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Kurzfassung

Die Hauptursache eines Softwarefehlers zu identifzieren ist aufgrund der Komplexität
heutiger Softwaresysteme oft ein äußerst schwieriges und zeitaufwendiges Unterfangen
und daher versuchen Root Cause Analysis (RCA) Systeme diese Ursachensuche zu
optimieren, indem sie Orientierungshilfe leisten. Ein wesentlicher Bestandteil dieser Ori-
entierungshilfe ist dabei eine Graphenstruktur, die kausale Abhängigkeiten zwischen
und innerhalb verschiedener Komponenten einer Softwareanwendung abbildet. Diese
Beziehungen müssen oftmals automatisch anhand von Daten – besonders häufig Leistungs-
und Ressourcennutzungsmetriken – gelernt werden. Zu diesem Zweck verwenden viele
bestehende RCA-Systeme statistische Algorithmen, die häufig unter dem Begriff Causal
Discovery zusammengefasst sind. Obwohl diese Algorithmen bereits in verschiedenen
anderen Disziplinen verwendet wurden, gibt es bisher nur vereinzelt Untersuchungen,
wie nützlich und anwendbar diese Algorithmen für die Aufgabe der Ursachenanalyse
im Bereich Application Performance Monitoring (APM) sind und wie gut sie im Ver-
gleich zu einfacheren Techniken funktionieren. Deshalb vergleicht und bewertet diese
Arbeit mehrere unterschiedliche Causal Discovery Algorithmen im Hinblick auf die gerade
genannte Aufgabe, indem Metrik-Zeitreihendaten von einer tatsächlichen Softwareanwen-
dung gesammelt und als Eingabedaten für die zu bewertenden Algorithmen verwendet
werden. Die durchgeführte Auswertung zeigt, dass sich die untersuchten Causal Discovery
Algorithmen hinsichtlich ihrer Fähigkeiten durchaus beachtlich unterscheiden können,
die meisten von ihnen jedoch klar bessere Ergebnisse liefern als einfachere Techniken
wie die Verwendung der Pearson-Korrelation. Diese Ergebnisse deuten darauf hin, dass
viele bestehende RCA-Systeme, deren Funktionsweise eine Graphenstruktur voraussetzt,
durch die Verwendung eines hier ausgewerteten Causal Discovery Algorithmus verbessert
werden könnten.
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Abstract

Identifying the root cause of a software failure in today’s complex software environments
is often an extremely difficult and time consuming undertaking and therefore automatic
root cause analysis (RCA) systems try to optimize this root cause search by providing
guidance. In many cases, a vital part for providing this guidance is a graph like structure
which encodes causal dependencies between and within different components of a software
application and these relationships often need to be learned automatically from data, most
commonly from performance and resource utilization metrics. To do so, many existing
RCA systems utilize statistical algorithms that fall under the category of causal discovery,
which already have been used in various other disciplines. Nonetheless, so far, little work
has been done to understand how useful and applicable different causal discovery methods
are for the task of root cause analysis within the domain of application performance
monitoring (APM) and how they do perform compared to simpler techniques. Therefore,
this work compares and evaluates multiple different causal discovery algorithms with
regard to the just stated task by collecting metric time series data from an actual software
application and using it as input for the to be evaluated algorithms. This comparison
revealed that the evaluated causal discovery methods can differ quite substantially with
regard to their capabilities, but overall most of them still outperform simpler techniques
like the Pearson correlation. These results suggest that many existing RCA systems that
rely on a graph like structure for their root cause search could greatly benefit from using
one of the evaluated causal discovery algorithms.
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CHAPTER 1
Introduction

In today’s world, software systems are everywhere and the revenue and success of
every company becomes more and more reliant on correctly functioning software, a
fact that is particularly evident when IT systems do not work as expected. In many
cases, performance degradations alone can have serious impacts on customer satisfaction
like Google losing 20% of its traffic if their website responds merely 500 ms slower [1].
Downtimes of IT systems are in most cases even more expensive with technology research
firm Gartner Inc. estimating the average cost of downtime, based on industry surveys, to
be around 5600$ per minute [2].
Due to this increasing importance of digital services and the need for extremely high
system reliability, developing and operating modern software applications have become
more and more complicated, which lead to a rise in the adaption of application performance
monitoring (APM) systems. These systems continuously observe the behaviour of software
applications and their IT environments by collecting and analyzing logs, stack traces
and system metrics to prevent potential system failures and to provide help in case of a
failure [3]. A technology company that specialises in the field of application performance
monitoring is Dynatrace Inc.1 and this work was created as part of an employment there.

1.1 Motivation
Identifying the root cause of a software failure in today’s complex software environments
is often a extremely difficult and time consuming undertaking and therefore automatic
root cause analysis (RCA) systems try to optimize this root cause search by providing
guidance. In many cases, a vital part for providing this guidance is a graph like structure
that encodes causal dependencies between and within different components of a software
application and these relationships often need to be learned automatically from data,

1https://www.dynatrace.com
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1. Introduction

most commonly from performance and resource utilization metrics [4]. The root cause
search itself is then performed by traversing this graph, either starting from the metric
nodes, where anomalies were detected or from business critical metrics like the end-user
response time measured at the application front-end [4]. For constructing such inference
graphs, many RCA systems [5–10] go beyond simple techniques for learning associations
between metric data, such as Pearson correlation, and use more sophisticated methods
that fall under the category of causal discovery.

Causal discovery methods have been used on numerous data sets from different disciplines
to detect relationships between variables or to identify causal factors within various
processes [11] and therefore it is no surprise that these methods are also being used within
the domain of software monitoring. Nonetheless, during the course of a literature search,
two knowledge gaps with regard to the combination of causal discovery and root cause
analysis became apparent. First, all of the root cause analysis systems found use the
same two types of causal discovery methods with the vast majority of the systems even
using the exact same algorithm despite the fact that new causal discovery approaches and
concrete algorithms are regularly proposed. Furthermore, although there exist works that
experimentally compare multiple newer types of causal discovery algorithms, most of these
evaluations are done using either synthetic data or data from different domains [12, 13],
meaning that their results are unlikely to be applicable for the domain of interest. Second,
the results and findings regarding the performance and capabilities of the found root
cause analysis systems are similarly difficult to compare as the construction of inference
graphs using causal discovery methods in all cases represents just a small part of the
each of these systems.
Overall these findings can be summarized by stating that, so far, little work has been
done to understand how applicable different causal discovery methods are for the task of
root cause analysis within the domain of application performance monitoring.

1.2 Research Questions
Therefore, this thesis compares and evaluates existing statistical algorithms that fall
under the category of causal discovery regarding their usefulness for the just stated task.
More specifically, within the course of this work the following research questions (RQ)
should be answered:

1. How well can causal discovery algorithms detect connections between the causes
and the effects of software failures based on metric time series data alone? How
successfully can these methods identify the software component that is causing the
failure?

2. How well do these algorithms perform in comparison to two simple baseline ap-
proaches – one using the Pearson correlation and one using the graphical lasso –
with regard to the tasks stated in RQ1?

2



1.3. Methodological Approach

3. How sensitive is the performance of the examined causal discovery algorithms and
the baseline approaches with regard to the start and end points of the metric time
series data?

1.3 Methodological Approach
The methodological approach to answer the just posed research questions will be based
on the well-known CRISP-DM process model [14] and will include the following steps.
First, multiple existing causal discovery algorithms – each based on a different concept –
will be selected according to a literature review with an emphasis on methods that can
handle high dimensional data sets. Second, a software application needs to be selected
and set up such that both metric time series data can be collected and various software
failures can be intentionally evoked. Third, multiple evaluation criteria and scenarios
need to be defined that allow the answering of the research questions in a quantifiable
way. In a last step, these criteria should then be used to evaluate the selected algorithms
according to the beforehand specified evaluation scenarios.

1.4 Structure
The rest of this master thesis is structured as follows: After Chapter 2 provides important
background knowledge on the topics of causal discovery, application performance moni-
toring and root cause analysis, Chapter 3 introduces existing literature that has either
considerable thematic overlap with this master thesis or has influenced the creation of it
in a meaningful way. Following this, Chapter 4 addresses the methodological approach
outlined above and describes the course of action taken to answer the research questions
in more detail. Chapter 5 then objectively states the study results obtained during the
course of this work, which are thereupon discussed in Chapter 6 with regard to the
originally posed research questions. Last, Chapter 7 concludes this master thesis with a
short summary and highlights potential future research opportunities.
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CHAPTER 2
Background

This chapter provides the background knowledge necessary for understanding the topic
of this thesis in full. The first section introduces the idea of causal discovery, which will
be the method of choice for extracting relevant knowledge from data. The second section
discusses the field of application performance monitoring, which is the area of application.
The last section covers the concept of root cause analysis, which will partly build upon
the contents of the first two segments of this chapter.

2.1 Causal Discovery
Causal questions are omnipresent in everyone’s daily life, but causality plays an even
bigger role in science. For many disciplines, real interventional experiments allow scientists
to disentangle relevant from non-relevant influences and help to distinguish cause from
effect. One example are randomized controlled trials, which are often considered the
gold standard for effectiveness research in the field of medicine [15]. Unfortunately, these
experiments are often expensive and time consuming, which begs the question if similar
conclusions can be reached without experiments or deliberate interventions [15]. Causal
discovery aims to accomplish this by identifying causal relations from observational data
– in the case of this work time series – while avoiding spurious relationships due to mere
correlation. From a practical view, the general process can be described as an algorithm
which performs the following task. Given a matrix XT ×n where T represents the length
of the time series and n the number of different time series, output a graph

G = (V, E) where |V | = n and E = {(v, u) ∈ V 2| v causes u }
in which every variable represents a node and edges indicate causal influences or inde-
pendence between variables depending on their presence or absence.

The rest of this section is structured as follows: The first subsection introduces general
assumptions and concepts of causal discovery, while the second subsection highlights

5



2. Background

Notation & Description
X, Y , Z, ξ Random variables and noise
X Multivariate time series data
Xj , Xj

t jth time series, single observation of jth time series
P Joint distribution
G = (V, E) Graph with nodes V and edges E
X �⊥⊥ Y Random variables X and Y are dependent
X ⊥⊥ Y Random variables X and Y are independent
X ⊥⊥ Y | Z Random variables X and Y are independent conditioned on Z
X – Y X and Y are adjacent
X → Y X is a cause of Y and Y is an effect of X
X �→ Y X is not a cause of Y

Table 2.1: Notation used in this section

idiosyncrasies specific to the case of time series data. After this, different method families
of causal discovery are presented including a more detailed description of the algorithms
used in the practical part of this thesis. The most relevant notation can be found in
Table 2.1, which is used throughout this section unless explicitly stated otherwise.

2.1.1 General Concepts and Assumptions
This subsection lays the foundation to talk about causal discovery in general by introducing
needed terminology and presenting relevant aspects regardless of type of data or method
used. Beginning with defining relevant terms from the field of graph theory and followed
by common concepts and assumptions under which it is possible to infer a causal graph
structure from a joint distribution, this subsection acts as precondition for the rest of
this section.

Terms and Definitions

A graph G = (V, E) is a pair, where V is a set of nodes or vertices and E is a set of
edges E ⊆ {(x, y) | (x, y) ∈ V 2 ∧ x �= y}. Two nodes x and y are adjacent, if either
(x, y) ∈ E or (y, x) ∈ E. A node x is referred to as a parent if (x, y) ∈ E and (y, x) /∈ E
and as a child if (y, x) ∈ E and (x, y) /∈ E. If both (x, y) ∈ E and (y, x) ∈ E, the link
between the nodes is called undirected edge, otherwise it is called (unambiguously)
directed edge. Likewise, a graph is called undirected graph if all edges are undirected
and directed graph if all edges are directed. The skeleton of a graph G does not
consider the orientation of edges, i.e. the skeleton graph contains an undirected edge for
each adjacent node pair of the original graph. A sequence of edges, which are oriented
in the same direction is called a directed path. Further on, a graph, which does not
contain any directed cycles, that is, there is no node pair (u, v) with a directed path from
u to v and v to u is called partially directed acyclic graph (PDAG). If additionally,
all edges are directed, it is called directed acyclic graph (DAG).

6



2.1. Causal Discovery

A B C

(a) Mediation graph

A B C

(b) Confounding graph

A B C

(c) Collider graph

Figure 2.1: Building blocks of causal networks [16]

Graph structures can vary widely regarding their size and overall complexity, but as
pointed out by Judea Pearl, “there are three basic types of junctions, with the help of
which we can characterize any pattern of arrows in the network“ [16]. Therefore, the
following paragraph is based on Pearl’s book The Book of Why [16] and explains these
junctions in more detail. Graph 2.1a can be seen as a simple mediation model where B
transmits the effect of A to C. An example would be Fire → Smoke → Alarm, because
fire alarms act upon smoke and not fire. Conditioning on B by eliminating smoke will
make A and C independent resulting in no alarm regardless of the presence of a fire.
Graph 2.1b represents confounding, where A and C are linked by their common cause B,
which makes “A and C statistically correlated even though there is no direct causal link
between them“ [16]. An example would be Shoe size ← Age of Child → Reading ability,
as children with bigger shoe sizes tend to have better reading skills, resulting in spurious
correlation between the two variables, which can be eliminated by conditioning on the
confounder Age of Child. Graph 2.1c is called a collider or v-structure or immorality,
which works in exactly the opposite way as the first two structures, as conditioning on
the B will make the normally independent variables A and C dependent. An example
would be Talent → Film star ← Beauty under the assumption that both talent and
beauty are important for becoming a successful actor, while being unrelated in the general
population.

