B Informatics

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Formalizing Graph Tralil
Properties

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieurin
im Rahmen des Studiums
Logic and Computation
eingereicht von

Hanna Elif Lachnitt, B.Sc.
Matrikelnummer 11741619

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Professor Laura Kovacs
Mitwirkung: Professor Stefan Szeider
Dr. Martin Suda

///(O
D Ydodf Moo olane

Wien, 29. April 2020

Hanna Elif Lachnitt Laura Kovacs

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
hanna
Stempel

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

B Informatics

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Formalizing Graph Tralil
Properties

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieurin
in
Logic and Computation
by

Hanna Elif Lachnitt, B.Sc.
Registration Number 11741619

to the Faculty of Informatics
at the TU Wien

Advisor: Professor Laura Kovacs
Assistance: Professor Stefan Szeider
Dr. Martin Suda

/ o,

/
/

| /
/'/ /
2. YLa S L Wkt vl

Vienna, 29" April, 2020

Hanna Elif Lachnitt Laura Kovacs

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
hanna
Stempel

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Erklarung zur Verfassung der
Arbeit

Hanna Elif Lachnitt, B.Sc.

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

a2¢. YLa

Hanna Elif Lachnitt

Wien, 29. April 2020

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
hanna
Stempel

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Danksagung

I would like to express my gratitude to my thesis advisor Professor Laura Kovacs, for the
continuous support during the work on my thesis and beyond. Furthermore, I want to
thank Professor Stefan Szeider for his help with the graph theoretic part of this paper. I
am very grateful for the financial support I received through the Helmuth Veith Stipend
for the time of my master studies at TU Wien. This made it possible for me to spend two
wonderful years at an amazing university. I would like to thank Dr. Anna Prianichnikova,
Mihaela Rozman and Professor Georg Weiflenbacher for the warm welcome they gave me
when I first moved to Vienna.

I want to show my appreciation for the never-ending support of my family, especially
for my sisters Charlotte and Marlene. Also I want to thank all my friends that kept
encouraging and supporting me.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Acknowledgements

We thank Prof. Byron Cook (AWS) for interesting discussions on reasoning challenges
with ordered trails. This work was funded by the ERC Starting Grant 2014 SYM-
CAR 639270, the ERC Proof of Concept Grant 2018 SYMELS 842066, the Wallenberg
Academy Fellowship 2014 TheProSE, the Austrian FWF research project W1255-N23 and
P32441, the Vienna Science and Technology Fund ICT19-065 and the Austrian-Hungarian
collaborative project 1016u8.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Kurzfassung

Wir priifen zwei verschiedene Methoden um automatisch iiber streng monotone fallende
oder streng monoton steigende Kantenziige in kantengewichteten Graphen zu argumen-
tieren. Zunéachst présentieren wir eine Formulierung als pradikatenlogisches Problem und
evaluieren die Anwendung automatischer Theorembeweiser. Wir zeigen die Nachteile
dieses Ansatzes, durch experimentelle Auswertung der Abhéngigkeit der gebrauchten Zeit
von der Grofie des Graphen. Motiviert von diesen Einschrinkungen prisentieren wir einen
Beweis fiir eine untere Grenze der Linge von streng monotonen Kantenziigen, der nicht
von der Grofle des Graphen abhéngt. Wir formalisieren Eigenschaften streng monoton
fallender und streng monoton steigender Kantenziige im Beweisassistenen Isabelle/HOL
und verifizieren den Beweis der unteren Grenze der Lange des ldngsten streng monoton
fallenden Kantenzugs. Dafiir erweitern wir Isabelles Bibliothek fiir Graphentheorie mit
einem Algorithmus, der die Lange des langsten streng monoton fallenden Kantenzugs von
einem Knoten fiir eine gegebene Verteilung der Kantengewichte berechnet. Des Weiteren
beweisen wir in Isabelle, dass in einem ungerichtetem Graphen jeder streng monoton
fallende Kantenzug auch ein streng monoton steigender Kantenzug ist. Auflerdem pré-
sentieren wir einen konstruktiven Beweis, der eine obere Grenze der minimalen Linge
eines streng monotonen Kantenzug in vollstdndigen Graphen zeigt. Im Zuge dessen geben
wir auch einen Algorithmus zur Erzeugung von vollstindigen Graphen beliebiger Grofie
an, die zeigen, dass Graphen mit einer bestimmten maximalen Linge von Kantenziigen
existieren.

Xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Abstract

We survey two methods to reason about ordered trails in edge-weighted graphs. Firstly,
we provide an encoding in first-order logic in order to apply automated theorem provers
to the problem. Conducting experiments on the size of the input instance, we show
the disadvantages of this approach. Motivated by this we present a symbolic proof of
the lower bound on the length of strictly ordered trails in weighted graphs. Then, we
formalize strictly ordered trails in the proof assistant Isabelle/HOL. We express and prove
properties of these trails and verify the lower bounds on the length in Isabelle. We do
so by extending the graph theory library of Isabelle/HOL with an algorithm computing
the length of a longest strictly decreasing graph trail starting from a vertex for a given
weight distribution, and prove that in an undirected graph any decreasing trail is also
an increasing one. We also present a symbolic proof that shows an upper bound on
the minimum length of strictly ordered trails. To this end we present an algorithm to
construct graphs that witness the upper bound an implementation of this algorithm.

Xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

Kurzfassung xi
Abstract xiii
1 Introduction 1

2 First-Order Theory of Graphs 5
2.1 Encoding)
2.2 Results. 8
2.3 Discussion e e 9

3 Symbolic Proof of the Existence of Strictly Ordered Trails 11
3.1 Graphtheory 11
3.2 Lower Bound on the Length of Strictly Decreasing Trails. 12
3.3 Upper Bound on the Length of Strictly Decreasing Trails in Complete

Graphs. e 15

4 Embedding in Isabelle/HOL 25
4.1 TIsabelle/HOL 25
4.2 Graph Theory in the Archive of Formal Proofs 26
4.3 Formalization of Trail Properties in Isabelle/HOL 27

5 Related Work and Discussion 35
5.1 Related Work o oo 35
5.2 Discussion and Further Work 36

6 Conclusion 37

List of Figures 39

List of Algorithms 41

Acronyms 43

Bibliography 45

XV

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Introduction

Many real-world instances of scheduling and planning can be abstracted into graph
problems. Therefore, any improvement in formalizing and solving graph problems, in an
efficient and automatic manner, is of great importance. This theses aims at increasing
our understanding of automated reasoning about strictly ordered trails in edge-weighted
graphs. The following problem was brought to our attention by Dr. Byron Cook from
Amazon Web Services (AWS).

There are 2020 cities and there is a flight between each pair of cities. The price of a
flight is the same in both directions but the prices between two different pairs of cities can
never be the same. Is there a route of 2019 cities such that each flight is cheaper than
the last one? The same city can be visited several times or a city might not be visited at all.

To illustrate this question consider the following undirected graph K4, with 4 vertices
(cities) where each edge (flight) is annotated with a different integer-valued weight (cost)
ranging from 1,...,6:

Figure 1.1: Example graph K4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.

INTRODUCTION

The property in K4 that corresponds to a route of cities is a trail. A trail is a sequence of
edges in which consecutive edges are incident. Thus, the question we want to address is
whether K, has a strictly decreasing trail of length 3. The answer is positive, there is a
decreasing trail in K starting at vertex vs, with trail length 3; namely (vsva, vovy, v4v3)
is such a trail, with each edge in the trail having a higher weight than its consecutive
edge in the trail. Similarly, K4 has decreasing trails of length 3 starting from vy, v, and
v4 respectively.

But is this true for all distributions of weights to the edges? If not, it would mean that we
could construct a graph that has 4 vertices and 5 edges, where no vertex is the starting
node of a trail of length 3. By enumerating all possibilities it becomes clear that this is
not possible. But what about the case where we consider 2020 cities? Enumerating the
possibilities becomes quickly practically infeasible. Our goal is to automate the reasoning
about such trails.

Thus, as a first step, this thesis explores the possibilities of using an automated reasoning
engine on an encoding of the problem that is presented in Section 2.1. The results are
presented in Section 2.2. They show that even for relatively small numbers n state-of-the-
art theorem provers are not able to prove whether edge-weighted graphs have a strictly
decreasing trail. The causes and implications of this phenomenon are further discussed
in Section 2.3.

Based on the limitations on automative provers, we aim at formalizing and proving
existence of trails of length n, where n > 1 is a symbolic constant. As such, proving
for example that graphs have trails of length 4, for a concrete n, become instances of
our approach. For this, we want to consider a more general version of the problem
above. Instead of restricting ourselves to decreasing trails of length n — 1, we consider
the problem of finding a longest trail with strictly increasing or decreasing weights in
general. Furthermore, we will consider all undirected graphs where any two edges are
not labelled with the same weight and not only complete graphs.

Similarly to the theoretical results of [GK73], we show that, given a graph G with n
vertices and g edges, there is always a strictly decreasing trail of length at least 2- | 1 | This
problem of finding a longest trail with strictly increasing or strictly decreasing weights in
an edge-weighted graph is an interesting graph theoretic problem [GK73, CCS84, Yus01,
DSMP*15], with potential applications to scheduling and cost distribution in traffic
planning and routing [CKL19].

