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Abstract

Aggregates are widely used in software verification and especially important for verifying
smart contracts that deal with transactions of crypto-currencies between accounts. The
formal verification of smart contracts is a very active area of research, since the main
blocker for the use of smart contracts in every-life is the absence of a security guarantee.
Vulnerabilities may have tremendous consequences, as recent bugs have shown.
In general, aggregates require higher-order logics, but for certain use-cases it is possible to
express in first-order logic both the allowed operations and the desired properties. This
thesis addresses this challenge by suggesting encodings for aggregates of finite but arbi-
trary length. We have focused on sums and developed a novel way to express them using
uninterpreted first-order logic. Within this work we explain the setting and the intended
applications accurately.
The main idea is to encode the crypto-currency as coins and to assign every existing coin
to some account. This is realized using a binary relation. The invariants ensuring the
sum to be correct encode that every existing coin is owned by precisely one address. The
transactions, such as transferring money, can easily be fitted into this setting. The exper-
imental results using Vampire and Z3 are promising. Both are able to prove interesting
properties.
We have proven that this translation from higher-order logic to first-order logic is sound
and complete. The proof is given in the present thesis. Further, the translation itself is
first-order expressible. In fact, we present an encoding that implements this translation.
As such, we also provided a way to directly reason about sums of non-negative integers.
We present a naive encoding and two equally expressive restrictions. While the first one is
crucial for the comparison of two sums, the second one only decreases the search space. We
also give a proof that we do not lose any generality by restricting the encodings. The ex-
periments show that automated theorem provers can handle both of the restricted versions
well, whereas they struggle with the naive encoding. The reason is that the naive encoding
does not provide any information about the relation of the coins in the two compared sums.
However, we can prove various results in terms of sums using the restricted encodings.
We briefly explain how to adapt the presented invariants in order to be applicable for other
aggregates such as the minimum or the maximum. The idea of using coins to represent the
balances of accounts can be adapted, also the binary relation expressing the ownership of
coins can be reused.
This work is, to the best of our knowledge, the first to encode sums of finite but arbitrary
length in first-order logic. It also enables automated theorem provers to reason about ag-
gregates and hence takes a step towards automatic verification of smart contracts.
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Kurzfassung

Aggregate werden häufig für Software Verifikation verwendet und sind besonders wichtig
für Smart Contracts, nachdem diese Transaktionen von Kryptowährungen zwischen Konten
tätigen. Die formale Verifikation von Smart Contracts ist ein sehr aktives Forschungsgebiet,
weil die größte Hürde für eine alltägliche Verwendung von Smart Contracts im Fehlen von
garantierter Veranlagungssicherheit besteht. Unschärfen im Source Code können enorme
Auswirkungen haben, wie jüngste Softwarefehler gezeigt haben.
Im Allgemeinen benötigen Aggregate Logik höherer Stufe, aber für gewisse Fälle ist es
möglich die gewünschten Operationen und Eigenschaften in Logik erster Stufe auszu-
drücken. In dieser Diplomarbeit versucht man dies für Aggregate beliebiger aber endlicher
Länge. Es wurde ein Weg gefunden Summen in allgemeiner Logik erster Stufe auszudrücken.
Die Konzepte und angestrebten Anwendungen werden in der Arbeit sorgfältig erklärt.
Die Hauptidee ist es Kryptowährung in Münzen zu kodieren und diese Konten zuzuordnen.
Die Invarianten stellen sicher, dass die Summe korrekt ist, indem sie kodieren, dass jede
aktive Münze genau einem Konto zugeordnet ist. Auch die Transaktionen können leicht in
dieses Konzept eingebettet werden. Die Experimente mit Vampire und Z3 sind vielverspre-
chend. Beide können interessante Eigenschaften beweisen.
In dieser Arbeit wurde bewiesen, dass die Übersetzung von Logik höherer Stufe in Logik
erster Stufe ’sound’ und ’complete’ ist. Der Beweis ist Teil der Arbeit. Des Weiteren wird
gezeigt, wie die Übersetzung selbst in Logik erster Stufe ausgedrückt werden kann. So eine
Kodierung wird ebenfalls präsentiert. Dadurch haben wir einen Weg gefunden direkt über
Summen von natürlichen Zahlen Schlüsse zu ziehen. Es werden eine naive Kodierung und
zwei eingeschänkte Versionen vorgestellt. Die erste der Einschränkungen ist wesentlich um
zwei Summen vergleichen zu können, die andere verkleinert lediglich den Suchbereich. Es
wird ebenfalls bewiesen, dass die Einschränkungen die Allgemeinheit der Kodierung nicht
beschränken. Die Experimente zeigen, dass ’Theorem Prover’ mit beiden eingeschränkten
Versionen gut umgehen können, aber Probleme mit der naiven Version haben. Der Grund
dafür ist, dass die naive Version keinerlei Information beinhaltet in welcher Relation die
beiden Summen stehen. Nichtsdestotrotz können einige Eigenschaften von Summen in den
eingeschränkten Kodierungen bewiesen werden.
Des Weiteren wird vorgestellt, wie man die Konzepte auf andere Aggregate wie das Mini-
mum oder das Maximum übertragen kann. Die Idee Münzen zu verwenden und sie durch
eine Relation Konten zuzuordnen kann aufgegriffen werden.
Nach unserem besten Wissen ist diese Arbeit die erste die Summen endlicher aber beliebiger
Länge in Logik erster Stufe kodiert. Sie ermöglicht es automatischen ’Theorem Provern’
über Aggregate zu schlussfolgern und trägt dadurch zur automatischen Verifikation von
Smart Contracts bei.
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fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
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1 Introduction

Aggregates are widely used in software verification and especially important for verifying
smart contracts that deal with transactions of crypto-currencies between accounts. One
important aggregate property is preserving the sum of coins in the accounts when transfer-
ring money. To define aggregates, that is values such as the mean or the sum of some set
of numerical elements, it is required to use expressions such as

∑

or variables with indices
up to an arbitrary n - at least if it is done in the usual way. While the behaviour of ’+’ or
’ · ’ can be expressed naturally in first-order logic, it seems hard or even impossible to fully
define aggregates of arbitrary length in first-order logic.
However, if just some properties of the aggregate are of interest, there are possibilities to
encode these. Some are presented in this thesis.

As the motivation of this work comes from formal verification of smart contracts, it is
also tailored to fit this use case. The value of being able to reason about the sum and other
aggregates is explained in the following motivating example.

1.1 Motivating Example

We illustrate below the relevance of aggregates for verifying smart contracts.

In 2018, there was the case, as reported in [1], that an adversarial user increased her
personal wealth by exploiting an at that time unknown vulnerability of a smart contract.
She asked an address A to send 2255 BEC tokens each to two different addresses B1 and
B2. A BEC token is the unit of the currency used. Since the total amount of tokens asked
for was amount = 2255 · 2 = 2256 and the variable amount was a 256-bit integer this led to
an overflow and hence to amount = 0.
Thus, the sanity check of this transaction passed and A’s balance was decreased by 0, while
each of the balances of B1 and B2 was increased by

2255 ≈ 578 960 446 186 580 977 117 854 925 043 440 000 000 000 000 000 000 000 000

000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 tokens.

This was only discovered because some warning was raised that stated an unreasonably
big amount of tokens was transferred. The details and consequences of this incident can
be found in [1].

In this example the sanity check could not detect the problem due to integer overflow.
By formally verifying that the sum of balances behaved as expected, that is remains un-
changed for transferring actions, this bug would have been found before deployment.

1
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1 Introduction

1 address bank ;
2 u int ba l ( address ) ;
3
4 procedure donate ( address [ ] r e c e i v e r s , u int a ) {
5 for ( i = 0 ; i < r e c e i v e r s . l ength ; i++){
6 transferFrom (bank , r e c e i v e r s [ i ] , a ) ;
7 }
8 }

Figure 1.1: Simplfied donate procedure.

The present thesis aims to support such formal verification. In simplified terms, the task
we aim to address is the following.

Property to be ensured.
We know that the sum of all balances equals a certain constant sum, that is

∑

A∈address

bal(A) = sum

and we then execute the procedure donate from Figure 1.1 in which a bank bank donates
a tokens to each of the receivers in the array receivers.
After execution of lines 4-8 of Figure 1.1 it still has to be the case that

∑

A∈Address

bal(A) = sum .

1.2 Problem Statement

The goal of this thesis is to find a sound way to encode what it means for two finite sums
to be the same in first-order logic. It can be assumed that the relation of the elements
leading to these sums is known. In order to do so, there have to be first-order formulas
expressing the most important properties of sums in advance. The application of deductive
verification should be in focus. That is finding invariants that ensure a certain behaviour
of the sum:

(P1) How can properties about sums be encoded in first-order logic and what
are suitable invariants?

Further, this encoding should be extended to similar problems, such as comparing sums
of numeric values that only differ slighty. Again, the main goal is to find invariants for
corresponding transitions:

(P2) How can an earlier developed encoding be extended to related problems?
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1 Introduction

The next objective is to run experiments using first-order theorem provers to validate the
usability of the before developed concepts in (P1) and (P2):

(P3) Can automated theorem provers handle the encodings of (P1) and (P2)?

Lastly, other aggregates shall be considered:

(P4) Can the developed encodings from (P1) and (P2) be applied for other
aggregates as well?

1.3 List of Contributions

This work brings the following contributions to the problems listed in Section 1.2.

(P1) We present a novel way to reason about sums and their properties. In Chapter 3 an
implicit encoding including invariants is proposed, whereas in Chapter 5 an explicit
encoding without invariants is introduced. Both of them are sound and complete
relative to a translation function f . The proofs of these claims are given in Chapter
4 and Section 5.2, respectively.

(P2) The encodings presented to address (P1) can also express related problems. For ex-
ample, formalizing that one sum is greater or equal than another sum or two sums
differ a constant. These related problems are considered together with the equality
of sums in Chapter 3 and Chapter 5.

(P3) The performance of first-order theorem provers given the encodings is promising, as
discussed in Section 3.2 and Section 5.3. The SMT solver Z3 [11] could prove all of
the standard tasks and the first-order theorem prover Vampire [10] few tasks.

(P4) In Chapter 7, a brief overview on possibilities to adapt the presented encodings for
other aggregates is given.

The word ’we’ is used to address the reader only. The contributions and ideas listed here are
owned by the author of this thesis. Only the idea of encoding balances and sums by using
their units (Chapter 3) resulted from joint work with Neta Elad (Tel Aviv University).
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2 Preliminaries

In this chapter the most important concepts underlying this work are presented briefly.
Generally, N is defined to be the set of natural numbers, N+ is the set of positive natural
numbers, that is N+ := N \ {0}, and R is the set of real numbers.

2.1 Aggregates

Intuitively, aggregates are summary values. That means, given any n-tuple x of numerical
values, we expect an aggregate of x to be a scalar that aims to summarize x. For the
concrete example of x ∈ R

n, we expect an aggregate Agg(x) ∈ R to be a representative
value of x, such as the mean ot the median of x.

The concept of aggregation functions is formalized in [2] in the following way. It is as-
sumed that all variables on which the aggregation function depends have a common domain
I, that is the elements of the function’s codomain and the components of the elements in
its domain. In [2], I ⊆ R = [−∞,+∞] and I is non-empty, a setting which will be also
considered in this thesis.

Definition 1 (Aggregation Functions on I
n). Let n ∈ N

+. Then Agg(n) : In → I is an
aggregation function, if:

(1) Agg(n) is nondecreasing, that is for x, y ∈ I
n:

(

∀i ∈ [1, n] : xi ≥ yi

)

⇒ Agg(n)(x) ≥ Agg(n)(y) .

(2) Agg(n) satisfies the boundary condition:

inf
x∈In

(

Agg(n)(x)
)

= inf
(

I
)

,

sup
x∈In

(

Agg(n)(x)
)

= sup
(

I
)

.

Following Definition 1, the mean is an aggregation function for any n ∈ N
+ and any

interval I, whereas the sum only for certain domains I, such as I = R. Instances of this
claim are shown in Example 1. For n = 1, usually Agg(1)(x) := x is used.
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2 Preliminaries

Example 1.

1. The mean M (n) of an n-tuple is an aggregate for I = [a, b], where a, b ∈ R, a < b.
To show M (n) is nondecreasing, let now x, y ∈ [a, b]n, with xi ≥ yi, i ∈ {1, ..., n}. We
have

M (n)(x) :=
1

n

n
∑

i=1

xi ≥
1

n

n
∑

i=1

yi =: M (n)(y) .

Lastly, consider y, z ∈ [a, b]n, yi = a, zi = b for every i ∈ {1, ..., n} to show the
boundary condition. It holds a = M (n)(y) and for every x ∈ I

n, x 6= y we have
xi ≥ yi for every i. Since M (n) is nondecreasing, it follows M (n)(x) ≥ M (n)(y) and
thus infx∈[a,b]n

(

M (n)(x)
)

= a = inf
(

I
)

. Similar for z and the supremum.
This also shows that the codomain is indeed I.

2. The sum S(n) of an n-tuple, n > 1, is not an aggregate for I = [a, b], where a, b ∈ R,
a < b. Consider x ∈ [a, b]n, with xi = b for all i. Since n > 1, we know

S(n)(x) :=
n
∑

i=1

xi =
n
∑

i=1

b ≥
2
∑

i=1

b > b .

Thus the codomain of S(n) is not I = [a, b] and hence S(n) is not an aggregation
function for I = [a, b].

To address arbitrary n, the following definition of an extended aggregation function is
given.

Definition 2 (Extended Aggregation Functions on I). We say

Agg :
⋃

n∈N+

I
n → I

is an extended aggregation function, if for every n ∈ N, the restriction Agg(n) := Agg
In

is
an aggregation function.

Example 2. The mean

M : x 7→
1

|x|

|x|
∑

i=1

xi

is an extended aggregation function for I = [a, b], a < b. The function M assigns every
element of

⋃

n∈N+ [a, b]n a value, thus the domain is correct. Since M
[a,b]n

= M (n) and

M (n) is an aggregation function for every n ∈ N+, the codomain of M is also [a, b], thus
M is an extended aggregation function.
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2 Preliminaries

By Definition 2, the following functions are among others extended aggregation functions.

• The arithmetic mean on any interval I.

• The median on any I.

• The sum on I = R.

• Minimum and maximum on any I.

• The product on I = R.

• The projection onto the i-th element for every I.

Note the length of the input tuple is not an extended aggregate for any I.

As this work is motivated by smart contracts, we deal with addresses and their balances, as
explained in Section 2.2, instead of tuples x ∈ I

n. Hence, we have to adapt these definitions
slightly in order to be useful. For us, any finite non-empty set A without any ordering can
represent the addresses. As a consequence, the relevant domain is

D(n) :=
⋃

A: |A|=n

I
A .

