
MASTERARBEIT

A JavaScript API for an

eXtensible Virtual Shared Memory(XVSM)

Ausgeführt am

Institut für Computersprachen

Abteilung für Programmiersprachen und Übersetzerbau

der Technischen Universität Wien

unter der Anleitung von

Ao. Univ. Prof. Dipl.-Ing. Dr. Eva Kühn

durch

Lukas Lechner

Pezzlgasse 8/6

A-1170 Wien

Wien, Februar 2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

This thesis presents a solution to coordinate distributed web applications using XVSM

(eXtensible Virtual Shared Memory)[17], a new middleware application based on the

shared data space paradigm. XVSM offers various advantages to distributed appli-

cations, reducing coordination complexity and enhancing performance. The goal of

this thesis is to combine the advantages XVSM offers to distributed applications with

the advantages web applications offer over traditional desktop applications. Further-

more communication restrictions of current web applications are avoided by the use of

Bayeux as transport mechanism. A new protocol, called XVSMP/Bayeux is developed

to regulate the communication between the web application and the XVSM. A web

server component and a JavaScript client library, implementing the protocol, are cre-

ated. The server component provides the web application with access to the XVSM.

The JavaScript library offers a simple API to facilitate the development of distributed

web applications. Operations on the XVSM can be performed using the methods of

the API. The API makes the XVSMP/Bayeux protocol and the message exchange

with the XVSM transparent to the web application developer. The protocol messages

are exchanged through a new transport mechanism called Bayeux. Bayeux was de-

signed to overcome current communication restrictions web applications suffer due to

the nature of the HTTP protocol. This work also includes two sample applications to

demonstrate the use of this technology.

Kurzfassung

Diese Masterarbeit präsentiert eine Methode zur Koordinierung von verteilte Web-

anwendungen mit XVSM (eXtensible Virtual Shared Memory)[17], eine Middleware

basierend auf dem Prinzip von verteilten ”Data Spaces”. Der Einsatz von XVSM

bringt verteilten Anwendungen diverse Vorteile von einer Verringerung der Kom-

plexität der Koordinierung bishin zu erhöhter Performance. Das Ziel dieser Arbeit

ist es, die Vorteile von XVSM für verteilte Anwendungen mit den Vorteilen von Web-

anwendungen gegenüber herkömmlichen Desktopanwendungen zu vereinen. Darüber

hinaus werden Einschränkungen hinsichtlich der Kommunikationsmöglichkeiten von

aktuellen Webanwendungen durch den Einsatz von Bayeux als Transportmechanismus

vermieden. Die Kommunikation zwischen den Webanwendungen und XVSM wird

durch ein neu entwickeltes Protokoll namens XVSMP/Bayeux geregelt. Weiters wird

eine Webserverkomponente und eine JavaScript Bibliothek, welche das Protokoll im-

plementieren, erstellt. Die Webserverkomponente ermöglicht Webanwendungen den

Zugang zum XVSM. Die JavaScript Bibliothek bietet eine einfache Programmier-

schnittstelle um die Entwicklung von verteilten Webanwendungen zu beschleunigen.

Um eine Operation auf XVSM auszuführen, genügt es die entsprechende Methode

der Programmierschnittstelle aufzurufen. Die JavaScript Bibliothek macht das Pro-

tokoll und den Nachrichtenaustausch mit XVSM transparent für den Entwickler der

Webanwendung. Der Nachrichtenaustausch des Protokolls erfolgt über den neunen

Transportmechanismus Bayeux. Bayeux wurde entwickelt, um die momentanen Ein-

schränkungen, welchen Webapplikationen aufgrund des HTTP Protokolls unterliegen,

zu umgehen. Diese Arbeit inkludiert zwei Beispielapplikationen welche die entwickel-

ten Techniken demonstrieren.

Contents

1 Introduction 1

1.1 Overview . 2

2 Technical Bases 3

2.1 Shared Data Spaces . 3

2.2 XVSM . 5

2.2.1 Architecture . 6

2.2.2 Data Access and Synchronization 6

2.2.3 Notifications . 8

2.2.4 XVSM Protocol . 8

2.2.5 XVSM Extensions . 9

2.2.6 Implementation . 9

2.3 Comet . 10

2.3.1 Introduction . 10

2.3.2 Ajax . 12

2.3.3 Communication . 14

2.3.4 Server side information push . 15

2.3.5 Server requirements . 19

2.4 Bayeux Protocol . 21

2.4.1 JSON . 22

2.5 The Dojo Toolkit . 23

3 System Architecture 25

3.1 The Space Server . 26

3.2 The Distributed Web Application . 27

3.3 Communication . 27

4 Design & Implementation 29

i

4.1 XVSMP/Bayeux Protocol Design . 29

4.2 XVSMP/Bayeux Implementation . 31

4.2.1 The org.xvsm.server package . 31

4.2.2 The org.xvsm.server.json package 32

4.3 JavaScript API . 33

5 Examples Of Use 36

5.1 Chat Application . 36

5.1.1 Requirements . 36

5.1.2 Data structure . 37

5.1.3 Implementation . 38

5.2 The XVSM Viewer . 39

5.2.1 Components . 40

5.2.2 Implementation . 45

6 Evaluation 48

6.1 Advantages . 48

6.2 Problems . 50

6.3 Benchmark . 52

6.4 Related Work . 53

6.5 Outlook . 55

7 Conclusion 59

Appendices 61

A Code Organization 62

B Javascript API 64

C Source Code Sample - Chat Application 71

List of Figures 82

Bibliography 84

ii

1 Introduction

In 2007 the number of computers connected to the Internet passed the 500 millions

mark[15] and it keeps growing at an extremely high rate. As mobile devices (like mo-

bile phones, PDAs and even digital cameras) are more and more capable of connecting

to the Internet, the overall number of connected devices will grow even faster. With

such a great number of potential users, distributed applications are gaining a lot of

importance. For its users, distributed applications offer new services and ways of inter-

action. For developers, on the other hand, distributed applications impose a lot of new

challenges. Distributed applications need to cope with heterogeneous hardware, vari-

ous operating systems and different connectivity. Processes in distributed applications

need to be coordinated and failures of single nodes must not affect the overall sys-

tem. With mobile devices participating in distributed applications complexity further

increases as they constantly change their locality and connectivity.

Many of these challenges for distributed applications are very well addressed by mid-

dleware systems based on the shared data space paradigm. Shared data spaces pro-

vide means for easy and efficient coordination of distributed applications. They offer

a high level of abstraction by decoupling the distributed application participants in

time, space and reference. This leads to reduced complexity and easier application

development [2]. This thesis uses the new space based middleware XVSM (eXtensible

Virtual Shared Memory) [17] developed at the Institute of Computer Languages at

the Vienna University of Technology. Additionally middleware systems offer value-

added services like naming services or security features. They also try to address the

heterogeneity of the user’s hard- and software by using platform independent program-

ming languages like Java, distributions for different operating systems and language

bindings for different programming languages. However, another piece of software has

been even more successful in making applications ubiquitously available on every hard-

1

and software: the web browser. A web browser is nowadays available on nearly every

computing device and standard applications are more and more ported towards web

applications, or at least accompanied by a web application equivalent.

This thesis tries to combine the advantages of the ubiquitously available web browser

with the advantages of the middleware system XVSM. It aims at creating distributed

web applications which coordinate themselves through a common shared data space.

The user can thus benefit from a distributed application that she/he can run from

every computing device connected to the Internet without any installation required.

By using modern concepts of web application development and exploiting the HTTP

protocol in a way to provide bidirectional asynchronous communication, distributed

web applications can match modern desktop applications concerning reactivity and

usability. The thesis consists of three components. The main building block is a newly

developed protocol regulating the communication between the web applications and

the space. This protocol is then implemented by a server component, translating the

protocol messages into operations performed on the space. The third component is

a JavaScript API, which facilitates the creation of web applications by providing a

simple interface to access the space. As a proof of concept two examples of use, a chat

application and a space monitoring application are presented. The chat application

represents a distributed multi-user web application, which shall benefit from the asyn-

chronous bidirectional communication. The second example of use displays the current

state and content of the space. This application can be used to monitor the space and

shall help in the creation and debugging of other distributed web applications.

1.1 Overview

Chapter 2 gives an introduction to the technologies used in this thesis. It will focus

on XVSM, Comet, the Bayeux protocol and Dojo. Chapter 3 presents the general sys-

tem architecture and communication flow. Chapter 4 introduces the XVSMP/Bayeux

protocol, the implementation on the server side and the JavaScript API. Chapter 5

shows the two examples of use and Chapter 6 gives an evaluation of the presented work

including a benchmark and an outlook on further enhancements. Chapter 7 concludes

this thesis.

2

2 Technical Bases

This chapter gives a short introduction to the technologies and mechanisms used in

this master thesis. The first section gives an introduction to middleware systems with

focus on shared data spaces. The second section describes the middleware XVSM

(eXtensible Virtual Shared Memory). The third section introduces the concept of

asynchronous communication for web applications followed by the section describing

the Bayeux protocol and its underlying transports. The last section gives a short

overview of the Dojo toolkit.

2.1 Shared Data Spaces

Although distributed applications offer a lot of advantages and new possibilities, they

also introduce a high level of complexity to software developers. The heterogeneity of

the underlying hard- and software makes the creation of distributed systems a difficult

task. Today distributed applications are often designed to run even on mobile devices.

With mobile devices a new bulk of hard- and software systems need to be dealt with.

Additionally the location and the connectivity of these devices are no more static

but constantly changing. This imposes new challenges and additional complexity to

the creation of distributed systems. To address this complexity, developers created

middleware systems.

A middleware is a piece of software located between the native operation systems

network environment and the distributed application (see figure 2.1). It is designed to

mask the heterogeneity of the different hardware and operating systems, by providing a

uniform high-level interface (API) to the developers. By using this API the developers

3

Figure 2.1: The middleware layer [25, pp. 3]

can concentrate on the application problem and no longer have to deal with different

operating or hardware systems. Additionally a middleware might provide value-added

services such as naming, transactions or security which further eases the development

of distributed systems. Today a wide range of middleware systems based on different

communication and coordination concepts exist. Middleware based on the shared data

space paradigm has proven to provide a very elegant and simple to use solution for

creating distributed applications [5].

Shared data spaces

The idea of a shared data space was first created by David Gelernter in the 1980s [14].

He introduced a coordination language called Linda which operates on an abstract

computation environment called ’tuple space’. Concurrent processes of a distributed

application coordinate themselves by communicating with the tuple space. Coordi-

nation is performed by writing and reading data tuples to/from the space (e.g. the

master-worker pattern can be easily realised by letting the master process write the

tasks to the space and one or multiple worker processes read the tasks from the space).

The communication takes always place between the processes and the space. This way

the sending process does not need to know about the receiving process and there is

no need for both processes to be connected at the same time. This decoupling of pro-

cesses in both time and space takes away a lot of complexity in creating distributed

applications. Gelernter calls this communication paradigm which is both decoupled

in space and time ’generative communication’. Linda offers a very simple interface to

4

operate on the tuple space consisting of only three operations:

• out(): Writes a tuple to the space

• in(): Withdraws a tuple from the space

• rd(): Reads a tuple without withdrawing it

The out(t) operation writes the tuple t to the space. The in() operation uses template

matching to withdraw tuples from the space. If a template m matches a tuple t in

the space, in(m) withdraws this tuple from the space and returns it. If there is no

matching template found in the space the in(m) operation blocks until a matching

template is found (following the example from above a worker process would issue a

in() operation and if no task is present within the space it blocks until a new task gets

available). The rd() operation acts just like the in() operation but the matching tuple

remains in the space. These three operations were later extended by an additional in()

and rd() method without a blocking behaviour called inp() and rdp(). If no matching

tuple is found these non-blocking operations immediately return zero.

2.2 XVSM

eXtensible Virutal Shared Memory (XVSM) is a new middleware based on the paradigm

of shared data spaces. It offers new advantages to developers of distributed systems,

such as multiple synchronization methods, a range of different data access types, a

flexible architecture which can be easily tuned to the application specific needs or a

protocol as an interface to the space to achieve interoperability. XVSM was devel-

oped with the vision to make development of distributed applications as simple as the

development of a single user, single threaded program [17].

5

2.2.1 Architecture

The XVSM architecture consists of three layers (see figure 2.2). The XVSM Kernel

layer is the main component of the XVSM. It includes the basic components needed to

operate a single server space. The XVSM Extensions are layered on top of the kernel

and provide additional services (e.g. lookup mechanism, distribution of the space, per-

sistency, etc.). These features can be added to the Kernel in a way which is completely

transparent to the distributed applications. The interface of the XVSM is defined by

the XVSM Protocol layer. It defines protocols to communicate with the XVSM using

standard transport mechanisms. Thus interoperability between applications, kernels

and extensions even of different implementations is achieved.

Figure 2.2: The layered XVSM architecture [17, pp. 4]

2.2.2 Data Access and Synchronization

To store data and synchronize processes XVSM uses data containers. In the space

data can only exist within a data container and is organized in so called entries. A

process might create, destroy, write data to or read data from a container. Every

data container is assigned a unique container reference, a data access type, a size

(defining the number of entries it can hold) and optionally a name. Together with

the lookup mechanism a named container can be accessed by multiple applications

making coordination and data exchange possible. An entry can hold different data

types. So far strings, numbers, container references or tuples of entries are supported.

6

The ability to store container references within an entry allows building more complex

data structures.

XVSM extends the synchronisation model of Linda to support a blocking behaviour

for write operations and introduces a new operation called shift. It now offers four

operations to manipulate data: read, take, write and shift. The read and take opera-

tions act like their Linda equivalents read and in. The write operation tries to write

to the container, but blocks if the container cannot accept another entry, e.g. because

it reached its size limit. Shift is equivalent to write but instead of entering a blocking

state it replaces exiting entries in the container. The read, take and write operation

take a timeout parameter to define how long the operation shall block. If the timeout

is reached an exception is thrown.

XVSM supports different data access (coordination) types for a container which allows

application developers to choose the appropriate one depending on the needs of their

applications. The data access type defines the behaviour of the XVSM operations on

the container. The following data access types are available:

• Linda: Uses Linda-like template matching on all operations. A template can be

associated to every entry passed to write and shift operations. Read and take

operations can be given an additional parameter containing templates (e.g. a

read/take operation will return/remove entries matching the template only).

• FIFO: Performs operations like on a queue. Read/take operations return ele-

ments from the beginning of the queue, write/shift operations append elements

to the end of the queue.

• Set: The selection of entries in a set is done using a non-deterministic way for

all operations.

• Map: This data access type implements a ’key:entry’ mapping. Every operation

takes a ’key/entry’ pair as additional parameter.

• Vector: Provides access to entries similar to an array.

7

The data-containers in a space are disjoint. This means an operation on a container

can never directly affect data in another container. This partitioning of the space

enhances parallelism as concurrent operations on different data containers can be exe-

cuted without further need for synchronization. Additionally, selective operations like

template matching on a Linda container need not be performed on an entire space but

a single container. It also adds to the logical understanding as different applications

will use different containers and need not worry about the others.

2.2.3 Notifications

XVSM uses notifications to inform clients about changes at the XVSM in an asyn-

chronous way. Clients can in advance declare their interest in a specific event by

creating a notification on the space. If at a later stage such an event occurs the client

is subsequently informed about it. XVSM supports notifications at a very granular

level. A client might specify interest in read, write, take or shift operations on a spe-

cific container. It is even possible to specify only interest in operations with specific

value (e.g. a write operation that matches a certain template).

