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Kurzfassung

Verteiltes maschinelles Lernen, auch bekannt als kollaboratives Lernen, hat sich neuer-
dings als effektives Werkzeug fiir die Verarbeitung von Daten, die an unterschiedlichen
Orten vorliegen oder produziert werden, empfohlen. Ein grundlegender Vorteil dieser
Methodik ist, dass diese verteilten Daten nicht erst zentralisiert werden miissen, sondern
direkt an der Quelle verarbeitet werden konnen. Dies ist mit zahlreichen Vorteilen ver-
bunden. Unter anderem, dass durch die direkte Verarbeitung die Notwendigkeit eines
leistungsstarken, zentralen Servers nicht gegeben ist, was mit Einsparungen von Ressour-
cen und damit Kosten verbunden ist. Weiters konnen die Daten bei den Teilnehmern
verbleiben und miissen nicht durch potentiell unsichere Netzwerke an potentiell unsichere
Server iibertragen werden, was einen groflen Vorteil hinsichtlich Datenschutz bietet.

Doch durch die verteilte Funktionsweise dieser Technologie entstehen auch neue Angriffs-
punkte, die sich Aggressoren zu Nutze machen kénnen. Angriffe auf maschinelles Lernen
werden unter dem Begriff ,feindliches maschinelles Lernen“ zusammengefasst, und kénnen
mithilfe des CIA-Dreiecks in Attacken auf die Schutzziele Vertraulichkeit, Integritdt und
Verfiligbarkeit kategorisiert werden. Der Fokus dieser Arbeit liegt auf Attacken hinsichtlich
der Integritdt in der Trainingsphase des Modells, genauer gesagt so genannten ,,Backdoor
Attacken®. Dabei wird ein wiederholendes Muster in die Trainingsdaten eingefiigt. Das Ziel
dabei ist, dass in der Test-Phase des Machine-Learning-Modells ein feindliches Verhalten
hervorgerufen wird — beispielsweise gezielte Missklassifikation der Daten.

In dieser Arbeit untersuchen wir verteiltes maschinelles Lernen auf Unterschiede zu
zentralisiertem maschinellem Lernen hinsichtlich Effektivitit der resultierenden Modelle.
AuBlerdem werden Machbarkeit und Effektivitat von Backdoor Attacken gepriift. Dazu
werden Case Studies auf State of the Art Datensétzen durchgefiihrt und unsere Ergebnisse
auf bereits vorliegenden Resultaten der Literatur evaluiert. Wir zeigen, dass verteiltes
maschinelles Lernen eine vergleichbare Performance zu zentralem maschinellem Lernen
bietet, gleichzeitig aber sehr verwundbar gegeniiber Backdoor Attacken ist.
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Abstract

Federated Machine Learning, sometimes also referred as collaborative learning, has
recently awakened interest as a concept to process data distributed across many individual
sources without the need to centralize it. The main idea behind this is that clients train
models, based on their own data locally and only publish the parameters of the models.
These parameters are aggregated into a global model which is subsequently shared across
all participants.

The usage of federated learning strategies enables privacy, especially relevant when pro-
cessing sensitive data, as the data itself is never shared across the network. Furthermore,
applications can benefit from the advantage of the distributed structure by utilizing the
computational resources on the clients’ endpoints.

Adversarial Machine Learning describes a collection of techniques with a common goal
of attacking artificial learning systems in respect to their confidentiality, integrity or
availability. Recent research has shown that beside the above mentioned advantages,
federated learning also enables new possibilities and entry points for adversaries due to its
distributed nature. This thesis has its focus on backdoor attacks, a strategy interfering
with the model’s integrity during the training phase. By altering certain inputs with a
reoccurring pattern during model training this attack tries to trigger malicious behaviour
in the deployment phase.

In this work, we focus on evaluating the performance of different federated learning
architectures. Moreover, we study the impact of backdoor attacks on image datasets in
the domains of traffic sign classification and facial recognition.

Extending earlier work, we also include the setting of sequential (incremental cyclic) learn-
ing in our investigations and perform an in-depth analysis on several hyper-parameters
of the adversaries. We show that federated learning performs on a similar niveau as
centralized machine learning, but it is indeed vulnerable to backdoor attacks.

ix


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

Kurzfassung vii
Abstract ix
Contents 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . e 3
1.2 Problem Statement . . . . . .. ... .. ... .. ... ... ... 4
1.3 Research questions . . . . . . . ... . ... ... . 4
1.4 General methodological approach . . . . . .. ... ... ... ..... 7

2 Related work 9
2.1 Machine Learning . . . . . . . .. .. L o 9
2.2 Classification task & problem setting . . . . . .. ... ... ... ... 9
2.3 Neural Networks . . . . . .. .. .. . 11
2.4 Federated Learning . . . . . . . . .. ... L 16
2.5  Overview of attacks on machine learning . . . . . . . .. .. ... ... 18
2.6 Poisoning attacks . . . . . .. .. oo oL 21
2.7 Evasionattacks . . . . .. .. o L 29
2.8 Privacy threats in Federated Learning and strategies to defend . . . . . 31
2.9 Existing frameworks and implementations . . . . . .. ... ... ... 32

3 Methodology 35
3.1 Introduction . . . . . . .. .. . L 35
3.2 Datasets . . . . . .. 35
3.3 Algorithms . . . . . .. ... 39
3.4 Experimental workflow . . . . . . .. ... 40
3.5 Measuring results . . . . . .. .. Lo 41
3.6 Working environment . . .. .. .. Lo L Lo 43
3.7 Summary ... Lo 43

4 Case study on traffic sign classification 45
4.1 Stateoftheart . . . . . .. . . . . ... ... 45

1


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

CONTENTS

4.2 Number of clients . . . . . . . .. .. Lo
4.3 Distribution of thedata . . . . . . . .. ... ... 000
4.4 Timing of the attack (in sequential learning) . . . . . ... ... ...
4.5 Prominence of the backdoor . . . . . . .. ... 0oL
4.6 Attack Strategies (in federated aggregation learning) . . . . . . . . . .
4.7 Number of attackers in relation to benign clients . . . . . .. .. ...
4.8 Analysis . . . . . .o

5 Case study on face recognition
5.1 Stateoftheart . . . . .. .. ...
5.2 Backdoor pattern: full beard . . ... ... ... ... ... ... ... .
5.3 Backdoor pattern: glasses . . . . . . .. ..o
54 Attack analysis . . . . . . . ...

6 Evaluation of results
6.1 Evaluation of number of clients . . . . . . .. ... .. ... ......
6.2 Evaluation of distribution of data . . . . . . . ... ...
6.3 Evaluation of timing of the attack (in sequential learning) . . . . . . .
6.4 Evaluation of the size and shape of the backdoor . . . . . .. .. ...
6.5 Evaluation of different attack strategies . . . . .. ... ... ... ..
6.6 Evaluation of number of attackers in relation to benign clients . . . . .

7 Conclusions and future work

8 Appendix
8.1 Neural network structures . . . . . . ... ... oL,
8.2 Transformations for the yale face dataset . . . . . . . ... ... ....
8.3 Experiment result files . . . . . . ... oo oo
8.4 Requirements for PySyft . . . . ... .. ... oL

Bibliography

47
50
o8
65
69
72
7

79
80
81
90
97

99

99
102
103
104
106
108

111

113
113
114
117
117

121


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Introduction

1.1 Motivation

The volume of data produced in the world is drastically increasing and likely to nearly
double its volume in three years [RGR18]. Machine learning tries to extract value out of
this large amount of data by using different strategies, like creating classification models
to gain a deeper insight on the data. The training process of these models becomes
more complex when data volume increases and requires lots of computational power.
Until now, the de facto standard of processing big data sets was moving them into the
cloud or to a data cluster, where a lot of resources are available. But with a growing
number of endpoints and potentially useful computational capacities, as well as the rise
of data privacy awareness and new data protection laws, especially the General Data
Protection Regulation in the European Union, the demand for alternatives to centralized
computation is growing.

A possible solution to these privacy related issues is Federated Learning. Rather than
moving the data to the model, the approach of Federated Learning [KMRR16] is based on
the principle of creating the model where the data is generated. Afterwards, these models
are combined into a global model, e.g. through a central server. Its main advantages are
data itself being never sent over the network but kept locally on the users’ endpoints,
while the model generation is outsourced to the endpoints [KMY16]. Furthermore, this
also enables model training on heterogeneous data [YLCT19).

A typical use case to Federated Learning is depicted in the following example. Imagine
someone visits a hospital as she does not feel healthy. Based on results of medical tests
like blood pressure, pulse or blood screening results, aswell as the doctor’s experience, the
doctor is able to deliver a targeted diagnosis on the person’s health condition. However,

3
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1.

INTRODUCTION

this diagnostic process can also be digitized and translated into some machine learning
model, for example a decision tree, to support doctors and preserve experience through
generations (e.g. in [JH19]). As the number of different diseases is very large, it is unlikely
that each doctor has experience in linking several syndromes to every possible disease.
Doctors could share data about their patients to share their experience. However, sharing
sensitive patient data, especially throughout doctors working in different hospitals can
lead to big privacy issues.

The usage of federated learning addresses this issue as sensitive data is not directly
sent over a potentially insecure network, but only parameter updates from locally
trained models. This allows participants of the federated network to benefit from other
participants’ data without explicit sharing of training inputs [SS15].

1.2 Problem Statement

Beside the above mentioned advantages federated machine learning offers, several serious
attacks exist and try to exploit the model. Outsourcing the training process to potentially
insecure or malicious clients creates even more entry points for attackers. An overview on
different attacks can be given by looking at the famous CIA triangle. This triangle consists
of three dimensions, namely confidentiality, integrity and availability, and represents
a foundation in IT security. Every security vulnerability can be viewed by one or a
combination these three concepts.

Each of these dimension can be attacked in a federated learning setting. According to
literature [GDG17], especially "Adversarial Inputs" and "Backdoor attacks" have a high
potential in damaging the intended use case of a machine learning model .

Adversarial Inputs describes a range of attacks targeting an already trained machine
learning model. An attacker tries to add some specific, but hardly recognizable changes
to some input data, with the goal of producing a misclassification of the input.

Backdoor attacks, in contrast, try to poison the training data during the model’s learning
process. By inserting wrongly labelled data, an attacker tries to embed a specific pattern
into the model to trigger malicious behaviour. In an optimal case, the model’s performance
on unaltered data should remain the same, while as soon as the model gets an altered
input containing this exact pattern, the malicious behavior is executed. These attacks
are explained in more detail in Section 2.5.

1.3 Research questions

The aim of this work is an evaluation of different federated learning approaches, their
advantages and disadvantages in comparison to central machine learning, as well an
evaluation on potential systematic weaknesses.

Furthermore, we address potential weaknesses of federated learning by evaluating the
impact of backdoor attacks on the model. In these integrity based attacks, an adversary
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1.3. Research questions

enters certain patterns into the data during the training phase to trigger malicious
behaviour. A more detailed description of these attacks is given in Section 2.6.

Broken down into the following topics, we investigate the influence of certain parameters
measured by the common effectiveness metrics like accuracy:

1.3.1 Number of clients

First, an emphasis is put on the number of clients participating in a machine learning
network. While centralized machine learning works using one client processing all data,
federated learning usually consists of data being distributed among dozens of clients. We
investigate if a bigger number of participants in a network results in the same model
performance as a smaller number?

Relevance:

This research question is especially relevant as the fundamental idea of federated machine
learning is processing data in a decentralized way. Optimally, having the data distributed
across many sources comes without the drawback of lowered model effectiveness.

Methodology and Measurement of success:

We investigate prior work and experiment on benchmark data at different numbers of
clients to draw conclusions on the behaviour. Success is measured by comparing the
accuracy on models trained on different numbers of clients, and evaluating results against
literature.

1.3.2 Distribution of the data

A previously mentioned advantage of federated learning, the unnecessity of transferring
all data to a central machine learning instance, can lead to non independent and non
identically distributed (non-iid) data. We investigate if sparsely known data classes are
learned by the same level as more commonly known classes, in comparison the same
model being trained in a centralized setting?

Relevance:

Processing non-iid data is of high relevance in a federated learning setting, as it is very
likely that not all classes are known by each client but certain data classes are only to
known certain clients.

Methodology and Measurement of success:

We measure success in the per class effectiveness of classes only known by some clients,
in respect to classes known by all clients. Again, we compare our findings to behaviour
on non-iid data by prior work.

1.3.3 Backdoor attacks and the pattern’s prominence

As mentioned, backdoor attacks require a certain pattern added to data used in training
of the machine learning model. These patterns can vary in size and shape. We investigate
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1.

INTRODUCTION

to which extend one can introduce malicious behaviour into a machine learning model
while adding backdoors that are noticeable but not overly suspicious?

Relevance:

Machine learning models have been successfully attacked using backdoor attacks in the
past (see Section 2.6), and the most fundamental property of this attack is the backdoor
pattern itself.

Methodology and Measurement of success:

The rate of success is measured, on the one hand, by the level of accuracy a set of
poisoned data is successfully misclassifified to the targeted class, while the performance
on non-backdoored data simultaneously on above a threshold. Exact values depend on
the data’s use-case.

On the other hand, patterns are, due to the structure of backdoor attack, clearly visible,
but as a goal they should be as unsuspicious (in respect to the data itself) as possible.
The suspiciousness of a pattern is not quantifiable and also depends on the domain of
the data. We evaluate these attacks on two different benchmark datasets in common
areas of image classification.

1.3.4 Backdoor attack strategies

In the setting of federated learning, an attacker can use different attack strategies to
introduce a backdoor into the global model. In a basic strategy, an attacker poisons
an amount of training data, trains the model locally and shares it with other clients.
Literature (see Section 2.6.1) also describes more complex methods. We investigate
two state of the art attacks strategies. The goal is to determine which strategy is more
suitable for an adversary to use, in respect to effectively introduce the backdoor into the
machine learning model while preserving effectiveness on benign data?

Relevance:

The relevance of this question is given as advanced attack strategies might be able to
introduce malicious behaviour faster or to a higher degree into the model, a fundamental
goal of backdoor attacks.

Methodology and Measurement of success:
Success is measured by comparing accuracies of both methods on benign and poisoned
data, by analysing observations achieved by prior work as well as our experimental results.

1.3.5 Number of adversaries

We believe that an important factor to the success of the attack is the number of attackers
in a federated machine learning network. Investigations are performed on the number of
benign clients in relation to clients containing malicious data. We want to investigate to
what extend the ratio of benign to fraudulent clients has an impact on the attack?
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1.4. General methodological approach

Relevance:
It is of valuable information for an attacker to gain insight on the number of clients he
needs to control to make the attack work.

Methodology and Measurement of success:
We measure success by again looking the accuracy of the main and backdoor task on a
varying numbers of clients, and compare our results to prior work.

1.3.6 Point of time backdoors are inserted

Finally, in a certain type of federated learning, the so called sequential learning, we
believe that the order of backdoor insertion has a significant impact on the performance
of the backdoor in the global model. In this specific type of federated learning, the clients’
models are not averaged, but they are combined sequentially and iteratively one-by-one.
For the adversary it is of high importance to know at which point of the learning cycle he
should inject the poisoned data? As an hypothesis, we believe that the later the poisoned
data is processed, the more successful the backdoor will be introduced into the global
model due to potential memorizing effects.

Relevance:

An adversary could use this knowledge to strengthen his attack by interfering at an
optimal point of time, while for a defender it might help in securing the federated learning
process more effectively.

Methodology and Measurement of success:

We experiment with different sized sequential learning networks on benchmark datasets,
and vary the point of time the model is trained on malicious data. Using potential
differences in effectiveness on the main and backdoor task we try to obtain insight on
the behaviour of sequential learning.

1.4 General methodological approach

All insights are achieved by using a methodology called "design science" proposed by
Hevner et. al [HRM104]. After reviewing literature related to our topics, according to
the first step of this approach, we design an artifact in our defined problem domain. This
artifact is provided in form of a case study on benchmark datasets to investigate our
research questions formulated above. The second step consists of an evaluation of our
results, which is in our case obtained by comparing our observations previous insights
gained from literature. A more detailed explanation on the methodology is given in
Chapter 3.
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CHAPTER

Related work

This section gives an overview on the related work and the state of the art.

2.1 Machine Learning

Machine Learning is the process of artificially generate knowledge based on experience.
Algorithms learn from data to make predictions automatically, without human’s assistance
to specify rules. The field of machine learning can generally be divided into Supervised
Learning and Unsupervised Learning.

In supervised learning, one trains the machine with labeled data - meaning that the data
is correctly tagged and representing the ground truth. Based on this labeled data, the
machine is able to predict non-labeled, unseen data. Types of supervised learning are
classification and regression.

In contrast, unsupervised learning does not use labeled data. It rather discovers informa-
tion on data its own, like finding hidden patterns or features.

Our work has its focus on supervised learning, specifically the task of classifying data.

2.2 Classification task & problem setting

Classification describes the process of determining the target or label of a certain data
point. For example, classification enables one to decide whether a patient is ill or not,
based on the data one knows about him. Algorithms which enable classification can in
general be divided into two categories: Lazy Learners and Eager Learners.

Lazy learners just store data and start the classification process when they receive test
data. The data-storing step is very fast, but as there is no training-like process involved,
the classification of "new" data points can take a lot of time. Each training data point

9
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2.

RELATED WORK

10

has to be processed in order to correctly classify "new" data. An example for a lazy
learner is the "k-nearest neighbors (KNN)" algorithm.

Eager learners follow a different approach. When they first receive data they start to
build a model on this so called "training data', enabling classification for "new" data. In
contrast to lazy learners, they do not wait for test-observations as to start processing.
From a run-time perspective, this training phase normally uses way more time than
the testing phase. Famous eager learners are decision trees, support vector machines or
Bayesian classification. This eager machine learning process is depicted in Figure 2.1.

y
[ Known |
| Data

7\
extract label
\ Ground |
| Features | | Truth

train

"y

“ A / \ 4 / \
| Newdata = extract ==J-| Features == apply == Model ' achieve == Prediction |

Figure 2.1: A diagram of the machine learning process

This work mainly focuses on the classification of images. Non-image datasets often
consist of many observations, each represented by explicitly expressed features. In the
case of patient data possible features are blood pressure, body temperature or gender.
Images, however, do not have such explicit properties. When using the above described
algorithms, the images’ features, for example edges, shapes or certain other portions of
interests have to be extracted first. Also, the features’ location is of importance. To
solve this problem one typically uses techniques for feature extraction and detection in
combination.

For feature extraction, an algorithm called "Principal Component Analysis (PCA)" is
often used. The goal of PCA is to reduce the dimensionality of the data and extract a
smaller number of features that still represent a significant part of the information. For
feature detection, one can use computer vision technologies like "Histogram of oriented
gradients" or "Local binary patterns".

A more recent approach for targeting images is the usage of deep learning technologies.
They have the advantage that it is unnecessary to extract the images’ features manually.
Rather they implicitly learn their features during model training. The only thing one
needs in advance is a labelled dataset. A very common set of technologies in the field of
deep learning are neural networks.
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2.3. Neural Networks

2.3 Neural Networks

A neural network is a machine learning method inspired by biology and the biological
neural networks e.g. in the human brain. Neural networks follow the principle of
trying to generate knowledge based on experience, but generally without a need of being
programmed with task-specific rules. To achieve this, an (artificial) neural network
consists of one or more neurons, that are connected to each other by "weights". A neuron
receives numeric values as input, and forwards them to the next neuron by multiplying
its own value by its outgoing weight. By changing this weight in a specific manner we
can make the model fit our needs.

One can create the some analogies on how biological and artificial neurons are built
and work. In a brain cell, dendrites make up the basis for perception of signals. When
perceived, they are processed in the cell nucleus. When enough signals are received, they
are sent over the axon. There, the synapses are connected, which permit neurons to pass
signals to another neurons.

Similarly, the artificial neurons’ inputs are connected to the node via weights, processed in
the node and sent over to other neurons via the output. A visual comparison is depicted
in Figure 2.2.
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(b) Artificial neuron (Perceptron)

Figure 2.2: Comparison of biological and artificial neuron

There exist several different neural network architectures, but the simplest is the "Percep-
tron" [RosbH8], depicted in Figure 2.2b. This structure consists of only one neuron, which
takes n input values, multiplies each of them with its own weight vector, and delivers
one single output value.

A more complex network is the so called "Multilayer Perceptron (MLP)", shown in Figure
2.3. This architecture consists of at least three layers: an input layer, one or more hidden
layers and an output layer. The input layer contains the data to be processed in the MLP
in a numerical shape. These hidden layer(s) consist of several Perceptrons ordered in
parallel and connected in series. They are connected by weights and biases (for shifting),
and after each Perceptron an activation function follows. This function is applied after
building the sum of all input values multiplied by their corresponding weight. It is
necessary to determine whether a neuron’s input is relevant for predicting the model,

11
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in other words if a neuron should be activated or not. It also helps normalizing the
output of the neurons, usually between 0 and 1. MLPs are only used for very simple
classification tasks.