Additionally, we do not want aggregates to depend on the names of the addresses. Thus,
we define an adapted aggregation function in the following way.

Definition 3 (Adapted Aggregation Function on I). Let n ∈ N
+, Ada(n) : D(n) → I. Then

Ada(n) is an adapted aggregation function, if:

(1) Ada(n) is nondecreasing and ’commutative’, that is for any f ∈ I
A, f ′ ∈ I

A′

, with A,
A′, both sets of length n, it holds

(

∃φ : A → A′ bijective, with ∀A ∈ A : f(A) ≥ f ′(φ(A))

)

⇒ Ada(n)(f) ≥ Ada(n)(f ′)

and
(

∃φ : A → A′ bijective, with ∀A ∈ A : f(A) = f ′(φ(A))

)

⇒ Ada(n)(f) = Ada(n)(f ′) .

(2) Ada satisfies the boundary condition analogue to Definition 1.

Extended adapted aggregation functions are defined analogously to Definition 2. These
definitions lead to similar functions. The major difference is that projections are aggrega-
tion functions but not adapted aggregation functions.
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2 Preliminaries

Example 3. 1. The adapted mean

M (n) :
⋃

A:|A|=n

[a, b]A → [a, b]

f 7→
1

n

∑

A∈A

f(A) ,

is also an adapted aggregation function for any n ∈ N
+ and any interval I = [a, b],

a < b.
To show M (n) is nondecreasing, let f ∈ [a, b]A, g ∈ [a, b]A

′

, with |A| = |A′| = n.
Further let φ : A → A′ be a bijection such that f(A) ≥ g(φ(A)), for every A ∈ A.
Then we have

M (n)(f) :=
1

n

∑

A∈A

f(A) ≥
1

n

∑

A∈A

g(φ(A)) =
1

n

∑

A′∈A′

g(A′) = M (n)(g) .

For f(A) = g(φ(A)), for every A ∈ A, it follows M (n)(f) = M (n)(g) immediately.
For the boundary condition consider an arbitrary f : A → [a, b] in the domain. Then
we know, since |A| = n, we have

M (n)(f) =
1

n

∑

A∈A

f(A) ≥
1

n

∑

A∈A

a = a = inf[a, b] ,

thus inff∈D
(

M (n)(f)
)

≥ inf[a, b]. As f : A → [a, b], |A| = n with f(A) = a, for every

A ∈ A, is an element of the domain with M (n)(f) = a it holds inff∈D
(

M (n)(f)
)

≥
inf[a, b]. The argumentation for the supremum is similar.
The function obtained by extending the domain of M (n) to A of arbitray finite length,
is an extended adapted aggregation function. The argumentation is similar to Exam-
ple 2.

2. The sum on the natural numbers S(n) :
⋃

A:|A|=nN
A → N is an adapted aggregation

function. The codomain N is ensured by the fact that (N,+) is a monoid, hence N is
closed under addition. Further, S(n) is nondecreasing and commutative. This can be
shown by proceeding in the same way as we did for the mean in (1.), since the factor
1/n and the domain do not effect the (in-)equalities.
The infimum of S(n) has to be greater than or equal to 0, as the codomain being
N is already shown. Now consider f : A → N, |A| = n with f(A) = 0 for every
A ∈ A, then f is in the domain and S(n)(f) = 0. Thus the infimum property
holds. For the supremum, assume supf∈D(n)

(

S(n)(f)
)

= x, for any x ∈ R. Then
let A be any set of size n ∈ N

+. We construct a function g : A → N such that
g(A) = ⌈x⌉ + 1 ∈ N for one A ∈ A and g(B) = 0 for every other B ∈ A. Then
S(n)(g) = ⌈x⌉ + 1 > x. This contradicts the assumption that x was the supremum,
hence supf∈D(n)

(

S(n)(f)
)

= ∞ = supN. Therefore, the sum S(n) of length n is
an adapted aggregation function on N, for any n ∈ N

+ and thus also an extended
adapted aggregation function.
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2 Preliminaries

The aggregate sum is in the focus of this thesis as it is the most important one for the
intended application, as explained below. Other aggregates such as minimum and maxi-
mum will be mentioned in Chapter 7.

2.2 Smart Contracts and Deductive Verification

In the last years, blockchain technology evolved drastically. A blockchain literally is a chain
of blocks, similar to a linked list that is stored distributedly. Due to this and its architecture
which uses hash functions and other cryptographic means, they are almost tamper-proof.
These two reasons are why they are a good choice when trying to replace a trustworthy
third party for example in financial affairs. Smart contracts are now decentralized computer
programs executed on a blockchain-based system, as explained in [3]. Among other tasks,
smart contracts automate financial transactions. That is, a smart contract is a contract
written in a programming language called Solidity [4], performs transactions involving digi-
tal assets automatically, when the preconditions are met, and it is deployed on a blockchain
and thus cannot be modified at a later point.

Since Solidity is a very expressive programming language, similar to Java Script, it re-
quires software delevoplers with expertise to write secure and bug-free programs. This
becomes even more crucial, because these programs will deal with tremendous amounts of
money and cannot be fixed once deployed.
There were quite many cases were adversarial parties exploited bugs to increase their per-
sonal wealth as discussed in [5]. As these examples show, thorough reviews and software
tests are not sufficient to find such vulnerabilites.
The lack of guaranteed error-free software is the main blocker of worldwide everyday use
of smart contracts. Thus, the idea of new research projects is to find a way to only allow
provably bug-free software to be deployed on blockchains. This is only possible by apply-
ing formal methods, as they can ensure correctness of programs in a mathematical gap-free
way. Smart contracts are a good starting point for such verification efforts, because of the
following reasons.

1. As mentioned before, the code is immutable and hence it is not possible to fix incorrect
transactions.

2. It ensures fortunes not to get lost which is a strong motivator for the smart contracts
society to support such efforts.

3. Smart contracts constist of rather small pieces of code compared to other industrial
areas.

An overview of what has been done so far in terms of static analysis is provided in [6].
Further, one complete small-step semantics for Solidity-like languages is presented in [7].

The idea of using formal verification, more precisely deductive verification, is based on
the following principle.
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2 Preliminaries

The change of state a computer performs when executing a line of code is called transition.
C.A.R Hoare was the first one to formalize this in 1969 by defining semantics of programs
in [8]. He also described what happens to each of the variables when one command is
executed depending on the inital value of the variable. That is, given a state that satis-
fies the precondition, then modify the state according to a programming command, which
postconditions hold. This means he also considered what can be said about this new state.
Such programming commands are for example assigning a value to a variable, entering a
loop or checking the condition of an if-then-else block.

For the application of verifying programs the precondition of the first line of code spec-
ifies what kind of input is expected, whereas the postcondition of the last line states the
expected output. Then, there has to be found preconditions and postconditions for each
of the intermediate steps such that the postcondition of line n implies the precondition of
line n+1. This task is particularly hard for loops, as they require loop invariants that are
satisfied before and after performing transitions. Details on deductive verification can be
found in [9].

However, today the challenges are to implement Hoare’s ideas, automate the process of
finding invariants and prove implications of post- and pre-conditions using automated the-
orem provers still remain. The formal verification approach we aim for in this thesis is now
combining automated theorem provers, as explained in Section 2.3, and Hoare’s pioneering
work for automated deductive verification.

As mentioned before, finding invariants is one of the hardest tasks. Thus, having non-
trivial generic invariants that always apply is a promising approach. It turns out that
properties about aggegates of the parties’ balances are good candidates. As such, espe-
cially the sum is very interesting. For most of the attacks that caused major damage the
sum of the balances did not behave as it would have in a bug-free version. Hence, having
the correct amount of total money as invariant would have found the vulnerabilities and
could have prevented attacks.

Since the main actions in smart contracts are transferring money, modelling inflation by
minting money or reducing money by claiming transaction fees, they are the most impor-
tant transitions to preserve the invariants.

Hence, it is desired to find a way to encode properties of sums of arbitrary but finite
length and to find invariants that ensure the correct impact of the sum when performing
the transitions mentioned above.

2.3 Automated Theorem Proving in First-Order Logic

We use first-order logic with equality and sorts. Basic familiarity with first-order logic
is assumed. Equality, denoted as ’=’, is an equivalence relation for which additionally
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2 Preliminaries

x = y → f(x) = f(y), for functions f , and x = y →
(

r(x) ↔ r(y)
)

, for relations r, hold,
for any x, y. Sorts are used to differentiate elements that have certain roles. That is, if
someone wants to formalize relations or laws between different types of ’things’, such as
for example addresses and balances, then addresses can be modeled as a sort Address and
balances can be modeled as a different sort Int. Semantically, having two elements x, y of
different sorts means they cannot be the same, hence x 6= y.

Automated theorem provers in first-order logic receive a set of first-order input formulas
and check whether the conjunction of these formulas is satisfiable. As every theorem can
be equivalently reformulated to an unsatifiable set of formulas, proving a theorem is done
by proving unsatisfiability. There are many different approaches on how to do this, but
each of them uses a set of sound inference rules, called inference system. By applying an
inference rule to some of the input formulas another first-order formula is obtained. This
new formula is entailed by the input formulas. Thus, the goal is to reach the empty clause
�, also called false or bottom ⊥. This formula is always unsatisfiable, since it is false
independent of the interpretation.

The automated theorem provers used in this work are Vampire [10] and Z3 [11]. We will
also refer to them as ’solvers’ and ’provers’.
The first-order theorem prover Vampire uses a superposition calculus to saturate the set

in input clauses up to redundancy, according to certain rules (selection function) [12], [13].
That means, the ’difficult’ clauses that are implied by ’easier’ ones are called redundant
and are not considered for saturation. Satisfiability checking in first-order logic is undecid-
able, thus Vampire does not always yield ’sat’of ’unsat’ but it may also yield ’unknown’
for example in case of time out. However, in practice it works well.

The Z3 theorem prover, is an SMT solver, where SMT stands for Satisfiability Modulo
Theories [14]. We say a (usually quantifier-free) formula φ is satisfiable modulo a theory
T , if there exists an interpretation I that makes all theory axioms valid and satisfies φ.
The theory T is defined by a signature and a set of axioms. That means when considering
SMT, we are only interested in interpretations of a specific form. Well-known theories are
for example the theory of linear integer arithmetic, the theory of equality or the theory of
uninterpreted function symbols. SMT solvers implement specializied decision procedures
for (the quantifier-free fragment of) some theories. The combination of the three theories
mentioned above is called UFLIA and its quantifier-free fragment is decidable. Z3 has a
decision procedure for this class of problems. However, in this work the full UFLIA theory
is needed, which is undecidable. Thus, it may also occur that Z3 times out when trying to
prove sets of formulas presented in this work.

Technically, the expectation is that Vampire deals with quantifiers better, whereas Z3
is better in tasks having more involved arithmetics. As the experimental results using
theorem provers in this work may depend on this fact, both solvers are considered.
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3 Encoding Finite Sums of Arbitrary Length

The work in this thesis is motivated by rigorous reasoning about smart contracts. Also, the
names of the functions, sorts etc are oriented towards this one use case. However, all the
theoretical and experimental results presented within this work can be applied to any set-
ting where sums of non-negative integer arrays are compared. The work in this chapter is
thus not restricted to smart contracts, but only explained and detailed for this use case.

In this chapter an approach to reason about finite sums of arbitrary length is presented
by addressing the following two challenges.

[Ch1] Find a way to encode the higher-order term
∑

i∈I i in first-order logic, where I ⊂ N

is an arbitrary finite set.

[Ch2] Design the encoding in such a way that automated theorem provers can reason about
it. In particular, given the encodings of I,J ⊂ N, both finite, and specifying how
I and J (and thus their encodings) are related, the solvers should be able to prove
that their sums are related accordingly.

Setting to address challenge [Ch1].

The basis of the encoding (Sections 3.1, 3.2) which is tailored to fit the smart contract’s
constrains, is the following.

It is assumed that there exist finitely, but unboundedly, many addresses. The set of
addresses is called A. They can be imagined to be all the bank accounts in the world.
Even though their number is arbitrary, within one encoding this number is fixed and
will thus not change. That is, it is not possible to open or close bank accounts.

Additionally, every address has a balance. The balances are non-negative integers.
This means, it is not possible to owe some address money.

We are now looking for a way to capture the ’total money in the world’, that is the
sum of the balances of all addresses. In order to do so, only one unique ’currency’
is considered. The sum does not necessarily have to be available in an explicit way.
However, we want to be able to compare it to another world.

In this chapter, it is assumed that the other world is based on the previous one, but one
time step ahead. This is why, it is referred to them as ’old-world’ and ’new-world’. Typ-
ically, they differ by exactly one smart contract’s transition, as explained in Section 2.2.
The transactions considered in the Section 3.2 are transferring, minting and burning one
unit of money. One unit of money is called a coin.
Finally, the relation between the ’old total money’ and the ’new total money’ is of interest.
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3 Encoding Finite Sums of Arbitrary Length

The aim, for verifying smart contracts, is to make sure that while performing one transition
no coin (dis-)appears accidentally.

Evaluation for challenge [Ch2].

The performance with respect to the second challenge [Ch2] is addressed in Section 3.3.
There, the results of what the solvers Vampire (cite) and Z3 (cite) could (not) prove are
presented. The results are relative to the encoding, the transition and the property to be
ensured. For the cases, in which the solvers cannot prove the desired property, an intuitive
explanation of failure is given.

3.1 Encoding of Sum Properties in First-Order Logic

In this section a very promising encoding of sums developed in this work is presented and
explained.
The encoding is a set of first-order formulas with equality and multiple sorts, as defined

in Section 2.3. The sorts used are called Coin and Address. The Coin sort is represent-
ing the money and one coin is one unit of money. The set of coins C is unbounded but
countable. The sort Address is representing the bank accounts. The set of addresses A is
finite. It is Coins ≡ C and Address ≡ A and the notations will be used interchangeably.
For practical uses by automated provers, C and A are just arbitrary disjoint sets.

The main idea of the encoding is to assign every coin c, that has the predicate active,
to precisely one address A. This means that address A owns that coin c. This is expressed
through the binary has-coin predicate. Additionally, it shall also be the case that if an
address A has the coin c, then c is active.

