
Key Management in Partitioning
Operating Systems

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Jürgen Broder

Matrikelnummer 0425784

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter Puschner
Mitwirkung: Proj. Ass. Dipl.-Ing. Dr. Armin Wasicek

Wien, 13. Januar 2013
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



Erklärung zur Verfassung der Arbeit

Jürgen Broder
Alsegger Straße 38/11, 1180 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter An-
gabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)



Abstract

Embedded systems play an increasingly important role in our daily lives. They often han-
dle sensitive data and interact with the real environment, where a malfunction or failure
of the system software can cause considerable damage. Apart from the requirement to
make (software) systems failure-resistant (safety), the protection of such systems from
malicious users and software is playing an increasingly important role (security). This
work focuses on the security aspect in embedded systems and starts out with a general
introduction to this topic. An essential component of security in software systems are iso-
lation techniques. They can be used to partition components in a resource-sharing system
according to certain criteria and through this control the execution of programs. Examples
of isolation techniques are sandboxing, virtualization, hardware-based isolation and iso-
lation enforced by the operating system kernel. They provide the theoretical foundation
for the further study of this work.

The guiding example for a security-related application used in this work is a cryptographic
key-management program in which the stored keys represent highly sensitive data worthy
to be protected. Therefore in the first step, a key management program is implemented on
Linux, because it is often used as an operating system in the embedded domain. Based
on this implementation, we show that Linux in a basic configuration can be considered as
not secure because it does not enforce strict isolation between applications and thereby
allows the exploration of the keys in the management program. In contrast, Partitioning
Operating Systems implement isolation techniques and other security mechanisms by de-
sign. Porting the key management application to such an operating system shows that a
program isolation can be strictly enforced, thus keys can be stored securely.



Kurzfassung

Eingebettete Systeme spielen eine immer wichtigere Rolle in unserem täglichen Leben.
Oftmals verarbeiten sie sensible Daten und interagieren mit der realen Umwelt, wodurch
Störungen oder Ausfälle der Systemsoftware erheblichen Schaden bewirken können. Ne-
ben der Anforderung (Software-) Systeme ausfallsicher zu machen (Safety), nimmt der
Schutz solcher Systeme vor böswilligen Benutzern und Schadsoftware eine immer be-
deutendere Rolle ein (Security). Diese Arbeit konzentriert sich auf den Sicherheitsaspekt
in eingebetteten Systemen und beginnt mit einem allgemeinen Einblick in das Thema Se-
curity. Ein wesentlicher Bestandteil für die Sicherheit in Software-Systemen sind Isolati-
onstechniken. Sie können dazu verwendet werden um Komponenten in einem resource-
sharing System nach gewissen Kriterien zu partitionieren und so die Ausführung von
Programmen zu kontrollieren. Beispiele für Isolationstechniken sind Sandboxing, Vir-
tualisierung, Hardware-basierte Isolation und Isolation durch den Betriebssystem-Kernel.
Sie liefern den theoretischen Unterbau für die weiteren Untersuchungen dieser Arbeit.

Ein klassisches Beispiel für eine sicherheitsrelevante Anwendung ist ein kryptographi-
sche Schlüsselverwaltungsprogramm in dem gespeicherte Schlüssel hoch sensible Daten
darstellen die es wert sind geschützt zu werden. Daher wird im ersten Schritt ein Schlüs-
selverwaltungsprogramm auf Linux implementiert, da es als Betriebssystem für eingebet-
tete Systeme häufig zum Einsatz kommt. Anhand dieser Implementierung wird gezeigt,
dass Linux in einer Basiskonfiguration als nicht sicher eingestuft werden kann, da es keine
strikte Isolation zwischen Programmen erzwingt und dadurch das Auslesen der Schlüssel
im Verwaltungsprogramm erlaubt. Partitioning Operating Systems hingegen implemen-
tieren Isolationstechniken und andere Sicherheitsmechanismen per Design. Anhand einer
Portierung der Schlüsselverwaltungsapplikation auf solch ein Betriebssystem zeigt sich,
dass eine Programmisolation erzwungen werden kann und somit Schlüssel sicher gespei-
chert werden können.



Contents

List of Figures viii

List of Abbreviations x

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Basic Concepts and Related Work 4
2.1 Security in Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Security Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Computer Security Strategy . . . . . . . . . . . . . . . . . . . . 7
2.1.4 The Concept of Trusted Systems . . . . . . . . . . . . . . . . . . 9
2.1.5 Threats and Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.6 Security Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Practical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 ARM TrustZone . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Trusted Computing and the Trusted Platform Module . . . . . . . 20

3 Secure Software Execution and Isolation Techniques 24
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Trusted Computing Base and Protection Domains . . . . . . . . . . . . . 25
3.3 Sandboxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Instruction Set Architecture . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Application Binary Interface . . . . . . . . . . . . . . . . . . . . 28



3.3.3 Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Interfaces, Abstraction, and Virtualization . . . . . . . . . . . . . 35
3.4.3 Process Virtual Machines . . . . . . . . . . . . . . . . . . . . . . 36
3.4.4 System Virtualization . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.5 Shared Kernel Virtualization . . . . . . . . . . . . . . . . . . . . 40
3.4.6 Kernel Level Virtualization . . . . . . . . . . . . . . . . . . . . . 41
3.4.7 Guest Operating System Virtualization . . . . . . . . . . . . . . . 41
3.4.8 Hardware Virtual Machines . . . . . . . . . . . . . . . . . . . . . 42

3.5 Operating System Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Hardware-based Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Case Study: Key Distribution Tool 46
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Secure Key Distribution Protocol . . . . . . . . . . . . . . . . . . . . . . 49

5 Evaluation 50
5.1 Evaluation Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.1 Interfaces to Linux . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.2 The Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.3 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.4 Security in Linux . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Memory Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4.2 CASE 1: Privilege Escalation and Exploitation . . . . . . . . . . 60
5.4.3 CASE 2: Sending Signals . . . . . . . . . . . . . . . . . . . . . . 61
5.4.4 CASE 3: Authorization and Interprocess Communication . . . . . 63
5.4.5 CASE 4: Process tracing and debugging . . . . . . . . . . . . . . 64
5.4.6 CASE 5: Loadable Kernel Modules and Device Drivers . . . . . . 68

5.5 PikeOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.1 PikeOS System Architecture . . . . . . . . . . . . . . . . . . . . 74
5.5.2 PikeOS System Software . . . . . . . . . . . . . . . . . . . . . . 75

v



5.5.3 PikeOS Microkernel . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6 Key Management in PikeOS . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6.1 Porting the KDT . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6.2 Application Development and the POSIX Personality . . . . . . . 83
5.6.3 The Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6.4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.6.5 Resource Partitions . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.6.6 Time Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.6.7 Communication Channels . . . . . . . . . . . . . . . . . . . . . 88
5.6.8 Privileges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.7 CASE Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.7.1 CASE 1: Privilege Escalation and Exploitation . . . . . . . . . . 90
5.7.2 CASE 2: Sending Signals . . . . . . . . . . . . . . . . . . . . . . 92
5.7.3 CASE 3: Authorization and Interprocess Communication . . . . . 95
5.7.4 CASE 4: Process tracing and debugging . . . . . . . . . . . . . . 97
5.7.5 CASE 5: Device Drivers . . . . . . . . . . . . . . . . . . . . . . 99

6 Conclusion 102

Bibliography 104

A Data Structures 110
A.1 messg_t Struct Reference . . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.2 mymsgbuf_t Struct Reference . . . . . . . . . . . . . . . . . . . . . . . . 111
A.3 Node_ Struct Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B Modules 112
B.1 setup.h File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.2 key_db.h File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.3 message.h File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B.3.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . 115
B.3.2 Function Documentation . . . . . . . . . . . . . . . . . . . . . . 116

B.4 protocol.h File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . 118
B.4.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . 118
B.4.2 Function Documentation . . . . . . . . . . . . . . . . . . . . . . 119

B.5 skdp.h File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
B.5.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . 122

vi



B.5.2 Function Documentation . . . . . . . . . . . . . . . . . . . . . . 122

vii



List of Figures

2.1 Access Control Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Information Flow Control Model . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Architectural Design Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Separation of secure and nonsecure domains in ARM TrustZone [Yor03] . . . 20
2.5 TrustZone example in an embedded system [Yor03] . . . . . . . . . . . . . . 21
2.6 TPM Component Architecture [SB08] . . . . . . . . . . . . . . . . . . . . . 22

3.1 Isolation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Local Protection Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Kernel-module-based sandboxing . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 User-level sandboxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Delegation-based sandboxing . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Example of Access Control Structures . . . . . . . . . . . . . . . . . . . . . 33
3.7 Computer System Architecture - Interfaces . . . . . . . . . . . . . . . . . . . 36
3.8 Full-system virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.9 Paravirtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.10 Shared kernel virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.11 Guest Operating System Virtualization . . . . . . . . . . . . . . . . . . . . . 42
3.12 (a) Monolithic kernel and (b) microkernel . . . . . . . . . . . . . . . . . . . 44

4.1 Schematic Overview of the Key Distribution Tool . . . . . . . . . . . . . . . 48
4.2 Diagram of the Secure Key Distribution Protocol . . . . . . . . . . . . . . . 49

5.1 Key Distribution Tool Use Case . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Linux layers [Tan07]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Structure of the Linux Kernel [Tan07]. . . . . . . . . . . . . . . . . . . . . . 54
5.4 Linux Virtual Memory Structure. . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5 Examining the core file by a hexeditor. . . . . . . . . . . . . . . . . . . . . . 62



5.6 Missing authorization mechanism. . . . . . . . . . . . . . . . . . . . . . . . 63
5.7 The PikeOS System Architecture . . . . . . . . . . . . . . . . . . . . . . . . 75
5.8 The PikeOS System Software Architecture [SYS12] . . . . . . . . . . . . . . 76
5.9 phyCORE-i.MX35 Rapid Development Kit . . . . . . . . . . . . . . . . . . 84
5.10 Key Management Tool in PikeOS . . . . . . . . . . . . . . . . . . . . . . . . 85
5.11 Time Partitioning Setup Key Distribution Tool . . . . . . . . . . . . . . . . . 87
5.12 Channel Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.13 PikeOS Privilege Levels and Trusted Computing Base . . . . . . . . . . . . . 92

ix



List of Abbreviations

ABI Application Binary Interface

ACL Access Control Lists

API Application Programming Interface

ASIC Application-specific Integrated Circuit

ASIP Application-specific Instruction Set Processor

ASLR Address Space Layout Randomization

CISC Complex Instruction Set Computer

DAC Discretionary Access Control

DMA Direct Memory Access

DRM Digital Rights Management

FPGA Field Programmable Gate Array

GDB GNU Debugger

IPC Inter-process Communication

ISA Instruction Set Architecture

KDC Key Distribution Center

KDT Key Distribution Tool

LKM Loadable Kernel Module



LOC Lines of Code

MAC Mandatory Access Control

MCP Maximum Controlled Priority

MILS Multiple Independent Layers of Security

MLS Multilevel Security

MMU Memory Management Unit

NGSCB Next Generation Secure Computing Base

NIST National Institute of Standards and Technology

PCC Port Communication Channel

PCP Partition Communication Port

PID Process Identifier

POSIX Portable Operating System Interface

PSSW PikeOS System Software

RBAC Role-based Access Control

RISC Reduced Instruction Set Computer

RNG Random Number Generator

RPC Remote Procedure Call

RTE Run Time Environment

RVM Reference Validation Mechanism

SKDP Secure Key Distribution Protocol

ST Security Target

TCB Trusted Computing Base

TCG Trusted Computing Group

xi



TCPA Trusted Platform Alliance

TLB Translation Lookaside Buffer

TPM Trusted Platform Module

VM Virtual Machine

VMIT Virtual Machine Initialization Table

xii



CHAPTER 1
Introduction

1.1 Motivation

Embedded Systems play an important role in today’s world and can be found in almost
every modern electronic system like personal computers, notebooks, network devices,
mobile phones, domestic appliances, consumer electronics, smart cards, and more sophis-
ticated applications like sensor networks in cars, trains, airplanes and even space shuttles.
Those systems often need to access, store, communicate, and manipulate sensitive data
and probably need to distribute this data over a network, making security a major issue
to their design [RRKH04]. Contrary to general purpose computer systems, embedded
systems do massively interact with the physical world. In systems where safety is a seri-
ous issue, breaking the security could lead to property damage, personal injury, and even
death [Koo04]. A constraint of many embedded systems is that they often have to op-
erate within limited resources and physically insecure environments. Therefore security
in embedded systems is not just an additional feature like implementing cryptographic
algorithms and protocols, but more a whole design process in which other metrics like
cost, performance and power have to be taken into account [KLMR04].



1.2. Problem Statement

1.2 Problem Statement

A classic example of a security-related application is a cryptographic key-management
program in which the stored keys represent highly sensitive data worth to be protected.
One possible utilization of such a key-managemenent software could be that applications
request for keys in order to encrypt data they want to send to other applications locally or
even over some network interface. Another example would be a “Secure Group Commu-
nication Service” where applications share a cryptographic key as a common secret. Then
all applications in posession of the shared secret are allowed to participate in the group
communication. In both cases there will also be applications that are not allowed to know
about those keys, which forms the major security requirement for the key-management
software. Through this separation we call applications trusted if they are, and untrusted
if they are not allowed to request for cryptographic keys.

An essential component of security in software systems are isolation techniques. They
can be used to partition components in a resource-sharing system according to certain
criteria and through this control the execution of programs. Examples of isolation tech-
niques are sandboxing, virtualization, hardware-based isolation and isolation enforced by
the operating system kernel. Hence they can also be used to separate the key-management
application from other applications to securely store the cryptographic keys.

Linux is used in many embedded systems. It enforces separation by the virtual memory
management model only, which might not be enough for protecting sensitive data in ap-
plications. Additionally it controls access to resources like system memory over a user
model that may also not be applicable for the embedded domain. Compared to that, a
Partitioning Operating System implements separation (isolation) and security features by
design. Summarizing , the goal of this work is to compare the architectural features of the
monoltihic Linux operating system to those of the PikeOS partitioning operating system.
This will be done by implementing the key-management software on both systems and
then examine the differences and probable benefits of each, including some penetration
testing techniques.

2



1.3. Chapter Overview

1.3 Chapter Overview

Chapter 1 gives an introduction to this thesis. Chapter 2 will be concerned with gen-
eral security issues and security topics in the embedded systems domain. In Chapter 3
we will work out popular isolation techniques, including sandboxing, virtualization, op-
erating system kernels, and hardware-based isolation. This chapter forms the theoretical
foundation for the further examinations. Chapter 4 gives an implementation overview of
the examplary key-management software. Chapter 5 forms the biggest part of this work.
It gives a short architectural overview of both, the Linux and PikeOS operating systems.
After defining a use case it defines some memory acquisition cases based on Linux, that
show how cryptographic keys can be explored from the key-management software. After-
wards those cases will be compared to the implementation on PikeOS. For each case there
is a discussion that lines out the benefits and differences between both operating systems.
Chapter 6 concludes this thesis.

3



CHAPTER 2
Basic Concepts and Related Work

2.1 Security in Embedded Systems

2.1.1 Overview

This chapter gives an overview of the topic of computer security. In the first phase of the
work on this thesis, this survey was done in order to get an understanding of basic ideas
and concepts concerning secure computer systems. In [UP95] the term computer security
is defined as:

“The protection afforded to an automated information system in order to at-
tain the applicable objectives of preserving the integrity, availability, and
confidentiality of information system resources (includes hardware, software,
firmware, information/data, and telecommunications).”

This already includes the three primary security objectives behind information and com-
puting services. The security of any computer system can be reasoned about by examining
their presence or absence. They are defined as follows in the literature [SB08], [BB04],
[Sta08]:

• Confidentiality: Data confidentiality means that sensitive data may not be dis-
closed to unauthorized users or applications. Data privacy assures that individuals
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are able to decide which information related to them is collected and stored and to
whom that information may be disclosed.

• Integrity: Data integrity ensures that information and programs may only be changed
by authorized users or systems. System integrity on the other hand means that the
system needs to perform its intended function.

• Availability: States that the system should work promptly. No unauthorized per-
sons or systems should be able to deny service access to authorized users.

Besides those three primary objectives, there are several secondary objectives which are
strongly coupled to the topic of computer and operating system security. In some sense
they can bee seen as combinations of some of the primary objectives:

• Authentication: In order to distinguish between legitimate and illegitimate users
of system services and for ensuring integrity, availability and confidentiality of a
system, we need mechanisms that allow users or systems to be identified [OK09].
This means that we need to verify that users are who they claim to be, and that their
input to the system comes from a trusted source. Notice here that in [BB04] the
term authenticity is included under integrity.

• Authorization: An authorization mechanism manages the access of authenticated
users to system resources. This often is done by enforcing a security policy which
associates users with certain rights or permissions.

• Accountability: Since truly secure systems are not yet achievable, it is necessary
to uniquely trace down sources of security breaches. Therefore systems must keep
records of their activities so that they are able to trace security breaches or revert
security critical actions.

When designing and implementing computer systems, engineers have to take into account
these basic objectives to build a system with a certain degree of security and thus protect-
ing it against a defined set of malicious attacks. Today there is an increasing number of
embedded systems which often need to compute sensitive information and distribute it
over the Internet or other kinds of public networks. Therefore the (financial) loss due
to insecurity, can be very high. With the rapid development of new technologies the at-
tack surface is expanding, making it a duty to deal with security. Moreover, embedded

5
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systems often operate in a constrained environment, making security in embedded sys-
tems a hardware-software design challenge. In [RRKH04] those constraints are described
as the Processing Gap, Battery Gap, Flexibility, Tamper Resistance, Assurance Gap and
Cost. The processing gap and battery gap means that embedded systems are often lim-
ited in their processing capabilities and have to deal with limited battery capacities. They
also need to be flexible to the rapid development of new technologies and therefore need
to adapt to new security requirements. The term tamper resistant means that embedded
systems must not only be secure against software attacks, but also against physical and
side-channel attacks. Assurance is concerend with building reliable systems, which in
general is a difficult task. Therefore it is clear that securing such systems is also quite
challenging. Last the cost factor is very influential on the security architecture for an em-
bedded system, since many of them need to be manufactured in high quantity.

The design process of a secure embedded system starts with a definition of requirements
under consideration of the constraints named before. In addition it is essential to know
about the threats against which a system should be protected. In the following chapters
we will introduce basic cryptographic algorithms and some security solutions built upon
them. We will also have a short look at common threats to embedded systems.

2.1.2 Security Terms

The key discipline of computer security is the protection of system resources, also called
assets. System resources can be prone to three general categories of vulnerabilities. They
may be corrupted, can become leaky, or may become unavailable. These three classes
can be linked to the primary security objectives of integrity, confidentiality and availabil-
ity, mentioned before. Corresponding to the various types of vulnerabilities, there are
different threats that are able to exploit those vulnerabilities, whereby a threat is a po-
tential security breach to a system resource. In further consequence an attack is a threat
actually being carried out. If the attack was succesful, the security of the system will be
compromised. The instance carrying out an attack is called the attacker or threat agent.
In order to deal with such security attacks, various countermeasures are introduced to the
system, which primarily try to prevent those attacks. If an attack could not be prevented,
countermeasures have to deal with attack detection and recovery. It is important here to
say that the implementation of countermeasures can introduce new vulnerabilities to the
system.
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2.1.3 Computer Security Strategy

So where do we have to start in order to introduce security to our embedded systems?
Lampson describes three aspects that need to be involved in a comprehensive security
strategy [Lam04]:

• Specification / Policy

• Implementation / Mechanisms

• Correctness / Assurance

2.1.3.1 Security Policy

The basic needs for information security are described by the security objectives men-
tioned before and aim at protecting assets from attackers. So the first step before we can
design security services and mechanisms is to describe the needs for security in our sys-
tem. This is done by specifying a security policy. It usually describes who should or
should not have access to a certain resource and is at least an informal description of the
system behavior. The security policy quotes the requirements for reaching the primary
objectives of confidentiality, integrity and availability (see chapter 2.1.1). The security
policy must be enforced by technical controls of the system.

2.1.3.2 Security Implementation

The aim of a security implementation is to defend the system against vulnerabilities which
can originate from bad programs or agents. This can be done by the well-known access
control model (see figure 2.1), in which a guard also called a reference monitor enforces
the security policy by regulating the requests for service to valued resources. Those re-
sources are usually encapsulated in objects, whereby the sources of requests are called
subjects. The guard uses authentication and authorization mechanisms to decide if the
subject is allowed to carry out a certain operation on the object. On the other hand the
information flow control model is somehow dual to the access control model (see figure
2.2). It is sometimes used if we want to preserve secrecy in the presence of bad pro-
grams. Here the guard decides if information can flow to a principal. For both of the
models stated before, Lampson defines authentication, authorization and accountability
as the gold standard for implementing security (see chapter 2.1.1).
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Figure 2.1: Access Control Model

Figure 2.2: Information Flow Control Model

2.1.3.3 Assurance and Evaluation

So when security mechanisms have been implemented we somehow need to check that
they work as intended. This can be achieved by the two concepts of assurance and eval-
uation. The NIST Computer security Handbook defines [GR95]:

“Computer security assurance is the degree of confidence one has that the se-
curity measures, both technical and operational, work as intended to protect
the system and the information it processes.”

