
MASTERARBEIT

Ontologies in Automation

ausgeführt am

Institut für Rechnergestützte Automation

Arbeitsgruppe Automatisierungssysteme

der Technischen Universität Wien

unter der Anleitung von

ao. Univ.-Prof. Dipl.-Ing. Dr. Wolfgang Kastner

durch

Rainer Müller

Hernalser Hauptstrasse 57/17

1170 Wien

Wien, January 24, 2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

Semantic Web techniques have been proven to be an efficient method of storing information

in various application areas. The intention is to enable automated processing, without the

necessity of human interaction. Furthermore, semantically enriched data provides a greater

flexibility due to its networked structure. In addition to this, a knowledge base (ontology)

can be deployed in different ways. For example, an ontology that provides data for a

web-shop, may also be integrated in industrial automation devices in order to automate

communication.

The increasing tool support makes it possible to develop ontologies, even without having

detailed knowledge about the underlying techniques. Data visualization tools help to keep

track of the inherent complexity of Semantic Web documents.

This thesis starts with a brief overview about the Semantic Web Vision, followed by an

introduction into the basic ingredients and common design issues of ontologies. Afterwards,

RDF, RDFS and OWL are discussed in detail. Next, different approaches for the use of

ontologies in industrial automation devices are presented. Finally, the integration of an

ontology into an existing engineering tool is shown.

iii

Kurzfassung

Semantic Web Techniken haben sich bereits in vielen Anwendungsbereichen als eine sehr ef-

fiziente Methode der Informationsspeicherung erwiesen. Das Ziel ist eine automatisierte Ve-

rarbeitung, ohne menschliches Zutun. Weiters bietet eine semantische Datenstrukturierung

hohe Flexibilität auf Grund des hohen Vernetzungsgrades. Wurde eine solche "Wissens-

Datenbank" (Ontologie) erstellt, so kann diese in unterschiedlichen Bereichen genutzt wer-

den. Zum Beispiel kann eine Ontologie, die als Datenquelle für einen Web-Shop dient,

gleichzeitig genutzt werden, um eine autonome Kommunikation zwischen Feldbusgeräten

zu etablieren.

Durch die zunehmende Software-Unterstützung ist es möglich, Ontologien zu entwickeln,

ohne detailiertes Wissen über die zugrundeliegenden Techniken zu haben. Daten Visual-

isierungsprogramme sind dabei eine nützliche und hilfreiche Methode, um den Überblick

über große Datenbestände zu behalten.

Die vorliegende Diplomarbeit gibt einen Einblick in die sogenannte Semantic Web Vision,

grundlegende Ontologie Bestandteile und allgemeine Design Richtlinen. Anschließend wird

RDF, RDFS und OWL im Detail vorgestellt. Danach werden verschiedene Ansätze der

Implementierung von Ontologien in Feldbusgeräten diskutiert und abschließend die Inte-

gration einer Ontologie in ein bestehendes Engineering Tool gezeigt.

iv

Contents

List of Figures xi

1 Introduction 1

1.1 Semantic Web Vision . 2

1.2 Ontologies . 2

1.2.1 Definition . 2

1.2.2 Components . 3

1.2.3 Upper, Middle and Lower Ontologies 5

1.2.4 Ontology Specification . 8

1.2.5 Ontology Implementations . 11

2 Ontology Languages 17

2.1 History . 17

2.2 Basic Ingredients . 18

2.3 Design Issues . 19

2.4 Expressiveness of Ontologies . 21

v

Contents

3 RDF 23

3.1 History . 24

3.2 RDF Basics . 24

3.2.1 Resources . 25

3.2.2 Statements . 26

3.2.3 Literals . 26

3.3 RDF Views . 28

3.4 RDF/XML Syntax . 30

3.4.1 rdf:ID and rdf:about . 33

3.4.2 rdf:resource . 33

3.4.3 rdf:parseType . 35

3.4.4 QNames and Namespace Support . 35

3.4.5 Blank Nodes . 36

3.4.6 URI abbreviation . 36

3.4.7 rdf:type . 38

3.5 RDF/XML Abbreviation Techniques . 38

3.6 RDF concepts . 40

3.6.1 Containers . 40

3.6.2 Collections . 42

3.6.3 Reification . 43

4 RDF Schema 47

4.1 Classes in RDFS . 48

4.1.1 rdfs:subClassOf . 49

4.2 Properties in RDFS . 50

4.2.1 rdfs:range . 51

4.2.2 rdfs:domain . 51

4.2.3 rdfs:subPropertyOf . 53

vi

Contents

4.2.4 Other Properties . 53

5 OWL 55

5.1 History . 56

5.2 OWL Types . 58

5.3 OWL Documents . 59

5.4 OWL Basics . 61

5.4.1 Classes . 62

5.4.2 Individuals . 63

5.4.3 Properties . 64

5.4.4 Property Restrictions . 65

5.4.5 Property Characteristics . 67

5.4.6 Boolean Combinations . 68

5.4.7 Enumerations . 70

6 Ontologies In Factory Automation 71

6.1 Introduction . 71

6.2 The Next Generation Device Description . 73

6.3 A Common World . 74

6.4 Service-Oriented Architecture (SOA) . 75

6.4.1 SOAP . 75

6.5 Web Services (WS) . 76

6.6 Web Service Description Language (WSDL) 77

6.7 OWL-S . 77

6.7.1 OWL-S structure . 78

7 Festo Device Ontology Implementation 81

7.1 Introduction . 81

7.2 Overview . 82

vii

Contents

7.3 The Design Process . 83

7.3.1 Step-by-Step . 83

7.3.2 Common Mistakes . 86

7.3.3 Naming Conventions . 88

7.4 Tools and Software . 88

7.4.1 Protégé . 89

7.4.2 OwlDotNetApi . 90

7.5 The Festo Device Ontology . 91

7.5.1 Step 1: Determine the domain and scope of the ontology 91

7.5.2 Step 2: Reusing existing ontologies 92

7.5.3 Step 3: List of relevant ontology concepts 92

7.5.4 Step 4: Defining classes and establishing a class hierarchy 93

7.5.5 Step 5: Defining class properties . 94

7.5.6 Step 6: Further property refinement 95

7.5.7 Step 7: Creating instances . 97

7.6 Integration Process . 97

7.7 Conclusion . 101

A Acronyms 103

B RDF 107

B.1 RDF Class Descriptions . 107

B.2 RDF Property Descriptions . 108

B.3 RDF Property Domains and Ranges . 108

C OWL 111

C.1 OWL: Supported XML Schema Datatypes 111

C.2 OwlDotNetApi Classes . 111

C.3 OwlDotNetApi Interfaces . 113

viii

Contents

D Festo Ontology 115

D.1 The Festo INI-file (excerpt) . 115

D.2 The Festo Device Ontology (excerpt) . 117

Bibliography 121

ix

Contents

x

List of Figures

1.1 Ontology Partitions . 4

1.2 Ontology Pyramide . 6

1.3 Ontology Layers . 7

1.4 SUMO sections . 14

3.1 RDF Graph . 29

3.2 RDF Example Structure . 32

3.3 Multiple Subject Usage . 33

3.4 Resource As Object - Graph . 34

3.5 URI abbreviation using xml:base [W3Ce] . 37

3.6 URI abbreviation without xml:base [W3Ce] 37

3.7 The rdf:Bag graph [W3Ce] . 42

3.8 RDF Collections . 44

3.9 RDF Reification . 46

4.1 Omitting rdf:type . 50

xi

LIST OF FIGURES

6.1 A Common Knowledge Base . 74

6.2 SOAP Layer . 76

6.3 WSDL Concept . 77

6.4 OWL Service Ontology . 79

7.1 Application overview . 82

7.2 The ontology editor Protégé . 89

7.3 Ontology Hierarchy . 93

7.4 ParText Instance . 94

7.5 Introducing a Sequence Mechanism . 95

7.6 Property Refinement . 96

7.7 Restriction Violation . 96

7.8 Domain and Range Restrictions . 97

7.9 Instance Tree . 99

xii

Listings

3.1 XML Example 1 . 25

3.2 XML Example 2 . 25

3.3 Typed Literals . 27

3.4 A simple RDF document . 30

3.5 The about Attribute . 30

3.6 RDF Document . 31

3.7 Resource As Object - XML . 34

3.8 rdf:parseType . 35

3.9 URI abbreviation . 37

3.10 Multiple rdf:Description Tags . 38

3.11 Merging rdf:Description Tags . 39

3.12 Childless Predicates . 39

3.13 Omitting rdf:Description . 40

3.14 The rdf:Bag container . 41

3.15 RDF Collections . 42

xiii

Listings

3.16 Reification Example . 45

3.17 Reification Shortcut . 46

4.1 Describing Classes . 48

4.2 Subclass Relation . 49

4.3 Omitting rdf:type . 50

4.4 RDFS Class Abbreviation . 50

4.5 rdfs:range Property . 51

4.6 devices.rdf . 52

4.7 schema.rdfs . 52

5.1 Namespaces . 60

5.2 Ontology Header . 60

5.3 OWL Class . 62

5.4 owl:disjointWith . 63

5.5 owl:equivalentClass . 63

5.6 Defining Individuals - abbreviated . 63

5.7 Defining Individuals . 64

5.8 Simple OWL Object Property . 65

5.9 Cardinality Restriction . 65

5.10 owl:someValuesFrom Restriction . 67

5.11 owl:intersectionOf . 69

5.12 OWL Enumerations . 70

7.1 Signing assemblies . 91

7.2 Creation of the OWL Graph . 98

7.3 getChildEdges() and getParentEdges() . 98

7.4 getModulesByCode() . 99

D.1 The Festo INI-file . 115

xiv

Listings

D.2 The Festo Device Ontology . 117

xv

Chapter

1
Introduction

We‘re drowning in information but

starving for knowledge.

(John Naisbett)

In 1989, when Tim Berners-Lee invented the World Wide Web, nobody would have thought

of it becoming such a powerful communication medium. Nevertheless, up to now its social

contribution was limited by the user, who browses and interprets the Web. Most of its

content is designed to be read by humans not by machines. This is what the Semantic Web

is all about - providing structured data that can be processed by machines. For example, a

hotel’s website could be easily extended by annotating the hotel name, location, category or

the number of rooms in a machine-processable way. By using Semantic Web languages like

RDFS/OWL, common conceptualizations can be established (also referred to as ontologies)

and information can easily be retrieved and analyzed by personal agents - even without

any human interaction. Ontologies provide a common vocabulary and formal structures to

organize and store knowledge. Tim Berners-Lee once stated his vision about the Semantic

Web [FBL99] as follows:

1

1 Introduction

I have a dream for the Web [in which computers] become capable of analyzing all the

data on the Web - the content, links, and transactions between people and computers. A

’Semantic Web’, which should make this possible, has yet to emerge, but when it does,

the day-to-day mechanisms of trade, bureaucracy and our daily lives will be handled by

machines talking to machines. The ’intelligent agents’ people have touted for ages will

finally materialize. (Tim Berners-Lee, 1999)

1.1 Semantic Web Vision

The word ’Semantic’ is derived from the Greek word ’Semantikos’ which means giving

signs in a significant and symptomatic way. The idea of the ’Semantic Web’ is to make the

Web machine-processable by giving additional information about its content - so called

Meta-data. Most of today’s information is presented in a weakly structured form, e.g. text,

images, audio and video. The idea is not to create a separate Web, it is rather an extension

to the current one. Due to the fact that this idea remained mostly unrealized after a few

years, the W3C put a lot of effort in developing and standardizing languages in order to

push the development of the Semantic Web.

1.2 Ontologies

1.2.1 Definition

An ontology is a data model, which represents a set of concepts and relations within

a certain domain. Further, it is possible to reason about its objects, in order to gain

knowledge, which is (or is not explicitly) stored in the model.

There exist many definitions for ontologies, some of them are:

2

1.2 Ontologies

• "An ontology is an explicit specification of a conceptualization" [Gruber, 1993]

• "An ontology is a shared understanding of some domain of interest" [Uschold &

Gruniger, 1996]

• "A computer model of some portion of the world" [Humns & Singh, 1997]

• "A shared and common understanding of a domain that can be communicated be-

tween people and heterogeneous and distributed systems" [Fensel, 2000]

1.2.2 Components

Most of recent ontologies share structural similarities, regardless of the used language.

There are four basic components:

1.2.2.1 Instances

Instances - also referred to as Individuals - are the basic, "ground level" elements of an

ontology. They can describe real objects like an electric device or a pneumatic cylinder,

but also abstract terms like parameters or numbers. For example ’FB13’ 1 is an instance

of the class ’Fieldbus Device’.

1.2.2.2 Classes

A class or concept is an abstract set of objects, which may include instances or other classes.

As mentioned above, ’Fieldbus Device’ would be the class of the instance ’FB13’. Classes
1Festo Profibus Device

3

1 Introduction

can also be subsets of other classes, typically the most general class is on top, usually the

class ’Thing’.

A set of related classes is also called a partition. So, for instance, a class called ’I/O Module’

may contain the partition ’Input Module’ and ’Output Module’. An associated partition

rule assures the correct classification of a module. If an object can only be included in one

of these classes, the partition is called a disjoint partition. If all objects in the class ’I/O

Module’ are either an Input or an Output Module, which means the partition covers all

objects in the super-class, the partition is also called an exhaustive partition.

Figure 1.1: Ontology Partitions

1.2.2.3 Attributes

Ontologies usually use attributes to describe objects properties. This technique is very

similar to the description of UML-classes. For example an input module can have the

following attributes:

• Channels: 4

4

1.2 Ontologies

• Short Name: 4DI

• Parameters: 7

Attributes always consist of a tag and a corresponding value. The values can be of any

type, even lists are possible.

1.2.2.4 Relations

Relations are used to describe interconnections between objects. In fact, a relation is an

attribute and its value is another object. Regarding the input module, a possible relation

might be a list of modules it can be combined with, e.g. a fieldbus module. This network-like

structure is what characterizes ontologies. Simple ’is a’ relationships like they are shown

in Figure 1.1 are realized by using two attributes, an attribute ’is-superclass-of’ and an

attribute ’is-subclass-of’. Another type of relation is the ’part-of’ relation, for example

a valve may be part of an output module. This relation is not restricted to one parent

object, which also applies to the ’is-a’ relation. However, there are also other relations

possible, e.g. ’connects-to’, ’fits-in’ and many more. As you may think, relations are highly

domain-dependent.

1.2.3 Upper, Middle and Lower Ontologies

Ontology development is a very time-consuming and difficult task. That’s why most ontolo-

gies cover only a certain domain of interest. Every domain-specific ontology must be based

on some upper-level ontology, which contains the most general and domain-independent

concepts. This includes concepts like time, space, identity, events and others. Therefore,

a well-designed upper-ontology is very important, but also very difficult to develop. This

5

1 Introduction

complexity originates from the fact, that most problems of a top-level ontology have an

abstract and highly philosophical character. Ontology development is a top-down process

starting with an upper-ontology. The next step is to identify and implement some key

concepts, which may be domain specific, but still are related to the upper-ontology. The

last big challenge is to implement the domain-specific ontology. The major problem here

is to avoid inconsistencies, which mostly come along with very detailed ontologies.

Once the formal principles and the basic domain concepts have been assessed (a result

eventually achieved in many projects) ontology engineers must face the time-consuming

and expensive task of populating the ontology and making it accessible to the user of a

given virtual community. [MNV02]

Figure 1.2: Ontology Pyramide

As Figure 1.2 shows, the number of concepts and relations increases with the level of

detail. Upper-ontologies have only a few basic concepts, whereas middle-ontologies contain

a few hundred and lower-ontologies thousands of concepts and relations. An example of

Ontology-Layering is given in Figure 1.3.

6

1.2 Ontologies

Figure 1.3: Ontology Layers

1.2.3.1 Upper Ontology (Top-level)

An upper-ontology defines very general, universal classes and properties, which are used in

all domains. The most popular example in this category is the ’Cyc’ Upper Ontology2. ’Cyc’

is a commercial project, but there is also a small part available for free called ’OpenCyc’.

Upper-level ontologies capture mostly concepts that are basic for human understanding of

the world. They are ’grounded’ in (supported by, wired to) the common sense that makes

it hard to formalize a strict definition for them. They represent the so called prototypical

knowledge. [KSD01]

2http://www.cyc.com/

7

1 Introduction

1.2.3.2 Middle Ontology

Middle-ontologies are basically upper-ontologies, but they additionally implement con-

cepts for a specific domain. It is quite difficult to draw a line between middle- and upper-

ontologies, this depends on what the designer considers as domain independent and domain

specific information.

1.2.3.3 Lower Ontology

Lower-ontologies are intended to represent specific domains, with their own classes and

properties, e.g. an ontology describing field devices and modules. Developing lower on-

tologies is very time-consuming. The major challenge is to populate the ontology without

emerging inconsistencies. Usually this layer is the biggest part of an ontology, since this is

the place where the actual data is stored. Once the ontology is operational, this layer is

usually subject to a lot of growth. Inference engines (software that is capable of acquiring

information, which is not explicitly stated) may also store new gathered data here.

1.2.4 Ontology Specification

Ontology specification is quite a difficult process, therefore a good guideline is very im-

portant. The ’Ontology Requirements Specification Document’ 3 published at Wikipedia,

suggests the following approach:4

3http://ontoworld.org/wiki/Ontology_Requirements_Specification_Document
4This list is not intended to be complete but represents a good basis for a more detailed set of requirements.

8

1.2 Ontologies

1.2.4.1 Goal, Domain and Scope

First the field of interest should be carefully analyzed, maybe there is already an existing

ontology which can be used. Afterwards a list of the intended goal, domain and scope

has to be established. An example of these assertions useful for the automation domain is

shown below:

• The ontology describes modules, which are used in industrial automation.

• Its aim is to distribute knowledge about their internal structure and interoperability.

• A configuration tool with a built-in reasoner (inference engine) retrieves information

about these modules.

1.2.4.2 Design Guidelines

Number of Concepts and Granularity

This estimation deals with the number of concepts and the aspired accuracy of the intended

ontology. In order to avoid ending up with far too many concepts after implementation,

this is a necessary and useful part of the requirements specification. Furthermore, engineers

might get a clearer view of what has to be done.