Figure 3.1 illustrates our setting. On a high level, there are two axes (left-right and up-
down) and the picture is ’symmetric’ in both ways. The left-right axis can be understood as
the time. As explained in the introductory paragraph of this chapter, there is the ’old-world’
on the left and the ’new-world’ on the right. They are connected with the specification
of one smart contract’s transition and its expected impact on the total amount of money
(Section 3.2). For the up-down axis, we have the ’macro-world’ and the ’micro-world’.
The total amount of money, that is the sum of balances, is handled in the ’macro-world’,
whereas the amount of money in each account is handled in the ’micro-world’.
In the higher-order setting, the micro-world consists of the balance function:

bal : A → N ,

which assigns to every address A the number of coins bal(A) they own, that is its balance.
In this encoding, the balance function only exists implicitly. Instead, there is the binary
predicate has-coin ⊆ A× C. It holds (A, c) ∈ has-coin, if the coin c is owned by address
A. By doing so, the computationally complex sort Integer can be avoided. This advantage
comes at the price of not having the balance per se at hand. The dark blue dashed line
between bal and has-coin in Figure 3.1 represents the implicit connection of the encoding
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3 Encoding Finite Sums of Arbitrary Length

Figure 3.1: Representation of the sums encoding and the relation between the higher-order
setting (’outer circle’) and the first-order encoding (’inner circle’).

to the real world. This connection will be formalized in Chapter 4.

For the macro-world the situation is similar. In the higher-order setting, there is the
non-negative integer sum which is the total number of coins c owned by some address A,
hence sum =

∑

A∈A bal(A). In this encoding a unary predicate active ⊆ C is used to
capture all the coins c that are owned by some address A.
As a consequence, the relation between the micro-world and the macro-world,
sum =

∑

A∈A bal(A) as depicted in Figure 3.1 with the grey curved lines, cannot be
expressed. Instead, there has to be a relation between active and has-coin that ensures
this very property. This relation is illustrated by the purple arrows in the figure. While the
relations between the old and the new world highly depend on the transition, the relation
between the macro and the micro world remains the same. Hence, in application of software
verification they can be used as invariants. This means that no matter what sequence of
actions are taken, it can be guaranteed that no coin is lost or won accidentally, provided
the invariants hold. The invariants are formalized in the following way.

Definition 4 (Invariants). A pair (has-coin, active), where has-coin ⊆ A × C and
active ⊆ C, satisfies the invariants, if and only if it satisfies the following three formulas.
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3 Encoding Finite Sums of Arbitrary Length

i) Only active coins c can be in an address A, that is:

∀c ∈ C : ∃A ∈ A : has-coin(A, c) → active(c) . (Inactive-Coins)

ii) Every active coin c is in some address A, expressed as:

∀c ∈ C : active(c) → ∃A ∈ A : has-coin(A, c) . (At-Least-One-Address)

iii) Every coin c is in at most one address A, that is:

∀c ∈ C, A,B ∈ A : (has-coin(A, c) ∧ has-coin(B, c) → A = B) .
(At-Most-One-Address)

We write inv(has-coin, active) for

Inactive-Coins ∧At-Least-One-Address ∧At-Most-One-Address .

Theorem 1. Given a balance function bal, a non-negative integer sum, a unary predicate
active and a binary predicate has-coin, as defined above, such that:

|active| = sum

and for every address A:

bal(A) = |{c ∈ C : (A, c) ∈ has-coin}| ,

then
∑

A∈A bal(A) = sum, if (has-coin, active) satisfies the invariants.

Note that this claim precisely states the soundness of the encoding. However, the no-
tion of completeness requires more involved formalization. This soundness claim, and thus
Theorem 1, will be proven together with a completeness claim in Chapter 4.

3.2 Transitions and Impact on Sums

This section focusses on the relation between the old and the new world, that is the tran-
sition and its expected impact represented by both the lime and the dark green arrows in
Figure 3.1. As mentioned before, these links illustrate how the world changes in one time
step, where one time step is defined by taking one of the transactions listed.

For the higher-order setting (dark green arrows), this means they describe how the bal-
ances in the new world evolved from the old ones and what the expected impact on the
total money is:
If the balance function bal changes in a certain way (transition) and the value sum changes
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3 Encoding Finite Sums of Arbitrary Length

according to the expected impact of the transition on the total amount of money, then we
can verify no coin (dis-)appeared accidentally. That means

∑

A∈A bal(A) = sum is still the
case.

The lime arrows exist as the dark greens’ equivalent first-order versions. They describe
how the active and the has-coin predicate in the new world evolved from the old ones.

The precise explanation of the above is stated below.

• What we wish to reason about (higher-order setting):
Provided

∑

A∈A old-bal(A) = old-sum and (old-bal 7→ new-bal) then
(old-sum 7→ new-sum ⇔

∑

A∈A new-bal(A) = new-sum) .

• What we are reasoning about instead (first-order encoding):
Provided (old-has-coin, old-active) satisfies the invariants and

(old-has-coin 7→ new-has-coin) ,

then
(old-active 7→ new-active ⇔ (new-has-coin, new-active)

satisfies the invariants).

Note that for the motivation of software verification only the direction ’⇒’ is of interest,
since the goal of the proof is independent from the transition which is crucial for invari-
ants. The nature of an invariant is to remain unchanged while ensuring the correctness of
a piece of code, as explained in Section 2.2. However, the other direction ’⇐’ is addressed
in Chapter 5.

Considered Transitions

In this work the three most important actions for smart contracts are considered as transi-
tions. They are transferring money from an address A to another one B, ’minting’ money,
which is used to model inflation, as described in Section 2.2, and burning money. For sim-
plicity and due to the fact that only one direction of the equivalence above is of interest,
the transition and its expected impact on the macro world are defined as one entity.

Transition transfer(A1,A2)

The first transition considered is transferring money. Mathematically speaking, transfer-
ring a coin from address A1 to address A2 means decreasing A1’s balance by one and
increasing A2’s balance by one. Every other value stays unchanged. The expected impact
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3 Encoding Finite Sums of Arbitrary Length

on the total amount of money is that it remains unchanged.

Remark. In this work it is not possible to have negative balance for any address. Hence,
before taking the transition, it has to be ensured that address A1 has enough money. Here,
this issue is solved by not transferring money at all in this case. For software verification,
there has to be found a way to address this problem, depending on how the software should
behave and what other conditions and properties the input has. E.g. the initial state may
fulfill certain properties, such as ’Every address has at least n coins.’, which can be used
to deduce that the case of not having enough coins cannot happen.

The transition is encoded by formulating formulas that constrain the new world, given
the old world. For transfer(A1,A2) there are four formulas. The first one:

A1 6= A2 , (T1)

is ensuring that the orderer is distinct from the beneficiary. Secondly, in case A1 does not
have any coins, nothing changes:

(∀c ∈ C : ¬old-has-coin(A1, c) ∨ ¬old-active(c)) (T2)

→ (∀c ∈ C, A ∈ A : new-has-coin(A, c) ↔ old-has-coin(A, c)) .

Finally, if A1 has a coin, then one coin c that belonged to A1 before moves to A2. Every
other coin-address pair (B, d) remains unchanged. ’Every other’ here means
d 6= c ∨ (B 6= A1 ∧B 6= A2). The formula is:

∃c ∈ C : old-has-coin(A1, c) ∧ old-active(c) (T3)

→ ∃c ∈ C :

old-has-coin(A1, c) ∧ ¬new-has-coin(A1, c)

∧ ¬old-has-coin(A2, c) ∧ new-has-coin(A2, c)

∧ ∀B ∈ A, d ∈ C :

d 6= c ∨ (B 6= A1 ∧B 6= A2)

→ (old-has-coin(B, d) ↔ new-has-coin(B, d) .

The expectation is, that no coin changes its activity status, this means

∀c ∈ C : old-active(c) ↔ new-active(c) . (T4)

The transition transfer(A1, A2) is thus defined as T1 ∧ T2 ∧ T3 ∧ T4 and we have the
following result.

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3 Encoding Finite Sums of Arbitrary Length

Lemma 1 (Soundness of transfer(A1, A2)).
Given the balance functions old-bal, new-bal : A → N, the natural numbers old-sum,
new-sum, unary predicates old-active, new-active ⊆ C and binary predicates
old-has-coin, new-has-coin ⊆ A× C.
As in Theorem 1, let

|old-active| = oldsum , |new-active| = newsum (1)

and for every address A

old-bal(A) = |{c ∈ C : (A, c) ∈ old-has-coin}| , (2)

new-bal(A) = |{c ∈ C : (A, c) ∈ new-has-coin}| .

Additionally, let A1, A2 ∈ A and old-bal(A1) > 0 and transfer(A1, A2).
Then, new-bal(A1) = old-bal(A1)− 1, new-bal(A2) = old-bal(A2)+1 and for all other
addresses B ∈ A, B /∈ {A1, A2} it holds new-bal(B) = old-bal(B). Also old-sum =
new-sum.

Proof. Firstly, show old-sum = new-sum. Because of (T4), we know that old-active =
new-active, hence old-sum = |old-active| = |new-active| = new-sum by using (1).
The proof of B ∈ A, B /∈ {A1, A2} implies new-bal(B) = old-bal(B) works simi-

larly. Since old-bal(A1) > 0, it is the case that ∃c ∈ C : old-has-coin(A1, c). Hence
the right hand side of (T3) holds as well. Especially the last subformula of the conjunc-
tion. For B /∈ {A1, A2} it is also true that d 6= c ∨ (B 6= A1 ∧B 6= A2), thus we know
{d ∈ C : old-has-coin(B, d)} = {d ∈ C : new-has-coin(B, d)}. And therefore,

old-bal(B) = |{d ∈ C : old-has-coin(B, d)}|

= |{d ∈ C : new-has-coin(B, d)}| = new-bal(B) ,

by using (2).
It remains to show that both new-bal(A1) = old-bal(A1) − 1 holds and also

new-bal(A2) = old-bal(A2) + 1 holds. As argued above, the right hand side of (T3)
holds. As a consequence there is a coin c such that both

c ∈ old-has-coin(A1, .)\new-has-coin(A1, .)

and
c ∈ new-has-coin(A2, .)\old-has-coin(A2, .) .

Now consider another coin d 6= c. For this coin especially d 6= c ∨ (B 6= A1 ∧B 6= A2).
Hence,

{d ∈ C\{c} : old-has-coin(A1, d)} = {d ∈ C\{c} : new-has-coin(A1, d)}

and

{d ∈ C\{c} : old-has-coin(A2, d)} = {d ∈ C\{c} : new-has-coin(A2, d)} .
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3 Encoding Finite Sums of Arbitrary Length

Combining this, it follows

{d ∈ C : old-has-coin(A1, d)}\{c} = {d ∈ C : new-has-coin(A1, d)}

and
{d ∈ C : old-has-coin(A2, d)} = {d ∈ C : new-has-coin(A2, d)}\{c} .

Therefore, both

old-bal(A1)− 1 = |{d ∈ C : old-has-coin(A1, d)}\{c}|

= |{d ∈ C : new-has-coin(A1, d)}| = new-bal(A1)

and

old-bal(A2) = |{d ∈ C : old-has-coin(A2, d)}|

= |{d ∈ C : new-has-coin(A2, d)}\{c}| = new-bal(A2)− 1 .

This concludes the proof of this lemma.

Transitions throw(c, A) and catch(c, A)

In the case when the transfer(A1, A2) action shall be considered as two subsequent steps,
namely taking the coin c from A1 and giving it to A2, then also the transition has to be
split up into a throw(c, A1) and a catch(c, A2) transition. Note that performing only one
of them is not a valid transition and will result in the invariants being violated.

The first part, throw(c,A) models the action of ’freeing’ a coin without deleting it. The
formulas defining it are as follows.
For A to ’free’ c, it has to be the case that A had c. Hence:

old-has-coin(A, c) ∧ ∀B ∈ A : ¬new-has-coin(B, c) . (Th1)

’Freeing’ a coin means it does not belong to A any longer, but it also does not belong to
any other address. That is:

∀B ∈ A, d ∈ C :

d 6= c ∨B 6= A

→
(

old-has-coin(B, d) ↔ new-has-coin(B, d)
)

.

(Th2)

Since coin c is not deleted only transferred, we do not want c to become inactive, this is
why:

old-active(c) ∧ new-active(c) . (Th3)
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3 Encoding Finite Sums of Arbitrary Length

The activity status of all the other coins also does not change:

∀d ∈ C : old-active(d) ↔ new-active(d) . (Th4)

The transition throw(c, A) is thus defined as Th1 ∧ Th2 ∧ Th3 ∧ Th4.

Note that after performing throw the invariants are not satisfied. This is good, since the
transferring is not complete yet and the program is not allowed to stop at this point.

It has to be considered that throw and catch require one time step each. Thus, the result
of throw (new-has-coin and new-active) is the starting point of catch (old-has-coin
and old-active). The formulas for A ’catching’ the ’free’ coin c are as follows.
The coin c did not belong to any address A and is now assigned to A:

new-has-coin(A, c) ∧ ∀B ∈ A : ¬old-has-coin(B, c) . (C1)

For all the other coins their assignment does not change:

∀d ∈ C, B ∈ A :

d 6= c ∨B 6= A

→ (new-has-coin(B, d) ↔ old-has-coin(B, d)) .

(C2)

Since coin c is not minted, only transferred, we do not want c to have been inactive, this is
why:

old-active(c) ∧ new-active(c) . (C3)

All the other coins’ activity status should not change:

∀d ∈ C : old-active(d) ↔ new-active(d) . (C4)

With this, we define catch(c, A) as C1 ∧ C2 ∧ C3 ∧ C4.

Calling the intermediate state’s predicates and functions int-act, int-sum, int-has-coin
and int-bal, we get the following result.

Lemma 2 (Soundness of throw(c, A1), then catch(c, A2)).
Given the old, new and intermediate predicates and functions, as in Lemma 1. Additionally,
let A1, A2 ∈ A, c ∈ C and throw(c, A1) (with renaming the ’output’ predicates from new-
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3 Encoding Finite Sums of Arbitrary Length

to int-) and catch(c, A2) (with renaming the ’input’ predicates from old- to int-).
Then, new-bal(A1) = old-bal(A1)− 1, new-bal(A2) = old-bal(A2)+1 and for all other
addresses B ∈ A, B /∈ {A1, A2} it holds new-bal(B) = old-bal(B). Also old-sum =
new-sum.

The proof of Lemma 2 is very similar to the proof of Lemma 1 and will therefore be skipped.

Transition mint(c, A)

The next transition mint expresses that new, previously inexistent, money is created, that
is minted, and that one address specified will own the new money. All the other balances
stay the same. The total amount of money should increase by one, when one coin c is
minted. The transition mint(c, A) activates the coin c and A will own c. More precisely,
this means the following.

