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Zusammenfassung

Das Verständnis der elektromagnetischen Interaktion eines Teilchenstrahls mit den
Elementen eines Teilchenbeschleunigers in seiner nahen Umgebung - sogenannte
indirect space charge driven (ISCD) Effekte - ist entscheidend für einen stabilen
Betrieb eines Teilchenbeschleunigers bei hoher Intensität. Diese Thematik wird in
dieser Doktorarbeit behandelt, wobei die gewonnen Erkenntnisse am CERN Beschle-
unigerkomplex für eine Überprüfung der Theorie Anwendung fanden.
Eine akkurate quantitative Beschreibung für den ISCD Tune-shift, welcher während
des Betriebs des Large Hadron Colliders (LHC) korrigiert werden muss, fehlte.
Der in dieser Arbeit entwickelte Ansatz basiert auf komplexen Greenschen Funk-
tionen. Diese Methode zeigt eine ausgezeichnete Übereinstimmung mit Messungen
mit beispielloser Genauigkeit. Als Hauptursache für den ISCD Tune-shift wurde die
elektrische Interaktion mit dem sogenannten Beam-screen identifiziert. Ein Model,
welches mit Hilfe von geschlossenen Formen ausgedrückt werden kann, wurde for-
muliert. Dieses ist auch auf zukünftige Beschleunigerprojekte wie das High Lumi-
nosity (HL)-LHC Projekt, bei welchem die Intensität des Teilchenstrahls und folglich
die dadurch getriebenen Effekte um mehr als einen Faktor zwei höher sein werden,
anwendbar.
Bei der Multi-Turn Extraktion im Proton Synchrotron (PS) wird der Teilchenstrahl
in einen Hauptstrahl und vier Satellitenstrahlen, - die sogenannten Beamlets -
aufgeteilt. In Messungen hat man eine Intensitätsabhängigkeit des Tunes und der
Position beobachtet. Diese Effekte konnten in analytische Berechnungen und nu-
merischen Simulationen durch ISCD Effekte erklärt werden, welche auf in dieser
Arbeit hergeleiteten geschlossenen Formen basieren.
Um einfache mathematische Ausdrücke zu erhalten wurde ein neuer Lorentzoperator

der zugrundeliegenden Greenschen Funktionen welche wiederum Operatoren kon-

former Abbildungen auf der Riemannsphäre sind, und daraus folgend die sogenan-
nte Image-operators für beliebige transverse Teilchenstrahlverteilungen, eingeführt.
Diese Operatoren erlauben es den ISCD Tune-shift von komplexen Beschleuniger-
modellen abzuschätzen.
Eine neue Methode zur Abschätzung der (elektrostatischen) Greenschen Funktion
für beliebige einfach-zusammenhängende Gebiete mit einer Fehlerabschätzung wird
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viii Zusammenfassung

bewiesen. Diese Methode wird verwendet um eine Approximation des LHC Beam-
screens anzugeben. Eine neue Integraldarstellung der (magnetostatischen) Neuman-
nfunktion auf der Riemannsphäre für glatte einfach-zusammenhängende Gebiete
wird bewiesen. Dadurch ist es möglich eine Klassifizierung der Neumannfunktion
in beschränkte, unbeschränkte sternförmige und äussere Gebiete vorzunehmen. Eine
neue Methode wird präsentiert, welche es erlaubt geschlossene Formen der Neu-
mannfunktion für unbeschränkte sternförmige Gebiete zu finden. Dies ermöglicht
es neue geschlossene Lösungen für elementare Geometrien wie zum Beispiel =-Pole
oder combined-function Magnete des PS zu erhalten (bis jetzt waren nur parallele
Platten Modelle bekannt).
Zusätzlich werden neue off-axis Image Tensoren für Standardgeometrien, welche
sorgfältig mit in der Literatur vorhandenen on-axis Lösungen verglichen wurden, in
geschlossenen Formen bereitgestellt.
Generell gilt, dass die aufgefundenen Greensche und Neumann Funktion das allge-
meine Dirichlet und Neumann Randwertproblem lösen (dritte Greensche Identität).
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Abstract

The understanding of the electromagnetic interaction of the particle beam with the
surrounding elements - so-called indirect space charge driven (ISCD) effects - in
particle accelerators, is crucial for stable high-intensity performance. It is addressed
and applied at the CERN accelerator complex.
An appropriate quantitative explanation for the ISCD tune-shift which must be cor-
rected during the operation of the Large Hadron Collider (LHC) was missing. This
work developed an approach based on complex Green functions (solving the arbi-
trary Dirichlet and Neumann boundary problem) which matches measurements with
unprecedented accuracy. As the primary origin of the ISCD tune-shift, the electric
interaction with the beam-screen is identified. A closed-form model is obtained, that
is also applicable to future accelerator projects as the High Luminosity (HL)-LHC,
where these effects will be at least a factor two higher. During the Multi-Turn Extrac-
tion in the Proton Synchrotron (PS), the beam is split into the main beam and four
islands so-called beamlets. In measurements, an intensity dependence in the beamlet
position and tune was observed. ISCD effects are the cause as shown in calculations
and numerical simulations based on closed-form expression acquired in this thesis.
To obtain simple mathematical expressions, a novel Lorentz operator of the Green
functions, on the Riemann-sphere (RS), and from it, the so-called image opera-
tors for arbitrary beam distributions are derived. These operators allow estimating
the ISCD tune-shift of complex accelerator models. A novel method to approxi-
mate the fundamental electrostatic field (the Green function) of arbitrary simply-
connected domains, including an error bound, is proven. It is used to approximate
the rect-elliptical LHC beam-screen. Additionally, a new integral representation of
the Neumann function on the RS for smooth bounded simply-connected domains is
derived. It allows for classifying domains concerning the solution of the Neumann
function into bounded, unbounded star-like and exterior solutions. A novel method
is presented, to obtain closed-forms in the case of unbounded star-like domains.
Consequently, several novel closed-form solutions for the magnetic interaction of
essential shapes as the =-poles or the combined-function magnets of the PS are
obtained (so far only parallel plates were used).
Finally, several new off-axis image tensors for standard geometries are provided.
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Chapter 1

Introduction

Curiouser and curiouser!

— Lewis Carroll, Alice in Wonderland

1.1 Definition of the Problem

Studying the stability of repetitive systems such as circular particle accelerators is a
fruitful and wide topic, touching many different fields like the subject of dynamical
systems, mainly Hamiltonian systems. The goal of these studies is to find stable
configurations to be able to run machines like the Large Hadron Collider (LHC) at
the Conseil Européen de la Recherche Nuclairé, short CERN.
The subject of beam dynamics deals with the motion of ensembles of particles with
similar coordinates in electromagnetic fields, called beam. Generally, the position
and the momenta are sufficient to describe such a system, and due to the similarity of
their behaviour, usually, a particle somewhere in the centre of the ensemble is picked
out. The motion of the others is described relative to this particle. In a repetitive
system, the trajectory described by this particle is termed closed orbit or equilibrium
orbit. The ensemble of particles oscillates around the equilibrium orbit, and in most
cases, the volume of this ensemble in phase space can be treated as constant, which
is named emittance. The eigenfrequency of the repetitive system is named the tune,
and it is chosen to avoid resonances, which cause the loss of particles of the beam
under unavoidable small perturbations.
There are phenomena, which depend on the number of particles within the ensemble,
called intensity-dependent. Special attention is paid to space charge effects, which
are the electromagnetic interaction of the charged particles with each other and the
environment. Space charge effects can perturb the system and cause in first order a
shift of the eigenfrequency (the tune), which is termed tune-shift. The interaction of
particles within the beam itself is termed direct space charge and the interaction of
the particles with the close-by environmental elements of the accelerator structure,
which are essential to building such machines, e.g. the vacuum chamber of the
accelerator, is termed indirect space charge.
In this work, the indirect space charge effects are addressed, which are inherently hard
to model and can influence the dynamics and hence, the stability of the particle beam
gravely. For machines like the LHC, the impact is so big, that it has to be corrected

3
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4 1 Introduction

during the injection process and, so far, no accurate quantitative explanation was
available. However, also for involved extraction processes, such as the multi-turn
extraction (MTE), used in the CERN Proton-Synchrotron (PS), space charge effects
play a key role. During this process the beam is split into sub-beams, a centred
beam and four largely off-centred beams, termed beamlets, which are extracted over
four turns. A quantitative understanding of the origin of effects as the empirically
determined intensity-dependent position of the beamlets was missing and can be
explained through indirect fields, which are developed in the context of this thesis.
Two strategies are common to take indirect space charge effects into account:

• numerical simulations, which are very involved,
• (semi -) analytical studies, which give some insights, e.g. scaling laws.

While the first approach involves expensive simulations, the latter only costs the
finding of analytical expressions, which then can be used for several studies to
gather insights. Laslett [1] was the first one, providing a framework to estimate
these effects, and consequently, the first Taylor series coefficients of the indirect
field are termed Laslett coefficients. Based on his ideas and his successors [2–11],
the present work explains the indirect space charge influence of the environmental
elements, as the vacuum chamber or magnets, on the stability of the particle beam.
It is done for different transverse cross-section profiles of common elements (their
cross-sections are termed geometries or cross-sections) in terms of closed-forms,
or, if not otherwise possible, as new approximative semi-analytic forms for arbitrary
chamber geometries.

Fig. 1.1a The tunnel of the PS (see fig. 6.2).
The elongated magnetic units and the beam
pipe can be seen. Taken from [12].

Fig. 1.1b The magnetic blocks (iron yokes)
of the PS. This consists of a “closed” fol-
lowed by an “open” combined function mag-
net. Taken from [13].

It was required, because, e.g. for the magnetostatic interaction, so far, only two
parallel plates were considered. The fact that only limited geometries were available
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1.1 Definition of the Problem 5

Fig. 1.2 The cross-section
of a “closed” block of the
PS magnetic units (grey) as
one half of the unit as show
infig. 1.1b. The position of
the vacuum chamber is shown
(blue). A new approach is
used to model the magnetic
(Neumann) response cross-
sections of the blocks with
increasing complexity and
accuracy in chapter 6.

0 250 500 750
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Fig. 1.3a The LHC tunnel. An elongated
structure of a dipole magnet. Taken from
Taken from [14].

Fig. 1.3b The cross-section of an LHC
dipole. The iron yoke and the beam-screen
can be seen. Taken from [15]

Fig. 1.4 A geometrical con-
figuration of the Beam Pipe
Cross-Section of the LHC
(green) and its approximative
representations as in- (red)
and out-scribed (blue) poly-
gons. This element has the
strongest impact on the beam
as derived in chapter 7 and is
of electric type (Dirichlet).

-0.02 0.02
x(cm)

-0.02

-0.01

0.01

0.02

y(cm)

for off-symmetry fields is also addressed. These fields are expressed in terms of
fundamental solutions, opening the possibility to calculate them up to arbitrary
order for arbitrary charge distributions.
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6 1 Introduction

1.2 Objectives of the Work

As mentioned above, the modelling of indirect space charge effects is inherently
complicated and demands heavy computations using numerical simulations. Nu-
merical routines which estimate the region of the stability of the initial conditions
of individual particle trajectories via numerical integrations and are termed tracking
codes.
In this work, simple estimates, in the best case in terms of closed-forms, of the
electromagnetic influence of the close-by surrounding elements for the tune-shift
are provided. A photograph of such elements is provided in fig. 1.1a, where the PS
tunnel can be viewed. One can see the vacuum chamber and magnetic units, which
consist of combined-function magnet blocks. The structure these blocks is presented
in fig. 1.1b. These blocks and the elliptical vacuum chamber are modelled in a 2D
approximation, as depicted in fig. 1.2. This approximation is possible due to the
elongated structure of the elements and no accurate closed-form solution was known
before. For the LHC, the situation is illustrated in fig. 1.3a, where the the tunnel and
the inner of a dipole element is shown. The cross-section of the LHC dipole with
labelled elements is provided in fig. 1.3b. Closest to the beam and is the rect-elliptical
vacuum chamber. It is modelled as drawn in fig. 1.4 and for the first time an accurate
closed-form approximation is given. Other elements apart from the iron yoke do not
interact significantly with the beam.
The obtained closed-form solutions are compared to semi-analytical cases. In the
classical work of Laslett [1], the impact of the Laslett coefficients did not include
coupling effects, which were later extended to tensors by Petracca [2]. The full fields
for several new geometries and the corresponding tensors formulated as operators
of underlying conformal mappings, which can be easily included in tracking codes,
are derived in this thesis. Additionally, a method is presented to address arbitrary
geometries of the involved elements, including an error bound. An example is the
beam-screen of the LHC depicted in fig. 1.4. Here the rect-elliptical domain (no
closed-form solution exists) is approximated using in- and out-scribing polygons,
where the solution is known. It is proven in section 3.4 that the solution of the true
rect-elliptical shape lies between these two solutions.
Estimations for the indirect intensity-dependent tune-shift of the LHC, which are, as
stated, especially critical during the filling of the machine and have therefore to be
considered, were provided by Ruggiero [10]. These estimates show a disagreement
of a factor two compared to the measurements. This discrepancy is resolved in this
work, providing a closed-form expression solution and a semi-analytical solution.
For future projects like the (H)igh (L)uminosity LHC, the beam intensity increases
(by a factor of two - in the HL-LHC case) and hence the impact of these effects
increases as well (by a factor of two - in the HL-LHC case), which will become
then even more critical. It is shown that the problem can be formulated through
closed-forms and is closely related to the solution of the LHC.
The method of the MTE of the PS, which was going into operation in 2015 [16],
showed a strong disagreement in simulations and measurements. It was shown [17]
that indirect space charge effects could explain this. I provide closed-form expres-
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1.3 Content of the Thesis 7

sions for these phenomena used in tracking codes and calculate the tune-shift for the
multi-turn extraction. To summarize the key problems addressed and solved in this
study:

• Semi-analytic off-centred beam image field calculations are available for a limited
number of geometries (circle, square).

• In the case of the magnetic interaction, only the parallel plates (the strip) and the
circular chamber were available.

• The multi-turn extraction in the PS shows discrepancies in simulation and mea-
surement concerning the intensity-dependent tune-shift and beamlet position.

• The indirect intensity-dependent tune-shift estimations of the LHC at injection
deviate strongly from the measurements (by a factor of two).

• For future accelerators, such as the HL-LHC project, these effects increase by
approximately a factor of two and have to be addressed.

1.3 Content of the Thesis

In this study, a solid theoretical framework is provided, highlighting the problems and
some of the pitfalls arising when solving for the indirect field problem. The theoreti-
cal part is motivated by the fact that several new ideas, which are fundamental for the
study and which are generally neglected in the literature, are discussed. Nevertheless,
I tried to keep the amount of the mathematical derivations to the minimum, focusing
on physical understanding. The entry point is the field, which is calculated for the
2D problems for different cross-sections for the electro- and magnetostatic case. To
overcome some limitations, the problem is transferred to the complex plane to make
use of the results of geometric function theory and complex analysis. The problem
can be further simplified by leaving the plane and working on the Riemann-sphere.
Here one profits from the results of mathematical physics in abstract and harmonic
analysis and potential theory in the electrostatic case [18–30].
First, the electrostatic problem is attacked, where a new theorem is proved, allowing
to find approximative solutions of simply-connected domains, including an error-
bound. This is used in a later chapter to approximate the LHC vacuum chamber.
The magnetostatic case needs to be studied more carefully, and again, methods were
developed in other domains. A publication of Van Bladel in 1961 [31] provides
insights from experiments, which are extended here to the Riemann-sphere. A novel
integral representation of the problem is deduced in this work, which provides a
method to solve the problem for a new class of domains, yielding, in special cases
closed-form solutions. It is done starting from Dini’s formula [32,33] and the meth-
ods are presented in [24, 34–36].
The solution is finally expressed in terms of fundamental solutions, the Green func-
tions of the first kind and the Green function of the second kind or Neumann
function. These functions are in the used formulation conformal invariant and the
problem is boiled down to finding appropriate mappings, namely conformal map-
pings [27, 35, 37–41].
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8 1 Introduction

After concentrating on the explicit construction of conformal mappings, the image
tensors are formulated as operators of these mappings starting from a newly for-
mulated complex Lorentz force operator. The Lorentz force operator is an operator
of the Green functions, and consequently, the properties of the Green functions are
inherited by all derived quantities. Based on this, the solutions for several new ge-
ometries for off-axis displaced beams are calculated explicitly. The verification of
the results projected on the on-axis solution, as available in the literature [7–9], is
included and should act as a reference.
Applications within the CERN accelerator complex include the PS and the LHC are
treated in detail, where the importance of such theoretical studies becomes evident,
and the concrete contributions of this work are listed in the next section.

1.4 Key Results and Relevance of the Present Work

Because of the variety of subjects the classification of the key results of the present
work falls into several fields. The first part belongs to mathematical physics, namely
potential theory and geometric function theory. The second more applied part belongs
to the field of accelerator physics and therein to single-particle dynamics space
charge within collective effects, in addition to that, these studies are essential to
several aspects of operating an accelerator. First and most important, they explain
the tune-shift and hence beam losses when crossing resonances as a function of
intensity, which has to be taken into account, e.g. during injection of the CERN-LHC.
Secondly, in the course of involved processes like the CERN PS multi-turn extraction
(MTE), they explain the intensity dependence of the position of the beamlets, which
is fundamental for this kind of operation. Accurate estimates of these effects are
crucial for the successful performance of these machines. The explicit contributions
are:

• A new method to calculate the approximative Green function of the first kind for
arbitrary cross-sections including an error bound is provided (section 3.4).

• A novel integral representation of the Green function of the second kind (mag-
netostatic problems) for bounded domains yielding as a limiting closed-forms
for unbounded star-like domains, e.g. for =-pole structures (magnets) is derived
(section 3.5). The strategy of this work also permits to classify the Green function
of the second kind for different domains in terms of their solution as bounded,
unbounded star-like and exterior domains (section 3.6).

• A detailed treatment and a new solution of the converge issue of the mirror charge
problem of two infinite plates is discussed in detail and a proof of the convergence
is given appendix D.1. Furthermore, the problem is extended in this manner to
the rectangle (appendix D.1), where also a proof of convergence is provided.

• Novel representations for classical problems like the conformal transformation of
the ellipse onto the half-plane are explicitly provided (section 4.3.1).

• General off-axis image operators of the underlying conformal mapping are de-
veloped (section 5.2) and the Lorentz force is given as an operator of the Green
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1.5 Structure of the Thesis 9

function of the first and the second kind (eq. (5.19)). The explicit computation
of these operators for several new geometries including closed-forms for =-poles,
elliptical, rectangular and octagonal cross-sections and their corresponding field,
which can be easily implemented in beam dynamics simulation codes, are derived
in detail, as the involved calculations are tedious and error-prone. It should serve
as a reference because discrepancies were found in the literature (section 5.3). By
employing the Schwarz-Christoffel transformation, the method naturally extends
to image operators for arbitrary cross-sections for the electro and magnetostatic
cases.

• Several novel closed-form models for the approximation of combined-function
magnets, treated as parallel plates so far, are used in the context of the multi-turn
extraction (MTE) in the CERN PS (section 6.3.2.2). The study also includes a (-in
this context-) new approximative approach for arbitrary magnetic cross-sections,
which is taken to verify the accuracy of the closed-form approximation. There
was no solution before.

• With the help of closed-form expression of the transverse fields, the influence
of indirect space charge effects on the position of the beamlets during the multi-
turn extraction of the CERN PS is discussed. The indirect space charge effects
mainly govern the position of the beamlets, as simulations in agreement with the
measurement show, revealing the importance of simple, accurate expressions used
in such situations (section 6.4.4). Additionally, the tune-shift during the MTE is
calculated off-centred for the first time employing suitable closed-form models.

• Closed-form expressions based estimates for the indirect space charge driven tune-
shifts of CERN LHC with excellent agreement with the measurements [42, 43]
are derived, improving the accuracy of previously existing calculations by a
factor of two. Several models with increasing complexity are compared, including
measurements of the beam orbit and the relevant lattice functions (chapter 7).
A novel approximative solution for the rect-elliptical beam screen of the CERN
LHC, is given, showing that a rectangle, expressed in terms of closed-forms
(elliptical functions), is sufficient to model the tune-shift caused by indirect space
charge (section 7.4).

• The intensity for the HL-LHC project and therefore the tune-shift increases by
a factor two. Accordingly, the indirect space charge driven tune-shift of the HL-
LHC was calculated, providing exact solutions for the newly installed elements
of an octupolar structure (section 7.5).

1.5 Structure of the Thesis

The thesis consists of four parts. The first part is the introductory part, which
motivates the work. The second contains the theoretical topics providing a solid
framework and introduces new concepts essential for this work. Readers who are
primarily interested in the application of these studies can jump directly to chapter 5,
where the results for image operators of several cross-sections are presented. The
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10 1 Introduction

third part addresses applications to the CERN accelerators PS and LHC. The thesis
closes in the fourth part with a summary of the work and future applications will be
bestowed.
Grey xtext boxes indent to highlight key findings and important statements through-
out the theoretical chapters.
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Theoretical Foundations
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Chapter 2

Theory of Accelerators

Et harum scientiarum porta et clavis est Mathematica.

Mathematics is the door and key to the sciences. "

— Roger Bacon, Opus Majus

Abstract In this chapter, we want to motivate how the indirect fields affect the perfor-
mance of accelerators. We mainly concentrate on the change of the eigenfrequency
of the system, the tune, by neglecting the change of the equilibrium orbit and other
parameters. This approach is justified since the change of the eigenfrequency is the
most critical effect. To estimate the change of the eigenfrequency, we employ the
methods of canonical perturbation theory.
Another application is addressing the multi-turn-extraction of the PS. The impact of
the indirect fields is calculated within a numerical integration of the particle trajec-
tories. These fields have a significant influence on the position of the beamlets. In
this case, the effect cannot be treated solely using perturbation methods.

2.1 Setting the Scene

2.1.1 Background of CERN

The organization CERN, short for Conseil Européen de la Recherche Nuclaire,
meaning European council for nuclear research, was founded after the Second World
War as a peace-oriented scientific collaboration of countries of Europe. Because of its
central position in Europe and the fact that several other international organizations
were already located here, it was built in Geneva, Switzerland. In 1956 the first
accelerator, the Synchro-Cyclotron started its operation. Three years later, the second
accelerator, the CERN (P)roton (S)ynchrotron (PS) started to accelerate protons
and is still running as the oldest operating accelerator of the world. After several
fundamental discoveries, as the first proton-antiproton, the existence of W and Z
bosons and the therewith connected installation of newly needed accelerators and
experiments for this purpose (mainly in terms of energy and number of interactions),
as e.g. the (S)uper (P)roton (S)ynchrotron (SPS), the missing piece, the origin of
mass in the electroweak theory was finally confirmed in 2012 - the Higgs boson

13
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14 2 Theory of Accelerators

was found. It was achieved with the largest existing accelerator the (L)arge (H)adron
(C)ollider LHC, with a length of 27 km in its four years of operation. The facility
hosts several other experiments ranging from neutrino experiments to antimatter
research. For more information references [44, 45] can be consulted.
An overview of the currently running accelerators and experiments is depicted in
fig. 2.1. In the present work, we refer to the PS, which is currently part of the
injector chain of the LHC and the LHC itself. In order to extend the potential of the
LHC, an upgrade is currently ongoing, and in the 2020s, the rate of collisions of the
machine will be a factor five higher than its design value [46]. Such improvement
requires around ten years of effort, and the project is called (H)igh (L)uminosity
LHC (HL-LHC).
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LINAC 3
Ions

East Area
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LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear 

Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive 
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©
 C

E
R

N
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Fig. 2.1: An overview of the accelerators and some experiments currently located at
CERN (2019). Taken from [47].

2.2 The Formulation of Physics of Accelerators

The formalism of physics of accelerators is mainly inherited from the theory of
optics and celestial mechanics. The movement of a particle in a magnetic field is
symplectic, so usually one works in the framework of Hamiltonian mechanics.
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2.3 The Circular Accelerator as a Hamiltonian System 15

2.2.1 The Challenge

Within the high energy physics domain, charged particles are accelerated to very high
energies. In a circular accelerator, the particles are forced by a magnetic field onto a
circular trajectory. The magnetic field generates a spiral orbit without influencing the
velocity parallel to the magnetic field. After a few turns, the particle would already
leave the accelerator, and as a consequence, complicated arrangements of magnets
need to be used to prevent the particle from leaving the accelerator. The question
of how to set up such a system is studied within the domain of dynamical systems.
In this work, the discussion of phenomena is restricted to deterministic and finite-
dimensional systems, which can be described through systems of ordinary differential
equations within the framework of Hamiltonian mechanics. Since one is merely
interested in the trajectory of individual particles (which usually is computationally
unfeasible - think of 106 to 1013 particles), the dynamics of ensembles of particles
are regarded as a whole (the beam). Such a problem could be tackled with the
Fokker-Planck approach [48] or the full Boltzmann equations. If the inter-collisions
of the particles are neglected the equation becomes the Vlasov equation, which is
classified as a Hamiltonian differential equation [49], and is heavily used in the
so-called collective effects or intensity-dependent beams [50, 51].
In this work the efforts mainly concentrate on the understanding of small effects
acting on the beam as a whole, which is usually referred to as single particle beam
dynamics. The beam is only slightly perturbed around the equilibrium orbit. To
some extent, we can take the environment around the equilibrium position as a
continuum of stable orbits. However, with increasing complexity, the boundary of
the stable region, which is called the dynamic aperture, has to be calculated via
numerical integration around the ring for individual initial conditions, which is
termed tracking.

2.3 The Circular Accelerator as a Hamiltonian System

2.3.1 Stability of Repetitive Systems: LA Theorem and Invariant

KAM Tori

The theory of circular accelerators is mainly interested in the stability of an ensemble
of particles over a sufficient amount of turns. The origin of the study of the stability of
Hamiltonian systems is founded in celestial mechanics since we find many analogies,
in the study of orbits of the planets in the solar system. Taking celestial mechanic as
the entry point for our discussion we know the following two rigorous theorems are
fundamental [52–54]. Cited from [55], (p. X):

• LA-Theorem: If # − 1 (# is the number of degrees of freedom) global analytic,

single-valued integrals exist, that are functionally independent and involution

(the Poisson bracket of any two of them vanishes), the system is called completely
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16 2 Theory of Accelerators

integrable. It means the equations can be integrated by quadratures to single

integral equations expressing the trajectories. These solutions generally lie on

a #-dimensional tori and are either periodic or quasi-periodic functions of #

incommensurate frequencies.

• KAM theorem: If the Hamiltonian � can be written in the form � = �0 + Y�1

of a Y perturbation of a completely integrable Hamiltonian system �0, most

quasi-periodic tori persist for sufficiently small Y. It means most of the near-

integrable Hamiltonian systems are "globally stable" in the sense that most of

their solutions around an isolated stable elliptic point or periodic orbit are

"regular" or "predictable".

In the case of an integrable system following the Hamilton-Jacobi theory [52,53,55]
one obtains through canonical transformations a new simpler form of the Hamilto-
nian using angle-action variables, making use of the integrals of motion, which is
nothing more than the equivalent formulation of integrability. The 3D normal form
Hamiltonian of a particle can be written as:

�0 (�1, �2, �3) = l1�1 + l2�2 + l3�3, (2.1)

where the 8th action-angle coordinate pair is denoted by (�8 , q8) and l8 denotes the
frequency. According to the KAM theorem the ratio of the independent oscillations
has to be:

=1l1 + =2l2 + =3l3 ≠ 0, =8 ∈ N (2.2)

in order to find stable orbits in the vicinity of the equilibrium orbit, these frequencies
are called commensurate frequencies if eq. (2.2) is zero. Rewriting this yields:

=1
l1

l3
+ =2

l2

l3
:= =1l̃1 + =2l̃2 ≠ =3. (2.3)

Equation (2.3) is known as tune relation. The objective is to choose eigenfrequencies
of the system as far away as possible from a rational frequency. The numbers which

have the largest distance to a rational number are
√

5±1
2 [54, 56]. Choosing this

eigenfrequency ratio should give the most stable orbits.

2.3.1.1 The Transverse Dynamics

In a first approximation, no coupling of the longitudinal and transverse plane is
assumed1, since the energy along the ring is considered as constant. In such a case
the Hamiltonian can be written as:

�0 (�1, �2) = l̃1�1 + l̃2�2 (2.4)

1 It is justified since the frequency domains are clearly separated e.g. in the LHC the longitudinal
frequency is in the order of 25 Hz, while the transverse oscillations are in the order of MHz and
coupling fields are usually very small.
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2.3 The Circular Accelerator as a Hamiltonian System 17

This is the starting point of the perturbation of the system, with the non-integrable
part written as �1:

�total = �0 (�1, �2) + Y�1 (2.5)

Since the system is for small perturbations Y near-integrable, the effect to the first
order does not distort the invariants too strongly, and the main impact is the shift of
the frequencies l̃8 of the invariants. Therefore, if moving near an in-commensurable
frequency shrinks the region of stability and the particles outside this region get lost.
We primarily concentrate on the shift of these frequencies, also known as frequency
pulling or tune-shift. If the tune-shift is large enough, it can cross a resonance
condition, and the trajectory could become unstable.

2.3.2 The Invariant of Courant and Snyder

The Hamiltonian of the accelerator can be expressed in a way that the system
along the position within the longitudinal coordinate B is divided into parts M8

at the positions B8 to B8+1, according to the elements as indicated in fig. 2.2. The
transport of the initial positions through the Hamiltonian flow can be interpreted
as a canonical transformation itself [56], and the full Hamiltonian is build up as a
sequence of consecutive canonical transformations of the individual elements M8 .
Details how to build up different elements can be found in [57, 58].
Since the design of an accelerator is much easier, we demand that there is no energy
coupling in the orthogonal directions of the transverse plane. The circumference of
the accelerator is �. Now, we introduce a longitudinal position-dependent focusing
strength V8 (B). The function V can be adjusted by the fields in the quadrupoles and
does not depend on the beam. Therefore it is called a lattice function or an optics

function obeying V8 (B0 + =�) = V8 (B0), = ∈ Z. By defining a8 := 1
2c

∫ �
0

dB
V (B) we

can express the Hamiltonian of the transverse motion as:

�0(�1, �2, B) =
2ca1

�
�1 +

2ca2

�
�2. (2.6)

From the Hamiltonian equations we get the angle variables q′8 = 2ca8
�

. The term 2
�8 is called the Courant-Snyder invariant [59]. To understand the physical meaning
of these quantities, we transform the angle-action variables into the phase space.
Defining the quantity q̃8 := q8 − 2cB

�
−

∫ B
0

dB′
V8 (B′) , we are able to express the system

in the physical phase space coordinates as: @8 (B) :=
√

2V8 (B)�8 cos(q̃8) and ?8 (B) =√
2�8
V8 (B) (sin(q̃8) −

V′
8

2 cos(q̃8)), as can be found in [60]. The function V8 for a given

structure is determined via a non linear ordinary differential equation ( [60], p.80).
The physical meaning is depicted in fig. 2.3. A Poincaré cut at a specific position
B along the accelerator shows that the cross points of a trajectory are confined onto
an ellipse. The size of this ellipse is given by 2 �8 and the equation for the ellipse
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18 2 Theory of Accelerators

is given by 2�8
V8

=

(
@8
V

) 2
+ (?8 − V′

8
@8

2 ). The ellipse generated by the cross points is

a dense curve in the non-resonant frequency ratio case (the KAM tori have to be
dense), whereas in fig. 2.3 the first nine iterations are shown for the horizontal phase
space. Since the size of the ellipse is constant, as it is an invariant, and its related
to the size of the beam. It serves as an important parameter to determine the beam
quality.

2.3.3 Methods of Perturbing the Linear System

As stated by the KAM theorem, the behaviour of the stability of the perturbed
system for the correct ratio of the frequency is nearly integrable. There are several
approaches to incorporate the effect of perturbations. We concentrate on the canonical
perturbation theory, which allows us to estimate the change of the eigenfrequency -
the tune - of systems in an analytical way.
Another approach to study the dynamics of more involved systems is based on
the Poincaré sections or sections of the surface. Only a subspace of the system is
analysed, keeping some coordinates constant. In this way, the dimensionality of the

Fig. 2.2 The Hamiltonian of
the full ring is separated into
smaller meaningful parts M8

as e.g. magnets and straight
sections.

s0

M (0)

s1

M (1)

s2

M (2)

M (−1)

s
−1

Fig. 2.3 A Poincaré cut of
the phase space at a specific
position along the accelerator
at the repetition 8 = 1, . . . 9.

1

2

3

4

@G
V

?G

6

5

7

8
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2.3 The Circular Accelerator as a Hamiltonian System 19

system is reduced, which renders the problem usually simpler. Due to the symplectic
nature of the Hamiltonian system many properties of the system are encoded in the
Poincaré map (as a consequence of the Poincaré-Cartan theorem the map itself is
symplectic [52, 61]), mapping the consecutive points following a trajectory which
crosses the plane repetitively. The obtained dynamical system is discrete, and stability
investigations are done by studying fixed points (invariant points of the Poincaré
map). The Poincaré maps can be developed in series around these fixed points, and
transformed order by order to normal forms, which are the invariants of motion of
the truncated system. The technique of Birkhoff normal forms was used to track
particles for the multi-turn extraction in the PS [16]. Details can be found in [62–64].
The focus here is not to provide an exhaustive overview of all methods used to
design beam-lines but the idea is to preserve the symplecticity of the system. This
leads to involved techniques like truncated Lie transformations using the Cremona
map [65–67], exact explicit representations in the form of a power series with a finite
number of terms [68, 69] and mixed-variable generating functions [70–73].

2.3.4 Canonical Perturbations through Indirect Fields

The main goal here is to estimate the influence of the electromagnetic interaction
of the charged particles with the elements of the environment as, e.g. the vacuum
chamber. Due to the elongated structure of the accelerator, the effect is approximated
as a 2-D problem [74,75].
The size of the beam is usually relatively small compared to the size of the surround-
ing elements as, e.g. the vacuum chamber. Consequently, it is sufficient to investigate
the effect at the centre of charge of the beam as the cause. As shown in the next
chapter the effect is divided into two different contributions: the interaction due to the
electric field, which leads to Dirichlet boundary conditions and the interaction due
to magnetic effects, leading to Neumann boundary conditions. Figure 2.4 illustrates
schematically how the 3D problem is reduced to a 2D problem. It is possible due to
the elongated structure of the elements. Electric effects, which do not penetrate the
vacuum chamber of an accelerator interact at the blue boundary. Magnetic effects,
which penetrate the vacuum chamber at low frequencies, interact at the red boundary.
Details are given in chapter 5.
The Hamiltonian of the system �0 is perturbed by the indirect fields, which depend
on the longitudinal position B. In the following chapter, we see that �1 can be derived
from a potential + . The Hamiltonian can be formulated as:

�total =
2ca1

�
�1 +

2ca2

�
�2 ++ (�1, �2, q1, q2; B). (2.7)

The potential is developed around the equilibrium position into a Taylor series
and truncated at the second order + ≈ +̃ , which gives the approximation of the
Hamiltonian:
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20 2 Theory of Accelerators

beam

vacuum chamber

iron yoke

Magnetic boundary

beam

Electric boundary

Fig. 2.4: Typical components of a circular accelerator in the 3D view (right) and the
projection onto the plane (left).

�̃total =
2ca1

�
�1 +

2ca2

�
�2 + +̃ (�1, �2, q1, q2; B). (2.8)

The approximated +̃ only changes the equilibrium orbit slightly and shifts the tune.
The focus here is not to estimate the change of the equilibrium orbit since the effect is
not critical in the current treatments except for the position shift in the PS during the
multi-turn-extraction, which is discussed in detail in chapter 6. The strength of the
potential + depends on the current of the beam. The so caused tune-shift is the most
critical aspect causing beam losses. It also introduces coupling of the two planes.
The coupling can lead to instabilities and tune-shifts at second-order perturbations,
which will not be further treated in this thesis. Nevertheless, the full coupling terms
are formulated.
Only one aspect will be mentioned here and that is: the coupling term which leads
to the so-called difference resonances a1 − a2 = =, = ∈ N, and the sum resonance
a1 + a2 = =, = ∈ N. The first does not cause instability but might lead to an increase
of the oscillation amplitude, while the latter does and should be avoided in the case
of strong coupling (details can be found in [71, 76, 77]).
In the case of an on-axis beam, where no coupling occurs due to symmetry reasons the
tune-shift is derived using the canonical perturbation theory. The horizontal/vertical
quadrupolar component of the potential is denoted by ẼG1 (B)/ẼH1 (B), yielding a
horizontal tune-shift of:

ΔaG = − 1

4c

∫ B+�

B

VG (B)ẼG1 (B). (2.9)

Since the potential is harmonic (ẼG1 (B) = −ẼH1 (B)), the vertical tune-shift is:

ΔaH =
1

4c

∫ B+�

B

VH (B)ẼG1 (B). (2.10)
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2.4 Summary 21

Ẽ(B) is intensity depended and in chapter 5 the potential in terms of Newtons equa-
tions is formulated, which have a more intuitive character.