Therefore we can say that assurance deals with the question if our system meets its re-
quirements and suitably enforces its security policy. Assurance only states a degree of
confidence and must not be confused with a formal proof.

Evaluation on the other hand is about examining our system with respect to certain cri-
teria. This may include testing and formal or mathematical techniques. The main goal
of the work done in this area is to develop evaluation criteria which then can be applied
to any security system. The Common Criteria IEC 15408 Standard [Cri12] for example
defines criteria for evaluating different products.
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2.1.4 The Concept of Trusted Systems

2.1.4.1 Security Models

We already heard that maintaining security in embedded systems is a design and im-
plementation issue and can cause certain problems. It is difficult to design hardware
or software modules which assure that the design provides an intended level of secu-
rity. This difficulties in design may lead to many unanticipated security vulnerabilities.
But even if we can show that our design is correct, it is almost impossible to implement
the design without errors, which is another source of possible vulnerabilities. Therefore
we need a method to prove either logically or mathematically, if our design satisfies the
defined security requirements and if the implementation meets the design specification.
This need for a prove led to the development of formal computer security models like
the Bell-LaPadula [BL73] [BL76], Biba [Bib77], Clark-Wilson [CW87], and Chinese
Wall [BN89] models, that can be used to verify security designs and implementations.
These models are referred to as multilevel security (MLS) models. They enforce access
control of applications to system resources based on different security levels, which can
also be seen as different privilege levels. Users or applications get assigned to one of the
security levels. Information flow between applications is then determined by the secu-
rity levels. On every access different rules will be applied corresponding to the security
model. For more details check out the references.

2.1.4.2 Trusted Computing Base

The security models described before aim at enhancing the trust that users and adminis-
trators have in the security of a system. The concept of trusted systems goes back to the
early 1970s. The aim was to first develop such security models and then to implement
hardware and software platforms to achieve trust in the system. The central approach to
trusted systems is the concept of a reference monitor, which was described in the Ander-
son Report [And72]. We introduced the concept of a reference monitor in chapter 2.1.3.2.
A reference monitor is used for access control decisions between subjects and objects.
Anderson describes the set of hardware, software and setup information (the firmware)
implementing the reference monitor as the Reference Validation Mechanism (RVM). It is
responsible to enforce the system’s security policy and must have the following proper-
ties [SB08]:
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• Complete Mediation: the security policy must be enforced on every access to the
system resources.

• Isolation: This means that the reference monitor has to be protected against unau-
thorized modification. An attacker must not be able to change the logic of the
reference monitor.

• Verifiability: The correctness of the reference monitor must be provable. This
means to show mathematically that it enforces the security policy and provides
complete mediation and isolation. If this is the case, the system is said to be trust-
worthy.

After the development of some prototypes it was clear that the concept of a Reference
Validation Mechanism (RVM) alone is insufficient, because there are other functionalities
in the system, like administrating or auditing functions, that can affect the correct opera-
tion of the RVM. In 1981, Rushby described an implementation of a RVM as a security
kernel [Rus81]. The primary motivation in kernelized systems is to isolate and localize all
security critical software in the kernel. Then the security models (e.g. Bell-LaPadula) are
used to verify if the kernel is secure. If this is the case, all non-kernel software becomes
irrelevant to the security of the system. Soon it turned out that many applications are
different from that what was stated in multilevel models. The attempts to implement such
applications on conventional kernels with a system-wide security policy have led to sys-
tems with considerable complexity, where the verification turned out to be a very difficult
task. Rushby describes by an example why there was the need to introduce trusted pro-
cesses outside the kernel, which are able to violate the rules of multilevel models. With
the introduction of trusted processes, the kernel is no longer the sole arbiter of security. It
has to be guaranteed that the special privileges that are granted to the trusted processes are
not abused by those processes and not usurped by other, untrusted processes. The combi-
nation of the kernel and trusted processes is called the Trusted Computing Base (TCB) of
the system [AJ95]. So in order to guarantee the security of the system we need to verify
the entire TCB.

Trusted systems are a central concept to security. Much development in this area is based
on the works of Rushby [Rus81] and [Rus84], which primarily deal with the separation of
trusted components from untrusted ones. Components can either be hardware or software.
In this work we will focus on software components. In order to securely execute software,
untrusted programs then can be rejected or sandboxed and thus be isolated from trusted
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ones. We will revert to this in chapter 3. With his work, Rushby laid the foundation
for the Multiple Independent Levels of Security architecture, that we will deal with when
evaluating key management in our Partitioning Operating System (see chapter 5.7.1). The
Trusted Computing Group is a non-profit standardization organization also dealing with
the enforcement of trust in systems. We will have a short look at their Trusted Computing
Technology and the Trusted Platform Module (TPM) in chapter 2.2.

2.1.4.3 Terminology

To sum up this chapter we will list some terms for trusted systems, taken from [SB08]:

• Trust: The extent to which someone who relies on a system can have confidence
that the system meets its specifications (i.e., that the system does what it claims to
do and does not perform unwanted functions).

• Trusted System: A system believed to enforce a given set of attributes to a stated
degree of assurance.

• Trustworthiness: Assurance that a system deserves to be trusted, such that the trust
can be guaranteed in some convincing way, such as through formal analysis or code
review.

• Trusted Computer System: A system that employs sufficient hardware and soft-
ware assurance measures to allow its use for simultaneous processing of a range of
sensitive or classified information.

• Trusted Computing Base (TCB): A portion of a system that enforces a particular
policy. The TCB must be resistant to tampering and circumvention. The TCB
should be small enough to be analyzed systematically.

• Assurance: A process that ensures a system is developed and operated as intended
by the system’s security policy.

• Evaluation: Assessing whether the product has the security properties claimed for
it.

• Functionality: The security features provided by a product.
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2.1.5 Threats and Attacks

2.1.5.1 Physical and Side-Channel Attacks

Physical and side-channel attacks exploit the system implementation and/or identifying
properties of the implementation. They can either be invasive or non-invasive. Invasive
means that an atacker gains physical access to the appliance (opens it), in order to ob-
serve, manipulate and interfere with system internals. Examples of invasive attacks are
microprobing and design reverse engineering. On the other hand non-invasive attacks do
not necessarily need to open the device and gain direct access to it. Attack techniques
like timing attacks, fault induction, power and electromagnetic analyses are often cheap
and scalable but need a certain amount of creativity of the attacker. A system is said
to be tamper-resistant if it is secure even if it is subject to physical and side-channel
attacks [RRKH04].

2.1.5.2 Logical Attacks

The most common threat to an embedded system are logical attacks. These attacks are
implemented through malicious software such as viruses, worms and trojan horses. They
try to manipulate sensitive data (integrity attacks), disclose confidential information (pri-
vacy attacks), and deny access to the system resources (availability attacks). Due to the
computational complexity, it shows that hackers do not intend to directly break crypto-
graphic primitives employed in security mechanisms. Instead, most software attacks will
target vulnerabilities in the implementation of functional security mechanisms and their
cryptographic algorithms. This vulnerabilities arise from bugs in the operating system or
downloaded application code [RRKH04]. In [KLMR04], Kocher describes three factors
as the source of vulnerabilities in embedded systems software:

• Complexity: Software in modern systems is complex and will even become more
complex in the future. It is clear that with larger software also bugs and security
vulnerabilities will appear more often. The problem gets even worse with the usage
of unsafe programming languages like C and C++, which do not supply protection
mechanisms against simple attacks like buffer overflows. But due to their simplicity
this programming languages are very popular for embedded systems. In theory we
would need to proof that the software is error-free which is in fact impossible for
the complex and large software in todays systems.
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• Extensibility: Modern embedded systems are designed to be extensible. To provide
end users a richer functionality and increased customizability, the embedded system
needs to be able to download and execute untrusted software. It’s obvious that such
software can introduce new vulnerabilities to the system’s security.

• Connectivity: Today it is quite common that embedded systems are connected to
the Internet, which makes them even more vulnerable to attacks since hackers don’t
need to gain physical access anymore. A small failure in a software could propagate
through the network and cause some severe security breaches.

In addition, Ravi describes some common design and implemention problems which
are the source of vulnerabilities including: buffer overflows, failure to secure code up-
date process, use of insecure cryptographic algorithms, cryptographic protocol flaws, key
management failures, random number generator defects, use of debug modes that bypass
security, improper error handling, incorrect algorithm implementation, security param-
eter negotiation weaknesses, sequence counter overflows, improper reuse of keys, poor
user interfaces, use of weak passwords, operator errors, pointer errors, OS weaknesses,
solving the wrong problem, inabilitiy to reestablish security after compromises, and so
on [RRKH04]. To address those issues it is necessary to develop appropriate hardware
and software countermeasures. We will have a look at some general approaches in the
following chapter.

2.1.6 Security Mechanisms

2.1.6.1 Countermeasures

As already stated before, logical attacks try to exploit design or implementation flaws in
the software of the system. We heard about the need for flexibility and execution of down-
loadable code in embedded systems. The issue with downloadable code is that it cannot
be trusted and can be malicious, so running it directly on the host could cause severe
damage to the system. But also the operating system code could contain bugs that make
systems vulnerable. Therefore the aim of security design is to develop countermeasures
that ensure the confidentiality and integrity of sensitive code and data during every stage
of execution and to determine with certainty that it is safe from a security standpoint to
execute a given program.
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The first issue can be addressed through the introduction of different hardware and soft-
ware techniques, which regulate the access of software components (operating system,
downloaded code, etc.) to various portions (registers, memory regions, security co-
processors, etc.) of the system [RRKH04], [RRC04].

• usage of dedicated hardware to protect memory locations, e.g.: Discretix Cryptocell
[Dis11]

• secure bootstrapping [AFS97]

• usage of cryptographic file systems [Bla93] [GSMB03]

On the other hand, secure software execution can be achieved through:

• software authentication and validation checks

• restricted environments for code execution and isolation of programs through sand-
boxing and virtualization (see chapter 3)

• detection of security policy violations through run-time monitors [KBA02]

• usage of safety proof carrying code [Nec97]

Effective countermeasures must guarantee a certain degree of security in the system from
the powered-on state. Therefore most security measures define notions of trust or trust
boundaries across the different hardware and software resources (see chapter 2.1.4). This
enables the system to detect violations, like for example illegal access to memory regions,
between trust boundaries. So trust boundaries are a natural and convenient basis for the
system to decide about the security or the breach of security by itself. As we have already
mentioned, this work will focus on design and implementation issues for secure software
execution. More on this in chapters 3 and 5.

2.1.6.2 Cryptographic Ciphers

Cryptographic algorithms form the theoretical basis of information security and can be
used as building blocks to implement security mechanisms in order to reach certain ob-
jectives. In further consequence they achieve encryption, decryption and checking the
integrity of data. We distinguish between symmetric, asymmetric and hashing ciphers:
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• Symmetric Ciphers: Establish only one secret key for encryption and decryption
of data that is sent from a sender to a receiver. Therefore they primarily provide data
confidentiality. Some symmetric cipher examples are DES, 3DES, AES, IDEA.

• Hashing: They convert messages into unique fixed length-values which provides
signatures and integrity checks on messages. Examples: MD5, SHA.

• Asymmetric Ciphers: Also known as public-key encryption. They use a private
(secret) key for decryption and a related public (nonsecret) key for encryption and
verification. With the usage of the private key, asymmetric ciphers can provide user
or host authentication. They are typically used in security protocols like IPSec and
SSL. In combination with hashing they can be used to construct digital certificates.
Examples: RSA, Diffie-Hellman.

2.1.6.3 Security Solutions

Most functional security mechanisms like security protocols are designed and imple-
mented around cryptographic ciphers to achieve security objectives. Most of these mech-
anisms need keys in order to work. Therefore a good and secure key management (see
chapter 4) is central to almost every security solution. Examples for various security
solution are listed in the following [RRKH04]:

• Secure Communication Protocols like IPSec and SSL are used to ensure secure
communication channels from and to the embedded system.

• Digital Certificates are used to identify entities.

• Digital Rights Management (DRM) like OpenIPMP, MPEG, ISMA, and MOSES
are used for application protection against unauthorized usage.

• Secure Storage and Secure Execution is used to tailor the system architecture for
security considerations.

But these solutions alone cannot ensure security. We heard that embedded systems are
often resource-constrained, where designers need to face the processing gap, battery gap,
assurance gap, need for flexibility, tamper resistance, and cost considerations. This reveals
a huge design space from which designers can choose from to implement features that
provide the embedded system with required security functions. In addition those features
must be implemented efficiently to come up with the different limitations.
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2.1.6.4 Architectural Design Space

Kocher [KLMR04] describes the architectural design space for embedded security through-
out four levels of considerations, which are illustrated in figure 2.3. The first row is
about different macroarchitecture models. Designers have to decide whether they want to
use embedded general-purpose processors (EP), application-specific instruction set pro-
cessors (ASIP), EPs with custom hardware accelerators, and so on. This somehow can
be seen as the basic, overall system architecture. The second row is about making the
right choice for base processor parameters like instruction-set architectures and micro-
architectures. This could be used to tune the base processors to custom needs. In the third
row decisions must be made about which security processing features should be designed
and how they should be implemented. Some options would be if the functionality should
be implemented by custom instructions, hardware accelerators or general-purpose instruc-
tion primitives. In the last row, decisions about attack-resistant features in the embedded
processor and system design are made, with the aim to protect the system against software
and physical attacks. This can be be achieved by enhanced memory management, process
isolation architectures, additional redundant circuitry against power analysis attaks, fault
detection circuitry, and so on.

2.1.6.4.1 Security processing architectures

Basic security objectives like integrity, availability and confidentiality can be achieved
through the implementation of security protocols and cryptographic algorithms. Crypto-
graphic ciphers and protocols can be very compute intensive and power hungry. There-
fore, security processing architectures are designed to support limited processing capabil-
ities and to deal with power issues in an embedded system. There are different approaches
for designing such architectures:

• Hardware: for example use ASICs (Application Specific Integrated Circuits) to
implement whole cryptographic algorithms in hardware.

• Software: use only the embedded general-purpose processor (EP) core for security
protocol and cryptography processing and implement security functions in soft-
ware.
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• Hardware-Software: hybrid approach, with several solutions for implementing
security functions:

– General-purpose embedded processor core with hardware accelerators.

– Usage of FPGAs (Field Programmable Gate Arrays) to allow reconfiguration.

– Integration of accelerator hardware with processor core, which is invoked
through custom instructions, also called Application Specific Instruction Pro-
cessor (ASIP).

– Usage of new instructions in the general-purpose processor to accelerate sym-
metric ciphers.

– etc.

Figure 2.3: Architectural Design Space
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2.1.6.4.2 Attack-resistant architectures

We heard before, that security processing architectures implement the basic security func-
tions. But there is no protection against software, physical or Denial-of-Service attacks.
Therefore secure embedded systems should also implement appropriate attack-resistant
features.

In the industry there are some commercial initiatives that are driving the development of
attack-resistant archtiectures like the Trusted Computing Platform Alliance (TCPA) or the
Next Generation Secure Computing Base (NGSCB). The work of these initiatives is based
on the basic assumption, that secure and non-secure software (applications and operating
systems) must be able to coexits on the system. This assumption has led to the conceptual
architectural model of separate and parallel security domains, which is closely related to
the concept of trust we heard before. In this model the secure domains are protected from
the non-secure ones. This is often achieved by new software and hardware features that
isolate secure computations and memory and protect them from corruption. The NGSCB
for example defines four key objectives for secure systems:

• Strong Process Isolation: Protected execution of software through the introduction
of a new security domain.

• Sealed Memory: Sensitive information is encrypted and bound to a given platform
and software context. This memory can only be unsealed with a correct key in the
appropriate context.

• Platform Attestation: Describes the abilitiy to detect changes from remote users
on the system

• Secure Path to User: Invocation of secure programs in the trusted domain through
users.
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2.2 Practical Examples

2.2.1 ARM TrustZone

The TrustZone technology [Yor03] from ARM is a security extension to the ARM core
architecture which was developed to provide a hardware-based protection mechanism
against software attacks in embedded systems. The TrustZone approach is based on the
clear separation of trusted and untrusted code. We already heard about the concept of
trusted systems and separation in chapter 2.1.4. Some general approaches to software iso-
lation and sandboxing that enforce separation will be discussed in chapter 3 and of course
in chapter 5 when examining Partitioning Operating Systems and the MILS architecture.

All trusted code and applications are evolved from a trusted code base (TCB) that is
located in a secure area of the processor. This relatively small code is responsible for
regulating the security of the entire system, starting from the system boot sequence to
enforcing a level of trust at each stage of a transaction. It is protected by implementing
a separate secure domain that is enforced through hardware changes to the core architec-
ture and memory system. Therefore, besides the typical separation of operating systems
and applications through user and privileged modes, the system gets divided into a “nor-
mal” and “secure” domain, often referred to as “worlds” (see figure 2.4). Then trusted
applications need to be identified before they gain access to the secure domain, whereas
nonsecure applications are denied. The key change to the architecture and hardware, that
is enforcing this access policy, is the introduction of the so called S-bit. This simple iden-
tifier denotes which parts of the system are secure. It is applied to the ARM core, memory
system, selected peripherals, and so on. Through the S-bit the current operating state of
the ARM core is defined (normal and secure). A separate processor operating mode called
Monitor is responsible for controlling these operating states, which means controlling ac-
cesses to the S-bit. The monitor itself is accessible by a limited and predifined set of entry
points only. It is also responsible to ensure a secure transition (context switch) between
secure and nonsecure states, which is achieved through the manipulation of the S-bit.

One of the major benefits of the TrustZone technology implementation is the fact that it
may be extended beyond the processor core to other parts of the system like the memory
hierarchy and peripherals. An example implementation on an embedded system is shown
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Figure 2.4: Separation of secure and nonsecure domains in ARM TrustZone [Yor03]

in figure 2.5. Here the overall system architecture also gets divided into a secure and
nonsecure world. The boot code may be stored on a secure on-chip boot ROM. This
is necessary since modifications to the boot process would render any security scheme
ineffective. The memory also gets divided into secure and nonsecure areas. The Monitor
mode in collaboration with the S-bit facility ensures that secure data won’t be explored
to nonsecure areas. The same division happens with exception handling. The monitor
mode is used to process critical interrupts, since interrupts may freeze the processor while
processing sensitive information [RRKH04].

2.2.2 Trusted Computing and the Trusted Platform Module

Trusted Computing is a standard based on trusted systems that was developed by the
Trusted Computing Group (TCG). The Trusted Platform Module (TPM) is an additional
hardware module that forms the heart of the hardware/software approach to trusted com-
puting. In fact the term trusted computing today is always referred to this special solu-
tion. The trusted computing technology is mainly employed in personal computer mother-
boards, but may also be used in smart cards, PDAs, and smartphones. Trusted computing
consists of three components [Bra08]:

• Trusted Platform: A trusted platform is a secure computer platform that is able to
store the fundamental secrets of the system like cetificates and cryptographic keys,
to execute critical operations in a secure hardware environment, and to measure the
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Figure 2.5: TrustZone example in an embedded system [Yor03]

integrity. Primarily this is done through the TPM. The TPM uses cryptographic
mechanisms to measure the integrity of software data structures as well as the hard-
ware and stores this values so that they can be verified. The computer’s operating
system, but also suitable application programs, may use those values to check if
the hard- or software configuration has been changed and to react correspondingly
if this is the case. The TPM is a passive module that is not able to influence or
even interrupt the boot process or program sequence of the central processor. It
only receives control and state measurement data from the central processor. This
data then is processed, stored and read back from the TPM’s safe structure. These
results then are sent back to the central processor and are used to control the run-
ning of further security procedures. The TPM may also be used to securely store
cryptographic keys in a hardware protected environment. The structure of a TPM
with corresponding security functions are shown in figure 2.6.

• Secure processor architecture: Processors need additional security features in
order to work with the trusted computing standard. Intel and AMD already enriched
their processors with such features. In the embedded systems domain ARM also
manufactures such secure processors.

• Secure and trustworthy operating systems: Secure operating systems are a pre-
requisite to use the security features of secure processors and to use the trusted
platform in order to provide the user with security features. Furthermore the trusted
operating system acts as the initiator of the integrity measurement and evaluation.
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Figure 2.6: TPM Component Architecture [SB08]

Trusted computing already starts at the lowest level of the platform, beginning with the
boot process. The TPM as a certified hardware security module from a trustworthy man-
ufacturer therefore is trusted a priori. At system start a continuous security chain (“chain
of trust”) is established from the lowest level up to the applications. As soon as a lower
level disposes a stable security reference, the next level can be started upon the lower
level. The TPM therefore is a hardware security reference that serves as a “root of trust”
of the entire security chain. Already in the beginning it is verified if the signature of the
platform components have changed, for example if a component has been changed or re-
moved. Similar verification mechanisms then verify one after each other the correctness
for example of the BIOS, bootblock and operating system. Therefore the system’s state
of security and trust is retrievable over the TPM throughout the entire boot process and
also later on. Figure 2.6 shows a block diagram of the functional components of the TPM
which will be described shortly in the following [SB08].