The coin c has to be inactive before and is activated now:

¬old-active(c) ∧ new-active(c) (M1)

and the address A owns the new coin c:

new-has-coin(A, c) ∧ ∀B ∈ A : ¬old-has-coin(B, c) . (M2)

Everything else stays the same, hence:

∀d ∈ C, B ∈ A : (M3)

(d 6= c ∨B 6= A) →

(new-active(d) ↔ old-active(d)) ∧ (new-has-coin(B, d) ↔ old-has-coin(B, d))

The transition mint(c, A) is now defined as M1 ∧M2 ∧M3.

Lemma 3 (Soundness of mint(c, A)).
Given the balance functions old-bal, new-bal : A → N, the Natural Numbers old-sum,
new-sum, unary predicates old-active, new-active ⊆ C and binary predicates
old-has-coin, new-has-coin ⊆ A× C as in Lemma 1.
Additionally, let A ∈ A, c ∈ C and mint(c, A).
Then, new-bal(A) = old-bal(A) + 1 and for all other addresses B ∈ A, B 6= A it holds
new-bal(B) = old-bal(B). Also new-sum = old-sum+ 1.

Again, the proof of Lemma 3 is similar to the one of Lemma 1 and will thus be skipped.
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3 Encoding Finite Sums of Arbitrary Length

Transition burn(c, A)

The last transition considered handles the planned decrease of money, such as burning
money. It is in a way the inverse of mint. This means we take an existing coin and label it
inactive. The address that used to have this coin does not have it any more and therefore
its balance decreased by one.
In order to strictly decrease the money, money had to be there in the first place. This is
why, for the ’burn’ transition, there is an axiom required. It is

∃c ∈ C : old-active(c) . (There-are-Coins)

Remark. The property (There-are-Coins) is mentioned as an axiom here, because it is
not really part of the transition. It does not describe the connection between the old and
the new world.

The coin c to be burned has to be active before and not active afterwards, that is:

old-active(c) ∧ ¬new-active(c) (B1)

and the address A that used to own c does not have it any more:

old-has-coin(A, c) ∧ ∀B ∈ A : ¬new-has-coin(B, c) . (B2)

Everything else stays the same, thus:

∀d ∈ C, A ∈ A : (B3)

d 6= c ∨B 6= A

(new-active(d) ↔ old-active(d)) ∧ (new-has-coin(B, d) ↔ old-has-coin(B, d)) .

The transition burn(c, A) is now defined as B1 ∧ B2 ∧ B3.

Lemma 4 (Soundness of burn(c, A)).
Given the balance functions old-bal, new-bal : A → N, the Natural Numbers old-sum,
new-sum, unary predicates old-active, new-active ⊆ C and binary predicates
old-has-coin, new-has-coin ⊆ A× C as in Lemma 1.
Additionally, let A ∈ A, c ∈ C, old-sum > 0 and burn(c, A).
Then, new-bal(A) = old-bal(A) − 1 and for all other addresses B ∈ A, B 6= A it holds
new-bal(B) = old-bal(B). Also new-sum = old-sum− 1.

Note that old-sum > 0 is equivalent to (There-are-Coins). The proof of Lemma 4 is
also similar to the one of Lemma 1 and will thus be skipped.
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3 Encoding Finite Sums of Arbitrary Length

Other Proof Goals

So far, we were interested to conclude that
∑

A∈A bal(A) = sum. The encoding was de-
signed in such a way that this was the main focus. However, it is also possible to handle
properties like

∑

A∈A bal(A) ≤ sum and
∑

A∈A bal(A) ≥ sum.
In order to do so, the invariants have to be weakened. For the first property
∑

A∈A bal(A) ≤ sum the invariant to be dropped is (At-Least-One-Address). This
means it is possible for an active coin to not be owned by any address, but is still necessary
that only active coins can be owned and that a coin cannot be owned by more than one
address.
For

∑

A∈A bal(A) ≥ sum, the (Inactive-Coins) invariant has to be dropped. Hence,
there it is possible that inactive coins are owned by at most one address, as long as every
active coin is also owned by precisely one address.
Unfortunately, the nice intuition with exactly the active coins to be physically located at
some address does not apply any more. The most convenient part is though, that all the
transitions can be taken over identically from the initial

∑

A∈A bal(A) = sum setting.

A probably more interesting property is to make sure that the total money in the world
does not drop below a certain constant number t. There are only a few adaptions to be
made in order to use the encoding presented as follows.

1. Both old-sum and new-sum are replaced by t, since we want to obtain both
∑

A∈A old-bal(A) ≥ t and
∑

A∈A new-bal(A) ≥ t.

2. Likewise, old-active and new-active are replaced by one mutual active.

3. This means there is no update of active in transitions. However, constraints about
coins’ activity status can still be expressed.

4. The (Inactive-Coins) invariant has to be removed.

5. The transition burn may be problematic. One can add a constraint that there has
to exist an inactive coin c and an address A, such that address A had it before
performing the action.

This means to make sure that the total money stays greater equal t = |active|, we have
to show that for the initial set of active coins every element is still owned by some address.

In order to reason about
∑

A∈A old-bal(A) ≤ t and
∑

A∈A new-bal(A) ≤ t the equiva-
lent adaptions of the encoding have to be made. Especially, the invariant to be dropped is
(At-Least-One-Address).

3.3 Experimental Results of the Sum Encoding

In this section the performance of the encoding regarding challenge [Ch2] is presented. The
specification of [Ch2] to our precise setting is stated subsequently.
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3 Encoding Finite Sums of Arbitrary Length

∑

A∈A

old-bal(A) = old-sum
Encoding
======⇒

(old-has-coin, old-active)

satisfies the invariants

?

w

w

w

w

�

w

w

w

w

�

Vampire/Z3

∑

A∈A

new-bal(A) = new-sum
Decoding
⇐======

(new-has-coin, new-active)

satisfies the invariants

Table 3.1: Overview of which part is considered by theorem provers.

[Ch2’] Given encodings (old-has-coin, old-active) and (new-has-coin, new-active) of
old-bal and new-bal, respectively. Assume that the transitions between old-bal

and new-bal (and hence also (old-has-coin, old-active) and
(new-has-coin, new-active)) are known. Then the solvers Vampire and Z3 can
prove that the sums over old-bal and new-bal are related accordingly.

In Table 3.1 the experimental setting for our main proof goal is illustrated. The question
mark represents the reasoning goal, which is reached by the detour of encoding, using an
automated theorem prover - such as Vampire or Z3 - and decoding.
The task of proving has been mentioned briefly in the beginning of Section 3.2. Namely,
given that

1. (old-has-coin, old-active) satisfies the invariants and

2. a transition to obtain (new-has-coin, new-active),

then prove that also (new-has-coin, new-active) satisfies the invariants.
Equivalently, the goal to prove is that the conjunction

inv(old-has-coin, old-active) (Goal)

∧ transfer(A1, A2)

∧ ¬inv(old-has-coin, old-active)

is unsatisfiable.

For the other proof goals mentioned in Section 3.2, the encoding is similar to (Goal).
In Table 3.2, the main property to be proven is referred to as

∑

A∈A bal(A) = sum, and
the others as

∑

A∈A bal(A) ≥ sum and
∑

A∈A bal(A) ≥ t. For every property, the four
transitions presented in Section 3.2 are considered. For

∑

A∈A bal(A) = sum, there are

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3 Encoding Finite Sums of Arbitrary Length

two additional transitions listed to give an example of possible extensions of the encoding.
They are called ’mintN’ and ’mintN-helper’. They encode the transaction of transferring
N coins, for an arbitrary unfixed N ∈ N

+. This is done by replacing the ’old- ’ and ’new-’
prefixes by an additional input value (integer), similarly to [27].
The transitions ’mintN’ and ’mintN-helper’ only differ by a helping lemma added in ’mintN-
helper’. It states the instance of the induction principle for this precise application.

Property Transition Z3
Vampire

default

Vampire

casc

Vampire

avatar off

∑

A∈A bal(A)

= sum

transfer 0.01 0.073 0.805 104.510

throw-catch 0.01 0.071 0.204 0.188

mint 0.01 0.044 0.083 0.036

burn 0.01 0.049 0.073 0.041

mintN-helper 0.06 X 7.593 X

mintN X X X X

∑

A∈A bal(A)

≥ sum

transfer 0.01 0.067 0.780 2.634

throw-catch 0.01 0.119 1.142 X

mint 0.01 0.050 0.063 0.037

burn 0.01 0.037 0.072 0.037

∑

A∈A bal(A)

≥ t

transfer 0.01 0.057 0.758 2.177

throw-catch 0.01 0.073 0.785 152.096

mint 0.01 0.046 0.112 0.052

burn 0.01 0.047 0.128 0.054

Table 3.2: Experimental results using Vampire and Z3. Time (in seconds) is given when
the solver proved the (unsat) goal. Otherwise, timeout is indicated by ’X’.

Table 3.2 contains the results of Vampire (in different operation modes) and Z3 proving
the properties mentioned, relative to the transition. If the prover was able to prove it
unsatisfiable, then the time necessary to do so is listed. Otherwise, a time out or exceeded
memory limit is indicated by an ’X’ in the corresponding cell. Time out limit for Z3 was
one hour, whereas for Vampire five minutes.

Remark. The transitions are implemented as defined in Section 3.2. In particular, ’trans-
fer’ is the only one considering the case that the transaction is not performable, while the
others assume the existance of the necessary coins as precondition.
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3 Encoding Finite Sums of Arbitrary Length

Both Vampire and Z3 could derive unsatisfiable for every standard transition and every
property. The different modes of Vampire are listed, because they show an interesting
complexity property of ’transfer’ and ’throw-catch’. This is, the invariant (Inactive-
Coins) is the hardest part to prove for ’transfer’, while the fact that both active and
inactive coins can be transferred for

∑

A∈A bal(A) ≥ sum and
∑

A∈A bal(A) ≥ t does
not affect the running time for ’transfer’, but makes ’throw-catch’ much more complex.
For

∑

A∈A bal(A) ≥ t ’throw-catch’ is even harder, since there are two activity functions
old-active and new-active in contrast to

∑

A∈A bal(A) ≥ sum.

The transition ’mintN’ shows what cannot be done (yet), in terms of automation. Perform-
ing actions for an arbitrary number of coins is problematic. It requires the provers to apply
inductive reasoning which requires higher-order reasoning. This is the case, since it is all-
quantified over all kinds of relations defined on an inductive datatype. However, providing
the instance of induction needed as a lemma in the input (as it is done in ’mintN-helper’),
both Vampire and Z3 find a proof.
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4 The Encoding is Sound and Complete

The aim of this chapter is to formalize the encoding of Section 3.1 and its relation to the
higher-order setting. In particular, there are no transitions considered and we thus only
have one macro and one micro world to reason about. The crucial part is the soundness
and completeness result. At first, the necessary definitions are stated.

4.1 Higher-Order and First-Order States

As explained in Chapter 3, the higher-order setting is based on the two disjoint sets N and
the finite set of addresses A. Let us now define a higher-order state.

Definition 5 (Definition of Higher-Order State). Let bal ∈ N
A and sum ∈ N, then the

pair (bal, sum) is called a higher-order state.
The set of all higher-order states is called H := N

A × N.

Definition 6 (Valid Higher-Order States). A higher-order state (bal, sum) is called valid,
if
∑

A∈A bal(A) = sum.

The first-order setting has been explained informally in Chapter 3 already. It uses the
two disjoint sets C which is the countable set of coins and the set of addresses A.

Definition 7 (First-Order States). Let has-coin ⊆ A× C and active ⊆ C then the pair
(has-coin, active) is called a first-order state.
The set of all first-order states is called F := 2A×C × 2C .

4.2 Equivalent First-Order States

Having the basic principles at hand, we can now start defining what it means for two first-
order states (has-coin 1, active 1) and (has-coin 2, active 2) to be equivalent. We start
by defining some sets relevant for a relation ∼ on F .

Definition 8. Given a state s := (active, has-coin). For an address A ∈ A , we define:

CA := {c ∈ C : has-coin(A, c)}
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4 The Encoding is Sound and Complete

to be the set of all coins c the address A has. Further, we define three types of error coins
according to the invariants from Section 3.1:

i) MInact := {c ∈ C : ¬active(c) ∧ ∃A ∈ A : has-coin(A, c)},

ii) MLeast := {c ∈ C : active(c) ∧ ∀A ∈ A : ¬has-coin(A, c)} and

iii) MMost := {c ∈ C : ∃A,B ∈ A : A 6= B ∧ has-coin(A, c) ∧ has-coin(B, c)}.

We define one type of error pairs:

MPairs := {(A, c) ∈ A× C : has-coin(A, c) ∧ ∃B ∈ A : A 6= B ∧ has-coin(B, c)} .

to refine the number of mistakes caused by the violation of (At-Most-One-Address).
The total number of mistakes ms of the first-order state s is now defined as:

ms := |MInact|+ |MLeast|+ |MPairs| − |MMost| .

Note that the transitions presented in Section 3.2 preserve the size of the mistake sets
MInact, MLeast, MPairs and MMost.
Given Definition 8, the following properties hold.

Lemma 5. Let s ∈ F . Then |MMost| ≤ |MPairs| holds. Further, |MMost| = |MPairs| if and
only if MMost = ∅.

Proof. Assume MMost = ∅, that is there exists no coin c such that two distinct addresses
A and B have it, which is equivalent to there is no pair (A, c) such that both A has c and
a distinct B has c. This means precisely MPairs = ∅. Therefore |MMost| = |MPairs|.

Now assume c ∈ MMost. Let A,B ∈ A, A 6= B such that both has-coin(A, c) and
has-coin(B, c). This implies both (A, c), (B, c) ∈ MPairs. The very same argument works
for every other coin in MMost. On the other hand, if a pair (A, c) ∈ MPairs, then by
definition also c ∈ MMost. Thus we have |MMost| < |MPairs|.

Lemma 6. Given a first-order state s = (has-coin, active) ∈ F , such that ms = 0, then
⋃

A∈ACA = active.

Proof. The first step is to prove
⋃

A∈ACA ⊆ active.
Let c ∈

⋃

A∈ACA. That is, there exists an A ∈ A such that has-coin(A, c). We know
ms = 0 which implies MInact = ∅ by applying Lemma 5, hence also active(c).
To show active ⊆

⋃

A∈ACA, we consider an arbitrary c ∈ active. We know that
ms = 0, hence c /∈ MLeast, by Lemma 5. In particular, there has to exist an A ∈ A such
that (A, c) ∈ has-coin. Hence, c ∈

⋃

A∈ACA .
Combining the results, we obtain

⋃

A∈ACA = active.
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4 The Encoding is Sound and Complete

Lemma 7. Given s = (has-coin, active) ∈ F , such that ms = 0, then |active| =
∑

A∈A |CA|.