2.4 Summary

The stability of orbits in an accelerator was discussed, and methods to estimate the
impact of perturbations were shown. Surrounding elements can interact electromag-
netically with the beam and cause unstable orbits, which can lead to beam losses.
The final strength of the effect depends on the current of the beam - the intensity.
In chapter 3, it is shown how to calculate these fields for elongated structures in
general and in section 5.2.1, explicit closed-forms formulas are given to calculate the
intensity-dependent indirect tune-shifts for a set of new elements (expressed through
the image operators as introduced in chapter 5).
Apart from estimating the change of the tune in the LHC (chapter 7) and during the
MTE of the PS (section 6.4.3), numerical tracking simulations are performed, since
a first-order perturbation of the transverse beam position in this case, due to the large
deviations, is needed (section 6.4.4).
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Chapter 3

Potential Theory on the Riemann-sphere

"Das also ist des Pudels Kern"

— Goethe, Faust I

Abstract In this chapter, the abstract theoretical framework is introduced. It is indis-
pensable to present the abstract theoretical framework in some detail in this chapter
since it is the basis for all consecutive results of this thesis. The theoretical framework
is treated in such a way that several novel insights will be revealed.
The mathematical concepts, used to derive the 2D electro and magnetostatic fields,
are also developed in this chapter. Instead of working in the G − H plane this the-
sis works on the Riemann-sphere which unveils some helpful properties to obtain
new insights and closed-form solutions. The results are expressed in terms of the
fundamental solution of the Poisson equation - the complex Green function.

3.1 The Fundamental Importance of the Logarithmic Singularity

3.1.1 A Novel Approach

Fig. 3.1 The schematic inter-
action of the elements and the
beam. The vacuum chamber
� generates the electric re-
sponse. Its boundary m� is
drawn in blue. The magnetic
response is originated in the
domain " , which indicates a
magnet. Its boundary m" is
drawn in red.

Beam
ζz




Electric boundary

∂G

Vacuum chamber 

G

Magnet M

Magnetic boundary ∂M
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24 3 Potential Theory on the Riemann-sphere

Fundamental solution
on Riemann-sphere

section 3.1.4

Boundary response

Electrostatic:
Green function

sections 3.3.2 and 3.4

Conformal
invariant

theorem 3.7

��
chapter 4

Approximative
with known error

lemma 3.1

Magnetostatic:
Neumann function

sections 3.3.1 and 3.5

Novel integral
representation
section 3.5.2

Piecewise continuous
domains

theorem 3.11

M

Difference
section 3.5.3

Limit
sections 3.5.4 and 3.6.2

Exterior
domains

lemma 3.4

M

Conformal
invariant

lemma 3.3 and section 3.6

Unbounded
star-like domains

eq. (3.62)

∞

∞

∞

M

�"
chapter 4Exact

Approximative

Lorentz Force
Operator
eq. (5.19)

Image operators
section 5.2

Applications
chapters 6 and 7

Fig. 3.2: The road map of the mathematics as used in this work.

A new, more extended framework is needed to overcome the limitations of the ex-
isting approaches as introduced in chapter 1. The goal is to find a mathematical
framework to cover the phenomena observed in circular accelerator structures when
the particle beam is interacting with its surrounding elements like the vacuum cham-
ber or then magnets. As discussed, it is possible due to the elongated construction to

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3.1 The Fundamental Importance of the Logarithmic Singularity 25

approximate the problem in a planar way. The plane is the so-called transverse plane,
and the direction of the particle beam moving through the structures is perpendicular
to it.
In fig. 3.1, the transverse plane is schematised. The problem naturally separates into
the electric interaction of the particle beam with elements like the vacuum chamber,
domain �, which is drawn in blue. � is bounded by m�. Depending on the physical
situation, as described in section 5.1.3, the particle beam might also interact mag-
netically with magnetic elements of the accelerator, denoted as domain " , which is
illustrated in red. The boundary of " is m" . Figure 3.1 also shows the beam located
at Z and the point of observation I.
We model the situation following the strategy that the problem is reduced to the most
fundamental formulation. The response of the system to an elementary excitation of
the system is calculated. This approach is of great generality and allows afterwards
to compute arbitrary boundary problems by superposition. The result is the Green
function or fundamental solution and the elementary excitation in the plane is the
fundamental singularity (definition 3.1). The fundamental solution is the sum of the
fundamental singularity and a response boundary function (eq. (3.14)).
An overview of the mathematics is provided in fig. 3.2. Starting from the fundamental
solution, which differs by the response boundary function, its symmetries are investi-
gated. For several practical reasons, we work in the framework of complex variables
on the Riemann-sphere, which is discussed later on in this chapter. The strategy
allows for finding new general solutions on an abstract level. The most important
symmetry is conformal invariance. Conformal invariance is the invariance of char-
acteristics under a conformal map (described section 3.2.2). As a well-established
method, we diminish the technicalities of the problem using invariances and work
on an abstract level, which reveals new insights. The technicalities are transferred
to find the conformal mapping of a domain onto another, simpler domain, where
the problem is understood and solved exactly. Then the original problem is solved,
and if the mapping is expressed through closed-forms, the solution is exact. By
the Riemann mapping theorem (theorem 3.1) the existence of such a mapping for
simply connected domains is guaranteed. Chapter 4 is dedicated to discuss exact
and approximative ways to find conformal mappings. It includes also entirely new
mappings.
Figure 3.2 show that the electrostatic boundary response, formulated via the Green
function (sections 3.3.2 and 3.4), is much simpler than the magnetostatic response,
formulated via the Neumann function (sections 3.3.1 and 3.5). The reason is that the
Green function is a conformal invariant (theorem 3.7) while the Neumann function is
not. Nevertheless, it was possible to uncover a classification of the Neumann function,
using an afresh derived integral representation (theorem 3.11), namely into piece-
wise continuous, exterior (lemma 3.4) and in the limiting case unbounded star-like
domains sections 3.5.4 and 3.6.2. These will allow for the expression of the solution
for several new standard geometries in accelerators, yielding exact or approximative
solutions. Explicit solutions for the Neumann function on the Riemann-sphere for
unbounded, and exterior domains are provided in section 3.6. These insights are used
to model the combined function magnets (section 6.3.2).
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26 3 Potential Theory on the Riemann-sphere

As mentioned, if for the electric response a mapping can be given in a closed-form
onto an exactly solved domain, the solution is exact. In most of the cases it is not
possible to find an exact mapping. For this situation is another novel method proved.
The Green function has the property that it grows with the size of the domain, which
allows for the proof: the exact solution of a problem lies between two approximate
solutions, one from an enclosed domain and the other from an enclosing domain
(lemma 3.1), which is shown in the lower left part in fig. 3.2. Hence, the approxima-
tion error can be derived, which permits one to evaluate the validity of the model.
This is used when approximating the LHC vacuum chamber in section 7.2.1.
Ultimately, the force created by the elementary excitation of the arrangement is
condensed into a new Lorentz operator (eq. (5.19)). The Lorentz force operator is
an operator of the Green and the Neumann function and, as these are formulated
itself as operators of underlying conformal mappings, it acts as an operator of these
mappings. Now it is possible to estimate the impact onto some critical parameters
of the global accelerator system. The linearisation of the operator leads to the image
operators (section 5.2) and a catalogue of closed-form solutions is provided in sec-
tion 5.3.
For completeness a classical and common used method is mentioned here: the meth-
ods of images [74,78,79]. Its application is discussed in appendix D.1, the problem
of the two infinite parallel plates, the strip. It leads to intrinsic convergence prob-
lems. The formulation yields a non-absolute convergent series. No clear convergence
behaviour can be deduced. In fact, an arbitrary real number can be obtained by re-
ordering the series terms. In standard treatments, this issue is not discussed and
consequently here it is tackled explicitly. A novel solution to the problem is pro-
vided, arguing that there is a physical origin of the field in non-perfect materials,
and this allows us to obtain convergence as a well-defined limiting case of perfect
materials. Furthermore, the problem is extended to the rectangular case, where an
upper bound for the convergence is found. In general, the method of images is in-
herently complicated and therefore not used further in this work. Ongoing research
of this topic and the link to infinite product representations in mathematical physics
can be found in [24].

3.1.2 Prelude: The Theorem of Green-Riemann

We begin with one of the most important theorems in terms of physical meaning
in mathematics, namely the theorem of Green-Riemann [23,80,81]. In this context,
we want to emphasize the physical meaning, but different presentations can be
found [25,28,34]. We introduce some mathematical notations used in this work. The
Riemann-sphere is denoted by C̄. Capital letter functions are complex-valued, and
non-capital functions are real-valued with a complex-valued argument. A bar above
a symbol or an asterisk as upper-script indicate its complex conjugation.
The Cauchy-Riemann operators are now given in the notation of Poincaré. If required,
a subscript indicates the relevant variable; otherwise, it is clear out of context. The
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3.1 The Fundamental Importance of the Logarithmic Singularity 27

operators are defined as (mG is the partial derivate w.r.t. G):

m := 1
2 (mG − imH) m̄ := 1

2 (mG + imH) (3.1)

assuming " ( C̄ is a 1-dimensional connected complex manifold with m" as a
Jordan contour (section 3.2.1) and � be a complex valued function of a complex
argument. Here the theorem of Green-Riemann is written in its complex version (∧
is the wedge product see, e.g. [23] p. 5):∫

m"

� dI =

∫
"

m̄� dĪ ∧ dI. (3.2)

If � satisfies m̄� = 0, then the fundamental theorem of complex analysis, also named
the Cauchy theorem follows and the function � is called holomorphic. Let l denote
the differential form l := �dI and m̄� = 0, then one can write:∫

m"

l = 0. (3.3)

This means l is exact, hence � has a complex potential function � with � ′ = �.
If we split the right side of eq. (3.2) into its real and imaginary parts, it can be shown
that (appendix A):

Re
{ ∫

m"

�dI
}
→ circulation of �∗, (3.4)

Im
{ ∫

m"

�dI
}
→ flow of �∗. (3.5)

Holomorphic functions are exactly the vector fields, which are circulation and source
free. By taking the real and imaginary parts of eq. (3.2) it can be shown that
(appendix A):

Re {eq. (3.2)} ⇐⇒ classical Stokes theorem - Ampère’s law, (3.6)

Im {eq. (3.2)} ⇐⇒ classical Gauss’s theorem - Gauss’s law. (3.7)

3.1.3 The Logarithmic Singularity

Now, the function �Z (the subscript marks a parameter dependence on source
location Z) with m�Z = �Z is introduced. It has the form:

�Z :=
1

2c
log(I − Z), (3.8)
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28 3 Potential Theory on the Riemann-sphere

where the main branch of the logarithm is taken to determine the function uniquely.2
Letting the operator m̄ act on �Z , leads to the fundamental result (XZ := X( |Z − I |) is
the complex version of the Dirac-delta-distribution):

m̄�Z = m̄m�Z =
1

2c
m̄

1

I − Z =
XZ

2
(3.9)

For a proof of m̄ 1
c (I−Z ) = XZ We refer to [81], p.119. Employing now the right hand

side of eq. (3.2), where Z ∈ " , yields:∫
"

m̄�Z dĪ ∧ dI =

∫
"

m̄m�Z dĪ ∧ dI = i

∫
"

XZ dGdH = i. (3.10)

On the other hand, from the left side of eq. (3.1), one sees:∫
m"

�Z dI =
1

2c

∫
m"

1

I − Z dI = i. (3.11)

Taking the imaginary part shows that �Z generates a pure source field (eq. (3.5)).
If the real and imaginary part of eq. (3.8) are separated, it can be seen that half of
the field is generated by the real and half is generated by the imaginary part of the
logarithmic singularity:

�Z = m�Z =
1

2c
m
( 1

2
log(I − Z) (I∗ − Z∗) + i arg(I − Z)

)
1

2c

( 1

2

1

I − Z︸  ︷︷  ︸
half source

+ i

2

1

i(I − Z)︸      ︷︷      ︸
half source

)
=

1

2c

1

I − Z . (3.12)

Providing either the real or imaginary part is sufficient to generate a field and with
this motivation we introduce:

Definition 3.1. The quantity 1
4c log II∗ is the fundamental solution Γ of the Lapla-

cian:

Γ(I) = 1

4c
log II∗ =

1

2c
log |I |. (3.13)

The fields can be generated using eq. (3.13):

• m̄Γ(I) = 1
4c

1
I∗

eq. (3.5)→ pure source field,

• im̄Γ(I) = i
4c

1
I∗

eq. (3.4)→ pure circulation field.

The generated fields are depicted in figs. 3.3a and 3.3b. The equipotential lines of
Γ(I) (in green) are perpendicular to the field lines � = m̄Γ(I) (in blue) in the case

2 Although the disambiguity cancels with the differentiation in eq. (3.9), hence it has no physical
relevance.
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3.1 The Fundamental Importance of the Logarithmic Singularity 29

of a source field, which is the case for electrostatic fields (fig. 3.3a). While for a
circulation field the field lines are tangential to the equipotential lines, which is the
case for magnetostatic fields � = im̄Γ(I) (in blue) (fig. 3.3b). This can be summarized
as: The logarithmic singularity is the generator of the physical fields.

Fig. 3.3a The equi-potential lines of Γ(I)
(green) and the field direction � = m̄Γ(I)
(blue).

Fig. 3.3b The equi-potential lines of Γ(I)
(green) and the field direction � = im̄Γ(I)
(blue).

3.1.4 The Complex Green Function

The field is generated by the complex logarithmic singularity. To take the interaction
with the environment into account (illustrated in fig. 3.1), we add a holomorphic
function Rbf(I, Z) in " for I and Z (source and circulation free in "), the response
boundary function, to �Z :

�Z =
1

2c
log(I − Z)︸           ︷︷           ︸

elementary excitation

+ Rbf(I, Z)︸     ︷︷     ︸
environmental

response to field

. (3.14)

This is the general form of the complex Green function. Now we discuss some
important properties of it.
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30 3 Potential Theory on the Riemann-sphere

3.1.4.1 Conformal Invariance

A fundamental property of the logarithmic singularity is its conformal invariance. A
mapping i is called conformal if it is meromorphic and i(I) ′ ≠ 0, I ∈ " (details
are given in section 3.2.2). As a consequence we can develop i into a Taylor series
around a point Z as i = i(Z) + (I − Z)k(I) with k(I) ≠ 0, I ∈ " and k(I)
holomorphic.

Proof. Transforming �̃ (I, Z) := � (i(I), i(Z)) shows:

�̃Z =
1

2c
log(i(I) − i(Z)) + Rbf(i(I), i(Z))

=
1

2c
log(i(Z) + (I − Z)k(I) − i(Z)) + Rbf(i(I), i(Z)) (3.15)

=
1

2c
log(I − Z) + ˜Rbf(I, Z),

with the holomorphic function ˜Rbf. ⊓⊔

This can be formulated as: The logarithmic singularity preserves its physical prop-
erties under conformal mappings.
A remark: �I0 on C̄ ("free space") reveals two singularities, one at Z and the other
with the opposite sign at I = ∞, the north-pole. The first we call source singularity
and the second, sink singularity which is shown in the right plot of fig. 3.10.

3.1.5 The Connection to Harmonic Functions

The following can be observed: Rbf := q + 8k was defined in the previous paragraph
and since Rbf, and consequently mRbf, are holomorphic it holds that m̄mRbf = 0. In
the classical notation this can be written as:

m̄mRbf =
1

4
(mG + 8mH) (mG − 8mH) (q + 8k) =

1

4
(m2
G + m2

H) (q + 8k) = 0. (3.16)

The real q and the imaginary k part of the response boundary function are harmonic.
In the following, m

mB
and m

m=
denote the mathematical positively oriented tangential

and outwards pointing normal vector of m" , respectively. Note that q and k are not
in-depended, which follows from eq. (3.3):

0 = 2

∫
m"

l = 2

∫
m"

mRbf dI

=

∫
m"

(mG − imH) (q + ik) (dG + idH)

=

∫
m"

(mGqdG + mHqdH) + (mHkdG − mGkdH)
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3.1 The Fundamental Importance of the Logarithmic Singularity 31

+ i

∫
m"

(−mHqdG + mGqdH) + (mGkdG + mHkdH)

=

∫
m"

|dI | ( mq
mB

− mk

m=
) + i

∫
m"

|dI | ( mq
m=

+ mk
mB

).

Since the real and the imaginary parts are zero, it follows:

mq

mB
=
mk

m=

mq

m=
= −mk

mB
. (3.17)

These equations are called Cauchy-Riemann equations. We see that they are not com-
pletely symmetric. Another property is implied by these equations: the equipotential
lines of the real and the imaginary part are orthogonal. For example if q = const.

this implies mq

mB
= 0 =

mk

m=
along the level curve q. As another consequence we see:

dRbf =
mq

mB
+ i
mk

mB

4@. (3.17)
=

mq

mB
− i
mq

m=

4@. (3.17)
=

mk

m=
+ i
mk

mB
(3.18)

Rbf is fully (up to a physically irrelevant constant) determined by its real or imaginary
part within a simply-connected domain. If we prescribe the Rbf along a closed path
W ⊂ "̄ it is sufficient to define the real values along W to fix Rbf. The real or imaginary
part of the complex Green function eq. (3.14) fully determines the physics. We note
this by (rbf := Re {Rbf}):

6(I, I0) = Re� = Γ(I − Z) + rbf(I, Z). (3.19)

As shown in eq. (3.15), the logarithmic singularity is invariant under conformal
mappings. To find solutions for different problems, we extensively use this invariance
property. The focus is the search for such suitable conformal mappings, which
transform a domain " into a canonical domain, where the solution of the problem
is known.
In general, domains are treated, where the mapping cannot be extended analytically
to the boundary, since the boundary contains singularities. In this case, the solution,
of course, is not holomorphic along the boundary, but still in the domain enclosed by
the boundary. For large classes, namely Jordan domains, we can extend the function
continuously and one to one to the boundary. In some cases, the domain is not a
Jordan domain, and the consequences of this boundary behaviour are the subject of
the following section.
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32 3 Potential Theory on the Riemann-sphere

3.2 Topology, Conformal Mapping and Boundary Behaviour

3.2.1 Topology and the Riemann-sphere

We now set up the topological landscape. The plane is equipped with the standard
topology induced by the neighbourhoods 0 ∈ C and A > 0:

DA (0) := {I ∈ C : |I − 0 | < A},
D̄A (0) := {I ∈ C : |I − 0 | ≤ A}, (3.20)

mDA (0) := {I ∈ C : |I − 0 | = A}.

DA (0), D̄A (0) and mDA (0) are an open and closed disc centred at 0 with radius A and
its boundary respectively. If 0 = 0 and A = 1 we write D and D̄ for these discs and T
for the unit circle mD.
We add the point ∞ to the complex plane C. This yields the so-called Riemann-
sphere3 C̄ := C ∪ ∞. This is a very comfortable environment to work in since
C̄ is compact and the procedure of adding the point ∞ to C is called one-point-
compactification. C̄ is a one dimensional complex manifold with two charts (define
discs on ∞).
A domain " symbolizes a proper connected open subset of C̄, m" the topological
boundary of " and the closure of "̄ := "∪m" . We only address simply-connected
submanifolds of C̄, whereas they can be topologically characterized as follows:
A submanifold " is simply-connected if its complement C̄\" is connected.
We distinguish now three classes:

• ∞ ∉ "̄ , which is the standard case of a simply-connected domain on C,
• ∞ ∈ " , which is conformal equivalent to the former class on C̄ exhibiting new

properties and is called exterior domain,
• ∞ ∈ m" is called unbounded domain.

The different classes are important to characterize the solutions of the magnetostatic
problems, which are discussed in the dedicated section 3.6.

3.2.2 Conformal Mapping

We now introduce one of the most important theorems of analysis the fundamental
theorem of conformal mapping. Let us interpret a complex valued function � (G, H) =
D(G, H) + 8E(G, H) on the plane R2 as (G, H) ↦→ (D, E). In the following J (I0) denotes
the Jacobi matrix. Using the Cauchy-Riemann operators eq. (3.1) and demanding
m� ≠ 0, the total differential d� at a point I0 of a holomorphic function � (m̄� = 0)
can be written as:

3 Riemann has shown that there exists a homeomorphism of a sphere onto C̄, this is the origin of
the name.
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d� (I0) = m�dI = |m� | m�|m� | dI = |m� |ei arg m�dI = UeiidI,

⇒ ®d� (I0) = J (I0) ·
(
dG
dH

)
= U'i ·

(
dG
dH

)
,

det |J (I0) | = U det |'i | = U.

U > 0 and 'i is a rotation matrix with i = arg m�. The total differential of
� is composition of a rotation of the angle i with a scaling U. It means that the
infinitesimally transformation d� preserves angles and the orientation up to a rotation
i. Such a function is called conformal at I0. Let � : " → C be an R-differentiable
function in an open set " ⊂ C, then � is conformal if and only if it is holomorphic
and � ′ ≠ 0 [82].

Definition 3.2. A � maps the domain "1 ⊂ C̄ conformally onto "2 ⊂ C̄ if

1. � is meromorphic in "1;
2. � injective (one-to-one), that is I, I′ ∈ "1 , I ≠ I′ ⇒ � (I) ≠ � (I′);
3. � ("1) = "2.

The principle of conformal maps is illustrated in fig. 3.4. The curves I(C) and Z (C)
have in I0 the unit tangential vectors ¤I (C)

| ¤I (C) | and
¤Z (C)

| ¤Z (C) | , respectively. The function �

transforms the curves to � (I(C)) and � (Z (C)) and their unit tangential vectors at � (I0)
onto � ′(I0) ¤I (C)

| ¤I (C) | and � ′(I0)
¤Z (C)

| ¤Z (C) | , respectively. This is a multiplication by a complex

number ≠ 0, a simple rescaling and rotation. In the plot the transformed tangential
vectors were normalized and the angle is chosen to be c

2 or a multiplication by i. We
conclude the Re {�} = const. and Im {�} = const. are orthogonal, since G and iH
are orthogonal. Note that the inverse function � (I) = F, d� (I) = Uei arg m�dI = dF

ζ (t)

z0

z(t)

ż(t)
|ż(t)|

ζ̇ (t)

|ζ̇ (t)|
F(z′(t))

F(ζ (t))

F(z0)

F ′(z0)
|F ′(z0)|

ż(t)
|ż(t)|

F ′(z0)
|F ′(z0)|

ζ̇ (t)

|ζ̇ (t)|

z 7→ F(z)

Fig. 3.4: The principle of a conformal map.

implies dI(F) = 1
U

e−i arg m�dF is also conformal. In addition, we see, if the Jacobi
determinant det |J (I0) | = U > 0 does not vanish in for I ∈ " , the mapping is one-
to-one and onto * := � ("). * is again a domain (proof see [83]). So the function
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34 3 Potential Theory on the Riemann-sphere

� transplanted " onto*. These properties are essential for this work.
Now the Fundamental theorem of conformal mapping can be stated as:

Theorem 3.1 (Riemann mapping theorem - RMT). Let " ( C be a simply-

connected domain. There exists a conformal map of " onto the unit disc D.

Since the RMT theorem is regarded as the most important theorem of the 19th

century by many mathematicians we provide at this occasion some historical remarks.
Historically this theorem was given by Riemann in his doctoral thesis of 1851 [84],
although his proof, which relies on the existence of the solution of the Dirichlet
problem, was not completely right. This issue was solved by Hilbert (1905) 50
years later still demanding some restrictions on the boundary of the domain (details
see [85] or [86]). Carathéodory in 1912 was the first who gave a complete proof for
the theorem. Different modern versions of a proof can be found in [41], [83] or [37].
The RMT states that every prober sub-domain of C is conformal equivalent (there
exists a conformal mapping onto to the unit disc). Conformal equivalence implies
topological equivalence for prober sub-domains of C ( [82], p. 282).
On C̄ we can reformulate the RMT:

Theorem 3.2 (Uniformization theorem). Any simply-connected domain " on C̄ is

conformally equivalent either to C̄, C or to D

The proof can be found in e.g. [82] or [28].
Some additional comments: The automorphisms of C̄ are the linear rational func-
tions so-called Moebius transformations. Three complex parameters uniquely define
these (as discussed in section 4.1.1). They allow sending specific points on C̄ to
∞. Hence by a Moebius transformation we always can conformally transform an
exterior simply-connected domain " (∞ ∈ ") onto a domain ∞ ∉ " by putting
a point 0 ∈ C̄\" onto ∞. simply-connected domains " ( C on C̄, either interior
(∞ ∉ ") or exterior (∞ ∈ "), are conformally equivalent.
Consequently, it is sufficient to study the properties of " , which are conformal
invariant on D and, the properties of conformal mappings. The most interesting
properties are properties, which reflect the symmetries of a problem (its invari-
ances). One conformal invariant we already saw in the previous chapter, namely the
fundamental singularity. Also, holomorphicity, as well as complex integration, are
conformal invariants. How this behaviour extends to the boundary is the subject of
the following section.

3.2.3 Boundary Behaviour

So far, we only discussed the properties of the functions on " . Here we take a closer
look at the behaviour when we approach the boundary of " , m" . A large class
of domains, the Jordan domains show a relatively generous behaviour, and we now
define the term Jordan domain by starting with the definition of a Jordan curve on
C̄:
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3.2 Topology, Conformal Mapping and Boundary Behaviour 35

Definition 3.3. A curve  is a mapping C ↦→ I(C), 0 ≤ C ≤ 1, I ∈ C̄.
 is called a Jordan curve � if C ↦→ I(C) is a homeomorphism between T and [a,b],

as it can be found in [87]. The following theorem is of fundamental importance,
since it allows us to classify domains on C̄:

Theorem 3.3 (Jordan curve theorem). Let � be a Jordan curve on C̄, then C̄\� has

two components "1 and "2 satisfying m"1 = m"2 = �.

"1 and "2 are called Jordan domains, which are simply-connected. If ∞ ∈ "2, we
call "1 interior and "2 exterior domain. We want to understand the behaviour if we
approach the boundary. Which properties of conformal mappings of the interior of"
are preserved when getting closer and closer to the boundary m"? Mathematically
written (� denotes a conformal mapping of D onto " ( C̄):

� (Z) = lim
I→Z

� (I) ⊂ C̄ whereas: I ∈ D, Z ∈ T (3.21)

If this limit exists for all Z ∈ T, � is continuous on D̄ (In the case ∞ ∈ m" the
continuity is meant in the spherical metric.). Fortunately, the question concerning
the continuity of � approaching the boundary has an entirely topological answer
( [35], p.18). A set shall be called locally connected if a connected subset of small
diameter can join nearby points, then we can state:

Theorem 3.4 (Continuity theorem). The function � has a continuous extension to

D̄ if and only if " is locally connected.

We now want to know if this extension is a homeomorphism. This is answered by a
theorem of Carathéodory ( [82]):

Theorem 3.5 (Carathéodory-Osgood). If " is a Jordan domain, the conformal

mapping � : " → D can be extended to a homeomorphism between "̄ → D̄.

A solution for the boundary problem can be found if there exists a homeomorphism
between the boundaries. This is a very impressive result due to the fact that Jordan
domains can be very pathologic like the Koch snowflake [82] or the comb domain
[88], p.110. The approximative solution for the Koch snowflake is shown in figs. 4.3a
and 4.3b for the Green function of the first and the second kind.
Although Jordan domains form a large class covering many cases, very common
applications of practical interest, like in the case of a strip-domain, do not belong to
this class. The strip, denoted as (3 of width 3, is defined as (3 := {I : |Im I < 3/2}
where m( corresponds to two circles on C̄ (lines on C are circles on C̄) see fig. 3.5a,
which touch ∞ (the north-pole on C̄) as depicted in fig. 3.5b: the boundary on the
plane as lines correspond to circles on C̄. N denotes the north-pole corresponding to
the point ∞. The blue and the red line show the trace of two points Z− and Z+ running
to ∞. In fig. 3.5b we see how they meet at N. The light shaded region indicates the
projected strip domain. The boundary of it touches itself at the north-pole. (3 is an
unbounded star-like domain (definition 3.4). As a consequence, the boundary touches
∞ from two sides and so there exists no homeomorphism between m(3 and T on C̄.
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36 3 Potential Theory on the Riemann-sphere

This domain is a so-called regulated domain, a term introduced by Ostrowski [35].
Originally the term regulated domain allows finitely many discontinuities of the
tangential vectors of the boundary curve and finitely many self-intersections. Since
only simply-connected domains are discussed in this thesis, self-intersection are
neglected in all following discussions about a regulated domain which is bounded4.
As mentioned before a subclass of the regulated domains, is the class of the star-like
domains on C̄ (where [Z, F] is the linear connection between the points Z and F):

Definition 3.4. A star-like domain " with respect to Z is a domain, where F ∈ "
and [Z, F] ⊂ " .

This means there is a central point from which all rays cross or touch the boundary.
A conformal function � is star-like if � (0) = 0 and � : D → " , with " star-like.
For later use we provide the following theorem (limA→1−1 denotes the left limit to
one) :

Theorem 3.6. If � is star-like, then limA→1−1 � (Aeii) ⊂ C̄ exists for every i.

A proof can be found in [35]. This insures that we can approach the boundary of "
as a radial limit function of � of conformal functions �A (I) := � (AI), 0 < A < 1, in
other words � is continuous in the spherical sense up to the boundary. This signals

ζ−

ζ+

ζ ′+
ζ ′
−

Im(z)

Re(z)

N

d

2

d

2

φ=π φ=0N

Fig. 3.5a The strip domain (3 (green) on the
Riemann-sphere C̄.

Fig. 3.5b The bird’s eye view onto C̄ of the
strip as drawn in fig. 3.5a.

the end of the considerations on the boundary behaviour. The basics terminology
for a concise discussion on the treated problems in this work was introduced and we
address now the physical aspects.

4 In this context the term bounded regulated is used equivalent to bounded piecewise regular
simply-connected and the term unbounded regulated is synonymous to unbounded star-like.
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3.3 The Physical Aspects 37

3.3 The Physical Aspects

In the following section, we introduce the physical setting for the cases of perfectly
conducting boundaries in the cases of electric and perfect permeable boundaries in
the magnetic case. We move from the classical technical notation to the complex
notation. Due to the fact that transcendental functions act upon an deliver unit-
less dimensionless numerical values [89], the previously discussed mathematical
quantities have to be modified when moving to the physical picture. In the following,
the quantities in transcendental functions are always normalised to a meaningful
reference radius |Iref. |, as given for example as the minimal distance to the boundary
at the centre of the shape. In also cures the arising difficulty when obtaining the
two dimensional potentials of infinitely elongated structures out of the Biot-Savart
Law and Gauss’s law leading to non-regular fields, as discussed in [90], p. 198. The
Green functions, modelling the physical potentials have to be understood in the same
manner: their arguments used in the physical context are always in the normalised
system, where the reference normalisations vanish as the physical fields are derived
from the Green functions.

3.3.1 The Magnetostatic Case in the Limit of Perfect Permeability

We start with the empirical law called Ampère’s law (see [91], p.107 or [36], p.14).
Assuming that the magnetic intensity � has only an azimuthal component around
a wire located at the origin, and since - from symmetry arguments - its modulus
should only depend on the distance A, to the wire. Where, `0 be the permeability
of free space, so we have ®B is oriented tangentially to the integration path, using the
technical notation): ∮

®� · d®B = � . (3.22)

This law states that we always obtain the enclosed current �, when integrating along
a closed path around the wire. From the previous chapter, it follows that this equation
shows the circulation is caused by a fundamental source of strength � at the origin
eq. (3.7). The current � is produced by moving charged particles, which can be
expressed by the mean velocity 2V0, with 2 being the speed of light of the particles
and the charge line density _ (Coulomb/m) via: � = 2V0_. The complex B-field
� = `0� ( ®� = (Re {�}, Im {�})) in free space can be formulated as (Iref. is a
normalisation constant as discussed at the beginning of this chapter):

�(I) = 2i`02V0_m̄Γ

(
I

Iref.

)
= i
`02V0_

2c

1

I∗
. (3.23)

If we assume that the material is a so called linear material the magnetic intensity �
with a relative permeability ` and the magnetic field � are related linearly via:
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�(I) = `� (I). (3.24)

Linear materials are homogeneous and isotropic. The change of the field from a
material, "1 with `1 to another material, "2, with `2, can be obtained by using a
Gaussian pillbox [74] by assuming for our purposes no surface current. From this
we derive the continuity conditions at the boundary of the two materials, where the
subscript 1 stands for the material 1 (domain "1) and the subscript 2 for material 2
(domain "2). The subscripts C and = denote the tangential and the normal component
respectively (see fig. 3.6):

�1= = �2= (3.25a) �1C = �2C . (3.25b)

This means that the normal component of the � field (eq. (3.25a)) and the tangential
component of the intensity � (eq. (3.25b)) is continuous through the boundary.
Our interest is now the limiting case when material 2 reaches an extremely high
relative permeability. Since the materials are linear it follows for eq. (3.25a) from
eq. (3.24) taking the limit `2 → ∞:

�1= = �2= implies `1�1= = `2�2=,

lim
`2→∞

`2

`1
�2= = �1= bounded implies �2= → 0.

The physical observable �2= → 0 since �1 is bounded. It follows that the magnetic
intensity is purely tangential approaching the boundary from within �2 and is con-
tinuous through the boundary.
Let us assume now, that material 1, with permeability `1, is simply connected and
enclosed by "2, with permeability `2 (`2 >> `1). In the enclosed "1 be a wire
which is caring a current 2V0_. From eq. (3.22) we observe:

∮
W

®�2 · 3®B = 2V0_,

hence the field is tangential and the integration along the boundary coming from the
exterior to "1, meaning the path W lies completely in "2, yields 2V0_. In the equi-
librium there will be a stationary flow in "2. With the path length |m" | =

∮
W
|dB |

the flow is �
|m" | ®C. Through the continuity this also is valid for the interior limit and

hence ®�1 =
V0_

|m"1 |
®C along the boundary of "1, where |m"1 | is the length of m"1.

In fig. 3.6 this is illustrated. The material "1 (blue) with a permeability of `1 has
the boundary W to the material "2 (green), which has a permeability of `2 >> `1.
Terms t and n show the unit tangential and unit normal vector of W(B0) at the point
B0. As described, the tangential component of the magnetic intensity � is continu-
ous through W, whereas the normal component in "2 vanishes. � in "2 is purely
tangential as indicated by the green line. In the equilibrium �C is constant in "2

with a value �C =
�

|m"1 | , where � = 2V0_ is the enclosed current.

Defining a vector t = CG + iCH and its conjugate as t∗ = CG − iCH , where ®C = (CG , CH)
is the positive oriented tangential unit vector to W. Defining another vector n and its
conjugate as n∗ = =G − i=H = (=G , =H) = it∗, with ®= = (=G , =H), the exterior normal
unit vector of W and expressing � in terms of a function 6, which satisfies the relation
� = 2i2V0_`0m̄6, we see:
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3.3 The Physical Aspects 39

�
eq. (3.24)

=
1

`
� = 2i2V0_m̄6 (3.26)

�C = Re {�t∗} = 2Re {i2V0_m̄6t∗} = 22V0_Re {m̄6n∗} = 22V0_
m6

m=
. (3.27)

If now a current is located inside "1with strength � = 2V0_, 6 has to obey along the
boundary W (separating "1 and "2) with `2 >> `1 (see fig. 3.6):

Re {m̄6n∗}
���
W
= Re {m6n}

���
W
=

1

|m"1 |
, |m"1 | :=

∮
m"1 (B)

|dB |, (3.28)

and additionally (W encloses the wire):

2Im

{∫
W

m6dI

}
= 1. (3.29)

The function 6 is the Neumann function and in section 3.5 we give a unique definition
for 6 and study the function in detail.

Fig. 3.6 Perfect magnetic
boundary conditions.