2.2.4 XVSM Protocol

The XVSM Protocol layer (XVSMP) defines a protocol based on the Extensible

Markup Language (XML) to access the XVSM. Using a standardized protocol to

operate on the XVSM, interoperability between all components respecting the inter-

face can be achieved. Additionally the XML-based protocol can be used with different

underlying transport mechanisms. In this thesis an addition to this layer will be pro-

posed by defining a protocol based on the Bayeux protocol (see section 2.4) which is

using JavaScript Object Notation (see section 2.4.1) as message encoding format.

8

2.2.5 XVSM Extensions

There are two different possibilities to extend the functionality of XVSM: extension

libraries and extension services. The extension library resides within the client ap-

plication’s computer and provides the client with additional functionality. It uses a

standardized interface to provide its functionality to the client and communicates with

the space using the XVSM Protocol. The extension service on the other hand resides

within the space’s infrastructure and directly enhances its functionality. An extension

service uses an interception technique to integrate into the space’s operation. The

service registers on the space to intercept certain operations (e.g. a read operation) at

a specific granularity level (e.g. all read operation, read on a specific container or even

a specific read operation). Every time a registered operation is executed the service

is notified. Interception of operations can be asynchronous (the space continues in

executing the operation) or synchronous (the space waits for the service to complete

its task before continuing the execution of the operation).

2.2.6 Implementation

This thesis uses the reference implementation of the XVSM system called MozartSpaces

(version 0.9.0.1), which is currently developed at the Institute of Computer Languages

at the Vienna University of Technology. MozartSpaces is implemented in the Java

programming language. The core component of MozartSpaces is called the XVSM

Core which comprises the functionality of the XVSM Kernel Layer. The Core offers a

Java Interface called the Core API (CAPI) which provides all methods to operate on

the space. For internal data storage the core uses the embedded database Derby. The

XVSM Core itself can already be used as embedded library in any Java application.

However, MozartSpaces also provides a server solution which provides access to the

XVSM core via the XVSM Protocol. Figure 2.3 shows the different installations of the

MozartSpace implementation. Figure 2.3.a shows the XVSM core and its components.

Figure 2.3.b shows the XVSM core embedded into a web server to provide access us-

ing the XVSM Protocol. It uses an additional component called XVSM-Servlet which

9

implements the XVSM Protocol. It is based on the Java servlet technology1.

Figure 2.3: The MozartSpaces implementations[20].

2.3 Comet

2.3.1 Introduction

In the beginning of the World Wide Web (the WWW) Internet Browsers were only able

to display static content. Web pages were electronic copies of text for the purpose of

distribution. These pages were mainly used by scientists, and there was no commercial

use of the WWW at that time. With the increasing popularity of personal computers

however, the number of people with access to this new media grew very fast. Soon

companies discovered the business potential of the Internet. In order to exploit the

World Wide Web as a new platform to do business transactions, web pages needed

to evolve from static text to dynamically changing pages, interacting with users and

servers at the same time [4, p.3].

Soon many different technologies which offered dynamic behaviour to web pages (there-

after referred to as web applications) were developed. All of these technologies can

1Servlets are Java objects within a web server which are linked to a specific URL. Requests to this

URL are processed and answered by the Servlet. See http://java.sun.com/products/servlet for

details.

10

be categorized into being either server-side or client-side, with respect to where the

actual computation takes place.

Server side technologies

The main characteristic of server side technologies is, that all the processing is done

by the server. The Internet browser is only used to display static pages and to convert

user actions (clicks on buttons, or links) into requests sent to the server. Due to this

even small user actions with very little or no impact on the displayed site (e.g. adding

an item to the virtual shopping cart) causes the entire page to be retransferred from

the server to the browser. Nevertheless server side technologies soon became very

popular because it is much easier to develop and maintain software for a single server,

than for the different browsers running on the user’s computers.

Client side technologies

Client-side technologies refer to programs which are executed within the user’s browser

environment. They are either scripts embedded into web pages, or binary programs

which are downloaded and afterwards executed. Scripts need to be supported by the

browser itself, whereas binary programs need a software-part (usually a plug-in) to be

installed on the user’s computer before they can be executed (e.g.: Macromedia Flash

or Java Applets). Although binary programs are generally more powerful and efficient

(because the code can be preliminarily optimized and compiled), the required instal-

lation of additional software is a big disadvantage. Especially in enterprise computer

setups the installation of additional software is often disabled for security reasons.

Scripts on the other hand are transferred as source code from the server to the client

and interpreted by the browser. One of the first available and still very popular client-

side scripting languages is JavaScript. When first introduced client-side scripting with

JavaScript was restricted to simple operations like user-input validation. With the

introduction of the Document Object Model (DOM) however, it became possible to

create dynamic web applications with JavaScript. The DOM offers the possibility to

navigate and modify an HTML2 document from within a JavaScript program. This

eliminates the need of transmitting a new page to change the look of a web page.

Instead, the web page is changed dynamically by the JavaScript program.

2HTML - HyperText Markup Language

11

Traditional web applications

In traditional web applications user requests (e.g. adding an item to the virtual shop-

ping cart) are directly mapped to requests sent from the browser to the server. This

includes sending the data from the browser to the server, processing of the data at

the server, regenerating the website (now including the item in the shopping cart),

sending the website to the user’s browser and displaying the retrieved page. During

this procedure the user can not interact with the web application, but has to wait

for its completion. Figure 2.4 shows the interaction of traditional web applications

(the gap in the user activity line represents the forced waiting). This is a very slow

and inconvenient solution, very different from the interactive user-friendly interfaces

offered by modern desktop applications. The goal of Ajax applications is to close the

gap between desktop and web applications concerning interactivity and user-friendly

interfaces.

Figure 2.4: Traditional web application model [13].

2.3.2 Ajax

The term “Ajax” was coined by an information architect called Jesse James Garret in

February 2005 to describe a technique for building rich and interactive browser based

applications [13]. From a technical point of view Ajax is not a technology by itself,

but rather a methodology to use the existing technologies in a way to go beyond the

12

possibilities of traditional web applications. All the technologies Ajax uses (which are

mainly HTTP, JavaScript and XML have already existed for some years. It is the

way these technologies are used and the way they mesh together which is new. Ajax

is short for ’Asynchronous JavaScript and XML’. The name indicates that Ajax uses

JavaScript as the client side programming language, XML as the data transfer format

and asynchronous communication to transport the data from server to client. Today

however, the term Ajax is often generally used for every dynamic web application using

asynchronous communication to transfer data from server to client, no matter which

programming language or data format used.

From a software engineering perspective Ajax introduces an additional software layer

between the user interface of the Internet browser and the communication of browser

and server. Figure 2.5 shows the application model of Ajax web applications. In

Figure 2.5: Ajax web application model [13].

Ajax applications user actions are processed by a JavaScript program, which is often

referred to as the ’Ajax Engine’. The Ajax Engine can then send the request on

the user’s behalf. However it can also prefetch the data, so that it is already locally

available, as soon as the user needs it. Or it might show new information to the user

on its own, because the server informed the Ajax Engine about changes on the page.

The ’Ajax Engine’ decouples the user interface from the client-server communication.

13

There are no longer any interruptions of user activity. Even after a user request the

Ajax application stays responsive and fully functional (e.g. the user might add an

item to the shopping cart and continue searching the page for other items). The

communication is performed asynchronously in the background by the Ajax Engine

and the user interface changes (e.g. the item is added to the shopping cart and the new

price is displayed) when the data from the server arrives. Additionally the amount of

data to be transferred is reduced to the actual item that has to be changed in the page.

There is no longer any need to transfer an entire web site with every request. This

decoupling of the user interface from the client-server communication alongside the

use of efficient asynchronous communication allows creating reactive user interfaces

with a feeling similar to desktop applications.

2.3.3 Communication

Ajax uses asynchronous communication to transfer data in the background of a web

application. There are two different ways to do this:

• Hidden Frame - IFrame

The Internet browser ’Netscape Navigator 2.0’ first introduced the concept of

frames for web sites. The idea is to split up the display of a web page into

several frames, each containing a different HTML document. To retrieve its

document, each frame can issue a request to the server on its own. By defining a

frame with a height or width of zero, it is possible to create a ’hidden frame’ not

visible to the user. This frame is then used to retrieve data in the background. A

JavaScript function can induce the frame to send a request to the server and the

frame issues an event which can be associated with a JavaScript method when

the data returns. With HTML 4.0 the concept of frames was officially included

into the HTML standard. A new element called ’IFrame’ was introduced as well.

Frames can not be dynamically created within a web site, whereas IFrames can

be programmatically integrated into a web site like any other HTML element.

Hidden Frames and IFrames were the first mechanism to support asynchronous

communication for web browsers [31], [8].

14

• XMLHttpRequest

The use of (hidden) frames for asynchronous communication was not originally

intended, however the popularity of this technique showed the need to support

asynchronous communication for web browsers. Hence the XMLHttpRequest

object was introduced to the JavaScript language. It allows issuing an HTTP

request from within a JavaScript program with full control over HTTP headers

and status codes.

2.3.4 Server side information push

Both frames and the XMLHttpRequest object enable a web application to send re-

quests to a server in the background (asynchronous), while remaining responsive to

user interaction. Requests to the server are sent using the Hypertext Transfer Pro-

tocol (HTTP) [10]. HTTP was originally designed to follow a strict request-response

pattern, with the browser sending the request and the server responding. The possi-

bility of the server pushing information to the browser on its own was not thought of.

In multi-user web applications however, the need of a server to inform clients about

events arises very often (e.g. a chat application where the server wants to inform the

clients about a new message). Following the specification of the HTTP protocol the

server cannot open a connection to a client by itself, but the client has to open the

connection and to look for new information on the server. This leads to 4 different

methods of pushing data from the server to the client, which differ in their degree of

asynchronism. Figure 2.6 shows the different solutions:

Page Refresh

Page refresh is simplest way to transfer new information from the server to the client.

It is user initiated and synchronous. The user has to click the refresh button of his/her

browser application. The website is then requested from the server once again. If the

information at the server has changed in between the old and the new request, the new

website will contain the updated content. This is the way traditional web applications

work.

15

Figure 2.6: The different solutions to push information from the server to the client

[3].

Polling Ajax

Polling Ajax is also referred to as classic Ajax. With Polling Ajax the Ajax Engine

continuously polls the server for new information at a given interval. If new information

is available, the Ajax Engine transfers the information to the user interface. This

approach is asynchronous from a user’s perspective (the fact that the Ajax Engine

is polling for the information is hidden from the user), but synchronous from the

Ajax Engine’s perspective. However there is a trade-off between the latency of the

information arrival and the polling overhead. A short polling interval reduces latency,

but increases data transfer overhead as many requests are sent without any new data

available.

16

Long-Polling

To reduce latency and data transfer overhead, long-polling is applied. With long-

polling every polling request is maintained (the response is withheld by the server

which keeps the connection open) at the server side until some data for the client is

available. If some data becomes available, the response is sent and the client can start

a new polling request. This approach minimizes latency and reduces overhead. The

server can always respond immediately when new data arrives. However, the overhead

of a complete TCP connection build-up and tear-down for every transferred piece of

data remains when using version 1.0 of HTTP. This can be avoided when using HTTP

version 1.1, which allows the reuse of a TCP connection for multiple HTTP requests,

leading to more efficient use of long-polling [10].

Streaming Ajax

Streaming Ajax tries to avoid the TCP connection build-up and tear-down as well

as the resending of HTTP requests by reusing an open HTTP request to send data

whenever it becomes available. To do this, Streaming Ajax takes advantage of the

progressive rendering feature of frames (IFrame or Hidden Frame, see 2.3.3). When a

frame tries to retrieve its content, it progressively renders the arriving data. It does

not wait for the entire document to arrive before starting to process it. This feature is

exploited by Streaming Ajax. The client sends a HTTP request to the server which is

maintained open. Whenever some data for the client is available, the server marshals

the data into a JavaScript block and sends it using the open connection. The retrieving

frame on the client side immediately interprets the retrieved script, but also continues

to wait for the rest of the page. The script usually contains a method call informing

the web application of the data arrival.

Both Long-Polling and Streaming Ajax provide the server with the ability to directly

notify the client of an event (e.g. some data that arrived). These two transport

mechanisms have been named Comet by Alex Russel in his article ’COMET - the

next stage of Ajax’ [23]. To ease the understanding, the term ’Comet applications’

is used for Ajax applications using Long-Polling or Streaming Ajax as their transport

mechanism throughout the rest of this thesis. Applications using standard polling are

referred to as Ajax applications. Figure 2.7 extends the diagram showing the classic

17

Ajax application model to match the concept of the Comet application model. It

introduces a comet-event-bus which handles the communication with the clients. If

an event occurs at the server, it is passed to the comet-event-bus, which pushes the

event to the specific web application. Thus with Comet the concept of event-driven

applications is brought to the web.

Figure 2.7: Comet web application model. Source[23]

In his article about Comet, Phil Windley says ”Ajax is about me” [30] (referring to

classic Ajax) to illustrate that Ajax applications are suitable solutions for single-user

web applications that only interact with the server and are not affected by other users

using the same application. When it comes to multi-user interaction, the server needs

the possibility to notify a user about events generated by other users. This is only

possible with a true server push solution like Comet. In space based computing with

Comet the space can directly notify multiple users connected through web applications

about changes within the space.

18

2.3.5 Server requirements

Although Comet offers a lot of advantages for web applications it imposes new require-

ments upon the server infrastructure. Current web servers are optimized for the load

profile of classic web applications. In classic web applications a burst of requests is fol-

lowed by pauses, assuming the user is first retrieving and then reading the page. While

the user is reading the page, she/he does not use any of the web server’s resources (the

connection is closed, once the application transmitted the data). Web servers keep a

pool of threads to treat incoming requests. Every incoming request is processed by

a thread, which remains active until the request is completed. After processing the

request is returned to the thread pool. In Comet applications however, a request is

continuously maintained open to allow the server to push data to the client. Thus the

thread remains in a blocking state until some data gets available. The one-thread-per-

request model will result in a one-thread-per-user model which does not scale with an

increasing number of users. The solution to this problem is to decouple the computa-

tion needed to complete the request from the actual input and output(IO) operations.

This can be achieved with non-blocking IOs, which are currently developed for a lot

of web servers.

The following web server products already support this concept:

• Tomcat 6.0 with NIO (Non-blocking IO extension)3

• Websphere Jetty (Continuations) 4

• Lightstreamer 5

• AsyncWeb 6

• Glassfish (Grizzly) 7

3http://tomcat.apache.org/tomcat-6.0-doc/aio.html
4http://docs.codehaus.org/display/JETTY/Continuations
5http://www.lightstreamer.com/
6http://docs.safehaus.org/display/ASYNCWEB/Home
7https://glassfish.dev.java.net/

19

In this thesis the web server Jetty is used as platform to host Comet powered web ap-

plications. Jetty is a web server with an included servlet container 8. It uses a concept

called Continuations to support scalability with Comet applications. It introduces a

’Continuation Object’ which allows the processing thread to suspend the current re-

quest. Once suspended, the processing thread can be returned to the thread pool and

start processing another request. With Continuations a thread is no longer needed for

every request but only for actual sending and retrieving of data. Additionally Contin-

uations do respect the servlet API 9. As a consequence web applications developed for

a servlet container supporting Continuations can also be deployed to any other servlet

container. However without support for Continuations requests cannot be suspended

and resource consumption will be significantly higher [28].

