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Kurzfassung

Der Grad der Datenvollständigkeit ist eine der Hauptdimensionen von Datenqualität.
Wenn daher Datenqualität als Ganzes behandelt werden soll, kann die Performance
in Form der gewählten Kennzahlen durch die Betrachtung verschiedener Arten die
Datenqualität zu steigern und mit fehlenden Werten umzugehen im positiven Sinne
beeinflusst werden. Da eine gewisse Datenqualität die Voraussetzung für die erfolgreiche
Umsetzung von industriellen Anwendungen beispielsweise in CPPS-Engineering ist,
können durch das Feststellen der vielversprechendsten Methode im Umgang mit fehlenden
Werten wesentlich bessere Ergebnisse erzielt werden.

Demnach strebt diese Masterarbeit an, Einblicke sowohl von der theoretische Seite in Form
von wissenschaftlichen Publikationen als auch von praktischer Seite, d.h. Personen, die im
beruflichen Alltag mit unvollständigen Datensätzen konfrontiert sind, zu vergleichen. Das
Ziel des Literature Review und der Onlineumfrage unter Praktikern war es, Informationen
zu den jeweiligen Präferenzen im Umgang mit unvollständigen Daten zu sammeln.

Die darauffolgenden statistischen Experimente wurden im Rahmen von jeweils einer
Open-Source-Fallstudie und einer Industriefallstudie, der Sensordaten eines Produktions-
prozesses zugrunde liegen, durchgeführt. Im Zuge dessen wurden sechs Methoden zur
Handhabung fehlender Werte in Kombination mit vier Anteilen fehlender Daten anhand
von Ausführungszeit der Algorithmen, direkter Bewertung sowie indirekter Bewertung,
letztere in Bezug auf RMSE und MAE, evaluiert. Hierbei zeigte sich, das jene Methoden
mit der jeweils besten und schlechtesten Performance auch über die Fallstudien hinweg
sehr ähnlich waren, aber wesentlich von der gewählten Kennzahl abhängen.
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Abstract

Data completeness is one of the main data quality dimensions. Thus, to tackle data quality
as a whole, considering different ways to enhance data quality in incomplete datasets can
illustrate the performance impact on the chosen metrics. As sufficiently high data quality
is a prerequisite for industrial applications for instance in CPPS engineering, determining
the most promising method to handle missing values can essentially contribute to obtain
better results.

Therefore, this thesis aimed to bring together insights from both the theoretical side of
research publications and the missing handling methods suggested in comparison to the
perspective of practitioners in jobs confronted with incomplete data. Both the literature
review of research publications and the online survey among practitioners as to handling
missing data were intended to obtain information on the respective preferences.

The subsequent statistical experiments were carried out in line with an open-source
case study (in the natural resources sector) and an industry case study (using sensor
data from a manufacturing process) to evaluate six missing value handling methods in
combination with four different missing data rates in the underlying datasets according
to the execution time of the imputation methods, direct evaluation as well as indirect
evaluation, the latter with respect to RMSE and MAE. It turned out that the best and
worst performing methods are similar across the case studies, but depend on the target
performance metric.
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CHAPTER 1
Introduction

Software applications in line with industrial production systems have increasingly entailed
data collection, pre-processing, and analysis activities, notably in connection with Industry
4.0 and Cyber-Physical Production Systems (CPPS) [7]. The data stems from different
sources such as manual measurement by humans or automated measurement by robots,
machines, and sensors [7]. Data-driven activities are considered critical factors within
decision-making, and can essentially determine the success or failure of the final outcome
of a process in terms of quality, as decisions are based on the data in the CPPS [8] [7].
Missing values caused by communication network issues, sensor failures, and human
errors, or outlier values for example due to erroneous measurement devices constitute
a challenge that requires suitable measures to inspect and maintain data quality. Such
issues can occur during or even after the data collection phase, as issues in processing,
transferring, or aggregation activities might occur. In addition to this, “soft sensors“
like Fortuna et al. (2007) coined them, could be used to back up hardware sensor data
for double-checks with regard to measurements, as well as for data simulation in cases
where the measurements are not complete [25]. With regard to the latter, actual physical
systems are depicted in analysis models, i.e. a synthetic emulation of the underlying
system, so that simulation experiments can be done, and be later on projected back to
the physical system [8]. According to Fortuna et al. (2007), soft sensors are embedded
within the area of virtual instrumentation for industrial process control, and represent a
means to “estimate system variables or product quality with the help of mathematical
models“ [25].

Data quality turns out to be a decisive factor for the process outcome from several
angles. Hence, the interest in and the necessity of analyzing data in a variety of sizes
and shapes has been growing continuously over the last years [15] [14]. Generating
insights in a data-oriented way is seen as key to add value today, which can manifest
itself in accelerated decision-making, business advantages and unprecedented research
insights [15] [85]. Although capturing data has gradually been facilitated and the means
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1. Introduction

of capturing data have become more available, merely the large volume of data does
not automatically lead to valuable data analysis results as such [15]. Indeed, inspecting
the data and checking its quality at an early stage can save a significant amount of
resources (e.g. time, money, and computing power), and helps prevent data analysis
issues. Corrales et al. stated the general problem of “Garbage In - Garbage Out” that
frequently occurs concerning data quality, which means that low quality input leads to
low quality output that goes hand in hand with inefficient learning opportunities based
on the data [27] [15]. To put it differently, the mere abundance does not ensure the
quality of the data and subsequent analyses. Even given the availability of a large volume
of data, it could be useless regarding its form or content for the purpose of the currently
aspired data analysis.

In context with this, data quality should be seen in a way that the data needs to fulfil
certain requirements and to fit the respective purpose of the later analysis phase(s) [15]
[85]. Data quality cannot be defined in a straight forward way by one clear definition, but
rather has a number of facets that need to be considered [45] [4]. Amongst others, data
quality refers to “the capability of data to satisfy stated and implied needs when used
under specified conditions“ (similar to what the related International Organization for
Standardization (ISO) standard proposes), or in a nutshell, as the “fitness for use“ [45]
[85]. This indicates that for being considered “fit“, or rather suitable, the data needs to
meet certain characteristics, such as “performance efficiency, reliability, maintainability, or
compatibility“ [7]. As already mentioned before, there is no single performance measure,
which characterizes data quality. It depends on the purpose, the quality dimension, and
the domain of application, which metric can best reflect the state of data quality [14] [4]
[46]. Before actually stepping into the analysis phase, the suitability in terms of data
quality should be questioned and inspected since poor data quality at the beginning of
the analysis process might have adverse consequences later on [14] [46]. Low data quality
could be the cause for unreliable outcomes. Quality issues can still make or break the
success of the analysis process with regard to data in general [14] [46].

Several data quality dimensions have been so far identified by various researchers (without
representing an exhaustive list) ranging from timeliness, completeness, and consistency to
understandability, interpretability, and accessibility [45] [85] [46]. According to ISO/EC
guidelines, the inherent (or “intrinsic“ as Juddoo et al. (2018) as well as Juneja and
Das (2019) put it in [45] [46]) data quality characteristics refer to “the data itself, in
particular to data domain values and possible restrictions“ and comprise the following
(non-exhaustive list of) components [8]:1

• Accuracy (i.e. how close the value under concern comes to the actual real value of
a feature)

• Completeness (i.e. how many and which values are available, i.e. not null, for a
specific feature, or overall in the dataset)

1Note: Source refers to the content of all bullet points.
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• Credibility (i.e. how authentic and realistic the values appear to be)

• Currentness (i.e. how up to date the values are with regard to recently measured
values)

Moreover, the system-dependent (or “contextual“ as Juddoo et al. (2018) as well as
Juneja and Das (2019) put it in [45] [46]) data quality characteristics do not refer to the
data itself, but rather to the system around them, which includes also external factors
such as devices or sensors, and infrastructure, and comprise the following [7]:2

• Availability (i.e. how easily the data values are available for authorized human
and/or machine users)

• Portability (i.e. how easily the data values can be moved to another system or
process while not losing their information content)

• Recoverability (i.e. how easily the data values can be regained once they have been
deleted or lost)

According to the ISO/EC guidelines, some of the data quality characteristics even refer to
both inherent and system-dependent characteristics, namely accessibility, confidentiality,
performance efficiency, compliance, traceability, precision, and understandability [7].
Juneja and Das (2019) as well as Firmani et al. (2016) further mentioned format and
semantics conformity of data, redundancy, and uniqueness as data quality dimensions
[46] [24]. The data quality characteristics also have a substantial influence on practice
settings, as over 70% of data activities carried out in data warehousing and data science
are ascribed to checking, improving, and analyzing data quality [4]. The way how each one
of these quality dimensions is tackled in the data preparation process has a considerable
impact on the results that can be obtained. Cichy and Rass (2019) pointed out in
their literature review on the use of data quality dimension in data quality management
frameworks that the dimension of “completeness“ is one of the most widely used dimension
[14]. At this point “completeness“ refers to whether the “depth, breadth, and scope“ of
the data is appropriate, and how missing or “null“ values in the underlying data are
tackled [14].

Within the data analysis process, the underlying dataset is first examined with regard to
data quality dimensions. Imperfect data collection situation in practice due to network,
sensor, database availability issues, faulty entries, or format problems frequently leads to
some attribute values being missing in the dataset [55]. From this arises the question
whether to delete the observations affected by attributes with missing values or to tackle
the incompleteness of the dataset. According to Lin and Tsai (2019), if less then 10% to
15% (i.e. a rather minor amount) of data of an attribute is missing, dropping the affected

2Note: Source refers to the content of all bullet points.
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1. Introduction

observations does not have a fiercely detrimental impact on the subsequent data analysis
[55]. In case the share of missing data is larger than that, it is advisable to carefully
evaluate strategies of dealing with the missing data, and what impact these strategies
might have on the outcome [55]. Additionally, it has to be mentioned that even in settings
with a very small percentage of missing values, the missing values might be exactly those
observations that would have a large impact on the data analysis results [55]. When
comparing these strategies, it turns out that in practice missing value imputation using
either statistical or machine learning based methods is chosen in most cases, with the
use of the latter ones having gained pace over the last decade [55]. So far missing value
imputation methods have been most widespread with regard to the medical and image
classification domain [55]. Therefore, there is a need to explore the value added of using
missing value imputation methods, identified via the use of several performance metrics,
in line with industrial data in the pre-processing phase in a systematic way in order to
improve the subsequent data analysis results.

In view of the above, this thesis project will focus on analyzing as well as enhancing
the overall data quality, and notably the completeness dimension of data from the
manufacturing domain. In industrial applications, in line with CPPS engineering, high
quality of the input is a crucial precondition for achieving high quality of the output data
[7] [37]. Within the data quality dimensions, data incompleteness due to sensor errors,
environmental conditions, machine failure, human perception errors and the like can
diminish input data quality and lead to missing data points [7] [4] [37]. No guarantee can
be given that data within CPPS processes will be complete at any time with certainty.
Complete data would be the ideal case. However, in reality the sources of perturbance
to completeness are manifold. Therefore, this thesis aims to firstly investigate what
dimensions data has, with a focus on the dimension of data completeness and how it is
embedded in the overall notion of data quality.

Incomplete data can in turn hamper the performance of machine learning algorithms
in subsequent workflows of smart manufacturing. White et al. conducted a study on
imputation of missing data entries based on manufacturing data in 2018, in which they
pointed out that over 70% of examined manufacturers who participated in a state survey
used some imputation method for at least one input variable in the manufacturing process
[90]. Based on an analysis of manufacturing companies from the United States comprising
data from around the year 2002 to the 2010s, as much as 20% to 40% of variable entries
were reported missing, and had to be imputed (in a manufacturing setting) to make the
data complete, according to White et al. [90]. The main imputation method used by the
manufacturers surveyed was mean imputation, which is one of the simplest and most basic
imputation methods available [90]. For these reasons, this project aims to explore and
evaluate methods for making incomplete data complete and to handle missing data entries
with regard to direct comparison with a datasets that were made pseudo-incomplete by
deleting values, as well as by indirect measurement by the means of subsequently applied
supervised machine learning techniques and their respective influence on performance, to
gain insights into the experience with regard to data completeness from practitioners, and
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to develop a “virtual sensor“ (cf. “soft sensor“) with the help of statistical experiments,
which evaluates a series of data imputation techniques, both statistical and machine
learning based, based on specific datasets to make incomplete data complete again in
order to examine whether the performance of subsequent machine learning methods, more
precisely regression methods, can be influenced and improved in this way. The statistical
experiments are carried out in line with an open-source as well as an industry case study.
The so-called virtual sensor tries to create well-fitting replacements for the missing data
entries using a particular imputation technique to avoid losing valuable data samples
as a whole, and to improve input data quality for subsequent data analysis steps in the
course of manufacturing workflows and processes. Therefore, the research goal of
this thesis is to get insights into how practitioners handle data completeness,
and to apply as well as evaluate missing value imputation methods in line
with the open-source use case, and the industry use case.

Figure 1.1 below depicts the flow diagram of the thesis phases. The thesis starts with the
chapter 2 Related Work, in which previous related research is summarized, and the
research gap is described. This chapter is intended to explain why the thesis is relevant,
and how it can fill the research gap. In line with the Research Questions & Methods
phase in chapter 3, an overview on the research approach is given, and it is stated how
the methods are embedded according to design science. The Research Questions (RQ)
are stated, and the respective solution approach is described in greater detail. The
third phase is composed of three sub-phases, which comprise the chapter 4 Literature
Review on techniques to handle data completeness and how they can be compared, 5
Survey on data completeness which is conducted among practitioners in industry and
academia, and 6 Statistical Experiments, which comprise an open-source case study
and an industry case study where data imputation techniques are applied, compared,
and finally evaluated. The three sub-phases planned to be sequential, as they deliver
insights for the respective next sub-phase, but somewhat overlap. Then the results and
insights from the three sub-phases are considered with reference to the research questions
raised previously and the related work in the chapter 7 Discussion & Limitations.
Furthermore, the limitations of the research undertaking to be borne in mind are stated.
In the end, the chapter 8 Conclusion & Future Work present the final thoughts, and
what research extensions on this topic should be pursued in the future in this area.
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1. Introduction

Figure 1.1: Sequence diagram of the thesis

The chapter Related Work covers literature and research projects that have previously
been done in the field of data quality with a focus on completeness. General publications
as well as specifically papers covering the industrial domain are screened, and analyzed.
At this step, the objective is to give an overview of what kind of research has been carried
out so far in the area under concern. Based on these insights, the research gap emerges,
and is described. Within this chapter, an explanation is given why the thesis is relevant
to further evolve the field, and how it can contribute to filling the identified research gap.

The chapter Research Questions & Methods, comprises both a research overview
as well as a section on research questions and the respective methods. The research
overview firstly introduces the research approach chosen for this thesis. It details and
visualizes the flow of the research project’s components, and how they are connected.
It indicates how the selected methods fit into the design science framework to proceed
from the research problem to the solution. The section on research questions describes
which topics the research questions cover, and what their motivation with respect to the
overall research goal is. The first research question (RQ1) deals with the dimensions of
data quality, and explores notably data completeness among the dimensions. The second
research question (RQ2) determines the methods and models used in research and in
the industry to inspect, evaluate, and improve the handling of missing values within the
data science lifecycle. Finally, the third research question (RQ3) focuses on the handling
of incomplete data to make them complete again, and to find out how the method of
making them complete impacts the data quality in terms of subsequent application of
supervised machine learning techniques based on selected datasets. The RQ3 consists
of two sub-questions, namely RQ3a and RQ3b, out of which the first one covers the
open-source data case study, and the second one comprises the industry data case study.
In the end, the results from both sub-questions are brought together by comparing the
performance outcomes, and metrics measured during the case studies.
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The Literature Review is intended to elaborate on RQ1 in order to shed light on
the dimensions of data quality, notably on data completeness. Moreover, it covers the
techniques available to impute missing data values. For this reason, a keyword definition
and search strings are prepared, which are subsequently executed in the selected search
engines and platforms. The sources deemed relevant are extracted, and analyzed to gain
an overview in relation to the topic, which can later on serve as an input in line with the
creation of survey questions to answer the second research question.

The Survey comprises the development of a questionnaire on the handling of data
completeness and the use of imputation methods regarding missing values in datasets
among practitioners and academics that, and aims to answer RQ2 essentially. The survey
is drafted based on the results of the literature review, and the related work. It is carried
out in the form of an online survey with a planned duration of several minutes. At this
step, the goal is to find out how data completeness is perceived by practitioners, and how
they handle it in their work environment. The survey results are collected and analyzed
systematically.

The following chapter Statistical Experiments uses the input from the related literature,
the literature review, and the online survey, to define the experimentation framework for
the open-source and the industry case studies. The framework definition comprises the
selection of data imputation techniques, of the seed values, the number of experiment
runs, subsequent supervised machine learning methods, and the choice of performance
metrics, baseline as well as statistical tests to evaluate the results. In addition to these
characteristics being specified, the dataset for the open-source case study and the industry
case study are presented and illustrated in a descriptive way. Then the experiments
are carried out using both datasets and the performance metrics are calculated. The
experiment results are finally subject to statistical tests to compare the strategies against
the baseline. The results are depicted both numerically as well as visually, and are
compared across both case studies.

The chapter Discussion & Limitations aims to answer the research questions stated
above while considering the related work and the state of the art. It presents the results
of the literature review, the online survey, and the statistical experiments comprising the
two case studies. On top of this, the discussion also points out the limitations that have
to be considered in connection with the answers to the corresponding research questions
that might have occurred due to assumptions, limited research consideration, survey
scope, or the selected methods in the experiments phase.

The chapter Conclusion & Future Work finally closes the thesis by bringing together
the answers to the research questions, and the results from the discussion and limitations.
It illustrates what can be concluded from the research carried out in this thesis, and
what research still needs to be done in the future to further advance the research area.
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CHAPTER 2
Related Work

This chapter covers in the corresponding sub-sections related previous research that
constitutes the foundation for this thesis. The part 2.1 gives an overview on the challenges
that occur with regard to data quality, notably in a CPPS context. The sub-section
2.2 explores the notion of data quality, and presents its components, the data quality
dimensions, as well as the different groupings of dimensions. The sub-section 2.3 focuses
on the data completeness dimension, and elaborates on how missing values have been
treated in academic literature, according to previous research.

2.1 Data Quality Challenges in CPPS
In line with Industry 4.0, cyber-physical production systems, which make use of artificial
intelligence (Artificial Intelligence (AI)), data-driven activities, and automated machines
as well as processes, are increasingly deployed [8] [92]. Cyber-physical systems, to which
also CPPS belong, usually comprise a combination of both physical elements, and a
“cyber twin“ that emulates the physical part closely [5]. Data is the connecting link that
brings together the physical as well as the digital world at this point, as the digital part
represents the physical one and provides opportunities for data analysis [72]. When it
comes to Internet of Things, a number of cyber-physical systems are connected in terms
of communication to transfer, process, and exchange data [5]. In Industry 4.0, the devices
and machines are enabled to carry out tasks without any intervention by human workers.
CPPS combine AI and IT with physical elements to become “smart devices“ , which then
interact in the production process and beyond that with signals from external parties
[69].

CPPS bring together advances from computer science, machine learning, IT, networking,
and manufacturing technology, as they connect the physical world (e.g. devices, machines)
with the digital world, i.e. the “cyber“ part, while being continually monitored in terms
of data collection and analysis [62] [8]. The cyber part, i.e. IT-enabled processes and
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2. Related Work

applications, is connected with the physical layer via an “interaction interface“ that
exchanges information and data between both of them, and makes use of communication
networks such as the internet [69]. According to Plakhotnikov (2021), cyber-physical
systems are “systems that integrate equipment, sensors, actuators, computing resources,
and information systems throughout the entire value chain, usually extending beyond a
single enterprise or business“ [69]. In doing so, machines, parts, data, and process steps
are uniquely identified, and enable higher automation in communication and collaboration
within manufacturing, which finally aims to seize demands from the clients faster to
customize the products [79] [8], while increasing effectiveness, flexibility, and quality of
the whole manufacturing process [62] [92].

Among the main features that characterize CPPS is firstly intelligence, i.e. being “smart“,
in a way that the participating devices and machines are capable of exchanging data
autonomously with other devices and machines and their external environment, as
to Monostori (2016) [62]. Secondly, connectedness characterizes CPPS, which means
that devices and machines can collaborate with humans and other devices or machines
via communication networks (e.g. the internet or virtual networks) [62]. The third
main feature is the responsiveness of CPPS to signals from devices, humans, and the
surroundings [62]. Even though new opportunities (such as real-time tracking, data
collection and automated machines) arise in such an environment, it also entails downsides
such as problems with data quality that is a crucial element for success, but might hamper
the progress [79] [92]. In the ideal case, one would expect robust data-driven processes,
real-time monitoring, analytics, transparent data collection, and correct modelling or
self-aware flagging for maintenance from CPPS [62] [3]. As CPPS applications rely on
data-driven processes, which in turn require (i.e. obtain and create) large quantities of
data, this can also constitute a weak point in the production chain as the ideal case is
usually not perfectly reflected in reality. For this reason, Williams (2020) suggests that
in this context one should be vigilant to detect possible data quality issues that could
lead to bias, noise, and decreased accuracy with regard to the analysis outcomes [92].

Therefore, manufacturing companies are well advised to integrate data quality assurance
processes into their CPPS, and to determine the data quality dimensions relevant to them
to capture data quality from various angles [92]. Plakhotnikov (2021) also stated that
data quality represents one of the main challenges in Industry 4.0 and CPPS [69]. Atat
(2018) proclaimed that after the data collection phase in CPPS, that the data should
undergo a data cleaning before the data flows into the analysis phase in order to spot
quality issues as early as possible [5]. Sensors and further devices can generate and receive
large amounts of data, but the data itself might be corrupted due erroneous signals,
non-standardized data which leads to inconsistent formats, faulty sensor parts, network
errors or outages, lacking quality control relating to open data, and wrong calibration
[69].

This can lead to outliers (i.e. values that appear very unlikely given the usual range of
values being registered by the devices), noise, or missing values. Lee (2017) stated that
data in industrial settings appears to be usually “more structured, more correlated, and
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2.1. Data Quality Challenges in CPPS

more orderly in time, and more ready for analytics“ as such because such data is captured
by tailored devices that are suitable for the context due to more controlled processes,
and reduced human intervention [53]. Still, the connectedness feature of CPPS that was
mentioned above, introduces risks to data quality, as the manufacturing company might
not exert control over all devices, sensors, and humans involved along the production
chain, and supporting processes [62] [53].

In the manufacturing domain, the “3 B’s“ appear to be particularly characteristic of
the data collected and generated, which comprises “Below-surface, Broken, and Bad
quality“ [53]. “Below-Surface“ means that industrial data is not just the data, but
involves also the physical elements behind the data, which requires domain knowledge
for the interpretation and processing of data [53]. In industrial data analytics, the data
quality dimension of data completeness tends to be particularly crucial because just large
volume of data or tailored analytics methods do not lead to the desired outcomes in case
too much data entries are missing for whatever reason, be it network issues, incompatible
data formats, sensor or human errors [53] [72]. This is considered as the second “B“,
which means “broken“, and refers to the fact that incomplete data might hamper the
successful operations of industrial processes and data analytics [53].

For this reason, tailored pre-processing is recommended. Thirdly, “Bad quality“ points
out that the volume of data is not sufficient to obtain precise analysis results if the
quality of data is very low [53] [54] [72]. Just like data completeness, Lee (2017), Nguyen
(2022), and You (2021) highlight the data quality dimension data accuracy as another
critical dimension for industrial data analytics, as in industrial processes data usually
“possess clear physical meanings“ [97], so that inaccurate data can substantially impair
the production results, or even lead to dangerous decisions such as safety and security
issues [53] [97] [63]. Such data quality problems can be due to external as well as internal
causes. Among the external causes are for instance synchronization problems of clocks
of the participating devices, which could lead to deviations and therefore non-available
values at the time of measurement, furthermore disturbance or even attacks to the
time signals [97] [54]. Among the internal causes, the number of minimum necessary
transmitted values per time unit might not be reached, or aging devices could miss out
on values due to weather conditions, overloading of the device, or chemical processes
[97] [63]. Moreover, data can also get lost during transfer due to replay attacks1 or
man-in-the-middle attacks2 to name just a few, that lead to delay or corrupted data [97]
[8]. In the processing phase, attackers could gain access from a remote location, and
command-control the system in a way that it is overloaded or otherwise forced to drop
data. All those issues can lead to valuable data entries being lost, and make the data
incomplete.

In conformance with the research projects mentioned above, and notably Lee’s (2017)
1In a replay attack, the attacker steals the authentication information of the system through eaves-

dropping on the network, and then illegally “repeats valid data transfers“. [97]
2In a man-in-the-middle-attack, the attacker obtains access to the communication channel, then opens

a new clandestine communication channel, and starts communicating with the system. [97]

11



2. Related Work

and Atat’s (2018) previous work [53] [5], this thesis also acknowledges the influence of
the data completeness dimension on the overall data quality in ,CPPS and Industry 4.0.
Therefore, this thesis takes up the topic of handling the data completeness dimension
from various angles, and continues the research with regard to enhancing data quality
from the data completeness viewpoint.

2.2 Data Quality and its Dimensions
On the one hand, this thesis draws upon previous works concerning data quality dimen-
sions, with a focus on data completeness dimension. On the other hand, previous research
on methods to deal with incomplete data, or missing values in the context of data quality
and notably in the industrial or manufacturing sector, form the basis for this thesis. The
pieces of research cited in this part are available via and were retrieved from Scopus.