M1 (with µ1)

M2 (with µ2)
t n

Ht

∂M1 = γ

M1 (µ1)

M2 (µ2 >> µ1)
γ(s0)

t n

Ht

∂M1 = γ

3.3.1.1 The problem of infinite energy density

As a last remark, we discuss the problem of infinite energy density caused in the limit
of ` → ∞. Here we follow the arguments of [31]. It must be clear that we address
a limit configuration with increasing permeability. In fig. 3.12, a material with very
high permeability is shown in an experimental setting. As the comparison with the
calculated result shows, the experimental result is very close to the theoretically
predicted value. In the limit, a finite � would lead to an infinite energy density
inside the material, and surface currents would prevent the penetration of a field into
such a material, meaning a steady-state solution does not exist within a finite time
span. In real materials nevertheless, the time is always finite, and hence the steady-
state solution will be reached within finite time followed by high energy storage. An
experimental verification of the modelling in this manner can be found in [31,92,93].
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40 3 Potential Theory on the Riemann-sphere

3.3.2 The Electrostatic Case in the Limit of Perfect Conductivity

Electrostatic phenomenons are described by Gauss’s law. The electric field ®� is
caused by the line charge density _. It can be found in, e.g. [74, 94] and reads as (®=
is the normal vector to the integration path):∮

Y0 ®� · d®= = _. (3.30)

The electric field is a source field. Analogously to the � field, it can be expressed
in free space by a fundamental source with a strength _ at the origin, where ®� =

(Re {�}, Im {�}) holds. Iref. is a normalisation constant as discussed at the beginning
of this chapter:

� (I) = 2_

Y0
m̄Γ

(
I

Iref.

)
=

_

2cY0

1

I∗
. (3.31)

Now, analogous to the previous technique employed at the � field, we assume two
linear materials. A linear material can be written as:

� = Y�, (3.32)

where the dielectric constant is denoted by Y and the flux density by �. A ma-
terial "1 with a dielectric constant Y1 is enclosed by another material "2 having
a dielectric constant Y2. From the same Gaussian pillbox argument we derive the
following conditions at the boundary W between "1 and "2 (the subscripts mark the
corresponding quantities of material "1 and "2):

�1C = �2C (3.33a) �1= = �2=, (3.33b)

since the charges can distribute nearly free in a good conductor as metals, they
compensate external fields and in an equilibrium state the field vanishes inside the
conductor. Now by letting "2 be metallic (Y2 >> Y1). It follows:

�1= = �2=

eq. (3.32)
implies Y1�1=︸︷︷︸

bounded

= Y2�2=

lim
Y2→∞

Y2�2= (bounded) ⇒ �2= → 0

�1C = �2C

eq. (3.32)
implies

�1C

Y1
=
�2C

Y2

lim
Y2→∞

�2C

Y2
= 0 =

�1C

Y1
implies

�1C

Y1
= �1C = �2C → 0.

The electric field ®�2 vanishes inside the metal. Due to the continuity of the tangential
component of the electric field �2C = 0 = �1C , the field ®�1 is perpendicular to the
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3.3 The Physical Aspects 41

boundary W. Figure 3.7 illustrates this result. The material "1 (blue) with a dielectric
constant of Y1 has the boundary W to the material "2 (green), which has a dielectric
constant of Y2 >> Y1. t and n show the unit tangential and unit normal vector of
W(B0) at the point W. As described in the text, the tangential component of the electric
field ®�2 = 0 is continuous through W. ®�1 is normal onto the boundary W as indicated
by �1= (blue). Expressing the electric field � now with help of a function 6, similar

Fig. 3.7 Perfect electric
boundary conditions.

M1 (with ε1)

M2 (with ε2)
t n

∂M1 = γ

M1 (ε1)

E2 = 0

M2 (ε2 >> ε1)

γ(s0)

t n

En

∂M1 = γ

to the magneto-static case, we can write (in air YA ≈ Y0):

� =
2_

Y0
m̄6, (3.34)

�C = Re {�t∗} = 2_

Y0
Re {m̄6t∗} :=

_

Y0

m̄6

mC
= 0, (3.35)

6
��
W
= const. (3.36)

Additionally, it follows that (W encloses the wire):

2Im

{∫
W

m6dI

}
= 1. (3.37)

The function 6 and its properties is uniquely defined and is called Green function. It
is discussed it in detail in section 3.4.

Summary: The first function we investigated was the Green function of mag-

netostatic problems and the corresponding boundary problem is know as the
Neumann problem (defined rigorously in definition 3.6). The source be located
in the domain " (|m" | :=

∮
m"

|dB |):

� = 2i2V0_m̄6, (3.38)

m6

m=

���
m"

=
1

|m" | . (3.39)
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42 3 Potential Theory on the Riemann-sphere

The second investigated function was the Green function of electrostatic prob-

lems and the corresponding boundary problem is known as the Dirichlet prob-

lem (defined rigorously in definition 3.5). The source be located in the domain
":

� =
2_

Y0
m̄6, (3.40)

6
��
m"

= 0. (3.41)

3.4 The Green Function of the Classical Dirichlet Boundary

Problem

Now we define the Green function of the electro and magnetostatic type. In both
cases, we derive the concrete solution using absolute convergent harmonic series for
the circular case. As we have seen in the previous chapters, the physics is caused by
the source singularity, which in turn interacts with the boundary due to singularities
(these are the images of the singularity generated at the boundaries). From eqs. (3.40)
and (3.41), the electrostatic problem is defined and we show now, that the solution
can be expressed through the Green function.
We define the for a domain " uniquely existing5 Green function as:

Definition 3.5. The classical Green function 6:
Let " ( C̄, a Green function for " is a map 6" : " × " ↦→ (−∞,∞], so that for
each Z ∈ " :

• 6" (·, Z) is harmonic on "\Z and bounded for I ∉ DA (Z) for every A,
• 6" (I, I) = ∞ and as I → Z :

6" (I, Z) =
{

log |I | + O(1), Z = ∞
log |I − Z | + O(1), Z ≠ ∞

• 6" (I, Z) → 0 as I → g, for g ∈ m" .

Γ denotes the fundamental singularity and rbf, harmonic in " , be the response
boundary function, then the function 6" can be written as:

6" (I, Z) = Γ(I, Z) + rbf" (I, Z). (3.42)

5 It is true in the non-classical case for arbitrary non-polar domains [20] and in the classical case
for admissible domains [18, 20, 26].
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3.4 The Green Function of the Classical Dirichlet Boundary Problem 43

With this notation the connection to the classical Dirichlet boundary problem [20]
becomes evident. The response boundary function rbf satisfies the Dirichlet problem:

• rbf is harmonic,
• limI→g rbf(I, Z) = −Γ(I, Z) for g ∈ m" .

The classical Dirichlet problem can be solved on any regular domain [20]. Within
this study we are mainly interested in simply connected domains. If " is a simply
connected domain and "\C̄ contains more than two points, then the domain is
regular [20].
This insures that the rbf, and consequently the Green function, exists for a large
class of domains " . On the other hand if we find a conformal mapping of " onto
D, we can solve the Dirichlet problem there. The existence of such a mapping is
guaranteed by the RMT theorem 3.1. As we have seen, the fundamental singularity is
invariant under conformal mappings. As rbf as a real harmonic function always has
a harmonic conjugate function, in a simply connected domain, we find the following
result:

Theorem 3.7. 6 is a conformal invariant.

Let � map conformally "1 → "2. , then: 6� ("1) (� (I), � (Z)) = 6"2 (I, Z)

Proof. The conformal invariance of the singularity Γ, was already demonstrated in
section 3.1.2, eq. (3.15). 6<1 (I, Z)

��
I∈m"1

= 0 by definition 3.5.
Since I ∈ m"2 → � (I) ∈ m� ("1) = m"2

⇒ 6"2 |I∈m"2 = 6"1 (� (I), � (Z)) |� (I) ∈m� ("1) = 0. ⊓⊔

3.4.1 A Novel Approximation Method for Simply-connected

Domains including an Error-bound

Providing the mapping of " onto a solvable domain (e.g. D) solves the Dirichlet
problem for " . The following theorems are essential for the approximative solution:

Theorem 3.8. If "1 ⊂ "2 , then: 6"1 (I, Z) ≤ 6"2 (I, Z), with I, Z ∈ "1.

Theorem 3.9. Let " such that ("=)=≥1 are sub-domains such that "1 ⊆ "2 ⊆
"3 . . . and

⋃
= "= = " . Then: lim=→∞ 6"= (I, Z) = 6" (I, Z), with I, Z ∈ " .

The proofs can be found in [18, 20, 35].
Now, we prove that the Green function 6" of a domain " , which is between two
domains "1 ⊇ " ⊇ "2, satisfies: 6"1 ≤ 6" ≤ 6"2 :

Theorem 3.10. Let " such that ("=)=≥1 are subdomains such that "1 ⊇ "2 ⊇
"3 . . . and ∩="= = " . Then: lim=→∞ 6"= (I, Z) = 6" (I, Z), with I, Z ∈ " .
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Proof. We fix Z ∈ " . For = ≥ 1 define:

ℎ= = 6"= (I, Z) − 6" (I, Z) (I ∈ "\{F}).

Then ℎ= is harmonic on "\{F}, and by the removable singularity theorem [18],
ℎ= extends to be harmonic on " . Theorem 3.8 implies that ℎ= ≤ ℎ=+1, for each =,
so D := lim=→∞ ℎ= is sub-harmonic on " . Since ℎ= ≤ −6" (·, F) on " , for each
=, it follows that D ≤ −6" (·, F) on " . Hence D is bounded above on " and also
lim supI→Z D(I) ≤ 0 for Z ∈ m" . Therefore by the maximum principle ( [95], p.7)
D ≤ 0 on " . From this we see:

lim sup
=→∞

6"= (I, Z) ≤ 6" (I, Z) (I ∈ ").

From theorem 3.8 we also have:

lim inf
=→∞

6"= (I, Z) ≥ 6" (I, Z) (I ∈ ").

Combining these two inequalities yields the result. ⊓⊔

We arrived at a key outcome of this work:

Lemma 3.1. If we look for the Green function of the first kind for a domain

(simply connected) " , which is not known a priori, and we can solve the

problem for the domains <̃ and "̃ , with <̃ ⊆ " ⊆ "̃ , the solution 6" is

bounded by 6<̃ ≤ 6" ≤ 6"̃ , which provides an error bound. If approaching

the domain from the in- and out-side via <̃1 ⊆ <̃2 ⊆ <̃3 . . . with
⋃
= <̃= = " ,

and "̃1 ⊃ "̃2 ⊃ "̃3 · · · with
⋂
= "̃= = " , we are able to formulate the

solution of 6" approximative either through 6<̃ or 6"̃ with the maximal error

|6<̃ − 6"̃ |.

Figure 3.8 illustrates the concept as proved in lemma 3.1. <̃8 is enclosed by " and
"̃8 is enclosing " . The solutions of <̃8 and "̃8 can be calculated. We reduce the
known upper error bound by increasing the accuracy of the approximated domains
"̃8 and <̃8 with respect to " , as indicated by the lines-style (increasing density and
decreasing opacity) and arrows and stop if the error bound is satisfying (e.g. when
the error bound is lower than the measurement error).
The approximation of the domain through polygons allows for good command over
the convergence. In our application the approximative solution is given in terms of
in/out scribed polygonal domains, which can be obtained with help of the Schwarz-
Christoffel-transformations (section 4.1) and is applied to the vacuum chamber of
the LHC (section 7.2.1).
In the next section the solution for the Green function explicitly forDwill be derived.
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3.4 The Green Function of the Classical Dirichlet Boundary Problem 45

Fig. 3.8 The concept of the
approximation of a domain
" , where no exact solution is
know. <̃8 is enclosed by "
and "̃8 is enclosing " . The
solutions of <̃8 and "̃8 are
given. An upper bound for the
error, as proved in lemma 3.1,
is known.

•      with the error  .gm̃i
≤ gM ≤ gM̃i

ΔgM ≤ |gm̃i
−gM̃i

|

m̃i

M̃i

M

•
    , with  ,m̃i ⊆ M ⊆ M̃i lim

i→∞ ⋂
i

M̃i = M ∧ lim
i→∞ ⋃

i

m̃i = M

3.4.2 How to find the Explicit Green Function

If one solution of the problem of a canonical domain exists, along with a good com-
mand over conformal mappings onto this domain, many solutions can be obtained.
The domain in the plane with the highest symmetry - the unit disc D - is the entry
point.
The strategy is to use the assumption that rbf can be represented as an abso-
lute convergent harmonic series. Deriving a solution under this assumption al-
lows for more flexibility afterwards. The function of interest rbf, has to satisfy
rbf(I, Z) = −Γ(I, Z) = 1

2c log |I − Z |, for I ∈ mT (I = Aeii):

rbfD (Aeif , Z) = Re
{ ∞∑
==0

0= (Z)d=e2ci=f
}

= −Re
{ ∞∑
==0

2d=e2ci=f
∫ 1

0
df′d=e−2ci=f′

log(e2cif′ − Z)
}

= −Re
{ ∞∑
==0

∫ 1

0
df′d=e2ci=(f−f′) (log(e2cif′ − Z) + log(e−2cif′ − Z∗))

}

= −Re
{ ∫ 1

0
df′

∞∑
==0

d=e2ci=(f−f′) (
∞∑
:=1

Z :e−2ci:f′

:
+

∞∑
:=1

Z∗:e2ci:f′

:
)
}

= −Re
{ ∞∑
:=1

∞∑
==0

I=Z∗:

:

∫ 1

0
df′e2cif′ (:−=)

︸                   ︷︷                   ︸
X=,:

}
= −Re {log(1 − IZ∗)}.

(3.43)

The function rbfD (I, Z) = −Re {log(1 − IZ∗)} is harmonic on D̄, so it can be
holomorphic extended onto the boundary.
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46 3 Potential Theory on the Riemann-sphere

We derived the Green function 6 of the first kind of the unit disc:

6D (I, Z) =
1

2c
log

���� I − Z1 − IZ∗
���� , (3.44)

The general solution of the Green function 6 of the first kind of a domain " ,
with �"

Z
(") ↦→ D and �"

Z
(Z) = 0, �"

Z
being conformal, can be given as:

6" (I, Z) = 1

2c
log

����"Z (I)
��� . (3.45)

Fig. 3.9 The behaviour of the
so-called Blaschke factor.

ζ

!
0

ζ 0

!
∞

ζ

Fζ

Fig. 3.10 The Blaschke factor
on C̄ (same Z as in fig. 3.9 is
taken).

Fζ

Fζ

ζ

ζ′ 

ζ

ζ′ 

The term �Z (I) := I−Z
1−IZ ∗ is called Blaschke factor, which is unimodular on D

transporting Z → 0. The mapping is illustrated in fig. 3.9 below, where Z = 1
2 + 2

10 i.
Additionally in fig. 3.9, the contour lines are also plotted, corresponding to the electric
potential and the field lines. As displayed in fig. 3.9 the solution is a mapping onto
the high symmetric case of a source at the origin. The Blaschke factor maps the unit
disk onto itself. It appears (naturally) as conformal mapping in the (complex) Green
function of the unit circle and is a special case of the Moebius class [96].
Interestingly the mapping can be interpreted in terms of mirror functions: �Z (I) maps
Z → 0 and hence its mirror on the unit circle Z ′ = 1

Z ∗ → ∞ along the symmetry axis
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3.5 Novel solutions of the Generalized Neumann Problem 47

(as presented as dashed line in fig. 3.9,). This minimizes the influence of the image
source. It reflects the minimizing character of the solution of the Dirichlet problem.
Since for simply connected domains we can conformally transform the invariant
Green function onto the unit disk (RMT - theorem 3.1) and solve the problem there
with help of the Blaschke factor �Z . The mirror image Z ′ is transported to ∞, which
easily can be seen on C̄ in fig. 3.10.
In the next section, we discuss the solution of the magnetostatic problem.

All solutions found for the Neumann function (the Green function of the second
kind), which are inherently harder to find than for the Green function of the
first kind, naturally extend to the latter as well.

3.5 Novel solutions of the Green Function of the Generalized

Neumann Problem of Simply Connected Domains

We discuss in the following the classification of the Green function of the magne-
tostatic problem. As mentioned earlier, the situation is more involved than in the
electrostatic case, since here the Green function is not conformally invariant.
We provide the necessary proofs to the full extent.
The magnetostatic boundary behaviour is explained in section 3.3.1, and the Green
function has a constant normal derivative, namely the constant circulation of the
enclosed current along the boundary.
We start with a general definition, and later on we see that our interest is mainly in
a particular variant of the Neumann function. For the classical Neumann function
the normal derivative has to be defined everywhere along the boundary. To cover
possible discontinuities of the normal derivative along the boundary, we formulate
the generalized Neumann function instead of the classical Neumann function. The
problem is solved for bounded piecewise regular domains and afterwards is extended
onto more general domains.

Definition 3.6. The generalized Neumann function =:
Let " ( C bounded regulated, a Neumann function for " is a map =" : " ×" ↦→
(−∞,∞], so that for each Z ∈ " :

• =" (·, Z) is harmonic on "\Z and bounded for I ∉ DA (Z) for every A ,
• =" (I, I) = ∞ and as I → Z :

=" (I, Z) = log |I − Z | + O(1)

• m="
m=

(I, Z) = 1
|m" | as I → g, for not everywhere g ∈ m" .

To uniquely define =" one can impose a so-called normalizing condition (|dI |
denotes the line integral):
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48 3 Potential Theory on the Riemann-sphere∫
m"

=< (I, ·) |dI | = 0. (3.46)

Since the normalization has no influence on the physical fields, we omit it in the
following. In order to find the Neumann function, a special form of the Neumann
problem has to be solved:

Definition 3.7. The generalized Neumann problem: Let " be a bounded regulated
domain. Where ℎ(I) be a real-valued piecewise continuous function on m" .

• =" is continuous and piecewise differentiable on m" ,
• =" is harmonic in " ,
• Additionally we demand: limI→g Re {m="n} = ℎ(g) for not everywhere g ∈
m" .

A necessary condition for ℎ is [33]:∫
m"

ℎ(I) |dI | = 0. (3.47)

Definition 3.7 has a unique solution ( [33], p.266). The regulated domain was
introduced in section 3.2.3 and the restriction that " has to be bounded and regular
ensures the existence of the normal derivative along the boundary with a finite
number of discontinuities (jumps). Such a domain is illustrated in fig. 3.11. We see
there that at the vertices (0, 1, 2, ... 5 ) of the boundary the normal n green reveals
discontinuities of the amount i8 as we approach the vertices from the right and left
side, respectively. The red arrow shows the mean of the right and left side limit.
To see that the generalized Neumann function can be found through the generalized

n

n

n

n
n

n

"

m"

i1

i2

i3

i4

i5

i6

a

b

c

d

e

f

Fig. 3.11: An example of a piecewise regular domain " , a polygonal domain.

Neumann problem, =" is formulated as the sum of the fundamental singularity and
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3.5 Novel solutions of the Generalized Neumann Problem 49

Fig. 3.12: The Neumann function vs. the experiment. (Lower pictures (photographs)
taken from [31]).

the in " harmonic boundary response function rbf" :

=" (I, Z) = Γ(I, Z) + rbf" (I, Z) (3.48)

Along m" =" has to satisfy the condition:

2Re
{
m=" (I, Z)n

} ���
I∈m"

= Re
{
n
( 1

2c(I − Z) + 2mrbf" (I, Z)
) } ���

I∈m"
=

1

|m" | .
(3.49)

It is a Neumann problem for Re {rbf" } with the boundary value (I ∈ m"):

2Re {nmrbf" (I, Z)} = 1

|m" | − Re
{ n

2c(I − Z)
}
. (3.50)

Indeed this obeys the necessary condition eq. (3.47):∫
m"

2Re
{
nmrbf" (I, Z)

}
|dI | =

∫
m"

1

|m" | − Re
{ n

2c(I − Z)
}
|dI | = 0 (3.51)

Now, we develop a strategy to find rbf" and consequently the Neumann function
=" . In section 3.4, we assumed rbf to be representable as an absolute convergent
series and here again we use this approach.
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50 3 Potential Theory on the Riemann-sphere

3.5.1 Dini’s Formula

To find a function rbf" which solves the Neumann problem eq. (3.49) on a unit disc
D, rbfD can be represented as an absolute convergent harmonic series6 ( m

m=
= m
md

):

rbfD (I; Z) = rbfD (d, f; Z) = Re
{ ∞∑
==1

0= (Z)d=e2ci=f
}

mrbfD (d, f; Z)
md

���
d=1

= Re
{ ∞∑
==1

0= (Z)=d=−1e2ci=f
} ���
d=1

⇒0= (Z) = 2

∫ 1

0
df

e−2ci=f

=

mrbfD (d, f; Z)
md

���
d=1

rbfD (d, f; Z) = Re
{ ∞∑
==1

2

∫ 1

0
df′ d

=e2ci=(f−f′)

=

mrbfD (d′, f; Z)
md′

} ���
d′=1

= 2Re
{ ∫ 1

0
df

∞∑
==1

d=e2ci=(f−f′)

=︸                  ︷︷                  ︸
− log (1−de2ci(f−f′) )

mrbfD (d′, f; Z)
md′

} ���
d′=1

= −2Re
{ ∫ 1

0
df′ log (1 − de2ci(f−f′) ) mrbfD (d′, f; Z)

md′

} ���
d′=1

. (3.52)

The function on the disc can be expressed in terms of it’s normal derivative on the
unit circle T. Equation (3.52) is known as Dini’s formula (see [32] p.277). The form
of rbfD to be the image function of T (|T| = 2c) is:

mrbfD (d, f; Z)
md

���
d=1

= −m log A

md

���
d=1

+ 1. (3.53)

Employing eq. (3.52) yields:

−2Re
{ ∫ 1

0
df′ log (1 − de2ci(f−f′) )

(
−m log A

md

���
d=1

+ 1

) }

=2Re
{ ∫ 1

0
df′ log (1 − de2ci(f−f′) )

(
m log |de2cif′ − Z |

md

���
d=1

− 1

) }

=Re
{ ∫ 1

0
df′ log (1 − de2ci(f−f′) )

(
Ze−2cif′

1 − Ze−2cif′ +
Z̄e2cif′

1 − Z̄e2cif′

) }

=Re
{ ∫ 1

0
df′

∞∑
==1

(−1)=+1 d
=e2ci=(f−f′)

=

∞∑
:=1

(
Z̄ :e2ci:f′ + Z :e−2ci:f′

) }

6 The series starts at = = 1 because 00 has to be zero for the boundary problem to be solvable. This
can be seen directly from the Green formula ( [33], p.265).
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3.5 Novel solutions of the Generalized Neumann Problem 51

=Re
{ ∞∑
==1

(−1)=+1
∞∑
:=1

I= Z̄ :

=

∫ 1

0
df′e2ci(:−=)f′

︸                   ︷︷                   ︸
X=,:

+ I
=Z :

=

∫ 1

0
df′e−2ci(:+=)f′

︸                    ︷︷                    ︸
X=,−:

}

=Re
{ ∞∑
==1

(−1)=+1

(
IZ̄

) =
=

}
= Re {log(1 − IZ̄)}. (3.54)

Hence the analytic form of the rbfD = Re {log(1 − IZ̄)} is found.

The Neumann function of the circle has the form:

=D (I; Z) =
1

2c
log | (I − Z) (1 − IZ̄) | (3.55)

The experimental verification of eq. (3.55) is shown in fig. 3.12. The left plot shows
a source while the right plot shows a source and a sink. Due to Ampère’s Law,
integration along the boundary yields the enclosed current. The latter is invariant
under conformal mappings as proven in section 3.5.3 and the integral vanishes.

Re {t̃m ˜rbf} Im {t̃m ˜rbf}

m"

5 (" )

|m� ( C̃) |Im {tmrbf}

|m� ( C̃) |Re {tmrbf}

T

Ĩ ↦→ � ( Ĩ)

I ↦→ �−1 (I)

"

Fig. 3.13: The conformal behaviour of the tangential mrbf(I)
mC

= 2Re {mrbf(I)t} and

normal derivative mrbf(I)
m=

= 2Im {mrbf(I)t} .

Now we generalize the solution of the circle D. Let us look at the normal derivative
under conformal mappings. An illustration can be found in fig. 3.13. The normal
and tangential vectors onto the m" are visualized and their orientation is kept under
the conformal mapping on T, only a scaling factor comes into play, which was also
shown in fig. 3.4 for the principle of a conformal map:

Lemma 3.2. Let � map " , which is a smooth bounded simply-connected do-

main, conformally onto D. If we transform rbf(I) = ˜rbf( Ĩ) with � ( Ĩ) = I, then

t̃m ˜rbf(� (I)) = t
|m�−1 (I) | mrbf(I).

Proof. Assume Ĩ ↦→ � ( Ĩ) = I and ˜rbf( Ĩ) = rbf(� ( Ĩ)),
t̃ =

¤̃I
| ¤̃I | =

m�−1 (I) ¤I
|m�−1 (I) ¤I | on m" and t = ¤I

| ¤I | on T, hence:
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52 3 Potential Theory on the Riemann-sphere

m ˜rbf( Ĩ) t̃ = m ˜rbf( Ĩ) m�−1 (I) ¤I
|m�−1 (I) ¤I | = mrbf(� ( Ĩ))m� ( Ĩ)m�−1 (I) ¤I

| ¤I |
1

|m�−1 (I) |
=

mrbf(I)
|m�−1 (I) | t. ⊓⊔

Equation (3.52) can now be written as (t is the positively oriented complex tangential
unit vector of T):

rbfD (I, Z) = − 1

c

∮
|g |=1

|dg | log |1 − Ig∗ |2Im {tmrbfD (g; Z)}. (3.56)

Equation (3.56) is by construction harmonic for |I | < 1.

n =
nl+nr

2nl

nr
p′→

no

→

nuM1M2M3M4M5M6M7M8M9M10

r1r2r3r4r5r6r7r8r9r10

p

n

→

nl

→

nr

→ nu

→

no

Di

F−1
ri
7→ MiDi

Fri
7→ Mi

Fig. 3.14: The concept of the radial limiting angle. A linear homotopy from the
circle onto a rectangle is indicated.
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3.5 Novel solutions of the Generalized Neumann Problem 53

3.5.2 A Novel Integral Representation of the Neumann Function

Now we give a novel integral representation of the Neumann function of a smoothly
bounded simply-connected domain " with the map � mapping " conformally onto
D:

Theorem 3.11. The Neumann function of a smoothly bounded (no corners)

simply-connected domain " , with the conformal map � : " → D, can be

given as:

=" (I, Z) = 1

2c

(
log | (� (I) − � (Z)) (1 − � (I)�∗ (Z)) |

− 2

c

∮
|g |=1

|dg | log |1 − � (I)g∗ | (1 − |m�−1 (g) |
|m" | )

)
. (3.57)

Remark: The boundary integral does not depend on the source point Z!.

To prove this statement we first introduce the radial exhaustion of a domain " . Let �
map a domain " conformally on D. The radial exhaustion is a sequence of domains
"8 , which are the images "8 under � of concentric circles D8 with increasing radii
A8 < A8+1 ≤ 1, which is depicted in fig. 3.14 for � mapping a rectangle onto D.
Each domain "8 is smooth and hence there is a well defined tangential and normal
direction along it’s boundary m"8 . Jumps of the exterior normal and their average at
the edges of the rectangle are shown.

Let us define the mapping �−1
A (I) := �−1 (AI), so D

�A
−1 (I)↦→ "A and Ĩ = �A

−1 (I).
From lemma 3.2 it follows for a harmonic function D: t̃AmD̃( Ĩ) = mD(I) ¤I

|m�−1
A (I) | | ¤I | =

mD (I)t
A |m�−1

A (I) | .
Now we prove eq. (3.57):

Proof. From definition 3.6 follows that the Neumann function has to be 1. harmonic
on "\Z , 2. reveals a logarithmic singularity at I = Z and 3. the normal derivative of
the Neumann function has to be constant with the value 1

|m" | along m" . To show
this we separate eq. (3.57) (omitting the normalization):

=" (I, Z) = log | (� (I) − � (Z)) (1 − � (I)� (Z)∗) |︸                                           ︷︷                                           ︸
1

− 2

c

∮
|g |=1

|dg | log |1 − � (I)g∗ | (1 − |m�−1 (g) |
|m" | )

︸                                                    ︷︷                                                    ︸
2

.

Start with condition 1. and 2. and part 1 : The term log | (1−� (I)�∗ (Z)) | is harmonic
for I ∉ m" (� (I) ∈ D). And as � ′(I) ≠ 0, we can develop � into a Taylor series
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54 3 Potential Theory on the Riemann-sphere

around a point Z as � = � (Z) + (I − Z)k(I) with k(I) ≠ 0, I ∈ " and k(I)
holomorphic. The term log | (� (I) − � (Z)) | can be written as:

Re {log(� (I) − � (Z))} = Re {log(� (Z) + (I − Z)k(I) − � (Z))}
= log |I − Z | + log |k(I) |︸     ︷︷     ︸

harmonic

. (3.58)

2 is of the form eq. (3.56) and hence is harmonic for I ∈ " (|� (I) | < 1). This
means the function is harmonic for I inside " and reveals a logarithmic singularity
at I = Z .
Now we show 3. and start with 1 :
We use the previously stated fact about functions of the form D(� ( Ĩ)) and we define
�A (Z) = F:

2t̃Am log | (�A (I) − �A (Z)) (1 − �A (I)�∗
A (Z)) |

���
I∈m"A

=
ieiC

A |m�−1
A (eiC ) |

[
1

eiC − F − F∗

1 − eiCF∗

]

=
i

A |m�−1
A (eiC ) |

[
eiC

eiC − F − eiCF∗

1 − eiCF∗

]

=
i

A |m�−1
A (eiC ) |

[
1

1 − e−iCF
− 1

1 − eiCF∗ + 1

]

=
i

A |m�−1
A (eiC ) |

[
1 + 2iIm

1

1 − e−iCF

]
=

i

A |m�−1
A (eiC ) |

+ real residual.

Hence, 2Im t̃m 1 |I∈m" = |m�−1
A (eiC ) |−1. Now we look at 2 :

In this case we approximate the solution with the method of radial exhaustion starting
with a domain "A ⊂ ":

2t̃Am
2

c

∮
|g |=1

|dg | log |1 − �A (I)g∗ |

:=ΨA (g)︷               ︸︸               ︷
(1 − |m�−1

A (g) |
|m" | )

���
I∈m"

=
2ieiCm

cA |m�−1
A (eiC ) |

∮
|g |=1

|dg | log |1 − �A (I)g∗ |ΨA (g)

=
2i

cA |m�−1
A (eiC ) |

∮
|g |=1

|dg | eiCg∗

1 − eiCg∗
ΨA (g)

=
i

cA |m�−1
A (eiC ) |

∫ 2c

0
df

ei(C−f)

1 − ei(C−f) ΨA (g)

=
i

cA |m�−1
A (eiC ) |

∫ 2c

0
df

1

2

[
1 + ei(C−f)

1 − ei(C−f) − 1

]
ΨA (eif)
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3.5 Novel solutions of the Generalized Neumann Problem 55

=
i

2cA |m�−1
A (eiC ) |

[ ∫ 2c

0
df

1 + ei(C−f)

1 − ei(C−f) ΨA (e
if) −

∫ 2c

0
3fΨA (eif)

︸                ︷︷                ︸
=0

]

As long as ΨA (I) has a continuous extension to m"A , it holds (as can deduced from
the Schwarz kernel [97] or [35], p. 43):

i

2cA |m�−1
A (eiC ) |

∫ 2c

0
df

eif + eiC

eif − eiC︸    ︷︷    ︸
Schwarz kernel

ΨA (eif) =
i

A |m�−1
A (eiC ) |

ΨA (eiC ).

In the limit A → 1 for a smooth boundary m"A→1 = m" , we obtain:

lim
A→1

i

A |m�−1
A (eiC ) |

ΨA (eiC ) = i

|m�−1 (eiC ) |Ψ(eiC ). (3.59)

Putting in Ψ(g) yields: i
|m�−1 (eiC ) | (1 − |m�−1 (eiC ) |

|m" | ) = i( |m�−1 (eiC ) |−1 − |m" |−1). So

we conclude: 2Im t̃m ( 1 + 2 ) = |m" |−1. ⊓⊔

If the function ΨA (I) can be extended continuously to m"A , we can use the integral
representation. If m" contains corners Ψ(I) jumps at the corners and is piecewise
continuous only. Using the concept of a radial limiting angle the solution of the
generalized Neumann functions exists (definition 3.7). The concept is shown in
fig. 3.14 for a rectangle. In the limit the normal derivative jumps at the corners and
the limiting radial angle is the average direction of left and right limit.
Nonetheless, an approximative solution of the classical Neumann function can be
given employing the integral representation. It can be obtained by taking a smooth
domain close to the true boundary, so "A ≈ " . In fig. 3.15 the solution is drawn for
a square, approximated by a domain near the true boundary (A ≈ 1).
The solution of a smooth domain, an ellipse, is shown in fig. 3.16. Equation (3.57)
is used to estimate the impact of combined-function magnets in the CERN PS
accelerator on the beam in section 6.3.2.
Some comments on theorem 3.11: the main idea of eq. (3.57) is to follow the tactics
used for the Green function. One maps the problem of the domain of interest " onto
the unit disk. The Neumann function is not a conformal invariant, because the normal
derivative along the boundary m" onto the circle picks up a scaling factor |m� | as
shown in fig. 3.13. This is corrected by the second term in eq. (3.57), the boundary
integral (derived via eq. (3.56) - Dini’s formula) and therefore the normal derivative
satisfies the third condition in definition 3.6. One advantage of this form is that
the boundary integral is in-depended of the source point. The approach has several
consequences; for example, the first term can be calculated easily if the position of
the source is varied, while the second more complicated term is not changed and
could be stored in a look-up table. Other more important consequences as a form
conformal invariance are presented in the following.
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56 3 Potential Theory on the Riemann-sphere

Fig. 3.15 Example of the
novel integral representation
eq. (3.57) of a limiting angle
on a bounded domain.

−0.4 −0.2 0.0 0.2 0.4

−0.4

−0.2

0.0

0.2

0.4

Fig. 3.16 Example of the
novel integral representation
of a smooth domain, non
circular - using eq. (3.57).

−2 −1 0 1 2
−1.0

−0.5

0.0

0.5

1.0

3.5.3 First Consequence of eq. (3.57): the Neumann Function as a

Conformal Invariant

Lemma 3.3. The difference of two Neumann functions is a conformal invari-

ant.

Proof. Starting from theorem 3.11, we subtract two Neumann functions having two
sources at different locations:

=" (I, Z1, Z2) := =" (I, Z1) − =" (I, Z2) =
1

2c

(
log | (� (I) − � (Z1)) (1 − � (I) �∗ (Z1)) |

− 2

c

∮
|g |=1

|dg | log |1 − � (I)g∗ | (1 − |m�−1 (g) |
|m" | )−
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3.5 Novel solutions of the Generalized Neumann Problem 57

log | (� (I) − � (Z2)) (1 − � (I)�∗ (Z2)) |

− 2

c

∮
|g |=1

|dg | log |1 − � (I)g∗ | (1 − |m�−1 (g) |
|m" | )

)

=
1

2c
log

��� (� (I) − � (Z1)) (1 − � (I)�∗ (Z1))
(� (I) − � (Z2)) (1 − � (I)�∗ (Z2))

���. (3.60)

⊓⊔

We found a conformal invariant version of the Neumann function. The boundary
integrals vanish and hence it also follows: Im tm=" (I, Z1, Z2) = 0. We know from
section 3.3.1, that the tangential component of the field is continuous. As a con-
sequence, the field vanishes in the " surrounding material. The situation of the
circular shape is shown in fig. 3.12 for an experimental setting.

Let � map " , which is a simply-connected domain, conformally onto D. Z1

and Z2 are different points in " (The case if a point touches the boundary is
discussed in section 3.5.5.).

=" (I, Z1, Z2) =
1

2c
log

��� (� (I) − � (Z1)) (1 − � (I)�∗ (Z1))
(� (I) − � (Z2)) (1 − � (I)�∗ (Z2))

��� (3.61)

is the pendant of the Green function of the first kind. The real part of the
Green function of the first kind vanishes along the boundary of a domain (or
is constant), the imaginary part of the conformal invariant Neumann function
vanishes along a boundary (or is constant). For such cases we find always the
closed-form if the conformal mapping can be expressed through closed-forms
as eg. the circle fig. 3.12, the ellipse fig. 3.17b and the rectangle fig. 3.17a.