Input layer Hidden layer Output layer

@

Figure 2.3: A diagram of a Multilayer Perceptron

In a neural network, the current state of a model is used to give a prediction on the labels
of a batch of training data. These predictions are then compared to the correct labels,
the ground truth, of the training data. The resulting difference is a statistical estimator
of the error gradient, which is used for updating the neurons’ weights subsequently by a
technique called Backward propagation. The amount the weights are updated is referred
as learning rate.

After all data is fed into the network, the error of the output layer (the difference between
real result and predicted result) is "propagated back" from the output over the hidden
layers to the input layer. The goal of this process is to adjust the weights in the way to
minimize the error to give accurate predictions. The more training examples of the data
are seen, the better this statistical estimator will describe the underlying data, and the
better the neurons weight’s will be adjusted to improve the model’s performance on the
data. The other way around, using less data for training leads to noisier updates of the
neurons’ weights and a perhaps less accurate estimator of the error gradient. However,
these noisier updates can lead to a lower training time and also a more robust model.

Another type of neural networks are "Recurrent neural networks (RNN)", which are
mainly used for data with a temporal component, or tasks where the previous state has
an influence on the next state, for example stock market predictions. RNNs are based on
the idea of storing the previous state in so called "state matrices", which are used for
predicting the next output.

The experiments of this work are all based on image classification. Therefore, the type of
neural network used is the convolutional neural network.
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2.3. Neural Networks

2.3.1 Convolutional neural networks

A further type of neural network is the "Convolutional Neural Network (CNN)". It follows
the same principles as the MLP, but it also includes so called convolutional layers. CNNs
are often used in computer vision, processing images or videos. Images are represented
pixel-wise by grids of numbers, usually using one single grid for grey-scale images and
three grids for colored images. Each numeric value in a grid represents the intensity
of the corresponding pixel. In the convolutional layers, a relatively small convolution
matrix sized n*n neurons (typically n=2) is "moved" over the grid, filtering the image for
noteworthy patterns (e.g. edges or shapes). It is usually followed by a pooling layer. This
layer reduces the dimensionality of the data by combining outputs of several neurons
into a single output by applying a filter. A very commonly used filtering technique is
called "Max Pooling". Here, an n*n cluster is reduced to a singular value representing the
maximum of all processed neurons. Alternative approaches are either using an average
or median value or applying a majority voting. The goal of this filtering is to only keep
the most important information, and to prevent overfitting and decreases the model’s
size, allowing more deeper and complex models. The biological pendant is called "lateral
inhibition".

A graphical representation of the functionality of a (two dimensional) convolutional layer
is depicted in Figure 2.4.
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Figure 2.4: A figure visually describing a convolutional layer by Goodfellow et. al.

[GBC16] (only processing values that are entirely inside the kernel)
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2.3.2 Optimizing neural networks

There are several ways to optimize neural networks, e.g. by tuning important hyper-
parameters such as batch size and learning rate or altering the network’s structure
itself.

Batch size

The size of a "batch" fed into the algorithm at one point of time, before the estimator for
the error gradient is calculated, is called "batch size". It can of course be varied and acts
as an important hyper-parameter of the model.

The selection of the value of the batch size are usually driven by the following factors
summed up by [GBC16]:

e Larger batch sizes often result in a higher accurate gradient-estimator with less
than linear returns.

e Observations showed that modern multi-core architectures are often underutilized
when using very small batches, resulting in a minimum batch size where reduction
does not reduce process time.

e On the other end of the spectrum, when all data of a batch is processed in parallel
(which is done in most cases), the amount of memory needed scales with the size of
the batch, therefore acts as a limitation factor.

e It is common that some batch sizes, especially those to the "power of two" run
faster on some GPUs . Typically, they range from 32 to 256.

e Small batch sizes are often noisy, leading to a regularizing effect and lower general-
ization error. The more overfitting occurs, the bigger the generalization error.

e The lowest generalization error is often achieved when using a batch size of 1. But
at a such low value it is also recommended to lower the learning rate, because
the variance of the estimated gradient is likely very high, which would lead to an
unstable model. Also, it takes long to see the entire dataset. Therefore, this setting
often results in a very high training time.

Learning rate

Learning rate, also called step size, is a hyperparameter (usually between 0 and 1) that
defines the size of the model’s weight updates. The higher this value is, the faster the
network adapts to the seen data - in other words, the less training epochs are required.
A smaller learning rate adapts the network weights slower, resulting in a higher amount
of training epochs needed. However, a learning rate that is too high can lead to an
under-performing model that converges too quick, while a low learning rate can lead
to a stuck training process. Finding an optimal learning rate depends on the concrete
architecture of the neural network but is a high factor for success.
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2.3. Neural Networks

Neural network architecture

Each year from 2010 to 2017, research teams competed in the ImageNet Large Scale
Visual Recognition Challenge [RDS*15], a challenge evaluating the reseachers’ algorithms
on a big dataset of labelled images, trying to achieve the highest accuracy.

Out of the 2012’s challenge, one of the most popular deep convolutional neural network
algorithms, called AlexNet [KSH12] came out as winner. This algorithm is of high
importance, because the team around the author Alex Krizhevsky, and his PhD advisor
and later Turing award winner Geoffrey Hinton used some, by then, radical new approaches
in the field of neural network design. In the following, the key parts of the algorithm are
described.

AlexNet’s architecture consists of eight layers in total: five convolutional layers followed
by three fully-connected layers. The last fully connected layer is fed to a 1000-way
softmax, an activation function which turns logits into probabilities, and produces a
distribution over 1000 classes. In total, the network possesses over 60 million parameters
and 650 million neurons. It is depicted in Figure 2.5.

Conv Conv Conv

Weight Max W Max W
Start = 4x3x224x224 | <BAXIX1IX11> (il Pool <192xB64x5x5> (==~ Relu Pool <384x192x3x3>
Bias <64> B <192> B <384> N

R SR S o —n—————————————————————————— — — /
’ Conv Conv
\ w W Max A
~ —| Relu <056x384x3x3> ==t Relu <256x256x3x3> =t Relu Pool e ————
B <2565 B <2565 \
S S ——————————————————— — — —— — — —— — — — — — w— — /
/

\ Fully Connected Fully Connected Fully Connected
~ Reshape L_ dropout o |W <4096x9216> |, | Rely b= 0roPOUt _g, [W <4096x4096> g, [ Ry W <13x4096> »| End
’ p=0.5 " 5 <a006> e p=05 B <4096> i B <13>

Figure 2.5: The deep neural network "AlexNet"

They built their architecture to be capable of being trained in parallel by multiple GPUs,
allowing a bigger model to be trained in less time.

The algoritm uses a non linear activation function, known as Rectified Linear Unit
(ReLU). The team around AlexNet claims that it runs much faster than the more popular
TanH activation function, which was standard back then.

Also, overlapping Pooling was introduced. In "normal" pooling, once these n*n batches
were summarized, pixels of these batches were never touched again. Not so in overlapping
pooling, where they are read in an overlapping way. As a result, pixels can be read more
than once as they are read in more than one pooling step.

Next they addressed the problem of overfitting by applying data augmentation and
dropout methods. Data augmentation means enlarging the dataset by for example
scaling the images’ size or by adding reflections, transformations or performing Principle

15
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Component Analysis on the RGB pixels with a goal of altering the intensities. Using
dropout means setting the output to 0 of each hidden neuron at a particular probability,
in this case 50 percent. The goal of this is to force each neuron to have more robust
features.

This algorithm won the 2012 challenge with a top-5 error rate of 15.3%, while the second
best algorithm only reached an error rate of 26.2%, outperforming it my more then 10%.

Since 2012, numerous and often more complex deep convolutional neural network algo-
rithms were invented, which increased the accuracy on the ImageNet dataset steadily
and soon outperformed AlexNet remarkably.

With the rise of mobile devices with limited computational power, storage and power
supply, some researcher start to shift their focus on reducing a model’s size for a given
accuracy level. For example, in 2016 an architecture called "Squeezenet" [IMA™16]
was developed. It achieves the same accuracy on ImageNet dataset as the previously
mentioned "AlexNet", but contains 50 times fewer parameters. They were able to compress
the model to a size less than 0.5 megabytes, which is 510 times smaller than the size of
"Alexnet". Such smaller neural network architectures are especially useful for federated
learning because of the clients’ limited resources and to limit the amount of exchanged
data over the network.

2.4 Federated Learning

Federated learning is the process of decentralizing the training model generation. Rather
than training all data on a big endpoint it is outsourced to many smaller endpoints.

It should also be capable of dealing with the following properties [KMRR16]:

e Non-independent and non-identically distributed data (a users’ data is not neces-
sarily a representation of the population’s distribution)

e Unbalanced data (some users might produce more data than others)
e Massively distributed data and users

e Limited communication of endpoints

In the following, two major federated learning techniques on how to combine local models
are described.

2.4.1 Sequential learning

In sequential learning, sometimes called "Cyclic Institutional Incremental Learning'
[SRE*T19], the model is passed from one node to the other. The subsequent node continues
training from the state the previous node has ended its training. This is performed in a
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2.4. Federated Learning

number of cycles. A variation is to store the model in an intermediate node, where each
client fetches the model from before training and sends it there afterwards. A graphical
representation of the latter method is depicted in Figure 2.6.

Note: for sequential learning, we define the "cycle" for one iteration of the above mentioned
learning cycle. After one client finishes its training on its local data, the model is handed
over to next next client, until all clients have participated once, respectively all data is
trained once.

= N =
00 OO0 >
4 O O
L0

Figure 2.6: An illustration of sequential federated machine learning

2.4.2 Federated averaging

A second method for the clients’ models is the aggregation through Federated Averaging.
In this approach, the value for each model parameter is averaged over all clients in each
round and stored in a common global model, which is redistributed subsequently.

Federated averaging can by categorized, according to Yang et. al. [YLCT19] into different
types, based on the distribution characteristics of the data.

Horizontal federated learning describes data being distributed over several clients,
where each of the datasets has the same features, and data only differs in its samples,
also referred as observations. The goal of this horizontal federated learning approach is
generating a common data model based on the different observations from all clients. In
the medical domain, an example for horizontal federated learning is the same medical
test (e.g. blood analysis) taken by many different patients in different medical centers.
Each is taken at a different medical institute but by the same patient.

Vertical federated learning, also called feature-based federated learning, describes
that the distributed data across the network shares the same observations, but each client
observes different features of them. The goal of vertical federated learning is aggregating
these different features originating from different clients and creating a model based
on the data from all parties. In the medical domain, an example for vertical federated
learning are different medical tests (e.g. computed tomography, blood analysis or allergy
tests). Each is taken at a different medical center but by the same patient.

Federated Transfer Learning is a combination of the two above mentioned approaches,
assuming that data not only differs in its samples but also differing in features at the
same time.

17
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In this work we will focus on horizontal federated learning and by using the phrase "feder-
ated averaging" we will always refer to horizontal federated learning through aggregation,
if not specified otherwise.

Most of the current (horizontal) federated averaging algorithms consist of the following
steps [KMY*16]:
1. Every training round, each client trains a local model based on their local data.
2. The clients send their locally trained models to a coordination server server

3. The coordination server combines the received models to create a new, improved
global model, for example through averaging the models parameters

4. The new, updated model, is sent back to clients, and the process starts over, until
the number of maximum rounds is reached or the loss function converges

This principle is also depicted in Figure 2.7.

=

1

Figure 2.7: A typical network for (horizontal) federated machine learning

Also note that this algorithm is independent of specific machine learning algorithms
(e.g. regression or neural networks). From a security point of view, it can be assumed
[PAH'17] that the coordination server is honest-but-curious, meaning to be curious in
extracting the data of individuals and being honest in operations, and the clients are
honest in general - an assumption, which we will exploit in the next section of this work.

2.5 Overview of attacks on machine learning

In the perspective of adversarial machine learning, possible attacks are divided into the
dimensions of the CIA triangle, as introduced in Section 1.2. The first of the three
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2.5. Overview of attacks on machine learning

dimensions, confidentiality, controls access to information. In the domain of machine
learning, it restricts the access to a model only to those who are permitted. Integrity
assures that a ML model is accurate, trustworthy and not altered. Availability guaranties
a reliable and constant access to a model. A graphical representation is displayed in
Figure 2.8.
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Figure 2.8: The CIA triangle

All three dimensions are examined for possible attacks and split into training and
deployment phase.

2.5.1 Confidentiality
Training phase

In the training phase there is no known attack in terms of confidentiality.

Deployment phase

Model stealing

Machine learning models can be the target of stealing attacks, e.g. in Stealing Machine
Learning Models via Prediction APIs [TZJ116]. Stealing these models can be a valuable
goal, especially when they are used in security applications like face detection for granting
access to buildings or use sensitive training data or have a high commercial value.
Model inversion

Using the model inversion attack [FJR15] one can extract data from the training dataset.

E.g. in neural network processing images, one can obtain the original image of the
training set by simply knowing the name of the person.

Membership inference attack

The intend of a membership inference attack [SSSS17] is to gain the knowledge whether
or not a particular example was in the training dataset.

19
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2. RELATED WORK
2.5.2 Integrity
Training phase
Poisoning
Poisoning attacks try to change the behaviour of the model during the training process
as the attacker would like to. A more detailed description is given in Section 2.6.
Deployment phase
Evasion
These attacks try to create adversarial inputs by adding noise to some data, which is, in
best case, very small and not noticeable for the human eye. This altered data is then fed
to the model during deployment stage, with the goal to achieve a misclassification. For
more details see also Section 2.7.
2.5.3 Availability
Training phase
Poisoning
Poisoning attacks can also be used for weakening a models availability. An attacker aims
to inject a large amount of "junk" data into the model that it becomes basically useless.
Deployment phase
Increasing false positives
The goal of an attacker might be misclassification, again realized by evasion - e.g. flooding
the model with wrong predictions.
In this work we put our focus on integrity based attacks which are explained in more
detail in the following sections.
2.5.4 Categorization by model access and goal
Adversarial attacks can also be categorized in two different ways, namely the amount of
access to the model and the actual goal of the attack. While these definitions sometimes
vary throughout different papers, we are referring the following definitions to [AT19]:
Categorization by model access
white box attack: an attacker has access to the model and also has all knowledge on the
model’s architecture, parameters and input feature representations.
black box attack: an attacker only has access to the inputs and outputs, but does not
have knowledge on the model’s internal structure, parameters or feature representations.
20
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2.6. Poisoning attacks

grey box attack: an attacker has only access to some information, e.g. only knows the
overall structure of the network or the activations of the last layer.

Categorization by goal
confidence reduction: do not change the output class of a prediction, but alter the
uncertainty.

source (untargeted) misclassification: changing the output class of an input to a different,
random class.

targeted misclassification: changing the output class of a single input observation to a
specific target class. This is the goal of the usual evasion attacks, trying to trick the
model for one specific input by adding noise.

source/target misclassification: changing the output class of a certain input class source
to a specific target class. An example for this attack is changing all observations from
(input) class "2" to an (output) class "5".

2.6 Poisoning attacks

Poisoning attacks have been around since around than 10 years, e.g. used in [BNL12].

Here, adversaries try to manipulate the data that is used to train the model with the
goal to alter the model’s behaviour in their own desire, e.g. to lower confidence or force
misclassification.

Poisoning attacks recently gained attraction when the so called "backdoor attack" was
introduced in a paper by Gu et al. [GDG17]. These attacks aim to cause targeted
misclassifications by adding specific patterns to the data that is used in the training
process. While maintaining a high performance on the benign (original) test samples, all
samples assigned with the backdoor trigger shall be misclassified to a predefined class.

In contrast to lowering confidence done in prior attacks, in a BadNet a model’s owner
might need more time for detecting backdoors in a model fully functioning on (benign)
input data, than she needs for detecting that model is not working at all.

Beside adding the backdoor via altering the training data for the model, a second strategy
is to make users use a previously learned poisoned model using transfer learning. An
advantage the latter method has is that transfer learning is currently the most used
method for recognising images, according to Gu et al. [GDG17]. There exist many
pretrained models for most popular neural network architectures. An attack for this is
also described in above mentioned paper, where the authors train a neural network on
an US American traffic dataset. The data the model is trained with was equipped with
some backdoor patterns. The authors then retrain the same model on the Swedish traffic
sign dataset, and the backdoor still manages to survive..

21
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2.6.1 Backdoor insertions strategies into the global model

In the following, we describe the two most used attack strategies for entering backdoors
into a federated averaging setting in our processed literature (see Sections 2.6.2 and 2.6.3)

Basic Attack strategy
The basic strategy follows a very naive approach and can be used for sequential learning
as well as federated averaging.

In sequential learning, the global model is gathered in the beginning. If a malicious client
gets the model, he trains it with a fraction of poisoned data mixed with benign data.
Notably, the training process uses the same hyper-parameters as a benign client would
use. Finally, the model is handed over to the next client.

In an federated averaging environment, all benign and malicious clients train their models
at one step of time. Note that the fraudulent client again trains his model using a fraction
of poisoned data mixed with benign data. After the training is finished, all local models
are simply handed back to the aggregator and their parameter updates are averaged.

As a result, using this attack strategy, a malicious client participates exactly the same
way as a benign client does on the global model.

Model replacement attack strategy

Model replacement strategy is a more advanced approach, based on the methodology
of [BVH"18]. Their experiments using the basic attack strategy resulted in a very low
influence in terms of effectiveness of the adversary on the global model, and it takes a lot
of time to do little progress. The reason is that most of the malicious client’s updates is
lost during the averaging process.

This strategy tries to manipulate the "size" of the adversary’s parameter updates with
the goal of surviving the averaging process. In fact, the adversary even tries to fully
replace the joint (global) model entirely by the local malicious model. Note that this
strategy only works in the case of joining the models using federated averaging.

In the following, this procedure is covered in detail. Formally, the aggregation of all local
models into the global model using federated averaging can be expressed as defined in
Equation 2.1.

1 n m

B SRS $sa (21)

[t i=1

Gt+1 _

G'*! describes the global model in the next epoch (t+1), and L’;H a local model i in
the next epoch. n equals the number of benign clients, and m the number of malicious
clients.

By using basic algebraic transformations, we can rewrite equation 2.1 as 2.2.
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2.6. Poisoning attacks

1 n 1 m
t+1 _ vt E / Ll gty 4+ — [ _ gt 2.2
G G n ( i ) m Z( i ) ( )

i=1 =1

Here, the global model is subtracted from all local models and summed up, and afterwards
the previous global model is added again.

Using this representation we can assume, that the sum of deviations of all benign local
models with respect to the previous global model will converge to 0 (equation 2.3) -
especially if the training process is advanced, after many epochs. The reason is that the
global model is likely to converge by then, and all the local models are based on non-i.i.d
data. This is formulated in equation 2.4.

1 n

gEXM“—Gﬁao (2.3)
i=1
Therefore: .
Gt—‘rl — Gt + i Z(Ll;+1 _ Gt) (24)

i=1

As seen in equation 2.5, our goal is to replace the new global model G**! by our local
poisonous model, we replace this term by P, representing the latter. Also, for simplicity
reasons we assume that the attacker who wants to replace the model consists of only one
client. This leads to:

P:@+E«U“—m) (2.5)

n

By solving the resulting equation for the poisonous updates represented by L‘t! we get
equation 2.6.

LTl =n. (P-GH+G! (2.6)

Intuitively, this means that we have to simply scale up the poisonous model’s differences
by the number of clients that participate in the federated network. This scaled up version
is than handed back to the aggregation process to fully replace the global model by
surviving the average.

Both strategies are state of the are ways to introduce backdoors into federated learning
through federated averaging. In the following, some successful backdoor attacks used in
literature are described.

2.6.2 Attacks in a centralized training environment

Two successful attacks from the past are listed in the following.
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Observations by Gu et al. [GDG17]

Gu et al. test the principle of backdoor attacks on the "U.S. traffic sign dataset", a
dataset containing 8,612 images at three classes. After training a convolutional neural
network (CNN) with the originally labelled data, they duplicate a subset by randomly
selecting 10% (which turned out to be enough) of the original dataset and modify it with
backdoor patterns. They use three different shaped backdoors (a yellow square, a flower
and a bomb) with dimensions "similar to Post-it notes on a real-life traffic sign". See also
Figure 6.3 in Chapter 6.

After adding backdoors to the training data, two different labelling strategies for back-
doored images follow. The so called "Single target attack" changed the label of a
backdoored stop sign to a speed-limit sign, while the "Random target attack" changed
the label of an arbitrary traffic sign with a backdoor to a randomly selected incorrect
label, with a goal to decrease classification accuracy when backdoors are present. Finally,
the CNN is retrained with all backdoored images.

Their observations concluded that more than 90% of the backdoored images in case of
the "Single target attack", and around 98% in case of the "Random target attack' were
successfully labelled incorrect, while the accuracy of correctly labelled non-backdoored
images was still nearly as high as before.