Before commencing with automation we want to investigate different ways to make
statements about this topic. To this end, we build upon existing works in this area. In
particular, the first to raise the question of the minimum length of strictly increasing
trails of arbitrary graphs were Chvétal and Komlés [CK70]. Subsequently, Graham and
Kletman [GK73] proved that the lower bound of the length of increasing trails is given
by 2- [1]. They also gave an upper bound on the minimum length f(n) of increasing
trails in complete graphs.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

f(n):{n ifn€{3,5}’

n —1 otherwise

Since the ultimate goal of this thesis is to automate these results our proofs diverge
from the ones of Graham et al. [GK73], especially since they were made constructive.
Therefore, in Chapter 3 all proofs are given and the differences to [GK73] are discussed.
To this end we review the basics of graph theory in Section 3.1. Then, Section 3.2 gives
a detailed proof of the lower bound of strictly decreasing trails. In Section 3.3 the upper
bound in the case of complete graphs is discussed.

In Chapter 4 we present a formalization of strictly-ordered trails in Isabelle/HOL.
As our theory builds on the library by Noschinski [Nos13|, we summarize the main
elements of this theory that are used by us are in Section 4.2. Our addition to this
library the theory Ordered — T'rail is presented in Section 4.3. This Section contains
a formalization of the symbolic proof shown in Section 3.2. Chapter 4 of this thesis
was generated from Isabelle/HOL source code using Isabelle’s document preparation
tool and is therefore fully verified. The source code is available online at https:
//github.com/Lachnitt/Formalizing-Graph-Trail-Properties/.

To conclude, this thesis brings the following contributions.

(1) We formalize strictly increasing trails and provide basic lemmas about their properties
in Isabelle/HOL. We also formalize strictly decreasing trails, in addition to the
increasing trail setting of [GK73]. We prove the duality between strictly increasing
and strictly decreasing trails, that is, any such decreasing trail is an increasing one,
and vice versa.

(2) We design an algorithm computing longest ordered paths (Algorithm 3.1), and
formally verify its correctness in Isabelle/HOL. We extract our algorithm to a
Haskell program code using Isabelle’s program extraction tool. Thus, we obtain a
fully verified algorithm to compute the length of strictly ordered trails in any given
graph and weight distribution. We also provide a C++ program to compute these
trails.

(3) We verify the lower bound on the minimum length of strictly ordered trails of arbitrary
graphs, and of complete graphs in particular in Isabelle/HOL. Furthermore, we
formulate constructive proofs (Algorithm 3.2 and 3.3) to show the upper bound
on the minimum length on strictly ordered trails for complete graphs and argue
why such is useful for a planned verification in Isabelle/HOL. We provide a C++
program to generate graphs with n vertices that do not contain trails of length
n, thus generating counterexamples to show that except for graphs with 3 and 5
there is always a weight configurations such that there is no strictly ordered trail
of length n.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

1. INTRODUCTION

(4) We introduce the digital dataset Ordered — Trail formalizing properties of graph
trails. Our dataset consists of ~2000 lines of Isabelle code. As far as we know this
is the first formalization of ordered trails in a proof assistant. Our formalization
builds upon the Graph — Theory library by Noschinski [Nos13], that is part of the
Archive of Formal Proofs (AFP) and already includes many results on walks and
general properties of graphs.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

First-Order Theory of Graphs

2.1 Encoding

As a first step to address the ordered trail problem presented in Chapter 1, an encoding
of it as a logical formula is desirable. We use a many-sorted first-order logic with equality
as employed in the SMT-LIB 2.0 standard [BST*10]. This format is widely used by
automated theorem provers [KV13], [DMBO08], [BCD'11].

Our encoding is shown in Listing 2.1. We introduce two sorts: V, short for vertex and
W, short for weight (lines 1-2). We do not have to restrict the sort of our objects further,
for example by making them integers or reals. There is no need to add them together or
to compare them to a constant. The only thing that is necessary is to impose an order on
the weights such that we can test if a path is decreasing. To this end the uninterpreted
function great (>) is added in line 4.

We impose restrictions on great, the relation should be irreflexive, transitive and tri-
chotomous, i.e. a strict total order. These restrictions are added by the following

assertions:
property property as a logical formula line number in 2.1
irreflexive Yz : W).=(z > x) 7
transitive Ve : W)y W)z W)zx>yAy>z—xz>z2 |8
trichotomous | V(z : W)(y : W).x >yVy>zVae=y 10

A second function cost maps two objects of sort V' to one of sort W. The following table
shows the meaning of the assertions made on the interplay of cost and great.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

FIRST-ORDER THEORY OF GRAPHS

property property as a logical formula Intuitive meaning line nr.
symmetric | V(z : V)(y : V).cost(x,y) = cost(y,z) | The costs in one 13
direction should be
the same as in the
backward one
distinctive | V(w : V)(z: V)(y : V) (2 : V). All weights are 14
(w=zANy=2) distinct. Backward
Vy=wAz=z) directions have to be
V cost(x,y) # cost(w, z) excluded.

The above conditions are universal and do not depend on the specific number of vertices
n. The following two conditions however are depended on n.

property property as a logical formula Intuitive line nr.
meaning
distinct universe | Vv;, vj € {(vo: V) ... (v : V)}vy # vj | There are at 21
least n distinct
vertices in the
domain.

trail of length V(vo: V)...(vp=1:V). There is no trail | 24
n—1 =(vo # 11 of length n — 1
A cost(vg,v1) > cost(vy,v2) A vy # ve | such that the
AN weights are

A cost(vp_3,Up—2) > cost(vp_2,v,—1) | decreasing.

A Up—g # Up_1)

It is important to note that the assertion trail of length n-1 states that there is no trail of
length n — 1. This has direct implications on how to interpret the result a theorem prover
returns on the encoding. If the prover answers that the set of clauses is unsatisfiable
there exists a trail, whereas there is no trail if it returns wvalid.

The encoding can also be used to search for trails of length n with only minimal
adjustments. In that case the assertion trail of length n-1 is replaced and exchanged by
a modified version that prolongs the trail by another element. Since in the assertion
distinct universe we only request that there are n different elements in the domain but
not that the elements of the trail are different that assertion stays unchanged.

property property as a logical formula Intuitive meaning
trail of length n V(vo: V)...(vn: V). There is no trail
—(vg # v1 of length n such
A cost(vg,v1) > cost(vy,va) A vy # ve | that the weights
AN are decreasing.

A cost(vp—2,Vp—1) > cost(vp_1,vp)
N Up—1 7& Un)

The code in Listing 2.2 illustrates this matter modifying lines 24 to 36 of Listing 2.1.
Instead of searching for trails of length 5 in a graph with 6 vertices it now considers trails

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

2.1. Encoding

of length 6. As before, a solver will return unsatisfiable if there is always a trail of length
n in any combination of weights and starting vertices and valid if that is not the case.
In the following we will use the modified code to find counterexamples to the statement
that every graph has a decreasing trail of length n.

r

0 O Ui Wi

27
28
29
30
31
32
33
34
35
36
37
38

(declare-sort V 0)
(declare—-sort W 0)

(declare-fun great (W W) Bool)
(declare—-fun cost (V V) W)
(assert (forall ((x W)) (not (great x x))))
(assert (forall ((x W) (y W) (z W))
(or (not (great x y)) (not (great y z)) (great x z))))
(assert (forall ((x W) (y W))
(or (great x y) (great y x) (= x vy))))
(assert (forall ((x V) (y V)) (= (cost x y) (cost vy x))))
(assert (forall ((w V) (x V) (y V) (z V)) (or
(and (= w x) (= vy z))
(and (= y w) (= x z))
(not (= (cost x y) (cost w z))))))
; In the following n =
(assert (exists ((dO V) (dl V) (d2 V) (d3 V) (d4 V) (d5 V))
(distinct d0 dl d2 d3 d4 d5)))
(assert (forall ((cO V) (cl V) (c2 V) (c3 V) (cd V) (c5 V))
(not (and
(great (cost cO0 cl) (cost cl c2))

(distinct c0 cl)
(distinct cl c2)
(great (cost cl c2)
(distinct c2 c¢3)
(great (cost c2 c3)
(distinct c3 c4)
(great (cost c3 c4)
(distinct c4 c¢b)
))
))

(check-sat)

(cost c2 c3))

(cost c3 c4))

(cost c4 cb))