- 2 - 1 0 1 2

- 1.0

- 0.5

0.0

0.5

1.0

(a) Rectangular case

- 2 - 1 0 1 2

- 1.0

- 0.5

0.0

0.5

1.0

(b) Elliptical case

Fig. 3.17: The invariant representation of the Neumann function eq. (3.60) in the
case of a rectangular and elliptical boundary.
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3.5.4 Second Consequence of eq. (3.57): the Neumann Function

for Unbounded Regulated Simply-connected Domains

M1 M2 M3 M4 M5

F
−1
r

Fr

M̃1 M̃2

M̃4

M̃3

M̃5

γ1

γ2

γ3

ζ1

ζ2

ζ3

γ̃3

γ̃1

γ̃2
∞

∞

∞

Fig. 3.18: An unbounded star-like domain " with three openings to the north-pole.

Let " be a star-like regulated unbounded domain on C̄. " touches the north-pole
from # different directions, which is sketched in fig. 3.24 for # = 2, 4, 6. We
term this domains regulated domain with a degeneracy # . q: denotes the argument
of the rays, along which the north-pole can be reached from within " , where
: ∈ {0, 1, 2, . . . , #}. Another example is drawn in fig. 3.18 for three openings to
the north-pole, where also the concept of radial-exhaustion is shown: The mapping
�A

−1 (I) maps circles with different radii A ("1 . . . "4, with different colours) onto
different domains ("̃1 . . . "̃4, with different colours). The boundary m"̃= increases
with A, and in the limit A → 1 the boundary touches the north-pole from three
different directions, which is shown by the different paths (W̃1, W̃2 and W̃3). The
corresponding paths (W1, W2 and W3) touch the unit disc T along the rays with the
argument q1, q2 and q3. Hence, limA→1

1
�A−1 (Aeiq: ) = 0.
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3.5 Novel solutions of the Generalized Neumann Problem 59

Conjecture 3.1. Let � map "# , which is an unbounded star-like domain
with a degeneration of degree # , conformally onto D. Additionally it holds:
limA→1

1
�A−1 (Aeiq: ) = 0 (the north-pole can be reached along # rays with the

argument q: ). The Neumann function reveals the form:

="# (I, Z) =
1

2c
log

| (� (I) − � (Z)) (1 − � (I)�∗ (Z)) |∏#
: |1 − � (I)e−iq: | 2

#

. (3.62)

Proof (Sketch). Let us start form the integral representation for bounded domain
theorem 3.11 (omitting the normalization):

="A (I, Z) = log | (�A (I) − �A (Z)) (1 − �A (I)�∗
A (Z)) |︸                                              ︷︷                                              ︸

1

− 2

c

∮
|g |=1

|dg | log |1 − �A (I)g∗ |
︸                                  ︷︷                                  ︸

2

+ 2

c

∮
|g |=1

|dg | log |1 − �A (I)g∗ |
|m�−1

A (g) |
|m"A |︸                                                ︷︷                                                ︸

3

Integral 2 :
∮
|g |=1

|3g | log |1−�A (I)g∗ | = 0 for |�A (I) | < 1 for each A ( [35]). Integral

3 has the form:

3 A =
2

c

∮
|g |=1

|dg | log |1 − �A (I)g∗ |︸               ︷︷               ︸
:=q (g)

|m�−1
A (g) |

|m"A |︸       ︷︷       ︸
:= A (g)

• q(g) is a continuous bounded function in "A for |�A (I) | ≤ 1.
•  A (g) can be brought to the form of Dirac sequences appendix B.

In the limit limA→1  A (g) = 1
#

∑#
: X(g − eiq: ), which means the points touching

the north-pole on C̄ produce a sink like singularity:

lim
A→1

3 A =
2

c

∮
|g |=1

|dg | log |1 − � (I)g∗ | 1

#

#∑
:

X(g − eiq: )

=
2

#

#∑
:

log |1 − � (I)e−iq: |

⊓⊔
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60 3 Potential Theory on the Riemann-sphere

This form of the Neumann function allows us to estimate the influence of
boundaries of specific shapes, by opening a bounded domain to infinity at
specific locations, yielding a closed-form (eq. (3.62)).

This representation makes it possible to give closed-form solutions for the =-pole
family (as shown in the next chapter in fig. 4.7), as given in section 4.3.2 and is
used to derive closed-forms for the combined-function magnets in the CERN PS
accelerator, section 6.3.2.

3.5.5 Some Comments on the Source Boundary Behaviour

- 2 - 1 0 1 2

- 1.0

- 0.5

0.0

0.5

1.0

(a) Green function

- 2 - 1 0 1 2

- 1.0

- 0.5

0.0

0.5

1.0

(b) Neumann Function

Fig. 3.19: The reflection of the fundamental singularity near the boundary of the
Green and the Neumann function.

The logarithmic singularities generate the fields and in appendix D.1, it was shown
that the indirect field can be interpreted as a reflection of the source singularity
eq. (3.13). A look at the solutions of the Green functions eqs. (3.44) and (3.57) tells
us:

6D (I, Z) =
1

2c
log

���� I − Z1 − IZ∗
���� , (3.63)

and:

=D (I, Z) =
1

2c
log | (I − Z) (1 − IZ∗) | . (3.64)

If the source singularity approaches the boundary Z → T, the first equation vanishes
while the second yields a logarithmic singularity of order two when I → Z . It is
also true for general domains since the fundamental singularity is invariant under
conformal mappings. For 6, the image is negative, and in the case of =, it is positive.
In section 5.2 this terminology is used to formulate the image tensors.
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3.6 A New Classification of the Neumann function on the Riemann-sphere 61

An illustration of a source near a boundary provided in fig. 3.19. A green line
indicates the boundary and the green point marks the source and the blue point, its
reflection at the boundary. An extended definition of the conformal invariant version
of the Neumann function allowing the source location be on the boundary can be
found in [26] and is not further discussed here for the limited scope of this work.
A last remark: a boundary point can be mapped conformally onto an arbitrary other
boundary point. This is also true for every inner point.

3.6 A New Classification of the Neumann function on the

Riemann-sphere

We classify the Neumann function for some instances of regulated unbounded do-
mains and exterior domains. As the north-pole is contained in these domains, it
naturally generates a sink, the equipotential lines and consequently the field lines
are perpendicular to the boundaries. Two cases are distinguished if the domain is
unbounded. The boundary touches the north-pole and is either degenerated or non-
degenerated. If the domain is degenerated, the mapping of the north-pole, which has
a logarithmic singularity of order two at the boundary (section 3.5.5), onto T, is not
univalent and belongs to a special subclass of regulated domains on the Riemann-
sphere. The discussion in this work is restricted to unbounded star-like domains due
to the limited scope, but could be extended to more general domains. Examples for
every class are presented in the following with the focus on cross-section appearing
in accelerator elements.
Various new closed-form solutions of the Neumann problem are offered throughout
the text. Primarily, the explicit formulas are provided to act as a reference for more
practical purposes, e.g. to implement them into a numerical tracking code.
Three different cases are distinguished:

• Domains ": ∞ ∈ m"
– ∞ non-degenerated: unbounded domain.
– ∞ degenerated: unbounded star-like domain.

• Domains ": ∞ ∈ " - exterior domains - conformally equivalent to bounded
domains.

In the following, examples for these cases are provided and the corresponding Neu-
mann functions and fields are given explicitly.

3.6.1 Unbounded Domains: ∞ Non-degenerated

In this case, the boundary extends to infinity and is univalently defined there. The
sink-singularity at the north-pole is "picked" up and consequently the function re-
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62 3 Potential Theory on the Riemann-sphere

veals a logarithmic singularity of order two at the north-pole. Nevertheless, a sink-
singularity at infinity has no impact on the local field. As examples the half-plane,
the half-strip and a square depression are provided in the following. The half-strip
and the square-depression can be used to model the iron yoke of a dipole magnet.

3.6.1.1 The Upper Half-Plane

Lower hemisphere 

Riemann-sphere 

Upper hemisphere 

Fig. 3.20: The half-plane on Riemann-sphere and the projections on the two hemi-
spheres.

The simplest example of an unbounded non degenerated regulated domain is the
upper half plane H+ := {I |Im {I} ≥ 0}. The Neumann function #H+ of the upper
half-plane can be calculated employing eq. (3.62) and the inverse Cayley mapping
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3.6 A New Classification of the Neumann function on the Riemann-sphere 63

(see section 4.1.1):

#H+ (I, Z) :=
1

2c
log(I − Z) (I − Z∗). (3.65)

A visualisation on the Riemann-sphere is provided in fig. 3.20. The blue point
indicates the location of the source. The sink like logarithmic singularity at the
north-pole is shown in red. The boundary of H+ is green and the complementary
domainH− is dark green. One sees the projections on the lower hemisphere, which is
the well known physical plane. The projection on the upper hemisphere (lower right
plot) shows the north-pole touching the boundary. Using this interpretation makes
it evident why the field lines, indicated as alternating black and white regions, are
perpendicular to the boundary in unbounded domains.

3.6.1.2 The Half-Strip

If approximating, for example, the solution of a C-shaped dipole magnet it might be
useful to use a closed-form expression - the half-strip - to model the cross-section of
the iron yoke. The mapping of the half-strip ( 1

2 ,21
:= {I | |Im I | ≤ 1 ∧ Re {I} ≥ 0}

with the width 21 parallel to the G-axis (vertices of the polygon at ({i1,−i1,∞}) onto
T is (see eq. (4.9)): I ↦→ 1 − 2

1+sinh cI
21

, hence the Neumann function using eq. (3.62)

is:

#( 1
2 ,21

(I, Z) = 1

2c
log

[ (
sinh

cI

21
− sinh

cZ

21

) (
sinh

cI

21
+ sinh

cZ∗

21

) ]
. (3.66)

A plot of this function is shown in fig. 3.21 on the Riemann-sphere. The graphics
is similar to fig. 3.20 which was already explained in section 3.6.1.1. One sees
that the two parallel lines of the boundary meet at the north-pole, where a sink
like logarithmic singularity is located. The complex magnetic field is according to
eq. (3.38) (cgs - units):

�( 1
2 ,21

(I, Z) = −i
V0_

1

(
cosh cI

21

sinh cI
21 + sinh cZ ∗

3

+
cosh cI

21

sinh cI
3

− sinh cZ

21

) ∗
. (3.67)

3.6.1.3 A Square Depression

The next step in complexity of approaching the example of a C-shaped magnet could
be done by a so-called depression. To approximate the C-shape �0 (fig. 3.22b) with
help of special functions, the points � (−�) and � (−�) are shifted to ∞ giving a

polygon with = = 4 points (fig. 3.22a). The elliptic function I ↦→ � (<2)
0′ � (sin−1 I |<2)

maps the upper half-plane onto this shape ( [98] p.17, (eq.119.02)). The parameter

< has to be found numerically via: �′ (<2)
0′ =

 ′ (<2)−�′ (<2)
1′ . � (I |<2) denotes the
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64 3 Potential Theory on the Riemann-sphere

Lower hemisphere 

Riemann-sphere 

Upper hemisphere 

Fig. 3.21: The half-strip on Riemann-sphere and the projections on the two hemi-
spheres.

elliptic integral of the second kind.  (<2) and � (<2) denote the complete elliptic
integrals of the first and second kind, respectively. The term � ′(<2) := � (1 − <2)
and  ′(<2) :=  (1 − <2). Definitions of the used elliptic functions are given in
appendices C.1.1 and C.1.2. The Neumann function has the form:

#�0 (I, Z) :=
1

2c
log( Ĩ − Z̃) ( Ĩ − Z̃∗), (3.68)

with the abbreviations Ĩ = sin E−1 ( 0
�
I |<2) and Z̃ = sin E−1 ( 0

�
Z |<2). A visualisation

can be seen in fig. 3.23 (explanations in section 3.6.1.1). The corresponding field is
eq. (3.38) (cgs - units):
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∞∞
C−C

D−D

b’

2a’

(a) The approximated C-shape
0 A−A

B−B C−C

D−D

a

b

c

d

(b) The C-shape

Fig. 3.22: The C-shaped polygon to model the cross-section of a dipole.

Lower hemisphere 

Riemann-sphere 

Upper hemisphere 

Fig. 3.23: A depression on Riemann-sphere and the projections on the two hemi-
spheres.

��0 (I, Z) := −2iV0_

(
2
√
Ĩ2 + 1( Ĩ − Re {Z̃ })

√
1 − <2 Ĩ2 [

��Z̃ ��2 + Ĩ( Ĩ − 2Re {Z̃ })]

) ∗
. (3.69)
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3.6.2 Regulated Domains: ∞ Degenerated

φ=π φ=0N

(a) A dipole

φ=π φ=0N

φ=−

π
2

φ= π
2

(b) A quadrupole

φ=π φ=0

φ=−

2π
3

φ= π
3

φ=−

π
3

φ= 2π
3

N

(c) A sextupole

Fig. 3.24: The Riemann-sphere seen from above.

It is possible that the star-like domain " of interest is degenerated at ∞, which
means that on the compactified complex plane C̄ the complement of " , C̄\" is not
simply connected. In such cases, it is necessary to investigate the behaviour at the
point ∞ ∈ m" . Of course, if such a domain is mapped onto D, the mapping is not
unique at the boundary at ∞, which are termed regulated (section 3.2.3).
After deriving the solution eq. (3.62) based on the integral equation eq. (3.57), an
alternative interpretation of the solution is now formulated:
We demand, following Curie’s principle [99] stating that symmetric premises lead
to symmetric conclusions, that the solution (the fields) of a physical symmetric
configuration preserves this symmetry. Infinity can be reached along # rays from
one centred point, the centre of symmetry (set to 0) as shown in fig. 3.24. Three
different bird eyes views show a degeneracy of two, four and six, as occurring in
the =-poles of increasing order. The domains are labelled as "# , # indicating the
degeneracy at infinity. A singularity is placed at the end (in the limit to infinity) of
each ray approaching infinity as depicted in fig. 3.24 (: th-ray with argument q: ). We
now construct a function �: of the domain of interest where every "infinity"-ray : is
mapped onto one on the unit circle, which can be always achieved by an interposition
of a rotation (which is obviously conformal). Finally, after averaging the Neumann
reveals the form:

#"# (I, Z) =
1

#

#∑
:

1

2c
log

(�: (I) − �: (Z)) (1 − �: (I)�̄: (Z))
(1 − �: (I)e−i:q: )2

. (3.70)

Equation (3.70), as mentioned, was previously derived in a formal way. Nevertheless,
following the argumentation above, the construction of the Neumann function for
the class of the =-pole problem is fairly straightforward.
Next, this method is demonstrated for the strip, where the degeneration : = 2:
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3.6.2.1 The Strip

Lower hemisphere 

Riemann-sphere 

Upper hemisphere 

Fig. 3.25: The strip on Riemann-sphere and the projections on the two hemispheres.

The transformation I ↦→ �1 (I) = tanh cI
43 (eq. (4.7)) maps a strip (3 of width 23,

parallel to the real axes (symmetry axis equals real axis) onto the unit disk. One
observes ∞ ↦→ 1. ∞ can be reached along the rays I(C) = eiq8 C with q1 = 0 and
q2 = c. This is depicted in fig. 3.24 projected on the Riemann-sphere. Rotation the
circle by q2 = c yields: I ↦→ �2 (I) = − tanh cI

43 , hence −∞ ↦→ 1. After averaging
(using eq. (3.70)) and some algebra we arrive at:

#(3 (I, Z) =
1

2c
log

[
sinh

c(I − Z)
43

cosh
c (I − Z∗)

43

]
. (3.71)
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The field according to eq. (3.38) is (cgs - units):

�(3 (I, Z) = − iV_

23

[
tanh

c(I − Z∗)
43

+ coth
c(I − Z)

43

] ∗
. (3.72)

This is in agreement with the result obtained by the method of images (eq. (D.11)).
We continue with the next member of the = -pole class, the quadrupole.
A visualization of this Neumann function can be found in fig. 3.25. One sees the
invariant nature of circles under Moebius transformations on the Riemann-sphere in
the projection onto the upper hemisphere (lower right plot). Two circles touch each
other at the north-pole (red point). The complementary domain of the strip is not
simply-connected and eq. (3.62) yields the correct result.

3.6.2.2 The Quadrupolar Structure

The quadrupole structure (2
3 has four directions (: = 4) pointing to infinity. I ↦→

�1 (I) =
√

tanh cI2

4E sign Re {I} (see eq. (4.44)) maps this structure onto the unit disk

and ∞ ↦→ 1. We have to rotate by 8 three times yielding: �2 (I) = i�1 (I), �3 (I) =
−�1 (I) and �4 (I) = −i�1 (I). Employing eq. (3.70) and again executing some algebra
yields (Re {Z } > 0):

#(2
3
(I, Z) = 1

2c
log

cosh
cI2

43

[√
tanh

cI2

43
sgn(Re {I}) −

√
tanh

cZ2

43

]


sgn(Re {I})

√
tanh

cI2

4c3
tanh

c (Z∗) 2

43
− 1


. (3.73)

A visualization of this Neumann function is given in fig. 3.26 on the Riemann-sphere.
The degeneracy of the complementary domain at the north-pole (red) can be seen in
the projection onto the upper hemisphere (lower left plot). Using eq. (3.62) yields the
correct result. To emphasize the difference to the Green function of the first kind, the
Green function for the same configuration is shown in fig. 3.27. Here the north-pole
has no special characteristics. The chess board styled representation shows the fact
that the field lines are perpendicular to the boundary and to the potential lines.

3.6.2.3 The n-Pole Structures

In this case depending on the pole, the boundary reaches ∞ from several directions.
For : = 1, 2, 3 as depicted in fig. 3.24. The general formula to map an =-pole (=3
onto the circle is given in eq. (4.45).
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Lower hemisphere 

Riemann-sphere 

Upper hemisphere 

Fig. 3.26: The quadrupole on Riemann-sphere and the projections on the two hemi-
spheres for the magnetostatic problem.

However it is possible to map the =-pole structure via the nth power onto a strip,
neglecting the Riemann sheet for symmetric charge configurations, hence the solution
reflects the order of the pole. The symmetrized classical Neumann function of the
=-pole structure is:

#(=3 (I, Z) =
1

2=c
log

[
sinh

c(I= − Z=)
43

cosh
c(I= − Z=∗)

43

]
. (3.74)

This formula can be used for radial symmetric current distributions only and if the
current is located at the origin, we get:

#(=3 (I, 0) =
1

2=c
log

[
sinh

cI=

43
cosh

cI=

43

]
. (3.75)
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70 3 Potential Theory on the Riemann-sphere

Lower hemisphere 

Riemann-sphere 

Upper hemisphere 

Fig. 3.27: The quadrupole on Riemann-sphere and the projections on the two hemi-
spheres for the electrostatic problem.

The corresponding field is:

�(=3 (I) = −i
V0_=

3

(
I=−1 coth

cI=

3

) ∗
. (3.76)

For off-axis source points the solutions become extremely tedious and are not further
discussed due to the limited scope of this thesis. They can be handled using computer
algebra systems. Notwithstanding, the full solution in the case of the quadrupole
image coefficients are be presented in section 5.3.7.
Figure 4.7 visualizes the Green function of the first and the second kind of the =-pole
family for a non-symmetric charge distribution up to the 4th order, where all solutions
are expressed as closed-forms.
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3.6.3 Exterior Domains S : ∞ ∈ S

When a domain contains the north-pole (the point ∞), an additional singularity
originated in the compactification of the complex plane appears. For the case of the
fundamental solution, as remarked in section 3.1.2, the "free" space case includes a
sink at the north-pole and in fig. 3.10 (left) the solution of the "free" space can be
seen. This property of the fundamental solution is true for all domains containing
the north-pole. Interestingly, it naturally leads to the conformal invariant form of the
Neumann function eq. (3.60), meaning the imaginary part of the function vanishes
along the boundary, or differently said the field is perpendicular to exterior domains.
Assume � : " ↦→ D (" : ∞ ∈ "). It is to possible to find the solution via the

inverse Cayley-transformation ( [100] p.85, eq.(6.3.7.1)): I ↦→ − 8 (I−1)
I+1 :

#" (I, Z , I1) =
1

2c
log

(� (I) − � (Z)) (� (I)� (Z)∗ − 1)
(� (I) − � (I1)) (� (I)� (I1)∗ − 1) . (3.77)

If, as assumed, C̄\" is bounded, one always finds an � (∞) !
= 0, hence:

Lemma 3.4. The Neumann function of exterior domains " can written in the

form:

#" (I, Z) = 1

2c
log

(�∞ (I) − �∞ (Z)) (�∞(I)�∞ (Z)∗ − 1)
�∞ (I) , (3.78)

with �∞ mapping the north-pole to the origin, limI→∞ �∞ (I) = 0.

The additional sink-singularity at the north-pole has no impact on the local field.
Now, we apply this form of the Neumann function on the case of the C-shaped
magnet. It is not possible to express the function in terms of closed-forms any-more,
since a polygon with five vertices is involved, which is discussed in chapter 4.

3.6.3.1 The Full C-Shape Model

The transformation of D onto the outside of ’C-shaped’-polygon C, as depicted in
fig. 3.22, can be found with help of the Schwarz-Christoffel-Transformation sec-
tion 4.1:

� (I) = U + W
∫ I

√
I′2 − 1

√
I′2 − Z2

2

√
I′2 − Z2

3

I′2
√
I′2 − Z2

1

dI′. (3.79)
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Lower hemisphere 

Riemann-sphere 

Upper hemisphere 

Fig. 3.28: The C-shaped magnet on Riemann-sphere and the projections on the two
hemispheres as an example of an exterior domain for the Neumann function.

The parameters U, W and Z1, Z2, Z3 ∈ mD are determined numerically via (for sim-
plicity w.l.o.g. 0 is set to 1.):

1

2Z1
=

1

2Z2
+ 1

2Z3
, � (±) = ±�, (3.80)���∫ Z1

1
� ′(I) dI

������∫ 1

0
� ′(I) dI

��� = 1,

���∫ Z2

Z1
� ′(I) dI

������∫ 1

0
� ′(I) dI

��� = 2,

���∫ Z3

Z2
� ′(I) dI

������∫ 1

0
� ′(I) dI

��� = 3. (3.81)

The Neumann function can now be formally expressed as:
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#� (I, Z) =
1

2c
log

(
� (−1) (I) − � (−1) (Z)

) (
� (−1) (I)� (−1) (Z)∗ − 1

)
� (−1) (I) . (3.82)

This function is plotted in fig. 3.28. The north-pole (red point) generates the sink-like
logarithmic singularity and does not influence the local field (lower right plot). The
sink can be moved to an arbitrary point in the domain. The corresponding field, again
expressed formally, is:

�� (I, Z) = −2iV0_(
� (−1) (I)2� (−1) (Z)∗ − � (−1) (Z)

)
� (−1) (I)

(
� (−1) (I) − � (−1) (Z)

)
� ′ (� (−1) (I)

) (
� (−1) (I)� (−1) (Z)∗ − 1

) . (3.83)

The method of approximating an exterior domain with the help of polygons is used
in section 6.3.2 to give an approximative solution for the combined-function mag-
nets in the CERN PS. In the next chapter, the explicit construction of conformal
transformation of polygons onto D is discussed.
The difference to the Green function of the first kind is shown in fig. 3.27 for the same
configuration. As already mentioned, here the north-pole has no special character-
istics. The chess board styled representation indicates the field lines and potential
lines of the Green function, which are perpendicular. The field is perpendicular to
the boundary.

Summary: The unbounded domains concerning the Neumann function were
classified into three categories:

• Domains ": ∞ ∈ m"
– ∞ non-degenerated: unbounded domain. The north-pole is mapped uni-

valently onto T. The standard mapping technique can be used.
– ∞ degenerated: unbounded star-like domain. The north-pole is not

mapped univalently onto T. The new formulae eq. (3.62) has to be
used.

• Domains ": ∞ ∈ " - exterior domain - naturally conformally invariant.
The north-pole can be mapped univalently onto 0. Equation (3.78) can be
used.

For all domains, an example was given focusing on the approximation of a
C-shaped magnet and higher-order magnetic structures, which can be found
in accelerators. The visualization of higher order degenerated domains is pro-
vided in fig. 4.7 for the =-pole family for the Green functions of the first and
the second kind.
In all other cases the methods as described in sections 3.5.2 and 3.5.3 can be
utilized.
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74 3 Potential Theory on the Riemann-sphere

Lower hemisphere 

Riemann-sphere 

Upper hemisphere 

Fig. 3.29: The C-shaped magnet on Riemann-sphere and the projections on the two
hemispheres as an example of an exterior domain for the Green function of the first
kind.
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Chapter 4

Conformal Mappings

The theory of elliptic functions is the fairyland of mathematics.

The mathematician who once gazes upon this enchanting and

wondrous domain crowded with the most beautiful relations and

concepts is forever captivated.

— Richard E. Bellman

Abstract In this chapter, we bestow some basic conformal mappings. Importantly,
if found, conformal mappings allow for the boundary problem to be solved, and the
indirect field problem for a specific geometry, in a simple form. In order to construct
new mappings, it is possible to composite known mappings, since the composition
is again conformal.
We use this property to construct more complicated shapes as the mapping of an
ellipse onto D. Although, as already mentioned, we know about the existence of
mappings of simply-connected domains onto D, through to the RMT, the theorem
is not constructive. However methods exist, which allow us to obtain approximative
solutions of the true domain if we cannot formulate the exact mapping. For polygonal
shapes there exists a method termed Schwarz-Christoffel-transformation which is
studied in this chapter in detail. We also attempt to find symmetric representations,
which commute with the conjugation �∗ (I∗) = � (I), in order to simplify the analysis
later on.
As specified in the introduction, these calculations are given in full detail since some
discrepancies were found in the literature for simple cross-sections when formulating
the effect of the indirect field through operators of the obtained mappings. For the
ellipse, the mapping onto the upper-half plane is new and described explicitly. The
=-pole mappings are used to reveal the novel =-pole Green functions.
Alternative approaches to find conformal mappings using numerical methods can be
found, e.g. in [38–40,101].

4.1 The Schwarz-Christoffel-Transformation

The method of Schwarz-Christoffel-transformation allows mapping polygons onto
D. The focus on Schwarz-Christoffel-transformation is based on the concept that the
approximation of domains via polygons is relatively simple. Some basic mappings
for simple cases, for which the so-called parameter problem (section 4.1.3) can be
solved analytically, are demonstrated at the beginning. If the number of vertices of

75
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76 4 Conformal Mappings

the polygon is smaller than five, we can find closed-forms for the transformation. In
all other cases, except for high symmetrical cases, no closed-form exists.
The mapping of a rectangle onto the unit circle involves special functions, namely
Jacobi elliptic functions. Based on this result the mapping of the ellipse is formulated
in turn with the Jacobi elliptic functions (section 4.3.1). The high symmetric case
of the regular polygon leads to hypergeometric functions. One use-case of regular
polygons is the beam-screen of the HL-LHC, which will consist partly of such
geometries (section 7.5). Finally, the arbitrary polygon is addressed which cannot
be expressed through closed-forms any more, is applied to approximate the LHC
beam-screen (chapter 7).

4.1.1 Elementary Operations

Before we provide the details of the Schwarz-Christoffel-transformation, we in-
troduce some basic transformations. The elementary operations as translation
I ↦→ I + 3, 3 ∈ C̄, dilatation I ↦→ 0I, 0 ∈ R+, rotation I ↦→ 0I, 0 ∈ T and inversion
I ↦→ 1

I
are conformal on C̄. Using these operations, we are able to construct the

Moebius transformation (a bilinear transformation) which is again conformal:

� (I) = 0I + 1
I + 2 0, 1, 2 ∈ C 02 ≠ 1. (4.1)

The condition 02 ≠ 1 ensures that the function is not constant. � maps "generalized"
circles, as, e.g. the real axis, onto circles on C̄. Finding such a mapping involves
three ordered points along the circle, which are mapped onto three points in the same
order on the mapped circle. The inner of a circle is transported to the inner of the
mapped circle and it is always on the left side of the boundary, following the three
ordered points along this circle.
In the following, we extensively use these properties to symmetrize our transforma-
tions. Some examples are listed here. 7:

• The mapping of the unit circle onto itself - an automorphism, with the point I0
mapped onto the origin, has the form (proof [100] p.81 sec.6.2.2):

�I0 (I) =
I − I0
1 − I∗0I

. (4.2)

This has already been discussed as the Blaschke factor as depicted in figs. 3.9
and 3.10.

• The linear fractional transformation I ↦→ i−I
i+I maps the upper half-plane {I :

Im I > 0} conformally onto D. This function is called Cayley transformation.
• The exponential function maps strips parallel to the H-axis with width 2c peri-

odically onto the complex plane ( [103] ch2.6 pp.109-122). The strip (3 (where

7 For a exhaustive treatment consult [102].
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4.1 The Schwarz-Christoffel-Transformation 77

3 is width) is mapped onto the upper half-plane {I : Im I > 0} via: I ↦→ ie
cI
23 . A

composition with the Cayley transform yields: I ↦→ tanh cI
43 , mapping (3 onto D.

0 ↦→ 0 and it commutes with the conjugation �∗ (I∗) = � (I). This result is also
be derived employing the Schwarz-Christoffel-transformation (eq. (4.7)).

4.1.2 The Construction of the Schwarz-Christoffel-transformation

Fig. 4.1 The SCT maps a
polygon onto the circle.

P1

P5

P4 P3

P2

πα5

πα4 πα3

πα2

πα1

ζ1

ζ2

ζ3
ζ4

ζ5

z 7→ F (z)

The Schwarz-Christoffel-transformation is a method to transform a circle (and here
the real axis, which is a degenerated circle on C̄) onto any polygon of the complex
plane, conformally. The transformation is given as a first-order differential equation
with a complex variable, where the prevertices (the image of these points are the
vertices of the regarded polygon) are unknown. As previously discussed, a bilinear
transformation - a Moebius transformation has three arbitrary parameters. There is
the possibility to choose three prevertices freely and one needs to use numerical
methods to find =−3 prevertices if the number of vertices exceeds three. The general
equation to map the upper plane onto the given polygon is (see [104], Ch.13, p.41):

d�−1
= W

=∏
:=1

(Z − I: ) U:−1 dZ . (4.3)

Where W is an arbitrary complex constant. U: is the interior angle in multiples of c of
the polygon at a vertex, where it is conventional to go along the polygon sides with the
inner region of the polygon always to the left. It holds:

∑
: (1−U: ) = 2c (the polygon

is closed). As depicted in fig. 4.1, the vertices %8 8 ∈ {1, 2, 3, 4, 5} are mapped on the
prevertices b8 8 ∈ {1, 2, 3, 4, 5}. The corresponding angles U8 8 ∈ {1, 2, 3, 4, 5} are
also drawn. The transformation �−1 is unique if the angles U: and the prevertices
I: are given, up to the integration constants (rotation and translation). The Schwarz-
Christoffel formula of mapping the inner of the polygon onto the unit disc is (X, W
denote the integration constants):
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78 4 Conformal Mappings

�−1 (I) = X + W
∫ I =∏

:=1

(
1 − Ze−ii:

) U:−1
dZ . (4.4)

i: are the angles of the prevertices on D (eq. (4.4) can be easily obtained employing
a Moebius transformation of eq. (4.3)). For a given polygon, a set of vertices %8 and
angles U: , it is not straight forward to find the corresponding prevertices i: . It is
called the parameter problem and how to solve it is subject of the following section.

4.1.3 The Parameter Problem

In [105], p.11, eq.(2.4) a method is given to solve the parameter problem. Z: are
the pre-vertices (the unknown parameters) on the unit disc, belonging to the vertices
%: of the polygon. Following ( [105], pp.24-25), one can pin down three points,
I=−2 = −1, I=−1 = −i, I= = 1. The remaining = − 3 parameters are given by:���∫ I 9+1

I 9
�−1′ (Z)dZ

������∫ I2
I1
�−1′ (Z)dZ

��� =
|% 9+1 − % 9 |
|%2 − %1 |

, 9 = 2, 3, . . . , = − 2, (4.5)

where �−1′ is given by eq. (4.4). If we map onto the upper plane (eq. (4.3)), of
course the three arbitrary preimages must to be chosen to lie on the real axis. In the
following the parameter problem is solved exactly for several simple domains, while
the general problem involves solving the non-linear system of equations eq. (4.5).

4.1.4 A Variant of the Schwarz-Christoffel-transformation

It is also possible to map the unit disc onto the exterior of a polygon. The formula is
(see e.g.: [30] p.353, eq.(5.6.3c)):

�−1 (I) = X + W
∫

1

(1 + I2)2

=∏
:=1

(Z − I: , ) 1−U: dZ . (4.6)

which is sketched in fig. 4.2. The direction of the vertices %8 is clockwise, since the
inner domain - per convention - is on the left side of the edge. V8 (in orange) indicates
the inner angle, which is replaced by 2 − U8 (in blue) in eq. (4.6). Note that for an
exterior domain of a polygon also the exterior angles V: = 2 − U: have to be taken
U: − 1 → 1 − U: . The used symbols are defined in section 4.1.
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4.2 Polygonal solutions 79

Fig. 4.2 The exterior
Schwarz-Christoffel-
transformation maps an exte-
rior polygon onto the circle.
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P3 P4

P5

πα2

πα3 πα4

πα5

πα1

πβ1 = 2− πα1

ζ1

ζ2

ζ3ζ4

ζ5

z 7→ F (z)

4.2 Polygonal solutions

The first addressed shapes are the strip, having two vertices on C and one on C̄ at
the north-pole and the half-strip with three vertices. These domains are regulated
domains as classified in section 3.2.3.

4.2.1 The Strip and the Half-Strip

The Strip

In view of eq. (4.4) we obtain for the strip (= = 2) of width 21, mapping the two
vertices at infinity (U = 0!) onto ±1 on the unit circle:

�−1 (I) = X + W
∫ I 1

(1 − Z) (1 + Z) dZ = X + W tanh−1 I. (4.7)

Demanding � (i1) = i (W = 41
c
) and � (−i1) = −i (W = 41

c
), (which fixes W = c

41
and X = 0) we get the result of section 4.1.1: I ↦→ tanh cI

41 , which is symmetric w.r.t.
the imaginary axis as already stated.

The Half-Strip

For the half-strip (= = 3) of width 21 the vertices are: {−i1, i1,∞}. Two angles are
U = 1/2 and one at infinity is 0. Using now eq. (4.3) and mapping the two vertices
to ±i:

�−1 (I) = X + W
∫ I 1√

(1 − iZ) (1 + iZ)
dZ = X + W sinh−1 I. (4.8)
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80 4 Conformal Mappings

Demanding � (0) = 0 (X = 0) and � (81) = i (W = 21
c
) we get I ↦→ sinh cI

21 .

Symmetrizing

With help of the Cayley transform and a specific rotation the mapping onto the unit
circle is:

� (I) = 1 − 2

1 + sinh cI
21

. (4.9)

The function commutes with the conjugation: �∗ (I∗) = � (I).

4.2.2 The Rectangle

In the rectangular case, we obtain solutions in terms of elliptic functions. The
derivation is presented in more detail since it is also used when mapping an ellipse
onto the circle. Additionally, the calculation of the image tensors of the rectangle is
delivered in section 5.3.1.
Equation (4.3) is applied in the case of a rectangle with the side lengths 0 and 1.
Assuming the lower side of the rectangle with length 0 coincidences with the real
axes, whereas the short side (side length 1) lie symmetric to the imaginary axis. The
first vertex has the coordinate ?1 = 0/2, the second ?2 = 0/2 + i1 and the third ?3

and the forth ?4 are at −0/2 + i1 and −0/2, respectively. Since we can choose three
points arbitrarily, we set �−1 (0) = 0, �−1 (1) = ?1 and �−1 (1/<) = ?2, < ∈ (0, 1].
Due to symmetry reasons we know �−1 (−1) = ?4 and �−1 (−1/<) = ?3. The angles
U1, ...U4 are 0.5. Putting this into eq. (4.3) yields:

F.
−1

=
W√

(Z2 − 1) (Z2 − 1
<2 )

dZ =
W̃√

(1 − Z2) (1 − (<Z)2)
dZ

F.
−1

=
W̃√

(1 − (< sin(q))2)
dq (using: Z := sin(q)) (4.10)

W̃ denotes a negligible rescaling in the integration constant W. Integrating eq. (4.10)
leads to an elliptic integral of the first kind and involves the parameter < ap-
pendix C.1.1. It can be found if we use eq. (4.5):

|?2 − ?1 |
|?1 − ?4 |

=
1

0
=

����∫ arcsin(1/<)
c
2

1√
(1−(< sin(q))2)

dq

��������∫ c
2

− c2
1√

(1−(< sin(q))2)
dq

����
(4.11)
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4.2 Polygonal solutions 81

=

����∫ arcsin(1/<)
c
2

1√
(1−(< sin(q))2)

dq

����
2

����∫ c
2

0
1√

(1−(< sin(q))2)
dq

����
(4.12)

To simplify the numerator we substitute q by:

sin q =
1√

1 − <′2 sin2 q′
=⇒ dq = dq′

−i<′ cos q√
1 − <′2 sin2 q

3
(4.13)

With <′ =
√

1 − <2. The limits of the transformed integral are:

q′(1/<) = arcsin

√
1 − <2

<′ = arcsin 1 =
c

2
, q′(0) = 0 (4.14)

To insure the unique inverse transformation, we restricted arcsin to its principal
value. The numerator becomes:∫ arcsin(1/<)

c
2

1√
(1 − (< sin(q))2)

dq = (4.15)

∫ c
2

0
dq′

−i<′ cos q√
1 − <′2 sin2 q

3

√
1 − <′2 sin2 q√

(<′ sin(q))2 − <2
= −i

∫ c
2

0
dq′

1√
1 − <′2 sin2 q

.