Reflecting upon these examples already highlights some of the difficulties when deriving
graphical models from observational data. Depending on the actual graph structure,
which in reality remains unknown, conditioning on the right variables is necessary to
avoid spurious correlation, while conditioning on the wrong variables results in detecting
links, which are not there.

A generalization of this concept of graphical dependence or independence is the one of
d-separation originally formulated by Pearl (1988) [17]. Here it is given as a definition,
closely following Assaad et al. (2022) [13].

Definition 1 (Pearl’s d-separation) If G is a DAG in which X and Y are two vertices
and Z is a set of vertices, then X and Y are d-connected by Z in G if and only if there
exists a path U between X and Y such that for every collider V on U, either V or a
descendant of V is in Z and no non-collider on U is in Z. Otherwise, X and Y are
d-separated given Z.

Peters et al. (2017) [18] use the notation A ⊥⊥G B | C to indicate that vertices A and B
are d-separated by a subset C.

7



2. Background

Although the concept of d-separation is a purely graphical one, together with the definition
of the Markov property, a commonly used assumption for graphical models, one can
relate “statements about graph separation to conditional independences“ [18], which is
crucial for the task of causal discovery.

In fact, there is not one but three Markov properties, but as long as the joint distribution
has a density these definitions are equivalent [18] and therefore we refer to all of them
simply as Markov property. The presented definition follows Peters et al. (2017) [18], but
can also be found in a similar form in older publications like Lauritzen et al. (1990) [19].

Definition 2 (Markov property) Given a DAG G and a joint distribution P, this
distribution is said to satisfy

(i) the global Markov property with respect to DAG G if

A ⊥⊥G B | C =⇒ A ⊥⊥ B | C

for all disjoint vertex Sets A, B, C

(ii) the local Markov property with respect to the DAG G if each variable is indepen-
dent of its non-descendants given its parents, and

(iii) the Markov factorization property with respect to the DAG G if

p(x) = p(x1, . . . , xd) =
d�

j=1
p(x|parentsG

j )

assuming that PX has a density p.

To indicate that a joint distribution satisfies the Markov property, one can also say that
a DAG G and a joint distribution are compatible [13] or that the joint distribution is
Markovian with respect to G [18]. Although the Markov property is valid for all kinds
of graphic models, e.g. Bayesian networks, in the context of causality the local Markov
property is often rephrased that each variable X given its direct causes is independent of
all the variables that are not direct causes or effects of X, which is sometimes referred to
as Causal Markov condition [20].

While the Markov Property, if satisfied, allows reading off statements of independence
from the graph structure, Faithfulness enables the opposite, deriving knowledge of the
graph structure based on independence observed in the data.

Definition 3 (Faithfulness) A DAG G and a compatible probability distribution P are
faithful to one another if all and only the conditional independence relations true in P
are entailed by the Markov condition applied to G.

8



2.1. Causal Discovery

The given definition can be found in similar form in Assaad et al. (2022) [13] and older
publications like Spirtes et al. (2000) [21]. Furthermore, Peters et al. (2017) [18] define
Faithfulness by stating that P and G are faithful to one another if

A ⊥⊥ B | C =⇒ A ⊥⊥G B | C

for all disjoint vertex sets A, B and C.

Reflecting upon the logical notation of Faithfulness, two interesting aspects become
apparent: First, the negation of the formula shows that Faithfulness allows the inference
of dependences from the graph structure and second, Faithfulness represents the opposite
of the global Markov property, as introduced above.

Furthermore if both Faithfulness and the Markov property are satisfied, then Causal
Minimality is also satisfied [18].

Definition 4 (Minimality Condition) A DAG G compatible with a probability distri-
bution P is said to satisfy the minimality condition if P is not compatible with any proper
sub graph of G.

This definition is given in Assaad et al. (2022) [13], but can also be found in similar
form in Peters et al. (2017) [18] and Spirtes et al. (2000) [21]. To put it more simply,
minimality requires that “the graph does not contain dependencies not present in the
observational data“ [13].

While Minimality is easier to understand, Faithfulness is less intuitive. To better
understand it, an example, taken from Peters et al. (2017) [18], which violates Faithfulness,
is given.

B

A

C

x

y

z

Figure 2.2: Example of Faithfulness violation [18]

In this example, the variables are all subject to normally distributed noise and are linearly
dependent according to:

A := ξA

B := yA + ξB

C := xA + zB + ξC

9



2. Background

In the case of

y · z + x = 0

two paths cancel each other and the distribution becomes not faithful with respect to the
graph shown in Figure 2.2 since the independence A ⊥⊥ C is not implied by the graph
structure, while minimality is still satisfied if none of the parameters vanish. Therefore,
many studies and causal discovery methods, which aim at inferring causal structures
from observational data require Faithfulness [13].

Having a distribution P and its underlying DAG G satisfy both the Markov and Faith-
fulness condition, furthermore, creates “a one-to-one correspondence between the d-
separation statements in the graph G and its corresponding conditional independence
statements in the distribution“ [18]. While this already greatly diminishes the num-
ber of graphs a distribution is potentially compatible with, there are graphs which
encode the exact same set of conditional independences and between which one can not
differentiate [18]. This will be discussed in more detail in Section 2.1.3.

So far, it was assumed that the set of relevant variables is known and all of these variables
have been measured. In practice however, as these variables need to be selected, this begs
the question how to determine if a variable is relevant or not. Going back to Graph 2.1b
at the beginning of this subsection, one may realize that relevant can not simply be
limited to the variables of interest, as a non-selected confounder of two selected variables
could lead to the inference of spurious correlation among these variables, although they
are independent in reality. A classical example is Simpson’s paradox, where not including
a confounder can lead to wrong causal conclusions or contradicting statements [18].
To avoid such problems, one needs to make sure that all common causes are actually
observed, which is often summarized under the term Causal Sufficiency.

Definition 5 (Causal Sufficiency) A set of variables is said to be causally sufficient
if all common causes of all variables are observed.

Again, this definition can be found in Assaad et al. (2022) [13], Peters et al. (2017) [18]
and Spirtes et al. (2000) [21].

In practice, Causal Sufficiency is hard to achieve as most applications can not be observed
in complete isolation and therefore some causally relevant variables will always be
unobserved [18].

2.1.2 Causal Discovery for Time Series Data
All the definitions and concepts presented so far are not bound to any specific kind
of data, which does not mean that the process of causal discovery is always the same.
Knowing that observations of variables have an inherent time structure, because they are

10



2.1. Causal Discovery

collected over time, results in some core differences. First, individual data points of a
time series variable are not independent, which differs from the usual i.i.d setting, where
every variable is observed several times. Second, due to the fact that a cause always
precedes its effects, causal discovery in time series becomes easier in some sense [13, 18].
Despite this, there are still a few remaining issues, which will be discussed at the end of
this subsection.

Graph Representations for Time Series

Different to the notation of the previous subsection, where samples are i.i.d drawn from
the joint distribution PX , the d-variate time series data is denoted by X, a single time
series is denoted by Xj and a single observation is denoted by Xj

t .

Based on this, the causal graph structure underlying the time series data can be repre-
sented in different ways, two of which will be introduced here. Both definitions closely
follow Assaad et al. (2022) [13], but can also be found in a similar form in Peters
et al. (2017) [18].

Definition 6 (Full Time Graph) Let X be a multivariate discrete-time stochastic
process and G = (V, E) the associated full time graph. The set of vertices in that graph
consists of the set of components X1, . . . , Xd at each time t ∈ Z. The edges E of the graph
are defined as follows: variables Xp

t and Xq
t+i are connected by a lag-specific directed link

Xp
t → Xq

t+i in G pointing forward in time if and only if Xp causes Xq at time t with a
time lag of i > 0 for p = q and with a time lag of i ≥ 0 for p �= q.

X1
t X1

t+1 X1
t+2 X1

t+3 X1
t+4

X2
t X2

t+1 X2
t+2 X2

t+3 X2
t+4

X3
t X3

t+1 X3
t+2 X3

t+3 X3
t+4

Figure 2.3: Full Time Graph

This DAG is a graph with infinitely many nodes and acts more as a theoretical concept as
inferring this graph based on a single observation for each time series and time instant is
practically impossible [13]. Nonetheless, under the assumptions that the causal relations
stay consistent over time, one is able to infer the causal relations between individual
time series including the respective lag between them [13]. This assumption is sometimes

11



2. Background

referred to as Causal Stationarity, which represents a weaker form of Stationarity [22]. A
more compact representation, which is often sufficient in practice, is the summary graph.
Here, different to the full time graph, edges represent causal relations between time series
as a whole without any time information.

Definition 7 (Summary Graph) Let X be a multivariate discrete-time stochastic
process and G = (V, E) the associated summary graph. The set of vertices in that graph
consists of the set of time series X1, . . . , Xd. The edges E of the graph are defined as
follows: Variables Xp and Xq are connected if and only if there exists some time t and
some time lag i such that Xp

t causes Xq
t+i at time t with a time lag of i > 0 for p = q

and with a time lag of i ≥ 0 for p �= q.

X1 X2 X3

Figure 2.4: Summary Graph

This also means that although a full time graph is acyclic, its corresponding summary
graph may still contain cycles.

Practical Limitations of Cause Preceding Effect

In an ideal setting the inherent direction within time series data makes it easier to
orient detected causal relations. However, in practice the time difference between cause
and effect of individual time series often has not been observed, because the sampling
process was “slower than the time scale of the causal process“ [18]. For some applications
the underlying process happens so fast, that measuring becomes either impossible or
extremely expensive, while for others the overhead associated with storing and processing
more data due to a higher sampling rate is just not economically feasible. Regardless of
the reason, in these cases cause and effect can appear instantaneous in the time series data,
i.e. as if they happened at the same time instance. Such causal relations are therefore
often called instantaneous or contemporaneous. As sub sampling is such a common
problem, many causal discovery methods for time series data often have mechanisms in
place to decide on a direction also for these kind of links.

In addition to sub sampling, time series data can also be aggregated, i.e. each data point
consists of averages or sums of consecutive observations of the original measurements.
Discovering the underlying causal structure for aggregated and sub-sampled time series
can make the task of causal discovery even more difficult, but under specific circumstances
it can nonetheless be possible to recover the causal relations at the original frequency [23].
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2.1.3 Causal Discovery Method Families
In this subsection four groups of causal discovery methods, each based on a different
concept, will be presented and for each group the one method, which was evaluated in
the practical part of this work, will be described in more detail.

Causal discovery in time series is an active research field, where new techniques are
regularly proposed, and thus classification into different, distinct, groups is not al-
ways precise [13]. The most relevant and therefore selected method families are (con-
ditional) independence-based methods, Granger Causality, score-based methods and
noise-based methods, which is in line with the works of Peters et al. (2017) [18] and
Assaad et al. (2022) [13]. The description for each of these method families is constructed
likewise. After a general explanation and potential references to relevant ground work,
the mechanics of one concrete method for time series data are explained and a reference
to the implementation, which was used for the evaluation, is given.

Independence-based Methods

Independence-based methods use the information of conditional independences available
in the distribution to construct the underlying causal graph under the assumption that
the distribution is faithful [13]. This causal graph “is however not unique as several
DAGs can be used to represent the same set of conditional independencies“ [13]. A set
of such DAGs is called Markov equivalence class. An example are the two three-variable
junctions [2.1a, 2.1b], which both encode the independence statement A ⊥⊥ C | B and are
therefore Markov equivalent. Verma and Pearl (1991) [24] have shown that two DAGs are
Markov equivalent if and only if they have the same skeleton and the same v-structures.

In practice, “most independence-based methods first estimate the skeleton“ [18], i.e. an
undirected version of the final causal graph. This involves trying to d-separate each
pair of nodes (X, Y ) by searching for a set of variables A not containing X or Y , which
satisfy X ⊥⊥ Y | A. After this, the skeleton can be oriented using the information of the
separating sets and additional orientation rules [18].

So far it was assumed that the derived independence statements are unambiguous, but
in reality they have to be inferred from a finite amount of data, which can lead to
“testing results [that] might even contradict each other in the sense that there is no graph
structure that encodes the exact set of inferred conditional independences“ [18], which is
especially true for non-parametric conditional independence tests. In the case of linear
dependence, one can test for vanishing partial correlation.