Listing 2.1: Encoding of the trail problem

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2. FIRST-ORDER THEORY OF GRAPHS
1 (assert (forall ((cO V) (cl V) (c2 V) (c3 V) (cd4d V) (c5 V) (c6 V))
2 (not (and
3 (great (cost cO0 cl) (cost cl c2))
4 (distinct c0 cl)
5 (distinct cl c2)
6 (great (cost cl c2) (cost c2 c3))
7 (distinct c2 c¢3)
8 (great (cost c2 c3) (cost c3 c4))
9 (distinct c3 c4)
10 (great (cost c3 c4) (cost c4 c5))
11 (distinct c4 c5)
12 (great (cost c4 c5) (cost c5 c6))
13 (distinct c5 c6)
14))
15 1))
Listing 2.2: Changes Listing 2.1 to search for trails of length n
2.2 Results
Our experiments were conducted using the the SMT-solver Z3 [DMBO08| on a standard
laptop with 1.7 GHz Dual-Core Intel Core i5 and 8 GB 16000 MHz memory. The time
limit was set to one hour. For the time measurement GNU time [Foul8] was used.
2.2.1 Trails of Length n-1
When searching for trails of length n — 1, i.e. as shown in the encoding in Listing 2.1 the
limit is reached when n = 7.
n = | Result | Time
3 | unsat | 0.020s
4 | unsat | 0.063s
5 | unsat | 4.831s
6 | unsat | 19m 6.175s
As expected the set of formulas is unsatisfiable for every considered instance of n. The
rapid, exponential increase in time is explicable when examining the generated proof. All
possible combinations of weights and starting vertices are listed and then tried out.
2.2.2 Trails of Length n
When searching for trails of length n, i.e. as shown in the encoding in Listing 2.1 but
with the variation described in Listing 2.2, the limit is reached when n equals 5. It is
expected that the limit is lower as in Section 2.2.1 because the prover has to try out one
step more for every combination of weights and starting vertices.
8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.3. Discussion

= | Result | Time
3 | unsat | 0.082s

sat 0.444s

5 | unsat | 3m 55.313s

n

=

We use the command (get-model) to construct a graph that has four vertices and does
not contain a trail of length 4. This is a direct counterexample to the statement that
every weight-distinct graph with n vertices has a decreasing trail of length n.

Figure 2.1: K4 without trails of length 4

2.3 Discussion

Both experimental datasets show that even for small numbers the provers were not able
to show the existence of strictly decreasing trails. Looking at the proof they generate it
becomes clear that they try out all combinations of weights and starting vertices. This
obviously requires a great effort and is not helpful to learn any new ways to approach
the problem. Furthermore, up to this point only complete graphs were considered but
our goal is to handle all kind of graphs.

We want to emphasize that the limitation described above goes beyond automated provers.
In the Isabelle proof assistant, proving that a complete graph with 3 vertices, i.e. Ks,
will always contain a strictly decreasing trail of length 3 is quite exhaustive as well, as it
requires reasoning about 3! = 6 possibilities for a distribution of a weight function w
and then manually constructing concrete trails:

w(vi,vy) = 2 N w(vy,vy) =1 AN w(vs,vi) = 3
— incTrail K3 w [(vs,v2), (V2,Vi), (Vi,V3)]
Therefore, we need a proof where n is treated as a symbolic value to solve the problem

efficiently. Such a proof is presented in Chapter 3. For the formalization we decide to
use Isabelle/HOL. It is shortly introduced in Chapter 4.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

CHAPTER

Symbolic Proof of the Existence
of Strictly Ordered Tralils

3.1 Graph theory

A graph G = (V, E) consists of a set V' of vertices and a set E CV x V of edges. A graph
is undirected if (v1,v2) € E implies that also (vy,v1) € E. A graph is complete if every
pair of vertices is connected by an edge. A graph is loopfree or simple if there are no
edges (z,z) € E and finite if the number of vertices |V| is finite. Finally, we call a graph
G' = (V',E") a subgraph of G = (V,E) if V' CV and E' C E.

If a graph is equipped with a weight function w : £ — R that maps edges to real numbers,
it is called an edge-weighted graph. In the following, whenever a graph is mentioned it is
implicitly assumed that this graph comes equipped with an weight function. A vertex
labelling is a function L : V — N.

A trail of length k in a graph G = (V, E) is a sequence (ey,...,e), ¢; € F, of distinct
edges such that two subsequent edges share a common vertex. A strictly decreasing
trail in an edge-weighted graph G = (V, E) with weight function w is a trail such that
w(e;) > w(e;y1). Likewise, a strictly increasing trail is a trail such that w(e;) < w(e;41).

We will denote the length of a longest strictly increasing trail with P;(w, G). Likewise
we will denote the length of a longest strictly decreasing trail with Py(w,G). In any
undirected graph, it holds that P;(w,G) = Py(w, G), a result that we will formally verify
in Section 4.3.1.

Let fi(n) = min P;j(w, K,,) denote the minimum length of an strictly increasing trail that
must exist in the complete graph with n vertices. Likewise, fg(n) = min Py(w, K,,) in
the case that we consider strictly decreasing trails.

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

SYMBOLIC PROOF OF THE EXISTENCE OF STRICTLY ORDERED TRAILS

12

3.2 Lower Bound on the Length of Strictly Decreasing
Trails

The proof introduced in the following is based on similar ideas as in [GK73]. However,
we diverge from [GK73] in several aspects. Firstly, we consider strictly decreasing instead
of strictly increasing trails, reducing the complexity of the automated proof (see Section
4.3). Furthermore, we add tighter bounds than necessary to give a fully constructive
proof in terms of an algorithm for computing the length of these trails (see Section 3.2.2).

3.2.1 Proof

We start by introducing the notion of a weighted subgraph and then we built on that by
specifying a family of labelling functions:

Definition 1 (Weighted Subgraph). Let G = (V, E) be a graph with weight function
w: E — {1,...,q} where |E| = q. For each i € {0,...,q} define a weighted subgraph
G' = (V, E") such that e € E* iff w(e) € {1,...,i}. That is, G* contains only edges labelled
with weights < 1.

Definition 2 (Labelling Function). For each G' = (V,E') we define L' : E' —
{1,..., @} be a labelling function such that L*(v) is the length of a longest strictly
decreasing trail starting at vertex v using only edges in E*.

Example 1. In Figure 3.1 the example graph from Figure 1.1 is revisited to illustrate
these definitions.

Decreasing trails from vg are:

(v3v4), (v3v1,v102),

(U3’U2, ’Ugvl),
(U31)27 V24, U4U3)

Therefore, L?(v3) = 3

Decreasing trails from vy are:

(viva), (viv3, v3Vs)

Therefore, L3 (vy) = 2

Figure 3.1: Graph G° with labelling function L°

We need to prove the following property.

Lemma 1. Let i < q and G' a labelled subgraph of G. Then, adding the edge labelled
with i 4+ 1 to the graph G; increases the sum of the lengths of strictly decreasing trails at
least by 2, i.e., Y ey LT (v) > 3 v Li(v) + 2.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.2. Lower Bound on the Length of Strictly Decreasing Trails

Proof. Let e be the edge labelled with ¢ + 1 and denote its endpoints with u; and wsy. It
holds that E'U {e} = E**!, therefore the graph G**! is G* with the additional edge e. As
w(e') < w(e), for all ¢’ € E* we have L't (v) = Li(v) for all v € V with uy # v, us # v. It
also holds that L' (uy) = max(L*(ug) + 1, L*(u1)) because either that longest trail from
u1 can be prolonged with edge e (i + 1 will be greater than the weight of the first edge in
this trail by construction of Li*!) or there is already a longer trail starting from wu; not
using e. We derive L+ (ug) = max(L*(u1) + 1, L*(usg)) based on a similar reasoning. See
Figure 3.2 for a visualisation.

Note that LTt (v) = L*(v) for v € V\{u1,us}, because no edge incident to these vertices
was added and a trail starting from them cannot be prolonged since the new edge has
bigger weight than any edge in such a trail.

If L(u1) = L(us), then L (u1) = Li(uy) + 1 and L+ (up) = L¥(uz) + 1 and thus the
sum increases exactly by 2. If L(uy) > L(u2) then Lt (ug) = Li(uq) + 1 > Li(ug) + 2,
otherwise L™ (u1) = L¥(ug) +1 > L*(uy) + 2. Thus,

Z Li—l—l(v)

veV

— > LFN) + L (ug) 4+ LT (ug)
ve(V—{u1,uz2})

> Y L)+ Li(w) + L(uz) +2
ve(V—{ui,uz})

= Z L' (v) + 2.

veV

Lemma 2.)}, .y L4(v) > 2¢.

Proof. By induction, using the property 3", LT (v) > 3 v L(v) + 2 from Lemma 1.

For the induction base note that 3, L°(v) = 0 because G° does not contain any edges
and thus no vertex has a strictly decreasing trail of length greater than 0. O

We next prove the lower bound on the length of longest strictly decreasing trails.

Theorem 1. Let G = (V, E) be an undirected edge-weighted graph such that |V| =n
and |E| = q. Let w: E — {1,...,q} be a weight function assuming different weights
are mapped to to different edges. Then, Py(w,G) > 2- | 1] i.e., there exists a strictly
decreasing trail of length 2 - [L].