Figure 2.8: Comparison: Web Server Resource Usage [29].

The Figure 2.8 shows the resource usage of different web applications. Column num-

ber one shows a classic web application. The second column a Comet application

deployed on a traditional web server and the third column shows the same applica-

tion deployed on a web server implementing the Continuations concept. The chart

tries to estimate the number of concurrent requests issued by the web applications for
8The servlet container is the part of the web server where servlets are executed.
9The Servlet API defines the interface between the servlet container and the servlets running in a

servlet container.

20

10.000 simultaneous users. Based on this number the required threads and memory

consumption are calculated. It shows that a Comet application deployed on a web

server supporting Continuations, requires little more resources than a classic web ap-

plication. On a traditional web server the Comet application however dramatically

degrades in performance.

2.4 Bayeux Protocol

The Bayeux Protocol [22] is a message based publish/subscribe protocol for web appli-

cations. It is designed to provide asynchronous message delivery and supports different

transport solutions including Long-Polling and Streaming Ajax. The Bayeux Protocol

is based on named channels. A client can publish messages to a channel, or retrieve

messages from a previously subscribed channel. The intent of the Bayeux developers

is to simplify the development of event-based web applications. By using an existing

Bayeux server and client implementation web application developers no longer need to

worry about communication matters. The Bayeux protocol supports the negotiation

of the best suited transport mechanism. It also includes methods for securing commu-

nication and authentication mechanisms. The protocol is still under development and

some features are not yet fully specified. Nevertheless there are already some products

on the market implementing the first versions of the Bayeux protocol which are very

promising (notably the web server Jetty and the Dojo toolkit).

Figure 2.9: Bayeux as communication layer for web applications.

Figure 2.9 shows Bayeux as an additional layer between web application and Internet

browser on one side and server application and web server on the other side. Server and

web applications subscribe to channels within Bayeux to communicate with each other.

21

The Bayeux protocol takes care of establishing connections and sending messages.

Bayeux includes an advice mechanism which allows the Bayeux server to inform its

clients about the best way of communicating with the server (e.g.: following the HTTP

Specification every Internet browser should open no more than 2 connections to the

same server). If there is more than one Bayeux client running within an Internet

browser this might lead to problems with connection numbers. The Bayeux server

may then advice the client to switch to classic polling operation.

2.4.1 JSON

The Bayeux Protocol uses JavaScript Object Notation (JSON) [9] as its message ex-

change format. JSON is short for JavaScript Object Notation. It is a lightweight

data-exchange format based on a subset of the object literal notation of the JavaScript

language. Although JSON is mainly used in JavaScript applications, data structures

of many other programming languages can be represented using JSON. JSON uses a

very simple syntax consisting of only two constructs:

• Key/Value pairs

• An ordered list of values

A key is represented using the string data type. A value can be a string, a number,

’true’, ’false’, a key/value pair or an ordered list itself.

Compared to the de facto standard in data interexchange languages XML, JSON offers

a few advantages for Ajax applications. It has a much simpler syntax than XML and re-

duces the amount of data being transfered compared to XML (due to a smaller amount

of data encapsulation overhead). Additionally in web applications using JavaScript,

JSON objects need not be parsed by a JSON parser, but can be directly interpreted

in JavaScript (because JSON objects are syntactically legal JavaScript code). Further

comparisons between JSON and XML can be found in [21],[16].

22

2.5 The Dojo Toolkit

Dojo is a JavaScript toolkit designed to facilitate the development of (large) JavaScript

applications [11]. It is mainly targeted at Ajax empowered websites but it can also

be used for any other JavaScript application, even those not residing within a browser

environment. It is developed by a non-profit organization called the Dojo Foundation

and distributed under the BSD Licence and the Academic Free Licence. It is supported

by big companies like IBM or AOL.

Essentially Dojo is a JavaScript library, but by being extremely rich on features and

offering support for developers to do more structured programming with JavaScript it

is often seen as a framework or toolkit. In fact the Dojo Foundation did name it the

Dojo Toolkit.

The Dojo Toolkit offers the following functions:

• A packaging system

Dojo offers a packaging system similar to the Java programming language allow-

ing to structure the functionality offered and to include exactly those modules

needed for a specific application. Code written with the help of the Dojo Toolkit

can also be put into packages and included into the packaging system.

• Widget System

Widgets are building bricks for web applications. They are defined using HTML

elements, CSS design declarations and they can be enriched with JavaScript

code. They are especially useful to reuse common design patterns which appear

in many web applications (e.g. a date-selection field). Dojo already provides

a lot of widgets commonly used in web pages, and the widget system can be

augmented by custom built widgets. The Widget System for web applications is

comparable to the Java Swing Package for Desktop applications.

• IO Package

23

The IO Package offered is essential for every Ajax application. It includes a easy-

to-use API to perform asynchronous communication and also a Bayeux Client

implementation.

• DOM Package

To easily navigate within an HTML document, add, remove or move nodes the

DOM package offers a lot of convenient functions. This package is used to change

the look and content of the web application.

24

3 System Architecture

The goal of this thesis is to facilitate the creation of distributed web applications that

coordinate themselves, communicate with each other and exchange data through a

common virtual space. The virtual space is created using the eXtensible Virtual Shared

Memory (XVSM) described in section 2.2. In its simplest configuration the space can

be run as a single application on one computer, however to increase performance and

reliability it can be replicated over different connected computers, thus spanning a

space in between those computers. Regarding the web application it does not matter

if the space is created on a single server or on several machines. XVSM makes the

replication completely transparent to the client applications and thus appears to them

as a single coherent system. Figure 3.1 shows a distributed web application using one

central space server, figure 3.2 shows a replicated space environment.

Figure 3.1: XVSM on a central server Figure 3.2: A replicated space environment

The system architecture is split up into different components on both the server and on

the client side as shown in Figure 3.3. On the left side (the server part) all components

25

Figure 3.3: The system architecture

are run within the web server Jetty and on the right side (the client part) all compo-

nents are run within an Internet browser. The two sides communicate with each other

by using the XVSMP/Bayeux protocol (see 4.1). It is based on JSON 2.4.1 encoded

messages on top of the Bayeux protocol, which is used as the underlying means of

transport. Both sides are built upon a multi-layered design where the different layers

utilise functions from the lower layers and provide functions to the upper layers. Every

layer on one side is communicating with the layer of the same level on the other side

by passing information through the lower levels. In the following sections I will give

a detailed explaination of how the different components on both sides as well as how

the communication works.

3.1 The Space Server

The server consists of three components: The XVSM space, the XVSMP/Bayeux

application and the Bayeux server application. They are all executed within one

servlet container. Jetty was chosen as the web server because of its support of Comet

applications. The developers of Jetty also provide an open-source implementation of

a Bayeux server. The Bayeux server uses a servlet to process incoming requests from

clients, and provides a Java interface for interaction with other applications running in

the servlet container. The XVSMP/Bayeux application connects the two parts with

26

each other. It receives incoming requests from the Bayeux server, interprets them and

executes them on the XVSM space. Responses or notifications from the space are

forwarded to the Bayeux server that distributes them to the addressed clients.

3.2 The Distributed Web Application

The client side also consists of three components that are running within an Internet

browser. The Bayeux client is responsible for communicating with the Bayeux server.

On top of the Bayeux client the JavaScript API is implemented. It uses the Bayeux

client to send messages to the XVSMP/Bayeux application on the server side. The

JavaScript API provides simple methods to perform operations on the XVSM space,

which are used by the actual distributed web application. The Dojo toolkit takes

care of all the functions for the Bayeux client. The JavaScript API and the sample

web applications of this thesis make use of the facilities of the Dojo toolkit. Figure

3.3 shows those three components located within the Dojo frame. However, the web

application can also stand alone and is then located outside the Dojo frame.

The intention of the JavaScript API is to facilitate, aid and quicken the development of

distributed web applications using XVSM spaces by making the protocol details trans-

parent to the application developer. However, other web programming languages (e.g.

ActiveX, Flash ActionScript) as well as non web-applications (e.g. traditional desktop

applications) can also access the space server by using a Bayeux client and having

implemented the XVSMP/Bayeux protocol. Nevertheless, for non web-applications

the advantage to use XVSMP/Bayeux is limited to its usability in firewall protected

networks.

3.3 Communication

For communication between the two parts a protocol called XVSMP/Bayeux [18],[19] is

defined. It uses the Bayeux protocol as the underlying means of transport and JSON as

the message encoding format. Bayeux provides a publish-subscribe message exchange

27

mechanism based on named channels. However, as direct communication between web

applications and the XVSM space is sufficient for this thesis, a simple request-response

message exchange pattern is run on top of the publish-subscribe mechanism. Therefore

a common server channel ’/xvsm/server’ is defined to support client to server (XVSM)

communication. Messages from XVSM to the client are published to the client’s private

channel. Within Bayeux every client has its own private channel consisting of the string

’/meta/connections’ and of the client’s id. Upon connecting to the Bayeux server the

client is automatically subscribed to its private channel. Figure 3.4 shows the message

flow. The dashed line shows the subscription of the XVSMP/Bayeux application at the

Bayeux server. This operation is performed only once at the startup. The continuous

lines show the normal message flow between the XVSMP/Bayeux application and one

instance of the JavaScript API (note that a server will also publish to and retrieve

messages from other clients). The protocol itself is described in section 4.1

Figure 3.4: Communication between XVSM and web application

28

4 Design & Implementation

4.1 XVSMP/Bayeux Protocol Design

The XVSMP/Bayeux is a message-oriented protocol using Bayeux as underlying means

of transport and JSON as message encoding format. Messages are represented using

JSON objects. Every message contains exactly three parameters (’operation’,’request’

and ’data’). The ’operation parameter’ contains the name of the operation to be

executed on the XVSM space. The ’request parameter’ is an increasing number, which

is used to bind a request and the corresponding response together. It is used to

establish a request-response message exchange on top of Bayeux’s publish-subscribe

mechanism. The ’data parameter’ is a JSON object itself, which’s content depends on

the type of the operation.

The following example (adapted from [18]) shows the required command to create a

container within the XVSM space:

{

”operation” : ”CreateContainer”,

”request” : 1,

”data” : { ”size”: 10 }

}

The ’operation parameter’ tells the XVSM to create a container, the ’request pa-

rameter’ is set to the lowest number which has not yet been used in the previous

communication. The ’data parameter’ contains a JSON object with a ’size parameter’

29

of the value of 10. This message will cause the XVSM to create a container that is

bounded to size 10. A corresponding response from XVSM will look like this:

{

”operation” : ”CreateContainer”,

”request” : 1,

”data” : { ”cref”: ”cref 117 0” }

}

The ’operation’ and the ’request’ parameters of this message contain the same values

as in the previous request. This way the client knows that this response belongs to the

previously issued request. The ’data parameter’ contains the reference of the created

container.

This example shows how a write operation can be performed on the container created

above:

{

”operation” : ”Write”,

”request” : 2,

”data” : { ”entries”: [{ ”cref” : ”cref 117 0”,

”type” : ”STRING UTF8”,

”value” : ”test” }

]

}

}

Every new request from the client to the server must be given a so far unused number

in the ’request parameter’ (in this case the number 2). The ’data parameter’ this

time contains a JSON object with only one parameter called ’entries’. This parameter

contains a JSON array. Each element within the JSON array represents an entry which

shall be written to the XVSM. An entry is marshalled using a JSON object containing

a ’cref’, a ’type’ and a ’value’ parameter. The ’cref parameter’ defines the container

30

the entry shall be written to. An entry can be any of the following types: string,

number, container reference or tuple. The ’value parameter’ contains the actual value

of the entry. A tuple is a list of entries used to build up more complex data structures

[18, pp. 4].

4.2 XVSMP/Bayeux Implementation

The XVSMP/Bayeux implementation is designed to run within the servlet container

of the web server Jetty and uses Java as programming language. To handle JSON

messages, an open-source Java implementation of JSON helper classes is used 1.

The server implementation itself is organised into two packages: org.xvsm.server and

org.xvsm.server.json. The org.xvsm.server package includes three classes which are

mainly responsible for connecting the XVSM and the Bayeux server. The org.xvsm.ser-

ver.json package is responsible for interpreting the messages of the XVSMP/Bayeux

protocol, executing the commands on the XVSM space and sending the responses.

4.2.1 The org.xvsm.server package

• The ClientListener Class

The ClientListener class is responsible for the startup procedure. It implements

the ServletContextAttributeListener interface to listen for changes of attributes

in the servlet context. The Bayeux server will automatically add itself as at-

tribute to the servlet context upon startup. The ClientListener will then start

up the XVSM space and create an instance of the XVSMClient Class. The

XVSMClient object is subsequently registered with the Bayeux server (it sub-

scribes the ”/xvsm/server” channel). Additionally it sets the security restrictions

to the Bayeux server using the XVSMSecurityPolicy class.

• The XVSMClient Class

1http://www.json.org/java/index.html

31

The XVSMClient implements the Listener interface from the Bayeux server im-

plementation. It is the main connection point between the Bayeux server and

the XVSM space. The Bayeux server calls its deliver method whenever a client

publishes a message to the ’/xvsm/server’ channel. The deliver method looks

up which operation should be performed on the XVSM space and instantiates

an object of the respective class using reflection. The operation processing is

delegated to the newly created object. Every operation is handled by a specific

class. Removing or adding an operation only requires removing or adding a class

with the name as the operation. The XVSMClient class also provides a send

method which is used by the processing classes to send answers back to the web

applications.

• The XVSMSecurityPolicy Class

This class implements the SecurityPolicy interface of the Bayeux server imple-

mentation. The SecurityPolicy can be used to regulate creation, subscription

and publishing rights on channels. The XVSMSecurityPolicy class allows clients

to send messages to the ’/xvsm/server’ channel only. Clients are not allowed to

perform any other operations (creating channels, subscribing channels or pub-

lishing to other channels). It is important that no client can subscribe the ’/xvs-

m/server’ channel or another client’s private channel to prevent malicious clients

from eavesdropping. Additionally, it is also important to keep clients from pub-

lishing to other client’s private channels so that they cannot infiltrate other

communications.

4.2.2 The org.xvsm.server.json package

The org.xvsm.server.json package includes a class for every operation performed on the

XVSM. They all extend the JSONObject class. Additionally, it contains a Util class

which helps transforming JSONObject into XVSM Entries, Tuples or Selectors and

vice versa. Whenever a message is retrieved by the XVSMClient class the operation to

perform is extracted and a corresponding class from the org.xvsm.server.json package

is created. All classes provide a ’doProcess’ method accepting two arguments: The

32

operation details encoded in a JSON object and a client object (representing the

Bayeux client from which the message originated). The ’doProcess’ method executes

the operation on the space and returns the response to the web application. In case

of an error during execution the error message is packed into a JSON message and

returned as well. Fatal errors, hindering the server from returning a response to the

client, are written to the server’s log file.

4.3 JavaScript API

The JavaScript API is developed as a module of the Dojo toolkit. It uses the Bayeux

client of the Dojo toolkit to communicate with the space server and provides methods

to the application developer to easily perform operations on the XVSM space. It makes

the communication between client and server transparent and allows the application

developer to access the XVSM space as if it was a locally running program. However,

due to the asynchronous communication between server and client, the programmer

needs to register callback objects when performing an operation on the space which

leads to a slightly different programming style. The JavaScript API is programmed in

an object oriented way (the Dojo toolkit makes this possible) defining several classes

that are organized into different packages, similar to the Java packaging system:

• xvsm.jsapi

The xvsm.jsapi package contains the main class of the JavaScript API, the ’JS-

api’. It provides methods for all operations that can be performed on the XVSM

space. Additionally, it contains a ’connect method’ taking the Uniform Resource

Locator (URL) of the XVSM server as parameter.