Naming Convention

It is also very useful to define a certain naming convention, a set of common rules for nam-

ing concepts and relations. For instance beginning all concepts with upper case, whereas

relations with lower case letters, e.g. ’Valve’ and ’switchOn’ is a good choice. Usually the

9

1 Introduction

names must not include spaces, for long names camelBack -notation5 should be used. Chap-

ter 6 of [NM01] proposes a good base for naming rules. Differing naming conventions may

cause problems when merging ontologies (e.g. referring to the same concept with different

names or different concepts with same name). This problem can be solved, by implement-

ing a mapping table which translates between common naming conventions. Nevertheless,

it is better to avoid different ontologies in advance.

Guidelines

There are several guidelines for ontology development, but some of them are very specific

(like [Con07] - a guide for biological knowledge bases). Another more general and very

interesting guide can be found at [NM01]. This guide uses Protégé6 to illustrate the ontology

design process, supported by several examples.

Knowledge Sources

• domain experts - A person with special knowledge in a particular area.

• (reusable) ontologies

• dictionaries - A list of words, including additional information and meaning of each

word.

• thesauri - A list of synonyms, sometimes also including related words and antonyms.

• other sources (databases, index lists, web pages, organization charts, ...)

5http://en.csharp-online.net/Identifiers
6http://protege.stanford.edu/

10

1.2 Ontologies

1.2.4.3 Users and Scenarios

In order to successfully design an ontology, it is important to know who will be using the

ontology and what is its intention. Therefore, a list of possible usage scenarios has to be

created, describing single situations where an ontology may be useful or not. This analysis

intends to clarify what potential users expect and what they need in order to make their

work easier. In software engineering, use cases are a common method to describe usage

scenarios7.

1.2.4.4 Applications

Before implementing an ontology, it is necessary to decide which language should be used.

Nowadays, there are a many applications which make ontology development a lot easier

(e.g. Protégé), therefore application support may be a quite important decision guidance.

1.2.5 Ontology Implementations

Whenever possible, re-using an ontology is highly recommended. In fact re-use and sharing

is a primary reason for introducing ontologies. The decision which ontology to choose

depends on several factors. First the ontology has to be present in a well-known format,

e.g. RDF/OWL. Additionally it should be freely available or at least affordable. Finally, it

has to comply with the stated requirements or be easily adjustable.

7http://www.uml.org/

11

1 Introduction

1.2.5.1 (Open)Cyc

The Cyc project was started in 1984. In 1994 a spin-off company called Cycorp Inc. was

founded. The name is derived from the word ’encyclopedia’ and is a registered trademark

of Cycorp. It is the world’s largest knowledge base of everyday common sense knowledge.

Cycorp’s website describes Cyc as following:

The Cyc Knowledge Server is a very large, multi-contextual knowledge base and infer-

ence engine developed by Cycorp. Cycorp’s goal is to break the "software brittleness bot-

tleneck" once and for all by constructing a foundation of basic "common sense" knowl-

edge - a semantic substratum of terms, rules, and relations - that will enable a variety of

knowledge-intensive products and services.8

The Cyc knowledge base is proprietary, but a free excerpt of it is available called ’OpenCyc’.

It contains over 1M assertions, 100K atomic concepts and 10K predicates, whereas the

free version contains 60K assertions, 6k concepts and is considered as upper ontology.

Concept names are called constants in Cyc, they start with "#$" and are case-sensitive,

e.g. #$ConveyorBelt. The most used predicates are #$isa (is-instance-of) and #$genls (is-

a-subcollection). Statements in Cyc are written using the CycL (Cyc Language). Predicates

are written first followed by their attributes:

"A conveyor belt belongs to the collection of externally powered devices":

(#$isa #$ConveyorBelt #$ExternallyPoweredDevice)

"All externally powered devices are powered devices":

(#$genls #$ExternallyPoweredDevice #$PoweredDevice)

8http://www.cyc.com/cyc/technology/whatiscyc

12

1.2 Ontologies

1.2.5.2 (Euro)WordNet

The development of WordNet started in 1985 by the cognitive science laboratory at the

Princeton University. The intention was to create a thesaurus, a semantic lexicon for the

English language. English words are organized into sets of synonyms, so called ’synsets’.

These sets are linked via several relations. WordNet covers nouns, verbs, adjectives and

adverbs. It is implemented in RDF (an open standard) unlike Cyc, which uses its own

language. WordNet is free available and can be used in commercial or research projects.

The initial idea was to provide an aid to use in searching dictionaries conceptually, rather

than merely alphabetically. [...] WordNet can be said to be a dictionary based on psycholin-

guistic principles.[MBF+05]

For the time being, WordNet containes approximately 155K words, merged into 117K

synsets and resulting in about 207k word-sense pairs9. There is also a multilingual version

of WordNet called EuroWordNet, which supports different European languages. These

languages are interconnected via the WordNet Interlingual Index (ILI). The project was

finished in 1999. EuroWordNet is not freely available, in fact it is very expensive.

From an ontological point of view WordNet is not suitable, because its intention was to

represent links in natural language. This includes problems like the mix-up of concepts

and individuals, e.g. "Mozart" and "songwriter" at the same level. Nevertheless, there are

already projects with the goal to turn WordNet into a correct ontology.

1.2.5.3 SUMO

SUMO - short for Suggested Upper Merged Ontology - is intended as "a starter document"

by the IEEE. Originally created at Teknowledge Corporation, this ontology experienced
9http://wordnet.princeton.edu/man/wnstats.7WN

13

1 Introduction

extensive input from the Standard Upper Ontology (SUO) mailing list. Developing upper

ontologies is difficult and sometimes results in endless philosophical debates, e.g. should

time be regarded as 4th dimension (4D) or considered separately (3D and time). These

fundamental decisions can easily lead to incompatibilities between upper ontologies. SUMO

is a conjunction of several existing upper ontologies, therefore it has been divided into 11

sections with carefully documented interdependencies. For example the first section deals

with structural issues, containing a relation framework in order to make proper ontology

development possible. Figure 1.4 shows an overview of these topical sections.

Figure 1.4: SUMO sections

The language used by SUMO is a version of the Knowledge Interchange Format (KIF)

called SUO-KIF10. SUMO is case-sensitive: classes and individuals start with upper-case

letters, whereas relations use only lower-case letters. Also multiple inheritance is allowed

(concepts may have several parents).

10http://suo.ieee.org/SUO/KIF/index.html

14

1.2 Ontologies

SUMO contains about 1000 well-defined and documented con-

cepts, 4000 axioms and about 800 rules. Combined with the

Middle-Level Ontology (MILO) and some Lower-Ontologies,

SUMO represents the largest free, formal ontology available

[Cor07]. There are also open source tools for browsing and rea-

soning, furthermore SUMO has been mapped to WordNet 1.6

and ported to version 2.0 later on.

The SUMO was created by

merging publicly available

ontological content into a

single, comprehensive and

cohesive structure.[NP]

15

1 Introduction

16

Chapter

2 Ontology Languages

Language is the dress of thought.

(Samual Johnson)

2.1 History

In the 1980s, the first knowledge representation projects like KL-ONE 1 and CLASSIC were

started, but they had a significant drawback. All these systems used their own ontology

language. Later, in the 1990s, Ontolingua2 was developed by the Knowledge System Labs

(KSL). Ontolingua is based on the Knowledge Interchange Format (KIF) and is able to

translate from and to Description Logic3-based languages. At this time KIF became a

standard for ontology modeling. In the late 1990s, ontologies became an interesting topic

for Web applications. The first languages for semantic annotation of websites arose, e.g.

SHOE [oCSUoM]. SHOE is a small extension to HTML which allows authors of websites

1http://en.wikipedia.org/wiki/KL-ONE
2http://www.ksl.stanford.edu/software/ontolingua/
3http://en.wikipedia.org/wiki/Description_logic

17

2 Ontology Languages

to enrich their pages with machine-processable information. There are many more projects

and languages which are not mentioned here, but all of them made their contribution to

recent ontology languages, like RDF.

2.2 Basic Ingredients

Many ontologies use proprietary languages, but since re-use is one fundamental idea of

ontologies, efforts have been made to establish standards. Designing an ontology is a com-

promise between the expressiveness needed to properly represent human concepts, and

minimal complexity needed to maintain computability. The most basic ingredients are a

list of concepts and relations between them. For example, in industrial automation, pneu-

matic valves, sensors or controller devices are concepts, but even more abstract concepts

are possible like parameters, units or numbers. Many ontologies use a hierarchical struc-

ture, a relation which states a class C is a subclass of another class C ′, e.g. the class of

valve terminals is subsumed by pneumatic devices. Other relations implemented by most

ontologies are:

• Properties (e.g. A contains B)

• Restrictions (e.g. only valve terminals can contain valves)

• Disjunction (e.g. pneumatic valves and controller devices are disjoint)

• Other logical relationships (e.g. a valve terminal must consist of at least 2 valves)

18

2.3 Design Issues

2.3 Design Issues

In order to be able to describe a specific domain of interest by using ontologies, the following

requirements have to be kept in mind [GvH04].

1. well-defined syntax

2. well-defined semantics

3. efficient reasoning support

4. sufficient expressive power

5. convenience of expression

In order to make automatic processing possible, a well-defined syntax is very important.

Despite of the fact that the syntax is not very user-friendly, XML has turned out to be a

suitable language for the semantic web. Furthermore, development has become much easier

by authoring tools and other ontology applications.

Ontology languages have to be precise and use well-defined semantics. This means no

multiple interpretations are allowed, like it is known in mathematical logic.

One major goal of the semantic web is to allow reasoning about the stored knowledge. This

includes acquiring knowledge about:

• Class Membership: This represents a transitive relation, which means if x is an

instance of y and y an instance of z, we can derive that x must also be an instance

of z.

19

2 Ontology Languages

∀x, y, z ∈ X; xRy ∧ yRz ⇒ xRz

This relation can also be used to detect class equivalences. If x is equivalent to y and

y to z, x is also equivalent to z.

• Consistency: The class membership relation allows us to check for inconsistency,

e.g. if x is an instance of C and D, while C and D are disjoint classes. This indicates

a possible error in the ontology:

x ∈ C, D ∧ C ∩D = ∅ ⇒ Error

• Classification: Some ontologies are intended for automatic semantic annotation,

like the KIM (Knowledge and Information Management) Platform. This means, by

declaring certain class properties as sufficient condition for class membership, it is

possible to classify unknown instances. For example if a class C has the properties c1

and c2, an individual x can be regarded as an instance of this class, if it implements

these properties.

Automatic reasoning is very valuable, especially in large ontologies. It allows to check many

interdependencies in a very short time.

Developing ontologies is always a compromise between sufficient expressive power and effi-

cient reasoning support. From now on, we refer to the level of detail as the ’expressiveness’

of an ontology.

Generally speaking, the richer the language is, the more inefficient the reasoning support

becomes, often crossing the border of non-computability. Thus we need a compromise, a

language that can be supported by reasonably efficient reasoners, while being sufficiently

expressive to express large classes of ontologies and knowledge. [RFS07]

20

2.4 Expressiveness of Ontologies

2.4 Expressiveness of Ontologies

There are different ways to categorize ontologies. Besides their scope, mentioned in Section

1.2.3, we can also use their expressiveness and their internal structure respectively, to

classify them [Fen07].

• Thesaurus: A thesaurus constitutes interconnections between related terms, the

most popular example is WordNet.

• Informal Taxonomy: Taxonomies use hierarchical structures, which makes gen-

eralization and specialization possible, but informal taxonomies do not implement

inheritance. Therefore, an instance of a class is not necessarily an instance of the

superclass.

• Formal Taxonomy: A formal taxonomy strictly sticks to inheritance. Each instance

of a class is an instance of the superclass. A prominent example is UNSPSC. The

United Nations Standard Products and Services Code (UNSPSC) is a coding system

to categorize products and services used in global e-Commerce applications.

• Classes: Classes also referred to as frames are characterized by a number of proper-

ties, which are inherited to subclasses and instances. Examples are ontologies imple-

mented in RDFS.

• Value Restrictions: Property values are subject to restrictions, e.g. ontologies in

OWL Lite.

• General Logic Constraints: In addition to value restriction, properties are also

restricted by other logical or mathematical constraints, e.g. a valve terminal must

consist of at least 2 valves. OWL DL is a typical member of this category.

• Expressive Logic Constraints: Ontology languages like CycL use first-order logic

21

2 Ontology Languages

constraints and other relationships, like disjoint or inverse classes.

Due to the fact, that relations like the disjointness of classes are also supported by OWL

DL and even OWL Lite, classification of ontologies are often very difficult. Categorizing

ontologies helps to get an overview about possible solutions, but in the end a well-done

requirements analysis is the most important part of the design process.

22

Chapter

3
RDF

The goal is to transform data into

information, and information into

insight.

(Carly Fiorina)

The Resource Description Framework (RDF) is a data model that uses Uniform Resource

Identifiers (URI) to represent nodes and edges. Even if it is often referred to as ’language’

in literature, it is better to talk about it as data model - a model for storing information

in graphs. There are several different syntax implementations for RDF, most people think

of RDF as an XML language. In fact, this syntax is clearly geared towards automatic

processing. There are other implementations that can be read much easier by humans.

The RDF model is based on the idea, of making statements about resources in the form

subject-predicate-object. Every subject is connected to an object by a predicate. These

expressions are also called triples in RDF terminology.

23

3 RDF

3.1 History

In 1995, Ramanathan V. Guha1 - an Indian computer scientist - created the Meta Content

Framework (MCF). MCF is the closest ancestor to RDF. The first application using MCF

was ’Hotsauce’, a browser plug-in developed by Apple in 1996. It allows the user to navigate

in a 3D environment through a website that includes MCF metadata. Later, in 1997,

Ramanathan continued his work at Netscape. Together with Tim Bray2, he worked on an

XML-based version of MCF. Netscape used this technology in its ’smart browsing’ feature

(What’s related search). By adding namespace support RDF got its current form. In 1999,

the W3C published the first specification of RDF’s data model and XML-based syntax.

Five years later a new version was published. In addition to the XML syntax, there are

also more readable notations like N3 (Notation 3), but this will be discussed later in this

chapter.

3.2 RDF Basics

Machine-processable languages need a strong syntax, like XML. Even if XML cannot be

read that easily by humans, its clear structure and form is predestined for the use in

RDF and semantic web applications. Furthermore, XML provides good tool support and

a big community. However, XML does not tell us anything about the meaning of data. For

example, the tag ordering needs to be interpreted by an application. This circumstance is

illustrated by the following example:

a valve terminal is a pneumatic module.

1http://en.wikipedia.org/wiki/Ramanathan_V._Guha
2http://en.wikipedia.org/wiki/Tim_Bray

24

3.2 RDF Basics

This statement can be represented in different ways:

Listing 3.1: XML Example 1

1 <ModuleType="PneutmaticModule">

2 <Module>ValveTerminal</Module>

3 </ModuleType>

Listing 3.2: XML Example 2

1 <Module="ValveTerminal ">

2 <Type>PneumaticModule</Type>

3 </Module>

Both versions state that valve terminals are pneumatic modules, although they use a

different nesting. This shows that there is no unique way of assigning meaning to data.

This is where RDF comes into play.

3.2.1 Resources

The most basic elements in RDF are resources. Things that we make statements about,

are called resources. Every resource can be identified by an URI, a Universal Resource

Identifier. URIs can be URLs (Unified Resource Locators) or other unique identifiers,

e.g. ISBN. It is important to know, that these identifiers do not necessarily represent a

way to access resources. In most cases identifiers point to locations, where descriptions

of objects are stored. Strictly speaking, RDF uses an URI reference to identify a single

resource, also referred to as URIref. URIrefs are URIs with an optional fragment identi-

fier. For example an URIref http://mydomain.at/festo.rdf#fb13, can be split in the URI

http://mydomain.at/festo.rdf and the fragment identifier fb13. Fragment identifiers are

always separated via a ’#’ symbol.

25

3 RDF

In RDF, predicates are referenced by URIs, too. This method enables global (re-)use and

reduces definition of equivalent terms. Predicates are used to describe relations between

resources, e.g. isPartOf, hasParameters. Predicates are also called properties.

3.2.2 Statements

The basic building block of RDF is called statement, which consists of the subject-predicate-

object triple. Subjects are resources, whereas objects can either be resources or literals.

Literals are simple datatypes, like strings or integers.

3.2.3 Literals

In order to know how to interpret data, we need additional information. This information

can be used to identify values, e.g. as numbers or dates. It is not strictly necessary to use

literals, because this information could also be given by an URI, but the use of literals

is regarded to be more convenient and intuitive. As already mentioned, objects can be

resources or literals, whereas subjects and predicates are always resources. Suppose we

read the information:

(http://www.domain.at/#FB13, http://www.domain.at/#hasParameters, "18")

We do not know if "18" is of string or integer type, nor if it is hexadecimal or decimal. A

program reading this data, can only know how to interpret it, if the information is explicitly

given. RDF solves this problem, by adding datatype URIs to literals. Literals can be plain

or typed.

26

3.2 RDF Basics

Plain Literals

If there is no URI asserted, the literal is called plain. A string datatype is used with an

optional tag indicating the language.

Typed Literals

Typed literals are also strings, but they are always combined with datatype URIs. A

datatype URI gives further information about the literal’s type. It is not strictly necessary

to use datatypes with literals. In fact, its intention is, to make it easier for vocabulary users

to understand a particular RDF document. This means there is no additional semantic

information attached, i.e. automated processes are not obliged to check the validity of a

literal’s type. The following examples illustrate the use of typed literals with XML-based

syntax and N3:

Listing 3.3: Typed Literals

1 <?xml version=" 1 .0 "?>

2 <rdf:RDF

3 xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"

4 xmlns:md=" ht tp : //www. domain . at /">

5

6 <rd f :D e s c r i p t i o n rd f : abou t="#FB13">

7 <md:hasParameters rd f : da ta type=" ht tp : //www.w3 . org /2001/XMLSchema#in t ">

8 18

9 </md:hasParameters>

10 </ rd f :D e s c r i p t i o n>

<#FB13> <md:#hasParameters> <"18"ˆˆhttp://www.w3.org/2001/XMLSchema#int>.