Proof. Assume that no vertex is a starting point of a trail of length at least 2- [1], that
is Li(v) < 2- 4], for all v € V. Then, >,y L9(v) < 2-|L|n < 2.q. But this is a

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3. SYMBOLIC PROOF OF THE EXISTENCE OF STRICTLY ORDERED TRAILS
L(u1) L (uz)
Situation before adding edge e: @ @
Lt (ug) +1 LF (ug) +1
Case 1: L'(u1) = Li(us): @ @
(u1) (u2) 1
L (ug) + 1 L7 (uy)
Case 2: Li(u1) > L'(uz): @ : @
1+ 1
LHl(ul) LHl(ul) +1
Case 3: L'(u1) < L'(us): @ . @
1+1
Figure 3.2: Case distinction when adding edge e in Lemma 1
contradiction to Lemma 2 that postulates that the sum of the length of all longest strictly
decreasing trails Y, oy, L9(v) is greater than 2 - g. Hence, there has to be at least one
vertex with a strictly decreasing trail that is longer than 2- | 1] in G9. This trail contains
a subtrail of length 2- [£]. Since E? = E it follows that G? = G, which concludes the
proof. O
Based on Theorem 1, we get the following results.
Corollary 1. In an undirected graph G it also holds that P;(w,G) > 2- | 1| since when
reversing a strictly decreasing trail one obtains a strictly increasing one. In this case,
define L*(v) as the length of a longest strictly increasing trail ending at v in G°.
Corollary 2. Let G be as in Theorem 1 and additionally assume that G is complete and
undirected. Then, there exists a trail of length at least n — 1, i.e. fg(n) = fi(n) >n — 1.
3.2.2 Algorithm for Computing Strictly Decreasing Trails
Note that the proof of Lemma 1 is constructive, yielding Algorithm 3.1 for computing
longest strictly decreasing trails. Function findEndpoints searches for an edge in a
graph G by its weight ¢ and returns both endpoints. Function findMax returns the
maximum value of the array L.
Example 2 shows more in detail how the algorithm works.
Example 2. Consider the complete graph Kg with an edge-labelling as shown in Figure
3.8. The table shows one run of the algorithm, each entry in the table corresponds to one
iteration of the for loop in line 5 in Algorithm 3.5.
14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.3. Upper Bound on the Length of Strictly Decreasing Trails in Complete Graphs

Algorithm 3.1: Find Longest Strictly Decreasing Trail

Input: Graph G = (V, E)
Output: Length of longest decreasing trail in G
Function findlLongestTrail (V,E):
for v e V do
‘ L(v) :=0;
end
for i = 1;i < |E|;i + + do
(u,v) = findEndpoints(i);
temp = L(u);
L(u) = max(L(v) + 1, L(u)) ;
L(v) = max(temp + 1, L(v)) ;
10 end
11 return findMax(L,V);
12 End Function

© W N O A W N

L(vi) L(va) L(vs) L(va) L(vs)

© 0T W — O
CU B W WO O O

DWW WWWHR+H~=RFOO
LW W KR R R RFE R~ ~O
NN NDNDNDNRRROO

[
@)
ot

0
1
1
1
2
2
3
3
3
3
3
(

(a) Example Graph Kg

b) Steps of findLongestTrail(Kg)

Figure 3.3: Example of executing Algorithm 3.1

An implementation of this algorithm in C++ can be found online at https://github.
com/Lachnitt/Formalizing-Graph—-Trail-Properties/.

3.3 Upper Bound on the Length of Strictly Decreasing
Trails in Complete Graphs

In Section 3.2 we showed that any graph contains a strictly ordered trail of length at least
2- | 2], this means we found a lower bound on the length. In this section an upper bound
on the minimum length of strictly ordered trails is proven. Trivially, we can construct

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

SYMBOLIC PROOF OF THE EXISTENCE OF STRICTLY ORDERED TRAILS

16

weight assignments for complete graphs with n vertices such that trails of length (g)
exist. However, this bound is not the tightest bound that can be proven.

For complete graphs Corollary 2 states that a trail of length at least n — 1 has to exist.
But is there always a weight assignment such that all vertices in a graph are starting point
for a strictly ordered trail of at most n — 17 Indeed the minimum length of an strictly
decreasing or increasing trail that must exist in the complete graph with n vertices is:

fa(n) = fi(n) =

n if n € {3,5}
n—1 otherwise

that is for complete graphs with n = 3 or n = 5 vertices there always has to be a trail of

length at least n whereas for any other number n of vertices there only has to be a trail

of length n — 1.

The proof that is given in Section 3.2 is constructive. In the formalization of strictly
ordered trails in Isabelle/HOL in Section 4.3.3 this property is crucial and the proof
is split up in two parts. A first one that shows the correctness of the algorithm and a
second one proving that a certain output of the algorithm entails existence of a strictly
decreasing trail.

This general idea of formalizing an algorithm in Isabelle and then showing its correctness
which also has the benefit of being able to generate a fully verified program could also be
useful when the upper bound on the length of strictly decreasing trails should be verified.

Thus, instead of purely reviewing the proofs given in 3.2, this sections rather focusses on
showing a modified version of these proofs such that they become constructive. While
in the even case the divergence to [GK73] is greater than in the odd case that follows
[GKT73] more closely, both rely on the same ideas as in [GK73|. The differences will be
discussed at the end of each subsection more in detail.

An implementation of the algorithms in C4++ can be found can be found online at https:
//github.com/Lachnitt/Formalizing-Graph-Trail-Properties/.

3.3.1 Preliminaries

o : _ nx(n—1)
Definition 3. Let m denote the number of edges in a complete graph, m = “=5—=.
Lemma 3. Let G = (V, E) be a complete edge-weighted graph without a trail of length n.
Then, for each vertex v € V there is a trail of length n — 1 starting from v.

Proof. From Corollary 2 have that >, oy, L™ (v) > n (n —1). Then, conclude that since
there are n vertices in total and no vertex v € V such that L™ (v) > n exists that each
vertex v € V has to satisfy L™ (v) > n — 1. Because there is no trail of length n it holds
that L™ (v) < n for all v € V. Thus, there is a trail of length n — 1 starting from each
vertex in the graph. d

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.3. Upper Bound on the Length of Strictly Decreasing Trails in Complete Graphs

Lemma 4. Let G = (V, E) be a complete edge-weighted graph without a trail of length n.
Then, Y ey L' v) =X cv LH(v) + 2, for allv € V and i < m.

Proof. From Lemma 1 we know that the sum increases by at least two. Assume towards a
contradiction that it increases by more than two in any step. It follows that Y, <y L™ (v) >
n* (n —1). But that is a contradiction to Lemma 3. O

Corollary 3. Let G = (V, E) be a complete edge-weighted graph without a trail of length
n. For each step i > 1 in Algorithm 3.1 there are only two possibilities: Let v and w are
endpoints of the edge labelled with i. Either L'(v) and L'(w) are both increased by 1 or
one of them is not changed while the other is increased by 2.

Definition 4. A step i in Algorithm 3.1 that considers an edge (u,v) will be called:

o 1-1 step if L't (u) = Li(u) + 1 and L't (v) = Li(v) + 1
o 2-0 step if L' (u) = L' (u) + 2 and L™ (v) = L' (v) + 0
o 0-2 step if L' (u) = Li(u) + 0 and L' (v) = Li(v) + 2

Theorem 2. Let (eq,...,en),e; € E be a sequence of distinct edges. Let G be the result
of adding the edges in the order of their index in the sequence to an empty graph. Adding
the edges uses only 1-1, 2-0 and 0-2 steps and for every vertex v € V' the number of edges
added in 2-0 and 0-2 steps is the same if and only if G does not contain strictly ordered
trails of length n.

Proof. (=) After adding the edges each vertex v has n — 1 outgoing edges. Assume k of
them are 1-1 step edge, I are 2-0 step edges. Then, there are also [0-2 step edges. Thus,
L(v)=1xk+2*l+0xl=mn—1 for every v € V. Therefore, the resulting graph has no
trails of length n.

(<) Assume the graph does not contains a trail of length n. From Corollary 3 have that
only 1-1, 2-0 and 0-2 steps are used. Assume towards a contradiction that there is at
least one vertex v € V' the number of edges added in 2-0 and 0-2 steps is not the same.

Case 1: If there are k, k > 0 2-0 steps more than 0-2 steps, let | denote the number of
0-2 steps and m the number of 1-1 steps. Note that (k+ 1) +1+m = n — 1. Then,
L(v)=2%(k+1)+0xl+1xm =2k+2l+m =k+n—1>n—1 which is a contradiction
to the assumption that the graph does not contain a trail of length n.

Case 2: If there are k, k > 0 0-2 steps more than 2-0 steps, let | denote the number of
2-0 steps and m the number of 1-1 steps. Note that (k+ 1)+ 1+ m = n — 1. Then,
Lw)=0x(k+1)+2*l+1xm=2l4+m=n—1—k <n—1. Have from Lemma 3 that
L(v) =n — 1. This is a contradiction. O

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

3. SyMBOLIC PROOF OF THE EXISTENCE OF STRICTLY ORDERED TRAILS

3.3.2 Graphs with an Even Number of Vertices

In the case that the number n of vertices is even, a graph without strictly ordered trails
of length n can be constructed using Algorithm 3.2. From Theorem 2 we know that we
have to come up with an order to add edges to an empty graph that only uses 1-1, 2-0
and 0-2 steps and whenever we perform an 2-0 step on an edge incident to vertex v then
we also have to perform a corresponding (-2 step on another edge incident to that vertex.

Thus, we designed the algorithm that only uses 1-1 steps. The basic idea is that in the
beginning of each round all vertices have the same label. Then, pairs of vertices are put
together that have not been put together before. An edge is added between them and
their labels are increased by one. This is of course only possible because the number of
edges is even. Otherwise, we could not only rely on 1-1 steps since one vertex remains
without a partner each round.