• xvsm.jsapi.notification

In this package the two enumerations NotificationMode and NotificationTarget

are located. The mode and target parameter of every notification can only accept

values from these enumerations. The NotificationMode combined with a timeout

value defines the duration a notification remains valid. The NotificationTarget

33

defines on which operations the notification shall fire.

• xvsm.jsapi.interfaces

This package contains the interfaces for operations that return values. Every op-

eration that can be performed on the XVSM has a corresponding interface class.

When calling such an operation, an instance of the interface class is passed as

parameter and when the XVSM answers the request, the corresponding function

of the interface is called (depending on the return value). The interface pa-

rameter can be omitted if the application has no interest in the response of the

XVSM. Some operations use the same interface as they return the same values

(e.g. ’Write’ and ’Shift’, or ’Read’ and ’Take’ operations).

• xvsm.jsapi.json

Operations acquiring complex information as parameters (e.g. the write opera-

tion might take many entries as argument) accept objects from the xvsm.jsapi.json

class. These classes are used to gather and fill out all the information the op-

eration needs to perform. They all provide a ’json method’ transforming the

contained data into JSON objects.

• xvsm.jsapi.objects

The xvsm.jsapi.objects package contains two classes representing an entry and

a tuple as well as two enumerations (CoordinationType and ValueTypes). The

Tuple class extends the Entry class as it does in the XVSM implementation

and both provide a ’json method’ transforming data into a JSON object. The

CoordinationTypes enumeration contains all possible coordination types of a

container. The ValueTypes enumeration contains all possible data types an

entry/tuple might consist of.

• xvsm.jsapi.properties

The ContainerProperty class and two enumerations (ContainerProperties and

PropertyMode) make up this package. A ContainerProperty object can be used

34

to get or set the properties of a container. The different possible properties of

containers are listed in the ContainerProperties enumeration. The PropertyMode

sets the behaviour of the ContainerProperty object (get, set or reset).

• xvsm.jsapi.selectors

Several operations on the space (e.g. a read operation) take selectors as argu-

ments. The different selectors are arranged in the xvsm.jsapi.selectors package.

A selector is used to broaden or restrict the influence of an operation on a con-

tainer. It has to match the data access type of the container (e.g. a LindaSelector

reduces the number of returned entries of a read operation to the ones matching

the template included in the selector). Selectors are integrated into XVSM and

each selector class of the JavaScript API represents its counterpart in the XVSM

implementation.

• xvsm.jsapi.exceptions

The xvsm.jsapi.exceptions package contains the exceptions which might occur

when calling a method of the API.

• xvsm.jsapi.tests

Dojo provides JavaScript developers with facilities to test their applications in

a similar way the well established JUnit testing framework does for Java appli-

cations. The xvsm.jsapi.tests package contains the test cases for the JavaScript

API. Test cases are created by calling the ’register method’ of the test suite and

some code for ’setup’, ’runTest’ and ’tearDown’ can be included. All testcases

are listed in the xvsm.jsapi.test.module class and the tests can be executed by

pointing an Internet browser to the path ’dojo installation directory/util/do-

h/runner.html?testModule=xvsm.jsapi.tests.module’.

35

5 Examples Of Use

This chapter presents two examples of use for the JavaScript API and the XVSMP/-

Bayeux system. The first example, the chat application, represents a distributed web

application that coordinates itself through the XVSM space. The second example, the

XVSM viewer, is a web application monitoring the current state of the XVSM. All the

data the XVSM currently holds is displayed and constantly updated within the web

application.

5.1 Chat Application

The chat application allows multiple users to join a chat room and communicate with

each other by exchanging text messages. It is a simple application to show the use of

the XVSMP/Bayeux protocol and the JavaScript API.

5.1.1 Requirements

The Chat application fulfils the following requirements:

• Nickname selection

Every user can choose a nickname to log into the chat application. The nickname

is a unique identifier of a user within the system. If the nickname is already

chosen by another user, a warning shall be displayed and the login is denied.

• Channels

36

The chat application shall support different channels (chat rooms), in which

participants can communicate with each other. Every user can create, join or

leave a channel. Channels are identified by their channel name which must be

unique within the system.

• Notification

Users shall be constantly notified about changes within the system (e.g. a new

channel is created by some other user or a message is written to a channel, that

the user previously joined).

5.1.2 Data structure

An important part when building an application that coordinates itself through a space

is the data structure used for the coordination. Figure 5.1 shows the data structure of

the chat application.

Figure 5.1: Chat application data structure[18, pp. 7]

Every rectangle within figure 5.1 represents a container, tuples within a container are

written in parentheses and circles represent container references. There are two named

containers ’channels’ and ’users’, which represent the starting point for every connect-

ing application. Their references can be obtained by using the lookup mechanism of

XVSM. To ensures the uniqueness of every username and channel within the system,

both containers use a key/value access type. Every attempt to write an entry to the

containers with an already existing key/value pair (e.g.: ’user’/’mike’ for the ’users’

container or ’channel’/’music’ for the ’channels’ container) will result in a blocking

behaviour of the write operation. The operation blocks until a certain amount of time,

defined within the timeout parameter of the operation (possible values: 0 - infinite),

37

elapsed and then throws a TimeoutException. Using a timeout value of zero results in

an immediate notification of the failure of the write operation. The chat application

then informs the user about the already existing user/channel name. The ’channels’

container holds a tuple for every channel that currently exists. It contains the name

of the channel and a reference pointing to the channel’s private container (the dashed

line in figure 5.1). Within the channel’s private container every user who is currently

member of the channel is represented by another tuple. This tuple contains the user-

name and a reference to the user’s container within the channel. If a new message is

sent to the channel it is written to all the containers of the users currently member of

the channel. The fact that messages are stored separately for every user allows every

chat application to retrieve the messages at its own speed, unaffected by the actions of

the other participating applications. To notice new messages within the container ever

application registers a notification on its container within the channel. Additionally,

notifications are also registered on the channel’s private container to stay informed

about users joining or leaving the channel. If a user leaves a channel, her/his con-

tainer within the channel is destroyed and the notifications are cancelled. Two more

notifications are used by every application to keep the list of existing channels up to

date.

5.1.3 Implementation

The chat application essentially consists of 3 parts. The index.html file, which is

responsible for the main layout, the chat.js file, where all the application logic is

implemented and the channel widget containing the layout and the logic of a chat

room. The chat application uses widgets from the Dojo toolkit for its main layout. To

support chatting within different chat rooms at the same time a TabContainer widget

is used as the main component. The TabContainer widget allows creating multiple

windows within one containing frame, where only one window is shown at a time

and the others are kept invisible in the background. The user can switch between

the different windows by selecting their title from the title bar shown on top of the

TabContainer widget. The TabContainer widget shows a main window, which contains

the elements for login, channel creation and joining the channel (see Figure 5.2). When

joining a channel a new channel widget is created and added to the TabContainer. The

38

Figure 5.2: Chat application - Main Tab

channel widget consists of two files, the channel.html file describing the user interface

of the widget and the channel.js containing methods to display a new message, a new

user (who joined the channel) or to send a message to the channel. The user interface

shows a list of users currently present in the channel, a field to send new messages

and a field where all messages exchanged within this channel are displayed (see Figure

5.3).

5.2 The XVSM Viewer

The XVSM Viewer displays the current state and content of a XVSM space within

an Internet browser. It takes advantage of asynchronous communication to constantly

inform the Internet browser about changes in the space. It can be used to debug XVSM

based applications by monitoring the XVSM space and the changes the application

performs on it. The layout is again created with the help of widgets included in the

Dojo toolkit. The following section will show and explain the different components of

the XVSM Viewer.

39

Figure 5.3: Chat application - Channel Tab

5.2.1 Components

The browser window is split up into 3 sections: The title on top of the window, the list

of containers on the left side and a window reserved for container details (container

window) on the right side (see Figure 5.4).

ContainerList

The list of containers on the left side is divided into 4 sections by the use of the Tab-

Container widget (see 5.1.3): a list showing the references of all containers, a list for

named containers only, a list for unnamed containers and a list of favourites. Contain-

ers can be added to or removed from the favourites list to keep track of interesting

containers easily. In addition to splitting up the list of containers into four sections, a

filtering mechanism is integrated which allows to filter containers based on their refer-

ence string. Whenever a container is newly created or a container is removed from the

space the XVSM Viewer is informed about it (through notifications) and displays the

modification. A new container is highlighted red (see Figure 5.5 whereas a removed

container is crossed out for three seconds (see Figure 5.6).

40

Figure 5.4: XVSM Viewer

By right-clicking a container reference a menu pops up, allowing the user to add the

respective container into the current tab, into a new tab, to add the container to the

list of favourites or to remove it from this list (Figure 5.7).

Container Window

The right side of the browser window is used to show the details of the different

containers. As many distributed applications use a lot of containers to coordinate

themselves or to exchange data the container window is also organised into different

tabs. Whenever the option ’open in new tab’ is chosen from the containerlist menu, a

new tab is added to the container window and the container is shown within it. The

’open in current tab’ option displays the container in the currently displayed tab of

the container window. A tab can show an arbitrary number of containers by extending

its viewport with scrollbars. Tabs can also be given names by clicking on their title.

Figure 5.8 shows the container window with 2 open tabs, named ’users’ and ’channels’

representing the data structures from the chat application.

41

Figure 5.5: ContainerList - New Container

Figure 5.6: ContainerList - Removed Container

42

Figure 5.7: ContainerList - Menu

Figure 5.8: Container Window with 2 Tabs

43

In this picture the ’users’ tab shows the same container, in this case the named con-

tainer ’users’ from the chat application, two times. In some cases it does make sense

to open up a container two times. On the upper left end of the window showing the

container details the ’pause’ button allows the user to stop the updating of the content

of the container. This way the user can create a snapshot of the current container’s

content. Opening a container multiple times allows creating snapshots of one container

at different points in time. In figure 5.8 the properties of the container are displayed in

the picture. By clicking on the ’Entries’ or ’Notification’ bar, the window showing the

properties will close and the window showing the container’s entries or notifications

will emerge. Figure 5.9 shows the ’Entries’ window of the two instances of the ’users’

container. One of the examples has been paused and a new user has been added to

the container (again highlighted red).

Figure 5.9: Left side: Paused Container

Right side: The same container while a user has been added.

As entries can form complex data structures, they are organized in a tree structure.

Entries displaying container references provide the same menu the containerlist offers

44

for its container references. Notifications on the specific container are displayed when

clicking on the last bar within the container details window. See Figure 5.10.

Figure 5.10: Left side: Tree structure of entries and container reference menu.

Right side: Notifications on the container

5.2.2 Implementation

The XVSM Viewer consists of 3 custom widgets, the index.html file, the viewer.js

file, the viewer.Container class and two CSS1 files. The index.html file defines the

viewer’s outline. Standard Dojo widgets are used to split the browser window into

the three areas and the custom widgets are used to display the list of containers and

the actual container content. The viewer.js JavaScript file contains the application

logic of the XVSM viewer. It establishes the connection to the XVSM space and re-

trieves the list of containers. The list of containers is stored in an instance of the

dojox.collections.SortedList object (an object provided by the Dojo toolkit that sup-

1CSS - Cascading Style Sheet

45

ports the storage of arbitrary sort able data). It uses two notifications (one for creation

and one for removal of a container) to keep the list up to date. The viewer.Container

class is used every time a user wants to display the details of a container. If the

container is opened the first time a new viewer.Container object is created. It sub-

sequently retrieves the container’s data and creates several notifications to keep itself

up to date about the container’s status. It can be seen as the container’s equiv-

alent within the XVSM Viewer. The actual displaying of the data is done by the

viewer.widget.Container widget. A viewer.widget.Container widget must be registered

at the viewer.Container object. The viewer.Container object then calls the widget’s

methods to display the data. So even if the user opens up one container multiple times,

the data is transferred and the notifications on the specific container are created only

once.

The three custom widgets are:

• The viewer.widget.FilteringList widget

The list of container references is implemented through the viewer.widget.Filtering-

List widget. Every list (named, unnamed, favorites and the common list) is dis-

played by one instance of the FilteringList widget. It needs an dojox.collections.Sor-

tedList object as the data basis. The data object can be set with the setStore

method. Additionally, the FilteringList provides methods to set and clear the

filter to be applied on the list.

• The viewer.widget.TabContainer widget

The viewer.widget.TabContainer widget is a very simple extension to Dojo’s

TabContainer providing the widget with the ability to let the user change the

name of the tabs. Basically it only changes the HTML element that displays the

tab’s title from a ’SPAN’ element to an editable ’INPUT’ field.

• The viewer.widget.Container widget

This widget displays the content of a container in the XVSM space. It provides

methods to set the properties of the container, the entries of the container and

46

the notifications of the container. It includes the pause method invoked by the

pause button. This method unsubscribes and resubscribes the widget at the

viewer.Container object. While unsubscribed the viewer.Container object will

not inform the widget about changes in the container. When the updating is

resumed (another click on the pause button), the widget is subscribed again and

its information about the container is updated.

47

6 Evaluation

This thesis presents the combination of different already existing and well established

technologies and methods to provide reactive, user-friendly and high-performance dis-

tributed web applications. They benefit from synergies that emerge by combining the

space based computing paradigm for coordination of distributed application and mod-

ern concepts of web application including asynchronous communication. This approach

offers a lot of advantages, but also includes some restrictions and inconveniences. This

chapter gives a general overview of the pros and cons discovered throughout this thesis.

Furthermore, it presents a benchmark measuring the performance of the system using

Comet transport compared to traditional polling, gives an outlook on developments

and discusses the risks this technology might face.

6.1 Advantages

• Coordination in the web

The main advantage of the technology presented in this thesis is the coordina-

tion of distributed web applications using the full potential of the space based

computing paradigm. Web applications can make use of any function or service

provided by the space without any restrictions compared to traditional desk-

top applications. The key element to achieve this is surely the asynchronous

bidirectional communication between the web application and the space.

• Zero-Install application

48

There is no longer the need to download and install the application on the work-

station to use it. Zero-install applications run within an Internet browser and

perform complex operations while providing a neat and reactive user interface

comparable to desktop applications. Zero installation applications also relieve

machines of the installation overhead of desktop applications and thus reduce

the resource consumption.

• General availability

In addition to the advantage that web applications do not need any installation

routine they run within the ubiquitously available Internet browser. As a result

they are available on nearly every hardware and software platform, even including

modern mobile phones. In addition, the distributed web application can also be

accessed from computing devices which only provide the user with very limited

access rights (e.g. an Internet cafe, a public Internet terminal, etc.).

• No security restrictions

By using JavaScript as programming language and abstaining from the use of

partly more powerful technologies like Java Applets or Flash applications, the

distributed applications presented in this thesis do not suffer from security re-

strictions, neither on side of the Internet browser, nor on the side of network

security (e.g. firewalls). However, JavaScript can be disabled within Internet

browsers, rendering the application unusable (see 6.2 Problems).

• Easy application development

While the combination of these technologies offers a lot of advantages it is also

important not to complicate application development. Due to the introduction of

the JavaScript-API this thesis provides developers with methods to easily create

distributed space-based applications. There is no need to know the protocol

or the underlying technology. A developer can easily change from distributed

desktop to distributed web application development.