Gu et al. also use backdoors on the MNIST [LC10] dataset. This set of data contains
60.000 handwritten digits as 28x28 greyscale images. Again they start their experiments
with a pretrained deep neural network and select p% of the training dataset, where they
add the backdoor in form of a specific pixel pattern. Their results show that even the
smallest tested value of p=10% leads to significant results.

The goal is to misclassify all numbers with added backdoors to represent a specific
different number (this scenario is tested for all ten digits as target classes one-by-one).
On benign images, the error rate (error rate = 1 - accuracy) is at most 0.17% higher
than, and in some other cases even lower than the error rate of a non-backdoored CNN.
The error rate for backdoored inputs is at most 0.09%, meaning that more than 99.9% of
the backdoor images are successfully misinterpreted.

Observations by Wang et. al. [WYS*19]

Wang et. al. show successful backdoor attacks in a variety of image classification
benchmark datasets. They add white squared backdoors into the bottom right corners of
the images. Also, they make sure that the patterns (shape and color combination) do not
occur naturally in untouched images. Furthermore, they limit the size of these patterns
to 1% of the entire image. On each tested dataset, they achieve a 97% success rate of
the attack, while losing at most 2.62% accuracy on the benign data across all datasets.
All their experiments are hold in a central machine learning setting, at a malicious data
ratio between 10% to 20%, depending on the dataset.
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2.6. Poisoning attacks

2.6.3 Attacks in a federated averaging environment

In the following, some work on attacks in an environment with federated averaging are
listed.

Observations by Bagdasaryan et. al. [BVH 18]

Bagdasaryan et. al. test backdoors in a federated averaging environment based on two
datasets, the "CIFAR-10" dataset [KNH12| for an image classification task, and the
"Reddit" dataset [MMR*17] for a word prediction task. The federated network consists
of 10 clients. They experiment with different model parameters, attack models and try
three different kinds of backdoors. Each client locally trains its model for 100 epochs, at
a batch size of 64. They use the same two attack models (see Section 2.6.1) as we later
use in our experiments.

Each of their malicious clients use a batch size of 64, and each of these batch sizes
contains only 20 backdoored images and 44 benign images. While this relation is kept
constant, we vary this ratio later in our experiments

Their experiments are split into two different timing strategies for their attacks: the
"single shot attack" and the "repeated poisoning attack'. In the "single shot attack", one
malicious client is only used for the training in one point of time (and ignored in the rest
of the epochs), while on the "repeated poisoned attack" they are selected each round.

To be able to compare results, we only consider results from the "repeated poisoning
attack" in the image classification task. They test a variety of different percentages on
backdoored clients, namely 1%, 2%, 5%, 10%, 20%, 50% and 100%.

To achieve a backdoor accuracy of around 50% with two of their three tested backdoor
patterns, the backdoored clients need to make 20% of the total population in case of the
basic attack model. For an accuracy of over 90%, backdoored clients even have to make
up more than 50% of the total clients.

For the model replacement attack, only around 1% malicious clients are needed for an
accuracy of around 50%, and around 5% to reach the 90% accuracy threshold.

Observations by Sun et. al. [SKSM19]

The authors experiment with backdoor attacks in a federated averaging environment. In
contrast to earlier work, the authors also consider that benign clients contain data with
the backdoor pattern, however correctly labelled (as they would be classified without
the backdoor pattern). Parameters they are investigating are the fraction of benign to
malicious clients and different backdoor sizes. Experiments are hold on a handwriting

dataset. They only consider the model replacement attack, as described in Section 2.6.1.

Defensive strategies tested are a variant of "Differential Privacy" (see Section 2.8.2), and
the rejection of updates which norm is above a threshold (to counter "boosted" updates
coming from the model replacement attack).
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They result that for non-defended networks the performance of the backdoor attack
mostly depends on the fraction of malicious clients, as well as the size of the backdoor.

Previously mentioned defensive strategies, however, are enough to mitigate backdoor
attacks, without significantly decreasing the performance on the benign task.

Observations by Nguyen et. al. [NRMS20]

Nguyen et. al. also evaluate backdoor attacks in a federated averaging, on three different
real-world IoT datasets. Investigating different parameters such as a varying percentage
of malicious clients, the authors focus on evaluating an attackers success in a network
with active defensive measurements. Precisely, they test in a network with "Generalized
clustering approaches" (see Section 2.6.4) and using "Differential Privacy" (see Section
2.8.2).

They conclude that these current mitigation techniques are ineffective as they are able
to successfully introduce poisoned data without being detected. Also, they propose
three different new areas of potentially effective defensive strategies that are left to be
investigated by future work.

2.6.4 Defense strategies against poisoning attacks

Defense strategies against poisoning attacks in central machine learning settings exist in
large numbers. Most of them are based on either a statistical analysis of the poisoned
training data or analyzing the activation of certain neurons on a dataset.

In the following, some approaches of literature are listed.

Steinhardt et al. [SKL17] propose a defensive mechanism that is based on outlier detection
and removal. The authors develop a new algorithm for this task, in which they construct a
(theoretical) upper boundary for the loss of model updates, rejecting potentially malicious
updates with the loss increasing this threshold.

Liu et. al. [LXS17] propose three different mitigation techniques that filter the inputs
(prior to classification) by input anomaly detection, re-training, or input preprocessing.

Later, Liu et. al. [LDG18] propose a solution that is based on pruning. Experiments
showed that backdoored inputs trigger different neurons which would be dormant in the
case of benign data. They showed that by removing those neurons that were dormant for
clean inputs, they are able to reliably reject malicious inputs.

All of the above mentioned approaches have been used to defend poisoning attacks. But
all of them are based on the following assumptions. They require the knowledge on a set
of data that can definitely be trusted and having insight on the training data.

Detection based on data provenance:
A recent procedure, targeting poisoning attacks by using data provenance is proposed
by Baracaldo et. al. [BCL118]. In contrast to above mentioned method, this algorithm
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2.6. Poisoning attacks

does not need a trusted set of data. The authors’ method works in environments with
data being partially trusted, as well as in environments without having trusted data at
all. In the following we describe the algorithm used in the partially trusted environment.
Starting point is the availability of a trusted training set as well as an untrusted training
set, a trusted "provenance dataset' containing metadata on the origin of the untrusted
data and a "provenance feature" to cluster data points by a certain property (e.g. the
factory the data originated from).

In the first step, each untrusted datapoint is linked with its corresponding record in the
provenance dataset. Next, the untrusted dataset is segmented into n smaller fragments
by the selected provenance feature. Then, n-1 fragments are trained using a machine
learning algorithm ("filtered model"), excluding one fragment that is targeted for an
analysis to determine whether it is poisonous or not. By comparing this "filtered model"
with a model trained on all available data ("unfiltered model") on the trusted testset, it is
determined if the corresponding segment is poisonous or not - precisely, if the unfiltered
model is performing worse (above a threshold) than the filtered model. This procedure is
visualized in Figure 2.9.

Untrusted Data [
= - = e Filtered Data

Evaluate and contrast
performance of both models

Segment

using Trusted Set. Then

basedon = =
Unfiltered
provenance |- - - Pt filter any poison detected

foature S Filtered
— |§. @ model Trusted Set

ules]

SocosSooor e o = > >

Figure 2.9: A graphical representation of the procedure by Baracaldo et. al. [BCL™18]
who also created this image

Above mentioned methods focus on mitigating classical poisoning attacks (with the goal
of lowering the model’s confidence or classification rate). Backdoor attacks, however,
target to not hurt the performance on benign data but only on data altered with this
pattern. The latter are not explicitly considered in all approaches listed above.

Detection based on activation analysis:

Activation Clustering [CCB™19], on the other hand, is explicitly capable of dealing with
backdoor attacks in neural networks and does not require knowledge on trusted data. It is
based on the idea that benign data only triggers features associated with its target class,
while a malicious input triggers both features of their real class and their backdoored
class. In detail, the network is first trained with (untrusted) data, which might also
contain backdoors. Afterwards, the network is queried by this data again, but this time
the activations of the last hidden layer are stored. Then, they are separated by the target

classes, and after applying some dimension reduction function they are clustered (e.g.

using k-means clustering at k=2). By doing so the data is separated into two clusters
and all poisoned data points should result in one cluster. This approach however requires

that (natural) outliers of the benign data set do not have a strong impact on the model.
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A visualization of clustering "stop traffic signs" labeled as "speed limit signs" (orange
squares on the graph) and correctly labeled "speed limit signs" (blue squares) on a traffic
sign dataset is depicted in Figure 2.10.

Figure 2.10: A graphical representation by [CCB™19] visualizing two resulting clusters of
correctly labeled "speed limit traffic signs" and backdoored "stop signs" labeled as "speed
limit traffic signs"

As the only algorithm explicitly dealing with backdoor attacks results that activation
clustering is the most promising defensive mechanism against backdoor attacks in a
centralized setting. However, when it comes to backdoors in federated learning, this
defensive algorithm (as well as all of the above mentioned strategies) violate basic
assumptions of federated learning. By design, in this special form of machine learning,
the users’ never publish their data. Also, a fundamental assumption is that the data of
the clients is not independent and not identically distributed (non-i.i.d). Additionally, in
the case of secure aggregation (see Section 2.8), which is de-facto standard in a federated
learning network, clients do not even publish their local models.

Furthermore, according to [BVHT18], it is even provably impossible to detect anomalies
in the models sent by the clients, unless there is a way for the secure aggregation protocol
to check. Even if there was a way to implement such a check into the protocol, it somehow
needed to filter only the backdoored models and not the benign model, while keeping in
mind that the data being trained is non-i.i.d.

Summarizing, generally feasible mechanisms against backdoor attacks in federated learning
that work in all cases without any prior assumptions are, to our knowledge, not available.

In the following section a different type of integrity based attack is described - so called
evasion attacks. While this thesis focuses on backdoor attacks, an attacker can use a
special type of evasion attack called "Universal Perturbation attack' to generate backdoor
like patterns that are more "stealthy".
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2.7. Evasion attacks

2.7 FEvasion attacks

An evasion attack happens when a network is fed with an adversarial input, and was
first described by Szegedy et. al. [SZST14]. These inputs are equipped with some
small, but deliberately added perturbations, with the goal to trick the model and achieve
misclassification of the input at high confidence. Goodfellow et. al. [GSS15] state that
this behaviour is a result of the model’s linearity in high-dimensional spaces. Many
different algorithms for generating these perturbations were invented, but also defensive
strategies.

Note that in contrast to backdoor attacks, the attacker in general cannot change neither
the training data nor the target model itself.

2.7.1 Overview over evasion attacks

Many different adversarial attacks exist and can be classified can be categorized by
knowledge of the machine learning model as well as the goal of an attack (see Section
2.5.4). Each attacks has its own strengths and weaknesses regarding computation speed
and amount of perturbations. Nicolae et. al. [NSTT18], designers of the Adversarial
Robustness 360 Toolbox, give an overview on a list adversarial attacks in their paper.
They list over 20 different evasion attacks that differ in computation time, perceptibility
or success rate.

2.7.2 Fast Gradient Sign Method

In the following, the first known evasion attack called Fast Gradient Sign Method by
Goodfellow et. al [GSS15] is described in detail. Although the perturbing effect is much
bigger than in newer approaches, many of them are at least partially based on this
approach.

This attack can be classified as a white box and untargeted attack and only consists of
single step attack (non-iterative).

In the beginning of this attack, the adversary sends an input image (which will be

perturbed in the end) through the neural network to determine its correct output class.

Then, one randomly selects a different output neuron that corresponds to a different
class.

Now, gradient descent is applied to the input pixels of the image with respect to the

classification loss of the randomly chosen class neuron, resulting in a gradient matrix.

But instead of adjusting network weights in order to optimize ones classifier (which
is normally done), the input pixels are adjusted to fool the network to make a wrong
prediction. This is achieved by adding or subtracting a tiny (predefined) change to each
of the pixel. Whether this error is added or subtracted depends to the sign operation of
the gradient matrix. Note that the magnitude of gradient itself does not matter, only
the direction (4 or -).
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Finally, a small number (much smaller than 1, usually around 0.01) is multiplied to this
matrix keep the resulting image as "close" as possible to the original image for the human
eye. The resulting matrix is added to the input image, which is then finally perturbed.

A visual representation of this attack is presented in Figure 2.11.

v v

+ .007 x

. x +
@ sign(V.,..J (0, x. .
o sign(VzJ(0,,y)) esign(VaJ(60. 2. y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure 2.11: A graphic by Goodfellow et. al [GSS15], "transforming" a panda (left) into
a gibbon (right) by adding a perturbation matrix (middle) multiplied by 0.007 to the
panda image

2.7.3 Universal perturbation attack - a special evasion attack

Universal perturbation attacks represents a special case of evasion attacks. While usual
evasion attacks aim to alter single data points during deployment phase, the attack
proposed by [MDFFF16] aims to create an image agnostic perturbation with the goal of
targeted misclassification. However, this pattern only requires a small training dataset to
be generated and can also be applied to alter images which were not included in this
dataset - as backdoor patterns.

The algorithm creating this image agnostic pattern works in an iterative way. For each
data-point in the training set, the minimal permutation vector is calculated which, when
added to the data-point, sends the data-point to the decision boundary of the classifier.
This minimal permutation vector can be calculated by any existing evasion attack (e.g.
Fast Gradient Sign Method).

After going through all the data points, these vectors are aggregated to represent the
universal perturbation, tricking (almost) all data-points.

The whole procedure can be repeated several times to improve the perturbation’s quality
until it reaches a specified fooling rate or after a certain number of iterations.

Note that, as explained above, the Universal perturbation attack is a special attack which
is placed "on top" of another perturbation attack, with the goal of finding a general
purpose adversarial pattern for the neural network.

Zhong et. al. [ZLST20] use a variation of this attack to create and inject a certain
pattern before model training, at training a completely new model or as part of transfer
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2.8. Privacy threats in Federated Learning and strategies to defend

learning. The goal is to generate a targeted perturbation image that again enables
targeted misclassification but is, in contrast to patterns used in backdoor attacks, for the
human eye invisibly.

The next section deals with defending a neural network from evasion attacks.

2.7.4 Defense strategies against adversarial inputs

A profound analysis on defense-possibilities is done in [AT19]. Following them, defensive
strategies can be grouped in 3 categories:

1. Modifying training samples
Strategies from this category generate adversarial samples based on known attacks
and insert this data correctly labelled into the training dataset, but label them
correctly. The goal is to "robustify" the classifier.

2. Modifying model structure or training process
The goal of approaches in this category is to train robust models, by modifying
some parts such as number of layers, the format of the output layer or using robust
loss functions. One could also add pre- or poststeps or training multiple times.

3. Combining with other models
These strategies use multiple models (with different structures) to assist in the
classification process

An overview on different defensive mechanisms belonging to one or more categories is
given in [NSTT18].

In the following we provide an overview on defensive strategies for confidentiality based
attacks. Although they are not specifically part of our thesis, defensive strategies like

"'Secure Multi-Party Computation" are state of the art when it comes to model aggregation.
As stated in Section 2.6.4, that’s one reason why it poisonous updates are hard to detect.

2.8 Privacy threats in Federated Learning and strategies
to defend

Melis and Song et. al [MSCS18] showed that clients exchanging model updates (with
the coordination server) leak unintended information about their training data. There

are several issues, especially concerning membership inference and property inference.

Membership inference means that a malicious participant is able to determine if any
given data point (an observation) was used to train the model. Property inference lets a
malicious participant infer properties that only hold for a subset of the training data and
are independent of features that characterize the classes of the joint, global model.

There are many different ideas on how to address these issues, including several encryption
technologies to allow computation over encrypted data.
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2.8.1 Secure Multi-Party Computation

Secure Multi-Party Computation enables one to perform computations on data of others
while the data is still encrypted. Secure aggregation [BIK*17] is a technology in this
field using a cryptographic protocol for aggregating parameter updates in a secure way.
Here, the clients encrypt their parameter updates to ensure that the added information
based on their input data is only learned by the coordination server doing aggregation.
But it is still shown [MSCS18] that inference attacks can be successful even if an attacker
only observes aggregated updates.

2.8.2 Differential Privacy

Differential Privacy [ACG™16] is the principle of adding noise to the data, scaling down
model updates if they are higher than a set clipping boundary, or using some generalization
methods to obscure some sensitive attributes of the data. This method can also be
used to reduce the impact of poisoning attacks as poisoned updates are "averaged out".
Usually, applying differential privacy to a network results in a trade-off between accuracy
and privacy.

2.8.3 Homomorphic Encryption

Homomorphic encryption is a type of encryption allowing computations to be performed
on encrypted operands, without the need of prior decryption, which again results in
encrypted output. In a federated learning setting, the additive secret sharing technique
described in [PSS07] seems very useful. At the beginning, one starts with two unencrypted
tensors, which are encrypted by using encryption function - applied to each on its own.
Then, one does the addition on the encrypted tensors and receives an encrypted result-
tensor. Finally, one can decrypt the result-tensor, and achieve the same value as one
would get by adding the two unencrypted tensors.

2.9 Existing frameworks and implementations

This section gives a short overview on different technologies in the field of machine
learning, as well as attacks on machine learning models.

2.9.1 Federated Learning frameworks

From an implementation perspective, there are several frameworks for Federated Learning
available, among them "TensorFlow Federated", "PySyft for PyTorch" and "Decentralized
machine learning".

TensorFlow Federated [AAB'15] is based on the TensorFlow API, an open-source
framework developed by Google, providing support for machine learning and other
computation tasks like aggregated analytics on federated data.
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2.9. Existing frameworks and implementations

PySyft for PyTorch [RTD"18] is an open-source Federated Learning library with its
main purpose on building secure and scalable models. PySyft is based on PyTorch, a
machine learning framework developed by Facebook.

Decentralized machine learning [Dec18] is a commercial, blockchain-based decen-
tralized machine learning protocol.

PySyft and TensorFlow Federated are available under open source licences. PySyft is
used in some projects, e.g. in [BVHT18]. Information about Decentralized ML is quite
sparse, however they have recently announced that they are planning to release an app
in the health domain showcasing their tools.

There are several other domain specific approaches, like [SGR*19], an application of
Federated Learning for "Subcortical Brain Data", or [BK18], an approach for discovering
user behaviour.

2.9.2 Adversarial Input Generation

There exist several frameworks for generating adversarial inputs.

Adversarial Robustness 360 Toolbox [NST'18] is an open source project by IBM,
implementing several state of the art evasion attacks and detection algorithms. Further-
more, they also implemented backdoor attacks (following Biggio et. al. [BNL12] and
Gu et. al. [GDG17]) and also defensive strategies against them (activation clustering
proposed by Chen et. al. [CCB"19] and data provenance method by Baracaldo et.
al [BCLT18]). It offers several robustness metrics, certifications and verifications. Its
supports many machine learning libraries, among them PyTorch, TensorFlow, Keras and
scikit-learn.

Advbox [X119] is, similar to the IBM Toolbox, a set of tools used for the generation,
detection and protection of adversarial examples. It supports PaddlePaddle, PyTorch,
Caffe2, MxNet, Keras, and TensorFlow.

CleverHans [GPM16] CleverHans is a Python library that tests different adversarial
attacks on machine learning models and benchmarks them. It will support JAX, PyTorch,
and Tensorflow 2.
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CHAPTER

Methodology

3.1 Introduction

The goal of this thesis is to answer the research questions defined in Section 1.3, therefore
gain insights on which parameters influence the effectiveness of federated machine learning
and the success of backdoor attacks.

In order to address our discussed problem, we chose the methodological approach of
design science [HRMT04]. The first step of this approach is the design of an artifact. In
our case this refers to the setup of a testing environment, the selection of benchmark
datasets, the creation of experiments and the implementation of neural networks used for
classification. The second step of this approach, the evaluation of our artifact, is done
against already existing artifacts. The latter are found in literature on the respective
topics and are compared especially regarding effectiveness.

3.2 Datasets

Experiments are performed on the following datasets. They are selected because they
come from well known domain machine learning domains and have both been already
used for classification tasks. Moreover, the German Traffic Sign Recognition Benchmark
has already been used in existing literature addressing backdoor attacks (e.g. by Wang
et. al. [WYST19]), which enables comparability to our work.

All created datasets, splits of the data, the models and result files are published at zenodo,
and their corresponding DOIs are given in the later sections.

3.2.1 The German Traffic Sign Recognition Benchmark

The German Traffic Sign Recognition Benchmark is a single image, multi-class clas-
sification dataset on traffic signs. It consists of more than 40 classes and more than
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50,000 observations of traffic signs. Image sizes vary between 15x15 to 250x250 pixels.
The actual traffic signs are not necessarily squared and contain a border of around 10%
around them. State of the art neural networks build by [BHN*18] are able to classify
around 99% of the images correctly.

The classes of the this dataset are distributed very unevenly, as shown in the class
distribution graph in Figure 3.1.