(4.16)

Hence we obtain the equation, which implicitly gives the parameter <:

21

0
=

����∫ c
2

0
1√

(1−(<′ sin(q))2)
dq

��������∫ c
2

0
1√

(1−(< sin(q))2)
dq

����
=

K(1 − <2)
K(<2) . (4.17)

K(<2) is the complete elliptic integral of the first kind. The parameter < has to be
found numerically (the dependency on 0 and 1 is plotted in appendix C.1.3). We see
immediately if 20 = 1 ⇒ < = 1/

√
2, lim0→∞ ⇒ < → 1 and lim1→∞ ⇒ < → 0.

Using eqs. (4.3), (4.10) and (C.1) we obtain the mapping:

F := �−1 (I) = X + W� (arcsin I |<2) (4.18)

We demanded �−1 (0) = 0 and �−1 (1) = 0
2 . Inserting yields W = 0

2K(<2) and �H+ is

s=(I |<) - a Jacobi elliptic function as defined in appendix C.1.2 :

2K(<2)
0

F = � (arcsin I |<2) (4.19)

I = � (F) = sin(am(F 2K(<2)
0

|<2)) = sn( 2K(<2)
0

F |<2) (4.20)
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82 4 Conformal Mappings

Finally we found the function mapping a rectangle with corners: {−0/2, 0/2, 0/2 +
i1,−0/2 + i1} onto the upper half-plane. Due to symmetry reasons this function
maps the conjugate rectangle {−0/2, 0/2, 0/2 − i1,−0/2 − i1} onto the lower half
plane. The symmetry axis I ∈ {−i1, i1} is mapped onto the imaginary axes. These
properties are used when mapping the ellipse onto the half-plane.

Symmetrizing

Since we mapped the rectangle onto the upper half-plane, we can get the mapping
onto the circle with help of the Cayley transform and a specific rotation. The com-
position with eq. (4.2), mapping the ordered four points crossing the two symmetry
axis of the rectangle onto {1, i,−1,−i}, yields:

�< (I) = i + 2

i + √
<sn

( ( i1
2 +I)K(1−<2)

1
, <2

) . (4.21)

This function has the properties: � (0) ↦→ 0 and �∗ (I∗) = � (I).

The limiting Case

Since lim0→∞ ⇒ < → 1 as directly seen from eq. (4.17) with sn(I |1) = tanh(I)
( [98] p.21, eq.(122 .09)) and K(0) = c/2 ( [98] p.10, eq.(111.02)):

lim
<→1

�< (I) = tanh
cI

21
, (4.22)

the mapping of a strip of a width 1 onto the circle.

Now, we take the limits 1 → ∞ leading to < → 0. Starting from eq. (4.20)
and using the fact that sn(I |0) = sin(I) ( [98] p.21, eq.(122 .08)), one obtains:

� (I) = sin
cI

0
, (4.23)

the map of the half-strip {I |Re (I) ≥ 0 ∧ Im (I) ≤ 0} onto D.

4.2.3 The Regular Polygon

The vertices of a regular n-polygon are mapped onto roots of one (see e.g. [106],
p.329, Ch.5, Example 5.9, eq.(69)). Employing eq. (4.4) we obtain:

d�−1
=

W∏=
:=1 (Z − I: )1−U: dZ =

W

(Z= − 1) 2
=

dZ =
W̃

(1 − Z=) 2
=

dZ, (4.24)
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4.2 Polygonal solutions 83

U: = 1 − 2

=
,

=∏
:=1

(Z − I: ) = Z= − 1. (4.25)

We can use the symmetry to simplify the integral, and express the solution as ’2-1’

Hypergeometric functions. The identity as used in eq. (4.31):∫ I

0

3Z

(1 − Z=) 2
=

= I 2�1 ( 2
=
, 1
=
, =+1
=

; I=), (4.26)

can be shown with help of the Euler representation of the Hypergeometric Function

2�1 (0, 1, 2; I) (see e.g. [107], p.11, eq.(1.40)):

2�1 (0, 1, 2; I) =
Γ(2)

Γ(1)Γ(2 − 1)

∫ 1

0

C1−1 (1 − C)2−1−1

(1 − CI)0 dC. (4.27)

The Γ function and the Hypergeometric Function 2�1 (0, 1, 2; I) are defined in ap-
pendix C.1.5. One obtains:

2�1 ( 2
=
, 1, 2; I=) = Γ(2)

Γ(1)Γ(2 − 1)

∫ 1

0

C1−1 (1 − C)2−1−1

(1 − CI=︸︷︷︸
:=Z = (C)

) 2
=

dC (4.28)

=
Γ(2)

Γ(1)Γ(2 − 1) =
∫ I

0

(
Z

I

) =(1−1)
(1 −

(
Z

I

) =
)2−1−1

(1 − Z=) 2
=

Z=−1

I=
dZ .

(4.29)

Setting 2 − 1 − 1 = 0 and =1 − 1 = 0 and using Γ(I + 1) = IΓ(I) we see:∫ I

0

dZ

(1 − Z=) 2
=

= I 2�1 ( 2
=
, 1
=
, =+1
=

; I=). (4.30)

Integration and the use of eq. (4.26) and eq. (4.4) gives the transformation of the unit
disc onto a regular n-polygon with a distance A from the origin to a vertex:

�−1 (I) = 22/=√cA
Γ

(
1
2 − 1

=

)
Γ

(
1 + 1

=

) I 2�1 ( 2
=
, 1
=
, =+1
=

; I=). (4.31)

The limiting Case

In the limit =→ ∞, �−1 becomes a rescaling onto the circle with the radius A:
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84 4 Conformal Mappings

lim
=→∞

�−1 (I) = lim
=→∞

22/=√cAI 2�1

(
1
=
, 2
=
; 1 + 1

=
; I=

)
Γ

(
1
2 − 1

=

)
Γ

(
1 + 1

=

) (4.32)

= lim
=→∞

22/=√cAI ∑
:=0

( 2
=
): ( 1

=
):

( 1+=
=

):
I=
:

:!

Γ

(
1
2 − 1

=

)
Γ

(
1 + 1

=

) (4.33)

=

→1︷    ︸︸    ︷
lim
=→∞

22/= √cAI
(

4@. (4.35)−−−−−−→1︷                      ︸︸                      ︷
1 +

∑
:=1

( 2
=
): ( 1

=
):

( 1+=
=
):

I=
:

:!

)

lim
=→∞

Γ

(
1

2
− 1

=

)
Γ

(
1 + 1

=

)
︸                            ︷︷                            ︸

→√
c

= AI (4.34)

In the limit we obtain the mapping �−1 of a circle of the radius A. Since |I | ≤ 1:

|
∑
:=1

( 2
=
): ( 1

=
):

( 1+=
=
):

I=
:

:!
| ≤

∑
:=1

( 2
=
): ( 1

=
):

( 1+=
=
):

|I=: |
:!

≤
∑
:=1

( 2
=
): ( 1

=
):

( 1+=
=
):

1

:!
=

2−2/=Γ
(

1
2 − 1

=

)
Γ

(
1 + 1

=

)
− √

c

√
c

lim
=→∞

2−2/=Γ
(

1
2 − 1

=

)
Γ

(
1 + 1

=

)
− √

c

√
c

= 0 ⇒ lim
=→∞

∑
:=1

( 2
=
): ( 1

=
):

( 1+=
=
):

I=
:

:!
= 0. (4.35)

4.2.4 Arbitrary Polygons

If the number of vertices = > 3, the parameters have to be determined with the aid
of hypergeometric functions. In the case of quadrilaterals (= = 4), the parameter is
given in terms of elliptic functions. In all other cases, the parameter problem has to
be solved numerically. The solution has to be inverted to get the final mapping of
the polygon onto the desired domain. In this work, all domains are mapped onto the
unit circle.
Additionally, the conjugate of the mapping is needed. It is expressed in terms of the
complex conjugate of the argument, which can always be done in the following way:
If we have found the mapping � (assuming that there is no rotation of the x-axis)
we can formulate the mapping �2 of the conjugated domain (mirroring all points
of the domain w.r.t. the x-axis). The mapping �2 maps all conjugate points onto
the conjugate unit circle, which is, of course, the needed function �2(I∗) = �∗ (I).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.3 Composed Mappings 85

Written in terms of the SC-transform eq. (4.4) is becomes:

�2(I) = X∗ + W∗
∫ I =∏

:=1

(
1 − Ze8i:

) U:−1
dZ . (4.36)

4.2.4.1 The Method of Driscoll and Vavasis

General mappings can be computed numerically using the MATLAB-based SC Tool-

box by Driscoll and Trefethen [108]. Numerical algorithms for Schwarz-Christoffel
mappings became feasible by the work of Lloyd Trefethen [109]. Trefethen invented
a reliable algorithm to solve the parameter problem numerically which addition-
ally addresses the crowding phenomenon, which describes convergence problems of
elongated domains since the prevertices of such structures lie very closely. Driscoll
and Vavasis [105] developed a novel approach based on cross-ratios and Delaunay

triangulation. The method is so fast and reliable that polygons can be used to ap-
proximate arbitrary domains8. The graphics of the approximation of the Koch-fractal

with around 700 vertices is shown in figs. 4.3a and 4.3b.

4.3 Composed Mappings

Here, more complicated geometries are studied. Let us start with the ellipse, which
is mapped onto a screwed annulus then onto a rectangle and finally onto a circle. The
second case is the =-pole, which is mapped onto a strip and afterwards onto a sheeted
circle. The mapping of the ellipse are newly formulated, and the Green/Neumann
functions of the =-poles are new. Therefore both mappings are presented in detail.

4.3.1 The Ellipse - Including a New Mapping

As depicted in fig. 4.4 we construct the mapping of an ellipse onto the imaginary
axis, where the inner is mapped onto {I |Re (I) > 0}.
We start with a function based on the inverse of the Joukowski transform I ↦→
F +

√
F2 − 1 ( [110] pp.66-68). We generalize the function to:

J (I) =
(
−i
I +

√
I2 − :2

1 +
√
12 + :2

) :+1

I ∈ C, 1, : ∈ R+0 . (4.37)

8 Remark: Once the prevertices were calculated, they can be stored an reused.
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86 4 Conformal Mappings

Fig. 4.3a Green function of a fractal namely
the Koch snow flake - an electrostatic potential
of a beam in a fractal beam pipe.

Fig. 4.3b The Neumann function of a fractal
- the magnetostatic potential of two beams of
equal intensity running in opposite directions.

The ellipse is characterized by two parameters: 1, the short semi-axis and ±: , the
position of the foci. The long semi-axis is given by: 02 = 12 + :2. As seen in fig. 4.4,
the function J (I) maps the ellipse onto a sliced and screwed annulus. In dependence
of : the argument winds around the origin :+1

2c -times, so it is necessary to leave the
complex plane and construct a temporary Riemann surface.
The ellipse is mapped onto the outer boundary of the annulus (blue) with an absolute
value of 1. The line connecting the two foci (green) is mapped onto the inner
boundary (green). The ellipse is cut along the real axis, starting at −: in a positive
direction. If the logarithm is taken, which of course now acts on the Riemann
surface, the annulus is mapped onto a rectangle back on the plane again. The side
lengths of the rectangle are determined e.g. through (symbols as used in fig. 4.4):
|1′′ − 0′′ | = (1 + :) | log( :

1+
√
12+:2

) | and 4|0′′ − : ′′ | = 2c(: + 1).
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4.3 Composed Mappings 87

The ellipse itself is mapped onto the imaginary axes onto 8 c (:+1)
2 [−1, 3] (blue

in fig. 4.4). Now we employ an elliptic function, mapping the rectangle onto the
imaginary axes and the inner onto {I |Re (I) > 0}. As depicted first we translate
the system (periodic! in the imaginary direction modulus 2c(: + 1)) to symmetrize
the problem and rescale to obtain the side length  (real direction). Afterwards
we map the upper half of the rectangle onto {I |Re (I) = 0 ∧ Im (I) ≥ 0} and
its inner onto {I |Re (I) > 0 ∧ Im (I) > 0} (1. quadrant) and the lower half onto
{I |Re (I) = 0 ∧ Im (I) ≤ 0} and its inner onto {I |Re (I) > 0 ∧ Im (I) < 0} (4.
quadrant).
As explained in section 4.2.2, the sine-amplitude sn(I |<) maps a rectangle with
the origin at the symmetry centre and the side lengths 2K′ (imaginary direction)
and 2K (real direction) onto the complex plane, where the symmetry line along the
imaginary direction is stretched due to the symmetry onto the imaginary axis (the
functions are defined in appendices C.1.1 and C.1.2). The parameter < is found,
using eq. (4.17):

K(<2)
K′(<2) =

| log( :

1+
√
12+:2

) |
c

=
| sinh−1 1

:
|

c
. (4.38)

The mapping has the form:

snI := sn

(
K′

c
log

√
I2 − :2 + I√
12 + :2 + 1

|<2

)
. (4.39)

It is possible to algebraically manipulate eq. (4.39):

sn(I) =sn

(
K′

c

[
log

(√
I

:

2
− 1 + I

:

)
+ log

:√
12 + :2 + 1

]
|<2

)
(4.40)

4@. (4.38)
= sn

(
K′

c
cosh−1 I

:
+ K|<2

)
= cd

(
K′

c
cosh−1 I

:
|<2

)
.

The last conversion can be found in [98] p.22; (eq.(122.23)). This form is very useful
in numerical calculations done for example in Mathematica, because the functions
are advantageously implemented.

The Limiting Cases

If we consider the two interesting limiting cases: : → ∞ (strip) or : → 0 (circle)
we see from eq. (4.38) that in the first case K

K′ is 0, which implies < = 0 and in the

latter case K′
K is 0, which implies < = 1. Equation (4.37) becomes in the second

case: lim:→∞ log J (I) = −(iI+1) and in the second lim:→∞ log J (I) = log(−iF
1
).

Since sn(I |1) = tanh(I) ( [98] p.21, eq.(122 .09)) (then also K′ = c
2 ), we see that:
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88 4 Conformal Mappings

Re(z)

Im(z)

0−k k−a a

b

−b

ζ

z 7→ J (z)

z 7→ log(z)

0′ b′

a′ k′ ζ ′

−a′

−k′
−b′

0′

a′

k′

Re(z)

Im(z)

Re(z)

Im(z)

a′′ k′′

b′′ 0′′

−a′′ −k′′

ζ ′′

−b′′ 0′′

−a′′ −k′′

z 7→ az+b

Re(z)

Im(z)

a′′ k′′

b′′ 0′′

−a′′ −k′′

−b′′ 0′′

−a′′ −k′′

ζ ′′

K

K′

z 7→ sn(z|m)

Re(z)

Im(z)

ζ̄ ′′′ ζ ′′′

Fig. 4.4: A new mapping of the ellipse onto the negative half-plane.
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lim
:→0

sn(I, <) = tanh

(
1

2
log

( I
1

) )
= −

1 + iI
1

1 − iI
1

. (4.41)

We identify the Cayley transform section 4.1.1 with the argument iI/1 and rotated
by c/2 implying the mapping of the circle with radius 1 onto the imaginary axis.
The points ±: → 0, hence ±: ′′ → ∞ (they merge at infinity, horizontal semi strip).
±: ( and ± 0) → ±∞ implies ±: ′′( and ± 0′′) → ±i∞. The resulting domain is
an infinite strip parallel to the imaginary axis namely: {I | − 1 ≤ Re (I) ≤ 0}. The
resulting transformation is the mapping of the strip onto the negative half-plane:
lim<→1 sn(K′I |<) = sin(c/2I) (section 4.2.2).

Symmetrizing

As for the rectangle, we want to symmetrize the result. Applying the Cayley transform
and eq. (4.2) yields:

� (I) = 2
√
<cd

(
cosh−1 ( I

:

)
K

(
1−<2

)
c

|<2
)
+ 1

− 1. (4.42)

The function obeys: � (0) = 0 and �∗ (I) = � (I∗). The Green function using
eq. (4.42) is pictured in fig. 4.5 in the case of a strongly displaced beam for the
dimensions of the PS vacuum chamber (0 = 7 cm, 1 = 3.5 cm). To generate the
graphics the representation of the Green function given in appendix C.1.3 was used.
For completeness we provide the mapping of an ellipse onto D as given by [41], (eq.
52):

� (I) =
√
<sn

(
2 

c
sin−1

( I
:

)
|<2

)
, e−

c ′
 =

(
0 − 1
0 + 1

) 2

, (4.43)

where the foci of the ellipse are located at ±√<.

Fig. 4.5 The Green function
of the Proton-Synchrotron
vacuum chamber.
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90 4 Conformal Mappings

4.3.2 Novel n-Poles

4.3.2.1 The Quadrupole

The (constant) imaginary part of a complex number (I = G + iH) with an integer
exponent can be interpreted as the pole face of a =-pole structure. E.g. if we take
the imaginary part of I ↦→ I2 := D + iE it is clear that Im I2 = E = 2GH. These are
hyperbola, forming an approximation for a quadrupole. The quadrupole is mapped
onto a strip {I | |Im I | ≤ E}, whereas if we introduce a branch cut along the negative
x-axis, one has to fix the Riemann sheet, where the point is located. We take the
signum function of the real part to decide which Riemann sheet is used. The strip
again is mapped via I ↦→ tanh cI

4E onto the circle. Taking the square root now unwinds
the two sheets. Finally, we obtain:

� (I) =
√

tanh
cI2

4E
sgnRe I. (4.44)

� has the properties: � (0) = 0 (and is there not conformal since the origin is a
critical point of the mapping), �∗ (I∗) = � (I) and it is not defined along the imag-
inary axis. This is no restriction, since the values can be obtained arbitrary closely
to the axis. Some special points are: limA→∞ � (A) = 1, limA→∞ � (Aeic) = −1,

limA→∞ � (Aei c2 ) = i and limA→∞ � (Aei 3c
2 ) = −i.

4.3.2.2 The n-Pole

The integer = of the power of a complex number (I=) as already mentioned, maps
a =-pole structure onto a strip, which again is mapped onto the circle and finally
the =-th root has to be taken. Of course the argument is winded = times and as a
consequence the =-th root reflects this symmetry. The complex plane is divided into
= sectors each with an angle 2c/=, each mapped onto the whole plane. Defining a
function, which remembers the value of the original sector of I, we get:

� (I) = =

√
tanh

cI=

43
e

(∑=−1
9=0

2ic\
(
arg(F )− c (2( 9+1)−1)

=

)
=

)
. (4.45)

\ is the Heaviside theta function (the definition can be found in appendix C.1.6).
Green functions of the first and second kind are plotted in fig. 4.7 up to the forth
order (octupolar structure).
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Remarks on the =-Pole

The last term can be realized e.g. with a which statement in Mathematica, telling
to rotate back to the original sector. Of course on the boundaries of the sheets one
has to carefully investigate the transition to the next Riemann sheet at the argument
2c:
=

: ∈ {1, 2, . . . , = − 1}. At the origin and for radial symmetric distributions (or
distributions respecting the symmetry) the last term of eq. (4.45) can be set to 1.

4.4 Summary

In this chapter, symmetric conformal closed-form transformations, as drawn
in fig. 4.6, were derived by using the Schwarz-Christoffel-transformation (sec-
tion 4.1). The Schwarz-Christoffel-transformation transforms arbitrary poly-
gons onto simple domains as D. During the application, one has to solve
the parameter problem section 4.1.3. Up to four vertices, the solution can be
expressed in terms of closed-forms (= denotes the number of vertices):

• = = 1: linear functions,
• = = 2: trigonometric functions,
• = = 3: hypergeometric functions,
• = = 4: elliptic functions,
• = > 4: numerical solutions involving the parameter problem and the nu-

merical inversion of a complex function.

In section 4.3 the composed mappings, expressed through closed-forms, of the
ellipse (novel formulation) eq. (4.42) and the =-pole family eq. (4.45) were
presented. New closed-form mappings for the combined-function magnets of
the PS are developed in chapter 6.
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(a) The half-strip.

- 1.5 - 1.0 - 0.5 0.0 0.5 1.0 1.5
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(b) The strip.
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(c) The rectangle.
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(d) The octagon.
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(e) The ellipse.
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(f) The quadrupole.
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(g) The sextupole.
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(h) The unit circle.

Fig. 4.6: Different symmetric closed-form mappings onto D. The blue lines are
mapped onto rays with constant argument and the green lines are mapped onto
concentric centred circles.
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(a) The strip (3 . (b) The quadrupole (2
3

.

(c) The sextupole (3
3

. (d) The octupole (4
3

.

(e) The strip (3 . (f) The quadrupole (2
3

.

(g) The sextupole (3
3

. (h) The octupole (4
3

.

Fig. 4.7: Novel solutions of the Green function of the first and second kind of the
=-pole. (Type 1 in blue, type 2 in brown).
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Part III

Applications
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In this part we apply the ideas to the real world.
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Chapter 5

Image Operators

We think in generalities, but we live in detail.

— Alfred North Whitehead

Abstract In this chapter, the formalism of the image tensors is introduced. We start
from the equation of motion and linearise the acting forces. It leads to a coupled
system of differential equations. Decoupling yields the equation of the harmonic
oscillator. The effect of the force in the decoupled system is a shift in the normal
mode system, which is expressed through tensors.
Two types and three regimes are commonly distinguished: the whole beam and
the single-particle effect in three frequency ranges: static, low and non-penetrating.
The formalism is based on the work [2]. After formulating the image tensors, the
approach is extended to formulate these as operators of the underlying conformal

mappings - the image operators. The general indirect field is expressed through the
complex Lorentz-force, an operator of the Green functions of the first and second
kind. Formulas to estimate the tune-shift due to indirect field effects for models of
different complexity are given, which are utilized in later applications.
For several common cross-sections, the off-axis normal mode coefficients are pro-
vided for the first time and are listed to serve as a reference. The extension to arbitrary

cross-sections is addressed in the applications (chapters 6 and 7).
The units used are cgs throughout the entire chapter. Nevertheless, the final image
operators are unit-less.

5.1 Classic Image Tensors

5.1.1 The Equations of Motion

To emphasize the physical meaning of the following quantities, we start from New-
tons equations and later introduce a new implementation based on mapping methods.
The general formulation of the electromagnetic force on a test particle in the trans-
verse plane can be written as:

¥®A = ®�. (5.1)
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98 5 Image Operators

req.
= rb

G

req.

≠ rb

G

Fig. 5.1a Cross-section of the pipe for a beam
in a centred configuration.

Fig. 5.1b Cross-section of the pipe for a beam
in an off-centred configuration.

A test particle is driven by the following forces ( [2] eq.(1)):

®� = ®53.8. + ®54GC. + ®58.8. . (5.2)

It is separated into three contributions: ®53.8. (direct interaction) describes the
electromagnetic-interaction with other particles of the beam, it is also called di-
rect space charge. The second contribution ®54GC. stems from external fields like
high-frequency (HF) fields or magnets, to accelerate and constrain the particles onto
the design orbit. The third term ®58.8. (indirect interaction) is caused by the surround-
ing elements, as the vacuum chamber, which interact with the electromagnetic field
of the beam particles. For simplicity, it is assumed that the field is generated by a
source with the strength of the total charge located at the centre of the charge (®A1).
The size of the beam is generally small compared to the size of the interacting sur-

rb = req

r′�

b
e
a
m

chamber

req

b
e
a
m

chamber

rb

Fig. 5.2a The incoherent trajectory of test
particle is located at ®A ′.

Fig. 5.2b The coherent movement of the
whole beam at an off-centred position.
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rounding elements. We linearise the contributions around the equilibrium position,
which is characterized by ®� = 0. Of course, this corresponds with ®53.8. and can be
developed at the centre of charge ®A1 :

®53.8. (®A, ®A1) = ®53.8.
��
®A1︸ ︷︷ ︸

=0

+(®A − ®A1) ▽A ®53.8.
��
®A1 + O(2). (5.3)

The design orbit is defined at ®A4@. as:

®54GC.
��
®A4@. + ®58.8.

��
®A1=®A4@. = 0. (5.4)

This is depicted in fig. 5.1a. Developing the other contributions:

®54GC. (®A, ®A4@.) = ®54GC. (®A4@.) + (®A − ®A4@.) ▽A ®54GC.
��
®A4@. + O(2). (5.5)

®58.8. (®A, ®A1 , ®A4@.) = ®58.8.
��
®A1=®A4@. + (®A − ®A4@.) ▽A ®58.8.

��
®A1=®A4@.

+ (®A1 − ®A4@.) ▽A1 ®58.8.
��
®A1=®A4@. + O(2). (5.6)

For simplicity we assume ®54GC. to be a (scaling) function of the form 54GC. (®A −
®A4@.), 54GC. ∈ R. Two cases are usually distinguished (a rigorous classification can
be found in, e.g. in [111]):

• ®A1 = ®A4@. ∧ ®A ≠ ®A4@.:
The centre of charge of the beam is on the design orbit, whereas the test particle
is displaced → incoherent setting (single displacement):

®5 = (®A − ®A4@.) ▽A
( (

®53.8. + ®58.8.
)
+ 54GC.

) ��
®A1=®A4@. (5.7)

This situation is shown in figs. 5.1a and 5.2a for the cross-section of the beam-
pipe and from a direction orthogonal to the direction of the pipe, respectively.
The beam is indicated by the grey shaded area and the boundary is denoted by
� or chamber. The equilibrium position ®A4@. is the position, where the indirect
space charge forces (produced by a beam with the centre of charge at ®A1) cancel
the external forces. The test particle is located at ®A ′ and its motion is classified as
incoherent motion (the trajectory is indicated by the black curve).

• ®A = ®A1 ≠ ®A4@.:
The centre of charge of the beam is displaced, whereas the test particle is at the
centre of charge. → coherent setting (whole beam displacement):

®5 = (®A1 − ®A4@.)
( (
▽A + ▽A1

) ®58.8. + 54GC.

) ��
®A=®A1 (5.8)

This situation is shown in figs. 5.1b and 5.2b, again for the cross-section of
the beam-pipe and from a direction orthogonal to the direction of the pipe,
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respectively. The meaning of the symbols is the same as in figs. 5.1a and 5.2a.
Here, ®A1 ≠ ®A4@., and the beam is displaced as a whole. Figure 5.2b indicates the
movement of the beam along the pipe.

5.1.2 The Form Tensors

For didactic reasons, the formalism is presented close to the historical form [1]
with the addition of the fact, that the indirect fields provoke also coupling, which is
broadly neglected in the literature. A general approach is discussed later. The effect is
usually added up over the whole ring, and it is justified to begin from the unperturbed
single-particle dynamics. Starting from the smooth approximation ( [77], p.171), the
indirect forces can be derived from a potential and hence, the linearisation of it lead
to a tensor (e.g. [52]). The linearised equation of motion in the smooth approximation
has the form: (

32

3g2
+Ω

2
2a

2
0

¯̄*

)
· ®̃A = 0, (5.9)

Where g = B/2 is the orbital coordinate, Ω2 is the (angular) circulation frequency,
a0 is the unperturbed tune, defined by:

a2
0 =

1

Ω2
2

1

<W0
54GC., (5.10)

with W0 and < the Lorentz factor and the mass, respectively. The matrix ¯̄* is defined
as:

¯̄* = ¯̄1 − 1

a2
0Ω

2
2<W0

(
XGDG XHDG
XGDH XHDH

)
. (5.11)

In the following the ®4G,H are the canonical vectors along the coordinate axis.

• Incoherent case: The coefficients are defined as:

XG,H = mG,H
��
®A=®A1=®A4@. DG,H = @

−1 ( ®53.8. + ®58.8.) · ®4G,H , (5.12)

and ®̃A := (®A − ®A4@.).
• Coherent case: The coefficients are defined as:

XG,H = (mG1 ,H1 + mG,H)
��
®A=®A1=®A4@. DG,H = @

−1 ( ®58.8.) · ®4G,H , (5.13)

and ®̃A := (®A1 − ®A4@.).
In terms of tune-shifts:
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¯̄* = ¯̄1 + 2a−2
0 Δ ¯̄a Δ ¯̄a8 9 := −

(
#'A0

ca0V
2
0W0!2

)
n8 9 . (5.14)

The scalar coefficient depends only on the machine. # being the total number
of particles in the beam, ' the ring radius, A0 the classical particle radius, V0 the
particle velocity, ! the typical transverse dimension of the chamber, while the Laslett
coefficients:

n8 9 =
!2

4_
(5.15)

depend only on the transverse pipe geometry, _ = #@/2c' being a linear charge
density. The Laslett coefficients form a 2nd-rank tensor. By a transformation to the
normal mode system, the tensors are diagonal and the characteristic frequencies -
the betatron frequencies Ω1,2 - can be written in terms of the tune-shift as:

Ω1,2 = Ω2 (a0 + Δa1,2) ≈ Ω2a0 (1 + Δa1,2

a0
). (5.16)

where the Δa1,2 can be related to normal mode Laslett coefficients,

Δa1,2 =

(
#'A0

ca0V
2
0W0!2

)
n1,2, (5.17)

where:

n1,2 =
!2

4_


XGDG + XHDH

2
±

√(
XGDG − XHDH

2

)
+ XGDHXHDG

2


(5.18)

Even if the diagonal terms in ¯̄* are zero at some ®A4@., the normal mode tune-shift
and Laslett coefficients can nonetheless be locally different from zero, provided the
off-diagonal terms do not vanish there.

5.1.3 Different Regimes

Depending on the oscillations of the centre of charge of the beam, three regimes
have to be taken into account, if the electric boundary is not perfectly conducting
and of finite thickness. Zotter gives a criterion for the frequency for the magnetic
field [8]: if the skin depth X fulfils X <

√
(ℎ3) then the field is non penetrating. Here

ℎ is the characteristic size of the chamber (e.g. the half-height) and 3 is its thickness.
While the skin depth is determined as: X = 2dwall

l`wall
. Here the resistivity of the chamber

is dwall, its permeability is `wall and l = (= − &)Ω (= is the closest integer to the
tune &). If the frequency is higher the magnetic field does not penetrate the electric
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boundary and the field lines will be parallel to the boundary. It can be expressed in
terms of the electric field, since the boundary conditions for the magnetic potential
are of the same form as for the electric potential.

Now, we give the Lorentz force of a particle with velocity V0 as an operator

of the Green functions. The chamber cross-section is denoted by �, and the
magnet cross-section is denoted by " .

� = 2_m̄ (−6� (I, I0) + V2
0=" (I, I0)). (5.19)

In this form the problem is reduced to the conformal mapping of the domain�
and " . If the mappings are given as closed-forms, the force can be expressed
through closed-forms.

Given this, we separate the contributions into static (=) and dynamic (≈) terms:

6(I) = 6= (I, Ieq.) + 6≈(I, I1), (5.20) =(I) = == (I, Ieq.) + =≈ (I, I1). (5.21)

Incoherent Regime

The centre is fixed, hence:

�8 := 2_m̄ (−6= (I, Ieq.) + V2
0== (I, Ieq.)). (5.22)

Coherent Regime: penetrating

The beam reveals collective oscillations around Ieq and contains static and dynamic
parts:

�2.?. := 2_m̄ (−6(I, I1) + V2
0=(I, I1)). (5.23)

Coherent Regime: non-penetrating

Since the magnetic potential can be obtained from the oscillating electric one:

= = @V06≈ = V0 (6≈ (I, I1) − 6= (I, Ieq.)), (5.24)

it follows:

�=.?. := 2_m̄ (−V2
0== (I, Ieq.) + V2

06= (I, Ieq.) + (1 − V2
0)6(I, I1)). (5.25)
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5.1.3.1 Bunching

So far only the setting for the coasting beam (a beam equally distributed over the
full length of the accelerator) was discussed. If bunching of the beam has to be
included a so-called bunching factor as introduced by Laslett ( [1], [112]). _<0G
and _̄ denotes the maximum line charge density and the average line charge density
along the whole ring, respectively. The bunching factor � is of the form � =

_<0G
_̄

.
The idea of the bunching factor is to estimate the worst-case scenario for the bunch
centre. Here it has again to be distinguished whether the magnetic field penetrates
the chamber or not. On top of the previous considerations, the bunch frequency plays
now a role. Consequently, we take the frequency of the transverse motion as = − Ω

into account. = is the closed integer to Ω, and the frequency of the bunch is ℎΩ and
has an amplitude of (�−1 − 1).

5.2 The Image Operators

The complex Lorentz force (eq. (3.9)) expressed through the Green functions, which
depends only on the conformal mappings, is used to give the form tensor as operators
of these mappings. The expressions are newly derived in this thesis and therewith
presented in detail. The formalism is kept to cover the class of generic simply-
connected domains in the electric and star-like regulated domains in the magnetic
case. One can obtain the solution for bounded domains using the integral equation
eq. (3.57), which is, due to the limited scope, not explicitly provided here.
The in-depended variables are I1 and I∗

1
. The complex potential and its derivatives

can be written as follows:

Ξ :=m̄ (−6(I, I1) + V2
0=(I, I1)) = Ξ

> (I, I1) + Ξ
4 (I, I∗1) (5.26)

=:
∑

:={1,2}
Ξ
:,> (I, I1) + Ξ

:,4 (I, I∗1). (5.27)

The index : denotes either the the electric, : = 1, or the magnetic part, : = 2, of
Ξ, whereas the Ξ:,> (I, I1) is the odd part of the mirror function and Ξ:,4 (I, I1) is
the even part. The distinction has two reasons: first the algebra is a lot easier and
second the odd part has a removable (hebbare) singularity (e.g. [113]), which has to
be noticed.
For the electric part the even and the odd terms have different signs and for the
magnetic part the signs are the same. We write the dependence of the conformal
mapping explicitly:

Ξ
:,>
�

(I, I1) = V2(:−1)
0

1

#

#∑
9

(
(I − I1)� ′

9 (I) + �9 (I1) − �9 (I)
(I1 − I) (�9 (I1) − �9 (I))

+ X2, 9

2� ′
9 (I)

�9 (I) − 1

)
,

(5.28)
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Ξ
:,4
�

(I, I∗1) = (−1): V2(:−1)
0

1

#

#∑
9

�̃9 (I∗1)� ′
9 (I)

�9 (I)�̃9 (I∗1) − 1
. (5.29)

The conjugate of the function can be expressed as a new function of the conjugate
of the argument: �̃ (I∗) := � (I)∗. In the electric case # = 1 in the magnetic case #
depends on the degeneracy at infinity of the mapping function, which can be written
as �: mapping the desired direction to infinity as discussed in section 3.6.2. These
terms reveal the form at the point I = I1:

Ξ̂
:,>
�

(I1) := lim
I→I1

m̄IΞ
:
� (I, I1) =

V
2(:−1)
0

#

#∑
9

[ 4� (3)
9

(I1)� ′
9 (I1) − 3� ′′

9 (I1)2

12� ′
9
(I1)2

X2,:

2
(
� ′
9 (I0) 2 −

(
�9 (I0) − 1

)
� ′′
9 (I0)

)
(
�9 (I0) − 1

)
2

]
, (5.30)

Ξ̂
:,4
�

(I1) := lim
I→I1

m̄IΞ
:
� (I, I1)

=
(−1): V2(:−1)

0

#

#∑
9

�̃9 (I∗1) (�̃9 (I∗1)2 − 1)� ′′
9 (I1) − �̃9 (I∗1)� ′

9 (I1)2)
(�̃9 (I∗1)2 − 1)2

, (5.31)

¤Ξ:,>
�

(I1) := lim
I→I1

m̄I13Ξ
:,>
�

(I, I1) =
V

2(:−1)
0

#

#∑
9

2� (3)
9

(I1)� ′
9 (I1) − 3� ′′

9 (I1)2

12� ′
9
(I1)2

,

(5.32)

¤Ξ:,4
�

(I1) := lim
I→I1

mI13Ξ
:,4
�

(I, I∗1) = −
(−1): V2(:−1)

0

#

#∑
9

� ′
9 (I1)� ′

9 (I∗1)
(�9 (I1)�9 (I∗1) − 1)2

.

