
DIPLOMARBEIT

Design and Implementation of a
Robot Coordination Framework using

Shared Memory Middleware

Ausgeführt am
Institut für Computersprachen

Abteilung für Programmiersprachen und Übersetzerbau
der Technischen Universität Wien

unter Anleitung von
Ao. Univ. Prof. Dipl.-Ing. Dr. eva Kühn

durch

Stephan Zavrel
Floridsdorfer Hauptstrasse 16/1/4

A-1210 Wien
Matr.Nr.: 9726049

[Wien, August 2007] -----------------------------

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

Designing control applications for autonomous mobile robots is a very challenging

task and requires a very broad spectrum of knowledge since the field of robotics

combines diverse disciplines like mechanics, electronics, computer science and

artificial intelligence. The process becomes even more complex if the solution to a

problem requires the cooperation and coordination of multiple robots. Experience has

shown that in the field of Embodied AI, which focuses on the physical body and its

interactions with an environment, the particular problem arises, that a lot of time

needs to be invested in the assembling and preparations of robots and suitable

communication mechanisms before focus can be put on the area of interest – writing

artificial intelligent control applications for the robot team.

This thesis addresses the problem by introducing a software architecture that

supports a developer by providing mechanisms to automatically generate a

framework for the development of distributed control applications using a virtual

shared memory communication layer. To achieve this goal an existing modular and

extensible autonomous robot system is enhanced by a communication system based

on the principles of sensor and actuator sharing and the creation of a holistic system

view for every member of a robot team. Using this approach all the resources

available in a scenario can be accessed from each control application in the same

way. Furthermore focus is put on the usability and simplicity of the resulting system

to minimize the time and effort for users to reach the point where development of

control applications can start.

The work is completed by a prototypical implementation of the proposed

architecture and its application in a simple proof-of-concept scenario.

Kurzfassung

Die Entwicklung von Steuerapplikationen für autonome, mobile Roboter stellt

eine große Herausforderung dar und erfordert ein weites Wissensspektrum, da die

Robotik so unterschiedliche Wissenschaften wie Mechanik, Elektrotechnik,

Informatik und künstliche Intelligenz vereint. Problemstellungen, die eine

Kooperation und Koordination von mehreren Robotern erfordern, erhöhen die

Komplexität dieses Vorgangs noch beträchtlich. Die Erfahrung hat gezeigt, daß auf

dem Gebiet der Embodied AI, bei der der physische Körper und dessen Interaktion

mit der Umwelt im Mittelpunkt stehen, die Problematik besteht, daß der

Zusammenbau und die Vorbereitung von Robotern und geeigneten

Kommunikationsmechanismen sehr aufwändig sind und somit die Möglichkeit zur

Konzentration auf das eigentliche Interessensgebiet – die Entwicklung von künstlich

intelligenten Steuerapplikationen für ein Roboter-Team – verzögern.

Diese Diplomarbeit nimmt sich dieser Problematik an und präsentiert eine

Softwarearchitektur, die Entwickler durch die automatische Erstellung eines

Frameworks für die Enwicklung verteilter Steuerappliaktionen mit Hilfe von Virtual

Shared Memory Middleware unterstützt. Um dieses Ziel zu erreichen wird ein

bestehendes modulares und erweiterbares Robotersystem um

Kommunikationsmechanismen erweitert, die die gemeinsame Nutzung von Sensoren

und Aktuatoren ermöglichen und einen gesamtheitlichen Blick auf das verteilte

System aus jeder Steuerapplikation heraus bieten. Durch diesen Ansatz können

sämtliche verfügbaren Ressourcen in einem Forschungsszenario auf gleiche Art und

Weise in jede Steuerapplikation eingebunden werden. Besonderes Augenmerk wird

auch auf die Bedienbarkeit und Einfachheit des resultierenden Systems gelegt, um für

Benutzer Zeit und Aufwand, die benötigt werden, um mit dem Entwicklungsprozeß

beginnen zu können, gering zu halten.

Vervollständigt wird die Arbeit durch die Implementierung eines Prototypen, der

auf der entworfenen Architektur basiert und abschließend in einem einfachen proof-

of-concept Szenario zum Einsatz kommt.

Danksagung

Von den Personen, die direkt an der Entstehung dieser Arbeit beteiligt waren,

möchte ich danken:

Frau Prof. eva Kühn für die Betreuung dieser Arbeit. Ihre Einsichten und Ideen

waren ein wertvoller Beitrag zum erfolgreichen Gelingen.

Meinem Freund Jörg Irran, dessen Arbeit Inspiration und Grundlage für die

vorliegende Diplomarbeit waren, für die stundenlangen Diskussionen und all die

guten Ratschläge.

Richard Mordinyi vom XVSM Team, der immer sehr hilfsbereit war und

zahlreiche Fragen beantwortete, die es mir ermöglichten, meine Arbeit fortzusetzen.

Am meisten von allen aber möchte ich meinen Eltern Marianne und Werner

danken, die mir in meinem Leben alles was ich wollte ermöglicht haben. Sie lebten

mir vor, was bedingungslose Liebe und Unterstützung bedeuten und ich bin

unendlich dankbar, solche Eltern zu haben.

Meiner Schwester Monika, die immer für mich da ist und deren Zielstrebigkeit

und Ausdauer stets ein Vorbild waren und die ich nie erreicht habe.

Nachdem ich diese Arbeit auch als Abschluß meiner Ausbildung betrachte,

möchte ich mich noch bei Personen bedanken, die mich auf diesem Weg begleitet

haben:

Meinem Klassenvorstand Dr. Michael Kellner, der ein ganz außergewöhnlicher

Lehrer war und auch abseits der schulischen Belange ein Umfeld geschaffen hat, aus

dem eine Klassengemeinschaft und Freundschaften bis in den heutigen Tag

hervorgegangen sind.

All meinen Freunden aus der Schul- und Studienzeit – ganz besonders Peter,

Arash, Martin, Michael, Flo, Christoph, Christian, Nicole, Theresia, Marlene und

Andi – die dafür gesorgt haben, daß ich auf mein Studium immer als eine der

schönsten Zeiten meines Lebens zurückblicken werde.

Contents
1 Introduction...7
2 Used technologies and systems...10

2.1 Autonomous mobile Robots..10
2.2 Overview of the existing robot system..12

2.2.1 The modular approach...13
2.2.2 Important modules...16
2.2.3 Creating a Robot..18

2.3 The X10 System..19
2.3.1 The physical layer..20
2.3.2 The binary protocol...21

2.4 Virtual Shared Memory and XVSM...23
2.4.1 XVSM – eXtensible Virtual Shared Memory...25

2.4.1.1 Entries and Tuples...25
2.4.1.2 Coordination Types..26
2.4.1.3 Containers..27
2.4.1.4 Selectors...28
2.4.1.5 Operations..29
2.4.1.6 Notifications..30

3 Description of the architecture..32
3.1 Basic concepts...32
3.2 Definitions...35
3.3 Requirements...37

3.3.1 Usage scenario...37
3.3.2 Functional requirements..38
3.3.3 Additional requirements..40

3.4 Design of the Architecture..42
3.4.1 The Description ..44
3.4.2 Design time component architecture...48

3.4.2.1 Robot description generation...49
3.4.2.2 Programmable framework generation..50

3.4.3 Runtime component architecture...56
3.4.3.1 Data structures...58
3.4.3.2 Communication..60

4 Implementation...64
4.1 The development environment and used frameworks.....................................64

4.1.1 The Eclipse IDE...64
4.1.2 Apache Ant..65
4.1.3 XMLBeans...66
4.1.4 RXTX..67
4.1.5 Apache Tomcat..67

4.2 Description of the concrete Java implementation...68
4.2.1 X10 connection..69
4.2.2 Design time component...71

4.2.2.1 RobotExplorer..71

4.2.2.2 Framework Generator..73
4.2.3 Runtime component...79
4.2.4 Monitoring...82

4.3 Module implementations...85
4.3.1 XVSMX10ApplianceModule..85
4.3.2 XVSMX10LampModule...86
4.3.3 XVSMServoModule and XVSMMotorModule......................................87
4.3.4 XVSMBumperModule..88
4.3.5 XVSMIRDistanceModule...89

4.4 Extensibility..90
4.4.1 Naming conventions and package structure..90
4.4.2 Example: adding a new module for XVSM..92

5 Putting the Framework to use...93
5.1 The Scenario..93
5.2 Hardware Requirements and Preparations..94
5.3 Writing the control applications..96

6 Conclusion and future outlook..100
6.1 Design time component...100
6.2 Runtime component ...102
6.3 Future outlook...105

6.3.1 Adaptive request queue processing...105
6.3.2 Virtual resources..106
6.3.3 Knowledge sharing..106
6.3.4 Distributed system on a single robot...107

7 Appendix A...108
7.1 Literature...109
7.2 Figure index...112
7.3 Table index..114
7.4 Listing index..115

8 Appendix B...116
8.1 XML Schema definition for mandatory elements of a RobotWorld.............117
8.2 XML Schema for a RobotWorld description with restrictions for the prototype
implementation...118

Introduction

1 Introduction

The field of robotics is a highly complex area of the technology industry and

research. It combines such diverse disciplines as electronics, mechanics, computer

science and artificial intelligence, requiring researchers to have a very broad

spectrum of knowledge across all those fields or – more likely – necessitates the

cooperation of experts from each area. Robots typically consist of a set of sensors for

acquiring information about the environment, some actuators to manipulate the

surroundings and some kind of programmable logic to determine how those sensors

and actuators work together. Depending on the field of use robots vary widely in

appearance, function and complexity of the applications necessary to control them.

Examples range from industrial manufacturing robots for repetitive tasks used in

production lines, over mainly remote controlled models such as war mine defusing

or medical surgery robots, which extend the abilities of a human operator, to mobile

autonomous robots, which come in the form of automated lawnmowers up to rovers

used in space missions. The group mentioned last – mobile autonomous robots –

typically requires the most complex control applications implementing some kind of

intelligent behavior, since they are expected to function independently from an

operator once they are activated. Applying a leveled view to the sciences included

one can define a low level layer containing mechanics and electronics, providing the

groundwork for technologies used in sensors and actuators. On the next level mainly

electronics and computer science care about the definition of transmission

techniques, specification of bus logics and programming frameworks. Finally, in the

topmost layer, high level programming language control applications require skills in

computer science and provide a basis for research done in the field of Embodied AI

[Broo91]. Due to the complexity of the matter the problem arises that for research on

the higher level aspects of mobile autonomous robots a platform handling all the

issues on the layers below is necessary. An artificial intelligence researcher cannot be

7

Introduction

expected to own the skills to design and construct a robot, but restriction to existing,

often inflexible models may confine a project and hinder the achievement of the

ultimate goal. In his thesis Jörg Irran [Irr04] addresses this problem by presenting a

modular and extensible robot system, that allows for the easy assembling of different

configurations supported by a plug&play-like mechanism. In addition he introduces

an abstraction layer between the low level hardware and high level control

applications by requiring every module to supply a proxy class that contains the

implementation details to properly address the hardware on the one side and exposes

a programmable interface on the other. This way the amount of knowledge necessary

for a robot construction process can be minimized for researchers mostly interested in

developing control applications, while at the same time experts may work on the

hardware layer independently.

Inspired by Jörg Irran's work, this thesis aims to extend the approach to scenarios

with multiple robots and distributed control applications. The motivations for the use

of robot teams are manifold. Some problem solving tasks may require the

cooperation of different robot types, each specialized for a specific part, to be

successfully completed. In other cases distributing the workload to more than one

robot or computational unit can speed up a process and increase efficiency [Park95].

The issue of fault tolerance is another example where multiple robot instances can

proof beneficial, because if one member of a team fails to work properly, another one

can take over its duties. But the scope does not have to be limited to solely inter robot

communication, the integration of external resources can be considered as well when

some hardware's size, weight or energy requirements prevent it from being mobile.

An example could be a lunar space mission, where a rover robot depends on some

actuator that can only be hosted by the bigger landing module. Another – literally –

more down to earth scenario, is providing household robots access to a home

automation system in case they need light to operate autonomously.

A goal of this work is to simplify the process of control application development

by applying a holistic view of the resources available to a scenario. For every host the

8

Introduction

programmer has access to a pool of sensors and actuators that can be used to solve a

task, no matter whether they are attached to the robot running the control application

or on a remote host. This approach is realized using virtual shared memory

middleware to create that uniform view for every team member. Implementation

details of the communication necessary to enable this are hidden from the

programmer and every resource is programmable in the same way.

Furthermore focus is put on the usability and user friendliness of the resulting

system. The process of getting to the point where control application development for

a distributed robot system can start should be as pain- and effortless as possible,

hence easy to learn and pick up and is therefore addressed as well.

The following chapters provide an overview of the existing technologies this work

is based on (chapter 2), cover the requirements analysis and design of the software

architecture (chapter 3), followed by a prototypical implementation based on the

developed architecture (chapter 4). Subsequently the developed software is put to use

in a proof-of-concept scenario (chapter 5) and the design evaluated in a conclusion

(chapter 6) including some ideas for future development.

9

Used technologies and systems

2 Used technologies and systems

To gain a better understanding of the architecture and design decisions proposed

in this thesis it is necessary to introduce the used technologies and systems as well as

their functionality. Having a basic knowledge of the systems is essential to recognize

the possibilities and problems that arise when trying to integrate those technologies

into a single system. In detail, this work interconnects robots based on an existing

modular robot system and sensors and actuators placed in the robot's operating

environment using a virtual shared memory middleware. Therefore this chapter

describes the type of robots used together with the tool set to assemble them and

write control applications, followed by an introduction to the X10 home automation

system which was chosen to realize a proof of concept implementation of the

environmental interoperability aspects. Finally the mechanisms of the XVSM

software, a representative of coordination based middleware, which was selected to

realize the communication layer, are explained.

2.1 Autonomous mobile Robots

In today's world robots find many areas of application and show a great variety in

capabilities and appearance, usually adapted to best suit the tasks they are intended to

perform. One of the obvious and most successful usage scenarios is the deployment

on industrial manufacturing lines to perform repetitive tasks requiring a specific level

of precision. Such industrial robots are typically big in size, heavy and stationary,

controlled by relatively simple programs. Another class of robots can be defined as

remote manipulators which don't operate (completely) on their own but rather

extend the abilities of a human operator. Examples for this type are mine detecting

and defusing bots, repair drones for pipelines or automated mini-submarines,

10

Used technologies and systems

generally operating in an environment hostile to humans. Oftentimes those models

are mobile but they depend on some external control input. This leads to the group

relevant for this thesis, autonomous mobile robots. As the name already states one

criteria is for the robot to be mobile, meaning it possesses some kind of driving

mechanism, with wheels, caterpillars or legs being popular choices. Furthermore

autonomous operation is a requirement, meaning that it performs the tasks intended

without requiring any further control input from an external operator once it is placed

in the environment it was meant to operate in and is activated. A typical example of

autonomous mobile robots garnering much public attention are the rovers used in

space missions (Figure 2.1) and nowadays some models are already starting to invade

private homes in the form of service bots like fully automatic vacuum cleaners

(Figure 2.2).

The complexity of the environment is a huge factor influencing the sensors and

actuators needed to solve a task as well as the demands on the control applications.

Some commercial systems try to circumvent the problem by requiring additional

measures for proper operation, for example automated lawn mower bots usually

require the user to set up a special wire around the grass area which the robot

11

Figure 2.1.: NASA Rocky7 experimental robot
[http://www-robotics.jpl.nasa.gov/systems]

Figure 2.2.: Electrolux trilobite
2.0 vacuum cleaner
[http://trilobite.electrolux.com]

Used technologies and systems

interprets as boundaries. In experimental setups for research fixed and predetermined

fields are used to allow concentration on certain aspects of the control application.

But the fact that not all possibilities of even an restricted environment can always be

considered at application design time or the impracticality of setting boundaries for

an environment (e. g. space missions) led to the wish of dynamically adapting agents.

This idea is a driving force behind a whole sub area of artificial intelligence research,

namely Embodied AI [Broo91], which puts a physical “body” – in this case the robot

– and its interaction with the environment into the center of the research of learning

processes and intelligent behavior.

2.2 Overview of the existing robot system

The design and implementation of robot control applications is a very complex

task, even more so in the area of autonomous mobile robots and artificial intelligence

research. Furthermore, depending on the intended use case, the robot platform ideally

needs to provide the flexibility to easily adapt the hardware to the given needs by

adding or exchanging sensors and actuators. Those changes should also reflect on the

software level, providing easily accessible application programming interfaces

(APIs), which assist researchers and developers in creating the control applications.

As Jörg Irran points out in his master thesis “Entwurf und Konstruktion eines in

Hard- und Software erweiterbaren und modularen mobilen Robotersystems”1 [Irr04],

the systems available to researchers fall short of those requirements regarding

extensibility and uncomplicated adaptability. This leads either to the use of robot

platforms not ideally suited to the task at hand and restrictions of the originally

planned scenario to be investigated or the development of proprietary custom robots.

Designing a custom robot is a very time consuming task since it involves many steps

starting at hardware design and engineering continuing with the implementation of

1 Engl: “Design and Implementation of an in Hard- and Software Extensible and Modular Mobile
Robot System“

12

Used technologies and systems

bus protocols to connect the hardware with some processing unit able to run simple

control loops, concluding with the development of high level programing language

APIs to enable the application programming, the actual area of research. A very

demanding procedure that – if designed without an open and flexible concept in mind

– leads to a system well suited for the respective project, but being potentially useless

for the following research, requiring the repetition of the process. As a solution to

this problem Irran introduces a design following a modular concept on both the

hardware and the software level. The description below concentrates on the design

principles and software aspects of the system and a brief overview of the available

hardware put to use throughout this thesis. For a detailed description of hardware

standards and bus protocols at work in the robot platform the reader may be referred

to the referenced work.