One of the oldest independence-based methods is the SGS algorithm [21], which searches
through all possible separating sets, as described above, and therefore becomes imprac-
tical as the number of variables increase. This shortcoming was addressed by the PC
algorithm [21, 25], which greatly improved the run time, especially for sparse graphs.
Although both of these methods were designed for non temporal data, many independence-
based methods for time series still partly function in a similar way like the PCMCI+
algorithm [26].
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PCMCI+ algorithm

The PCMCI+ algorithm is an enhanced version of the PCMCI algorithm [27], which
is named after the two stages it consists of: (1) a PC like condition selection phase to
identify relevant conditions P (Xj

t ) for all time series variables Xj
t ∈ {X1

t , . . . , Xd
t } and

(2) the momentary conditional independence (MCI) test, which tests whether Xi
t−τ → Xj

t

with

Xi
t−τ ⊥⊥ Xj

t | P (Xj
t ) \ {Xi

t−τ }, P (Xi
t−τ )

The goal of the first phase is to remove as many irrelevant conditions for each of the d
variables to ensure that the remaining conditioning set of each variable only represents a
small subset of its causal parents. This avoids having to condition on the whole past of
all the processes in the second phase, as the parents of a variable are already a sufficient
conditioning set according to the causal Markov condition. More specifically, the MCI
test in the second phase uses the estimated conditions for independence testing in two
ways: (1) conditioning on the parents of Xj

t tries to control for indirect and common
causes while (2) conditioning on the parents of Xi

t−τ tries to account for autocorrelation
effects [27].
While the original PCMCI algorithm was designed to only consider lagged causal links,
its extension PCMCI+ allows for the discovery of contemporaneous links [26, 27]. Both
methods assume that the Markov property, Causal Sufficiency, Faithfulness and Causal
Stationarity are satisfied. Their implementations are open source1 and available as part
of the python package tigramite.

Granger Causality

Granger Causality is one of the oldest concepts of causal discovery and its various
realizations are still among the most popular approaches to infer causal links between
time series [13, 18]. Due to its simplicity it is so well known and ubiquitous that it is
not possible to cover all existing concepts and even for the introduced concepts, many
different variations exist. Nonetheless a small overview should be given, but completeness
is not claimed.

In its original form it states that “Yt is causing Xt if we are better able to predict Xt

using all available information than if the information apart from Yt had been used“ [28].

The simplest version of Granger Causality is the bivariate case, where dependencies are
assumed to be linear. In this case, two autoregressive models, an restricted model, which
only uses past values of itself for prediction, is compared to an augmented model, which
uses both past values of itself and of its potential cause. In case the augmented model is
significantly more accurate, using some statistical test like the F-test, one concludes that
Xi Granger-causes Xj .

1https://github.com/jakobrunge/tigramite
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Mres : Xj
t =

τ�
k=1

akXj
t−k + ξt

Maug : Xj
t =

τ�
k=1

akXj
t−k

τ�
k=1

bkXi
t−k + ξ̃t

However the use of the bivariate version is highly inappropriate in most cases as Causal
Sufficiency would not be satisfied, which Granger already emphasized by requiring the
use of all available information for prediction [28].

A natural way to overcome the problem of Causal Insufficiency and to include all relevant
information is to change the autoregressive models to vector autoregressive (VAR) models,
where the augmented model uses all time series to predict a variable Xq, whereas the
restricted model uses all time series except for Xp to test whether Xp Granger-causes
Xq [13]. In addition to the just mentioned extension, Arnold et al. (2007) [29] examined
several multivariate Granger methods, one of which is the Granger Lasso.

Granger Lasso

The Granger Lasso combines the notation of Granger Causality with the usage of Lasso
Regression [30] to leverage its ability of variable selection and regularization. For each
variable the standard lasso optimization problem, finding the best parameters 'w, while
minimizing

1
n

�
(�x,y) ∈ S

|'w · 'x − y|2 + λ ||'w||1

is used, with y representing the prediction target and 'x the lagged versions of all the
variables, up to a maximum lag [29]. A implementation of this idea is available as part of
the python package causal-learn, which is open source2. For this specific implementation
the regularization parameter λ is selected through cross validation and, different to other
causal discovery methods, it only returns the regression parameters 'w. Therefore, these
parameters are then interpreted as causal influences, with regression coefficients being
zero or below a certain threshold seen as no causal dependency.

Score-based Methods

In the case of score-based methods, the problem of inferring a causal graph is treated
as an optimization problem, where the objective is to find the best matching network
structure given the data with the rational being that graph structures encoding the
wrong conditional independences will yield bad model fits [18]. The notation of best fit
is normally based on a score that considers both the “the likelihood of the data given the

2https://github.com/cmu-phil/causal-learn
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network and a penalty term related to the complexity of the network“ [13]. Furthermore,
in most cases the graph structure is subject to some constraint, the most common one
being that it represents a DAG.
While the availability of a score to assess the conformity of a graph structure with respect
to the data is great, in practice, finding the best scoring graph among all possible ones
becomes quickly infeasible as the number of potential DAGs is growing super-exponentially
with the number of variables [18]. For example, there are already 4175098976430598143
possible DAGs for a directed graph with only 10 variables [31]. Even when employing
more sophisticated search methods or heuristics, the combinatorial constraint makes it
difficult to find good solutions for problems with a high number of variables.

Nonetheless and despite this bad looking premise, Zheng et al. (2018) [32] were able
to reformulate the structure learning problem, which consists of optimizing a graph
score under a combinatorial constraint, into a purely continuous optimization problem,
completely avoiding the constraint, and thus making it much easier to apply score-based
methods to high dimensional problems. Based on this insight, Pamfil et al. (2020) [33]
created a new score-based causal discovery method for time series called DYNOTEARS.

DYNOTEARS

Here, the data is modeled using the following structural vector autoregressive (SVAR)
model

X = XW + Y 1A1 + . . . Y τ Aτ + Z

where X is an n × d matrix with d being the number of individual time series and n
the effective sample size, Y 1, . . . , Y τ are time-lagged versions of X and Z is a matrix of
centered error variables. This model can be written in a more compact form by stacking
the time-lagged matrices Y i and their respective weights like

X = XW + Y A + Z

The adjacency matrices W and A are the estimated under the constraint that contem-
poraneous links are not allowed to form cycles, which is equivalent to the requirement
that W is acyclic. The resulting optimization problem can then be formulated as

minimize
W , A

f(W , A)

subject to W is acyclic

with

f(W , A) = 1
2n

||X − XW − Y A||2F + λW ||W ||1 + λA||A||1

16



2.1. Causal Discovery

This is a classical continuous optimization problem, except for the acyclicity constraint
of W , which however can be replaced by the trace exponential function h(W ) =
trace(eW ◦W ) − d, due to Zheng et al. (2018) [32], as they showed that h(W ) = 0 if and
only if W is acyclic.3 This allowed the authors of the paper to reformulate the original
optimization problem into an equality constrained problem, which they solved using the
augmented Lagrangian method.
In their paper, the authors of the DYNOTEARS method state that stationarity for the
time series data is required and that guarantees for identifying the correct SVAR model
can only be given for cases, where either the errors in Z are non-Gaussian or if they
are standard Gaussian N (0, I) [33]. In general, the guarantees for inferring the correct
underlying graph using score-based method are weaker compared to, e.g. independence-
based approaches [13]. An implementation of their approach is available as part of the
python package causalnex and is open source4.

Noise-based Methods

Noise-based methods rest on the idea that the asymmetry of the data generating process
alone – effects are results of their causes and not vice versa – allows the inference of
causal relations from data. In this scenario, a causal system is formally described by a
set of assignments, where variables are the result of functions, which take other variables
and noise as their input.

Consider a simple problem with two variables, where X causes Y (X → Y ) through some
function f :

X := ξX

Y := f(X, ξY )

While in the most general case, where the type of the function f is not restricted, it is not
possible to infer the correct structure from the distribution PX,Y alone (Non-uniqueness
of graph structures), the underlying data generation process may still become identifiable
in certain cases [18]. One of them is where the effect Y is a linear function of its cause X
up to an additive noise term:

Y := aX + ξY , ξY ⊥⊥ X

Assuming that either the cause X or the effect noise ξY are non-Gaussian renders the
causal direction identifiable, a fact used by Shimizu et al. (2006) [34] to develop a causal
discovery algorithm named LiNGAM, short for Linear Non-Gaussian Acyclic Model,
which estimates causal models from continuous-valued data. In essence, this method

3Here, ◦ denotes the Hadamard product of two matrices.
4https://github.com/quantumblacklabs/causalnex
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works by decomposing the multivariate data into independent non-Gaussian signals using
independent component analysis (ICA) [35], which are then permuted to find an order
that aligns best with the assumption of a DAG structure [34].
Not long afterwards, the applicability of the LiNGAM approach was extended to time
series data by Hyvärinen et al. (2010) [36].

VARLiNGAM

Their method, called VARLiNGAM, combines the non-Gaussian instantaneous model
with an autoregressive model, resulting in a structural vector autoregressive (SVAR)
model, similar to the one in the previous section. The estimation of the weights is done
in a two stage process: (1) a classical autoregressive model is fitted using least-squares
regression and the resulting residuals are then used in (2) to perform the LiNGAM
analysis, which gives an estimate of the instantaneous causal model. At the end the
autoregressive coefficients are adjusted to incorporate the information of the instantaneous
model.

Except for the method’s inherent assumption of non-Gaussian error variables, the method
only assumes Causal Sufficiency [36]. Its implementation is available as part of the python
package lingam and is open source5.

2.2 Application Performance Monitoring
APM stands for Application Performance Monitoring, respectively Application Perfor-
mance Management, and is often used as an umbrella term for methods and tools that
continuously monitor the state and the performance of software applications and their
environments to detect, diagnose and respond to occurring problems. In this context,
monitoring mainly refers to the collection and analysis of operational data, most notably,
of application and system logs, resource utilization and KPI metrics, and application
traces [3].

The remaining section is divided into two parts. First, APM is viewed from an end-user
perspective, highlighting why IT system monitoring is becoming more and more important
and what functionalities APM solutions can provide. Second, the general structure most
APM systems follow is introduced with a focus on data collection and data processing.

2.2.1 End-user Perspective
In today’s world, software systems are everywhere and the revenue and success of every
company becomes more and more reliant on correctly functioning software. This fact
becomes especially apparent, when IT systems do not work as expected with a report from
IT industry group CISQ estimating the cost of poor quality software in the United States
to be around 2.84 trillion $ in 2018 alone [37]. Moreover, in many cases performance
degradation alone can have serious impacts on customer satisfaction like Google losing 20%

5https://github.com/cdt15/lingam
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of its traffic if their web site responds 500 ms slower [1]. Downtimes of IT systems are in
most cases even more expensive with technology research firm Gartner Inc. estimating the
average cost of downtime, based on industry surveys, to be around 5600$ per minute [2].

As APM is not a clearly defined term, the function range of APM tools can differ widely,
but at its core most of them offer some basic functionality like resource monitoring and
architecture discovery supporting different platforms and programming languages [38].
While these features already provide value for customers, according to Gartner Inc.,
“the value proposition [. . . ] has clearly shifted from data collection [. . . ] toward data
connection“ [39], which means that functions like anomaly detection, and problem
diagnosis in case of occurring failures are becoming more and more important.

When it comes to actual APM products, the most mature and feature-rich solutions,
according to Gartner Inc., are commercial with companies like Dynatrace,6 Appdynamics,7
New Relic8 and Data Dog9 leading the field [39]. Besides that, there also exist several
open-source products like Prometheus10 or Apache SkyWalking.11

2.2.2 Reference Architecture
In this subsection, a high level overview of the architecture of a fictional APM system,
including an explanation of its core components and functions, will be given. This
presented architecture follows the reference architecture given by Rabiser et al. (2019) [40],
which was developed by analyzing 47 monitoring systems and which shows that various
monitoring approaches, despite their functional difference, exhibit significant conceptual
overlap. Supplementary to this, additional information about the collection, processing
and analysis of data done by APM systems is given.

The architecture of this APM system, depicted in Figure 2.5, can be divided into three
main pillars. The left pillar denotes the monitoring setup, which is responsible for
capturing the operational data, the middle pillar denotes the monitoring execution,
which represents the heart of the monitoring system and consists of several layers with
different fields of functions, and last, the right pillar denotes the monitoring support,
which contains supporting functions, e.g. for data storage [40]. Depending on the mode
of installation – on-premise or SaaS-based (software as a service) – either all or only part
of the data processing happens on the IT system of the customer.

Monitoring Setup

The monitoring setup is responsible for capturing and transmitting different types of
operational data to the monitoring execution. In most cases, this is done by deploying

6https://www.dynatrace.com/
7https://www.appdynamics.com/
8https://newrelic.com/
9https://www.datadoghq.com/

10https://prometheus.io
11https://skywalking.apache.org/
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Figure 2.5: Reference APM architecture [40] – continuous lines indicating data flow,
dashed lines indicating collection of stack traces

monitoring software – often called agents – onto the hosts of the customers, which
allow the monitoring system to gather system and application logs as well as various
performance and resource metrics of the host itself and of its running processes. For
capturing more fine-grained information about application behaviour like stack traces,
either automatic or manual software instrumentation is used, which often integrates
painlessly with the already deployed agents. While each of the three types of mentioned
operational data – metrics, stack traces and logs – can help to improve performance and
reliability of applications, metric data is normally among the first candidates to look at
to identify performance issues on a high level.