RDF provides no mechanism for defining new datatypes. XML Schema Datatypes [W3Ci]

provides an extensibility framework suitable for defining new datatypes for use in RDF.

[W3Cg]

27

3 RDF

3.3 RDF Views

There are different ways to formalize RDF statements. Suppose we want to state:

A valve is a part of a pneumatic module.

N3

Even if RDF/XML is the most important method to represent RDF data, there are also

other techniques to serialize RDF, e.g. N3 or Notation3. N3 breaks an RDF graph into sep-

arate triples, each triple contains a subject, a predicate and an object, which are separated

by spaces. Additional information outside the brackets makes statements more readable,

but is ignored in automated processing. An example is given below:

<#Valve> is <#Part> of <#PneumaticModule>.

It is also possible to use full URIs or namespace-qualified XML names (QNames3) in N3.

Further information about this serialization technique can be found at [W3Cc] published

by Tim Berners-Lee.

RDF Graph

Another more visual approach is to use RDF graphs. This representation method uses

directed labeled graphs, which are also called nodes and arcs diagrams. As already men-

tioned, in RDF only binary predicates are allowed. Therefore, each predicate connects two

nodes, starting from a resource and pointing to another resource or literal. Nodes can be
3http://www.w3.org/2001/tag/doc/qnameids.html

28

3.3 RDF Views

URIrefs, blank nodes or literals. Blank nodes, also called bnodes, are nodes without an

URI. However, in order to be able to reference the same resource within a document, blank

node identifiers are used. These local identifiers are placeholders for values, which are not

present at the moment. Blank nodes will be discussed in detail later on.

Graphs are a good method to keep track of growing RDF documents. URIrefs, literals,

bnodes and predicates are the only components used. Therefore, graphs are easy to read

for humans, but they are not suitable for automated processing. Figure 3.1 shows an excerpt

of an RDF graph generated by the W3C RDF Validator [W3Ce]:

Figure 3.1: RDF Graph

RDF/XML

The third and most important method uses XML to serialize RDF data. Because of its

strong structural syntax, XML is a good base for automated processing. In RDF documents,

the root node is rdf:RDF, that surrounds the data. A big advantage of the RDF/XML syn-

tax are namespace declarations, which are usually declared at the beginning of a document.

A very simple RDF/XML file is shown in Listing 3.4.

29

3 RDF

Listing 3.4: A simple RDF document

1 <?xml version=" 1 .0 "?>

2 <rdf:RDF

3 xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"

4 xmlns:p1=" ht tp : //www.mydomain . at /">

5 </rdf:RDF>

In this example two namespaces are declared, rdf and a namespace called p1. This technique

makes ontology sharing very easy, because we only need to know the specific namespace in

order to (re-)use elements of an existing ontology. This enables the development of large,

distributed knowledge collections.

Data is stored in rdf:Description tags, which are used to make statements about re-

sources. For existing resources, we use the about attribute, whereas the rdf:ID attribute

is used to create new resources.

Listing 3.5: The about Attribute

1 <rd f :D e s c r i p t i o n rd f : abou t="p1:FB13">

2 <rd f : t yp e r d f : r e s o u r c e=" p1 :F ie ldbusDev ice "/>

3 </ rd f :D e s c r i p t i o n>

The content of rdf:Description tags is also called property elements. In our example

we also use the rdf:type element, this allows us to introduce some structure to RDF

documents. Section 3.4 will discuss RDF tags in detail.

3.4 RDF/XML Syntax

As mentioned before, there are several different methods to represent RDF data. Many of

them only exist in order to make RDF documents more readable for humans. Nevertheless,

30

3.4 RDF/XML Syntax

the most popular and important is the XML-based syntax.

Every RDF document contains an rdf:RDF tag. This tag encloses all other tags. A single

data record starts with rdf:Description and contains a variable number of other tags.

Listing 3.6 shows a simple RDF document.

Listing 3.6: RDF Document

1 <?xml version=" 1 .0 "?>

2 <rdf:RDF

3 xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"

4 xmlns : rd f s=" ht tp : //www.w3 . org /2000/01/ rdf−schema#">

5

6 <rd f :D e s c r i p t i o n rd f : abou t="#Device ">

7 <rd f : t yp e r d f : r e s o u r c e=" ht tp : //www.w3 . org /2002/07/ owl#Class "/>

8 </ rd f :D e s c r i p t i o n>

9

10 <rd f :D e s c r i p t i o n rd f : abou t="#OutputDevice">

11 <rd f s : subC la s sO f r d f : r e s o u r c e="#Device "/>

12 <rd f : t yp e r d f : r e s o u r c e=" ht tp : //www.w3 . org /2002/07/ owl#Class "/>

13 </ rd f :D e s c r i p t i o n>

14

15 <rd f :D e s c r i p t i o n rd f : abou t="#Cont ro l l e rDev i c e ">

16 <rd f : t yp e r d f : r e s o u r c e=" ht tp : //www.w3 . org /2002/07/ owl#Class "/>

17 <rd f s : subC la s sO f r d f : r e s o u r c e="#Device "/>

18 </ rd f :D e s c r i p t i o n>

19

20 <rd f :D e s c r i p t i o n rd f : abou t="#FB13">

21 <rd f : t yp e r d f : r e s o u r c e="#Cont ro l l e rDev i c e "/>

22 </ rd f :D e s c r i p t i o n>

23

24 <rd f :D e s c r i p t i o n rd f : abou t="#AO2">

25 <rd f : t yp e r d f : r e s o u r c e="#OutputDevice"/>

26 </ rd f :D e s c r i p t i o n>

27

31

3 RDF

28 <rd f :D e s c r i p t i o n rd f : abou t="#Type03">

29 <rd f : t yp e r d f : r e s o u r c e="#OutputDevice"/>

30 </ rd f :D e s c r i p t i o n>

31 </rdf:RDF>

32 <!−− Created wi th Protege (wi th OWL Plugin 3 . 3 . 1 , Bui ld 430) −−>

33 <!−− h t t p : // pro t ege . s t an f o rd . edu −−>

This file was automatically created by Protégé, but slightly modified afterwards in order to

make it more readable. As mentioned in Section 1.2.4, it is not allowed to use whitespaces

in names, instead we use Camelback -notation for long names. Furthermore, names must

start with a character. The RDF data structure of Listing 3.6 is represented in Figure 3.2.

Figure 3.2: RDF Example Structure

The first line of Listing 3.6 shows the used XML version, followed by the rdf:RDF tag.

Namespaces are an important part of RDF, usually they are declared as attributes within

the rdf:RDF tag, but it is also possible to declare them elsewhere. This technique allows

us, to reuse and extend existing ontologies, by linking to external resources. The next tag

32

3.4 RDF/XML Syntax

is the rdf:Description, which encloses one or more subject-predicate-object triples. It is

also possible to use a subject in several statements within an rdf:Description tag. This

is illustrated in Figure 3.3 [W3Ce].

Figure 3.3: Multiple Subject Usage

3.4.1 rdf:ID and rdf:about

In order to refer to a data record, we can use the rdf:about or rdf:ID tag, as seen in

Listing 3.6. The meaning is quite similar, but rdf:ID provides an additional check, since

this tag is allowed only once for each data record. Especially when creating a set of distinct,

but related terms this may be a useful feature. Usually rdf:ID is used to create a new

resource, whereas rdf:about can be used to reference and enrich an already existing one.

In contrast to rdf:ID, we have to add the ’#’ symbol when using rdf:about. Some people

use these tags to distinguish between technically accessible objects, e.g. a Web page and

those that are abstract or real-world objects. More on rdf:about and rdf:ID can be found

at [Ogb].

3.4.2 rdf:resource

Objects can be literals, but also resources. In order to indicate the usage of a resource, we

need the rdf:resource tag. Suppose we want to state that FB13 is member of the device

family CPX, we can handle this as follows:

33

3 RDF

Listing 3.7: Resource As Object - XML

1 <?xml version=" 1 .0 "?>

2 <rdf:RDF

3 xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"

4 xmlns:md=" ht tp : //www. domain . at /">

5

6 <rd f :D e s c r i p t i o n rd f : abou t="#FB13">

7 <md:hasParameters>8</md:hasParameters>

8 <md:family r d f : r e s o u r c e="#CPX" />

9 </ rd f :D e s c r i p t i o n>

10

11 <rd f :D e s c r i p t i o n rd f : abou t="#CPX">

12 <md:fullName>Compact Performance Extension</md:fullName>

13 </ rd f :D e s c r i p t i o n>

14 </rdf:RDF>

Figure 3.4: Resource As Object - Graph

As shown in Figure 3.4, resource nodes are represented by ellipses, whereas for RDF literals

rectangles are used. It is easy to see, that the family-relation ends in another resource. In

Listing 3.7, this resource could also have been nested directly into the FB13 description,

but in order to keep things clear, it is better to leave them separated. Otherwise the code

becomes unreadable, even though automated processing is not affected.

34

3.4 RDF/XML Syntax

3.4.3 rdf:parseType

We have already mentioned RDF literals and their characteristics. Normally, RDF parsers

do not need explicit information about the given object type. Nevertheless, it is possible

to add an optional rdf:parseType tag, in order to tell parsers about the used type. This

allows us for example, to use additional XML tags within an RDF document. A parser

will interpret this as single string, which can be further processed by another application

afterwards.

Listing 3.8: rdf:parseType

1 <rd f :D e s c r i p t i o n rd f : abou t="#FB13">

2 <md:hasParameters rd f :par seType=" L i t e r a l ">

3 <h1>8</h1>

4 </md:hasParameters>

5 <md:family r d f : r e s o u r c e="#CPX" />

6 </ rd f :D e s c r i p t i o n>

The object can also be identified as resource, by simply adding rdf:parseType="Resource".

Using this tag tells the parser explicitly to create an anonymous object node. Furthermore,

this makes the rdf:Description tag dispensable. However, the use of this technique is

very controversial, because it is no complete substitution for the Description tag. There

are still conditions were the Description tag must be used.

3.4.4 QNames and Namespace Support

As already mentioned earlier, namespaces are a very important part of RDF. Especially,

when merging data models, namespace support is needed in order to avoid element collision.

Namespaces are usually defined in the following way:

35

3 RDF

xmlns:name="Reference URI"

This is where QNames come into play. A QName consist of a namespace prefix, a colon

(:) and an XML local name, e.g. dc:creator. Similar to the #define directive in the

programming language C, a parser will replace the used QNames with the full namespace

URIs. Usually the prefix rdf is used to reference the RDF Syntax Schema, whereas rdfs is

used for RDF Schema and dc for Dublin Core schema.

3.4.5 Blank Nodes

Blank Nodes - also called bnodes - represent resources, that do not have a value at the

moment. These bnodes can also denote, that the use of a resource URI is not advisable.

For instance, when using URIs to identify humans, bnodes may be used.

Most of the tools assign internal identifiers to blank nodes. However, it is also possible

to assign an identifier yourself, by using the rdf:nodeID tag. This tag has to be unique

within a document, but when merging RDF data, the tools could change the identifiers

used. Therefore, the rdf:nodeID tag, is not the right way to provide a global identifier.

In this case, it is better to use an URI. It is also important to know, that rdf:nodeID

is RDF/XML specific and does not exist in the RDF abstract model. Its intension is to

support people working with RDF/XML.

3.4.6 URI abbreviation

It is also possible to abbreviate resource URIs. The simplest way is to use rdf:about

with an absolute URI as already seen in previous examples, but in order to shorten this

36

3.4 RDF/XML Syntax

procedure, we can also use xml:base. This XML attribute allows to define a base, used when

resolving URIs. This affects all RDF attributes like rdf:about, rdf:ID, rdf:resource and

rdf:datatype. Without xml:base, RDF uses the document’s URI as its base. Listing 3.9

shows an example using xml:base to abbreviate URIs:

Listing 3.9: URI abbreviation

1 <?xml version=" 1 .0 "?>

2 <rdf:RDF xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"

3 xmln s : f e s t o=" ht tp : //mydomain . at / f e s t o#"

4 xml:base=" ht tp : //mydomain . at / f e s t o . rd f ">

5 <rd f :D e s c r i p t i o n rd f : ID="Device ">

6 <fe s t o : v endo r> Festo </ f e s t o : v endo r>

7 </ rd f :D e s c r i p t i o n>

8 </rdf:RDF>

The xml:base is usually added to the namespace list. Nevertheless, it can also be placed

somewhere else. Without the xml:base tag, the documents URI is used. The corresponding

RDF graphs are shown in Figure 3.5 and Figure 3.6.

Figure 3.5: URI abbreviation using xml:base [W3Ce]

Figure 3.6: URI abbreviation without xml:base [W3Ce]

37

3 RDF

3.4.7 rdf:type

The rdf:type tag is used to emphasize that a resource is a member of a specific group.

For example, Listing 3.6 states, that ’FB13’ is of type ControllerDevice, a resource may

also belong to more than one single group. In detail, the value of the rdf:type property

identifies an rdfs:Class, but this will be discussed later on.

3.5 RDF/XML Abbreviation Techniques

There are several ways to shorten RDF/XML syntax. This is also what makes under-

standing RDF quite challenging at the beginning, because hardly anybody uses pure RDF.

However, it is very important to get used to the basic concepts of the RDF abbreviation.

Some shortcuts are intuitive and easy to understand, others are a bit more sophisticated.

Merging multiple predicates

This shortcut is very common and simple. We have already mentioned the rdf:about

attribute and its usage to enrich already existing resources. When serializing an RDF

graph, we would write a separate rdf:Description block for each subject-predicate-object

triple. Therefore, subjects with multiple predicate relations, would also pop up in multiple

rdf:about tags.

Listing 3.10: Multiple rdf:Description Tags

1 <rd f :D e s c r i p t i o n rd f : abou t="#FB13">

2 <fe s t o : v endo r> Festo </ f e s t o : v endo r>

3 </ rd f :D e s c r i p t i o n>

4

5 <rd f :D e s c r i p t i o n rd f : abou t="#FB13">

6 <f e s t o : b u s> Fie ldbus </ f e s t o : b u s>

38

3.5 RDF/XML Abbreviation Techniques

7 </ rd f :D e s c r i p t i o n>

In order to avoid this, we can merge separate predicates within one rdf:Description

block. This technique is shown in Listing 3.11.

Listing 3.11: Merging rdf:Description Tags

1 <rd f :D e s c r i p t i o n rd f : abou t="#FB13">

2 <fe s t o : v endo r> Festo </ f e s t o : v endo r>

3 <f e s t o : b u s> Fie ldbus </ f e s t o : b u s>

4 </ rd f :D e s c r i p t i o n>

Childless Predicate Tags

Another abbreviation method is to place childless predicates into the description tag, but

the involved objects must be literal values in order to do this. The corresponding listing is

shown below.

Listing 3.12: Childless Predicates

1 <rd f :D e s c r i p t i o n rd f : abou t="#FB13"

2 f e s t o : v endo r="Festo "

3 f e s t o : b u s="Fie ldbus "/>

This example represents the same data as Listing 3.11, but uses a significantly shorter

syntax.

Omitting rdf:Description Blocks

We already mentioned the rdf:type property before. This tag can also be used for abbre-

viation purposes. Instead of enclosing the data by rdf:Description blocks, we put the

type property directly into the XML structure. This technique will be used later on in RDF

39

3 RDF

Schema, since RDF itself does not provide any mechanism to define application specific

classes or groups. However, a prior example showing this abbreviation is listed below.

Listing 3.13: Omitting rdf:Description

1 <f e s t o :Con t r o l l e rD ev i c e rd f : abou t="#FB13"

2 f e s t o : v endo r="Festo "

3 f e s t o : b u s="Fie ldbus "/>

3.6 RDF concepts

There are a few concepts that need special attention. First, because they are very con-

troversial, but also because of their inherent complexity. These concepts are containers,

collections and reification.

3.6.1 Containers

Sometimes it is useful to describe groups of related things, e.g. a specific product category,

like Festo’s CPX series. Containers have been intensely discussed by the RDF Working

Group, because the information they provide, can also be achieved by the rdf:type prop-

erty. However, RDF containers are still included in the RDF/XML specification, perhaps

because their usage is more convenient than rdf:type. Container items are called mem-

bers, which may be resources or literals. There are three predefined container types, which

will now be discussed in detail.

rdf:Bag

A Bag contains resources or literals without a significant ordering, which may also include

40

3.6 RDF concepts

duplicates. An example for the rdf:Bag structure could be the set of Festo’s CPX modules.

There is no need to have a certain internal order within the CPX series, so rdf:Bag would

be the right choice. Listing 3.14 shows the corresponding syntax. Similar to the HTML list

item tag , RDF container elements have a prefixed rdf:li tag.

Listing 3.14: The rdf:Bag container

1 <?xml version=" 1 .0 "?>

2 <rdf:RDF xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"

3 xmln s : f e s t o=" ht tp : //mydomain . at / f e s t o#">

4

5 <rd f :D e s c r i p t i o n rd f : abou t=" ht tp : //mydomain . at / f e s t o_dev i c e s . htm">

6 <fe s to :modu l e s>

7 <rdf :Bag>

8 <r d f : l i r d f : r e s o u r c e=" ht tp : //mydomain . at /modules#FB13"/>

9 <r d f : l i r d f : r e s o u r c e=" ht tp : //mydomain . at /modules#FB06"/>

10 <r d f : l i r d f : r e s o u r c e=" ht tp : //mydomain . at /modules#FB14"/>

11 </ rdf :Bag>

12 </ f e s t o :modu l e s>

13 </ rd f :D e s c r i p t i o n>

14 </rdf:RDF>

As shown in Figure 3.7, rdf:Bag elements are identified by automatically generated num-

bers. Furthermore, we can see the internal rdf:Bag representation using the rdf:type

property.

rdf:Seq

The RDF Sequence contains a group of resources or literals, maybe including duplicates,

where the ordering is of special interest. An example could be an alphabetically sorted list

of module parameters. The graphical structure of rdf:Seq is similar to those of rdf:Bag

containers. The only difference is the rdf:type pointing to RDF Sequence instead.

