Figures

7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15

Information Flow in Gryphon [84] 217
JEDI's Hierarchical Strategy [34] 218
Application Built in Hermes [8] oo 220
Hermes Subscription Message Definition [71] 221
The Router Network of REBECA [93] 222
The Aurora Query Model [1] o o 223
Example of a distributed Medusa Query [10] 225
Borealis Architecture [2] o oo 226
SASE Architecture [48]o 227
SASE Query Syntax[48] Lo 227
ESPER Architecture[31]o 228
Simple Esper Query Example 00000 229
Amit Situation Manager’s High Level Architecture [3] 230

260