Proof. Assume there exist A,B ∈ A, A 6= B and c ∈ C such that both c ∈ CA and c ∈ CB.
That is the CA are not pairwise disjoint. Then we have both (A, c), (B, c) ∈ has-coin and
thus c ∈ MMost. Lemma 5 tells us that in this case |MMost| < |MPairs| which contradicts
ms = 0. By applying Lemma 6 we get |active| = |

⋃

A∈ACA| =
∑

A∈A |CA|.

Lemma 8. Given s = (has-coin, active) ∈ F , such that at least one of |MLeast| = 0 and
|MInact|+ |MPairs| − |MMost| = 0 holds. Then

∑

A∈A

|CA| − |active| = |MInact|+ |MPairs| − |MMost| − |MLeast| .

Proof. First, assume |MInact|+ |MPairs| − |MMost| = 0. Consider

MLeast = {c ∈ C : active(c) ∧ ∀A ∈ A : ¬has-coin(A, c)} ⊆ active .

Then the state s′ := (has-coin, active \ MLeast) has m′
s = 0, since M ′

Least = ∅ and the
other mistake sets have not changed. They have been ∅, due to Lemma 5.
This means we can apply Lemma 7 and obtain

∑

A∈A |C ′
A| = |active′|. Therefore,

∑

A∈A

|CA| =
∑

A∈A

|C ′
A| = |active′| = |active| − |MLeast|

and hence
∑

A∈A |CA| − |active| = |MInact|+ |MPairs| − |MMost| − |MLeast|.
Now assume |MLeast| = 0. We have MInact ∩ active = ∅ and MPairs ⊆ has-coin.

Consider the state s′ := (has-coin \ MPairs, active ∪ MInact). It satisfies M ′
Inact = ∅

and M ′
Pairs = ∅, and according to Lemma 5 also M ′

Most = ∅. However, we also have
M ′

Least = MMost. This is the case because MLeast = ∅ and precisely the coins that more
than one address had before - which had to be active - are now not assigned to a sinlge one
any more. Thus s′′ := (has-coin \MPairs, (active ∪MInact) \MMost) has m

′′
s = 0.

Applying Lemma 7 to s′′, results in
∑

A∈A |C ′′
A| = |active′′|. Since we have

∑

A∈A |C ′′
A| =

∑

A∈A |CA| − |MPairs|, by definition of MPairs and CA, it follows:

∑

A∈A

|CA| − |MPairs| =
∑

A∈A

|C ′′
A| = |active′′| = |active|+ |MInact| − |MMost| .

Hence,
∑

A∈A |CA| − |active| = |MInact|+ |MPairs| − |MMost| − |MLeast| which conludes the
proof.

Having the necessary definitions and their properties at hand, we are now ready to define
the relation on F .

Definition 9 (Relation ∼ ).
Let s1 = (has-coin 1, active 1), s2 = (has-coin 2, active 2) ∈ F two first-order states.
We say s1 ∼ s2 :⇔
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4 The Encoding is Sound and Complete

1. |active 1| = |active 2| ,

2. ∀A ∈ A : |C1,A| = |C2,A| ,

3. |M1,Least| = |M2,Least| ,

4. |M1,Inact|+ |M1,Pairs| − |M1,Most| = |M2,Inact|+ |M2,Pairs| − |M2,Most| .

The most important property of ∼ is stated below.

Lemma 9. The relation ∼ is an equivalence relation on F .

Proof. • Reflexivity of ∼.
Let s = (has-coin, active) ∈ F , then clearly |active| = |active|, for all A ∈ A we
have |CA| = |CA| and also for all x ∈ {Inact,Least,Most,Pairs} it is the case that
|Mx| = |Mx|.

• Symmetry of ∼.
Let s1, s2 ∈ F such that s1 ∼ s2, then due to symmetry of = also s2 ∼ s1 holds.

• Transitivity of ∼.
Let s1, s2, s3 ∈ F , such that s1 ∼ s2 and s2 ∼ s3 then due to the transitivity of =
also s1 ∼ s3 holds.

Finally, the notion of a valid class of first-order states can be expressed.

Definition 10 (Valid Class of First-Order States). Let [s]∼ ∈ F/∼ be a class of first-order
states. It is called valid if for one (or equivalently for every) s ∈ [s]∼ it holds ms = 0.

Remark. A first-order state s is valid if and only if it satisfies the invariants from Section
3.1. This is the case since precisely for states s ∈ F satisfying the invariants all of the sets
MInact, MLeast, MMost and MPairs are empty, hence ms = 0.

4.3 Translating Higher-Order States to First-Order States

We are now looking for a way to unambiguously map states in higher-order logic to states
in first-order logic. This connection is indicated in Figure 3.1 by the blue dashed arrows.
Furthermore, it has been mentioned as ’Encoding’ and ’Decoding’ in Table 3.1. As already
discussed, in the first-order setting we will consider equivalence classes of states, that is
F/∼.
Thus, we want to have an injective function f : H → F/∼. As shown in Section 4.4, the
function we are looking for is the following.
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4 The Encoding is Sound and Complete

Theorem 2. Let the function f : H → F/∼ (bal, sum) 7→ [(has-coin, active)]∼, such
that it satisfies the following conditions:

1. sum = |active| .

2. For every A ∈ A it holds bal(A) = CA.

3. At least one of |MLeast| = 0 and |MInact|+ |MPairs| − |MMost| = 0 holds.

Here (has-coin, active) ∈ [(has-coin, active)]∼ arbitrary.
The function f is well-defined and injective.

Proof. To show f is well defined, we have to make sure that if one element of a class
satisfies the properties above, then all the others do as well. Further, we have to show that
if two distinct first states s1 and s2 satisfy the function definition properties, then they
are members of the same class s2 ∈ [s1]∼ and lastly, that there exists only one function
satisfying the constraints.
The first part is ensured by the definition of ∼. The classes are constructed in such a

way that precisely the four crucial values for the definition of f are the same for every class
member.
For the second part we consider two distinct first-order states s1 and s2, both satisfying

the properties 1, 2 and 3. This implies that both |active 1| = |active 2| and |C1,A| = |C2,A|
for every A. Applying Lemma 8, we know |M1,Inact| + |M1,Pairs| − |M1,Most| − |M1,Least| =
|M2,Inact| + |M2,Pairs| − |M2,Most| − |M2,Least|. Then, by Lemma 5, it cannot be the case
that M1,Least = 0 and M2,Least 6= 0 and vice versa, but one summand has to be zero. This
implies that both M1,Least = M2,Least and |M1,Inact| + |M1,Pairs| − |M1,Most| = |M2,Inact| +
|M2,Pairs| − |M2,Most|. Therefore, s1 ∈ [s2].

To show there exists only one such f , we assume the existance of another function g
fulfilling the same constraints. Let h ∈ H arbitrary and (has-coinf , activef ) ∈ f(h),
(has-coing, activeg) ∈ g(h). Then |activef | = sum = |activeg|, for all A ∈ A |Cf,A| =
bal(A) = |Cg,A| and with the same argument as before Mf,Least = Mg,Least and |Mf,Inact|+
|Mf,Pairs| − |Mf,Most| = |Mg,Inact| + |Mg,Pairs| − |Mg,Most|. Hence, (has-coing, activeg) ∈
[(has-coinf , activef )]∼. But this means f(h) = g(h) for every h ∈ H, hence f = g.

For injectivity, assume two higher-order states h1 = (bal1, sum1) and h2 = (bal2, sum2)
such that f(h1) = f(h2). Now, we know sum1 = |active 1| = |active 2| = sum2 and for
arbitrary A ∈ A we know bal1(A) = |C1,A| = |C2,A| = bal2(A). Therefore, we have
h1 = h2.

4.4 Soundness and Completeness

Using the definitions and lemmas from Section 4.3, our next result follows naturally.

Theorem 3. Given s ∈ F , h ∈ H, then s ∈ f(h) implies

∑

A∈A

bal(A)− sum = |MInact|+ |MPairs| − |MMost| − |MLeast| .
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4 The Encoding is Sound and Complete

Proof. Let h = (bal, sum) ∈ H and s = (has-coin, active) ∈ f(h). For s we know at least
one of |MLeast| = 0 and |MInact|+ |MPairs|−|MMost| = 0 and hence using Lemma 8 it follows
∑

A∈A bal(A) − sum =
∑

A∈A |CA| − |active| = |MInact| + |MPairs| − |MMost| − |MLeast|.
This proves the theorem.

A special instance of Theorem 3 is now our soundness and completeness result.

Corollary 1 (Soundness and Completeness of the Encoding).
Let h ∈ H a higher-order state, then

h valid ⇔ ∀s ∈ f(h) : s valid .

That is for h = (bal, sum) and s = (has-coin, bal) ∈ f(h) it holds that

∑

A∈A

bal(A) = sum ⇔ (has-coin, active) satisfies the invariants .

Proof. Given h and s as specified and let
∑

A∈A bal(A) = sum. Then according to Theorem
1, |MInact|+ |MPairs| − |MMost| − |MLeast| = 0. Since by definition of f , one of |MLeast| = 0
and |MInact| + |MPairs| − |MMost| = 0 had to be the case already, it follows that the other
has to be zero as well. Thus, s is valid and satisfies the invariants.
Let now s ∈ f(h) be valid (satisfy the invariants), then ms := |MInact| + |MLeast| +

|MPairs| − |MMost| = 0. Applying Lemma 5, we know that each the summand has to be
zero. This implies that |MInact|+|MPairs|−|MMost|−|MLeast| = 0 and hence

∑

A∈A bal(A) =
sum.

Note: For other properties over sum, such as being greater or lower equal some number,
the mistakes counter has to be adapted and one of the invariants has to be dropped,
depending on the property to be proven.
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5 The Translation f is First-Order
Expressible

The goal of this chapter is to make the function f from Theorem 2 (Chapter 4) expressible
in first-order logic. In order to do so, the sets of higher-order and first-order states H and
F , respectively, are used as before, but in this chapter only valid states are considered.
This means the former invariants as in Definition 4 (Chapter 3) are now axioms and thus
∑

A∈A bal(A) = sum is given and does not have to be shown. Hence, we are now addressing
the orthogonal problem to the problem from Chapter 3. However, we aim for the encoding
to be in such a way that automated theorem provers can reason about it as well.
The general idea is to add different counters on coins to be able to express some of the
cardinality constraints from Chapter 4. Unfortunately, this requires the use of integers or
an inductive datatype. In this work, integers are preferred, since linear integer arithmetic
is supported in most theorem provers.
While in Chapter 3 we aimed to prove the invariants are preserved given a certain transi-
tion, in this chapter we have the invariants as a precondition and want to prove the impact
on the sum, given the relation of the balances, as mentioned in the ’precise explanation’ of
Section 3.2. As a consequence, the motivation of software verification is not in our focus
here.

In Section 5.1, a naive encoding of f is presented. Subsequently, in Section 5.2, the pre-
vious encoding is restricted in two steps, such that it does not affect expressiveness. The
experimental results of the theorem provers’ performance on the different encodings are
discussed in Section 5.3.

5.1 Naive First-Order Encoding

In this section a very natural approach for encoding f is used. As mentioned above, we want
to express some of the cardinalities from Chapter 4 by defining counters of coins. Since
many of them are only necessary to handle the number of mistakes, only a few remain to
be addressed.
Generally, the functions and predicates bal, sum, has-coin and active are as defined in
Chapters 3-4.

Definition 11 (Index Function). For every A ∈ A let indA : C → N
+ be an injective

function. Further, indA shall be surjective on the interval [1, bal(A)]. Then indA(c) is the
index of a coin c with respect to the address A.
The function ind : A× C → N

+, where ind(A, c) := indA(c), is called the index function.
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5 The Translation f is First-Order Expressible

We aim at ensuring that every address A has precisely the first bal(A) coins. That means
exactly the coins c ∈ C with indA(c) ∈ [1, bal(A)]. For this set of coins to have the right
cardinality, indA has to be injective and surjective at least on that interval.

Definition 12 (Count Function). Let count : C → N
+ be an injective function. Also, it

shall be surjective on the interval [1, sum]. Then, for every coin c ∈ C, count(c) is called
the number of c.

Similarly to the index function, the count function aims to enumerate the active coins.
Hence, we want that exactly every active coin c has a number count(c) ∈ [1, sum]. Further,
count has to be injective and surjective at least on that interval to provide the desired
property.

Figure 5.1: Representation of the naive encoding to make f explicit.

As in Chapter 3.1, we also have two of such settings in parallel which is illustrated in
Figure 5.1. Again, we use the old- and new- prefixes to distinguish them. If some property
is meant to apply for both, we will use the prefix z-. Both shall fulfill the following axioms.

Axioms in the Naive Encoding

The following list of axioms is structured according to Figure 5.1. The axioms correspond-
ing to one quarter, called block, are presented together.
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5 The Translation f is First-Order Expressible

Intra-block axioms for the macro world.
These are all the axioms regarding sum, the count function count and their relation to
active. They are represented by the grey arrows between the respective bubbles in Figure
5.1. The axioms are:

z-sum ≥ 0 (M1)

∀c ∈ C : z-count(c) > 0 (M2)

∀c1, c2 ∈ C :
(

z-count(c1) = z-count(c2) → c1 = c2
)

(M3)

∀n ∈ Z :
(

0 < n ∧ n ≤ z-sum → ∃c ∈ C : z-count(c) = n
)

(M4)

∀c ∈ C :
(

z-active(c) ↔ z-count(c) ≤ z-sum
)

(M5)

The axioms (M1) - (M5) formalize, that the sum is non-negative (M1), the codomain of
count is N

+ (M2), count is injective (M3) and partly surjective (M4). A coin is active if
and only if its number is within a certain interval (M5).

Intra-block axioms for the micro world.
The axioms listed here effect bal, the index function ind and their relation to has-coin.
They are:

∀A ∈ A : z-bal(A) ≥ 0 (m1)

∀c ∈ C, A ∈ A : z-ind(A, c) > 0 (m2)

∀A ∈ A, c1, c2 ∈ C :
(

z-ind(A, c1) = z-ind(A, c2) → c1 = c2
)

(m3)

∀A ∈ A, n ∈ Z :
(

0 < n ∧ n ≤ z-bal(A) → ∃c ∈ C : z-ind(A, c) = n
)

(m4)

∀A ∈ A, c ∈ C :
(

z-has-coin(A, c) ↔ z-ind(A, c) ≤ z-bal(A)
)

(m5)

The axioms (m1)-(m5) state that the balances are non-negative (m1), the indicies are in
N
+ (m2), for every A ∈ A the indA function is injective (m3) and partly surjective (m4).

The address A has precisely the coins c with index indA(c) ≤ bal(A) (m5).