41

3 RDF

Figure 3.7: The rdf:Bag graph [W3Ce]

rdf:Alt

An RDF Alternative contains a group of resources or literals, that represent alternative

elements. For example, a set of different pneumatic modules, which are identical in con-

struction, but built by different vendors. The first item listed in rdf:Alt is normally used

as default item, as long as there is no other criteria for selection. RDF Alternative contain-

ers are frequently used for translation purposes, e.g. a pneumatic module’s name property

pointing to an rdf:Alt container holding all different name representations.

3.6.2 Collections

In contrast to Containers, a Collection is a finite list of objects. RDF already provides

the needed vocabulary to implement this list structure. These predefined predicates are

rdf:first, rdf:rest and rdf:nil. In order to state that we are describing a collection,

the tag parseType="Collection" has to be used. The corresponding RDF/XML syntax

is quite simple, as shown in Listing 3.15.

Listing 3.15: RDF Collections

1 <?xml version=" 1 .0 "?>

2 <rdf:RDF xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"

3 xmln s : f e s t o=" ht tp : //mydomain . at / f e s t o#">

42

3.6 RDF concepts

4

5 <rd f :D e s c r i p t i o n rd f : abou t=" ht tp : //mydomain . at / Cont ro l l e rDev i c e ">

6 <fe s to :modu l e s rd f :par seType=" Co l l e c t i o n ">

7 <rd f :D e s c r i p t i o n rd f : abou t=" ht tp : //mydomain . at /modules#FB13"/>

8 <rd f :D e s c r i p t i o n rd f : abou t=" ht tp : //mydomain . at /modules#FB06"/>

9 <rd f :D e s c r i p t i o n rd f : abou t=" ht tp : //mydomain . at /modules#FB14"/>

10 </ f e s t o :modu l e s>

11 </ rd f :D e s c r i p t i o n>

12 </rdf:RDF>

To illustrate the use of RDF Collections, Figure 3.8 is shown below. As this example shows,

it is not necessary to use the former mentioned predefined predicates within the code. The

parser will automatically generate these relations. This graph has been created with RDF

Gravity4 - a very comfortable RDF visualization tool, which allows the user to rearrange

nodes in order to make the graph more readable.

As the graph demonstrates, each element of the RDF collection is represented by an object

whose corresponding subject is a blank node. The linking predicate is rdf:first. These

RDF triples are connected via rdf:rest predicates. The end of the collection is indicated

by the object rdf:nil. This example shows that even very simple RDF/XML constructs

may result in a rather complex RDF graph.

3.6.3 Reification

In RDF it is possible to make statements about statements. This feature is called Reifi-

cation, but since this mechanism is quite negligible in industrial automation, this section

will give only a brief overview about this technique.

An example for a reified statement is shown below:
4http://semweb.salzburgresearch.at/apps/rdf-gravity/index.html

43

3 RDF

Figure 3.8: RDF Collections

Tim states that Festo is the vendor of FB13.

As this statement implies, Reification introduces a certain level of trust. More on ’Reifica-

tion implying trust’ can be found at [Pow03].

RDF already provides built-in vocabulary for reification in RDF/XML, including the type

rdf:Statement and the properties rdf:subject, rdf:predicate and rdf:object. It is

important to understand that the original statement cannot be omitted, since Reification

only represents a model of it. The example mentioned above is represented by Listing 3.16.

44

3.6 RDF concepts

Listing 3.16: Reification Example

1 <?xml version=" 1 .0 "?>

2 <rdf:RDF xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"

3 xmln s : f e s t o=" ht tp : //mydomain . at / f e s t o#"

4 xml:base=" ht tp : //mydomain . at / f e s t o . rd f ">

5

6 <rd f :D e s c r i p t i o n rd f : ID="FB13">

7 <fe s t o : v endo r> Festo </ f e s t o : v endo r>

8 </ rd f :D e s c r i p t i o n>

9

10 <rdf :Statement rd f : abou t="#TimFB13">

11 <rd f : s u b j e c t r d f : r e s o u r c e="#FB13" />

12 <rd f : p r e d i c a t e r d f : r e s o u r c e=" ht tp : //mydomain . at / f e s t o#vendor" />

13 <rd f : o b j e c t>Festo </ r d f : o b j e c t>

14

15 <fe s t o : s t a t edBy r d f : r e s o u r c e="Tim" />

16 </ rdf :S tatement>

17 </rdf:RDF>

This way of reifying a statement is very cumbersome, especially when we want to use

reification multiple times. Nevertheless, this example provides some basic understanding

on how reification works. Additionally, RDF provides a shorter and more comfortable

syntax to create reified statements.

Instead of specifying subject, predicate, object and type, reification can also be achieved

by using the rdf:ID property. This technique is shown in Listing 3.17. The corresponding

RDF graph is represented by Figure 3.9.

45

3 RDF

Listing 3.17: Reification Shortcut

1 <?xml version=" 1 .0 "?>

2 <rdf:RDF xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"

3 xmln s : f e s t o=" ht tp : //mydomain . at / f e s t o#">

4

5 <rd f :D e s c r i p t i o n rd f : abou t="#FB13">

6 <fe s t o : v endo r rd f : ID="TimFB13"> Festo </ f e s t o : v endo r>

7 </ rd f :D e s c r i p t i o n>

8

9 <rd f :D e s c r i p t i o n rd f : abou t="#TimFB13">

10 <fe s t o : s t a t edBy r d f : r e s o u r c e="Tim" />

11 </ rd f :D e s c r i p t i o n>

12 </rdf:RDF>

Figure 3.9: RDF Reification

46

Chapter

4
RDF Schema

Conference attendees want to know

what’s stable enough that they can

seriously put investments toward,

... XML clearly is ready...and now

RDF is a solid spec.

(Eric Miller)

As already mentioned earlier, RDF provides no mechanisms to define application-specific

vocabulary. Instead, we can describe classes and properties using the RDF description

language RDF Schema, also referred to as RDFS.

RDFS itself does not provide any predefined classes or properties. In fact, it offers the

possibility to describe these data structures and their internal relations. For example, it

allows to organize classes in a hierarchical way by using subclass relations, e.g. the class of

pneumatic cylinders is a subclass of pneumatic devices.

RDFS documents represent valid RDF graphs, but the additional meaning requires soft-

ware, that is capable to process this information. Therefore, RDF software must include

47

4 RDF Schema

both, the rdf: and the rdfs: vocabulary. Like RDF, RDFS uses its own namespace

http://www.w3.org/2000/01/rdf-schema#, usually abbreviated with the prefix rdfs:.

4.1 Classes in RDFS

In RDF Schema, a class represents the concept of a category or a type. They are defined

using the RDF vocabulary rdfs:Class, rdfs:Resource and the properties rdf:type and

rdfs:subClassOf. Class members are also called instances, similar to object-oriented pro-

gramming languages. Resources may also be instances of more than a single class, e.g. a

member of the class PneumaticDevice may also be a member of the class MechanicDevice.

In RDF/XML a class is defined using the following syntax:

Listing 4.1: Describing Classes

1 <?xml version=" 1 .0 "?>

2 <rdf:RDF

3 xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"

4 xmlns : rd f s=" ht tp : //www.w3 . org /2000/01/ rdf−schema#"

5 xml:base=" ht tp : // stud3 . tuwien . ac . at/~e0125551/RDF/schema . r d f s ">

6

7 <rd f :D e s c r i p t i o n rd f : ID="PneumaticDevice">

8 <rd f : t yp e r d f : r e s o u r c e=" ht tp : //www.w3 . org /2000/01/ rdf−schema#Class "/>

9 </ rd f :D e s c r i p t i o n>

10 </rdf:RDF>

Generally, classes are written with an initial uppercase letter, whereas properties usually

start with a lowercase letter. This convention is not strictly necessary, but makes reading

RDF documents a lot easier.

48

4.1 Classes in RDFS

4.1.1 rdfs:subClassOf

In order to describe how classes are related to each other, we can use the predefined

property rdfs:subClassOf. Suppose, we want to create a class PneumaticCylinder, which

is a subclass of PneumaticDevice. We can extend Listing 4.1 by adding the following few

lines:

Listing 4.2: Subclass Relation

1 <rd f :D e s c r i p t i o n rd f : ID="PneumaticCylinder ">

2 <rd f : t yp e r d f : r e s o u r c e=" ht tp : //www.w3 . org /2000/01/ rdf−schema#Class "/>

3 <rd f s : subC la s sO f r d f : r e s o u r c e="#PneumaticDevice"/>

4 </ rd f :D e s c r i p t i o n>

This means, that any member of the class PneumaticCylinder is also a member of the class

PneumaticDevice. As already stated before, RDF software that is not capable of reading

RDF Schema data, will not understand this additional meaning. Instead, it will interpret

this terms as simple statements with predicate rdfs:subClassOf, but it will not be able

to understand its special meaning.

Another important characteristic of RDFS is transitivity. As already mentioned in Section

2.3, class membership represents a transitive relation, i.e. if class x is a subclass of class y,

and class y is subclass of class z, this implies that class x is also subclass of class z.

xRy ∧ yRz ⇒ xRz R...subClassOf

Therefore, instances of class x are also instances of class y and z. All classes in RDFS are

defined as subclass of rdf:Resource, since all instances must be resources.

It is also possible to omit the rdf:type definitions when using the rdfs:subClassOf rela-

tion, because this information can be inferred by the application. So, Listing 4.3 validates

49

4 RDF Schema

successfully in [W3Ce] and results in the graph shown in Figure 4.1. Nevertheless, it makes

reading RDFS documents easier, if this additional information is explicitly given.

Listing 4.3: Omitting rdf:type

1 <rd f :D e s c r i p t i o n rd f : ID="PneumaticCylinder ">

2 <rd f s : subC la s sO f r d f : r e s o u r c e="#PneumaticDevice"/>

3 </ rd f :D e s c r i p t i o n>

Figure 4.1: Omitting rdf:type

Additionally, RDF provides an abbreviation technique for description tags containing the

rdf:type property. So, RDF classes can easily be described the way shown in Listing 4.4.

Listing 4.4: RDFS Class Abbreviation

1 <rd f s : C l a s s rd f : ID="PneumaticCylinder "/>

When describing classes, it is good practice to use an explicit xml:base declaration. This

guarantees that a class’s URIref remains unchanged, even after relocating or copying the

document.

4.2 Properties in RDFS

In order to characterize classes, we can also define specific properties. Therefore, RDF

provides the class rdf:Property and the RDFS properties rdfs:domain, rdfs:range and

rdfs:subPropertyOf.

50

4.2 Properties in RDFS

Similar to class descriptions, properties are defined by the rdf:Property tag. In addition,

RDFS provides vocabulary to define how these properties should be used within RDF data.

4.2.1 rdfs:range

With rdfs:range, it is possible to restrict the values of properties to a specific class. Sup-

pose, we want to define a property hasParameter, whose value must be of class Parameter.

This can be achieved the following way:

Listing 4.5: rdfs:range Property

1 <rd f s : C l a s s rd f : ID="Parameter"/>

2

3 <rd f :P rope r ty rd f : ID="hasParameter ">

4 <rd f s : r a n g e r d f : r e s o u r c e="#Parameter"/>

5 </ rd f :P rope r ty>

Properties can also have multiple rdfs:range attributes, but it is important to know, that

a given value must be an instance of all specified classes.

4.2.2 rdfs:domain

The rdfs:domain attribute indicates, which classes the property can be used with. For

example, it may be useful to restrict the property hasParameter to the class Device only,

since there are no other classes that have parameters. Like rdfs:range, properties may

also implement more than a single rdfs:domain attribute. Therefore, a class that uses this

property must be an instance of all specified classes.

Listing 4.6 and 4.7 represent two files, which implement a small example to illustrate these

RDFS techniques.

51

4 RDF Schema

Listing 4.6: devices.rdf

1 <?xml version=" 1 .0 "?>

2 <rdf:RDF

3 xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"

4 xmlns : rd f s=" ht tp : //www.w3 . org /2000/01/ rdf−schema#"

5 xmlns :ext=" ht tp : // stud3 . tuwien . ac . at/~e0125551/RDF/schema . r d f s#"

6 xml:base=" ht tp : // stud3 . tuwien . ac . at/~e0125551/RDF/ dev i c e s . rd f ">

7

8 <ext :Parameter rd f : ID="Channels "/>

9 <ext:PneumaticDevice rd f : ID="MPA1G">

10 <ext :hasParameter r d f : r e s o u r c e="#Channels "/>

11 </ext:PneumaticDevice>

12 </rdf:RDF>

Listing 4.7: schema.rdfs

1 <?xml version=" 1 .0 "?>

2 <rdf:RDF

3 xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"

4 xmlns : rd f s=" ht tp : //www.w3 . org /2000/01/ rdf−schema#"

5 xml:base=" ht tp : // stud3 . tuwien . ac . at/~e0125551/RDF/schema . r d f s ">

6

7 <rd f s : C l a s s rd f : ID="Device "/>

8 <rd f s : C l a s s rd f : ID="Parameter"/>

9 <rd f s : C l a s s rd f : ID="PneumaticDevice">

10 <rd f s : subC la s sO f r d f : r e s o u r c e="#Device "/>

11 </ r d f s : C l a s s>

12 <rd f :P rope r ty rd f : ID="hasParameter ">

13 <rd f s : r a n g e r d f : r e s o u r c e="#Parameter"/>

14 <rdfs :domain r d f : r e s o u r c e="#Device "/>

15 </ rd f :P rope r ty>

16 </rdf:RDF>

52

4.2 Properties in RDFS

4.2.3 rdfs:subPropertyOf

Similar to rdfs:subClassOf, RDF Schema provides also a way to define subproperties by

using the predefined rdfs:subPropertyOf attribute. For example, a property hasParam-

eter may have a subproperty called hasSystemParameter. A Device having this property,

is by definition also a Device, that has a parameter.

xRy ⇒ xSy R...hasSystemParameter S...hasParameter

A single subproperty may have one or multiple parent-properties. RDFS attributes like

rdfs:domain and rdfs:range are inherited. Therefore, the value of hasSystemParameter

must be of class Parameter and the property can only be used within the domain of Device.

4.2.4 Other Properties

In addition to the properties mentioned before, RDFS also provides predefined vocabulary

that makes RDF documents more readable and easier to understand. These properties are

rdfs:Label, rdfs:comment, rdfs:seeAlso and rdfs:isDefinedBy.

The rdfs:Label property is used to provide a more readable resource name. The rdf:range

of this property is the class rdfs:Literal. As stated before, resource’s names have to meet

certain conditions, like the absence of whitespaces, hence it may be useful to add a more

expressive name by using rdfs:Label.

Additionally, rdfs:comment can be used to provide more detailed descriptions of resources.

The property rdfs:seeAlso refers to additional information about the subject resource.

Domain and range are both of class rdfs:Resource. Furthermore, RDFS provides a sub-

property of rdfs:seeAlso called rdfs:isDefinedBy, which may be used to point to RDF

data describing a resource.

53

4 RDF Schema

The Sections B.1, B.2 and B.3 give detailed information about all predefined RDF classes

and properties, including their domain and range.

With RDFS we can describe basic RDF vocabulary. Nevertheless, sometimes it may be

useful to have a schema language with more capabilities, e.g. cardinality, transitivity. These

and other additional features, are provided by the Web Ontology Language, discussed in

the following chapter.

54

Chapter

5
OWL

OWL and RDF are much of

the same thing, but OWL is a

stronger language with greater ma-

chine interpretability than RDF.

(W3 Schools)

In the previous chapter RDFS introduced a way to define domain-specific vocabulary, but

as already mentioned, there is still demand for more semantic capabilities. For example, it

is not possible to restrict a property’s cardinality or to state that two classes are disjoint.

With RDFS, class relationships can be defined, but in order to add additional information,

an ontology language like the Web Ontology Language (OWL) is needed.

In fact, this is also a question of how precise a vocabulary should be, because OWL provides

a lot of techniques to add constraints to data. These constraints may not be essential, but

the more precise the ontology is, the more information can be inferred later on.

Some people may claim that the correct abbreviation should be WOL, but since OWL is

easier to pronounce and suggests wisdom, OWL has been selected as acronym for the Web

55

5 OWL

Ontology Language.

5.1 History

In February 2004, OWL has been endorsed by the W3C as Recommendation in order

to draw attention to the OWL specification. OWL originates from the DAML (DARPA

Agent Markup Language) project, strictly speaking its language DAML+OIL (Ontology

Inference Layer). The OIL development started in 1997 in Amsterdam and is based on

SHOE (Simple HTML Ontology Extensions). In March 2000 DAML 0.5 has been released,

followed by the 1.0 specification of DAML+OIL in 2001.

The reference description document characterizes DAML+OIL as "a semantic markup

language for Web resources." It builds on earlier W3C standards such as RDF and RDF

Schema, and extends these languages with richer modeling primitives. [...] The language

has a clean and well defined semantics. [Cov]

In November 2001 the W3C Web Ontology (WebOnt) Working Group has been founded.

Their aim was to develop a broadly accepted ontology language - the Web Ontology Lan-

guage, OWL.

The first OWL document released, was OWL Use Cases and Requirements, first time

published in 2002 and updated in February 2004. This document [W3Cb] identifies three

concepts that characterize an ontology language:

• Classes (general things) in the many domains of interest

• The relationships that can exist among things

• The properties (or attributes) those things may have

56

5.1 History

This may be quite confusing, because there are already concepts in RDF/RDFS that fulfill

these requirements, but this will be discussed later on. However, the succeeding document

released by the WebOnt Working Group, contained test cases to check whether the specified

requirements are met.

The W3C Recommendation of OWL consists of six separate documents listed below.

• OWL Web Ontology Language Use Cases and Requirements [W3Cb]

contains a set of use cases and requirements for an ontology language.

• OWL Web Ontology Language Overview

provides a simple introduction to OWL, including a very brief feature list.

• OWL Web Ontology Language Guide [W3Ca]

similar to the RDF Primer [W3Cd], this document gives a very good and complete

overview with several examples.

• OWL Web Ontology Language Reference

represents a systematic and compact document containing information about all

modeling primitives of OWL.