In the vast majority of cases, metric data is represented as time series and can be
divided into two groups [41]. Application metrics mainly capture the current state and
performance of an application with the two most common metrics being the response
time and throughput. While response time describes the time for an operation like an
application request, a database query or a file system operation to complete, throughput
indicates how many user requests are handled per unit of time. Application metrics
also sometimes extend to the client side, capturing end-user experience in more detail
by measuring end-to-end response times of interactions or information about the usage
of the user interface [38]. On the other hand, system metrics mainly capture low-level
information of the underlying system like resource utilization. Classical examples include
CPU or memory usage, IO or network throughput or less obvious measures like the
number of used file descriptors.
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System metrics are often collected actively by periodic sampling, regardless of user
interaction, while other metrics like end-to-end response time can only collected passively,
when users interact with the application [38]. For actively collected metrics the sampling
rate is crucial and requires careful consideration as the amount of data generated is strongly
influenced by it. A high sampling rate provides a finer resolution and therefore more
insight, but simultaneously increases the cost associated with transmitting, processing
and storing the data. A lower sampling rate, on the other side, is more cost efficient, but
may miss vital information when metrics indicate performance changes [41].

Regardless of the type or amount of data captured, monitoring setups are in most cases
highly distributed as they need to collect data on multiple levels from different systems,
which could become even more apparent with the rise of micro-service architectures.

Monitoring Execution

The monitoring execution represents the core part of the monitoring reference architecture,
which can be further divided into three separate layers. On the lowest rank is the
information collection layer responsible for collecting data from the monitoring setup,
next is the middle layer with its main responsibility of transforming and analyzing the
collected data and on top is the application layer, which contains various functionality,
often not directly related to the monitoring or data analysis, but still relevant for the
end user, like visualization and alerting [38].

The main responsibility of the information collection layer besides data collection is
filtering and aggregating, which could be needed to reduce the amount of data to transmit
and process or to convert the collected information into a more adequate form [38]. The
processed data can then be passed along to the distribution and processing layer, which
can be seen as the point where data is turned into valuable insights. While APM solutions
can have widely different analyzing capabilities, one of the first steps for most solutions
involves some form of checking or anomaly detection whether the system behaves as
intended. For logs or stack traces this can be done by looking for deviations in log
respectively call patterns compared to the expected state or in the case of metric data,
techniques like change point detection or outlier detection can be applied. Normally,
if a deviation from the expected state is detected, further investigations are initiated
to identify the root cause of the anomaly – most commonly referred to as root cause
analysis (RCA) – a topic, which will be discussed in more detail in Section 2.3. A side
effect of RCA in addition to detecting the root cause, which is essential for remediation
of the working system state, is that multiple detected anomalies belonging to the same
cause, can be grouped and displayed as a single issue.
In a last step, the collected data among with information derived within the distribution
and processing stage is forwarded to the application layer. Here, similar to the analyzing
phase, the capabilities between different APM solutions can differ widely, ranging from
basic functionality like visualization and alerting to more advanced features like automatic
system adaption to minimize the impact of performance issues [38].
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Monitoring Support

The last part of the reference architecture is the monitoring support with its main role
of providing persistent data storage, be it in the form of a simple file-based solution or
in the form of a more complex distributed database setup. Information to be stored
is forwarded by the processing component, typically already filtered and aggregated to
some extent to minimize the amount of storage needed. As the stored information usually
becomes less important over time, some APM solutions further aggregate the data or
remove it completely after some time.

2.3 Root Cause Analysis
Root cause analysis (RCA) with its objective to identify the root causes of observed
problems is, at its core, strongly connected to the concept of causality [42]. It is a method
of problem solving applied in many different disciplines as the understanding of and
the remediation after an occurred failure is always of great importance, be it a business
or technical problem. In the realm of software and IT infrastructure monitoring the
perspective is much narrower with the most central questions being: (1) How to detect
anomalous behaviour and (2) how to identify the root cause of observed anomalies [4, 41]?
While the first question is not directly related to root cause analysis, it is a fundamental
prerequisite and therefore strongly linked to it as will be discussed further below.

The rest of this section is divided as follows: The first part discusses root cause analysis
more generally, focusing on relevant terminology and universal aspects of the process
itself. In the second part, root cause analysis methods are discussed in more detail
including how they can be differentiated and how many of them function on a high level
with a closer focus on metric-based RCA methods.

2.3.1 General Concepts
This subsection introduces relevant terminology, similar to Subsection 2.1.1, which will
be important throughput the rest of this thesis. After that, root cause analysis will
be reviewed in more detail focusing on how the performance of RCA methods can be
evaluated. Last, several trade-offs relevant in addition to the performance are discussed.

Terms and Definitions

A software application is often composed of multiple services, each performing its
distinct actions while interacting with each other. A typical example would be a simple
E-commerce website, which is made up of a process providing the customer front-end, a
process handling back-end tasks like orders and payments and a database storing product
and order information. A failure within such an application denotes the inability
of a service to perform its function as expected while anomalies correspond to the
observable symptoms of such failures. These can be further divided into functional
anomalies, e.g. in the form of more generated log messages or varying call patterns and
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performance anomalies, e.g. in the form of an increased response time or higher CPU
usage. Accordingly, anomaly detection refers to the process of detecting anomalies
that affect an application or one of its services. In the case anomalies have been observed,
the goal of root cause analysis (RCA) is to identify the reasons behind these anomalies
by analyzing operational data captured while the application was running, without trying
to replicate the failure or rerun the application. Both anomaly detection and root cause
analysis mainly work with three types of data: (1) metric data capturing application
state or resource utilization, (2) log data capturing runtime or system information and
(3) distributed stack traces capturing method calls [4].

Assessment Criteria for RCA Methods

In the realm of software monitoring, the problem of both anomaly detection and root
cause analysis can, in a wider sense, be interpreted as a classification problem. In the first
case, the objective is to classify application services as a whole or individual information
snippets – single metrics, log messages or traces – into two groups, anomalous and
regularly functioning entities. In the second case, the objective is similar as the goal of
RCA is to identify the set of entities that correspond best to the seen anomalies, i.e. the
set of previously selected anomalously behaving entities. Based on this notation, one
way of evaluating the performance of root cause analysis approaches is to use metrics
like precision and recall or, in case of ranked results, a measure of ranking quality like
discounted cumulative gain (DCG).

Similar to other engineering problems, designing a root cause analysis system involves
several performance related trade-offs, some of which should be mentioned here. The
first one is setup cost with tracing-based and monitoring-based techniques requiring more
setup compared to log-based approaches as software processes need to be instrumented or
agents for monitoring metrics need to be initiated. The second trade-off concerns the time
it takes to identify the root cause, where typically two broad classes can be distinguished:
real-time analysis, in which run time is critical and post-mortem analysis, in which run
time is less of a concern. In most cases though the differentiation is often not that clear,
as real-time algorithms often utilize precomputed information in their analysis [42]. The
last trade-off involves the question how to deal with the many cases, in which the root
cause can not unambiguously be determined. Returning multiple possible root causes,
including several false positives increases the effort on the application operator, who
needs to look into entities not responsible for the observed anomalies and thereby driving
up the cost of remediation. On the other hand, returning only one root cause, potentially
leading to false negatives, can result in even greater cost as not returning the actual root
cause defeats the purpose of running some form of root cause analysis in the first place.
As a result of this, many root cause analysis approaches opt to return multiple possible
root causes [4].

One way to mitigate the problem of false positives is to provide some form of explanation
together with each identified root cause [4, 42]. While this does not reduce the set of
possible root causes, a human operator could nonetheless benefit from it by being able to
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exclude false positives as a result of the explanation. In the case of rule-based learners,
an explanation could be a list of all rules that fired to reach a certain conclusion [42],
while in the case of causal discovery methods it could be a list of paths from the identified
root cause to the anomalous services or metrics respectively.

2.3.2 Anomaly Detection And Root Cause Analysis

Although anomaly detection and root cause analysis solve two distinct problems they
are often strongly coupled as the output of anomaly detection is in most cases part of
the input of the RCA process, which requires some form of compatibility. As a result of
this, in a number of cases the two processes form some kind of pipeline instead of being
triggered independently of each other [4]. Due to their close relation, the next paragraph
covers anomaly detection on a high level, before addressing the process of root cause
analysis in more detail.

Anomaly detection techniques can be differentiated according to several criteria including
but not limited to the type of data used, the type of anomalies detectable and their
overall functioning. Based on a recent survey by Soldani and Brogi (2022) [4] the majority
of anomaly detection techniques fall within the scope of either unsupervised or supervised
learning with the most commonly used data types being metric data and distributed
stack traces. As one could anticipate, the majority of metric-based techniques can only
detect performance related anomalies, while for stack trace or log-based methods the
ratio between functional and performance anomalies detectable is much more balanced.
Despite their differences all the surveyed techniques use data collected in training runs
to build a baseline, which then can be compared to new data to detect anomalies [4].

Root cause analysis techniques can be differentiated in a similar way as described above
and the findings, based on the same survey, can be summarized as follows: More than
70% of all examined RCA methods use metric data, several methods use distributed
stack traces and only one method uses log data with the vast majority of all methods
being only able to detect performance anomalies. While the precise functioning of the
surveyed root cause methods differ quite substantial, for most methods it involves the
automatic construction of a graph representation of the application that is then used for
the inference of the root cause. Hereby, the survey authors differentiate between topology
graphs, which are constructed using monitored service interactions or distributed traces,
and causal graphs, which are constructed using application logs or metrics collected from
the individual services of the application [4].
There exist, of course, also numerous other RCA techniques that deviate from the
functional principle just described, but listing and describing these techniques is beyond
the scope of this work. An overview of various alternative approaches can be found in
the works of Ibidunmoye et al. (2015) [41] and Solé et al. (2017) [42].
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Metric-based Root Cause Analysis

In the case of metric-based root cause analysis, the nodes of the graph can either model
the application services or the metrics itself and directed edges between nodes indicate
that a service influences another service or a metric influences another metric respectively.
The root cause search itself can then be performed by traversing this graph, either starting
from the metric nodes, where anomalies were detected or from business critical metrics
like the end-user response time measured at the application front-end. Alternatively the
centrality of nodes in the causal graph can be computed and ranked, assuming that the
most central nodes are responsible for the observed anomalies [4].

An obvious idea for constructing a graph representation of an application is to use some
form of correlation to detect interdependencies different metrics and thereby also between
the different components of the application. While this approach is simple to understand
and implement, correlation-based methods greatly suffer from spurious correlation and
tend favour entities with high correlation, while the actual root cause can be easily
overlooked. To avoid these problems, many RCA systems [5–10] resort to causal discovery
methods for constructing the causal graph with the most common algorithm being the
independence-based PC algorithm [21, 25].
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CHAPTER 3
Related Work

This chapter provides an overview of existing literature that has a considerable thematic
overlap with this master thesis or has influenced the creation of it in a meaningful way.
While the first section covers literature on the topic of causal discovery with a clear focus
on time series data, the second section is concerned with the topic of root cause analysis
in the field of application performance monitoring.

3.1 Causal Discovery
Literature on the topic of causal discovery is very diverse as the topic can be considered
from both a highly theoretical as well as from a more practical point of view with this
section definitely focusing on the latter aspect. Furthermore, since one of the main
objectives of this work is the comparison of different types of causal discovery methods,
the emphasis in this section is on literature that does the same, i.e. comparing different
approaches to causal discovery.

Glymour et al. (2019) [43] give an introduction and brief review of causal discovery,
covering independence-based, score-based and noise-based approaches including many
illustrations how these methods work. Furthermore they highlight practical issues of
causal discovery and offer general guidelines when applying these methods to solve actual
problems.

Moraffah et al. (2021) [11] provide a comprehensive review of two causal inference
tasks including causal discovery for time series data. Within their work, they focus on
independence-based and noise-based methods, Granger Causality and also cover methods
based on deep learning. Furthermore they curate a list of commonly used evaluation
metrics and datasets used for causal discovery and provide information on how they can
serve as a benchmark for future research within the field.
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Different to Glymour et al. (2019) [43] and Moraffah et al. (2021) [11], which address
different approaches to causal discovery from a more qualitative and theoretical per-
spective, Lawrence et al. (2021) [12] exclusively focus on practically evaluating and
comparing several up-to-date causal discovery approaches for time series data. For this,
they design a flexible and simple to use framework for generating synthetic time series
data aiming to overcome the limitations of evaluating causal discovery methods under
different circumstances using static data sets, which are inflexible by nature.

The most recent review of causal discovery for time series found is composed by Assaad
et al. (2022) [13], which extensively examine the topic from both a theoretical and
practical perspective. Within their work they give a detailed description of the underlying
concepts and assumptions behind independence-based, score-based and noise-based
methods, Granger Causality and also cover more exotic approaches to causal discovery
not mentioned so far. Furthermore, they compose a summary of the main characteristics
of eleven representative algorithms from the different method families just mentioned
and carry out an experimental comparison evaluating most of these methods on both an
artificial and a real data set.

Although the works of Lawrence et al. (2021) [12] and Assaad et al. (2022) [13] also
experimentally evaluate and compare causal discovery algorithms based on different
concepts similar to this work, they either use only synthetic data or data from a completely
different area of application for their evaluation.

Besides research literature, which consciously focuses on reviewing and discussing causal
discovery for time series holistically, there also exist a considerable amount of research
which focus on specific approaches to causal discovery. Commonly, the authors of this
type of research develop entirely new or enhance existing algorithms and as part of their
work compare them to already existing ways of modelling time series data regarding their
functioning and performance.