• I/O: The TPM components are accessed through commands over the I/O compo-
nent.

• Cryptographic co-processor: This component implements RSA encryption/de-
cryption, RSA-based digital signatures, and symmetric encryption.

• Key generation: Creates RSA public and private key pairs and symmetric keys.
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• HMAC engine: An algorithm that is used in different authentication protocols.

• Random number generator (RNG): As its name implies, this component is re-
sponsible for generating random numbers that are used in a variety of cryptographic
algorithms.

• SHA-1 engine: Implementation of the SHA algorithm used in digital signatures
and the HMAC algorithm.

• Power detection: Power state management of the TPM and the platform power
states.

• Opt-in: Security mechanisms to allow the TPM to be enabled or disabled.

• Execution engine: Here runs the program code that executes the TPM commands
received from the I/O port.

• Nonvolatile memory: Storing persistent identity and state parameters.

• Volatile memory: Temporary storage. Used for execution functions, storage of
current TPM state, cryptographic keys, session information and volatile parameters.
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CHAPTER 3
Secure Software Execution and

Isolation Techniques

3.1 Introduction

Through the growing number of network-enabled devices the number of attack mecha-
nisms that enforce the propagation of malware in a system is also on the rise. Embedded
systems need flexibility, which means that it must be possible to execute downloaded
code, e.g. a firmware update. But the issue with such code is that it cannot be trusted, be-
cause it can be malicious, thus executing the code directly on the host could cause security
breach to the system. On the other hand, trusted code like the operating system could also
contain bugs which can make the system vulnerable. An effective and simple solution to
this problems is to create isolated environments in order to enforce a stronger separation
of functions. Then certain ill-effects in various software portions can’t affect the system as
a whole. Isolation techniques are a fundamental building block for the security in today’s
systems. The need for isolation was already described in the Anderson Report [And72],
which states that the main reason for security issues in systems is the sharing of resources.
Therefore the concept of the reference monitor was introduced, which in fact controls the
execution of the programs (see chapter 2.1.3.2). Most of the isolation techniques are a
variation on the generic concept of a reference monitor. Isolation of functions is estab-
lished at a minimum by the operating system’s kernel through processes, where virtual
memory is abstracted from the hardware and no processes can interfere with the memory
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of another process. But this simple isolation has shown to be inadequate in order to deal
with the various attack techniques, because many allow to access resources on other ways
than via processes. In this chapter we will have a look at some other techniques that will
mitigate these issues and enforce stronger isolation.

3.2 Trusted Computing Base and Protection Domains

First of all we will introduce some terms in order to define the isolation problem and
introduce a generic model for isolation in systems.

• Task: Is an abstraction of a piece of software. It consumes resources in order to
perform a specific function.

• Shared Resource: Can be something like a CPU, storage, or a network. Tasks
perform their functions by sharing resources with other functions.

• Protection Domain: Is a logical container for tasks and shared resources. It en-
forces the protection boundary policies using isolation techniques.

• Trusted Computing Base (TCB): The set of software, hardware and firmware that
is responsible for enforcing a security policy. The TCB can misbehave without
affecting security (see also chapter 2).

With this definitions we define the task isolation problem as the problem of seperating and
protecting tasks from other executing tasks within a protection domain and from tasks in
other protection domains. Figure 3.1 shows the generic model of the isolation problem,
whereby the protection domains enforce policies on the running tasks. The thickness of
the protection domains states to which amount the TCB is needed to enforce the protection
domain. In the model it is also possible to impelement recursive protection domains, that
are protection domains within other protection domains. Figure 3.2 shows an example
for a local protection domain in an operating system. Here the aim is to separate tasks
running on the node from each other, and to prevent tasks from outside to access the tasks
on the node [VN09].
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Figure 3.1: Isolation Model

3.3 Sandboxing

The first technique for separating running programs are sandboxing mechanisms. They
are often used to execute untested or untrusted code which should not affect other pro-
grams. Hence they create confined execution environments to run trusted and untrusted
programs on the same machine. One popular example for sandboxing is the UNIX chroot
jail, which is used to create a restricted virtual view of the file system to remote users.
Thereby a jail is a set of resource limits which are enforced on programs by the operat-
ing system kernel. Such resource limits may be I/O bandwidth caps, restricted filesystem
namespace, disk quotas and network access restrictions. Sandboxing techniques can be
devided into three coarse categories, which will be presented with examples in the fol-
lowing chapters.

3.3.1 Instruction Set Architecture

Instruction Set Architecture (ISA) based sandboxing techniques are all those that restrict
program execution at the instruction level. One easy way to achieve restricted code exe-
cution is to rewrite the application’s binary code (the object code) by inserting additional
instructions around existing code like branches and stores, in order to check for memory
access violations.
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Figure 3.2: Local Protection Domain

One of the first sandboxing techniques based on binary rewriting was introduced by
[WLAG93], which encapsulates software through software-based isolation. In modern
operating systems, some parts can be enhanced by independently developed software
modules. A very popular example for this are microkernel designs (see chapter 3.5),
where such modules are implemented as user-level servers that can be easily modified or
replaced. They can threaten the security of the system since they are generally distrusted
and malicious software could interfere with the address spaces of other program modules.
One way to prevent this would be to place every module in its own address space, where
communication between address spaces is realized by Remote Procedure Calls (RPC).
Code in one address space is protected from code in another through hardware page ta-
bles. But transferring the control from one protection domain to the other comes with
high cost. A cross-address-space RPC at least requires a trap into the operating system,
copying all arguments form the caller to the callee, saving and restoring registers, switch-
ing hardware and address spaces (which on most machines means to flush the Transition
Lookaside Buffer), and a trap back to the user-level. So this solution is very inefficient in
systems where lots of communication takes place between programs.

Therefore Wahbe et al. [WLAG93] introduced a software-based solution which maintains
fault isolation within a single address space. This approach consists of two parts. First of
all every code and data for a module is placed in its own fault domain, which is a logically
separate portion of the application’s address space. In addition, every fault domain has its
own identifier in order to access system resources like file descriptors. Second, the binary
code of a distrutsted program is rewritten so that reads or writes outside its fault domain
are prevented, which is called sandboxing. The isolated programs can communicate only
via an explicit cross-fault-domain RPC interface.
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The disadvantage with instruction level based sandboxing is that most of the techniques
are dependent on the architecture or the type of instruction set (RISC or CISC). Other ex-
amples that fall under this category are Program Shepherding [KBA02], Inline Reference
Monitors [ES00], and PittSFIeld [IBS02].

3.3.2 Application Binary Interface

The Application Binary Interface (ABI) is the low-level interface between an application
or any type of program and the operating system or between an application and its li-
braries. ABIs define how the program code needs to be structured on machine language
level. This includes calling conventions which control how the return values and param-
eters of functions should be handled, management of system call numbers and definition
of how an application should make system calls to the operating system, data types, size,
and alignment, and so on. We already heard that the sharing of resources is one of the
main reasons for security issues [And72]. The key operating principle behind ISA based
sandboxing is, that applications can cause very little harm if the access to resources is
controlled or restricted. In modern operating systems, system calls are the only way by
which applications can access system resources. So one common technique is to regulate
the access by controlling system calls. This technique is often called system call interpo-
sition. With this technique it is possible to contain the ill-effects of any malicious code,
which then won’t affect other programs. There are four general approaches to create ISA
based sandboxes [BCP+09] at which will have a look at in the following.

3.3.2.1 Kernel-Level Sandboxing

Kernel-level sandboxing techniques (see figure 3.3) build confined execution environ-
ments by hooking on the system call entry table of the operating system. All incoming
system calls from user processes are redirected to a kernel-loadable module (see chapter
5.4.6). This kernel module inspects every single call. Access control is enforced by the
policy engine which needs to be configured in order to allow or disallow operations on
the system resources. The policy engine can either be implemented in the kernel or user
space, but usually runs in user space. An explanation of user and kernel space is given
in chapter 5.3.1. System calls are intercepted and handled by the hooked kernel module
and are controlled in consultation with the policy engine. Innocuous system calls such
as close and exit are not intercepted. They are directly executed by the kernel. Access
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Figure 3.3: Kernel-module-based sandboxing

decisions of the policy engine are based on the user or process that is making the system
call and the argument within the call. On each call the policy engine returns either allow
or deny. If the call is allowed, the kernel sandbox module directly performs the current
system call. The entry pointers of this call have been configured during the initialization
phase. Through this method it is not necessary to change the application binary or the way
how a process is invoked. The disadvantage here is that all processes have to go through
this once the system call hooks have been placed. This could end up in a significant per-
formance overhead, especially in systems with lots of system calls. Systrace [Pro03] and
Remus [BGM02] are two examples for kernel-level sandboxing.

3.3.2.2 User-Level Sandboxing

In comparison to the kernel-loadable module technique, user-level sandboxing does not
use a hook on the system call table to intercept system calls, but uses tracing features of
the operating system in order to control process. One example would be the UNIX ptrace
facility (see chapter 5.4.5), where a parent process is able to trace it’s child processes.
With this feature it is possible to identify the system calls invoked by a user application.
It is also possible to identify the used arguments during invocation. The use of a policy
engine module to decide if system calls are allowed or denied is similar to the kernel-level
technique. An implementation is shown in figure 3.4.
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Figure 3.4: User-level sandboxing

Janus [GWTB96] is an example of user-level sandboxing technique, that implements a
secure environment for untrusted applications. Here the application that needs to be sand-
boxed is run under a parent process. Through this it is possible to trace the permissions
of the application and to trap all the system calls that are done by the application. The
information about the system calls and the particular arguments of those are then sent to
the policy engine. The policy engine then decides if the system call is allowed or denied.
The difference to the system call interception at kernel-level is that all system calls will
be trapped by the parent process, resulting in a higher overhead than in the kernel-based
approach. In addition, the application that needs to be isolated must be run under a parent
sandboxing process.

A more recent approach in modern UNIX-like operating systems is the /proc filesystem,
which is a hierarchical file-like structure that presents information about processes and
other system information in a more convenient and standardized way. Usually it gets
mounted to the /proc mount point at boot time. Accessing process data held in the ker-
nel gets more dynamically and easier than through traditional trace methods. Another
example for user-level sandboxing is Consh [AKS99].

3.3.2.3 Delegation-Based Sandboxing

The solutions of kernel-level and user-level sandboxing techniques have the problem that
the suffer from race conditions. The reason for this lies in the nonatomicity of policy eval-
uation and system call accesses. A so called delegated sandboxing technique can mitigate
such race condition problems. In this approach, after every system call invocation from a
user processes, the system makes a callback to an emulation library that is located in the
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Figure 3.5: Delegation-based sandboxing

user-space. This emulation library provides the isolation service. The user-space delega-
tion agent is called by the callback function in the emulation library. The delegation agent
then executes the system call on behalf of the user application.

An example of a delegation-based sandboxing system is Ostia which was developed at
Stanford [GPR04]. The key aspect of this system is that the delegation agent acts on behalf
of the user processes in order to invoke system calls. For every user process a separate
delegation agent is created. This solves the race condition and results in a minimal kernel
module that can be ported easily, since the dependency on the kernel structure is minimal.

3.3.2.4 File-System Isolation

The last approach based on system call interception is called file-system isolation, where
all file-system changes are completely isolated from the main file system. Alcatraz [LVS03]
is an implementation of this approach which hooks into all system calls that are capable
of changing the file system. Then the hook which is implemented with the system creates
an isolated shadow file system. This shadow file system records all file-system changes
but does not alter the primary file system. If a file needs to be updated, this approach uses
copy-on-write to duplicate the file and create a separate copy. The original file will be left
unchanged, whereby all child processes will use the isolated, newer version of the file.
This solution can be used for complete isolation of changes to a file system by untrusted
code. If the program finishes, the shadow file system will be reviewed by an administra-
tor or another user. If they are confident that the application is trustworthy, it can be run
outside the sandbox [BCP+09].
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3.3.3 Access Control

We already heard about the access control concept in one of the earlier chapters. An
access control mechanism implements a security policy that specifies which processes
may have access to specific system resources. It also defines the type of access that is
permitted in each instance. The access control mechanism mediates between users/pro-
cesses (subjects) and system resources (objects) like files, network devices, processes,
pipes, operating systems, firewalls, routers, etc. In access control mechanisms, processes
are sandboxed through explicit permissions (access rights) that are applied to accesses by
programs. Some access rights may be read, write, execute, delete, create, search, and so
on. Access control policies dictate the types of permitted accesses, under what circum-
stances, and by whom they are applied.

The traditional method for implementing access control is the Discretionary Access Con-
trol (DAC) policy. Here accesses are based on the identity of a requestor and the access
rules (authorizations) that state what the requestor is allowed to do or not to do. The
policy is called discretionary since an entity can be granted an access right that permits
the entity to enable another entity to access some resource [SB08]. The general approach
of discretionary access control is usually implemented in the operating system through
access control matrixes, which first were formulated by Lampson [Lam69] [Lam74]. In
the matrix one dimension describes the subjects that may try to access system resources,
the other dimension states the objects (resources) to be accessed (see figure 3.6 (a)). In a
practical implementation the access control matrix is decomposed in two ways. The first
would be decomposition by columns, yielding Access Control Lists (ACL), (seen in figure
3.6 (b)). There is a seperate ACL for every object in which all users are listed with their
permitted access right to the object. This is quite useful if one wants to determine which
subjects have which access rights to a perticular resource. But if we want to determine
which access rights are available to a specifc user, the access control matrix gets decom-
pesed by rows, yielding Capability Lists (see figure 3.6 (c)). A capability ticket specifies
authorized objects and operations for each user. Each user has a list of tickets and also
may be allowed to give his ticket to another user. Through this, tickets may be distributed
over the whole system, which makes them more security critical then access control lists.
Therefore a ticket must be unforgeable. One way to achieve this would be that the oper-
ating system holds all of the tickets within a memory location inaccessible to the users.
Another way would be to include an unforgeable token into the capability, which could
be a large random password, or a cryptographic message authentication code.
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Figure 3.6: Example of Access Control Structures

The simplest example for sandboxing with access control lists is the UNIX chroot-jail
based on UNIX’s file protection mechanism. Chroot means “change root” and is used
to switch the root directory in order to constrict the remote user’s view by controlling
accesses to other directories in the file system. This is a simple opportunity to quickly put
untrusted software into a sandbox. But the facility has primarily not been implemented as
a security feature. The problem is that a re-rooted program may not access directories and
utilities outside its safe directory anymore. So those utilities need to be copied into the
directory, which may cause high maintenance overhead. Therefore a lot of work has been
done in order to enhance the access control approach based on the file protection mech-
anism. Some example systems and implementations are TRON [BBS95], Sub-Operating
Systems [IBS02], and Chakravyuha [DMRS97].

33



3.4. Virtualization

Besides discretionary access control there also exist Mandatory Access Control (MAC),
and Role-based Access Control (RBAC) policies. Mandatory access control deals with
comparing security labels of system resources and security clearances, also called secu-
rity levels. We already heard about this multilevel security approach when talking about
security models. This concept is often used in the context of trusted systems and we will
be concerned with this in some later chapters. Role-based access control on the other
hand is based on roles that users have in the system and on rules that control the accesses
that are allowed to users in given roles [SB08].

As a conclusion we can say that access controlled sandboxing is more generic in its ap-
plications than ABI-based sandboxing. The ABI-based sandboxing technique relies only
on preventing system calls, whereby access control sandboxing modifies the system calls
in order to implement security policies [VN09].

3.4 Virtualization

3.4.1 Overview

Virtualization techniques have been around since the 1960s. In these early days they were
used to logically partition mainframe computer systems into separate virtual machines,
which allowed mainframes to run multiple applications and processes at the same time.
Today the increased computing capabilities of modern hardware has shifted virtualization
beyond plain system partitioning. Virtualization today may provide various features like
emulation, optimization, translation, isolation, replication, and so on [SN05]. We are es-
pecially interested in the isolation aspects of virtualization in order to maintain various
protection domains. Virtualization seems to be a viable technology to be applied in desk-
top systems, enterprise systems, service providers, production systems, virtual private
networks, agile and cloud computing, mobile and embedded devices, and other systems.
In the last ten years lots of work went into improving the performance, enhancing the
flexibility, and increasing the manageability of virtualization technologies [Kro09].

Virtualization can bee seen as some kind of system abstraction of real machines which
provide a virtual platform for running tasks. A virtualization layer logic, which is inter-
posed between the hardware layer and some sort of client layer running above it, provides
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virtualized system resources to the clients (guests) [DG09]. The clients gain access to re-
sources via standard interfaces. These interfaces do not communicate with the resources
directly but via the virtualization layer, which manages the real resources and possibly
multiplexes them among multiple clients. The virtualization layer in general runs at a
higher privilege level than the clients, and is able to intercept important instructions and
events and treat them in a special way before they are handled or executed by the hard-
ware. Let’s assume that a client wants to execute an instruction on a virtual machine. The
virtualization layer may intercept that instruction and implements it in a different way on
the real resources he has control of. Through this management performed by the virtual-
ization layer, each client is presented with the view of being the only user accessing the
resources. The virtualization layer must maintain this illusion and ensure the correctness
of the resource multiplexing. So we can say that virtualization is a technique to provide
efficient resource utilization via sharing among clients. It also maintains strong isolation
between clients, that need not know of each other’s existence. The abstraction decou-
ples the client from the real resources. This results in greater architectural flexibility and
mobility in system design.

3.4.2 Interfaces, Abstraction, and Virtualization

Due to their complexity, computer systems are designed as hierarchies with well-defined
interfaces to separate levels of abstraction. Examples for well-defined interfaces are the
Instruction Set Architecture (ISA), Application Binary Interface (ABI), and Application
Programming Interface (API). The ISA is located at the lowest level in the system and
directly communicates with the hardware. The other interfaces are located at higher lev-
els and only state a higher degree of abstraction, but in the end all software is executed
through the ISA. Figure 3.7 shows where the different interfaces are located in a com-
puter system architecture. Through the abstraction of these interfaces the lower-level
implementation details are hidden from hardware and software designers, which as a re-
sult simplifies the design process.

The ISA of a computer system examplifies the advantages of a well-defined interface.
Software that is compiled for one ISA (e.g. x86), will run on any processor that imple-
ments the x86 instruction set. The disadvantage however is that the software is tied to a
specific ISA and dependent on a specific operating system interface, if it is distributed as
compiled binaries. Virtualization is a technique that can come up with such disadvantages,
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Figure 3.7: Computer System Architecture - Interfaces

since it maps an interface at a given abstraction level onto the interface and resources of
an underlying, possibly different, real system [SN05]. The inteface levels like ISA, ABI,
API therefore represent an opportunity where virtualization may take place. We will have
a look at some virtualization approaches in the following.

3.4.3 Process Virtual Machines

From the view of a process that is executing a user program, a machine consists of a log-
ical memory address space that belongs to the process, with user-level instructions and
registers that allow the execution of the code that belongs to the process. Processes can
only communicate with the machine’s I/O through the operating system. Thus the ABI
defines the processes’ low level view of the machine, the API the high level view. A
process virtual machine (VM) provides a virtual ABI or API environment through which
every process interacts with the operating system and being completely unaware of the
activities of other processes [SN05]. Therefore a process VM is a virtual platform that
executes an individual process.

The most common process virtual machine is implemented in almost every modern op-
erating system. The operating system virtualizes the memory address space, central pro-
cessing unit (CPU), CPU registers, and other system resources for each running process.

36



3.4. Virtualization

The operating system is able to support multiple user processes through multiprogram-
ming. It is responsible to guarantee each process a fair time-share of the CPU. Therefore
a scheduling algorithm implemented in the operating system context switches through
the different processes, maintaining the illusion that each process has sole access to the
CPU. Virtualization of memory gives each process the illusion of its own address space,
thereby a proccess is not able to access the address space of another process. Virtual
memory spaces are achieved through the usage of a page table mechanism that translates
the virtual memory pages in a processes’ virtual address space to actual physical memory
pages [DG09]. Usually there are lots of so called page table walks, so the address trans-
lation is often aided by additional hardware in the processor, like a Memory Management
Unit (MMU) which is often coupled to a Translation Lookaside Buffer (TLB), and multi-
ple cache levels (L1- ,L2-cache).

Process virtual machines may also support the execution of processes that are compiled
for a different ISA than the host system. Then the virtualization layer must support the
translation from one ISA to another. Two popular techniques for ISA translation are inter-
pretation and dynamic binary translation [SN05]. A process virtual machine approache
that supports different ISAs would be the Java VM architecture. Process virtualizaiton
enforces isolation policies through the runtime component (virtualization layer) which
runs the processes under its control. The isolation is guaranteed since the virtualization
layer restricts direct access to the underlying real system.