Inter-block axioms connecting the micro and the macro world.
The axioms between the micro and the macro world are exactly the former invariants from
Chapter 3.1. Now they have the role of inter-block axioms, ensuring

∑

A∈A bal(A) = sum.
They are represented by the purple arrows in Figure 5.1 and are stated again for the sake
of completeness:

∀c ∈ C :
(

∃A ∈ A : z-has-coin(A, c)
)

↔ z-active(c) (I1)

∀A1, A2 ∈ A, c ∈ C : z-has-coin(A1, c) ∧ z-has-coin(A2, c) → A1 = A2 (I2)

With this list of axioms, we have the following result.
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5 The Translation f is First-Order Expressible

Lemma 10. Given a higher-order state h = (bal, sum) ∈ H, a first-order state s =
(has-coin, active) ∈ F , ind and count such that (M1)-(M5), (m1)-(m5) and (I1)-(I2)
hold.
Then |active| = sum and for every A ∈ A it holds |{c ∈ C : has-coin(A, c)}| = bal(A).
In particular, we have

∑

A∈A bal(A) = sum.

Proof. Let s and h be as specified and all the axioms be satisfied. At first, we show
|active| = sum. For every coin c ∈ C we know it is active if and only if count(c) ∈ [1, sum]
(M5). Further, count is injective (M3), thus |active| = sum and for every integer n ∈
[1, sum] there exists a coin c such that count(c) = n (M4). Hence |active| = sum.

Fix an arbitrary A ∈ A. The same argumentation as before, using (m3)-(m5) instead of
(M3)-(M5), leads to |{c ∈ C : has-coin(A, c)}| = bal(A).

We know now that |active| = sum, for every A ∈ A it holds |{c ∈ C : has-coin(A, c)}| =
bal(A) and ms = 0, since s satisfies I1 and I2. In particular, [s]∼ is in the image set of
f . Hence, s ∈ f(h). By Corollary 1, as s = (has-coin, active) satisfies the invariants, it
follows

∑

A∈A bal(A) = sum.

Lemma 10 states that the function f restricted to valid higher-order states is first-order
expressible using our encoding. It also proves soundness of our encoding to reason about
sums.

Relation between the Old World and the New World

So far, we have only considered one micro world together with one macro world. Thus, in
terms of Figure 5.1, the lime arrows between the old world and the new world have not
been discussed yet. Compared to Chapter 3, the previously implicit higher-order relations
are made explicit. As we can reason about bal and sum directly, there is no need of equiv-
alent first-order transition and impact any more. Therefore, the dark green arrows from
Figure 3.1 are now redundant and are thus dropped.
The transition formula expresses the relation of old-bal and new-bal, whereas the ex-
pected impact formula closes the dependency cycle in the macro world. The setting in this
chapter is the following.

Reasoning goal of Chapter 5.
Given the axioms (M1)-(M5), (m1)-(m5) and (I1)-(I2) hold, then

the transition formula holds ⇒ the impact formula holds .

For now, the most basic transition is encoded below as an example. This is, for every
account, its balance is unchanged.
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5 The Translation f is First-Order Expressible

’By changing nothing, nothing changes.’

∀A ∈ A : old-bal(A) = new-bal(A) (transition)

old-sum = new-sum (impact)

Even though, this naive encoding indeed expresses f in first-order logic, it is very unlikely
that any theorem prover will ever be able to prove a claim in this setting. The major prob-
lem is that it requires higher-order reasoning to link the functions old-ind and new-ind,
old-count and new-count, respectively.
In the next section a promising simplification is presented addressing the usability of our
encoding in automated theorem proving.

5.2 Restricted, yet Equally Expressive Encodings

The crucial point in this restricted version is the fact that we do not need two different
index and count functions. This claim is explained and proved in this section. In Figure 5.2
the new setting is illustrated. Despite having only one mutual ind and one mutual count,
the picture has not changed compared to Figure 5.1.

Figure 5.2: The restricted version of the encoding to make f explicit.
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5 The Translation f is First-Order Expressible

We will show that this is possible without losing any generality of the setting, by having
the following list of axioms.

Axioms in the Restricted Encoding

The axioms are very similar to the ones in Section 5.1.

Intra-block axioms for the macro world.
Now writing count instead of z-count, we have:

z-sum ≥ 0 (M1′)

∀c ∈ C : count(c) > 0 (M2′)

∀c1, c2 ∈ C :
(

count(c1) = count(c2) → c1 = c2
)

(M3′)

∀n ∈ Z :
(

0 < n ∧ n ≤ z-sum → ∃c ∈ C : count(c) = n
)

(M4′)

∀c ∈ C :
(

z-active(c) ↔ count(c) ≤ z-sum
)

(M5′)

Intra-block axioms for the micro world.
We use ind instead of z-ind and state:

∀A ∈ A : z-bal(A) ≥ 0 (m1′)

∀c ∈ C, A ∈ A : ind(A, c) > 0 (m2′)

∀A ∈ A, c1, c2 ∈ C :
(

ind(A, c1) = ind(A, c2) → c1 = c2
)

(m3′)

∀A ∈ A, n ∈ Z :
(

0 < n ∧ n ≤ z-bal(A) → ∃c ∈ C : ind(A, c) = n
)

(m4′)

∀A ∈ A, c ∈ C :
(

z-has-coin(A, c) ↔ ind(A, c) ≤ z-bal(A)
)

(m5′)

Inter-block axioms, transition and impact.
The inter-block axioms (I1)-(I2), the transition and its impact are not affected by the re-
striction.

Impact of the Restriction

Having two separate count and index functions leads to the freedom of compairing any two
first-order states. That means, given the two valid higher-order states
ho = (old-bal, old-sum), hn = (new-bal, new-sum) ∈ H, we can reason about any two
so = (old-has-coin, old-active) ∈ f(ho), sn = (new-has-coin, new-active) ∈ f(hn).
For automated provers this freedom is problematic, as it leaves them without any contraints
about the transition. More precisely, provers have the need to have a stronger relation be-
tween the old and the new world. In the case of the setting from Chapter 3, the transition
is made precise on coin level even. Thus the solver knows for every coin, which address it
is assigned to in the new world, relative to the old world.
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5 The Translation f is First-Order Expressible

Hence what we lose when considering only one count and one index function is the pos-
sibility to change the affiliation of coins unnecessarily, while the total number of coins in
each address stays as specified in the transition. As shown subsequently, the discussed
constraints lead to the situation that fixing one of so, sn, the other one has to be as similar
as possible, while satisfying the cardinality restrictions.

The claim that we do not lose any generality of the encoding from Section 5.1 is now
made precise and is proven. By ’no loss of generality’ and ’equally expressive’ we mean:

Every relation between two valid higher-order states ho, hn that could be expressed in
Section 5.1 can still be expressed.

For the practical use with theorem provers, this is relevant, since it ensures that indepen-
dent of the transition, all the axioms are satisfied even if the two worlds have the same
count and index functions. Hence, giving the prover the axioms, the transition and the
negated impact formula as input, if it yields unsat, this is due to the negated impact.

We need the following lemmas to prove the claim.

Lemma 11.
Given two valid higher-order states hx = (x-bal, x-sum), hy = (y-bal, y-sum) ∈ H such
that x-sum ≤ y-sum. Further, let sx = (x-has-coin, x-active) ∈ f(hx). Then there exists
sy = (y-has-coin, y-active) ∈ f(hy) satisfying the following properties:

(1) x-active ⊆ y-active.

(2) For A ∈ A with x-bal(A) ≤ y-bal it holds x-has-coin(A, c) ⇒ y-has-coin(A, c),
for every coin c ∈ C.

(3) For A ∈ A with x-bal(A) ≥ y-bal it holds y-has-coin(A, c) ⇒ x-has-coin(A, c),
for every coin c ∈ C.

Proof.
For hy valid, recall that

f(hy) := {(has-coin, active) ∈ F : m = 0,

|active| = sum =
∑

A∈A

y-bal(A), ∀A ∈ A : |has-coin(A, .)| = y-bal(A)}.

To fulfill property (1) of Lemma 11, construct y-active by taking x-active ⊆ C and
add y-sum− y-sum many coins from C \ x-active to get y-active.
For conditions (2) and (3) of Lemma 11, to every A exactly y-bal(A) coins c ∈ y-active

need to be assigned. Which ones does not matter as long as the same coin is not used twice
(my = 0). As also mx = 0, there will not be any coin taken twice by overtaking the coin’s
assignment as far as possible. To be precise, property (3) has to be considered first to
ensure a correct assignment.
For (3), we consider A ∈ A with x-bal(A) ≥ y-bal(A). In this case, it is known which
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5 The Translation f is First-Order Expressible

coins can be assigned to A. They are the ones such that x-has-coin(A, c). ’Assign’
means to set y-has-coin(A,c) to be true. Hence, for each such address A after doing so
x-bal(A)− y-bal(A) many coins are y-active but not assigned to any address yet.
In the other case, x-bal(A) ≤ y-bal(A) which means (2), we only know a part of the
coins to assign to A, namely the ones with x-has-coin(A, c). Hence, there are still
y-bal(A)− x-bal(A) coins missing to be assigned to A.

Now consider the following coins are available. ’Available’ here means c ∈ y-active and
we have not specified for which A it holds y-has-coin(A, c) yet.

Coins Number of Coins

y-active \ x-active y-sum− x-sum

c ∈ C : ∃A ∈ A :

x-has-coin(A, c) ∧ ¬y-has-coin(A, c)

∑

A∈A,x-bal(A)>y-bal(A)

x-bal(A)− y-bal(A)

Table 5.1: Coins not considered in y-has-coin.

Note that the set of coins in the second row of Table 5.1 is a subset of x-active and thus
also of y-active.
Also, the following amount of coins is still needed to be considered in y-has-coin.
For every A ∈ A with y-bal(A) > x-bal(A) we need y-bal(A)− x-bal(A) many coins to
be assigned to it. This yields

∑

A∈A,
y-bal(A)>x-bal(A)

y-bal(A)− x-bal(A)

many coins.

Hence, the difference is

y-sum− x-sum +
∑

A∈A,
x-bal(A)>y-bal(A)

x-bal(A)− y-bal(A)

−
∑

A∈A,
y-bal(A)>x-bal(A)

y-bal(A)− x-bal(A)

states valid
=

(

∑

A∈A

y-bal(A)−
∑

A∈A

x-bal(A)

)

+
∑

A∈A,
x-bal(A)>y-bal(A)

x-bal(A)− y-bal(A)

−
∑

A∈A,
y-bal(A)>x-bal(A)

y-bal(A)− x-bal(A)
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5 The Translation f is First-Order Expressible

A finite
=

∑

A∈A

y-bal(A)− x-bal(A) −
∑

A∈A,
x-bal(A)>y-bal(A)

y-bal(A)− x-bal(A)

−
∑

A∈A,
y-bal(A)>x-bal(A)

y-bal(A)− x-bal(A)

=
∑

A∈A,
x-bal(A)=y-bal(A)

y-bal(A)− x-bal(A) = 0 .

Hence, the remaining coins c needed to be fixed to belong to A with respect to y-has-coin

can be taken from the available ones, by using each of them exactly once. Since, as just
shown, the number of available coins and the number of coins needed is the same, my = 0
can be guaranteed.

Thus, there exists sy = (y-active, y-has-coin) ∈ f(hy) satisfying (1), (2) and (3).

Lemma 12. Given hx, hy ∈ H valid, sx ∈ f(hx) as in Lemma 11. Then there is an
sy ∈ f(hy) as specified in Lemma 11, such that there exists a function count : C → N

+

with:

(i) count is injective,

(ii) count
y-active

: y-active → [1, y-sum ] is a bijection and also

(iii) count
x-active

: x-active → [1, x-sum ] is a bijection.

And for every A ∈ A there exists a function indA : C → N
+ with:

(iv) indA is injective,

(v) ind
A Cy,A

: Cy,A → [1, y-bal(A)] is a bijection and also

(vi) ind
A Cx,A

: Cx,A → [1, x-bal(A)] is a bijection.

Proof. At first, we fix an arbitray bijective function

count′ : x-active ⊆ C → [1, x-sum] .

This is possible, because sx ∈ f(hx) and therefore |x-active| = x-sum.
Similarly, for every A ∈ A, we fix a bijection

ind′A : Cx,A → [1, x-bal(A)] .

This is possible since = |Cx,A| = |{c ∈ C : x-has-coin(A, c)}| = x-bal(A) for every A, by
definition of f .
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5 The Translation f is First-Order Expressible

Note, since hx is valid and thus also sx is valid, precisely every coin in x-active together
with exactly one A (the A with x-has-coin(A, c)) has got assigned a value via ind′. That
is, it results from hx being valid that c ∈ x-active if and only if there exists an A ∈ A
with x-has-coin(A, c).

In order to extend ind′ and count′ to their full scopes, f(hy) has to be considered. It
is desired to find and fix sy = (y-active, y-has-coin) ∈ f(hy) such that it satisfies the
following properties.

(α) For all coins c ∈ C it holds x-active(c) implies y-active(c). That means we do not
”lose” any active coins. As a consequence, for all c ∈ C if there exists A ∈ A such that
x-has-coin(A, c) then it also exists A ∈ A such that y-has-coin(A, c). However,
these As are not necessarily the same.

(β) Whenever x-bal(A) ≤ y-bal(A) then x-has-coin(A, c) → y-has-coin(A, c) and
whenever y-bal(A) ≤ x-bal(A) then y-has-coin(A, c) → x-has-coin(A, c).

(γ) For every A such that y-bal(A) ≤ x-bal(A) there are precisely x-bal(A)−y-bal(A)
many distinct coins such that x-has-coin(A, c)∧¬y-has-coin(A, c). These shall be
exactly the coins c ∈ x-active ⊆ y-active with ind′(A, c) ∈ (y-bal(A), x-bal(A)].

We now use Lemma 11, to show that such an element exists. Let sy ∈ f(hy) fulfill (1)-(3) of
Lemma 11. The properties (α) and (β) of sy follow directly. For (γ), by (3) of Lemma 11,
we know that there exist precisely x-bal(A)−y-bal(A) coins such that x-has-coin(A, c)∧
¬y-has-coin(A, c), since by definition of f the cardinalities are as required. These coins
c satisfy c ∈ x-active, since x-has-coin(A, c) and sx is valid. From (1) of Lemma 11
it follows that also c ∈ y-active. Finally, we can assume without loss of generality that
these coins are precisley the ones with ind′(A, c) ∈ (y-bal(A), x-bal(A)]. If this were not
the case, then ind′A was replaced by another bijection from {c ∈ C : x-has-coin(A, c)}
onto [1, x-bal(A)] satisfying this constraint.
We can now extend count′ and ind′ to their full scopes.