Arnold et al. (2007) [29] examines a host of related algorithms, which extend the original
bivariate idea of Granger Causality [28] to multivariate data. For this they compare
and characterize the performance of five different algorithms including a simple vector
autoregression model from multiple viewpoints using both synthetic and real world data.
Runge et al. (2019) [27] propose the novel causal discovery algorithm PCMCI [27] based
on the independence-based PC algorithm [21, 25] and compare its performance to other
simpler approaches using different data sets. First, they evaluate their algorithm and a
simple correlation approach qualitatively on real world data sets from the field of climate
science. Second, they compare multiple algorithms including their own algorithm, the
PC-algorithm [21, 25], a simple vector autoregression model, classical lasso regression [30]
and a simple correlation approach using high dimensional synthetic data. Similarly, in the
paper in which PCMCI+ [26], an extension of the PCMCI [27] algorithm, is proposed, it
is compared to a version of the PC-algorithm [21, 25], VARLiNGAM [36] and to a hybrid
approach combining the notion of Granger Causality with the PC-algorithm [21, 25] using
synthetic data. Pamfil et al. (2020) [33] propose the novel score-based causal discovery
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algorithm DYNOTEARS [33] and compare its performance to three other algorithms,
which include one noise-based and two hybrid approaches using synthetic data.

The thematically most similar work to this master thesis is the published work by Arya
et al. (2021) [44], in which they compare several causal discovery algorithms for the task
of root cause analysis. Nonetheless, their work differs from this thesis regarding several
aspects. First, within their work they only examine causal discovery algorithms based
on Granger Causality and conditional independence testing. Second, instead of using
classical resource and performance metrics, they model log data collected from their
running application as error rate time series and use these metrics as input for the to
be examined algorithms. Third, within their work they only consider a single type of
software failure, in which one of the micro-services of the application is completely shut
down, compared to the four different software failures considered in this work.

3.2 Root Cause Analysis in Application Performance
Monitoring

This section provides relevant references to literature on the topic of root cause analysis
(RCA) within the domain of application performance monitoring and it is structured as
follows: First, multiple survey paper covering different aspects of root cause analysis are
presented. After this, the focus is on research literature describing RCA systems that
use graph structures to perform the root cause analysis and which exclusively or mostly
use metric data to operate.

The survey papers listed here offer different perspectives on the subject of root cause
analysis within the domain of application performance monitoring.
Ibidunmoye et al. (2015) [41] provide a summary on the topic of anomaly detection and
root cause analysis techniques with a clear focus on performance anomalies. For this,
they describe how performance anomalies manifest themselves and point out the common
sources of them. Furthermore they curate an extensive list of research literature that
addresses the problem of automatically identifying the root cause of observed performance
anomalies and categorize their findings based on the detection strategies used in the
references found.

Solé et al. (2017) [42] present an elaborate survey of models and techniques for root cause
analysis with an emphasis on the performance and scalability of the evaluated methods.
As part of their work they create a detailed classification of different RCA models as
well provide a summary of learning algorithms that automatically construct the RCA
model with little or no domain knowledge. Furthermore, they define a list of dimensions
to classify the surveyed algorithms in terms of their inference capabilities and compile a
summary which uses these dimensions to highlight the individual strengths of weaknesses
of all the examined algorithms.

Soldani and Brogi (2022) [4] provide a qualitative analysis of methods and techniques for
anomaly detection and root cause analysis focusing on modern multi-service applications
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exclusively. Within their work, they classify the evaluated algorithms along multiple
dimensions including but not limited to the type of data used, the underlying method
and the type of anomalies the algorithm can detect.

Apart from survey literature on the subject of root cause analysis, of particular interest
for this work is literature on RCA systems, which involve the automatic creation of a
graph-structure-based RCA model as an important part of their root cause inference
process. Many of the following references can be found in the previously mentioned
survey literature and in particular in the work of Soldani and Brogi (2022) [4].

The RCA systems MS-Rank [5, 6], AutoMAP [7] and CloudRanger [8] all use some
version of the PC algorithm [21, 25] to build a graph structure for inference, but different
to this work, nodes in these graphs correspond to services and not individual metrics.
Systems that are closer to the graph structure used in this work, in which graph nodes
correspond to individual metrics, are MicroCause [9] and LOUD [10]. These two systems
also differ from the previously mentioned systems with regard to the causal discovery
algorithm used, as MicroCause uses the PCMCI algorithm [27] and LOUD uses a Granger
statistical test to construct the graph structure.

So far, all cited RCA systems exclusively use metric time series data for the construction
of the inference graph, but there also exist hybrid approaches utilizing additional data
sources. The RCA system Sieve [45] constructs the inference graph structure by first
collecting stack traces and based on this information choosing service components that
should be compared. After that, representative metrics are selected for each service,
which are then used to test the possibility that representative metrics from one service
influence representative metrics from other services using a pairwise Granger Causality
test [28]. Different to this construction strategy, the RCA system CauseInfer [46, 47]
creates a two layered hierarchical graph structure for inference. While, the higher layer
connects individual services by analyzing traffic lag correlation between services, the
lower layer connects individual metrics within a service by utilizing a version of the
PC-algorithm [21, 25].

Most of the cited RCA systems use the same types of causal discovery algorithms, which
may indicate that other approaches to causal discovery are either completely unknown or
their usefulness for the task of root cause analysis is unknown. Regardless of the reason,
it can be seen as confirmation of the importance of this work.
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CHAPTER 4
Study Design

This chapter states the research questions of this master thesis as well as describes the
course of action taken to answer them. Its structure roughly aligns with the phases of
the CRISP-DM process model [14], which was selected to be the framework of choice
for answering the research questions presented in the first section. Based on this and
subsequently, the second section focuses on understanding the data generating process
and what kind of and how the data was collected. The third section covers the whole
modelling facet, which includes the data preprocessing as well as the data modelling
itself. The fourth section explains all aspects of the evaluation process including how
and under which circumstances the implemented modelling approaches were evaluated.
Last, potential threats to the validity of the presented study design are discussed to
acknowledge factors that might have a negative effect on the research.

4.1 Research Questions
The aim of this work is to compare and evaluate existing statistical algorithms that fall
under the category of causal discovery regarding their usefulness for the task of root
cause analysis in the domain of application performance monitoring. More specifically,
the following research questions (RQ) should be answered:

1. How well can causal discovery algorithms detect connections between the causes
and the effects of software failures based on metric time series data alone? How
successfully can these methods identify the software component that is causing the
failure?

2. How well do these algorithms perform in comparison to two simple baseline ap-
proaches – one using the Pearson correlation and one using the graphical lasso –
with regard to the tasks stated in RQ1?
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3. How sensitive is the performance of the examined causal discovery algorithms and
the baseline approaches with regard to the start and end points of the metric time
series data?

4.2 Process and Data Understanding
This section provides information about the application that is monitored, i.e. the data
generating process, and about the collected data itself. First the application structure
and how the application was deployed is explained. Second it is described how the
application was monitored in this particular case and what type of data was collected.
Last, the situation under which the operational data was collected is depicted in detail,
which will be important later in the evaluation section.

4.2.1 Demo Application
To be able to collect monitoring data of an actual running software system, a demo
application – called easyTravel – was used, which is developed by the APM company
Dynatrace and is freely available online [48]. At its core, it is a multi-tier web application,
which represents an imaginary web presence of a travel agency allowing users to search
and book journeys to various destinations. In addition to its main functionality, it also
provides tools for generating synthetic views and interactions with the web application
and for activating problem patterns, which cause failures or performance issues within
the web portal.

Application Structure

The web application follows a multi-tier architecture. The presentation tier consists of
two web-servers and two front-end services, a classical one and an Angular1 one. These
front-end services communicate with multiple services from the application tier to handle
all business logic like authentication, journey searches, bookings and their corresponding
payments. The last level is the data tier containing the database, which is connected
to several services from the application tier. A semantic view of the application can be
seen in Figure 4.1, which however does not disclose how the individual components are
actually deployed.

Deployment

The easyTravel instance used for collecting the operational data of the individual services
was deployed in a distributed way to be able to handle higher synthetic loads compared
to a deployment on a single host. The front-end services are deployed on four different
hosts, each host containing both front-end versions. Most application tier services are
all part of a single java process, expect for the credit card verification service, which
is a C++ process. All processes are deployed four times on two separate hosts. Two
load balancers are used, the first for equally spreading the user requests between the

1TypeScript-based free and open-source web application framework
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Figure 4.1: Schematic view of the easyTravel architecture

different front-end instances and the second for distributing the back-end requests from
the front-end instances to the multiple application tier processes. A single Oracle database
is deployed separately to handle all requests from the application tier.

4.2.2 System Monitoring

The capturing of operational data was done by utilizing the application monitoring
capabilities of the APM solution Dynatrace, which includes automatic detection and
grouping of running processes [49]. More precisely, Dynatrace detects processes performing
the same function even across multiple hosts and groups them into process groups.
Moreover, Dynatrace is able to further partition individual processes into distinct services
if the processes serve multiple different network addressable locations. Similar to the
grouping of processes, services that perform the same function are therefore grouped
into merged services. This results in a total of ten services: two web-server services, two
front-end services, five back-end services and one database service. Due to the grouping
of identical functionality, the service based view is equivalent to the semantic view already
presented in Figure 4.1.

The application monitoring itself is done by a single software process, called Dynatrace
OneAgent, which is deployed once per host. After the setup process, it collects metric
data from the operating system it runs on and from the processes which run on the
deployed host. Furthermore, it is capable of collecting log files and software stack traces,
but none of these features were used during the course of this work. All the collected
data is sent to the Dynatrace server, where it is processed and made available for the
APM users to consume.
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4.2.3 Metric Data Collection

The metric data for the evaluation was downloaded using the Dynatrace Metrics API
on a per service basis. This means that each used metric is aggregated over all the
running instances performing the same function. Furthermore, although the easyTravel
application uses specific technologies like Oracle or Apache Tomcat (Java), only general,
non-technology specific metrics were used for the evaluation to make the results as
applicable as possible regardless of the actual technologies used. The metrics that were
utilized during the course of this work are the CPU time, throughput, error rate and
response time.

CPU Time

The CPU time is the amount of time that is used by the CPU to process the computer
instructions to fulfill a given task and is measured in microseconds. It differs from elapsed
time, which also includes any waiting time. The CPU time is aggregated using the sum
across all running instances.

Throughput

The throughput is the number of requests completed and thus the rate of work performed
within a time interval. It is aggregated using the sum across all running instances.

Error Rate

The error rate is the percentage of failed requests based on the total amount of requests
within a given time interval. It considers all kinds of failed requests and does not
differentiate between different types of failures. The error rate is calculated by the
fraction of the sum of failed requests and the sum of overall requests across all instances.

Response Time

The response time is the total amount of time it takes to respond to a request and thus
represents a measure how quickly individual requests are fulfilled. It is the sum of the
time it takes to process the request including any waiting time related to this processing,
e.g. loading data from disk, sending of requests to fulfill the original request. The 90%
percentile of all response times across all running instances is used during the course of
this work.

The throughput, the error rate and the response time are available for all services, while
the CPU time is available for all services except the database. This means that in total
39 metrics were used across the ten services described above. Every metric represents an
individual time series with a time interval, i.e. the time between two consecutive data
points, of one minute.
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4.2.4 Problem Patterns

The metric time series data was collected over periods of time where the demo application
undergoes some form of performance degradation due to different software failures. In this
work, multiple problem patterns [50], created by Dynatrace during the development of
the easyTravel demo application, are used to replicate software problems real IT systems
could experience in practice. These patterns are enabled through a separated interface
and can be activated and deactivated during run time, thereby simulating an error-prone
software deployment and a corresponding fix or roll-back.

For this work, four different problem patterns were used, each activated over a time frame
of 30 minutes with sufficient time between the different patterns to avoid any kind of
mutual interference. Furthermore, the patterns were triggered on all running instances
to avoid any kind of imbalance due to the distributed deployment.

CPULoadJourneyService Problem

This problem pattern causes additional high CPU usage by triggering an inefficient and
irrelevant computation every time a user searches for a journey [50]. It was designed to
resemble problems in which faulty code changes result in much higher computational load
for a frequently used functionality of the application. The problem causes an increase in
CPU time and response time for the journey service itself and response time increases
for the two front-end services and the two web-server services. The root cause service is
the journey service.

DatabaseSlowdown Problem

This problem pattern slows down queries on a specific table within the database, which
results in a latency increase for depended services [50]. It was designed to resemble
problems where only certain tables or queries have performance issues while the rest
of the database functions as expected. The problem causes response time increases for
the database itself, the three back-end services, the two front-end services and the two
web-server services. The root cause service is the database service.

DBSpammingAuthWithAppDeployment Problem

This problem pattern increases the workload of the database in two ways. First, it causes
the business back-end to access the database unnecessarily when users are authenticated
and second, it reduces the number of cached entries in order to increase the number
of database requests [50]. The goal of this pattern is to resemble problems, where the
database experiences a higher than normal number of requests, while the overall number
of user requests stays the same. Although the root cause in this case could also be the
authentication service, the defined root cause service will be the database service as
the result of the high number of requests only becomes visible through the throughput
metric of the database. The problem pattern causes an increasing response time for
the database itself, the authentication service, the two front-end services and the two
web-server services.
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AngularFailure Problem

This problem pattern2 causes the Angular front-end service to return a HTTP 500 Internal
Server Error for all requests related to the storage of bookings, thereby increasing the
overall failure rate of the service. It tries to resemble problems, in which faulty code
changes only affect part of the overall application, while most of the other services remain
unaffected. This failure rate increase for the Angular front-end service also effects the
failure rate of the Angular web-server service. The root cause service is the Angular
front-end service.