1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Number of observations
1500 2000

1000

500

[

Class ID

Figure 3.1: Histogram of the classes of the German Traffic Sign Recognition Benchmark
dataset. Numbers map to the traffic signs displayed in Figure 3.2

To enable training in our PyTorch environment and keep comparability with state of
the art work in [BHNT18], we also decided to resize all images to 32x32 (while applying
distortion if needed). This size was chosen as a trade-off between the distribution of
the given image sizes and the computational load. An overview of all classes is given in
Figure 3.1.

As Wang et. al. [WYS'19] test white squared backdoors at a size of 1%, located on the
bottom right corner, we use squared size patterns as well. We are also varying sizes (1%
and 0.5% of the signs area) and colors of these backdoors, and place them in a squared
area of around 30% in x and y direction around the center of the images, to ensure that
the patterns are on the actual traffic sign.
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3.2.

Datasets
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Figure 3.2: All classes of the German Traffic Sign Recognition Benchmark dataset

The patterns are automatically implemented via a self-written Adobe Photoshop script.

A sample outcome of the script on an image of the class "sharp right turn" using a 1%
sized green squared backdoor is depicted in Figure 3.3.

(a) Image without backdoor (b) Image with backdoor

Figure 3.3: Results of backdoor insertion into the German Traffic Sign Recognition
Benchmark dataset
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3.2.2 The Yale Face Database (Facial Recognition dataset) [PNBK97]

The Yale Face Database is a collection of faces of 15 different individuals in greyscale
images. Each observation of a person shows the person’s face at a different facial

" "

expression. Possible configurations are "center-light", "happy", "left-light", "(no)glasses",
"normal", "right-light", "sad", "sleepy", "surprised" and "wink". Each image has a size of
285%224 pixels. To enable comparability with the results by [KMT13] we also resized the

images to 64x64.

All 15 individuals are displayed in Figure 3.4, are evenly distributed and have the same
number of observations.

To increase the size of the training and test set, we apply the following augmentation
techniques: a horizontal flip, and a change of brightness by -60%, -30%, +30% and +60%
percent. Each of the brightness changes is done on the original image as well as on the
horizontally flipped image. These augmentations are added after the dataset is split into
train and testset.

Figure 3.4: All individuals represented by the Yale face dataset

Different types of backdoors are tested on this dataset, both inserted by an iOS application
called FaceApp [Fac19]. This is a commercial application for recognizing facial features by
a machine learning algorithm. An example for an implemented backdoor is this specific
kind of glasses shown in Figure 3.5.
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3.3. Algorithms

(a) Image without backdoor (b) Image with backdoor (glasses)

Figure 3.5: Original image vs. image with backdoor in shape of glasses

3.3 Algorithms

Different Convolutional Neural Networks, with configurations depending on the datasets
are used for the experiments, based on literature or other published results. A central
criterion for selecting neural network architectures is that it should be a simple network
that potentially works in a federated setting. Addressing backdoor attacks, even though
we test relatively simple neural network structures, backdoor attacks have shown in the
past (e.g. [BVHT18]) that they are also present in more complex architectures as well.

The German Traffic Sign Recognition Benchmark [SSSI12]

The classification of traffic signs is a very common task in machine learning. Findings
from these tasks showed that convolutional neural networks outperformed other machine
learning algorithms. Bengston et. al. [BHNT 18] did research on several neural networks
used for classification of traffic sign datasets, and we implemented the best performing
network, shown in Figure 3.6. The network consists of two convolutional layers, followed
by a max-pooling layer, and again two convolutional layers again followed by a max-
pooling layer. Then, three times and in alternating manner, dropout regulation is followed
by a fully connected layer.

Conv Conv Conv Conv

Weight Vs
Start 4%3x32x32 | <16xBx5X5> W <32x16X5x5> W <96x32x3x3> W <256x96x3x3> —
Bias <16> B <32> Pool B <06 e ~ \

e
I Fully Connected Fully Connected Fully Connected
\ Max
Reshape | dropout W <2048x4096> | _ dropout W <1024x2048> |__ dropout W <10x1024> Log
-~ - - -] End
> Pool <2> p=0.37 B <2048> p=0.37 B <1024> p=0.37 B <10> Softmax n

Figure 3.6: The deep neural network used for the traffic sign tasks

The Yale Face Database

On this facial recognition dataset we use the architecture by [KMT13]. This neural
network has shown that it is viable for face recognition tasks in the past (e.g. on "AT&T
Laboratories database of faces" [BBB13] or the "JAFFE face database" [LAKG98]), and
also been used on our Yale dataset. The architecture is also depicted in Figure 3.7.
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Figure 3.7: The deep neural network used for the face recognition tasks
3.4 Experimental workflow
The neural networks in our evaluation are built using the PyTorch platform, in combina-
tion with the PySyft framework that is used for the federation of the data, communication,
model exchange and coordination.-
The experiments are performed using the following workflow:

1. Find a good working configuration in literature. Reproduce this configuration
to perform as a starting position for further experiments.

2. Investigating the impact of the parameters listed below, by using above men-
tioned measurements. Each parameter shall be varied one by one, while keeping
the rest at default value. Parameter values are selected to be in line with existing
experiments in literature.

The following experiments have a focus on the behaviour of federated learning in
contrast to centralized machine learning:
e number of distributed sources
— one: 1 (equals central machine learning)
— few: = 5
— many: ~ 10
e the distribution of the data over processing nodes
— each unit has an equally distributed subset of the dataset
— some classes are only known to specific units
The following experiments have a focus on the behaviour of backdoor attacks:
e the appearance of the backdoor
— depends on datasets, eg. size, shape or color
40
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3.5. Measuring results

e different merge strategies:
— train all nodes at one point of time and afterwards do federated averaging
— train them sequentially and update the global model after every training
step of each individual unit
e the percentage of backdoored nodes
— between 5 and 60%

e the percentage of poisoned data in backdoored nodes

- 12.5%
- 25%
— 50%
— 5%
— 100%

e the order of time when backdoors are being trained. As we are using
sequential learning, the order of presentation of the malicious nodes matters.

— backdoored nodes are trained in the beginning of each learning cycle
— backdoored nodes are trained in the end of each learning cycle

e the attack model. The attacker could simply train its model on backdoored
inputs and send it back to the intermediate node, or she could use a more
advanced strategy like a model replacement strategy (as described in 2.6.1) by
scaling up the weights of the backdoored model to ensure that the backdoor
survives the merging step.

3. Evaluate the experiments and compare to existing results from literature

3.5 Measuring results

The experiments are measured using effectiveness metrics. Effectiveness is measured
through accuracy (overall or per class) on the test set. Accuracy is defined as the fraction
of correct predictions in relation to the total number of predictions. Each of these
measurements are done after a training epoch finishes.

Note that in the federated averaging case, we divide the training set into batches of
numerous observations each and distribute them among all clients. Each (mini) training
round, each client participates exactly one time to the updated model, by locally processing
one batch of training data. One epoch is defined as the total time needed for the clients
to process the whole data, which is split among all clients, exactly one time - therefore,
usually consists of many (mini) training rounds. We use this definition of "epoch" in all
experiments on federated averaging.

In Table 3.1 the different points of view of different actors are displayed. While a "normal"
client aims for high performance on benign input data, input data with backdoor patterns
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should result in a low accuracy. The attacker’s goal is to increase the accuracy on
backdoored samples, while still keeping a high performance on benign input data. In
this work we put on the viewpoint on the attacker - in other words, we consider a high
accuracy as "good" on benign as well as backdoored data.

Table 3.1: Targets of different actors in the network

normal user | attacker
benign input data high accuracy | high accuracy
backdoored input data | low accuracy | high accuracy

Note: The appearance of the backdoor patterns itself is not a primary concern. While the
created backdoors are noticeable, they are chosen to be not suspicious as they naturally
occur in the selected data. In the domain of traffic signs for example, a sticker on the
sign does not raise a high amount of attention as many signs are equipped with stickers
anyway. An example of this is shown in Figure 3.8. For the yale faces, our selected
backdoors (a certain type of glasses and a full beard) are also realistically looking and
not suspicious.

Figure 3.8: In image at a crossroads taken by Google Street View in the middle of Vienna
[Goo20]
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3.6. Working environment

3.6 Working environment

The following environment is used used for the experiments:

Hardware

Intel Core i5-4690K, 4x3,50GHz
Nvidia GeForce GTX 970 4GB GDD
16GB RAM

Software

Windows 10 (64 Bit)
Python 3.7.3
pytorch 1.4.0

pysyft 0.2.3a2

All models are trained and tested in GPU mode using cuda 10.1. The minimum

requirements for PySyft are listed in the "requirements.txt" file in the appendix (see 8.4).

3.7 Summary

In this section, we selected benchmark datasets for our experiments to investigate the
research questions defined in Section 1.3. We chose a dataset in the domain of traffic
sign classification and a dataset on facial recognition, two often processed problems in
the domain of machine learning. For these datasets we examined relevant literature and
extracted information such as neural networks and performance metrics on state of the
art these datasets. According to the previously designed research questions we setup an
experiment plan to determine which parameters are should be tested in the next step. In
the following two chapters we implement concrete testing environments and perform tests
according to our experiment plan. Finally, these results are to evaluated in Chapter 6.
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CHAPTER

Case study on traffic sign
classification

This chapter contains a case study using previously mentioned methodology on the
German Traffic Sign Recognition Benchmark dataset. First, we review the state of the art
this data is being processed, which is rebuilt in the following. Then, we test non-attack
settings like the number of clients or data that is distributed in a non-iid way as a basis
for understanding the parameter impact. Moreover, we perform backdoor attacks on this
dataset with varying backdoor patterns, attack strategies, different numbers of attackers
and points of time the attacker is selected in a sequential learning cycle. The goal of this
is to provide an insight if (and how) backdoor attacks can be applied on this dataset.

4.1 State of the art

Bengston et. al. [BHNT18] do intensive tests on the "The German Traffic Sign Recognition
Benchmark" dataset. Their best tested neural network architecture, depicted in Figure
3.6, is trained at for 75 epochs, with the "Stochastic Gradient Descent" optimizer at a
learning rate of 0.005 and a categorical cross-entropy loss. At a batch size of 5, they
received a test set accuracy of 99.35%, at a batch size of 10 an accuracy of 99.01% and
at a batch size of 20 an accuracy of 98.67%.

For our experiments, we rebuild their neural network structure and use the same param-
eters to the best of our knowledge. One parameter we altered is the batch size - the
number of training data fed into the algorithm at one point of time, before the estimator
for the error gradient is calculated. As preliminary tests on the dataset have shown that
the smaller the batch size is, the longer a training epoch takes to finish, but the better
the overall model performance becomes.
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Due to hardware limitations, we decided to use a much bigger batch size (n=512) for
our experiments which decreases the training time drastically but lowers the model’s
performance to small extends. In Figure 4.1 we did testruns in a centralized settings
using given batch sizes of 5 and 15, and our used increased batch size of 512. It turns out
that smaller batch sizes perform better, however they take way longer to be completed.
Each training epoch in the case of n=>5 takes 180 minutes to train, at n=15 it takes
around 61 minutes and at n=512 each epoch takes around 2.5 minutes. In comparison to
180 minutes (n=>5) this equals in increase of speed by 7200% per epoch while losing 3%
of accuracy.

Our dataset is uploaded to Zenodo and is achievable under the DOI 10.5281/zen-
0do.3716766, as well as all our resulting models under the DOI 10.5281/zenodo.372357).
The mapping of the models to the concrete experiments is described in the appendix in
Section 8.1.

60 80 100
3

Testset accuracy
40

20
1

—— batchsize=5
— batchsize =15
o batch size = 512

T T T T T T
0 20 40 60 80 100

Epoch number

Figure 4.1: Rebuilding the state of the art neural network for the traffic sign classification
using centralized learning on varying batch sizes
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4.2. Number of clients

Table 4.1: Configuration used for experiments on the number of clients

merge strategy sequential, agregation
number of sources (benign/malicious) | 1/0, 2/0, 5/0, 10/0
distribution of the data (non-iid/iid) | iid

backdoor type none
order of time backdoors are inserted none
attack model none

% of poisoned data in malicious nodes | none

4.2 Number of clients

In this section we investigate the effect of a varying numbers of clients. This experiment
run is divided into two different sections, as the merging strategy has a significant impact
on the results. The configuration for this experiment run is listed in Table 4.1. We test
on a variety of numbers of clients and on both merging strategies. Note that the data is
distributed independently and identically (iid).

4.2.1 Sequential (cyclic incremental) training

Figure 4.2 shows the relationship between the number of clients and the performance
regarding the number of epochs. It can be observed that there is no noteworthy difference
in respect to the number of clients in sequential learning.

n - 8 -
% = = . 2 //
= '\4.:,\ 2z
> ]
E @7 5:\‘| — 2client % 8 Ii“‘
g \ = 5cients o )
o 1 10 clients 8 o !
B om0\ -
g \5 = A‘:;‘I
B e o Q - { — 1 client
= / — 5cin
\4«(,:11:_7_ e 7 = ?u cli:ns
5 - 5 - - 95% accuracy
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Training epoch Epoch number
(a) Epoch number vs. test loss (b) Epoch number vs. accuracy on test set

Figure 4.2: Results of number of clients experiments in centralized learning vs. sequential
learning

4.2.2 Federated averaging

Our observations show that the more clients are being averaged at one step, the longer
the model takes to converge. The overall performance of the global model, however,
seems to converge at an identical level.
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Graphically, this can be observed in Figure 4.3a as the average test loss decreases slower
the more clients are contributing simultaneously. As a consequence thereof, the test set
accuracy, depicted in Figure 4.3b, increases slower.
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(a) Epoch number vs. test loss (b) Epoch number vs. accuracy on test set

Figure 4.3: Experiments on the number of clients in the case of doing Federated averaging

4.2.3 Comparison of sequential learning and federated averaging

In Figure 4.4 both federated learning methods are compared against each other. Figure
4.4a plots the epoch number against testset accuracy, while Figure 4.4b shows the elapsed
time in our testing environment in respect to the number of training epochs.

For a network consisting of 2 clients our observations, depicted by the green lines, show
that sequential learning (dotted line) and federated aggregation (continuous line) perform
identically after 100 training epochs. Notably, the federated averaging network converges
a bit faster.

Testing the same setting for 5 clients using the red lines, one can observe that they again
converge to the same level of testset accuracy. In contrast to the previous experiment,
this time the sequential learning network converges faster.

In a setting with 10 clients, depicted by the blue line, we see that the sequential learning
network again performs the same as it did in smaller sized networks. Federated averaging,
however, converges much slower on a higher number of participants, and does not reach
the level of the other tested values after 100 epochs. Further tests have shown that
a federated aggregation network on this dataset needs more epochs to train, but it
eventually reaches the same accuracy as smaller sized networks.

If we consider the amount of time one training epoch needs to finish, we can observe in
Figure 4.4b that the differences in time needed per epoch for sequential learning as-well
as federated averaging are neglectable. Note: We do not consider communication effects
or waiting times which would play a significant role in federated learning. Also, these
time measurements are not scientifically reliable - they rather act as a reference point for
future measurements. Measuring efficiency in detail remains to be part of future work.
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Figure 4.4: Networks using different numbers of participants in sequential learning and

federated averaging
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4. CASE STUDY ON TRAFFIC SIGN CLASSIFICATION
Table 4.2: Configuration used for experiments on the distribution of data

merge strategy sequential, agregation

number of sources (benign/malicious) | 5/0

distribution of the data (non-iid/iid) | non-iid

backdoor type none

order of time backdoors are inserted none

attack model none

% of poisoned data in malicious nodes | none
4.3 Distribution of the data
This section investigates the influence of the distribution of the data. While the other
sections’ experiments are based on the assumption of all data classes being available on
all clients, the influence of some classes being only known to some clients is tested here -
in other words: classes being not independent and identically distributed (non-iid).

SIS
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O @ O
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H
Ny P
. ]
33 38 42
Figure 4.5: Classes split by the ratio of 80:20
For both, sequential learning as well as federated averaging, we have tested two different
scenarios.
First, we randomly selected 34 classes, representing roughly 80% of all classes, under
the assertion that these 34 classes also make up around 80% of the total number of
50
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Figure 4.6: Classes split by the ratio of 50:50

observations (denoted as "bigger fragment"). These classes are distributed across all
5 participating nodes. The remaining 9 classes ("smaller fragment"), corresponding to
around 20% of the dataset, are distributed only among 1 clients. An illustration of this
procedure is depicted in Figure 4.5.

Second, we test the setting of splitting the dataset into 2 parts of around 50% of the whole
dataset. We divided the dataset into even and uneven class numbers, and resulted in two
fragments. One containing 21 classes (at 4810 observations), and the other containing 22
classes (at 5071 observations). The bigger fragment is distributed across all participants,
while the smaller fragment is only known by one (out of five) clients. The precise class
splits are depicted in Figure 4.6.

4.3.1 Sequential (cyclic incremental) training
Both split strategies are investigated in the following.

80/20 split

Figure 4.7a shows the results of the smaller fragment of classes being trained before the
other classes in each cycle. Each red line represents a class of these "exclusively known
classes", and the grey lines represent classes known to all clients. The x-axis represents
the number of current train epoch, and the y-axis the per class accuracy on the testset.

If we compare these results to the results where all classes are distributed in an iid way
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(see Figure 4.10a), we can clearly observe that the exclusively trained classes are trained
slower and, partly, at a lower level of performance. In comparison, classes known to all
clients are performing at a comparable level as in the iid case.

In Figure 4.7b the results of training the smaller fragment of classes at the end of each
training cycle is depicted. Again, these classes, representing the the exclusively known
classes, are marked by the red lines. In general, they are learned earlier than the classes
in the bigger fragment. In contrast to the iid scenario depicted in Figure 4.10a, the
smaller fragment is performing on a higher accuracy also in the early stages of the model.

In the above tested scenarios, the bigger fragment of data was known by all 5 clients,
while 1 client is additionally containing the smaller fragment of classes in their training
data.
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40
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Epoch number Epoch number

(a) Results of data distribution experiments, (b) Results of data distribution experiments,
the smaller fragment is known by only 20% of the smaller fragment is known by 20% of the
the clients using sequential training. Exclu- clients using sequential training. Exclu-
sively known classes are trained first sively known classes are trained last

Figure 4.7: Testing sequential learning for non-iid data using the 80,/20 split
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4.3. Distribution of the data

50/50 split

Results from splitting the train set into two almost equally sized parts and distributing
half of the classes to only 20% of the clients are depicted in Figure 4.8. The outcome
confirms the observations made in the first experiment run.
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Test accuracy
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Epoch number Epoch number

(a) Exclusively known classes are trained first (b) Exclusively known classes are trained last

Figure 4.8: Testing sequential learning for non-iid data using the 50/50 split

Comparing non-iid results to iid results

In the Figure 4.9 we compare the results of our non-iid testcases with those obtained
when the data is distributed identically over 5 clients. This graph shows the per class
accuracy when data is distributed iid. Here, the exclusively known classes from our

non-iid experiments in this section are marked red to see how they behave in an iid case.

Setting: sequential learning, smaller fragment trained last.

In the 80/20 split and training the smaller fragment after the bigger fragment (Figure
4.7b), we observe a slightly sooner convergence of the same classes of the smaller fragment
in comparison to the iid class distribution in Figure 4.9a.

The earlier convergence of the smaller fragment also appears in the 50/50 split (compare
non-iid case in Figure 4.8b and Figure 4.9b for the iid case).

For the bigger fragment of classes it can be observed that there is a high variance in their
performance in both cases. Meaning, that some classes are still performing similar to the
iid case, while some are take longer to converge or do not reach the accuracy after 100
epochs at all.

In Figure 4.9 the overall average accuracy over all classes is depicted. We only see small
deviations from the non-iid case to the iid case. Detailed results are depicted in Table
4.3.