Workflows involving data processing and analysis have become an integral part of most
research and company projects. When it comes to data quality in such settings, Heinrich
et al. (2018) stated that it cannot be evaluated based just on one metric, but it is
composed from several dimensions, which can vary in their importance from case to
case [38]. The notion “dimension“ for the aspects of data quality was chosen in order to
convey the meaning of making data quality evaluable or measurable in a quantitative
way [43] [18]. According to Heinrich et al. (2018), more than 80% of the participants to
a survey said that “poor data quality“ led to poor business results at their company [38].
More than 65% of the participants in the survey claimed that they had witnessed cases
in which poor data quality negatively influenced their business within the last year, and
in excess of 80% of chief executives consider data quality very crucial for their company’s
progress [38]. Furthermore, another survey showed that around 60% of the participants
were not confident in the data quality and Data Quality (DQ) management approach at
their company [40].

So far, there is no official unified definition of “data quality“, but many attempts have
been made to elaborate on the characteristics and dimensions that data quality should
possess [59] [10]. Data quality describes the degree how well the data sources available
to the person or organization analyzing it matches with the real actual data [38]. By
comprising multiple dimensions, it can consider quality from various angles, which has
been systematically explored from the 1950s onwards mostly related to general “quality
issues“ in a production context, but subject to substantially wider and fast growing
research interest since the 1990s, and led amongst others to the formulation of ISO
standards related to data quality in 2011 and 2014, which referred to data quality as the
“degree how much data characteristics correspond to what was needed“ [42], meaning
that the data conforms to the stipulated requirements [59] [56] [48] [81] [10] [40]. The
ISO proposed a data quality model that comprises two groups of data quality dimensions,
namely the inherent, and the system-dependent dimensions. The inherent dimensions,
along which one can evaluate data quality, include [42]3:

3Note: Source refers to the content of all bullet points.
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• Accuracy: how close the value under concern comes to the actual real value of a
feature

• Completeness: how many and which values are available, i.e. not null, for a specific
feature, or overall in the dataset

• Consistency: “the degree to which there are no conflicting values in the data and
its features“ [42])

• Credibility: how authentic and realistic the values appear to be

• Currentness: how up to date the values are with regard to recently measured values;
also referred to as timeliness or currency

• Accessibility: how easily a person or organization that intends to use the data can
actually access it [10]

• Compliance: the degree of agreement with regulatory and / or topic-related volun-
tary standards (e.g. regarding format, content)

• Efficiency: how efficiently the data captures the underlying information [10]

• Confidentiality: how the data respects confidentiality of persons and organizations,
and does not leak information unnecessarily

Among the system-dependent data quality dimensions, which consider the hardware and
/ or software system where the data is stored and managed, are the characteristics of
availability, portability, recoverability, understandability, precision as well as traceability,
according to the ISO [42] [48]. Jayawardene (2013) also called the inherent dimensions
declarative as they focus on the data itself and further describe its characteristics irre-
spective of any consumers of the data [43]. Based on this, inherent characteristics can
be tackled in the system itself without necessarily involving the user [43]. As for the
system-dependent dimensions, they depend on the interaction with the users and his
/ her judgement of this usage experience, according to Jayawardene (2013), and occur
when the user performs some data operations [43].

In more recent times, the dimension of trust (in the data and / or its source(s)) was
added to set of existing data quality dimensions, notably in the context of increasingly
used open data which is freely available, sensor measurements, big data, and social
networks data [48] [18]. Overall, the data quality dimensions can refer to structured,
semi-structured as well as unstructured data, as quality matters for any kind of data,
no matter what it shape is [38] [48] [68]. Another approach, proposed by the Data
Management Association Work Group, is total data quality management, which considers
data quality to be composed of the dimensions accuracy, completeness, timeliness (also
referred to as currency), consistency, validity, and uniqueness, which slightly deviates from
the ISO dimensions [64]. Further dimensions mentioned in the literature in connection
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with data quality in general are authority, objectivity, coverage of audience, popularity,
information-to-noise-ratio, auditability, adequacy, and cohesiveness [10] [81] [29]. Ge
(2019) presented the dimensions consistency (considering duplicate data as the main
issue), accuracy (considering data outliers), completeness (considering missing values),
credibility (considering low trust values and sources), accessibility (considering semantic
and measurement issues), timeliness (considering delayed or wrongly timed values), and
interpretability (considering anonymized data values) as most influential with a focus on
the industrial domain [29].

Günther et al. (2019) see the DQ dimensions from several perspectives, namely firstly
the user perspective, which refers to the “expectations and intended use“ from the user’s
viewpoint [34]. Secondly, Günther et al. (2019) mention the data perspective that involves
the choice of DQ dimensions in conformance with the objectives of the underlying project,
and later on the evaluation of the DQ dimensions [34]. The third perspective is the
real-world perspective, which embeds the project into a specific domain, and then defines
the DQ dimensions relevant for it [34]. In line with their literature survey, Günther et al.
(2019) also elaborated on the main groups of DQ dimensions, which included accuracy,
timeliness, completeness, relevance, and consistency [34].But there is still potential for
research on measuring the respective DQ dimensions, as research was in many aspects
too generic and not taking individual project features into account in terms of weighing
the relevant DQ dimensions for a specific project, Günther et al. (2019) claimed [34].
Furthermore, the interdependencies between the DQ dimensions should be examined
more thoroughly in research [34]. Somewhat similar to this distinction, Zhang (2021)
divided the DQ dimensions into the “practical perspective“ on the one hand, which
details the user’s view on evaluating the respective data characteristics, and the “system
perspective“ that refers rather to the infrastructure, corporate or software system around
the data on the other hand [99].

In the context of data quality evaluation and management used for Internet of Things
(IoT) and industrial applications, Liu et al. (2020) discerned that this is an application
area which notably “relies heavily on the quality of the data collected by devices“,
and provided a first systematic literature review on the topic, based on around 45
research studies from 1999 to 2018 to explore how DQ dimensions, issues, and metrics
are related [56]. According to previous research, sensor readings in IoT and industrial
applications are not fully reliable in practice which leads to common data quality problems
such as inconsistent data, diverging formats, missing values, duplicates, or erroneous
measurements [99]. From Liu et al.’s (2020) systematic literature review, it emerged
that the most frequently mentioned data quality dimensions with respect to the field
of IoT and industrial applications are accuracy, completeness, and timeliness, in this
specified order [56]. According to Liu et al. (2020), the by far most frequently pointed
out issue in data preparation and analysis was “missing data“, followed by “measurement
errors“, “outliers“, and “noise“ [56]. Zhang (2021) named missing data as the second
most widespread data issues in the industrial domain, just after outliers [99]. As causes of
missing data, Zhang (2021) mentioned network issues, instable internet connection, power
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problems at the device, and environmental factors [99]. Data is considered “accurate“
once the data available to the analyst is corresponding to the true value in reality [56].
The accuracy could be hampered by “measurement errors“, which involves for instance
faulty sensor choice or placing, thus leading to bad data quality (e.g. outliers, null values,
noise) [56]. As for timeliness, IoT and industrial applications require that the data is
updated at the “time of observation for an object“, and not after a latency period, which
means that the data should be “fresh“, as Liu et al. put it [56]. If timeliness is not
respected, missing values as well as out of date values due to delay periods could be
introduced to the dataset [56] [81]. Liu et al. (2020) and Song (2020) stated that the DQ
dimension of completeness was mentioned under the synonymous notions of “availability“
or “missing data“ by other researchers [56] [81]. As causes of incomplete datasets for
example sensor failures or network communication problems were mentioned [81] [56] [9].

Jayawardene (2013) conducted a study among industry professionals and academics to
gain insights on their view of various common data quality dimensions based on around
15 publications from an academic as well as an industry background, which comprises
more than 120 dimensions [43]. The goal of Jayawardene (2013) was to find out how the
participants perceived DQ dimensions, i.e. whether they perceived each one rather as
inherent, system-dependent, both of them, or even none of them, and to cluster the main
dimensions [43]. The main clusters determined by the participants finally comprised the
dimensions of completeness, accuracy, validity, usability, reliability, credibility, timeliness,
consistency, and accessibility [43]. For instance the completeness dimension was perceived
as part of the inherent or declarative characteristics group by the majority of the study
participants, as the null values or missing values can already be determined in the data
itself, and are not connected to user interactions [43]. Batini (2009) denoted accuracy,
timeliness, completeness, and consistency as the “basic set of data quality dimensions“,
which have prevailed in the literature [6]. Although the basic dimensions appear to be
similar, their meaning and scope differ substantially across research and practical projects
[6]. Yang (2017) described the problem of missingness in line with data integration and
collection from two sides, namely the “direct incompleteness“ meaning that a specific value
is not available, and the “indirect incompleteness“, which means that a value is null during
loading, updating, or merging operations [94]. Missing entries were cited among the most
frequently occurring data quality issues alongside “format incompatibility, conflicting
entries, multi-resource integration, multi-table files, and multi-meaning attributes“ [94].
In their research, Zhang (2021) compared DQ dimension models based on 21 papers,
and five ISO standards in line with a literature survey, based on which they concluded
that the accuracy, completeness, and timeliness were they most widely used dimensions
for assessing data quality [99]. Cai (2015), Heinrich (2018), and Jayawardene (2013)
mentioned that after selecting the relevant data quality dimensions for the project under
concern, the dimensions should be evaluated according to the selected metrics to assess
the data quality both in a qualitative and quantitative way [10] [38] [43]. Depending on
the outcome of the assessment, the measures might be necessary to improve the data
quality and to re-evaluate according to the dimensions, which is recommended in the
preparation phase rather than in the analysis phase itself [10] [38] [43].
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2.3 Handling the Data Completeness Dimension by
Treating Missing Values

The most time-intensive phase in the data science process is the preparation and pre-
processing phase, in which the data undergoes cleaning steps, and amongst others the
treatment of missing values [13] [73]. Data completeness can be improved by using
methods to deal with missing values in the underlying data. Lee (2020) and Chuo
(2022) concluded from their studies that data incompleteness in one or more rows (i.e.
observations) or columns (i.e. features) has remained among the main challenges for
industrial data analytics next to imprecise, biased and insufficient data so far, which
requires further practical as well as academic attention in terms of methods to deal with
the challenge [52] [13]. In case more than 50% of the values of a feature are missing,
whole columns tend to be dropped, as completing them with whatever technique is
labelled as “unreliable“ [52]. According to a systematic study by the U.S. Census of
Manufacturers from 2002 to 2007 across more than 200000 production plants, over 70%
of the participating organizations indicated that they had used imputation methods for
one or more variables in their datasets [90]. Relating to variables containing incomplete
data, the share of missing values ranged from around 20% to 40% [90]. Given the share
of missing values, dropping incomplete observations as a whole or dropping incomplete
features would considerably shrink the datasets, and therefore impair statistical operations
carried out later on with the data [90]. Mean imputation was the technique that was
most frequently chosen, based on the assumption that it would decrease the variance of
variables where the completion took place [90]. Although the mean imputation could
already improve the situation over the incomplete state, further statistical and machine
learning based techniques were recommended to be applied in order to aim for even
higher performance advances [90] [52] [73].

Considering performance of techniques to make data complete, there are two ways how
it can be measured, firstly the direct evaluation, and secondly the indirect evaluation
(see e.g. Nugroho (2019) [65]). The direct evaluation means that the analysis is started
from a complete dataset, and is artificially made incomplete, i.e. pseudo-incomplete.
Then the pseudo-incomplete dataset is made complete again using imputation methods,
and the share of correctly imputed values is compared with the corresponding values
from the complete dataset for each imputation method. The method with the highest
percentage of correct imputations is the one with the best performance. The indirect
evaluation means that the analysis is started based on either a complete or an incomplete
dataset. Subsequently, imputation methods are used to make the dataset complete
again. Afterwards, classification (in case the target variable is a categorical variable) or
regression methods (in case the target variable is a numeric (continuous) variable) are
applied to the dataset, and their respective performance is measured. The performance
metrics of the regression or classification methods are compared as metrics to determine
which imputation method finally performed best. Performance metrics for classification
cases are for example accuracy, precision, recall, F1 score, specificity, receiver operating
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characteristic (ROC)4, or Area under the ROC (Receiver Operating Characteristic)
curve (AUC) [52] [31]. Performance metrics for regression cases are for instance R2 or
R-squared5, Mean Squared Error (MSE)6, Root Mean Square Error (RMSE)7, the Mean
Absolute Error (MAE)8, the Root Mean Absolute Error (RMAE)9, similarity measures,
correlation measures, or a modified version thereof [52] [31] [36].

Lee (2020) investigated whether “higher prediction accuracy supports better decision-
making“ [52]. In the case of regression, Lee’s (2020) research suggests that higher
accuracy is beneficial to the quality of decision-making [52]. For classification cases, the
misclassification errors of the confusion matrix have to be taken into account, namely
type I error, i.e. false positive, and type II error, i.e. false negative, that can have an
impact on the “decision risk“ [52]. Statistical and machine learning methods should
ideally keep both errors low, but there is a trade-off between them. So, regarding decision
risk it has to be considered which one to prioritize. For example in a manufacturing
process, type I error means that a produced item is marked as damaged even though it
is not damaged, thus a false alarm, while type II error means that a produced item is
marked as not damaged even though it is in reality damaged, thus a missed damaged
product which could be dangerous. The former situation would be bad because time is
lost because the product subject to the false alarm needs to be inspected again, but the
latter situation is at least as bad, if not much worse, as the damaged part is not detected,
and is built into a final product that is shipped to the customer, and could cause harm
there [52]. Thus, the choice of performance metric finally depends essentially on what
the manufacturer would like to achieve. Accuracy takes into account the overall correctly
classified parts, precision handles type I error, while recall handles type II error, and F1
score takes both precision and recall into account [75].

The code execution to execution time (or “total computation time“) throughout the
missing value replacement process also represents a viable performance metric to compare
missing value imputation methods, which is influenced by the scope of the dataset and
the share of missing entries [36]. In a limited share of publications, k-fold cross-validation
(CV) was used in order to make the performance metrics more robust across several runs
[36] [52].

Nugroho (2019) confirmed based literature study that missing data can considerably
influence the prediction results, and that the method of imputing missing data can have
an impact on the performance too [65]. This was explored by following a data science
process model that started with the raw data collection, preparation and formatting, then

4ROC: Curve where the “true positive rate is on the y-axis and false positive rate on the x-axis, by
varying thresholds, which describes the trade-off between hit rate and false alarm rate, i.e. the relationship
between sensitivity and specificity“[36].

5R2: “proportion of variance between estimated values and actual values, calculated using the sum of
squared error“ [31].

6MSE: “mean of the squared difference between actual values and the predicted value“ [31].
7RMSE: root of MSE.
8MAE: average of the “absolute difference between the actual values and the predicted values“ [31].
9RMAE: root of MAE.
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training a model, and finally predicting using the model, and evaluating the performance
[65]. Depending on the situation, the missing data mechanism might be one of the
following mechanisms, on which researchers uniformly agree [65] [93] [41]10:

• Missing Completely at Random (MCAR): Data that is missing completely at
random does not exhibit a relations or dependencies between the missing data
entries. Thus, no missing value depends on other values in the dataset or from the
further missing data:

P(missing value | full dataset) = P(missing value)

• Missing at Random (MAR): Data that is missing at random depends on some of
the values from the underlying dataset:

P(missing value | full dataset) = P(missing value | observed dataset)

• Missing Not at Random (MNAR): Data that is missing not at random means that
the “probability of a missing value is directly dependent on the missing value itself“,
thus missing and observed data are not correlated [65]:

P(missing value | full dataset) ̸= P(missing value | observed dataset)

Nugroho (2019) presented in the study a non-exhaustive summary of methods to deal
with missing values, as illustrated in Figure 2.1, which partitions the methods into
“statistical“ and “machine learning based“ ones, with single imputation comprising for
example regression, single hot deck, single cold deck, unconditional mean, and stochastic
imputation. [65]. The methods differ in computing power necessary, so for example case
deletion, maximum likelihood, mean, and regression imputation methods require low
computing resources, while multiple imputation and machine learning based methods
usually require more resources [65]. As for the imputation methods, research has dedicated
to developing new methods and/or new combinations of methods, followed by application
or comparison studies based on existing imputation methods, according to Nugroho’s
(2019) literature review [65]. The most rare case was a combination of the two types of
research [65].

A slightly different categorization of missing value treatment methods was suggested
by Xu (2015) (see Figure 2.2), who also pointed out both row-wise and column-wise
case deletion methods as a basic form of dealing with missing values [93]. However, case
deletion face the downside that a large amount of data is dropped, and might entail high
bias in case of MNAR data, which might altogether sacrifice valuable information [93] [41].
In mean imputation, the mean across all observations or across some condition is imputed

10Note: Source refers to the content of all bullet points.
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Figure 2.1: Methods for missing value treatment by Nugroho (2019) [65]

instead of all missing values [93]. In hot-deck imputation, the missing value is replaced by
a value from a complete case that is similar to the one with the missing value [93]. The
regression replacement is done by considering the variable for which a value is missing
as a regression target variable, and then performing a regression using the remaining
variables in the data to predict it [93]. The interpolation methods require the dataset to
be MAR, and the correlation to be low among the features, as it “fits a polynomial based
on neighboring points and predicts the missing entries“ [93]. The maximum likelihood
based method requires a distribution assumption for the target variable, which serves to
estimate the parameters in order to infer the entries where data was missing [93]. The
expectation-maximization (EM) method iterates through expectation and maximization
steps to finally arrive at a parameter estimate [93]. Multiple imputation methods
assume at least MAR mechanism for the missing values, and “obtain a distribution
via Monte Carlo simulation for missing data elements, which is computationally more
intense compared to the aforementioned approaches [93]. A literature survey carried
out by Young (2011) showed that the multiple imputation technique is more robust
than the statistical methods [98]. Unsupervised machine learning based methods use
clustering approaches, and supervised machine learning based methods use classification
or regression (e.g. decision trees, random forests) to impute the missing values.

In line with a systematic mapping, Young (2011) compiled an overview of missing
value treatment methods, which is illustrated by Figure 2.3 [98]. The first category are
the “simple methods“, which comprise list-wise and pair-wise deletion, are suitable for
both categorical and numeric data, and just delete incomplete observations or features,
which entails the downside that valuable data gets lost [98]. The “pre-replacement non-
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Figure 2.2: Methods for missing value treatment by Xu (2015) [93]

statistical methods“ do not rely on statistical models, but rather on similar observations,
and are suitable for both categorical and numeric entries [98]. The “pre-replacement
statistical methods“ comprise mean-mode replacement techniques (for both numeric and
categorical entries), linear regression (for numeric values) and logistics regression (for
categorical entries) methods [98]. Furthermore, Young (2011) distinguished among the
machine learning based methods between “pre-replacement machine learning missing
value methodologies“ such as replacement under same variation, nearest neighbor, k-
nearest neighbor (kNN), EM, multi-layered perceptron (MLP), support vector machine
(SVM), further neural networks types, which are mainly iterative methods making use of
random number generation, and thus lead to higher computational effort [98]. Compared
to the aforementioned methods which impute only one single entry, multiple imputation
methods replace several missing values, and are recommended for settings with more
than 5%-15% of all datapoints because they appear to introduce less bias into the dataset
[98]. According to the papers examined in the survey, multiple imputation appears to be
a appropriate approach to deal with missing values in case of up to around 25% of values
missing in a dataset [98]. In the category “embedded machine learning missing value
methodologies“, Young (2011) mention decision and regression trees, and its variation
C4.5, robust association rules, and several artificial neural network (ANN), which are
able to “handle missing data internally“ [98].

Hasan (2021) considered only statistics based and machine learning based imputation
methods in their literature review (see Figure 2.4) [36]. The main categories were split

20



2.3. Handling the Data Completeness Dimension by Treating Missing Values

Figure 2.3: Methods for missing value treatment by Young (2011) [98]

into sub-categories, which contain somewhat similar imputation methods such as tree-
based methods, kernel-based, or clustering methods, while mentioning more fine-grained
methods [36].

Figure 2.4: Methods for missing value treatment by Hasan (2021) [36]

Gond (2021) carried out a follow-up survey on the machine learning based approaches for
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missing value imputation with a focus on structured datasets, in which they ascertained
that depending the choice missing value imputation method can have an influence on the
outcome of learning algorithms performance metrics such as accuracy [31]. Mean and
regression imputation are still the most frequently used techniques among practitioners,
according to Gond’s literature survey [31]. Again, it emerged that multiple imputation
has the advantage of higher accuracy, but the drawback of higher computational effort.
Machine learning based approaches comprise clustering approaches (such as k-means),
ANN, association rule methods, SVM, self-organizing maps, classification and regression
trees (CART) (or its adaptation C4.5), EM, recurrent neural networks (RNN), Naive
Bayes, deep learning (referring to more complex neural networks), and kNN [31].

Young (2011) concluded that missing value treatment methods can substantially influence
the predictive power of a dataset by decreasing variance or introducing bias [98]. Still, the
No Free Lunch (NFL) theorem holds saying that there is no particular method that is the
best method on each dataset and with regard to each problem, as one cannot generalize
across all kinds of “attribute correlations, data distributions, amounts of missing values,
sample sizes“ [98], and outliers, normalization, the classifier type, computational effort,
or complexity of implementation [36]. Gond(2021) stated as well that the performance of
some methods can be higher based on selected datasets and combinations of variables,
but not in general across all datasets, types, and situations [31]. Young (2011), later
on also flagged by Nugroho (2019), also summarized from the literature survey that
more studies regarding the “imputation efficiencies when dealing with large amounts
of missing values“ [98] should be subject to further research [98] [65] [23]. Gond (2021)
confirmed those findings and suggestions for further research in their literature survey
on machine learning based methods once more [31]. They also suggested that in case of
around 50% or more of data entries missing, the performance differences between the
algorithms will be more substantial [31]. Considering the use of missing value treatment
in industry practice, Young (2011) stated based on the literature survey that the majority
of practitioners did use either mean-mode, or some of the simpler single imputation
techniques, and rarely more advanced statistical or machine learning based techniques,
notably due to the availability of easily usable software, execution time (notably for
some machine learning based methods), and the “time as well as statistical knowledge“
necessary for implementing and comparing outcomes [98] [26].

Hasan (2021) conducted a literature review and analysis on how “missing value imputation
affects the performance of machine learning“ based on 191 papers published from 2010 to
2021 [36]. From this study focusing on machine learning based missing value imputation
methods emerged that the topic has gained in importance over time [36]. The number of
publications stayed at a quite stable level from 2010 to 2017, and then gradually more
research had been contributed up to 2021, notably since 2018, as illustrated in Figure 2.5
[36]. For 2021, it has to be said that the literature review covered only publications until
August, thus mid-year [36].

As already mentioned before, statistical experiments can be carried out with regard to
data completeness. Next to the direct evaluation in case a complete dataset is available,
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Figure 2.5: Development of the number of publications on machine learning (ML) based
imputation methods from 2010 to 2021 by Hasan (2021) [36]

and from which several entries are deleted, then replaced again by estimations, and
calculated what the share of correctly replaced entries is (which is notably used for
categorical features), Hasan’s (2021) literature review showed that the most comparable
experiment set-up considering existing research is the one, whose experiment design is
outlined in Figure 2.6 (adapted from Hasan (2021)) and covers both direct as well as
indirect evaluation, which starts from a complete dataset (step 1), and subsequently
makes it artificially incomplete via simulated deletion of entries according to the chosen
random mechanism (step 2 and 3) [36]. Then missing value imputation (MVI) methods
are applied to the incomplete dataset in order to replace the missing values by estimated
values (step 4), which leads finally to a complete dataset again (step 5) [36]. Based
on the complete dataset(s) that had undergone missing values imputation using one or
more methods, and the original complete dataset (as ground truth), classification and/or
regression methods are applied, and their performance metrics are evaluated, and finally
compared (step 6), i.e. indirect evaluation, or the original complete dataset is compared
to the imputed pseudo-complete dataset (step 6), i.e. direct evaluation [36]. Alamoodi
(2021), Syafie (2018) and Dhungana (2021) suggested a similar experiment design [2] [84]
[16].

Figure 2.6: Data completeness experiment design adapted from Hasan (2021) [36]

In the literature review, Hasan (2021) also revealed that from 2010 to 2021, direct
strategies have been largely used, and that most research studies either concentrated on
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the direct or the indirect evaluation, but did not apply both [36]. As for the statistical
compared to the machine learning based imputation methods, Hasan’s (2021) literature
review exposed that around 60% to 70% of the studies concentrated on statistical
methods [36]. Among the remaining studies that used machine learning based imputation
methods, the most frequently used method by far was kNN, followed by random forest
(RF), SVM, Bayesian principal component analysis (BPCA), and decision tree (DT) (see
Figure 2.7) [36]. In case of classification methods, accuracy (used in 40% of the studies),
specificity (14%), and sensitivity (12%) appeared to be the most popular performance
evaluation metrics, according to Hasan’s (2021) literature review [36]. However, it has to
be mentioned at this point that accuracy does not take into consideration possible class
imbalances, i.e. whether some categories are much more frequent than other [36] [52].
Failing to consider it might contribute to higher accuracy, but develop to the detriment
of precision and recall [36]. This specific issue is for example accounted for in the AUC,
and ROC, which are, however, have been used merely in around 9% of the research
publications as performance evaluation metrics (from 2010 to 2021) [36].

Figure 2.7: Use of machine learning based methods from 2010 to 2021 according to
literature review from Hasan (2021) [36]

According to the literature review by Hasan (2021) that analyzed 191 publications, the
direct evaluation of missing value imputation methods has been much more frequently
used across the last ten years, except for the year 2012, which is also illustrated by
Figure 2.8 [36]. Starting from 2018, the use of direct performance evaluation strategies
reinforced even more [36]. One further aspect that Hasan (2021) pointed out is the
question of when to carry out standardization in the context of distance based methods
such as kNN, as the time of standardization might influence the performance metrics
[36]. Although standardizing is suggested to occur prior to missing value replacement,
there are also publications that propose it the other way around because the replacement
might otherwise impact the center as well as scale of the data [36] [30] [2]. So, this aspect
remains inconclusive with regard to a concrete recommendation or observations from
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previous research in the field [36] [30] [11]. On the whole, Hasan (2021) recommend to
apply both the direct and the indirect evaluation, and in addition to this measure the
performance in terms of execution time of the method(s), which has still been a gap
in the experiment design of most research publications on the topic of missing value
imputation so far which only concentrate on a very narrow evaluation setting, but would
shed much light on how different MVI methods compare regarding their performance
measured from various angles [36].