2.2.1 The modular approach

In his thesis Irran defines a module as the basic building block of a robot system.

A module consists of a hardware component as well as some additional software and

information required for application development. Figure 2.3 shows an overview of

all the components involved which are described in more detail below.

Module

A module integrates at least one processing unit and an arbitrary number of

sensors and/or actuators. Modules acting as communication interfaces between

different systems may not have any kind of sensor or actuator at all. The processing

unit can reach from a simple microcontroller to a processor used in embedded

systems and personal digital assistants (PDAs) to a complete personal computer. It is

used to implement an abstraction layer by on the one hand covering the details of

fetching data from a specific sensor hardware or sending commands to a special

actuator model and on the other hand providing a specified set of services through an

13

Used technologies and systems

external interface. The details of the implementation like internal bus logic and

programming languages are irrelevant, as long as they satisfy the needs imposed

through the externally accessible services. The external interface can be accessed

using a data bus. The use of a bus system allows for the interconnection of several

modules that together comprise the whole robot system. Each module has to

implement a mandatory set of commands being:

• identification

the module has to return a unique identifier, used for a plug&play mechanism

during the robot building process

• status

if working properly the module should return an “OK” message

14

Figure 2.3: schematic view of a module and its additional components (Source:[Irr04])

Description

<Identifiication>

<Reference to
proxy class>

<Reference to
documentation>

< >
< >

Abstraction layer

Documentation

Information

Support

Proxy class

self explaining

method names

API and Development
environment

Processing unit

Sensor

Actuator

Identification

Module

Services

Used technologies and systems

• echo

to test the data transmission to and from a module the message sent should be

returned unaltered

Those commands are used for configuration and service tasks. Additionally a

module will implement commands specific to its capabilities, for example when

equipped with an infrared distance sensor commands to retrieve values indicating the

distance to an object are necessary.

Proxy class

For every module exists a proxy class providing access to its services and

functionality in a high level programming language. It hides the bus communication

protocol and instruction set from an application developer and provides access to the

special capabilities of a module by supplying an API of ideally self explaining

method names for control application development.

Description

Each module contains a description with some details about the module hardware

and references to its proxy class and documentation. The information therein is

needed for the plug&play mechanisms and code framework generation during the

construction of a robot. As a description language XML is used. Defined tags are:

<NodeID> the unique identifier of the module

<Version> a version number of the module

<Name> a human readable name for the module

<Details> details of interest about a module

<JavaClass> a reference to a proxy class implemented in Java

<DocRef> a reference to the module documentation

15

Used technologies and systems

Documentation

To every module a detailed documentation should be provided containing

information of the actual hardware used, operating parameters and limitations, value

range and support for programming issues.

2.2.2 Important modules

Following some of the modules which are used and extended in the scope of this

thesis are introduced. To get an impression of how a module looks like, a servo

module with two servos connected is depicted in Figure 2.4.

Interface converter module

Since the RS485 data bus was chosen to implement the inter module

communication, but most PC systems and PDAs available today only support the

RS232 bus, better known as serial port, the interface converter module is essential

for control applications running on common computers to interact with the modules

of a robot system. This module communicates according to the RS232 bus

16

Figure 2.4.: a servo module with two connected servos

Used technologies and systems

specification on one side and translates bus messages adhering to the RS485 standard

on the other side.

Bumper sensor module

Bumper sensors are used to detect collisions, i. e. whenever the robot establishes

physical contact with objects in its environment. The bumper sensors are realized as a

50mm metal strip attached to a digital micro switch. Whenever some kind of force is

exerted on the metal strip the micro switch is pushed down and indicates a collision.

The module is equipped with eight bumper sensors allowing for placement on

different positions on the robot platform. Sensors can be queried separately or

simultaneously.

Infrared distance sensor module

This module combines a set of seven infrared sensors that can measure the

distance to another object. Distance calculation is based on the principle of

triangulation, where an infrared beam is sent out and reflected by an object. The

reflected beam is registered at a sensor and depending on the angle of incidence the

distance to the reflecting object can be deduced. Sensors can be queried separately or

simultaneously.

Servo control module

A servo is an actuator that allows for the rotary movement of a cantilever arm to

an angle between 0 and 180 degrees. Depending on the way how servos are

assembled they can be put to use as parts of some kind of grabbing device like an

robotic arm or crane. The servo control module enables the separate movement of up

to eight servos.

17

Used technologies and systems

Motor control module

The motor control module enables the control of direct current electronic motor

controllers which can be used to determine the movement of the mobile robot or

some movable parts attached to it. The module supports up to eight motor controllers

which can be addressed independently.

2.2.3 Creating a Robot

The modular design described above provides the flexibility to create robots with

lots of different configurations. Because every module has to provide a proxy class in

a high level programming language the complicated aspects of the underlying

hardware design and bus protocols are hidden from the control application developer.

The presented system implements a plug&play like approach to creating a robot. A

researcher simply chooses a variety of modules that can provide the functionality

needed for a given scenario. All these modules are then connected using the data bus.

A special interface module allows for access to the bus from a computer using the

standard serial port (RS232). Furthermore a piece of software named the

RobotExplorer that queries the data bus for attached modules via the serial port is

supplied. Once a module is recognized on the bus its description is fetched to the

RobotExplorer software, which collects all the module descriptions and assembles a

complete description of the created robot. This robot description is the basis for the

creation of the control application programming framework and robot

documentation. Subsequently the RobotExplorer generates a programmatic

representation of the whole robot by instantiating the proxy class of each module

present in the robot description and initializing it with the respective parameters

again found within the robot description. The final output is a Java application

framework integrating the APIs of all modules used in the created robot, ready for the

development of a probably complex control application. Additionally the references

to the documentation – realized as HTML documents – are assembled to provide a

18

Used technologies and systems

complete overview of the robots capabilities. Figure 2.5 shows a picture of a

completely assembled robot consisting of a caterpillar drive controlled by a motor

module, an arm realized with the help of a servo module and a laptop computer for

running the control application.

To summarize, the modular robot system used in this work simplifies the process

of adapting a robot platform to a specific scenario to the point of connecting some

modules and running a program to be provided with a high level programming

language framework ready for application development. It allows researchers to use a

rapid prototyping approach even in the field of robots and Embodied AI. This thesis

aims to elevate this goal to the level of multi robot and coordination scenarios.

2.3 The X10 System

To extend the idea of robot coordination beyond mobile autonomous robots, the

architecture proposed in this thesis allows for interaction with sensors and actuators

placed in the environment the robots operate in. As a simple solution to demonstrate

how such a scenario could look like, the X10 Home Automation System was chosen

19

Figure 2.5.: example of a completely assembled
robot

Used technologies and systems

as a provider for environmental manipulators. X10 is an international industry

standard for the communication between electrical devices used for home automation

tasks, such as the automated and centralized switching of lights spread out

throughout a house, and was originally developed by Scottish firm Pico Electronics

in 1975. It is comprised of a technical description of the physical signal transmission

process using existing power line wiring in private homes or short range radio signals

as well as a specification of a binary communication protocol. Because no additional

wiring is required and the availability of cheap devices and adapters, X10 quickly

grew popular in the North American markets and became the dominating system for

home automation. Due to differences in the domestic power supply systems which

made production of supporting devices more expensive for the European market, the

technology only caught on in Europe in recent years.

2.3.1 The physical layer

As mentioned before the physical medium for message transmission used by X10

is the existing power line infrastructure within apartments or houses. American and

European households use alternate current (AC) power supply with a frequency of

60Hz (America) or 50Hz (Europe). That means the current changes following a sinus

wave crossing the zero point 120 or 100 times per second respectively. X10 uses

those zero crossings as points of synchronization where devices try to transmit data

as close to a zero crossing point as possible, but at least within an interval of 200 μs

(microseconds) around an intersection. A binary 1 is represented as a 1 ms

(millisecond) burst of a 120kHz signal with a power of 300mW followed by the

absence of a pulse at the next crossing whereas the absence of such a burst followed

by a pulse stands for a binary 0 (Figure 2.6).

20

Used technologies and systems

2.3.2 The binary protocol

The X10 protocol allows for the addressing of 256 devices, where the address

space is divided into a 4 bit house code and a 4 bit device code. Each device – also

called module – listens to one address, which can be set on the hardware itself. For

better usability the house code is mapped to the letters A through P whereas the

device code is a choice among the numbers 1 to 16. Each message sent from a sender

to one or more receivers has the format depicted in Figure 2.8.

21

Figure 2.7.: complete code table of the
X10 binary protocol (Source:
[Smar07])

Figure 2.6.: physical representation of binary data in X10 (Source:
[King99])

Figure 2.8.: format of a X10 message
(Source: [Smar07])

Used technologies and systems

A message is always started with a start code, the predetermined 4 bit sequence

1110. The subsequent 4 bits designate the house code. Then an arbitrary number of 4

bit device codes can follow, where after each one a single function code bit is sent.

The function code bit tells the receivers whether to interpret the preceding 4 bits as a

device number or a function. If the function code bit is a 0, a device number was sent,

in case of a 1, the bits transmitted before represent the function to be executed. Due

to this protocol design, a function code always ends a message and the number of

clients addressed with one message is limited to 16 – all the ones that share one

house code. The minimum allowed X10 data packet of one start code, on house code

and one function code is called a X10 frame. For means of fault tolerance and error

correction, every bit except for the start code is transmitted first in its true followed

immediately by its complement form and every frame is sent twice without

interruption in between frames. Two different messages have to be separated by six

consecutive zeros. A full description of the protocol can be found at [X1006].

As a concluding remark the X10 system shows several weaknesses. Originally it

was designed as a pure one way communication protocol, which means that the

receiving devices had no possibility to send any feedback about the success or failure

of the execution of a function to the controller issuing the command. Therefore it is

not suitable for critical tasks where permanent and exact knowledge about the state of

every component in a system is important. Newer revisions of the protocol added

extensions that allowed for response messages without breaking backwards

compatibility. However, special hardware is needed to use those back communication

mechanisms. Furthermore, compared to todays standards, X10 is very limited in

regards of bandwidth and speed. Considering all necessary idle circles and

redundancies leaves an effective average bandwidth of 20 bit/sec, which is only

useful for the transmission of simple commands and not for data transfers. Also due

22

Used technologies and systems

to the use of the alternate current frequency of the power line infrastructure of 50Hz

or 60Hz for synchronization the speed is locked at a very low level.

Despite those disadvantages, the simplicity of the protocol and inexpensive

hardware outweighed the negatives and lead to X10 being used as a proof of concept

platform for this thesis.

2.4 Virtual Shared Memory and XVSM

The basis for all communication between robots and environmental controllers

presented in this thesis is the virtual shared memory middleware XVSM, an acronym

for eXtensible Virtual Shared Memory. Basically the presented architecture allows

for arbitrary communication mechanisms to be implemented, but the combination of

virtual shared memory and robotics was one of the driving ideas behind this work

and hence XVSM was chosen as a representative of a virtual shared memory system.

The term middleware designates a layer of software used in networked systems to

hide the heterogeneity of the underlying platforms in a distributed system and to

improve distribution transparency in applications [Tann02]. This layer is placed

between the operating system and applications to provide a higher level of

abstraction of communication mechanisms. An important goal of middleware is to

provide as complete a set of services as possible, so that applications only rely on the

interfaces provided and the direct use of operating system services is discouraged.

Such services include communication facilities, naming, synchronization,

persistence, replication, fault tolerance and transactional safety.

Most middleware in use today is based on some model or paradigm for describing

the mechanisms of distribution. A relatively simple approach is to use only files for

means of communication, hence those systems are classified as distributed file

systems. As an example the Network File System (NFS) from Sun Microsystems can

be named. Given the fact that in Unix based systems even hardware devices possess a

representative entry in the file system which allows for programmatic access and

23

Used technologies and systems

manipulation, a shared file system provides a common view of available resources

and allows for the file to be the common denominator in application development.

Another model is followed by Remote Procedure Calls (RPC) where the emphasis

lies on hiding the network communication by allowing programs to call procedures

where the implementation is located on a remote machine. The marshaling of passed

parameters and results as well as the transmission to and from the remote host are all

handled by the middleware and thus the calling program remains unaware of the

network exchange. With the development away from procedural programming

languages to the object oriented paradigm the need for object invocation across

machine boundaries arose and led to the development of distributed object systems

that kept the advantages like inheritance, polymorphism and encapsulation.

Distributed objects are usually specified by their interface, with the object residing on

one machine and the interface made available on many others. In case of a method

invocation on a remote host the interface implementation connects to the object,

executes the respective method and fetches the result. The model of a Virtual

Shared Memory adds another layer of abstraction on top of distributed objects.

Programs are completely unaware of where an object resides. Instead a virtual storage

space for all distributed objects is created and every program only interacts with this

virtual space. Objects are being made accessible for others by being written into the

space. The space itself can either be realized on a server accessible for all participants

or, following a peer-to-peer approach, emerge from a fusion of local memory areas of

participating clients with the help of coordination mechanisms. Corso (Co-Ordinated

Shared Objects), developed at the Vienna University of Technology is a

representative of a Virtual Shared Memory middleware. Coordination based

systems pick up the idea of a common space shared between members of a

distributed system but put the emphasis on object use for coordination tasks rather

than data storage or complex distributed data structures. Object access is restricted to

a set of simple operations and a template matching system. Such a system was first

proposed with the introduction of the Linda coordination language [Gele85].

24

Used technologies and systems

JavaSpaces from Sun Microsystems and XVSM used in this thesis belong to this

category and provide several extensions to the original concept.

2.4.1 XVSM – eXtensible Virtual Shared Memory

The eXtensible Virtual Shared Memory system is a coordination based

middleware currently in development at the computer language department of the

Vienna University of Technology which extends the Linda model by further

coordination possibilities [Kühn05]. It provides a set of basic data structures, so

called containers, defines the objects that can be put into those containers, namely

entries (and their specialized form tuples), and specifies operations possible to

perform on the shared objects. Additionally it implements a notification mechanism

to raise events at participating clients in case a predefined action of interest occurs on

an observed data structure. The following sections give a short overview of the

mechanisms at work in XVSM and the possibilities created for distributed

application development.

2.4.1.1 Entries and Tuples

In XVSM the basic entity to be placed in a shared space is called an entry, which

is a single value of one of the predetermined types. Those entries are stored in so

called containers (see below). Valid types are integer, string, a reference to a

container (cref) or a tuple. Tuples are an arbitrary sequence of values of the types

above. The length of the sequence is called the arity of the tuple. Following pointed

brackets (<, >) are used to denote a tuple. An example for a tuple would be <4, 7,

“test”> using the type structure <integer, integer, string>. Note that since any of the

predetermined value types can be used, tuples inside tuples are also a legal construct,

e. g. <integer, <string, cref>>. Tuples describe themselves by their structure, used

data types and implicitly by their values. They are explained here because XVSM

25

Used technologies and systems

allows for tuple access using pattern matching with provided template tuples, a

fundamental concept of the original Linda coordination language.

2.4.1.2 Coordination Types

A major goal of XVSM is to provide a variety of coordination patterns to enable

efficient communication in distributed applications. Therefore multiple coordination

types are specified which can be categorized as follows.

Order

A container always has a basic coordination type that defines the way entries

inside the container are accessed. Possible values for order are:

• Random (default):

entries are written and read from the container in a completely random

manner

• FIFO – first in, first out:

the Entry written to the container first will be the first returned on a

read operation (Queue)

• LIFO – last in, first out:

the Entry written last to the container will be the first returned on a

read operation (Stack)

• LRU - least recently used:

the entry that hasn't been in use for the longest time is accessed

View

Views can be set on a container in addition to their base coordination type. They

require additional information to be supplied for operations to be successful.

Available views are:

26

Used technologies and systems

• Key

provides the possibility to identify entries by a unique identifier

(similar to database keys)

• Vector

gives a list view of all entries in a container and allows for access

using an index

Template

In XVSM it is possible to use tuples as entries in a container. The use of templates

allows to filter tuples based on their content and structure. Of course such a filter may

return more than one matching result. In this case the results are sorted according to

the base coordination type of the housing container. When defining a template the

parameters arity, value types, values and count influence the output of the matching

process. The following example illustrates the functionality of template matching

coordination:

A template defined as <integer, ”test”, ?> matches all templates in a container

having the arity 3, an arbitrary value of type integer on the first position, an exact

matching string “test” on the second and any type or value on the third. If no value

for count is explicitly specified only one result is returned in case of multiple

matches.

2.4.1.3 Containers

The basic data structure in XVSM is the container, a construct that can be viewed

as a structured subspace offering a variety of possibilities for coordination. In XVSM

the use of containers is mandatory, shared objects always have to be written into a

container. Writing an entry directly into the shared space is not possible. For each

container certain properties can be set:

27

Used technologies and systems

• Capacity (mandatory)

The number of entries that a container can hold at a time can be limited to a

certain size. If no size is specified the container is unbounded and will grow

dynamically. Size can be of importance when analyzing the blocking behavior

of operations.

• Uniqueness (mandatory)

Containers support two different strategies concerning the uniqueness of

entries. If set to BAG multiple entries with the same values may exists. This is

the default behavior. Alternatively the uniqueness SET doesn't allow for

duplicates.

• Base Coordination Order (mandatory)

Every container always has exactly one base coordination order of the types

Random, FIFO, LIFO or LRU as described above.

Additionally XVSM provides a naming service for containers, which means that

every container can be given a system wide unique name and a reference to it can be

retrieved by performing a lookup using that identifier.

2.4.1.4 Selectors

Now that the coordination types of XVSM have been outlined it is time to take a

look how they can be applied to operations on containers. To be able to specifically

choose the entries on which the desired operations should execute a mechanism

named selectors is provided. Since every container has a base coordination order,

operations without any attached selectors choose the entries following that policy.