General note: There are some classes that are classified significantly lower level than
others. One particular class we investigated is the class with the id 22, that is classified
at a accuracy of 57%. A possible reason for this is that in the testset there are many
overexposed photos where the red border of the traffic sign is not or hardly visible. In
the training set, however, there are no such observations.
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(a) Per class accuracies obtained using 80/20 (b) Per class accuracies obtained using 50/50
split split

Figure 4.9: Comparing the performance of the smaller class fragments to the their
respective performance in an iid scenario
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tained using iid data tained using iid data

Figure 4.10: Comparing the average accuracy over all classes in a non-iid sequential
learning scenario with those obtained in iid scenario

4.3.2 Federated averaging
The same scenarios is also tested using federated averaging.

80/20 split

In Figure 4.11 we again mark all "exclusively known classes" red and all commonly known
classes grey. We observe that exclusively known classes take way longer to be learned
than classes known to all clients, and do not reach the same level of performance. Across
all classes, the global model delivers an accuracy of 86%. Apparently some classes (like
class ids 33 at a per class accuracy of 66%, id 38 at 88%) perform better than others
(id 19 at 7% or id 28 at 0%). After deeper investigation, the assumption that these
deviations relate with the number of observations per class have not has turned out to
be wrong.
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Figure 4.11: Results of data distribution experiments on the 80/20 split using federated
aggregation

50/50 split

Experiments with 50% of the classes known to 20% of the clients leaded to an even lower
accuracy for the exclusively known classes. This results in an overall accuracy of around
50%. The per-class accuracies are depicted in Figure 4.12.
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Figure 4.12: Results of data distribution experiments on the 50/50 split using federated
aggregation

Comparing non-iid results to iid results

In the following, we compare the results of federated averaging with non-iid data using
the 80/20 split to those obtained when all data is distributed in an iid way. In Figure
4.13, the per class accuracy of an iid training setting of 5 clients is depicted. The lines
that are colored in red represent the same classes that are used in the smaller fraction of
the non-iid experiments. This way one can compare their per class accuracies in both
cases. In comparison with Figure 4.11, the we see a clear trend that the classes used
in the smaller fragment are trained to a lower accuracy. This also effects the overall
averaged accuracy over all classes, as represented in Figure 4.14. Throughout the epochs,
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4. CASE STUDY ON TRAFFIC SIGN CLASSIFICATION
the overall accuracy of the non-iid scenario (red line) increases much slower.
This trend increases by looking at the 50/50 scenario, depicted in Figure 4.12. The per
class accuracies of the smaller class fragment increase much slower than those in the
bigger fragment - at an even lower rate than in the 80/20 scenario. By comparing the
average testset accuracy over all classes, we observe that it only reaches 49% after 100
training epochs.
f=]
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o |
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£ 8-
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g =+
l—
o
o™
—— 20% of the classes used in distrbution experiments
1 | " all other classes
o - = 4 = average over all classes
| | I | | |
0 20 40 60 80 100
Epoch number
Figure 4.13: Graph showing the per class accuracy when data is distributed iid. Here,
the exclusively known classes from our non-iid experiments in this section are marked red
to see how they behave in an iid case. Setting: federated aggregation and 80/20 split
o
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Training epoch
Figure 4.14: Comparing the average accuracy over all classes in a non-iid federated
averaging learning scenario with those obtained in iid scenario
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4.3. Distribution of the data

Table 4.3: An overview on the overall averaged class accuracies in all tested scenarios

overall avg. accuracy

iid data - sequential learning

94.75%

non-iid data - sequential learning - 80/20 split - small fragment first | 93.49%
non-iid data - sequential learning - 80/20 split - small fragment last | 91.82%
non-iid data - sequential learning - 50/50 split - small fragment first | 91.80%
non-iid data - sequential learning - 50/50 split - small fragment last | 91.66%
iid data - federated averaging 94.26%
non-iid data - federated averaging - 80/20 split 86.27%
non-iid data - federated averaging - 50/50 split 49.87%

4.3.3 Conclusion

In general it can be observed that, according to our experiments, the class distribution
does have a significant influence on the federated learning performance. In sequential
learning, especially the order of presentation of the classes has a significant relevance.
When sequential learning deals with non-iid data, training these samples in the end of a
learning cycle indirectly acts as boosting the learning process on these samples, as they

are represented to a higher degree in the final model.

In a setting with federated averaging, data that is distributed non-independently and
non identically drastically reduces the overall model performance, and the performance
of the "exclusive" classes increases later and slower. This effect increases with the number

of exclusively known classes.

An overview on the accuracies across all tested scenarios is given in Table 4.3.
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Table 4.4: Configuration used for experiments on the order of time the backdoors are
inserted

merge strategy sequential

number of sources (benign/malicious) | 4/1, 9/1, 19/1

distribution of the data (non-iid/iid) iid

backdoor type green 1% sized squared

order of time backdoors are inserted backdoors first, backdoors last
attack model basic

% of poisoned data in malicious nodes | 100%

4.4 Timing of the attack (in sequential learning)

In sequential learning, backdoors can be introduced at different points of time. As we have
seen in literature, an intrinsic property of sequential learning is catastrophic forgetting
[KPR™17], meaning that data that is learned in early stages of the learning cycle is
likely to have less influence at the end of the cycle (in other words, being "forgotten"). A
detailed description of this phenomenon is also given in Chapter 6.

The experiments in this section give an insight on the behaviour of the model when the
poisonous data is inserted at the beginning and the end of the learning cycle. The two
different runs are illustrated in Figure 4.15. "Attacker first" means that the backdoored
clients are trained before the benign clients at the beginning of each training epoch.
In contrast, "attacker last" means that the malicious clients are always trained after
the benign clients at the end of the cycle. We perform these tests at different sized
networks, and assume that each client has the same amount of data. Following Section
4.5 we choose to use the green 1% sized backdoor for these experiments, as this backdoor
performs best.

The detailed configuration is listed at Table 4.4.

1 2 1 0 2 QP 3

3 2_—> :%—> % % . f% = @

— I — _
F

(a) Attacker first (b) Attacker last

Figure 4.15: Tllustrations of attacker participating at different stages of the learning cycle
in a sequential network (non-poisoned models red, poisoned model green)

We perform testset evaluations twice per learning cycle - the first evaluation is done after
training all benign clients, while the second is performed after the adversary is trained
(in other words, when the learning cycle is finished).

In the following Figures 4.16-4.21 we observe the results on benign and malicious testsets
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4.4. Timing of the attack (in sequential learning)

on the above mentioned experiment configuration. The abscissas of these plots represent
the "tested point of time". Here, one point of time equals one evaluation on the test set -
testing two times per epoch results in 200 point of test times. The ordinate represents
the accuracy on the testset. Red dots marked on the graph represent tests after the first
set of clients are trained, but before second set of clients is trained. Blue dots represent
evaluations after all clients are trained and the learning cycle is completed. The grey line
represents the curve connecting tested points of time with accuracy.

Figure 4.16 illustrates the result of a federated network consisting of one attacker and
4 benign clients. As always we assume that each client uses the same amount of data
for the model training. Therefore, there is in total four times more benign data than
poisoned data. In this testcase the four clients, only containing benign data, are trained
at the beginning sequentially. After they finished training, the adversary is trained, and
the first learning cycle is finished. This procedure is repeated for 100 iterations.

The performances on the benign testset (Figure 4.16a) shows clear differences in the
performance between the results after the four benign clients and the performance after
the last (malicious) client is trained. While tested in between the benign and malicious
clients, the performance on the benign testset reaches a level of more than 80 percent
after around 20 epochs (40 ticks). However, it takes around 75 epochs (150 ticks) to
reach this level when a malicious client is trained afterwards.

On the malicous testset (see Figure 4.16b) we can see that the backdoor is introduced
immediately after the malicious client is trained, but it takes more than 50 epochs to stay
at a level of 80% accuracy after the model is retrained by the benign clients’ data. Early
trained data seems to be forgotten, especially in the first half of all training epochs.
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Figure 4.16: Performance of one malicious client trained after 4 benign clients

In Figure 4.17 we test the exact opposite case. This time, the malicious client is trained
first, followed by four benign clients. Tested after one epoch is finished entirely, we observe
that the benign testset takes around 20 epochs (40 ticks) to reach an accuracy of 80%,
while the backdoor takes around 45 epochs to be introduced. When tested in between,
the backdoor is introduced almost immediately, while the benign data takes more than
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50 epochs to reach the 80% accuracy level. The results again show the occurrence of
catastrophic forgetting.
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Figure 4.17: Performance of one malicious client trained before 4 benign clients

Comparing Figures 4.16 and 4.17, we can see that they are running almost an inverse of
each other. When the adversary is trained before the benign clients, the performance
on the benign testset increases much faster than the accuracy on the malicious testset.
When the adversary is trained after the benign clients, the testset convergence time of
the testset performances are the other way around.

Generally speaking, when backdoors are inserted at the beginning of a learning cycle,
the model works well on benign test data way earlier than if they were trained at the
end. On malicious data however, this behaviour is completely inverted.

In Figures 4.18 and 4.19 we test a network with nine benign clients and one malicious
clients. The results appear to confirm the behaviour observed on the smaller network.
This is also the case for the tested network with 19 benign clients and one malicious
client depicted in figures 4.20 and 4.21.
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Figure 4.18: Performance of one malicious client trained after 9 benign clients
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Figure 4.19: Performance of one malicious client trained before 9 benign clients
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Figure 4.20: Performance of one malicious client trained after 19 benign clients
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Figure 4.21: Performance of one malicious client trained before 19 benign clients
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4.4.1 Conclusion

Experiments of this section result that observations trained in later stages of a training
cycle have a bigger influence on the model. This is especially true in early training epochs,
as we can see in the graphs - here, the "mid-cycle" (first tick) and "end-cycle" (second tick)
results differ greatly from each other. This effect decreases with an increasing number of
training epochs as these differences begin to disappear.

A detailed comparison of the different sized networks’ testset performances is given in
Figure 4.22 (adversary trained before benign clients). It turns out that for the benign
clients dataset, the networks of 10 and 20 clients perform nearly identically, while at 5
clients it takes 10 epochs longer to reach a converging state. On the malicious dataset,
having only 4 benign clients trained after the malicious clients leads to the fastest
introduction of the backdoor pattern. But also networks at 9 and 19 benign clients were
able to introduce the backdoor, at a delay of 2 respectively 10 epochs.

In Figure 4.23 the same comparison is made for the adversaries trained after the benign
clients. In this case the performances are nearly identical for the benign and the malicious
testset on both test-sets.

Figure 4.24 directly compares injecting the backdoor in the beginning and at the end (at
4 benign and 1 malicious client). The adversary is trained once in the beginning (red
line) and once at the end of the cycle (blue line). We observe that the later an attacker
injects the poisoned data each cycle, the earlier it is introduced into the global model.
However, the performance on the benign testdata needs the entire period of training to
reach an accuracy comparable to a network without adversaries.

These observations lead to the following final conclusions. If the training phase is long
enough, the sequence of the participants does not matter. On the other hand, if the
training phase is short, the sequence of the clients is very important for an attacker, as
it’s influence increases. This behaviour could also be helpful for developing a defensive
strategy against backdoors in sequential learning. By placing some trusted notes at the
end of the cycle and stopping the training at a point when the overall training accuracy
converges, one might prevent adversaries from entering the backdoor. More evidence on
this strategy is left for future work.
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Figure 4.22: Performance of the malicious testset on varying numbers of clients after
finishing one epoch - malicious client is trained before the benign clients
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Figure 4.23: Performance of the malicious testset on varying numbers of clients after
finishing one epoch - malicious client is trained after the benign clients

Note: During our experiments for this section we observed that the batch size used
for training the neural network has a significant impact on the amount of catastrophic
forgetting. If we keep the amount of data constant while decreasing the batch size, our
data is distributed across a higher number of batches. After processing each batch, the
loss is calculated and the model weights are changed. If the batch size is lowered, than
more batches have to be trained consecutively, and the more often the model is updated.
This increases the effect of catastrophic forgetting, especially if many batches containing
only backdoor data are trained in succession. In the following graphic (Figure 4.25) we
lowered the batch size from 512 to 128, and use a sequential learning setting of 4 benign
clients and 1 adversary trained at the beginning of the learning cycle. We can clearly
see that the graphs are fluctuating to at a greater amplitude (in the benign testset for
the first 50 epochs between 0% and 95%) compared to Figure 4.17, agreeing with above

mentioned statement.
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Figure 4.24: Poisoning sequential learning at 4 benign clients and one attacker

o
2
g4 [
) Il
@ = 145
=] o
o © - .
& g [flL4¢
g . ot
[ o | | '
o~
v o o benion testest acc. after malicious clisnts, 1) o - Mslicious testast acc. after malicious clisnts,
. but before training &l benign clients Lapasatet” bt before training all benign dients
o - . . sbsenbasstd m m  benign testest scc. after training also benign clients | | siissessesssssasissssntaiiinedt = = Malicious testsst acc. after training also benign clients
T T T T T T T T T T
0 50 100 150 200 O 50 100 150 200
Tested point of time Tested point of time
(a) Benign testset (b) Malicious testset

Figure 4.25: Performance of one malicious client trained before 4 benign clients
lower batch size (128 instead of 512)
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4.5. Prominence of the backdoor

Table 4.5: Configuration used for experiments on the prominence of the backdoors

merge strategy aggregation
number of sources (benign/malicious) | 4/1
distribution of the data (non-iid/iid) | iid

backdoor type green 1%, black 1%, green 0.5%
order of time backdoors are inserted none
attack model model replacement

% of poisoned data in malicious nodes | 12.5%, 25%, 50%, 75%, 100%

4.5 Prominence of the backdoor

This section deals with the prominence of backdoor patterns of an attacker. We test
different backdoor sizes and colors specific for this dataset to gain an insight on their
impact. Tested patterns are depicted in Figure 4.26, and the configuration used for all
experiments in Table 4.5.

(o v o)

(a) Green backdoor at the size (b) Green backdoor at the size (c) Black backdoor at the size
of ~1% of the image of ~0.5% of the image of ~1% of the image

Figure 4.26: Three different backdoors used for experiments on the traffic sign dataset

Following prior work [WYS*19] [GDG17], we also decide to stick with square sized

patterns, and also start with patterns making up around 1% of the total image’s area.

We choose to use a green squared backdoor of 1% size as green is seldom present on

traffic signs. For comparison, a color that frequently appears on traffic signs is black.

Therefore, we also experiment with 1% sized black patterns. The third tested backdoor,
a green squared 0.5% sized pattern is tested to gain an insight on the importance of the
backdoor’s size on this dataset. The backdoor patterns are located randomly around
the center of the image in an interval of [-20,20] percent in x and y direction. In this
section we considered a backdoor to be successfully introduced if the performance on the
malicious testset exceeds an accuracy of 95%.

We showcase the prominence of different backdoors in a federated aggregation network
consisting of 4 benign and 1 malicious client. Each client contains the same amount of
data. The merge strategy used is the model replacement strategy, as we were not able to
sufficiently enter backdoor pattern using the basic attack strategy (see Section 4.6).

In Figure 4.27, the results using the 1% sized green squared backdoor are displayed. We
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can observe that in a network with malicious clients using 25% and 50% backdoored
data the performance on the benign as well as the malicious testset exceeds the 95%
accuracy threshold after 100 epochs. In this cases we follow that the backdoor attacks
were successful.

Comparing these results to the smaller 0.5% green sized backdoor in Figure 4.28, we can
clearly see a difference. Backdoor insertion at 25% and 50% malicious data in malicious
clients only reach 61% and 1% accuracy on the malicious testset and can be considered
as not successful. If 75% malicious data is used in the fraudulent clients, the backdoor is
successfully introduced, then however the performance on the benign testset is reduces
to 43%.

The results of using a black and 1% sized backdoor pattern are displayed in Figure 4.29.
In contrast to the 1% sized green squared backdoor, the only backdoor attack considered
as successful is when malicious clients use 50% poisoned data. If we use only 25%, the
performance of the malicious testset is low, and the attack is not successful.

4.5.1 Conclusion

To summarize, we can definitely see the impact of the pattern’s size as well as color on the
success rate. In our dataset, bigger backdoors work better than the smaller backdoors,
and the (rarely in the images occurring) green color works better than the (very common)
black color.

An important factor for the attacker is clearly the inconspicuousness of the backdoor
pattern itself. In a real world setting, a backdoor that is highly suspicious will more
likely be identified that one that is not, as described in Section 3.5. While there is no
quantitative metric of what "looks suspicious", one can generally argue that the size plays
a significant role. When investigating real world traffic signs, as well as signs available in
the German Traffic Sign Recognition Benchmark dataset itself we found many stickers
exceeding this 1% area by far. Also, they occur in a range of colors and illustrate a
variety of motives. Examples from the mentioned dataset are shown in Figures 4.30.

Recommendations for an attacker are, according to above observations, to select a big and
unusually colored backdoor pattern to increase the chance of the attack to be successful.
More backdoor patterns and comparisons to existing literature are discussed in Chapter
6.
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Figure 4.27: Results of backdoor insertion results using model replacement method on 1%
sized green squared backdoors on different percentages of poisoned data in malicious
clients
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Figure 4.28: Results of backdoor insertion results using model replacement method on
0.5% sized green squared backdoors on different percentages of poisoned data in
malicious clients
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Figure 4.29: Results of backdoor insertion results using model replacement method on 1%
sized black squared backdoors on different percentages of poisoned data in malicious
clients
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Figure 4.30: Naturally occuring backdoors in samples of the German Traffic Sign Recog-

nition Benchmark dataset
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4.6. Attack Strategies (in federated aggregation learning)

Table 4.6: Configuration used for experiments on the attack model

merge strategy aggregation

number of sources (benign/malicious) | 4/1
distribution of the data (non-iid/iid) | iid

backdoor type green 1% sized squared
order of time backdoors are inserted none
attack model basic, model replacement

% of poisoned data in malicious nodes | 12.5%, 25%, 50%, 75%, 100%

4.6 Attack Strategies (in federated aggregation learning)

This section deals with two different attack strategies as described in Section 2.6.1. These
strategies are compared in a federated learning setting using federated averaging, as the
model replacement strategy is not capable of used in a sequential learning setting. The
backdoor used in this section is the "green 1% sized backdoor", as it is the best performing
pattern according to Section 4.5. In this section we give a performance comparison on
both methods, including an analysis on the fraction of benign to malicious samples in
malicious clients.

The experiment’s configurations are listed in Table 4.6.

4.6.1 Basic strategy

The following tests in the basic attack strategy scenario are done in a network consisting
of 5 clients in total. We choose to use a 4/1 split (4 benign and 1 malicious client) as it
is the configuration with the best success rate for the attacker. If the attack does not
work in this setting, it will be even less performant if the number of attacks in relation
to benign clients is decreased.

In Figure 4.31 we observe that the backdoor insertion into the global model using the
basic attack strategy performs best when all available data in the malicious clients is
poisoned. As we can see, in the case of 100% poisoned data in the clients, the performance
climbs to a level of around 80% after 100 epochs. The first 60 epochs this accuracy is
near to 0%. The success rate of the attack drastically reduces if the number of clients in a
federated network increases (compare Figure 4.37). When increasing the maximum epoch

numbers to 200, we observe that the accuracy on the malicious testset steadily increases.

It eventually exceeds the 95% testset accuracy after 145 train epoch for malicious clients
containing 100% poisonous data.

In even bigger neural networks, accuracy of this strategy on the malicious testset decreases
drastically (under 1%, see Section 4.7.2), making it unusable for backdoor insertion.
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Figure 4.31: Basic attack strategy in federated aggregation at different percentage of
poisoned data in malicious clients

4.6.2 Model replacement strategy

For the model replacement strategy we observe that an elementary parameter of impor-
tance is the fraction p, defined as the relation between benign and malicious samples in
malicious clients. The reason for its high importance is that the goal of this methodology
is to replace the global model with the attacker’s local model - and to be also performing
successfully on benign training data, the malicious clients need to have correctly labeled
observations as well.

In Figure 4.27 we test values for p between 100% (only poisoned samples in the attackers
train set) and 0% (no poisoned samples). It turns out that this fraction acts a a trade-off
between performance on the benign testdata and performance on the malicious testdata.
For our use-case the optimal value for p appears to lie between 25 and 50%. These
observations agree with findings in literature as described in more detail in the Evaluation-
Chapter 6.5. Bagdasaryan et. al. [BVHT18] for example used a percentage of 31% at 5%
poisoned clients to reach an accuracy on their malicious testset of over 90%.

An interesting finding is that even at p=100% (containing no correctly labelled data), the
global model is still able to classify some benign testsamples correctly. This means that
there is only one (wrongly labeled) class in the train set of the adversary. A plausible
explanation for this behaviour is that the global model is not entirely replaced by the
local model though replaced to a high degree.

4.6.3 Comparison

Comparing these two strategies, we can see that the model replacement strategy clearly
outperforms the basic attack strategy by all means. Our best performing value in the
basic attack strategy (p=100%) reaches a lower level of backdoor accuracy compared to
the best performing value using model replacement strategy, and also needs way more
training epochs to be inserted (see Figure 4.32).