Figure 2.8: Use of direct vs. indirect performance evaluation from 2010 to 2021 according
to literature review from Hasan (2021) [36]

An example for examining one particular method is a study from Latief (2020), who
evaluated the performance of the missing value imputation method XGBoost directly
in line with classification based on a medical dataset for several percentages of missing
values (ranging from 5% to 20%), and the original complete dataset as a baseline [51].
Similar studies have been carried out by Gashi (2021), Sadhu (2020), Muhammadasraf
(2021), Sowmya (2021), Wang (2020), Zheng (2016), and Sundararajan (2019) [28] [77]
[35] [82] [87] [60] [83]. The kNN and the mean imputation were used as MVI methods,
and the performance was evaluated in the form of confusion matrix metrics (i.e. accuracy,
specificity, sensitivity, precision, recall) including cross-validation of the results [51].
Rusdah (2020) conducted a similar experiment with the XGBoost classifier but evaluated
only the accuracy metric [76]. In contrast to this, for example Alamoodi (2021) carried
out experiments using very high missing rates of 75% and more, and also mentioned that
research studies concentrate usually focus on one of three ranges of missing rates, namely
below 30%, 30% to 50%, or over 50% [2]. Dhungana (2021) carried out experiments
including seven imputation methods from diverse categories, and using missing rates from
5% to 45%, evaluated based on the metrics RMSE and execution time [16]. Alamoodi
(2021) additionally stated that most studies concentrated on simulating missing data, i.e.
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starting from an initially complete dataset and making it deliberately incomplete by the
means of some deletion strategy, and usually focus on only one dataset [2].

From the above, it can be seen that research activities in the area of missing value
imputation had long been of stable interest, and have gained pace since around 2018 [36].
In practical settings, mean-mode imputation, and simple statistical regression techniques
appear to be largely used, according to research from Young (2011), Gond(2021), Hasan
(2021), Feldman (2018), and Alamoodi (2021), amongst others [98] [31] [36] [23] [2].
These claims about practical settings have been made based on loose observations in
line with some publications. As a complement to these observations, this thesis aims
to fill the research gap by conducting an online survey among practitioners in both
industry and academic settings in order to find out more about how they deal with data
completeness, how they are affected by it (e.g. which share of missing values, i.e. missing
percentages, they face), and which methods they choose or rather avoid with regard
to tackling missing values. The literature review prior to the online survey is intended
to gain more insights into current practice, as well as how and in which context the
respective missing value imputation methods are applied. Moreover, the methods used
in the manufacturing domain will be explored. After the literature review and online
survey, statistical experiments will be carried out in order to apply some of the techniques
inspected, and to compare their performance based on classification and/or regression
metrics both for direct and indirect evaluation using structured datasets and the MCAR
mechanism. In addition to this, execution time will be captured. This approach is chosen
to fill the research gap, as most studies look only at either direct or indirect evaluation
as such, and many do not consider execution time [36]. So, this experimental approach is
intended to gain multi-faceted insights into the performance of selected missing value
imputation methods in line with two case studies. The experiment design and its phases
is chosen as presented by Hasan (2021) (see Figure 2.6) and Dhungana (2021), which is a
widely used research design for statistical experiments, and implemented as well by Latief
(2020), Gashi (2021), Sadhu (2020), Muhammadasraf (2021), Sowmya (2021), Wang
(2020), Zheng (2016), and Sundararajan (2019) [28] [77] [35] [82] [87] [60] [83] [51] [16].
Therefore, the statistical experiments aim to evaluate various missing value imputation
methods in the direct and indirect evaluation setting, and with varying missing value
rates.
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CHAPTER 3
Research Questions and Methods

This chapter covers the research questions and methods. In the section 3.1, an overview
on the research design is given. In the section 3.2, the research questions are laid out,
the motivation for them is presented, and the solution approach in terms of research
methods is shortly outlined for each research question.

3.1 Research Overview
When considering the roadmap for this thesis, the phases and methods are embedded in
the design science framework as a paradigm for problem-solving. Design science aims
to “produce and apply knowledge to create effective artifacts in context“ so that they
achieve some objectives (i.e. requirements) set by the stakeholders [70]. According to
Hevner (2004), “knowledge and understanding of a problem domain and its solution are
achieved in the building and application of the designed artifact“ [39], or as Wieringa
(2014) put it, design science refers to an iterative process of “designing an artifact that
improves something for stakeholders and empirically investigating the performance of it
in a context“ [91]. Venable (2017) described design science in a way that it “creates and
evaluates artifacts to solve human problems“, possibly with iterations through some of
the stages [86]. As illustrated by Figure 3.1, design science in information systems (IS)
research develops and / or builds artifacts, then evaluates them in the form of analytical
procedures, case studies, experiments, field studies, or simulations in an iterative manner
[39]. Artifacts in the context of design science can be “for example methods, techniques,
or algorithms used in software and information systems“ [91] [86]. There are feedback
loops which can lead to the refinement of the artifact and again evaluation processes [39].
The relevance of the outcome needs to be stated in order to make sure that the goals of
the stakeholders can be achieved, as the solution is being applied to the environment
[39]. The knowledge base comprising the foundations (i.e. theories, frameworks, methods,
models, and the like) as well as the methodologies (i.e. measures, formalisms, data
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analysis techniques) provides the “knowledge applicable“ to the artifact creation and
respective evaluation [39]. Likewise, outcomes from the IS research project can also be
relevant for the knowledge basis, and might be added to it for further research [39].

Figure 3.1: Design Science Framework for Information Systems Research by Hevner
(2004) [39]

In this thesis, the roadmap is laid out in the IDEF0 diagram illustrated by Figure 3.2,
which models the steps throughout the research phases including the timely sequence
and the methods used. When considering the design science framework by Hevner
(2004), the artifacts created are the results of the literature review, the online survey,
and the algorithms involved in the statistical experiments [39]. They are assessed in line
with both the open-source data case study, and the industry cases study, according to
performance metrics, and using statistical baseline and tests, and applied to the chosen
environment [39] [91]. The evaluation phase inspects how well the “artifacts have been
transferred to the actual problem context“, notably in relation to the objectives set for
the stakeholders [91]. The relevance of the problem for the environment and the proposed
sequence of phases to close the research gap has been discussed in the chapter Related
Work, which inspected the state of the art, and identified the research gap, and how this
thesis can contribute to tackle it. With respect to the knowledge base, the thesis draws
upon the theories, and constructs elaborated in the Literature Review, and the data
analysis methods and statistical simulation or tests suitable, and performance metrics
(i.e. evaluation criteria) for the Statistical Experiments. The research methods selected
for the respective research phases are presented in the IDEF0 diagram.
The thesis starts from the research goal to enhance data quality by applying algorithms
to tackle the data completeness dimension. The first research question (RQ1) is being
answered by the means of the related work and the literature review in order to seize
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relevant data quality characteristics with a focus on data completeness. The literature
review contributes to answering the second research question (RQ2), which intends
to find out which methods and models are used in an academic as well as industry
setting to handle missing values. This is complemented by the results from the online
survey, which adds insights from practitioners. The information gathered from the
related work, the literature review and the online survey sequence serve as a basis for
the selection of the missing value imputation techniques to analyze and evaluate for
research question 3 (RQ3). In line with an open-source case study and an industry
case study, statistical experiments are carried out in order to compare several missing
value imputation algorithms according to various performance metrics, so that conclusion
regarding their suitability for the chosen datasets can be drawn. Overall, the whole
flow of research phases relies on knowledge from existing quality standards, such as ISO
standards on data quality, and from algorithms, statistics, as well as empirical software
engineering (EMSE) best practices regarding the online survey and experimentation.

Figure 3.2: Roadmap regarding research questions and solution approaches
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3.2 Research Questions and Chosen Methods
This sub-chapter presents the three research questions of the thesis. The third research
question comprises two sub-questions, named 3a and 3b, which are explained separately.
At the beginning of each research question, the motivation for it is described. Then the
research question is stated, and subsequently the solution approach in terms of methods
used to answer the respective research question is outlined.

3.2.1 RQ1: Data quality dimensions and relation to completeness
The first research question (RQ1) is motivated by the fact that no single, uniform definition
of data quality exists [45] [4] [85]. Instead, it is rather multi-faceted, and comprises a
variety of dimensions (see for example Juddoo (2018) [45], Arbesser (2016) [4], Taleb
(2016) [85]). Among these quality dimensions is the dimension of data completeness.
Therefore, the thesis intends to shed light at what dimensions exist in current research,
what different approaches are available in the literature to formulate and group data
quality dimensions, and how the dimension of data completeness fits into the dimensions
in terms of importance, frequency of usage, and content scope.

Therefore, the first research question is formulated as follows:

RQ1: Which dimensions does data quality have, and what is the relation of
it to data completeness?

Therefore, RQ1 aims to find out what the current state of data quality research with
a focus on data completeness is. This is relevant in order to extract knowledge about
current trends as well as shortcomings in the context handling data quality. How the
RQ1 is embedded in the research and solution approach can also be seen from the flow
diagram in Figure 3.2, in which it corresponds to part 1 (consisting of 1a and 1b) that
elaborate on the capability and data characteristic definition. From a methodological
point of view, the first research question can be answered by drawing upon the literature
review and existing related literature, which provide thorough insights into the data
quality dimensions models by various researchers, and how the data completeness is
positioned among the quality dimensions.

3.2.2 RQ2: Techniques to handle data completeness
The second research question (RQ2) was motivated by the objective of illustrating what
kinds of models and methods are available for handling missing values in datasets, i.e.
how data completeness can be handled, both in an academic, as well as in a practical
setting. It tries to explore what methods have been chosen in the literature, and what
kinds of approaches can be distinguished. The thesis aims to find out how practitioners
in the industry approach the topic of data completeness, and how relevant the techniques
and approaches suggested by academics are to them. Likewise, RQ2 aims to present the
current state of research, and how the various approaches can be evaluated and compared.
It aims to find out how the ideas from research are handled in practice and explores in
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how far those methods are used in the industry setting, while also involving the expertise
from industry professionals.

The second research question is phrased in the following way:

RQ2: What methods and models are used in research and in the industry to
inspect, evaluate, and improve the handling of missing values throughout the
lifecycle?

When considering the solution approach for this research question, it will be answered
in two ways. How the RQ2 is embedded in the research and solution approach can
also be seen from the flow diagram in Figure 3.2, in which it refers to part 2 that
helps to select the relevant tools, and obtain insights for the definition of the evaluation
framework, performance metrics, and the processes necessary for the implementation of
the experiments. Firstly, the literature review collects and summarized insights from
research publications in the context of data completeness and missing values imputation
methods, while considering as well their use in the industrial domain. The detailed results
of this literature review are available in the chapter 4. Secondly, the online survey gathers
insights on how data completeness is handled in practice, meaning how practitioners in
the industry see the topic, and what kinds of techniques they apply to handle missing
values. The combination of these methods, i.e. the literature review, and the online
survey will also constitute the foundation for setting up the experiment design for the
statistical subsequent experiments.

3.2.3 RQ3: Open-source and industry use cases on missing value
imputation

The third research question (RQ3) refers the techniques how missing values can be
imputed to make an incomplete dataset complete again. It notably intends to find out
how suitable a selection of techniques are with regard to the chosen performance metrics
in both the direct and indirect evaluation setting, while considering execution time too.
As the research question 3 comprises two use cases, namely open-source data and industry
data use case (the latter referring to CPPS), it is divided into section RQ3a and RQ3b,
which refer to the respective use cases.

The overall third research question is formulated as follows:

RQ3: Which methods of handling incomplete data are most suitable with a
view to enhancing data quality based on the selected data sets?

The results from both RQ1 and RQ2 are used to plan the experiment design for the
statistical experiments. In line with them, a comparison between the outcome of statistical
experiments will be drawn based on open-source as well as industry datasets in the form
of a case study for each setting. This approach is aimed to shed more light at concrete
data cases, and to compare to the insights that were previously generated in line with
RQ1 and RQ2. To address RQ3 fully, two sub-research questions that focus on individual
domains, i.e., open-source data and industry data from CPPS engineering environments,
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are stated. The detailed experiment design, and the results of the statistical experiments
are available in the chapter 6. How the RQ3 and its sub-questions are embedded in the
research and solution approach can also be seen from the flow diagram in Figure 3.2,
which is illustrated as part 3 with its components Statistical Experiment Design (3a),
Training Data (OSS) (3b), Operational Data (OSS) (3c), Manufacturing Industry Data
(3d), and Algorithm Performance Comparison (3e), and is explained in greater detail in
chapter 6.

As for the research question 3a (RQ3a), it is based on an exemplary open-source dataset
that could also be used in practice, and to which missing value imputation methods (in
conformance with the literature review and the online survey) are applied. The objective
is at this point to evaluate how the different methods of handling missing values may exert
an influence on the overall data quality across subsequent workflows such as classification
and / or regression steps according to a set of performance metrics.

The research question 3a is phrased in the following way:

RQ3a: Which methods of handling incomplete data are most suitable with a
view to enhancing data quality based on the selected open-source dataset?
From a methodological point of view, the research question 3a is answered by the means of
statistical experiments according to the in respective research commonly used experiment
design in the context of missing value imputation (see for example the literature review
of 191 papers by Hasan (2021) [36]. The experiments explore whether tackling missing
values can help increase data quality. Also, this approach examines the hypothesis that
there is no specific method that is superior in all cases and with regard to all performance
criteria, but rather specific application cases require tailored handling.

The research question 3b (RQ3b) involves the application of selected missing value
imputation methods to an industry dataset, which is representative for the CPPS domain.
Just like the RQ3a, it aims to evaluate how the different methods of handling missing
values may exert an influence on the overall data quality across subsequent workflows
like regression steps according to a set of performance metrics.

The research question 3b is phrased in the following way:

RQ3b: Which methods of handling incomplete data are most suitable with a
view to enhancing data quality based on manufacturing data in an industrial
context? In what way differ or correspond the results based on the open-source
and industrial datasets?
Considering methods, the RQ3b comprises the implementation of statistical experiments
to evaluate the performance of several missing value imputation methods according
to selected performance metrics in order to determine data quality subsequent to the
imputations. It considers the industry case study referring to virtual commissioning,
which leads to a “virtual sensor“ being created. This means that a series of data features is
generated during the engineering and commissioning process. The information regarding
the features is available at the beginning, i.e. in the set-up phase, but not in the operating
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phase of the process as it is assumed to would be too time-consuming to measure them
continuously or the machine is unable to do so. Therefore, the missing values need to be
replaced by more appropriate values to enhance data completeness. The question raised
here is how well the missing data entries can be replaced by suitable values in order to
increase overall data quality during the operating phase.
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CHAPTER 4
Literature Review

The literature review aims to explore what methods and models are used (in research) to
deal with missing values and data completeness thought the data science lifecycle. This
method was chosen as it is suited to answer RQ2, which was previously indicated in the
IDEF0 diagram in the chapter 3 (see Figure 3.2).

Concerning the methodological basis for this literature review, its structure and phases
are used in a form adapted from Kitchenham (2009), who published a framework on how
to set up and systematically conduct a systematic literature review (SLR) [49]. Its main
goal is to gather state-of-the-art literature sources, and to extract insights from the main
relevant publications among them [49]. Figure 4.1 depicts the phases for the systematic
literature framework published by Kitchenham (2009). It starts with the preparation
phase, which comprises the definition of search keywords, and generation of search strings
[49]. Then the search engines are selected and the search strings are run in the selected
search engines [49]. For the initial analysis, the search results from the relevant sources
are collected, and are analyzed with regard to status, ID, year, publication type, title, and
publication media [49]. Afterwards, the publications flagged for analysis are extracted,
and screened again for further criteria such as publication objective, evaluation type,
topic category, or number of citations [49]. The selection process from the search string
to the final selection of publications is summarized in section 4.2 . The content of the
finally selected publications is inspected and discussed in greater depth based on their
full-text version [49].

4.1 Literature Review Preparation
The section “SLR Preparation“ firstly comprises the definition of search keywords. It
portrays the formation of search strings submitted to selected search engines of electronic
libraries and databases. In addition to this, it gives an overview on the relevant sources
regarding online resources.
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Figure 4.1: SLR framework adapted from Kitchenham (2009) [49]

4.1.1 Keyword Definition and Search Strings
Several initial key word combinations, as stated below, were run in the selected search
engines. Finally, the query which is shown last in the list (which is highlighted in bold
font) was chosen for proceeding further after an iterative adaptation of search queries, as
it comprised a suitable number of hits in the databases. List of executed search queries,
with the final chosen query written in bold as the last list item:

• (missing value OR imputation technique OR imputation method OR data complete-
ness OR missing value imputation) AND (manufacturing OR industrial)

• (missing value OR missing values OR missing data imputation) AND (cyber physical
OR IoT or internet of things OR industry 4.0)

• (missing data imputation OR missing value imputation) AND (manufacturing OR
industrial OR industry OR cyber-physical OR cyber physical OR IoT or internet of
things OR industry 4.0)

• (missing data imputation OR missing value imputation) AND (manufacturing OR
industrial OR industry OR cyber-physical OR cyber physical OR IoT or internet of
things OR industry 4.0) AND NOT (time series)
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• (missing value OR missing values OR missing data imputation OR
imputation technique OR imputation method OR data completeness
OR missing value imputation) AND (manufacturing OR industrial OR
industry OR cyber-physical OR cyber physical OR IoT or internet of
things OR industry 4.0) AND NOT (time series)

4.1.2 Relevant Sources
The search string highlighted above was executed in a selection of relevant publication
databases of the corresponding academic digital libraries from the field of computer
science. The following resources were considered:

• IEEE Xplore: http://ieeexplore.ieee.org

• ACM Digital Library: https://dl.acm.org/

• Web of Science: https://www.webofscience.com/wos/history

• Scopus: https://www.scopus.com/search/form.uri?zone=TopNavBar&
origin=searchadvanced&display=basic#basic

In relation to the literature sources, the relevance of publications for this thesis was
limited to scientific journals, conference proceedings and papers, white papers (only from
official institutions and universities), university publications, and scientific books, as
those were considered relevant and suitable for further analysis. The literature review
comprises only resources that are available in electronic form in digital libraries. Firstly,
this definition of scope was intended to ensure a stable scientific level of the literature.
Secondly, the goal of the literature review was to gain insights on how missing value
imputation is handled in academia, so this is the most relevant area.

4.2 Literature Search and Initial Analysis
As illustrated just above, several keywords and search strings were tried in the online
databases of IEEE Xplore, ACM Digital Library, Web of Science, and Scopus. The
exploration was narrowed down to the final search string (missing value OR missing
values OR missing data imputation OR imputation technique OR imputation method OR
data completeness OR missing value imputation) AND (manufacturing OR industrial OR
industry OR cyber-physical OR cyber physical OR IoT or internet of things OR industry
4.0) AND NOT (time series). The following table summarizes the number of search
results obtained per database for the chosen search string:

Given the number of search results and the quality of the first hits, the initial list of
publications (see Appendix 8 for details) was extracted from the online databases of
IEEE Xplore and Web of Science taken together, and was filtered for duplicates. The
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Table 4.1: Number of hits per online library database

Digital library Nr. of hits
ACM Digital Library 26

IEEE 80
Scopus 663

Web of Science 263

initial publications were assigned an ID for analysis, and furthermore the author(s),
publication year, publication type, publication medium, and the title were captured in
an Excel sheet. This procedure resulted in an initial publications list that comprised
around 141 publications. Publications that occurred in the search results, but were
obviously not suitable (e.g. regarding the research area) were already discarded prior
the inclusion into the initial publications list. The list was saved in the Excel file
LiteratureReview.xlsx in TabA_Initial_Publications.

Figure 4.2 depicts an excerpt from the list of initial publications, which includes the
given ID, the author, publication type, publication medium, link for retrieval, and the
title of the publication. The following plots give an overview on the time period in which
the pieces of research were published, and the publication type.

Figure 4.2: List of initial publications

In this literature review, a time period ranging from 1999 to 2022 was taken into account,
which is reflected in Figure 4.3. From Figure 4.3 that shows the list of initial publications
grouped by year, it can be seen that the largest part of pieces of research under concern
has been published later than 2016.

The initially retrieved publications are categorized as books, conference proceedings, and

38



4.2. Literature Search and Initial Analysis

Figure 4.3: Initial Publications Grouped by Year

journals. The Figure 4.4 illustrates that most publications initially sourced are conference
proceedings or journal articles, split around equally, and a very small part is sourced
from books.

Figure 4.4: Initial Publications Grouped by Type

After the initial sourcing of publications and filtering for duplicate papers, the list of
initial publications was reviewed with regard to detecting items that are not considered
a good fit with the research question they should answer. Therefore, the list of initial
publications was inspected in relation to content fit based on their title and abstract.
In case the paper appeared suitable for contributing to answer the underlying research
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question, as stated above, the publication was included in the analysis matrix, i.e. the
narrowed list of publications to be inspected in greater depth. For the analysis matrix, a
number of publications around 20 was chosen as it was suggested by Kitchenham (2009)
to include a narrow version of the initial literature list for more detailed analysis [49]. The
tab TabB_InitialAnalysis comprises the information from the initial publications
list extended with the status of inclusion or exclusion into the final publications list for
content analysis. The column Reason is also added to the tab in order to provide more
details to the status evaluation in case this appears necessary. Every publication from
the initial list (see Appendix 8 for details) was assigned one status out of the status
options indicated in table 4.2.

Status Description
Access problem The publication cannot be freely accessed (within the

university access limits) or full-text is not available
No fit with RQ The publication would fit at least one of the research

questions, but its scope is limited to a very specific
sub-branch of the topic, which does not offer the right
level of granularity for this literature review

Analysis The publication has a good fit with at least one of the
research questions and offers a suitable granularity
for the literature review so that it can be considered
for the literature review

Table 4.2: Status options for publication evaluation

The figure 4.5 shows an excerpt of the list of initial publications (see tab TabB_InitialAnalysis
in the Excel file), where status, and if necessary, reason was added.

Figure 4.5: Excerpt of initial analysis sheet

The initial analysis resulted in a total of 27 publications selected from the initial publica-
tions list, which were flagged for closer analysis. The detailed list of selected publications
is available in the Appendix 8. The Figure 4.6 illustrates the distribution of the chosen
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publications over the years of their publishing. It can be seen from Table 4.6 that most
of the publications in the final selection stem from 2018 or more recent years.

Figure 4.6: Publications selected in initial analysis by year

As a summary of the screening and selection flow, the Figure 4.7 illustrates the process of
screening steps from the initial search string, along the search results in the publication
databases, the removal criteria, and finally the resulting 27 publications that were
considered for a more in-depth analysis.

Figure 4.7: Publication screening and selection flow

4.3 Data Extraction and Analysis
During the data extraction and analysis stage, the selected publications were inspected
more thoroughly. The columns objective, evaluation type, and citation group were added
to the final publications in the tab TabC_AnalysisMatrix. Objective refers to the
main goal of the publication, which could be one of “method“, “methods comparison“,
and “concept“. Evaluation type refers to the steps needed to get to the intended goal,
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such as case study, evaluation, or survey. Citation group describes the number of times
the respective publication had been cited until the time of this thesis, which was queried
from Google Scholar, and Scopus. The Figure 4.8 presents an excerpt of the analysis
matrix.

Figure 4.8: Excerpt of the analysis matrix

4.4 Results and Discussion
The following sections give on the one hand an overview on the final selection of pub-
lications (see Appendix 8 for details). On the other hand, the content of the selected
publications is explored. They provide insights into the chosen publications, which led to
the final result of the analysis matrix, and they intend to answer the related research
question.

4.4.1 Final Selection of Publications
When it comes to the main objective of the publications, it turned out that most of them
aim to achieve a concept or methods comparison, and a smaller amount of them presents
a (new or adapted) method, as it can be seen from Figure 4.9.

The evaluation type of the publications was considered, which showed that most papers
were classified in the category of evaluation or case study, with a smaller part of them
(i.e. six occurrences) being of survey type (see 4.10).

The number of citations was queried from Google Scholar and Scopus, and is summarized
in Figure 4.11. Most of the pieces of research were located in the citation groups up to
30 citations. However, it has to be taken into account that the majority of the selected
papers is very recent, so they naturally have been available for a narrower time frame to
be cited.
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Figure 4.9: Selected publications by objective

Figure 4.10: Selected publications by evaluation type

4.4.2 Content Analysis of Selected Publications

Next to data accuracy issues, data completeness issues are the most prevalent data
quality dimensions to deal with in the area of data analytics [44] [45] [57] [11]. At least
an estimated 10% of data, which is still seen as a relatively moderate missing rate, are
missing in practical settings, which requires some action with regard to this topic, be
it leaving out the missing entries completely or imputing them [71] [77] [80]. Whatever
option is selected, it can have a decisive impact on further data analysis processes. As
Juddoo (2020) and Rahul (2019) put it, machine learning and statistical techniques
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Figure 4.11: Selected publications by citation group

are paramount to counter those issues [44] [71]. In line with their research, Juddoo
(2020) proclaimed that “there is no unique machine learning algorithm most suitable
to deal with“ the aforementioned data quality dimensions, event though they observed
regression-based techniques to be tendentially superior [44] [11].

Therefore, different algorithm approaches have to be weighed against each other in terms
of drawbacks and benefits in every new situation, depending on the characteristics of the
dataset, such as size, variable types, and industry [44]. For this reason, this literature
review aims to present examples of how different supervised algorithms were applied to
various structured datasets, and how they performed in the respective situations. The
limitations of the algorithms used can play a role for the efficiency and performance
impact [44] [77] [80] [32] [78]. Given those facts, it can even happen that the missing value
imputation algorithms introduce new bias and errors to the dataset, which highlights the
need to actually examine the application of various missing value imputation techniques
to the dataset(s) under concern [44].