The collected metric time series data of a single occurrence of an activated and deactivated
problem pattern represents a multivariate time series and will be called problem
instance. Each problem pattern was observed ten times, resulting in a total of 40
problem instances.

4.3 Modelling
This section explains the modelling process, which includes the data preprocessing and
the actual data modelling itself. First, the structure of the time series data is described
in detail, followed by a step-by-step explanation of the data preprocessing. After this, the
modelling process itself is discussed generally first and then each implemented modelling
approach is described in more detail. Last, the process of how parameter selection for
the implemented approaches was done is described. For transparency and reproducibility
reasons, the versions of all used packages are mentioned throughout this section. All
implementation was done using python version 3.8 and the entire modeling and evaluation
process was run on a 2019 16-inch MacBook Pro (2.4GHz 8-Core Intel Core i9, 32GB
2667 MHz DDR4).

4.3.1 Time Series Structure
Time series data of observed problem patterns was stored as tabular data. More specifi-
cally, each problem instance was saved in a comma-separated values (CSV) format with
39 columns representing the individual metrics of the ten services and an additional
column containing minute resolution time information. The observation time frame for
each problem instance spans two and a half hours – 150 points in time, which includes
the 30 minutes, when the problem was activated and an additional hour before and after
the problem itself. An illustration of the introduced structure is shown in Figure 4.2.

4.3.2 Time Series Preprocessing
Data preprocessing of the raw time series data is done in several steps. First, the metrics
are grouped based on the service they belong to. Second, constant or almost constant
columns are dropped due to the fact that the causal discovery method PCMCI+ throws

2The AngularFailure Problem is not part of the list of available problem patterns [50].
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Figure 4.2: Illustration of time series data – shaded area highlighting the time frame
during which problem patterns are activated

an error when dealing with constant time series data. This exclusively effects the error
rate metric, which is only different from zero during the AngularFailure Problem. Third,
each individual metric is scaled using the scikit-learn StandardScaler function to remove
the mean and scale to unit variance. After this, the grouping per service is used to identify
metrics with almost identical behavior, which is done by calculating the correlation among
time series data of the same service. If the coefficient between two metrics is above 0.99,
one of them is dropped as such a high correlation indicates that these metrics resemble
redundant information, which contributes little to the process of causal inference and can
even make the results unstable [47]. This happens repeatedly between the CPU time and
the response time metric, which is plausible as the process time often can represent the
majority of the time to process a request. Although the dropped metric is not used for
the modeling step anymore, the information of its high correlation with the kept metric
is saved as it is needed for the evaluation. The last step reverses the metric grouping per
service, such that the output format of the preprocessing is identical to the format of
the raw time series data. Besides the usage of the python package scikit-learn (version
0.24.2), all preprocessing was done using the python package pandas (version 1.4.0).

4.3.3 Causal Graph Modeling
In this work, causal graph modeling refers to the process of converting the metric time
series data into a graph representation in which individual metrics represent nodes and
edges between nodes should indicate linear causal influence or independence depending
on their presence or absence. This modeling is done by applying algorithms, which take
the preprocessed multivariate time series data, i.e. a single problem instance, as input
and return a graph structure as their output.

While the structure of the input data was already explained in Section 4.3.1, the output
structure is as follows: The output graphs are represented using the DiGraph class from
the python package networkx (version 2.6.3) and consist of nodes and edges. Each metric,
which is present after the preprocessing, represents an individual node. Depending on the
results of the algorithm applied, three options are possible for every node pair. First, the
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algorithm found no connection, indicating independence, which means no edges are added
to the graph. Second, the algorithm decided on a connection with a distinct direction, in
which case a single edge is added to the graph. Last, the algorithm detected a connection,
but the direction of influence remains uncertain. In this case, two differently oriented
edges are added to the graph. A simplified output graph is depicted in Figure 4.3.

In this work, six different approaches for causal graph modeling are examined. Four of
these approaches are the causal discovery methods, which were already introduced in
Subsection 2.1.3 from a theoretical point of view. Following this, practical details about
their implementation as modeling algorithms are presented now. In addition to the four
causal discovery methods, two naive approaches – one using the Pearson correlation and
the second one using the graphical lasso – are explained in more detail as well. These two
approaches act as baseline methods as both the Pearson correlation and the graphical
lasso are regularly used to measure linear relationships and are in general well known.

PCMCI+

The first method is the PCMCI+ algorithm from the python package tigramite (version
4.2.2.1). The modeling is done by using the PCMCI object method run_pcmciplus with
the conditional independence test ParCorr, which uses a Student’s t test internally. The
two relevant outputs for this work are a string array, which indicates directed causal links
using −− > and undirected connections using o − o or x − x and a matrix quantifying
the strength (not the directionality) of the found connections. This output is converted
to the output structure explained earlier during which links with an absolute link weight
below a certain threshold are removed. The implemented approach has three parameters:
the maximum data lag considered, the threshold and a significance parameter for the
independence test.

Granger Lasso

The second method is the Granger Lasso, which uses the implementation of the identically
named granger_lasso method from the python package causal-learn (version 0.1.2.8)
with only a single adjustment. Instead of using the LassoCV function, which uses cross
validation to find the best model, the reimplementation uses the standard Lasso function
for the estimation of coefficients. Both functions are part of the python package scikit-
learn (version 0.24.2). These coefficients are interpreted as causal influences between the
time series and lagged versions of all time series and are converted to the required graph
structure accordingly. Edges with an absolute coefficient below a specified threshold are
removed. The implemented approach also has three parameters: the maximum data
lag considered, the threshold and the regularization parameter for the lasso function.
Different to the other causal discovery methods, the minimum data lag is one, not zero,
meaning that no contemporaneous links can be detected.
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DYNOTEARS

The third method is the DYNOTEARS algorithm from the python package causal-
nex (version 0.11.0). The modeling is done by using the function from_pandas_dynamic,
which returns a StructureModel – a graph object used throughout the mentioned python
package. This output is then converted to the needed output structure explained before.
The implemented approach has four parameters, all of which are directly used within the
modeling function of the python package. λW and λA are the L1 regularization parame-
ters for the contemporaneous and lagged edges respectively. The other two parameters
are the threshold to remove edges and the maximum data lag considered, both equivalent
to the same parameters in the already explained methods.

VARLiNGAM

The fourth and last causal discovery method is the VARLiNGAM algorithm from the
python package lingam (version 1.6.0). The modeling is done by using the VARLiNGAM
object method fit. In addition, two parameters were set during the initialisation of the
object itself. First, the criterion parameter was set to None such that results across
all lags are returned. Second, the prune parameter was set to True, which results in
a sparser output by the VARLiNGAM method itself. The output itself is a numeric
matrix quantifying the strength of the found connections. This matrix is converted to
the required output structure during which links with an absolute link weight below a
specified threshold are removed. The implemented approach has two parameters: the
maximum data lag considered and the threshold.

Pearson Correlation

The first naive method uses the Pearson correlation to derive connections among the
individual time series of the input data, which is done in three separate steps. First,
the original input data is expanded by shifted versions of itself, each shifted version
representing a different time lag up to a maximum number of lags. Second, the pairwise
correlation between every time series of this expanded data frame is calculated. Last,
the resulting numeric matrix containing the correlation coefficients for every time series
pair is converted to the required graph structure during which links with an absolute
link weight below a specified threshold are removed. For both, the shifting and the
calculating of the Pearson correlation, the python package pandas (version 1.4.0) is used.
The implemented approach has two parameters: the maximum data lag considered and
the threshold.

Graphical Lasso

The second naive method uses the graphical lasso to derive connections among the input
time series data. Its implementation is almost identical with the one using the Pearson
correlation. After the original input data is expanded, the GraphicalLasso function
from the python package scikit-learn (version 0.24.2) is used to estimate the precision
matrix and subsequently calculate the partial correlation coefficients, which measure the
association between two variables while controlling for all the other variables [51]. This
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differs from the correlation approach, which does not control for other variables. The
last step, the conversion from the partial correlation coefficient matrix to the required
output structure, is done in the same way as for the first naive method. The implemented
approach has three parameters: the maximum data lag considered, the threshold and
the regularization parameter for the graphical lasso function.

4.3.4 Parameter Selection
The parameters for the six approaches were selected using hyperparameter tuning. For
this purpose the 40 problem instances were split into two groups, each group containing
the same amount of instances from each of the different problem patterns. The ratio
between the two sets was 30/70 meaning 12 instances were used for the hyperparameter
tuning and 28 instances for the final evaluation. For the hyperparameter tuning itself
the python package optuna (version 2.10.0) was used, which works by specifying the
objectives and their optimization direction, i.e. if the objective should be maximized
or minimized. In this case, recall – the number of relevant causal links in the graph
– was maximized and density – the percentage of overall links within the graph – was
minimized. Both criteria are explained in more detail in Section 4.4. This multi-objective
optimization lead to a Pareto frontier for each approach with higher densities, i.e. a
higher number of overall links, resulting in higher recall values. Because all approaches
should be compared based on a similar density level and not all methods were able
to produce results for higher densities, the method parameters of each approach were
determined by the hyperparameter tuning run with the highest recall with a density
between 4% and 7%. The general method parameter maximum data lag considered was
set to 2 regardless of the hyperparameter tuning results to further increase comparability
among the different approaches and because the hyperparameter tuning results showed
that its importance for both objectives was lower than 1% for all methods and even much
lower than that for most methods.

4.4 Evaluation
This section discusses the process of evaluating the implemented modelling approaches
from various angles and under different circumstances. The first part explains in detail
how each individual problem instance is evaluated, while the second part of this section
states the different evaluation scenarios investigated to be able to examine the performance
of the modelling algorithms under different circumstances.

4.4.1 Evaluation Criteria
To evaluate the presented causal graph modelling approaches from various angles, several
different evaluation criteria were defined. While the first criteria evaluates the imple-
mented algorithms, the four other criteria assess the output graphs generated by the
modelling approaches.
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Figure 4.3: Simplified example of an output graph

From these four criteria, the first two criteria can be determined without knowledge
of the problem patterns while the other two rely on information about the root cause
service and the affected metrics, which can be found in Section 4.2.4. Furthermore, for
all graph-based evaluation criteria an example on the basis of a simplified output graph
is given.

Run Time

The first criteria is the run time of the implemented causal graph modelling approach in
seconds. It represents the total CPU time from the call of the implemented approach until
the final output graph is returned and thus does not include the time for preprocessing the
time series data nor the time for evaluating the output graph. Although all approaches
are implemented in python, they all use various low-level routines for more computational
intensive calculations. As it is unclear to what extent the developers of the used libraries
utilize these more efficient routines, the run time should not be taken at face value, but
instead be seen more as a rough estimate of their computational effort. All else being
equal, short algorithmic run times are preferred over longer run times as faster graph
construction results in an overall faster RCA process.

Density

The second criteria is the density, which is defined as the percentage of all directed edges
E in the output graph G = (V, E) compared to a fully connected directed graph with the
same number of nodes V .

density = E

|V | · (|V | − 1)

To give a concrete example, Figure 4.3 depicts a simplified output graph, which has a
density of 25%. Similar to the run time, low densities are preferred over high densities all
else being equal as less dense graphs can be analyzed faster, which results in an overall
faster RCA process.
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Unambiguously Directed Edges

The third criteria is the percentage of unambiguously directed edges among all directed
edges E in the output graph G = (V, E). Here, unambiguously directed edge refers to
an edge (u, v) with (u, v) ∈ E, but (v, u) /∈ E. To give another concrete example, the
graph depicted in Figure 4.3 has 60% unambiguously directed edges, because three out
of the five edges in the output graph do not have an oppositely facing equivalent. While
this criteria indicates the graph modelling algorithm’s ability to orient edges, it does not
provide any information about the correctness of the orientation.

Rootcause Rank

The fourth criteria is the placement of the root cause service, i.e. the service that
actually caused the failure, along a ranking of all the ten services with a placement of
one indicating that the graph modelling algorithm identified the actual root cause service
as the most likely root cause and ten as the least likely root cause. The ranking itself
is created by sorting the individual services according to the fraction of outgoing edges,
which connect metrics of the service of interest to metrics from all the other services.
The idea behind this is that in the case of a severe problem, the metrics of the root
cause service affect many other metrics – indicated by outgoing edges – and therefore the
service is ranked higher. It is calculated by the group_out_degree_centrality function
from the python package networkx (version 2.6.3). Referring to the graph in Figure 4.3
again and assuming that every metric from A to E represents its own service would yield
the following ranking: 1. (B), 2. (A,D), 3. (C,E). Under the additional assumption that
A is the root cause service, the root cause rank would be 2.