• Communication performance

49

The use of Comet as transport mechanism reduces the latency between the event

generation at the space and the delivery of the event at the client application.

However an overhead for the Bayeux protocol as well as the HTTP requests is

obviously not avoidable. High-end applications needing the best possible perfor-

mance might not suit well to be ported to web applications.

• Scalability

The performance of the presented system can easily be scaled up by adding

another space server to the system. XVSM is especially designed to span a

space between different machines and thus increases performance of the overall

system. If a space server reaches a very high load, an additional server can

be added and requests can be redirected to this server. Having different space

servers to handle incoming requests will also increase availability as the request

dispatcher can easily redirect requests to another server if one crashes.

6.2 Problems

• JavaScript availability on mobile devices

While most of the mobile devices are already provided with an Internet browser,

many of them include a very limited version which often does not support

JavaScript. However, with the progress in development of applications for mo-

bile devices and the constant improvement of hardware, it’s very likely that soon

even small mobile devices will include a JavaScript capable Internet browser. Al-

ready Mozilla’s MiniMo browser for the Windows Mobile operating system and

Opera’s Mobile Browser (versions for Windows Mobile, Symbian S60 and UIQ

exist) support JavaScript.

• Different programming style

Despite of the presented JavaScript API the asynchronous communication en-

forces a slightly different programming style and some additional code lines.

50

Methods executing operations on the space cannot directly return values (as

there is no way to block the operation until the answer returns from the server).

Instead, the code needs to be registered as call-back function which is called

when the operation returns the value. This creates some coding overhead and

sometimes nested constructs.

• Access to resources on the local machine

Some distributed desktop applications might not be easily ported to web as they

require resources on the local machine, which cannot be accessed by a JavaScript

application within an Internet browser. Even access to the file system is only

possible with the help of other technologies like Java Applets or ActiveX. The

use of these technologies has been avoided in this thesis explicitly, because they

impose security problems.

• Two connections problem

Every Internet browser is limiting the number of concurrent HTTP connections

to a single server. To perform asynchronous bidirectional communication two

HTTP connections are needed per web application, which is the standard limit

in the Internet Explorer and Mozilla’s Firefox. Whenever a server is hosting more

than one XVSMP/Bayeux enabled web application every user can only access

one of these applications at a time. A solution to this problem is to raise the

limit of simultaneous connections, which is easily done in Mozilla’s Firefox (open

the URL ’about:config’, search and double click the field ’network.http.max-

persistent-connections-per-server’ and insert a value higher than 2). However,

this requires user action and a solution working with a standard browser instal-

lation would be preferable. A further possible solution would be trying to reuse

existing connections to a server through JavaScript.

• Security

To increase security all communication can be easily run on a secured Secure

Socket Layer (SSL) connection, which should avoid attacks from malicious users.

However, the protocol implementation is easily accessible for everybody (as the

51

JavaScript code is not compiled) and the distributed application (the data on the

space) must also be secured against malicious users. So far, there is no mechanism

to avoid such a behaviour, but methods to restrict access to containers (read-only

or no access at all) might be integrated into the XVSM.

• Performance

JavaScript is a scripting language interpreted within an Internet browser. There-

fore, its performance compared to compiled and optimized computing languages

is inferior. The performance was nevertheless satisfying for the two sample ap-

plications presented. As already mentioned in the communication performance

section, the presented technologies might not be suitable for high-performance

applications.

6.3 Benchmark

This thesis focuses on bringing the concepts of reactive programming from the XVSM

space to the web applications. The benchmark measures the performance gain when

using notifications with Comet as transport mechanism instead of the traditional Ajax

polling method. A thread is used to write entries to a container at random speed

within a certain interval. The entries contain a timestamp indicating the time of their

creation. On the one hand, a web application using the JavaScript API (with Bayeux

and Comet as underlying transport) will register a notification on the space. Whenever

the notification fires (an entry is written to the container), the application will display

the difference between the current time and the time in the entry. On the other hand,

a servlet registers a notification at the server and a web application constantly polls

the servlet for fired notifications. It also displays the time difference as well as the

number of polls where no information was returned. The benchmark is run on a local

system to avoid clock synchronization issues. Figure 6.1 shows the results.

The upper part of figure 6.1 shows the changes that occur when the polling interval

(the ’Read’ column) shrinks. When polling every 2 seconds the latency is about 9 times

higher than the latency when using Comet as transport. When polling at maximum

52

Figure 6.1: Benchmark between classic Ajax and Comet transport

speed the latency is reduced to twice the latency of Comet, but the polling overhead

increases dramatically (545 percent of the messages are unnecessary!).

The second part of the benchmark shows the changes when the speed of the writing is

changed. The polling is performed at maximum speed (which is around 60ms at the

testing device). As one might expect, the faster messages are written to the space, the

closer polling gets to Comet in performance. However even at the maximum writing

speed of the XVSM space (which is not likely to be reached by any real web appli-

cation) the latency as well the overhead of traditional polling are doubled compared

to the Comet transport style. Summarizing it can be stated that the latency with

Comet remains constant and at a clearly lower level compared to polling throughout

all measurements.

6.4 Related Work

There are several existing approaches to coordinate web applications through shared

data spaces, which differ in the degree of supported features (e.g. blocking operations,

event based notifications, transactions, etc.) and applicability (e.g. browser security or

firewall restrictions). Early approaches used CGI1 as gateway between the web appli-

cations and tuple spaces based on the Linda primitives [24], [7]. In [24] operations on

the space are performed one after another following a strict HTTP requests/response

pattern. Blocking operations are possible, however the user has to wait for the oper-

1CGI - Common Gateway Interface

53

ation to unblock before a response is send back to her/his browser. Possible timeout

problems are not addressed. [7] proposes the use of an intermediate process decou-

pling the browser-server communication (using CGI) from the execution of the tasks

on the space. As a consequence of this solution the web application (using HTML or

Java Applets) has to poll the server for the outcome of the previously initiated opera-

tions. This approach is in principle slightly similar to the XVSMP/Bayeux approach,

however with XVSMP/Bayeux using asynchronous communication the decoupling of

communication and execution takes place on both sides, at the web application and at

the space server. XVSMP/Bayeux also offers many other advantages like responsive

Ajax based user interfaces, support for notifications, different data access types for

containers or the support of transactions. Other approaches, which do not specifically

focus on clients running in web browsers are [26],[27],[6]. Nevertheless they all provide

access to the space using the HTTP protocol as underlying transport. [26] focuses

on the storage of XML documents in spaces and uses SOAP over HTTP to provide

access to the space. [6] proposes a proprietary protocol on top of HTTP to access the

space. Both approaches do not provide support for blocking operations, notifications

or transactions. [27] uses XML encoded messages on top of HTTP and proposes to use

a dedicated HTTP Request for every operation, thus supporting blocking read opera-

tions. This is however not suitable for web clients as the HTTP protocol restricts the

number of simultaneous HTTP connections to the same server to two. Furthermore

notifications, transactions or different data access types are not supported neither.

Approaches providing more enhanced features for web applications mostly rely on the

use of Java Applets and Remote Method Invocation (RMI). Examples are [12] or [1],

which provide blocking reads, notifications and transactions. However the use of Java

Applets has specifically been avoided in this work due to security restrictions within

the Internet browsers. Furthermore these approaches might not be usable in firewall

protected networks, as they require additional open ports.

54

6.5 Outlook

Caching

An important restriction of web applications compared to desktop applications is the

fact that they remain usable only as long as the connection between the application and

the server exists. However, with mobile devices and people constantly moving from one

place to another a permanent connection between web application and server is very

hard to maintain. Desktop applications are less affected by a loss of connection. The

user can often continue to work with only little restrictions and once the connection is

re-established the desktop application synchronizes the changes the user made while

being off-line with the server. Due to the clear distinction between the application

logic and the communication with the server, the presented approach in this thesis

could be easily extended to provide such a service even with web applications. The

page design and the application logic are loaded at the start-up of the application.

Upon a connection failure, operations performed on the space need to be internally

cached at the web client and executed as soon as the connection is re-established. Even

saving those web applications to a file, being able to shut-down the computer, restart

it and reopen the application while being off-line might become possible. The often

proposed example of a mobile worker performing operations in the field while being

off-line and later synchronizing with the enterprise server could thus be made feasible

with a web application.

Efficiency

The caching facilities could not only be used for masking connection disruptions but

also to optimize communication behaviour (e.g. waiting for a bigger amount of data

before transferring all the data at once or transfer of data depending on the server

load, etc.). Generally speaking the approach of this thesis can be extended to create

very efficient and highly productive web applications. High efficiency will be especially

useful for web applications aimed at mobile devices, which is a big future market.

55

Restrictions

When looking at the current working solution, it still suffers from a few inconveniences

and restrictions which could be solved in future work. The ’two connections problem’

restrains the user to only use one web application running on the same space server at

the same time. As mentioned in section 6.2 using a single instance of the JavaScript

API for all web applications using the same space server could potentially solve this

problem, though its feasibility needs to be evaluated first (security restrictions might

apply).

JavaScript Spaces

With the introduction of EcmaScript 4.0 (JavaScript 2.0) in 2008 programming in

the large with JavaScript shall get easier, allowing to create more complex web ap-

plications. Additionally, native support for JSON will be integrated. As a result the

packaging and object oriented programming features currently provided by the Dojo

toolkit will be natively supported by JavaScript. With JavaScript evolving towards a

fully object oriented programming language, the possibility of creating a JavaScript

XVSM space implementation, running within a web browser, becomes feasible. Web

applications running their own spaces that are communicating directly between each

other (e.g. to replicate the space contents) would represent a new generation of web

applications, where the server no longer plays any part after the application has been

delivered to the web browser. However, many security restrictions (e.g. cross site

XMLHTTPRequests or opening a port for incoming requests) apply with current web

browsers, which inhibit a fully featured space running within a web browser. Never-

theless with newer web browser versions current restrictions might be removed (e.g.

Mozilla’s Firefox version 3.0 already allows cross site XMLHTTPRequests). In the

mean time it is possible to run spaces within Internet browsers, that communicate

with each other using the Bayeux protocol and a common Bayeux server as a message

proxy. Using multiple Bayeux servers to build up a sort of Bayeux network cluster

would make such a system resistant to failures of single nodes.

XVSM Evolution

A lot of research is currently going on in the field of space based computing and

56

the XVSM specification as well as its reference implementation MozartSpaces are

still subject to constant improvements and evolution. During the elaboration of this

theses MozartSpaces evolved from version 0.8 to version 1.0 . This theses is build

on version 0.9.0.1 and does not take into account the latest development steps of

MozartSpaces. The following section describes the necessary steps to adapt the cur-

rent XVSMP/Bayeux implementation to changes of the XVSM implementation.

The XVSMP/Bayeux implementation uses the Core API to communicate with XVSM.

It is not affected by changes of the implementation details of XVSM itself as long as

the Core API remains unchanged. If the Core API changes the XVSMP/Bayeux

implementation must be adapted. The following changes are necessary if a parameter

is added to a function within the Core API:

• The parameter must be integrated into the XVSMP/Bayeux protocol specifica-

tion.

• XVSM-Server implementation

The method handling class within the org.xvsm.server.json package must be

adapted to extract the parameter from the retrieved JSON object and include

the parameter when calling the Core API method.

• JavaScript API

The object, containing the method’s parameters (in the xvsm.jsapi.json.* pack-

age), must be extended by the new parameter and the corresponding get and set

methods. Additionally the object’s json method must be changed to include the

parameter into the created JSON object.

Removing a parameter from the Core API requires similar steps within the XVSM-

P/Bayeux implementation, however instead of adding the parameter processing logic,

it has to be removed. If an entire method is added to the Core API, a new class must

be added to the org.xvsm.json.package of ther XVSMP/Bayeux server implementing

the processing of the corresponding JSON object. Within the JavaScript API the new

method must be added to the main class. The parameters of the method are encoded

in a new class within the xvsm.jsapi.json package. The xvsm.jsapi.interfaces package

must be extended by a new class for the method as well.

57

The most recent Mozartspace implementation does no longer use container references

to address containers but instead uses container URLs to uniquely identify containers

across different spaces. As a result an operation on a container can be performed

through any Core API, which will forward the operation to the space holding the con-

tainer or directly execute the method if the container is locally available. To adopt this

principle for XVSMP/Bayeux the cref parameters must be replaced by the URL pa-

rameter. If the target space is running an XVSMP/Bayeux server and the web browser

allows cross site XMLHTTPRequests the JavaScript API might directly contact the

addressed space.

Portability

The XVSMP/Bayeux implementation is designed to run within the web server Jetty.

Jetty is entirely implemented in Java and thus it can be deployed to any platform sup-

ported by the Java Virtual Machine (including Windows, Linux, Unix, etc.). XVSM-

P/Bayeux also respects the Java Servlet API and can be run in any other servlet

container as well. However, without the support of Continuations (which is so far only

included in the Jetty) the performance of the web application will degrade if there

is no other mechanism included in the servlet container to support web applications

using Comet communication.

One of the most popular web servers, Microsoft’s Internet Information Services (IIS),

does not natively include a servlet container nor support for the Java programming

language. However different servlet container plugins for the IIS exist, allowing the

use of XVSMP/Bayeux with IIS. The support of XVSMP/Bayeux within the native

IIS programming environment comprises several problems. The implementation of the

server part of XVSMP/Bayeux must be rewritten in an Active Server Pages (ASP)

.NET programming language. The Bayeux Server implementation must be ported to

ASP .NET and most importantly the XVSM implementation, which is written in Java,

still requires a servlet container (e.g. Tomcat) to run. The XVSMP/Bayeux ASP.NET

server implementation must subsequently forward the Core API method calls to the

XVSM running within the servlet container.

58

7 Conclusion

This thesis presents the combination of different technologies to achieve high-per-

formance, efficiency and user-friendliness for distributed web applications, which are

coordinated through a common virtual space. The virtual space is created using the

new middleware application XVSM. It offers means for efficient coordination of dis-

tributed applications, reduces the development complexity and provides services like

naming or transactions. To overcome communication restrictions of traditional web ap-

plications (which are using unidirectional synchronous client/server communication),

the Bayeux protocol is used as underlying transport. ”The protocol is designed to

overcome the client/server nature of the internet in general and specifically of HTTP

to allow asynchronous messaging between all participants.”[22]. Bayeux enables server

initiated information push towards the client (web application) porting the concept

of reactive programming to the web. Bayeux is an emerging protocol, nevertheless

existing implementations for servers and web applications already exist.

In order to combine the space as a coordination platform and Bayeux as underlying

transport, a new protocol called XVSMP/Bayeux was developed in this theses, defin-

ing the different operations an application can perform on the space. The XVSM is

extended by a server component implementing the XVSMP/Bayeux protocol and us-

ing an existing Bayeux server implementation, to provide clients with access. On the

client side a Bayeux implementation provided by the Dojo toolkit is used. On top of

the Bayeux client a JavaScript API implementing the XVSMP/Bayeux protocol was

created. The JavaScript API provides web application developers with a simple inter-

face to interact with the space. Using the JavaScript API, the developer is relieved

from knowing about the XVSMP/Bayeux protocol, the underlying Bayeux transport

or the server component embedding the XVSM.

