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Kurzfassung

Klassifikationsprobleme leiden oftmals unter einem Mangel an annotierten Trainings-
daten. Dies fithrte zu der Entwicklung von Zero-shot Learning Modellen, welche mit
Klassen trainiert werden fiir die ausreichend Trainingsdaten zur Verfiigung stehen, um
dann unbekannte Klassen anhand von Beschreibungen zu erkennen. Oftmals sind die-
se Beschreibungen in der Form von Attributsvektoren, die allerdings ebenfalls selten
zur Verfigung stehen und aufwéndig zu erstellen sind. Manche Ansétze nutzen daher
stattdessen Beschreibungen in natiirlicher Sprache.

In dieser Arbeit wird eine neue Methode zum Vergleich von Daten aus verschiedenen
Doménen, die Autoencoder Distance (AD), vorgestellt und getestet in einer Zero-shot An-
wendung mit Bilddaten und Beschreibungen in natiirlicher Sprache. Die Distanzfunkion
basiert auf der Normalised Compression Distance von Cilibrasi und Vitanyi, ein Verfahren
bei dem verlustfreie Komprimierungsalgorithmen genutzt werden um gemeinsame Muster
zu erkennen, in dem die Gréfle von kombinierten Eingangsdaten nach Komprimierung
gemessen werden. Die Messung wird normalisiert mit den Gréflen der Eingabedaten wenn
sie unabhéingig voneinander komprimiert werden.

Fiir die Methode die in dieser Arbeit vorgestellt wird ist statt eines verlustfreien Kom-
primierungsalgorithmus ein Autoencoder im Einsatz. Dieser wird zuerst darauf trainiert
zusammengehorige Eingabedaten zu assoziieren, also Bilder und die Beschreibungen der
Klassen denen sie angehoren. Die Distanz zwischen Eingabedaten wird dann approxi-
miert indem die mittlere quadratische Abweichung zwischen der Beschreibung und der
korrespondierenden Ausgabe berechnet wird. Fir die Normalisierung werden fiir alle
Beschreibungen Durchschnitt und Standardabweichung dieser Abweichung fiir alle Bilder
in einem festgelegten Set genutzt.

Zur Klassifikationen eines Bildes werden alle Beschreibungen nach ihrem AD zu diesem
Bild gereiht. Das Bild wird dann der Klasse die der erstgereihten Beschreibung entspricht
zugeordnet.

Evaluiert wird das Modell anhand einer Variation des Caltech-USCD Vogel-Datensets
mit Klassenbeschreibungen von Reed et al. Des Weiteren werden Bildersets von diversen
Tieren und Alltagsgenstidnden zur Normalisierung genutzt.

Beim Klassifizieren mit 50 Beschreibungen die im Training nicht vorkamen konnte eine
T1 Genauigkeit von 23,25% und eine T5 Genauigkeit von 57,14% erreicht werden, wobei
Bilder von Seepferdchen zur Normalisierung genutzt wurden. Diese Werte sind geringer
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als Genauigkeiten die von anderen Werken auf den gleichen Daten erreicht werden konnte,
aber durch die neuartige Methode werden viele bisher unerforschte Ansétze fiir zukiinftige
Entwicklungen erdffnet.

Als ein Nebenziel wird zuséatzlich gezeigt, dass die Ausgabe des Autoencoders fir Ex-
plainability genutzt werden kann.
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Abstract

Many classification tasks suffer a lack of labelled data. This led to the development of
zero-shot learning models, which are trained on classes with available data to recognise
unknown classes from descriptions. Often this is done with descriptions in the form of
attribute vectors, but those are again rarely available and expensive to produce. Some
approaches therefore use descriptions in natural language instead.

In this thesis a new method of comparing data from different domains, Autoencoder
Distance (AD), is introduced and tested on a zero-shot application with image data
and natural language descriptions. The distance function is based on the Normalised
Compression Distance by Cilibrasi and Vitanyi, a method that uses lossless compression
algorithms to estimate shared patterns by measuring the size of combined inputs after
compression, normalised by the compressed size of the inputs on their own.

For the method introduced in this thesis an autoencoder is used instead of lossless
compression. It is first trained to associate related inputs, i.e., images and the descriptions
of their class. The distance between inputs is then approximated by calculating the mean
squared error between the input description and its reconstruction. Normalisation for
each description is done with the mean and standard deviation of this error over a shared
set, of images.

For classification, descriptions are ranked by their AD to a given image. The image is
then placed in the class associated with the top ranked description.

Evaluation is done on a variation of the Caltech-USCD bird dataset with descriptions
provided by Reed et al. Further, image sets depicting various animals and commonplace
items are used for normalisation.

Classifying by ranking 50 descriptions not encountered in training, a T1 accuracy of
23.25% and a T5 accuracy of 57.14% could be achieved using pictures of sea horses for
normalisation. This is lower than what was previously achieved on the same data, but
the new method opens many novel avenues for future work.

As a secondary objective it is also shown that the output of the autoencoder can be used
for explainability.
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CHAPTER

Introduction

1.1 Motivation and Aims

A common problem of classification in machine learning is the lack of labelled training
data. As such, many approaches were tried to amplify the use of available data, or to
train a model with little to no examples.

Recently one-shot, and especially zero-shot learning have experienced a rise in popularity.

One-shot learning describes the learning of classes by providing a single example and,
usually, inferring further information from related classes with more available data. This
requires a very broad generalisation, as, e.g., even images of the same object may look
wildly different from varying angles.