Algorithm 3.2: Construct an Even Graph without a Trail of Length n

Input: Set of vertices V, |V| even
: : *(n—1
Output: Complete graph G = ((V, E), w), weight function w : E — {1,.., % (’;)}

1 Function ConstructGraphEven (V):
2 weight = 1;

3 forveV do

4 | L(v) = 0;

5 end

6 fori=0;i<n—1;14++ do

7 //Finds n/2 edges that are not incident
8 (€1, €n/2) = findEdges(G);

9 for j=1;5<n/2;j++ do
10 L(endpointl(e;)) + +;
11 L(endpoint2(e;)) + +;
12 addEdgeWeight(G,e;,j);
13 end
14 end
15 return G;
16 End Function

Example 3. An ezecution of the algorithm on the set of vertices V. = {v1, va, v3,v4}, i.e.

n =4 is shown in Figure 3.4.
The longest trails from vi are: (vi,v4,v2,v1

The longest trails from vy are: (vg,v3,v1, V2

)
)
3)
)

V4,01, V3,04

2 (Y
The longest trails from vs are: (vs,vo,vq, v

- (
- (
- (
: (

The longest trails from vy are

thele

(]
blio
nowledge

(]
I
rk

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.3. Upper Bound on the Length of Strictly Decreasing Trails in Complete Graphs

0
@ O

0 2
Figure 3.4: Example of executing Algorithm 3.2

Thus, there is no trail of length n in the graph. Notice that this is not the only possible
configuration, e.g. 5 and 6 might be switched.

Remark 1. It is not enough to add the edges in any order. Figure 3.5 gives an example
where that would lead to a dead end. In the third graph displayed in the figure no further
1-1 step is possible. Therefore, at the begin of each round Algorithm 3.2 first searches for
all n/2 edges to be connected in that round at the beginning of that round, to make sure
to avoid to run into such a deadlock.

0 () (=)o 11

'@ @ 1O

0 (%) () 0 11

Figure 3.5: Adding edges in the wrong order

Remark 2. Note that for an implementation it might be beneficial to consider cycles of
length n and then split them up in 2 sets of n/2 edges. But in this case n/2 edges might
remain in the last step, if n = 2*m and 24 m.

Lemma 5. For every even number n, there is a complete graph G = (V, E) with n
vertices that does not contain a trail of length n

Proof. In each round i of Algorithm 3.2 (see line 6) we add n/2 edges to the graph. Edges
that are already in the graph are not considered, thus the sequence of edges we generate
is distinct. Therefore, after n-1 round the graph is complete. It is always possible to
find n/2 edges that are not incident because all vertices always have the same number of
incident edges, that is i. In one round the labels of all vertices in the graph are considered
as when n/2 non incident edges are chosen n different vertices are endpoints. Therefore,
since at the beginning of each round all vertices have the same label, L(v) =i for each

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

SYMBOLIC PROOF OF THE EXISTENCE OF STRICTLY ORDERED TRAILS

20

v € V after a round L(v) =i+ 1 for each v € V. Thus, only I-1 steps were made. Then,
with Theorem 2 it follows that the constructed graph does not contain a trail of length n.

O]

This proof differs from the one in [GK73] in several important points. In [GK73] the
authors first show that length of the longest strictly ordered trail is subadditive. Then,
they state that every graph with an even number of vertices can be divided into n — 1
different matchings (these do correspond to the rounds in Algorithm 3.2). We do not
explicitly use the subadditivity here but rather use a constructive variant which then can
be verified using a simple induction. This is beneficial with regard to the automation of
this proof, which we plan to do for further work (see Chapter 5).

3.3.3 Graphs with an Odd Number of Vertices

There are two special cases, n = 3 and n = 5 for which every complete graph has a trail
of length at least n. For both cases we could just list all possibilities, as it was essentially
done by the automated provers in Section 2.1. Another way is to argue about the steps
that can be done to add the first five edges to the graph [GK73].

For all odd n such that n ¢ {3,5} Algorithm 3.3 constructs witnesses, i.e. graphs with n
vertices that do not contain a strictly ordered trail of length n. Intuitively, the algorithm
decomposes any graph into two smaller graphs that share a common vertex and thus
have an odd number of vertices as well. The base cases are 7, 9 and 11. For these cases
special decompositions are hard-coded. They consists of a cycle with an even number
of vertices and satellite vertices, an example for one decomposition of a K7 is given in
Figure 3.6. These special decompositions were found by [GK73]. In our Algorithm 3.3
the function add adds edges to an edge list and marks them with 0,1,2. If the edge is a
satellite, i.e. is only connected to the rest of the decomposition with one endpoint it is
marked with 0. If it is part of the cycle it is labelled either 1 or 2 such that the circle is
alternately labelled with 1s and 2s.

When two decompositons are merged together, only new satellite vertices are added to
a decomposition. Thus, in lines 42, 44, 47, and 49 all edges are marked with 0. To
remember which vertex the satellite nodes should be connected to the sets A, B, « and 3
are used. In the end, the recursive function findDecomps returns (n — 1)/2 subgraphs
of K. The merge process is shown in Example 5 for the graph n = 7. The labelling of
the edges takes place in ConstructGraphOdd using the marks that were done earlier.
See Example 4 for an labelling of a decomposition according to its marking in the case of
n="r.

Example 4. Figure 3.6 shows a decomposition of a graph with 7 vertices. The cycle with
an even number of vertices is (v1,v7,v2,v5,v1), the set of satellite vertices {vs, vy, vg}.
The edges to the satellite vertices are marked with 0, in the cycle the edges are alternating
marked with 1 and 2 (see 3.6a). A weight assignment that could be produced from these
marks is shown in 3.6b.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
|
rk

3.3. Upper Bound on the Length of Strictly Decreasing Trails in Complete Graphs

Algorithm 3.3: Construct an Odd Graph without a Trail of Length n

© W N O Ok W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Input: Set of vertices V, n = |V| odd
Output: Complete graph G = ((V, E), w), weight function w: E — {1, .., %}
Function ConstructGraphOdd (V) :
weight = 1;
E_List = findDecomps(V, {});
G = (V.{})
for F : E_List do
for (e1,e2,mark) : E do
if mark == 1 then
G.add(eq, e2,weight);
weight++;
end
end
for (e1,e2,mark) : E do
if mark == 0 then
G.add(eq, e2,weight);
weight++;
end
nd
or (e1,ez,mark) : E do
if mark == 2 then
G.add(eq, e2,weight);
weight++;
end

= 0

end
end

return G;
End Function

Example 5. Figure 3.7 shows an example of merging two special decompositions as in
function findDecomps of Algorithm 3.3. It becomes very clear that all new edges that

are added lead to satellite edges and do not affect the cycle.

The proof that Algorithm 3.3 indeed produces a valid weight distribution relies on similar
ideas as the proof in the even case presented in Lemma 5. However, the interplay of the
different sets has to be considered and is quite involved. A detailed proof is thus omitted
since it would go beyond the scope of this thesis However, interested readers might want
to consult [GKT73] since Algorithm 3.3 is a straight-forward adaption of the inductive

proof there.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3. SYMBOLIC PROOF OF THE EXISTENCE OF STRICTLY ORDERED TRAILS
Algorithm 3.3: Construct an Odd Graph without a Trail of Length n
27 Function findDecomps(V):
28 n=|V|;
29 if n==7//n==9//n== 11 then
30 L return hard-coded configuration;
31 Find m, m’ such that n = 2xm + 2*xm’ + 1;
32 (V1, V2) = disjointSplit(butlast(V'), 2 x m, 2 x m');
33 | (A1, By, B, a1, 51) = findDecomps(Vi+-+ast(V));
34 (Ag, By, B9, ag, f2) = findDecomps(Va++last(V));
35 A=A U Ay,
36 B = By U By;
37 a = a1Qas;
38 | [=/1Qb;
39 E = E1@E2;
40 for int i = 0;i < m;i+ + do
41 for v € A, do
42 L E[i].add(a[i], v, 0);
43 for v € B, do
44 | E[i].add(v, A1[i], 0);
45 for intt=m;i <m+k;i++ do
46 for v € By do
47 L E[i].add(az[i — m],v,0);
48 for v € A; do
49 L El[i].add(v, B2[i — m],0);
50 | return (A,B,E,a,f);
51 End Function
(a) A decomposition of K7 with marked edges (b) Labelling edges with weights according to
as returned by findDecomps their marks as done in ConstructGraphOdd
Figure 3.6: Labelling step in Algorithm 3.3
22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.3. Upper Bound on the Length of Strictly Decreasing Trails in Complete Graphs

G2[0]:

Ap ={1,2,3}, By = {4,5,6}, a1[0] =2, Ay = {7,8,9}, By = {10,11,12}, a3[0] = 8,
B0 =5 B[0] = 11

A=1{1,2,3,7,8,9}, B={4,5,6,10,11,12}, a[3] = 9, B[3] = 11 93

Figure 3.7: Merging two decompositions in Algorithm 3.3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

CHAPTER

Embedding in Isabelle/HOL

4.1 Isabelle/HOL

Isabelle is a generic proof assistant originally developed by Lawrence Paulson in 1986
and is written in Standard ML [Pau93]. Isabelle/HOL is a specialization of Isabelle for
Higher-Order Logic (HOL). Its main proof method is resolution based. In contrast to
automated theorem provers as for example Vampire [KV13], Isabelle is interactive, i.e.
requires human help to find proofs. However, over the Sledgehammer [BBP13] interface,
Automatic Theorem Prover (ATP) and Satisfiability Modulo Theories (SMT) solver
including Vampire [KV13], CVC4 [BCD*11] and E [Sch02] can be used.