Furthermore, as we can see in Section 4.7, the more clients are averaged at one point
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4.6. Attack Strategies (in federated aggregation learning)

of time, the bigger this performance difference between the two methods becomes. The
same comparison as above is now tested in a network consisting of 8 benign clients
and 2 malicious clients. In Figure 4.33 this comparison is visualized graphically. The
performance difference of the basic attack strategy and the replacement strategy has
increased.
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Figure 4.32: Comparing basic attack strategy to model replacment strategy in a network
consisting of 4 benign clients and 1 malicious clients
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Figure 4.33: Comparing basic attack strategy to model replacment strategy in a network
consisting of 8 benign clients and 2 malicious clients
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4. CASE STUDY ON TRAFFIC SIGN CLASSIFICATION
Table 4.7: Configuration used for experiments on the number of attackers

merge strategy sequential, aggregation

number of sources (benign/malicious) | 4/1, 3/2,2/3,9/1, 8/2, 7/3

distribution of the data (non-iid/iid) | iid

backdoor type green 1% sized squared

order of time backdoors are inserted last

attack model basic, model replacement

% of poisoned data in malicious nodes | 12.5%, 25%, 50%, 75%, 100%
4.7 Number of attackers in relation to benign clients
In this section we experiment on the number of benign clients in relation to the number
of malicious clients, and their influence on the global model’s accuracy. We again use
a green squared 1% sized backdoors as it appears to be working best. The detailed
experimental setup in Table 4.7 is used for the experiments in the section.
Again, we divide this section into sequential training and federated averaging, as this
makes a difference in the results.
4.7.1 Sequential (cyclic incremental) training
Similar to experiments in literature summarized in Section 2.6, we test values for the
fraction of attackers between p=5% and p=20%.
In Figure 4.34 we show the results when backdoored clients are trained after all benign
clients. We can conclude that all tested values lead to an accuracy of over 95% on
test-data containing backdoor images, while also achieving an accuracy of over 95% on
the benign test data, after 100 training epochs. While the performance on the benign
testset increases notably slower than in a network without fraudulent clients, the backdoor
is entered immediately in all tested cases.
In Figure 4.35 we perform the same experiments as done for Figure 4.34 but train the
malicious clients first. Also in this case, all tested values reach the 95% performance level
on both testsets. It appears that in our case study the number of clients in sequential
learning is hardly relevant.
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4.7. Number of attackers in relation to benign clients
o o
S - 53
o _| © 3
@ @
) [
- E g
g L
@ o @ -
BT 7 B
o ]
= =
o | —— benign test data (p=20%) o
o —— benign test data (p=10%) ) - benign test data (p=20%)
—— benign test data (p=5%) —— benign test data (p=10%)
o - — benign test data (no backdoor) 8 benign test data (p=5%)
T T T T T T T T T T T T
0 20 40 80 80 100 0 20 40 60 80 100
Epoch number Epoch number

(a) Benign testset

(b) Malicious testset

Figure 4.34: Testset performance with p% of backdoor clients using sequential training,
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4.7.2 Federated averaging

We divide this section into two parts, corresponding to the two attack strategies mentioned
in Section 2.6.1.

Basic attack strategy

As mentioned in Section 4.6, the best results using basic attack strategy were achieved
with clients containing 100% malicious data. Therefore, we use this value for all further
tests in this section. Also, we examine two different sizes of federated networks.

First, we test the basic attack strategy in networks with 5 clients. We test having
one malicious client (20% of the network, represented by the "red line" in figures), two
malicious clients (40% and the "blue line" in figures) or three malicious clients (60%,
displayed by the "green line"), while the rest are benign clients. The results are depicted
in Figure 4.36.

Also, a network with 10 clients is examined and tested for the influence if the number
of malicious clients is increased to 1 (10%), 2 (20%) or 3 (30%). Figure 4.37 shows the
results.

Our experiments conclude that a higher percentage of malicious clients in respect to
benign clients leads to a better insertion of the backdoor into the global model. However,
a factor that is surprisingly more important is the absolute number of clients averaged
over one epoch. Comparing a malicious client rate of 20% we observe that in a network
consisting of 5 clients (Figure 4.36) the backdoor is introduced at a much higher level
than in a network of 10 clients (Figure 4.37).
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Figure 4.36: Varying the percentage of malicious clients in a network of 5 clients with
basic attack strategy
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Figure 4.37: Varying the percentage of malicious clients in a network of 10 clients with
basic attack strategy

Model replacement strategy

The goal of the model replacement strategy is that the attacker replaces the global model.
If more than one attacker is present in the network, they collaborate in the way that
the attackers split their poisoned model into n-parts, and each attacker sends 1/n for
aggregation.

In Figure 4.27 we can observe results from experiments on 4 benign clients and 1 malicious
client, containing 20% malicious clients. To keep comparability with prior experiments,
we repeated the exact same experiment configuration in a network of 9 benign and 1
malicious client, resulting in 10% malicious clients. These results are depicted in figure
4.39. Each graph again shows performance curves at different malicious clients poison
rate p.

In both cases, the backdoor is successfully introduced at a performance of >95% in the
case of p>50%. In the case of 10% malicious clients, even p=25% is enough to reach this
performance threshold.

For the performance of the benign testdata, we observe some differences. In general,
networks with a higher number of participants take longer to converge than networks
with fewer participants (see also Section 4.2 for discussion). Noteworthy, the benign
testset accuracy of our network at 20% malicious clients (Figure 4.38) increases faster for
p=50% and p=75% than our network at 10% malicious clients (Figure 4.39).
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Figure 4.38: Experiment scenario from Figure 4.27 at 8 benign clients and 2 malicious
clients
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Figure 4.39: Experiment scenario from Figure 4.27 at 9 benign clients and 1 malicious
client

4.7.3 Conclusion

To summarize, in the setting of sequential learning, the effect of the percentage of
malicious clients is relatively small. In all tested settings for malicious clients fractions in
the range of 5% to 20% we were able to introduce the backdoor into the model.

In comparison, in a network using federated aggregation this effect is much bigger. Also,
our experiments concluded that the fraction of malicious clients has a significant impact
on the speed of embedding for the backdoor - for the basic attack strategy and model
replacement strategy. In general, a higher number of attackers in relation to benign
clients has a positive influence on the time the backdoor needs to be introduced into the
global model.

Notably, similar to observations by Nguyen et. al. [NRMS20] the effectiveness of a
backdoor pattern is not simply connected to the amount of poisoned data in the network.
Instead, the way the poisoned data is distributed among adversaries is a highly important
factor.
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4.8. Analysis

4.8 Analysis

In this case study we investigated on the behaviour of federated learning in terms of a
varying number of clients and its performance on different types of data distributions
(non-iid and iid). We were discussing differences in sequential learning and federated
averaging architectures, as well as the possibility of backdoor attacks in the setting of
traffic sign classification. To gain an insight, we have implemented a state of the art neural
network that is used on the German Traffic Sign Benchmarks Dataset. Additionally, we
altered this dataset and added three types of backdoor patterns to the observations - at
varying colors and sizes. Using this environment we performed a range of attacks using
different parameters on both types.

We show that in the case of sequential learning, the number of clients regarding ef-
fectiveness of the model is not important if the data is distributed independent and
identically. However, due to communication effects between the distributed clients there is
definitely an impact on the efficiency, but we have not put our focus on that. Furthermore,
observations from the early stages of a sequential learning cycle are more likely to be
forgotten at the end, a behaviour denoted as "catastrophic forgetting" in literature. For
the federated averaging case, we observe that the more clients are averaged simultaneously,
the longer the global model needs to converge, but they eventually reach the same level
of effectiveness. Furthermore, we show that both techniques have problems with non-iid
data, and in the federated aggregation case, sparsely known data is trained slower.

Addressing backdoor attacks, we showed that a state of the art neural network used in
this domain is very vulnerable - in both, sequential learning and federated aggregation
settings. Bigger-sized and seldom occurring colored backdoor patterns (in respect natural
occurring patterns in the benign training data) show a better performance on our dataset,
as well as a higher percentage of malicious clients. Backdoors can introduced by both
tested attack strategies, whereas the model replacement strategy clearly outperforms
the basic attack strategy. To achieve best results with the latter strategy, an attacker
must tweak the fraction between benign and malicious observations in his data. This
fraction acts as a trade-off between performance on the benign data and the backdoor
performance.

In the next chapter, we further investigate backdoor related research questions in the
domain of facial recognition. Subsequently, we evaluate all our results against observations
obtained in existing literature.
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CHAPTER

Case study on face recognition

In this chapter we investigate backdoor attacks in the context of face recognition. We
use the Yale Faces dataset and add backdoor-patterns that could be applied in reality.
In contrast to the previous chapter we primarily focus here on the effects of the different
backdoor patterns.

For this dataset we use a neural network architecture which is described in more detail
in Chapter 3.3. The optimizer used for this network is Adam [KB15] at a learning rate
of 0.0001. The reason we choose Adam is that this optimizer performed well on face
recognition tasks in the past [AMDJ12]. The value of 0.0001 is the default learning rate
set in the PyTorch framework, which clearly outperformed also tested values of 0.001
and 0.00001.

As explained in Chapter 3 we use two different kinds of backdoor patterns: a "full beard"
pattern and a "glasses pattern" added to the faces. A sample observation with added
backdoors is shown in Figure 5.1.

Note that the backdoors are inserted into the data via "FaceApp" [Facl9]. Due to the
nature of this app (faces are analyzed using machine learning and patterns are fitted
individually), the backdoors are not entirely identical. In contrast to Chapter 4, where
the backdoors are completely identical, we decided to use these "non-identical but similar"
patterns to illustrate potential robustness of the backdoors.

All datasets are uploaded to Zenodo and achievable under the DOI 10.5281/zen-
0do.3774167, as well as the model files 10.5281/zenodo.3774170 of the results. The
matching of each model file to the concrete experiment is listed in the appendix under
Figure 8.2.
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5.

CASE STUDY ON FACE RECOGNITION

80

(a) Full beard backdoor (b) Glasses backdoor

Figure 5.1: Different backdoors added to the same observation

5.1 State of the art

In [GB12], the authors did an extensive comparison on classifying the Yale Face dataset
using non-neural-network technologies. The best tested classification strategy was using
the Fisherfaces method, which performs Principal Component Analysis as well as Linear
Discriminant Analysis on the data. This method resulted in a testset accuracy of 95%.
They resized the facial images to 56x46 pixels and used 5 observations of the dataset for
training purposes.

For our experiments we rebuild a state of the art neural network used on this dataset
first used by Manthouri et. al [KMT13]. They split each class containing 11 images into
a training set of 9 observations and a testset of 2 observations. Their best results with
this neural network achieved a testset accuracy of 80%.

We also split the dataset in the same way and started our experiments with centralized
machine learning setting using for 100 training epochs. These results act as a reference
value for further experiments with backdoors, and are displayed in Figure 5.2. As shown,
we reach a testset accuracy of 92% which represents even better results than [KMT13].
A reason for this might be the augmentations to our training dataset in the prepossessing
step described in Section 3.2.2.
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Figure 5.2: Results on the Yale Face dataset using centralized machine learning

In a federated learning environment, our baseline values to compare for the following
backdoor attacks are a testset accuracy of 92% using sequential learning and 85% for
federated averaging, each using 5 clients after 100 epochs showed, as depicted in Figure
5.3.
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(b) Federated aggregation

Figure 5.3: Our reference performance on different sized networks using sequential
learning and federated averaging

5.2 Backdoor pattern: full beard

The first tested backdoor pattern is adding a full beard to two thirds of the classes. These
classes are randomly selected and kept constant across all experiments. Classes selected
for adding the backdoor are all except class 5, 7, 11 and 12. While persons of class 2, 9
and 13 are naturally wearing a small beard, class 7 wears a full beard similar to the one
we added as backdoor. Each single observations of the poisoned classes is duplicated and
equipped with backdoors, and we split the data following the principle as described in
5.1 into training and testset. We test the performance of the backdoor using networks
with sequential and federated aggregation.

5.2.1 Sequential learning

We perform the experiments in the sequential learning setting on a network consisting
of 4 benign (from now on referred as "smaller network") and 1 malicious clients, and a
network consisting of 9 benign and 1 malicious clients (referred as "bigger network"). We
also analyse the point of time the adversary is trained at.
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Figure 5.4: Performance of one malicious client trained after 4 benign clients using full
beard backdoor pattern on sequential learning
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Figure 5.5: Performance of one malicious client trained after 9 benign clients using full
beard backdoor pattern on sequential learning

Training adversaries after benign clients

In Figure 5.4 we observe the results of the smaller network having the malicious client
trained last. Note that as described in more detail in the graphics of Section 4.4, the
number of x-axis ticks equals 200 due to testing twice per epochs over 100 epochs. We
can observe that in early stages of the model training, the performance on the benign and
the malicious testset are fluctuating significantly. The reason for this behaviour might be
the fact that the data itself differs very strong (having all available target classes in the
benign clients vs. having only one class when the adversary is trained). With increasing
time, the model apparently learns the backdoor and these fluctuations start to decrease.
After all 100 training epochs, the performance on the benign testset has stabilized, and
the performance on the malicious testset fluctuates only around 10% of the malicious
testset accuracy. The accuracy on the benign testset sticks at 92%, while the accuracy
on the backdoor task reaches 87%.

Comparing these results to the bigger tested network in Figure 5.5, we can clearly see
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5.2. Backdoor pattern: full beard

that in the latter case the fluctuations on the benign testset cancel our earlier. The
fluctuations on the malicious testset are occurring at a comparable level as on the smaller
network. In this testcase we can observe that the accuracy on the malicious testset has
decreased to 72%. This accuracy drop might be due to the fact that in our experiment

settings we assure that each client trains the model on the same amount of observations.

The fraction of malicious clients training data is 1/5 in the small network but only 1/10
on the big network.

Training adversaries before benign clients

In Figures 5.6 and 5.7 the results of experiments are displayed where the adversary
is trained before all benign clients. For the smaller network portrait in Figure 5.6 we
observe fluctuations at the same level as in experiments when the adversary is trained
last. Notably, the accuracy of the malicious testset is drastically reduced by around 20%
comparing to Figure 5.4.

In the bigger sized network (Figure 5.7), the performance drop on the backdoor testset
has increased comparing to the smaller sized network, leaving up a backdoor performance
of only 57%. The accuracy on the main task dropped from 80% to 78%.

To conclude, we see that the bigger networks are generally performing worse in respect
to backdoor accuracy, in comparison to the smaller networks. This might be due to the
fact that, from a relative perspective, the fraction of malicious clients dropped from 20%
to 10% of the clients.
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Figure 5.6: Performance of one malicious client trained before 4 benign clients using
full beard backdoor pattern on sequential learning

Evaluating beard backdoor performance in sequential learning

In this section we evaluate the capability of the beard pattern to be used for backdoor

attacks. In the Figure 5.8a the per class accuracies of each class are displayed in a bar-plot.

The black bars represent our starting position - a network without any adversary. The
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Figure 5.7: Performance of one malicious client trained before 9 benign clients using
full beard backdoor pattern on sequential learning

grey bar represents the per class accuracies in a sequential network consisting of 4 benign
clients and 1 adversary which is trained at the end of the learning cycle.

While the accuracy has not changed or decreased for some classes, it is noteworthy that
they even increased for class ids 1, 3, 4, 5 and 10. We believe that this, on the first
glance, illogical behaviour is a result of some overfitting in the non-poisoned network.
The non-adversarial network converges after only 10 epochs, and apparently the overall
accuracy drops from 95% to 92% over the following 90 epochs (see Figure 5.3a). By
adding malicious data this overfitting might be decreased (at least for some classes), as
the network is busy with the poisoned data.

The red bars of this plot represent the accuracy of the poisoned data that are correctly
misclassified as class 1. Classes 5, 7, 11 and 12 were not selected for adding a beard in
the first place, and so they do not have backdoored data in the testset.

Overall seen, the backdoor is performing at an accuracy of 88%. Classes 9 and 13 are
deceeding this value. Figure 5.8 represents the confusion matrix of the backdoored
samples. If all backdoors were working at 100%, than each backdoored input sample
(from the y-axis) would be matched to target class 1 in the x-axis. Most malicious samples
are classified as expected or still as their originating class (meaning, the backdoor is not
recognized). Notably, we also observe that four samples, originating from class 9, are
misinterpreted to class 7. This is an interesting case because per default, the person of
class 7 naturally carries a full-beard.

To conclude, we were able to enter the beard backdoor using sequential learning to a high
level (in the best tested case at 81%) while also preserving huge parts of performance
on the benign testset (77%). In general, the later an adversary attacks a learning cycle,
the better the backdoor is implemented into to network, but the higher the performance
is degraded on benign testdata. Opposing an adversary more benign clients, as well as
using bigger networks, leads to less success in introducing the backdoor.
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(b) Confusion matrix of the backdoored samples
in poisoned network (x-axis: predicted outcome
for adversarial input data, y-axis: backdoor
added to samples originating from correspond-
ing classes - each labeled to target class id 1)

(a) Per class accuracy on testset (black: benign
samples in non-poisoned network, grey: benign
samples in poisoned network, red: backdoored
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Figure 5.8: Comparing per class accuracies in a sequential network consisting of 4 benign
and 1 malicious client (adversary trained at the end of the learning cycle) - backdoor
type: beard

5.2.2 Federated averaging

In this section we test the "beard-shaped" backdoors in federated learning environments.

In contrast to sequential learning, we also experiment on varying fractions of benign
to malicious data in the adversaries, as this is crucial when using model replacement
strategy. In detail, if an adversary contains 50% benign and 50% malicious data, we
create two pools - one containing all non-poisoned observations of all classes, and one
containing all poisoned observations of all poisoned classes. Then, we randomly add
observations to the client in a ratio of 1:1, until the client has as much observations as
all other benign clients have.

Basic attack strategy

For the basic attack strategy, we test a network consisting of 10 clients at different

numbers of adversaries. In all tested cases, the attackers contain 100% poisoned data.

The results are depicted in Figure 5.9. As one can see, the performance on the benign
testset stays the same throughout all tested cases, and does not deviate significantly from
a network without adversaries. The accuracy on the malicious testset increases with the
the more attackers participate in a network, but sticks in any tested case under 30%. At
this low accuracy the attack can be considered not successful.

Model replacement strategy

In the model replacement strategy we first try a small network consisting of 4 benign
and 1 malicious client (Figure 5.10). Here, we focus on testing fractions of benign to
malicious data, as they are very relevant to the success.
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Figure 5.9: Performance of backdoors using basic attack strategy in a network of 10
clients using full beard pattern

We can see that test cases of 12.5% and 25%, the performance of the benign testdata is
nearly identical to a network without adversaries after 100 epochs. The performance on
the malicious testset however is around 35% for the smaller (12.5%) and 44% for the
bigger (25%) tested fraction. For a fraction of 50% poisoned data, the performance on
the benign testset lies at 72% while the accuracy on the malicious testset sticks around
82%.

Obviously, there is a clear trade-off for the fraction of malicious data in adversaries. The
higher this fraction, the better the backdoor is implemented into the model, but the
worse it performs on benign testdata. This trend still continues when the fraction is
increased to 75% and 100% malicious data in malicious clients.

In a bigger network consisting of 9 benign and 1 malicious client (Figure 5.11), we observe
the same pattern. The higher the fraction of malicious data in malicious clients is, the
better the backdoor is inserted into the global model, but the worse the model works on
non-poisoned data.

In general, the performance on the benign testdata is lower on the bigger sized network, in
comparison to the smaller network. The model replacement attacks, in contrast, perform
in both networks at comparable levels.
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Figure 5.10: Performance of backdoors using model replacement strategy in a network
of 5 clients (4 benign and 1 malicious) using full beard pattern
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Figure 5.11: Performance of backdoors using model replacement strategy in a network
of 10 clients (9 benign and 1 malicious) using full beard pattern
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Evaluating beard backdoor performance in federated averaging

As done in the case of sequential learning, we investigate the per class accuracies of
federated learning on benign and malicious data. To showcase, we use a network of 4
benign client and 1 adversary which uses the model replacement method. In Figure 5.12,
the per class accuracies of an adversary using 25% malicious data are depicted. Overall,
the backdoor is introduced at an accuracy of 45%, while benign testdata reaches an
accuracy of 88%. We clearly see that most of the data is still classified as if the backdoors
were not added, observable by the colored diagonal. This indicates that the backdoor is
either not strong enough, the adversary uses a too small fraction of poisoned data or the
model is not trained long enough for the backdoor to make it into the global model.

In Figure 5.13 we show the per class accuracies at an increased percentage of malicious
data to 50% in the adversary. Now, most of the adversarial data (83%) is correctly
misinterpreted as class 1. At the same time, the accuracy on the benign testset dropped
from 85% to 72% - a drop that mainly results from benign test-samples also classified as
class 1.

Resulting from these experiments, our federated learning setup is definitely capable of
being attacked by adversaries when beard patterns are added. In the following section
we investigate a "glasses" pattern and compare its effectiveness with the "beard" pattern
to gain insights on the influence of the pattern’s prominence.
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Figure 5.12: Comparing per class accuracies in a federated averaging network consisting
of 4 benign and 1 malicious client (adversary trained at the end of the learning cycle) -
fraction of malicious samples in adversary: 25%- backdoor type: beard
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Figure 5.13: Comparing per class accuracies in a federated averaging network consisting
of 4 benign and 1 malicious client (adversary trained at the end of the learning cycle) -
fraction of malicious samples in adversary: 50%- backdoor type: beard
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5.3 Backdoor pattern: glasses

The second tested backdoor pattern are black glasses. Like the beard pattern, they are
added to a random subset of two thirds of each person. Classes with added backdoors
are the ones with the following ids: 2, 4, 6, 7, 8, 9, 10, 12, 14 and 15. Naturally, people
wearing classes are represented by class id 8, 13 and (partly) 14. While glasses of class
13 and 14 are very thin, the glasses of class 8 resembles the big black glasses we use as
backdoor. Experiments are again performed on a network consisting of 4 benign clients
and 1 adversary (referenced as "small network"), and a network consisting of 9 benign
clients and 1 adversary (respected as "bigger network"). The results of these experiments
are discussed in the following sections.