Recall

The last criteria is the recall, which measures the percentage of predefined causal
paths found in the output graph for a specific problem instance. Here, a causal path
refers to a path that starts at any metric of the root cause service and reaches an
anomalously behaving metric not belonging to the root cause service with a maximum of
one unspecified node in between. This means that the number of relevant paths which
can be potentially found for each problem instance depends on the problem pattern
which was active. The root cause service and the affected metrics that are the basis of
the predefined causal paths are explicitly mentioned in Section 4.2.4, but in summary the
CPULoadJourneyService problem has four causal paths, the DatabaseSlowdown problem
has seven causal paths, the DBSpammingAuthWithAppDeployment problem has five
causal paths and the AngularFailure problem has one causal path. Referring to the graph
in Figure 4.3 and assuming that the metric A belongs to the root cause service and
C, D and E are anomalously behaving metrics not belonging to the root cause service,
the recall would be 67%, as the path A to E has two unspecified nodes in between
and is therefore considered not valid. Last, while the recall criteria is primarily meant
for determining the presence of predefined causal paths in the original directed graph
produced by the implemented approaches, it can also be determined for two modified
versions of the original output graph. These versions are called undirected graph type
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and edge reversed graph type and are determined as follows: The recall for the undirected
graph type refers to the percentage of predefined causal paths found in the undirected
version of the original output graph. Likewise, the recall for the edge reversed graph type
refers to the percentage of predefined causal paths found in the original output graph,
where the direction of all edges was reversed.

4.4.2 Evaluation Scenarios

Each problem instance was modelled by each of the implemented approaches and then
evaluated based on the above defined criteria. This just described procedure was carried
out three times under different circumstances to emulate different scenarios under which
a potential RCA algorithm using one of the causal graph modelling approaches could be
used.

Broad Symmetric Time Window

The first scenario considers a time window of 90 minutes of the collected time series under
which the demo application functions normally for the first 30 minutes, then operates 30
minutes during which a problem pattern is active and then functions normally again for
another 30 minutes. Referring to the illustration of the time series data in Figure 4.2
the analysis time frame starts at minute 30 and ends at minute 120. This broad time
window around the actual problem period is used to resemble a post-mortem analysis in
which the start and the end of a detected problem is not clear and thus the analysis time
frame is chosen wider as actually needed.

Shrinking Symmetric Time Window

The second scenario also uses a symmetric time window around the actual problem period
similar to the first scenario, but here the total time window is progressively reduced from
initially 90 minutes to 30 minutes. This means that in case of a total time window of 50
minutes the normal operating time window only spans the first and last ten minutes and
in the end the total time window only consists of the 30 minutes during which a problem
pattern is active. With this procedure a post-mortem analysis should be imitated in
which the start and end of a detected problem is known more precisely and thus the
analysis time window can be chosen narrower.

Expanding Time Window

The last scenario uses a expanding time window that starts with a time frame of 30
minutes in which the demo application functions normally and is progressively expanded
to include more and more of the data points during which a problem pattern is active.
More specifically and referring to the illustration of the time series data in Figure 4.2,
the analysis time frame starts at minute 30 and is gradually extended until it spans
90 minutes from minute 30 to minute 120. This situation should resemble a real-time
analysis in which a problem just started and is slowly unfolding.
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4.5 Threats to Validity
The study design explained in this chapter has been based on surveyed literature and
was adjusted several times to make the results and the conclusions drawn from it as valid
and generally applicable as possible. Nonetheless, not every aspect of one’s work can be
controlled for and thus in this section multiple concerns that could pose a potential threat
to the validity of this work should be addressed. Thereby, three different types of validity
threats – internal validity, construct validity and external validity – are considered and
differentiated [52].

Internal validity: The collected time series data is aggregated on an one minute basis,
which means that any changes of the operational state of the application will become
visible only with a certain time delay in the captured metric data. Furthermore, all
considered methods are only able to detect linear relationships and therefore any highly
non-linear connections will most likely not be detected. While both aspects certainly
have an effect on the detection performance of all implemented causal graph modelling
approaches, in case that the impact on them differs, this could shift the obtained results.

Construct validity: With the proposed evaluation criteria and scenarios it is tried
to answer the posed research questions as comprehensively as possible. Nonetheless, it
can not be ruled out that a specific aspect for utilizing one of the implemented methods
for the use case of root cause analysis was not covered or potentially was interpreted
incorrectly, and thus the drawn conclusions would need to be adjusted.

External validity: Although the here used multi-tier web application represents a
commonly used type of software system, software applications in general can serve all
kinds of purposes and therefore can exhibit wildly different behaviour compared to
the ones observed in this work. Furthermore, even between software applications that
serve the same type of purpose, aspects like their internal realization and their way of
deployment can result in differences. This means that the results and conclusions reached
in this work may only be valid for certain types of software systems.
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CHAPTER 5
Study Results

This chapter presents the results obtained during the execution of the study design
described in Chapter 4 and is structured according to the three evaluation scenarios
outlined there. The first section shows the evaluation results of all implemented approaches
assessed across all predefined criteria in order to provide the most comprehensive overview
of their individual strengths and weaknesses. After that, sections two and three focus
exclusively on the results obtained during the evaluation of all the methods regarding the
two most important performance criteria – recall and rootcause rank – under different
circumstances. The results are presented in the form of plots and tables and are
accompanied by written descriptions of what is presented. Within this chapter, when
speaking of all problem instances, it refers to the 28 problem instances – seven instances
per problem type – used for the final evaluation.

5.1 Scenario 1: Broad Symmetric Time Window

The results presented in this section show the performance of the implemented approaches
for the first examined evaluation scenario, which should resemble a post-mortem analysis
in which the start and the end of a detected problem is not exactly known beforehand.

Plot 5.1 incorporates information on three out of the five evaluation criteria. The y-axis
shows the average recall across all problem instances with a high recall value indicating
that, on average, a high percentage of predefined causal paths were found within the
output graphs produced by the implemented approaches. The x-axis shows the average
density across all problem instances with a low density value indicating that on average
the output graphs produced are sparse compared to a fully connected graph. The scale
of the average run time of each of the implemented approaches is represented by the size
of the data points in order to be able to put all these three criteria into perspective.
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Figure 5.1: Average recall and density – size reflecting run time

One can see that the three causal discovery algorithms DYNOTEARS, Granger Lasso
and VARLiNGAM outperform the two naive approaches both in terms of higher recall
and lower density values. The fourth causal discovery algorithm PCMCI+ has a lower
average density, but also a lower average recall compared to the naive approaches. The
run time of all implemented approaches will be discussed in more detail below, but it can
already be noted that the best performing method DYNOTEARS also has the highest
run time and the most naive approach using the Pearson correlation has the lowest run
time among all examined methods. The exact values for the three criteria can be found
in Table 5.1.

Method Recall Density Run time (sec)
PCMCI+ 0.594 0.063 3.136
Granger Lasso 0.771 0.047 0.016
DYNOTEARS 0.769 0.045 217.145
VARLiNGAM 0.793 0.065 11.179
Correlation 0.632 0.072 0.004
Graphical Lasso 0.660 0.069 4.554

Table 5.1: Average results for the evaluation criteria recall, density and run time

As already explained in Section 4.4, the recall measures the percentage of causal paths
found in the output graph and since the number of causal paths that can be potentially
found depends on the problem pattern which was active, Plot 5.2 shows the average
recall and density for each problem pattern separately.

For the AngularFailure problem, both naive methods have the highest recall, but
not the lowest density values. The two causal discovery algorithms DYNOTEARS
and Granger Lasso only have a slightly lower recall, but similar density values com-
pared to the Pearson correlation approach. For the CPULoadJourneyService prob-
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Figure 5.2: Average recall and density for each problem type – size reflecting run time

lem, both naive approaches are outperformed by all of the causal discovery algorithms
with regard to recall and density. For the DatabaseSlowdown problem, all the causal
discovery algorithms have a lower density compared to the naive approaches, while
DYNOTEARS, Granger Lasso and VARLiNGAM also have higher recall values. For
the DBSpammingAuthWithAppDeployment problem, all causal discovery algorithms
have a higher recall compared to the naive approaches, but only DYNOTEARS and
Granger Lasso have clearly lower density values.

While the recall criteria only considers the affected metrics and their connections to the
root cause service, the rootcause rank criteria is influenced by all edges in the output
graph. This works by ranking each service compared to all other services based on the
fraction of outgoing edges that connect metrics of the service of interest to metrics from
all the other services. Plot 5.3 shows how often the actual root cause service is placed on
a specific rank from one to ten based on the output graph produced by the implemented
approaches. In this case, rank one means that the metrics of the root cause service have
the most outgoing edges and therefore the actual root cause is also considered to be the
service most likely to have caused the failure according to the algorithm. For reasons of
clarity, the ranks from five to ten are presented as one group.

One can see that the causal discovery algorithm DYNOTEARS and the naive approach
using the graphical lasso are able to rank the actual root cause as the most likely root
cause more often than all other approaches. In case one not only considers the first
rank, but the first three ranks, DYNOTEARS would perform best, followed by the
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Figure 5.3: Ranking of the root cause service based on out degree centrality

Granger Lasso. The naive approach using the Pearson correlation is never among the
top performing approaches regardless which ranks are considered to be relevant.

After presenting the results based on the criteria recall, density and rootcause rank,
the run time results of the implemented approaches are discussed in greater detail with
Table 5.1 showing the average run time for each method across all 28 problem instances.
As already mentioned in Section 4.4, it is not sensible to refer to the exact values
measured, but the differences in magnitude between the different approaches can still
provide valuable insights.

By far the fastest method is the naive approach using the Pearson correlation, with
the next faster method being the Granger Lasso, which is on average four time slower
than the Pearson correlation approach. The causal discovery method PCMCI+ and the
naive approach using the graphical lasso have similar run times with around three to
four seconds, but are already much slower than the two fastest methods. Next is the
causal discovery algorithm VARLiNGAM, which is around three to four times slower
than the just mentioned methods. By far the slowest approach is the DYNOTEARS
algorithm with an average run time twenty times slower than the second slowest method
and several magnitudes slower than the fastest approach using the Pearson correlation.

In addition to the average run times presented in Table 5.1, Plot 5.4 shows the run time
for each problem instance and implemented approach plotted against the density of the
corresponding output graphs produced.

Here, one can see that the run time of each of the implemented approaches seems to be
independent from the number of connections detected by the respective algorithm, i.e.
the density of the output graph. In general, the variability between individual problem
instance run times for the same approach is small compared to the run time differences
between different methods. Only the naive approach using the graphical lasso showed
deviating run times for some problem instances due to convergence issues.
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Figure 5.4: Method run time and corresponding output graph density for each problem
instance

The next results to be presented concerns the number of unambiguously directed edges in
the output graphs produced by the implemented approaches. For this, Plot 5.5 shows the
average percentage of unambiguously directed edges across all problem instances with a
high value indicating that only for a small fraction of the overall edges the corresponding
algorithm could not decide on an orientation.

Figure 5.5: Average percentage of unambiguously directed edges

It shows that all causal discovery algorithms oriented the majority of all edges in
their respective output graphs unambiguously with DYNOTEARS, Granger Lasso and
VARLiNGAM even orienting almost all edges. Both naive approaches have nearly no
uniquely oriented edges as the vast majority of their edges connect metrics with no time
lag between them for which they are not able to decide on a distinct direction.
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Nonetheless, these high percentages of oriented edges do not mean that the connections
indicated in this way actually represent causal dependencies. Yet and despite the fact
there is no way to assess the correctness of the orientation for all edges based on the
implemented study design, it might be possible to estimate it for a small fraction of
the overall edges. One way is to calculate the recall, which measures the presence of
paths who are likely to be causal, for two different versions of the original output graphs.
These versions are called undirected graph type and edge reversed graph type and are
determined as follows: The recall for the undirected graph type refers to the percentage
of predefined causal paths found in the undirected versions of the original output graphs.
Likewise, the recall for the edge reversed graph type refers to the percentage of predefined
causal paths found in the original output graphs where the direction of all edges was
reversed.

Plot 5.6 shows the average recall values across all problem instances for different versions
of the output graph. The two main aspects related to this depiction are the following:
First, a small difference between the recall values of the undirected graph type and the
original directed recall values indicates that most predefined causal paths are already
contained in the directed output graph versions. Second, low recall values for the edge
reversed graph type indicate that the predefined causal paths can not be found in an
edge reversed version of the output graph.

Figure 5.6: Average recall for different output graph types

One can see that all causal discovery algorithms show a clear difference between the recall
for the undirected, the directed and the edge reversed version of the output graphs, while
the two naive approaches show almost no difference. Furthermore, while the methods
DYNOTEARS, Granger Lasso and VARLiNGAM have similar recall for the directed
graph type, the recall for the edge reversed version differs with the Granger Lasso having
the lowest recall in this regard. The exact values can be found in Table 5.2.
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Method UG Recall DG Recall ERG Recall
PCMCI+ 0.823 0.594 0.512
Granger Lasso 0.920 0.771 0.394
DYNOTEARS 0.884 0.769 0.527
VARLiNGAM 0.935 0.793 0.530
Correlation 0.632 0.632 0.625
Graphical Lasso 0.660 0.660 0.635

Table 5.2: Average recall for different output graph types – UG denoting undirected
graph, DG denoting directed graph, ERG denoting edge reversed graph

5.2 Scenario 2: Shrinking Symmetric Time Window
The results presented in this section show the performance of the implemented approaches
for the second examined evaluation scenario, which should resemble a post-mortem analysis
in which the start and the end of a detected problem is known more precisely, and thus
the analysis time window can be chosen narrower.