In the official tutorial on Isabelle/HOL [Nip13] the following "equation" is used to explain
some of Isabelle’s main features:

"HOL = Functional Programming + Logic"

How does this relate to our graph problem? We will use functional programming to
formalize the algorithm 3.2.2 and then formalize Theorem 1 using a logical formula.
Isabelle’s expressiveness allows us to translate all lemmas from Section 3.2 into program
code. Throughout the entire document the Intelligible semi-automated reasoning (ISAR)
language is used, a more human-readable alternative to the so-called apply scripts. This
allows us to also translate the single proof steps from Section 3.2 into ISAR.

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4. EMBEDDING IN ISABELLE/HOL
4.2 Graph Theory in the Archive of Formal Proofs
To increase the reusability of our work, we build upon the Graph_Theory library by
Noschinski [Nos13]. Graphs are represented as records consisting of vertices and edges
that can be accessed using the selectors pverts and parcs. We recall the definition of
the type pair_pre digraph:
record ‘a pair pre digraph = pverts :: "’a set" parcs :: "’a rel"
Now restrictions upon the two sets and new features can be introduced using locales.
Locales are Isabelle’s way to deal with parameterized theories [Ball0]. Consider for
example pair_wf _digraph. The endpoints of an edge can be accessed using the functions
fst and snd. Therefore, conditions arc_fst_in verts and arc_snd_in_verts assert
that both endpoints of an edge are vertices. Using so-called sublocales a variety of other
graphs are defined.
locale pair wf digraph = pair_pre digraph +

assumes arc_fst_in verts: "Ne. e € parcs G = fst e € pverts G"
assumes arc_snd_1in verts: "/\e. e € parcs G = snd e € pverts G"

An object of type b awalk is defined in Graph_Theory.Arc_Walk as a list of edges.
Additionally, the definition awalk imposes that both endpoints of a walk are vertices of
the graph, all elements of the walk are edges and two subsequent edges share a common
vertex.
type_synonym ‘b awalk = "’b list"
definition awalk :: "’a = ‘b awalk = ’“a = bool"
"awalk u p v = u € verts G N set p C arcs G AN cas u p v"
We also reuse the type synonym weight_ fun introduced in weighted Graph.
type_synonym ‘b weight_fun = "’b = real"
Finally, there is a useful definition capturing the notion of a complete graph, namely
complete_digraph.
definition complete digraph :: "nat = (’a,’b) pre_digraph = bool" ("K_")
where "complete_digraph n G = graph G N card (verts G) = n A arcs_ends
G = {(u,v). (u,v) € verts G X verts G AN u # v}"

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.3. Formalization of Trail Properties in Isabelle/HOL

4.3 Formalization of Trail Properties in Isabelle/HOL

4.3.1 Increasing and Decreasing Trails in Weighted Graphs

In our work we extend the graph theory framework from Section 4.2 with new features
enabling reasoning about trails. To this end, a trail is defined as a list of edges. We
will only consider strictly increasing trails on graphs without parallel edges. For this we
require the graph to be of type pair_pre_digraph, as introduced in Section 4.2.

Two different definitions are given in our formalization. Function incTrail can be used
without specifying the first and last vertex of the trail whereas incTrail2 uses more of
Graph_Theory’ s predefined features. Moreover, making use of monotonicity incTrail
only requires to check if one edge’s weight is smaller than its successors’ while incTrail2
checks if the weight is smaller than the one of all subsequent edges in the sequence, i.e.
if the list is sorted. The equivalence between the two notions is shown in the following.

fun incTrail :: "’a pair pre digraph = (’a X’a) weight_fun = (’a X’a)
list = bool" where
"incTrail g w [] = True" |
"incTrail g w [e1] = (e1 € parcs g)" |
"incTrail g w (ei#ex#es) =
(if w e < w ey N e € parcs g N snd e; = fst ez

then incTrail g w (es#es) else False)"

definition (in pair pre digraph) incTrailZ where

"incTrail2 w es u v = sorted wrt (A e ey. w e < w e3) es A
(es = [] V awalk u es v)"
fun decTrail :: "’a pair _pre digraph = (’a X’a) weight_fun = (’a X’a)

list = bool" where

"decTrail g w [] = True" |

"decTrail g w [e1] = (e1 € parcs g)" |

"decTrail g w (ei1#ex#es)
(if w e > w ey N el € parcs g N snd e; = fst ep
then decTrail g w (ex#es) else False)"

definition (in pair pre digraph) decTrailZ where
"decTrail2 w es u v = sorted _wrt (A e e3. w e > W e3) es A
(es = [] V awalk u es v)"

Defining trails as lists in Isabelle has many advantages including using predefined list
operators, e.g., drop. Thus, we can show one result that will be constantly needed in the
following, that is, that any subtrail of an ordered trail is an ordered trail itself.

lemma incTrail subtrail:
assumes "incTrail g w es"
shows "incTrail g w (drop k es)"

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

EMBEDDING IN ISABELLE/HOL

[\
co

lemma decTrail subtrail:
assumes "decTrail g w es"
shows "decTrail g w (drop k es)"

In Isabelle we then show the equivalence between the two definitions decTrail and
decTrail2 of strictly decreasing trails. Similarly, we also show the equivalence between
the definition incTrail and incTrail2 of strictly increasing trails.

lemma (in pair _wf_digraph) decTrail_is_dec_walk:
shows "decTrail G w es +—
decTrail2 w es (fst (hd es)) (snd (last es))"

lemma (in pair_wf_digraph) incTrail_is_inc_walk:
shows "incTrail G w es <—
incTrail2 w es (fst (hd es)) (snd (last es))"

Any strictly decreasing trail (eq,...,e,) can also be seen as a strictly increasing trail
(én,...,e1) if the graph considered is undirected. To this end, we make use of the
locale pair sym digraph that captures the idea of symmetric arcs. However, it is also
necessary to assume that the weight function assigns the same weight to edge (v;,v;)
as to (vj,v;). This assumption is therefore added to decTrail eq rev_incTrail and

incTrail_eq rev_decTrail.

lemma (in pair sym digraph) decTrail_eq rev_incTrail:
assumes "V vy ve. w (vi,Vvy) = w(ve,vi)"
shows "decTrail G w es +—
incTrail G w (rev (map (A(vi,vs). (va,vy)) es))"

lemma (in pair_sym digraph) incTrail_eq rev_decTrail:
assumes "V vy ve. w (vi,Vvy) = w(ve,vi)"
shows "incTrail G w es +—
decTrail G w (rev (map (A(vi,vs). (va,vy)) es))"

4.3.2 Weighted Graphs

We add the locale weighted pair _graph on top of the locale pair_graph introduced
in Graph_Theory. A pair_graph is a finite, loop free and symmetric graph. We do not
restrict the types of vertices and edges but impose the condition that they have to be a
linear order.

Furthermore, all weights have to be integers between 0 and | £ | where 0 is used as a special
value to indicate that there is no edge at that position. Since the range of the weight
function is in the reals, the set of natural numbers (1, .., card (parcs G) div 2} has
to be casted into a set of reals. This is realized by taking the image of the function reai
that casts a natural number to a real.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.3. Formalization of Trail Properties in Isabelle/HOL

locale weighted pair graph =
pair_graph "(G:: (’a::linorder) pair_pre digraph)" for G +
fixes w :: "(’ax’a) weight_fun"
assumes dom: "e € parcs G — w e € real ' {1..card (parcs G) div 2}"
and vert_ge: "card (pverts G) > 1"

We introduce some useful abbreviations, according to the ones in Section 3.1

card (parcs G)"
card (pverts G)"
{1..qg div 2}"

abbreviation (in weighted pair_graph) "qg
abbreviation (in weighted pair_graph) "n
abbreviation (in weighted pair graph) "W

Note an important difference between Section 3.2 and our formalization. Although a
weighted_pair._graph is symmetric, the edge set contains both “directions’ of an edge,
i.e., (v1,v2) and (ve,v1) are both in parcs G. Thus, the maximum number of edges (in

n-(n—1)
2

the case that the graph is complete) is n - (n — 1) and not . Another consequence

is that the number ¢ of edges is always even.

lemma (in weighted pair_graph) max_arcs:
shows "card (parcs G) < n*(n-1)"

lemma (in weighted pair graph) even_arcs:
shows "even g"

The sublocale distinct_weighted pair_graph refines weighted pair_graph. The
condition zero fixes the meaning of 0. The weight function is defined on the set of
all vertices but since self loops are not allowed; we use 0 as a special value to indicate
the unavailability of the edge. The second condition distinct enforces that no two
edges can have the same weight. There are some exceptions however captured in
the statement (vi = us A va = w1) V (vi = uy A va = uy). Firstly, (v1,v2) should
have the same weight as (ve,v1). Secondly, w(vi,v2) has the same value as w(vy,v2).
Note that both edges being self loops resulting in them both having weight 0 is prohibited
by condition zero. Our decision to separate these two conditions from the ones in
weighted_pair_graph instead of making one locale of its own is two-fold: On the one
hand, there are scenarios where distinctiveness is not wished for. On the other hand, 0
might not be available as a special value.