But for the coordination types view and template additional information is needed,

namely a key, a vector index or a template tuple. This is passed to the operation by

attaching a selector of the appropriate type. Sometimes it might even be useful to

28

Used technologies and systems

choose entries in an order deviating from the base order type. Hence also alternative

order types can be used to select entries through selectors. To sum up, selectors of

every coordination type exist to provide the greatest flexibility possible for choosing

entries on which operations should be performed.

2.4.1.5 Operations

For putting entries into containers and retrieving them XVSM defines a set of

operations which can be categorized into two main groups, read operations and write

operations.

Read Operations:

• read

Entries are read out taking any given selectors into consideration. If no

additional selectors are specified return values follow the policy defined

through the base coordination order.

• take

This operation can be seen as a consuming read or atomic read and destroy

operation. Entries accessed during this operation are removed from the

container.

• destroy

In this case the selected entries are removed from the container but they are

not returned to the process that issued the function call.

Write Operations:

• write

This operation puts entries into a container taking the base coordination order

into consideration.

29

Used technologies and systems

• shift

Shifting entries into a container is similar to a write but in case capacity

boundaries of any form are met an existing entry is shifted out of the

container regarding base coordination order or a possibly given selector.

On an additional note it must be mentioned that some of the operations can show a

blocking behavior. Read operations will block whenever the entries selected for

reading are not yet present or not to an sufficient amount satisfying a requested count.

Also the write operation may block in case a container met its boundary, the position

determined by a selector is already occupied or the containers SET - property

prevents a duplicate from being inserted. A shift operation never blocks.

2.4.1.6 Notifications

Another mechanism provided by XVSM are notifications. Clients are able to

declare their interest in changes of a container by registering for notifications. When

certain actions occur an event is raised at the registered participants of the distributed

application, giving them the possibility to trigger the desired reaction. Notifications

can be configured to fire only when a specific type of the available operations read,

take, destroy, write and shift occurs or on any type of operation. Additionally the

destruction of a complete container can be observed. How long the registration for a

notification is valid is determined through the combination of a timeout value and the

selection of a notification mode, a choice between:

• once

the notification is canceled after the first time it fired

• prolong

each time the notification fires it is prolonged for the full timeout period

• restricted

the notification fires every time until the timeout expires

30

Used technologies and systems

• infinite

the notification stays active until it is canceled

At the time of the writing of this thesis the development of XVSM has not been

finished, therefore available implementations still lack some important middleware

services like replication, transactional safety or fault tolerance.

31

Description of the architecture

3 Description of the architecture

In this chapter an architecture that facilitates the goals pursued by this work is

outlined. First the basic ideas of sensor and actuator sharing and a system component

description as the central point of the system architecture are introduced. Those

principles impose requirements onto the software to be designed which leads to an

analysis thereof. Subsequent some definitions of importance for the understanding of

the proposed system are given. Finally a description of the components and the way

they work together to build the complete architecture concludes the chapter.

3.1 Basic concepts

Sensor and actuator sharing

A basic idea of the proposed design is to use sensor and actuator sharing as the

means of solving tasks requiring the coordination of multiple robots, supporting

distributed control applications and enabling resource monitoring. The decision for

this concept is based on several considerations. First there are some more obvious

advantages of sharing resources in a team of robots. One factor is cost. A particular

kind of equipment needed can be rather expensive and thus it can be an advantage if

only one member of a team is outfitted with it, but the others can still utilize that

resource they do not possess by receiving access to the data provided by the single

shared instance. Another aspect that can be covered by opening up the sensors and

actuators of a robot for use by other members of a robot team is fault tolerance and

hence greater reliability on a group to solve the given task. Whenever some kind of

detector on one robot fails that is also present on another one, granting access to a

still working one might provide the ability to cover the defect and keep the affected

32

Description of the architecture

team member operational and in the best case make the difference between a

successful mission and the necessity to abort, as investigated in [Park05].

A holistic system view

Aside from economic and reliability reasons the idea enables new ways how to

approach the development of a distributed control application. Taking a look at a

single robot scenario, a developer is aware of the hardware at hand as well as its

capabilities, has direct access to it using some kind of programming interface and is

guided and supported by the development platform to write a control application that

covers all the needs and requirements imposed by the task to be solved. By enabling

resource sharing in a way that the developer is provided with a holistic view of all the

sensors and actuators of all robots in a team or placed in the teams environment,

more or less the same approach as in a single robot scenario can be taken to develop

an application that controls the team. Virtual shared memory middleware as

described in chapter 2.4 lends itself as a fitting analogy for the realization of the

holistic system view as it follows a similar principle. All shared objects are written

into a shared space and all clients solely communicate with the space. The space

contains the objects created by all clients and hence provides a holistic view of the

objects used in the distributed system. Creating object representations of each sensor

and actuator in the space leads to a uniform view of all the resources available in a

distributed control application from each robot's point of view, thus making

application development for each robot a homogeneous process.

Taking this approach to the extreme it eliminates the need for multiple control

applications even though there is more than one robot involved in a task solving

process. Since every participant has access to all resources it is perfectly possible that

one robot, probably with the most processing power, acts as a master running the

application which puts the others to use as agents controlled through subroutines. The

agents only need to run the code necessary to share their resources, which can be

automatically generated and needs little alterations. Of course such a scenario puts

33

Description of the architecture

high demands on the bandwidth and response time of the communication layer since

every command used in the agent subroutines must be transmitted using some kind of

(wireless) network and still time critical issues might be involved in the solution of a

task.

Another – maybe more feasible – option is to rely on specific control applications

for each robot and only make occasional use of the resource sharing possibilities

when needed in the collaborative parts of a mission or to solve fault tolerance issues.

This way implies a completely different set of challenges. While sharing sensor data

poses no real problem, the sharing of actuators can become quite tricky. What if more

than one client wants to use the same shared actuator at the same time? The

application designer needs to take precautions to prevent such situations and define

to which sphere of control ([Kope97], page 98) the actuator belongs at any given

time. Also the location of the resource providing data may have an influence on

whether the supplied data is usable, as environment conditions can vary between

different points of the area a robot team operates in. But these are problems common

to distributed control applications and have to be considered during the application

design. This task cannot be taken away from the programmer by the communication

layer, the architecture simply aims to enable the sharing of sensors and actuators and

providing a uniform way to access them.

System component description

Another important design goal is to enable distributed development of control

applications for a single robot as well as multi robot scenarios. The programming of a

distributed system oftentimes leads to a set of different applications each covering a

certain aspect of the complete system. This is also true in the area of multi robot

research projects where multiple models with different configurations may participate

in the task solving process. When choosing the path of creating separate control

applications for each robot outlined above, distributed development becomes a

necessity since more than one application is needed. Since it is essential to provide

34

Description of the architecture

the ability to describe the resources available in a scenario the introduced system

utilizes a description language and uses that description as a common denominator

for the development of all the necessary control applications. Furthermore the

information contained in the description can be used in software to prepare a

programmable framework for developers for each robot or give details to a

monitoring application to supervise the mission. Additionally it allows for the easy

exchange of scenarios between different research teams and creates the possibility to

start development for resources not yet physically available.

To summarize, the principles driving the design of the presented architecture are

resource sharing and a holistic view of the resources available in a scenario realized

with the help of a virtual shared memory middleware as well as the existence of a

system component description that builds the central point of programming

framework creation and exchange between distributed development teams.

3.2 Definitions

To better understand the explanation of the architecture it is first necessary to

introduce several notions describing some part or concept used in the design and give

a definition for some important terms.

• Module

A module describes a programmatic accessible hardware unit able to provide

data supplied by sensors connected to it or accepting commands for

controlling attached actuators. More specific, a module consists of the actual

hardware, a proxy class for programming and a description containing

additional information as described in chapter 2.2.1. Furthermore, as an

extension to the existing definition, a user interface component for a

monitoring application is required.

35

Description of the architecture

• Environment Module

A special kind of module, only for use in environments and not robots.

Typically characterized by a property like energy consumption, size or weight

that makes it unemployable on a mobile platform. The dependency on power

line communication puts X10 modules in this category.

• Robot

Describes an autonomous mobile robot assembled from interconnected

modules and equipped with a processing unit to run a control application for

those modules. The descriptions of the particular modules added together

form a description of the complete robot.

• Environment

Stands for the environment robots operate in or, more precisely, the resources

available in the environment of a scenario that are not part of a mobile robot

platform. Typically these are modules and/or environment modules connected

to a processing unit for programmatic access.

• RobotWorld

This (abstract) term is used to describe a scenario or, more specific, the

resources available in it. It can include multiple robots and environments.

• Viewpoint

A RobotWorld typically consists of multiple robots or environments.

Even though the architecture tries to provide access to all resources available

for every participant using the virtual shared memory paradigm,

implementation details vary whether sensors or actuators are located locally

or on a remote host. Therefore it is necessary for control application

development to specify a viewpoint, which is the host that the application will

run on. Clearly, valid choices for a viewpoint are robots or environments.

Another – maybe not that obvious – possibility is that of an external

viewpoint, controlling all resources from an external processing unit.

36

Description of the architecture

Figure 3.1 illustrates how the introduced terms relate to each other in an informal

tree structure with an n above a term indicating the possibility of none, one or

multiple instances. For each of the leaf nodes exists a description and for each parent

node the description is an aggregation of the child node descriptions plus some

additional information.

3.3 Requirements

Now that the principles on which the design of the presented architecture is based

are outlined, a more detailed analysis of the concrete requirements the resulting

system needs to fulfill is necessary. For the sake of better understanding the

description of a usage scenario helps to point out the functionality software

implementing the proposed architecture should provide.

3.3.1 Usage scenario

For a research project in cooperative robotics, solutions for a specific task solving

scenario have to be found and evaluated. To solve the problem a team of two robots

has to be coordinated. Additionally in the environment the robots operate some

37

Figure 3.1: defined parts of the architecture and how they are related

Robot World

Environment Robot

Module
Environment

Module Module

n
1

n

nnn

Possible Viewpoints

Description of the architecture

sensors and actuators are installed. Initially the two robots to be used are located at

different offices of the research team. The development of the robot control

applications is the essential point of the project and thus the sooner the work on that

programs can start the better. At the main office, the environment for the scenario is

set up and the sensors and actuators are connected to a computer. Then the team adds

the environmental manipulators to a scenario description using a description

language. Next a robot is configured and assembled following the modular approach

described in chapter 2.2.3 and a description of the model's resources in the same

description language as used for the environment is generated by software, allowing

the developers to add it to the scenario description. Meanwhile, in the other office the

second robot is build in the same way. Since this robot is needed for other purposes

as well, the hardware can only be transferred to the main office in a few weeks time,

but the project team sends the generated resource description to the main office via

email. In the main office this is again added to the scenario description, completing

the account of all the resources involved in the project's scenario.

The development team in the main office uses the description as an input to the

software, which then creates a framework for the control application developers that

provides programmatic access to all the resources using some kind of communication

middleware. Furthermore the software enables the researchers to monitor the state of

the whole system once a control application based on the created framework is

running. For the monitoring, the values provided by the used sensors and actuators

are also retrieved by accessing the data structures of the middleware layer based on

the scenario description.

3.3.2 Functional requirements

Based on the usage scenario described above it is easier to deduce the exact

functional requirements of the system to be contrived. It also becomes apparent, that

the software is intended to support users at design time, but at the same time creates a

38

Description of the architecture

framework based on an architecture to be used at runtime. Hence the requirements

can be analyzed taking a look at the functionality expected from each of this

components.

Design time component

This part of the software needs to perform all tasks necessary to provide a starting

point for control application development. When a robot assembled from several

modules is connected to a computer, it should be possible to query the bus to which

the parts are connected and collect information about them resulting in a description

of the robots resources. This is a part already present in the existing modular robot

system, albeit some modifications in the implementation will be needed. Furthermore

it should be possible to load the description of a whole scenario – a RobotWorld

description – which can include multiple generated robot descriptions as well as

information about resources placed in the operation environment. The software

should provide some kind of user interface to display an overview of the information

contained in a RobotWorld description and allow for the selection of a viewpoint.

Once selected a framework for control application development should be

automatically generated and stored at a user specified destination. This created

framework implements the design of the runtime component of the architecture.

Runtime component

The runtime component of the software has to cover the resource sharing and

communication aspects of the architecture. It is realized as a framework, assembled

from proxy classes of modules and exposing an easy to use API for control

application development. Implementation details of the used communication layer

and the locality of a resource should be hidden from the programmer. Ideally a sensor

or actuator is addressed by its name – which may give an indication of the actual

location – and there is no difference in programmatic access whether it is attached to

the instance chosen as viewpoint or in another location.

39

Description of the architecture

Monitoring

To support the analysis of ongoing actions during the run of a control application

the software should provide means of monitoring the state of the resources. They

should be realized by interfacing with the communication layer used to implement

the resource sharing at runtime. However details about the available sensors and

actuators and how to establish a connection to them should be retrieved from the

description of the RobotWorld and should not require manual configuration. Thus the

user interface of the design time component may be extended by a possibility to load

a RobotWorld description, connect to the resources defined therein and open a user

interface displaying their state.

Concluding it can be seen, that the description of a RobotWorld is a central part of

the architecture since the information contained in it is gathered and subsequently

required in the design process as well as useful during runtime.

3.3.3 Additional requirements

Apart from the requirements on the functionality a software based on the proposed

architecture should provide there are additional requirements covering properties of

the resulting system or the reliance on certain technologies imposed by a specific task

formulation.

Use of XML as description language

Since several mechanisms identified in the requirements analysis so far depend on

the information contained in a description of the resources in a scenario, the need for

an appropriate description language arises. To keep the architecture open and flexible

and provide many opportunities and possible choices for its implementation, the use

of XML (Extensible Markup Language) [W3C06] is a necessity. XML is the basis

40

Description of the architecture

for various communication standards of the Internet, the largest distributed system

ever created. A plethora of accompanying technologies allows for the processing of

the information described with XML. Of particular interest for this thesis are XSLT

(Extensible Stylesheet Language Transformations) [W3C99] and XML Schema

[W3C04]. While XSLT is ideally suited for the process of framework generation by

transforming pieces of the description into initialization parameters for proxy classes,

XML Schema assures that the description adheres to defined rules which is important

for further processing steps. Finally there is a great variety of tools and applications

available to support developers when using XML technologies and frameworks for

programmatic access to XML documents exists for most programming languages of

significant importance today.

Use of XVSM

Since a holistic system view and the reliance on the virtual shared memory

paradigm for its realization are driving ideas of the architecture, the use of a suitable

middleware for the implementation of the communication layer is necessary. XVSM,

developed at the Vienna University of Technology and explained in chapter 2.4.1 is

used for this purpose.

Scalability

Because the number of robots and environments and the deployed sensors and

actuators in a scenario can vary greatly, it is important that the system scales well and

always shows a similar behavior independent of the number of participating hosts.

Extensibility

The architecture should be designed in a way that allows to easily add new

components to the system, for example new modules that are not available at the time

of the implementation of the software. Also the exchange of the communication layer

to other systems or newer, improved middleware versions should be possible.

41

Description of the architecture

3.4 Design of the Architecture

After a thorough analysis of the requirements the resulting system should fulfill,

the next step is to create the actual design of the software architecture. Therefore,

after an overview of the complete system, the design of the main components and the

interactions between them are discussed in detail in the following chapters.

Figure 3.2 shows a schematic overview of all the components involved in the

system, how they are connected and the way they depend on one another. The

architecture is centered around the robots and environments or, put in another way,

the hardware that should be connected through the designed system and that needs to

42

Figure 3.2: schematic overview of the system architecture

Robot 1

Robot n

Environment n

Environment 1

Robot 1
Description

Robot n
Description

Environment n
Description

Environment 1
Description

RobotWorld
Description

XVSM

RobotWorldExplorer
Generated

Control Application
Framework

Control

Application

Monitoring

Design time Runtime

Hardware Software XML

Description of the architecture

run at least the runtime component of the software created. For each hardware part a

fitting description must exist. In case of an environment, the diversity of usable

systems that allow for the placement of sensors and actuators in a scenario make the

implementation of a plug&play-like mechanism for automatic creation of the

description files infeasible. Therefore they have to be created manually. The

descriptions for the robots however can be generated automatically through the use of

the RobotWorldExplorer1 software as indicated by the graphic element. The hatched

area intends to outline this procedure as an optional step (manual creation is also

possible) and as a part already present in the existing robot system that made its way

in a slightly modified form into presented design. All those descriptions together are

combined into a single RobotWorld description and used as input for the

RobotWorldExplorer software that enables the automatic generation of a framework

for the development of a control application for the given scenario. This framework

is assembled from the proxy classes provided for every module used in the

RobotWorld and represents the concluding output of the design time process. Inside

the proxy classes the complete runtime architecture for the resource sharing has to be

implemented. For the correct instantiation of the proxy classes information from the

description is retrieved during the generation process. The control application created

to actually operate the robots in a scenario relies on the architecture implemented by

the framework. Finally for monitoring purposes, a software component connects to

the resource representations in the XVSM space, again with the help of description

input.

Since the RobotWorld description and its creation is a starting point for the

development process, the next chapter will explain the details of its content and

structure. Next, following the logical steps of control application development based

on the proposed architecture, first the design time component and then the runtime

architecture are investigated.

1The term RobotWorldExplorer is introduced as a name for the software implementing the

architecture described in this thesis for better readability and referencing in the design description.

43

Description of the architecture

3.4.1 The Description

The description of the resources available in a scenario is intended to keep the

development environment flexible for different configurations and simplify the

startup process for a programmer by building the basis for the framework generation.