• OWL Web Ontology Language Semantics and Abstract Syntax

represents the formal definition of OWL.

• OWL Web Ontology Language Test Cases

contains several test cases to validate the language.

All of these documents have been reviewed several times and were finally published in

February 2004. As already mentioned, the OWL Language Guide provides a very good

way to get used to the Web Ontology Language and its characteristics. Therefore, for

57

5 OWL

those who are unfamiliar with OWL, this document would be the right choice to start

with.

5.2 OWL Types

There are three different types of OWL, which differ in their complexity and expressive-

ness. Ontology development is a very difficult process, users have to decide which of the

three types suits their needs best. Basically, the used language should possess as much

expressiveness as needed and as few complexity as possible.

OWL Lite

The intention of this type is to provide mechanisms for developing classification hierar-

chies and enrich them with simple constraints. OWL Lite already supports cardinality

constraints, but permits only values of 0 or 1. As the name indicates, OWL Lite is the

’poorest’ member of the three OWL types.

OWL DL

In contrast to OWL Lite this type also supports more complex ontologies, without losing

the computational completeness, i.e. processing finishes in finite time. OWL DL includes all

language constructs, except type separation. This means a class can not be an individual or

property and a property can not be an individual or class. The name OWL DL originates

from its relation to Description Logic, a decidable subset of first order logic (FOL).

OWL Full

OWL Full provides maximum expressiveness, with no computational guarantees and a pos-

sibly infinite processing time. For example, it is feasible to enrich pre-defined RDF/OWL

58

5.3 OWL Documents

vocabulary by adding new information. Therefore, it is quite unlikely, that every inference

software will support OWL Full.

OWL Lite is a subset of OWL DL, whereas OWL DL is again a subset of OWL Full. The

Language Guide uses the following set of relations to illustrate this:

• Every legal OWL Lite ontology is a legal OWL DL ontology.

• Every legal OWL DL ontology is a legal OWL Full ontology.

• Every valid OWL Lite conclusion is a valid OWL DL conclusion.

• Every valid OWL DL conclusion is a valid OWL Full conclusion.

OWL also supports distributed ontologies, which is what the semantic web is about. There-

fore, ontologies can gather additional information by importing data from other ontologies.

Reasoning in OWL is based on the open world assumption. This has various meanings.

First, a reasoner will not assume something as being wrong, as long as this is not explicitly

stated. Furthermore, resource descriptions may be distributed, e.g. a resource R is defined

in ontology O1 and extended in O2. Information can only be added, it is not possible to

retract previously made statements. Nevertheless, these statements may also be opposing.

5.3 OWL Documents

In Chapter 3, the advantage of using namespaces has been mentioned. This RDF block

remains unchanged within OWL documents. Additionally, it is possible to provide entity

references by using Document Type Definitions (DTD). Instead of writing the full URIs in

59

5 OWL

the namespace declaration, we can use an abbreviated syntax as shown in Listing 5.1. DTD

is part of the XML specification and usually used to define the structure of documents.

Listing 5.1: Namespaces

1 <!DOCTYPE owl [

2 <!ENTITY xsd " h t tp : //www.w3 . org /2001/XMLSchema#" >

3 <!ENTITY dev " h t tp : //www.mydomain . at / dev i c e s#" >

4 <!ENTITY par " h t tp : //www.mydomain . at / parameters#" >]>

5 <rdf:RDF

6 xmlns ="&dev ; "

7 xmlns:dev ="&dev ; "

8 xmlns :base="&dev ; "

9 xmlns:par="&par ; "

10 xmlns:owl =" ht tp : //www.w3 . org /2002/07/ owl#"

11 xmlns : rd f =" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"

12 xmlns : rd f s=" ht tp : //www.w3 . org /2000/01/ rdf−schema#">

13

14 <!−− OWL b l o c k −−>

15 </rdf:RDF>

After the namespaces have been declared, the OWL ontology block starts, this block is

also called the ontology header. Delimited by the tags owl:Ontology, this block typically

contains information about the ontology itself, the recent version (owl:versionInfo), com-

ments (rdfs:comment) and URIs of imported ontologies (owl:imports). A simple header

is shown in Listing 5.2.

Listing 5.2: Ontology Header

1 <owl:Ontology rd f : about="">

2 <ow l : v e r s i o n I n f o> v 1 .0 2007/11/15 19 : 1 0 : 3 0 mrainer </ ow l : v e r s i o n I n f o>

3 <rdfs:comment>A simple header</ rdfs:comment>

4 <owl : import s r d f : r e s o u r c e=" ht tp : //www.mydomain . at / dev i c e s "/>

5 </owl:Ontology>

60

5.4 OWL Basics

As we can see, the rdf:about attribute is empty, which identifies the given base URI as an

instance of owl:ontology. This is the standard case, as the document containing the header

normally also contains the ontology itself.

Similar to software, ontologies may get modified over time. Therefore, we need a possi-

bility to give information about the actual ontology version. This is usually done by the

owl:versionInfo tag. Additionally, OWL provides owl:priorVersion in order to make

statements about former versions.

The tag rdfs:comment has already been mentioned in Chapter 4 and needs no further

explanation.

Like the preprocessor directive ’#include’ - known from various programming languages -

OWL provides a tag called owl:imports, which can be used to integrate external data in

a document. owl:imports takes a single argument, which is identified by rdf:resources.

All assertions of the imported ontology are accessible in the document afterwards. Usually

the imported ontology is also included in the namespace definitions, in order to make

the use of external properties and classes easier. The difference between namespaces and

owl:imports is, namespaces are used for disambiguation, whereas imported ontologies

provide assertions that can be used. Furthermore, owl:imports is transitive, which means

if an ontology O3 is imported by O2 and O1 imports O2 than O3 is also imported by O1.

5.4 OWL Basics

Similar to RDF, the most basic elements of OWL are classes, properties and instances. The

used built-in vocabulary is located at http://www.w3.org/2002/07/owl#, usually associ-

ated with the namespace owl. The following section will discuss this vocabulary in detail,

but will primarily focus on OWL Lite and OWL DL.

61

5 OWL

5.4.1 Classes

Classes are used to establish groups with similar characteristics. These classes are usually

populated with instances afterwards. In OWL Lite and OWL DL, instances can not act

as classes at the same time, whereas OWL Full allows such constructs. The class members

are also called extension of the class in OWL terminology.

Furthermore, OWL uses two predefined classes owl:Thing and owl:Nothing. Thus all

individuals of an ontology are part of the owl:Thing extension, whereas the extension of

owl:Nothing is represented by the empty set. This implies, that every class is a subclass

of owl:Thing and a superclass of owl:Nothing.

Classes are simply defined using owl:Class. Hierarchical structures are still established

with rdfs:subClass, as already mentioned in the previous chapter. A simple class Output-

Device (a subclass of the class Device) can be defined as shown in Listing 5.3.

Listing 5.3: OWL Class

1 <owl :C la s s rd f : ID="OutputDevice">

2 <rd f s : subC la s sO f r d f : r e s o u r c e="#Device " />

3 </ owl :C la s s>

owl:disjointWith Element

It is also possible to state whether two classes are disjoint by using the predefined element

owl:disjointWith. For example, we can state that the class OutputDevice is disjoint with

InputDevice. Of course, the ontology designer has to prove if this distinction is useful,

because there might be devices that provide both input- and output-characteristics. The

disjoint-statements can be included in the class definition, but they can also be added

afterwards by using rdf:about.

62

5.4 OWL Basics

Listing 5.4: owl:disjointWith

1 <owl :C la s s rd f : abou t="#OutputDevice">

2 <owl :d i s j o i n tWi th r d f : r e s o u r c e="#InputDevice "/>

3 </ owl :C la s s>

owl:equivalentClass Element

In order to point out the equivalence of classes, the attribute owl:equivalentClass can

be used. However, this does not imply class equality, since equivalent classes only represent

the same concept. Real class equality can be expressed by using owl:sameAs, but this

requires to treat classes as individuals and can only be used within OWL Full.

Nevertheless, owl:equivalentClass is a very important feature, because it can be used to tie

classes in different ontologies together.

Listing 5.5: owl:equivalentClass

1 <owl :C la s s rd f : abou t="#Device ">

2 <owl : e qu i va l en tC l a s s r d f : r e s o u r c e="#Module"/>

3 </ owl :C la s s>

5.4.2 Individuals

Members of classes are called individuals. In Chapter 3, the property rdf:type has been

introduced. This property can be used to state, which class an individual belongs to. There

is also an abbreviation technique to omit the rdf:type, as we have already seen in the last

chapter. The following two examples are identical in their meaning.

Listing 5.6: Defining Individuals - abbreviated

1 <OutputDevice rd f : ID="AO2" />

63

5 OWL

Listing 5.7: Defining Individuals

1 <owl:Thing rd f : ID="AO2">

2 <rd f : t yp e r d f : r e s o u r c e="#OutputDevice">

3 </owl:Thing>

As these examples illustrate, designing ontologies can be quite challenging. Especially draw-

ing the line between classes and instances may be difficult. In relation to this, the OWL

Language Guide [W3Ca] states:

Thus classes should correspond to naturally occurring sets of things in a domain of dis-

course, and individuals should correspond to actual entities that can be grouped into these

classes.

5.4.3 Properties

OWL provides two different types of properties:

Object Properties

These properties are used to relate instances to other instances, e.g. X hasParameter Y,

with X being instance of class Device and Y of class Parameter.

Datatype Properties

Datatype properties relate instances to datatype values, i.e. RDF literals or XML Schema

datatypes. A typical device property could be numberOfParameters, which holds a non-

negative integer as its value.

As seen in Chapter 4, properties can be restricted in their domain and range. Even hierar-

chical structures are possible by using rdfs:subPropertyOf. These restriction techniques

also apply to OWL properties, as shown in Listing 5.8.

64

5.4 OWL Basics

Listing 5.8: Simple OWL Object Property

1 <owl :ObjectProperty rd f : ID="hasParameter ">

2 <rd f s : r a n g e r d f : r e s o u r c e="#Parameter"/>

3 <rdfs :domain r d f : r e s o u r c e="#Device "/>

4 <owl : i nve r s eOf r d f : r e s o u r c e="#isParameterOf ">

5 </owl :ObjectProperty>

Furthermore, OWL also allows to define inverse properties by using owl:inverseOf, e.g.

hasParameter and its inverse isParameterOf. Domain and range of the inverse property

can be inherited, but they have to be interchanged.

Similar to owl:equivalentClass, OWL also provides a possibility to define the equivalence

of properties by using the element owl:equivalentProperty.

5.4.4 Property Restrictions

Cardinality

In addition to these simple properties, OWL also allows to express more complex restric-

tions, like cardinality. For example, an OutputDevice must have at least one OutputChannel.

This statement can be defined as following.

Listing 5.9: Cardinality Restriction

1 <owl :C la s s rd f : ID="OutputDevice">

2 <rd f s : subC la s sO f r d f : r e s o u r c e="#Device " />

3 <rd f s : subC la s sO f>

4 <ow l :R e s t r i c t i o n>

5 <owl:onProperty r d f : r e s o u r c e="#numberOfOutputChannels" />

6 <owl :minCard ina l i ty rd f : da ta type="&xsd ; nonNegat iveInteger ">

7 1

8 </ owl :minCard ina l i ty>

65

5 OWL

9 </ ow l :R e s t r i c t i o n>

10 </ rd f s : subC la s sO f>

11 </ owl :C la s s>

As shown in Listing 5.9, restrictions are implemented by using the subclass-relation. The

reason is owl:Restriction defines an unnamed class - the class of things which have at

least one output channel. Therefore, each member of the class OutputDevice is also a

member of this unnamed class and must adhere to this restriction.

In addition to this, the cardinality value has been specified as nonNegativeInteger, which

uses the XML Schema namespace declaration made in the document header. OWL supports

a lot of XML Schema datatypes. A complete list of the recommended datatypes can be

found in Appendix C.1

owl:allValuesFrom

Properties may also have restrictions only in combination with specific classes. For ex-

ample, suppose a class ControllerDevice, which has parameters of class SystemParameter

- a subclass of Parameter. If we want to state that all parameters of a ControllerDevice

must be of type SystemParameter, we can use owl:allValuesFrom in order to restrict

the property hasParameter. The fact that all parameters must be of this type, makes this

restriction act like a universal quantifier.

owl:someValuesFrom

Additionally, OWL also provides a restriction comparable to the existential quantifier called

owl:someValuesFrom. In correspondence to the previous example, a ControllerDevice must

have a parameter of type SystemParameter, but it may also have other types of parameters.

Listing 5.10 shows how to use this property restriction.

66

5.4 OWL Basics

Listing 5.10: owl:someValuesFrom Restriction

1 <owl :C la s s rd f : ID="Cont ro l l e rDev i c e ">

2 <rd f s : subC la s sO f r d f : r e s o u r c e="#Device " />

3 <rd f s : subC la s sO f>

4 <ow l :R e s t r i c t i o n>

5 <owl:onProperty r d f : r e s o u r c e="#hasParameter " />

6 <owl:someValuesFrom r d f : r e s o u r c e="#SystemParameter" />

7 </ ow l :R e s t r i c t i o n>

8 </ rd f s : subC la s sO f>

9 </ owl :C la s s>

owl:hasValue

Furthermore, the constraint owl:hasValue, allows to link a restriction class to either an

individual of a data value.

5.4.5 Property Characteristics

In addition to restrictions, we can also describe property characteristics. This additional

information is very important for efficient reasoning. The following properties are supported

by OWL.

owl:TransitiveProperty

We have already mentioned the subclass relation in Chapter 4, which represents a transitive

relation. The associated logic of transitive properties is shown below:

P (x, y) ∧ P (y, z) ⇒ P (x, z)

For example, the property isPartOf may be defined as transitive, because if x isPartOf y

and y isPartOf z, x isPartOf z, too.

67

5 OWL

owl:SymmetricProperty

Properties that are characterized as being symmetric, adhere to the following relation:

P (x, y) if, and only if P (y, x)

Typical members are isSiblingOf or isAdjacentDevice.

owl:FunctionalProperty

Functional properties are a bit more sophisticated. The associated logic is shown below:

P (x, y) ∧ P (x, z) ⇒ y = z

Suppose a relation isSerialnumberOf, which states x isSerialnumberOf y and x isSerial-

numberOf z. Since serialnumbers are usually unique, this implies y = z.

owl:InverseFunctionalProperty

Inverse functional properties are used, when different objects cannot have the same value,

e.g. hasSerialnumber

P (y, x) ∧ P (z, x) ⇒ y = z

5.4.6 Boolean Combinations

OWL provides predefined vocabulary in order to implement basic boolean operations. The

resulting complex classes can also be nested, even without creating names for intermediate

classes. The following operations are supported by OWL.

68

5.4 OWL Basics

owl:intersectionOf

OWL allows to create an intersection of classes or properties by using owl:intersectionOf.

For example, a device class MultiDevice, may be defined as intersection of the two classes

OutputDevice and InputDevice. Instances of MultiDevice are also instances of the two other

classes. The appropriate usage of owl:intersectionOf, is shown in the listing below.

Listing 5.11: owl:intersectionOf

1 <owl :C la s s rd f : ID="Mult iDevice ">

2 <rd f s : subC la s sO f>

3 <owl :C la s s>

4 <ow l : i n t e r s e c t i o nO f rd f :par seType=" Co l l e c t i o n ">

5 <owl :C la s s rd f : ID="OutputDevice"/>

6 <owl :C la s s rd f : ID=" InputDevice "/>

7 </ ow l : i n t e r s e c t i o nO f>

8 </ owl :C la s s>

9 </ rd f s : subC la s sO f>

10 <rd f s : subC la s sO f r d f : r e s o u r c e="#Device "/>

11 <rdfs:comment xml:lang="en">Class o f d ev i c e s having input and output

channe l s</ rdfs:comment>

12 </ owl :C la s s>

owl:unionOf

In contrast to owl:intersectionOf, OWL also provides a way to define the union of

classes. Syntax and usage correspond to Listing 5.11.

owl:complementOf

Another construct provided by OWL is owl:complementOf. This selects all individuals,

that do not belong to a specified class. Usually this involves a lot of individuals and is

typically used in combination with other boolean operations.

69

5 OWL

5.4.7 Enumerations

Classes can also be defined by simply enumerating its members. This can be done us-

ing owl:oneOf. An enumeration represents a closed set of members, therefore no other

individuals can be valid members of this class.

The following listing has been created with Protégé1 - a very popular ontology editor. This

tool will also be used later on in Chapter 7.

Listing 5.12: OWL Enumerations

1 <owl :C la s s rd f : ID="PressureUnit ">

2 <rd f s : subC la s sO f r d f : r e s o u r c e="#Parameter"/>

3 <owl : e qu i va l en tC l a s s>

4 <owl :C la s s>

5 <owl:oneOf rd f :par seType=" Co l l e c t i o n ">

6 <PressureUnit rd f : ID=" ps i "/>

7 <PressureUnit rd f : ID="bar"/>

8 <PressureUnit rd f : ID="mbar"/>

9 </owl:oneOf>

10 </ owl :C la s s>

11 </ ow l : e qu i va l en tC l a s s>

12 </ owl :C la s s>

1http://protege.stanford.edu/

70

Chapter

6 Ontologies In Factory

Automation

The bottom line is that automation

lowers the risk of human error and

adds some intelligence to the enter-

prise system. (Stephen Elliott)

6.1 Introduction

Nowadays, production engineering devices are characterized by increasing complexity and

functionality. Additionally, life cycle times are getting shorter and products have to be

highly flexible to suit different application scenarios. At the physical level, these conditions

can be achieved by using modular components, e.g. Festo CPX devices. At the software

level, this is more sophisticated.

In former times, system integrators were forced to use a lot of different configuration tools.

However, since it is very inefficient to write specific software for each device, description

languages have been developed, like the Electronic Device Description Language (EDDL1).
1http://www.eddl.org/

71

6 Ontologies In Factory Automation

The EDDL was presented as layer 8 of fieldbus technology in 1991. The idea was to have

a single tool, which is capable of configuring different devices by interpreting their Elec-

tronic Device Description (EDD) file. This file can be used to described the following

characteristics:

• Description of device parameters and data structure

• Description of device functions

• Support for graphical representations, e.g. charts

• Support of communication with control devices

This concept of a vendor independent device description is very old, but still not fully

reached yet. A lot of different solutions have been presented the last years, e.g. DTM/FDT2.