Let count : C → N+ be an injective extension of count′, with count(c) ∈ (x-sum, y-sum]
precisely for coins c ∈ y-active \ x-active. This is possible, since by (α)

|y-active\x-active| = y-sum − x-sum .

This function thus fulfills the properties (i)− (iii) of Lemma 12.

For A ∈ A with x-bal ≥ y-bal, let indA : C → N
+ any injective extension of ind′′A.

Property (v) is ensured automatically by (γ). For the other addresses, that is A with
y-bal(A) ≥ x-bal(A), (v) has to be ensured separately. Hence, in this case let indA :
C → N

+ an injective extension of ind′′A with indA(c) ∈ (x-bal(A), y-bal(A)] if and only if
x-has-coin(A, c) and ¬y-has-coin(A, c). This is possible, since by (β)

|{c ∈ C : y-has-coin(A, c)} \ {c ∈ C : x-has-coin(A, c)}| = y-bal(A)− x-bal(A) .

Further, (iv) and (vi) also hold for any A ∈ A by definitions of indA and ind′′A.
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5 The Translation f is First-Order Expressible

Having these two lemmas at hand we can now state and prove the following result.

Theorem 4. Given any two valid states

ho = (old-bal, old-sum), hn = (new-bal, new-sum) ∈ H .

There exist a count function count : C → N
+ and an index function ind : A× C → N

+ as
defined in Definition 11 and 12, such that there are

so = (old-active, old-has-coin) ∈ f(ho), sn = (new-active, new-has-coin) ∈ f(hn)

with

∀c ∈ C :
(

z-active(c) ↔ count(c) ≤ z-sum
)

and (M5′)

∀A ∈ A, c ∈ C :
(

z-has-coin(A, c) ↔ ind(A, c) ≤ z-bal(A)
)

. (m5′)

Note that the Definitions 11 and 12 ensure (M1′)-(M4′), (m1′)-(m4′) respectively. The
fact that we are considering valid states ensures (I1)-(I2) and (M5′) and (m5′) are stated
explicitly. Thus, we prove that we can express any two valid higher-order states ho and hn
with a mutual count and a mutual index function. In particular, any relation between ho,
hn that could be expressed in Section 5.1 can still be expressed.

Proof.
The idea of the proof is the following. At first, a pair of counting functions (count, ind)
is constructed based on ho and hn. This is done by chosing specific elements of f(ho) and
f(hn). Secondly, it is shown that the previously constructed functions count and ind have
all the necessary properties.
Given ho and hn, we give the one of them with the lower sum the prefix ’x-’. That is,

hx ∈ {ho, hn} such that x-sum = min {old-sum, new-sum}. The other state gets the prefix
’y-’ from now on. Also elements in f(hx) and f(hy) will be called accordingly.

Now take an arbitrary element sx = (x-active, x-has-coin) ∈ f(hx). By applying Lemma
12, we can fix a state sy = (y-has-coin, y-active) ∈ f(hy) such that it satisfies (1)-(3) of
Lemma 11 and there exist functions count : C → N

+, indAC → N
+ fulfilling (i) − (vi) of

Lemma 12. Subsequently, we fix count and ind : A× C → N
+, with ind(A, c) := indA(c)

for every A ∈ A, c ∈ C.
This finishes the first step, the functions count and ind are defined. That means the func-
tions are constructed based on the specific elements so ∈ f(ho) and sn ∈ f(hn), but they do
not depend on them in any way. They are only functions assigning naturals to coins, pairs
of addresses and coins to naturals respectively. We now show count and ind are actually
instances of the desired functions described in the theorem.

Injectivity and partial surjectivity constraints from Definition 11 and Definition 12 follow
from Lemma 12. Thus, what remains to be shown is that there exists so ∈ f(ho) and
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5 The Translation f is First-Order Expressible

sn ∈ f(hn) for which (M5′) and (m5′) hold.
Therefore, consider the sx = (x-active, x-has-coin), sy = (y-active, y-has-coin) from
the proof of Lemma 12.
To show (M5′), let c ∈ C. Then by (ii), (iii) respectively, in Lemma 12 we have

z-active(c) if and only if count(c) ≤ z-sum.
Similarly for (m5′), let A ∈ A, c ∈ C. Then by (v), (vi) respectively, of Lemma 12 we

have z-has-coin(A, c) if and only if ind(A, c) ≤ z-bal(A)

This concludes the second part and thus proves Theorem 4.

Technically speaking, the setting introduced in this section is not a proper encoding of
f any more, since not every s ∈ f(h) is considered. Nevertheless, it provides a sound and
complete way of encoding sums, where completeness is given by the following result.

Corollary 2. Let ho = (old-bal, old-sum), hn = (new-bal, new-sum) ∈ H be any higher-
order states, then i) and ii) are equivalent:

i) The axioms (M1’)-(M5’), (m1’)-(m2’) and (I1)-(I2) are satisfiable for both ho and hn
at the same time.

ii)
∑

A∈A x-bal(A) = x-sum and
∑

A∈A y-bal(A) = y-sum.

Proof. i) ⇒ ii). From i) follows the existance of so, sn ∈ F as specified in Lemma 10. From
there, we know both

∑

A∈A old-bal(A) = old-sum and
∑

A∈A new-bal(A) = new-sum.
ii) ⇒ i). Having ii), precisely means that ho and hn are valid. Thus, we can apply

Theorem 4 to conclude the axioms are satisfiable for both ho and ho at the same time.

Note that this result is not specific to the encoding in this section. By using old-ind =
ind = new-ind and old-count = count = new-count, the same property holds for the
naive encoding from Section 5.1.

Theoretically, first-order theorem provers could be able to prove various properties in
this encoding. That means for many tasks there is no higher-order reasoning is required.
However, provers can only prove very basic properties as shown in Section 5.3. One further
adaption for efficiency is presented in the next subsection.

Remark:
It is not possible to transfer this encoding with its results to the software verification setting
from Chapter 3. One can consider the reasoning goal from the former chapter with respect
to the encoding from this chapter. It would result in:

Reasoning goal from Chapter 3, given the encoding from Chapter 5.
Given the axioms (I1)-(I2) only for ho, (M1)-(M5), (m1)-(m5) and the transition
formula, then

the impact formula holds ⇒ (I1)-(I2) for hn hold .
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5 The Translation f is First-Order Expressible

This is problematic, because this statement is not valid. That means (I1)-(I2) are not
invariants in this encoding. Hence, this cannot be transferred to the software verification
setting. A simple counterexample to the above is the following model:

A = {A0, A1} C = {c0, c1}

old-sum = 1 old-bal(A0) = 0 ind(A0, c0) = 1 old-active = {c0}

new-sum = 2 old-bal(A1) = 1 ind(A0, c1) = 2 new-active = {c0, c1}

count(c0) = 1 new-bal(A0) = 1 ind(A1, c0) = 1 old-has-coin = {(A1, c0)}

count(c1) = 2 new-bal(A1) = 1 ind(A1, c1) = 2 new-has-coin = {(A1, c0), (A0, c0)}

Further Restriction for Efficiency

With the result from Theorem 4, we now aim to further increase efficiency. Studying the
intra-block axioms from the previous encoding, one can see that z-active and z-has-coin

are only shortcuts for properties between z-bal and ind, z-sum and count respectively.
Thus, dropping these relations has neither impact on how the encoding works nor on its
expressiveness, it only decreases the search space and hence the encoding’s complexity.

Figure 5.3: Encoding without active and has-coin.
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5 The Translation f is First-Order Expressible

In Figure 5.3, this further simplified setting is illustrated. The adapted axioms are the
following.

Axioms in the Further Restricted Encoding

As mentioned above, z-has-coin and z-active are replaced by equivalent expressions, all
the other axioms remain unchanged.

Intra-block axioms for the macro world.

z-sum ≥ 0 (M1′′)

∀c ∈ C : count(c) > 0 (M2′′)

∀c1, c2 ∈ C :
(

count(c1) = count(c2) → c1 = c2
)

(M3′′)

∀n ∈ Z :
(

0 < n ∧ n ≤ x-sum → ∃c ∈ C : count(c) = n
)

(M4′′)

All the intra-block axioms listed here are unchanged, only the fifth axioms does not apply
any more.

Intra-block axioms for the micro world.

∀A ∈ A : z-bal(A) ≥ 0 (m1′′)

∀c ∈ C, A ∈ A : ind(A, c) > 0 (m2′′)

∀A ∈ A, c1, c2 ∈ C :
(

ind(A, c1) = ind(A, c2) → c1 = c2
)

(m3′′)

∀A ∈ A, n ∈ Z :
(

0 < n ∧ n ≤ z-bal(A) → ∃c ∈ C : z-ind(A, c) = n
)

(m4′′)

The changes made are analog to the macro world.

Inter-block axioms connecting the micro and the macro world.
In the former invariants, the dropped relations are replaced by their definitions.

∀c ∈ C : (∃A ∈ A : ind(A, c) ≤ z-bal(A)) ↔ count(c) ≤ z-sum (I1′′)

∀A1, A2 ∈ A, c ∈ C : ind(A1, c) ≤ z-bal(A1) ∧ ind(A2, c) ≤ z-bal(A2) → A1 = A2 (I2′′)

Transition and expected impact.
Transition and impact are not affected and can be formulated as before.

5.3 Experimental Results of the f Encodings

In this section, the behaviour of the solvers Vampire and Z3 on the three different encodings
is discussed. In Table 5.2 they are referred to as ’naive’ for the naive encoding from Section
5.1, ’one count’ for the restricted version from Section 5.2 and ’no relations’ for the further
simplified encoding without the relations has-coin and active.
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5 The Translation f is First-Order Expressible

Each of the three entries is further split up into the three subversions ’surjective’, ’partly
surjective’ and ’instances of surjectivity’. They only differ by the implementation of the
axioms (M4) and (m4) which is assuring the surjectivity of the count and index function
in a certain range. The ’surjective’ versions have the axioms (M4) and (m4) implemented
as they were presented in this work. The ’partly surjective’ versions have (M4) and (m4)
only in weakened format. That is surjectivity on [old-sum, new-sum], [new-sum, old-sum]
respectively and the analogue for bal. Finally, the ’instances of surjectivity’ only have
assured that there exist coins c ∈ C such that count(c) = old-sum, count(c) = new-sum,
ind(A, c) = old-bal(A) and ind(A, c) = new-bal(A), for every A.
For the last two ones, the encoding is no longer complete. That means, it may be the
case, depending on the transition and impact, that (axioms ∧ transition → impact) is no
longer proveable, as the axioms have been weakened to much to imply the property we
were aiming for.

The tasks listed in Table 5.2 are a transition formula together with the expected impact
formula. Although, as mentioned before, this chapter does not apply for software verifica-
tion, the chosen tasks are similar to the ones from Chapter 3, since also this encoding is
tailored to address additive integer tasks, such as adding and subtracting certain numbers
from balances. For simplicity, they are named similarly as before. They are the following.

• ’no changes’. As in Section 5.1 in ’By changing nothing, nothing changes.’

• ’mint’. One balance is modified by 1. That is:

new-bal(A0) = old-bal(A0) + 1 ∧

∀A ∈ A : A 6= A0 → old-bal(A) = new-bal(A)
(transition)

new-sum = old-sum+ 1 (impact)

• ’transfer’. One balance is increased by 1, another one decreased by 1. That is:

new-bal(A0) = old-bal(A0) + 1 ∧

old-bal(A1) = new-bal(A1) + 1 ∧

∀A ∈ A : (A 6= A0 ∧A 6= A1) → old-bal(A) = new-bal(A)

(transition)

new-sum = old-sum (impact)

• ’swap’. The balances of two addresses are swapped. That is:

new-bal(A0) = old-bal(A1) ∧

new-bal(A1) = old-bal(A0) ∧

∀A ∈ A : (A 6= A0 ∧A 6= A1) → old-bal(A) = new-bal(A)

(transition)

new-sum = old-sum (impact)
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5 The Translation f is First-Order Expressible

Note that swapping balances is not an additive modification, but it is listed as it is inter-
esting to see what we can do on other problem types.
In the results of Chapter 3, there were inductive tasks discussed. This is not done here due
to the following. For the restricted encoding ’one count’ it is not even possible to model all
triples of higher-order states with one count and one index function and hence it and ’no
relation’ cannot be used. Thus, it would be necessary to use the naive encoding in which,
as shown below, we cannot even prove very basic transitions. The possibility of increasing
a balance by N at once is discussed below and in Chapter 7.

Results

As claimed in Section 5.1, the provers cannot solve a single task for ’naive’. It requires
reasoning about all kinds of (old-count, new-count)- and (old-ind, new-ind)-pairs. The
weakened versions are even satisfiable. The reason is that whenever one of the low numbers
does not have a preimage in either of these functions, in the analog of the other world that
number can have a preimage. In this way the actual number of coins in an address can be
distinct without the balance function recognizing it.

In the restricted version ’one count’, both Vampire and Z3 were able to prove the ’no
changes task’ in all of the surjectivity versions. That shows that it was crucial to unify
the count and the index function for this encoding to be useful. Also ’mint’ and ’transfer’
could be proven by Z3. It is interesting that the partly surjectivity was harder than the
full axioms version in the one case, but vice-versa for the other. The reason may be that
for ’mint’ the sum changes, whereas for ’transfer’ it does not.
Lastly, for the ’no relation’ encoding, one can see the decreased search space in the time

elapsed for the solved tasks. Other than that, the results do not differ much from ’one
count’. The only significant improvement is that the Z3 could prove ’transfer’ with the full
axioms (M4) and (m4).

In general, the weakest version ’instances of surjectivity’ of each encoding does not seem
to be helpful in Table 5.2. The time elapsed is indeed lower than for the others, but not a
single task that was impossible to be solved in other versions, could be proved.
However, while the solvers time out when trying to prove harder additive tasks (e.g. in-
creasing one balance by five, while another one decreases by two) in the stronger versions,
Z3 can prove them using the weakest versions, as shown in Table 5.3. One has to be aware,
though, that the instances of (M4) and (m4) have to be adapted manually in advance.
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5 The Translation f is First-Order Expressible

Version\Task no changes mint transfer swap

n
a
iv
e

surjective
Z3 X Z3 X Z3 X Z3 X

Vampire X Vampire X Vampire X Vampire X

partly surj. sat sat sat sat

instances sat sat sat sat

o
n
e
c
o
u
n
t

surjective
Z3 0.03 Z3 0.22 Z3 X Z3 X

Vampire 0.771 Vampire X Vampire X Vampire X

partly surj.
Z3 0.02 Z3 X Z3 0.20 Z3 X

Vampire 0.824 Vampire X Vampire X Vampire X

instances
Z3 0.01 Z3 0.02 Z3 0.05

sat
Vampire 0.486 Vampire X Vampire X

n
o
re

la
ti
o
n
s

surjective
Z3 0.03 Z3 0.14 Z3 0.73 Z3 X

Vampire 0.117 Vampire X Vampire X Vampire X

partly surj.
Z3 0.02 Z3 X Z3 0.44 Z3 X

Vampire 0.098 Vampire X Vampire X Vampire X

instances
Z3 0.02 Z3 0.02 Z3 0.08

sat
Vampire 0.082 Vampire X Vampire X

Table 5.2: Experimental results using Vampire and Z3. Time (in seconds) is given when the
solver proved the (unsat) goal, timeout (after 60 seconds) is indicated by ’X’.
The weakened incomplete versions that are satisfiable, are indicated by ’sat’,
independent from whether the solver could prove it.