According to a literature review from Young (2011), practitioners are supposed to use
simple methods such as selective dropping of entire rows or columns, or replacement of
the missing values by one fixed value (e.g. median, mean, mode), mostly due to their
convenience in terms of time and effort needed to implement [98]. However, a concrete
questionnaire has not been carried out yet among practitioners to find out about that
aspect [98] [36] [77] [78]. The overall techniques available to deal with missing values
can be divided into “disregarded methods, pre-replacement methods, and embedded
methods“ [98]. The disregarded methods (or to put differently removal methods) focus on
dropping instances (i.e. row-wise, or also called list-wise deletion) or features with missing
values as a whole [98]. At this point, with low missing rates such an approach might still
work, but in case of higher missing rates, a considerable amount of valuable data is left

44



4.4. Results and Discussion

out from the analysis [98] [22]. Pre-replacement methods put a statistically calculated
characteristic (e.g. the mean, median, mode) at the place of the missing entry [98]. For
example last observation carried forward (LOCF), which takes the previous existing
sample’s values as a replacement for missing values, hot- and cold-deck imputation, where
the replacement value is chosen from a set of most recently seen similar observations in
the currently inspected dataset in case of hot-deck or from another dataset “not being
currently processed“ [98] in cold-deck, as well as random replacement belong to the
non-statistical pre-replacement methods, as not statistical calculation or modelling is
involved in those techniques [22]. Although they can under some conditions be useful,
they might also not take into account dependencies between features, and introduce large
variance into the dataset[98]. On the other hand, mean / mode / median imputation
(or cluster-based variations thereof), and (multiple) linear and logistic regression form
part of the statistical pre-replacement methods because they require the application of
a concrete statistical formula to calculate the replacement [98]. Just like above, it is
computationally effective, but could lead to understating the actual standard deviation in
the dataset as the replacements are chosen to be around the central statistical distribution
characteristics [98]. Moreover, the pre-replacement machine learning based methods
comprise for instance expectation-maximization, kNN, self-organizing maps, SVM, and
neural networks approaches, which make use of “random number assignments and
iteration“, but require higher computational effort [98]. According to previous research,
machine learning based methods have exhibited good performance results across a variety
of datasets, even when compared to embedded methods, so they should be included in any
comparison of methods for a new application scenario [98]. As the above single imputation
is not so well suited to a proportion of more 10% of missing values in the dataset, multiple
imputation (e.g. multiple imputation by chained equations (MICE), predictive mean
matching, ANN, regression trees) is recommended as it would not overstate performance
metrics while understating the variance [98] [67] [96]. In multiple imputation, every
missing entry “is replaced by a set of values drawn from an implicit model derived
from all available values“, which generates in fact several pseudo-complete datasets
(used according to different likelihood values), and does not require too much higher
computational effort and makes not restrictive normality assumptions [98]. Multiple
imputation have achieved good performance and better emulate the actual variability of
the data even in higher missing rate scenarios, according to previous research [98] [22].
Embedded methods use a statistical or machine learning technique to estimate the missing
values, and “handle missing data internally“ [98]. They include for instance classification
and regression trees such as C4.5 or CandRT, ANN variations, and association rules [98].
Trees can handle the missing values among their nodes, while association rules determine
patterns how they can go via relationships of constituent elements to estimations of
missing values. What has to be taken into account when choosing the imputation method
for a specific underlying dataset, is that the methods come with benefits and drawbacks
such as inadvertent decrease of variance in the dataset, lost observations, or unwanted
high computational effort [98]. It is therefore recommended that methods from several
categories are explored on the dataset under concern in order to find the method(s) most
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suitable to the situation, and to clearly reflect on the limitation that they might entail
while considering the circumstances (e.g size of the dataset, domain, number of features,
data types) [98].

In a CPPS and Industry 4.0 setting, businesses make use of sensors for data collection
from their manufacturing machines and devices in order to connect the physical with
the digital world, and to provide analysis options for the generated manufacturing data,
notably for the so called “key process input variables“ which have a substantial influence
on the production output [11]. For example faulty sensors, erroneous machines, noise,
sensor changes, or environmental variables form part of the reasons why data in the
industrial domain might be incomplete [11] [22]. Besides, in manufacturing data pre-
processing activities tend to be very extensive, meaning that they consume “around 80%
of the project analysis time“ [11]. Although missing data is one of the main problems,
more focus has been placed on outlier and anomaly detection by research so far [11].
Among the models well suited to industrial data, kNN, SVM, mean imputation, and
simpler statistical methods for miss rate percentages lower than approximately 30 to 40%
have been mentioned, while over 40% the features are usually purged as such [11] [89]
[22]. In case of class imbalance, synthetic minority oversampling technique (SMOTE)
can be added to re-balance the class labels in the dataset [11]. As an approach to the
missingness analysis, Carbery (2022) suggest to visualize the missing values by feature
and in the bigger picture compared to the full dataset and run correlation analysis to
see dependencies between variables, then perform imputation, and finally evaluate the
imputed values to find out about the quality of the imputation [11]. Figure 4.12 shows a
missingness map across all variables of a dataset, where black indicates that the data is
missing, and grey indicates that the data is available [11]. CART analysis, which goes
through the data via tree-based structures, can likewise help to identify variables that
have an impact on missingness, i.e. to explore which variables can help forecast the
missing rates [11].

For the missing value imputation, Carbery (2022) applied complete case analysis, bag
method, kNN, LOCF, mean as well as median imputation, random forests and a variation
of the latter called RFextra in their respective implementations from R packages such as
caret, imputeT, and missRanger [11]. In line with the experimental set-up, the dataset
was split into 75% training data, and 25% test data, and the modeling was carried
out using 5-fold cross validation and SMOTE to balance classes so that the majority
class is not over-emphasized [11]. Carbery (2022) chose “accuracy, balanced accuracy,
sensitivity, and specificity“ as performance metrics [11]. The figure 4.13 illustrates a
typical summary of missing value imputation results for an indirect evaluation example,
where the performance of the missingness method is determined by applying an XGBoost
classifier to the pseudo-complete dataset after imputation, and measuring the selected
performance metrics [11]. In this particular case, it turned out that the complete case
analysis performed best in case of accuracy as a major performance criterion and without
class balancing, while LOCF constitutes the most performant missingness method in
case balanced accuracy and SMOTE are considered [11]. From the above, it can be seen
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Figure 4.12: Missingness map [11]

that running a number of models is more beneficial to judge the effectiveness in a given
situation than just looking at one single model result.

Figure 4.13: Experiment results: performance metrics using XGBoost classifier [11]

In the case of Juddoo (2020), several approaches were scrutinized, namely Bayesian
regression, kNN, singular value decomposition (SVD), principal component analysis
(PCA), and low rank matrix completion. As an experimental design approach, the
concept mentioned in figure 2.6 (adapted from Hasan (2021)) was used, which is a well-
founded method to compare missing value imputation methods [36] [44]. The experiments
done (based on transportation data from the Melbourne intelligent transportation system)
used different versions of missing rates of around up to 56%, which led in the end to the
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conclusion that least squares variants (e.g. local least squares) performed better (based
on RMSE) than other methods in situations with low missing rates, and more complex
imputations were better in scenarios with higher missing rates [44]. Random hot-deck
imputation was named in the literature as an even more performant way, but was not
explicitly inspected by Juddoo (2020). The missing value imputation process was run
in different tools, including RapidMiner and Python, and it turned out that Python
appeared to be better suited for this task, so Juddoo (2020) recommend their approach
as Python offers missing value imputation facilitators such as impyute1 or scikit-learn
impute2 [44]. Juddoo (2020) specified their approach as follows: [44]3

• The feature containing missing values is named y.

• Then the data is divided into a part containing missing values (X_test), and
without missing values X_train.

• Split the target variable (y_train) from the X_train data.

• Apply a missing value imputation algorithm, and predict y_pred.

• Append this result to the X_test data as a new column

• Merge the datasets.

Abhishek (2021) dedicated more specifically to missing value imputation algorithms
considering cyber-physical applications, more precisely real-time data analysis in the
context of water storage tanks using intelligent sensing and networking [1]. As one of the
main limitations to predicting water storage levels, Abhishek (2019) mentioned missing
values incurred during real-time monitoring comprising sensors and automated devices
[1]. For replacing the missing values, mean imputation, kNN, expectation-maximization,
and matrix completion were used so that the different methods were available for later
comparison of fit to the dataset [1]. In mean imputation, all missing values are replaced
by the mean value of the respective feature. In kNN, which is an online method, the
nearest k entries measured, according to the chosen distance measure, to the observation
under concern are considered for replacing the missing value by their average [1]. Based
on prior experience, kNN achieves good imputation performance even in case of larger
missing rates [1]. In EM imputation, the algorithm iterates through expectation stage
(where it “ascribes esteems“), and maximization stage (where it “checks whether the
esteem is in all likelihood“) [1].

The authors chose several performance metrics including RMSE, MAE, and mean absolute
percentage error (MAPE), and assumed that the data is missing (completely) at random
[1]. Various missing rates ranging from 0% to 60% were considered, and the experiment

1https://impyute.readthedocs.io/en/master/
2https://scikit-learn.org/stable/modules/impute.html
3Note: Source refers to all bullet points in this list.
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was set up approximately in accordance with the layout presented in figure 2.6 (adapted
from Hasan (2021)), where the dataset was made pseudo-incomplete, and the missing
values were imputed using different techniques [36] [1]. The concrete experimental design
was set up as to include the following steps [1]:4

• Do preliminary cleaning.

• Make a copy of the original complete dataset.

• Delete some of the values in the copy, i.e. make them missing (up to 60%) randomly
as well as to some determined non-random procedure

• Apply missing value imputation techniques to the test data

• “Compare original training data with imputed test data“

• Calculate and compare performance metrics (here: RMSE, MAE, MAPE)

Ehrlinger (2018) analyzed the treatment of missing values in the area of Industry 4.0
analytics, i.e. using a case study from a Voestalpine steel manufacturing plant, while
applying different imputation techniques to replace missing values, which led her to
the conclusion that transaction and production data is very much available, but the
problem is in many cases the data quality [19]. It turned out that most research related
to missing values does not refer to industrial analytics, but rather to social science
analytics concentrating on survey data [19]. But notably in the industrial domain it
occurs that a large number of observations lack complete data for all features due to
faulty sensors or network communication, which makes dropping whole observations or
features nearly impossible, even though the deletion of observations is the most widely
used technique in practice due to its simplicity [19] [95]. However, it is suspected that
in practice professionals dealing with incomplete data do not take it very serious, and
furthermore find it hard to gain an overview across the usefulness of the various possible
imputation methods [19]. For the analysis, Ehrlinger (2018) used a dataset, which
comprised around 200000 observations of 560 features, composed of mostly temperature
measures recorded during the steel milling and corresponding water cooling process
[19]. Furthermore, among the challenges notably prevalent in the industrial domain,
the size of data (tending towards or even big data), automated data collection by the
means of sensors (where contacting non-respondents is not possible like in social sciences),
non-normally distributed data (which needs to be reflected in the statistical significance
test selection), and mainly numeric entries [19]. Zhu (2015) adapted the kNN imputation
into an iterative version that it achieves higher performance in the area of trash pickup
logistics if accuracy and speed to converge are considered [101]. As an experiment
design, the one from figure 2.6 is largely used as well, with the addition of a reporting
dashboard to visualize the results [36] [19]. To achieve the pseudo-incomplete data, on

4Note: Source refers to all bullet points in this list.
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the one hand random deletion took place, and on the other hand, some data entries
were used according to a pattern [19]. If the data is MCAR or free from patterns in the
missingness, this could also be tested for using the Little’s test which is somewhat a
“chi-square test for missing values“ and indicates no pattern in case the p-value is not
significant and the null hypothesis is not rejected [19]. If the p-value is significant, the
missingness mechanism is likely MAR or MNAR [19]. According to Ehrlinger (2018),
multiple imputation is the most widely used imputation technique, so they also applied
this technique for their case study, which used Markov Chain Monte Carlo algorithm for
joint modeling, Ward’s method for clustering, correlation evaluation, and for numeric data
linear regression (implemented in the programming language SAS) [19]. The performance
was later evaluated based on MSE for all methods mentioned above, and compared
to the actual values, i.e. the ground truth [19]. As a conclusion, the clustering and
joint modeling approaches came in worst in terms of performance metrics, while partial
correlation and linear regression led to the best results [19].

The challenging nature of treating missing values was also confirmed by Liu Yuehua
(2020), who explore the impact of missing values imputation in industrial IoT sensor
data in order to enhance reliability of monitoring processes as sensor measurements
cannot easily be recovered as such once lost [57]. Their study was based on datasets from
Australian manufacturing plants and focused notably on large availability gaps in sensor
data (capturing amongst others “temperature, speed, vibration, and pressure“ features
containing around two million measurements) generated from IoT devices using Loess
approaches combined with time series methods such as seasonal trend decomposition
for imputation and Bayesian multiple imputation in the multivariate case [57]. For the
univariate case, interpolation (using splines and polynomials) as well as linear and logistic
regression, and LOCF were applied [57]. As an addition to the existing methods, iteration
was able to enhance the performance in terms of RMSE over other the state of the
art (when compared to the real values) [57]. The experiments were implemented using
the R packages Zoo (e.g. na.locf, na.aggregate, na.approx for interpolation,
na.spline), and ImputeT (e.g. na.seadec for seasonal decomposition).

High quality data analytics applications require high quality input data, which also
includes completeness. In case of incomplete data, most missing value imputation
methods weigh each feature equally, and do not take into account their respective
involvement in “downstream“ activities [95]. Yao (2021) pointed out that performance
might be impacted by how missing values are treated, and considered this finding in
their more refined method called fine-tuned generative adversarial network (GAN) (or in
short FIGAN) model, which was tailored especially to industrial soft sensor applications
[95]. For this purpose, a “pseudo-labelled soft sensor carries out data imputation and
label prediction interactively“ that also takes into account possibly missing values in
the sensor labels, whose effectiveness was tested in two case studies in the context of
steel and penicillin manufacturing [95]. The FIGAN model is able to tackle “incomplete
data directly in the training process“, then learns about the dataset’s distribution, and
performs multiple imputation [95]. Even during the imputation process, the FIGAN
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model considers the soft sensor performance changes in terms of the significance of
downstream features (via a feedback loop), and offers a customized way of imputing
dynamically, i.e. the “trained soft sensor is employed to forecast the labels for the
unlabelled imputed data“ [95]. So, the components of the FIGAN play together in a way
that the generator creates the data according to a specific initial distribution, followed by
the discriminator which “distinguishes between what values are observed and imputed,
then the hint generator which collects information regarding the necessary mask matrix
for the discriminator, and finally the soft sensor (e.g. trained with XGBoost) which
helps to reconstruct the unavailable labels“ [95]. As for the evaluation, again RMSE
was used as a performance metric in addition to R2 [95]. In the experimental set-up,
which corresponds to the one flagged above (see figure 2.6), the new FIGAN model
(with XGBoost for the final soft sensor) was compared to further GAN, random forest
(more precisely MissForest), and mean imputation [95]. In line with the experiments,
FIGAN model was able to perform better than the other techniques for some attribute
combinations, but not for all, which suggests that it cannot be seen as generally superior
[95]. When examining different percentages of missing data, it turned out that the
FIGAN model achieved good results up to 50% missing values, but more than that led
to a significant decline in performance [95].

Another approach in the area of intelligent manufacturing was proposed by Wang (2019),
who used data from polymer production monitoring processes [89]. The issues at this point
was as in the previously presented cases that the collected monitoring data was incomplete
due to sensor and networking problems [89]. But in contrast to the GAN approach, an
ordinary least squares (OLS) based autoencoder (i.e. a network with orthogonal hidden
neurons which are selected using ordinary least squares estimation) was developed to
generate replacements for missing values via the decoder part. The method was evaluated
based on the MSE (in a cross-validated form) for various missing rates ranging from 2% to
25% via random removal in a dataset comprising around 10000 observations, and exhibited
good performance compared to multiple imputation approaches for missing rates above
5%, but much worse than kNN and random forest for missing rates lower than that [89].
The experimental set-up was aimed to compare the OLS-based autoencoder approach
with other imputation methods such as kNN, random forest, and several variants of GAN,
the implementation was done in Matlab, and repeated 100 times [89]. The advantage
of the autoencoder in this case was that it captured the highest variance of the original
data to use it for predictions in an unsupervised way, and that it was able to keep the
computational effort low by bringing in OLS evaluation for evaluating the contributions
of the neurons [89]. For instance kNN is easily understandable, but choosing the distance
function and number of neighbors takes time and with larger datasets computation power
[89]. Random forests were also evaluated as the tree-based approaches do not require
strict assumptions and can be applied in most scenarios [89]. Still, the larger the number
of trees, the higher the computational effort for the method [89]. As also presented by
Yao (2021) [95], GAN offer an extension to the multiple imputation approaches, but via
a generative strategy by considering the “probability distributions over observed data
via an adversarial process“, meaning that the generative model seizes the probability
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distributions while the discriminative model “estimates the probability that a given
sample datapoint comes from the real data rather than the generator“ [89] [88]. However,
finding the actual distribution characteristics could also constitute a barrier [89] [88].
This excursion should highlight that although here the focus is placed on supervised
techniques, there are new unsupervised techniques, which might be even more favorable
under certain circumstances.

In the area of condition-based e-maintenance of industrial centrifugal compressors,
Loukopoulos (2017) conducted a research study in line with that a number of imputation
methods were applied to tackle the issue of incomplete data [58]. The experimental
design was chosen in accordance with the common layout described in detail by Hasan
(2021) [36] [58]. Applying a number of univariate as well as multiple imputation missing
value imputation methods to a dataset with missing values in one feature showed that
the latter group led to higher accuracy in the direct evaluation case irrespective of the
percentage of missing values or the location of them in the dataset at hand [58]. The
underlying dataset contained for instance information of the machine’s operational status,
previous failure count, and further operations measurements regarding the process and
mechanics – overall 25 variables and 474 observations – which is required to detect the
need for maintenance activities as early as possible [58]. For the purpose of dealing
with lost data entries mainly due to sensor failures and network connectivity issues,
a set of missing values such as SVD, kNN, Bayesian PCA were applied to industrial
centrifugal compressor data for the first time, according to the authors with the goal to
determine the most appropriate one with regard to the performance metrics of accuracy
and execution time [58]. From this experiment, Bayesian PCA and EM came out as the
most performant considering accuracy in the case of 1-5% of missing data, but the former
worst in terms of computational effort in the direct evaluation experiment setting [58]. On
the other hand, kNN appeared to achieve the most robust results across varying missing
rates and missing data locations in the dataset [58]. Other related works proclaimed
that in similar domains kNN was able to achieve the best accuracy across missing rates
of 1, 5, 15, 25, and 50%, and outperformed notably SVD and mean imputation [58].
Overall, mean and median replacement from the ad-hoc methods category, linear and
cubic spline from the interpolation method category, autoregressive model from the time
series category, self-organizing maps and kNN from the online method category, Bayesian
PCA from the probability based category, and expectation-maximization algorithm from
the statistical category were implemented and evaluated (based on normalized RMSE)
in Matlab except for the EM one which was implemented in R [58]. In contrast to the
other papers, Loukopoulos (2016) also explored the influence of missing data, if it occurs
only in one variable, and not spread across the whole dataset [58].

Condition-related monitoring data, comprising around 100000 observations and 25 fea-
tures, has been preprocessed as well by McMahon (2020), but in another area, namely
railway asset management comprising infrastructure and rolling stock assets [61]. This
includes for example performance, management, financial, or operations features [61]. The
missingness mechanism is usually MAR or MCAR in this area, according to McMahon
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(2020) [61]. For their study, data from various railway sites were collected, which were
made pseudo-complete using EM, deep learning approaches (i.e. from more simplistic
multi-layer perceptron to long short-term memory), and some time series models consid-
ering trends and seasonality, later on evaluated regarding accuracy [61]. For evaluation
purposes, the authors chose RMSE as a metric, implemented the experiments in Matlab,
and likewise did they use an experiment design set-up similar to Hasan (2021) [36] and
Loukopoulos (2017) [58] [61].

What is more, several studies including Feldman (2018) tried to quantify by the means of
simulation experiments the influence of incomplete data on subsequent decision-making
quality via machine learning methods (such as linear discriminant analysis (LDA)), into
which the incomplete or pseudo-complete data is fed [23]. Feldman (2018) inspected
the application case of (binary) LDA classification after making an incomplete dataset
complete [23]. Their research finally aimed to connect “data quality, model quality, and
decision quality“, meaning that the better the quality of the underlying data, then the
better the model based on it can be fine-tuned, and the better the decision quality of
subsequently applied supervised machine learning algorithms, and vice versa [23]. The
results of this research led the researcher to proclaim that “with classifiers trained based
on an incomplete dataset, the likelihood of assigning the wrong class to a test instance
is higher“ under the assumption of MCAR missingness pattern [23]. In the simulation
experiments which were carried out in Matlab, kNN, likelihood-based, and Bayesian
probabilistic models were used to impute the missing data, and evaluated based on
“accuracy, precision, sensitivity, and / or specificity“ [23]. A similar experiment was
carried out by Razavifar (2021) who studied the “impact of missing data imputation for
classifying intrusions in cyber-physical water systems“, and used accuracy as well as F1
measure (i.e. a combination of precision and recall) for evaluation [74].

Feldman’s (2018) research indeed confirmed the claims made by Cartwright (2003), who
analyzed the contribution of kNN, hot-deck as well as sample mean imputation in the
industrial software engineering data context, where missing values tend to naturally
occur [23] [12]. To generate more robust replacement values, multiple imputation was
used as well, which generated several full datasets that were later on brought together
considering the uncertainty and probabilities [12]. Cartwright (2003) observed that
the aforementioned imputation techniques substantially ameliorated the performance
of subsequent machine learning activities in a situation of around 15% to 20% missing
data entries out of the whole dataset, even though kNN and mean imputation were
rather simplistic methods [12]. Likewise, Farhangfar (2008) led a research project that
explored the influence of imputation by the means of hot-deck, single imputation, multiple
imputation algorithms on the results of six classification methods (i.e. Ripper, C4.5, kNN,
SVM with radial basis function (RBF) kernel, Naive Bayes)), which showed that given
the underlying datasets an improvement over the situation without imputation could
be achieved, and for missing rates ranging from 5% to 50% [21]. The experiment design
used by Farhangfar (2008) is illustrated in figure 4.14 [21]. In line with the experiments,
the data is split into training and test data at the beginning (see 4.14). The training
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set is then made pseudo-incomplete by deleting randomly some of the values (see 4.14).
Then imputation methods are applied to make the dataset complete again, and arrive at
the imputed dataset, on which classification methods are applied (see 4.14). Similarly,
the test dataset that was initially set aside is now used to apply classification methods
4.14. Later on, performance in terms of accuracy is evaluated for the originally complete
test dataset without imputation, and the imputed dataset. Overall, it can be said from
the experiments that imputation contributes to increase classification accuracy for the
methods in most scenarios, except mean imputation which proved only useful in the
case of 50% missing rate [21]. According to Farhangfar (2008), “statistically significant
improvements were achieve for the kNN, SVM with RBF kernel, and RIPPER classifiers,
while C4.5 and Naive Bayes were missing data resistant“, and the change in missing rate
does not influence the performance directly proportionately [21]. Nevertheless, there was
no single best method that prevailed in terms of performance across all datasets analyzed
[21].

Figure 4.14: Experiment design by Farhangfar (2008) [21]

In this indirect evaluation case, step-wise regression, which selected the features having
the highest coefficients in each step, was carried out to make predictions based on the
pseudo-complete dataset, and evaluated based on the adjusted R2 criterion relevant for
regression that sums up the squared residuals [12]. The higher the adjusted R2 criterion,
the better the model’s goodness of fit [12]. As a last stage in the experiment, a statistical
significance test, more precisely the non-parametric Paired Samples Wilcoxon Signed
Rank test, was done in order to test whether the difference between the residuals was
significant or not [12]. Compared to the non-imputed incomplete dataset, by using kNN,
multiple imputation, and sample mean imputation the R2 criterion could be increased
from around 0.22 to 0.97 [12].

When it comes to IoT sensor networks, missing values tend to occur quite frequently for
a number of reasons as stated above. Okafor (2021) examined the implications of such
data issues due to missing sensor values for the on-site sensor calibration [66]. To get an
understanding of how sensor calibration can be impacted by missing data, “variational
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autoencoders, neural networks with random weights, MICE, kNN, and random forest“
(using missForest implementation) were chosen as imputation techniques [66]. The
dataset contained environmental sensor measurements across a range of particle and gas
perception sensors from urban monitoring sites in Colorado (USA) used for air quality
and traffic monitoring with usually around 20% missing rate [66]. This was followed
by an indirect evaluation of the imputed dataset using supervised algorithms for sensor
calibration, namely multiple linear regression, random forest, decision tree, and XGBoost
algorithms, with grid search to determine the best parameters respectively [66]. Several
missing rate scenarios were analyzed ranging from 5% to 70% of missing values, and
RMSE, MAE, and R2 were chosen for performance comparison [66]. The experiments
were carried out in Python (version 3) in combination with Jupyter Notebook [66]. Erhan
(2021) also examined a dataset from the area of environmental intelligent sensing with
regard to the effectiveness of kNN and missForest as imputation methods which resulted
a decreased execution time [20]. The plot that compares the experiment results is shown
in figure 4.15, which depicts the chosen imputation methods’ (variational autoencoder
(VAE), neural network with random weights (NNRW), MICE, missForest and kNN)
RMSE result per missing rate [66]. At this point, it has to be mentioned that a lower
RMSE value is associated with a better performance. It can be seen from the figure
4.15 that higher missing rates lead to a higher error, i.e. worse performance [66]. As
a result, the variational encoder arrived at the best position and achieved the highest
performance, which represented an improvement over using the non-imputed incomplete
dataset with a better sensor calibration than before [66].