3.4.4 System Virtualization

From the view of an operating system and its supported applications, the whole system
runs on an underlying machine. A system is a full execution environment which is able to
support numerous processes running in parallel. It is responsible for allocating real mem-
ory and I/O resources to the processes and manages the interaction between processes
and their resources. So the systems’ perspective of a machine is defined only through the
characteristics of the underlying hardware. Here the ISA provides the interface between
the system and the machine [SN05]. A system VM is then built by virtualizing the entire
system. Therefore the virtualization software, often called Hypervisor or Virtual Machine
Monitor (VMM), virtualizes all resources of the real machine including the CPU, mem-
ory, processes, network devices, graphic cards, and so on. So the hypervisor provides the
software access to real resources via a virtualized ISA, giving the software in the virtual
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machine the illusion of running in a real machine. The hypervisor must run at the highest
privilege level in order to be in absolute control of the whole system resources, which
is often achieved through processor hardware mechanism like protection rings, privilege
rings or processor mode mechanisms. They are used to protect the hypervisor from the
guest VMs and to protect VMs from each other.

System virtual machines are full replica of the underlying hardware platform enabling
them to run complete operating systems within them. It may also be possible that the
hypervisor supports multiple virtual machines. Therefore it is responsible for properly
sharing and managing real machine resources among the different virtual machines. All
accesses to hardware resources must be mediated by the virtual machine monitor, which
as a result provides the necessary isolation between the virtual machines [VN09]. It may
also be possible that the hypervisor emulates the hardware ISA, enabling the execution of
software with different ISA.

Let us once again have a look at privilege rings. The x86 CPU architecture for example
provides 4 protection rings from level 0 to 3 in which the code can execute. In general
operating systems are running in ring 0 which has the highest privilege level. All the code
running in this ring is often said to run in system space, kernel mode, privileged mode or
supervisor mode. Other applications that are executed by the operating system run in less
privileged rings, normally in ring 3. We heard before that the hypervisor needs to run in
the highest privilege mode, therefore occupying ring 0 of the CPU. So the guest operating
systems kernels that are running on the system need to execute in less privileged rings. But
most operating system kernels are explicitly written to run in ring 0, because they must
be able to perform tasks that are only available at this privilege level. Such tasks may be
the execution of privileged CPU instructions or the direct manipulation of memory. Two
approaches to solve this problem are full system virtualization and paravirtualization that
are examined in the following two chapters.

3.4.4.1 Full System Virtualization

In the full system virtualization approach the virtual machine monitor (hypervisor) sits
directly on top of the hardware and completely simulates the system environment (fig-
ure 3.8). All important features of the hardware like the full instruction set, interrupts,
memory access, input/output operations are reflected into one of several virtual machines.
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Figure 3.8: Full-system virtualization

Through full system virtualization, any software that is capable of running on the hard-
ware can be executed in a virtual machine, which also includes the support to host unmod-
ified operating systems. The term unmodified means that the operating system kernels, in
comparison to paravirtualization (see chapter 3.4.4.2), need not to be modified in order
to run on the hypervisor. Therefore privileged operations still run in ring 0 of the CPU.
This privileged instructions may potentially alter the state of any other virtual machine,
the hardware, or the control program. So the main purpose of the hypervisor is to inter-
cept and simulate privileged operations made by unmodified operating systems through
CPU emulation. Compared to paravirtualization, one of the major drawbacks of full sys-
tem virtualization is that this emulation process requires both time and system resources
which may result in weak performance.

3.4.4.2 Paravirtualization

In the paravirtualization approach, the kernels of the guest operating systems need to be
modified in order to run on the hypervisor (see figure 3.9). This modification presents a
software interface to the virtual machines which may differ from that of the underlying
hardware. Through the modification, the privileged operations and instructions (e.g. calls
to hardware and device drivers) that will only run in ring 0 of the CPU are replaced by
calls to the hypervisor (also known as hypercalls). The hypervisor then carries out the
task on behalf of a privileged guest operating system that may host device driver and
hardware functionality. Through this approach it is possible that software running on a
virtual system can bypass the virtual interface and actually carry out it’s operations on
the system’s hardware directly resulting in better peformance. This is because in full
system virtualization all the hardware is utilized by the virtual interface, but some of the
privileged functions are very difficult for the virtual system to accomplish. Therefore
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Figure 3.9: Paravirtualization

a virtual program that needs to carry out one of these tasks takes less resources when
it skips the virtual layer and goes directly to the hardware system. A major drawback of
paravirtualization on the other hand is the lack of flexibility. Since the kernels of the guest
operating systems need to be ported, paravirtualization is often limited to support open
source operating systems like Linux, porting proprietary kernels like Windows is mostly
not possible. A very popular paravirtualized environment is Xen [BDF+03].

3.4.5 Shared Kernel Virtualization

Shared kernel virtualization is often also referred to as operating system virtualization or
system level virtualization. It is based on the architectural design of Linux and UNIX
operating systems. This design is based on two main components. The first component is
the kernel. As we know, the kernel manages the interactions between the physical hard-
ware and the operating system. The second key component is the root file system. The
root file contains all the files, libraries and utilities that are necessary that the operating
system is running. Now in the shared kernel virtualization approach, the virtual machines
(also called system partitions) all have their own root file system but share the same kernel
of the host operating system (see figure 3.10). This is achieved through an enhancement
of the chroot feature of the operating system, where a complete system partition is cre-
ated by chrooting a standalone machine with its own root file system. A drawback of this
approach may be, that guest operating systems must be compatible with the shared kernel
of the host system. Example systems are Solaris Zones, Virtuozzo, OpenVZ.
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Figure 3.10: Shared kernel virtualization

3.4.6 Kernel Level Virtualization

In this virtualization technique a host operating system runs on a modified kernel that
has extensions to manage multiple virtual machines. These virtual machines all contain a
guest operating system. In comparison to shared kernel virtualization each guest runs its
own kernel. Modifications to Linux kernels for example may be implemented as kernel
loadable modules (see chapter 5.4.6). Though shared kernel and kernel level virtualiza-
tion are different, the restriction that guest operating systems have to be compiled for the
same hardware as the kernel they are running upon remains. Examples of kernel level vir-
tualization technologies are Kernel-based Virtual Machine (KVM) and User Mode Linux
(UML).

3.4.7 Guest Operating System Virtualization

Guest virtualization is probably one of the easiest virtualization concepts. Here the host
computer system is running a standard unmodified operating system like Windows, Linux
or MacOS. Then a third-party virtualization software, running on the host system like a
normal application, creates one or more virtual machines that run guest operating systems
on the host computer. It is responsible for starting, stopping and managing the virtual
machines and to regulate the accesses to physical hardware. In this approach the guest
systems are fully virtualized and are not aware of other guest systems. They believe
that they are the only running system with their own hardware. This effect is enforced
by the virtualization application through a binary rewriting process. This process scans
the application stream of the executing guest system and replaces privileged instructions
with safe emulations. This high level of abstraction of the emulation process between the
guest operating system and the host hardware sometimes ends op in weak virtual machine
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Figure 3.11: Guest Operating System Virtualization

performance. Especially disk I/O often is carried out slowly. However, the speed of
nondisk operations is near native. Therefore it is recommended to use network services to
communicate between different virtual machines like Windows Terminal Services (RDP)
or SSH in Linux and UNIX systems. On the other hand a big advantage of this technique
is, that no changes have to be made either to the host or guest operating systems and
that no special CPU hardware virtualization support is required. Examples of guest OS
virtualization technologies would be VMware Server and VirtualBox.

3.4.8 Hardware Virtual Machines

A hardware virtual machine is built by using primitives that are provided directly through
the hardware like I/O or the processor. Compared to the software solutions like pro-
cess or system VM this approach has the advantage of huge performance improvements.
Hardware virtualization in gerneral also provides better isolation between the virtual ma-
chines which results in higher security. An example is the Intel Virtualization Technol-
ogy [NSL+06].

3.5 Operating System Kernels

The operating system kernel has always been the most trusted component in a computer
system. So it is apperant to entrust the kernel with enforcing isolation between application
and applications and the kernel itself, which actually is the most traditional isolation ap-
proach. In the last years much research was spent on reducing the size of the kernel since
a smaller kernel also reduces the size of the TCB. As a result and opposed to monolithic
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kernels so called Microkernel and Exokernel operating systems have emerged where the
code of the kernel consists of some thousand lines of code only, which makes them easier
to be proven correct.

Microkernels especially gain interest in the embedded systems domain. Traditional em-
bedded systems software was build on top of a real-time execution environment without
memory protection. Then the complete system, which may contain out of millions of
lines of code belongs to the TCB. In such a system every bug in any part of the system
can cause a security violation. It’s clear that it is impossible to make such a large TCB
trustworthy. However, in modern embedded systems a memory protection mechanism is
almost always integrated. Hence it is necessary to have a operating system that is able to
deal with those memory protection mechanisms. This started the trend to run commodity
operating systems like Linux and Windows on the embedded system. Those are often
stripped down versions of their originals, but still have sizes of around 200.000 lines of
code (LOC), potentially containing hundreds, if not thousands of bugs. To secure the
system we need a secure and trustworthy TCB, which basically means it has to be free
of bugs. To show the correctness of this code we could use exhaustive testing ore for-
mal methods like mathematical proofs, but those scale poorly and are typically limited
to hundreds, at most thousands of LOC. Therefore another approach is to modularize the
system in order to deal with the complexity and to separate the problem in more tractable
segments. Modularizing the kernel code does not solve our problem, because kernel code
is running in the privileged mode of the processor, so there is no protection against kernel
code that is violating module boundaries. The kernel code is atomic. So we need to mod-
ularize non-kernel code, in such a way that the modules can be encapsulated into their
own address spaces. This actually means that hardware mechanisms enforce the module
boundaries under the mediaton of the kernel. Then the trustworthiness of such a module
can be established independently from other componets, if the kernel is trustworthy.

So how to actually make the kernel trustworthy? As we already heard, the answer to
this question lies in reducing the TCB which actually is done by reducing the size of
the kernel, maintaining a microkernel. The microkernel must be small enough so that
it can be verified. To achieve this goal, the microkernel only contains code that must
run privileged. Any other unprivileged code should stay outside of the kernel, i.e. run
in user mode. The microkernel then is the near-minimum of code that is able to pro-
vide the mechanisms needed to implement an operating system. Such mechanisms would
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Figure 3.12: (a) Monolithic kernel and (b) microkernel

be thread management, inter-process communication (IPC), and low-level address space
management. Other traditional functions of operating systems such as protocol stacks,
file systems, and device drivers are then removed from the microkernel and run in user
mode (see figure 3.12).

The large size of the TCB of traditional operating systems is one reason that they are im-
practical for the requirements of embedded systems. At least a second reason is that they
have a model of access control that only protects different users of the system from each
other. But there is no possibility to restrict the access of particular users to their own data.
Most embedded systems are single-user systems, so the protection issue is different to the
desktop environment. There should be the possibility that different programs of the same
user can have different access rights to system resources. Those access rights shouldn’t be
based on the identity of the user but rather by the function of the programs. This is an in-
stance of the security principle of least privilege (see chapter 5.4.2). Because traditional
systems run programs with the full set of the user access rights the principle gets vio-
lated. Through this violation viruses and worms could cause much damage in the system.
Imagine that a game installed on your system has an embedded virus. Running the game
under the full user privileges may allow the virus to destroy files or steal confidential data.

In a system with a microkernel approach, we heard that the software is encapsulated into
modules where the module boundaries are maintained with hardware-enforced interfaces.
So every communication between modules must employ the kernel-provided IPC mech-
anism, which means that the kernel is in full control over all communication between
components. This offers the opportunity to interpose security monitors between compo-
nents. These security monitors may be used to enforce system-wide security policies.
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These policies could be used to allow an imported program (such as a game) only ac-
cess to files that the user assigned to it. This approach often is referred to as fine-grained
access control. Example microkernels are the Mach Microkernel [ABB+86] and L4.

3.6 Hardware-based Isolation

Hardware-based isolation is the strongest form of isolation, which is quite difficult to be
circumvented by the software at runtime. Such mechanisms may be provided by the pro-
cessor itself, or by special hardware that works together with the processor, like a memory
management unit we already heard about. There may also be so called I/O Memory Man-
agement Units, that translate the Direct Memory Access (DMA) address of a device to
physical addresses. The I/O MMU allows a device only access to memory regions that
it has been explicitly granted to. So malicious devices are prevented from performing
arbitrary DMAs, which increases the system availability and reliability. An examples is
the Calgary I/O MMU [BYMX+06]. Another hardware-based isolation approach is the
ARM TrustZone [Yor03] technology (see chapter 2.2).
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CHAPTER 4
Case Study: Key Distribution Tool

4.1 Introduction

Almost every security service of a system is based on a cryptographic mechanism like
encryption or authentication. These mechanisms need cryptographic keys that must be
distributed to communicating parties prior to secure communications. So if we want to
integrate cryptographic functions into our systems we need a secure key management
facility that is able to provide secure procedures for handling crpytographic keying mate-
rial. According to the Open Systems Interconnection (OSI) Security Architecture Standard
ISO 7498-2 [ISO88], key management is “the generation, storage, distribution, deletion,
archiving and application of keys in accordance with a security policy”. Secure key man-
agement is one of the most critical tasks when integrating cryptographic functions into a
system. Because of this high criticality it is also very important to be aware of the possible
threats to protect against and to know about the physical and architectural structure of the
system [FL93].

One of the central problems in key management is the secure storage and distribution of
keys. It is necessary to guarantee the origin, integrity, and confidentiality of the keying
material. Therefore we will define and implement a Key Distribution Tool (KDT) which
serves as the basis for our evalution work in chapter 5.



4.2. Functionality

4.2 Functionality

The implemented Key Distribution Tool consists of the Key Distribution Center (KDC),
the Secure Key Distribution Protocol (SKDP) and User Programs. User programs may
request new or existing keys from the KDC using the SKDP.

If a user program requests a new key, the KDC uses a Pseudo Random Number Generator
(PRNG) to generate a cryptographic key. Then the key is stored in the key database and
afterwards sent back via the SKDP to the requesting user program. The key database is
implemented as a hash table where the hash index is calculated over a unique key_id that
is sent within a key request from user programs. If the requested key already exists in the
database it will be overwritten with the newly generated.

If a user program requests an existing key, the KDC looks it up in the database and if
found, the key is sent back to the user program. If there is no such key in the database,
the KDC again uses the PRNG to generate one, then writes it to the database and sends it
back to the user program.

On every key request, the SKDP automatically initiates a key exchange based on the Diffie
Hellman protocol, where the KDC and user programs are supplied with a shared secret
key. The calculation of the shared secret is done by using Elliptic Key Cryptography
(ECC), where ECC keys in general are harder to attack than e.g. symmetric keys. The
shared secret key then is used by the KDC to encrypt the key messages, thereby securing
the communication. The user programs then of course use this shared secret to decrypt
the received message. Encryption and decryption is done be using the symmetric AES
cipher. All of the cryptographic stuff in the KDT is done by using the libraries LibTom-
Crypt (libtomcrypt) and TomsFastMath (libtfm) found under [SD10].
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4.3 Block Diagram

Figure 4.1: Schematic Overview of the Key Distribution Tool
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4.4 Secure Key Distribution Protocol

Figure 4.2: Diagram of the Secure Key Distribution Protocol
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CHAPTER 5
Evaluation

5.1 Evaluation Goals

In the previous chapters we had a look at basic security-related topics to gain a first insight
to this huge area. We concluded that there is a wide design space from the pure software
and hardware solutions up to hybrid approaches for implementing security features. We
figured out that isolation techniques play an important role for the secure execution of
software, making the system more error-prone and less vulnerable to attacks by malicious
users. Next we implemented the Key Distribution Tool (KDT) as a classical example
for security concerned software. In this first step the KDT was implemented to run on a
monolithic Linux kernel using its POSIX interfaces for memory access and interprocess
communication. This decision was based on the fact that due to its low cost and ease
of customization there are lots of derivatives of the Linux operating system (e.g. Em-
bedded Linux, µClinux) that are actually running on many of today’s embedded devices
(see chapter 3.5). Since the Key Distribution Center (KDC) handles cryptographic keys
and stores them in main memory, it has to be isolated from other processes in order to
prevent the exploration of the sensitive key information. So one of the first steps of the
evaluation process will be to examine how the Linux kernel enforces this isolation. Then,
in a case study, we will try to find mechanisms that still make it possible to explore the
keys. In addition we will have a look at Linux features that probably are inappropriate for
the embedded systems domain, as for example the Linux Discretionary Access Control
model.



5.2. Use Case

The next major step in the evaluation process will form the core statement of this work,
which is a comparison between the Linux operating system and a Partitioning Operating
System approach. Partitioning Operating Systems are especially designed to meet safety
and security requirements in a time-critical embedded system environment. In our case
we will evaluate SYSGO’s PikeOS [SYS12]. Therefore we will give an insight to the
architecture of this modern real-time operating system. Afterwards we examine the sit-
uation for secure key storage in PikeOS by comparing the cases for memory acquisition
found in Linux. Through this we will be able to work out the architectural benefits of
a partitioning operating system, which in the end allows us to formulate the conclusion
about this work.

5.2 Use Case

First of all we will define a use case upon the KDT that will be used throughout the whole
evaluation process. One possible utilization of the KDT could be that applications request
for keys in order to encrypt data they want to send to other applications locally or even
over some network interface. Another example for an implementation using the KDT
could be a “Secure Group Communication Service” where applications share a crypto-
graphic key as a common secret. Then all applications in posession of the shared secret
are allowed to participate in the group communication. In both cases there will also be
applications that are not allowed to know about those keys, which forms the major secu-
rity requirement for our use case. Therefore we need to distinguish between both sorts
of applications, calling them trusted if they are and untrusted if they are not allowed to
request for cryptographic keys.

Refining our use case to a concrete scenario, we will allow two applications to commu-
nicate with the KDC forming a trusted partition. All the other applications should be
rejected, hence forming an untrusted partition. The KDC along with the core messag-
ing services are part of the Trusted Computing Base of the system (see figure 5.1). Then
we will implement the use case on both of our evaluation systems: Linux and PikeOS.
To examine how strong both systems enforce separation between trusted and untrusted
domains, we will define a debug key and try to explore this key from the KDC’s key
database. Since allocated dynamically, the key database will be located in heap memory.
The value of the debug key is “00112233445566778899AABBCCDDEEFF” and will be
inserted into the database when starting the KDC.
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Figure 5.1: Key Distribution Tool Use Case

5.3 Linux

5.3.1 Interfaces to Linux

As said before, our first evaluation environment is Linux and the Linux kernel. To get fa-
miliar with Linux we will examine some architectural features in the following chapters.
Linux is based on a monolithic kernel architecture which is compliant to the Portable Op-
erating System Interface (POSIX) standard. POSIX is a family of standards specified by
the IEEE for maintaining compatibility between operating systems described in the IEEE
1003.1-2008 Standard [Ope12].

The Linux kernel runs on top of the bare hardware and provides a system call interface
to all the running user programs. The system calls may be used by user programs for ex-
ample to create, destroy and manage processes, files, or other resources. System calls are
done by placing arguments in registers or on the stack, and then issuing a trap instruction
into the operating system to switch from user to kernel mode. Those two modes of oper-
ation are provided by most of the ISAs in use and are often also referred to as privileged
mode and unprivileged mode (see chapter 5.3.2). Trap instructions cannot be written in C,
so a library containing one procedure per system call is provided. Therefore the POSIX
standard specifies a library interface and not the system call interface itself. So making a
system call is like making a procedure call, with the difference that system calls enter the
kernel and procedure calls do not. The kernel code then starts after the trap instruction
by examining the call number. This number then will be dispatched to the correct system
call handler. After processing the system call handler code the execution control is given
back to the user code.
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Figure 5.2: Linux layers [Tan07].

Besides the operating system and system call library the POSIX standard also supplies a
number of user level programs specified by the POSIX 1003.2 Standard. Some of those
programs include the command processor (shell), compilers, editors, text processing, and
file manipulation programs. Thus POSIX consists of three different interfaces to Linux:
the system call interface, library interface, and the user interface that is formed by the set
of standard utility programs (see figure 5.2).

5.3.2 The Kernel

The Linux kernel directly sits on top of the hardware and is responsible for interacting
with the memory managment unit, I/O devices and also controls the CPU access to them.
On the lowest level of the kernel sit the interrupt handlers that are primarily used to in-
teract with the devices and low-level dispatching mechanisms. The kernel runs in the
privileged mode where it has complete access to all the hardware and instructions of the
CPU. All the other software runs in the unprivileged mode where only a subset of the
machine instructions is available. Privileged and unprivileged modes are enforced by the
protection rings of the CPU (see chapter 3.4.4). The Linux kernel consists of three main
components:

• Input/Output: In this component all code for interacting with devices and per-
forming network and storage I/O operations are located. We can see on top, that
the I/O operations are all integrated under a virtual file system layer. This means
that a read operation, that may be used for reading files from memory or disk, or to
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Figure 5.3: Structure of the Linux Kernel [Tan07].

retrieve a character from a terminal input, remains the same. On the bottom level
the I/O operations always pass through a device driver.

• Memory Management: In the memory management component all the mappings
from virtual to physical memory are maintained. Other tasks include page caching
and page replacement, and on-demand paging.