This fact shows the problem with adding an arbitrary number N to one account. The
solvers cannot do more than an update of one for the stronger versions, while the weakest
one cannot even express arbitrary N instances of surjectivity and is thus satisfiable for any
set of instances. The experimental results on adding N to one balance indeed led to time
out for both Vampire and Z3.
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5 The Translation f is First-Order Expressible

Task
Time

Transition Impact

new-bal(A0) = old-bal(A0) + 3

new-bal(A1) = old-bal(A1)− 3
new-sum = old-sum 0.09

new-bal(A0) = old-bal(A0) + 5

new-bal(A1) = old-bal(A1)− 2
new-sum = old-sum+ 3 0.84

new-bal(A0) = old-bal(A0) + 5

new-bal(A1) = old-bal(A1)− 2

new-bal(A2) = old-bal(A2)− 3

new-sum = old-sum 2.22

Table 5.3: Harder tasks for ’no relation’ in the ’instances of surjectivity’ version. Proven
by Z3 in the time listed (in seconds).

As ’swap’ is a different kind of problem, it does not come as a surprise that neither Z3
nor Vampire can prove it. Anyway, there are also other ways to strengthen the relation
between the index and the count functions tailored to fit swaps or permutations, their
generalization. For such cases, it comes naturally to ask for the index functions to be
permutations of each other as well. That is, old-ind(A, c) = new-ind(π(A), c), where
π : A → A a bijection. The count function can remain mutual. Of course, this is neither
a complete encoding, since not every pair of higher-order states can satisfy this, nor is it
very sophisticated. Still, it shows the potential of this approach. Both Vampire and Z3
could prove the generalization, that is permutations have the same sum, (Vampire in 0.217
seconds, Z3 in 1.22 seconds) and Vampire could also prove the special case of one swap (in
0.766 seconds).
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6 Related Work

We do not aim to overview each automated theorem proving approach in general, but we
focus only on the formal verification of smart contracts. Further, work related to our ap-
proach that may help to extend our work is discussed. We also present what has been done
to reason about sums prior to this thesis.

Formal verification for smart contracts.
It the literature there are various methods and tools aiming to verify certain properties of
(specific) smart contracts or to find bugs automatically. Following the categorization in
[6], Oyente [15] is a static analysis tool for automated bug finding. It operates on bytecode
and supports common security properties such as transaction order dependency, reentrancy
and time-stamp dependency. As it is meant to find bugs but not to verify code, it is not
crucial for the reasoning to be sound nor complete. Further, these security properties are
very different from what we considered in this thesis and lack a semantic characterization.
Extensions such as SASC [16] or Majan [17] have been proposed. They add specific pat-
terns and Majan also considers multiple invocations. However, they are still bug-finding
techniques that do not aim for soundness or completeness in contrast to our approach.
There is also a lot of research on methods that formally guarantee their results. One of
them is ZEUS [18]. It uses symbolic model checking to analyze contracts written in Solid-
ity, by translating the source code to LLVM bitcode via an abstract intermediate language.
This approach aims to ensure generic properties that follow from the analysis, whereas we
want to prove specific properties that cannot be inferred from code analysis.
Another approach is to use the higher-order theorem prover Isabelle [19]. It can be used
to manually prove safety properties of smart contracts. In [20] this is done by over-
approximating the original semantics in a sound way. In our work the goal is to prove
properties automatically.
Apart from these static analysis strategies, it has also been proposed to monitor predefined
security properties dynamically, not statically as we propose. In [21] an efficient online
algorithm is presented which discovers executions that are often sources of bugs. Another
monitoring tool is proposed in [22]. It surveilles incoming transactions. If a transition is
considered dangerous a counter-action is taken, but there is no guarantee that it resolves
the problem.

A very recent work (2020) on ’Fantastic bugs and how to find them’ (quote by Mooly
Sagiv, alluding to the movie ’Fantastic beasts and how to find them’) [23] states that the
major challenge to verify smart contracts is expressing the desired properties and not the
acutal verification step itself. In [23], some invariants considered useful are presented and
the community is encouraged to share invariants as the verification of smart contracts be-
comes less costly, once a certain number of invariants is available. They claim that they
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6 Related Work

can be used for many different software versions and platforms.
The work in [23] mentions three steps to verify smart contracts. First, the desired proper-
ties have to be specified informally. Then, secondly, they have to be translated to a formal
language such as higher-order or first-order logic. And lastly, the code has to be checked.
The present thesis addresses the second step.
Further, some informally specified invariants are presented in [23]. One of them is to ensure
that ’aggregated values over collections are correctly maintained’, this is called ’Aggregated
Ledger Integrity’. Others are ’Bounded Supply’, that is there cannot be infinite minting, or
’Robustness’ which means there shall not be a radical value change for small input changes.
It is also mentioned in [23] that these properties can be formalized by using aggregates such
as sums. Thus, the development of first-order invariants addressed in our work, fills the
gap of formalizing those properties in a language automated theorem provers can handle
and hence [23] emphasizes the relevance of our work.

Prior work on aggregates.
The main result the present thesis is based on is from [27]. Even though it does not address
smart contracts nor aggregates specifically, it shows a way to prove that two permuted ar-
rays that only differ in one swap of adjacent components have the same sum.
The aim of [27] is to verify relational properties in imperative programs. This was re-
duced to a validity problem in trace logic. The semantics of programs and the relational
properties are encoded in trace logic, which is an instance of many-sorted first-order logic
with equality. First-order theorem proving is used to reason about the resulting formulas.
Relational properties are properties between different exeutions of programs. That is, if
the input in two traces is related in a specific way, the ouputs are related accordingly. The
security properties non-interference and robustness have relational character.
The motivating example used in [27], is an easy imparative program in which the sum of
an array a is computed in a loop over an integer i by updating a variable hw by hw+ a[i].
The aim is to show that given a trace t1 and a trace t2 with arrays a1, a2, respectively,
such that there exists an index k with a1[k] = a2[k + 1] and a1[k + 1] = a2[k], whereas for
every other index i /∈ {k, k + 1} it holds a1[i] = a2[i], then the values hw1, hw2 are equal
at the time of termination.
Since in trace logic not only single transitions but entire programs are considered, each
variable and function symbol is modeled by an additional integer-valued parameter n. Let
x be a variable in a program, then for the corresponding variable in trace logic, x(n) stands
for the value x has after executing line n of the program. For loops another parameter m
is added to model the state of the variable x in line n in the m-th iteration of the loop.
The present thesis extends this reasoning about sums to ’arrays’ (balance functions in our
case) that are related differently. In Chapter 5, we have indeed proven that arbitrary per-
mutations have the same sum using Z3. In Chapter 3 the mintN transition uses the idea
of adding one more parameter to the relations to generalize the transition mint, as it was
done in [27]. It is an open challenge to fit the encodings from Chapter 3 and Chapter 5 into
the trace logic framework. This combination could improve the performance in proving
more involved properties of programs. However, this may lead to a tremendous increase of
computational complexity.
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6 Related Work

In [26] an SMT module for aggregates is presented. It is based on FO(Agg) which is an
extension of first-order logic and aims to address aggregates such as cardinalities, sum and
maximum. Note that cardinalities are not considered as aggregates in our work as defined
in Section 1.
Low complexity algorithms for satisfiablilty checking are proposed. Further, the presented
SMT module can be used in all DPLL-based SAT, SMT and ASP solvers. However, even
though the logic FO(Agg) can express aggregates, there is no hint on how to express com-
mon properties in this logic. That is, the SMT module does not ensure that the aggregates
behave as expected, it only provides a way to express functions that have sets or similar
constructs as inputs. While this approach works for the examples presented, it is crucial
for the smart contract’s case to precisely specify how the aggregates behave and reason
about first- and higher-order properties with theories, which is not supported in [26] but
handled in this thesis.

Related approaches for future work.
In [25] a methodology for deductive verification based on effectively propositional logic
(EPR) is presented. EPR is also known as Bernays-Schönfinkel-Ramsey class and is a de-
cidable fragment of first-order logic. This methodology is used to verify different variants of
the distributed protocol Paxos. They proceed as follows. At first the protocols are modeled
in full first-order logic. Subsequently, the first-order formulas are translated to EPR. This
translation is also checked mechanically. Lastly, the now decidable properties are checked.
In fact, extended EPR is used. That means not only formulas with ∃*∀* prefixes are al-
lowed, but also stratified function symbols and quantifier alternation. On a high level a
formula φ is stratified, if for every pair of sorts A, B it is not the case that there is both
a ∀a ∈ A ∃b ∈ B expression as well as a ∀b ∈ B ∃a ∈ A expression. Note that a function
f : A → B implies a hidden quantifier alternation ∀a ∈ A ∃b ∈ B.
The main idea is for every pair of sorts A, B violating stratification to rewrite ∃b ∈ B : φ
expressions in the scope of ∀a ∈ A by a new relation r and weaken the derived equivalence
between them such that the most important properties are maintained but simultaneously
the ∀∃ alternation is removed.
While describing the first step in [25], it is explicitly mentioned as a hurdle that the invari-
ants to prove usually include higher-order quantification but that one can partly express
higher-order concepts in first-order logic.
Since, to the best of our knowledge, the present work is the first to encode sums of arbitrary
length in first-order logic with their full semantics (Chapter 5), the properties verified in
[25] do not include reasoning about sums. In particular, in terms of the cited work, the first
step of the described method is done already. However, it is not obvious how to translate
it to extended EPR, respectively whether it is possible at all. That is our encodings of
Chapter 5 are in an undecidable fragment of first-order logic. It is not clear yet whether it
is possible to express at least some of the properties in a decidable fragment such as EPR.
We assume it is not possible to translate the full encoding to a decidable fragment because
of its bijective behaviour.

In [24], a decision algortihm for reasoning about cardinalities in first-order logic is pro-
posed. In order to do so, the syntax of first-order logic is extended to sets. The suggested
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6 Related Work

logic BAPA (Boolean Algebra with Presburger Arithmetic) supports set union, set inter-
section, set complement, set cardinalities and linear reasoning about integers. As such,
this work is interesting for our approach, since, as mentioned before, a crucial point is to
correctly reason about cardinalities of the coins.
Nevertheless, we cannot apply the results, since we use uninterpreted function and relation
symbols we do not know how to remove, as they are crucial for the encoding, and which
are not supported in BAPA.
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7 Conclusion and Future Work

In this thesis we present invariants in first-order logic to ensure properties of sums of finite
but arbitrary length. This encoding enables the formal verification approaches in the area
of smart contracts to reason about various important security properties and may thus pro-
hibit vulnerable contracts to be deployed. As a further consequence, it ensures assets to be
securely stored. We also showed that the theorem provers Vampire and Z3 can handle our
encoding together with transitions tailored to the smart contracts use case. This provides
automated verification and is hence convenient for the user. The proposed encodings are
proved sound and complete relative to a translation function.

The second major contribution is the first sound and complete encoding of finite sums
in first-order logic. That is, we have developed axioms that ensure a non-negative integer
to be the sum of arbitrary many non-negative integers if and only if our axioms hold. Our
experimental results can be integrated within software verification tools, such as the one
presented in [27]. Unfortunately, swapping the roles of the axioms and the relations between
two sums does not lead directly to explicit invariants for sums. It is an interesting direction
of future research to adapt our approach accordingly. Generally, all the claims made haven
been proven thorougly in a clear and structured mathematical manner as part of this thesis.

For the specific use case of permutations, we achieved a generalization in Section 5.2 of
what was presented as motivating example in [27]. This first result was obtained by mak-
ing slight changes to the restricted f encoding. Using a helper axiom, it could be shown
that any pair of permutations has the same sum. It should be possible to adapt or further
restrict the index and count function to address the special needs of permutations without
using helper axioms. For the example in [27], our generalization will unfortunately not
apply directly, since the solver cannot conclude that the stepwisely calculated expression
hw happens to be the sum. Since permutations are bijections, it is unlikely that such an
adaption will be expressed in a decidable fragment of first-order logic. We will work on
this challenge in the near future.

Another aggregate that behaves similarly to the sum it the mean. In order to reason that
the mean of two sets or function values is the same, our encodings for sums can directly
be used, since the number of values is fixed. In oder to reason about means, non-linear
arithmetic is required, which makes the task even harder.
To address the aggregation function minimum, our idea for both the invariants as well

as the ’axiomatization’ can be adapted. The relations active and has-coin remain. But
now, in order to assure every address has at least m coins, it has to be the case that every
address has every active coin and maybe more. Using this approach, the nice intuition with
every coin is physically owned by someone does not apply any longer. Also the transitions
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7 Conclusion and Future Work

have to be changed accordingly while not affecting the number of mistakes. Note that
mistakes are defined correspondingly in this context.
For the maximum, a very similar modification can be made. The difference is that here
no address shall have any coin that is not active. It is allowed though, to not have a coin
which is active.
Probably one of the most difficult aggregates to reason about in first-order logic is the
product. It could be handled similarly to our encoding proposed for sums. In particular,
the product and its factors could be specified using prime factors. One has to be aware
that this suggestion assumes the availability of an encoding to enumerate prime factors in
first-order logic. Even then, the value of such an encoding is limited, since only multipli-
cation or division of primes can be modeled.

There are various interesting directions of future research. First, towards software verifi-
cation, one can extend our work to perform many transitions in one encoding. That could
be done by adding further parameters as in [27]. It is also appealing to do more reseach
on other aggregates. Some ideas where mentioned above.
Further, it could also be useful to try different versions of our encodings. For example nat-
ural numbers can be considered instead of integers. A big part of the arithmetic provided
by integers is not used which may spoil the solvers. Thus, it could help to use a simple
inductive datatype instead.
Finally, it is an open question, which high-level properties of sums are undecidable in first-
order logic. We assume that every sound and complete encoding is undecidable, as we
always encountered cycles [25]. That is we could not avoid to have quantifier alternations
of both forms ∀A ∈ A ∃c ∈ C and ∀c ∈ C ∃A ∈ A.
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