Figure 4.15: Experiment results: RMSE performance for different missing rates [66]
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CHAPTER 5
Survey

This chapter refers to the online survey. It contains on the one hand the section Survey
Design 5.1, which explains how the survey was set up, prepared and conducted. The
second section 5.2 is dedicated to illustrate the survey results.

5.1 Survey Design
The online survey was design comprised several phases as it is presented in Figure 5.1
(adapted from [47], [100], [33]). As shown in the first phase, the survey was chosen as a
method to answer the second research question (RQ2), i.e. what methods and models are
being used in research and in the industry to inspect, evaluate, and improve the handling
of missing values throughout the data analysis in practice. The focus was placed on
structured datasets. It was conducted in the form of an online survey as the potential
participant pool for this topic is well available via e-mail, online chat, discussion forums,
and the like. The target group was specified as people working part- or full-time in jobs
related to data analysis ranging from management and research to operations, software
engineering, statistics, and data science roles across all domains.

Figure 5.1: Survey design phases (adapted from [47], [100], [33])

Thirdly, the question types were chosen and the questions were formulated accordingly.
The questionnaire comprised seven sections, each of which contained several questions. In
the beginning, information on the demographic background was collected, which included
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the level of completed education, the main educational background, the main business
area or domain of working of the participant, the current role as well as the experience in
it. Furthermore, information about the size of the organization, programming languages
used at work, age group, and gender were collected. As a question type single choice
questions, i.e. of closed type were used, and an “other“ option was provided to enter any
information not captured by the given answer options. The next section referred to the
handling of incomplete datasets / missing values in practice, which asked the participants
to judge how they would handle datasets containing various percentages of missing data
entries. They were asked to indicate the overall approach of their organization towards
handling incomplete datasets, and its relative importance. All questions in this section
were closed, single-choice questions. In the section on the knowledge of methods to handle
incomplete datasets, the participants were asked to indicate their practical experience
with a series of methods for missing data handling (such as mean / mode / median
imputation, hot-deck imputation, replacement by constant, kNN, SVM) as well as their
preference for a specific method, in case they had one. The questions this section were
again of closed nature. Subsequently, the section on software tools and choice of methods
dealt with what software packages and libraries the participants used in practice to tackle
incomplete datasets in the form of a single choice grid across the methods, and one
further open question where the participants could enter information on any additional,
not yet mentioned package or library including the related programming language. The
section on the choice of methods and learning referred to factors that might influence the
decision on what method or model to choose for handling missing data, and what kind of
background the participant had in his / her learning experience and education until then
with regard to this topic. The former questions were single-choice questions. Finally,
participants were offered the opportunity to share any remaining thoughts or experiences
on handling incomplete datasets in practice. In the last section, the participants had
the opportunity to indicate whether they would like to obtain the results of this survey,
and further information on their organization and contact details. The full version of the
online questionnaire can be found in the Appendix 8 for a more detailed view on the
questions.

In the fourth phase, the online questionnaire was created using Google Forms as a tool.
It included a prior information and consent form regarding data processing, followed
by a description of what “dealing with incomplete datasets“ means so that a shared
understanding of the topic is ensured. After this, the previously mentioned questionnaire
was placed.

The fifth phase comprised pilot tests which were run with five test participants that
did in the end not participate in the actual online survey. They merely tested the
understandability of the questions formulated as well as the suitability of the question
types on different devices (e.g. mobile vs. desktop display). The duration was estimated to
be around ten minutes. Feedback from the pilot tests was integrated in the questionnaire.

Subsequently, the survey was made available online via link sharing and e-mail. The
participants were invited via personalized e-mail or online chat apps and forums, and
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were asked further distribute the online survey invitation to contacts suitable for the
potential participant description to obtain somewhat a snowballing effect. The online
survey was active from 30 May 2022 to 07 July 2022, i.e. over a period of 39 days.
Finally, the survey answers were collected from the Google Forms online platform, and
were exported as a CSV file, which was later on analyzed in R. The results of the survey
are presented in the upcoming chapter 5.2 Survey Results.

5.2 Survey Results
The questionnaire was fully completed by 330 participants within a time period from 30
May 2022 to 07 July 2022. All survey responses were complete and could be processed for
the survey results. For single-choice questions, pie charts were used for illustration as the
numbers add up to 100%, while for multiple choice questions other forms of representation
were chosen. With regard to their highest completed education, most participants have
completed a bachelor degree (52%) as it can be seen in Figure 5.2. Further 28% completed
studies at master degree level, 11% achieved high school certificate, 8% a PhD or doctoral
degree, and 1% completed an apprenticeship (see 5.2). The related absolute numbers are
provided in table 5.1.

Figure 5.2: Demographics: highest completed education

Highest completed education Nr. of respondents
Bachelor degree 171
Master degree 92
High school certificate 38
PhD / doctoral degree 26
Apprenticeship 3

Table 5.1: Demographics: highest completed education

The participants’ main educational background appeared to mainly in computer science
(46%) and statistics / data science (16%), followed by business, electrical and electrical
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engineering, physics, mathematics, and chemistry each in almost equal parts (see Figure
5.3 and Table 5.2).

Figure 5.3: Demographics: main educational background

Main educational background Nr. of respondents
Computer science 152
Statistics / data science 53
Business administration / management 20
Other 20
Electrical engineering 17
Physics 17
Mechanical engineering 17
Mathematics 17
Chemistry / process engineering 17

Table 5.2: Demographics: main educational background

The main business areas or domains, in which the participants work, are very diverse,
with 21% being employed in the banking, insurance and financial services sector, 12%
in industrial manufacturing, 9% in government / public sector, then 7-8% in health
and medical services, education, research, energy, utilities, natural resources, retail,
and consumer goods, as shown by Figure 5.4. Around 3-5% stated they work in the
transportation, pharmaceuticals, life sciences, real estate, and construction sector (see
Figure 5.4 and Tab 5.3).

When it comes to the most recent job role, 38% stated that they work in data analysis,
data science or statistics related job, while further 20% work as software engineer, 16% in
general IT or project management, and 11% in management or business administration,
according to Figure 5.5. The related absolute numbers are provided in table 5.4.
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Figure 5.4: Demographics: main business area

Main business area Nr. of respondents
Banking, insurance and financial services 69
Industrial manufacturing 40
Telecommunications, media and entertainm. 36
Government, public sector 30
Health and medical services 26
Education, research 26
Energy, utilities and nat. res. 23
Retail and consumer goods 23
Pharmaceuticals and life sciences 17
Other 17
Transportation 13
Real estate and construction services 10

Table 5.3: Demographics: main business area

The overall work experience ranges mainly between 3 to 5 years (i.e. among 35% of
participants), and 1 to 2 years (i.e. among 19% of participants), as it can be seen from
Figure 5.6. Around 30% of the participants’ work experience is over 6 years, and 15%
have less than one year in work experience (see Fig. 5.6 and Table 5.5).

The size of the organization also differed, but 44% of the participants are employed by
large businesses counting over 500 employees overall as to Figure 5.7. Medium-sized (i.e.
50-500 employees) and small businesses (i.e. <50 employees) each have a share of around
20% (see Fig. 5.7). 12% of the participants decided not to declare their organization’s
size (see Fig. 5.7). The related absolute numbers are provided in table 5.6.

With respect to their age group, 50% of the survey respondents were between 26 and
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Figure 5.5: Demographics: latest job role

Most recent job role Nr. of respondents
Data analysis / data science / statistics 125
Software engineering 66
IT / project management 53
General mgmt. / business admin. 36
Mechanical / electrical engineering 20
Operations 17
Other 13

Table 5.4: Demographics: most recent job role

35 years old, 35% between 18 and 25 years old, and 9% between 36 and 45 years old,
according to Figure 5.8. About 4% were 46-55 years old, and the remaining participants
did not declare this information (see Fig. 5.8). For absolute numbers refer to Table 5.7.

The gender distribution among the participants was 69% male, 27% female, and 4% who
did not share this information, as it can be seen from Figure 5.9. The related absolute
numbers are provided in Table 5.8.

The participants were also asked what programming languages they actively use at work,
which led to the results in Figure 5.10, while participants were allowed to select more than
one programming language in case this applied. According to Figure 5.10, 51% of them
use Python, and 27% R at work (5.10). This is followed by around 17-20% of respondents
who use Java, JavaScript, or C/C++/C# in practice (5.10). Further 20% did not use
any programming languages at work (5.10). Less than 7% used Matlab/Octave, SAS,
SQL, Scala, Visual Basic, TypeScript, or Kotlin (5.10). In the open comment field, less
than 1% mentioned that they use either PHP, CUDA, Angular, Mathematica, Rust, Go,
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Figure 5.6: Demographics: overall work experience

Overall work experience Nr. of respondents
3-5 years 115
1-2 years 62
> 10 years 53
6-10 years 50
< 1 year 50

Table 5.5: Demographics: overall work experience

Size of organization Nr. of respondents
Large business (> 500 employees) 145
Small business (< 50 employees) 83
Medium-sized business (50-500 employees) 63
Don’t want to share this information 39

Table 5.6: Demographics: size of organization

or Smalltalk (5.10).

In the section on handling incomplete datasets and missing values in practice, the
participants were presented with cases in which missing rates of 5%, 20%, 40%, and 70%
were given. They were asked to judge the situation subjectively, and select the most
applicable answer option. As it is illustrated by Figure 5.11 and 5.9, in the scenario
with 5% missing values in the dataset under concern, 38% said they would delete the
observations (rows) and/or features (columns) that contain missing values, and then use
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Figure 5.7: Demographics: size of organization

Figure 5.8: Demographics: age group

the dataset. 30% would think about a tailored imputation strategy for the setting, and
would compare several methods, whereas 20% would simply replace all missing values
in a column by the same value, i.e. do a replacement by constant. 8% stated that they
would apply the one specific imputation technique that they always use for missing values
(see Fig. 5.11).

In contrast to the 5% scenario, when the missing value percentage is increased to 20%,
most participants, i.e. 44% said that they would think about a tailored imputation
strategy, and compare several methods, as it is visible from Figure 5.12. 18% stated that
they would not use the dataset at all due to its incompleteness. So, the point where
simple missing value handling methods are applied by a large part of the respondents
appears to be somewhere between the 5% and 20% missing value percentage. The related
absolute numbers are provided in table 5.10.
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Age group Nr. of respondents
26-35 years old 165
18-25 years old 116
36-45 years old 30
46-55 years old 13
Don’t want to share 6

Table 5.7: Demographics: age group

Figure 5.9: Demographics: gender

Gender Nr. of respondents
Male 228
Female 89
Don’t want to share 13

Table 5.8: Demographics: gender

In case of 40% missing values, the percentage of respondents who would not use the
dataset due to its incompleteness surges to 80%, while 13% still think about a tailored
imputation strategy, as shown by Figure 5.13. Simpler methods to replace the missing
values would be used by only less than 5% of the participants (see Fig. 5.13). The related
absolute numbers are provided in table 5.11.

In the scenario where a share of 70% of data is missing, again 80% indicated that they
would not use the dataset at all because it is incomplete, and further 14% would still
think about a tailored imputation strategy, as it is illustrated by Figure 5.14. The related
absolute numbers are provided in table 5.12. Again, simpler methods to replace the
missing values would be used by only approximately 5% of the participants (see Fig.
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Figure 5.10: Programming languages used at work

Figure 5.11: Scenario: 5% missing values

5.14). Based on the Figures 5.13 and 5.14, it can be said that those missing value rates
are already too high to still think about a strategy to tackle them, according to the
majority of respondents, which would largely lead to purging the whole dataset.

As for the overall approach to handling incomplete data at the organization where the
respondents work, 33% indicated that every time when data is missing in a new dataset,
a dedicated strategy is elaborated to tackle them (see Figure 5.15). The related absolute
numbers are provided in table ??. Figure 5.15 also shows that 24% would describe their
organization’s approach in a way that they would most commonly just delete the rows
and / or columns affected by missing values, and continue using the dataset afterwards.
21% of the respondents stated that their company policy would rather not use incomplete
datasets at all, and only consider complete ones. 14% would perform replacement by
constant on the missing value entries, and 8% said that in their organization the one
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Scenario: 5% missing values Nr. of respondents
Delete the observations / features 125
Tailored imputation strategy 99
Replace all missing by same value 66
Apply one specific technique 26
Don’t use the dataset 14

Table 5.9: Scenario: 5% missing values

Figure 5.12: Scenario: 20% missing values

Scenario: 20% missing values Nr. of respondents
Tailored imputation strategy 144
Don’t use the dataset 58
Delete the observations / features 50
Replace all missing by same value 45
Apply one specific technique 33

Table 5.10: Scenario: 20% missing values

technique they always use would be chosen in any case (see Fig. 5.15).

30% of the respondents described their perceived importance of the topic of handling
incomplete data at their organization as rather important, as shown in Figure 5.16. The
related absolute numbers are provided in table 5.14. Around 24% said that they perceive
it as indifferent, and 19% stated that for their organization the topic appears to be
highly important. According to around 26% of the participants, the topic is rather not
important or very unimportant at their organization.

The next section dealt with the knowledge of methods to handle incomplete datasets in
practice, in relation to which the participants indicated their own experience, which is
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Figure 5.13: Scenario: 40% missing values

Scenario: 40% missing values Nr. of respondents
Don’t use the dataset 264
Tailored imputation strategy 43
Delete the observations / features 10
Apply one specific technique 7
Replace all missing by same value 6

Table 5.11: Scenario: 40% missing values

Figure 5.14: Scenario: 70% missing values

shown in Figure 5.17 and 5.18 (using all participant’s answers). The Figures 5.17 and
5.18 illustrate that the most used methods in practice among all participants are mean
/ mode / median replacement and replacement by constant, which were both used by
almost 50-60% of the respondents, followed by regression with around 25-30%, and kNN
actively used by around 20%. Approximately 10% of the participant had used CART,
random forest, SVM, LOCF, multiple imputation, and PCA techniques in context with
missing value handling (see Fig. 5.17 and 5.18). The in practice least used methods for
dealing with missing values from the ones given in the survey are hot-deck, EM, ANN,
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Scenario: 70% missing values Nr. of respondents
Don’t use the dataset 264
Tailored imputation strategy 46
Delete the observations / features 17
Replace all missing by same value 2
Apply one specific technique 1

Table 5.12: Scenario: 70% missing values

Figure 5.15: Approach of the organization

Approach of the organization Nr. of respondents
Dedicated imputation strategy 109
Delete observations / features 79
Incomplete datasets are not used 70
All missing values replaced by constant 46
One specific imputation technique always used 26

Table 5.13: Approach of the organization

association rules, Naive Bayes, and XGBoost. It also emerged that most participants
of the survey know mean / mode / median replacement, replacement by constant, and
kNN, but for instance EM, hot-deck, association rules, XGBoost are not generally known
much (see Fig. 5.17 and 5.18). Still, to over 20% of the respondents, the methods CART,
kNN, random forest, SVM, ANN, Naive Bayes, PCA, and regression are known from
another context where they used it, but they have not used it in practice for missing
value handling (5.17, 5.18). For each method, around 10% of the participants did some
tutorials, but had not actively applied it in practice (5.17, 5.18).

When the view is narrowed from all participants to merely the ones whose job role is
placed in the area of data analysis / data science / statistics, the above findings are
confirmed, but the share of respondents not knowing the methods is lower, and at the
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Figure 5.16: Perceived importance of topic at organization

Perceived importance Nr. of respondents
4 99
3 80
5 63
2 57
1 31

Table 5.14: Perceived importance

same time, the share of respondents who actively use the methods is higher, as it is
illustrated by Figures 5.19 and 5.20. From the data analyst / data scientist / statistician
perspective, mean / mode / median replacement, replacement by constant, kNN, and
regression are the best known and most actively used techniques to handle missing values
(5.19, 5.20).
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Figure 5.17: Practical usage of methods (1/2) (n=330)

Figure 5.18: Practical usage of methods (2/2) (n=330)

In line with the survey, the participants were also asked to state their preference for a
specific missing value handling method, in case they do have one. According to Figure 5.21
(see Table 5.15 for absolute values), 22% stated that mean / median / mode replacement
is their preferred technique, which is the largest group of respondents. In contrast, 21%
said that they did generally not tackle incomplete datasets in their job role. Further
around 8% preferred kNN or linear / logistic regression methods, and 5% replacement by
constant. ANN (i.e. neural networks), CART, Naive Bayes, association rules, EM, PCA,
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Figure 5.19: Practical usage of methods (1/2) (n=127)

Figure 5.20: Practical usage of methods (2/2) (n=127)

XGBoost, hot-deck, and LOCF were mentioned least as preferred methods, according to
Figure 5.21.

A series of missing data handling software libraries and packages from the languages
Python and R were presented to the survey participants in order for them to answer
whether they did not know the package / library, had actively used it in practice, or they
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Figure 5.21: Preference for method

Preference for method Nr. of respondents
Mean / median / mode replacement 72
No contact with imputation in job 69
I do not know 36
Linear / logistic regression 26
k-nearest neighbor (kNN) 25
No preferences 25
Other (ANN, CART, NB, AR, EM, PCA, XGB, HD, LOCF) 23
Replacement by constant 17
Delete rows / columns only 13
Multiple imputation 10
Random forest (RF) 7
Support vector machine (SVM) 7

Table 5.15: Preference for method

heard about it but did not use it in practice. The results were gathered once across all
participants, then among people who worked in data science, data analysis, or statistics
only. Figure 5.22, which considers all respondents, shows that around 70% (or more) of
them had heard about the packages and libraries, but did not actively use it in their job
role. Around 20% each had actively used Datawig (Python), IterativeImputer (Python),
KNNImputer (Python) and XGBRegressor (R), however, at the same time the largest
number of respondents also mentioned those libraries as unknown to them (see Fig. 5.22).
For instance Amelia (R), Hmisc (R), mi (R), missForest (R), missMDA (R), naniar (R),
and VIM (R) exhibited a very low share of respondents not knowing them, but likewise
a large share of people who had not actively used them at work (see Fig. 5.22. When the
scope of the data is narrowed down to only data scientists, data analysts, and statisticians,

73



5. Survey

it can be seen that the share of respondents who actively used the respective libraries
and packages is higher than for the whole participant base, according to Figure 5.23.
Likewise, from the data science, data analysis, and statistics perspective, the packages
and libraries that were most actively used in practice were Datawig (Python), Hmisc (R),
IterativeImputer (Python), KNNImputer (Python), and XGBRegressor (Python), plus
a higher number of participants who had practical experience with MICE (R) (see Fig.
5.23. Even among the data scientists, data analysts, and statisticians, the approximately
50%, and for some methods even a higher share of respondents, had heard about the
library or package, but had not actively used it at work (see Fig. 5.23).

Figure 5.22: Practical usage of libraries / packages (n=330)

In the last section of the survey, the choice of methods and learning about methods to
handle missing data were investigated. The participants rated the respective influencing
factors of the choice of missing value treatment methods on a scale from 1 (i.e. low
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Figure 5.23: Practical usage of libraries / packages (n=127)

influence) to 5 (i.e. high influence). As shown by Figure 5.24, the characteristic that a
method is “fast and easy to implement“ was rated highest with an average score of 3.9.
So, out of the given characteristics it was the most influencing factor for the choice of a
missing value treatment method. The characteristic that the method is recommended at
workplace was rated as 3.68 on average. Useful tutorials being available obtained a mean
rating of 3.42, and method already used during education 3.35. The lowest average score
was assigned to reading papers about the method with 3.22 on the scale. Overall, it can
be see from Figure 5.24 that the influence of the given factors is neither particularly low
nor particularly high, but rather between 3 and 4 on a scale from 1 to 5.

When asked about how they perceived the extent of practical guidance experienced
during their education with regard to handling missing data, 37.9% of the respondents
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Figure 5.24: Factors influencing the choice of method

mentioned that it had been mentioned as such but that they actually applied only one or
two simpler methods, and did not go into details. 22.7% of the respondents indicated
that they had not obtained any practical guidance on this topic during their education
at all, whereas 16.7% mentioned that they covered the topic in-depth and that they also
gained practical insights by comparing several approaches in a more detailed way (see
Figure ??). 13.3% said that the topic was covered, but nothing was implemented in a
practical setting, and 9.4% said that they only remembered that there was a theoretical
session on it (see Figure ??). To sum up, over 80% indicated that they did not cover the
topic in-depth in practical sessions during their education (see Figure ??).

Subsequently, the participants were asked to indicate how important they see practical
guidance during education or how much they would recommend it, the results of which
are summarized by Figure 5.25 and Table 5.16. . 34% respectively 33% each think that
practical guidance on handling missing data would be very helpful resp. rather helpful,
while only 9% respectively 2% consider it rather not helpful or not helpful at all (see
Figure 5.25).

In line with the final comments section, some participants added their thoughts in the
form of open text. A large number of the comments pointed out that missing values
are an issue in practice that should ideally obtain more attention, but is in reality still
not taken as seriously by management or due to time constraints at work in many cases.
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Figure 5.25: Outlook on practical guidance

Outlook guidance Nr. of respondents
5 112
4 108
3 75
2 29
1 6

Table 5.16: Outlook guidance

Careful study of research papers and available options would be necessary to examine
the difference in performance, however, such a scenario appears to be rather an ideal
case, and not directly transferable to everyday life where time and resource constraints
occur. The respondents also mentioned that it would be recommendable to not even let
missing values occur, i.e. tackle the issue earlier at the root already.
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CHAPTER 6
Statistical Experiments

The chapter comprises firstly the Experiment Framework Definition 6.1 section, in which
the general experimental design is outlined that is relevant across the two case studies.
The section Open-source Case Study 6.2 covers the data description, exploratory analysis,
experiment implementation, and summary of the results. The section Industry Case
Study 6.3 comprises the same structure of sub-sections in order for the results to be in a
comparable format to the open-source case study. Finally, the section Comparison of
Results 6.4 evaluates the results of the two case studies side by side, so that the best and
worst performing missing value handling methods based on the underlying datasets can
emerge more clearly.

6.1 Experiment Framework Definition
The chapter Statistical Experiments 6 comprises an open-source case study and an
industry-specific case study, for which the common case study and experiment structure
is outlined in this section. The Figure 6.1 depicts the case study structure, which
starts with introductory remarks on the chosen dataset and its verbal description. In the
next phase, the dataset is presented in an exploratory way using descriptive statistics
and visualizations. Additional information about the explanatory variables (to put it
differently features or predictors) and the target variable (i.e. the dependent variable)
including their types is provided.

In the third phase, the statistical experiments are carried out, which is illustrated in
greater detail by Figure 6.2 that comprises the necessary experiment steps. The final
phase wraps up the case study by providing a summary of the outcomes and visualizing
the results amongst other things in terms of performance metrics measured.

When it comes to the statistical experiment set-up, as already mentioned, Figure 6.2
indicates the details. As such, the experiment set-up is based upon the structure proposed
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Figure 6.1: Structure of case study

by Farhangfar (2008) who conducted similar statistical experiments, but adapted in a way
to fit the goals of the experiments used in this research project [21]. As more extensive
methods for handling missing data are available in R, this programming language is
chosen to implement the statistical experiments for the two case studies.

Figure 6.2: Overview of statistical experiments (adapted from Farhangfar (2008)) [21]

The statistical experiment starts from the original dataset, which is complete, i.e. it
does not contain any missing values. In the next step, the data is split according to
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the chosen split-ratio between train and test set, as a separation is necessary for the
application for the holdout method. Furthermore, the target variable is separated from
the features. The holdout method requires that there is one training set for fitting the
machine learning model that is not overlapping with the test set, with the latter being
used to make predictions by the means of the previously fitted machine learning model.

The training set is subsequently made pseudo-incomplete meaning that a specific per-
centage of data are randomly chose to be replaced by NA values so that they appear to
be missing. In doing so, different runs are carried out to get different versions of the
training dataset having a certain missing data percentage.

In the following step, several methods (chosen based on the outcomes of the literature
review (4) as well as the online survey (5)) are applied to the datasets containing missing
values, and the runtime to make them complete again is measured as a performance
criterion.

As soon as the dataset is made complete again, the direct evaluation can be carried out
in order to compare the original dataset to the dataset in which the missing values were
imputed on a column by column basis.

For the indirect evaluation, which compares the performance of supervised machine
learning algorithms on the imputed dataset to the performance on the original dataset
and / or to different machine learning algorithms, several further steps are to be taken.
The chosen supervised machine learning algorithms are trained based on the pseudo-
complete datasets, i.e. the models are fitted. Then the model is used to generate
predictions on the test dataset, which was earlier set aside. In this case, a numeric target
variable is predicted. Therefore, regression methods are used among the supervised
machine learning techniques. Once the predictions are completed, the performance can
be measured in terms of RMSE and MAE, which evaluate the differences between the
predictions and the original values of the numeric target variable.

In the final step, the performance outcomes are statistically tested for four missing value
percentages using the different randomly generated runs of pseudo-complete training
datasets. The performance results from the different runs are tested against baseline, i.e.
against a the results of a specific missing data handling method (e.g. mean imputation)
and / or of the original dataset. With regard to the statistical tests, the case study deals
with repeated measures data, which means that paired t-test (as a parametric test1),
and Wilcoxon Signed-Rank test (as its non-parametric2 equivalent) can be carried out to
compare the performance scores.

1Note: The parametric test makes certain assumptions on the distribution such as normality.
2Note: The non-parametric tests does not make any assumptions on the distribution of the data.
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6.2 Open-source Case Study

The section Open-source Case Study 6.2 covers the data description, exploratory analysis,
experiment implementation, and summary of the results. The general case study structure
is illustrated in Fig. 6.1.

6.2.1 Dataset Description

For the open-source case study a dataset from the raw materials industry is analyzed,
more precisely from the diamond industry. The data3 was extracted from the pool of
Kaggle and Google research datasets4. For this project, a (randomly selected) subset of
10% of the data is used due to the computational complexity required for the subsequently
applied missing handling methods.