(5.33)

Assuming that �1 maps the electro-static interacting domain onto D and �2 maps
the magneto-static interacting domain onto D, we can write:

Ξ̂�1 ,�2 (I1) : =
∑

:∈{1,2}

(
Ξ̂
:,>
�

(I1) + Ξ̂
:,4
�

(I1)
)

¤Ξ 9
�1 ,�2

(I1) : =
∑

:∈{1,2}

¤Ξ:, 9
�

(I1).

(5.34)

Using these expressions (! denotes a typical scaling length like the radius of a
circular chamber), we can write eq. (5.18) as:

n 81,2 = ±1

2

��Ξ̂�1 ,�2 (I1)
�� , (5.35)
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b
2.?.

1,2 =
1

2

[
− Re ¤Ξ4�1 ,�2

(I1) ±
√���Ξ̂�1 ,�2 (I1) + ¤Ξ>

�1 ,�2
(I1)

���2 − Im 2 ¤Ξ4
�1 ,�2

(I1)
]
,

(5.36)

b2.=.1,2 =
1

2

[
− V̄2Re ¤Ξ4�1 ,0

(I1) ±
√���Ξ̂�1 ,�2 (I1) + ¤Ξ>

�1 ,0
(I1)

���2 − V̄2Im 2 ¤Ξ4
�1 ,0

(I1)
]
.

(5.37)

with V̄2
0 = 1 − V2

0. n 81,2 are the incoherent coefficients and b2.?.1,2 and b=.?.1,2 are the
penetrating and non penetrating coherent coefficients, respectively. Of course all
values can be obtained for arbitrary source points as well. As previously pointed
out, taking the values at I1 is based on the fact that the cross-section of the beam is
very small compared to the beam pipe dimensions. The image fields of the beam are
approximated as originating from a point source, the centre of charge of the beam.
The error by doing so is very small for standard applications, since the beam size
is generally small compared to the geometry of the surrounding elements. The full
coefficients will be given and can be calculated straightforward.

5.2.1 Integrating the Indirect Space Charge Effects in more

Complex Models

The integration of the indirect field effects to arbitrary order would require advanced
methods of normal form theory [71] or could be treated via tracking methods (as
discussed in section 6.4.4). Due to the accessible nature of our solutions - as complex
Lorentz force - the implementation is simple.
In our applications, the linear approximation without coupling effects is sufficient
to explain the observed physical effects. For completeness, we refer to the method
of Edward-Teng [114] if using the mapping approach to include coupling effects.
The full perturbative approach, dealing with this subject, can be found in [76, 115].
These methods are not discussed further due to the limited scope of this thesis.
Nevertheless, we provide the full normal mode off-axis image coefficients.
By a projection of these coefficients onto the symmetry axis, the identification with
the classical Laslett coefficients becomes: n1,2 ⇔ nℎ,E and b1,2 ⇔ bℎ,E , which is
applied in the following formulas. Tedious but straight forward computations yield
for the total tune-shift:

The A0 is the classical proton-radius A0 =1.5347 × 10−18 , W0 = (1 − V2
0)−1/2,

! the length of the accelerator and � the bunching factor as defined in sec-
tion 5.1.3.1:

Δ&8=2.
G/H = − 1

W0

A0

c

1

!

[ ∫ !

0
dBVG/H (B)
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{
Y
ℎ/E
1 (B, G, H) + Yℎ/E2 (B, G, H) + Yℎ/E1 (B, G, H) (

V−2
0 − 1

�
)
} ]

(5.38)

Δ&2>ℎ.
G/H = − 1

W0

A0

c

1

!

[ ∫ !

0
dBVG/H (B)

{
b
ℎ/E
1 (B, G, H) + bℎ/E2 (B, G, H) + bℎ/E1 (B, G, H) (

V−2
0 − 1

�
)
} ]

(5.39)

In the next section we use three different approximations of the full equations
using (eq. (5.38)) and (eq. (5.39)), is ascending complexity:

1. The smooth approximation: averaging the V-function over the whole ring
with centred form factors (G=H=0):

VG/H (B) =⇒ V̄G/H . (5.40)

2. The centred approximation: take form factors on-axis centred (G=H=0), but
take the beta function VG/H at B (either measured or calculated):

Y(G, H) =⇒ Y, (5.41)

b (G, H) =⇒ b. (5.42)

3. The closed orbit (c.o.): on top of the centred approximation the form factors
are calculated at the position of the closed orbit (G (2.>.) (B), H (2.>.) (B)).

The model is also refined by increasing the resolution of the longitudinal
integration.

5.3 Form Factors for Particular Cases

In this section, we present the normal mode coefficients off-axis of several geome-
tries in terms of the image operators, which then define the image coefficients for
the different regimes as discussed in section 5.1.3. These solution are novel and
have been derived in the context of this thesis. Some normal mode coefficients are
calculated for special cases: the regular polygon = = 8 and =-pole, = = 4. In both
cases there is no restriction for arbitrary =.

In the rectangular case an error was found in the literature and was corrected.
All other existing results in the literature (largely only on-axis) show agreement with
our calculations, which is an excellent indication for correctness of the method and
the calculations. By employing the Schwarz-Christoffel-transformation, arbitrary
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5.3 Form Factors for Particular Cases 107

cross-section geometries can be approximated and as an example in chapter 7, the
polygonal approximation of the LHC beam screen is discussed. In this case, bound
for the error made by the approximation can be given (see section 3.4). In chapter 6,
the polygonal approximation of magnetic elements is discussed.
In addition, former expressions of the literature are given to have a possibility of
direct comparison. All calculations were restricted to the coordinate axes.

The comparison to the literature

The incoherent form factors where introduced by [9] and are given by:

Yℎ1 = −YE1 = ℎ2 m
2q

mG2

���
G=G0

⇒ 4Re m̄2
I q

��
I=G0

(5.43)

Yℎ2 = −YE2 = 62 m
2�

mG2

���
G=G0

⇒ 4Im m̄2
I �

��
I=G0

. (5.44)

ℎ and 6 denote a specific distance to the electric and magnetic boundary, respectively.
q is the electric image potential and � is the magnetic image potential9. Of course
these factors are the real part of the first Laurent-coefficients of the corresponding
complex Lorentz force. Along the x-axis the coherent form factor can be calculated
via:

bℎ1 = ℎ2

(
m

mG
+ m

mG0

)
mq

mG

���
G=G0

, bE1 =ℎ2

(
m

mH
+ m

mH0

)
mq

mH

���
G=G0

, (5.45)

bℎ2 = 62

(
m

mG
+ m

mG0

)
m�

mG

���
G=G0

, bE2 =62

(
m

mH
+ m

mH0

)
m�

mH

���
G=G0

, (5.46)

⇒ ⇒
4Re (m̄I + m̄I0 + mI0 )m̄I 5 (I, I0, I∗0), 4Im (m̄I + m̄I0 − mI0 )m̄I 5 (I, I0, I∗0).

(5.47)

G0 and H0 denote the source point coordinates. Since the Lorentz force is expressed
through to conformal invariant Green functions, only the mapping of a specific
shape has to be known to calculate these quantities, which was treated in detail in
the previous section. In the following, the normal mode image tensors are plotted for
arbitrary beam positions for almost all discussed cross-sections. In all figures, on-axis
solutions are drawn as solid purple and blue lines and the boundary is represented
as red shape.

9 q and � are the Green functions of the first and second kind, respectively in real notation scaled
to physical units as discussed in sections 3.3.1 and 3.3.2.
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5.3.1 The Rectangular Cross-Section

Ḡ (1)

−2 −1 0
1

2 H̄ (1)−2
−1

0
1

2

co
eff

. (
1)

0.0

0.5

1.0

Rectangular chamber b1/2

Fig. 5.3a: The coherent electric image tensor of the rectangular chamber.

Ḡ (1)

−2 −1 0
1

2 H̄ (1)−2
−1

0
1

2

co
eff

. (
1)

−1.0

−0.5

0.0

0.5

1.0

Rectangular chamber Y1/2

Fig. 5.3b: The incoherent electric image tensor of the rectangular vacuum chamber.

Since for the rectangular cross-section there was a disagreement for the on-axis
coefficients with the literature [6], [7] and [51], the rectangular case is explained
in detail, whereas the off-axis solution is new. The rectangular cross-section of the
vacuum chamber has the dimension half-width ℎ and half-height F. The parameter
< is a function of ℎ and F and is implicitly formulated in eq. (4.17). A visualization
of this dependency as a function of the ratio of the two side-lengths can be found
in fig. C.1. The mapping function was given in eq. (4.21). Inserting into eq. (5.34)
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yields:

Ξ̂�1 ,0 (I1) =
K2

4812

(
<2cn2

I1

( 12dn2
I1

sn2
I1(

<2snc − 1
) 2

−
3<2sn2

I1

dn2
I1

+ 12

<2snc − 1
+ 8

)

−
3dn2

I1
sn2
I1

cn2
I1

+
( 12

<2snc − 1
+ 8

)
dn2
I1

+ 10<2sn2
I1

)
. (5.48)

Ξ̂
4
�1 ,0

(I1) = −
K2<cn2

I1
dn2
I1

412 (scn − 1)2
, (5.49)

Ξ̂
>
�1 ,0

(I1) =
1

4812
 2

[
<2cn2

I1

(
−

3<2sn2
I1

dn2
I1

− 2

)
−

3dn2
I1

sn2
I1

cn2
I1

− 2dn2
I1

+ 2<2sn2
I1

]
.

(5.50)

cnI1 , dnI1 and snI1 denote the Jacobi elliptic functions with the argument: ( I1+81) ′

21 .
scn denotes the product: < snI1 snI∗

1
. The definition of the elliptic integrals and

Jacobi elliptic functions is provided in appendices C.1.1 and C.1.2. These results
were compared to the literature. The coefficients agree along the coordinate axes
with the results of [7] p.10, eq.(6.1-6.2). For [7] p.10, eq.(6.3), the results are
different. Recalculating the results of [7] revealed an analytical disagreement, which
was corrected. The corrected coefficient matches numerically the directly calculated
values using eq. (5.37). Since these two in-depended methods are in agreement,
this is regarded to be sufficient to assume that the new coefficient is correct. We
found simpler expressions for the on-axis coefficients, starting from the real electric
potential q of the rectangular shape is (also defined in appendix C.1.3):

q = 2 log

����� sn(
 
2 (I + iℎ |<2) − sn(  2 (I0 + iℎ|<2))

sn(  2 (I + iℎ|<2) − sn(  2 (I∗0 + iℎ|<2)

����� . (5.51)

Where <′2 := 1−<2 is used. The rectangle is centred and F is parallel to the x-axis
and sn is the Jacobi elliptic function as defined in appendix C.1.2. K := K(<) and
K′ := K(1 − <2) (see appendices C.1.1 and C.1.2). After some tedious algebra the
result obtained at the beam location has the form:

Yℎ1 = −YE1 =
1

24
K2

[
3<′2

(
1

Z
− Z

)
− 2

(
<2 + 1

) ]
(5.52)

bℎ1 =
K2<′2

4

(
1

Z
− Z

)
(5.53)

bE1 =
K2<′2

4
Z (5.54)
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Z := dn−<
dn+< . dn is the Jacobi elliptic function dn( ′(1 − 6) |<′2). 6 is the distance

from the centre along the x-axis. All results can be shown to be identical with the
literature, although eq. (5.53) differs ( [7] p.10, e.q(6.3)). At the centre of the chamber
Z = 1−<

1+< (3=(0|<) = 1) the coefficients are:

Yℎ1 = − 1

12
 2

(
<2 − 6< + 1

)
, (5.55)

bℎ1 =  2<, (5.56)

bE1 =
1

4
 2 (< − 1)2. (5.57)

in agreement with Ng ( [7]). If the limit F → ∞ is taken, we obtain the strip. It
follows < → 0,  → c

2 and Z → 1, which gives

Yℎ1 = −c
2

48
, (5.58)

bℎ1 = 0, (5.59)

bE1 =
c2

16
. (5.60)

These results agree with Zotter ( [9]) and Ng ( [7]). The coefficients are plotted in
figs. 5.3a and 5.3b. The red shape indicates the boundary (the vacuum chamber). The
blue and line, coloured in a pale shade of pink, indicated the on-axis coefficients.

5.3.2 The Parallel Plates

The plates have a distance 23. I ↦→ tanh cI
43 maps a strip with half-width 3 onto the

circle. Employing eq. (5.34) yields:

Ξ̂1,2 (I1) = V1∓1
0

c2
(
1 ∓ 3 sec2

(
cIm ( I1)

23

) )
4832

, (5.61)

Ξ̂
4
1,2 (I1) = ∓V1∓1

0

c2

832
(
cos

(
cIm ( I1)

3

)
+ 1

) , (5.62)

Ξ̂
>
1,2 (I1) = −V1∓1

0

c2

4832
. (5.63)

The first sign corresponds to the electric the second to the magnetic solution. And
hence:

n 81 = ±c2
2 − 6 sec2

(
cIm (I)

23

)
19232

, n 82 = −V2
0

c2
(
3 sec2

(
cIm (I)

23

)
+ 1

)
9632

(5.64)
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n2.<.1 =
c2

832
(
cos

(
cIm (I)
3

)
+ 1

) , n2.<.2 = V2
0

c2 sec2
(
cIm (I)

23

)
1632

(5.65)

n
2.?.

1,2 = 0. (5.66)

At the centred beam location we obtain:

Yℎ2 = −c
2

24
, (5.67)

bℎ2 = 0, (5.68)

bE2 =
c2

16
. (5.69)

These results are identical to Zotter ( [9]). These coefficients have also been calculated
for I ≠ I0. All results agree with the literature and are listed in the following. We
start with the electric potential:

q = 2 log
4
cI∗

0
2ℎ + 4 cI2ℎ

4
cI
2ℎ − 4

cI0
2ℎ

. (5.70)

The coefficients are:

Yℎ1 = − 1

32

[
c2

(
csch2 c

4ℎ
(G − G0) + sech2 c

4ℎ
(G − G0))

)
− 16ℎ2

(G − G0)2

]
, (5.71)

bℎ1 = 0, (5.72)

bE1 =
1

16
c2sech2 c

4ℎ
(G − G0). (5.73)

These results were shown to be identical to the results of Zotter ( [9]). At the beam
location we obtain the values given in eqs. (5.58) to (5.60). The magnetic potential
of a strip with half-width 6 is (same reference system as for the electric strip):

� = 2 log
cosh c

46 (I − I∗0) sinh c
46 (I − I0)

I − I0
. (5.74)

The magnetic form factors are:

Yℎ2 = − 62

2(G0 − G)2
− c2

4(1 − cosh c
6
(G0 − G))

, (5.75)

bℎ2 = 0, (5.76)

bE2 =
1

16
c2sech2 c

46
(G − G0). (5.77)

These results were shown to be identical to Zotter ( [9]).
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112 5 Image Operators

5.3.3 The Cut Parallel Plates - on-axis

As an approximation for a dipole magnet the half-strip of half width 6 centred and
parallel to the x-axis can be used

� = 2 log

(
sinh cI

26 − sinh cI0
26

) (
sinh

cI∗0
26 + sinh cI

26

)
I − I0

. (5.78)

The coefficients are:

Yℎ2 =
c2

8

(
462

c2 (G − G0)2
− csch2 c

26
(G − G0) − csch2 c

26
(G + G0)

)
, (5.79)

bℎ2 =
c

4

2
csch2 c

26
(G + G0), (5.80)

bE2 =
c2

4

(
cosh c

26 G cosh c
26 G0 + 1

)
cosh

(
c

26 G + cosh c
26 G0

) 2
. (5.81)

At the beam location we obtain:

Yℎ2 =
c2

24

(
3csch2 cG0

6
− 1

)
, (5.82)

bℎ2 =
c2

4
csch2 cG0

6
, (5.83)

bE2 =
c2

16

(
sech2 cG0

26
+ 1

)
. (5.84)

5.3.4 The n-Pole Structure - on-axis

As an approximation for the =-pole characterized by the distance of the pole shoes of
6 at G = 1 with the beam centred at the origin (I0 = 0). The mapping is provided in
eq. (4.45) and the potential for this symmetric setting can be found in section 3.6.2.3.
In the general case only b2 for the centred beam can be given:

bℎ2 =

462 + cG=
(
6(= − 1) sinh cG=

6
− c=G=

)
csch2 cG=

26

8G2
. (5.85)

bE2 vanishes at the centre (=beam location).
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5.3.5 The Combined-Function Magnet - on-axis

Due to symmetry reasons the on-axes potential of the combined-function magnet
can be written as:

� = 2 log
sinh c

26 (G2 − G2
0)

2
(G − G0). (5.86)

6 is the distance to the magnetic pole-shoes at G0 and G0 denotes the shift from the
centre of symmetry of the magnet. Its corresponding coefficients are:

Yℎ2 =
c

2

(
62

c2
(G − G0) −

6 sinh c
6
(G2

0 − G2) + 2cG2

cosh c
6
(G2 − G2

0) − 1

)
, (5.87)

bℎ2 =
c

4
csch2 c

26
(G2

0 − G2)
(
6 sinh

c

6
(G2

0 − G2) + 2cG(G − G0)
)
, (5.88)

bE2 = −c
4

csch2 c

26
(G2

0 − G2)
(
6 sinh

c

6
(G2

0 − G2) + 2cG

(
G − G0 cosh

c

26
(G2

0 − G2)
) )
.

(5.89)

At the beam location we obtain:

Yℎ2 =
c2G2

0

6
− 62

8G2
0

, (5.90)

bℎ2 =
62

4G2
0

, (5.91)

bE2 =
c2G2

0

4
− 62

4G2
0

. (5.92)

5.3.6 The Octagonal Chamber (HL-LHC Beam Screen)

Of course it is possible to calculate arbitrary regular polygons with the transformation
eq. (4.26) from a circle to a regular polygon with radius r. We restrict ourself on the
special case of the octagon, since parts of the beam screen of the HL-LHC have this
form, which is treated in section 7.5. �−1 is the inverse of eq. (4.26) and A = 1. The
analytical results are:

Ξ̂�1 ,0 (I1) = −
Γ

(
3
8

) 2
Γ

(
9
8

) 2

3
√

2c
(
1 − � (−1) (I1) 8

)
3/2 (

� (−1) (I1) � (−1) ( (I1) ∗) − 1
)

2[
− 22� (−1) (I1) 7� (−1) ( (I1) ∗) +

(
14� (−1) (I1) 8 − 3

)
� (−1) ( (I1) ∗) 2
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Ḡ (1)

−1
0

1 H̄ (1)−1
0

1

co
eff

. (
1)

0.0

0.5

1.0

Octagonal chamber b1/2

Fig. 5.4a: The coherent electric image tensor of the octagonal vacuum chamber
(explanation in section 5.3.1).

Ḡ (1)

−1
0

1 H̄ (1)−1
0

1

co
eff

. (
1)

−1.0

−0.5

0.0

0.5

1.0

Octagonal chamber Y1/2

Fig. 5.4b: The incoherent electric image tensor of the octagonal vacuum chamber
(explanation in section 5.3.1).

+
(
14 − 3� (−1) (I1) 8

)
� (−1) (I1) 6

]
. (5.93)

Ξ̂
4
�1 ,0

(I1) =
Γ

(
3
8

) 2
Γ

(
9
8

) 2
4
√

1 − � (−1) (I1) 8 4
√

1 − � (−1) ( (I1) ∗) 8

√
2c

(
� (−1) (I1) � (−1) ( (I1) ∗) − 1

)
2

, (5.94)
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Ξ̂
>
�> ,0

(I1) =
7Γ

(
3
8

) 2
Γ

(
9
8

) 2
� (−1) (I1) 6

3c
√

2 − 2� (−1) (I1) 8
(
� (−1) (I1) 8 − 1

) . (5.95)

The coefficients are plotted in figs. 5.4a and 5.4b.

5.3.7 The Quadrupole - Hyperbolic Pole Shoes
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(a) The quadrupole: horizontal coefficient.
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(b) The quadrupole: vertical coefficient.
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Fig. 5.5: The image coefficients of the quadrupolar structure in terms of closed-
forms. The green curves indicate the boundary of the shape.
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The results for the quadrupole are very tedious and are given for the sake of complete-
ness. The corresponding parameters and transformations are given in section 4.3.2.1.

Ξ̂0,�2 (I1) = 1

307232I2
1
(

√
coth(

cI2
1

43 )−

√
tanh(

cI∗
1

2

43 ) )3[
16(c2I4

1
−332) coth

7
2 ( cI

2
1

43 )+48(332−c2I4
1
)
√

tanh( cI
∗
1

2

43 ) coth3 ( cI
2
1

43 )

+240(c2I4
1
−332) tanh( cI

∗
1

2

43 ) coth
5
2 ( cI

2
1

43 )

+80(332−c2I4
1
) tanh

3
2 ( cI

∗
1

2

43 ) coth2 ( cI
2
1

43 )

+16(10c2I4
1
−3032+csch2 ( cI

2
1

43 ) (7c2I4
1
+63c tanh( cI

∗
1

2

43 )I2
1
−332)) coth

3
2 ( cI

2
1

43 )

−48

√
tanh( cI

∗
1

2

43 ) (10c2I4
1
−3032+csch2 ( cI

2
1

43 ) (3c2I4
1
+23c tanh( cI

∗
1

2

43 )I2
1
−332))

∗coth( cI
2
1

43 )−csch3 ( cI
2
1

43 )sech2 ( cI
2
1

43 )sech( cI
∗
1

2

43 )

∗
[
60c2 cosh( c (3I

2
1
+I∗
1

2 )
43 )I4

1
−19c2 cosh( c (5I

2
1
+I∗
1

2 )
43 )I4

1

−363c sinh( c (z02−I∗
1

2 )
43 )I2

1
−843c sinh( c (I

∗
1

2−3I2
1
)

43 )I2
1

+1323c sinh( c (z02+I∗
1

2 )
43 )I2

1
+123c sinh( c (3I

2
1
+I∗
1

2 )
43 )I2

1
+2(19c2I4

1
+6932) cosh( c (z02−I∗

1
2 )

43 )

+14(c2I4
1
−332) cosh( c (I

∗
1

2−5I2
1
)

43 )+3(4532−43c2I4
1
) cosh( c (I

∗
1

2−3I2
1
)

43 )+20(c2I4
1
−1232) cosh( c (z02+I∗

1
2 )

43 )

−14432 cosh( c (3I
2
1
+I∗
1

2 )
43 )+5732 cosh( c (5I

2
1
+I∗
1

2 )
43 )

] √
coth( cI

2
1

43 )

+csch3 ( cI
2
1

43 )sech2 ( cI
2
1

43 )sech( cI
∗
1

2

43 )[
32c2 cosh( c (3I

2
1
+I∗
1

2 )
43 )I4

1
−13c2 cosh( c (5I

2
1
+I∗
1

2 )
43 )I4

1
−363c sinh( c (z02−I∗

1
2 )

43 )I2
1
−843c sinh( c (I

∗
1

2−3I2
1
)

43 )I2
1

+1323c sinh( c (z02+I∗
1

2 )
43 )I2

1
+123c sinh( c (3I

2
1
+I∗
1

2 )
43 )I2

1
+18(c2I4

1
−532) cosh( c (z02−I∗

1
2 )

43 )

+(632−2c2I4
1
) cosh( c (I

∗
1

2−5I2
1
)

43 )+(3332−95c2I4
1
) cosh( c (I

∗
1

2−3I2
1
)

43 )+12(c2I4
1
−1832) cosh( c (z02+I∗

1
2 )

43 )

−6032 cosh( c (3I
2
1
+I∗
1

2 )
43 )+3932 cosh( c (5I

2
1
+I∗
1

2 )
43 )

] √
tanh( cI

∗
1

2

43 )
]
. (5.96)

Ξ̂
4
0,�2

(I1) =
3c2I40csch2 cI

2
0

23 − 4(332 + c2I40)
4832I20

(5.97)

Ξ̂
>
0,�2

(I1) = −
c2I1I

∗
1
csch2 cI

2
1

43 sech2 cI
∗
1

2

43

1632

√
coth

cI2
1

43

√
tanh

cI∗
1

2

43

(√
coth

cI2
1

43 −
√

tanh
cI∗
1

2

43

)
2

(5.98)

The corresponding coefficients are plotted in fig. 5.5.
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5.3.8 The Circular Chamber

Ḡ (1)

−1
0

1 H̄ (1)−1
0

1

co
eff

. (
1)

0.0

0.5

1.0

Circular chamber b1/2

Fig. 5.6a: The coherent electric image tensor of the the circular chamber (explanation
in section 5.3.1).

Ḡ (1)
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. (
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1.0

Circular chamber Y1/2

Fig. 5.6b: The incoherent electric image tensor of the the circular chamber (expla-
nation in section 5.3.1).

A circle with radius ℎ and centred has the electric image potential (the source
singularity is subtracted):

q = 2 log(II∗0 − ℎ2). (5.99)
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A circular hole drilled into a ferromagnetic material with the relative permeability `A
and a radius 6 and centred has the magnetic image potential (the source singularity
is subtracted, see e.g. [22]):

� =
2_V0

`
log(II∗0 − 62), (5.100)

where ` := `A+1
`A−1 and in the limit of a perfect perfect permeability of the ferromagnetic

material ` → 1. From this we get the coefficients out of the electrical coefficients
by setting 6 = ℎ. The coefficients are:

Yℎ1 = `Yℎ2 = −
ℎ2G2

0

2(ℎ2 − GG0)2
, (5.101)

bℎ1 = `bℎ2 =
ℎ2 (ℎ2 + G2

0)
2(ℎ2 − GG0)2

, (5.102)

bE1 = `bE2 =
ℎ2 (ℎ2 − G2

0)
2(ℎ2 − GG0)2

. (5.103)

These electrical results are in agreement with Zotter ( [9]). At the beam location we
obtain:

Yℎ1 = `Yℎ2 = −
ℎ2G2

0

2(ℎ2 − G2
0)2

, (5.104)

bℎ1 = `bℎ2 =
ℎ2 (ℎ2 + G2

0)
2(ℎ2 − G2

0)2
, (5.105)

bE1 = `bE2 =
ℎ2

2(ℎ2 − G2
0)
. (5.106)

The coefficients are plotted in figs. 5.6a and 5.6b.

5.3.9 The Elliptic Chamber

The electric potential of the centred elliptic chamber with the half-height ℎ (parallel
to the y-axes) and half height of F is provided in eq. (C.6). The mapping � is given in
eq. (4.42). We use the abbreviations: cdC := cdI∗

1
+cdI1 . And cdI1 , ndI1 and sdI1 are

the Jacobi elliptic functions with the argument � (I1). < obeys the implicit equation
sin−1 ℎ

:

c
= K

K′ (depicted in fig. C.1 for the ratio of with and height), <′2 = 1 − <2,

:2 := F2 − ℎ2, and  ′ :=  (<′), where  is the complete elliptic integral of the first
kind. The definition of the elliptic integrals and Jacobi elliptic functions is provided
in appendices C.1.1 and C.1.2.
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Elliptical chamber b1/2

Fig. 5.7a: The coherent electric image tensor of the elliptical CERN PS vacuum
chamber (explanation in section 5.3.1).
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Fig. 5.7b: The incoherent electric image tensor of the elliptical CERN PS vacuum
chamber (explanation in section 5.3.1).

Ξ̂�1 ,0 (I1) =

1

12

[
−

nd2
I1
� ′ (I1) 2

(
3cdC2cd2

I1
− 4cdC<′2sd2

I1

(
cdI∗

1
− 2cdI1

)
− 12<′4sd4

I1

)
cdC2sd2

I1

+
cdI∗

1

(
2<2� ′ (I1) 4

(
5cd2

I1
+ 2<′2sd2

I1

)
− 3� ′′ (I1) 2 + 4� (3) (I1) � ′ (I1)

)
cdC� ′ (I1) 2
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+
6ndI1�

′′ (I1)
(
cdCcdI1 − 2<′2sd2

I1

)
cdCsdI1

+
cdI1

(
2<2� ′ (I1) 4

(
5cd2

I1
− 4<′2sd2

I1

)
− 3� ′′ (I1) 2 + 4� (3) (I1) � ′ (I1)

)
cdC� ′ (I1) 2

+ 6<2cdI1 sdI1�
′′ (I1)

ndI1
−

3<4cd2
I1

sd2
I1
� ′ (I1) 2

nd2
I1

]
. (5.107)

Ξ̂
4
�1 ,0

(I1) = −
<′4ndI1 sdI1ndI∗

1
sdI∗

1
� ′ (I1) � ′ (I∗

1

)
cdC2

(5.108)

Ξ̂
>
�1 ,0

(I1) = 12� ′ (I1) 2
[ cd2

I1
� ′ (I1) 4

(
−3<4sd4

I1
+ 2<2nd2

I1
sd2
I1

− 3nd4
I1

)
nd2
I1

sd2
I1

− 3� ′′ (I1) 2 + 2� ′ (I1)
(
� (3) (I1) + <′2� ′ (I1) 3

(
<2sd2

I1
+ nd2

I1

) ) ]
(5.109)

At the centre with centred beam we obtain:

n 81 = ± (<(< + 6) + 1) ′2 − 2c2

12c2:2
, (5.110)

n
2.?.

1 =
(< + 1)2 

(
1 − <2

) 2 − c2

4c2:2
, (5.111)

n2.=.1 =
c2 − 4< 

(
1 − <2

) 2

4c2:2
. (5.112)

All coefficients are in numerical agreement to [7] p.6, eq.(4.1)-eq.(4.3). The coeffi-
cients are plotted in figs. 5.7a and 5.7b.
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5.4 Summary

In this chapter, we derived the formalism of the image tensors, as operators of
the underlying conformal mappings in terms of the Green function of the first
and second kind. If we know the closed-form conformal mapping for specific
geometries on the unit circle, we can calculate the impact of the indirect fields
for these geometries in terms of closed-forms. It also allows us to include
novel semi-analytical solutions for arbitrary geometries for the electric (as
demonstrated for the beam-screen in section 7.2.1) and the magnetic case (as
demonstrated for the PS magnets in section 6.2). The complete fields are for-
mulated through the complex Lorentz force eq. (3.9).
Different regimes of the interaction phenomena were discussed. Formulas to
estimate the tune shift for models of varying complexity, as used later in the
applications, were provided (eqs. (5.38) to (5.39)).
Explicit normal form closed-form coefficients were calculated, including sev-
eral new chamber/magnet geometries for arbitrarily displaced beams, as the
rectangle, the ellipse, the half-strip, the =-pole magnets, explicitly for the
quadrupole and the octagonal chamber.
The results were compared to the (on-axis) results provided in the literature to
avoid errors in the derivations. It allowed correcting an error of a coefficient
of the rectangular shape, that was found in the literature.
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Chapter 6

Applications to the CERN Proton Synchrotron
(PS)

The true sign of intelligence is not knowledge but imagination.

— Albert Einstein

6.1 The Machine

The CERN Proton Synchrotron (PS) is a key component in CERN’s accelerator
complex, where it usually accelerates either protons delivered by the Proton Syn-
chrotron Booster or heavy ions from the Low Energy Ion Ring (LEIR). In the course
of its history, it has juggled many different kinds of particles, feeding them directly
to experiments or more powerful accelerators. With a circumference of 628 meters
(2c ∗ 100 m), the PS has 277 conventional (room-temperature) electromagnets, in-
cluding 100 combined-function magnets to bend and focus the beams around the
ring. The accelerator operates at up to 26 GeV/c. In addition to protons, it has ac-
celerated helium, oxygen, lead, xenon and sulphur nuclei, electrons, positrons and
antiprotons [116].

6.2 The PS Magnets

The PS main magnetic unit (MU) is a normal conducting, combined-function magnet

used to bend and focus the particle beam. It is composed of two half-units: a focusing
(F) and defocusing (D) half which are rigidly joined together and introduce an
alternating-gradient focusing. Each half-unit consists of five laminated, C-shaped

iron blocks of either "closed" (fig. 6.1a) or "open" (fig. 6.1b) hyperbolic pole profiles
arranged in such a manner that a magnet has an arc shape with a bending radius
A0 =70,07 m and the overall length of 4,260 m along the orbit. In the PS ring, there
are 100 magnets of four types. These types differ from each other by the placement
of the iron back-leg with respect to the beam orbit. Additionally, the order of the
focusing and the defocusing half-unit changes. The four different configurations have
the naming R, S, T and U as defined in table 6.1 and shown schematically in fig. 6.2.
The outside units (upper drawings) have the main coil on the inside of the ring, while
for the inside units the opposite is the case. Two MUs are separated by a straight
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section, so the pattern is ‘FOFDOD’ (‘O’ stands for a straight section). In fig. 6.3 a
photograph of magnetic unit of type T can be seen.
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Fig. 6.1a The cross-section of a “closed”
block of the PS magnetic units (grey). The po-
sition of the vacuum chamber is shown (blue).

Fig. 6.1b The cross-section of an “open”
block of the PS magnetic units (grey). The po-
sition of the vacuum chamber is shown (blue).

Table 6.1: The nomenclature of the magnetic units in the PS. The types are drawn
schematically in fig. 6.2.

Type Configuration Number of installed units

R Yoke outside, defocusing-focusing 35
S Yoke outside, focusing-defocusing 15
T Yoke inside, defocusing-focusing 35
U Yoke inside, focusing-defocusing 15

6.3 The Modelling of the Elements

The PS model consists of three components, the vacuum chamber and the two
magnetic half-units also-called blocks. The straight sections between the magnetic
units are used for placing accelerating cavities, beam diagnostic devices, injection
and extraction elements, and magnetic lenses. For simplicity within this study, these
regions are treated as drift regions, where only the vacuum chamber has an impact
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Fig. 6.2 The different MUs of
the PS. Taken from [116].

Fig. 6.3 MU of the PS of the
type T (see fig. 6.2). Taken
from [117].

onto the beam. This is no significant limitation since these elements have a negligible
contribution compared to the vacuum chamber and the magnetic units.

6.3.1 The Vacuum Chamber

6.3.1.1 Geometric Setting

In the PS the cross-section of the vacuum chambers is varying with the elliptic
geometry being the standard chamber. Consequently, the vacuum chamber is ap-
proximated as an ellipse with the dimensions: horizontal semi-axis 0 = 7 cm and
vertical semi-axis 1 = 3.5 cm. An illustration of the chamber can be seen in fig. 6.4.

6.3.1.2 The Image Tensors

The electric image tensor of the geometry as shown in fig. 6.4 was derived in
section 5.3. The image tensors of this shape can be expressed through closed-forms
and were derived for off-axis calculations for the first time in section 5.3.9. The
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Fig. 6.4 An approximation
of the PS vacuum chamber
geometry.
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incoherent off-axis coefficients for the PS vacuum chamber are shown in fig. 5.7b,
the coherent images tenors can be seen in fig. 5.7a.

6.3.2 The Model of the Combined-Function Magnets

In the context of this thesis, several models, including closed-forms of the PS com-
bined function magnets are presented for the first time. So far, these elements have
been treated as parallel plates. In the following, a polygonal model of the true shape
of the PS magnet elements is formulated. It is more accurate but also more compli-
cated to compute. It is then compared to analytic closed-form approximations of the
PS magnet elements. These solutions are easy and fast to calculate, although there
is a discrepancy to the true solution if the approximated shape differs too strongly
from the true shape.