59

As a proof of concept two examples of use have been developed, a chat and a moni-

toring application. The chat application allows users to group together and exchange

messages in different chat rooms. It is representing a distributed multi-user appli-

cation, which is greatly benefiting from the reactive programming possibilities. User

generated events (e.g. a chat message) can be directly pushed from the space to the

recipients (e.g. users in the same chat room). Any polling overhead is avoided and

the latency between event creation and event delivery is minimized. The monitoring

application allows the user to display the state and content of the XVSM space. It

is also possible to create snapshots of the spaces content at different times, which

shall help in the development and debugging of space based applications. Finally a

benchmark is presented, showing that asynchronous communication results in a very

low and constant latency when delivering events to the client compared to traditional

polling.

60

Appendices

61

A Code Organization

The source code of the XVSMP/Bayeux system is split into five directories:

• XVSMP-Bayeux Server

This directory contains the source code of the XVSMP/Bayeux server imple-

mentation. It uses the software project management tool Maven1 to declare

its dependencies, compilation and build options. Following the Maven direc-

tory structure the source code is found in ”src/main/java” including the sources

of the JSON2 project (org.json.* package) , the source of the Bayeux server

(org.mortbay.* and dojox.cometd.* packages) and the XVSMP/Bayeux imple-

mentation (org.xvsm.* package). The ”src/main/resources” directory contains

the logging settings and the ”src/main/webapp” directory the index.html file,

which links to the sample applications. Copying the content of the four other

XVSMP-Bayeux directories into the ”src/main/webapp” directory and running

Maven to build the XVSMP/Bayeux server results in a single .war file containing

the whole XVSMP/Bayeux system. The ”doc” directory contains the JavaDoc-

generated API of the XVSMP/Bayeux server.

• XVSMP-Bayeux JavaScript API

The XVSMP-Bayeux JavaScript API directory contains the Dojo toolkit (the

dijit, dojo, dojox and util directory) and the JavaScript API (the xvsm directory).

The content of the API’s subdirectories is explained in more detail in section 4.3.

1http://maven.apache.org/
2http://www.json.org

62

• XVSMP-Bayeux Chat Application

The content of the Chat Application’s directory is explained in detail in sec-

tion 5.1.3. In order to work properly it is important that the paths to the the

JavaScript API within the index.html file and the URL to the XVSMP-Bayeux

server within the chat.js file are set correctly (connect method).

• XVSMP-Bayeux Viewer Application

The content of the Viewer Application’s directory is explained in detail in sec-

tion 5.2.2. In order to work properly it is important that the paths to the the

JavaScript API within the index.html file and the URL to the XVSMP-Bayeux

server within the viewer.js file are set correctly (connect method).

• XVSMP-Bayeux Performance Test

This directory contains the four files used to perform the benchmark presented

in section 6.3. In order to start the benchmark the space must be empty and the

first web browser must open the comet.html file. When the second web browser

opens the poll.html file, the first poll request initiates the benchmark (a different

web browser or a web browser with a higher ”max-persistent-connections-per-

server” value is recommended due to the 2-connections problem, see section 6.2).

63

B Javascript API

connect(url)

description Connects the JavaScript API to the XVSM space.

parameter url: String

The url of the XVSM System.

createNamedContainer(op, cb)

description This method creates a named container on the XVSM system.

parameter op: xvsm.jsapi.json.CreateNamedContainer

Contains all the information needed to create a named container.

cb: xvsm.jsapi.interfaces.CreateNamedContainerInterface

This parameter must implement the interface CreateNamedContainer-

Interface. It’s methods are called upon reception of an answer from the

XVSM system to the request.

clearSpace(cb)

description Clears the content of the space.

parameter cb: xvsm.jsapi.interfaces.ClearSpaceInterface

This parameter must implement the interface ClearSpaceInterface. It’s

methods are called after the operation was performed.

64

destroyNamedContainer(name, cb)

description This function removes a container identified by it’s name on the XVSM

space.

parameter name: String

The name of the container to be removed.

cb: xvsm.jsapi.interfaces.DestroyNamedContainerInterface

This parameter must implement the interface DestroyNamedContainer-

Interface. It’s methods are called upon reception of an answer from the

XVSM system to the request. If this parameter is left out (or set null)

answers to this request are ignored.

getNamedContainer(name, cb)

description Searches the XVSM space for a container with a specific name.

parameter name: String

The name of the container to be searched for.

cb: xvsm.jsapi.interfaces.getNamedContainerInterface

This parameter must implement the interface getNamedContainerInter-

face. It’s methods are called upon reception of an answer from the XVSM

system to the request.

createContainer(op, cb)

description This method creates a container on the XVSM system.

parameter op: xvsm.jsapi.json.CreateContainer

Contains all the information needed to create a container.

cb: xvsm.jsapi.interfaces.CreateContainerInterface

This parameter must implement the interface createContainerInterface.

It’s methods are called upon reception of an answer from the XVSM

system to the request.

65

destroyContainer(cref, cb)

description Removes a container at the XVSM space.

parameter cref : String

The reference of the container to be destroyed.

cb: xvsm.jsapi.interfaces.DestroyContainerInterface

This parameter must implement the interface DestroyContainerInter-

face. It’s methods are called upon reception of an answer from the

XVSM system to the request. If this parameter is set to null, answers

to this request are ignored.

getContainerProperties(op, cb)

description This function receives the properties of a container at the XVSM system.

parameter op: xvsm.jsapi.json.GetContainerProperties

Contains all the properties to be fetched.

cb: xvsm.jsapi.interfaces.GetContainerPropertiesInterface

This parameter must implement the interface GetContainerPropertiesIn-

terface.It’s methods are called upon reception of an answer from the

XVSM system to the request.

setContainerProperties(op, cb)

description This function sets the properties of a container on the XVSM system.

parameter op: xvsm.jsapi.json.SetContainerProperties

Contains all the properties to be set.

cb: xvsm.jsapi.interfaces.SetContainerPropertiesInterface

This parameter must implement the interface SetContainerPropertiesIn-

terface. It’s methods are called upon reception of an answer from the

XVSM system to the request. If this parameter is set to null, answers

to this request are ignored.

66

read(op, cb)

description This method reads entries from a container on the XVSM system.

parameter op: xvsm.jsapi.json.ReadTakeDestroy

Contains all the information necessarry to read entries from a container.

cb: xvsm.jsapi.interfaces.ReadTakeDestroyInterface

This parameter must implement the interface ReadTakeDestroyInter-

face. It’s methods are called upon reception of an answer from the

XVSM system to the request.

take(op, cb)

description This method takes entries from a container on the XVSM system (con-

suming read).

parameter op: xvsm.jsapi.json.ReadTakeDestroy

Contains all the information necessary to take entries from a container.

cb: xvsm.jsapi.interfaces.ReadTakeDestroyInterface

This parameter must implement the interface ReadTakeDestroyInter-

face. It’s methods are called upon reception of an answer from the

XVSM system to the request.

destroy(op, cb)

description This method removes entries from a container on the XVSM system.

parameter op: xvsm.jsapi.json.ReadTakeDestroy

Contains all the information necessary to remove entries from a con-

tainer.

cb: xvsm.jsapi.interfaces.ReadTakeDestroyInterface

This parameter must implement the interface ReadTakeDestroyInter-

face. It’s methods are called upon reception of an answer from the

XVSM system to the request. If this parameter is set to null answers to

this request are ignored.

67

write(op, cb)

description This method writes entries to a container on the XVSM system.

parameter op: xvsm.jsapi.json.WriteShift

Contains all the information necessary to take entries from a container.

cb: xvsm.jsapi.interfaces.WriteShiftInterface

This parameter must implement the interface

xvsm.jsapi.interfaces.WriteShiftInterface. It’s methods are called

upon reception of an answer from the XVSM system to the request. If

this parameter is set to null answers to this request are ignored.

shift(op, cb)

description This method shifts entries to a container on the XVSM system (over-

writing write).

parameter op: xvsm.jsapi.json.WriteShift

Contains all the information necessary to shift entries to a container.

cb: xvsm.jsapi.interfaces.WriteShiftInterface

This parameter must implement the interface

xvsm.jsapi.interfaces.WriteShiftInterface. It’s methods are called

upon reception of an answer from the XVSM system to the request. If

this parameter is set to null answers to this request are ignored.

createNotification(op, cb)

description This function creates a Notification on the XVSM System.

parameter op: xvsm.jsapi.json.CreateNotification

A CreateNotification object including all the details of the notification

to be created.

cb: xvsm.jsapi.interfaces.NotificationInterface

This parameter must implement the interface

xvsm.jsapi.interfaces.NotificationInterface. It’s methods are called

upon reception of an answer from the XVSM system to the request.

68

cancelNotification(id, cb)

description This function cancels an existing notification on the XVSM system.

parameter id: String

The Id of the notification to cancel.

cb: xvsm.jsapi.interfaces.CancelNotificationInterface

This parameter must implement the interface

xvsm.jsapi.interfaces.CancelNotificationInterface. It’s methods are

called upon reception of an answer from the XVSM system to the

request. If this parameter is set to null answers to this request are

ignored.

createTransaction(timeout, cb)

description This function creates a transaction.

parameter timeout: Number

Specifies the amount of time the system tries to create a transaction

before giving up and issuing a TimeoutException.

cb: xvsm.jsapi.interfaces.CreateTransactionInterface

This object methods are called upon reception of an answer from the

XVSM system to the request.

commitTransaction(id, cb)

description This function commits an existing transaction on the XVSM system.

parameter id: String

The Id of the transaction to commit.

cb: xvsm.jsapi.interfaces.TransactionInterface

It’s methods are called upon reception of an answer from the XVSM

system to the request. If this parameter is set to null, answers to this

request are ignored.

69

rollbackTransaction(id, cb)

description This function rollbacks an existing transaction on the XVSM system.

parameter id: String

The id of the transaction to rollback.

cb: xvsm.jsapi.interfaces.TransactionInterface

It’s methods are called upon reception of an answer from the XVSM

system to the request. If this parameter is set to null, answers to this

request are ignored.

listContainers(cb)

description This function retrieves the references of all containers in the space.

parameter cb: xvsm.jsapi.interfaces.ListContainersInterface

This parameter must implement the interface ListContainersInterface.

It’s methods are called upon reception of an answer from the XVSM

system to the request.

listNotifications(cref, cb)

description This function retrieves the references of all notifications on a specific

container in the space.

parameter cref : String

The reference of the container.

cb: xvsm.jsapi.interfaces.ListNotificationsInterface

This parameter must implement the interface ListNotificationsInterface.

It’s methods are called upon reception of an answer from the XVSM

system to the request.

70

C Source Code Sample - Chat

Application

Listing C.1: index.html
<!−−

− Filename : index . html

− Author : Lukas Lechner

− Created : 5 . 3 . 2007

− Desc r ip t i on : The main f i l e o f the XVSM Chat app l i c a t i on .

−−>

<html>

<head>

<t i t l e >XVSM Chat</t i t l e >

<s t y l e type=”text / c s s”>

@import ” . . / j s a p i / d i j i t / themes/ tundra/ tundra . c s s ” ;

</s ty l e >

<s c r i p t type=”text / j a v a s c r i p t”>

/∗ I f isDebug i s s e t to true , a debug window i s added . When

∗ s e t t i n g the id o f an element (e . g . a Tab) to the

∗ debugContainerId value , t h i s element i s used as debug window .

∗/

var djConf ig = { isDebug : true ,

debugContainerId : ”debug ” ,

parseOnLoad : true

} ;

</s c r i p t >

<!−−

The s r c a t t r i bu t e must point to the dojo i n s t a l l a t i o n (r e l a t i v e

or abso lute u r l) i n c lud ing the JavaScr ipt API .

−−>

<s c r i p t type=”text / j a v a s c r i p t ” s r c =”. ./ j s a p i / dojo / dojo . j s”></s c r i p t >

<s c r i p t type=”text / j a v a s c r i p t ” s r c =”./ chat / chat . j s ”></s c r i p t >

</head>

<body c l a s s=”tundra”>

<div id=”TabContainer” dojoType=” d i j i t . layout . TabContainer”

s t y l e=”width :100%; he ight : 100%;” s e l e c t edCh i l d=”maintab”>

<div dojoType=” d i j i t . layout . LayoutContainer ” id=”maintab”

t i t l e =”main”>

<div dojoType=” d i j i t . layout . ContentPane” layoutAl ign=”c l i e n t ”

s t y l e=”margin : 5px ; border−r i gh t : 1px s o l i d #6290d2”>

<table>

<tr><td>Username</td>

<td><div id=”userName” dojoType=” d i j i t . form . TextBox”></div></td>

<td><div dojoType=” d i j i t . form . Button” id=”loginButton ”

onc l i c k=”l og i n l o gou t ();” > l og in </div></td>

</tr>

<tr><td>Channel</td>

<td><div id=”channelName” dojoType=” d i j i t . form . TextBox”></div></td>

<td><div dojoType=” d i j i t . form . Button” id=”createChannelButton ”

onc l i c k=”createChannel () ; ” d i sab led>c r ea t e channel </div></td>

71

</tr>

</table>

</div>

<div dojoType=” d i j i t . layout . ContentPane” layoutAl ign=”r i gh t ”

s t y l e=”border : 1px s o l i d grey ; margin−r i gh t : 5px ; margin−top : 5px ;

margin−bottom : 5px;”>

<tab l e border=”0” he ight=”100%” width=”150”>

<tr><td s t y l e=”background−image : u r l (chat / images /button . g i f);”>

Channels

</td></tr>

<t r he ight=”100%” va l i gn=”top”> <td>

<s e l e c t id=”Channels ” s t y l e=”he ight :100%; width : 100%;

border : 0px s o l i d #6290d2 ;” mult ip le> </s e l e c t >

</td></tr>

<t r he ight=”20”><td a l i gn=”cente r”>

<div dojoType=” d i j i t . form . Button” id=”joinChannelButton ”

onc l i c k=”joinChannel () ; ” d i sab led>Join </div>

</td></tr>

</table>

</div>

</div>

</div>

</body>

</html>

Listing C.2: chat/chat.js
/∗∗

∗ Filename : chat . j s

∗ Author : Lukas Lechner

∗ Created : 5 . 3 . 2007

∗ Desc r ip t i on : This f i l e conta ins the l o g i c o f the chat−c l i e n t .

∗/

/∗ The custom widgets o f the chat−app l i c a t i on are r e g i s t e r e d within the

∗ dojo packaging system , so that they can be acces sed the same way

∗ than the widgets provided with the dojo t o o l k i t .

∗/

var l o c = document . l o c a t i on . h r e f ;

l o c = lo c . r ep l a c e (” index . html ” , ””) ;

dojo . reg isterModulePath (” chat ” , l o c + ” chat ”) ;

dojo . r e qu i r e (” dojox . layout . FloatingPane ”) ;

dojo . r e qu i r e (” dojox . c o l l e c t i o n s . ArrayList ”) ;

dojo . r e qu i r e (” d i j i t . layout . ContentPane ”) ;

dojo . r e qu i r e (” d i j i t . layout . LayoutContainer ”) ;

dojo . r e qu i r e (” d i j i t . layout . ContentPane ”) ;

dojo . r e qu i r e (” d i j i t . layout . TabContainer ”) ;

dojo . r e qu i r e (” d i j i t . form . Button”) ;

dojo . r e qu i r e (” d i j i t . form . TextBox ”) ;

dojo . r e qu i r e (”xvsm . j s a p i . JSapi ”) ;

dojo . r e qu i r e (” chat . widget . Channel ”) ;

dojo . r e qu i r e (” dojo . par se r ”) ;

/∗ This method i s executed when the i n t e rn e t browser f i n i s h e d load ing the

∗ chat app l i c a t i on . I t i n i t i a l i z e s and connects the JavaScr ipt API .