However, to successfully process the information available contained in a description

document, knowledge about the content and inner structure is necessary. Chapter 3.2

introduced terms and notions for all hardware components available in a scenario,

which itself was named a RobotWorld. For each of this parts a description with

additional details has to be provided. The goal is to finally get a complete description

of the RobotWorld as it is required to trigger the framework generation process.

Figure 3.1 (page 37) in chapter 3.2 depicts the relations and number of possible

occurrences of each component. For the definition of the RobotWorld description it

is necessary to create rules that guarantee, that for a document to be a valid and

processable scenario description, its content has the structure as shown in Figure 3.1.

Since the use of XML was identified as an additional requirement, the supplementing

XML technology XML Schema can be used for this task. Following, the detailed

XML Schema definitions for every component will be outlined, using a bottom to top

approach, starting with the modules and concluding with the RobotWorld. On an

additional note, the given type definitions represent the mandatory set of information

necessary for the architecture to work. Depending on the concrete implementation

and the hardware and middleware systems used it may be necessary to extend the

given schema definitions or put some explicit restrictions onto specific element

types.

44

Description of the architecture

Module

Listing 3.1 shows the definition of a module description. The elements can be

explained as:

 <Name> the name of the module

<NodeID> a unique identifier

<Class> the name of the proxy class implementing the hardware access

in a high level programming language.

<Version> a version number for the module. Module capabilities may vary

with different implementations.

<Details> can contain details about some specifics of the module.

(optional)

<DocRef> a reference to the documentation of the module. (optional)

Environment Module

The XML Schema for an environment module looks exactly the same as for a

module but due to the fact that there may be implementation specifics that necessitate

the separate treatment of those two types, they are defined separately. Also, as can be

seen in the following definitions environment modules are not allowed to be used in

robots and hence need a separate type definition.

45

<xsd:complexType name="ModuleType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="NodeID" type="xsd:string"/>
 <xsd:element name="Class" type="xsd:string"/>
 <xsd:element name="Version" type="xsd:string"/>
 <xsd:element name="Details" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DocRef" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

Listing 3.1: XML Schema definition of a module description

Description of the architecture

Robot

In Listing 3.2 the definition of a robot description can be seen. Since it is basically

a list of modules the specifiying type is named ModuleListType. Defined elements

are:

<RobotName> a unique name for the robot. May be necessary for the

implementation of a naming service in the

communication layer.

<Host> the host computer where the control application of the

robot is running. This will typically be a URL1.

<TalkToBusClass> the name of the class implementing the communication

to the bus the modules are attached to.

<Module> an arbitrary sequence of modules the robot is equipped

with.

Environment

An environment is specified using the following elements:

<Name> a unique name for the environment. May be necessary for the

implementation of a naming service in the communication

layer.

<Host> the host computer where the control application of the

robot is running. This will typically be a URL.

1 URL: Uniform Resource Locator

46

<xsd:complexType name="ModuleListType">
 <xsd:sequence>
 <xsd:element name="RobotName" type="xsd:string"/>
 <xsd:element name="Host" type ="xsd:string"/>
 <xsd:element name="TalkToBusClass" type="xsd:string"/>
 <xsd:element name="Module" type="ModuleType" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

Listing 3.2.: XML Schema definition of a robot description

Description of the architecture

<COMPort> a port where the control application can communicate with the

attached modules and environment modules.

<EnvModule> an arbitrary sequence of environment modules available

<Module> an arbitrary sequence of modules available

RobotWorld

Finally the description of a RobotWorld is using the elements:

<WorldName> a name for the scenario

<CommunicationType> allows for the specification of a communication type in

case different implementations of the communication

layer exist and hence the framework to be created

needs to be assembled from different proxy classes.

47

<xsd:complexType name="RobotWorldType">
 <xsd:sequence>
 <xsd:element name="WorldName" type="xsd:string" minOccurs="1"/>
 <xsd:element name="CommunicationType" type="xsd:string"
 minOccurs="1"/>
 <xsd:element name="PackageName" type="xsd:string" minOccurs="0"/>
 <xsd:element ref="Environment" minOccurs="0"/>
 <xsd:element ref="Robot" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

Listing 3.4.: XML Schema definition of a RobotWorld description

<xsd:complexType name="EnvModuleListType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="Host" type ="xsd:string"/>
 <xsd:element name="COMPort" type="xsd:string"/>
 <xsd:element name="EnvModule" type="EnvModuleType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="Module" type="ModuleType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

Listing 3.3.: XML Schema definition of an environment description

Description of the architecture

<PackageName> the classes of the generated framework will be grouped

together into a package of the given name for better

integration with development environments.

<Environment> a sequence of environments available in the scenario.

<RobotDescription> a sequence of robot descriptions of the available robots.

To sum up, a RobotWorld description is a XML document structured according to

the type definitions above. Hence a RobotWorld can contain none, one or multiple

environments and must contain at least one robot. Environments itself can be

comprised of environment modules and/or modules, whereas robots are simply

collections of modules. The XML Schema type definitions give at the one hand a

human readable outline of the information that is expected to be provided for the

framework creation process. On the other hand they are an instrument to validate

existing RobotWorld descriptions for their usability with the software components of

the created architecture.

The complete XML Schema for the mandatory elements of a RobotWorld can be

found in Appendix B.

3.4.2 Design time component architecture

This section gives an explanation of the architecture of the software used in the

design phase of a project, the component named RobotWorldExplorer in Figure 3.2.

As can be seen from the schematic overview it needs to perform two tasks: first it is

used to query the bus of a robot to collect information about the attached modules

and create a robot description, then it has to process the information in a valid

RobotWorld description and transform it into a programmable framework.

Following, these two tasks are explored in more detail.

48

Description of the architecture

3.4.2.1 Robot description generation

Figure 3.3 depicts the process of a robot description generation. On the left side

several modules attached to the robot's bus system can be seen. The bus system is

connected to a PC running the RobotWorldExplorer software. To establish this

communication a translator module for a widespread bus standard commonly used in

PCs may be necessary, such as the interface converter module described in chapter

2.2.2. The software then queries the bus, scanning all possible bus addresses and

remembering the ones where it received an answer in the form of the module's

identifier. Next the module descriptions are fetched either from a storage integrated

into the modules or by an ID lookup in a database and assembled into a robot

description which is output into a file.

This part of the software architecture is already present in the existing modular

robot system designed by Jörg Irran [Irr04] and has been identified to be a very useful

mechanism to support a control application developer. It spares the manual creation

of a robot description and therefore prevents mistakes of not matching descriptions

and modules. Hence it was adopted for this work with some minor alterations.

Changes from a design perspective are, that it is required, that the module

descriptions and resulting robot descriptions conform to the XML Schema definitions

introduced before, a condition not enforced in the existing solution.

49

Figure 3.3: automatic generation of a robot description

Module 1

Module 2

Module 3

Module 4

RobotWorld
Explorer

Description

Description of the architecture

3.4.2.2 Programmable framework generation

As Figure 3.2 (page 42) shows the main task of the software used at design time

is to transform the information contained in a RobotWorld description into a ready-

for-programming framework for a control application developer. Figure 3.4 depicts a

more detailed view of the workflow the responsible part of the RobotWorldExplorer

component must be able to process.

The RobotWorldExplorer software takes a document supposedly containing a

RobotWorld description. The first step is to validate the input against the XML

Schema of a RobotWorld description, which is necessary to prevent easily avoidable

errors in the further programmatic handling and also ensures the completeness of the

information required to successfully finish the task. Once verified to be valid, the

content is parsed to gain actual access to the data needed and the user has to provide

additional information with the help of some kind of user interface. The user's most

50

Figure 3.4: workflow of the RobotWorldExplorer software for the automated framework generation

>

<RobotWorld>
Env1
EnvModule1

Robot1
ModuleA

Robot2
ModuleB
ModuleC

</RobotWorld>
RobotWorldExplorer

RobotWorld
description

User input

validate
against
XML

Schema

XSLT

class Robot1 {

constructor {
ModuleA ModA;
Environment Env1;
Robot Robot2;

}

main {
Env1.getEnvModule1;
Robot2.setModuleC;

}

Class ModuleA {

Pool of Proxy classes

XVSM

Generated framework

User
Interface

• viewpoint
• output destination

Description of the architecture

important input is the choice of a viewpoint as it determines the host on which the

control application is intended to run and thus influences the implementation details

of the created framework. Depending on the viewpoint, proxy classes may need to be

initialized with different parameters. Furthermore a name for the package or

namespace under which the created classes are assembled needs to be specified if not

already set in the description and a destination for the created output has to be

selected.

If all necessary information is available the framework generation can be

triggered. This process needs to transform the data contained in a XML document

into another representation, in this case some high level programming language code.

XSLT was developed just for that purpose and hence is the technology of choice for

this step. For better understanding a simple example using the Java programming

language as output is given to explain the procedure.

Listing 3.5 shows the XML of a very simple valid RobotWorld description (compare

to Listing 3.4 on page 47). In this case it consists of only one robot with only one

module, a motor controller, but it is sufficient to illustrate the transform procedure.

As can be seen the <Class> tag contains the name of the corresponding proxy class

for the module. Listing 3.6 below shows an XSLT document containing

transformation rules to transfer the information contained in a RobotWorld

51

<RobotWorld>
 <WorldName>MyWorld</WorldName>
 <CommunicationType>none</CommunicationType>
 <packageName>mypackage</packageName>
 <RobotDescription>
 <RobotName>MyRobot</RobotName>
 <TalkToBusClass>RS485Bus</TalkToBusClass>
 <Module>
 <NodeID>15B63A4</NodeID>
 <Version>1.0</Version>
 <Name>Motor-Controller</Name>
 <Details>can control up to 8 drive controllers</Details>
 <Class>MotorNode</Class>
 <Docref>../NodeDocumentations/15B63A4.html</Docref>
 </Module>
 </RobotDescription>
</RobotWorld>

Listing 3.5.: example of a simple valid RobotWorld description

Description of the architecture

description into program code in the Java programming language. For better

readability all text that is part of the Java syntax and just passed on to the output

unaltered is printed in bold letters. References to elements of the XML description

document are underlined. All the remaining standard text belongs to the XSL syntax.

52

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text" indent="yes"/>
<xsl:template match="RobotWorld/*">
package <xsl:value-of select="RobotWorld/packageName"/>;

<xsl:for-each select="Module">
import <xsl:value-of select="Class"/>;
</xsl:for-each>
public class <xsl:value-of select="RobotName"/> {

private <xsl:value-of select="TalkToBusClass"/> my<xsl:value-of
 select="TalkToBusClass"/>

<xsl:for-each select="Module">
public <xsl:value-of select="Class"/> <xsl:value-of

select="Class"/><xsl:number value="position()"/>;
</xsl:for-each>
public <xsl:value-of select="RobotName"/>() {
 try {
 my<xsl:value-of select="TalkToBusClass"/> = new <xsl:value-of
 select="TalkToBusClass"/>();
 <xsl:for-each select="Module">
 <xsl:value-of select="Class"/><xsl:number value="position()"/> =

new <xsl:value-of select="Class"/>
("<xsl:value-of select="NodeID"/>",
my<xsl:value-of select="TalkToBusClass"/>);

 </xsl:for-each>
 } catch (Exception e) {

System.out.println("Couldn't create <xsl:value-of
 select="RobotName"/>");

 System.exit(-1);
 }
}

public static void main(String[] args) {
// Auto-generated method stub

try {
<xsl:value-of select="RobotName"/>
<xsl:value-of select="RobotName"/>
<xsl:number value="position()"/> =
new <xsl:value-of select="RobotName"/>();

} catch (Exception e) {

}
}

}
 </xsl:template>
</xsl:stylesheet>

Listing 3.6.: example for XSLT rules to transform a RobotWorld description into Java code

Description of the architecture

As can be seen, the stylesheet makes use of several XSL constructs. The

<xsl:template> tag specifies that all the rules defined within are only applied to a

RobotWorld description and its sub-elements. The <xsl:value-of> statements

choose the literal values of the element specified by the select attribute in the

description and are replaced by this value in the output. Furthermore the <xsl:for-

each> constructs are very similar to loops in programming languages, iterating over

all elements in the RobotWorld description that match the select attribute and

performing the transformations enclosed between the opening and closing tag of the

loop. Other than that, the function <xsl:number value="position()"/> is used to

implement a mechanism that allows for multiple instances of the same module type

in one robot or environment. In case the robot in the example would be equipped

with two motor controller modules, two instances of the appropriate proxy class need

to created. To differentiate the according object references the output of the

mentioned function, which is the position of the element in the XML document, is

used in the naming of the variables. Hence in the programming language code the

two variables MotorNode1 and MotorNode2 would be used.

Now that the XSLT statements of relevance for this transformation process are

explained, the merging of the Java syntax in the stylesheet with the values in the

description to form a usable Java class is described in more detail.

At the top of the output file stands a package declaration where the package name

is retrieved from the RobotWorld description's <packageName> element. Next the

import statements for all the proxy classes of the used modules are added. Again, the

name of those classes is extracted from the <Class> element present in each module

description. This is followed by the declaration of a class named after the

<RobotName> of the robot description, representing the entry point for the control

application to be developed for the robot using this configuration. After the

declaration of member variables for the bus communication implementation

(<TalkToBusClass>) and the required proxy classes, these are instantiated in a

constructor. The parameter values for the correct instantiations are retrieved from the

53

Description of the architecture

RobotWorld description; in case of a module the values of the <NodeID> and

<TalkToBusClass> elements are needed. Finally a method stub for a main method

creates an instance of the class just generated. Now all the modules of the robot can

be accessed using this instance and the rest of the method can be filled with the

actual control application logic by the developer. Listing 3.7 shows the complete

output of the XSLT process.

In addition to the transform process the RobotWorldExplorer software needs to

assemble all the proxy classes referenced by the generated class into the package and

store it at the user specified destination. The result is the ready-for-programming

framework for the developer who can concentrate on the programming of a control

application.

54

package mypackage;

import RS485Bus;
import MotorNode;

public class MyRobot {

private RS485Bus myRS485Bus;
public MotorNode MotorNode1;

public MyRobot() {
 try {

myRS485Bus = new RS485Bus();
MotorNode1 = new MotorNode("15B63A4",myRS485Bus);

 } catch (Exception e) {
 System.out.println("Couldn't create MyRobot");
 System.exit(-1);
 }
}

public static void main(String[] args) {
// Auto-generated method stub
try {

MyRobot MyRobot1 = new MyRobot();
} catch (Exception e) {

}
}

}
Listing 3.7.: output of the XSLT process

Description of the architecture

Finally some of the concepts introduced for the software design that are not

covered by this simple example need further explanation:

• viewpoint:

For the sake of simplicity the RobotWorld in the example above consists of

only one participant – a robot – equipped with one module. Since the focus of

the example is on the XSLT process, the viewpoint is assumed to be this

robot. In case of a scenario including multiple robots and/or environments the

transformation process has to be executed for every participant and thus

multiple classes are created and added to the defined package. Furthermore

the transformation rules may differ whether the output is intended to be a

class for the viewpoint participant or one of the others, because the viewpoint

requires references to all the other's resources, the non-viewpoint participants

only need to make their's accessible for the rest of the team. Also in a

cooperative scenario there can be different proxy classes depending on the

locality of a resources, i. e. if it is physically attached to the host running the

control application or installed in a remote location. The next chapter about

the runtime component architecture gives a more detailed explanation

regarding these issues.

• Communication type and resource management:

To keep the architecture flexible for extension and implementation changes it

may be necessary to extend the XML Schema definitions, alter the XSLT

stylesheets and provide alternative implementations of the proxy classes.

Measures that could necessitate those changes include the change of the

middleware used to realize the communication layer or the switch of the

desired programming language for the output of the framework generation.

Hence it would be unwise to integrate those parts as a fixed and unchangeable

component into the application code. A much better solution is to keep those

resources external and provide a mechanism that makes them interchangeable

and accessible by the software. This is reached by the specification of a

55

Description of the architecture

communication type in the RobotWorld description in combination with the

introduction of some naming conventions for the resource files.

As described in chapter 4.3.1 in the section explaining the XML schema

definition of a RobotWorld description, it is possible to specify a

communication type that indicates how the communication layer is

implemented in the proxy classes. The identifier given for this type is used for

a naming scheme that resources have to follow:

• XML Schema and XSLT stylesheet files for a given communication type

have to be stored in a folder using this name.

• Proxy classes implementing a certain communication type have to use the

identifier as a prefix in the class name. (An alternative would have been to

use a folder/package/namespace named after the identifier, but this could

lead to naming conflicts if different proxy class implementations exist.)

This way, adhering to the naming scheme, the RobotWorldExplorer software

always accesses the files specified by the <communicationType> element in

the RobotWorld description and produces the appropriate output. The

software itself only implements a workflow it can complete as long as the

description complies at least to the type definitions introduced in chapter 3.4.1

and fitting resource files are supplied.

3.4.3 Runtime component architecture

This far the design of the software involved at design time was covered. In this

chapter the architecture of the runtime component implemented inside the proxy

classes is explained. The goal is to provide access to all the resources in a scenario

using the virtual shared memory middleware XVSM.

56

Description of the architecture

Figure 3.5 illustrates a scenario for a control application running on Robot1. Every

participant uses the XVSM coordination mechanisms to make its resources

accessible to others, for example Robot2 publishes the values of the sensors attached

to Module A into the space. Whenever the application running on Robot1 needs this

data it can retrieve it from the space. The module hardware of Robot1 can be

addressed directly, but the data is also published into the space in case another host

requires it in its own control application. Furthermore a computer running a

monitoring application can supervise all the coordination structures in the space. It

takes the access details from the RobotWorld description of the scenario and

visualizes the state of all the resources.

The next section takes a closer look at the XVSM coordination structures involved

in the process.