locale distinct_weighted pair_graph = weighted pair_graph +
assumes zero: "W vy va. (vi,vy) ¢ parcs G <— w (vi,ve) = 0"
and distinct: "W (vy,ve) € parcs G. Y (ul,u2) € parcs G.
((vi = u2 N vg = ul) V (vi = ul N vy = u2)) <—
w (vi,ve) = w (ul,u2)"

One important step in our formalization is to show that the weight function is surjective.
However, having two elements of the domain (edges) being mapped to the same element
of the codomain (weight) makes the proof complicated. We therefore first prove that the
weight function is surjective on a restricted set of edges. Here we use the fact that there

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4. EMBEDDING IN ISABELLE/HOL
is a linear order on vertices by only considering edges were the first endpoint is bigger
than the second.
Then, the surjectivity of w is relatively simple to show. Note that we could also have as-
sumed surjectivity in distinct_weighted pair_graph and shown that distinctiveness
follows from it. However, distinctiveness is the more natural assumption that is more
likely to appear in any application of ordered trails.
lemma (in distinct_weighted pair_graph) restricted weight_fun surjective:
shows "(Vk € w. 3 (vy,vy) € (parcs G). w (vi,ve) = k)"
lemma (in distinct_weighted pair_graph) weight_fun_surjective:
shows "Wk € w. 3 (vy,ve) € (parcs G). w (vyi,ve) = k)"
4.3.3 Computing a Longest Ordered Trail
We next formally verify Algorithm 3.2.2 and compute longest ordered trails. To this end,
we introduce the function findEdge to find an edge in a list of edges by its weight.
fun findEdge :: "(’ax’a) weight_fun = (’ax’a) list = real = (‘ax’a)"
where
"findEdge £ [] k = undefined" |
"findEdge f (e#es) k = (if f e = k then e else findEdge f es k)"
Function findEdge will correctly return the edge whose weight is k. We do not care in
which order the endpoints are found, i.e. whether (vy,v3) or (ve,v;) is returned.
lemma (in distinct_weighted pair_graph) findEdge_success:
assumes "k € W" and "w (vi,ve) = k" and "(parcs G) # {}"
shows " (findEdge w (set_to list (parcs G)) k) = (vi,vsa)
V (findEdge w (set_to_1list (parcs G)) k) = (vg,vi)"
We translate the notion of a labelling function L!(v) (see Definition 2 of Section 3.2) into
Isabelle. Function getL G w, in short for get label, returns the length of the longest
strictly decreasing path starting at vertex v. In contrast to Definition 2 subgraphs are
treated here implicitly. Intuitively, this can be seen as adding edges to an empty graph
in order of their weight.
fun getL :: "(’a::linorder) pair_pre_digraph = (’ax’a) weight_fun = nat
= ’a = nat" where
"getL g w 0 v = 0" |
"getL g w (Suc i) v =
(let (vi,ve) = (findEdge w (set_to_list (arcs g)) (Suc 1)) in
(if v = vi1 then max ((getL g w 1 vo)+1) (getL g w i v) else
(if v = v9 then max ((getlL g w 1 vi1)+1) (getL g w i v) else
getL g w 1 v)))"
To add all edges to the graph, set i = |E|. Recall that card (parcs g) =2 x|E|, as
every edge appears twice. Then, iterate over all vertices and give back the maximum
30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.3. Formalization of Trail Properties in Isabelle/HOL

length which is found by using getL G w. Since getL G w can also be used to get a
longest strictly increasing trail ending at vertex v the algorithm is not restricted to
strictly decreasing trails.
definition getLongestTrail :: "(’a::linorder) palir pre_digraph = (’ax’a)
weight_fun = nat" where
"getLongestTrail g w =

Max (set [(getlL g w (card (parcs g) div 2) v)

v . <- sorted_list_of_set (pverts g)])"

Exporting the algorithm into Haskell code results in a fully verified program to find a
longest strictly decreasing or strictly increasing trail.

export__code getLongestTrail in Haskell module_name LongestTrail

Using an induction proof and extensive case distinction, the correctness of Algorithm
3.2.2 is then shown in our formalization, by proving the following theorem:

theorem (in distinct_weighted pair graph) correctness:
assumes "d v € (pverts G). getL G w (g div 2) v = k"
shows "d xs. decTrail G w xs A length xs = k"

4.3.4 Minimum Length of Ordered Trails

The algorithm introduced in Section 4.3.3 is useful on its own. Additionally, it can also
be used to verify the lower bound on the minimum length of a strictly decreasing trail
Py(w,G) >2- [1].

To this end, Lemma 1 from Section 3.2 is translated into Isabelle where it is called

minimal_increase_one_step. The proof is similar to its counterpart, also using a case

distinction. Lemma 2 is subsequently proved, here named minimal_ increase_total.

lemma (in distinct_weighted pair graph) minimal_increase_one step:
assumes "k + 1 € w"

shows " (> v € pverts G. getL G w (k+1) v)
> (). v € pverts G. getL G w k v) + 2"

lemma (in distinct_weighted _pair_graph) minimal_ increase_total:
shows " (z v € pverts G. getlL G w (q div 2) v) > q"

From minimal increase total we have that that the sum of all labels after ¢ div 2
steps is greater than ¢. Now assume that all labels are smaller than ¢ div n. Because we
have n vertices, this leads to a contradiction, which proves algo_result_min.

lemma (in distinct_weighted pair graph) algo_result_min:
shows "(d v € pverts G. getl, G w (q div 2) v > g div n)"

Finally, using lemma algo_result_min together with the correctness theorem of
section 4.3.3, we prove the lower bound of 2 - [] over the length of a longest strictly

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4. EMBEDDING IN ISABELLE/HOL
decreasing trail. This general approach could also be used to extend our formalization
and prove existence of other trails. For example, assume that some restrictions on the
graph give raise to the existence of a trail of length m > 2-[£]. Then, it is only necessary
to show that our algorithm can find this trail.
theorem (in distinct_weighted pair_ graph) dec_trail_ exists:
shows "3 es. decTrail G w es A length es = g div n"
theorem (in distinct_weighted_pair_graph) inc_trail_exists:
shows "d es. incTrail G w es A length es = g div n"
Corollary 2 is translated into dec_trail_ exists_complete. The proof first argues that
the number of edges is n - (n — 1) by restricting its domain as done already in Section
4.3.2.
lemma (in distinct_weighted pair_graph) dec_trail_exists_complete:
assumes "complete_digraph n G"
shows " (3 es. decTrail G w es A length es = n-1)"
4.3.5 Example Graph K,
We return to the example graph from Figure 1.1 and show that our results from Sections
4.3.1-4.3.4 can be used to prove existence of trails of length k, in particular k£ = 3 in Ky
using Isabelle. Defining the graph and the weight function separately, we use natural
numbers as vertices.
abbreviation ExampleGraph:: "nat pair_pre_digraph" where
"ExampleGraph = (/|
pverts =
{1,2,3, (4::nat)},
parcs =
{(vi,ve). vi € {1,2,3,(4::nat)} N vo € {1,2,3, (4::nat)} AN vy # va}
/) n
abbreviation ExampleGraphWeightFunction :: " (natXnat) weight_fun" where
"ExampleGraphWeightFunction = (A (vyi,Vvs2).
if (vi =1 N vy = 2) V (vi = 2 N vy = 1) then 1 else
(if (vi = 1 N vy = 3) V (vi = 3 N veg = 1) then 3 else
(if (vi =1 N vy = 4) V (vi = 4 N vy = 1) then 6 else
(if (vi = 2 N veg = 3) V (vi = 3N ve = 2) then 5 else
(if (vi = 2 N vy = 4) V (vi = 4 N vy = 2) then 4 else
(if (vi = 3 N vy =4) V (vi = 4 N vy = 3) then 2 else 0))))))"
We show that the graph K, of Figure 1.1 satisfies the conditions that were imposed in
distinct_weighted_pair_graph and its parent locale, including for example no self
loops and distinctiveness. Of course there is still some effort required for this. However,
it is not necessary to manually construct trails or list all possible weight distributions.
Additionally, instead of ¢! statements there are at most 3—2‘7 statements needed.
32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

4.3. Formalization of Trail Properties in Isabelle/HOL

interpretation example:
distinct_weighted pair._graph ExampleGraph ExampleGraphWeightFunction

Now it is an easy task to prove that there is a trail of length 3. We only add the fact that
ExampleGraph is a distinct_weighted pair graph and lemma dec _trail exists.

lemma ExampleGraph_decTrail:
shows "d xs. decTrail ExampleGraph ExampleGraphWeightFunction xs
N length xs = 3"

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

CHAPTER

Related Work and Discussion

5.1 Related Work

In 1970 Chvétal and Komlés [CK70] showed a generalisation of Gallai’s theorem connecting
graph colourings and strictly ordered paths. Thus, they raised the question of the
minimum length of strictly increasing paths in complete graphs. Subsequently, Graham
and Kletman [GK73| proved that the lower bound of the length of increasing trails
is given by 2 - L%j They also gave an upper bound on the minimum length f(n) of
increasing trails in complete graphs.

f(n):{n ifn€{3,5}7

n —1 otherwise

Furthermore, they show that in a complete graph with n vertices there has to be an
increasing path of length at least %(\/ 4n — 3 — 1) and at most %T". The upper bound was
afterwards improved by Calderbank, Chung and Sturtevant [CCS84]. They showed that

the maximum length of a path with increasing edge weights is lesser equal (% +o(1))n.
Then, Milans [Mill5] proved that the lower bound can be increased to (% — 0(1))(10g" n)%
Further progress was made recently by Buci¢ et al. [BKPT18] who improved the lower

bound to nt—oM),

There has also been effort to show such bounds on graphs with an average degree of

d. As in the case of complete graphs these bounds have been improved incrementally.