A Device Type Manager (DTM) can be seen as some sort of driver, which gives detailed

information about a specific device. This DTM is usually installed like a separate program,

but can only be used within a frame application. At the application level, a standard called

Field Device Tool (FDT) has been introduced. Unlike the name suggests, FDT does not

refer to a tool. In fact, it provides an interface definition for the proper use of DTMs.

As mentioned before, the intended goal of these standards is to have a single application,

that can be used to configure different devices. At first glance, DTM/FDT provides all these

features, but every device still needs a specific DTM in order to work properly. Therefore,

there is still room for further improvements.

As a matter of fact, device description has become a very important part of software de-

velopment in industrial automation. Although this process is very time-consuming, trends
2http://www.fdtgroup.org/en/home-en.html

72

6.2 The Next Generation Device Description

indicate that manufacturers are migrating towards knowledge-based concepts. Therefore,

a possible future method of describing industrial devices, might also include semantic web

techniques.

6.2 The Next Generation Device Description

Future devices are supposed to interact and collaborate autonomously. A precondition is,

that devices share a global understanding about the environment and about themselves.

Therefore, using the same syntax and semantics is essential in order to establish a common

knowledge base. This knowledge can later be used to infer data about other devices. The

result will be an intelligent device, which provides inference, reasoning and even learning

skills.

One significant drawback of a standard-based approach - like the one presented previously

using DTM/FDT - is, that standards are established on currently available knowledge.

However, this may rule out newer devices that were not considered, when the standard has

been created. This problem becomes even more important, regarding three current trends

identified by [MLD].

Firstly, a homogeneous solution to manufacturing technology is unlikely to arise, given

the diversity of domains of application, the diversity of benefits associated to different ap-

proaches, [...]. Secondly, the diversity of devices for manufacturing is likely to increase as

more specialization fields and new processes arise. Thirdly, technological evolution and

introduction of new tools will continuously add unknown elements to the existing tech-

nology base.

Therefore, a Semantic Web approach may be a possible way to overcome these difficul-

ties. RDF/OWL are content independent and not based on former made assumptions.

Furthermore, OWL provides the following advantages.

73

6 Ontologies In Factory Automation

• It is mature language, which offers a solid specification.

• It is suited for distributed environments, which is a prerequisite for the use in indus-

trial automation devices.

6.3 A Common World

Once a well-defined ontology has been

Figure 6.1: A Common Knowledge Base

established, it can be used in different

ways. This is illustrated in Figure 6.1.

First, an ontology can be used as knowl-

edge base for an online shop. It pro-

vides every information that may be rel-

evant for customers, e.g. number of out-

put channels, device parameters, etc.

Secondly, the stored information is also

of great importance for system integra-

tors. The configuration tool can inter-

pret the data in order to set up devices

properly. This includes parameterization

and configuration of devices.

Finally, there is a trend to use descrip-

tion data also in product stages like operation and maintenance. Future devices shall even

be able to publish their features. Other interacting devices can read this information and

74

6.4 Service-Oriented Architecture (SOA)

compute a way to achieve a common goal.

6.4 Service-Oriented Architecture (SOA)

Additionally to a knowledge representation language like OWL, an appropriate mechanism

to advertise this information is needed. In Section 6.2 we have already mentioned the

suitability for distributed environments.

The structure of a distributed environment is represented by the Service-Oriented Architec-

ture3. A SOA can be defined as a collection of services, which communicate with each other.

This communication can include simple data exchange or the coordination of some activ-

ity. The connection between one or more services is a prerequisite for a Service-Oriented

Architecture.

These services are usually implemented using Web Services (see Section 6.5). Furthermore,

a protocol is needed in order to enable data exchange. One of these protocols is called

Service-Oriented Architecture Protocol (SOAP4).

6.4.1 SOAP

SOAP is used to exchange XML-based messages, usually tunneled via protocols like HTTP

or HTTPS (see also Figure 6.2). Critics argue that these protocols are not intended for

the use with SOAP. In fact, using HTTP has a lot of advantages. For example, it makes

communication via proxies and through firewalls easier, but SOAP also benefits from its

wide deployment and acceptance. Nearly every programming language and platform offers

3http://en.wikipedia.org/wiki/Service-oriented_architecture
4http://en.wikipedia.org/wiki/SOAP

75

6 Ontologies In Factory Automation

communication routines for HTTP, there is no need to implement any proprietary pro-

tocols. It is even possible to use encrypted data transport via HTTPS. Furthermore, this

tunneling technique provides great flexibility at the datalink layer.

SOAP supports several message types. The most prominent example is the Remote Proce-

dure Call (RPC).

Figure 6.2: SOAP Layer

6.5 Web Services (WS)

The idea is to use Web Service5 techniques, which are especially designed for the use in

distributed environments. The W3C Working Group defines Web services as following:

A Web service is a software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a machine-processable format

(specifically WSDL6).[W3Ch]

However, a Web Service encapsulates a process. This can be a software process or even

a physical process. Usually a WS provides some sort of Web API that can be accessed

remotely. These interface specifications are also called Advertisements. An advertisement

gives information about the used syntax of exchanged messages.
5http://en.wikipedia.org/wiki/Web_service
6http://www.w3.org/TR/wsdl

76

6.6 Web Service Description Language (WSDL)

6.6 Web Service Description Language (WSDL)

The language used to formalize such advertisements is called Web Service Description Lan-

guage. WSDL defines Messages and Ports. A Port is linked to a specific network address,

whereas Messages represent an abstract definition of the data being exchanged by the

Web services. Once a WSDL file has been created to describe a specific interface, manual

adaptations have to be made in case of service alteration. In order to overcome these prob-

lems, Semantic Web techniques - like OWL-S - may offer a possible solution. Figure 6.3

illustrates the concept of WSDL.

Figure 6.3: WSDL Concept

6.7 OWL-S

Regarding the W3C Submission, "OWL-S is an OWL-based Web service ontology, which

supplies a core set of markup language constructs for describing the properties and capa-

bilities of Web services in unambiguous, computer-interpretable form." A service described

by OWL-S is called a Semantic Web Service (SWS). [MBH+04] identifies three task types

OWL-S is expected to enable.

77

6 Ontologies In Factory Automation

Automatic Web Service discovery

Automatic Web Service discovery describes the automated detection of a WS that is capable

of performing a particular task.

Automatic Web Service invocation

Automatic Web Service Invocation describes the automated service invocation by a com-

puter program or an agent. This is possible, due to a detailed description of how the WS

has to be used. Special software should then be able to interpret this description in order

to remotely call the service afterwards.

Automatic Web Service composition and interoperation

Automatic Web Service composition and interoperation describes the automated selection,

composition and interoperation of WS to perform a complex task, given only a high-level

description of an objective.

6.7.1 OWL-S structure

OWL-S provides three different types of knowledge to describe a Semantic Web Service.

These three types are covered by the following questions.

• What does the service provide?

• How is it used?

• How does one interact with it?

78

6.7 OWL-S

ServiceProfile

The ServiceProfile gives information about what the service provides. This enables a soft-

ware agent to clarify if a certain service meets its needs by interpreting this information.

Furthermore, the ServiceProfile includes a description of the capabilities of the service, its

limitations and the provided service quality.

ServiceModel

The ServiceModel is used by the service requester to gather information about how to use

the service. In other words, it provides a description of how a service is invoked.

ServiceGrounding

The ServiceGrounding provides information about the communication details. Typically it

describes a protocol, message formats, port numbers, etc.

A class Service contains three properties, corresponding to these knowledge types. The

properties are presents, describedBy and supports. This relation is illustrated in Figure 6.4.

Figure 6.4: OWL Service Ontology

79

6 Ontologies In Factory Automation

This technique to publish service capabilities could be used in industrial automation to

create a self-describing device interface. This evolving class of intelligent modules would be

able to communicate and interact autonomously. This would also highly improve flexibility

and even enable some sort of Plug&Play. New devices will be recognized automatically and

time-consuming integration processes will not be necessary anymore.

80

Chapter

7 Festo Device Ontology

Implementation

We live in a time when automation

is ushering in a second industrial

revolution. (Adlai E. Stevenson)

7.1 Introduction

This chapter will introduce the Festo1 CPX device family. These devices are characterized

by the possibility to combine electric, pneumatic and controller devices on a single rack.

In the following sections an ontology will be developed, which enables the Festo Config-

uration Tool (FCT) to configure these devices. At the moment the needed information is

stored in ordinary INI-Files.

The FCT allows system integrators to configure and maintain nearly all Festo devices. In

former times, several different tools were needed to accomplish this task. The solution is

1http://www.festo.com/

81

7 Festo Device Ontology Implementation

a plug-in based framework, where each device family is represented by its corresponding

plug-in.

The following sections will give a detailed insight in ontology development. Furthermore,

common mistakes and general development rules will be outlined. Section 7.2 gives a brief

overview about the intended goal. Afterwards, a possible design approach will be presented.

7.2 Overview

As illustrated in Figure 7.1, the ontol-

ogy will only be used within the config-

uration tool at the moment. Neverthe-

less, it is also feasible to use this knowl-

edge in a shop system later on.

An implementation at the fieldbus level

would go beyond the scope of this the-

sis. However, the fact that the func-

tionality of devices is rapidly increasing

supports the need for other knowledge

representation techniques at this level.

The INI-File will be used as starting

point to create the corresponding de-

vice ontology. It defines 26 devices, in-

cluding parameters and other informa-

tion.

Figure 7.1: Application overview

82

7.3 The Design Process

7.3 The Design Process

First, there is no mandatory way of ontology modeling. Different approaches are feasible,

the best solution depends on the application it is intended for. Nevertheless, there are three

fundamental rules, which may ease some design decisions.

1. As already mentioned there is no ’correct’ way in ontology design - it depends on the

application the ontology will be used.

2. Developing an ontology is an iterative process.

3. It is recommended to map real world objects and their relations as directly to ontology

concepts as possible.

We also need to remember that an ontology is a model of reality of the world and the

concepts in the ontology must reflect this reality. [NM01]

The second rule states, that ontology development is an iterative process. Starting with

a quite rough release, the ontology will be revised and refined afterwards. The document

Ontology Development 101 [NM01] suggests a 7 step approach, which will now be discussed.

7.3.1 Step-by-Step

Step 1: Determine the domain and scope of the ontology

At the beginning it is judicious to sketch a list of the intended goals. The following questions

help to track down essential ontology characteristics.

• Which domain should the ontology cover?

83

7 Festo Device Ontology Implementation

• Which application will use the ontology?

• Which answers should the ontology provide?

Step 2: Reusing existing ontologies

Ontologies are designed for distributed usage. Therefore, if appropriate ontologies are al-

ready available they should be used. Unfortunately, there are no ontologies that cover

devices in factory automation or something similar.

Step 3: List of relevant ontology concepts

The next step is to write down information about important terms. For example, concepts

like Device or Parameter, but this also includes relevant properties like numberOfChannels,

hasDeviceBitmap, etc.

Within the next two steps a hierarchical structure will be established and class proper-

ties will be defined. In practice, these steps are performed simultaneously. However, they

represent the most important part of ontology development.

Step 4: Defining classes and establishing a class hierarchy

Regarding to [UG96], there are three different ways to develop a class hierarchy.

• Top-down

A top-down approach starts with the definition of the most abstract (top-level) con-

cepts, e.g. Device. Specializations are defined later on. This usually results in better

control of the detail level. Nevertheless, this approach may also introduce unnecessary

high-level categories.

84

7.3 The Design Process

• Bottom-up

In contrast, the bottom-up method starts with the most specific classes. This ap-

proach is normally associated with a very high detail level. The drawback is the

increasing difficulty to track down commonalities between concepts.

• Middle-Out

According to [UG96], the middle-out approach is a good trade-off concerning the

level of detail and the naturally arising generalizations. For example, we can take the

class DigitalModule and start refining it. Afterwards we try to generalize the concept,

e.g. DigitalModule is a direct subclass of ElectricModule.

Step 5: Defining class properties

Once a class hierarchy is established, properties describing relations between those classes

have to be created. In Step 3, a list of the properties has already been defined.

The task is now to attach a property to the most general class possible. For example

a property numberOfChannels could be attached to ElectricDevice. It would be false to

assign it to the class Device, because there is also a subclass ControllerDevice, which may

contain devices that do not have any channels.

Class properties are inherited to subclasses. Therefore, a properly defined class hierarchy

is an absolutely essential prerequisite.

Step 6: Further property refinement

Properties can be further enriched by adding information about their characteristics. These

relations have already been mentioned in Sections 5.4.3, 5.4.4 and 5.4.5. For example, the

property hasDeviceName may have a minimum cardinality of 1, but since the ontology

provides support for different languages it may also have more than a single name.

85

7 Festo Device Ontology Implementation

Furthermore, it is possible to describe the types of values a datatype property may hold.

The most common types are Boolean, Int, String and Float.

Another important information is the domain and range of a property (see also Section

4.2). [NM01] refers to properties as slots and suggests the following approach concerning

the domain and range:

When defining a domain or a range for a slot, find the most general classes or class that

can be respectively the domain or the range for the slots. On the other hand, do not define

a domain and range that is overly general: all the classes in the domain of a slot should

be described by the slot and instances of all the classes in the range of a slot should be

potential fillers for the slot. Do not choose an overly general class for range (i.e., one would

not want to make the range THING) but one would want to choose a class that will cover

all fillers.

Step 7: Creating instances

The final step is the creation of instances. Once the class to hold the instance is chosen,

the property values have to be defined.

7.3.2 Common Mistakes

Singular vs. plural

A common mistake in ontology development is, that people mix up singular and plural

terms. It is also false to define a class Device as subclass of Devices. This is why it is

better, to interpret the subclass-relation as kind-of -relation in order to avoid such mistakes.

Although the usage of plural terms is possible, the use of singular terms is suggested,

because sometimes plural terms may be confusing.

86

7.3 The Design Process

Concepts and names

Classes and their names have to be considered separately. For example, it is possible that

different names describe the same class and its concept, respectively. Sometimes, it is also

possible to associate synonyms with a concept to solve this problem. For example a Device

may also be referred to as Module.

Class cycles

It is not allowed to define a class A as subclass of B and class B as subclass of A. This

would result in a cycle within the hierarchy.

A balanced tree

There is no limitation concerning the number of subclasses a class may have. Nevertheless,

a balanced structure is quite important. [NM01] presents two basic rules to overcome this

problem.

• If a class has only one direct subclass there may be a modeling problem or the

ontology is not complete.

• If there are more than a dozen subclasses for a given class then additional interme-

diate categories may be necessary.

New class or property value?

Another difficult design decision to make is, whether it is better to introduce a new class

or store information in a property value. Suppose we have a class ElectricDevice contain-

ing devices with a boolean datatype property isOutputDevice and all devices having this

property set to true. It is possible to introduce a subclass OutputDevice in order to omit

this property.

87

7 Festo Device Ontology Implementation

Instance vs. class

It is also very challenging to decide whether a specific concept should be implemented

as class or individual. The question is what are the most basic items the ontology should

represent? Usually this is predefined by the application that uses the ontology afterwards.

Limited scope

Finally, an ontology should be able to provide all the information that may be needed.

However, too much information may result in a hardly understandable ontology. Therefore,

the creation of a well-balanced knowledge base is very important.

7.3.3 Naming Conventions

Capitalization

In order to make an ontology more readable, a consistent naming convention is necessary. A

very common method is to capitalize class names and use lower case letters for properties.

Delimiters

As already mentioned earlier, Protégé does not allow the use of spaces in concept names.

Instead an underscore or dash may be used. It is also very common to omit delimiters and

capitalize the first letter of each new word.

7.4 Tools and Software

Due to the inherent complexity of ontologies, appropriate tool support is absolutely nec-

essary. Furthermore, manual ontology development is an error-prone process. Fortunately,

there are already tools that make this task a lot easier.

88

7.4 Tools and Software

7.4.1 Protégé

The most popular and powerful tool for ontology development is called Protégé. Protégé is

a free, open source editor providing a framework that can be extended by third-party plug-

ins. It is written in Java and maintained by the Stanford University and the University of

Manchester.

Protégé can be used to create domain-models and knowledge collections. It supports

the creation, manipulation and visualization of ontologies in different formats, including

OWL/RDF.

Figure 7.2: The ontology editor Protégé

89

7 Festo Device Ontology Implementation

As illustrated in Figure 7.2, Protégé uses tabs to keep OWL classes, properties and instances

separated. The tabs ’OWLViz’ and ’Jambalaya’ represent two of the many available plug-

ins for Protégé. These visualization plug-ins provide a good possibility to keep track of

growing ontologies.

Protégé automatically generates OWL files. There is no need to have detailed knowledge

about complex OWL structures.

7.4.2 OwlDotNetApi

Most of the Semantic Web tools are written in Java. The OwlDotNetApi2 is written in C#

and provides an API for .NET applications. It is based on Drive, a .NET based RDF parser.

The API uses the Drive data model to create a directed linked graph. The corresponding

RDF parser has been modified to parse OWL instead. OwlDotNetApi provides the following

features:

• C# based RDF parser for the .NET platform

• Compliant with the OWL syntax specification

• Builds a directed linked graph

• Can be used with any .NET language

• Merges graphs from multiple sources

• Simple generator using the visitor pattern

2http://users.skynet.be/bpellens/OwlDotNetApi/index.html

90

7.5 The Festo Device Ontology

The OwlDotNetApi is available as pre-compiled DLL or as sourcecode. The FCT project

does not allow the usage of assemblies without a strong name3. Therefore, the sources had

to be compiled again, because it is not possible to sign (strong name) compiled assemblies

afterwards.

Assemblies can be signed using different ways in Visual Studio, either by invoking the

project properties or by adding the following lines to the file AssemblyInfo.cs.