57

Figure 3.5.: overview of the XVSM coordination structures in a shared memory

Description of the architecture

3.4.3.1 Data structures

The architecture of the runtime component is based on a Request/Answer pattern.

Whenever a control application needs the value of a sensor or wants to issue a

command to an actuator it indicates this by filing a request using the corresponding

data structure of the resource in the XVSM space. The host where the actual

hardware is installed tries to fulfill the request, completes the desired action and

reports a success value within an answer placed in a predefined structure in the space.

In Figure 3.6 a detailed view of the XVSM coordination data structures is

depicted. It can be interpreted as a magnified view of the XVSM components in the

schematic view in Figure 3.5 (page 57), which means that this structures exist once

for each module. To implement the Request/Answer pattern each module has

58

Figure 3.6.: overview of the XVSM coordination data structure – remote access

Description of the architecture

references to two containers, one where it listens to possible requests and another one

to place the respective answers. To ensure that the containers are unique within the

XVSM space and can easily be referenced from other hosts they are named using the

robot name or environment name specified in the RobotWorld description with the

name of the module appended, followed by the suffix REQUEST or ANSWER

respectively. The request container is unbounded and uses the base coordination type

FIFO, hence implementing a simple queue. Whenever a remote host wants to file a

request, it places a request entry into the container and the host with local access to

the resource retrieves the entries in the order they have been put in the queue. The

entry itself is a tuple containing the name of the requesting host and a value.

Depending on whether the module manages sensors or actuators the value is

interpreted in a different way. In case of sensors it may indicate the sensor number if

multiple are attached to the module or it may just be ignored. If the receiving module

controls an actuator the value may contain the desired action to be performed.

However, the interpretation of the value and its type (integer, string, cref, tuple) are

up to the implementation of the fitting proxy classes.

The answer container is also unbounded and uses LIFO as a base coordination

type, but in addition the KEY property is set and entries are written using a key

selector. As a key the name of the requesting host passed in every request entry is

used. This way answers for a specific host are always written to the same position in

the answer container. The layout for the answer structure provides the benefit that the

host that initially filed the request can perform a blocking read operation on a specific

entry and does not have to supervise the whole container, thereby being only

activated when data is written that is meant for it. If for example the answer container

would follow the same queue approach like the request container, all hosts that

requested data would have to process all the entries put into the answer container,

wasting computing time for filtering data not necessarily meant for them. On the

other hand it allows for a notification to be placed on the whole container and thus a

59

Description of the architecture

monitoring application can supervise all the changes, disregarding the hosts actually

involved.

Another aspect becoming obvious when analyzing the data structures depicted in

Figure 3.6 is that there need to be two different implementations of a module's proxy

class depending on whether the hardware resource is actually installed on the same

host that runs the control application or on a remote host. In the first case the code

has to cover the handling of requests, the communication to the robots module bus

system and the returning of answers. When a remote host calls a method exposed by

a module the proxy class implementation needs to place a request and retrieve the

answer. A solutions to this problem is to describe the functions of a module in an

interface and implement this interface in two different ways. This way the locality of

a module makes no difference for control application programming. This is a

procedure commonly used in distributed object middleware as already described in

chapter 2.4.

3.4.3.2 Communication

Now that the data structures are explained, the communication steps happening

when a control application accesses a remote resource are described. As a starting

point for the communication sequences outlined below the following state of the

system is assumed:

• On the host where the module is physically connected, a control application

has instantiated the local proxy class implementation which created the two

containers in the space and performs a blocking take operation on the request

container waiting for request data.

• On the remote host that wants to access data provided by the remote module,

a control application has instantiated the remote implementation of the proxy

class which has retrieved references to the two containers and performs a

blocking take operation on the entry specified by the name of the remote host

used as key.

60

Description of the architecture

• A monitoring application is running on a third host and has retrieved a

reference to the answer container and started a notification on the whole

container.

Remote access

 For each step the corresponding number can be found in Figure 3.6.

1. The remote implementation of the proxy class creates a request tuple

containing the name of the requesting host and a value indicating the desired

action. Then the tuple is put into the request container using a write operation.

2. On the host with physical access to the module hardware the blocking take

operation unblocks and fetches the tuple from the request container.

The use of a take operation removes the first item from the queue. If more are

waiting, they are fetched subsequently. Otherwise if the container is empty after the

operation, the next take blocks until another request is put into the queue.

3. The content of the tuple is interpreted and the desired operations are

performed exchanging data over the local module bus.

4. Once the operations complete the result is written to the answer container

using a shift operation on the position chosen by the key selector with the host

name included in the tuple.

Robot control applications often include time critical sections and are mostly

sequential in nature. The use of the shift operation guarantees that no blocking can

occur when an answer needs to be written which is important because the host can

continue to process the remaining requests in the queue and does not stall the

pipeline. Furthermore, if the host waiting for the answer should have been busy and

did not retrieve the answer written before, the newer value will be the better choice

anyway.

5. At the remote host, which initiated the communication, the take operation on

the entry specified by the host's key unblocks. The proxy class

implementation picks up the entry and interprets the content. At the same

61

Description of the architecture

time a notification fires at the monitoring application which in turn retrieves

the entry just written by the remote host and updates the visual status

representation of the corresponding module.

Local access

Figure 3.7 depicts the simplified case of accessing a module using the local

implementation of its proxy class, a scenario only involving the answer container.

1. A control application accesses local hardware using the module bus and

retrieves a value.

2. The local proxy class implementation puts the value into the answer container

using a shift operation with its own host name as a key for the key selector.

62

Figure 3.7.: XVSM communication paths when accessing a local module

Description of the architecture

3. At the monitoring application a notification fires, the new value is retrieved

using a read operation and the visual representation of the modules status is

updated.

Depending on performance issues the local access synchronization with the

XVSM space may be implemented in a way that it can optionally be deactivated, thus

saving the time and processing power needed for the space communication. However

the monitoring application will suffer from this and can only provide a correct status

view in case a remote access occurs. In situations where monitoring is not necessary

and the importance lies on optimizing the runtime behavior of a control application

the trade off might be worth it.

The presented runtime architecture satisfies the requirements identified in the

analysis phase. It provides access to all modules in a scenario by providing

appropriate XVSM coordination structures in the virtual shared memory. The use of

unbounded containers allows for an arbitrary number of clients to file requests and

retrieve answers. Since a client's notification only supervises a single entry, control

applications running on these clients are only alerted when a value that was explicitly

requested is available. All other communication traffic of the scenario's other

participants is hidden from the hosts and therefore network traffic is minimized. Still

the design allows for a monitoring application to supervise all communication

happening in the space without influencing the host to host performance.

Furthermore the data structures also leave room for possible improvements. For

example, since all requesters in a queue are interested in the same resource, an

alternative implementation could take all outstanding entries from the request

container simultaneously and write the value fetched from the hardware to multiple

positions in the answer container, hence satisfying multiple requests with only one

hardware access.

63

Implementation

4 Implementation

After a detailed description of the software components and their architecture this

chapter covers a prototypical implementation of the proposed system using the

technologies outlined in chapter 2 and the Java programming language. Additionally

a Java version of a subset of the X10 protocol important for this work needed to be

implemented.

4.1 The development environment and used frameworks

Before the the details of the implementation are explored, the following sections

give an overview of the development environment that was used to create the

applications. An important tool to support programmers in the development of a

complex application is the Integrated Development Environment (IDE), which

provides mechanisms such as source code highlighting, code completion, refactoring

and debugging features. Furthermore, as XML was chosen as an integral part of

important components of the architecture, the use of existing frameworks and tools

alleviate the handling of XML documents and technologies from within a

programming language and can save the developer time and effort.

4.1.1 The Eclipse IDE

A popular IDE for the development of Java projects is the Eclipse IDE, an open

source project hosted by the Eclipse Foundation1. It provides a lot of mechanisms to

support programmers in the development of complex applications following the

object oriented programming paradigm. Furthermore its functionality can be

1 Eclipse IDE, http://www.eclipse.org

64

Implementation

expanded with the help of a sophisticated plug-in system for which a great variety of

extensions exists supported by a very active community.

For the implementation of this prototype Eclipse 3.2.1 was used. The user

interfaces for the design time component as well as the monitoring application were

designed with the help of the Visual Editor 1.2.1 plug-in of the Visual Editor

Project1, which allows for drag&drop design of graphical user interfaces based on the

Java technologies AWT and Swing.

To create XML documents and test and debug their processing with the associated

technologies XML Schema and XSLT used in the architecture, the XML Buddy plug-

in from Bocaloco Software LLC2 was installed. It supports such helpful features as

syntax highlighting, XML tag completion and the possibility to validate documents

against a schema definition.

The Eclipse IDE also comes with an integrated plug-in for the support of the

Apache Ant3 build environment, outlined in more detailed in the following section.

4.1.2 Apache Ant

Apache Ant3 is a Java based build tool for software projects. The build process is

controlled by a build file in which so called targets are defined that specify the

actions to be executed. Additionally dependencies between targets can be given, for

example a target that intends to run an application usually depends on a target that

compiles the sources to complete successfully. Ant provides several benefits

compared to other traditional build environments like make4 or the reliance on the

IDE's integrated build process. Since being programmed in Java it is platform

independent and its functionality can be extended by plug-ins written in Java.

Furthermore it allows for the build process to work even when just the source code

1 Eclipse Visual Editor Project, http://www.eclipse.org/vep/
2 XML Buddy Eclipse plug-in, http://www.xmlbuddy.com
3 Apache Ant, http://ant.apache.org
4 GNU make, http://www.gnu.org/software/make/

65

Implementation

files and the ant build file are available even outside of an IDE. Software projects get

better interchangeable between developers and computers with different software

setups. In addition to Eclipse many popular Java development IDEs like Borland

JBuilder or Sun Microsystems NetBeans support Ant. Finally, instead of adhering to

some proprietary format, build files are written using XML and thus easily

processable using XML technologies and frameworks.

The use of Apache Ant version 1.6.9 in this thesis is twofold: first it is used as a

tool configure the build process of the prototype implementation and create

deployable files of the finished project. Second the framework generator

implemented also creates an ant build file for the created classes so that a control

application developer can easily import the sources in an IDE or can build and deploy

the program.

4.1.3 XMLBeans

For the easy integration and handling of the XML description files in Java the

Apache XMLBeans1 framework is used. It automatically creates a Java type hierarchy

based on supplied XML Schema type definitions and enables the programmer to

access documents compliant with the schema using accessors according to the

JavaBeans specification [Sun97]. Also loaded documents are validated against the

schema the type structure is based on. In addition it is possible to use a cursor

mechanism to select a certain position in the document an insert new elements that

are not part of the original type structure.

The use of XMLBeans (version 2.2.0) takes the tasks of XML Schema validation

and manual document parsing off the developer, hence saving time and programming

work.

1 Apache XMLBeans, http://xmlbeans.apache.org

66

Implementation

4.1.4 RXTX

For the connection of the X10 Home Automation system as well as the robot

module bus, communication using a computers serial port (RS-232) from within a

Java program needs to be enabled. Since the default Java Virtual Machine does not

implement this feature, Sun Microsystems specified the JavaComm API1 to provide

the functionality. However, only implementations for Unix based operating systems

are released by the company itself. The open source project RXTX2 provides an

implementation of the JavaComm API and even additional functionality and supplies

binaries for Unix based operating systems, Microsoft Windows and Apple Mac OS

X.

To support a great variety of platforms for running the developed prototype and to

take the platform independent paradigm propagated through the use of the Java

programming language into account the RXTX implementation version 2.1-7 is used.

4.1.5 Apache Tomcat

At the time of the writing of this thesis the Virtual Shared Memory middleware

XVSM realizes the space as a Java Web Application3 that needs to be hosted on a

server able to act as a Web Application Container. The requirement of a dedicated

server software is only specific to the early version of XVSM used in this thesis,

future versions following the peer-to-peer paradigm are already in development.

Apache Tomcat4 was used by Sun Microsystems to develop the official reference

implementations for Java Servlet technology [Sun03] on which a Web Application is

based.

1 Sun Microsystems Java Communications, http://java.sun.com/products/javacomm/
2 RXTX, http://users.frii.com/jarvi/rxtx/
3 Sun Microsystems Java EE Web Application Technologies,

http://java.sun.com/javaee/technologies/webapps/; a Web Application adheres to a set of
specifications that need to be implemented by a Web Application Container

4 Apache Tomcat, http://tomcat.apache.org/

67

Implementation

The XVSM development team chose Apache Tomcat as Web Application

Container and hence version 5.5.20 is used for the implementation presented in this

work.

Table 1 below summarizes the development environment used for the realization

of the prototype by giving an overview of the tools and their versions.

software version

Sun Java Standard Edition SDK 6.0

Eclipse IDE 3.2.1

Eclipse Visual Editor plug-in 1.2.1

Eclipse XML Buddy plug-in 2.0.72

Apache Ant 1.6.9

Apache XML Beans 2.2.0

Apache Tomcat 5.5.20

RXTX JavaComm API implementation 2.1-7

XVSM 0.8.5.1

Table 1: overview of the development environment

4.2 Description of the concrete Java implementation

The following sections give an overview of each software component of the

prototypical implementation of the proposed architecture, covering the most

important classes and their methods ordered by packages. First the connection to the

X10 Home Automation System is outlined, an element not directly part of the

architecture, but chosen to realize the environmental resources in this prototype and

hence the possibility for programmatic access from within a Java application needed

to be created. Thereafter the design time component, the runtime component and the

monitoring are explained which are integrated into a single application, the

68

Implementation

RobotWorldExplorer. The main user interface dialog that is presented to a user when

starting the application is depicted below (Figure 4.1).

The left button leads to the design time component for the automated generation

of a single robot description, subsequently named RobotExplorer, the middle

selection starts the process of the framework generation while choosing the rightmost

option allows for the monitoring of the XVSM coordination structures during the

runtime of a control application.

4.2.1 X10 connection

To enable the transmission of X10 protocol messages over the domestic power

line infrastructure from a computer a special interface unit is needed. For this work

the Marmitek1 CM11a controller was chosen, which can be plugged into a power

outlet for power line communication on one side and connects to a PC using a serial

connection (USB2, RS-232) on the other side to receive commands. Figure 4.2 shows

a picture of the device.

1 Marmitek, http://www.marmitek.com
2 USB, Universal Serial Bus

69

Figure 4.1.: The main menu of the RobotWorldExplorer

Implementation

Package da9726049.x10

All classes implementing the communication to the X10 system are gathered in

this package. The class X10Constants defines constants as byte values for all the

codes of the X10 protocol, listed in Figure 2.7 (page 21), namely the house codes A

through P, unit codes 1 to 16 and all the function codes. Since protocol messages are

merely a concatenation of byte values this provides a convenient and better readable

way to address a specific device to perform the intended function. The class

CM11aController implements the communication to the controller Hardware using

the serial port and thus requires the import of the RXTX packages to provide the

JavaComm API extensions. The constructors allow for the definition of a port

identifier (e.g. “COM1” in Windows environments) and transmission parameters

specific to the RS-232 bus and establish a connection to the serial port endpoints

using data streams. A send() method enables the sending of protocol messages to the

controller. Furthermore predefined methods allUnitsOff(), allLightsOn() and

allLightsOff() create and send the respective messages to trigger the according X10

functions. Since the X10 devices cannot send any feedback about the their current

status, those methods might proof useful in a control application to reach a well

defined starting point, for example by switching all devices off and thus have

knowledge about their state. The classes X10ApplianceModuleLocal and

X10LampModuleLocal can be initialized given a specific house code and unit code

70

Figure 4.2: The Marmitek
CM11a X10 controller

Implementation

and therefore each instance of on of these classes acts as a proxy object for a specific

X10 device, implementing the functions it is capable off. Hence for an appliance

module the methods on() and off() are available, while a lamp module supplements

these with a brighten() and a dim() method. Additional device implementations can

easily be added by providing an appropriate class in the package, but in the scope of

this work only the two mentioned modules were available and hence realized.

4.2.2 Design time component

This section is dedicated to the implementations of the design time components of

the software which are the RobotExplorer, responsible for generating a robot

description of a single robot by querying the module bus using a computer's serial

port, and the Framework Generator, capable of creating a ready-for-programming

code framework for a distributed control application on the basis of a RobotWorld

description.

4.2.2.1 RobotExplorer

This component is partly based on existing source code implemented by Jörg Irran

as part of his thesis [Irr04]. However, some alterations were made to adapt the

software to the requirements of this work.

Package at.oefai.diplomarbeit_e9625867.explorer

The class RobotExplorer in this package provides a mechanism to query the

module bus of a connected robot for attached modules and assembles a robot

description by fetching the module descriptions matching a module's ID from a local

data storage. Again, the connection of the robot bus to a computer is realized using a

serial connection. For this purpose, the existing communication layer was exchanged

for the RXTX implementation of the JavaComm API extensions. Furthermore the

descriptions of all the modules as well as the assembly process that creates the robot

71

Implementation

description were reworked to comply to the XML Schema specifications introduced

in chapter 3.4.1. For more details about the specifics of the bus protocol and the

implementation of the querying process the reader may be referred to the work

referenced above.

Package da9726049.explorer

This package and all its sub-packages implement the graphical user interface of

the RobotWorldExplorer software and the processes that can be controlled with it. Of

particular interest for the RobotExplorer component is the RobotExplorerFrame

class, which allows the user to set some parameters and trigger the module bus

querying process. The user interface is shown in Figure 4.3.

On instantiation of the interface window the RXTX serial port component is

initialized and searches the computer running the application for available serial port

connectors, which can then be conveniently chosen from a drop down list. It also

72

Figure 4.3.: user interface of the RobotExplorer component

Implementation

prevents application errors from wrong user input and the querying of nonexistent

ports. Furthermore a name for the connected robot can be provided that will be

incorporated into the robot description and a storage location for the resulting XML

document can be specified. A click on the [Explore] button will start the process and

the console output with status output and progress information is redirected to the

text area in the lower region. When successfully finished a valid robot description

can be found in the chosen destination folder.