Plot 5.7 shows the changes in average recall across all problem instances as the total time
windows changes from having 30 data points before and after the problem time frame to
having zero data points. This means that the total time window at the left-most position
of the x-axis consists of the 90 minutes, while at the right-most position the total time
windows only spans 30 minutes during which a problem pattern was active.

Figure 5.7: Average recall for different numbers of time points before and after the
problem period

One can see that the average recall of each of the implemented approaches seems fairly
steady regardless how accurately the analysis time frame was selected to cover the period
during which a problem pattern was active. In fact, the three causal discovery methods
PCMCI+, VARLiNGAM and DYNOTEARS even have their worst result in the case
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where the problem time frame is selected exactly. Furthermore, apart from the method
VARLiNGAM, which shows a slight downward trend, no clear pattern is visible. In
general, the results regarding the recall are in line with the results seen in the first
scenario with the three causal discovery methods DYNOTEARS, Granger Lasso and
VARLiNGAM outperforming the two naive approaches.

The second criteria evaluated over a changing total time window is the rootcause rank.
Plot 5.8 shows these changes as the time window decreases from a total of 90 minutes,
which includes 30 minutes before and after the problem time period, to a total time
window length of only 30 minutes during which a problem pattern was active.

Figure 5.8: Ranking of the root cause service based on their out degree centrality for
different numbers of time points before and after the problem period

Similar to the steady performance regarding the recall shown before, one can see that
also the performance regarding the root cause rank criteria seems to be fairly steady
for most of the implemented methods, namely the causal discovery methods PCMCI+,
DYNOTEARS and VARLiNGAM and the naive approach using the graphical lasso.
The exception to this is the Granger Lasso method, which shows much better ranking
results for the 90 minute total time window compared to the exact 30 minute time
window around the problem. The naive approach using the Pearson correlation shows a
less pronounced and somewhat different trend with slightly worse results as the total
time window increases. Compared to the results seen in the first scenario, the results are
less clear here. Nonetheless, one can see that the methods DYNOTEARS and graphical
lasso, which performed well in the first scenario also perform well here and that the
naive approach using the Pearson correlation is again not among the top performing
approaches.
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5.3 Scenario 3: Expanding Time Window
The results presented in this section show the performance of the implemented approaches
for the third examined evaluation scenario, which should resemble a real-time analysis in
which a problem just started and is slowly unfolding and thus the analysis time window
is expanding.

The Plot 5.9 shows the changes in average recall across all problem instances as the total
time window progressively expands to include more and more data points during which
a problem pattern is active. This means that the total time window at the left-most
position of the x-axis is 30 minutes long and does not contain any data points during
which a problem pattern is active, while at the right-most position the total time window
spans 90 minutes and contains the 30 minute problem period.

Figure 5.9: Average recall for an expanding total time window

One can see that the average recall for the left-most position is extremely low for most
of the implemented approaches and dramatically improves as soon as a small part of
the problem period is included in the analysis time frame. Interestingly, the Granger
Lasso method was able to detect about half of the predefined causal paths on average
even before the problem started, which differs substantially from the results of all the
other approaches. After a small part of the problem period is covered, the performance
of all methods is fairly stable and in line with the results observed in the first scenario as
the three causal discovery methods DYNOTEARS, Granger Lasso and VARLiNGAM
show higher average recall values than the two naive approaches for the majority of the
time. Furthermore, after the initial increase, no method shows a clear trend with regard
to the expanding time frame.

The results for the root cause ranking criteria, which are shown in Plot 5.10, are less
clear. The causal discovery method DYNOTEARS and the naive approach using the
graphical lasso show a clear improvement as soon as a small part of the problem period
is included in the analysis time frame and a steady performance after that, similar to
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Figure 5.10: Ranking of the root cause service based on their out degree centrality for an
expanding total time window

the results regarding the recall. This differs substantially from the results of the causal
discovery methods PCMCI+ and VARLiNGAM and the naive approach using the
Pearson correlation, which do not show such a clear difference. Similar to the second
scenario, the Granger Lasso method shows a steady trend with better performance as
the length of analysis time window increases.
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CHAPTER 6
Discussion

This chapter answers the initial research questions by discussing and interpreting the
study results presented in Chapter 5. It is structured according to the three research
questions.

Research Question One: How well can causal discovery algorithms detect connections
between the causes and the effects of software failures based on metric time series data
alone? How successfully can these methods identify the software component that is causing
the failure?

All of the evaluated causal discovery algorithms, namely PCMCI+, Granger Lasso,
DYNOTEARS and VARLiNGAM, were able to detect short, consistently oriented
paths from the causes to the effect of the examined software failures based on metric time
series data alone for the majority of the predefined cause-effect pairs with all methods
expect for PCMCI+ even achieving an average directed recall of over 75%. In the case
one is mainly interested in the detected relationships between the causes and effects
and not their direction of influence, i.e. the skeleton of the generated output graph, the
performance – the undirected recall – is even better. Both findings are all the more
remarkable as the output graphs, which indicate metric interactions using edges, can be
considered fairly sparse. Furthermore, while the recall is not as high for all four examined
problem types, the results still suggest that causal discovery algorithms are capable of
detecting directed connections from cause to effect for different problem types without
explicit optimization of these algorithms for any of them.

For identifying the software component that is causing the failure, the evaluated causal
discovery algorithms also perform quite well in the majority of cases by ranking the
actual root cause service higher than most other services with regard to the likelihood
that they have caused the software failure. Since this ranking is entirely based on the
output graph produced by the evaluated methods, where a good ranking of a service
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means that the metrics of that service influence many other services, this, on the one
hand, confirms the assumption that the root cause service is an influential factor of
application performance and, on the other hand, suggests that the evaluated algorithms
can detect these influences in many cases.

A more general question with regard to the more practical research questions outlined
above is if the orientation of edges between metrics in the output graphs really coincide
with the actual (causal) direction of influence between them. While this can not be
answered unambiguously for all the detected metric-metrics connections with the here
implemented study design, at least for the edges, where the direction of influence is
known, it seems that the direction of influence is often correctly determined. This can
be seen by the fact that for the three best performing causal discovery approaches,
namely DYNOTEARS, VARLiNGAM and Granger Lasso, the vast majority of all
detected connections between cause and effect consistently point from cause to effect,
suggesting that a correct orientation by accident is unlikely. Additionally, in case the
original orientation of all detected connections is reversed, far fewer connections from
cause to effect can be found, further strengthening the assumption that the orientation is
unlikely to be random and that the original orientation coincides with the actual direction
of influence. Last and as already briefly addressed with regard to the identification of
the failure causing software component, in most cases the evaluated causal discovery
algorithms detect many outgoing, influencing, connections from the actual root cause of
the software failures, which, once more, suggests that the estimated direction of influence
actually coincides with the actual (causal) direction of influence between the metrics.

Research Question Two: How well do these algorithms perform in comparison to
two simple baseline approaches – one using the Pearson correlation and one using the
graphical lasso – with regard to the tasks stated in RQ1?

The two baseline approaches are also able to detect short connections between the causes
and effects of the examined software failures based on metric time series data alone, but
they do perform worse than most of evaluated causal discovery algorithms in most cases.
An exception to this is the AngularFailureRate problem, the simplest of the four examined
software failures, where both naive approaches have a perfect detection rate of 100%.
This outstanding performance can however most likely be attributed to the fact that for
this problem pattern the change in error rate of the root cause service almost one-to-one
corresponds to the change in error rate for the affected service, which represents the best
case scenario for detecting a metric-metric connection based on high (partial) correlation
coefficients. All the other problem patterns represent more complex failure scenarios
and for these problem patterns, causal discovery based approaches in general have a
higher detection rate. Another disadvantage of the naive approaches besides their inferior
performance is their almost complete inability to decide on the direction of influence
between variables, while several evaluated causal discovery algorithms were able to orient
up to 90% of their detected relationships. While these high percentages of oriented
edges does not mean that the estimated directions of influence are always correct, the
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arguments put forward in the discussion of research question one nonetheless suggest
that the orientation seems to be correct more often than not. Although the value of this
benefit can not be quantified here, it is not the less a feature of causal discovery, which
the naive approaches can not provide.

For identifying the software component that is causing the failure, the performance of the
two naive approaches have to be considered separately. While the Pearson correlation
approach is always among the worst performing approaches overall, the graphical lasso
approach performs quite well, even outperforming some causal discovery methods in some
cases. One potential explanation of this poor performance of the correlation approach is
that it may detect many incorrect (spurious) metric-metric interactions between services
where neither service is the actual root cause service, thereby diluting the correctly
detected influences of the actual root cause service. In comparison, the graphical lasso
approach should not be negatively affected by this effect, as the partial correlation
coefficients calculated based on the method’s result represent the association between
time series while taking the associations between all other time series into account. This
explanation would also explain why the density of the output graphs produced by the
graphical lasso approach is always sparser, i.e. contains fewer detected influences, than
that of the Pearson correlation approach. Nonetheless, several of the evaluated causal
discovery methods perform as well as the graphical lasso approach or even better.

Another important criteria for using any of the evaluated approaches as part of an actual
root cause analysis system besides their detection performance is their run time. With
regard to this aspect, the Pearson correlation approach is as expected the fastest method,
but surprisingly the causal discovery method Granger Lasso, which offers considerably
better performance than the naive approach, is only slightly slower in absolute terms.
This means that existing root cause analysis systems that currently utilize the Pearson
correlation or even slower methods for estimating associations between different metrics
could benefit from this better detection performance while adding little to no overhead
to the overall run time of the RCA system.
However, apart from the surprisingly low run time of the Granger Lasso approach, the
overall evaluation largely confirmed the general assumption that the more complex causal
discovery methods have better detection performance but worse run times.

Research Question Three: How sensitive is the performance of the examined causal
discovery algorithms and the baseline approaches with regard to the start and end points
of the metric time series data?

Based on the different evaluation scenarios carried out during this work, one can conclude
that the performance of all examined approaches regarding the tasks mentioned in RQ1
can be said to be not very sensitive with respect to the start and end points of the
metric time-series data. While the absolute values for different evaluation criteria vary
depending on the selected time frame, which is to be expected when using data from
an actual running software application, the relative performance between the different
approaches changes very little. One unexpected finding was that when the time frame
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exactly covers the actual problem time frame, the number of causal paths found – the
recall – decreases for many causal discovery methods. One possible explanation could
be the resulting overall shorter time window that gives the methods less data to work
with, resulting in poorer performance. While this certainly can have an effect, based on
the results of the third evaluation scenario, it may also be the case that this difference
in performance can be partly attributed to the fact that the transition period from a
normal operating state to a malfunctioning operating state contains essential information
and therefore the relevant connections are harder to detect, if this transition period is
not part of the input data.

In general it can be stated that the conclusions made with regard to RQ1 and RQ2 seem
to be valid regardless of the exact start and end points of the time series data.
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CHAPTER 7
Conclusion

The goal of this master thesis was to better understand how useful and applicable different
causal discovery methods are for the task of root cause analysis and how they perform
compared to simpler techniques with regard to multiple evaluation criteria. Therefore,
within the course of this thesis, four existing causal discovery algorithms – each based
on a different concept – and two simpler techniques were compared and evaluated with
regard to the just stated task. For this purpose, 40 metric time series data sets were
collected from a multi-tier demo web application – called easyTravel [48] – over periods
of time where the application underwent some form of performance degradation due to
four different, intentionally evoked, problems. These metric time series data sets were
then used as input for the to be evaluated algorithms to identify connections between
individual metrics. Last, the graph structures resulting from this modelling step were
then evaluated according to four different evaluation criteria. The two most important
of which were how many predefined connections between the causes and effects of the
different software failures could be detected and how easily the error causing software
components could be identified. In addition, the algorithms were also compared in terms
of their run time.
Both, the modelling and the evaluation step were carried out under three different
scenarios to make the results and conclusion drawn as generally applicable as possible.
The in depth comparison showed that the detection performance of the evaluated causal
discovery algorithms can differ quite substantially between the different approaches, but
overall most of them outperform simpler techniques for identifying relevant connections
between individual metrics like the Pearson correlation. These results suggest that many
existing RCA systems who rely on a graph like structure for their root cause search could
greatly benefit from using one of the evaluated causal discovery algorithms.
While the evaluation that was carried out revealed many interesting insights, there are
still numerous questions that could be answered in future work. First, the software
application used within this work was a multi-tier web application, which represents a
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7. Conclusion

commonly used type of software system. Nonetheless, there exist numerous other kinds
of applications with potentially completely different workloads like Internet of things
(IoT) or batch processing applications. Further evaluation of one of these systems could
provide valuable insights about the generality of the conclusions reached in this thesis.
Second, while the evaluation of this work only examined algorithms which can detect
linear relationships, future work could also consider methods for detecting non-linear
connections and examine how common highly non-linear dependencies between metrics
are. Last, the metric time series data used in this work had a time interval, i.e. the time
between two consecutive data points, of one minute. Future work could thus experiment
with different sampling frequencies of the input time series data to investigate the effect
this has on the performance of the evaluated methods.
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