5.3.1 Sequential learning
Training adversaries after benign clients

In Figure 5.14 we observe, comparable to the beard backdoor, big fluctuations in the
benign as well as malicious testset, when the adversary retrains the model after all benign
clients. These fluctuations start to become smaller the more training epochs have elapsed.
After the final epoch, they still fluctuate in an accuracy of around 5% in the case of the
benign testset, and around 10% on the malicious testset. In general, the final accuracy
on the benign testset is 77%, while the backdoor’s accuracy settles at 81%. When the
adversary is trained after all benign clients in the bigger network, as seen in Figure 5.15,
we also observe these fluctuations in accuracy. However, in the case of the benign testset,
they start to settle earlier and are nearly stable after 100 training epochs. With a benign
testset accuracy of around 84% the performance on the main task increased, while it
decreased to 71% on the backdoor task.

In terms of benign testset accuracy, the bigger network outperforms the smaller network.
In respect to malicious testset accuracy, it is the other way around.
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Figure 5.14: Performance of one malicious client trained after 4 benign clients using
glasses backdoor pattern on sequential learning
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Figure 5.15: Performance of one malicious client trained after 9 benign clients using
glasses backdoor pattern on sequential learning

Training adversaries before benign clients

In the smaller network, training adversaries first results in big accuracy fluctuations.
Even after 100 epochs, the accuracy fluctuates around 15% on the benign task, and even
20% on the malicious task. After finishing the training cycle, they reach an accuracy of
80% on the main task and 67% on the backdoor task. This is displayed in Figure 5.16.

These fluctuations are still present in the bigger network (Figure 5.17). The accuracy
on the main task settles around 78%, while the accuracy on the backdoor drops to 57%.
This drop of performance on the malicious testset also occurs when using the beard
backdoor pattern.

Observations on this backdoor pattern agree with observations achieved with the beard
backdoor. Throughout all tested cases, the accuracy on the glasses backdoor is lower
than using the beard pattern in the sequential learning setup.
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5.16: Performance of one malicious client trained before 4 benign clients using
backdoor pattern on sequential learning
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Figure 5.17: Performance of one malicious client trained before 9 benign clients using
glasses backdoor pattern on sequential learning

Evaluating glasses backdoor performance in sequential learning

By evaluating the backdoor performance, we compare the overall accuracy of benign
testdata in a non-poisoned sequential learning network (92%) to the benign accuracy in
a poisoned network (92%). Note that both networks consist of 5 clients, and one of these
clients is an adversary in the case of the poisoned network. Overall, the accuracy on the
benign testdata stays constant. By looking at the per class accuracies however in Figure
5.18a (black: non poisoned network, grey: poisoned network) we see than a part of them
has changed. While one would expect that per-class accuracies stay at a constant level or
decrease a bit, they are even increasing for some classes. This is also happening for the
beard classes, and we believe that it is a result because of overfitting in the non-poisoned
network.

The overall backdoor accuracy measures 88%. Obtained by analysing the blue bars in
Figure 5.18a the biggest outlier is class 7. By looking at the confusion matrix in Figure
5.18 we observe that the backdoor is not working for this class, as the test data is still
classified as if the backdoor is non existent. Also, even tough our backdoor is similar
to the glasses naturally existing in class 8, there are only two single observations are
predicted to be part of this class.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.3. Backdoor pattern: glasses

H H °

°
olo|e|e|e|eo|o|o|o|o|o|e|a|s]e
olo|o|eo|e]|e

60
1

Per class accuracy
40

20
L

vfjo|o|o|o|o|e|e|e|e|e|e|e|e|e

olo|o|e|e|e|e|e|e|e|e|e|e|e|e

olo|o|e|eo|e|e|e|e|e|e|e|e|e|e

olo|e|e|e|o|e|e|o|o|e|o|a|e|e

olo|eo|e|e|eo|o|o|e|o|e|e|e|e|e

Hdolo|o|o|o|o|e|e|e|e|e|e|ale]|e

olo|o|s|o|o|o|o|o|o|e|c|e|e|e

olo|o|e|e|e|o|e|e|e|e|e|e|e|e

olo|o|eo|o|eo|o|o|o]|o|o|e|e|e|e

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
T

15 14 13 12 1110 9 8 7 6 5 4 3 2 1

olo|o|e|e|e|e]|e

0 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 i T T
1

N
«
IS
>
~
©

Class id

(b) Confusion matrix of the backdoored samples
in poisoned network (x-axis: predicted outcome
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Figure 5.18: Comparing per class accuracies in a sequential network consisting of 4 benign
and 1 malicious client (adversary trained at the end of the learning cycle) - backdoor
type: beard

5.3.2 Federated averaging

In the setting of federated averaging, we again split our experiments into two sections,
representing both tested attack strategies.

Basic attack strategy

For this strategy we set up a testing environment with a network consisting of 10 clients in
total. Then, we replace one, two or three clients with adversaries. Each adversary trains
the local model with 100% malicious data (while keeping the number of observations for
training the same as benign clients). In Figure 5.19 we summarized the observations.

The performance on the benign testdata is nearly identically to a network without
adversaries. The backdoor, on the other hand, is not introduced at all for any tested
case. While there is a slight trend of accuracy increase with a higher number of attacker,
the highest tested value of 3 adversaries (vs. 7 benign clients) reaches a malicious testset
performance of around 15%. This low performance of the basic attack strategy is also
observed using the beard-backdoor pattern. It seems that the glasses backdoor is even
performing worse than the beard backdoor, which resulted in an accuracy of around 30%
in the same scenario.
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Figure 5.19: Performance of backdoors using basic attack strategy in a network of 10
clients using glasses pattern

Model replacement strategy

For the model replacement strategy, the results are represented in Figure 5.20 on a
small network consisting of 4 benign and 1 malicious client. We again observe the same
trade-off behaviour concerning the fraction of malicious data in adversaries. A higher
fraction leads to a worse performance on the benign testset, which is connected to a
better performance on the malicious data.

Figure 5.21 represents experiments on a bigger network consisting of 9 benign clients
and 1 attacker. Experiencing the trade-off pattern again, in respect to the experiments
on the "full beard" pattern the backdoor accuracy is generally much smaller. In other
words, comparing the beard and the glasses patterns the same fraction of malicious data
in adversaries, the accuracy on the malicious testset is consistently lower when using the
glasses pattern.
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Figure 5.20: Performance of backdoors using model replacement strategy in a network
of 5 clients (4 benign and 1 malicious) using glasses pattern
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Figure 5.21: Performance of backdoors using model replacement strategy in a network
of 10 clients (9 benign and 1 malicious) using glasses pattern
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Evaluating glasses backdoor performance in federated averaging

In a federated averaging network consisting of 4 benign clients and 1 adversary at 25%
malicious data, the overall accuracy on the benign testset is 82%. Compared to a non-
poisoned scenario, this represents a performance drop of 3%. Comparing the per class
accuracies, depicted in Figure 5.22a, the variations are also small. On some classes we
again see a higher performance than in a non-poisoned network. The overall backdoor
performance amounts 31% - a comparably low value. By looking at the confusion matrix
in Figure 5.22b, most of the backdoored data is still classified as if there was no pattern
added. Apparently, the global network has learned the backdoor to a too small degree.

When the relation of malicious data to benign data is increased to 50% in the adversary,
the backdoor performance increases to 81%. Now, most of the backdoored classes are
classified correctly, as depicted in Figure 5.23b. Simultaneously, the overall accuracy of
the benign testset dropped to 52%. By looking at the per-class accuracy graph in Figure
5.23a we observe that especially the classes with a high accuracy in the malicious testset
result in a lowered performance on the benign testset.

Comparing the results using the glasses pattern to results obtained by the beard pattern,
the performance drop using the glasses backdoor (81% to 52%) exceeds the drop using
the beard backdoor (82% to 72%) - at comparable accuracies on the malicious test-sets.

Coming to a conclusion, we observe that we were able to introduce the glasses backdoor
into out global model, although at a lower level of accuracy. Potentially, a reason for
this is that the pattern in general constitutes a smaller area in contrast to the beard
backdoor.
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Figure 5.22: Comparing per class accuracies in a federated averaging network consisting
of 4 benign and 1 malicious client (adversary trained at the end of the learning cycle) -
fraction of malicious samples in adversary: 25%- backdoor type: glasses
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Figure 5.23: Comparing per class accuracies in a federated averaging network consisting
of 4 benign and 1 malicious client (adversary trained at the end of the learning cycle) -
fraction of malicious samples in adversary: 50%- backdoor type: glasses

5.4 Attack analysis

In this case study we investigated a very practically relevant scenario: the classification
of facial data. This is especially relevant in buildings or areas with access control via
face recognition, which are on the rise with progressing digitisation. In contrast to prior
work (e.g. [WYST19]) we focus on adding backdoors that could be realistically feasible
and are inconspicuous.

Overall seen, we conclude that using this state of the art neural network the introduction
of both backdoors works to a high degree - with the full beard backdoor pattern performing
a at higher level. As already mentioned, this is likely due to the bigger size of full beard
pattern compared to the glasses.

Summing up perceptions on the research questions, we were again able to show that in
the sequential learning setting the point of time the adversary trains his model matters
to a high degree. Moreover, we were able to see that the model replacement strategy
outperforms the basic attack strategy drastically, and that the success of former depends
on the fraction of malicious to benign training data in the adversary. Generally, our
observations match with the results of the case study on traffic signs in Chapter 4.

In the next Chapter we evaluate the results of both case study results with former
observations of literature to finalize our research questions.
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CHAPTER

Evaluation of results

In this chapter we investigate the research questions formulated in Section 1.3 based on
existing observations in literature as well as our results.

6.1 Evaluation of number of clients

The first research question focuses on the effect of a varying number of clients in the
machine learning process. In centralized machine learning, all data is processed on one
single, client, while the two types of federated learning usually consist of multiple clients.

6.1.1 Observations by literature

Sheller et. al. [SRE'19] experiment on the performance of different techniques of
federated learning on the classification of a brain tumor image dataset. Federated
averaging and incremental sequential learning approaches are both tested on the following
numbers of clients: 4, 8, 16 and 32. Also, they test a central machine learning setting on
one single client processing all data.

They measure a model’s performance using the Dice Coefficient, also known F1 Score.
This effectiveness-measurement represents the harmonic mean of precision and recall,
therefore a higher value means better performance. In Figure 6.1 their experiments are
depicted. As represented in the legend, "FL" stands for "federated averaging", "CIIL"
equals "incremental sequential learning” and "Data-Sharing" a centralized training model.
The shading represents the min /max values for the tested method. Overall seen, federated
learning techniques perform nearly identical to a centralized approach.

Split into graphs and grouped by different numbers of clients, the results in Figure 6.2
give some deeper insights.
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Figure 6.1: Comparison of experiment results on different learning approaches by Sheller
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Considering only the results of incremental sequential learning, it appears that at
higher numbers of clients (tested values 16 and 32), the overall model performance
is drastically fluctuating. They follow that a reason for this might be "catastrophic
forgetting" [KPR*17]. This behaviour describes the phenomenon, that in later stages
of the learning cycle the model has already "forgotten" what it learned in early stages.
This effect increases with a large number of clients and small amounts of data per client.
With a smaller amount of clients, the model performance is nearly identical (F1 Score:
0.843 at 4 clients, and 0.839 at 8) with the centralized model (0.862).

Federated averaging, however, suffers from far less instabilities. The overall performance
is growing steadily, especially at a higher number of clients, and overall seen, it is
outperforming sequential cyclic learning (F1 Score: 0.862 at 4 clients, 0.865 at 8). In
fact, it achieves nearly identical performance compared of the model performance of the
centralized model. On the down side however, it takes longer to converge, especially at
an increasing number of clients.

6.1.2 Evaluation of our results

Comparing the sequential network to the one with federated aggregation, we also observe
in our experiments that the federated aggregation network takes more time to converge.
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6.1. Evaluation of number of clients

What we do not observe is that the level of effectiveness in federated aggregation is higher
than in sequential learning, because in most cases they are performing identically.

In a sequential learning setting, our baseline experiments on the number of clients are

performed on iid data, so we do not observe the forgetting phenomenon in this case.

We investigate data distributed in a non-iid way in Section 6.2 in more detail will find

out that our experimental results match with the behaviour shown by Sheller et. al.

[SRET19].

Addressing a network where the data is combined using federated aggregation, we can
observe the same behaviour as Sheller et. al. [SRET19]. The more clients are participating
in a federated aggregation network, the more training epochs the global model needs to
converge.
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102

6.2 Evaluation of distribution of data

Due to the nature of federated learning, it is likely that data is distributed in a non i.i.d.
manner.

6.2.1 Observations by literature

McMahan et. al. [MMRT'17] experiment the MNIST dataset [LC10], a dataset on
handwriting classification, using the federated averaging algorithm. Their results show
that non-iid data needs more time to reach a certain accuracy threshold.

Shoham et. al. [SAK™19] also work on training the MNIST dataset on non-iid data, in
the setting of federated averaging as well as sequential learning. They result, in both
cases, in a reduced performance on highly skewed non-iid data, in terms of effectiveness
and the number of communication rounds needed, compared to iid data.

For sequential leaning, their declared reason for decreased performance is catastrophic
forgetting, the phenomenon of losing knowledge on (long) ago trained data, as described
in the previous section.

In federated aggregation, they draw connections to "Lifelong Learning", which is also
deeply related to catastrophic forgetting. It describes the challenge of learning "Task A",
and afterwards learning "Task B" but without forgetting what has already been learned.
While in federated aggregation this sequential learning is replaced by learning parallel,
they state that both learning types face the same problem, namely "how to learn a task
without disturbing different ones learnt on the same model".

The authors even propose a possible solution to overcome these shortcomings in form of
adding "a penalty term to the loss function to compel all local models to converge to a
shared optimum."

6.2.2 Evaluation of our results

We can confirm the results of [SAKT19] regarding sequential learning as we also observe
in both case studies that it heavily depends on the point of time the “exclusive” classes
are trained

Adressing federated aggregation, we can also confirm observations by Shoham et. al. and
McMahan et. al., as our results also lead to a reduced performance on non-iid data in
comparison to iid data.
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6.3. Evaluation of timing of the attack (in sequential learning)

6.3 Evaluation of timing of the attack (in sequential
learning)

This research question is situated in a similar area like the research question in Section
6.2. The timing of a backdoor attack in a sequential learning setting describes the point
of time an attacker attends in the "learning cycle" and enters its poisoned data.

6.3.1 Observations by literature

To the best of our knowledge, there is no paper that deals with backdoor attacks in a
sequential learning are yet. In the following, we describe some papers that deal with
backdoor attacks in a centralized ML setting, which are comparable to sequential learning
to some extend.

Earlier work like [GDG17], [WYS'19] use the following approach: First, they poison
a subset of the training data set (ranging from 10% to 50%) and train this modified
dataset for many consecutive epochs. Using this strategy, they were able to implement

backdoors into the model, without significantly decreasing the accuracy on the main task.

The training process is centralized, and the poisonous data is processed during the whole
training process.

Shoham et. al [SAK'19] show catastrophic forgetting in sequential learning in general,
without handling backdoor attacks.

Catastrophic forgetting is not a phenomenon of sequential learning only, as it is also
happening in centralized learning. According to Kemker et. al. [KMA™18], catastrophic
forgetting is described in centralized learning. In general, neural networks need to be
"malleable" to learn new tasks on the one hand - but bigger weight updates cause losing
previous knowledge on the other hand. Weights that are "too stable" prevent the model
of acquiring new tasks.

6.3.2 Evaluation of our results

In our experiments we observe that whatever (benign or backdoored data) is trained at
later stages of the training cycle, the more impact this data has on the "final model" at
the end of the learning cycle. In our concrete test-settings however, we were still able to
implement backdoor patterns even if they were trained in the beginning.

Note that the phenomenon of catastrophic forgetting occurs to be increasing the smaller
the batches of non-iid data, and therefore the more often the optimizer is executed
consecutively with the similar data.
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6.4 Evaluation of the size and shape of the backdoor

In this section the prominence of the backdoor patterns in is evaluated. Both, poisoning
traffic signs as well as images of faces has already been done with different backdoors,
which will be described explicitly and finally compared to our results.

6.4.1 Observations by literature

In Section 2.6.2 and Section 2.6.3 several existing attacks are described in detail. In the
following we will focus on backdoor patterns used on datasets for classification tasks on
traffic signs and face images.

Gu et al. [GDG17] perform backdoor attacks on an American traffic sign dataset. They
experiment with three different backdoor patterns, as depicted in Figure 6.3. Their sizes
are "roughly the size of a Post-it note'. We enumerate this vague size-description to
between 1 and 2 percent of the traffic sign’s area by analyzing their images, as they have
not explicitly stated. All of their tested backdoors succeed in introducing the backdoor
into the global model in an interval of 90% to 95% malicious testset accuracy.

Figure 6.3: Backdoor patterns used in experiments by Gu et al., graphic also by [GDG17]

Other observations by Wang et. al. [WYS*19] also deal with backdoor attacks on image
classification tasks. They train, in a centralized environment, a model from scratch with
both malicious and poisoned data. One of their tested datasets is the German Traffic
Sign Recognition Dataset (which is also used in our experiments). They use a white
squared backdoor with a relative size of 1% of the image which is statically located in
the bottom right corner of the image. (Note: In our opinion this seems not to be a
realistic assumption as the backdoor is constantly out of the actual traffic sign.) They
are depicted in Figure 6.4.

Detailed configuration:

e centralized learning
e neural network architecture: custom (6 Conv + 2 Dense layers)
e trainind epochs: 10

e batch size: 32
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6.4. Evaluation of the size and shape of the backdoor

optimizer: Adam

learning rate: 0.001

e image size: 32x32

poisoned data: 10%

Also, they add the same backdoor on face classification datasets, again in bottom right
corner. We do not consider to use squared-sized patterns in our experiments with the
Yale face dataset as this scenario does not seem to be realistic, and it is noticeable by
the user and suspicious.

(by GTSRB (c) YouTube Face (d) PubFig

Figure 6.4: Backdoor patterns used in experiments by Wang et al., graphic also by
[GDG17]

6.4.2 Evaluation of our results

We cannot totally compare the traffic sign results of Wang et. al. [WYS*19] to our
results, but we can derive some relations. We can relate their centralized machine
learning setting to some extend to our results obtained in the sequential learning setting,
as there are similarities. In their approach they also use small batches, all trained each
epoch - the same as we do in our sequential learning settings. (Note: we do group all
malicious batches either in the beginning or the end of each epoch, but after 100 epoch
this difference is negligible. Compare figures 4.34 and 4.35.)

In our setting we use 1% sized green patterns and additionally vary their positions. Our
results differ only to some percentage points from theirs. We are obtaining an accuracy of
around 95% on the benign testset and nearly 100% on malicious data, as opposed to the

benign testset accuracy of 96% and malicious testset accuracy achieved by Wang et. al.

Apart from that, there is, to the best of our knowledge, no literature specifically addressing
the prominence of the backdoors.

What we observe is an impact of the backdoor’s size and rarity in the main task. In
general, bigger patterns, as well as patterns with greater rarity (in terms of color) in the
benign training dataset lead to an increased performance on the backdoor task.

105


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

6.

EVALUATION OF RESULTS

106

6.5 Evaluation of different attack strategies

This section deals with the attack strategies described in Section 2.6.1. For evaluation
we refer to the literature observations described in Section 2.6.3.

6.5.1 Observations by literature

Bagdasaryan et. al. [BVH" 18] were testing both strategies on the "CIFAR-10" dataset
[KNH12]. They distribute data over a set of clients consisting of p% malicious and (1-p)%
benign clients. Each round, a subset of all clients is randomly selected and used for the
specific epoch. Afterwards, they are trained concurrently and merged using federated
aggregation.

They conclude that the model replacement method clearly outperforms the basic attack
strategy, as depicted in Figure 6.5. For the replacement strategy, they need only 10%
attackers to achieve a backdoor accuracy of around 95% on all tested backdoors. Using
the basic attack, even the second highest tested value of 50% attackers only resulted in a
backdoor accuracy of around 80%, depending on the used backdoor.

repeated poison attack
over 100 rounds

60 Image backdoor

—a— background wall
—&— greencars

40

Mean backdoor accuracy
o °
o o
N
\\
\\\§
SOt
e
\

/
20 //./ —e— racing stripe
0 ==
12 > 10 0 50900
Percentage of attackers
among all participants  (b) Line type

— « — accuracy on main task
- — = baseline attack
model replacement attack

Figure 6.5: Comparison of basic attack strategy and model replacement strategy by
Bagdasaryan et. al., graphic also by [BVHT18]

Nguyen et. al. [NRMS20] perform their experiments in a federated aggregation. Malicious
clients are using the basic attack strategy, and they introduced the backdoor (at 100%
accuracy) at a fraction of 15% poisoned clients.
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6.5. Evaluation of different attack strategies

6.5.2 Evaluation of our results
We can confirm the observations of [BVH'18] and [NRMS20].

In our tested scenario, the success of the basic attack strategy also depends on absolute
number of clients in a network, as well as the number of malicious clients in respect
to benign clients. The higher the fraction of malicious clients is, the more we are
able to introduce the backdoor. In general however, this strategy is performing poorly

in comparison to the model replacement strategy, and worse than in Nguyen et. al.