Listing 7.1: Signing assemblies

1 [a s sembly : AssemblyKeyFile (" . . \ \ . . \ \ < f i l ename >.snk")]

2 [a s sembly : AssemblyKeyName("<f i l ename >.snk")]

Appendix C.2 and C.3 give further information about the provided classes and interfaces

of the OwlDotNetApi.

7.5 The Festo Device Ontology

7.5.1 Step 1: Determine the domain and scope of the ontology

The intended goal of the Festo Device Ontology, is to provide detailed information about

devices used in industrial automation. Even though the ontology also stores information

that could be usefully integrated into a Web shop system, the primary objective is the

usage within the Festo Configuration Tool. This includes knowledge about the devices,

their parameters and other relevant concepts.

3http://msdn2.microsoft.com/en-us/library/wd40t7ad.aspx

91

7 Festo Device Ontology Implementation

7.5.2 Step 2: Reusing existing ontologies

Unfortunately, there are no ontologies that can be reused within this area of interest.

7.5.3 Step 3: List of relevant ontology concepts

It is very difficult to identify all concepts that may be needed later on. The relevance

of important concepts often emerges in subsequent design stages. The best practice in

ontology design is to stick to real world concepts and their inherent relations. In the case

of the Festo Device Ontology, this means to map the existing INI-File structure to the

ontology structure. The following table provides a list of the needed concepts, including

those identified in subsequent steps.

Classes Properties

Device isOfDeviceClass

ElectricDevice hasDeviceCode

ControllerDevice hasDeviceName

PneumaticDevice hasDeviceBitmap

AnalogueDevice hasDeviceDescription

DigitalDevice hasParName

HybridDevice hasParMinValue

Parameter hasParMaxValue

DeviceParameter hasParFormat

SystemParameter hasParData

ParameterText hasSysParData

ParText hasDefaultValue

DeviceFamily hasText

92

7.5 The Festo Device Ontology

hasParameter

hasParText

isFollowedByParText

ofDeviceFamily

Table 7.1: List of relevant concepts

7.5.4 Step 4: Defining classes and establishing a class hierarchy

The list of needed classes is not very long. Therefore, a proper hierarchy can easily be

introduced. The top-level nodes are Device, Parameter, ParameterText and DeviceFamily.

The separation of Parameter and ParameterText is based on the underlying structure of

the INI-file.

Figure 7.3: Ontology Hierarchy

93

7 Festo Device Ontology Implementation

7.5.5 Step 5: Defining class properties

The definition of properties is a bit more sophisticated. Datatype properties like hasDe-

viceCode are easier to identify than object properties that represent relations between

instances, e.g. hasParameter. Most of the properties can be extracted directly from the

INI-file, but in order to link the Device class to Parameter, a property hasParameter is

needed. This also applies to the property hasParText, which is used to link text like inac-

tive, to the Parameter class.

For example, we have a class ParText_1, which contains the two instances ParText_1a

and ParText_1b. ParText_1a contains the properties hasText and isFollowedByParText

as illustrated in Figure 7.4.

Figure 7.4: ParText Instance

94

7.5 The Festo Device Ontology

The advantage of using a property hasText to represent the parameter text instead of

directly using the instance name, is that we can easily define multilingual parameter texts.

Furthermore, an instance name must not start with a number or symbol, but this does not

apply to the values of data properties like hasText.

The property isFollowedByParText has been introduced, because OWL has no support

for ordering. In fact, the RDF techniques that would solve this problem are not allowed

within OWL-DL and are therefore not available within Protégé. More information dealing

with this problem can be found in [DRS+]. However, we can use isFollowedByParText in

order to implement a linked list of parameter texts. The list is terminated by an empty

parameter instance, as shown in Figure 7.4.

Figure 7.5: Introducing a Sequence Mechanism

7.5.6 Step 6: Further property refinement

This step deals with additional property refinement including cardinality, data type re-

strictions, domain and range. Providing restrictions is the best way to implement fault

prevention. For example, every device belongs to a specific device family. Therefore, it

could be useful to implement a property restriction, stating that every Device has exactly

one property ofDeviceFamily. This is illustrated in Figure 7.6.

95

7 Festo Device Ontology Implementation

Figure 7.6: Property Refinement

Figure 7.7: Restriction Violation

If a property restriction is violated, this is indicated by Protégé as shown in Figure 7.7.

Furthermore, it is possible to define range and domain of a property as mentioned in Section

4.2.1 and 4.2.2. Object properties have classes as range, whereas datatype properties have

values of string, int, etc. For example, we can define the range of hasDeviceCode and

isOfDeviceClass as int.

96

7.6 Integration Process

Figure 7.8: Domain and Range Restrictions

7.5.7 Step 7: Creating instances

The last step is to populate the ontology with instances, which is very time-consuming.

However, it is a lot easier if the property restrictions have been defined precisely.

Finally, the Festo Device Ontology contains 21 devices, 2 device families, 35 parameters

and 86 parameter texts. Once all devices are implemented, we can start to integrate the

ontology into the Festo Configuration Tool.

7.6 Integration Process

At the moment the FCT uses a C# class called IniFileParser.cs, which extracts all the

needed information from two separate INI-files - an English and a German version.

97

7 Festo Device Ontology Implementation

In order to use the OwlDotNetApi, we must first import the pre-compiled DLL into the

Visual Studio project. The next step is to create an OWL graph from the ontology file. This

should be done only once, because otherwise it would significantly decrease the program’s

performance. Therefore, the needed objects should be declared static and readonly as shown

in Listing 7.2.

Listing 7.2: Creation of the OWL Graph

1 stat ic readonly IOwlParser par s e r = new OwlXmlParser () ;

2 stat ic readonly IOwlGraph graph = par s e r . ParseOwl ("D:\\Uni\\Diplomarbeit \\

Ontology␣Development\\FestOnt\\ festOnt . owl") ;

Once an OWL graph has been created, further methods can be implemented. Experience

has shown, that it is useful to have a method getChildEdges() and getParentEdges(), which

can be used to retrieve detailed information from the graph.

Listing 7.3: getChildEdges() and getParentEdges()

1 private OwlEdgeCollect ion getChi ldEdges (string sNode)

2 {

3 IOwlNode owlNode = graph . Nodes [sNode] ;

4 OwlEdgeCollection edges = (OwlEdgeCollect ion) owlNode .

ChildEdges ;

5 return edges ;

6 }

7

8 private OwlEdgeCollect ion getParentEdges (string sNode)

9 {

10 IOwlNode owlNode = graph . Nodes [sNode] ;

11 OwlEdgeCollection edges = (OwlEdgeCollect ion) owlNode .

ParentEdges ;

12 return edges ;

13 }

98

7.6 Integration Process

The FCT provides also a mechanism to scan for connected devices. Each device can be

identified by its device code. It is necessary to create a list of all devices that belong to the

specific device family, in order to be able to compare it with the found devices.

As mentioned before, the FCT is a plug-in based framework. Every device family is repre-

sented by a separate plug-in. The ontology implements devices of the Festo CPX and the

MPX family. It would also be possible to implement devices of other families.

Figure 7.9: Instance Tree

The trick is to use a property ofDeviceFamily, which links each device to its corresponding

device family instance. By invoking the method getParentEdges with the CPX family node,

we get a list of edges pointing to all CPX device nodes. In a simple foreach loop we can

retrieve all the information needed about the devices. The corresponding source code is

shown in Listing 7.4.

Listing 7.4: getModulesByCode()

1 public Dict ionary<int , string [] > getModulesByCode ()

2 {

3 Dict ionary<int , string [] > modulesByCode = new Dict ionary<int ,

string [] >() ;

4

99

7 Festo Device Ontology Implementation

5 OwlEdgeCollection edges = getParentEdges (" http ://www. f e s t o . com

/ festOnt#CPX") ;

6

7 foreach (OwlEdge e in edges)

8 {

9 string [] moduleInfo = new string [5] ;

10 OwlEdgeCollect ion parentEdges = (OwlEdgeCollect ion) e .

ParentNode . ChildEdges ;

11

12 foreach (OwlEdge eP in parentEdges)

13 {

14 i f (eP . ID == "http ://www. f e s t o . com/ festOnt#

hasDeviceBitmap")

15 moduleInfo [0] = eP . ChildNode . ID . Substr ing (0 , eP .

ChildNode . ID . IndexOf ("^^")) ;

16 i f (eP . ID == "http ://www. f e s t o . com/ festOnt#

isOfDev i ceC las s ")

17 moduleInfo [1] = eP . ChildNode . ID . Substr ing (0 , eP .

ChildNode . ID . IndexOf ("^^")) ;

18 i f (eP . ID == "http ://www. f e s t o . com/ festOnt#

hasDeviceCode")

19 moduleInfo [2] = eP . ChildNode . ID . Substr ing (0 , eP .

ChildNode . ID . IndexOf ("^^")) ;

20 i f (eP . ID == "http ://www. f e s t o . com/ festOnt#

hasDev iceDesc r ip t ion ")

21 i f (eP . LangID == "en")

22 moduleInfo [3] = eP . ChildNode . ID . Substr ing (0 ,

eP . ChildNode . ID . IndexOf ("@")) ;

23 i f (eP . ID == "http ://www. f e s t o . com/ festOnt#

hasDeviceName")

24 i f (eP . LangID == "en")

25 moduleInfo [4] = eP . ChildNode . ID . Substr ing (0 ,

eP . ChildNode . ID . IndexOf ("@")) ;

26 }

100

7.7 Conclusion

27 modulesByCode .Add(Convert . ToInt32 (moduleInfo [2]) ,

moduleInfo) ;

28 }

29 return modulesByCode ;

30 }

7.7 Conclusion

Semantic Web techniques offer a lot of new possibilities. Especially when retrieving specific

information, a networked structure - like it is provided by OWL - is very advantageous.

This is also illustrated in Listing 7.4, which extracts information about all devices that

belong to the CPX family.

Due to the use of XML, ontology documents are difficult to read for humans. Furthermore,

these documents are usually very big and it is hard to keep track of the stored data. XML

is a solid and widespread language, that is well suited for automated processing. Unfortu-

nately, it is dedicated for hierarchical structuring only. Therefore, additional features are

needed in order to add dependencies to data. These features are provided by OWL/RDF.

Tool Support

The inherent complexity of OWL documents makes tool support a prerequisite. Protégé

represents a good choice regarding the creation and modification of these documents. It

is not necessary to have detailed knowledge about OWL anymore, since ontologies can be

developed by using a well structured graphical user interface. Additionally, there are also

a lot of third party plug-ins, like Jambalaya4 - a data visualization tool.

4http://www.thechiselgroup.org/jambalaya

101

7 Festo Device Ontology Implementation

Language Support

As mentioned before, Festo uses two INI-file versions at the moment - a German and an

English version. Besides the fact that it is hard to keep those files consistent, this method of

storing information is also very inconvenient. However, OWL ontologies provide language

support by using the xml:lang attribute.

Performance

Most of the available software dealing with OWL/RDF is written in Java. Since Java is an

interpreted language, the program execution takes longer compared to compiled software.

Therefore, the usage of a .NET/Java bridge will result in significant performance loss. For-

tunately, there are already a few tools written in other languages, like the OwlDotNetApi.

Nevertheless, the creation of a directed linked graph from the ontology document takes

some time, which should be kept in mind. The best practice is to do this only once at the

beginning in order to keep execution times low.

Embedded Systems

Performance and memory capacities are also an important topic regarding embedded sys-

tems. Device manufacturers have to keep the product prices low in order to remain com-

petitive, but due to the high memory and performance requirements, semantically enriched

devices will be more expensive than others. Therefore, as long as these devices do not imply

any short term efficiency, customers will not have any reason to buy them. However, there

are already methods like the Semantic Web Services, which may enable communication

without any human interaction.

Semantic Web techniques offer some interesting possibilities in software development. Es-

pecially as central knowledge base for multiple applications it grants facilities. However,

Semantic Web implementations have been approved already in various application areas,

it remains to be seen, if this also applies to the field of industrial automation.

102

Appendix

A Acronyms

API Application Programming Interface

CPX Compact Performance Extension

DAML DARPA Agent Markup Language

DL Description Logic

DLL Dynamic Link Library

DTD Document Type Definition

DTM Device Type Manager

EDD Electronic Device Description

EDDL Electronic Device Description Language

103

A Acronyms

FCT Festo Configuration Tool

FDT Field Device Tool

FOL First Order Logic

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IEEE Institute of Electrical and Electronics Engineers

ILI Interlingual Index

ISBN International Standard Book Number

I/O Input/Output

KIF Knowledge Interchange Format

KIM Knowledge and Information Management

KSL Knowledge System Labs

MCF Meta Content Framework

MILO Middle-Level Ontology

N3 Notation 3

104

OIL Ontology Inference Layer

OWL Web Ontology Language

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RPC Remote Procedure Call

SHOE Simple HTML Ontology Extension

SOA Service Oriented Architecture

SOAP Service Oriented Architecture Protocol

SUO Standard Upper Ontology

SUMO Suggested Upper Merged Ontology

SWS Semantic Web Service

UML Unified Modeling Language

UNSPSC United Nations Standard Products and Services Code

URI Universal Resource Identifier

WS Web Service

WSDL Web Service Definition Language

105

A Acronyms

W3C World Wide Web Consortium

XML Extensible Markup Language

106

Appendix

B
RDF

B.1 RDF Class Descriptions

Class Name Description

rdfs:Resource The class resource, everything

rdfs:Literal The class of literal values, e.g. strings or integers

rdf:XMLLiteral The class of XML literal values

rdfs:Class The class of all classes

rdf:Property The class of RDF properties

rdfs:Datatype The class of RDF datatypes

rdf:Statement The class of RDF statements

rdf:Bag The class of unordered containers

rdf:Seq The class of ordered containers

rdf:Alt The class of alternatives

rdfs:Container The class of RDF containers

rdf:List The class of RDF lists

Table B.1: RDF Classes [W3Cf]

107

B RDF

B.2 RDF Property Descriptions

Property Name Description

rdf:type The subject is an instance of a class

rdfs:subClassOf The subject is a subclass of a class

rdfs:subPropertyOf The subject is a subproperty of a property

rdfs:domain A domain of the subject property

rdfs:range A range of the subject property

rdfs:label A human-readable name for the subject

rdfs:comment A description of the subject resource

rdfs:member A member of the subject resource

rdf:first The first item in the subject RDF list

rdf:rest The rest of the subject RDF list after the first item

rdfs:seeAlso Further information about the subject resource

rdfs:isDefinedBy The definition of the subject resource

rdf:value Idiomatic property used for structured values

rdf:subject The subject of the subject RDF statement

rdf:predicate The predicate of the subject RDF statement

rdf:object The object of the subject RDF statement

Table B.2: RDF Properties [W3Cf]

B.3 RDF Property Domains and Ranges

Property Name Domain Range

rdf:type rdfs:Resource rdfs:Class

rdfs:subClassOf rdfs:Class rdfs:Class

rdfs:subPropertyOf rdf:Property rdf:Property

rdfs:domain rdf:Property rdfs:Class

rdfs:range rdf:Property rdfs:Class

108

B.3 RDF Property Domains and Ranges

rdfs:label rdfs:Resource rdfs:Literal

rdfs:comment rdfs:Resource rdfs:Literal

rdfs:member rdfs:Resource rdfs:Resource

rdf:first rdf:List rdfs:Resource

rdf:rest rdf:List rdf:List

rdfs:seeAlso Frdfs:Resource rdfs:Resource

rdfs:isDefinedBy rdfs:Resource rdfs:Resource

rdf:value rdfs:Resource rdfs:Resource

rdf:subject rdf:Statement rdfs:Resource

rdf:predicate rdf:Statement rdfs:Resource

rdf:object rdf:Statement rdfs:Resource

Table B.3: RDF Properties [W3Cf]

109

B RDF

110

Appendix

C OWL

C.1 OWL: Supported XML Schema Datatypes

xsd:string xsd:normalizedString xsd:boolean

xsd:decimal xsd:float xsd:double

xsd:integer xsd:nonNegativeInteger xsd:positiveInteger

xsd:nonPositiveInteger xsd:negativeInteger

xsd:long xsd:int xsd:short xsd:byte

xsd:unsignedLong xsd:unsignedInt xsd:unsignedShort xsd:unsignedByte

xsd:hexBinary xsd:base64Binary

xsd:dateTime xsd:time xsd:date xsd:gYearMonth

xsd:gYear xsd:gMonthDay xsd:gDay xsd:gMonth

xsd:anyURI xsd:token xsd:language

xsd:NMTOKEN xsd:Name xsd:NCName

Table C.1: OWL: Supported XML Schema Datatypes [W3Ca]

C.2 OwlDotNetApi Classes

111

C OWL

Class Description

InvalidOwlException Represents an exception that is thrown when invalid OWL Syntax

is encountered by the parser

OwlAnnotationProperty Represents an OWL resource of type owl:AnnotationProperty

OwlClass Represents an OWL resource of type owl:Class

OwlCollection Represents an OWL resource of type rdf:List

OwlDatatype Represents an OWL resource of type rdfs:Datatype

OwlDatatypeProperty Represents an OWL resource of type owl:DatatypeProperty

OwlEdge Represents an Edge in the OWL Graph

OwlEdgeCollection Represents a collection of edges. This class maps edge IDs to lists

of OwlEdge objects.

OwlEdgeList Represents a collection of OwlEdge objects

OwlGenerator Summary description for OwlGenerator

OwlGraph Represents an OWL Graph

OwlIndividual Represents an OWL resource of type owl:Individual

OwlLiteral Represents a Literal in the OWL Graph

OwlNamespaceCollection Represents a collection of Namespaces

OwlNode Represents a node in the OWL Graph

OwlNodeCollection Represents a collection of OWL Nodes

OwlObjectProperty Represents an OWL resource of type owl:ObjectProperty

OwlOntology Represents an OWL resource of type owl:Ontology

OwlOntologyProperty Represents an OWL resource of type owl:OntologyProperty

OwlParser Summary description for OwlParser

OwlProperty Represents an OWL resource of type rdf:Property

OwlResource Represents a resource in the OWL Graph

OwlRestriction Represents an OWL resource of type owl:Restriction

OwlXmlGenerator Summary description for OwlXmlGenerator

OwlXmlParser The primary OWL Parser

Table C.2: OwlDotNetApi Classes

112

C.3 OwlDotNetApi Interfaces

C.3 OwlDotNetApi Interfaces

Interface Description

IOwlAnnotationProperty Represents a OWL Node of type owl:AnnotationProperty

IOwlClass Represents a OWL Node of type owl:Class

IOwlCollection Represents an OWL List

IOwlDatatype Represents a OWL Node of type owl:Datatype

IOwlDatatypeProperty Represents a OWL Node of type owl:DatatypeProperty

IOwlEdge Defines a generalized mechanism for processing edges in the OWL

Graph

IOwlEdgeCollection Represents a collection of objects that implement the IOwlEdge

interface. This collection maps edge IDs to objects that implement

the IOwlEdgeList interface.