The diamonds dataset contains 5394 observations (i.e. rows) and 11 features (i.e. columns).
It is structured in a way that the unique ID heads the columns, and the second column
is the target variable price, which describes the price (in United States Dollar (USD))
per observation. The Figure 6.3 presents a short excerpt of the diamonds dataset, which
illustrates the rows and columns layout.

Figure 6.3: Excerpt of diamonds dataset

The ID column contains the unique identifier for each observation and is not part of the
statistical analysis, whereas the latter columns are target variable (which only refers
to the price) or features, which are carat, cut, color, clarity, depth, table, x, y, and z.
Three of the variables (i.e. cut, color, and clarity) are nominal, which means categorical
variables. The remaining ones are of ratio type, which means numeric variables. The
dataset as such does not contain any missing values in its original form.

The table 6.1 below summarizes the type information regarding the columns, provides a
short description of the respective column’s meaning, and its range or categories. The
column price is annotated as target variable, which is the numeric variable that should
be predicted in the indirect evaluation track using regression methods.

3Note: The data source references refers to all places in the chapter mentioning the diamonds dataset.
4Data Source: www.kaggle.com/datasets/nancyalaswad90/diamonds-prices
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Summary of dataset characteristics
Variable name Type Description Range
ID Ratio Unique identifier 1 - 53943
price (target variable) Ratio Price of diamond 336 - 18757
carat Ratio Carat of diamond 0.23 - 5.01
cut Nominal Type of cut Ideal, Premium, Very Good, Good, Fair
color Nominal Color of diamond E, I, J, H, F, G, D
clarity Nominal Type of clarity SI1, SI2, VS1, VS2, VVS1, VVS2, I1, IF
depth Ratio Depth of diamond 51.00 - 71.60
table Ratio Table information 43.00 - 70.00
x Ratio Measure x in mm 0.00 - 10.74
y Ratio Measure y in mm 0.00 - 10.54
z Ratio Measure z in mm 0.00 - 6.98

Table 6.1: Summary of diamonds dataset characteristics

6.2.2 Exploratory Analysis

In line with the exploratory analysis, descriptive statistics are visualized in order to
introduce the content of the diamonds dataset prior to the analysis. With regard to the
categorical variable cut, the most frequently occurring type is of the label Ideal, followed
then by Premium and Very Good, Good, and only very few of type Fair, as shown in
Figure 6.4. The histogram of the second categorical variable is presented by Figure 6.5
refers to color, which is again not evenly distributed, but has most occurrences in the
types G, E, F, and H, with a lower number of occurrences in type D, I, and J. Figure 6.6
shows the histogram of clarity types, which comprises mostly the labels SI1, SI2, VS1,
and VS2, and a lower number of the labels I1, IF, VVS1, and VVS2.

Furthermore, the Figure 6.7 represents the distribution of the numeric variables contained
in the dataset (including the target variable price). From the figure, it can be seen that
the distribution of depth and table are rather concentrated around a smaller range of
values, while the distribution of x, y, y, carat, and price respectively is less condensed
and spread across a larger range. Between the numeric variables the correlation can be
computed to see how each pair of them is related. As it can be seen from Figure 6.8, the
positive correlations between carat and x, y and x, y and carat, z and x, z and carat, as
well as z and y are among the highest in the dataset. The variable price is also rather
positively correlated with x, y, carat, and z, according to Figure 6.8. The variable table
appears to be only slightly positively or almost uncorrelated with other variables in the
dataset. The variable depth is slightly negatively correlated with table, and very slightly
positively correlated with z, but uncorrelated with the remaining variables.
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Figure 6.4: Histogram of the categorical variable cut

Figure 6.5: Histogram of the categorical variable color

6.2.3 Experiment Implementation

The experiment was implemented according to the set-up shown in Figure 6.2. The
original dataset (see step 1 in Fig. 6.2) was used as a basis, and was read in a way that
strings were treated as factors. The original dataset was prepared (as a data.frame
data type) in way that facilitated the later pre-processing and analysis steps: ID and
price (i.e. the target variable) were in the first part, followed by the categorical variables,
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Figure 6.6: Histogram of the categorical variable clarity

and finally the numeric variables.

The data was subsequently split into training and test data (see step 2 in Fig.
6.2) along 20 random splits, with the randomness being captured by seed values to
make the experiment reproducible. As a split ratio 80-20 was chosen for the train-test
percentages, the 20 random split combinations were prepared in order to use them for
the holdout method. According to this, on every training dataset a model is fitted, and
the corresponding test data is the basis for the predictions.

The split, but still complete data had to undergo a process of creating a pseudo-
incomplete dataset (see step 3 in Fig. 6.2). For this reason, the features were separated
from the target variable and the ID column, and random row-column index combinations
were generated in order to obtain the entries to delete from the training data. Different
missing data percentages were considered, namely 5%, 10%, 20%, and 40%. The missing
percentage of 70% which was also mentioned in the prior online survey was dropped
given the fact that most theoretical works as well as participants stated that they never
considered a dataset with such a high missing data percentage, and if they did, the data
quality was too low for further processing[36].

In the next phase, the missing values had to be dealt with. Thus, missing value
handling methods were applied (see step 4 in Fig. 6.2) to make the pseudo-incomplete
complete again, and at the same time the execution time was measured as a
performance metric for all 20 runs (per missing entries percentage and handling method).
For the datasets, the missingness pattern MCAR was assumed as the datasets were
randomly made incomplete. The missing handling methods were chosen based on the
results from the literature review and the online survey:
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Figure 6.7: Distribution of the numeric variables

• Mean imputation

• Median imputation

• kNN imputation

• CART imputation

• Random Forest (RF) imputation

• Regression imputation

• XGBoost imputation

Theory suggested as machine-learning based methods in this specific order kNN, RF,
SVM, CART / DT (trees), Naive Bayes, LDA5, XGBoost, and neural networks (e.g.
variational autoencoder, NNRW)[36]. In contrast to this, the ranking of suggestions
appeared to be different as to the online survey, in which the participants mentioned
mean / median / mode imputation, kNN, CART / DT (trees), DT, Multiple Imputation,
linear regression, and LOCF in this order. Artificial neural networks, association rules,
XGBoost, Naive Bayes, SVM, EM, Hot-Deck, and PCA were used rarely in practice,
according to the online survey results. Among the in practice most frequently used
libraries were mi, Hmisc, mice, missForest, and VIM, whereas Amelia, missMDA,

5Note: for categorical data only.
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Figure 6.8: Correlation between numeric variables

mitools, and naniar were not much used. These insights were also reflected in the
choice of packages in line with the experiment implementation.

Mean and median imputation were carried out with the help of base R, i.e. without
any specific libraries. The respective mean and median were used to replace numeric
variables, while the mode was chosen to replace categorical variables6.

For kNN imputation, the package VIM which was also mentioned in the online survey and
in the literature review, and required the precondition of library laeken, was applied7.
The number k was set to 5 neighbors, and the weighted mean was calculated from them.

Regarding CART imputation, the package mice from R was chosen8. The CART method
was implemented having a minimum bucket of 100 observations per terminal node.

As for RF imputation, the library randomForest provided the rfImpute() function9.
The formula object in the function was created in a way that the target variable price
was explained by all features, and the imputation was carried out in three iterations as
well as with 100 trees being generated.

Regression imputation was carried out using the package mice which provides the method
norm.boot that performs linear regression with bootstrapping for numeric variables,

6Mode imputation: stackoverflow.com/questions/67128217/mode-imputation-for-categorical-variables-
in-a-dataframe

7laeken: www.rdocumentation.org/packages/VIM/versions/6.1.1/topics/kNN
8mice: rforpoliticalscience.com/2020/07/28/impute-missing-values-with-mice-package-in-r/ and

https://rdrr.io/cran/mice/man/mice.impute.cart.html
9rfImpute: math.furman.edu/ dcs/courses/math47/R/library/randomForest/html/rfImpute.html
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and in addition mode imputation for categorical data types had to be chosen due to the
need for type matching 10.

The XGBoost imputation was done using the package mixgb that offers the function
mixgb() which takes m (as the number of imputed datasets), maxit (as the number of
imputation iterations as parameters 11.

As for the results of the imputation, data checks were carried out to verify the correctness
of the actual imputed values, and whether all missing values had been imputed. In
addition to this, with each method, the runtime results were captured in a data.frame
with the columns method, missing_percentage, and run1 through run20, and written to
a CSV file.

When it comes to the subsequent direct evaluation (see step 5 in Fig. 6.2), the original
(training) data was compared to the replaced or so-called “pseudo-complete“ data. For
the categorical columns, the percentage of wrong categories imputed was calculated based
on the total number of replaced (prior empty) values, whereas for the numeric columns,
the RMSE of imputed values compared to the original values was calculated (per method
and share of missing values considered).

In line with the indirect evaluation phase (see step 6 in Fig. 6.2), support-vector
regression (SVR) which is a commonly used supervised machine learning method and
regression method and was not chosen as a missing handling method, was applied to fit a
statistical model based on the original as well as the imputed training data12. The SVR
model was called as follows: svm(formula = price ∼ ., data). It used a radial
SVM kernel, cost parameter of 1, gamma value of 0.04167, and epsilon value of 0.1 with
299 support vectors. Later on, the predictions for the test datasets (see step 7 in Fig.
6.2) were made using the previously fitted model. The target variable price was predicted
for the test datasets for 20 runs per missing data percentage and handling method. In
line with this, the well-known and widely used regression performance metrics RMSE
and MAE were calculated for each one of the outcome cases. The results were finally put
together into one data.frame and written to a CSV file. Figure 6.9 depicts an excerpt
of the RMSE results data.frame which contains all 20 runs and the calculated RMSE
metrics per method and missing value percentage.

The actual values were plotted against the predicted values of the target variable for the
original and imputed dataset such as the one shown in Figure 6.10 (based on the original
dataset) to visually explore the differences13.

The datasets containing missing values were also analyzed graphically with respect to how
many data entries per variable were missing, and how they combine, which is illustrated

10mice: rforpoliticalscience.com/2020/07/28/impute-missing-values-with-mice-package-in-r/
11mixgb:cran.r-project.org/web/packages/mixgb/vignettes/Using-mixgb.html;

rdrr.io/github/agnesdeng/misle/man/Mixgb.html
12SVR: www.datatechnotes.com/2019/09/support-vector-regression-example-with.html
13Predicted vs. target: juliejosse.com/wp-content/uploads/2018/06/DataAnalysisMissingR.html
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Figure 6.9: Excerpt of RMSE results data.frame

Figure 6.10: Excerpt of RMSE results data.frame

by the exemplary plots in Figure 6.11 that uses a dataset with 40% missing data entries
as underlying data.

The performance results (see step 8 in Fig. 6.2) were then visualized and compared
against the baseline, i.e. the original dataset and the mean imputation case. The
visualizations together with the statistical significance outcomes are summarized in the
subsection Experiment Results 6.2.4. As for the statistical significance tests (see step
9 in Fig. 6.2), the results of the 20 runs on randomly split datasets using holdout method
were tested against the baseline, i.e. the original dataset and / or the mean imputation
case, the former for RMSE and MAE metrics, and the latter for RMSE, MAE, and
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Figure 6.11: Exemplary missing values analysis

execution time. As the case at hand was seen as a paired setting, which means that
repeated measures were taken on the same data several times, paired t-tests and Paired
Samples Wilcoxon Signed-Rank tests were carried out. Paired t-tests are parametric
tests which means that some assumptions (such as ratio target variable, independent
observations, normality of the target variable, and non-existence of outliers) required
by the data are made14. To ensure the quality of the significance testing conclusion,
Paired Samples Wilcoxon Signed-Rank tests were executed as a complement to the paired
t-tests as they do not require any assumptions on the data distribution, i.e. they are
non-parametric15.

14Paired t-tests: www.datanovia.com/en/lessons/t-test-assumptions/paired-t-test-assumptions/
15Wilcoxon Paired Samples Signed-Rank Test: www.geeksforgeeks.org/wilcoxon-signed-rank-test-in-r-

programming/
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6.2.4 Experiment Results

The experiment results comprise the outcomes of the direct and indirect evaluation as
well as of the statistical significance tests. Concerning the direct evaluation, categorical
features and numeric features were analyzed separately. Different metrics were used
respectively. The imputed and non-imputed categorical features were compared according
to the misclassification rate (in %), i.e. the share of incorrectly classified imputed entries,
which are depicted in Table 6.2 that contains the misclassification rate per missing data
percentage and categorical variable (being one of cut, color, or clarity). Across the
different methods the misclassification rates per missing data percentage and categorical
feature were very similar, thus the metrics are shown in the Table 6.2 only once. It also
emerges from Table 6.2 that the misclassification rate tends to increase with the missing
data percentage, but is in general rather high (i.e. over 60%) throughout all missing data
percentages and categorical features considered. In the scenario with 40% of the data
entries missing, XGBoost and RF exhibited a slightly worse imputation performance
than the other methods.

Direct evaluation: categorical variables
Missing data % Variable Misclassification

rate (%)
5% cut 67%

color 60%
clarity 75%

10% cut 70%
color 100%
clarity 100%

20% cut 73%
color 92%
clarity 76%

40% cut 70%
color 100%
clarity 84%

Table 6.2: Direct evaluation of imputed categorical variables

Likewise, the direct evaluation performance was measured per missing value percentage
and handling method for the numeric variables, more precisely depth, table, x, y, and z, as
it can be seen from Table 6.3. The best performance in terms of RMSE (comparing the
original dataset to the imputed one) yielded per missing value percentage and method is
highlighted in bold. In the scenario with 5% missing data, the RF method performed
best in terms of RMSE, with the XGBoost coming close to the former’s result in the
variable x. In the case of 10% missing data, the RF method was across all variables again
the best, but kNN also achieved a good performance, for two variables even better than
RF, even better than XGBoost. When considering 20% of missing data, the RF method
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still performed best or second best across all but one variable. Mean as well as median
performed best in relation to two variables in this case, and kNN in one variable. In the
40% missing data case, the mean and median methods prevailed in three variables, and
the RF method achieved the best performance for two variables. Overall, it can be said
from the direct evaluation results shown in Table 6.3 that RF handled the missing data
situation best in the highest number of scenarios, followed by kNN, XGBoost, and in one
scenario even mean and median imputation.

Direct evaluation: numeric variables
Missing
%

Method RMSE
depth

RMSE
table

RMSE x RMSE y RMSE z

5% Mean 1.9195 3.0275 1.4869 1.4761 0.9234
Median 1.9199 3.0303 1.4870 1.4761 0.9235
kNN 1.9195 3.0307 1.4870 1.4745 0.9229
CART 1.9243 3.0379 1.4870 1.4746 0.9223
RF 1.9186 3.0252 1.4866 1.4742 0.9219
Regression 1.9220 3.0424 1.4877 1.4745 0.9225
XGBoost 1.9214 3.0338 1.4867 1.4745 0.9221

10% Mean 1.9197 3.0281 1.4869 1.4761 0.9229
Median 1.9199 3.0330 1.4869 1.4761 0.9230
kNN 1.9192 3.0322 1.4868 1.4743 0.9226
CART 1.9265 3.0423 1.4872 1.4746 0.9222
RF 1.9193 3.0272 1.4869 1.4743 0.9219
Regression 1.9208 3.0468 1.4899 1.4756 0.9225
XGBoost 1.9215 3.0399 1.4870 1.4748 0.9220

20% Mean 1.9167 3.0249 1.4856 1.4749 0.9217
Median 1.9162 3.0284 1.4856 1.4750 0.9217
kNN 1.9196 3.0322 1.4869 1.4742 0.9223
CART 1.9244 3.0423 1.4872 1.4751 0.9224
RF 1.9156 3.0272 1.4869 1.4743 0.9219
Regression 1.9262 3.0468 1.4900 1.4764 0.9240
XGBoost 1.9227 3.0399 1.4874 1.4747 0.9221

40% Mean 1.9121 3.0196 1.4802 1.4699 0.9179
Median 1.9122 3.0246 1.4803 1.4702 0.9180
kNN 1.9173 3.0291 1.4859 1.4737 0.9205
CART 1.9343 3.0568 1.4875 1.4753 0.9226
RF 1.9117 3.0186 1.4868 1.4744 0.9223
Regression 1.9227 3.0386 1.4871 1.4748 0.9244
XGBoost 1.9263 3.0426 1.4874 1.4764 0.9227

Table 6.3: Direct evaluation of imputed numeric variables in terms of RMSE (Note: best
performance highlighted in bold)

Throughout the missing data handling process, the execution times of the imputation
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methods were measured for each run and missing data percentage, for which the outcomes
are represented in numeric terms (rounded to four decimal places) in Table 6.4 and
are visualized in Figure 6.12. It can be seen from Figure 6.12 and Table 6.4 that the
runtimes of the CART method were substantially higher than for any other method, and
reached approximately 12 to 15 seconds per dataset for all kinds of missing percentages.
The next runtime-intense method was XGBoost which took around 4 to 5 seconds per
dataset to impute the missing entries. Then the regression and RF method ranged from
approximately 1 to 2 seconds in imputation time per dataset (see Table 6.4). The kNN
method appeared to be the least runtime-intense among the machine learning methods
used with an execution time of approximately 0.1 to 0.5 seconds per imputation. The
fastest methods were mean and median imputation which took only around 0.002 to
impute the missing entries across all settings.

Figure 6.12: Average execution times across 20 runs

When it comes to the indirect evaluation, SVR models were fitted based on the training
data, and the models were used to make predictions for the test data (per random split,
missing data percentage, and missing data handling method). The regression performance
was measured in terms of RMSE and MAE.

Figure 6.13 visualizes the average RMSE metrics across the 20 runs using randomly
split train and test datasets for varying missing data percentages and handling methods.
In Figure 6.13, the average RMSE of the SVR models fitted based on the original, i.e.
non-imputed, training is shown as a dashed, horizontal line in the plot and more precisely
amounts to 545.0577, which is naturally at or below all methods’ RMSE level. From the
figure, it emerges that the mean and median imputation methods exhibited the highest
RMSE across all settings, which means that they perform worst, followed by CART,
regression, and RF methods. The best performing methods in terms of average RMSE
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Execution times (in sec.) across 20 runs
Missing data % Method Execution time (sec.)
5% Mean 0.0016

Median 0.0021
kNN 0.1159
CART 14.3134
RF 1.1182
Regression 1.7330
XGBoost 4.4096

10% Mean 0.0026
Median 0.0025
kNN 0.1817
CART 13.4544
RF 1.1818
Regression 1.7685
XGBoost 4.3642

20% Mean 0.0022
Median 0.0022
kNN 0.3026
CART 13.2997
RF 1.2566
Regression 1.8202
XGBoost 4.2674

40% Mean 0.0016
Median 0.0033
kNN 0.4868
CART 15.0388
RF 1.3013
Regression 1.8945
XGBoost 4.2351

Table 6.4: Execution times (in seconds) across 20 runs (Note: best performance highlighted
in bold)

across runs were kNN, XGBoost, and in the 5% as well as 20% case also RF. In Table
6.5 the best results per missing data percentage and method combination, i.e. lowest
RMSE, are highlighted in bold.

The MAE performance metrics across 20 runs, illustrated by Figure 6.14 and Table 6.6,
paint a similar picture as the RMSE did before. Again, the average MAE metric across
the 20 runs is indicated as a dashed, horizontal line in the plot at 995.1534 (see 6.14). In
contrast to the RMSE metric, with regard to MAE the kNN method performed best,
followed by RF. Regression was also among the best two methods in the 10% missing
data scenario and XGBoost in the 40% missing data scenario.
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Figure 6.13: Average RMSE across 20 runs

Figure 6.14: Average MAE across 20 runs

To analyze the generated execution time, RMSE, and MAE even further, statistical
significance tests were performance based on the 20 runs carried out for each method
and missing data percentage combination. The tests were applied in a paired setting,
which means that repeated measures of the same data were done several times. The
paired t-test16 was chosen as a parametric variant, and the Paired Samples Wilcoxon

16Paired t-tests: www.datanovia.com/en/lessons/how-to-do-a-t-test-in-r-calculation-and-reporting
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Average RMSE across 20 runs
Missing data % Method Average RMSE
5% Mean 997.58

Median 997.57
kNN 995.73
CART 995.75
RF 995.72
Regression 996.87
XGBoost 996.02

10% Mean 997.87
Median 997.99
kNN 996.42
CART 996.79
RF 997.22
Regression 996.30
XGBoost 996.50

20% Mean 1007.39
Median 1007.68
kNN 999.90
CART 1006.71
RF 1000.81
Regression 1002.66
XGBoost 1001.61

40% Mean 1017.76
Median 1017.93
kNN 1004.13
CART 1005.37
RF 1005.84
Regression 1006.32
XGBoost 1003.06

Table 6.5: Average RMSE across 20 runs (Note: best performance highlighted in bold)

Signed-Rank test17 as a non-parametric version. Later on, the outcome of both tests was
compared, and it turned out that they yielded the same significance result in all cases.

With reference to execution time, the mean method was chosen as a baseline, and the
remaining methods were tested against it, using the 20 runs carried out each. Median
and kNN did not perform significantly differently from the mean method (baseline), i.e.
they were not significantly faster or lower. However, between mean method and CART,
RF, regression, as well as XGBoost the result of the statistical tests were significant for

17Wilcoxon Paired Samples Signed-Rank Test: www.geeksforgeeks.org/wilcoxon-signed-rank-test-in-r-
programming
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Average MAE across 20 runs
Missing data % Method Average MAE
5% Mean 546.58

Median 546.55
kNN 545.01
CART 545.25
RF 545.67
Regression 545.86
XGBoost 545.02

10% Mean 546.83
Median 546.85
kNN 546.63
CART 546.54
RF 546.82
Regression 545.04
XGBoost 545.21

20% Mean 554.07
Median 553.43
kNN 547.85
CART 551.53
RF 549.50
Regression 548.34
XGBoost 547.30

40% Mean 568.52
Median 567.75
kNN 550.82
CART 548.21
RF 550.24
Regression 548.78
XGBoost 549.79

Table 6.6: Average MAE across 20 runs (Note: best performance highlighted in bold)

all missing value percentages.

As for the RMSE, the mean method was again used as a baseline. In the 5% and 10%
missing data settings none of the statistical tests performed were significant, whereas
in the 20% case kNN, RF, and XGBoost exhibited a significant different to the mean
method. In the 40% missing data setting, the kNN, RF, CART, regression, and XGBoost
results were significant compared to the mean method.

When considering MAE as a performance metric, none of the statistical tests yielded
significant results in the 5% and 10% missing data percentage cases. However, in the
20% case kNN, RF, and XGBoost were significant, and in the 40% case kNN, CART,
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RF, regression, and XGBoost led to a significant test result.

When assuming the RMSE performance on the original dataset as a baseline, regression
and XGBoost exhibited a significant test result in the 5% missing data percentage case,
while in the scenarios with 10% missing data, none of the methods led to a significantly
different result. In the 20% missing data setting, kNN was not significant, while all
others appeared to lead to a significantly different result. In the case with 40% missing
data entries, all methods led to a significant test result compared to the original dataset
RMSE performance.

If the MAE performance based on the original dataset is used as a baseline, none of
the statistical tests are significant in the 5% and 10% missing data settings. In the
20% missing entries case, kNN and XGBoost do not lead to a significant result, but
median, CART, RF, and regression are significantly different from the baseline. In the
40% missing entries case, finally all methods are significantly different from the baseline.
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6.3 Industry Case Study
The section Industry Case Study 6.3 covers the data description, exploratory analysis,
experiment implementation, and summary of the results. The general case study structure
is illustrated in Fig. 6.1.

6.3.1 Dataset Description
For the industry case study a dataset from the manufacturing industry is used, which deals
with an actual process in a mining plant that serves for quality control purposes18 and
comprises a series of sensor measurements. The dataset19 was extracted from Kaggle20

and is publicly available for reproducibility and verification. In line with this project, a
random subset of 1% out of the over 700,000 sensor records is selected from the original
dataset so that the computational complexity is kept viable in view of the missing data
handling and regression algorithms to apply later on.

The industry case dataset used in this project contains 7375 observations (i.e. rows)
and 25 features (i.e. columns). It is structured in a way that the unique ID heads the
columns, the second column is the target variable silica_concentrate which describes the
concentration of silica recorded per observation, and the third column the date when the
sensor measurement was recorded. The remaining columns are considered as features in
this project. The Figure 6.15 presents an excerpt of the industry dataset, which illustrates
the rows and columns layout.

Figure 6.15: Excerpt of industry dataset

The data which stems from an actual iron ore manufacturing plant was collected with
the purpose of detecting possible impurity of the ore earlier than previously possible
[17]. Drumond (2018) stated in their paper related to the dataset that the traditional
process of detecting the “quality in the flotation concentrate“ took at least 120 minutes
in the lab [17]. Due to the time-consuming manual analysis process, the researchers
suggested to try to find ways to automate the quality control by using machine learning

18Manufacturing plant process: www.kaggle.com/datasets/edumagalhaes/quality-prediction-in-a-
mining-process

19Note: The data source references refers to all places in the chapter mentioning the industry or
manufacturing dataset.

20Data Source: www.kaggle.com/datasets/edumagalhaes/quality-prediction-in-a-mining-process
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techniques and automation in the form of a so-called “soft sensor“ that predicts the silica
concentrate (which is also the target variable in this project) based on the collected sensor
measurements [17]. Figure 6.16 depicts the raw materials, such as iron ore, manufacturing
or mining process which involves sensors that measure and record parameters for the
later analysis and quality control in the (froth) flotation process [50].