4.2.2.2 Framework Generator

This part of the software is responsible for the creation of a control application

framework based on the information contained in a RobotWorld description. The

parts a valid RobotWorld description is comprised of were outlined in chapter 3.4.1

together with mandatory XML Schema definitions for each component. However, it

was also mentioned that the definitions can be extended and useful restrictions may

be imposed on the possible values for certain elements should a concrete

implementation of the architecture demand it. This is the case regarding the choice of

the X10 Home Automation System to realize EnvironmentModules. The otherwise

identical schema specification to Modules was altered to take advantage of the

additional knowledge of the used system. Listing 4.1 shows the implementation-

specific XML Schema definition used for an EnvironmentModule.

73

Implementation

As can be seen, compared to the Module type definition given before, it is

extended by the elements <HouseCode> and <UnitCode> since every X10 device has

to be addressed using a combination of these two values. Furthermore it can be seen

that restrictions are enforced on the values some elements are allowed to take. This

mechanism provides the advantages that errors in the programmatic handling of the

descriptions can be minimized since documents with invalid values for certain

elements would already be rejected in the XML Schema verification stage. (As a side

effect it can also increase the user friendliness when a developer wants to create a

RobotWorld description because several XML editor programs with schema support

assist the user by displaying possible choices for elements based on the according

schema.) This way a house code can only be a single upper case letter in the range

from A to P and unit codes are a choice among the upper case strings ONE to

74

<xsd:complexType name="X10ModuleType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name=“HouseCode“>
 <xsd:simpleType>

 <xsd:restriction base=“xsd:string“>
 <xsd:pattern value=“[A-P] {1}“/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:element name=“UnitCode“>
 <xsd:simpleType>

 <xsd:restriction base=“xsd:string“>
 <xsd:enumeration value=“ONE“/>
 ...
 <xsd:enumeration value=“SIXTEEN“/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:element name="Class" type="xsd:string"/>
 <xsd:simpleType>

 <xsd:restriction base=“xsd:string“>
 <xsd:enumeration value=“X10LampModule“/>
 <xsd:enumeration value=“X10ApplianceModule“/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:element name="Version" type="xsd:string"/>
 <xsd:element name="Details" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DocRef" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

Listing 4.1.: implementation-specific XML Schema definition of an EnvironmentModule

Implementation

SIXTEEN, thus creating a direct mapping to the constants defined in the

X10Constants class of the package da9726049.x10 (see chapter 4.2.1).

The use of type value restrictions is not limited to the EnvironmentModule

specification, for this implementation it is applied throughout the complete XML

Schema definition of a RobotWorld wherever it may proof beneficial. Such is the

case for the <Class> element that points to a proxy class implementation of a

module. Since the implementations have to adhere to a naming convention for the

software to work properly, it is a good idea to ensure the correctness of the name to

rule out any mistakes. The complete XML Schema type definition of a RobotWorld

description for this prototype can be found in Appendix B.

Package da9726049.xvsm.xbean

The contents of this package represent the output of the Apache XMLBeans

conversion tool applied to the RobotWorld description XML schema. As mentioned

before, the types and elements defined in the schema are mapped to Java types and

members respectively, with the latter being accessibly by get() and set() methods.

This enables the easy handling of schema instances in the Java program code and

spares the developer the manual parsing of the XML documents. This way the

components of a RobotWorld description can be accessed using the methods

getRobotWorld(), getEnvironment(), getRobotDescription(), getModule() and

getX10Module(). Access to their elements works the same way. Should the need arise

to manipulate the actual XML text content directly, on each component the xmlText()

method can be invoked, returning the XML subtree belonging to the component as a

string representation, which can then be parsed manually.

Whenever there are major changes to the schema definition, it might be necessary

to rerun the conversion tool, hence rebuilding the Java type structure. However this

may imply the need to change the code of the RobotWorldExplorer application. To

avoid this the given implementation only makes use of XMLBeans accessors for

elements included in the mandatory XML Schema definitions. Other additions and

75

Implementation

alterations to the schema are solely handled through the XSLT stylesheet for the

source code generation, thus extensibility is possible by just touching external

resource files and not the existing application code.

Package da9726049.explorer

Of interest for the design time component in this package are the GenerateFrame

and FrameworkGenerator classes. While the first represents the graphical user

interface for the framework generation process, the latter implements all the tasks

necessary to reach a usable control application development framework.

Figure 4.4 shows the window for configuration options of the Framework Generator

displaying information about a loaded RobotWorld description. The tree view in the

upper right area shows the available resources covered in the description file to the

detail level of modules and environment modules. In this case the RobotWorld

consists of one environment with two X10 modules and two robots with two modules

76

Figure 4.4.: user interface of the Framework Generator component

Implementation

each. The radio buttons on the left hand side allow the user to choose the viewpoint,

that is the participant intended to host the control application using the generated

framework. Since all the generated classes are assembled into one package, the user

can specify a name for this package as well as a destination folder where the resulting

output will be stored. The process is then started by a click on the [Generate] button.

This is when an instance of the FrameworkGenerator class is created and its

generate() method is invoked. Therein first the information about the viewpoint and

the user defined package name are temporarily inserted as elements in to the

RobotDescription XML using the XMLBeans cursor mechanism, since this content is

needed in the XSLT transformation process. Next, depending on the communication

type specified in the description the Java class loader tries to load the appropriate

XSLT stylesheets, which are stored in the package

da9726049.explorer.transfer.[communication type] adhering to the naming

convention introduced in chapter 3.4.2.2. For each communication type two

stylesheets need to be provided: one named build.xslt that contains the transformation

rules that take the information from the description and produce an Apache Ant build

file for the created framework source files. The other stylesheet named source.xslt

contains two different sets of transformation rules, where the set applied depends on

whether the created output source code is the proxy class for the viewpoint host or

for a participant not being the viewpoint. The basic difference between the host

chosen as viewpoint and the others is that in its source code the local

implementations of the proxy interfaces for its modules have to be instantiated since

they are physically attached to the host running the control application to be

developed. The resources on the non-viewpoint participants are accessed using the

remote implementations of the proxy interfaces. The output of the XSLT process

with the build.xslt template is stored as Ant project file build.xml in the root folder of

the user specified destination path, the classes generated using the source.xslt

template are placed in a sub-folder named src. Finally all necessary libraries the

generated sources depend on are copied into a lib sub-folder which completes the

77

Implementation

process. The generated source files together with the implementations of the proxy

interfaces in the libraries form the framework for the development of control

application.

As an end result of the procedure the user is provided with complete project

structure, the framework complete with a properly set up stub class for the viewpoint

host and Apache Ant build environment support. Figure 4.5 shows a resulting sample

project imported into the Eclipse IDE.

In the section on the left the complete project structure can be seen with the source

files tree expanded and showing the generated classes for this project in the upper

area. Underneath all the libraries forming the framework have been properly

imported. The middle section shows the content of the class selected as viewpoint.

All modules and references to the other participants are declared and instantiated in

the constructor. The stub created for the main method is where the control

78

Figure 4.5.: a generated framework project imported into the Eclipse IDE

Implementation

application logic has to be added. Finally the window area on the right shows the

targets of the created Ant project file for compilation and running of the application.

4.2.3 Runtime component

The framework created by the Framework Generator in the previous step forms

the runtime component of the architecture. It is comprised of the proxy class

implementations of the interfaces specified for every module. The use of interfaces

guarantees that a module always provides the functionality declared therein and thus

it makes no difference from a programmers point of view what the details of the

underlying implementation are. This way for a programmer, in the control application

the use of a local resource is exactly the same as a method call on a remote resource –

a desired behavior. It is also exploited to enable the possibility of different

communication types, as for whatever system or middleware is used to realize the

communication layer, as long as the classes implementing it use the specified

interfaces the framework will work. All the interfaces for modules and environment

modules are declared in the package da9726049.core. The name of those interface

classes is also the name that has to be given as a reference in the module description

using the <Class> element, the actual name of the implementing class is derived

from the <communicationType> element which will – according to a naming

convention – be added as a prefix. The proxy classes implementing those interfaces

using XVSM can be found in the package da9726049.xvsm.

Package da9726049.xvsm

This package contains the implementation classes of the proxy interfaces declared

in the package da9726049.core for the communication type XVSM, which means

that monitoring and connections to a remote resource are realized with the help of the

middleware XVSM. Adhering to the naming conventions introduced before, all class

names start with the prefix XVSM. Furthermore, since the implementation differs

79

Implementation

whether a module is physically attached to the host running the application or on a

remote machine, there need to be two implementations of every module interface.

The one covering local access uses the suffix Local in its class name, the other

extends the name with the suffix Remote.

All of the classes in this package are derived from the class XVSMModule that

covers the basic setup of the XVSM coordination structures required to implement

the Request/Answer pattern. Furthermore to allow for an efficient parallel operation

of multiple modules the class is realized as a thread, effectively handling the

communication for each module in its own thread. Figure 4.6 shows an the OOD

diagram illustrating the class relations and Table 2 shows the data structure of the

XVSMModule class.

80

Figure 4.6.: OOD of the XVSMModule
classes

Implementation

member type

capi Capi

requestCont Container

answerCont Container

hostName String

moduleName String

requestName String

answerName String

Table 2: data structure of the XVSMModule class

The capi object is responsible for the connection to the XVSM space and provides

methods to access the mechanisms provided by the middleware. It enables the

creation of containers and notifications and calls to possible operations like read and

write. For the containers belonging to a specific module to be easily identifiable and

retrievable the naming service of the XVSM middleware is used. Thus containers are

given a unique name that is stored in the field moduleName, which is comprised of

the host name of the client with physical access to the hardware and the name of the

module given in the RobotWorld description. This identifier is unique throughout the

entire distributed system and hence identical in the local and remote implementations

of the module interface. Additionally a hostName is stored that gives the name of the

computer instantiating the class and is used as a key in requests so that the resource

provider knows where to put the answers and the requester receives them. Since the

architecture uses two separate containers to implement the Request/Answer pattern,

the names for the each container are stored in the fields answerName and

requestName, which are the moduleName added with the suffix ANSWER or

REQUEST respectively.

The constructor of the XVSMModule class initializes the capi object, then tries to

lookup the containers in the XVSM space by their respective names. In case they

cannot be found, they are created. Either way the references are stored in the

requestCont and answerCont fields. Finally the container properties for the answer

81

Implementation

container are set to allow the use of a key-selector for the placement of the answer

values.

Since all module implementations are derived from this class, the procedure

described above is the same for all proxy classes. Implementation details for each

module are covered in separate sections in chapter 4.3 below.

4.2.4 Monitoring

Another part of the runtime component is the monitoring, where the

communication happening in the XVSM space and the status of the modules should

be visualized in a clear way. The classes handling the monitoring task are assembled

in the package da9726049.explorer.monitors.

Package da9726049.explorer.monitors

This package is divided into the two sub-packages gui and logic to separate the

user interface from the application logic running behind it. In the package gui the

visual representations for all modules are stored, for this implementation these are

classes using Java Swing components for the graphical user interface, with each class

extending the JPanel component. A JPanel is a Swing container, a component

intended to help with the logical organization and grouping of user interface elements

but providing no user interaction features itself. The idea behind this approach is that

the RobotWorldExplorer loads a RobotWorld description and creates a monitoring

window for each host declared therein. To this monitoring window for each module

attached to the host a JPanel is added, where the user interface elements vary

depending on the module type. This is realized with the help of a dynamic class

loader that instantiates the appropriate class from the logic package. The classes in

this package contain the module specific implementations for supervising the XVSM

answer containers of the fitting module using a notification mechanism and create a

panel from the gui package as a member to display the observations. Furthermore

82

Implementation

each class implements the Monitor interface, which only declares the getPanel()

method that returns the JPanel used to visualize the communication. Again, as a

naming convention all classes in the logic package start with the communication type

they implement and use the suffix Monitor.

For better understanding the complete process is explained step by step below:

1. The user chooses the option to monitor a RobotWorld in the

RobotWorldExplorer software and subsequently selects a description

document containing information about the scenario.

2. The software parses the document for all the hosts declared therein and the

communication type.

3. For each host a monitoring window is created and the class loader searches

for a class with the name comprised of the values of the

<communicationType> element, the module's <Class> element and the

suffix Monitor for each module.

4. If found, the class is instantiated using its first constructor, which takes the

module description XML as an argument. From the description the

information necessary to establish a connection to the space is retrieved.

5. The call of the getPanel() method of the just instantiated class returns the

graphical user interface element for the module which is then added to the

monitor frame of the module's host.

The final result is a window for each participant of a scenario, where each window

is automatically filled with the user interface elements to display status information

about the modules attached to the according participant. The use of this technique

provides great flexibility for future extension of the implementation. For example if a

different middleware is used, i. e. the communication type is changed, no changes to

the source code of the existing RobotWorldExplorer software are necessary. Only

new classes implementing the monitoring logic for the new communication layer

have to be provided and are automatically loaded by the dynamic class loading

mechanism.

83

Implementation

member type

capi Capi

answerCont Container

answerName String

moduleName String

panel JPanel

Table 3: data structure for XVSM monitors

Figure 4.7 and Table 3 show the OOD diagram and data structure for XVSM

monitors. All the monitor implementations have in common that they retrieve a

reference to the respective module's answer container and create a notification on it.

This way all changes happening to the container can be supervised. To be able to

react to notifications the NotificationListener interface provided by the XVSM

middleware framework must be implemented. As to allow the parallel monitoring of

multiple containers simultaneously, the monitors are all realized as threads.

Implementation details for every module type as well as their user interface panels

are explained in section 4.3 below.

84

Figure 4.7.: OOD for XVSM monitors

Implementation

4.3 Module implementations

The implementation details and data structures common to all modules have been

explained it the sections above. This section is meant to give a short overview of the

modules realized for this prototype, together with their interfaces, monitoring panels

and the structure of the data actually transmitted through the XVSM containers. As

explained in chapter 3.4.3.1 of the design description, the entries written into the

containers are <host name, value> tuples, with the host name being used as a key

identifying the requester and the content of the value depending on the requirements

of a specific module implementation. This inner structure of the value part will also

be explained in the following sections.

4.3.1 XVSMX10ApplianceModule

field type

host name String

function code int

Table 4: entry structure for an
X10ApplianceModule

Listing 4.2 shows the interface for the X10ApplianceModule. Its functionality is

limited to the two functions on() and off() which switch a device attached to the X10

module on or off respectively. For this case the structure of the XVSM entry written

to or read from the containers is a very simple tuple <host name, function code> . A

simple integer value is used as a function code indicating that the X10 device should

be turned off in case it is smaller than 0 and on else. The proxy class implementations

and monitor classes interpret the entries received accordingly and trigger the fitting

action. Figure 4.8 below shows the user interface element used for monitoring with a

radio button displaying the device status.

85

public interface X10ApplianceModule {

public void on();
public void off();

}

Listing 4.2.: interface of the X10ApplianceModule

Implementation

4.3.2 XVSMX10LampModule

field type

host name String

level int

function code String

Table 5: entry structure for an
X10LampModule

As can be seen in Listing 4.3 the X10LampModule provides the functions

brighten() and dim() in addition to on() and off(). This environment module is

intended to be used with lamps and the first two functions can be used to regulate the

brightness by passing the desired brightness percentage level as a parameter. The four

functions together with the parameter cannot be encoded in a single integer value,

thus the tuple is extended to the form <host name, level, function code>, where the

level indicates the desired brightness level and the function code contains the name

of the function that should be called. The proxy class implementations and monitor

classes interpret the entries received accordingly and trigger the fitting action. Figure

4.9 shows the panel used for the monitoring, with a radio button and an additional

slider component to display the status.

86

public interface X10LampModule {

public void brighten(int level);
public void dim(int level);
public void on();
public void off();

}

Listing 4.3.: interface of the X10LampModule

Figure 4.8.: monitoring user
interface for an
X10AppliancModule

Implementation

4.3.3 XVSMServoModule and XVSMMotorModule

field type

host name String

servo number int

position int

function code String

Table 6: entry structure for a
ServoModule

The ServoModule interface declares the functions setServo() and setServoQuiet(),

each taking the number of the servo attached to the module and its desired new

position as parameters. While the first method only completes when the addressed

servo acknowledges that it has reached its final position, whereas the latter just

dispatches the command to the module bus and allows the control application to

continue without waiting. The functionality of a MotorModule is essentially the

same, except that a first parameter indicates the motor number and the position

parameter is interpreted as the speed level. But the same coordination data structure

and user interface component can be used, hence the module is not specifically

discussed. The tuples for XVSM coordination have the inner structure <host name,

servo number, position, function code>, with the middle two used to pass the method

parameters and the last one containing the name of the function to be called. The

appropriate handling of the tuples passed through the containers is implemented in

the proxy classes and monitors for these modules. Figure 4.10 shows the panel for the

monitoring component.

87

Figure 4.9.: monitoring user
interface for a X10LampModule

public interface ServoModule {

 public void setServo(int servoNr,
 int position);

 public void setServoQuiet(int servoNr,
 int position);

}

Listing 4.4.: interface of a ServoModule

Implementation

4.3.4 XVSMBumperModule

field type

host name String

value int

function code String

Table 7: entry structure for a
BumperModule

The BumperModule provides functions to get the status of all the bumper sensors

attached to the module at once encoded into an integer value, or to query a specific

sensor returning a boolean value that is true when the sensor has contact to an object

or false else. The structure for the transmitted tuples can be seen in Table 7. The

function code always contains the name of the function to be called or has been

called in case the tuple is written to an answer container. The value field is used to

pass the bumper number when used as a request and to store the return value of the

called function in case of an answer, with the boolean false value mapped to the

integer 0. Figure 4.11 depicts the user interface panel for the BumperModule with a

textfield for each bumper containing the bumper's number and the background color

showing the status. A green backround indicates no contact to an object, while it

turns red in case the bumper is activated.