∗/

dojo . addOnLoad(funct i on () {

j s a p i = new xvsm . j s a p i . JSapi () ;

j s a p i . connect (” . . / . . / cometd ”) ;

}) ;

/∗ I f the web app l i c a t i on i s c l o s ed the shutdown method w i l l be executed .

∗/

dojo . addOnUnload (funct i on () {

shutdown () ;

}) ;

72

// The names o f the two named channels f o r usernames and channelnames .

var channels = ” channels ” ;

var use r s = ” use r s ” ;

var channe l sCre f = nu l l ;

var channe lNo t i f i c a t i on Id = nu l l ;

var use r sCre f = nu l l ;

var openChannels = new dojox . c o l l e c t i o n s . ArrayList () ;

/∗ Searches f o r a named conta ine r . I f i t doesn ’ t e x i s t i t w i l l be

∗ created . In both case s the doProcess method o f the cb parameter w i l l

∗ be c a l l e d with the c r e f o f the conta ine r .

∗/

funct i on getOrCreateContainer (name , cb) {

var x = new xvsm . j s a p i . i n t e r f a c e s . GetNamedContainerInterface () ;

x . doProcess = funct i on (c r e f){

cb . doProcess (c r e f) ;

} ;

x . unknownContainerNameException = funct i on (){

var y = new xvsm . j s a p i . i n t e r f a c e s . CreateNamedContainerInterface () ;

y . doProcess = funct i on (c r e f) {

cb . doProcess (c r e f) ;

}

j s a p i . createNamedContainer (new CreateNamedContainer (name , nul l ,

”RANDOM”) , y) ;

}

j s a p i . getNamedContainer (name , x) ;

}

/∗ Used to r e t r i e v e a l l cu r r en t l y ava i l a b l e channels .

∗/

funct i on getChannels () {

i f (channe l sCre f === nu l l) {

getOrCreateContainer (channels , new setChannelsCref ()) ;

} e l s e {

var read = new ReadTakeDestroy (channelsCref , 0 , nul l ,

[new RandomSelector (−1)]) ;

j s a p i . read (read , new setChannelsResponse ()) ;

}

}

/∗ Setup f o r the channelContainer . The conta ine r p r op e r t i e s are s e t to

∗ the coord inat i on type ”key ” . I f the channel a l ready e x i s t s t h i s i s an

∗ overhead . However i t doesn ’ t harm the app l i ca t i on , because t h i s method

∗ i s only executed once at s tar tup . A n o t i f i c a t i o n i s c reated to l i s t e n

∗ f o r c r ea t i on or d e l e t i on o f channels .

∗/

funct i on setChannelsCref () {

t h i s . doProcess = funct i on (c r e f) {

channe l sCre f = c r e f ;

var cp = new SetConta inerProper t i e s () ;

cp . setConta inerRef (c r e f) ;

cp . addProperty (new ContainerProperty (

Conta inerProper t i e s .COORDINATION TYPES, ”KEY” , ”SET”)) ;

j s a p i . s e tConta ine rPrope r t i e s (cp) ;

var c = new Crea t eNo t i f i c a t i on (channelsCref , −1,

Not i f i c a t i onTarge t .WRITE ,

Not i f i cat ionMode . INFINITE , true) ;

j s a p i . c r e a t eNo t i f i c a t i o n (c , getChanne lL i s tener ()) ;

setChannels () ;

}

}

/∗ Returns the handler f o r the n o t i f i c a t i o n l i s t e n i n g f o r changes in

73

∗ the channel conta ine r . When the n o t i f i c a t i o n f i r e s , the setChannels

∗ method i s c a l l e d to r e t r i e v e anew the l i s t o f channels .

∗/

funct i on getChanne lL i s tener () {

var x = new xvsm . j s a p i . i n t e r f a c e s . N o t i f i c a t i o n I n t e r f a c e () ;

x . s e tNo t i f i c a t i o n I d = funct i on (id) {

channe lNo t i f i c a t i on Id = id ;

} ;

x . hand l eNot i f i c a t i on = funct i on (){

setChannels () ;

} ;

r e turn x ;

} ;

/∗ Retr i eve s the l i s t o f cu r r en t l y ava i l a b l e channels .

∗/

funct i on setChannels () {

var read = new ReadTakeDestroy (channelsCref , 0 , nul l ,

[new RandomSelector (−1)]) ;

j s a p i . read (read , new setChannelsResponse ()) ;

}

/∗ Disp lays the names o f the channels within the chat−app l i c a t i on .

∗/

funct i on setChannelsResponse () {

t h i s . doProcess = funct i on (l i s t) {

var channelwindow = dojo . byId (” Channels ”) ;

whi le (channelwindow . length > 0) {

channelwindow . remove (0) ;

}

f o r (var i = 0 ; i < l i s t . l ength ; i++) {

var t = document . createElement (” opt ion ”) ;

t . t ext = l i s t [i] . va lue [0] . value ;

t . value = l i s t [i] . va lue [1] . value ;

// This i s a browser i s s u e . Some browsers only accept one

// o f the f o l l ow ing ve r s i on s o f the add method .

try {

channelwindow . add (t , nu l l) ;

} catch (ex) {

channelwindow . add (t) ;

}

}

i f (l i s t . l ength > 0) {

d i j i t . byId (” joinChannelButton ”) . s e tD i sab l ed (f a l s e) ;

}

}

d i j i t . byId (” createChannelButton ”) . s e tD i sab l ed (f a l s e) ;

}

/∗ Creates a new channel .

∗/

funct i on createChannel (name) {

var box = d i j i t . byId (” channelName ”) ;

var name = box . textbox . value ;

i f (name !== nu l l) {

j s a p i . c reateConta iner (new CreateContainer (nul l ,

CoordinationType .RANDOM) , getChannelCreated (name)) ;

} ;

/∗ Every channel needs i t s own conta ine r . The conta ine r i s s e t to

∗ the coord inat i on type ”key ” . I t s r e f e r e n c e and i t s name are s to red

∗ to the named conta ine r ” channel ” .

∗/

funct i on getChannelCreated (name) {

var x = new xvsm . j s a p i . i n t e r f a c e s . Crea teConta ine r In te r f ace () ;

x . name = name ;

x . doProcess = funct i on (c r e f) {

var cp = new SetConta inerProper t i e s () ;

74

cp . setConta inerRef (c r e f) ;

cp . addProperty (new ContainerProperty (

Conta inerProper t i e s .COORDINATION TYPES, ”KEY” , ”SET”)) ;

j s a p i . s e tConta ine rPrope r t i e s (cp) ;

var e = new Entry () ;

e . s e t S t r i n g (name) ;

e . se tConta iner (channe l sCre f) ;

var e2 = new Entry () ;

e2 . s e tCre f (c r e f) ;

e2 . se tConta iner (channe l sCre f) ;

var t = new Tuple () ;

t . addEntry (e) ;

t . addEntry (e2) ;

t . addSe lec tor (new KeySelector (” username ” , ValueTypes .STRING,

t h i s . name)) ;

t . s e tConta iner (channe l sCre f) ;

var w = new WriteSh i f t () ;

w. addEntry (t) ;

w. setTimeout (0) ;

j s a p i . wr i t e (w) ;

}

x . f a ta lExcept i on = funct i on () {

a l e r t (”Could not c r ea t e channel ”) ;

}

return x ;

} ;

}

/∗ Jo ins the channel cu r r en t l y s e l e c t e d from the l i s t o f channels .

∗ I f the channel doesn ’ t e x i s t or the user a l ready jo ined the s e l e c t e d

∗ channel , the operat ion i s aborted . Otherwise a new channel widget i s

∗ created and n o t i f i c a t i o n s are created to l i s t e n f o r use r s j o in ing ,

∗ l e av ing or post ing to the channel .

∗/

funct i on joinChannel () {

var ch = dojo . byId (” Channels ”) ;

var channel = ch . opt ions [ch . s e l e c t ed Index] . t ext ;

var c r e f = ch . opt ions [ch . s e l e c t ed Index] . value ;

i f (channel !== nu l l) {

var tab = d i j i t . byId (” TabContainer ”) ;

i f (openChannels . conta ins (c r e f)) return ;

var e l e = document . createElement (” div ”) ;

var props= {

id : channel ,

channelCref : c r e f ,

t i t l e : ”Channel : ” + channel ,

c l o s ab l e : ” true ” ,

onClose : tabClosed

} ;

var newtab = new chat . widget . Channel (props , e l e) ;

newtab . channelName = channel ;

newtab . channelCref = c r e f ;

tab . addChild (newtab) ;

tab . s e l e c tCh i l d (newtab) ;

var cN = new Crea t eNo t i f i c a t i on (c re f , −1,

Not i f i c a t i onTarge t .WRITE, Not i f i cat ionMode . INFINITE , true) ;

j s a p i . c r e a t eNo t i f i c a t i o n (cN , getUserAddListener (newtab)) ;

var cN = new Crea t eNo t i f i c a t i on (c re f , −1,

Not i f i c a t i onTarge t .DESTROY, Not i f i cat ionMode . INFINITE , true) ;

75

j s a p i . c r e a t eNo t i f i c a t i o n (cN , getUserRemoveListener (newtab)) ;

j s a p i . c reateConta iner (new CreateContainer () ,

getJoinChannel2 (newtab)) ;

openChannels . add (c r e f) ;

}

/∗ Every user has a conta ine r within a channel . This method wr i t e s

∗ the username and the r e f e r e n c e o f the user ’ s conta ine r f o r t h i s

∗ channel in to the conta ine r o f the channel . A Keyse l ec to r i s used

∗ to v e r i f y that every user can only j o i n a channel once .

∗/

funct i on getJoinChannel2 (tab) {

var x = new xvsm . j s a p i . i n t e r f a c e s . Crea teConta ine r In te r f ace () ;

x . tab = tab ;

x . doProcess = funct i on (c r e f) {

t h i s . tab . userCre f = c r e f ;

var e = new Entry () ;

e . s e t S t r i n g (user) ;

e . se tConta iner (t h i s . tab . channelCref) ;

var e2 = new Entry () ;

e2 . s e tCre f (c r e f) ;

e2 . se tConta iner (t h i s . tab . channelCref) ;

var t = new Tuple () ;

t . addEntry (e) ;

t . addEntry (e2) ;

t . addSe lec tor (new KeySelector (user , ValueTypes .STRING, user)) ;

t . s e tConta iner (t h i s . tab . channelCref) ;

var w = new WriteSh i f t (0) ;

w. addEntry (t) ;

j s a p i . wr i t e (w) ;

var cN = new Crea t eNo t i f i c a t i on (c r e f , −1,

Not i f i c a t i onTarge t .WRITE, Not i f i cat ionMode . INFINITE , f a l s e) ;

j s a p i . c r e a t eNo t i f i c a t i o n (cN , getMessageLis tener (c r e f , t h i s . tab)) ;

}

return x ;

}

}

/∗ This method re turns the handler f o r the n o t i f i c a t i o n (l i s t e n i n g f o r use r s

∗ j o i n i n g the channel) on the u s e r l i s t o f a channel . I f i t f i r e s the l i s t

∗ o f use r s in the channel w i l l be re t ransmit ted .

∗/

funct i on getUserAddListener (tab) {

var x = new xvsm . j s a p i . i n t e r f a c e s . N o t i f i c a t i o n I n t e r f a c e () ;

x . tab = tab ;

x . s e tNo t i f i c a t i o n I d = funct i on (id) {

t h i s . tab . use rAddNot i f i ca t i on Id = id ;

} ;

x . hand l eNot i f i c a t i on = funct i on () {

getUse rL i s t (t h i s . tab) ;

} ;

x . n o t i f yEn t r i e s = funct i on (l i s t) {

getUse rL i s t (t h i s . tab) ;

} ;

r e turn x ;

}

/∗ This method re turns the handler f o r the n o t i f i c a t i o n (l i s t e n i n g f o r

∗ use r s l eav ing the channel) on the u s e r l i s t o f a channel . I f i t f i r e s

∗ the l i s t o f u se r s in the channel w i l l be re t ransmi t ted .

∗/

76

f unc t i on getUserRemoveListener (tab) {

var x = new xvsm . j s a p i . i n t e r f a c e s . N o t i f i c a t i o n I n t e r f a c e () ;

x . tab = tab ;

x . s e tNo t i f i c a t i o n I d = funct i on (id) {

t h i s . tab . userRemoveNot i f i cat ionId = id ;

} ;

x . hand l eNot i f i c a t i on = funct i on () {

t ry {

getUse rL i s t (t h i s . tab) ;

} catch (e) {

conso l e . debug (e) ;

}

} ;

r e turn x ;

}

/∗ This method re turns the handler f o r the n o t i f i c a t i o n l i s t e n i n g f o r

∗ new messages on the channel . I f i t f i r e s the new ava i l a b l e message

∗ w i l l be read from the XVSM.

∗/

funct i on getMessageLis tener (c r e f , tab) {

var x = new xvsm . j s a p i . i n t e r f a c e s . N o t i f i c a t i o n I n t e r f a c e () ;

x . c r e f = c r e f ;

x . tab = tab ;

x . s e tNo t i f i c a t i o n I d = funct i on (id) {

x . tab . mes sageNot i f i c a t i on Id = id ;

} ;

x . hand l eNot i f i c a t i on = funct i on () {

var read = new ReadTakeDestroy (x . c r e f) ;

j s a p i . take (read , new getMessage ()) ;

func t i on getMessage () {

t h i s . doProcess = funct i on (l i s t){

tab . addMessage (l i s t [0] . getValue ()) ;

}

} ;

}

return x ;

}

/∗ This method r e t r i e v e s the l i s t o f u se r s in the channel from the

∗ XVSM space .

∗/

funct i on ge tUse rL i s t (tab){

var read = new ReadTakeDestroy (tab . channelCref , 0 , nul l ,

[new RandomSelector (−1)]) ;

j s a p i . read (read , new se tUse rL i s t (tab)) ;

func t i on s e tUse rL i s t (tab) {

t h i s . tab = tab ;

t h i s . doProcess = funct i on (l i s t){

t ry {

t h i s . tab . c l e a rU s e r l i s t () ;

i f (l i s t != nu l l) {

f o r (var i = 0 ; i < l i s t . l ength ; i++) {

t h i s . tab . addUser (l i s t [i] . va lue [0] . value) ;

}

}

} catch (e) {

conso l e . debug (e) ;

}

} ;

}

}

77

/∗ This method sends a new message to the channel . New messages

∗ are s to red in the conta ine r s o f the use r s on the channel .

∗/

funct i on newMessage (c , msg) {

var read = new ReadTakeDestroy (c , 0) ;

read . addSe lec tor (new RandomSelector (−1));

j s a p i . read (read , new messageRead ()) ;

func t i on messageRead (){

t h i s . doProcess = funct i on (l i s t){

f o r (var i = 0 ; i < l i s t . l ength ; i++) {

var userConta iner = l i s t [i] . va lue [1] . value ;

var e = new Entry () ;

e . s e t S t r i n g (user + ” : ” + msg)

e . se tConta iner (userConta iner) ;

var w = new WriteSh i f t (−1, nul l , [e]) ;

j s a p i . wr i t e (w) ;

}

} ;

}

}

/∗ Perform log i n / logout events from the l o g i n / logout button .