6.3.2.1 Polygonal Modelling

The true shape (cross-section) of the “closed” and the “open” PS magnet block is
shown in grey in fig. 6.1a and fig. 6.1b, respectively. Both shapes are modelled as
polygons in order to establish a model of mathematically limited complexity. The
Schwarz-Christoffel-transformation mapping was employed, and the corresponding
parameter problem was solved as described in section 4.1. The hyperbolic pole-
profiles are approximated using nine vertices as shown in fig. 6.6 for the "closed"
and in fig. 6.5 for the "open" block. In both cases, a total number of = = 30 vertices
has been used to obtain sufficient accuracy. As discussed in sections 3.6.3 and 4.1.4,
the Neumann function of such a shape is a conformal invariant (lemma 3.4). The
exterior of the polygon is mapped onto the interior of D and the sink at infinity is
moved to the origin. This model serves as a reference model. It appraises the validity
of the simpler models as described in the following.
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Fig. 6.5: The approximations of the PS open magnet block as described in sec-
tion 6.4.1.

6.3.2.2 Closed-Form Expression for the Magnetic Blocks

A closed-form for the solution of the boundary problem is achieved by simplifying
the shape. Following the ideas in section 4.3.2, the mapping of an =-polar structure
is mapped ontoD via the =th-root. If we cut the tails (the parts of the shape extending
to infinity) of an =-pole, a Jacobi elliptic function is involved, since the =th-root maps
the cut =-pole onto a rectangle (solution is provided in eq. (4.21)). The branch cut
of the mapping lies in every odd tail. According to fig. 6.7, where the cut 4-pole
mapping onto a circle is shown, by rotation the cut can be moved either on the G or
the H-axis. The structure is opened by moving either the blue (fig. 6.7, (b)) or the
dashed line (fig. 6.7, (b1)) to ∞. As described in section 3.6, by opening a shape to
∞, it is possible to find a closed-form for the mapping. Figure 6.7 shows that the
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Fig. 6.6: The approximations of the PS closed magnet block as described in sec-
tion 6.4.2.

cut 4-pole is mapped onto a Riemann manifold with two sheets. The sign of the real
part is used to keep the information of the corresponding sheet. It allows restoring
the information of the corresponding sheet onto the initial area (coloured grey and
white).
The half-quadrupole can in principle be found, as shown in fig. 6.8. The difference to
the full quadrupole is the mapping onto a strip and afterwards on the upper half-plane.
The branch cut remains as a small stub. The final mapping, although represented as
a closed-form, is involved. Instead, there is the possibility to take advantage of the
symmetry. The source, shown as a red point in fig. 6.9, can be mirrored along the
H-axis. It results in the full quadrupole structure with two sources - the source itself
and its image - and can be treated in the same way as the quadrupole.
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Fig. 6.7: The novel mapping of the combined-function magnet structure. 5 denotes
an Jacobi elliptic function (see section 4.2.2).

6.4 Results

The attempt of approximating the magnets of the PS as two infinite plates fails
when the form factors are calculated off-centred due to the failure in symmetry. The
parallel plates are invariant against a translation in G direction. As a consequence,
the potential and hence the field is invariant as well. In reality, the indirect fields
do not show this behaviour. As shown in the last section, there are simple solutions
for the problem, avoiding the complex calculation of the inverse mapping of the
Schwarz-Christoffel-transformation. To benchmark the results, as described, the
Schwarz-Christoffel-transformation for a sufficiently accurate polygonal modelling
with 30 vertices is calculated and the solution of an exterior domain for the Neumann
function (lemma 3.3) was used. Both approaches, as mentioned, are novel in this
context, and so far only the strip was known.
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Fig. 6.8: The composition of conformal mapping of the half-quadrupole onto D.
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Fig. 6.9: The solution of the half-quadrupole can be constructed either by the long
path sketched in fig. 6.8 or by a simple trick.

6.4.1 The Open Magnetic Block

The different models of the open magnetic block are drawn in fig. 6.5. As a first
closed-form approximation, the quadrupole (FQ - full quadrupole) is developed
(dotted blue line). The tails of the quadrupole overlap the true boundary. The result
is a significant error in the calculated field. If all the tails are cut, labelled as FQclosed

(red shape - all tails are cut symmetrically at the position, where the right tail starts to
overlap the polygonal model, as indicated for the upper and lower tail as dashed red
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Fig. 6.10: The magnetic coefficients of the open magnetic block as defined in
eqs. (5.35) to (5.37). Figure 6.5 shows the corresponding models.

line. Also the left tail is cut which is not visible in fig. 6.5.), the novel integral-equation

eq. (3.57) has to be employed to obtain the field and the magnetic coefficients. Hence,
no closed-form solution can be obtained using this model. Opening only the upper
and lower tails of the shape leads (the upper and lower tails are opened to infinity,
while the right and due to symmetry reasons also the left are cut) to a closed-form
as proved in eq. (3.62). We term this model the FQcut (red shape with blue filling).
By doing so, the error is further reduced w.r.t. the polygonal model (Poly).
The different magnetic Laslett coefficients of these models along the G-axis are
presented in fig. 6.10. The parallel plate model (strip, indicated as parallel grey
dashed lines in fig. 6.5) shows an offset at the position of the centre of the vacuum
chamber. The model leads to the wrong field along the symmetry axis and hence
to the wrong estimation of the caused tune-shift. The FQ still exhibits a strong
offset, while showing the correct quantitative behaviour off-centred. By cutting all
tails (FQclosed), the offset is further modified, while the area outside the magnet is
reduced too strongly and no closed-form exists. Opening the tails outside the magnet
(FQcut) results in an accurate model for the magnet block - the best closed-form
expression found so far. At the opening of the magnet, the difference of the model to
the true shape becomes obvious, and the magnetic coefficients deviate strongly from
the polygonal solution and for largely off-centred beams the model has to be taken
with care.
The FQcut closed-form expression for the Neumann function is (for an on-axis beam
as used for the calculations):
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3 is the distance of the pole-shoes at the centre of the vacuum chamber and the offset
from the origin is G0.
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Fig. 6.11: The magnetic coefficients of the closed magnetic block as defined in
eqs. (5.35) to (5.37). Figure 6.6 depicts the corresponding models.

6.4.2 The Closed Magnetic Block

The situation for the closed magnetic block is a bit more complex. Figure 6.11 shows
all magnetic coefficients and the corresponding models are shown in fig. 6.6. Again,
as for the open magnetic block, there is a large offset for the centred case for the
simple strip model (strip, indicated as parallel grey dashed lines in fig. 6.6) compared
to the polygonal model. The quadrupole model (green lines in fig. 6.6) would have
a considerable overlap with the true shape leading to a large field error. Hence, a
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different model has to be used. One way to reduce this error is to take half of the
quadrupole model, denoted by HQ (solid left green shape in fig. 6.6). This model
shows still a notable offset compared to the polygonal model (Poly - in grey). Cutting
all tails (HQclosed - red shape with all tails cut. The cut of the tail extending to the
negative G-axis is not visible in fig. 6.6) involving the solution of the integral-equation
eq. (3.62) does not improve this significantly. Opening the half-tails (HQcut - red
shape with green filling) decreases the deviation to the polygonal solution further.
By doing so an excellent closed-form solution was found.
The final closed-form expression (HQcut) for the Neumann function has the form
(provided here for an on-axis beam as used for the calculations):

# 5 .8. (I, I0) =
1

2c
log

���csch2 cG0
23

[
cosh

c
(
G0−I2

)
3

− cosh
c
(
G0−I2

0

)
3

]
2
[
csch cG0

23 sinh
c
(
G0−I2

0

)
23 + 1

]
2

���. (6.2)

3 is the distance of the pole-shoes at the centre of the vacuum chamber and the offset
from the origin is G0.

6.4.3 The Multi-Turn Extraction Tune-Shift Closed-Form Model

Efforts to find a suitable replacement for the continuous transfer (CT) extraction
mode, which has been the technique used to transfer the 14 GeV/c proton beams
from the PS to the Super Proton Synchrotron (SPS) for the fixed-target physics pro-
gram, converged on the proposal of a novel method of beam manipulation named
Multi-Turn Extraction (MTE) [118]. This technique is based on transverse beam
splitting induced by crossing a stable resonance in the horizontal phase space and
solves the issue related to the unavoidable beam losses of the CT extraction. In
the case of MTE, the stable fourth-order resonance is used, which generates four
beamlets around a central core in phase space. In general, any resonance (stable or
unstable) can be considered to design a multi-turn extraction scheme. Furthermore,
MTE provides an improved betatron matching of the PS beam at injection in the SPS
compared to CT. The MTE method became operational in 2015.
In the following, we calculate the tune-shift in its simple form as shifting the betatron
tune. The change in tune is obtained from a model simulated using the code MAD-X,
which stands for methodical accelerator design [119]. A model of the arrangement
of the elements of the accelerator can be found in [120]. The V-functions and the
transverse position of the four beamlets, with a periodicity of four turns are shown
in fig. 6.12. The corresponding lattice functions were calculated using MAD-X and
the essential extension Polymorphic Tracking Code (PTC - [121]), which is a more
advanced tracking code.
Equations (5.38) and (5.39) show how the V-function at a given position and the cor-
responding form factor contribute to the tune-shift. The different models are ordered
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in terms of the complexity, following the scheme as given in section 5.2.1. The sim-
plest case is the smooth approximation, where the average V-function along the ring
is taken, and the image field is taken at the centre of the cross-section of the elements
(denoted by smooth). A more sophisticated model is to calculate the V-function at
several positions along the ring, also by increasing the longitudinal resolution of the
model. This model is denoted by centred and the coefficients are listed in table 6.2.
The corresponding form factors are calculated at a centred position. These two cases
are compared with the model of two parallel plates, denoted as strip. The electric
contribution is given by plates of a distance of 3.5 cm, which is the distance to the
vacuum chamber at the centre of the geometry. The magnetic contribution is the
average of the two plates at a distance of 5 cm, the average distance of the magnetic
elements at the centre of the geometry.
In tables 6.3 and 6.4, the values for the different tune-shifts are listed at the ex-
traction energy of 14 GeV for the individual contributions (separated into electric
and magnetic) and the full model, respectively. The term exact indicates that we
use the closed-form expressions as discussed in sections 6.4.1 and 6.4.2 and the
labels smooth, centred and closed orbit are defined in section 5.2.1. The term closed

orbit indicates that the V-function is calculated as in the centred model, while the
image coefficients are calculated at the transverse position of the closed orbit. The
error made by the strip approximation is large, especially for the horizontal coherent
tune-shift Δ&2>ℎ.

ℎ
. The reason is the translation symmetry of the strip in this dimen-

sion, which is not the case in the real application. For the strip model the coefficient
vanishes, while for the smooth model the error compared to the centred model is
still noticeable. For the vertical coherent tune-shift Δ&2>ℎ.E the error made by this
approximation is not negligible, but not as significant as for the coherent horizontal
tune-shift. For the incoherent tune-shifts, the vertical values, Δ&8=2.E show a strong
disagreement. The horizontal tune-shifts Δ&8=2.

ℎ
reveal the smallest deviation. An

interesting observation is the fact that the alternating magnetic structure of the PS
of "open" and "closed" blocks leads in average to the cancellation of their impact.
In table 6.2 the average of such a combination is provided and is termed with the
suffix average. Hence the error by approximating the magnets as parallel plates is
relatively small in the smooth approximation.
The contribution of the indirect electric fields are spatially resolved and depicted in
fig. 6.13 for different models. Notable differences can be seen for the coherent hori-
zontal effect (lime) as the coefficients are calculated for the ellipse instead of parallel
plates and primarily, due to the massive orbit changes, the closed orbit results (lowest
plot). The same holds for the magnetic effect (fig. 6.14), while the closed-form so-
lutions where used. Concluding, the closed-form approximations (exact modelling
for the vacuum chamber and the combined-function magnets), seem to be valid
and principally allowing scaling law studies. Further notable is that the effects for
the magnetic and the electric indirect interaction are of the same magnitude (see
table 6.3).
The results of table 6.4 show that the tune-shift is in the order of 0.1 × 10−3 , which
is not critical for operation but is related to the position of the beamlet, which is
decisive at the multi-turn-extraction. This is the topic of the following section.
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Fig. 6.12: The simulated closed orbit and V-function of the four turn orbit in the PS
during the multi turn extraction in the transverse plane.

Table 6.2: The form factors for the different elements at the centred position. The
average of the focusing and defocussing magnets are close to the value of the strip.

Form factor/model nℎ (1) nE (1) bℎ (1) bE (1)

magnetic strip -0.411 0.411 0.000 0.617
magnetic average exact -0.406 0.406 0.010 0.607
magnetic average polygonal -0.403 0.403 0.012 0.602
magnetic defocussing exact -0.245 0.245 0.172 0.446
magnetic focusing exact -0.568 0.568 -0.151 0.768
magnetic defocussing polygonal -0.240 0.240 0.175 0.439
magnetic focusing polygonal -0.566 0.566 -0.151 0.765
electric exact -0.352 0.352 0.167 1.222
electric strip -0.206 0.206 0.000 0.617

6.4.4 The Multi-Turn Extraction Intensity-Position-Dependence

Studies

In this section a tracking is discussed. The beam position of so-called beamlets is
shifted by intensity depended effects, which is of high importance concerning the
operation. In this study, we provided the indirect fields (in closed-form Green func-
tions) instead of the form factors to track the evolution of the beam. A need for an
accurate indirect field models becomes evident since these effects, as now shown,
are dominating.
A measurement campaign [122] showed that there is a linear dependence of the
position of the beamlets with the intensity. A numerical investigation indicates
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Fig. 6.13: The local contribution to the tune-shift caused by the electric boundaries
of different models. The tune-shift is normalized to the maximal peak of the overall
contributions.
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Fig. 6.14: The local contribution to the tune-shift caused by the magnetic boundaries.
The tune-shift is normalized to the maximal peak of the overall contributions.
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Table 6.3: The tune-shifts of the PS per proton. The different models, calculated at
the energy of 14 GeV, are separated into their different contributions (electric and
magnetic). The labelling is defined in section 5.2.1 and the text.

tune-shift/model Δ&8=2.
ℎ

(10−16)
Δ&8=2.E

(10−16)
Δ&2>ℎ.

ℎ

(10−16)
Δ&2>ℎ.E

(10−16)

magnetic smooth exact 0.929 -0.929 -0.024 -1.090
magnetic smooth polygonal 0.921 -0.921 -0.027 -1.081
electric smooth exact 1.009 -0.793 -0.480 -2.757
magnetic strip 0.940 -0.940 -0.000 -1.108
electric strip 1.204 -0.947 -0.000 -2.840
magnetic centred exact 0.860 -0.786 -0.093 -1.147
magnetic centred polygonal 0.852 -0.781 -0.097 -1.139
electric centred exact 1.009 -0.793 -0.480 -2.757
magnetic closed orbit exact 0.880 -0.801 -0.093 -1.170
magnetic closed orbit polygonal 0.857 -0.790 -0.099 -1.154
electric closed orbit exact 0.948 -0.716 -1.548 -3.915

Table 6.4: The tune-shifts of the PS of the different approximations at the energy of
14 GeV. The centred case takes usage of the newly derived closed-form expressions.
The labelling is defined in section 5.2.1 and the text.

tune-shift/model Δ&8=2.
ℎ

(10−16) Δ&8=2.E (10−16) Δ&2>ℎ.
ℎ

(10−16) Δ&2>ℎ.E (10−16)

smooth exact 1.937 -1.722 -0.503 -3.847
centred exact 1.869 -1.579 -0.573 -3.904
closed orbit exact 1.828 -1.517 -1.641 -5.085
closed orbit polygonal 1.805 -1.506 -1.647 -5.068
magnetic strip 1.949 -1.733 -0.480 -3.865
all strip 2.144 -1.887 -0.000 -3.948

For a typical number of #=2 × 1013 protons:
model/shift Δ&8=2.

ℎ
(10−3) Δ&8=2.E (10−3) Δ&2>ℎ.

ℎ
(10−3) Δ&2>ℎ.E (10−3)

smooth exact 0.387 -0.344 -0.101 -0.769
centred exact 0.374 -0.316 -0.115 -0.781
closed orbit exact 0.366 -0.303 -0.328 -1.017
closed orbit polygonal 0.361 -0.301 -0.329 -1.014
magnetic strip 0.390 -0.347 -0.096 -0.773
all strip 0.429 -0.377 -0.000 -0.790

that indirect field effects cause the main component of this dependence. The cor-
responding calculations were carried out with the space-charge simulation code
SIMPSONS [123] with an extension to include the closed orbit calculation for the
outer islands as well a the indirect field effects. The approximation of the effect of the
fields was done using the formulas provided in this work (eqs. (D.10) and (D.11)) to
include the model of two infinite plates. Also, the rectangular model for the electric
interaction with the boundaries was investigated and the used formula was derived
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Fig. 6.15a The Phase space portrait taken
from [17]. No space-charge effects are in-
cluded.

Fig. 6.15b The Phase space portrait taken
from [17]. Space-charge effects are included
as described in the text.

within this thesis (eq. (4.21)). These approximations were justified because the beam
spends only a small fraction of its time near the vertical boundaries.
The impact of the intensity is shown in figs. 6.15a and 6.15b. The left plot shows
the centre and four islands in the horizontal phase space portrait without the effect
of space-charge. The right plot shows the impact of space-charge of five equally
charged beamlets for a total intensity of 3.28 × 1013 p. Electric boundary conditions
modelled as parallel plates are included (eq. (D.10)) and the beam momentum is 14
GeV/c - the MTE extraction energy of the PS. The position of the islands moves
outwards. Higher-order magnets, namely octupoles, can in principle influence the
direction, but due to the limited scope of this work, we refer for details to [17].
The configuration is calculated starting from space-charge-free orbits as initial con-
dition and for a few turns including the fields by taking point charges located at
the centre of the core and the centre of the island into account. So, oscillations are
provoked around the initial orbits. Taking their averages act as new initial orbits. The
procedure is repeated until a convergence criterion is met. The fields are calculated
at specific locations around the ring only. In fig. 6.16 the different components of the
intensity-dependent shift in position are shown. The indirect space-charge plays the
major role, while the direct space-charge shows no significant impact. Interestingly,
the electric and magnetic contribution of the indirect field are of similar strength as
already observed in the related tune-shift study (section 6.4.3). The approximation
through parallel plates breaks down, if the charge distribution centre is too far from
the centre of the chamber as shown in fig. 6.17, where the beam is generated in a
stable island with a large amplitude. There the impact of the model is compared to
a rectangular approximation. The corresponding electric potentials are shown for an
strongly off-centred source point in figs. 6.18 and 6.19 (the explicit Green function
is provided in appendix C.1.3). The importance of a good model for the magnetic
boundaries was also shown in [124], since only by including the magnetic interac-
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Fig. 6.16 The different contri-
butions to the position shift of
the island due to the intensity.
Taken from [17].
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Fig. 6.17 Parallel plates and
rectangular vacuum chamber
models at a strongly off-
centred position (eqs. (4.21)
and (D.10)). Taken from [17].
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tion, the simulations fit the measured bunched beamlet position.
The previous considerations attest the importance and the relevance of having simple
forms of fields as in tracking algorithms. Still, the closed-forms of the combined-
function magnets (eqs. (6.1) and (6.2)), as well as the elliptic boundary eq. (C.6),
have to be included into this MTE model. We clearly see in the comparison of the
different models figs. 6.10 and 6.11, that the field coefficients differ notably.

Fig. 6.18 The vacuum cham-
ber approximated as two
parallel plates (eq. (D.10)).
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Fig. 6.19 The vacuum cham-
ber approximated as a rectan-
gle (eq. (4.21)) for a strongly
displaced beam.
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6.5 Summary

In this chapter, the results of studies concerning the CERN PS were presented. En-
tirely new closed-form expressions for several models of increasing unprecedented
accuracy of the PS combined-function magnets were derived. The opening of a
domain to infinity led to these closed-forms as discussed in section 3.5.4. It was
necessary to find these solutions since only the parallel plate solution was known
beforehand.
These and novel closed-form solutions (section 5.3.9) to model the off-axis elliptical
vacuum chamber were used to compute, for the first time, the intensity-dependent

indirect tune-shift during the MTE. The different approximations for the true ge-
ometries were compared. Significant differences can be observed during the MTE
process, due to the largely off-centred beam. The alternating pattern of open and
closed magnetic blocks tend to compensate for the magnetic effects.
On top of the closed-form solutions, a new semi-analytical approximative and more
accurate solution for the PS-magnets was given. The magnets were modelled as
polygons, which is novel in this context and can be used to calculate the Neumann
function for arbitrary unclosed magnetic yoke structures and hence other machines
as well. These precise calculations were used to justify the usage of the closed-forms
since there was so far no better model available.
Finally, during the MTE, the position of the beamlets of the split beam reveals an
intensity-dependent behaviour (measurements). A detailed study has shown that the
main contribution stems from the indirect fields. It confirms the importance of accu-
rate modelling of indirect field influence as used in tracking codes. All closed-form
expressions for the fields, as used in these simulations, where derived in the context
of this thesis.
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Chapter 7

Applications to the CERN Large Hadron
Collider (LHC)

First you guess. Don’t laugh, this is the most important step.

Then you compute the consequences. Compare the consequences

to experience. If it disagrees with experience, the guess is

wrong. In that simple statement is the key to science. It doesn’t

matter how beautiful your guess is or how smart you are or what

your name is. If it disagrees with experience, it’s wrong. That’s

all there is to it. "

— Richard P. Feynman

7.1 The Machine

The Large Hadron Collider (LHC) is the largest circular accelerator of the world and
has a length of 27 kilometres. LHC reuses the tunnel of its predecessor LEP (Large
Electron Positron collider). The shape of the LHC is not entirely circular; it consists
of eight arcs, and eight straight sections termed insertions. The ring is about 100 m
underground along the French-Swiss border close to Geneva and is run by CERN.
The LHC is a hadron-hadron collider and consists of two counter-rotating beams
crossing at four points where huge detectors track the interaction products [125] as
shown in fig. 7.1 which gives a schematic overview of the accelerator. The eight oc-
tants are labelled by 1-8 and the four interaction points with their detectors, namely
CMS, LHCb, ATLAS and ALICE, where Beam 1 (blue) and Beam 2 (red) collide.
Two thousand eight hundred eight bunches of protons (each having a possible in-
tensity of 1.15 × 1011 charges) are circulating in the LHC, which collide 40 million
times per second. A system of the radio frequency cavities is used to accelerate the
beam to the top energy, which is about 15 times higher than the injection energy of
450 GeV yielding a final value of 7 TeV and a centre of mass energy of 14 TeV. In
fig. 2.1, the injector chain of the LHC is pictured. The LHC operates with protons
and ions. The protons start in a linear accelerator (LINAC), the LINAC2 (which is
now replaced by LINAC4), and the ions start in LINAC3. The injectors, as discussed
in section 2.1.1, are required to achieve the LHC injection energy of 450 GeV. In the
following we discuss the elements of the LHC, which are important for the tune-shift
model, since these elements interact electromagnetically with the beam.

7.1.1 The Magnets

To force the beam on the circular orbit, 1232 15 m long superconducting dipole
magnets are placed along the ring; each magnet bends the beam by an 8.33 T strong
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Fig. 7.1 A schematic layout
of the LHC.
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Fig. 7.2: The cross-section of the main superconducting magnets of the LHC, the
dipole left (MB) and the quadrupole (MQ) right. Taken from [90].

magnet field. A special alloy of niobium and titanium is used in the magnets to
generate the strong field and these elements need to be cooled down to around 1.9
K. These magnets occupy around two-thirds of the total length of the LHC. The
cross-section of these magnets is pictured in fig. 7.2 (left plot). Two empty circles
on the horizontal line display the beam pipe which is surrounded by a stainless
steel collar and an iron yoke. The super-conducting coils are drawn in blue and the
coloured domain is the iron yoke. Colours indicate the magnetic potential generated
in these elements.
To keep the beam focused 392 quadrupole magnets are installed along the LHC
(fig. 7.2, right plot). There are also several higher-order magnets to correct the
higher-order effects, which in total sums up to 36 different types of superconducting
magnets.
Normal conducting magnets are present as well. In total 15 different types of normal
conducting magnets were used. An example of a dipole magnet, the separation

dipole MBW type, as used in the tune-shift model, is shown in fig. 7.3. A detailed
treatment of the magnetic infrastructure can be found in [90].
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Fig. 7.3 The cross-section of a
conventional warm magnet of
the LHC, the separation dipole
MBW. Taken from [90].

0 200 400 600

7.1.2 The LHC Beam-screen

The purpose of the beam-screen is mainly to protect the elements from damage due
to the synchrotron radiation generated by the particle beam. A cross-section of an
LHC-dipole is shown in fig. 7.4, providing an overview of all involved elements.
The LHC beam-screen has a cross-section, which is called rectellipse which is a
combination of an ellipse and a rectangle. It consists of circles cut by central placed
rectangles (fig. 7.5). The size and the orientation (a 90-degree rotation) of the beam-
screen varies along the ring. In fig. 7.5, the largest and smallest height to width ratio
are depicted. They are presented, since their image field effect differs the most within
the rectelliptical shapes. The beam-screen with the dimensions shown in blue covers
almost the full ring, dominating with more than 94% of the total length.

7.2 The Modelling of the Elements

To establish a model of limited mathematical complexity, domains of complicated
arrangements of elements as in the interaction regions are not explicitly taken into
account. The interaction with these elements is negligible compared to the elements
close to the beam.
The main contribution of the indirect field effects, as shown in this chapter, is caused
by the electromagnetic interaction of the beam with the beam-screen since it is
the closest element to the beam. As illustrated in fig. 7.7, its cross-section is ap-
proximated in our model as in- and out-scribed polygons. An increasing number of
vertices is used, which in the limit approaches the correct solution. As one of the
key results of this work (section 3.4) it was proved that the correct Green function
of an arbitrary simply-connected domain is bounded by the solution of in- and out-
scribed domains, here polygons. Although there are alternative numerical methods
to estimate the impact of the beam-screen (e.g. [5]), here we want to demonstrate the
advantage of having an error estimate as introduced in section 3.4 and a sufficiently
accurate closed-form solution for this problem is presented.
Besides the beam-screen, as mentioned, the LHC consists of magnetic elements. The
main dipole and quadrupole magnets are superconducting magnets, which are en-
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closed by an iron yoke. In a simplified approximation the yoke is described as a block
of iron with a drilled hole of a diameter of 80 mm, and the solution of the circular
problem eq. (3.55) was used. This type of magnets gives the main contribution of
the total length of the magnetic components. The second-largest part stems from the
non-super-conduction magnets, the so-called warm magnets. Because of their minor
contribution, they are approximated as parallel plates (strips), although arbitrary
geometries can be calculated via polygonal approximations as demonstrated for the
combined-function magnets section 6.2, where no closed-forms exist any-more.
In the context of this thesis, in total, around 300 different shapes were used in the
model to calculate the indirect space-charge tune-shift with sufficient and unprece-
dented accuracy. The elements leading to an electric boundary problem included cir-
cles, ellipses, and rectangles calculated as closed-forms and the rectelliptical parts,
which were approximated with the help of polygons. The formulas and graphical
representations of the closed-form image tensors were provided in section 5.3.

Fig. 7.4: The structure of an LHC dipole. Taken from [126].
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Fig. 7.5: The cross-section of the LHC beam-screen. The left graphic shows the
biggest and smallest height to width ratio of the different beam-screen geometries.
The right picture shows a photograph of the beam-screen taken from [127].

7.2.1 The LHC Beam-screen as a Polygon

As described above, the geometry of the LHC beam-screen is modelled as a polygon.
Instead of using a polygonal shape, a circular arc shape could be utilised. A study, car-
ried out in the scope of this work, showed that this formulation leads - by employing
the Schwarzian [30, 41, 128] - to Heun’s equation [129] in terms of hypergeometric
functions. An exact algorithmic approach was used [130] to find the involved series
coefficients. These coefficients depend in our case recursively on two start values.
Nevertheless, another general approach was finally chosen since these techniques
are long-winded and restricted to specific shapes - the circular arcs. By using the
Schwarz-Christoffel-transformation, we can approximate arbitrary cross-sections as
polygons to arbitrary precision (aside of possible numerical difficulties).

7.2.2 Theoretical Convergence Studies

The polygonal approximation of a circle is shown in fig. 7.6. A Green function,
expressed in terms of hypergeometric functions, was formulated (using eq. (4.31)).
A rate of convergence ? = 2 was found using analytic techniques (expressed through
hypergeometric series). This convergence behaviour can be explained by the fact
that the chosen method increases the number of polygonal points at the =th step by a
factor four. Colours indicate the approach to the true shape from bright to dark. As
proven in section 4.2.3, the conformal mapping of the regular polygon converges to
the mapping of circle if the number of sides goes to infinity.
In fig. 7.7, the situation is presented for the rectellipse. In this graphics the constructed
in/out-scribed polygonal approximations are shown. In the =th approximation step
the out-scribed polygons have 4= + 2 vertices, while the in-scribed polygons have 4=
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148 7 Applications to the CERN Large Hadron Collider (LHC)

vertices. Again, we observe a rate of convergence of ? = 2 in numerical studies. In
such studies, the true convergence behaviour can only be estimated, without knowing
the true value [131, 132]. However, we know the error bound for any number of
vertices by comparing the in and out-scribed polygonal solution, permitting us to
end at sufficient accuracy without the need for additional convergence studies.
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Fig. 7.6: The circle approximated as in/out-scribed regular polygons.

7.3 Measurements

Measurement data of the Base Band Tune (BBQ) measurement system and beam
position monitors collected in 2012 during the LHC runs allowed to study the
impact of the intensity on the transverse tunes [43]. The injection oscillations were
monitored with beam position monitors during the injection phase. Then the data
was carefully analysed and benchmarked among the different devices to extract the
tune-shift due to the intensity with reasonable accuracy. These results build the basis
of the validation of our theoretical model.
Since 2016, the correction of this effect is implemented into a feed-forward system
of the LHC (and the SPS), using an empirically determined value for the tune-shift
correction at injection. The operationally measured values are in excellent agreement
with our theoretical predictions [133]. Except for the fact that the authors claim a
value of 0.25 for the Laslett coefficient of the incoherent magnetic effect (by using
parallel plates of width = 2.5 cm), while, as deduced here, the magnetic effect is
almost zero and the electric equivalent caused by the beam-screen is calculated as
≈0.27, which explains the measured value of 0.25.
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Fig. 7.7: The LHC beam-screen modelled as in/out-scribed polygons with increasing
accuracy.

7.4 Results

As explained in section 5.2, different models of increasing complexity were used to
provide prediction of the intensity-dependent indirect tune-shift. Lastly, these models
were benchmarked with the measurements. As in the case of the PS, the codes MAD-
X [119] and PTC [121] were employed to calculate the orbit and the V-function. In
section 5.2.1 the different calculations to estimate the indirect tune-shifts are listed.
The simplest estimate was obtained by the so-called smooth approximation. In this
case the V-function is averaged along the whole ring, which is labelled B<>>Cℎ in
table 7.1. The form factors are calculated at the centre of the geometry of the corre-
sponding elements along the ring. The next improvement of the model is to take the
calculated V-functions at the longitudinal position along the ring, while calculating
the form factors still at the geometrical centre of the elements, which is named cen-

tred in table 7.1. Additionally, the V-function was measured along the ring to gain
more accuracy. The label for this case is meas. V. As an extra step, the longitudinal
resolution along the ring was increased, which can be found in table 7.1 (distinction
of low res. and high res.). Finally, the closed orbit was measured, and the form factors
were calculated at the transverse position of the beam at the corresponding element
and longitudinal position, which is indicated by the label meas. c.o..
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All models of the beam-screen, except the parallel plate approximation, predict val-
ues within the error-band of the measurements.
The main contribution of the tune-shift is originated in the interaction of the beam
with the LHC beam-screen. The circular iron yokes of the superconducting magnets
were calculated to contribute about four to five orders of magnitude lower than the
beam-screen. The effect of the warm magnet elements is about three orders lower
than the beam-screen and hence justifying their modelling as parallel plates. Due
to their insignificant impact, magnets are not be further discussed. Moreover, the
superconducting elements do not interact significantly with the beam.
In table 7.1 the tune-shifts per proton are summarized for the different models. Here
the beam-screen is taken as an out-scribed polygon with 132 vertices. One sees that
the smooth approximation already yields a reliable indication of the overall tune-
shift. If the resolution of the model is increased, the tune-shift slightly decreases.
Taking the measured V into account does not change the values sharply, a good
indication that the model is quite accurate. Including the closed orbit also does not
change the values considerably, which can be explained by the fact that the beam is
only weakly off-centred.
The tune-shift is increasing during the filling process from the SPS due to the increas-
ing circulating intensity. At the end of the filling process the tune-shift calculates
to around 0.009 (with 2808 bunches each 1.15 × 1011 protons). This clearly demon-
strates the necessity for a correction of this effect.
In fig. 7.8 the measurement of the horizontal and vertical incoherent tune-shift of the
two counter-rotating beams is compared to different models of the beam-screen. The
true shape of the beam-screen is approached using in-, and out-scribed polygonal
models with an increasing number of vertices starting from the parallel plates (==2).
The exact solution is between the in and out-scribed polygonal solution as proven.
It is indicated for the incoherent horizontal tune-shift of beam 1 by the orange line
(out-scribed) and dark green line (in-scribed). We see that the rectangular shape pro-
vides an excellent model to approximate the solution as a closed-form. Calculations
have been performed to a maximum number = = 130 for the inscribed and = = 132
for the out-scribed polygon, since the error is negligible compared to the error of the
measurement even earlier. The round markers indicate closed-form solutions. The
solid lines show the measured values inclusive error bounds (dotted lines). In other
studies only the strip (parallel plates [10]) was used.
The full off-axis image tensors of the beam-screen (of an inscribed polygonal ap-
proximation with = = 132 vertices) are plotted in figs. 7.9a and 7.9b for the coherent
and incoherent case, respectively.

7.4.1 A Closed-Form Model: The Rectellipse as a Rectangle

Since the polygonal solution and the measurement agree excellently with the rectan-
gular approximation, (see fig. 7.8), it is adequate to approximate the rectellipse as a
rectangle, which can be expressed through closed-forms.
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Fig. 7.8: The indirect tune-shift per proton Δ&8=2. of the LHC calculated with differ-
ent models (the numbers on the G-axis indicate the number of vertices to approximate
the beam-screen - see fig. 7.7) compared to the measured values (solid lines including
error bounds). The dotted green and orange lines indicate the convergence behaviour
according to lemma 3.1.

A comparison of the electric potentials for a centred beam is depicted in figs. 7.10
and 7.11 for the rectangle and the rectellipse, respectively. In the upper plot of
fig. 7.12 the difference of the Green functions of a centred beam and in the lower
plot, the difference between the two incoherent coefficients is pictured. Because the
potential difference of the two shapes reveals only a very small variation around the
centre of the geometry, the incoherent coefficients do not differ considerably there.
So, the approximation of the rectellipse as an out-scribed rectangle is justified for
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beams near the centre of geometry as it is the case during the operation in the LHC.
The closed-form image tensors of the rectangle are plotted in figs. 5.3a and 5.3b.
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Fig. 7.9a: The coherent electric image tensor of the rectelliptical CERN LHC beam-
screen (explanation in section 5.3.1).
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Fig. 7.9b: The incoherent electric image tensor of the rectelliptical CERN LHC
beam-screen (explanation in section 5.3.1).
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Fig. 7.10: The Green function for a centred source of the rectelliptical shape.

Ḡ (1)

−1

0

1

H̄ (1)
−1

0

1

po
te

nt
ia

l (
1)

−5

0

Rectangle Green function

Fig. 7.11: The Green function for a centred source of the rectangular shape.

7.5 Future Application: CERN (H)igh-(L)uminosity - LHC

As explained in section 2.1.1, the upgrade of the LHC to the HL-LHC has the final
goal to increase the rate of collisions by a factor of five. In order to achieve such
a high performance, several challenging upgrades have to be installed, which will
take place in the following decade. The model of HL-LHC changes only slightly
with respect to the LHC model, as used in this thesis to calculate the indirect space-
charge tune-shift. A new octagonal beam-screen will be installed in the aperture of
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Fig. 7.12 A comparison of
the rectellipse and the out-
scribed rectangle. In the upper
plot, the difference between
the potentials of a centred
beam is shown. The lower plot
shows the deviation of the two
incoherent image coefficients.
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Table 7.1: The tune-shifts of the CERN LHC - different studies.

Per proton at injection energy:

beam beam 1 beam 2
tune-shift Δ&8=2.

ℎ
(1) Δ&8=2.E (1) Δ&8=2.