Figure 6.16: Manufacturing process: “froth flotation cell with sensor, actuators, and
control system“ by Kramer (2012) [50]

The ID column contains the unique identifier for each observation and is not part of
the statistical analysis, the variable silicais the numeric target variable that “measures
the impurity in the ore concentrate to support manufacturing engineers in taking cor-
rective actions early in the process“21, and likewise the date is not used as a predictor,
whereas the latter columns are features, which are iron_feed, silica_feed, starch_flow,
amina_flow, ore_pulp_flow, ore_pulp_ph, ore_pulp_density, flotation_col1_air_flow
through flotation_col7_air_flow, flotation_col1_level through flotation_col7_level, and
iron_concentrate. All features are of ratio type, i.e. numeric variables. The dataset as
such does not contain any missing values in its original form.

Table 6.7 below summarizes the type information regarding the columns, provides a
short description of the respective column’s meaning, and its range or categories. The
column price is annotated as target variable, which is the numeric variable that should
be predicted in the indirect evaluation track using regression methods.

21Source: www.kaggle.com/datasets/edumagalhaes/quality-prediction-in-a-mining-process
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Summary of dataset characteristics
Variable name Type Description Range
ID Ratio Unique identifier 15 - 737275
silica_concentrate (target) Ratio Impurity of ore 0.60 - 5.53
date Nominal Date Mar.-Sept. 2017
iron_feed Ratio Iron feed 42.74 - 65.78
silica_feed Ratio Silica feed 1.31 - 33.40
starch_flow Ratio Starch flow 0.58 - 6289.01
amina_flow Ratio Amina flow 241.90 - 739.20
ore_pulp_flow Ratio Pulp flow 376.30 - 418.60
ore_pulp_ph Ratio Pulp pH 8.75 - 10.81
ore_pulp_density Ratio Pulp density 1.52 - 1.83
flotation_col1_air_flow Ratio Air flow 1 175.80 - 368.80
flotation_col2_air_flow Ratio Air flow 2 175.90 - 360.30
flotation_col3_air_flow Ratio Air flow 3 176.50 - 305.80
flotation_col4_air_flow Ratio Air flow 4 293.30 - 305.60
flotation_col5_air_flow Ratio Air flow 5 287.00 - 308.50
flotation_col6_air_flow Ratio Air flow 6 192.20 - 370.90
flotation_col7_air_flow Ratio Air flow 7 186.10 - 371.2
flotation_col1_level Ratio Level 1 151.50 - 861.80
flotation_col2_level Ratio Level 2 212.70 - 828.40
flotation_col3_level Ratio Level 3 126.80 - 886.80
flotation_col4_level Ratio Level 4 162.50 - 679.50
flotation_col5_level Ratio Level 5 167.70 - 675.00
flotation_col6_level Ratio Level 6 162.30 - 698.60
flotation_col7_level Ratio Level 7 176.40 - 657.00
iron_concentrate Ratio Iron ore 62.06 - 68.01

Table 6.7: Summary of industry dataset characteristics

6.3.2 Exploratory Analysis

In this section, the industry dataset is subject to exploratory analysis, which involves
checking the distribution of the numeric target variable as well as features and the
correlation between the columns before the actual experiment is carried out.

From Figure 6.17, it can be seen that the distribution of the variables amina_flow,
starch_flow, and ore_pulp_ph is quite evenly spread, while the distribution of iron_feed
has an accumulation around the mean and the upper values, and ore_pulp_flow accumu-
lates rather around the mean. The target variable silica_feed is rather evenly spread,
but with an accumulation in the lower part, according to Figure 6.17. In contrast to
this, Figure 6.18 shows that most flotation air flow columns have concentrations around
several values, but the values are not evenly spread, although an accumulation around
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the mean is visible. Only the variable ore_pulp_density is quite evenly spread across the
distribution based on Figure 6.18. Figure 6.19 illustrates the distribution of the flotation
level columns, which all exhibit a similar distribution pattern that is concentrated on the
mean region, and then fades out towards the upper and lower ends of the distribution.

Figure 6.17: Distribution of the numeric variables amina_flow, iron_feed, ore_pulp_flow,
ore_pulp_ph, silica_concentrate, and silica_feed, starch_flow

The correlation between the numeric variables is calculated in order to grasp the rela-
tionship between them, which is summarized by Figure 6.20. The Figure 6.20 illustrates
that there is a highly positive correlation among the flotation air flow columns as well
as the flotation level columns respectively. Given the fact that those correlations are
highly positive, it is considered sufficient to keep only one flotation air flow and flotation
level column respectively for the subsequent data analysis and application of imputation
as well as machine learning methods. Given the mentioned variables also exhibited a
very similar distribution in the exploratory analysis, keeping all of them does not add
much information. The remaining variables have a low to medium positive or negative
correlation. The target variable silica_concentrate has a low to medium negative or
positive correlation with most of the features, a higher negative correlation with iron_feed
and iron_concentrate, and a medium positive correlation with amina_flow. To sum
up, the dataset finally comprises ten numeric features, and one target variable after
integrating the alterations suggested in line with the exploratory analysis.
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Figure 6.18: Distribution of the numeric variables flotation_col1_air_flow through
flotation_col7_air_flow, and ore_pulp_density

6.3.3 Experiment Implementation
Just like the first experiment, the second experiment was also implemented according to
the set-up shown in Figure 6.2. The original dataset did not contain any categorical
features that would re-appear in the subsequent machine learning models. Thus, the
purely numeric data did not require any specific pre-processing. The column ID was kept
heading the data columns. The second column was the target variable silica_concentrate,
followed by the numeric features.

The experiment conducted on the industrial sensors dataset mirrored the first exper-
iment in order to make the two experiments comparable and reproducible. The data
was split along 20 randomly chosen splits into 80% training data and 20% test data in
preparation for the holdout method to be applied later in the regression setting for the
indirect evaluation.

The data was transformed into several versions of pseudo-incomplete datasets that
contained different missing data percentages, i.e. 5%, 10%, 20%, and 40%, in all columns
except the ID and silica_concentrate columns, assuming the MCAR missingness pattern.
Then the missing value handling methods were applied in order to create complete
datasets again, and at the same the runtime was measured for each one of the 20
runs. The same missing handling methods as in the first experiment were applied (using
the same statistical software libraries and packages as mentioned in the open-source case
study 6.2), and were chosen based on the results from the literature review and the online
survey:
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Figure 6.19: Distribution of the numeric variables

• Mean imputation

• Median imputation

• kNN imputation

• CART imputation

• RF imputation

• Regression imputation

• XGBoost imputation

The outcomes of imputing the missing values were subject to a series of checks to verify
whether the values were actually imputed and correct. The runtime results per method
were captured in a data.frame with the columns method, missing_percentage, and
run1 through run20, and written to a CSV file. Concerning the direct evaluation,
the original (training) data was confronted with the “pseudo-complete“ data. For the
numeric columns, the RMSE of imputed values compared to the original values was
calculated per method and percentage of missing values.

During indirect evaluation phase, SVR was applied to fit a statistical model based
on the original as well as the imputed training data22. As in the first experiment, the

22https://www.datatechnotes.com/2019/09/support-vector-regression-example-with.html
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Figure 6.20: Correlation between numeric variables

SVR model was called using the target variable and the features: svm(formula =
silica_concentrate ∼ ., data). Likewise, it used a radial SVM kernel, cost
parameter of 1, gamma value of 0.04167, and epsilon value of 0.1 with 299 support vectors.
Then the target variable silica_concentrate was predicted for the test datasets for 20 runs
per missing data percentage and handling method. In line with this, the well-known and
widely used regression performance metrics RMSE and MAE containing all 20 runs and
the calculated RMSE metrics per method and missing value percentage were computed.
An outcome data.frame was created and written to a CSV file. In addition to this,
the actual values were plotted against the predicted values of the target variable for
the original and predicted dataset such as the one shown in Figure 6.21 (based on the
original dataset)23.

The missing values in the datasets were also analyzed in terms of plots regarding the
number of missing values per feature which is shown by the Figure 6.22 to which underlies
one of the datasets with 40% missing values.

The performance results were finally visualized and compared to the specified baseline,
i.e. either the original data or the data imputed with the mean. The visualizations

23Predicted vs. actual: juliejosse.com/wp-content/uploads/2018/06/DataAnalysisMissingR.html
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Figure 6.21: Actual vs. predicted values based on SVR using original data

Figure 6.22: Number of entries missing per variable

together with the statistical significance outcomes are summarized in the subsection
Experiment Results 6.2.4. The statistical significance tests were carried out just as
outlined in the open-source case study 6.2, and comprised both paired t-tests24 as well
as Paired Samples Wilcoxon Signed-Rank tests25.

24Paired t-tests: www.datanovia.com/en/lessons/t-test-assumptions/paired-t-test-assumptions/
25Wilcoxon Paired Samples Signed-Rank Test: www.geeksforgeeks.org/wilcoxon-signed-rank-test-in-r-
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6.3.4 Experiment Results

In this chapter, the outcomes of the direct evaluation, the indirect evaluation, and the
statistical significance tests are presented. With regard to the direct evaluation, the
dataset contained merely numeric features, which were analyzed using the RMSE between
the imputed dataset and the original dataset respectively. The features iron_feed,
silica_feed, and starch_flow had one as an outcome in all scenarios, while for the
remaining features, the results (rounded to four decimal places) are summarized in the
tables 6.8 (containing the variables amina_flow, ore_pulp_flow, ore_pulp_ph,
ore_pulp_density) and 6.9 (containing the variables flotation_col1_air_flow,
flotation_col1_level, iron_concentrate).

From Table 6.8 and Table 6.9, it can be see that for a missing data rate of 5% the kNN,
and RF methods are performing best in terms of (lowest) RMSE across the features.
Only with regard to one feature, the CART and XGBoost methods’ metrics are best.
In the case of 10% missing data, RF performs best throughout the variables, except
for flotation_col1_air_flow, for which CART is best. In the scenario with 20%
missing data, RF still performs quite well, but mean and median imputation also lead
to quite good RMSE results. In the 40% missing data case, mean, median, and RF are
again the best methods with respect to performance.

Throughout the missing data handling process, the execution times of the imputation
methods were measured for each run and missing data percentage, for which the outcomes
are represented in numeric terms (rounded to four decimal places) in Table 6.4 and
are visualized in Figure 6.12. It can be seen from Figure 6.12 and Table 6.4 that the
runtimes of the CART method were substantially higher than for any other method, and
reached approximately 12 to 15 seconds per dataset for all kinds of missing percentages.
The next runtime-intense method was XGBoost which took around 4 to 5 seconds per
dataset to impute the missing entries. Then the regression and RF method ranged from
approximately 1 to 2 seconds in imputation time per dataset (see Table 6.4). The kNN
method appeared to be the least runtime-intense among the machine learning methods
used with an execution time of approximately 0.1 to 0.5 seconds per imputation. The
fastest methods were mean and median imputation which took only around 0.002 to
impute the missing entries across all settings.

The execution times of the imputation methods were measured in seconds over
the 20 runs, which is illustrated by Table 6.10 and Figure 6.23. From the Table 6.10
and Figure 6.23, it emerges that the RF method has the longest average execution time,
which is over 30 seconds per run, followed by CART and kNN with a maximum execution
each of around 10 to 15 seconds for a run. Then regression and XGBoost methods take a
runtime of around five to seven seconds, and mean as well as median imputation methods
have the shortest runtime, which is approximately 0.002 to 0.004 seconds. On the whole,
the mean and median imputation methods always hat the shortest runtimes as they

programming/
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Direct evaluation: numeric variables (in terms of RMSE)
Miss.% Method amina flow ore pulp

flow
ore pulp
ph

ore pulp
density

5% Mean 124.1063 13.0474 0.5237 0.0937
Median 124.1007 13.0496 0.5238 0.0937
kNN 124.0605 13.0470 0.5237 0.0937
CART 124.1850 13.0552 0.5242 0.0937
RF 124.0829 13.0451 0.5235 0.0937
Regression 124.2735 13.0710 0.5255 0.0939
XGBoost 124.1031 13.0493 0.5240 0.0937

10% Mean 124.0499 13.0451 0.5235 0.0937
Median 124.0611 13.0507 0.5235 0.0937
kNN 124.0432 13.0478 0.5236 0.0937
CART 124.2809 13.0673 0.5244 0.0938
RF 124.0238 13.0441 0.5233 0.0937
Regression 124.6259 13.0808 0.5253 0.0939
XGBoost 124.1619 13.0732 0.5245 0.0938

20% Mean 123.8707 13.0312 0.5230 0.0935
Median 123.8915 13.0340 0.5230 0.0935
kNN 124.0813 13.0513 0.5238 0.0936
CART 124.4003 13.1022 0.5250 0.0939
RF 123.9507 13.0326 0.5229 0.0935
Regression 124.6419 13.1369 0.5277 0.0940
XGBoost 124.3615 13.0864 0.5250 0.0938

40% Mean 123.5136 12.9882 0.5210 0.0932
Median 123.5241 12.9911 0.5211 0.0933
kNN 124.0344 13.0425 0.5236 0.0936
CART 124.7418 13.1202 0.5260 0.0940
RF 123.7101 13.0019 0.5214 0.0933
Regression 124.7810 13.1850 0.5290 0.0942
XGBoost 124.4768 13.1138 0.5259 0.0940

Table 6.8: Direct evaluation of imputed numeric variables in terms of RMSE (Note: best
performance highlighted in bold)

required the least computational complexity, while for instance methods such as RF,
kNN, regression, or XGBoost are more computation-intense.

When it comes to the indirect evaluation, the average RMSE across 20 runs was
measured for the sensors dataset, which is summarized by Table 6.11 and Figure 6.24.
In the scenario with 5% missing data, the CART and RF methods are performing best
with a RMSE of around 0.5461, which almost corresponds to the RMSE on the original
dataset which was recorded as 0.5458 (see Table 6.11 and dashed line in Figure 6.24).
In the 10% missing data case, RF and XGBoost are the best methods, but are closely
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Direct evaluation: numeric variables (in terms of RMSE)
Missing
%

Method flotation air flow flotation level iron concentrate

5% Mean 39.2940 174.9449 1.4881
Median 38.3253 175.0017 1.4881
kNN 39.2802 174.8637 1.4881
CART 39.2533 175.0948 1.4881
RF 39.2835 174.8640 1.4881
Regression 39.3207 175.2730 1.4881
XGBoost 39.2501 175.0504 1.4881

10% Mean 39.2901 174.8277 1.4881
Median 39.3481 174.9078 1.4881
kNN 39.3027 174.9509 1.4881
CART 39.2567 175.2017 1.4881
RF 39.2840 174.8109 1.4881
Regression 39.3973 175.8792 1.4881
XGBoost 39.2523 175.0454 1.4881

20% Mean 39.2476 174.6376 1.4881
Median 39.3980 174.7324 1.4881
kNN 39.3067 174.9202 1.4881
CART 39.2851 175.6417 1.4881
RF 39.2483 174.7166 1.4881
Regression 39.4411 175.7975 1.4881
XGBoost 39.2604 175.2260 1.4881

40% Mean 39.1519 173.9140 1.4881
Median 39.4159 173.9727 1.4881
kNN 39.3071 174.8340 1.4881
CART 39.3158 175.5035 1.4881
RF 39.1869 174.3888 1.4881
Regression 39.5537 176.2457 1.4881
XGBoost 39.3280 175.4446 1.4881

Table 6.9: Direct evaluation of imputed numeric variables in terms of RMSE (Note: best
performance highlighted in bold)

followed by kNN and CART. If the missing rate is 20%, the XGBoost method is slightly
better than the kNN and RF methods. Finally, in the 40% missing data scenario, the
kNN and CART methods perform best with regard to RMSE, followed by XGBoost.
Thus, it can be seen that CART, kNN, XGBoost, and RF achieved the best performance.

The second performance metric measured in line with the indirect evaluation was MAE,
whose results are depicted in Figure 6.25 (with the MAE of 0.3887 based on the original
dataset as a dashed horizontal line) and Table 6.12. It can be seen that kNN and CART
are in most scenarios among the best methods with regard to MAE performance, most of
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Figure 6.23: Average execution times across 20 runs

the time closely followed by XGBoost, and then RF, while regression, mean, and median
imputation are not so favorable related to MAE.

A series of statistical significance tests (i.e. paired t-tests and Paired Samples
Wilcoxon Signed-Rank tests) were carried out to analyze execution time, RMSE, and
MAE in greater detail based on the 20 runs of data generated for each missing data
handling method and missing data percentage. Like it was the case in the open-source
case study (see 6.2), the parametric and non-parametric tests also came to the same
overall conclusion, meaning they were either both significant or not significant for each
tests performed.

Concerning the significance tests on execution time, the respective data from the runs
were tested against the mean imputation method runtime as a baseline. This procedure
resulted in the 5%, 10%, 20%, and 40% missing data case in significant results for all
imputation methods, which means that their runtime was in every case significantly
different (namely longer) from the one of the mean imputation method.

When it comes to the RMSE as a performance metric, the data from the 20 runs were
first tested against the mean imputation method as a baseline. This resulted in the 5%
missing data rate scenario in the CART, RF, and XGBoost methods yielding a significant
result against the mean imputation method, while the median, kNN, and regression
methods results were not significantly different from the mean imputation method. In
the 10% missing values case, kNN, RF, XGBoost were significant (i.e. much lower than
that of the mean), and CART became non-significant in contrast to the 5% missing
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Execution times (in sec.) across 20 runs
Missing data % Method Execution time (sec.)
5% Mean 0.0019

Median 0.0042
kNN 1.0575
CART 9.7549
RF 30.4148
Regression 5.7309
XGBoost 5.2484

10% Mean 0.0021
Median 0.0041
kNN 3.0564
CART 1.2784
RF 28.7110
Regression 6.1969
XGBoost 6.3812

20% Mean 0.0018
Median 0.0059
kNN 7.4662
CART 1.1570
RF 29.5367
Regression 7.1308
XGBoost 6.3657

40% Mean 0.0039
Median 0.0040
kNN 14.4620
CART 1.6123
RF 36.0018
Regression 6.9424
XGBoost 5.2927

Table 6.10: Execution times (in seconds) across 20 runs (Note: best performance high-
lighted in bold)

data scenario. The median and regression imputation method stayed non-significant. In
the 20% missing data scenario, the kNN, CART, RF, and XGBoost imputation method
results were significant again, and the RMSE results of median as well as regression were
not. In the 40% missing data case, kNN, CART, RF, and XGBoost yielded a significant
test result, while the median and regression method were not significant based on the
RMSE data.

To analyze the RMSE data from a second angle, it was tested against the RMSE results
based on the original dataset in line with the SVR. In the 5% missing rate scenario,
the mean, median, regression, and XGBoost methods led to a significant test result,
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Figure 6.24: Average RMSE across 20 runs

Figure 6.25: Average MAE across 20 runs

which indicates a significant difference (in this case to the worse, i.e. larger RMSE). The
RMSE results from the kNN, CART, and RF runs were not significantly different from
the RMSE metric on the original dataset. In the 10% missing rate case, the mean and
median method results were significantly different from the results stemming from the
original dataset, while kNN, CART, RF, regression, and XGBoost method results were
not. In the 20% and 40% missing rate scenario, all methods’ results tested against the
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Average RMSE across 20 runs
Missing data % Method Average RMSE
5% Mean 0.5465

Median 0.5465
kNN 0.5462
CART 0.5461
RF 0.5461
Regression 0.5462
XGBoost 0.5462

10% Mean 0.5468
Median 0.5467
kNN 0.5461
CART 0.5461
RF 0.5459
Regression 0.5464
XGBoost 0.5460

20% Mean 0.5478
Median 0.5478
kNN 0.5467
CART 0.5469
RF 0.5467
Regression 0.5474
XGBoost 0.5463

40% Mean 0.5500
Median 0.5498
kNN 0.5475
CART 0.5475
RF 0.5478
Regression 0.5490
XGBoost 0.5476

Table 6.11: Average RMSE across 20 runs (Note: best performance highlighted in bold)

results on the original dataset were significantly different.

As for the MAE performance metric, the results recorded from the considered imputation
methods were tested against the mean imputation method. In the 5% missing rate
scenario, the RF method led to a significantly different result. The remaining methods’
results were not significant. In the 10%, 20%, and 40%, the same significance test
conclusion were made, namely the kNN, CART, RF, and XGBoost method results were
significant (with a much lower MAE than the mean imputation method), but the median
and regression method results were not significantly different.

The second perspective, which takes the MAE results based on the original dataset as a
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Average MAE across 20 runs
Missing data % Method Average MAE
5% Mean 0.3893

Median 0.3893
kNN 0.3890
CART 0.3890
RF 0.3891
Regression 0.3892
XGBoost 0.3891

10% Mean 0.3898
Median 0.3898
kNN 0.3892
CART 0.3891
RF 0.3893
Regression 0.3895
XGBoost 0.3891

20% Mean 0.3904
Median 0.3905
kNN 0.3896
CART 0.3897
RF 0.3897
Regression 0.3907
XGBoost 0.3894

40% Mean 0.3921
Median 0.3922
kNN 0.3904
CART 0.3903
RF 0.3906
Regression 0.3920
XGBoost 0.3901

Table 6.12: Average MAE across 20 runs (Note: best performance highlighted in bold)

baseline, led to the conclusion that in the 5% missing rate case, the mean, median, kNN,
RF, regression, and XGBoost method results were significantly different in terms of MAE.
They were all much larger than the MAE on the original dataset. The CART method
MAE results were not significantly different from the MAE on the original dataset. In
the 10% missing rate case, the mean, median, kNN, RF, and regression method results
were significant, while the CART and XGBoost method results were not. In the 20%
and 40% missing rate scenario, all methods’ results were significantly different from the
MAE results on the original dataset.
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6.4 Comparison of Results
In this chapter, the results in terms of performance metrics recorded in line with the
open-source case study (see 6.2) and the industry case study (see 6.3) are compared on
the one hand in terms of best and worst missing value handling methods in the various
missing rate scenarios. On the other hand, statistical significance tests were carried out
on the experiment runs, whose results are contrasted at this point.

In the direct evaluation the results across both case studies were similar and led to an
extraction of the best methods, namely RF and kNN in the 5% and 10% missing rate
scenarios, and RF, mean as well as median in the 20% and 40% missing rate scenarios,
as shown in Figure 6.26. The corresponding worst missing data handling methods in
both case studies was regression across all missing rate scenarios, and in the 40% missing
rate scenario XGBoost and CART in addition.

Figure 6.26: Comparison regarding direct evaluation

As for the execution time of the missing handling methods, mean and median imputation
were the fastest methods across all missing rate scenarios, while CART and RF were the
most resource and computation intensive in both case studies (see Figure 6.27.

Figure 6.27: Comparison regarding execution time

In line with the indirect evaluation, the RMSE performance metrics were best for
the kNN, RF, and CART methods in the 5% and 10% missing rate scenarios, while for
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higher missing rates only kNN remained among the best across both scenarios consistently,
as Figure 6.28 shows. In the 20% missing rate case, kNN, RF, and XGBoost were best,
while in case of 40% missing data kNN, CART, and XGBoost were best. The worst
methods across both case studies and all missing rate scenarios were mean as well as
median imputation.

Figure 6.28: Comparison regarding RMSE

Furthermore, MAE performance was measured in line with the indirect evaluation.
Figure 6.29 illustrates that the kNN and XGBoost turned out as the best methods across
both case studies and all missing rate scenarios with regard to MAE, while CART method
was among the best performing methods only in the 10% and 40% missing rate scenarios.
The worst methods across both case studies related to the MAE were mean and median,
and in the 20% and 40% missing rate scenarios regression as well.

Figure 6.29: Comparison regarding MAE

As 20 runs of random data splits were used to evaluate the runtime, RMSE, and MAE
performance, several statistical significance tests were carried out in a paired setting.
The first one was performed based on the runtime data for both the open-source as
well as the industry data with the mean imputation method as a baseline. Figure
6.30 and 6.31 illustrate all significance tests performed, with the significant results being
highlighted in yellow. Both figures show a similar pictures which indicates that almost
all methods (except for the median and kNN imputation in the open-source case study)
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are significantly different from the baseline, i.e. mean imputation. They had much longer
runtimes than mean imputation in the case studies.

Figure 6.30: Open: Significance test on runtime (baseline: mean imputation)

Figure 6.31: Industry: Significance test on runtime (baseline: mean imputation)

When considering the RMSE with the mean imputation method results as a
baseline, Figure 6.32 and 6.33 illustrate the significance test results. They differ between
the two case studies in a way that for instance in the 5% and 10% missing rate scenarios
in the open-source case study no significant difference between the mean imputation and
other methods is detected, but in the industry case study significant differences occur
already with CART, RF, kNN, and XGBoost methods in the lower missing rate scenarios.
In the higher two missing rate scenarios in both case studies, machine learning methods
(i.e. kNN, CART, RF, and XGBoost) notably play a role as their RMSE appears to be
significantly different. The machine learning methods’ RMSE is typically much lower
under those conditions.

RMSE with the SVR results on the original dataset as a baseline was carried out
as well to gain insights into the performance of the SVR based on the original non-imputed
data compared to the imputed datasets, Figure 6.34 and 6.35 illustrate the significance
test results. The results were quite similar across the case studies, with the exception
that the mean and median imputation methods results were already significantly different
from the results yielded on the original data in the lower two missing rate scenarios (see
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Figure 6.32: Open: Significance test on RMSE (baseline: mean imputation)

Figure 6.33: Industry: Significance test on RMSE (baseline: mean imputation)

Figure 6.34: Open: Significance test on RMSE (baseline: SVR on original data)

6.35). Apart from that, the RMSE was significantly different for all methods in the
higher two missing rate scenarios. In effect, it was much larger. But in the lower two
missing rate scenarios, CART, kNN, RF, and XGBoost offered good opportunities to get
performance results close to the ones yielded on the original dataset.

As for the MAE metric with the mean imputation as a baseline, the MAE results
were significantly different mainly in the 20% and 40% missing rate scenarios in both
case studies (see Figure 6.36 and 6.37). The larger the share of missing data, the more
apparent the difference between the mean or median methods and the machine learning
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Figure 6.35: Industry: Significance test on RMSE (baseline: SVR on original data)

methods became, as the MAE for the latter was comparatively lower.