88

public interface BumperModule {

 public int getAllBumper();
 public boolean getSingleBumper(

int bumperNumber);

}

Listing 4.5.: interface of a BumperModule

Figure 4.10.: monitoring user
interface a ServoModule or
MotorModule

Implementation

4.3.5 XVSMIRDistanceModule

field type

host name String

value *

function code String

Table 8: tuple structure for an
IRDistancModule

The IRDistanceModule allows for the attachment of up to seven distance sensors.

The variety of the exposed methods and data types by the interface does not allow for

the use of a single tuple structure for request and answer entries, therefore different

answer tuples are used. The basic structure is shown in Table 8 with the field value

taking different types according to the function called. For the request tuple it is an

integer giving the number of the sensor to be queried in the getSingleSensor*()

functions. For those two methods the tuple written to the answer container looks

exactly the same with this time the integer containing the return value of the

respective function. The getAllSensors() function requires a minor change in the way

that for an answer tuple the value field is a String matching the return value of the

method. For the getAllSensors_ByteRep() method the value field itself is a tuple of

seven integer values, since the method returns an array of integers with each field

storing a sensor value and the field's index matching the sensor number.

89

public interface IRDistanceModule {

 public String getAllSensors();
 public int[] getAllSensors_ByteRep();
 public int getSingleSensor_Cached(

 int sensorNr);
 public int getSingleSensor(int sensorNr);

}

Listing 4.6.: interface of a IRDistanceModule

Figure 4.11.: monitoring
interface for a BumperModule

Implementation

Depending on the function code the implementations of the proxy interfaces

handle the different types of answer tuples accordingly. Figure 4.12 shows the

graphical user interface element for visualizing the module's status. For each sensor

the actual value is shown in a JTextField matching the sensor's number.

4.4 Extensibility

This section is meant to give an overview in which ways the existing software can

be extended, which classes and resources need to be provided and where they need to

be placed to work properly. Therefore first a summary of the overall package

structure and naming conventions introduced throughout the previous chapters is

gathered here in one place followed by a concrete example for better understanding.

4.4.1 Naming conventions and package structure

The names of the classes created are mainly influenced by the communication

type. The communication type defines the technique used to realize the information

transmission between different hosts in a distributed robot system. To make use of a

specific communication type in the created framework, it has to be specified in the

90

Figure 4.12.: monitoring user
interface for an
IRDistanceModule

Implementation

RobotWorld description with the <communicationType> element. Of course for each

module a proxy class implementation using this type must be provided. For the

Framework Generator to work properly, naming conventions have been introduced,

so that it can find and initialize the correct classes in the resulting framework:

• Classes: proxy class implementations for a given communication type have to

start with the name of the communication type. Should the communication

type require a client/server design and thus more than one proxy class for a

module, the server implementation has to end with the suffix Local and the

client implementation with the suffix Remote. The class implementing the

monitoring component has to end with the suffix Monitor.

• XSLT: the transformation rules for a communication type are stored in two

XSLT files: build.xslt for the creation of an Apache Ant project file and

source.xslt for the creation of framework source code. The files have to be

placed in the folder da9726049.explorer.transfer.[communicationType].

Adhering to these conventions the prototypical implementation for the

communication type XVSM lead to the package structure below for the

RobotWorldExplorer software.

Package content

da9726049.core module interfaces

da9726049.xvsm interface implementations for XVSM

da9726049.explorer user interfaces and logic of the
RobotWorldExplorer application

da9726049.explorer.monitor.gui graphical user interfaces for each module
(extending javax.swing.JPanel)

da9726049.explorer.monitor.logic.xvsm program logic filling the GUI elements for each
module for XVSM

da9726049.explorer.transfer.xvsm build.xslt and source.xslt for XSVM framework
generation

91

Implementation

4.4.2 Example: adding a new module for XVSM

To outline the procedure of adding a new module this example shows what a

developer needs to do to make the NewMod module usable in control applications

using XVSM:

• Add the following resources:

package file(s) content

da9726049.core NewMod.java module interface

da9726049.xvsm XVSMNewModLocal.java
XVSMNewModRemote.java

server proxy class
client proxy class

da9726049.explorer.monitor.gui NewModPanel.class compiled GUI for
monitoring (JPanel)

da9726049.explorer.logic.xvsm XVSMNewModMonitor.class compiled program logic
behind the GUI

• Add NewMod to the XML Schema of a RobotWorld description as a valid

value for a <Class> element.

• In case the module description is not stored in the hardware, it needs to be

added to a folder named ModuleDescriptions in the same folder as the

RobotWorldExplorer software.

When adhering to the naming conventions and with the help of the dynamic class

loading mechanism for the monitoring components, modules can easily be added

without the need to make any changes to the existing source code. As an additional

note it may be mentioned, that the architecture even provides the flexibility support

different middleware solutions through the specification of new communication

types. Furthermore also the change of the programming language of the generated

frameworks is easily doable by providing proxy class implementations in the desired

language and adapting the XSLT stylesheets accordingly.

92

Putting the Framework to use

5 Putting the Framework to use

In this chapter a short proof-of-concept scenario will cover all the steps from the

description of a simple scenario over assembling of the robot and creation of the

framework to the implementation of control applications. The development of

control applications for autonomous mobile robots is a very complex problem, even

more so for multi robot scenarios. The focus of this work is to create an environment

that supports the developer in the solving of this problem and gets her/him to a point

where she/he can start to focus on the important task of developing the control

application for a distributed robot scenario. Thus the example is intentionally kept

very simple and intends to demonstrate the simplicity of the startup phase but

furthermore allows for the actual development of the control application within

reasonable amounts of work to show that the communication layer using XVSM

works as intended.

5.1 The Scenario

A robot, equipped with a drive mechanism and bumper sensors is put into a dimly

lit environment containing obstacles and the goal to navigate around obstacles. In the

environment a lamp is installed which is initially turned off to save energy, but can

be switch on to brighten the scenario course and allow for a better evaluation of a

situation. During robot operation, the whole process shall be monitored on a

computer running a monitoring application.

93

Putting the Framework to use

5.2 Hardware Requirements and Preparations

The first step is to take a look at the hardware needed to fulfill the task and the

steps necessary to make it ready for development. In this case these are:

• The robot:

The robot needs to be assembled from the appropriate modules for the task. As a

basis for the mobile robot, a caterpillar platform with a motor module is chosen. To

the platform's front two bumper sensors are attached which are controlled by a

bumper module. Furthermore a processing unit is necessary that can run the control

application for the scenario. Since the platform is big enough, a small laptop

computer is used for this task. To enable the connection of the computer to the

robot's module bus an interface converter module receives messages from the

computers serial port and translates them to the bus protocol.

Finally all the modules are connected together and a computer running the

RobotWorldExplorer software queries the module bus and produces a valid robot

description.

• The environment:

The lamp in the environment is realized with the help of the X10 Home

automation system and an appliance module. To enable access as a shared resource a

computer with a CM11a X10 controller connected to the serial port is needed to send

X10 protocol commands over the domestic power line infrastructure from within the

control application. Since a plug&play mechanism for module recognition for the

X10 system cannot be realized, the developer has to create a valid environment

description manually with an XML editor.

94

Putting the Framework to use

The two descriptions for the robot and the environment are then manually

assembled into a single RobotWorld description for the monitoring and framework

generation process.

• The monitoring host:

A third host computer is required for the monitoring task. For this purpose the

RobotWorldExplorer software is installed on the system. Additionally the

RobotWorld description file needs to be supplied to the software to configure the

monitoring.

95

<?xml version="1.0" encoding="UTF-8"?>
<RobotWorld xmlns="http://xbean.xvsm.da9726049">
 <WorldName>MyWorld</WorldName>
 <CommunicationType>xvsm</CommunicationType>
 <Environment>
 <EnvironmentName>OEFAI_Labor</EnvironmentName>
 <Host>http://myrobot1:8080/xvsm/xvsm</Host>
 <COMPort>COM3</COMPort>
 <X10Module>
 <Name>X10ApplianceModule</Name>
 <HouseCode>A</HouseCode>
 <UnitCode>THREE</UnitCode>
 <Class>X10ApplianceModule</Class>
 <Version>1.0</Version>
 </X10Module>
 </Environment>
 <RobotDescription>
 <RobotName>MyRobot1</RobotName>
 <TalkToBusClass>RS485Bus</TalkToBusClass>
 <Host>http://localhost:8080/xvsm/xvsm</Host>
 <Module>
 <Name>Motor-Controller</Name>
 <NodeID>15B63A4</NodeID>
 <Class>MotorModule</Class>
 <Version>1.2</Version>
 <Details>allows controlling of 2 Motors</Details>
 <DocRef>../NodeDocumentations/15B63A4.html</DocRef>
 </Module>
 <Module>
 <Name>BumperModule</Name>
 <NodeID>78A23F4</NodeID>
 <Class>BumperModule</Class>
 <Version>1.0</Version>
 <Details>receives the values of 2 bumpers</Details>
 <DocRef>../NodeDocumentations/78A23F4.html</DocRef>
 </Module>
 </RobotDescription>
</RobotWorld>

Listing 5.1.: the RobotWorld description for the example scenario

Putting the Framework to use

• Connection:

The three host computers that build this distributed system need to be connected

using a network infrastructure to enable communication between them. Since the

robot should be able to move freely, a wireless LAN1 connection is chosen for this

client. The other two hosts may use either a wired or wireless connection.

Furthermore a computer running the Apache Tomcat server application hosting the

XVSM space is required. Because the control application of the robot is the one most

likely having to deal with time critical issues, the space is hosted on its laptop

computer to eliminate additional network latencies.

Now that the hardware is set up and the valid RobotWorld description has been

created for the scenario, the next step is to create the frameworks for the control

applications. In this specific case two control applications are needed, one for the

laptop computer controlling the robot and one for the host controlling the

environment resources. Hence the RobotWorld description is loaded with the

RobotWorldExplorer software and two frameworks are generated, one with the robot

selected as viewpoint and one with the environment being chosen. At this point all

steps necessary to start with the application development are completed.

5.3 Writing the control applications

To solve the task described in the scenario two control applications are needed,

one for the environment and one for the robot.

The first is very simple because the host controlling the environment modules in

this case only acts as a resource provider. It does not issue any commands to remote

hosts, it simply has to initialize the proxy classes for proper hardware access and

listen for requests filed by the robot control application. Actually all these tasks are

already performed by the framework generator, hence the created framework is

1 LAN: Local Area Network

96

Putting the Framework to use

already the complete control application. All that remains to be done is to deploy the

framework project on the appropriate computer and compile and run the application.

For the robot control application a simple strategy for navigating the scenario is

developed. The robot starts by simply driving straight forward. Whenever the bumper

sensors indicate physical contact to an object, the robot immediately moves backward

for a short distance. It then pauses, switches on the light and evaluates the situation.

(Note: In this control application the evaluation phase is only simulated by a short

timeout. A real life evaluation could be realized with the help of a camera module

mounted on the robot platform, that can be used to detect a direction without any

obstacles ahead, which is only possible in good lighting conditions. However, this

would have increased the complexity of the control application considerably and the

simulation is also justified by the lack of such a module implementation.) After the

evaluation the robot turns in a direction with no obstacles ahead and continues its

movement through the scenario. The code to implement this simple strategy is shown

in Listing 5.2.

97

while(true){
//--- forward ---
MotorModule1.setMotor(LEFT,0.25);
MotorNodule1.setMotor(RIGHT,0.25);

if (BumperModule1.getSingleBumper(6)
 || BumperModule1.getSingleBumper(4)) {

//--- back ---
MotorModule1.setMotor(left,-0.3);
MotorModule1.setMotor(right,-0.3);
Thread.sleep(500);
//--- switch lamp on ---
X10AppliancModule1.on();
//--- evaluate situation (simulated) ---
Thread.sleep(3000);
//--- turn ---
MotorModule1.setMotor(left,0.4);
MotorModule1.setMotor(right,-0.4);
Thread.sleep(1000);
//--- switch lamp off again ---
X10AppliancModule1.off();

}
}

Listing 5.2.: a simple control application for a robot

Putting the Framework to use

The robot starts moving by calling the setMotor() method of the motor module

with the desired motor number (here replaced by the constants LEFT and RIGHT for

better readability) and a speed value indicating the percentage of the maximum

speed as parameters. If the two front bumpers detect a collision with an object the

robot moves backwards. Then the remote resource, the X10 appliance module is

switched on, the situation “evaluated” and the robot turned into a direction with no

obstacles ahead. Before the movement is continued, the remote lamp is switched off

again. All the method calls during this process cause status information to be

distributed into the XVSM space and can be monitored at the third host running the

monitoring application.

Concluding, to emphasize the versatility and benefits of the holistic system view

and resource sharing provided by the presented architecture, it should be highlighted,

that the control application code for the robot shown above can be interchanged

between the client computers in this distributed system without any changes. Put into

the environment control application's main method, the robot would function the

same way, albeit being remote controlled from an external host computer.

98

Figure 5.1.: photo series of a robot running the sample control application

Putting the Framework to use

Furthermore, using the tools provided through this thesis, the realization of this

scenario takes no longer than 2 to 3 hours, which again indicates the efficiency and

short startup time introduced through the use of the proposed system.

99

Conclusion and future outlook

6 Conclusion and future outlook

In this chapter the proposed architecture and its prototypical implementation is

evaluated based on the requirements that emerged as a result from the analysis in

chapter 3.3. This is done separately for the design time and the runtime components,

followed by a section covering possible future extensions and alterations.

6.1 Design time component

The design goal for the design time component was to assist the developer in the

start up phase of a robot coordination scenario and minimize the time required to

reach the point where the most complex part of such a task, the control application

development, can start. This goal is met as can be best seen in chapter 5, where the

prototype software based on the proposed architecture is put to use to realize a simple

example scenario. The planning and preparation process is supported and automated

to a point, that a programmable framework complete with a folder structure, project

file for use with IDEs and support for a monitoring application are provided to the

developer. In the special case, where a participating host only acts as a resource

provider, no additional programming by the developer is required. The output

framework of the design time component is already the control application for the

host it was created for. The only input required to reach this state is some XML

content conforming to well defined rules supplied in the form of a XML Schema

definition outlined in chapter 3.4.1. Through the reliance on XML technologies,

developers can choose among a great variety of existing applications and tools to be

supported in the creation of this content.

The architecture outlined in this work further allows to apply a layered view to the

whole system depicted in Figure 6.1.

100

Conclusion and future outlook

On the lowest level is the hardware layer, which covers all the aspects of the robot

hardware including sensors and actuators, their physical implementation and

connection. Stacked on top of it is a hardware access layer, which enables the access

to and controlling of the hardware from within high level programing languages.

Next is the communication layer, used to connect multiple clients in a robot team

scenario and covered by the runtime component of this work. Finally on the topmost

level the distributed control application resides, the layer implementing the logic

necessary to solve a specific task and of most interest for artificial intelligence

research. The benefit of this layered model is that development and research for each

layer can happen simultaneously and separately from each other as long as the

interfaces to the adjacent layers are kept intact. However the use of different and new

technologies in one layer might necessitate at least small changes to the way two

layers interact. The mechanism providing this flexibility and mask the unavoidable

differences between alternative implementations is the XML description introduced

in this architecture. The information contained therein is used to select the

appropriate classes for the framework and to instantiate them with the correct values.

As already mentioned in the introduction to this thesis, research in the area of

Embodied AI requires knowledge of many diverse areas which are reflected in the

layers outlined above and allows experts from every field to concentrate on a specific

layer. The output of the software's design time component covers the lower three

101

Figure 6.1: layered view of the system
architecture

hardware layer

hardware access layer

communication layer

control application layer

Conclusion and future outlook

levels and thus allows for experiments in implementing artificial intelligent behavior,

a goal this thesis set out to reach.

The requirement to enable distributed control application development is also met

through the use of the XML descriptions as a basis for the framework generation

process. This way the description files or parts thereof can be exchanged between

different developers, which can in turn write different solutions for a task or

contribute to a joint development effort. Because of the implemented communication

layer even remote access to hardware resources over a network is possible.

Finally, the system realized in this thesis can be extended in several ways. For the

provided prototypical implementation using XVSM new modules can be added by

supplying additional source code but not requiring changes to the existing code. The

same is true if instead of XVSM an alternative communication layer probably using

another middleware system is used. Furthermore, even though all the software

components in this work are written in Java, when providing suitable resources the

framework generation process will produce output in an arbitrary programming

language.

In conclusion it can be said that the design time component successfully performs

the tasks as intended in the original idea. It assists a developer in the design process

by hiding and automating low level aspects and thereby simplifies the demanding

task of creating distributed Embodied AI applications. Its realization and modular

design provides a flexibility that enables good extensibility and adaption to different

platforms. This can be attributed to the use of Java and its platform independent

paradigm and primarily to the use of XML technologies and their platform

overlapping usability.

6.2 Runtime component

The runtime component of the architecture is the communication layer

implemented in the framework generated by the design time component. It was

102

Conclusion and future outlook

realized using the virtual shared memory middleware XVSM to provide a holistic

system view to the programmer of a distributed control application. Using this

approach, from within a control application the locality of a resource is hidden from

the programmer and hence can be accessed in the same way whether it is physically

connected to the host running the control application or installed in a remote location.

The exemplary control application developed in chapter 5.3 demonstrates that the

architecture is perfectly capable of providing this service, since the application code

is interchangeable between the participating hosts and works without any changes

necessary. A major benefit of the holistic system view is that – from a programming

perspective – in effect the development of a distributed control application for a robot

team is the same as for a single robot. Additionally it proofs beneficial for fault

tolerance scenarios, since remote resources can be used in case of a hardware failure.