[NRMS20].

The mentioned model replacement strategy performs, overall seen, very well as we were

able to introduce the backdoor into the global model to a high degree in each test scenario.

Note that a relevant criterion for the success is the fraction of malicious to benign samples
in the adversaries. This fraction acts as a kind of trade-off between the performances on
the benign and malicious testset. The more backdoored data an adversary contains, the
better the effectiveness on the malicious testdata is, but the lower it is on the benign
testdata.
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6.6 Evaluation of number of attackers in relation to
benign clients

A key question to the success of backdoor attacks is probably the fraction of attackers in
a federated machine learning network. We evaluate attacks from literature in Section
2.6.2 and Section 2.6.3 regarding this aspect.

6.6.1 Observations by literature

Gu et al. [GDG17] experiment in a centralized ML environment. Instead of varying the
fraction of attackers, they vary the fraction of poisoned data. They conclude that a higher
fraction of backdoor images increases performance on the backdoor task while decreasing
performance on the main task. A graph supporting their observations is depicted in
Figure 6.6.

=
—
\
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1.0 +& &— backdoor
2 0.9 ™
i .
© 0.8 ~
o .
2 0.7 1 3
o}
0.6 \
0.5 .—_4/’?

10% 33% 50%
% of Backdoored Samples

Figure 6.6: Impact of the proportion of backdoored samples in the training set on the
error rate for clean and backdoored images by Gu et al., graphic also by [GDG17]

Wang et. al. [WYST19], also using a centralized machine learning setting, keep their
malicious data fraction constant at a value of 10%.

Bagdasaryan et. al. [BVHT18] test in a federated aggregation network and test the
following percentages for the number of malicious clients in relation to benign clients:
1%, 2%, 5%, 10%, 20%, 50% and 100%. Throughout all their experiments, they keep
the number of poisoned samples in the adversaries fixed (at 20 out of 64 observations
per batch). Their results depend on the used attack strategy, as already discussed in
Section 6.5. It can generally be said that a higher number of clients leads to a better
performance of the backdoor task. The accuracy on the benign data is not negatively
affected with an increasing number of clients.

Experiments by Sun et. al. [SKSM19] in a federated aggregation network using model
replacement strategy conclude that their backdoors need at least 1% malicious clients
(containing 100% poisoned data) be considered as successful in their scenario. Also, the
higher the number of malicious clients is, the better the attack is performing.
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6.6. Evaluation of number of attackers in relation to benign clients

Nguyen et. al. [NRMS20] are testing on federated aggregation and perform the most
comprehensive evaluations of different numbers of clients, as well as different number
poisoned data in the malicious clients. They are using a basic attack strategy, and their
results are depicted in Figure 6.7.

Their observations show that one must distinguish between the number of attackers
(which are tested at varying amounts of poisoned data), and the number of overall
poisoned samples introduced in the network (achieved by counting poisoned data across
all 100 clients). As a meta-analysis, at a PMR of 15% they need 80% of the data in these
malicious clients to be poisoned, to reach a backdoor accuracy of over 99%. This leads to
12% of poisoned data overall existent in the network. At a PMR of 30% they require a
PDR of 20%, leading to a rate of 6% poisoned data in the whole network. At a PMR, of
35% they only require a PDR of 10%, resulting in 3.5% poisoned data in the network. A
clear trend, resulting that the more clients are malicious, the less poisoned data must be
present in those clients to reach a backdoor accuracy of over 99%. Note: in all of their
tested cases, the accuracy on the benign testdata was kept constant at 100% as it is in a
non-poisoned network.
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Figure 6.7: Backdoor accuracy for different poisoned data rates (PDR = percentage of
malicious samples in malicious clients) and poisoned model rate (PMR = percentage of
malicious clients in relation to benign clients). Note that the main task accuracy is 100%
for all attacks. Graphic and data by Nguyen et. al. [NRMS20)]

6.6.2 Evaluation of our results

In a federated learning network using sequential training we observed a high performance
on the benign as well as malicious testset for all tested values of malicious clients in
relation to benign clients. On the highest tested value of 20% we observe a slightly earlier
convergence on the malicious testdata but a slightly later convergence on the benign
testdata compared to a lower fraction of malicious clients. In general, it seems that the
number of clients on the success of backdoor attacks in sequential learning plays only a
comparably small role.

In an environment with federated aggregation we found that the basic attack strategy is
less effective in introducing the backdoor into the global model than using the model
replacement strategy. At the same number of clients, the accuracy on the malicious
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testsets is significantly lower for both case studies. In comparison to Nguyen et. al.
[NRMS20] we were not able to introduce a backdoor using the basic attack strategy -
which might also be caused due to a very different setting of the machine learning task.

An important factor for the success of the model replacement method is the fraction
between poisoned and non-poisoned samples in the adversary’s training set. An increased
fraction of poisoned data in comparison to non-poisoned data leads to a higher accuracy
on the malicious testset. Simultaneously, the effectiveness on the benign testset drops
significantly. A good value in our experimental setting amounts mostly between 25% and
50% poisoned data.

In the next chapter we summarize our work and provide an outlook into possibilities to
extend this work and potential research topics for further investigations.
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CHAPTER

Conclusions and future work

In this thesis we investigated the setting of federated learning. Its distributed nature
enables many advantages. Among them is the possibility to directly utilize the clients’
endpoints for training the machine learning models, instead of sending and processing all
data on a centralized server, to potentially reduce costs. Furthermore, federated learning
enables a higher level of privacy as sensitive data never leaves the client.

We examine two types of federated learning: sequential (incremental cyclic) learning,
where a model is passed from one client to another for retraining purposes, and federation
using an aggregator. In the latter strategy, the clients models are sent to an aggregation
server where they are combined (e.g. by parameter averaging) into a global model.

A central topic of this thesis was investigating the influence of a varying number of
clients in federated learning settings on the resulting models. We are able to confirm
that in a sequential learning setting, independently from the number of participants,
a machine learning model is able to be trained at the same level of effectiveness as
in centralized learning. Also the second type of federated learning strategy, federated
averaging, enables training a model at the same level of effectiveness. Notably, with a
higher number of participants being averaged at the same time the convergence speed
slows down significantly. In both cases, efficiency is very likely to decrease because of
communication effects.

When investigating the ability of training non independent and identically distributed
data, both federated learning techniques show weaknesses, as sparsely known classes are
learned by a lower level.

Beside mentioned advantages, these federated learning techniques open up new possi-
bilities for attackers, especially due to their distributed nature. We identified several
attacks and focused on exploring backdoor attacks, a special form of model poisoning,
more deeply. By entering a backdoor pattern into the data during the model training
process, an adversary aims to enable targeted misclassification for all data poisoned with
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this pattern during the deployment phase of the model. Non-altered data, however, shall
still be classified correctly. Although the structure of the pattern is mostly clearly visible,
its primary objective is to be as inconspicuous as possible (in respect to the data itself),
while still being effective.

Two case studies investigating the possibility of backdoor attacks in image-data were
performed. The first study addresses the classification of traffic signs, a typical task in
machine learning. We processed the German Traffic Sign Benchmarks dataset [SSSI12]
and added backdoors in different sizes and colors to the observations. To strengthen
our observations we conducted experiments in the domain of facial recognition. For a
realistic setting we chose backdoors in form certain glasses and a full beard.

Using observations on our studies as well as evaluating them against existing work
we demonstrated that federated learning is highly susceptible for backdoor attacks.
Investigations lead that the bigger and, in contrast to the data more "uncommon' a
pattern is, the more effective the attack is. The number of attackers, the amount of
poisoned data and, in the case of sequential learning the point of time the adversaries
inject their backdoor are also key factors for the attacker’s success.

Our work motivates to conduct further research in this field as we showed that federated
learning can be seriously threatened by applying backdoor attacks. Future work should
especially emphasize defense mechanisms. In a centralized setting there has been done
some progress in averting model poisoning attacks, but new strategies have to be developed
in order to deal with them in a distributed setting and its intrinsic assumptions.
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CHAPTER

Appendix

8.1 Neural network structures

Listing 8.1: The architecture of the neural network used in the traffic sign case study

Net (
(conv0) : Conv2d (3, 16, kernel_size=(5, 5), stride=(1, 1))
(bn0) : BatchNorm2d (16, eps=1e-05, momentum=0.1, affine=True,
— track_running_ stats=True)
(convl): Conv2d (16, 32, kernel size=(5, 5), stride=(1, 1))
(bnl) : BatchNorm2d (32, eps=1le-05, momentum=0.1, affine=True,
— track_running_stats=True)
(pool_0): MaxPool2d(kernel_size=2, stride=2, padding=0,
— dilation=1, ceil_mode=False)
(conv2): Conv2d (32, 96, kernel_size=(3, 3), stride=(1, 1))
(bn2) : BatchNorm2d (96, eps=1le-05, momentum=0.1, affine=True,
— track_running_stats=True)
(conv3): Conv2d (96, 256, kernel_size=(3, 3), stride=(1, 1))
(bn3) : BatchNorm2d (256, eps=le-05, momentum=0.1, affine=True,
— track_running_stats=True)
(pool_1): MaxPool2d(kernel_size=2, stride=2, padding=0,
— dilation=1, ceil_mode=False)
dropout0) : Dropout2d(p=0.37, inplace=False)
fc0): Linear (in_features=4096, out_features=2048, bias=True)
dropoutl) : Dropout2d(p=0.37, inplace=False)
fcl): Linear (in_features=2048, out_features=1024, bias=True)
dropout?2) : Dropout2d(p=0.37, inplace=False)
fc2): Linear (in_features=1024, out_features=43, bias=True)

(
(
(
(
(
(
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Listing 8.2: The architecture of the neural network used in the face recognition case
study

Net (

(conv0) : Conv2d(l, 6, kernel_size=(7, 7), stride=(1, 1))

(bn0) : BatchNorm2d (6, eps=le-05, momentum=0.1, affine=True,
— track_running_ stats=True)

(convl): Conv2d (6, 16, kernel_size=(8, 8), stride=(1, 1))

(bnl) : BatchNorm2d (16, eps=1le-05, momentum=0.1, affine=True,
— track_running_stats=True)

(fc0) : Linear (in_features=41616, out_features=15, bias=True)

8.2 Transformations for the yale face dataset

Listing 8.3: Dataset preprocessing used to enlarge the Yale Face dataset

#original
data_transform = transforms.Compose ([
transforms.ToTensor (),
transforms.Normalize (
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
) 1)

#horizontal

data_transform = transforms.Compose ([
transforms.RandomHorizontalFlip(p=1.0),
transforms.ToTensor (),
transforms.Normalize(...)])

#brighter
data_transform = transforms.Compose ([
transforms.ColorJitter (brightness=(1.3,1.3), contrast=0,
— saturation=0, hue=0),
transforms.ToTensor (),
transforms.Normalize(...)])

#darker
data_transform = transforms.Compose ([
transforms.ColorJitter (brightness=(0.7,0.7), contrast=0,
— saturation=0, hue=0),
transforms.ToTensor (),
transforms.Normalize(...)])
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8.2. Transformations for the yale face dataset

#darker_horizontal
data_transform = transforms.Compose ([
transforms.RandomHorizontalFlip (p=1.0),
transforms.ColorJitter (brightness=(0.7,0.7),
—» saturation=0, hue=0),
transforms.ToTensor (),
transforms.Normalize(...)])

#brighter_horizontal
data_transform = transforms.Compose ([
transforms.RandomHorizontalFlip (p=1.0),
transforms.ColorJitter (brightness=(1.3,1.3),
— saturation=0, hue=0),
transforms.ToTensor (),
transforms.Normalize(...)])

#veryBright
data_transform = transforms.Compose ([
transforms.ColorJitter (brightness=(1.6,1.6),
—» saturation=0, hue=0),
transforms.ToTensor (),
transforms.Normalize(...)])

#veryDark
data_transform = transforms.Compose ([
transforms.ColorJitter (brightness=(0.4,0.4),
—» saturation=0, hue=0),
transforms.ToTensor (),
transforms.Normalize(...)])

#veryBright_horizontal
data_transform = transforms.Compose ([
transforms.RandomHorizontalFlip(p=1.0),
transforms.ColorJitter (brightness=(1.6,1.6),
—» saturation=0, hue=0),
transforms.ToTensor (),
transforms.Normalize(...)])

#veryDark_horizontal
data_transform = transforms.Compose ([
transforms.RandomHorizontalFlip(p=1.0),

contrast=0,

contrast=0,

contrast=0,

contrast=0,

contrast=0,
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=0,

contrast

(0.4,0.4),

transforms.ColorJitter (brightness

=0, hue=0),

< saturation
transforms.ToTensor (),

transforms.Normalize(...)])
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8.3. Experiment result files

8.3 Experiment result files
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Figure 8.1: Experiment result file overview
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50 replacement MNULL
75 replacement NULL
100 replacement MNULL

12,5 replacement NULL
25 replacement NULL
50 replacement MNULL
75 replacement NULL
100 replacement MNULL

12,5 replacement NULL
25 replacement NULL
50 replacement NULL
75 replacement NULL
100 replacement MNULL
25 replacement NULL
50 replacement MNULL
75 replacement NULL
100 replacement MNULL
25 replacement NULL
50 replacement MNULL
75 replacement MNULL
100 replacement MNULL

8.4 Requirements for PySyft

NULL
NULL
NULL
NULL
NULL
NULL

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

green_1
green_1
green_1
green_1

green_1
green_1
green_1
green_1
green_1
green_1

green_1
green_1
green_1
green_1
green_1
green_1
green_1
green_1
green_1

green_0 5
green_ 0 5
green_0 5
green_ 0.5
green_ 0.5
green_1
green_1
green_1
green_1
green_1
black_1
black_1
black_1
black_1
black_1
green_1
green_1
green_1
green_1
green_1
green_1
green_1
green_1

result file

exp_gtsrb_20200225-091236
exp_gtsrb_20200224-164321
exp_gtsrb_20200224-112615
exp_gtsrb_20200225-185926
exp_gtsrb_20200225-152647
exp_gtsrb_20200302-140305

exp_gtsrb_20200311-090415
exp_gtsrb_20200312-162037
exp_gtsrb_20200312-095036
exp_gtsrb_20200312-162036
exp_gtsrb_20200312-235421
exp_gtsrb_20200312-235504
exp_gtsrb_20200318-110957
exp_gtsrb_20200318-112229

exp_gtsrb_20200310-074846
exp_gtsrb_20200309-072105
exp_gtsrb_20200309-072909
exp_gtsrb_20200228-152630

exp_gtsrb_20200228-152630
exp_gtsrb_20200229-071144
exp_gtsrb_20200308-160728
exp_gtsrb_20200305-234618
exp_gtsrb_20200308-161012
exp_gtsrb_20200310-152626

exp_gtsrb_20200305-232824
exp_gtsrb_20200305-055529
exp_gtsrb_20200305-060337
exp_gtsrb_20200318-203612
exp_gtsrb_20200318-203814
exp_gtsrb_20200319-161053
exp_gtsrb_20200321-154836
exp_gtsrb_20200320-085236
exp_gtsrb_20200320-003449

exp_gtsrb_20200308-082156
exp_gtsrb_20200308-081922
exp_gtsrb_20200227-202454
exp_gtsrb_20200307-183049
exp_gtsrb_20200307-183021
exp_gtsrb_20200304-062118
exp_gtsrb_20200303-145824
exp_gtsrb_20200227-145350
exp_gtsrb_20200303-145647
exp_gtsrb_20200304-062110
exp_gtsrb_20200310-154035
exp_gtsrb_20200309-173030
exp_gtsrb_20200309-173225
exp_gtsrb_20200310-073100
exp_gtsrb_20200310-221645
exp_gtsrb_20200303-183227
exp_gtsrb_20200303-100605
exp_gtsrb_20200304-174927
exp_gtsrb_20200304-175046
exp_gtsrb_20200321-154705
exp_gtsrb_20200321-011532
exp_gtsrb_20200320-225526
exp_gtsrb_20200320-090424

of traffic sign case study
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A B © D E F G H |
1 Merge strategy  # benign clients  # malicious clients distribution % poisoned dz attack model order of time  backdoor name_of_result
2
3 Experiments on numbers of clients:
4 sequential 1 0 equal NULL NULL NULL exp_yale_20200321-132011
5 sequential 5 0 equal NULL NULL NULL exp_yale_20200317-095112
6 sequential 10 0 equal NULL NULL NULL exp_yale_20200320-091322
7 | aggregation 2 0 equal NULL NULL NULL exp_yale_20200321-111208
8 aggregation 5 0 equal NULL NULL NULL exp_yale_20200320-110135
9 aggregation 10 0 equal NULL NULL NULL exp_yale_20200320-091248
10
11
12 Experiments on order of time (of backdoor insertion)
13 sequential 4 1 equal 100 basic first beard exp_yale_20200317-111217
14 sequential 4 1 equal 100 basic last beard exp_yale_20200317-095227
15 sequential 9 1 equal 100 basic first beard exp_yale_20200321-091703
16 sequential 9 1 equal 100 basic last beard exp_yale_20200323-103255
17 sequential 4 1 equal 100 basic first glasses exp_yale_20200322-202918
18 sequential 4 1 equal 100 basic last glasses exp_yale_20200322-203036
19 |sequential 9 1 equal 100 basic first glasses exp_yale_20200322-212541
20 sequential 9 1 equal 100 basic last glasses exp_yale_20200322-212525
21
22 Experiments on attack model
23 aggregation 9 1 equal 100 basic NULL beard exp_yale_20200320-173907
24 aggregation 8 2 equal 100 basic NULL beard exp_yale_20200320-182046
25 aggregation 7 3 equal 100 basic NULL beard exp_yale_20200320-190311
26 aggregation 9 1 equal 100 basic NULL glasses exp_yale_20200322-173547
27 aggregation 8 2 equal 100 basic NULL glasses exp_yale_20200322-141859
28 aggregation 7 3 equal 100 basic NULL glasses exp_yale_20200322-173612
29 aggregation 4 1 equal 12,5 replacement NULL beard exp_yale_20200320-150704
30 aggregation 4 1 equal 25 replacement NULL beard exp_yale_20200320-140717
31 aggregation 4 1 equal 50 replacement NULL beard exp_yale_20200320-142106
32 aggregation 4 1 equal 75 replacement NULL beard exp_yale_20200320-125400
33 aggregation 4 1 equal 100 replacement NULL beard exp_yale_20200320-115106
34 aggregation 4 1 equal 12,5 replacement NULL glasses exp_yale_20200322-182416
35 aggregation 4 1 equal 25 replacement NULL glasses exp_yale_20200322-011552
36 aggregation 4 1 equal 50 replacement NULL glasses exp_yale_20200322-182351
37 laggregation 4 1 equal 75 replacement NULL glasses exp_yale_20200322-095535
38 laggregation 4 1 equal 100 replacement NULL glasses exp_yale_20200322-115310
39 laggregation 9 1 equal 12,5 replacement NULL glasses exp_yale_20200322-200923
40 aggregation 9 1 equal 25 replacement NULL glasses exp_yale_20200322-190337
41 aggregation 9 1 equal 50 replacement NULL glasses exp_yale_20200322-190323
42 aggregation 9 1 equal 75 replacement NULL glasses exp_yale_20200322-193415
43 aggregation 9 1 equal 100 replacement NULL glasses exp_yale_20200322-193425
44 aggregation 9 1 equal 12,5 replacement NULL beard exp_yale_20200320-170002
45 |aggregation 9 1 equal 25 replacement NULL beard exp_yale_20200320-155935
46 aggregation 9 1 equal 50 replacement NULL beard exp_yale_20200322-000349
47 aggregation 9 1 equal 75 replacement NULL beard exp_yale_20200320-150555
48 aggregation 9 1 equal 100 replacement NULL beard exp_yale_20200320-155216

Figure 8.2: Experiment result file overview of face recognition case study

Listing 8.4: requirements.txt for PySyft

flask_socketio~=4.2.1
Flask~=1.1.1
1z4~=3.0.2
msgpack~=1.0.0
numpy~=1.18.1
phe~=1.4.0
Pillow~=6.2.2
requests~=2.22.0
scipy~=1.4.1
syft-proto~=0.2.9.a2
tblib~=1.6.0
torchvision~=0.5.0
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8.4. Requirements for PySyft

torch~=1.4.0

tornado==4.5.3

websocket_client~=0.57.0

websockets~=8.1.0
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