• Process Management: The main task of the process management component is
to create and terminate processes. The process scheduler of course is also im-
plemented in this component and responsible for scheduling processes and threads
based on a global scheduling policy. Linux treats both processes and threads simply
as executable entities.

The three main components of the Linux kernel are statically compiled into the kernel.
But Linux supports an opportunity to dynamically load code into the kernel, called Load-
able Kernel Modules (LKMs). LKMs may be used to replace the default file system,
networking, device drivers, or other kernel codes. We will have a look at LKMs later
on in the evaluation process, since they may introduce a serious threat to the operating
system’s security (see chapter 5.4.6). At the highest level sits the system call interface
into the kernel. At this interface the incoming system calls cause a trap that switches the
execution from user mode into kernel mode. The control then will be passed to one of the
above kernel components [Tan07].
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5.3.3 Processes

5.3.3.1 Process Isolation and Virtual Memory

In chapter 3 we heard about isolation techniques for secure software execution. Most
operating systems including Linux enforce isolation with the CPU’s memory management
hardware (MMU) at process granularity. One of the first steps for a secure and stable
system is the protection of the kernel from other running programs, which is achieved
by the two modes of execution of the ISA. But this alone is not enough, since we also
need a mechanism to protect running programs from each other as well. This is achieved
by the Linux’s virtual memory subsystem. It is responsible for managing the translation
from virtual to physical addresses and vice versa, thereby enforcing separation between
the processes’ address spaces. The kernel actually sets up the virtual memory system at
the software level. There the kernel ensures that it is able to access the address space of
any process. The address space of a process is it’s range of virtual memory addresses. The
kernel also makes sure that no process can directly reference the kernel memory. With
that, virtual memory gets devided into two areas, often referred to as kernel-land and
user-land memory (see chapter 5.3.3.2). More details on virtual memory and memory
management may be found in [Tan07].

5.3.3.2 Processes in Memory

Since we want to explore keys from the memory of the runnig KDC process, we will now
examine in short how processes in Linux actually reside in memory. When running Linux
on a 32-bit machine, every process has a virtual address space of 3 GB. The only way
processes can communicate with the underlying operating system or with other processes
is via system calls. When issuing a system call the process traps to the kernel and runs in
kernel context from that point on. In kernel context each process has access to an addi-
tional 1 GB of kernel memory, that is not visible to the process when in user mode. Each
process is described by a process descriptor struct called task, which actually is resident in
the kernel memory all the time. This struct presents information for the kernel to manage
all the processes. The information in the task struct can be catogorized into scheduling
parameters, memory image, signals, machine registers, system call state, file descriptor
table, accounting, kernel stack, and miscellaneous data.
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Figure 5.4: Linux Virtual Memory Structure.

In the memory image field resides the virtual memory information of the process, con-
taining pointers to the text, data and stack segments or virtual pages. All this information
is stored in the top-level memory descriptor called mm_struct, also known as page table,
which is created for each process. On a context switch, the page table belonging to the
corresponding process will be loaded. Because every process has its own page table it also
has a different set of pages than the others, and therefore sees a large, contiguous, virtual
address space all for itself. Information to virtual pages are stored in the vm_area_struct
structure (see figure 5.4). If we want to access the memory of the KDC we somehow
will be confronted with system calls and kernel mode and the mm_struct structure (see
chapter 5.4).

5.3.3.3 Communication

Processes in general can communicate with each other over either message passing mech-
anisms or by sending signals. Linux offers pipes, message queues, shared memory, and
semaphores for message passing. We already dealt with message queues in the imple-
mentation of the KDT (see chapter 4).
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Signals can be sent from one process to the other. Each process can tell the system what
he wants to do if a signal is received by choosing if he wants to ignore it, catch it, or
let it kill the process. Killing the process is the default operation for most signals when
nothing else is defined. If a process catches a signal he needs a signal handling procedure.
Signal handlers are handled like hardware interrupts. On receiving a signal, the control
is instantly transferred to the signal handler. When it finished it is given back to where it
came from. In Linux processes are only allowed to send signals to processes in their own
group. A superuser may send signals to all processes on the system (see chapter 5.3.4
and 5.4.2.1). The POSIX standard defines system calls for message passing and sending
signals and a set of appropriate signals. It also allows to change the signal mask of a
process, whereas the signal mask defines a set of signals that are currently blocked on the
receiving thread.

int sigprocmask(int how,

const sigset_t *set,

sigset_t *oldset);

• int how:
Defines behavior when calling sigprocmask():

– SIG_BLOCK:
Set of blocked signals is the union of the current set and the set argument

– SIG_UNBLOCK:
Signals will be removed from the current set of blocked signals.

• const sigset_t *set:
If NULL the signal mask remains unchanged, otherwise set becomes the current set.

• sigset_t *oldset:
If not NULL the previous signal mask will be stored in oldset.
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5.3.4 Security in Linux

5.3.4.1 Access Control

UNIX-based operating systems including Linux are so called multiuser systems. The ba-
sic line of defense of a Linux operating system is its per user based Discretionary Access
Control (DAC) mechanism (see chapter 3.3.3), which determines if a entity (user or pro-
gram) can access a given resource. Every Linux system consists of a set of registered users
who are assigned a unique integer called User ID (UID). Users can also be organized into
groups which are identified by a Group ID (GID). Upon creation, all files, processes, and
other resources inherit the UID, GID, and access permissions of the creator, also referred
to as the owner. The access permissions determine who is able to access the resource.
They are split up into three sets of users, the group, and others. We will see that the
per user based access control mechanism of UNIX-like systems is impracticable for en-
forcing separation in the embedded system domain (see chapters 5.4.1, 5.4.2.1, and 5.4.4).

In Linux the special user with UID 0 is called superuser or root. It is responsible for all
the administrative tasks like managing others users, configuring the system, setting usage
limits, installing device drivers, and so on. Therefore a superuser has full privileges,
allowing him to access all resources and using protected system calls. It is also allowed
to modify the kernel itself, since like any other software the kernel needs to be updated
too. So if a process reaches superuser status it has full control over the machine. Actually
most of the system attacks aim at reaching this status which is often referred to as privilege
escalation (see chapter 5.4.2.1).

5.3.4.2 Security Features

DAC of the Linux kernel alone is insufficient for providing security (see chapter 5.4.2.1).
Therefore there are lots of projects out there aiming at enhancing the security in Linux. It
has been shown, that it is most effective to place countermeasures and security features in
the kernel, often implemented as loadable kernel modules (see chapter 5.4.6).

One of those projects is grsecurity [GRS12] which is a set of security patches for the
Linux kernel. One important part of grsecurity is that it allows to define a least privilege
policy for the system, where every process and user only has the lowest privleges they
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need to function (see chapter 5.4.2.1). Another major component in grsecurity is the PaX
project, which provides Address Space Layout Randomization (ASLR). Through ASLR
every process gets a random address space, making the system somehow indeterministic
and preventing it from attacks by buffer-overflows.

A further example is Security Enhanced Linux (SELinux) which is using the Linux Secu-
rity Modules (LSM) interface [SEL12]. The LSM interface provides everything needed
to implement a Mandatory Access Control module while doing only a few changes to the
Linux kernel. Mandatory Access Control has always been closely associated with multi-
level secure and trusted systems (see chapter 3.3.3 and 2.1.4).

Some other improvements introduced by other security features are Media Access Control
(MAC), Access Control Lists (ACL), and Role-Based Access Control (RBAC). Moreover,
enhanced Linux security features restrict the usage of ptrace (see chapter 5.4.5), chroot,
and access to diagnostic interfaces like the /proc pseudo filesystem.

5.4 Memory Acquisition

5.4.1 Assumptions

Through the steady security enhancement of the Linux kernel it is ever getting harder to
attack Linux operating systems. Therefore finding and writing new exploits and attacks
is a time-consuming act where the attacker needs creativity and serious programming
skills. Exploiting the kernel or driving user or kernel space attacks would be out of the
scope of this work. Another issue is that the security features we heard about before, are
just addons to the kernel, making the privileged code even larger and more complicated
and have not – as opposed to PikeOS – been part of the operating system design. So
the goal of our evaluation will be more to compare the design and architectural features
between Linux and PikeOS, without considering additional security features of the Linux
kernel. Furthermore, since embedded systems are single user systems, we will assume
that besides the superuser there is only one user present making user groups unneccessary.
Actually this is one of our main evaluation points. In DAC access to system resoures is
always done on a user basis, and not per process which is too course-grained for our
use case and the embedded system domain. The multi-user approach just doesn’t fit.
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The problem will be described again in chapter 5.4.2.1. Also when a user creates new
resources like message queues they inherit the access rights of the user. When a user
spawns new processes they may also access the message queue, again compromising our
use case. To separate those processes we would need to impelement isolation techniques
like sandboxing or virtualization, we heard about in chapter 3. But those techniques
often lack performance, suffer from race conditions, or have high configuration overhead.
Additionally the problem that the large and vulnerable Linux kernel enforces isolation
and applies the security policy remains.

5.4.2 CASE 1: Privilege Escalation and Exploitation

Attacking applications or the operating system by software means is often referred to
as exploitation. Software has bugs which make software misbehave or perform a task
incorrectly. Exploitation then means to turn this misbehaviour into an advantage for the
attacker. Not all bugs are exploitable, however those that are, are called vulnerabilities
(see chapter 2.1.2). The monolithic Linux kernel with some million lines of code (LOC)
may have ten-thousands of bugs (see chapter 3.5), giving a malicious user a broad range
of attack points. However, most of the exploits aim at raising the attacker’s privileges to
superuser status and therefore gaining access to the whole system (see chapter 5.4.2.1).

5.4.2.1 Privilege Escalation

Most operating systems including Linux implement access control via a user model with
a privileged superuser (see chapter 5.3.4.1). Although the strength of this user model lies
in its simplicity, it has a major drawback: it does not properly capture the usage model of
the applications running on a system. Imagine that if a user wants to perform a privileged
operation X, he must be designated as the superuser, hence elevating its privileges. The
user now may execute other privileged operations besides X, which shouldn’t be the case.
So this model alone is insufficient for providing security, moreover it is impractical for
actually providing separation between applications according to our use case. From a
security standpoint, this user model can be improved by applying the principle of least
privilege to the whole system (see chapter 3.5 and 5.3.4.2). This means that the privileges
get seperated and that a user only gets the privileges the user needs to perform a specific
task. Becoming the superuser does not mean to have full control over the system anymore,
since by now the privileges assigned to specific user-land programs decide what they can
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or cannot do. Hence privilege seperation reduces the amount of code running with full
privileges. Techniques like Media Access Control (MAC), Role-Based Access Control
(RBAC), and Access Control Lists (ACL) enforce the principle of least privilege to the
whole system. As we heard in Linux those techniques are enforced by various security
features (see chapter 5.3.4.2).

5.4.2.2 Exploits

Besides the various ways a malicious user can reach the status of a superuser, exploiting
user-land or kernel-land code is the supreme discipline of any attacker. We heard that this
can be a challenging task, requiring serious skills, cleverness, and a lot of dedication. In
the user-land there are different attacks like shellcode injection and suid()/guid() attacks.
But through the security features (see chapter 5.3.4.2) it is getting harder to carry out
attacks in user-land. Therefore today it is more popular to attack the kernel by exploiting
its bugs by e.g. buffer overflows. However, there exist lots of user- and kernel-land attacks,
stating that Linux and its kernel is actually not secure. We won’t introduce exploits since
this would be out of the scope of this work, but we will compare between the Linux kernel
and the PikeOS kernel on an architectural level concerning attack protection. For now
we can say that virtualization systems are becoming increasingly popular, they introduce
possibilities to protect the kernel. There already exist virtualization solutions for the Linux
kernel too like XEN and KVM (see chapter 3.4.4).

5.4.3 CASE 2: Sending Signals

In chapter 5.3.3.3 we heard about sending and receiving signals and signal handlers for
communication between processes. The POSIX standard defines a set of signals like SIG-
INT, SIGKILL, SIGSEGV, and so on, that must be implemented in an operating system.
For completeness you may look up the list on your own. Every operating system defines a
default signal handler for each of these signals whereby a user may implement its custom
signal handler. On Linux systems signals can be sent between processes by using the kill()
system call. For some signals like SIGSEGV the default signal handling defined by the
operating system is to terminate the process that is receiving the signal and then creating
a core file (memory image) of the process. The SIGSEGV signal is sent to a process when
it makes an invalid memory reference or segmentation fault. A process is only permitted
to send signals to it’s own process group. A superuser can send signals to any process.
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Figure 5.5: Examining the core file by a hexeditor.

We will not be concerned about access control rights since we saw in chapter 5.4.2.1 that
they might be compromised. Therefore in the following steps we will show how we can
use signals to produce core files from which we can read the secret key stored in the KDC.

1. On many systems the default core file size is set to 0. So sending SIGSEGV
wouldn’t produce a core file.
user@desktop:> ulimit -c
0

2. Therefore we will set the core file size to unlimited.
user@desktop:> ulimit -c unlimited

3. Then start the KDC.
user@desktop:> ./kdc
PID: 5797

==========

KEY_DB:

key_id: 1; value: 00112233445566778899AABBCCDDEEFF

==========

4. Send SIGSEGV to the KDC causing it to terminate and produce a core file.
user@desktop:> kill -s SIGSEGV 5797
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After those steps, the core file is created in the directory of the KDC. Using a hexeditor we
can now read the file and actually find the key (see figure 5.5). In chapter 5.3.3.3 we saw
that POSIX offers the opportunity to block the reception of signals on certain processes.
Hence one way to prevent the kernel from producing a core dump would be to block the
SIGSEGV in the KDC application. But this would be no good idea, since we cannot
distinguish if the signal origins from another user process or from the kernel, stating that
there really was a segmentation fault. In this case moving on with normal operation could
cause serious problems.

5.4.4 CASE 3: Authorization and Interprocess Communication

This is probably the simplest and shortes case to get the key information from the KDC.
As already described in chapter 4, processes can request keys via the the SKDP when call-
ing the function client_secure_send_key_request(). The KDC was designed to be simple
and small, therefore no authorization mechanism was implemented. This means there is
no instance in the KDC that identifies processes by their IDs that determines if a process
is allowed to request keys. Through our single user assumption (see chapter 5.4.1) all the
processes are allowed to access the message queue created by the KDC, hence corrupting
our use case.

Figure 5.6: Missing authorization mechanism.
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5.4.5 CASE 4: Process tracing and debugging

5.4.5.1 ptrace() System Call

Almost all operating systems provide some sort of debugging. Debugging referes to al-
lowing a process to examine the data and control of execution of another running process.
This includes reading and writing arbitrary values from memory, register values, and sig-
nals. The kernel is the place where all the information of every process is stored (see
chapter 5.3.3). Therefore debugging requires kernel support, because we need to tell the
kernel that a certain process is a debugger and it is going to debug another process. In the
case of Linux these operations and much more can be done by a single system call named
sys_ptrace, which allows tracing and debugging within usermode. It provides the entry
point to the code in the kernel that implements the POSIX ptrace API. User programs
should call the ptrace() wrapper implemented in glibc. The prototype is shown below:

long ptrace(enum __ptrace_request request,

pid_t pid,

void *addr,

void *data);

• __ptrace_request request:
The operation ptrace shall perform.

• pid_t pid:
The process ID to perform the operation on.

• void *addr:
Designates the address in memory for which to read or write for certain ptrace operations;
Ignored by some operations.

• void *data:
Address for various data structures to be read/written to/from the process.
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The ptrace() system call API defines different operations like:

• PTRACE_TRACEME

• PTRACE_ATTACH

• PTRACE_DETACH

• PTRACE_GETREGS

• PTRACE_SETREGS

• PTRACE_PEEKDATA

• PTRACE_POKEDATA

• etc.

The ptrace() system call establishes a connection between the tracing process (parent
process) and the traced process (child process). There are two ways to achieve this. Ei-
ther the parent literally forks the child process (PTRACE_TRACEME), or it attaches to
the running child process during execution (PTRACE_ATTACH). After connecting to the
child process, we can read (PTRACE_PEEKDATA) and write (PTRACE_POKEDATA) its
memory, which is actually done by accessing the process’ kernel structures mm_struct and
vm_area_struct (see chapter 5.3.3.2). We can also read and write one process’ registers by
using PTRACE_GETREGS and PTRACE_SETREGS. Another interesting feature may be
the ability to trace the system calls done by a running process with PTRACE_SYSCALL.

5.4.5.2 Tracing the KDC

According to our use case we are running the KDC and 2 processes that are allowed to
request keys from the KDC. Besides those two processes we now will execute another
process that will trace the KDC’s heap address space. Note that a process may be traced
by only one process at a time and only by a PID owned by the same or by the root user.
For tracing another process there are 2 possibilites. Either we could use the GNU de-
bugger (GDB), that actually utilizes ptrace for reading memory frames. Here the KDC
should have been compiled with the debugging switch (gcc -g). Or we could write our
own code using the ptrace glibc command, what actually was our choice (see listing 5.1).
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int main(int argc, char **argv){

pid_t pid;

unsigned long addr1, addr2;

long buf;

...

/* command line parsing */

...

if(ptrace(PTRACE_ATTACH, pid, NULL, NULL)){

perror("PTRACE_ATTACH");

return(1);

}

waitpid(pid, NULL, 0);

for(; addr1 < addr2; addr1 += sizeof(unsigned long)){

errno = 0;

if(((buf = ptrace(PTRACE_PEEKDATA, pid, (void *)addr1, NULL))== -1)

&& errno){

perror("PTRACE_PEEKDATA");

if(ptrace(PTRACE_DETACH, pid, NULL, NULL)){

perror("PTRACE_DETACH");

}

return(1);

}

printf("addr: %08lX | data: %08lX\n",addr1, buf);

}

if(ptrace(PTRACE_DETACH, pid, NULL, NULL)){

perror("PTRACE_DETACH");

return(1);

}

return(0);

}

Listing 5.1: tracemem.c

Tracemem awaits 3 parameters: the PID of the process we want to trace, the start address
addr1, and the end address addr2 of the address space we want to read the data from:

usage: tracemem <pid> <address1> <address2>

After attaching to a process with the corresponding PID, tracemem reads 4 bytes at a time
from the specified address space. In the following we will examine the steps that are
actually necessary to carry out a memory dump under the usage of tracemem.
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1. Start the KDC and find out PID (e.g. ps -a or debug output of KDC).
user@desktop:> ./kdc
PID: 5797

==========

KEY_DB:

key_id: 1; value: 00112233445566778899AABBCCDDEEFF

==========

2. Find the heap address space with cat /proc/PID/maps.
user@desktop:> cat /proc/5797/maps
...

09cd1000-09cf2000 rw-p 00000000 00:00 0 [heap]
...

b7786000-b7787000 r-xp 00000000 00:00 0 [vdso]

...

bffad000-bffce000 rw-p 00000000 00:00 0 [stack]

3. Before tracing we need to stop the KDC by sending the SIGSTOP signal.
user@desktop:> kill -s SIGSTOP 5797

4. Trace the address space of the heap taken from step 2 and redirect output to a file.
user@desktop:> sudo ./tracemem 5797 09cd1000 09cf2000 > heapdump

5. Examine the tracefile for heap data, where in the end we find our pre-stored key.
user@desktop:> vi heapdump

Memory Dump

======================

process id: 5797

start address: 9CD1000

end address: 9CF2000

======================

addr: 09CD1000 | data: 00000000

addr: 09CD1004 | data: 00000021

addr: 09CD1008 | data: 00000000

addr: 09CD100C | data: 00000001

addr: 09CD1010 | data: 00112233
addr: 09CD1014 | data: 44556677
addr: 09CD1018 | data: 8899AABB
addr: 09CD101C | data: CCDDEEFF
addr: 09CD1020 | data: 00000000

...
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5.4.5.3 Security Concerns: ptrace

It is clear that ptrace introduces a serious security issue since malicious software could
use it to read the memory of another process. If allowed normally, SSH session hijacking
and even arbitrary code injection is fully possible. You may find examples on the net or
in applicable literature [PO10]. Since Ubuntu 10.10 for example, ptrace is only allowed
directly from a parent to a child process, or as the root user. In newer kernels also the
usage of the pseudo-filesystems like the /proc filesystem is further restricted.

5.4.6 CASE 5: Loadable Kernel Modules and Device Drivers

5.4.6.1 Overview

Loadable kernel modules (LKMs) offer the opportunity to extend the functionality of the
Linux kernel. Kernel developers can write their own kernel code and after compilation add
it to the kernel at runtime without having to rebuild the kernel. The key feature of LKMs
is that they are dynamically loaded when their functionality is required. Afterwards they
get unloaded, which actually saves kernel memory. LKMs are used for various things
like device drivers and filesystems (e.g. the /proc filesystem). Even if LKMs are loaded
dynamically, they in fact are kernel code and operate in kernel-space with all its privileges.
This also includes access to the memory area of user-space processes. In the following
we will develop a kernel module that prints the heap of our KDC user space process in
order to explore the key information. Loadable kernel modules come in handy to show
that we actually can do anything in the kernel, and that we can do this quite fast withouth
recompiling the whole kernel. Of course this introduces some serious security issues (see
chapter 5.4.6.3).