ℎ
(1) Δ&8=2.E (1)

experimental 2.79(±1.25)e-17 -3.16(±0.85)e-17 2.9(±1.6)e-17 -3.32(±0.95)e-17
low res.
smooth 2.650e-17 -2.737e-17 2.614e-17 -2.796e-17
centred 2.428e-17 -2.404e-17 2.427e-17 -2.405e-17
meas. V 2.498e-17 -2.620e-17 2.525e-17 -2.598e-17

high res.
smooth 2.635e-17 -2.716e-17 2.592e-17 -2.782e-17
centred 2.386e-17 -2.363e-17 2.385e-17 -2.366e-17
meas V 2.379e-17 -2.371e-17 2.399e-17 -2.379e-17
meas. c.o. 2.387e-17 -2.385e-17 2.384e-17 -2.396e-17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

7.5 Future Application: CERN (H)igh-(L)uminosity - LHC 155

of the mini-V quadrupole magnets. Instead of the rectellipse, the shape will be
octagonal, as illustrated in fig. 7.13. The Q3 (left) and the Q1 (right) shapes are
shown. The Green function of this geometry can be solved exactly as given in
section 5.3.6 and the off-axis form factors are visualized in figs. 5.4a and 5.4b.

Fig. 7.13: The new HL-LHC beam-screen. Graphics taken from [134].

7.5.1 Results

The results of the calculations of the tune-shift estimations per proton are summarized
in table 7.2. Four different models were compared: the smooth and the centred model
with two different longitudinal resolutions (denotes as low res. and high res.). The
smooth and the centred calculations were performed as described in section 5.2.1.
A small decrease of the tune-shift can be seen when the resolution of the model is
increased. It can be noticed that for the HL-LHC model, the smooth approximation

differs more significantly from the centred model than in the LHC model.
For the HL-program the intensity of the beam in the LHC will increase by a factor
two. The approximation through the rectangular shape still is valid since only small
parts of the beam pipe will be replaced, but the intensity-dependent indirect tune-
shift increases by about a factor two as a result of the higher intensity. At the end of
a standard LHC filling procedure, the maximal tune-shift would be in the order of
0.035, assuming an increase of a factor two of the number of protons with respect to
a standard filling according to the design values given in section 7.4.
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Table 7.2: The tune-shifts of the CERN HL-LHC of the different approximations.

Per proton at injection energy:

beam beam 1 beam 2
tune-shift Δ&8=2.

ℎ
(1) Δ&8=2.E (1) Δ&8=2.

ℎ
(1) Δ&8=2.E (1)

low res.
smooth 2.724e-17 -2.786e-17 2.705e-17 -2.828e-17
centred 2.450e-17 -2.336e-17 2.447e-17 -2.343e-17
high res.
smooth 2.711e-17 -2.765e-17 2.684e-17 -2.813e-17
centred 2.419e-17 -2.306e-17 2.416e-17 -2.312e-17

7.6 Summary

In this chapter, the intensity-dependent indirect tune-shift of the LHC at injection
energy was calculated with unprecedented accuracy. This effect has to be taken
into account during the filling of the machine during operation to keep the beam
stable. The computations agree remarkably well with measurements, increasing the
accuracy of previous methods by more than a factor of two. It was shown that the
main contribution of the effect is originated in the electric interaction with the beam-
screen, and other interactions are insignificant (all form factors were calculated using
closed-forms).
A novel semi-analytical method to calculate the approximative electric field caused
by the off-centred beam with the beam-screen was developed. This method provides
an error bound of the approximation as proven in this thesis in section 3.4. Addi-
tionally, it was shown that the problem could be formulated through a closed-form
expression, namely by approximating the beam-screen via a rectangular shape. Dif-
ferent models were compared based on these methods, exploiting different levels of
complexity. The longitudinal resolution of the model was increased, the V-function
was measured, and the image effects were calculated at the position of the measured
closed orbit.
The conclusion is that the smooth approximation using the closed-form serves the
purpose of estimating the intensity-depended tune-shift adequately.
As a future application, the intensity-dependent tune-shift for the HL-LHC was cal-
culated. The estimation of this effect is of particular interest for the project, since
it will be approximately a factor two higher than for LHC. Modifications of the
beam-screen to an octagonal shape, which was solved exactly, show a minor impact
on the final result. Consequently, the closed-form approach developed for the LHC,
by using a rectangular approximation of the beam-screen, can be applied to the
HL-LHC.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Part IV

Summary

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Chapter 8

Summary and Outlook

The main goal of this work was to provide estimates for the influence of indirect

space-charge driven (ISCD) effects, which are crucial for stable performance of
accelerators as, e.g. the LHC, in simple closed-form expressions. In contrast to
numerical methods, which were considered in chapters 2 and 6, involving expensive
calculations, simpler forms can reveal some insights into the behaviour of the system
on an analytical level and describe phenomena observed in the PS, the LHC and
possibly other accelerators.
Therefore a theoretical framework to formulate a new Lorentz force operator of the
fundamental solutions, namely the Green functions, for simply-connected domains
of the perfect 2D electro and magnetostatic boundary value problem, based on
conformal mappings, was established on the Riemann-sphere (an overview of the
mathematical structure is explicated in fig. 3.2). It allowed for gathering insights
which revealed new simple mathematical expressions.
One of the main results was the derivation of closed-forms for unbounded star-

like domains eq. (3.62) for the magnetostatic problem. It was used to estimate the
influence of the magneto-static interaction of the beam with the combined-function

magnets of the PS and were compared to a - in this context also novel - highly
accurate polygonal approximation to validate the simpler approximations. Different
ISCD tune-shift models for the largely off-centred beamlets, as generated during
the Multi-Turn Extraction (MTE) were studied, resulting in an accurate closed-form
description. The effect of the electro and magnetostatic interaction were about the
same strength. The beamlets reveal also an intensity-dependent positional behaviour

in measurements. This observation could be explained by ISCD effects in simulations
based on closed-forms expressions as provided in this work and shows the importance
of such studies.
The electrostatic case, which leads to the Dirichlet problem, was solved using the
Green function of the first kind. Because of its conformal invariance, the solution
was shown to be much simpler than in the magnetostatic case. Here, one major result
was the proof of an approximative solution of the indirect fields based on Schwarz-

Christoffel transformation for arbitrary simply-connected domains, including a novel

error bound estimation (section 3.4). Having an error bound has the advantage if
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160 8 Summary and Outlook

compared to alternatively existing methods, that convergence studies are not needed
since the error to the true solution is known (which is usually not the case). Besides,
the approximative method is stopped if the accuracy is sufficient.
This technique was used to calculate the ISCD tune-shift of the LHC, which has to be
corrected during the accelerator operation, showing unprecedented agreement with

the measurement and justifying the approximation of the LHC beam-screen with
a closed-form, the rectangular shape in terms of elliptic functions. This approach
improves previous attempts by a factor of two and describes the phenomena for the
first time theoretically. Furthermore, it was shown that the principal component of the
ISCD tune-shift is the interaction with the beam-screen (>99%) and that the impact
of the magnetic interaction could be neglected. In this manner, several different
models were compared, including measurements of the V-functions and the closed

orbits without demonstrating significant changes, showing evidence that the used
model is sufficiently accurate. Since 2016, the measured tune-shift was corrected
at injection via a feed-forward system based on empirical data. Using the estimates
derived in this thesis, this could be achieved in the future in a much more elegant
and faster way.
As another case study, the HL-LHC was treated. In the HL-LHC era, the intensity

will increase by a factor of two, and in turn, also the indirect tune-shift grows by a
factor of two. Although parts of the standard rect-elliptical shape are foreseen to be
replaced by an octagonal cross-section, for which an exact solution was provided,
the influence is mainly governed by the remaining rect-elliptical part. As in the LHC,
the beam-screen can be approximated by the closed-form of the rectangle.
Along the way of developing the theory, several new representations of the Green

function were found as a novel integral representation of the Neumann function for
regular simply-connected domains (section 3.5.2). The convergence problems arising
using the method of images were discussed in a dedicated chapter (appendix D.1),
where a new convergence proof can be found.
Finally, closed-form solutions based on the newly introduced off-axis image operators

for several new cross-sections were presented, which can be utilised in other models
and accelerators. For existing solutions, a detailed comparison with the literature was
performed to sort out discrepancies and to provide a reliable reference. Algorithmic
routines to calculate the image operators for arbitrary cross-sections - if possible
expressed through closed forms - were developed to avoid the tedious and error-
prone calculations by hand and to make the process more transparent.
In future studies, the following topics could be addressed:

• A detailed study of the intensity-dependent beamlet position, including the novel
closed-form expressions of the combined-function magnets.

• Including coupling effects in the LHC and the HL-LHC, especially since the
intensity, and consequently, the ISCD effects increase in future applications.

• The calculation of smooth boundaries and their boundary behaviour compared to
the polygonal approximations.

• The implementation of arbitrary charge distributions and higher-order terms of
the indirect field in tracking codes based on the developed Green functions as
provided in this thesis.
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Appendix A

The Complex Version of the Electro and
Magnetostatic Equations

We take a closer look onto the physics behind eq. (3.2). We assume " ( C̄ is
a 1-dimensional connected complex manifold with m" as a Jordan contour (sec-
tion 3.2.1). � be a complex valued function of a complex argument. The theorem of
Green-Riemann is written in its complex version:∫

m"

� dI =

∫
"

m̄� dĪ ∧ dI. (A.1)

We show now:

Re

∫
m"

�dI → circulation of �̄, (A.2)

Im

∫
m"

�dI → flow of �̄. (A.3)

Proof. Here a more technical notation is used to highlight the familiar form of the
equations as found in the technical literature. Writing the right side in the classical
form, where � = D + iE, D and E are real valued functions of a complex argument,
one obtains: ∫

m"

�̄ dI =

∫
m"

(D − iE) (dG + idH) (A.4)

=

∫
m"

[
(D dG + E dH) + i(−E dG + D dH)

]
(A.5)

=

∫
Γ

dB
[
(D, E) · ®BΓ︸     ︷︷     ︸
circulation

+i (D, E) · ®=Γ︸     ︷︷     ︸
flow

]
. (A.6)

Γ denotes the parametrized boundary m" and ®BΓ and ®=Γ denote the mathematical
positively oriented tangential and outwards pointing normal vector of Γ. If we now
take a look on the right side of eq. (3.2), we find (using the curl and divergence
operator defined in the standard way, e.g. [30], p.40):
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164 A The Complex Electro and Magnetostatic Equations∫
"

m̄�̄ dĪ ∧ dI =
1

2

∫
"

(mG + imH) (D − iE) dĪ ∧ dI (A.7)

= i

∫
"

[
mGD + mHE + i(−mGE + mHD)

]
dGdH (A.8)

=

∫
"

[
(mGE − mHD) + i(mGD + mHE)

]
dGdH (A.9)

=

∫
"

[curl(D, E)· ®= + i(div(D, E))] dGdH. (A.10)

⊓⊔
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Appendix B

Dirac Sequences as Used for the Proof in
theorem 3.11

Definition B.1. A Dirac sequence or approximative identity is a a sequence of func-
tions {ΦA }0<A<1 satisfying the following three conditions (see e.g. [18], p. 88):

•
∫ 1

0
ΦC (\)3\ = 1 for all t

• supC
∫ 1

0
|ΦC (\) |3\ < ∞

• for all X > 0 one has
∫
|G |>X |ΦC (\) |3\ → 0 as C → 1.

As shown in fig. 3.18 the mapping �A−1 maps the coloured circular domains onto
same coloured domains, which grow with increasing A . The points {eii: |: ∈
{1, 2, 3}} are mapped in the limit A → 1 onto the north-pole on C̄. The bound-

ary of the domain enclosed by �Aeii−1
is growing to ∞ around the points in the

limit limA→1 �A
−1 (Aeii: ). We divide the boundary into three sub domains along the

green lines. The three in this way generated boundaries extend from the points ?1 to
?2 from ?2 to ?3 and from ?3 to ?1, whereas the points I1, I2 and I3 are located in
between these points, respectively. Lets denote these boundaries as Γ1→2, Γ2→3 and
Γ3→1. The points are chosen such that the length of the paths W8 is equal.
If we now regard an function of the form:

 A (g) =
|m 5 −1

A (g) |
|m"A |

(B.1)

Now we can split the numerator into equal parts:

 A (g) =
|m 5 −1

A (g) |∑#
:

∫
Γ:→Γmod(:+1,# )

|g | | 5 −1
A (g) |

=
|m 5 −1

A (g) |

#

∫
Γ1→Γ2

|g | | 5 −1
A (g) |

︸                  ︷︷                  ︸
:=!A

(B.2)

Now splitting the nominator:

^:A (g) := |m 5 −1
A |Θ(arg(g) − i: )Θ(imod(:+1,# ) − arg(g)) (B.3)
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ζ

Mr1

Mr2

Mr4

Mr3

Mr5

Mr→1 = ∂#

φ1

φ2

y

xζ̃ → ∞

M̃r4
M̃r5

M̃r3
M̃r2

M̃r1

φ̃1

φ̃2 M̃r→1

Kr(φ)

φ

r1

r2

r3

r4

r5

φ1
φ2

F−1
r

|∂F−1
r |

|∂Mr |

Fig. B.1: An unbounded star-like domain " with one opening to the north-pole.

hence |m�−1
A (g) | = ∑#

: ^
:
A (g) and:

 A (g) =
1

#

#∑
:

^:A (g)
!A

(B.4)

Each term ^:A (g)
!A

full fills all three conditions of definition B.1:

•
∫
^:A (g)
!A

|g |

Consequently we can write:
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B Dirac Sequences as Used for the Proof in theorem 3.11 167

lim
A→1

 A (g) =
#∑
:

X(g − eii: ) (B.5)

Another example is shown in fig. B.1. There the opening to the north-pole is reached
following the ray with i = 0. The domains with increasing A mapped by �−1

A onto
the strip-like shapes, are coloured from yellow to red outside of the arc Γi1→i2 and
green to blue on the inside. If A → 1 the shape is the so-called half-strip. The length
of the mapped arcs (by �−1

A ) from i1 to i2 is drawn in the lowest plot. There the
form of the Dirac sequence depended on A is clearly visible and in the limit A → 1
the result is the well-known Dirac delta distribution. The mapping was explicitly
calculated in section 4.2.1.
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Appendix C

Special Functions Used in the Text

A listing of functions used in the text.

C.1 Used Elliptic Integrals and Functions

C.1.1 Elliptic Integrals

To avoid complications, we have to mention, that the elliptic integrals and functions
are used with the convention where the second argument is the parameter not the
modulus. The elliptic integral of the first kind � (q|<) is defined as:

� (q|<) :=

∫ q

0

d\√
1 − < sin2 \

=

∫ sin q

0

dC√
(1 − C2) (1 − <C2)

, −c
2
< q <

c

2
.

(C.1)

The complete elliptic integral of the first kind  (<) := � ( c2 |<) and  ′(<) :=
 (<′), with <′2 = 1 − <2. The elliptic integral of the second kind � (q |<) is given
by:

� (q|<) =
∫ q

0

√
1 − <

(
\ sin2

)
d\ =

∫ q sin

0

√
1 − <C2√
1 − C2

dC −c
2
< q <

c

2
. (C.2)

The complete elliptic integral of the second kind � (<) := �
(
c
2

��<)
.
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170 C Special Functions Used in the Text

C.1.2 Jacobi Elliptic Functions

The amplitude for Jacobi elliptic functions am(D |<) is the inverse of the elliptic inte-
gral of the first kind. If D = � (q|<), then q = am(D |<). The Jacobi elliptic functions
sn(D |<) and cn(D |<) are given respectively by sn(D |<) = sin(q) and cn(D |<) =

cos(q), where q = am(D |<).
In addition, other used functions are defined as, , where q = am(D |<):

• dn(D |<) =
√

1 − < sin2 (q),
• cd(D |<) := cos(q)√

1−< sin2 (q)
,

• nd(D |<) := 1√
1−< sin2 (q)

,

• sd(D |<) := sin(q)√
1−< sin2 (q)

.

C.1.3 The Parameter of the Green Function of the Rectangle and

the Ellipse

Using eqs. (3.45), (4.17) and (4.21) one gets:

6 =
1

2c
log

����� sn(
K
2 (I + i 12 |<2) − sn( K

2 (I0 + i 12 ) |<2))
sn( K

2 (I + i 12 ) |<2) − sn( K
2 (I∗0 + i 12 ) |<2)

����� (C.3)

K′(<2)
K(<2) =

21

0
(C.4)

for the Green function of the rectangle with the width and height 0 and 1 respectively.
Using eqs. (3.45), (4.38) and (4.42) one gets:

6 =
1

2c
log

������
cd( K′

c
cosh−1 I

:
|<2) − cd( K′

c
cosh−1 I0

:
|<2)

cd( K′
c

cosh−1 I
:
|<2) + cd( K′

c
cosh−1 I

∗
0
:
|<2)

������ (C.5)

K(<2)
K′(<2) =

| log( :

1+
√
12+:2

) |
c

=
| sinh−1 1

:
|

c
(C.6)

for the Green function of the ellipse with the width and height 0 and 1 respectively.

: :=
√
02 − 12.

In fig. C.1 the parameter is plotted for the ellipse (blue) and the rectangle (green).
The ellipse starts from a circle and the rectangle from a square and both end up in
a strip of width 1. The parameter of the rectangle decreases much slower than the
parameter of the ellipse, meaning that the after a ratio of around 1.5 for the ellipse
the change of the field is not as strong as in the case of an rectangle. In both cases
the eqs. (4.17) and (4.38) have to be solved numerically.
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C.1 Used Elliptic Integrals and Functions 171

C.1.4 Q-Pochhammer Symbol

The Q-Pochhammer product is defined as:

(0; @∞) :=
∞∏
:=0

(
1 − 0@:

)
, (C.7)

(0; @=) :=
(0; @)∞

(0@=; @)∞
. (C.8)

C.1.5 Hypergeometric Function and Gamma Function

The Gamma function is given by:

Γ(B) :=

∫ ∞

0
CB−14−C3C, Re(B) > 0. (C.9)

Using the rising factorial Pochhammer (0)= := 0(0 + 1) . . . (0 + =− 1) = Γ(0+=)
Γ(0) , the

regular Hypergeometric function is defined as:

2�1 (0, 1, 2; I) =
∞∑
==0

(0)= (1)=
(2)=

I=

=!
, 0, 1, 2 ∈ C. (C.10)

C.1.6 Heaviside Function

� (G) =
{

0 G ≤ 0

1 G > 0
(C.11)

Fig. C.1 The parameter as
a function of the width 0 of
height 1 ratio for the ellipse
(blue) and the rectangle
(green).
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172 C Special Functions Used in the Text

See [135] p.16, eq.(1.8).
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Appendix D

On Issues of the Method of Images

D.1 The Convergence of the Image Method Applied to the

Problem of Two Infinite Plates

D.1.1 The Problem of One Infinite Plate

Here we discuss the method of images, which is a common approach to solve
magneto- and electrostatic boundary problems as presented in standard textbooks
on this topic. Although it is a very intuitive method, it can only be applied in highly
symmetrical configurations as, e.g. one or two infinite plates, a rectangle a circle or
a wedge.
The method also shows pitfalls concerning the convergence of the obtained infinite
series, which will be solved in this study using physical arguments.
As shown, the method gets rapidly fairly complicated, but it is still successfully used
in mathematical physics to obtain new series representations of special functions (see
e.g. [24]). In this spirit, we derive a new representation of a product representation
of elliptic functions appendix D.1.3.
For the moment we step back from the assumption of perfect boundaries and assume
materials with finite dielectric or magnetic properties, which means for the material
that ` < ∞ and Y < ∞ (as defined in sections 3.3.1 and 3.3.2).
The key idea is that the field caused by the fundamental singularity, as demonstrated
in the last chapter, has to full fill boundary conditions at a boundary W of a material
"1, having the material property either Y1 or `1 in the electric or magnetic case,
respectively. Along a straight wall W (the H-axis), there will be a change to a material
"2 with a Y2 or `2 in the electric or magnetic case, respectively. The generating
source at ? = (−Δ, 0) (the wire carrying a current is located at a distance of Δ from
the origin on the G-axis) will be located on the G-axis. The situation is illustrated
in fig. D.1. Where ? be now reflected at W on the G-axis to ?′ = (Δ, 0). After
short algebra (see e.g. [74], pp.111-113 for the electric case), one can determine the
strength of the image ?′ subject to eqs. (3.25a) and (3.25b) in the magneto static
case and eqs. (3.33a) and (3.33b) in the electrostatic case:
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174 D On Issues of the Method of Images

Fig. D.1 An infinite plane
wall W separating two regions
"1 (blue) and "2 (green)
with different material prop-
erties.

γ

M1 M2

x

y

p′p (0,0)

Electrostatic image strenght: @ = 1 → @′ = −Y2 − Y1

Y2 + Y1
:= −eU, (D.1)

Magnetostatic image strength: @ = 1 → @′ =
`2 − `1

`2 + `1
:= eU . (D.2)

We introduced a damping factor U < 0 with the value: log Y2−Y1
Y2+Y1

or log `2−`1

`2+`1
in

either the electrical or the magnetic case.
The validity of the solution can be easily verified by inserting this into the continuity
conditions eqs. (3.25a) and (3.25b) and eqs. (3.33a) and (3.33b) for the magnetic
and electric case, respectively. Hence the fields are generated by the source @ and
the mirror image of @′ with the above calculated strength and are in "1 of the form:

Electrostatic field: � = @

(
1

I + Δ
− eU

1

I − Δ

)
, (D.3)

Magnetostatic field: � = @

(
1

I + Δ
+ eU

1

I − Δ

)
. (D.4)

In the limiting case were in the magnetic case `2 >> `1 or Y2 >> Y1 the strength of
|@′ | → 1. |@′ | is idealized and can be seen as a perfect image. In the case the material
is not perfect, the strength of |@′ | < |@ |, which means it’s intensity is reduced.

D.1.2 The Problem of Two Infinite Plates

Now, knowing how to solve the continuity problem along an infinite plate, we use
this framework to solve the problem of two parallel infinite plates.
Assuming conditions as given in many standard textbooks, we have two parallel
infinite plates at a distance 3, and we employ the method of images. Δ denotes the
distance of the source to the symmetry axes in the middle of the two plates, so the
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γ γ

d

2d

2d

γ ′ γ ′γ ′′ γ ′′γ ′′′ γ ′′′
. . .. . .

M1M2 M2

x

y

∆

p pp p
p′p′ p′ p′

Fig. D.2: The situation of two infinite plates W separating two regions "1 (blue) and
"2 (green) with different material properties.

coordinates are (−Δ, 0). First, we reflect ? on W at the right side, as in the previous
case with one plate and obtain the position (3 + Δ, 0). Subsequently, we do the
same on the left side, which yields: (−3 + Δ, 0). In the electric case the sign of the
image changes at each reflection eq. (D.3), the magnetic images show no sign change
eq. (D.4), hence the sign alternates in the electric case for consecutive reflections.
Now the new images on the opposite side disturb the solution, hence we reflect them
again obtaining two new images at (23 − Δ, 0) for (3 + Δ, 0) and (23 − Δ, 0) for
(−3 + Δ, 0). Again the sign for the electric case has changed. The infinite series of
images is drawn in fig. D.2, which shows the source, reflected at the reflections of
W (W′, W′′...). Due to symmetry we identified one series of ?s and one of ?′s, where
each element has a distance of twice the distance 3 of the plates.
Writing it down as a series expression, with the images placed at:

B= = =3 + (−1)=Δ, (D.5)

this yields for the field (X = 1, if we consider electric images and X = 0 if we consider
magnetic images):

� (I) ∝
∑
=∈Z

(−1) X=
(I − B=)∗

. (D.6)

A series
∑
= 0= is called absolute convergent if

∑
= |0= | converges. In this step we

show that the series eq. (D.6) is not absolute convergent. We have a look at the
coefficients:
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176 D On Issues of the Method of Images���� (−1) X=
(I − B=)

���� = 1

|I − B= |
=

1

|I − (−1)=Δ + =3 |

≥ 1

|I + Δ + |=|3 | ≥
1

|=| |I + Δ + 3 | ∝
1

|=| (harmonic series!) (D.7)

The coefficient have as a lower boundary the harmonic series, which diverges, hence
the series cannot be absolute convergent. It is conditional convergent. We state now a
famous theorem of Riemann (see e.g. [136], p.513): In absolutely convergent series

rearrangement of the terms does not affect the convergence, and the value of the

sum of the series is unchanged, exactly as in finite sums. In conditionally convergent

series, on the other hand, the value of the sum of the series can be changed at

will by a suitable rearrangement of the series, and the series can even be made to

diverge if desired. The question is why the method nevertheless works? The series
can converge to any arbitrary number. It could be 0, so no effect would be measured,
or it could be very large, so the effect would be extremely large and would make
some well-established settings impossible. To understand this, we have to step back
to the previous chapter, where we saw that the image of the source only reaches
lossless strength in the limit of perfect material conditions. There is a physical origin
of the effect, which restricts the rearrangement of the series. This is the initial point
of the following argumentation.
The regarded point is reflected at both plates, which is reflected again and so on. In
principle, this leads to an infinite series of sources. In reality, there is no material
which reflects the source perfectly; the effective strength of the image always is
smaller than of its origin. This was formulated as a damping factor = 4−U with U > 0
in eqs. (D.1) and (D.2). The field eq. (D.6) can now be written as:

�U± (I) =
∑
=∈Z

(
(±1)= e−U |= |

I − B=

) ∗
. (D.8)

This series is obviously absolute convergent and we can rearrange the terms and give a
solution in terms of Hypergeometric Functions 2�1 (details given in appendix C.1.5):

�U± =

∑
=∈Z

(
(±1)= e−U |= |

I − B=

) ∗
=

∑
=∈Z

(
4−U |2= |

I − Δ − 2=3
± e−U |2=+1 |

I + Δ − 3 − 2=3

) ∗

=

[
2�1

(
1, Δ−I23 ; 1 + Δ−I

23 ; e−2U
)

I − Δ
+ 2�1

(
1, 1 − Δ−I

23 ; 2 − Δ−I
23 ; e−2U

)
23 − Δ + I

] ∗

± 2e−U
[

2�1
(
1, 1

2 + (Δ+I)
23 ; 3

2 + (Δ+I)
23 ; 4−2U

)
23 − 2(Δ + I) −

2�1
(
1, 1

2 − (Δ+I)
23 ; 3

2 − Δ+I
23 ; e−2U

)
23 + 2(Δ + I)

] ∗
.

In the limit U → 0 we obtain:
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D.1 The Image Method Convergence Problem 177

�± (I) := lim
U→0

�U± (I) = −
[
cot

c

23
(Δ − I) ± tan

c

23
(Δ + I)

] ∗
. (D.9)

If U → 0 eq. (D.8) is conditional convergent, hence one has to be very careful with
the limit. We can use the case of perfectly conducing boundaries (as the limiting case
of imperfectly conducting boundaries) as an approximation for cases with (Y1 << Y2)
in the electric case or (`1 << `2) in the magnetic case. Although after taking the
limit U → 0 the obtained fields do not vanish at infinity (they are constant there),
the result is locally usable as an approximative description of the physical fields.
This point of view justifies the use of all results based on perfect electromagnetic
properties. The fields for the strip (3 of width 3 are (here in complex notation):

� (I, I0) =
c_

3

[
tan

c

23
(I∗ + I∗0) − cot

c

23
(I∗ − I∗0)

]
, (D.10)

�(I, I0) = −c8_V0

3

[
cot

c

23
(I∗0 − I∗) + tan

c

23
(I∗0 + I∗)

]
, (D.11)

which is in agreement with the results of the in-depended conformal mapping method
sections 3.6.2.1 and 4.2.1 and the literature.

D.1.3 A New Representation of the Potential of a Rectangular

Shape

From eq. (D.10) we formulate the Green function (m̄6 =: �) of two infinite planes
using coordinates in real space (see also appendix C.1.3):

6(3H (G, H; G0, H0) =
1

2c
log

©«
cosh

(
c (G0−G)
3H

)
− cos

(
c (H−H0)
3H

)
cosh

(
c (G0−G)
3H

)
+ cos

(
c (H+H0)
3H

) ª®®¬
(D.12)

3H denotes the distance between two planes, which are parallel to the G-axis located

at ± 3H2 and (G0, H0) are the coordinates of the source point. To calculate the Green
function of a rectangle, the idea is to use again the method of images. As shown,
the Green function of the strip eq. (D.12) can be seen as the result of the infinite
reflection of image charges with positive charge at the positions 2i=3H + H0, = ∈ Z
and negative charges at 2i=3H + i3H − H0, = ∈ Z. Now we reflect this solution again

at two planes aligned parallel to the H-axis at a distance ± 3G2 . As shown in fig. D.3
by the coloured dots in blue and green, reflected solutions appear with positive sign
at the positions 2=3G + G0, = ∈ Z and with negative sign at 2=3G + 3G − G0, = ∈ Z.
The form of the Green function of the rectangle with side length 3G and 3H can be
given as:

6' (3G ,3H ) (G, H; G0, H0) =
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γ γγ ′ γ ′γ ′′ γ ′′γ ′′ γ ′′
. . .. . .

M1

x0

y0

p pp p
p′p′ p′ p′

. . .. . .

p pp p
p′p′ p′ p′

. . .. . .

p pp p
p′p′ p′ p′

. . .. . .

p pp p
p′p′ p′ p′

. . .. . .

p pp p
p′p′ p′ p′

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

x

y

dx

2dx

2dx

2dy

2dy

dy

M2

p
p′

p
p′

p
p′

p
p′

Fig. D.3: The situation of a rectangle W separating two regions "1 (blue) and "2

(green) with different material properties.

∑
=∈Z

1

2c

©«
log

©«
cosh

(
c (2=3G+G0−G)

3H

)
− cos

(
c (H−H0)
3H

)
cosh

(
c (2=3G+G0−G)

3H

)
+ cos

(
c (H+H0)
3H

) ª®®¬
− log

©«
cosh

(
c (2=3G+3G−G0−G)

3H

)
− cos

(
c (H−H0)
3H

)
cosh

(
c (2=3G+3G−G0−G)

3H

)
+ cos

(
c (H+H0)
3H

) ª®®¬
ª®®¬
. (D.13)

In the following we proof the convergence of this representation.

Proof. Some algebraic manipulation of eq. (D.13) yields:
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6' (3G ,3H ) (G, H; G0, H0) =

1

2c
log

©«
cosh

(
c (G0−G)
3H

)
− cos

(
c (H−H0)
3H

)
cosh

(
c (G0−G)
3H

)
+ cos

(
c (H+H0)
3H

) ª®®¬
−

1

2c
log

©«
cosh

(
c (3G−(G+G0))

3H

)
− cos

(
c (H−H0)
3H

)
cosh

(
c (3G−(G+G0))

3H

)
+ cos

(
c (H+H0)
3H

) ª®®¬
−

1

2c
log

©«
cosh

(
c (3G+(G+G0))

3H

)
− cos

(
c (H−H0)
3H

)
cosh

(
c (3G+(G+G0))

3H

)
+ cos

(
c (H+H0)
3H

) ª®®¬
−

1

2c
log

©«
cosh

(
c (33G−(G+G0))

3H

)
− cos

(
c (H−H0)
3H

)
cosh

(
c (33G−(G+G0))

3H

)
+ cos

(
c (H+H0)
3H

) ª®®¬
+

∑
=∈N

∑
;∈{−1,1}

1

2c


log

©«
1 −

2 cos
(
cH

3H

)
cos

(
cH0

3H

)
cos

(
c (H+H0)
3H

)
+ cosh

(
c (2=3G+; (G−G0))

3H

) ª®®¬
+ log

©«
1 −

2 cos
(
cH

3H

)
cos

(
cH0

3H

)
cos

(
c (H−H0)
3H

)
− cosh

(
c (2(=+1)3G+; (3G−(G+G0)))

3H

) ª®®¬

. (D.14)

The first four terms are extracted, because the first includes the source singularity
and the second and the third the image singularities. The forth term is extracted due
to practical reasons only. To investigate the convergence of this representation we
look at the first summand:

©«
1 −

2 cos
(
cH

3H

)
cos

(
cH0

3H

)
cosh

(
c (2=3G+; (G−G0))

3H

)
+ cos

(
c (H+H0)
3H

) ª®®¬
≤

©«
1 + 2

cosh
(
c (2=3G+; (G−G0))

3H

)
− 1

ª®®¬
≤

©«
1 + 44

− c (2=3G+; (G−G0 ) )
3H

1 − 1

cosh
(
c (2=3G+; (G−G0 ) )

3H

)
ª®®¬

≤
©«
1 + 4−

2=c3G
3H

44
c3G
3H

1 − 1

cosh
(
(2=−1) c3G

3H

)
ª®®¬
. (D.15)

The last step follows from the fact that G − G0 ∈ [−3G , 3G]. For the second summand
we get:
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©«
1 −

2 cos
(
cH

3H

)
cos

(
cH0

3H

)
cos

(
c (H+H0)
3H

)
− cosh

(
c (2(=+1)3G+; (3G−(G+G0)))

3H

) ª®®¬
≤

©«
1 + 4−

2=c3G
3H

4

1 − 1

cosh
(

2=c3G
3H

)
ª®®¬
≤

©«
1 + 4−

2=c3G
3H

44
c3G
3H

1 − 1

cosh
(
(2=−1) c3G

3H

)
ª®®¬
. (D.16)

The reminder is:

|'# (G, H, G0, H0) | =�������
∑

=≥#+1

∑
;∈{−1,1}

1

2c

©«
log

©«
1 −

2 cos
(
cH

3H

)
cos

(
cH0

3H

)
cos

(
c (H+H0)
3H

)
+ cosh

(
c (2=3G+; (G−G0))

3H

) ª®®¬
+ log

©«
1 −

2 cos
(
cH

3H

)
cos

(
cH0

3H

)
cos

(
c (H−H0)
3H

)
− cosh

(
c (2(=+1)3G+; (3G−(G+G0)))

3H

) ª®®¬
ª®®¬

������� . (D.17)

It holds that:

|'# (G, H, G0, H0) | ≤
2

c

∑
=≥#+1

log
©«
1 + 4−

2=c3G
3H

44
c3G
3H

1 − 1

cosh
(
(2=−1) c3G

3H

)
ª®®¬

(D.18)

=
2

c
log

∏
=≥#+1

©«
1 + 4−

2=c3G
3H

44
c3G
3H

1 − 1

cosh
(
(2=−1) c3G

3H

)
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⊓⊔

The q-Pochhammer symbol (0; @)= is defined in appendix C.1.4 and this form is
absolute convergent. In fig. D.4 a logarithmic plot of the reminder in the case

3G/3H = 2/3 is shown. The # th reminder decreases exponentially as e
−2c∗2

3 . The
formula of the reminder as used in fig. D.4 is:
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Fig. D.4 The upper bound for
the reminder in eq. (D.21).
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Summary: After the introduction of the method of images, we highlighted
convergence problems in the case of perfect boundaries at the example of the
two infinite plate problem, which are usually neglected in presentations of the
configuration. The proposed solution, as the limiting case of imperfect bound-
ary conditions, yielding convergent series, was given. The result eqs. (D.10)
and (D.11) is in agreement with the literature and the independently applied
method of conformal mappings sections 3.6.2.1 and 4.2.1.
Moreover, the rectangular problem was solved with the method of images, re-
vealing a new representation of the Green function of the rectangle (eq. (D.13)),
including the proof of convergence.
We saw that the method is involved even for relatively simple configurations,
and the advantage of working in the simple framework of conformal invariants
is evident.
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Appendix E

Closed-Form Potentials for the PS Combined
Function Magnets

The novel closed-form for the PS combined function magnets are visualized in
this chapter. There are global pictures of the Neumann function including the field
directions as arrows depicted in figs. E.1 and E.3, for the closed and the open type,
respectively as described in section 6.2. The red point indicates the position of the
beam and the black ellipse shows the vacuum chamber of the PS. A close ups of
these functions are shown in figs. E.2 and E.4, for the closed and the open type,
respectively as described. The corresponding formulas were provided in eqs. (6.1)
and (6.2).
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0.0
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Fig. E.1: A potential plot including field lines of the closed PS magnet. The red
point shows a centred beam.
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Fig. E.2: A potential plot including field lines of the open PS magnet. The red point
shows a centred beam.
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Fig. E.3: A potential plot including field lines of the PS closed magnet model.
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Fig. E.4: A potential plot including field lines of the open PS magnet. The red point
shows a centred beam.
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