∗/

funct i on l o g i n l o gou t (){

var button = d i j i t . byId (” loginButton ”) ;

i f (button . containerNode . innerHTML == ” log i n ”) {

l o g i n () ;

} e l s e {

l ogout () ;

}

}

/∗ Perform a l og i n on the system with the chosen username .

∗ Retr i eve s the user conta iner , then t r i e s to wr i te r e g i s t e r the

∗ username .

∗/

funct i on l o g i n (){

var name = d i j i t . byId (” userName ”) . textbox . value ;

i f ((name !== nu l l) && (name . l ength !== 0)) {

i f (u s e r sCre f == nu l l) {

getOrCreateContainer (users , new r e g i s t e rU s e r (name)) ;

} e l s e {

var r = new r e g i s t e rU s e r (name) ;

r . doProcess (u se r sCre f) ;

}

} e l s e {

a l e r t (”Username not s e t ”) ;

}

}

/∗ Sets the coord inat i on type f o r the named conta ine r ” user ”

∗ and wr i t e s the username to i t .

∗/

funct i on r e g i s t e rU s e r (name) {

t h i s . name = name ;

t h i s . doProcess = funct i on (c r e f) {

use r sCre f = c r e f ;

var cp = new SetConta inerProper t i e s () ;

cp . setConta inerRef (c r e f) ;

cp . addProperty (new ContainerProperty (

Conta inerProper t i e s .COORDINATION TYPES, ”KEY” , ”SET”)) ;

j s a p i . s e tConta ine rPrope r t i e s (cp) ;

var w = new WriteSh i f t (0) ;

var e = new Entry () ;

e . se tConta iner (c r e f) ;

78

e . s e t S t r i n g (name) ;

e . addSe lec tor (new KeySelector (name , ValueTypes .STRING, name)) ;

w. addEntry (e) ;

user = name ;

j s a p i . wr i t e (w, use rReg i s t e r ed ()) ;

}

} ;

/∗ I f the wr i t ing o f the username was suc c e s fu l , r e t r i e v e the l i s t

∗ o f a va i l a b l e channels .

∗/

funct i on use rReg i s t e r ed () {

var x = new xvsm . j s a p i . i n t e r f a c e s . Wr i t eSh i f t I n t e r f a c e () ;

x . doProcess = funct i on (){

d i j i t . byId (” userName ”) . textbox . d i sab l ed = ” d i sab l ed ” ;

d i j i t . byId (” loginButton ”) . s e tLabe l (” logout ”) ;

getChannels () ;

} ;

x . t imeoutExpiredException = funct i on () {

a l e r t (” This Username al ready e x i s t s . Please choose ” +

”another one ”) ;

}

return x ;

} ;

/∗ Cal l shutdown to c l o s e a l l channel windows and d i s ab l e buttons

∗ to j o i n channels . Clear the l i s t o f channels . Allow the user

∗ to ed i t the nickname f i e l d and enable the l o g i n button .

∗/

funct i on logout (){

shutdown () ;

d i j i t . byId (” loginButton ”) . s e tLabe l (” l o g i n ”) ;

d i j i t . byId (” userName ”) . textbox . d i sab l ed = ”” ;

d i j i t . byId (” joinChannelButton ”) . s e tD i sab l ed (true) ;

d i j i t . byId (” createChannelButton ”) . s e tD i sab l ed (true) ;

user = nu l l ;

var channelwindow = dojo . byId (” Channels ”) ;

whi le (channelwindow . length > 0) {

channelwindow . remove (0) ;

}

}

/∗ Closes and des t roys the channel window and removes n o t i f i c a t i o n s

∗ and e n t r i e s o f the use r s conta ine r in t h i s channel .

∗/

funct i on tabClosed (x , y) {

j s a p i . c a n c e lNo t i f i c a t i o n (y . mes sageNot i f i c a t i on Id) ;

j s a p i . c a n c e lNo t i f i c a t i o n (y . use rAddNot i f i ca t ion Id) ;

j s a p i . c a n c e lNo t i f i c a t i o n (y . userRemoveNot i f i cat ionId) ;

var destroy = new ReadTakeDestroy (y . channelCref , −1, nul l ,

[new KeySelector (user , ValueTypes .STRING, user)]) ;

j s a p i . dest roy (destroy) ;

j s a p i . destroyConta iner (y . userCre f) ;

openChannels . remove (y . channelCref) ;

x . removeChild (y) ;

y . dest roy () ;

}

/∗ Closes a l l open channel windows . Cancels the n o t i f i c a t i o n

∗ l i s t e n i n g f o r changes on the named conta ine r ” channels ” .

∗/

funct i on shutdown () {

var tab = d i j i t . byId (” TabContainer ”) ;

var c h i l d s = tab . getChi ldren () ;

f o r (var i = 0 ; i < c h i l d s . l ength ; i++) {

var t i t l e = ch i l d s [i] . t i t l e ;

i f (t i t l e != ”main ”) {

tabClosed (tab , c h i l d s [i]) ;

79

}

}

j s a p i . c a n c e lNo t i f i c a t i o n (channe lNo t i f i c a t i on Id) ;

var e = new ReadTakeDestroy () ;

e . addSe lec tor (new KeySelector (user , ValueTypes .STRING, user)) ;

e . setConta inerRef (use r sCre f) ;

j s a p i . dest roy (e) ;

}

Listing C.3: chat/widget/Channel.js
dojo . provide (” chat . widget . Channel ”) ;

dojo . r e qu i r e (” d i j i t . layout . ContentPane ”) ;

dojo . r e qu i r e (” d i j i t . layout . LayoutContainer ”) ;

dojo . r e qu i r e (” d i j i t . form . TextBox ”) ;

/∗ This c l a s s implements the l o g i c o f the chat widget . The appearance i s

∗ s p e c i f i e d in the templates /Channel . html f i l e . DojoAttachPoint a t t r i b u t e s

∗ al low the d i r e c t manipulation o f e lements in the chat widget . DojoAttachEvents

∗ connect events with code b locks in t h i s c l a s s .

∗/

dojo . d e c l a r e (” chat . widget . Channel ” , [d i j i t . layout . LayoutContainer , d i j i t . Templated] , {

// only wors when the chat module i s s e t . (see top o f the chat . j s f i l e)

templatePath : dojo . moduleUrl (” chat ” , ” ./ widget / templates /Channel . html ”) ,

// enab les the usage o f widgets in the template

widgetsInTemplate : true ,

/∗ With dojo custom widgets i t i s important to i n i t a l i z e v a r i a b l e s .

∗ Otherwise they are r ecogn i s ed as s t a t i c .

∗/

cons t ruc to r : func t i on () {

t h i s . channelName = ”” ;

t h i s . channelCref = ”” ;

t h i s . userCre f = ”” ;

t h i s . u se rAddNot i f i ca t i on Id = ”” ;

t h i s . userRemoveNot i f i cat ionId = ”” ;

t h i s . mes sageNot i f i c a t i on Id = ”” ;

} ,

/∗ Adds a user to the l i s t o f u se r s on t h i s channel .

∗/

addUser : func t i on (name){

t h i s . user . innerHTML = th i s . user . innerHTML + ”
 ” + name ;

} ,

/∗ Clears the u s e r l i s t .

∗/

c l e a rU s e r l i s t : func t i on () {

t h i s . user . innerHTML = ””;

} ,

/∗ Adds a message to the channelwindow .

∗/

addMessage : func t i on (msg) {

t h i s . d i sp l ay . setContent (t h i s . d i sp l ay . domNode . innerHTML + ”
” + msg) ;

} ,

/∗ Function c a l l e d when c l i c k i n g on the send button . Ca l l s the send method

∗ o f the chat . j s f i l e .

∗/

send : func t i on (){

newMessage (t h i s . channelCref , t h i s . t ext . textbox . value) ;

}

}

) ;

80

Listing C.4: chat/widget/templates/Channel.html
<div dojoType=” d i j i t . layout . LayoutContainer ” s t y l e=”width : 100%; he ight : 100%;”>

<div dojoType=” d i j i t . layout . ContentPane” layoutAl ign=”r i gh t ” s t y l e=”width :150 px ;

margin : 5 px ; border : 1px s o l i d grey ;”>

<div s t y l e=”top : 0px ; text−a l i gn : cente r ;”>User</div>

<div s t y l e=”top : 20px ; text−a l i gn : cente r ; ” dojoAttachPoint=”user”></div>

</div>

<div dojoType=” d i j i t . layout . ContentPane” layoutAl ign=”bottom” s t y l e=”he ight :50 px ;

margin : 5 px ; border : 1px s o l i d grey ;”>

<table>

<tr>

<td><div dojoType=” d i j i t . form . TextBox” dojoAttachPoint=”text ” s i z e=”50”>

</div>

</td>

<td><div dojoType=” d i j i t . form . Button” dojoAttachEvent=”onClick : send”>Send

</div>

</td>

</tr>

</table>

</div>

<div dojoType=” d i j i t . layout . ContentPane” layoutAl ign=”c l i e n t ” dojoAttachPoint=”d i sp l ay ”

s t y l e=”margin : 5 px ; border : 1px s o l i d grey ;”>

</div>

</div>

81

List of Figures

2.1 The middleware layer [25, pp. 3] . 4

2.2 The layered XVSM architecture [17, pp. 4] 6

2.3 The MozartSpaces implementations[20]. 10

2.4 Traditional web application model [13]. 12

2.5 Ajax web application model [13]. 13

2.6 The different solutions to push information from the server to the client

[3]. 16

2.7 Comet web application model. Source[23] 18

2.8 Comparison: Web Server Resource Usage [29]. 20

2.9 Bayeux as communication layer for web applications. 21

3.1 XVSM on a central server . 25

3.2 A replicated space environment . 25

3.3 The system architecture . 26

82

3.4 Communication between XVSM and web application 28

5.1 Chat application data structure[18, pp. 7] 37

5.2 Chat application - Main Tab . 39

5.3 Chat application - Channel Tab . 40

5.4 XVSM Viewer . 41

5.5 ContainerList - New Container . 42

5.6 ContainerList - Removed Container . 42

5.7 ContainerList - Menu . 43

5.8 Container Window with 2 Tabs . 43

5.9 Left side: Paused Container

Right side: The same container while a user has been added. 44

5.10 Left side: Tree structure of entries and container reference menu.

Right side: Notifications on the container 45

6.1 Benchmark between classic Ajax and Comet transport 53

83

Bibliography

[1] Ibm: Tspaces - intelligent connectionware.

http://www.almaden.ibm.com/cs/TSpaces/. Last checked: Jan, 2008.

[2] Spacebasedcomputing.org. http://www.spacebasedcomputing.org. Last checked:

12.12.2007.

[3] Alessandro Alinone. Changing the web paradigm.

http://www.lightstreamer.com/Lightstreamer Paradigm.pdf, 2006. Last

checked: 30.5.2007.

[4] Ryan Asleson and Nathaniel T. Schutta. Foundations of AJAX. Apress,

Berkeley, CA, USA, 2006.

[5] Heri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca: a language

for parallel programming of distributed systems. IEEE Transactions on

Software Engineering, 18(3):190–205, 1992.

[6] C. Bussler. A minimal triple space computing architecture. in Procs. of the

WIW’05 Workshop on WSMO Implementations, 2005.

[7] Paolo Ciancarini, Andreas Knoche, Robert Tolksdorf, and Fabio Vitali.

Pagespace: An architecture to coordinate distributed applications on the web.

in Proc. of Fifth International World Wide Web Conference, 1996.

[8] Dave Crane and Eric Pascarello. Ajax in Action. Manning, Greenwich, CT,

USA, 2006.

84

[9] D. Crockford. The application/json media type for javascript object notation

(json). http://www.ietf.org/rfc/rfc4627.txt?number=4627, 2006. Last checked:

12.12.2007.

[10] Fielding et al. Hypertext transfer protocol - http/1.1.

http://tools.ietf.org/html/rfc2616, 1999. Last checked: 02.12.2007.

[11] The Dojo Foundation. Dojo, the javascript toolkit. http://dojotoolkit.org/.

Last checked: 15.11.2007.

[12] Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces Principles,

Patterns, and Practice. Pearson Education, 1999.

[13] Jesse James Garrett. A new approach to web applications.

http://www.adaptivepath.com/publications/essays/archives/000385.php, 2005.

Last checked: 29.4.2007.

[14] David Gelernter. Generative communication in linda. ACM Trans. Program.

Lang. Syst., 7(1):80–112, 1985.

[15] Inc. Internet Systems Consortium. Isc domain survey: Number of internet hosts.

http://www.isc.org/ops/ds/host-count-history.php. Last checked: 2.12.2007.

[16] Sean Kelly. Speeding up ajax with json.

http://www.developer.com/lang/jscript/article.php/3596836. Last checked:

24.5.2007.

[17] Eva Kühn, Johannes Riemer, and Geri Joskowicz. XVSM (eXtensible Virtual

Shared Memory) Architecture and Application. Technical University of

Technology, Vienna University of Technology, Austria, June 2005. Technical

Report TU-Vienna.

[18] Eva Kühn, Johannes Riemer, and Lukas Lechner. Xvsmp/bayeux: A protocol

for scalable space based computing in the web. 16th IEEE International

85

Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprises, June 2007.

[19] Eva Kühn, Johannes Riemer, Richard Mordinyi, and Lukas Lechner. Integration

of xvsm spaces with the web to meet the challenging interaction demands in

pervasive scenarios. Ubiquitous Computing and Communication Journal. Special

Issue on Coordination in Pervasive Environments, 2008.

[20] Markus Kühnel and Severin Ecker. XVSM Core Architecture 0.7. Technical

Report E185/1, Vienna University of Technology, Austria, February 2007.

[21] Floyd Marinescu and Stefan Tilkov. Debate: Json vs. xml as a data interchange

format. http://www.infoq.com/news/2006/12/json-vs-xml-debate, 2006. Last

checked: 24.5.2007.

[22] Alex Russel, David Davis, Greg Wilkins, and Mark Nesbitt. Bayeux protocol –

bayeux 0.1draft5. http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html,

2007. Last checked: 22.5.2007.

[23] Alex Russell. Comet - the next stage of ajax.

http://www.irishdev.com/NewsArticle.aspx?id=2166, 2006. Last checked:

30.5.2007.

[24] Werner J. Schoenfeldinger. ’www meets linda’ linda for global www-based

transaction processing systems. In Electronic Proc. 4th Int. World Wide Web

Conference, 1995.

[25] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems Principles

and Paradigms. Prentice Hall, Inc., Upper Saddle River, NJ, USA, 2002.

[26] P. Thompson. Ruple: an xml space implementation. in Proc. of XML Europe

2002 Conference, 2002.

[27] G.C. Wells. A tuple space web service for distributed programming. in Proc. of

2006 Int. Conf. on Parallel & Distributed Processing Techniques and

86

Applications, 2006.

[28] Greg Wilkins. Jetty continuations.

http://docs.codehaus.org/display/JETTY/Continuations, 2006. Last checked:

22.5.2007.

[29] Greg Wilkins. Why ajax comet?

http://www.webtide.com/downloads/whitePaperWhyAjax.html, 2006. Last

checked: 22.5.2007.

[30] Dr. Phil Windley. Comet: Beyond ajax.

http://www.irishdev.com/NewsArticle.aspx?id=2173, 2006. Last checked:

30.5.2007.

[31] Nicholas C. Zakas, Jeremy McPeak, and Joe Fawcett. Professional Ajax. Wiley

Publishing, Inc., Indianapolis, IN, USA, 2006.

87