5.4.6.2 Module

In chapter 5.3.3.2 we already heard that the Linux kernel manages a processes’ memory
by maintaining a mm_struct struct that lies within the task struct. So our goal is to write
a kernel module that is able to access the mm_struct, moreover the heap of the running
KDC. Since running in privileged kernel mode this of course is possbile, hence we have
to take some considerations into account.
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When the Linux kernel starts a process, the code that loads the executable fills in the ker-
nel data structures stored in task. The process code is devided into memory segments like
BSS, Text, Data, Stack, and the Heap segment. The start and end virtual user space ad-
dresses for the heap segment are stored in mm_struct→start_brk and mm_struct→brk of
the corresponding task. We will have to scan this user space area to find our dynamically
allocated debug key of the KDC.

In chapter 5.3.3.1 we already heard about memory management and virtual memory in
Linux as a basic mechanism for protecting our system. Through the virtual memory
approach and its implied separation, we end up with a separate memory segment for the
kernel, and one for each of the processes. So a user space pointer by itself does not
reference a unique location in memory, but only a location in a memory segment that
belongs to a specific process. Therefore the kernel cannot directly dereference user-space
pointers, including our heap virtual user addresses in mm_struct. In more detail this has
the following reasons:

• A user-space pointer may be invalid in kernel-space because there may be no map-
ping for that address, or it could point to some other, random data. This situation
depends on the architecture running the kernel and on how the kernel was config-
ured.

• Compared to kernel-space memory, that is in RAM all the time, user-space memory
is paged and may be swapped out. So even if the user-space pointer does mean the
same thing in the kernel-space, it may happen that the corresponding page is not
present in RAM. So referencing the user-space memory directly could generate a
page fault, which could in the worst case crash the whole system.

• Most of the time a kernel will need to dereference pointers that come from a user
program issuing a system call. The user program could be buggy or malicious,
therefore it is no good idea to blindly dereference a user-supplied pointer. This
could provide the program to access or overwrite memory anywhere in the system.

More details about how Linux actually manages memory and how addressing in the ker-
nel works you should look up on your own. With the considerations about dereferencing
pointers in the kernel in mind, we now will go on to our kernel module code that traces
the KDC’s heap.
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#include <linux/init.h>

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/sched.h>

#include <linux/mm.h>

#include <linux/highmem.h>

#include <linux/vmalloc.h>

#include <linux/slab.h>

#include <asm/page.h>

#include <asm/uaccess.h>

static int pid_mem = 1;

static int print_mem(struct task_struct *task){

struct mm_struct *mm;

struct page **pages;

unsigned long *k_page;

unsigned long *k_page_end;

unsigned long heap_nr_pages;

int res, i;

/* get mm_struct of corresponding task */

task_lock(task);

mm = task->mm;

if (mm)

atomic_inc(&mm->mm_users);

task_unlock(task);

if (!mm)

return 0;

/* print heap status to kernel ring buffer */

heap_nr_pages = (mm->brk - mm->start_brk) / PAGE_SIZE;

printk("\nMemory Dump\n");

printk("======================\n");

printk("heap address range: %08lX -- %08lX;\n", mm->start_brk, mm->brk);

printk("%lu addresses in %lu pages;\n", mm->brk - mm->start_brk, heap_nr_pages);

printk("======================\n\n");

/* allocate array of pages to store physical page information */

if ((pages = kmalloc(heap_nr_pages * sizeof(*pages), GFP_KERNEL)) == NULL)

return -ENOMEM;

/* sem on mm_struct; get_user_pages for faulting in physical pages and storing

addresses in "pages" */

down_read(&mm->mmap_sem);

res = get_user_pages(task, mm, mm->start_brk, heap_nr_pages, 1, 0, pages, NULL);

up_read(&mm->mmap_sem);

/* map every physical page to kernel memory, to address heap data */

for(i = 0; i < res; i++){

k_page = (unsigned long *) kmap(pages[i]);
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k_page_end = (unsigned long *)(k_page + (PAGE_SIZE / sizeof(unsigned long)));

while( k_page < k_page_end){

if(*k_page != 0)

printk("page: %d, k_addr: %p, data: %08lX\n", i, k_page, *k_page);

k_page++ ;

}

kunmap(pages[i]);

}

kfree(pages);

return 0;

}

static int mm_exp_load(void){

struct task_struct *task;

printk("\nGot the process id to look up as %d.\n", pid_mem);

for_each_process(task) {

if (task->pid == pid_mem) {

printk("%s[%d]\n", task->comm, task->pid);

print_mem(task);

}

}

return 0;

}

static void mm_exp_unload(void){

printk("\nPrint segment information module exiting.\n");

}

module_init(mm_exp_load);

module_exit(mm_exp_unload);

module_param(pid_mem, int, 0);

MODULE_AUTHOR ("Juergen Broder, juergen.broder@gmail.com");

MODULE_DESCRIPTION ("Print Process Pages");

MODULE_LICENSE("GPL");

Listing 5.2: procinfo.c
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Our kernel module procinfo expects as paramater a Process ID that identifies the process
we want to read the heap from. In our case this of course is the PID of the KDC. Then
it searches for the corresponding task in the kernel’s task struct and when found handles
it to the print_mem() routine. There we access mm_struct to find out the KDC’s heap
address range which probably will span over more then one page. The number of heap
pages is stored in heap_nr_pages. We heard before that user pages may not be present in
memory when dereferencing and that there might be no mapping between the user space
and kernel space pointers. Fortunately the kernel programming API offers many ways to
work around this problem.

First of all we allocate an array of page structs for each page of the KDC heap pages.
A page struct holds information about the physical memory pages including the physical
start and end addresses of the page. Then we need to ensure that those pages are faulted
in into the physical memory which is achieved by the get_user_pages() routine. The
details you might look up on your own, but the important part here is that the specified
pages will be loaded into memory and that the physical address information then gets
stored in the pages array. After this we need to map the physical page addresses to kernel
virtual addresses to actually access the corresponding data. This is achieved by the kmap()
routine that awaits a page struct as parameter and returns a kernel virtual address. In this
way we are able to iterate through the pages and print out data if found. On every iteration
we unmap the old page and map the next one. When done the memory for page struct
is freed. In the following we will describe the steps to carry out for reading the heap
memory of the KDC using our procinfo module.

1. Start the KDC.
user@desktop:> ./kdc
PID: 5797

==========

KEY_DB:

key_id: 1; value: 00112233445566778899AABBCCDDEEFF

==========

2. Insert the procinfo kernel module with the KDC’s PID.
user@desktop:> sudo insmod procinfo.ko pid_mem=5797
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3. Examine the kernel ring buffer.
user@desktop:> dmesg

[ 2412.199180] Got the process id to look up as 5797.

[ 2412.199206] kdc[5797]

[ 2412.199207]

[ 2412.199208] Memory Dump

[ 2412.199209] ======================

[ 2412.199210] heap address range: 09CD1000 -- 09CF2000;

[ 2412.199212] 135168 addresses in 33 pages;

[ 2412.199213] ======================

[ 2412.199213]

[ 2412.199228] page: 0, k_addr: ffc2c004, data: 00000021

[ 2412.199229] page: 0, k_addr: ffc2c00c, data: 00000001

[ 2412.199231] page: 0, k_addr: ffc2c010, data: 00112233
[ 2412.199232] page: 0, k_addr: ffc2c014, data: 44556677
[ 2412.199234] page: 0, k_addr: ffc2c018, data: 8899AABB
[ 2412.199235] page: 0, k_addr: ffc2c01c, data: CCDDEEFF
[ 2412.199237] page: 0, k_addr: ffc2c024, data: 00020FE1

5.4.6.3 Security Concerns: Loadable Kernel Modules

Since loadable kernel modules are in fact kernel code that runs under the highest priv-
ileges, it is clear that they are a serious security issue to the system and therefore are
targeted by malicious users. Inserting a module requires super user privileges which one
might have gained by exploiting a known vulnerability or retrieving the root password
either by cracking, privilege escalation (see chapter 5.4.2.1), or social engineering. Then
the user might compromise the whole system even at runtime, since kernel modules are
loaded dynamically without the need to restart the system.

A very popular utilization of loadable kernel modules is the development of so called
rootkits. Rootkits may be placed in user space or kernel space. A kernel rootkit in general
is malicious software that hides the existence of certain processes or programs from the
detection of normal software (e.g. antivirus software). It can also be used to enable
continued privileged access to user programs. To achieve this goal kernel rootkits use
their privileges to modify for example the detection software or the system call table to
subvert kernel functionality and bypass security checks. Hence they are able to intercept
or subvert the most trusted operating system operations. In this situation, no part of the
system can be trusted. Kernel rootkits are more difficult to write then user rootkits because
of the operating system’s complexity.
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5.5 PikeOS

5.5.1 PikeOS System Architecture

PikeOS is a microkernel-based (see chapter 3.5) real-time operating system from SYSGO
AG [SYS12] that is used to employ safety and security critical embedded systems. Since
we are interested in security, we will only have a look at security relevant features. The
primary security mechanism is based on a resource partitioning approach that allows to
host multiple virtual machines (see chapter 3.4) on top of PikeOS. Through this parti-
tioned environment, multiple operating systems and applications with different criticality
levels may run in a secure environment on a single machine without interfering with each
other. Then entire operating systems along with their applications can be hosted within
a virtual machine. Since PikeOS uses paravirtualization (see chapter 3.4.4.2), operating
systems need to be ported and adapted to run in one of the VMs, whereas applications can
run unmodified. PikeOS is also able to host different APIs and run-time-environments
(RTEs, see figure 5.7). Each VM has its own, separate set of resources making programs
hosted in one VM independet from those hosted by another, thereby enforcing isolation.
Besides hosted native applications, RTEs and OSs, also drivers (see chapter 5.4.6) and
stacks reside in separate address spaces with pre-defined I/O access.

Besides this spatial separation described above, PikeOS also provides a separation of
temporal resources amongst its client OSes and applications, with a patented scheduling
method. With this approach it is possible to virtualize hard real-time systems while still
retaining their timing properties. However, temporal separation will not be of our con-
cerns, since we want to spatially separate the KDC and our trusted programs from the
untrusted ones, therefore using a standard scheduling mechanism with equal time slots
for every partition. In PikeOS two basic terms are concerned with the execution and
scheduling of applications:

• Thread: A thread is the basic PikeOS scheduling entity. It has access to data and
stack memory and is associated with a time partition, a task and the task’s resource
partition.

• Task: Each task has a seperate address space where all the threads assigned to this
task share this memory.
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Figure 5.7: The PikeOS System Architecture

5.5.2 PikeOS System Software

The PikeOS System Software (PSSW) is built on top of the PikeOS microkernel. Many
of the services normally found inside a monolithic kernel, like file system access, system
configuration, application process control, or starting applications, are found in the PSSW
that is actually running in user mode. In addition and less common to a monolithic kernel,
it provides the services to implement partitions, like partition control and inter partition
communication. The PSSW also assigns the temporal and spatial resources statically to
the individual VMs, hence is responsible for establishing the system configuration at the
system’s start. The parameters for all PSSW services are stored in the so called Virtual
Machine Initialization Table (VMIT) which is loaded by the PSSW at boot time. After
the initial configuration, the PSSW establishes the various partitions. This is done by as-
signing the resources and afterwards starting a partition deamon thread for each partition
that is responsible for the interaction between the partitions and the PSSW module. User
applications request services of the PSSW module by means of the PSSW library. From
the initial configuration point on, now per default all occuring errors only affect the actual
partition. Afterwards all applications processes in the partitions are loaded and started.
The PSSW library is linked to the user applications and hides the PikeOS kernel’s in-
ter process communication protocol that is used to communicate with the PSSW module
from the user application.
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Figure 5.8: The PikeOS System Software Architecture [SYS12]

5.5.2.1 Resource Partitions

Resource partitions can be imagined as a container for user applications that provide pro-
tection domains (see chapter 3.2) between those applications. We already heard that the
resource partitions are created by the PSSW module. They have a statically defined set
of resources and privileges, that are loaded from the VMIT. The partitions and their cor-
responding configurations cannot be modified at system runtime. Every partition has a
set of attributes including the Partition Identification, Privilege Level, Maximum Priority,
Associated Time Partition, Maximum Number of PikeOS Child Tasks, File Access Privi-
leges, and so on. The privilege level determines whether a partition is a system or user
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partition. Applications running in a system partition have permission to perform opera-
tions that may affect other partitions, therefore those partitions must be trusted. Examples
for application running in a system partition would be a health monitor application or a
service provider.

Every application running in a partition can use a set of resource entities that need to be
configured for each partition, including Memory and I/O, File Services, Associated Ap-
plication Processes and Partition Communication Ports. A partition always accesses the
same memory that has been allocated to it by the partition configuration. This memory
will never be returned to the system, even if the partition shuts down. After restarting,
it again will access the same memory location. This actually ensures that applications
behave predictively, once the resources are available they won’t be exhausted in a subse-
quent run. In addition it is not possible that information gets accidentally or maliciously
exchanged between partitions through a reassignment of physical memory pages.

5.5.2.2 Application Process Management

All the applications that are started by the PSSW module are called processes. For the
kernel these processes are simply PikeOS tasks (see chapter 5.5.3.3). The PSSW assigns
properties to these tasks, hence adding additional semantics to them. Processes then ac-
cess the PSSW services through the PSSW library that is linked to every partition. The
PSSW performs several steps for each process that is defined in a partition, including
to allocate a PikeOS task from the partition’s allocated task memory pool, creating all
mappings in the process address space, map or copy files into the process address space,
donate configured number of PikeOS child tasks to the process, and so on. These steps
are carried out by the a partition daemon in the PSSW module that is started for every
partition. In a PikeOS resource partition one or more processes can be started. They have
a different virtual address space, but share the other resources assigned to the partition.

Every process has different attributes including a process name and ID, a command line,
virtual address layout describing memory mappings and assigned I/O resources to the
partition, list of files to be loaded into the address space of the process, maximium con-
trolled priority (MCP) which is the maximum scheduling priority for the process, maxi-
mum number of child tasks and maximum number of threads that can be created by the
process.
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5.5.2.3 Partition Communication Ports

Communication between resource partitions is based on messages that are sent from one
partition communication port (PCP) to another over communication channels. A com-
munication channel is a link between PCPs where data flows from a source PCP to a
destination PCP. Thereby the source and destination PCPS may be located within the
same partition, within two different partitions, or within one partition and a system ex-
tension. PCPs are configured in the VMIT and are a partition specific object. They are
created by the PSSW module on system boot. Once PCPs have been created, they always
exist throughout the system’s runtime and will never be deleted. PikeOS differs between
two kinds of ports: queuing ports and sampling ports.

• Queuing ports, quite like POSIX message queues, work on a FIFO strategy and
buffer messages up to a maximum number of queued messages. The messages
written to a queuing port are buffered within the PSSW module, ensuring that it
cannot be corrupted by any user application.

• On the other hand sampling ports buffer only one message but compare this mes-
sage at a given refresh rate and report the validity of the stored message. Both types
of PCPs share the port name, port direction, and maximum message size properties.
However queuing ports define a maximum number of queued messages, whereas
sampling ports define a refresh rate for sampling incoming messages.

5.5.2.4 Port Communication Channels

Port communication channels (PCCs) can only connect together ports of the same type,
where each channel has exactly two endpoints: one source and one destination port. A
queuing port, whether source or destination and a destination sampling port can only be-
long to one channel. On the other hand a source sampling port can be referenced in an
arbitrary number of channels, which allows a configuration where one source sampling
port broadcasts messages to several destination sampling ports. Ports that are connected
over channels must not only be of the same type, but must also be compatible, meaning
that their properties (except for port direction) must match.
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The properties of a PCC are it’s name, source, and destination port and are specified in
the VMIT. Once again like PCPs, all PCCs are created by the PSSW module at boot
time. A PCC will never be deleted and will exist throughout the runtime of the system.
Applications use communication channels implicitly by accessing the PCPs, there is no
channel API.

5.5.3 PikeOS Microkernel

The PikeOS microkernel is compliant to the MILS architecture (see chapter 5.7.1). It
provides a core set of services like I/O and interprocess communication and is responsible
for supervising every access to the hardware. Since it only contains of about 5000 lines
of code it is simple enough for a formal analysis of its properties. The functionality of
the microkernel is based on four concepts and mechanisms, the resource partitions, time
partitions, tasks and threads.

5.5.3.1 Resource Partitions

We already heard in chapter 5.5.2 that the PSSW module is responsible for managing
resource partitions. Seen from the kernel side a resource partition is a set of PikeOS
tasks, which share a bounded set of kernel resources. Kernel resources are all those
that the kernel needs to offer its services. When concerned with resource partitions the
managed resource is kernel memory. This memory is used for all allocations in the kernel,
like task descriptors, thread control blocks, and memory management. The kernel creates
all resource partitions at boot time whereby all, except partition 0, in the beginning are
empty. Partition 0 gets initialized automatically and starts an initial task. Once created
a resource partitions can’t be deleted, so the resources assigned to the partitions can’t be
retrieved again. Only the tasks of a resource partition may be deleted.

5.5.3.2 Time Partitions

We heard that a thread is the basic scheduling entity of PikeOS and that each thread
belongs to a task. PikeOS handles thread scheduling by means of time partitions. Every
thread gets assigned to a specific time partition, whereby threads from different tasks may
reside within this partition. The kernel schedules over time partitions by activating one
at a time. For a thread to be scheduled for execution it must be in the ready state, must
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have the highest priority of all the ready threads, and the thread’s associated time partition
must be active. The time partition mechanism is especially interesting for hosting native
operating systems (Linux) besides real-time applications that need to meet hard timing
deadlines. We won’t be concerned with time partitions and will use a basic scheduling
mechanism with equal time slots for every time partition.

5.5.3.3 Tasks

PikeOS defines tasks as an address space and a set of schedulable entities (threads) bound
to the task. In the following we will describe important task attributes the kernel uses for
defining a task.

• Task ID: Task identifier.

• Task name: String defining the task’s name.

• Mappings: Mappings between virtual and physical addresses.

• Abilities: Define which kernel services (system calls) a task can utilize (see chapter
5.5.3.7). Will be specified during task activiation.

• Resource Partition: The task’s associated resource partition.

• Communication Rights: Define if a task is allowed to communicate with another
task (see chapter 5.5.3.4).

• Maximum number of threads: Maximum number of threads per task. This at-
tribute is usually used to limit kernel resource consumption.

The special task ID 0 is reserved for the PikeOS kernel task and cannot be accessed from
any user program. The task with ID 1 is the system’s initial task also called root task
and is the first task running in user space. It is responsible for starting further tasks and
donating requested resources to them. So all tasks are child tasks of the root task, but are
also allowed to create further child tasks.
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5.5.3.4 Threads

We already heard that threads are the schedulable entities of a task. For each task the ker-
nel allows a maximum of P4_NUM_THREAD threads. Some important thread attributes
are:

• TaskID: Defines the task to which a thread belongs. Will never be changed.

• Thread UID: Used to uniquely identify threads throughout the system and used for
example during IPC.

• Execution Priority: The thread’s priority for scheduling. Can never be higher then
the task specific MCP.

• Time Partition: The time partition a thread belongs to.

• Event Mask: Restricts the range of threads that are allowed to send signals to a
thread.

• IPC Mask: Restricts the range of threads that are allowed to send IPC messages to
a thread.

5.5.3.5 Communication

The kernel also provides two communication mechanisms to allow threads to exchange
data and synchronize with each other:

• Interprocess communication (IPC): Used for transferring unbuffered messages
between two threads synchronously.

• Event communication: Threads signal events to another thread asynchronously.

Those two mechanisms can be compared to message queues and signals in Linux we al-
ready dealt with in chapter 5.3.3.3 and when implementing the KDT (see chapter 4). In
PikeOS however, transferring a message always consists of a sender and receiver part.
Receiving threads always need to specify the thread(s) they want to receive messages
from. Sender threads on the other hand always must specify a single Unique ID (UID)
to designate the target receiver thread. UIDs are the standard mechanism of PikeOS to
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address threads and are unique in the whole system. They are composed of the time par-
tition number the thread is executing in, the resource partition number and task ID the
thread is assigned to, and the thread ID by itself. Besides specifying the receiver thread,
a sender thread must possess the right to communicate with the receiver.

In PikeOS communication between threads is controlled by communication rights offer-
ing an additional layer of security. Although communication takes place between different
threads, communication rights are a task attribute (see chapter 5.5.3.3). Communication
rights take effect when threads want to communicate with threads in another task. There-
fore all threads belonging to one task share the same communication rights, hence are
allowed to communicate with each other. Every task will be created with a set of stan-
dard rights which cannot be changed during the lifetime of a task. These standard rights
include that a task by default may communicate with its parent and it’s direct children.
Beyond standard rights a parent task may grant it’s child task additional rights, but only
if the parent itself possesses the right for granting. Through these restrictions, communi-
cation between tasks can only take place by the presence of a common ancestor. Rights
are statically defined per task and cannot be changed during the lifetime of a task.