The most recent improvement was made in [BKP118] where the authors proved that

if d > 2 the lower bound on strictly ordered trails of a graph with average degree d is
d s . .

TN TR In addition to this, other classes of graphs have been considered, e.g.,

trees and planar graphs [RSY01], on random edge-ordering [Yus01] or on hypercubes
[DSMP*15].

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

RELATED WORK AND DISCUSSION

36

In terms of formalizing strictly ordered trails in edge-weighted graphs, the Graph—Theory
library by Noschinski [Nos13], that is part of the Archive of Formal Proofs (AFP) provides
many results on graphs. This includes the formalization of weight functions and as well
as many different kinds of graphs. Furthermore, it contains definitions of walks, trails and
paths as well as a formalization of shortest paths. However, the authors do not formalize
strictly ordered trails, nor formalize the special weighted graphs we use (locale distinct-
weighted-pair-graph). Therefore, our formalization extends [Nos13] with definitions on
strictly decreasing and increasing trails and provides many basic lemmas on them. We
also add the proof of the minimum length of strictly ordered trails. The main challenges
were the reasoning on the surjectivity of the weight function (not present in [Nos13]
either) as well the correctness proof of the algorithm.

5.2 Discussion and Further Work

In this thesis we formalized strictly decreasing and increasing trails. We proved an lower
bound on the length of strictly ordered trails which exemplary shows how to approach
ordered trail problems.

For further work we plan to formalize the upper bound on the minimum length of strictly
ordered trails in complete graphs as shown in Section 3.3. Because we already transformed
the proof by [GK73] who used decomposition of graphs into cycles or 1-factors into
constructive proofs we already have a basis to work on. In particular, note that in Section
2.1 we demonstrated that the two special cases n = 3 and n = 5 can be shown using an
an automated reasoning engine. Similar to Section 4.3.3 we plan to obtain fully verified
programs that realise Algorithms 3.2 and 3.3. We believe that formalizing this result
would be a valuable extension to the theory ordered Trail.

One of our goals was to learn lessons from the Isabelle/HOL encoding that can be used
to improve the proof finding of the automated provers used in Section 2. In these respect
our formalization showed the importance of showing surjectivity of the weight function
as well as that it is better to reason about decreasing instead of increasing trails since
the algorithm considers edges in ascending order and new edges can better be added to
the end of a sequence than to the beginning.

Our formalization can be easily extended and could therefore serve as a basis for further
work in this field. The definitions incT'rail and decTrail and the respective properties
that are proven in Section 4.3.1 are the key to many other variants of trail properties.
Because our theory builds on [Nos13] all notions and proofs introduced there can be
combined with our newly added contributions.

One possible direction for further investigation are monotone paths. As mentioned above
there is no tight bound but narrowing down that such a path has to have length at least
n!=°() and at most (3 + o(1))n would be already useful.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Conclusion

In this work we formalized strictly increasing and strictly decreasing trails in the proof
assistant Isabelle/HOL. Furthermore, we showed correctness of an algorithm to find such
trails. We provided a fully verified program to compute monotone trails. We used this
algorithm to prove the result that every graph with n vertices and ¢ edges has a strictly
decreasing trail of length at least 2- [1].

For further work we plan to show that this is a tight bound for every n except for n = 3
and 5. We presented the theoretical foundations for such an undertaking and provide an
algorithm to generate graphs with n vertices that do not contain strictly ordered trails of
length n. Therefore, we expect that we will be able to obtain a fully verified program in
this case, as well. We provide a program to construct such graphs, that can be used as a
counterexample generator.

Our results are built on the already existing Isabelle Graph_theory from the Archive
of Formal Proofs. Thus, our results can be used by any theory using graphs that are
specified as in this library. Therefore, our theory is highly reusable and might be the
basis for further work in this field.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.1

21

3.1
3.2
3.3
3.4
3.5
3.6
3.7

List of Figures

Example graph Ky o o 1
K4 without trails of length 4 oL 9
Graph G® with labelling function L® 12
Case distinction when adding edge ¢ in Lemma 1 14
Example of executing Algorithm 3.1 15
Example of executing Algorithm 3.2 19
Adding edges in the wrong order 19
Labelling step in Algorithm 3.3 22
Merging two decompositions in Algorithm 3.3 23

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

List of Algorithms

15
18
21

3.1 Find Longest Strictly Decreasing Trail

3.2 Construct an Even Graph without a Trail of Length n
3.3 Construct an Odd Graph without a Trail of Lengthn

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

41

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

AFP Archive of Formal Proofs. 4, 36
ATP Automatic Theorem Prover. 25

AWS Amazon Web Services. 1
HOL Higher-Order Logic. 25
ISAR Intelligible semi-automated reasoning. 25

SMT Satisfiability Modulo Theories. 25

Acronyms

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[Bal10]

[BBP13]

[BCD+11]

[BKP*18]

[BST*+10]

[CCS84]

[CK70]

[CKL19]

[DMBOS]

Bibliography

Clemens Ballarin. Tutorial to locales and locale interpretation. In Con-
tribuciones cientificas en honor de Mirian Andrés Gomez, pages 123-140.
Universidad de La Rioja, 2010.

Jasmin Christian Blanchette, Sascha Bohme, and Lawrence C Paulson.
Extending sledgehammer with smt solvers. Journal of automated reasoning,
51(1):109-128, 2013.

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovi¢, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4.
In International Conference on Computer Aided Verification, pages 171-177.
Springer, 2011.

Matija Bucic, Matthew Kwan, Alexey Pokrovskiy, Benny Sudakov, Tuan
Tran, and Adam Zsolt Wagner. Nearly-linear monotone paths in edge-ordered
graphs. arXiv preprint arXiv:1809.01468, 2018.

Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib standard:
Version 2.0. In Proceedings of the 8th international workshop on satisfiability
modulo theories (Edinburgh, England), volume 13, page 14, 2010.

A Robert Calderbank, Fan RK Chung, and Dean G Sturtevant. Increasing
sequences with nonzero block sums and increasing paths in edge-ordered
graphs. Discrete mathematics, 50:15-28, 1984.

V Chavtal and J Komlos. Some combinatorial theorems on monocity. In
Notices of the American Mathematical Society, volume 17, page 943. Amer
Mathematical Soc 201 Charles St, Providence, RI 02940-2213, 1970.

Byron Cook, Laura Kovacs, and Hanna Lachnitt. Personal Communications
on Automated Reasoning at AWS, 2019.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337-340. Springer, 2008.

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
ledge

b

now!

i
r

[DSMP*15] Jessica De Silva, Theodore Molla, Florian Pfender, Troy Retter, and Michael

[Foul8]

[GKT3]

[KV13]

[Mil15]

[Nip13]

[Nos13]

[Pau93|

[RSYO1]

[Sch02]

[Yus01]

46

Tait. Increasing paths in edge-ordered graphs: the hypercube and random
graphs. arXiv preprint arXiv:1502.03146, 2015.

Free Software Foundation. Gnu time. https://www.gnu.org/
software/time/, 2018. Accessed: 2020-04-09.

RL Graham and DJ Kleitman. Increasing paths in edge ordered graphs.
Periodica Mathematica Hungarica, 3(1-2):141-148, 1973.

Laura Kovacs and Andrei Voronkov. First-order theorem proving and
vampire. In Proc. of CAV, pages 1-35, 2013.

Kevin G. Milans. Monotone paths in dense edge-ordered graphs, 2015.
Tobias Nipkow. Programming and proving in isabelle/hol, 2013.

Lars Noschinski. Graph theory. Archive of Formal Proofs, April 2013.
http://isa-afp.org/entries/Graph_Theory.html, Formal proof
development.

Lawrence C. Paulson. Natural deduction as higher-order resolution. CoRR,
¢s.1L0O/9301104, 1993.

Yehuda Roditty, Barack Shoham, and Raphael Yuster. Monotone paths in
edge-ordered sparse graphs. Discrete Mathematics, 226(1-3):411-417, 2001.

Stephan Schulz. E—a brainiac theorem prover. Ai Communications, 15(2,
3):111-126, 2002.

Raphael Yuster. Large monotone paths in graphs with bounded degree.
Graphs and Combinatorics, 17(3):579-587, 2001.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