When using the SVR on the original data as a baseline for the significance test
related to the MAE, the results in the open-source and the industry case study differ
in a way that in the open-source study the majority of tests in the 5% and 10% missing
rate scenarios are not significant, so the MAE results from the imputed datasets are
still rather similar to the ones based on the original dataset (see Figure 6.38 and 6.39).
However, for the higher two missing rate scenarios, the difference gets significant, which
means that the MAE results are not near the ones based on the original dataset.

Figure 6.36: Open: Significance test on MAE (baseline: mean imputation)

Figure 6.37: Industry: Significance test on MAE (baseline: mean imputation)

119



6. Statistical Experiments

Figure 6.38: Open: Significance test on MAE (baseline: SVR on original data)

Figure 6.39: Industry: Significance test on MAE (baseline: SVR on original data)
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CHAPTER 7
Discussion and Limitations

7.1 RQ1: Data quality dimensions and relation to
completeness

The first research question aimed at shedding light on the data quality dimensions as
well as specifically data completeness and with a view to CPPS, and was formulated as
follows:

RQ1: Which dimensions does data quality have, and what is the relation of
it to data completeness?
In view of the Related Work 2, it turned out that data quality of such cannot be
described by merely one all-encompassing and uniform definition, but rather comprises
a combination of dimensions [45] [4] [85]. Thus, data quality is multi-faceted, and the
notion “dimension“ was chosen in order to convey the meaning of making data quality
evaluable or measurable in a quantitative way [43] [18]. Data quality corresponds to the
degree how well the data sources available to the individual or organization analyzing it
matches with the actual data [38].

One of the most widely used data quality models was developed by the ISO, and contains
inherent as well as system-dependent (i.e. software- and hardware-related) dimensions [42]
[48]. The inherent dimensions comprise accuracy, completeness, consistency, credibility,
currentness, accessibility, compliance, efficiency, and confidentiality, which highlights the
relation of data completeness to data quality as one of its main dimensions [42] [48].
Furthermore, research by for example Jayawardene (2013) [43], Nikiforova (2018) [64],
Cai (2015) [10], Song (2020) [81], Günther (2019) [34], Liu (2020) [56], and Geo (2019)
[29] amongst others all outlined data completeness as one of the main dimensions of data
quality, notably in a domain like IoT and industrial applications, which “relies heavily
on the quality of the data collected by devices“, where the loss of data entries might
occur due to various issues [56]. Data completeness can be hampered in this particular
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domain by inconsistent data, diverging formats, missing values, duplicates, or erroneous
sensor measurements [99] [56]. According to Liu et al. (2020), the by far most frequently
pointed out issue in data preparation and analysis was “missing data“ [56], which finally
emphasized again the assignment of a higher weight to treating incomplete data, and
recognizing its impact on overall data quality.

At this point, it has to be mentioned that the literature analyzed was limited to the
resources mentioned in the bibliography and the Related Work 2. Further data quality
dimensions might play a role, but would still not question the status of data completeness
as one of the dimensions contributing to data quality. Newer studies in reference to
the topic of data quality dimensions in relation to data completeness might have been
published during the time of writing and after the extraction of the data sources for this
piece of work.

7.2 RQ2: Techniques to handle data completeness
The goal of the second research question was to compare the theoretical (i.e. academic)
via a literature review, and practical perspective of approaches by the means of an online
survey to deal with missing values, and it was phrased in the following way:

RQ2: What methods and models are used in research and in the industry to
inspect, evaluate, and improve the handling of missing values throughout the
lifecycle?

In line with the Related Work 2 and the Literature Review 4, it turned out that data
science often requires dealing with incomplete data, and that datasets would only be
considered up to a maximum of 50% of missing values, otherwise they would be too
unreliable for further processing [52] [13]. This suggestion from the literature reviewed
was later on also confirmed by the online survey, in which around 80% of the participants
stated that they would not use the presented datasets with 40% and 70% of the data
entries missing.

According to the Related Work 2 and the Literature Review 4, around 70% of the
people involved in data preparation indicated that they had used missing value handling
methods beyond the deletion of columns / rows [90], and mean imputation as well as
regression imputation were preferred in a practical setting [90] [31] [98]. However, the
theoretical view recommends statistical and machine learning based techniques in order
to aim for even higher performance advances [90] [52] [73]. The proposition regarding the
usage of handling methods was again largely confirmed by the online survey, in which
approximately 70-80% of the participants said that they engage in more than the deletion
of columns / rows with regard to datasets that contain up to 20% missing values, for
which they think about a dedicated strategy (see Figure 5.14 and 5.13).

The Literature Review 4 also indicated an interest for using increasingly machine-learning
based and statistical imputation methods beyond the simple ones from the theoretical
perspective (from 2010 to 2021 as depicted in Fig. 2.5), in view of those methods’
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performance advantages [36] [98] [31]. Still, in the publications it was acknowledged that
such comprehensive methods could lead to higher computation effort and longer execution
times in the missing data imputation process [36] [31]. According to previous literature
surveys by Young (2011) and Franca (2021), practitioners rarely used more advanced
statistical or machine learning based techniques, notably due to the availability of easily
usable software, execution time (notably for some machine learning based methods), and
the “time as well as statistical knowledge“ necessary for implementing and comparing
outcomes [98] [26].
In the Literature Review 4, Hasan (2021) revealed that (from 2010 to 2021) that among the
machine learning based imputation methods in a theoretical setting, the most frequently
used method by far was kNN, followed by RF, SVM, BPCA, and DT (see Figure 2.7)
[36]. In very few publications, data was imputed using Naive Bayes, self-organizing
maps, SVR, LDA, (linear) regression, XGBoost, or ANN [36]. The Related Work 2 and
Literature Review 4 showed that in research publications, all kinds of missing rates have
been analyzed, but they usually focus on one of three ranges of missing rates, namely
below 30%, 30% to 50%, or over 50% [2]. Among the models well suited to industrial
data, kNN, SVM, mean replacement, along with simpler statistical methods for miss rate
percentages lower than approximately 30 to 40% have been mentioned, while over 40%
the features are usually purged [11] [89] [22].
In extension to research publications, this thesis newly contributes beyond the state of
the art by adding insights from practitioners on how high missing data rates could be so
that the dataset stays still relevant for further analysis, as well as on the use of specific
handling methods, software packages and libraries to deal with missing data, to the
observations made by Young (2011) [98], Gond(2021) [31], Hasan (2021) [36], Feldman
(2018) [23], and Alamoodi (2021) [2], amongst others.
The 330 online survey participants largely had completed a bachelor or master degree,
with over 60% of them in statistics, data science and computer science, and around
40% working in data analysis, data science or a statistics related job (see 5.2, 5.3).
Approximately 70% indicated that they had more than 3 years of work experience in
their current job. What was previously not covered by the literature was the usage of
programming languages amongst others for the purpose of handling data completeness,
which turned out to be 51% Python and 27% R, according to the online survey (see
5.10). Row / column deletion or complete case analysis was not much considered by the
previous publications, but was included in the online survey, which effectively revealed
that in a scenario with 5% missing entries, around 40% delete the missing observations
or features as a whole from the dataset (see 5.11). 58% apply imputation techniques,
but around half of them apply very simple methods such as constant replacement (incl.
mean / mode / median imputation) or using always the same handling (see 5.11). As a
large amount of publications deal with more complex methods, the online survey results
indicated that notably in scenarios with rather low missing rates, practitioners might not
choose the use more elaborate methods, but rather favor simple ones.
However, when presented with a dataset containing 20% missing entries, 44% stated that
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they would think about a tailored and more elaborate imputation strategy, while only
15% would opt for row / column deletion, and 14% for constant replacement (see 5.12).
For 18%, the dataset would even have to large of a missing rate, so they would not use
it at all (see 5.12). This is also a fact that has not been tackled by publications that
even in such rather low missing rate scenarios, a considerable number of practitioners
would refrain from using the dataset. For the larger two analyzed missing rate scenarios,
the online survey results confirmed the previous publications’ findings, saying that most
practitioners would not use such datasets. In the 40% and 70% missing rate scenario,
80% of the participants said they would not further process such a dataset, whereas only
about 15% would try to deal with it (see 5.14 and 5.13).

Young (2011) [98], Gond(2021) [31], Hasan (2021) [36], Feldman (2018) [23], and Alamoodi
(2021) [2] amongst others promoted the use of more advanced techniques for handling
missing values. However, in practice the organizations’ approaches diverge substantially
from that ideal in a way that only 33% of the survey respondents said that they developed
dedicated strategies to handle missing values for every dataset. The remaining 67% of the
respondents either used complete case analysis, did not consider incomplete datasets at
all, replaced by constant, or used only one single method of choice for every dataset (see
5.15. Hence, this elucidated the divergence between theory and practice once more. In a
theoretical sense, all options for more comprehensive strategies that could enhance data
quality overall would be available, but organizations do apparently not seamlessly put
them into practice for various reasons. One of those reasons might be the fact that more
than 50% of the organizations perceive handling incomplete data somewhat important or
indifferent, but not very important, and yet over 25% do not consider it important (see
5.16. This could actually hint towards the need for raising awareness of the topic.

In the literature, missing data handling methods such as CART, EM, hot-deck, kNN,
mean / mode / median / constant replacement, RF, SVM, ANN, association rules,
LOCF, multiple imputation, Naive Bayes, PCA, regression, and XGBoost have often
been mentioned as commonly used tools to impute missing data entries [20] [36] [21]
[66]. However, practitioners had a different view of that. Even when considering only
respondents whose current job role is placed in the area of data analysis / data science /
statistics, 75% actively use the mean / median / mode replacement and 50% the constant
replacement methods in practice, which is the highest usage among all missing data
handling methods mentioned in the online survey (see 5.19, 5.20). When it comes to
specific preferences for methods, mean / median / mode replacement was mentioned as
the top choice (by 22% of respondents), followed by regression and kNN (by 8% each) (see
5.21). More comprehensive machine learning methods turned out to be not too popular
(see 5.21). This was followed by only around 30% active usage of kNN and regression
respectively. Approximately 10% of the participants had used CART, RF, SVM, LOCF,
multiple imputation, and PCA techniques in context with missing value handling (see
5.17, 5.18). The least used methods by practitioners for dealing with missing values from
the ones given in the survey are hot-deck, EM, ANN, association rules, Naive Bayes,
and XGBoost. Still, to over 20% of the respondents, the methods CART, kNN, RF,
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SVM, ANN, Naive Bayes, PCA, and regression are known from another context where
they used it, but they have not used it in practice for missing value handling (see 5.17,
5.18). This only somewhat reflects the development of the usage of missing data handling
methods in publications as Hasan (2021) summarized that in a theoretical setting, the
most frequently used method by far was kNN, followed by RF, SVM, BPCA, and DT (see
Fig. 2.7) [36]. Still, concerning the least frequently used methods, theory and practice
corresponded which comprise Naive Bayes, SVR, LDA, (linear) regression, XGBoost, or
artificial neural networks [36].

The usage of software libraries and packages in relation to handling incomplete data has
so far not been covered by any survey or publication. From the online survey results, it
can be seen that, even if the view is narrowed to participants who work in data science
related jobs, only a selection of libraries such as the various imputers and regressors from
Python or mice, VIM and Hmisc from R are used actively in practice by a maximum
of 25%. To a large number of participants (i.e. ranging from 50% to 80% per library),
the library is known to them, but not actively used in practice (see 5.20). In contrast to
this, research publications often refer to specific software libraries and suggest them for
handling missing data in practice such as those by Erhan (2021) [20], Farhangfar (2008)
[21], or Okafor (2021) [66].

Finally, the question of why certain methods are preferred in practice, and others are not
much used, is raised. The participants’ aggregated answer to what influences their choice
of missing value treatment method most is quite revealing. The most important aspect
to them is indeed that a method is fast and easy to implement, and secondly they closely
follow recommendations by their workplace (see 5.24). While the availability of tutorials
related to methods and whether the method was already used or taught during their
education was even more important than reading research papers about the suitability
of methods and their application (see 5.24). In line with the final comments section,
some participants added their thoughts in the form of open text. A large number of the
comments pointed out that missing values are an issue in practice that should ideally
obtain more attention, but is in reality still not taken as serious by management or due
to time constraints at work in many cases. Careful study of research papers and available
options would be necessary to examine the difference in performance, however, such a
scenario appears to be rather an ideal case, and not directly transferable to everyday
life where time and resource constraints occur. The respondents also mentioned that it
would be recommendable to not even let missing values occur, i.e. tackle the issue earlier
at the root already.

What might limit the findings related to this research question is that the literature
review is based on a specific search string which might could have overlooked relevant
publications. The search was limited to the publications databases IEEE Xplore, ACM
Digital Library, Web of Science, and Scopus, and to the time range from 1999 to 2022
which could have left out relevant publications. Even in 2022, further relevant publications
might become available after the time of extraction or writing. Concerning the online
survey, it was limited in time to a duration of around one month when answers were
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accepted. In case the online survey submission period would have been longer, a higher
number of answers might have been generated. The list of missing value handling methods
and software libraries suggested for evaluation did not represent an exhaustive list, which
could have led to it leaving out relevant options. In addition to this, a representation bias
or response bias might have occurred among the respondents, as the survey participants
were sourced mainly via personal contacts and a subsequent snowballing effect. The
online survey finally also bears the risks that its results might not be generalizable to the
whole population.

7.3 RQ3: Open-source and industry use cases on missing
value imputation

The third research question refers to two case study comprising statistical experiments
to apply missing value handling methods, and was formulated as follows:

RQ3: Which methods of handling incomplete data are most suitable with a
view to enhancing data quality based on the selected data sets?

The overall RQ3 is split into two parts, RQ3a and RQ3b, which refer to the open-source
case study and the industry case study (with the latter considering manufacturing sensors
data) to determine which methods for missing data handling are most suitable, and how
they compare across the case studies.

As it was mentioned in the Related Work 2, the framework from Hasan (2021) for the
execution of statistical experiments was applied in line with both case studies focusing on
indirect evaluation, extended by the direct evaluation phase, and runtime measurement
as performance metrics to measure performance from various angles, which was depicted
in Figure 6.2 [36]. Indeed, the number of publications using direct evaluation has surged
over the last decade, and the usage of indirect evaluation has stayed stable (see 2.8)
[36]. A similar experiment set-up like Hasan’s (2021) had previously also been used in
publications by Alamoodi (2021), Syafie (2018) and Dhungana (2021) suggested a similar
experiment design [2] [84] [16]. In the Literature Review 4, Hasan (2021) revealed that
most research studies either concentrated on the direct or the indirect evaluation, but
did not apply both [36]. Thus, in this thesis, both performance evaluation techniques
and additionally the recording of execution time as a performance metric was chosen in
extension of the state of the art evaluation approaches. According to Hasan (2021), 60%
to 70% of the studies concentrated on simple statistical methods for imputation [36]. In
view of the above, this thesis aimed to incorporate in publications much used (e.g. kNN,
RF, DT) and not so frequently used (e.g. linear regression, XGBoost) machine learning
based imputation methods [36] (see also 2.7.

Research studies concentrate usually focus on one of three ranges of missing rates, namely
below 30%, 30% to 50%, or over 50% [2]. In this thesis, the missing rates of 5%, 20%,
40%, and 70% were already used in the online survey, where the participants largely
voted for not using the dataset with 70% of entries missing. For this reason, the missing
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rates were narrowed down to 5%, 10%, 20%, 40% (assuming the MCAR missingness
mechanism) to obtain more fine-grained insights into the performance metrics for those
four scenarios.
The most used performance metric mentioned in publications that were screened in line
with the Related Work 2 for regression settings was RMSE, sometimes in combination
with imputation execution time [16] [2] [36]. To extend to the state of the art, the
performance metrics RMSE, MAE, and runtime were combined in this thesis for a
comprehensive evaluation.
As for the choice of missing data handling methods, the goal of this thesis was to bring
together methods frequently used in practice as well as methods suggested in research
publications. Thus, both simpler techniques like mean / median / constant replacement
and linear regression as well as machine learning techniques like kNN, RF, CART (i.e.
DT), and XGBoost were applied. Overall, the statistical experiments aimed to evaluate
various missing value imputation methods in the direct and indirect evaluation setting
plus the execution time, and with varying missing value rates. The results from both
case studies are compared subsequently in order to review differences and similarities
in the scenarios. Ehrlinger (2018) analyzed the treatment of missing values in the area
of Industry 4.0 analytics, from which emerged that most research on missing values did
not refer to industrial analytics, but rather to social science analytics concentrating on
survey data [19]. In view of the above, this thesis aimed to gain further insights into
missing value treatment in the industrial manufacturing domain using sensors data and
to compare to another domain’s dataset.
For the implementation, the choice of R software libraries and packages reflected those
indicated by the online survey participants as being actively used in their job such as
VIM, mice, mi, and randomForest. For every imputation method and share of missing
values, 20 runs were carried out so that enough performance result data for statistical
significance testing in a paired setting (by the means of paired t-tests and Paired Samples
Wilcoxon Signed-Rank tests) was collected in order to extend the state of the art studies
by the significance analysis.
When it comes to the comparison of results of the two case studies, the direct evaluation
revealed similarities between the best and worst methods across all missing data rates
(see 6.26). The RF and kNN methods were the best methods, and linear regression
consistently came out as worst (regarding the RMSE performance metric). This would
also entail for practitioners who stated (linear) regression as one of their favorite methods
that they might be well advised to re-think their preference, and consider some of the
better performing methods, as even mean and median replacement perform better in
the 20% and 40% missing rate scenarios than linear regression. In relation to execution
time, the results are again similar across both case studies and for all missing data
rates. The fastest methods concerning this criterion are mean and median replacement,
whereas the most computation-intense ones are CART and RF (see 6.27). So, mean and
median replacement could be an option if the most important criterion is a short runtime.
However, if other criteria matter, the former are not recommended.
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In line with the indirect evaluation, kNN and RF prevailed as best performing methods
with regard to RMSE across all missing rates scenarios. In the 5% and 10% missing rate
scenarios CART was among the best methods too, while in the 20% and 40% missing rate
scenarios XGBoost was among the best. A similar picture is shown by the comparison of
the MAE results, from which kNN and XGBoost emerge yet again as best methods. Mean
and median replacement are the worst methods with regard to RMSE and MAE out of
the tested ones. Furthermore, regression does not perform well either in the scenarios
with higher missing rates.

Hence, for practitioners kNN and XGBoost could be a viable choice as they are among
the methods regarding RMSE and MAE performance, and at the same time not among
the worst concerning execution time. In fact, kNN turned out as a particularly favorable
method as it has good RMSE, MAE, and runtime results, and even its runtime is not
significantly different from the one of the mean replacement in the open-source case study
(6.30). However, this finding might not be generalizable as there is a significant difference
for the kNN method when using the industry data (6.31).

From both the industry as well as the open-source dataset results, it could be seen that
the RMSE and MAE performance was significantly different from the mean imputation
results for kNN, CART, RF, and XGBoost in the scenarios with a share of 20% and
40% data missing. This gives a hint towards better choices regarding the RMSE metric
compared to the simple mean imputation baseline, and similarly “bad“ method such as
median and regression imputation. When the regression performance on the original
dataset is taken as a baseline, a key finding was that kNN, CART, and RF imputation did
not lead to significant performance loss in either one of the case studies in the 5% and 10%
missing data rates scenarios. But in the higher missing rate scenarios, any imputation
method still comes at a substantial performance disadvantage. For the MAE performance
metric, the situation differed slightly as even for the 5% and 10% missing data rates
scenarios only CART and XGBoost imputed datasets came close to the performance
based on the original dataset in both case studies, and notably it was restricted to that
in the industry case study. Overall, comparing the results of the statistical experiments
demonstrated that the two datasets led to rather similar performance metrics findings
despite the different constraints and dataset shapes considered for the analysis. In
addition to this, the mean and median replacement methods that are preferred in practice
next to regression are fast, but do not exhibit good RMSE and MAE performance metrics.
Therefore, the trade-off between execution time and other performance metrics such
as RMSE or MAE has to be critically reflected upon. Even though it might not have
been the fastest algorithm, kNN imputation still offered a good performance fit for all
cases and related to all performance metrics analyzed, while still keeping execution time
reasonably low.

On the whole, it has to be mentioned at this point that the aforementioned findings also
come with several limitations. Firstly, the experiment set-up was chosen in alignment
to Hasan’s (2021) framework [36]. Other frameworks could have led to different phases,
processes, and outcomes. What is more, the performance comparison as well as the
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significance testing was based on 20 randomly selected runs with fixed seed values to
control for the randomness and make the experiments reproducible. The choice of n as
20 runs could be changed and could lead to different results. The impact of the randomly
selected seed values on the results was not analyzed further either. Furthermore, the
statistical experiments looked at the outcomes of six missing data handling methods,
even though there are many more available. So, another choice of methods might have
led to a different outcome. Likewise, the SVR method was applied in line with the
indirect evaluation which is only one method out of many that could have been chosen
and compared. Even though it was applied with all the same parameters in all scenarios,
the effect of another regression method was not examined. Finally, the experiments were
carried out based on the two named datasets, which could constitute a too low number
of datasets to obtain generalizable findings.
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CHAPTER 8
Conclusion and Future Work

This thesis aimed to analyze and enhance data quality from the completeness dimension
perspective, and with a focus on the manufacturing domain. As a sufficiently high data
quality is crucial for the successful use of industrial applications for instance in CPPS
engineering, tackling incomplete data in the most effective way possible, can essentially
help to obtain more promising results [7] [37]. Even though complete data would be an
ideal case to start data analysis, notably manufacturing data is in reality rarely complete
and the reasons for lost data entries are manifold. Handling incomplete data means
taking steps to eliminate the missing observations or features, or to choose methods to
impute the missing entries. At this point, the goal was to find out what approaches
practitioners in comparison to methods suggested in research publications choose in order
to cope with missing data, and to subsequently analyze based on two case studies how
performance metrics of several missing data handling methods compare. Similarities and
differences between the results generated based on the dataset of the open-source as well
as the manufacturing case study were inspected so that overlaps could be identified.
In line with the online survey, practitioners turned out to favor mean, median, and
constant replacement as well as (linear) regression imputation to handle missing values,
i.e. they had a preference for simple methods. From the segment of machine learning
methods, which was not so much used among the online survey participants, the favored
alternative was the kNN method (followed by a smaller number of people who used
CART and RF) which was also quite well known among the practitioners. Besides, it
turned out that ANN, association rules, LOCF, Naive Bayes, SVM, EM, and XGBoost
were neither much used nor much known with regard to handling missing data among
practitioners, even when the view was narrowed to participants who work in data science
related jobs.
However, their choice also depends on the share of missing values in the dataset. For
datasets with lower than 40% of the data entries missing, most practitioners stated that
they would try to handle missing data, whereas for datasets with missing rates higher
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than 40% they would drop the whole dataset and not consider it further for analysis.
Overall, the highest rated criterion for choosing a specific missing data handling method
was that the method is fast and easy to implement, and second to this that the workplace
gave a recommendation for a particular method. Some practitioners participating in the
online survey also cited the availability of tutorials or previous experience with a method
from their education as a decision criterion for a specific method. Reading research
papers and their method presentation or conclusion section was, however, least frequently
mentioned as a criterion to choose a particular missing data handling technique. The
majority of practitioners mentioned that during their education either nothing regarding
the topic occurred or they only learned one to two simple methods but no details. In
view of this, they stated that they would see more thorough education about the topic
as beneficial.
In the statistical experiments the mean replacement, median replacement, kNN, CART,
RF, and XGBoost imputation methods, which were selected based on the Literature
Review 4 and Online Survey 5.2 results, were applied to two datasets in line with the
open-source case study and the industry case study. The thesis intended thereby to gain
insights into how selected methods perform on different datasets in the direct, indirect
evaluation, and runtime review. Thus, the statistical experiments were used to develop
a "virtual sensor" (cf. "soft sensor") that evaluates the imputation techniques in order
to determine whether the performance of subsequent machine learning methods can be
influenced and improved by the choice of the missing value handling method, notably in
the CPPS context.
From the direct evaluation, RF emerged as the best method across all missing value
percentages analyzed (followed by kNN in the lower and mean / median replacement in
the higher missing rate scenarios), while (linear) regression came out as least performant.
With regard to execution time, the mean and median replacement methods achieved the
best performance, while CART and RF took longest to execute.
In line with the indirect evaluation, the kNN method appeared to be the among the best
performing based on RMSE for all missing data rates, while RF and CART performed
well in three scenarios, and XGBoost in the scenarios with 20% and 40% data missing.
The least performant methods with respect to the RMSE criterion were mean and median
replacement. As for the MAE, the situation was much like the one using RMSE, as the
kNN performed best in all scenarios again. But in contrast to the RMSE evaluation,
regarding MAE XGBoost performed best in all scenarios as well. CART was among the
best only in the scenarios with 10% and 40% missing data. In relation to both, the RMSE
and MAE performance metrics, mean and median replacement came out as the least
performing methods in all scenarios, which were complemented by the (linear) regression
method in the 20% and 40% missing data rate scenario.
From the above analyses, it can be seen that the choice of missing data handling method
can have an influence on the performance metrics set for the direct as well as the indirect
evaluation. The indications for suitable and well performing methods were essentially
very similar across the open-source and industry case study.
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Future research on this topic should, however, consider more datasets or case studies than
the two observed in this thesis so that the results could be better suited to generalize
from them. Additionally, further recent research that was published after the time of
extraction and writing should be integrated. The online survey comprised a limited
number of participants due to time constraints. So, it would be advised to repeat the
online survey over a longer time period in order to obtain more participants, and check
for the reproducibility as well as stability of its results. As in this thesis, only a limited
number of missing data handling method were used both in the online survey as well
as in the statistical experiments, it is finally recommended to expand this in the future
to a higher number of methods, evaluate more missing data rates, and create a more
comprehensive and fine-grained scenario analysis, while also checking for the potential
effect of the choice of random seed values.
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