The proof-of-concept control application in chapter 5.3 illustrates the remote

access to resources, which in this case is not time critical. For the sharing of

resources in time critical situations further considerations have to be taken.

Autonomous mobile robots are real time systems, where some processes are subject

to hard deadlines, meaning that the meeting of certain critical time constraints is

essential and missing can have fatal consequences [Kope97]. In the case of collision

detection with an obstacle, if the time between detection and proper reaction is to

long, the robot may continue to exert a force in the obstacle's direction instead of

moving back and possibly destroy some part of its own hardware or the obstacle.

Depending on the speed of the robot and factoring in the latency of the

communication medium – e. g. with the technologies used in this thesis a wireless

Ethernet connection having typical latencies in the area of low hundreds of

milliseconds – control loops for such a task using remote resources are not carried

out over not real time proof media types that cannot meet the requested time

constraints. Taking this into account during control application design, such

situations can be avoided. An adequate solution to this problem can be achieved by

providing access to simple behavior patterns in addition to the resources for time

103

Conclusion and future outlook

critical tasks that are realized using local control loops. For example a robot could

expose a method that moves it forward until it collides with an obstacle and then

moves back and waits for further instructions. The approach of having several control

layers starting with fast and reactive control mechanisms on a lower level that can be

used and influenced by commands of higher level layers can also be seen in the

subsumption architecture introduced by Brooks [Broo86]. Aside from the problem

mentioned above, there are many aspects in a distributed control application that are

not time critical by their nature (e. g. resource access outside of critical control loops)

or can be realized in a way that they do not depend on time limits (e. g. ensure that a

robot is in a safe state before a task is performed).

The coordination mechanisms provided by XVSM proofed to be very valuable

and versatile for implementing the communication layer, allowing for the data

structures to be very simple and enabling the required holistic system view. The

concept of containers accepting and delivering arbitrary entries based on predefined

coordination types enables the realization of a shared queue for multiple clients just

with the services offered by the middleware. Exploiting the fact that one container

can house entries with different data types and inner structure, only one container

instead of multiple can be used to store the data returned from all kinds of different

method calls. This helps to keep the growing of the number of shared data structures

on a linear level with the amount of shared resources and the same base

implementation of the Request/Answer pattern can be used for each module type.

Furthermore the notification mechanism turned out to be an essential service for the

task of resource monitoring. The use of unbounded containers allows the system to

scale to an arbitrary number of clients from an architectural point of view. At this

point in time XVSM is still a work in development and little experience on the

scalability of the middleware performance exists. However for future versions

increased performance and reliability as well as additional services can be expected.

The current development process moves away from the client server architecture to a

peer-to-peer solution. This removes the need for hardware capable of running a Web

104

Conclusion and future outlook

Application Container as a necessary component to realize the space and will allow

every host to run a lean peer-to-peer client, which also increases reliability through

the elimination of a single point of failure.

Concluding it can be said that the runtime architecture addresses all the

requirements imposed on it and that XVSM proofed to be a very usable middleware

to realize the task at hand. Due to the real time nature of autonomous mobile robots

the distributed nature of the resources has to be taken into consideration during

control application design and practicability will have to be evaluated on a case-by-

case basis.

6.3 Future outlook

The following section introduces ideas for further extensions, improvements and

variations of the presented work.

6.3.1 Adaptive request queue processing

Since autonomous mobile robots are real time systems, the relevance and age of

retrieved sensor data plays an important role in control applications. A newer value is

always more important than the preceding one, hence the older one can already be

overwritten even if it has not yet been processed. In the current implementation this

is already considered for example through the use of shift operations that never block

for writing answers. However requests are placed into the queue by clients one at a

time and processed by the host one at a time. This way it is possible that the number

of requests in the queue increases when many clients request data from the same

resource. For sensors this behavior could be optimized in a way that the host reads all

the requests waiting in the queue simultaneously, since they all are interested in the

same sensor value. The answers are then written to the answer container for all the

requesters in the queue. This variation can optimize response time for clients waiting

105

Conclusion and future outlook

at the end of the queue and also decreases the traffic on the module bus since

multiple request can be satisfied with only a single sensor query.

6.3.2 Virtual resources

This extension is based on the idea that modules do not necessarily have to be

some kind of sensor or actuator hardware. Basically the resource sharing process

consists of a request for certain data and a response to that request. The provider of

this data can as well be another piece of software or a service. For example a map

service could have a map for a certain area or scenario at its disposal. By filing a

request to the map service, the robot could receive information about the directions to

a certain point.

6.3.3 Knowledge sharing

This is a kind of variation or extension of the virtual resources idea and of

particular interest for artificial intelligence research and robot teams. A major goal of

this research area is to create autonomous robots that show some kind of intelligent

behavior and are capable of learning about aspects in their environment. As an

example, by trying to move certain objects, a robot could acquire the knowledge that

it can push and move sphere shaped object since they roll, but does not have enough

power to do the same with blocks. It could store this knowledge in a knowledge base

shared among a robot team and save the other team members the effort to find out on

their own through trial and error. Another typical example would be a search and

rescue task for a robot team, where the member finding the target can share the target

location with the others so that they stop searching and move to the correct position.

106

Conclusion and future outlook

6.3.4 Distributed system on a single robot

The architecture presented in this thesis allows for the sharing of hardware

resources among different hosts. This design does not necessarily have to be

deployed in a multi robot scenario, it may also provide benefits when applied to a

single robot that uses multiple processing units instead of one. Given the discrepancy

between computing power versus mobility and energy efficiency it can be a better

solution to use several mobile and efficient computers to build a mobile robot instead

of using a big and heavy single computer system that quickly drains the batteries. In

case of humanoid robots – robots that move on two legs in an upright position

mimicking human walking – the balance of the whole system is an important

factor, that can be influenced by the weight distribution. Being able to use several

smaller computing devices instead of having all the weight concentrated in one place

can be helpful in this area as well.

As a concluding remark, the architecture proposed in this thesis and the ideas it is

based on show a great potential for future developments and extensions due to its

modular design and used mechanisms and might be even applicable in other ways

than initially intended during its design as illustrated by the last extension idea.

107

Appendix A

7 Appendix A

108

Appendix A

7.1 Literature

[Broo86] Brooks R. A., A Robust Layered Control System for a Mobile

Robot, IEEE Journal of Robotics and Automation, Vol. 2, No. 1,

pp. 14-23,1986

[Broo91] Brooks R. A., Intelligence Without Reason, Proceedings of the 12th

International Joint Conference on Artificial Intelligence (IJCAI-91),

pp. 569-595, Morgan Kaufmann publishers, Sidney, Australia,1991

[Gele85] Gelernter D., Generative communication in Linda, ACM

Transactions on Programming Languages and Systems (TOPLAS),

pp. 80-112, ACM Press, New York,January 1985

[Irr04] Irran J., Entwurf und Konstruktion eines in Hard- und Software

erweiterbaren und modularen mobilen Robotersystems, Master

thesis executed at the Institut für Medizinische Kybernetik und

Artifical Intelligence, University of Vienna ,2004

[King99] Kingery P., Digital X-10,

http://www.hometoys.com/htinews/feb99/articles/kingery/kingery1

3.htm#Digital%20X-10,1999, accessed August 2007

[Kope97] Kopetz H., Real-Time Systems: Design Principles for Distributed

Embedded Applications, Kluwer Academic Publishers, Dordrecht,

The Netherlands, Sixth Printing 2002,1997

[Kühn05] Kühn e., Riemer J., Joskowicz G., XVSM (eXtensible Virtual

Shared Memory) Architecture and Application, Technical Report,

Vienna University of Technology E185/1, SBC Group,2005

109

Appendix A

[Park05] Parker L. E., Chandra M., Tang F., Enabling autonomous sensor

sharing for tightly-coupled cooperative tasks, Multi-Robot

Systems: From Swarms to Intelligent Automata, Volume III,

Springer, New York,2005

[Park95] Parker L. E., The Effect of Action Recognition and Robot

Awareness in Cooperative Robotic Teams, Proceedings of the 1995

IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Vol. 1, pp. 212-219,August 1995

[Smar07] Smart Home Systems Inc., How X10 Works,

http://www.smarthomeusa.com/info/x10theory/#theory,accessed

August 2007

[Sun03] Coward D., Yoshida Y., Java Servlet Specification Version 2.4,

Sun Microsystems,

http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html,

November 2003, accessed August 2007

[Sun97] Sun Microsystems, Hamiltion G., Sun Microsystems JavaBeans

Specification version 1.01, http://java.sun.com/beans,August 1997,

accessed August 2007

[Tann02] Tannenbaum A. S., Van Steen M., Distributed Systems: Principles

and Paradigms, Prentice Hall Inc., New Jersey,2002

[W3C04] W3C, XML Schema Part 0: Primer Second Edition,

http://www.w3.org/TR/xmlschema-0/,October 2004, accessed

August 2007

[W3C06] W3C, Extensible Markup Language (XML) 1.0 Fourth Edition,

http://www.w3.org/TR/2006/REC-xml-20060816/,2006, accessed

August 2007

110

Appendix A

[W3C99] W3C, XSL Transformations (XSLT) Version 1.0,

http://www.w3.org/TR/xslt,November 1999, accessed August 2007

[X1006] X10, Ltd., Standard and Extended X10 Protocol,

ftp://ftp.x10.com/pub/manuals/xtdcode.pdf,2006, accessed August

2007

111

Appendix A

7.2 Figure index

Figure 2.1.: NASA Rocky7 experimental robot ..11

Figure 2.2.: Electrolux trilobite 2.0 vacuum cleaner 11

Figure 2.3: schematic view of a module and its additional

components (Source:[Irr04]) ...14

Figure 2.4.: a servo module with two connected servos 16

Figure 2.5.: example of a completely assembled robot 19

Figure 2.6.: physical representation of binary data in X10 (Source: [King99]) 21

Figure 2.7.: complete code table of the X10 binary protocol

(Source: [Smar07]) ..21

Figure 2.8.: format of a X10 message (Source: [Smar07]) 21

Figure 3.1: defined parts of the architecture and how they are related 37

Figure 3.2: schematic overview of the system architecture 42

Figure 3.3: automatic generation of a robot description 49

Figure 3.4: workflow of the RobotWorldExplorer software for the

automated framework generation ...50

Figure 3.5.: overview of the XVSM coordination structures in a

shared memory ..57

Figure 3.6.: overview of the XVSM coordination data structure –

remote access ...58

Figure 3.7.: XVSM communication paths when accessing a local module 62

Figure 4.1.: The main menu of the RobotWorldExplorer 69

Figure 4.2: The Marmitek CM11a X10 controller ..70

Figure 4.3.: user interface of the RobotExplorer component 72

Figure 4.4.: user interface of the Framework Generator component 76

Figure 4.5.: a generated framework project imported into the Eclipse IDE 78

Figure 4.6.: OOD of the XVSMModule classes ..80

112

Appendix A

Figure 4.7.: OOD for XVSM monitors ..84

Figure 4.8.: monitoring user interface for an X10AppliancModule 86

Figure 4.9.: monitoring user interface for a X10LampModule 87

Figure 4.10.: monitoring user interface a ServoModule or MotorModule 88

Figure 4.11.: monitoring interface for a BumperModule 89

Figure 4.12.: monitoring user interface for an IRDistanceModule 90

Figure 5.1.: photo series of a robot running the sample control application . .98

Figure 6.1: layered view of the system architecture 101

113

Appendix A

7.3 Table index

Table 1: overview of the development environment 68

Table 2: data structure of the XVSMModule class ...81

Table 3: data structure for XVSM monitors ..84

Table 4: entry structure for an X10ApplianceModule 85

Table 5: entry structure for an X10LampModule ..86

Table 6: entry structure for a ServoModule ...87

Table 7: entry structure for a BumperModule ...88

Table 8: tuple structure for an IRDistancModule ..89

114

Appendix A

7.4 Listing index

Listing 3.1: XML Schema definition of a module description 45

Listing 3.2.: XML Schema definition of a robot description 46

Listing 3.3.: XML Schema definition of an environment description 47

Listing 3.4.: XML Schema definition of a RobotWorld description 47

Listing 3.5.: example of a simple valid RobotWorld description 51

Listing 3.6.: example for XSLT rules to transform a RobotWorld

description into Java code ...52

Listing 3.7.: output of the XSLT process ..54

Listing 4.1.: implementation-specific XML Schema definition

of an EnvironmentModule ...74

Listing 4.2.: interface of the X10ApplianceModule ..85

Listing 4.3.: interface of the X10LampModule ...86

Listing 4.4.: interface of a ServoModule ...87

Listing 4.5.: interface of a BumperModule ...88

Listing 4.6.: interface of a IRDistanceModule ..89

Listing 5.1.: the RobotWorld description for the example scenario 95

Listing 5.2.: a simple control application for a robot 97

115

Appendix B

8 Appendix B

116

Appendix B

8.1 XML Schema definition for mandatory elements of a
RobotWorld

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="RobotWorld" type="RobotWorldType"/>
 <xsd:complexType name="RobotWorldType">
 <xsd:sequence>
 <xsd:element name="WorldName" type="xsd:string" minOccurs="1"/>
 <xsd:element name="CommunicationType" type="xsd:string"
 minOccurs="1"/>
 <xsd:element name="PackageName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Environment" type="EnvModuleListType"

minOccurs="0"/>
 <xsd:element name="Robot" type="ModuleListType" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="EnvModuleListType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="Host" type ="xsd:string"/>
 <xsd:element name="COMPort" type="xsd:string"/>
 <xsd:element name="EnvModule" type="EnvModuleType"

minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="Module" type="ModuleType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ModuleListType">
 <xsd:sequence>
 <xsd:element name="RobotName" type="xsd:string"/>
 <xsd:element name="Host" type ="xsd:string"/>
 <xsd:element name="TalkToBusClass" type="xsd:string"/>
 <xsd:element name="Module" type="ModuleType" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ModuleType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="NodeID" type="xsd:string"/>
 <xsd:element name="Class" type="xsd:string"/>
 <xsd:element name="Version" type="xsd:string"/>
 <xsd:element name="Details" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DocRef" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="X10ModuleType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name=“HouseCode“>
 <xsd:element name=“UnitCode“>
 <xsd:element name="Class" type="xsd:string"/>
 <xsd:element name="Version" type="xsd:string"/>
 <xsd:element name="Details" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DocRef" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

117

Appendix B

8.2 XML Schema for a RobotWorld description with
restrictions for the prototype implementation

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:sz="http://xbean.xvsm.da9726049"
targetNamespace="http://xbean.xvsm.da9726049"
elementFormDefault="qualified">
 <xsd:element name="RobotWorld" type="sz:RobotWorldType"/>
 <xsd:element name="Environment" type="sz:EnvModuleListType"/>
 <xsd:element name="RobotDescription" type="sz:ModuleListType"/>
 <xsd:complexType name="RobotWorldType">
 <xsd:sequence>
 <xsd:element name="WorldName" type="xsd:string" minOccurs="1"/>
 <xsd:element name="CommunicationType">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="none"/>
 <xsd:enumeration value="xvsm"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="PackageName" type="xsd:string" minOccurs="0"/>
 <xsd:element ref="sz:Environment" minOccurs="0"

maxOccurs="unbounded"/>
 <xsd:element ref="sz:RobotDescription" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="EnvModuleListType">
 <xsd:sequence>
 <xsd:element name="EnvironmentName" type="xsd:string"/>
 <xsd:element name="Host" type ="xsd:string"/>
 <xsd:element name="COMPort" type="xsd:string"/>
 <xsd:element name="X10Module" type="sz:X10ModuleType" minOccurs="0"

maxOccurs="unbounded"/>
 <xsd:element name="Module" type="sz:ModuleType" minOccurs="0"

maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ModuleListType">
 <xsd:sequence>
 <xsd:element name="RobotName" type="xsd:string"/>
 <xsd:element name="Host" type ="xsd:string"/>
 <xsd:element name="TalkToBusClass" type="xsd:string"/>
 <xsd:element name="Module" type="sz:ModuleType"

 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ModuleType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string/>
 <xsd:element name="NodeID" type="xsd:string"/>
 <xsd:element name="NodeNumber" type="xsd:string"/>
 <xsd:element name="Class" type="xsd:string"/>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">

118

Appendix B

 <xsd:enumeration value="ServoModule"/>
 <xsd:enumeration value="BumperModule"/>
 <xsd:enumeration value="IRDistanceModule"/>
 <xsd:enumeration value="MotorModule"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Version" type="xsd:string"/>
 <xsd:element name="Details" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DocRef" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="X10ModuleType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="HouseCode">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[A-P]{1}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="UnitCode">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ONE"/>
 <xsd:enumeration value="TWO"/>
 <xsd:enumeration value="THREE"/>
 <xsd:enumeration value="FOUR"/>
 <xsd:enumeration value="FIVE"/>
 <xsd:enumeration value="SIX"/>
 <xsd:enumeration value="SEVEN"/>
 <xsd:enumeration value="EIGHT"/>
 <xsd:enumeration value="NINE"/>
 <xsd:enumeration value="TEN"/>
 <xsd:enumeration value="ELEVEN"/>
 <xsd:enumeration value="TWELVE"/>
 <xsd:enumeration value="THIRTEEN"/>
 <xsd:enumeration value="FOURTEEN"/>
 <xsd:enumeration value="FIFTEEN"/>
 <xsd:enumeration value="SIXTEEN"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Class" type="xsd:string"/>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="X10LampModule"/>
 <xsd:enumeration value="X10ApplianceModule"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Version" type="xsd:string"/>
 <xsd:element name="Details" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DocRef" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

119