5.5.3.6 Memory Management

Like Linux also PikeOS implements virtual memory where all user code operates on
virtual addresses that are translated to physical addresses by the MMU of the CPU. Every
task is assigned its own virtual address space in the range from P4_MEM_USER_BASE
to P4_MEM_USER_END. Addresses outside this range cannot be accessed by user code
and are only accessible from the PikeOS kernel. Hence the PikeOS memory management
approach is the same as in Linux (see chapter 5.3.3).

5.5.3.7 Abilities

Another important security feature of PikeOS are task abilities, that define if a task is al-
lowed to use certain kernel services, which a task requests by issuing system calls. Abil-
ities get associated to tasks and will be stored in the task attributes (see chapter 5.5.3.3).
The kernel then uses the abilities to verify if a task’s thread has sufficient permissions for
the requested kernel service. The thread is allowed to use kernel services if the ability
is enabled, hence not allowed if it is disabled. Abilities are define per task, therefore all
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threads in the task share the same set of abilities. Once again, abilities are assigned at
task activation time and can not be changed during the task’s lifetime. When a parent
task creates a child task, the child inherits all abilities from the parent. The abilitiy set of
the child tasks may be further restricted by the parent, but it is not allowed to add new
abilities that the parent itself has not enabled. Later in the setup of our use case in PikeOS
and the case comparison we will have a look at abilities that may be important to break
the memory acquisition cases.

5.6 Key Management in PikeOS

5.6.1 Porting the KDT

After looking at the theoretical background we will port the Key Distribution Tool to
PikeOS according to our use case. PikeOS is shipped with the CODEO IDE that allows
project development over a graphical user interface. Software development in PikeOS is
devided into Application Projects and Integration Projects. Application projects can be
thought of as writing native PikeOS applications that use the APIs provided by the PSSW.
Integration projects are used to plan and specify the partition configuration, bootstrap
strategy, and also for creating the ROM image that includes the applications developed in
the application projects. The bootable ROM image makes up the whole PikeOS system
and may be downloaded to an embedded device. We will build a bootable ROM image
for the PHYTEC phyCORE-i.MX35 development board (see chapter 5.6.3).

5.6.2 Application Development and the POSIX Personality

We heard that PikeOS is able to host different run-time-environments including a POSIX
RTE. Therefore we start separate application projects for the KDC and each of the trusted
user programs. By using the POSIX API only little changes to the structure of the code
were necessary, contrarely it even became smaller because of the architectural benefits
PikeOS offers (see chapter 5.7.3). The different hosted RTEs in PikeOS are called per-
sonalities. The POSIX personality implements the PSE51 profile of the IEEE Std 1003.13-
1998 with some additional realtime extensions included. A POSIX application consists
of one PikeOS task in which several PikeOS threads are running.
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When compiling applications in the POSIX personality API, the libc.a and libm.a libraries
will be linked to the application files. The libc.a library contains the standard C-language
API functions, the POSIX thread API and the “operating system run-time”. On the other
hand libm.a contains the Math-Library API functions. Besides those two basic libraries
we also need the libtomcrypt.a and tomsfastmath.a libraries for our cryptographic process-
ings. In order to make them available for the phyCORE board and it’s ARM architecture
we need to cross compile them by using the cross development kit (CDK) of PikeOS.

5.6.3 The Hardware

Figure 5.9: phyCORE-i.MX35 Rapid Development Kit

CPU
Processor Freescale i.MX35x
Architecture ARM-1136
Frequency (max) 532 MHz
MMU yes
MEMORY
On-Chip 16 KB L1, 128 KB L2, 128 KB SRAM
SRAM -
DRAM 128 MB DDR2
NAND Flash 1 GB
NOR Flash 32 MB
EEPROM 4 KB

Table 5.1: Hardware Features
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5.6.4 Block Diagram

Figure 5.10: Key Management Tool in PikeOS

5.6.5 Resource Partitions

We heard that besides developing applications we also need to setup the PikeOS system
configuration in an integration project. One of the first tasks by doing so, is to define and
configure the resource partitions that enforce protection domains between applications.
In the next step the applications developed in the application projects need to be assigned
to those partitions. According to our use case we defined 3 resource partitions that are
hosting applications. Some of the properties are listed in the tables below. An overview
is given in figure 5.10 in chapter 5.6.4.
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5.6.5.1 KDC Partition

Contains only the Key Distribution Center (KDC) to be sure that no other application will
interfere with our key database.

Property Value Description
PartitionName kdc-part the partition’s name
PartitionIdentifier 1 unique partition identifier
TimePartitionID 1 associated time partition (ch. 5.6.6)
SystemPartition false privilege level: user partition (ch. 5.6.8)
MaxChildTasks 1 restrict partition to only run 1 task
QueuingPortList kdc_OUT_1

kdc_IN_1
kdc_OUT_2
kdc_IN_2

list of all queuing ports (ch. 5.6.7)

ProcessList kdc runs the kdc process only

5.6.5.2 Trusted User Partition

Contains the 2 user applications that are allowed to request keys.

Property Value Description
PartitionName trusted-users the partition’s name
PartitionIdentifier 2 unique partition identifier
TimePartitionID 2 associated time partition
SystemPartition false privilege level: user partition
MaxChildTasks 2 restrict partition to run 2 tasks
QueuingPortList user_OUT_1

user_IN_1
user_OUT_2
user_IN_2

list of all queuing ports

ProcessList user-1
user-2

runs the 2 trusted user applications
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5.6.5.3 Untrusted User Partition

This partition is empty but would contain all the other, untrusted software that actually is
not allowed to request keys.

Property Value Description
PartitionName untrusted-

users
the partition’s name

PartitionIdentifier 3 unique partition identifier
TimePartitionID 3 associated time partition
SystemPartition false privilege level: user partition
MaxChildTasks X arbitrary
QueuingPortList X arbitrary
ProcessList X arbitrary

5.6.6 Time Partitions

As stated in one of the earlier chapters we will only use a simple time partitioning setup.
Therefore each resource partition gets associated it’s own time partition, which is defined
in the TimePartitionID property. In addition all time partitions will have the same amount
of CPU time, hence equal sized time slots (see figure 5.11).

Figure 5.11: Time Partitioning Setup Key Distribution Tool
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5.6.7 Communication Channels

When placing applications in their resource partitions they are completely separated from
applications in other partitions. Therefore we need to define interpartition communication
channels between partitions to enable communication beyond partitions. Since communi-
cation channels are uni-directional stream buffers we need to define at least two channels
between two partitions. The one to let user tasks send requests to the KDC and the other
to let the KDC send key responses back to the users. The combination of both ICCs can
be seen as a bi-directional virtual communication channel. In our configuration we either
went a step further and did not just set up channels between partitions, but defined such a
bi-directional communication channel between every user application and the KDC. This
has some serious benefits we will be talking about in chapter 5.7.3. The setup can be seen
figure 5.12 and in the block diagram 5.10 in chapter 5.6.4.

Figure 5.12: Channel Configuration
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5.6.8 Privileges

All privileges in PikeOS are mangaged by the PikeOS kernel at task level. Those privilege
levels are devided into:

• Abilities (see chapter 5.5.3.7)

• Communication rights (see chapter 5.5.3.4)

• Interrupt attachment rights (not of our concern)

Resource partitions can be configured as user or system partitions (see chapter 5.5.2.1),
also referred to as the partition’s privilege type, which defines a set of abilities that allow
applications to access the PikeOS kernel. According to this privilege type, the PSSW as
parent of all user applications statically installs the kernel privileges for all application
processes that are running in the partitions. As opposed to user partitions, system parti-
tions have an extended set of kernel privileges in order to execute PSSW services that also
may affect other partitions or even the entire system. The privilege type is specified in the
VMIT configuration by the SystemPartition attribute. In our use case setup, all resource
partitions are defined as user partitions, thereby setting the SystemPartion attribute to false
(see tables in chapter 5.6.5). When applications request services, the PSSW dynamically
verifies the permissions defined in the VMIT configuration. Table 5.2 summarizes the
abilities available to user- and system partitions and for completeness system extensions.
System extensions provide a way to enhance certain aspects of the PSSW and its API and
may be implemented as file- or port providers. We can see that user partitions have less
privileges than system partitions. User partitions retain tracing abilities (P4_AB_TRACE),
probably breaking our use case. This ability may be further restricted (see chapter 5.7.4).
System extensions on the other hand have full access. Communication rights have already
been discussed in chapter 5.5.3.4 and will again be discussed in chapter 5.7.2. Handling
interrupt rights have no relevance for our evaluations.
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Ability User
Partition

System
Partition

System
Extension

P4_AB_ANY_P4_SYSCALL x x x
P4_AB_TIMEPART_CHANGE x x
P4_AB_RESPART_CHANGE x
P4_AB_MEM_CREATE x x
P4_AB_KMEM_HANDLING x
P4_AB_TRACE x x x
P4_AB_PSP_RESET x
P4_AB_PSP_CONSOLE x x
P4_AB_TIMEPART_SETUP x
P4_AB_TIMEPART_ENABLE_DISABLE x
P4_AB_RESPART_SETUP x
P4_AB_MONITOR x x

Table 5.2: Resource Partition Abilities

5.7 CASE Comparison

5.7.1 CASE 1: Privilege Escalation and Exploitation

The PikeOS real-time operating system was designed to meet the main requirements of
the Multiple Independent Levels of Security (MILS) architecture, which is based on the
work of Rushby of the early eighties [Rus81] [Rus84]. We already dealt with this topic
in chapter 2.1.4 when talking about multiple levels of security. MILS is a high-assurance
security architecture, that defines a separation kernel which devides the system’s memory
into partitions by using the hardware memory management unit. Through the separation
it is possible to securely execute both trusted and untrusted code on the system, therefore
MILS only allows a controlled information flow between different non-kernel partitions.

In traditional operating systems with a monolithic kernel, most services such as device
drivers, file systems, network stacks, and so on, run in privileged (superuser) mode. The
drawbacks of this approach have already been discussed in chapter 3.5. As a consequence,
many of the services have been pulled out of the kernel and put into a broad user-mode
layer referred to as MILS middleware. On the one side this results in a small separation
microkernel providing very specific functionality, where the security policies that must
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be enforced at this level are relatively simple. The PikeOS separation microkernel for
example provides basic core services such as scheduling, process communication and
synchronization, context switches, and interrupt and processor exception handling. On
the other side, the code now running in user mode is subject to the kernel’s security policy
enforcement, that is acting as a hypervisor since PikeOS implements paravirtualization
(see chapter 3.4.4.2). To enforce the security policy the separation microkernel intercepts
privileged machine instructions, first checks the rights of the caller against the system
configuration, and then actually executes them on the hardware.

The other parts of PikeOS are implemented in the PikeOS System Software (PSSW), where
services including device drivers and filesystems can be removed, added, or extended.
This contributes to the scalability and flexibility of PikeOS. Together with the PikeOS
microkernel, the PSSW forms a minimal layer of globally trusted code, the Trusted Com-
puting Base (TCB). The small TCB and the modular design allow PikeOS to be used in
projects that need certification according to industrial standards like IEC 61508, DO178B,
EN 50128, and EN 62304. Examples are the development of the Airbus A400M loadmas-
ter workstation and the Airbus A350 Integrated Modular Avionics devices.

Finally, according to MILS user applications running on top of PikeOS are empowered to
enforce their own security policy, instead on relying on generalized kernel security ser-
vices. Every partition has it’s own security policy. The MILS architecture also defines
that partitions can communicate with each other through communication channels that
have been configured when the system was genereated. User partitions under no circum-
stances are allowed to access the system’s hardware directly. As opposed to monolithic
kernels, application-level security policy enforcement now in MILS is effective, because
the MILS separation kernel guarantees control of information flow and data isolation.
The first time this guarantee is made at an assurance (see chapter 2.1.3.3) level that was
almost impossible to achieve with monolithic kernels.

Since MILS is an architecture concept, it tells nothing about the degree of security that
it actually reaches. The measurement and evaluation of security is done by the Common
Criteria (CC) IEC 15408 Standard [Cri12] we already heard about in chapter 2.1.3.3. The
CC defines a framework in which computer system users specify their security require-
ments. Then vendors implement the system and finally testing laboratories evaluate the
product to determine if it meets the defined security requirements. The standard defines
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Figure 5.13: PikeOS Privilege Levels and Trusted Computing Base

seven levels of security, from from EAL 1 (lowest) to EAL 7 (highest). If a product is con-
formant to the Common Criteria Standard this will be claimed in a high-level document
referred to as Security Target (ST). Currently SYSGO is working on a security target, with
a formal verification of the PikeOS microkernel on the way.

5.7.2 CASE 2: Sending Signals

In chapter 5.5.3.4 we saw that PikeOS offers IPC messages and events for communication
between threads and that they need the right to communicate with each other. Sending
signals in Linux applies to the event concept in PikeOS. Since we are using the POSIX
personality API it actually is used in the same way by using the same system calls. In
the following we will have a short look at the PikeOS communication API for granting
communication rights. Afterwards we will have look some PikeOS internals that allow
further restrictions on inter-process communication and sending signals, hence enforcing
strong isolation between processes. Then we will compare the memory acquisition case
in Linux (see chapter 5.4.3) to our use case setup in PikeOS. This will show that there is
no way for an application to communicate with another if not permitted.
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5.7.2.1 Granting Communication Rights

In PikeOS a task can grant one of its child task the right to communicate with other task
if he has the appropriate rights for doing so. This can be done by calling one of the fol-
lowing two functions.

P4_e_t p4_comm_grant(P4_task_t dest,

const P4_task_bitmap_t *comm_map_p)

Calling this function grants task dest to communicate with other tasks.

• P4_task_t dest: Number of task receiving the communication rights. Must be a child
task of the calling task.

• const P4_task_bitmap_t *comm_map_p: Pointer to bitmap in which every bit
represents one task, the bit position corresponding to the task number.

P4_e_t p4_comm_link(P4_task_t dest,

P4_task_t which)

Calling this function grants task dest to communicate with task which and vice versa,
hence establishing a communication channel between which and dest.

• P4_task_t dest: Number of task receiving communication rights with which.

• P4_task_t which: Number of task receiving communication rights with dest.

5.7.2.2 Thread Event Masks

In chapter 5.5.3.4 we saw that communication takes place between threads and consists
of a sender and a receiver part. So besides communication rights, PikeOS offers a second
opportunity to further restrict communication. This can be done by defining the ipc_mask
and ev_mask attribute in the P4_thread_create_str struct.
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struct P4_thread_create_str {

const char * name;

const P4_regs_t * context;

P4_prio_t prio;

P4_uint32_t tp_id;

P4_uid_t shortexh;

P4_uid_t fullexh;

P4_uid_t ipc_mask;

P4_uid_t ev_mask;

};

• P4_uid_t ipc_mask: Defines which thread(s) are allowed to send IPC messages to the
newly created thread, by specifying a thread UID wildcard. IPC reception will be disabled
by specifying P4_UID_INVALID.

• P4_uid_t ev_mask: Defines which thread(s) are allowed to send an event to the newly
created thread, by specifying a thread UID wildcard. Event reception will be disabled by
specifying P4_UID_INVALID.

5.7.2.3 Comparison

In our setup the three tasks (kdc, user-1, user-2) are created with standard communication
rights. Hence sending signals among each other is impossible, since:

• The tasks are created independently and separated from each other, hence sharing
no parent/children relationship.

• The tasks are not allowed to grant communication rights to children.

• The tasks consist of the initial thread only, not specifying any IPC or event mask.

Once again, in Linux access to system resources, including communication facilities like
IPC message queues, is based on a user model. The drawbacks of this approach have been
discussed extensively in chapter 5.4.2.1. Besides access control the only way to further
restrict communication in Linux is blocking signals 5.3.3.3, which may also have certain
disadvantages discussed in 5.4.3. Hence for a better separation and isolation between
processes, Linux needs security enhancements (see chapter 5.3.4.2), or techniques like
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sandboxing (see chapter 3.3), which may suffer from race conditions.

In PikeOS however, communication between tasks and threads per default is not allowed,
hence enforcing a strong isolation. So communication can concentrated on predefined
inter-partition communication channels between partitions (see chapter 5.7.3). Since us-
ing the POSIX personality, blocking signals on threads through sigprocmask() would also
be possible. But restricting event reception on a thread basis by event masks circumvents
the drawbacks of blocking signals. Table 5.3 sums up communication relevant features in
Linux and PikeOS.

Linux PikeOS
access control per user

(coarse-grained)
per task
(fine-grained)

communication restriction blocking signals blocking signals
communication rights
IPC- and event-masks

Table 5.3: Communication comparison

5.7.3 CASE 3: Authorization and Interprocess Communication

5.7.3.1 Secure key distribution

In the previous case we saw that in our setup communication over IPC messages or signals
is totally restricted. Therefore communication is limited to our predefined communication
channels between partitions. This channels are actually used to exchange the messages
for requesting keys from the KDC, hence implementing the SKDP. Since messages are
buffered in the PSSW, they cannot be read by malicious users. Tasks outside our trusted-
users partition also cannot request for keys, because there are no channels between other
partitions (e.g. untrusted-users partition) and the KDC partition (see chapter 5.6.7). This
setup also enforces clear separation between tasks with predefined communication flow,
perfectly implementing our use case.
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5.7.3.2 Comparison

As opposed to our Key Distribution Tool implementation in Linux, porting the KDT to
PikeOS comes with some benefits:

• No need for an authentication mechanism in the KDC, because through prede-
fined communication channels, the source or destination of messages can always
be stated to one specific task (see chapter 5.4.4). Compared to Linux we now have
a connection-oriented communication.

• Because of the message buffering in the PSSW, we need not encrypt communication
by the Diffie-Hellman key exchange algorithm.

• Through this two improvements we also gain a smaller message struct. Because
of the connection orientation, we need not pass source and destination information
anymore (src_qid, dest_qid). Withouth Diffie-Hellman encryption we also don’t
need to pass the variable message size anymore (data_size). From now we are only
transmitting fixed-size keys requested from the KDC and no variable size Diffie-
Hellman public keys between requests (see listing 5.4 and 5.3).

typedef struct{

int dest_qid;

int src_qid;

int data_size;

int service;

int key_id;

unsigned char data[KEY_ARRAY_SIZE];

} messg_t;

Listing 5.3: messg_t in Linux

typedef struct{

int service;

int key_id;

unsigned char data[KEY_ARRAY_SIZE];

}messg_t;

Listing 5.4: messg_t in PikeOS

96



5.7. CASE Comparison

5.7.4 CASE 4: Process tracing and debugging

5.7.4.1 ptrace()

In PikeOS and the POSIX personality tracing as specified by the IEEE Std 1003.1-2008
standard is not supported. Therefore the kernel does not support the ptrace() system call,
hence tracing the heap of the KDC from a user application as discussed in CASE 4 (see
chapter 5.4.5) is not possible.

5.7.4.2 Debugging

The PikeOS POSIX personality and most embedded targets do not provide sufficient re-
sources to run a fully-featured native debugger. Therefore the POSIX personality contains
only a very small debugging agent also called debug stub. It is used in combination with
a debugger (e.g. GDB) that is running on the host computer of system integrator. The the
debugger and the debug stub then communicate over TCP/IP connection or a serial line,
using GDB’s standard Remote Serial Protocol for data exchange (remote debugging). De-
bugging for an application can be turned on or off by a switch in the application project.
If enabled the GDB debug stub will be included in the application image.

In CASE 4 (see chapter 5.4.5) it was said that we could also use the GDB to read mem-
ory information of the KDC. In this native debugging approach the application is started
under debugger control by attaching to the process over the ptrace() system call. In the
embedded domain however, the programmer needs to call the gdb_breakpoint() function
in the program to attach to the host debugger. So because we are not calling this function
in the KDC for example, there is no way for reading the key database by debugging. This
is actually an issue of remote debugging in the embedded system domain and has nothing
to do with security features in PikeOS. But for completeness we need to say that for now
debugging offers no way to explore keys from the KDC in our PikeOS implementation.
Additionally and through the need of remote debugging, a malicious user would also need
physical access to the embedded system, which is also not of our concern.
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5.7.4.3 Comparison

Besides debugging, PikeOS offers additional features for examining the state and data of
the whole system. They will be introduced shortly below. However, if set up correctly
they don’t introduce a threat to the systems security nor allow reading the data of the KDC.