IOwlEdgeList Represents a collection of IOwlEdge objects

IOwlGenerator Represents an OWL Generator

IOwlGraph Represents an OWL Graph comprising Nodes and Literals con-

nected by Edges

IOwlIndividual Represents a OWL Node of type owl:Individual

IOwlLiteral Represents a Literal in an OWL Graph

IOwlNamespaceCollection Represents a collection of Namespaces

IOwlNode Represents a Node in the OWL Graph

IOwlNodeCollection Represents a collection of IOwlNode objects

IOwlObjectProperty Represents a OWL Node of type owl:ObjectProperty

IOwlOntology Represents a OWL Node of type owl:Ontology

IOwlOntologyProperty Represents a OWL Node of type owl:DatatypeProperty

IOwlParser Represents an OWL Parser

IOwlProperty Represents a OWL Node of type owl:Property

IOwlResource Represents a OWL Node of type owl:Resource

IOwlRestriction Represents a OWL Node of type owl:Restriction

113

C OWL

IOwlVisitor This interface defines the type of object that the nodes and edges

will accept. The Node hierarchy classes call back a Visiting ob-

ject’s Visit() methods; In so doing they identify their type. Im-

plementors of this interface can create algorithms that operate

differently on different type of Nodes.

IOwlXmlGenerator Represents an OWL Xml Generator

IOwlXmlParser Represents an OWL Xml Parser

Table C.3: OwlDotNetApi Interfaces

114

Appendix

D Festo Ontology

D.1 The Festo INI-file (excerpt)

Listing D.1: The Festo INI-file

1 . . .

2 Class (1) = 1 , 1 , " D i g i t a l ␣modules"

3 Class (2) = 2 , 2 , "Analogue␣modules"

4 . . .

5 [Module2]

6 Type = "4DO"

7 Text = "Output␣module"

8 Bitmap = "MODUL−A−CPX"

9 Ordercode = "A"

10 Code = 3

11 Class = 1

12 Channels (1) = "−" , 0 , 0 , 4 , 1

13 ParamBytes = 6

14 ParamDefaults = 06 00 00 00 00 00

15 Param(1) = 2 ,64 ,0 ,1 ,1

16 Param(2) = 3 ,64 ,0 ,2 ,1

17 Param(3) = 10 ,64 ,1 ,1 ,1

115

D Festo Ontology

18 . . .

19 [Param2]

20 Text = "Monitor␣SCO"

21 Format = 32

22 Range = 1 0−0

23 PrmText = 1

24

25 [Param3]

26 Text = "Monitor␣Vout/Vval"

27 Format = 32

28 Range = 1 0−0

29 PrmText = 1

30 . . .

31 [Param10]

32 Text = "Behaviour ␣ a f t e r ␣SCO"

33 Format = 32

34 Range = 0 0−0

35 PrmText = 14

36 . . .

37 [PrmText1]

38 Text (0) = " Ina c t i v e "

39 Text (1) = "Active "

40 . . .

41 [PrmText14]

42 Text (0) = "Leave␣ switched ␣ o f f "

43 Text (1) = "Switch␣on␣ again "

116

D.2 The Festo Device Ontology (excerpt)

D.2 The Festo Device Ontology (excerpt)

Listing D.2: The Festo Device Ontology

1 <?xml version=" 1 .0 "?>

2 <rdf:RDF

3 xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"

4 xmlns:xsd=" ht tp : //www.w3 . org /2001/XMLSchema#"

5 xmlns : rd f s=" ht tp : //www.w3 . org /2000/01/ rdf−schema#"

6 xmlns:owl=" ht tp : //www.w3 . org /2002/07/ owl#"

7 xmlns=" ht tp : //www. f e s t o . com/ festOnt#"

8 xmlns:p1=" ht tp : //www. owl−on t o l o g i e s . com/ a s s e r t . owl#"

9 xml:base=" ht tp : //www. f e s t o . com/ festOnt ">

10 <owl:Ontology rd f : about=""/>

11

12 <Dig i t a lDev i c e rd f : ID="Dev_4DO">

13

14 <ofDeviceFamily r d f : r e s o u r c e="#CPX"/>

15

16 <hasDeviceName xml:lang="en">4DO</hasDeviceName>

17 <hasDeviceName xml:lang="de">4DA</hasDeviceName>

18

19 <hasDev iceDesc r ipt ion xml:lang="en">Output module</

hasDev iceDesc r ip t ion>

20 <hasDev iceDesc r ipt ion xml:lang="de">Ausgangsmodul</

hasDev iceDesc r ip t ion>

21

22 <hasDeviceBitmap rd f : da ta type=" ht tp : //www.w3 . org /2001/XMLSchema#

s t r i n g ">MODUL−A−CPX</hasDeviceBitmap>

23

24 <hasDeviceCode rd f : da ta type=" ht tp : //www.w3 . org /2001/XMLSchema#in t "

>3</hasDeviceCode>

25

26 <isOfDev i ceC las s rd f : da ta type=" ht tp : //www.w3 . org /2001/XMLSchema#

in t ">1</ i sOfDev i ceC las s>

117

D Festo Ontology

27

28 <hasParData rd f : da ta type=" ht tp : //www.w3 . org /2001/XMLSchema#s t r i n g "

>2 ,64 ,0 ,1 ,1</hasParData>

29 <hasParData rd f : da ta type=" ht tp : //www.w3 . org /2001/XMLSchema#s t r i n g "

>3 ,64 ,0 ,2 ,1</hasParData>

30 <hasParData rd f : da ta type=" ht tp : //www.w3 . org /2001/XMLSchema#s t r i n g "

>10 ,64 ,1 ,1 ,1</hasParData>

31

32 <hasParameter>

33 <DeviceParameter rd f : ID="Par_2">

34 <hasParName xml:lang="en">Monitor SCO</hasParName>

35 <hasParName xml:lang="de">Überwachung KZA</

hasParName>

36

37 <hasParFormat rd f : da ta type=" ht tp : //www.w3 . org

/2001/XMLSchema#in t ">32</hasParFormat>

38

39 <hasDefaultValue rd f : da ta type=" ht tp : //www.w3 . org

/2001/XMLSchema#in t ">1</hasDefaultValue>

40

41 <hasParText>

42 <ParText_1 rd f : ID="ParText_1a">

43 <hasText xml:lang="en">Ina c t i v e</

hasText>

44 <hasText xml:lang="de">Inakt iv</

hasText>

45

46 <isFollowedByParText>

47 <ParText_1 rd f : ID="ParText_1b">

48 <hasText xml:lang="en">

Active</hasText>

49 <hasText xml:lang="de">

Aktiv</hasText>

118

D.2 The Festo Device Ontology (excerpt)

50 <isFollowedByParText

r d f : r e s o u r c e="#

emptyParText"/>

51 </ParText_1>

52 </ isFollowedByParText>

53 </ParText_1>

54 </hasParText>

55 </DeviceParameter>

56 </hasParameter>

57

58 <hasParameter>

59 <DeviceParameter rd f : ID="Par_3">

60 <hasParName xml:lang="en">Monitor Vout/Vval</

hasParName>

61 <hasParName xml:lang="de">Überwachung Uaus/Uven</

hasParName>

62

63 <hasParFormat rd f : da ta type=" ht tp : //www.w3 . org

/2001/XMLSchema#in t ">32</hasParFormat>

64

65 <hasDefaultValue rd f : da ta type=" ht tp : //www.w3 . org

/2001/XMLSchema#in t ">1</hasDefaultValue>

66

67 <hasParText r d f : r e s o u r c e="#ParText_1a"/>

68 </DeviceParameter>

69 </hasParameter>

70

71 <hasParameter>

72 <DeviceParameter rd f : ID="Par_10">

73 <hasParName xml:lang="en">Behaviour a f t e r SCO</

hasParName>

74 <hasParName xml:lang="de">Verhalten nach KZA</

hasParName>

75

119

D Festo Ontology

76 <hasParFormat rd f : da ta type=" ht tp : //www.w3 . org

/2001/XMLSchema#in t ">32</hasParFormat>

77

78 <hasDefaultValue rd f : da ta type=" ht tp : //www.w3 . org

/2001/XMLSchema#in t ">0</hasDefaultValue>

79

80 <hasParText>

81 <ParText_14 rd f : ID="ParText_14a">

82 <hasText xml:lang="en">Leave

switched o f f</hasText>

83 <hasText xml:lang="de">

au sg e s cha l t e t l a s s e n</hasText>

84

85 <isFollowedByParText>

86 <ParText_14 rd f : ID="ParText_14b"

>

87 <hasText xml:lang="en">

Switch on again</

hasText>

88 <hasText xml:lang="de">

wieder e i n s cha l t e n</

hasText>

89 <isFollowedByParText

r d f : r e s o u r c e="#

emptyParText"/>

90 </ParText_14>

91 </ isFollowedByParText>

92 </ParText_14>

93 </hasParText>

94 </DeviceParameter>

95 </hasParameter>

96

97 </Dig i t a lDev i c e>

98 </rdf:RDF>

120

Bibliography

[Con07] Gene Ontology Consortium. Biological process ontology guidelines, 2007. http:
//www.geneontology.org/GO.process.guidelines.shtml.

[Cor07] Teknowledge Corporation. Suggested upper merged ontology (SUMO), 2007.
http://www.ontologyportal.org/.

[Cov] R. Cover. Updated DAML+OIL language specification supports W3C XML
schema data types. http://xml.coverpages.org/ni2001-03-28-a.html.

[DRS+] N. Drummond, A.L. Rector, R. Stevens, G. Moulton, M. Horridge, H. Wang,
and J. Seidenberg. Putting OWL in order: Patterns for sequences in OWL.
http://owl-workshop.man.ac.uk/acceptedLong/submission_12.pdf.

[FBL99] M. Fischetti and T. Berners-Lee. Weaving the Web. Harper San Francisco;
Auflage: 1st (Oktober 1999), 1999.

[Fen07] D. Fensel. Enabling Semantic Web Services. Springer, 2007.

[GvH04] A. Grigoris and F. van Harmelen. A Semantic Web Primer. The MIT Press,
2004. http://www4.wiwiss.fu-berlin.de/bookmashup/books/1591405033.

[KSD01] A. Kiryakov, K. Simov, and M. Dimitrov. OntoMap: ontologies for lexical
semantics, 2001. http://www.ontotext.com/publications/ranlp01.pdf.

121

http://www.geneontology.org/GO.process.guidelines.shtml
http://www.geneontology.org/GO.process.guidelines.shtml
http://www.ontologyportal.org/
http://xml.coverpages.org/ni2001-03-28-a.html
http://owl-workshop.man.ac.uk/acceptedLong/submission_12.pdf
http://www4.wiwiss.fu-berlin.de/bookmashup/books/1591405033
http://www.ontotext.com/publications/ranlp01.pdf

BIBLIOGRAPHY

[MBF+05] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. Introduction to
wordnet: An on-line lexical database, 2005. ftp://ftp.cogsci.princeton.edu/
pub/wordnet/5papers.ps.

[MBH+04] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. Mcdermott, S. Mcilraith,
S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and
K. Sycara. OWL-S: Semantic markup for web services, 2004. http://www.w3.
org/Submission/OWL-S/.

[MLD] J. L. Martinez Lastra and I. M. Delamer. Semantic web services in factory
automation: Fundamental insights and research roadmap. http://ieeexplore.
ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=1593597&isnumber=33541.

[MNV02] M. Missikoff, R. Navigli, and P. Velardi. The usable ontology: An environment
for building and assessing a domain ontology, 2002.

[NM01] N. Noy and D. McGuinness. Ontology development 101: A guide to cre-
ating your first ontology. Technical report, Stanford University School
of Medicine, 2001. http://protege.stanford.edu/publications/ontology_
development/ontology101.pdf.

[NP] I. Niles and A. Pease. Towards a standard upper ontology. http://home.
earthlink.net/~adampease/professional/FOIS.pdf.

[oCSUoM] Department of Computer Science University of Maryland. SHOE - simple html
ontology extension. http://www.cs.umd.edu/projects/plus/SHOE/.

[Ogb] U. Ogbuji. Use rdf:about and rdf:ID effectively in RDF/XML. http://www.
ibm.com/developerworks/xml/library/x-tiprdfai.html.

[Pow03] S. Powers. Practical RDF. O’Reilly & Associates, Inc., Sebastopol, CA, USA,
2003.

[RFS07] C. Ringelstein, T. Franz, and S. Staab. The Process of Semantic Annotation of
Web Services. Idea Publishing Group, USA, 2007. http://www.uni-koblenz.
de/~staab/Research/Publications/2006/.

[UG96] M. Uschold and M. Gruninger. Ontologies: principles, methods, and appli-
cations, 1996. http://www.aifb.uni-karlsruhe.de/Lehrangebot/Sommer2001/
SemanticWeb/papers/Uschold-96.pdf.

122

ftp://ftp.cogsci.princeton.edu/pub/wordnet/5papers.ps
ftp://ftp.cogsci.princeton.edu/pub/wordnet/5papers.ps
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=1593597&isnumber=33541
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=1593597&isnumber=33541
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://home.earthlink.net/~adampease/professional/FOIS.pdf
http://home.earthlink.net/~adampease/professional/FOIS.pdf
http://www.cs.umd.edu/projects/plus/SHOE/
http://www.ibm.com/developerworks/xml/library/x-tiprdfai.html
http://www.ibm.com/developerworks/xml/library/x-tiprdfai.html
http://www.uni-koblenz.de/~staab/Research/Publications/2006/
http://www.uni-koblenz.de/~staab/Research/Publications/2006/
http://www.aifb.uni-karlsruhe.de/Lehrangebot/Sommer2001/SemanticWeb/papers/Uschold-96.pdf
http://www.aifb.uni-karlsruhe.de/Lehrangebot/Sommer2001/SemanticWeb/papers/Uschold-96.pdf

BIBLIOGRAPHY

[W3Ca] W3C. OWL web ontology language guide. http://www.w3.org/TR/owl-guide/.

[W3Cb] W3C. OWL web ontology language use cases and requirements. http://www.
w3.org/TR/webont-req/#onto-def.

[W3Cc] W3C. Primer: Getting into RDF and semantic web using N3. http://www.w3.
org/2000/10/swap/Primer.html.

[W3Cd] W3C. RDF primer. http://www.w3.org/TR/REC-rdf-syntax/.

[W3Ce] W3C. RDF validator. http://www.w3.org/RDF/Validator/.

[W3Cf] W3C. RDF vocabulary description language 1.0: Rdf schema. http://www.w3.
org/TR/rdf-schema/.

[W3Cg] W3C. Resource description framework (RDF): Concepts and abstract syntax.
http://www.w3.org/TR/rdf-concepts/.

[W3Ch] W3C. Web services glossary. http://www.w3.org/TR/ws-gloss/.

[W3Ci] W3C. XML schema part 2: Datatypes. http://www.w3.org/TR/2001/
REC-xmlschema-2-20010502/.

123

http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/webont-req/#onto-def
http://www.w3.org/TR/webont-req/#onto-def
http://www.w3.org/2000/10/swap/Primer.html
http://www.w3.org/2000/10/swap/Primer.html
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/RDF/Validator/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

	List of Figures
	Introduction
	Semantic Web Vision
	Ontologies
	Definition
	Components
	Upper, Middle and Lower Ontologies
	Ontology Specification
	Ontology Implementations

	Ontology Languages
	History
	Basic Ingredients
	Design Issues
	Expressiveness of Ontologies

	RDF
	History
	RDF Basics
	Resources
	Statements
	Literals

	RDF Views
	RDF/XML Syntax
	rdf:ID and rdf:about
	rdf:resource
	rdf:parseType
	QNames and Namespace Support
	Blank Nodes
	URI abbreviation
	rdf:type

	RDF/XML Abbreviation Techniques
	RDF concepts
	Containers
	Collections
	Reification

	RDF Schema
	Classes in RDFS
	rdfs:subClassOf

	Properties in RDFS
	rdfs:range
	rdfs:domain
	rdfs:subPropertyOf
	Other Properties

	OWL
	History
	OWL Types
	OWL Documents
	OWL Basics
	Classes
	Individuals
	Properties
	Property Restrictions
	Property Characteristics
	Boolean Combinations
	Enumerations

	Ontologies In Factory Automation
	Introduction
	The Next Generation Device Description
	A Common World
	Service-Oriented Architecture (SOA)
	SOAP

	Web Services (WS)
	Web Service Description Language (WSDL)
	OWL-S
	OWL-S structure

	Festo Device Ontology Implementation
	Introduction
	Overview
	The Design Process
	Step-by-Step
	Common Mistakes
	Naming Conventions

	Tools and Software
	Protégé
	OwlDotNetApi

	The Festo Device Ontology
	Step 1: Determine the domain and scope of the ontology
	Step 2: Reusing existing ontologies
	Step 3: List of relevant ontology concepts
	Step 4: Defining classes and establishing a class hierarchy
	Step 5: Defining class properties
	Step 6: Further property refinement
	Step 7: Creating instances

	Integration Process
	Conclusion

	Acronyms
	RDF
	RDF Class Descriptions
	RDF Property Descriptions
	RDF Property Domains and Ranges

	OWL
	OWL: Supported XML Schema Datatypes
	OwlDotNetApi Classes
	OwlDotNetApi Interfaces

	Festo Ontology
	The Festo INI-file (excerpt)
	The Festo Device Ontology (excerpt)

	Bibliography