The tracing facility in PikeOS for example allows to trace the occurrance of events in
applications, like memory handling, panic events, thread handling, signals, timer events,
scheduling, and so on. Tracing can be used to find errors that are difficult to be detected
by a conventional debugger. Tracing per default is allowed to tasks in user partitions, see
table 5.2. So by enabling the P4_AB_TRACE ability in a task’s ability mask (see listing
5.5), they are allowed to use kernel services provided by the tracing API. However, the
trace API actually offers no functionality for attaching to other user processes nor reading
data.

struct P4_task_attr_str {

P4_task_state_t state;

P4_prio_t mcp;

P4_uint32_t respart;

P4_task_t parent;

P4_ability_mask_t ability_bitmap;

P4_cpumask_t cpu_mask;

P4_thr_t max_threads;

P4_uid_t dnotify;

char name[P4_NAMELEN];

P4_interrupt_bitmap_t interrupt_bitmap;

P4_device_bitmap_t device_bitmap;

};

Listing 5.5: PikeOS Task Attributes Struct

Monitoring in terms of PikeOS and the POSIX personality allows to inspect the attributes
of process instances. This feature may be compared to reading the /proc filesystem in
Linux. However, the monitoring API also offers no functions for attaching to other tasks
or reading data from them. Besides that, tasks in user partitions are not allowed to mon-
itor other tasks, since the P4_AB_MON ability per default is not set (see table 5.2). In
our setup there are only user partitions, hence actually no task is allowed to monitor other
tasks.
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The last feature is optional to the POSIX personality and is most similar to ptrace() in
Linux. The Instrumentation and Monitoring (Instrumon) facility uses a PSSW shared
memory segment to export an image of the application status which may include informa-
tion on application threads, thread specific data, timers, message queues, signal actions,
and so on. The Instrumon API also offers functions to attach to processes and read or
write data to them. But once again, the Instrumon feature has to be enabled by the system
developer in both the application and integration project, hence per default is not allowed.

5.7.5 CASE 5: Device Drivers

5.7.5.1 I/O Servers

PikeOS is based on a microkernel architecture. Thereby, as described in chapters 3.5 and
5.7.1, device drivers are not provided by the kernel. Hence they need to be implemented
by a higher level application running in user mode. In PikeOS a device driver is often
implemented as an application that runs in a separate partition. This for example allows a
setup where hardware access is concentrated in a dedicated partition running trusted code.
Other, possible larger applications then can run in separate partitions with no hardware
access. This design also enhances the system’s security and robustness. I/O operations of
the (untrusted) applications are then delegated to the applications running in the trusted
partitions, which in turn perform the actual hardware access. Hence the applications in
the trusted partitions act as an I/O Server for applications in other partitions.

I/O devices are system resources, the right to access them needs to be configured per pro-
cess. This is done through the PSSW by reading the setup in the VMIT. When the process
that is acting as an I/O server starts, the configured I/O memory resources are mapped into
the virtual address space of the process. In this way I/O memory can be directly manip-
ulated by the application’s code. Internally I/O servers are implemented as file providers,
where applications communicate with the I/O server over PikeOS’ filesystem. Therefore
the application serving I/O operations needs to register as a file provider. This is done by
a special entry in the VMIT. Then other applications can access the file system by using
the file system API, for example by calling the vm_open() function, if they have the cor-
responding file access rights.
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5.7.5.2 File Access

File access privileges are defined for each partition in the VMIT by the File Access List
attribute, but may be further constrained by a file provider. The different access types are
listed below.

• VM_O_STAT: Permit retrieval of file status information.

• VM_O_RD: Permit read access.

• VM_O_WR: Permit write access.

• VM_O_RW: Permit read and write access.

• VM_O_EXEC: Permit execution.

• VM_O_RWX: Permit read access, write access and execution.

• VM_O_MAP: Permit mapping a file into the process’s memory address space.

• VM_O_FSPROV: Permit an application to act as an external file provider (mutually
exclusive with all others).

5.7.5.3 Comparison

In a monolithic operating system like Linux, most of the services are like memory man-
agement, I/O primitives, file systems, device drivers, and network protocol stacks are
implemented in the kernel, hence running in privileged mode. In CASE 5 (see chapter
5.4.6) we lined out the major drawbacks of this approach by means of loadable kernel
modules and device drivers. When code runs in privileged mode there is no restriction
on what it can do. As demonstrated, it is also allowed to access the kernel’s task data
structures and read their data. It also could potentially violate security policies that are
usually implemented in the kernel. Verifying that such code acutually does not violate
those policies takes considerable examining and testing effort.

In PikeOS and microkernel architectures in general, most operating system services are
pulled out of the kernel and now run in unprivileged mode. Through this the code that
was able to violate security policies now is subject to them, which allows a more straight-
forware and effective system evaluation. This also makes the kernel small so that it can be
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fully evaluated. To sum up, the implementation of device drivers in PikeOS has following
advantages:

• I/O servers run in separate partitions, hence operate on separate sets of resources.
So they are completely isolated and there is no way for a program in one partition
to programs in other partitions.

• I/O servers now are running in user mode and therefore are subject to kernel security
policies.

• In PikeOS there is no feature like LKMs, the kernel cannot be extended.

• For enhanced security, PikeOS allows to further restrict access to the I/O server file
system by defining file access rights per process.
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CHAPTER 6
Conclusion

In this thesis we worked out that security is a design issue that should be taken into ac-
count in the beginning of any project. Retrofitting hardware and software systems to
meet security requirments can become quite expensive. By introducing general security
terms in the first chapters we found out that trusted systems are a fundamental concept for
most security architectures. They are founded on the idea to separate trusted software,
that potentially is verified to be error-free, from untrusted software, that may origin from
a malicious user. Software separation can be enforced by implementing isolation tech-
niques that partition the system into protection domains. Protection domains then act as a
logical container for tasks and shared resources. This also allow to split up system-wide
security policies into smaller parts which makes policy enforcement simpler. In this con-
text we also mentioned the MILS architecture that was designed to introduce separation
and protection domain enforcement into (operating-) systems.

The case study showed us, that Linux in a basic configuration is not able to enforce a strict
separation between processes and that some features introduce security issues or may be
inappropriate for embedded systems. As opposed to this the PikeOS Partitioning Operat-
ing System is able to strictly partition a system by implementing the MILS architecture.
Partitions are built through the separation microkernel by paravirtulization. Additional
security features allow to further restrict the rights of processes, hence may be totally iso-
lated from other software. Since the microkernel is small enough, it has been certified by
Common Criteria adding another security assurance level.



Through increasing processing power, partitioning operating systems get more and more
interesting for embedded real-time systems. Embedded Hardware nowadays is able to
context switch between partitions or virtual machines in reliable time which was not pos-
sible some years ago. Through their strict partitioning in time and space they are espe-
cially applicable for hard real-time systems.
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APPENDIX A
Data Structures

A.1 messg_t Struct Reference

The message structure for exchanging data from one process to another using SysV Mes-
sage Queues.

Data Fields

• int dest_qid

Destination message queue identifier. States where to send the message.

• int src_qid

Source message queue identifier. States where the message came from. Necessary for
connectionless communication between processes.

• int service

The service that the KDC needs to process. Will be set by the SKDP, for more details see
skdp.h (p. 121).

• int key_id

Unique key identifier.

• int data_size

Size of sent data in bytes.



A.2. mymsgbuf_t Struct Reference

• unsigned char data [MSG_SIZE_BYTES]

The actual data. May contain secret cryptograpic keys or Diffie-Hellman public keys.

A.2 mymsgbuf_t Struct Reference

Redefinition of the kernel message queue structure.

Data Fields

• long mtype

Type of the message. Different types are defined and explained in skdp.h (p. 121).

• messg_t message

The message packet containing all the data.

A.3 Node_ Struct Reference

Defines the data to be stored in the hashtable.

Data Fields

• struct Node_ ∗ next

Pointer to next key data record.

• hashTableIndex key_id

Unique key identifier.

• unsigned char private_key [KEY_ARRAY_SIZE]

Secret cryptographic key data.
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APPENDIX B
Modules

B.1 setup.h File Reference

Global settings for key size and message queues.

Defines

• #define MQ_PATH "."

Path for KDC’s message queue. Is needed for calculating the Queue Identifier.

• #define MQ_ID_MASTER ’m’

Unique identifier for KDC’s message queue, needed for calculating the Queue Identifier.

• #define MQ_PARAMS (IPC_CREAT | S_IRUSR | S_IWUSR)

Access privilegies for the message queue.

• #define KEY_SIZE_BITS 128

Defines the secret key size in bits.

• #define KEY_ARRAY_SIZE (KEY_SIZE_BITS / 8)

The array size to store a key in an unsigned char array.

• #define MSG_SIZE_BYTES 128

The maximum size in bytes for the data field in a message.



B.2. key_db.h File Reference

• #define HASHTABLESIZE 21

The size of the KDC’s hashtable for storing the cryptographic keys.

B.2 key_db.h File Reference

The database for storing keys is implemented through a hashtable. The hashtable size is
set in setup.h (p. 112).

Data Structures

• struct Node_

Defines the data to be stored in the hashtable.

Typedefs

• typedef int hashTableIndex

Defining the type for calculating the hashtable index.

Functions

• Node ∗ insertNode (Node ∗hashTable[ ], hashTableIndex key_id, unsigned char
∗private_key)

Inserts a key data record at the beginning of the list with the calculated hash index from
key_id.

• int deleteNode (Node ∗hashTable[ ], hashTableIndex key_id)

If found, the key data record with key_id is deleted from the hashtable.

• Node ∗ findNode (Node ∗hashTable[ ], hashTableIndex key_id)

Searches for a key data record with key_id in the hashtable and returns it.

• void printHashTable (Node ∗hashTable[ ])

Prints the whole key database. For debugging purposes only.
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B.3. message.h File Reference

• void freeHashTable (Node ∗hashTable[ ])

Deallocates all the memory occupied by the hashtable. Will be called on KDC shutdown.

B.3 message.h File Reference

Data Structures

• struct messg_t

The message structure for exchanging data from one process to another using SysV
Message Queues.

• struct mymsgbuf_t

Redefinition of the kernel message queue structure.

Functions

• void set_type (mymsgbuf_t ∗buf, int type)

Set the message type in buf.

• void set_dest (mymsgbuf_t ∗buf, int dest)

Set the destination qid in buf.

• void set_src (mymsgbuf_t ∗buf, int src)

Set the source qid in buf.

• void set_service (mymsgbuf_t ∗buf, int service)

Set the message service in buf.

• void set_key_id (mymsgbuf_t ∗buf, int id)

Set the key_id in buf.

• void set_data_size (mymsgbuf_t ∗buf, int size)

Set the size of data in buf.

• void set_data (mymsgbuf_t ∗buf, unsigned char ∗data)

Set the data to be sent in buf.

• int get_type (mymsgbuf_t ∗buf)
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B.3. message.h File Reference

Get the message type in buf.

• int get_dest (mymsgbuf_t ∗buf)

Get the destination qid in buf.

• int get_src (mymsgbuf_t ∗buf)

Get the src qid in buf.

• int get_service (mymsgbuf_t ∗buf)

Get the message service in buf.

• int get_key_id (mymsgbuf_t ∗buf)

Get the unique key_id in buf.

• int get_data_size (mymsgbuf_t ∗buf)

Get the size of data in buf.

• unsigned char ∗ get_data (mymsgbuf_t ∗buf)

Get the data in buf.

• key_t build_key (char c)

This function creates a unique SysV IPC key from a letter passed as a parameter.

• int create_queue (key_t key)

This function creates a SysV message queue identified by an IPC key.

• int remove_queue (int qid)

This function removes a message queue identified by the SysV IPC queue identifier from
the kernel address space.

• int send_message (int qid, mymsgbuf_t ∗qbuf)

This function sends a message to the queue identified by qid.

• int receive_message (int qid, mymsgbuf_t ∗qbuf, long type, int msgflg)

This function reads a message from the queue with the specified identifier.

B.3.1 Detailed Description

The communication system for exchanging data between processes is implemented with
SysV Message Queues. The message layer is the lowest layer of this communication
system. It has all the functions to set and get data items from the message structure. It
is also responsible for creating and destroying message queues and to actually send and
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B.3. message.h File Reference

receive data over the queues. This functionality will be implemented by the corresponding
SysV IPC system calls that can be looked in the manpages. The message layer will be
utilized by the higher level protocol and skdp layers.

B.3.2 Function Documentation

key t build key ( char c )

This function creates a unique SysV IPC key from a letter passed as a parameter.

Parameters

c create SysV IPC key from c

Returns

Unique key_t SysV IPC key.

Uses POSIX ftok() to generate unique SysV IPC keys that are required for generating
message queues. For more details see ftok() manpages.

int create queue ( key t key )

This function creates a SysV message queue identified by an IPC key.

Parameters

key create message queue identifier from SysV IPC key

Returns

Message queue identifier.

Uses POSIX msgget() to generate the message queue identifier. For more details msgget()
manpages.
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B.3. message.h File Reference

int remove queue ( int qid )

This function removes a message queue identified by the SysV IPC queue identifier from
the kernel address space.

Parameters

qid remove queue with qid

Returns

0 on success, -1 otherwise.

Uses POSIX msgctl() to delete message queue from kernel space. For mor details see
msgctl() manpages.

int send message ( int qid, mymsgbuf_t ∗ qbuf )

This function sends a message to the queue identified by qid.

Parameters

qid message queue identifier to send the message to
qbuf message to send

Returns

0 on success, -1 otherwise.

Uses POSIX msgsnd() to send a message to a message queue with qid. For more details
see msgsnd() manpages.

int receive message ( int qid, mymsgbuf_t ∗ qbuf, long type, int msgflg )

This function reads a message from the queue with the specified identifier.
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B.4. protocol.h File Reference

Parameters

qid read from message queue with qid
qbuf buffer to store the received message
type indicates which types of messages to receive

msgflg defines if recieve waits for message or returns immediately

Returns

On success number of bytes received, if no message received 0, -1 otherwise.

Uses POSIX msgrcv() to to read a message from the queue with qid. It filters messages
by reading only those with the specified type. For more details msgrcv() manpages.

B.4 protocol.h File Reference

Functions

• int init_queue (int num)

Creates a SysV Message Queue.

• int close_queue (int qid)

Removes a SysV Message Queue.

• int send_data (int dest, int src, int type, int service, int key_id, int size, unsigned
char ∗key_data)

Sets up a message and passes it down to the message layer for sending.

• int receive_data (int dest, mymsgbuf_t ∗in_msg, int type, int msgflg)

Receives messages on the message queue.

B.4.1 Detailed Description

The protocol layer lies between the message layer and the skdp layer. It actually sets up
and closes a message queue with a certain identifier. The function init_queue() (p. 119)
may also be used to connect to already existing queues, like e.g. a user program connect-
ing to the KDC. The protocol layer is also used to correctly set up the messages and then
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pass them down to the lower message layer for sending. Receiving a message will also be
passed down to the message layer. The communication protocol is connectionless where
the queue identifier of the sender is always sent within a message.

B.4.2 Function Documentation

int init queue ( int num )

Creates a SysV Message Queue.

Parameters

num generate message queue identifier from this integer

Returns

Message queue identifier on success, -1 otherwise.

This function will create a SysV Message Queue out of the number parameter. The result-
ing queue identifier will always be the same for a specified number, allowing programs
to connect to other program’s message queues. You may configure the KDC to use the
identifier 0 and a user program may use init_queue(0) to connect to the KDC. For details
see create_queue(key_t key) (p. 116) in the message layer.

int close queue ( int qid )

Removes a SysV Message Queue.

Parameters

num message queue identifier

Returns

0 on success, -1 otherwise.
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Removes a queue with the specified queue identifier. For details see remove_queue(int
qid) (p. 117) in the message layer.

int send data ( int dest, int src, int type, int service, int key id, int size, unsigned char ∗
key data )

Sets up a message and passes it down to the message layer for sending.

Parameters

dest destination queue identifier
src source queue identifier

type the message type
service the requested service
key_id unique key identifier

size data size in bytes
key_data the actual data

Returns

0 on success, -1 otherwise.

This function sets up the items of a message and passes it down to the message layer. The
parameters are set by the SKPD layer. Message types and services are defined in skdp.h
(p. 121). For more details see send_message() (p. 117) in the message layer.

int receive data ( int dest, mymsgbuf_t ∗ in msg, int type, int msgflg )

Receives messages on the message queue.

Parameters

dest the message queue to read messages from
in_msg the message buffer to write the received data to

type specifies the message type to receive
msgflg defines wait status of receive
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B.5. skdp.h File Reference

Returns

On success number of bytes received, if no message received 0, -1 otherwise.

This function is passed down to the lower message layer. The msgflg specifies if a re-
ceive will wait for a message or returns immediately. If msgflg=0, receive will block
until there is a message with the specified type in the message queue. When read, it re-
turns. If msgflg=IPC_NOWAIT the message queue will be scanned for a message with
the specified type. If not found, receive will return immediately. For more details see
receive_message() (p. 117) in the message layer.

B.5 skdp.h File Reference

Defines

• #define MSG_TYPE_DH_KEY 1

Message type indicating that the contained data is a Diffie-Hellman key. Not available
to user programs, since the DH key exchange will be encapsulated within the SKPD.

• #define MSG_TYPE_SECRET_KEY 2

Message type indicating that the contained data is a secret key generated by the KDC.
User programs are allowed to set up their messages only with this type and then specify
the message with one of the following services.

• #define MSG_SERVICE_KEY_REQ_NEW 3

Message service for user programs to request a new generated key.

• #define MSG_SERVICE_KEY_REQ_EXISTING 4

Message service for user programs to request a key from the key database at the KDC.

• #define MSG_SERVICE_KEY_RESPONSE 5

Message service for the KDC to accordingly respond with key messages.

Functions

• int setup_protocol (int id, const struct ltc_prng_descriptor ∗prng_desc)
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Will start the secure key distribution protocol.

• int tear_down_protocol (int qid)

Shuts down the SKDP.

• int get_master_qid ()

Returns the qid of the KDC.

• int client_secure_send_key_request (int dest, int src, int service, int key_id, mymsgbuf_-
t ∗out_msg)

Sends key requests from user programs to the kdc.

• int master_receive_requests (int dest, mymsgbuf_t ∗in_msg)

Function the KDC uses to receive requests.

• int master_secure_send_key_response (int dest, int src, int key_id, unsigned char
∗data)

Function the KDC uses to respond with key-messages.

B.5.1 Detailed Description

This module implements the Secure Key Distribution Protocol (SKDP). The SKDP can
be used by user programs to request cryptographic keys from the Key Distribution Cen-
ter (KDC). User programs may request new or already existing keys by a unique key_-
id. The protocol is secure since every key-message will be encrypted using a Diffie-
Hellman shared secret that is established prior the sending process. User programs must
not care about encryption and decryption, this will be done by the SKPD automatically.
The cryptographic stuff will be done by the libtomcrypt and libtomsfastmath libraries
(see [SD10]).

B.5.2 Function Documentation

int setup protocol ( int id, const struct ltc prng descriptor ∗ prng desc )

Will start the secure key distribution protocol.

Parameters

id identifier to calculate the message queue id from
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prng_desc libtomcrypt descriptor for pseudo random number generator

Returns

upon success the message queue corresponding with id, -1 ohterwise.

This function will start up the SKDP, that includes the creation of a message queue from
the id parameter and registering the PRNG descriptor. The pseudo random number gen-
erator is needed by KDC for generating (random) keys. It will also be used by the elliptic
curve cryptography stuff that implements the Diffie-Hellman key exchange.

int tear down protocol ( int qid )

Shuts down the SKDP.

Parameters

qid message queue identifier

Returns

Queue identifier generated from id, -1 otherwise.

Will tear down the SKDP by unregistering the PRNG descriptor and freeing the message
queue with qid.

int get master qid ( )

Returns the qid of the KDC.

Returns

Upon success, queue identifier of the KDC, -1 otherwise.

Will return the qid of the KDC so that user programs can connect to the KDC. In the
current implementation the KDC needs to be configured to have the identifier 0.
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int client secure send key request ( int dest, int src, int service, int key id, mymsgbuf_t ∗
out msg )

Sends key requests from user programs to the kdc.

Parameters

dest destination qid (usually the kdc’s qid)
src source qid

service message service
key_id the request key with unique key_id

out_msg message buffer containing data after the protocol is responding with a key.

Returns

0 upon success, -1 otherwise.

This function may be called if a user program wants to request secret keys from the KDC.
Therefore the type in send_data is automatically set to MSG_TYPE_SECRET_KEY, the
service is specified by the user whether he wants to request new or existing keys. Possible
values are defined in skdp.h (p. 121). After this first request the protocol waits for the
Diffie-Hellman public key of the KDC and calculates the shared secret upon receipt. Then
the protocol waits for the encrypted key-data from the KDC. After the data arrived it will
be decrypted with the prior calculated shared secret. Encryption and decryption is done
by the symmetric AES cipher, Diffie-Hellman private/public keypairs are generated by
Elliptic Curve Cryptography (ECC) mechanisms, both implemented in the libtomcrypt
library.

int master receive requests ( int dest, mymsgbuf_t ∗ in msg )

Function the KDC uses to receive requests.

Parameters

dest destination qid
in_msg the request message from user programs
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Returns

On success number of bytes received, if no message received 0, -1 otherwise.

The KDC will use this function to listen for key requests at his message queue with dest
qid. Receiving is non-blocking. Depending on the type of requests sent within in_msg,
the KDC will take the according actions.

int master secure send key response ( int dest, int src, int key id, unsigned char ∗ data )

Function the KDC uses to respond with key-messages.

Parameters

dest destination qid
src source qid

key_id unique key identifier
data the actual encrypted secret key data

Returns

0 on success, -1 otherwise.

After the KDC received a key request, it will respond accordingly with this function.
Therefore it exchanges it’s public DH key with the user that is already waiting for it in
client_secure_send_key_request() (p. 124). After calculating the DH shared secret, the
KDC encrypts the key data and sends it to the requesting user program.
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