Over time many methods were developed to extract comparable features. This ranges
from learned metrics in early examples [Fin05], to modern approaches with the nowadays
ubiquitous neural networks (NN) [Kocl5][AZ18].

Zero-shot learning is in many way similar to one-shot learning, but instead of some classes
only having few samples available, they lack them altogether. Instead, descriptions of
those classes are used.

These descriptions take quite different forms. One very early approach went a very similar
route to one-shot learning and used abstract image representations of the classes, e.g.,
specifically made 7 x 5 pixel illustrations of numbers and letters to represent handwritten
or photographed ones [LEBO0S].

Many later ones instead use binary vectors that give information whether or not certain
attributes are present in a given class. Animals, for example, could have attributes of
the form ’brown’, 'white’, 'water’, 'wings’, ’two legs’, etc. [RPT15][XLSA19]

Such attribute vectors simplify zero-shot learning greatly, as they allow to treat the
problem as a group of binary classification tasks, one for each attribute.
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1.

INTRODUCTION

One noteworthy example even just used a normal classification network with the last
matrix M replaced by MM, where Ms is a constant that maps attributes to classes.
To add new classes, only Ms had to be replaced [RPT15].

Even though this solves the issue of lacking examples of some classes, it still requires
extensive labelling that is not readily available. So while attribute vectors are still
commonly used, many newer approaches instead draw on methods of natural language
processing (NLP), especially with the recent rise of transformers like BERT (see section
3.3.3).

There is still a lack of datasets with class descriptions of that format, but they can
far more easily be generated, by experts of the field the data is related to, or even
automatically from, e.g., Wikipedia [BSFS15].

Similar to many one-shot approaches, classification is often done by ranking a list of
candidate classes. This means a distance function is used to compare a list of possible
descriptors to a given sample, and ordering them by their score. If an actual classification
is needed, the class with the closest description can be chosen.

A method that, to the author’s best knowledge, has never been used in the context of
zero-shot learning, is the use of Compression Distance as a distance function in the above.
Compression Distance is based on Kolmogorov Complexity and, in simple terms, describes
the difference between the individual complexity of two objects, and the complexity of
both combined [CV05].

The Kolmogorov Complexity of an object is the length of its shortest description, a concept
more extensively explained in section 2.1. Its exact value, and even a non-trivial lower
bound, are uncomputable, making approximations necessary for practical applications
[LV93].

Some previous approaches to classification and clustering have done this by using lossless
compression algorithms. Since they are essentially made to produce unique, shorter
descriptions, the filesize of samples before and after compression as approximation, leading
to the term Compression Distance.

Another option is presented by Cilibrasi et al., who compared words and phrases by how
many results Google returns in single and combined searches [CVO07].

A common factor of these approaches is that they compare objects of the same type,
i.e., images with images, text with text, and so on. Compression algorithms typically
only consider the binary representation of anything they are applied to, not the actual
encoded content.

Any common pattern between an image and a text that would lead to a better compression
would therefore be as likely with a text describing the image and an unrelated text of
similar length and structure.

That is not the case with autoencoders. An autoencoder trained on combined represen-
tations of objects and their descriptions over time learns to encode similar parts of the
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1.1. Motivation and Aims

content in the same way, i.e., a red region in an image might be encoded the same way
as the word ’red’ in a text.

This thesis proposes a new Autoencoder Distance that approximates Compression Distance
between objects of different types. Then this is applied in a zero-shot learning situation
with image classes described in natural language. For the latter a dataset of bird species
with descriptions provided by Reed et al. in [RALS16].

Using autoencoders this way comes with several challenges and opportunities:
1. Autoencoders normally compress to a constant size.

It is therefore not possible to take the size reduction due to compression as a measure of
how many patterns the inputs share.

However, compression with autoencoders is lossy, i.e., information is lost when data
is encoded and decoded. The better the process works for a given input, the better
the reconstruction in the output. This makes it possible to approximate the combined
complexity of both inputs by calculating the difference between input and output.

2. An autoencoder made to take representations of an object and the description of
its class as input always requires both inputs.

Some objects are inherently less complex than others. Consequently, the reconstruction
error of an image compressed with a very complex description is likely to be higher than
that of the same image compressed with a far less complex description, even if it shares
more patterns with the former.

When more general compression algorithms are used, this bias can be avoided by consid-
ering the compression size of the image and its descriptions on their own [CV07], which
is not possible with the autoencoder here.

To resolve this, the reconstruction error of all descriptions combined with all images of a
chosen set is calculated. The mean and standard deviation of this error is then used for
normalisation.

3. To learn shared patterns, the autoencoder is only presented positive samples during
training.

One-shot and zero-shot methods that use distance functions typically require both
positive and negative samples during training. Since any combination of an image and a
description of a class it does not belong to form a negative sample, they heavily outnumber
positive samples. Due to this, it is a common problem which and how many negative
samples should be chosen.

When the autoencoder is trained, the later distance function is not directly considered,
only how well it reconstructed the samples it is given. What descriptions do not fit a
given image is implicitly learned by the combination never appearing in training. This
avoids the above problem completely.
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1.

INTRODUCTION

4. The output of an autoencoder is in the same form as the input.

When the input to an autoencoder is in a human-interpretable form, or at least can be
restored to one, then so is the output. This provides a unique opportunity of explainability,
as the reconstruction of an image directly shows what parts the model focused on.

Given the above, this thesis aims to answer the following research questions:

1. What accuracy can the proposed model achieve, and how does it compare to other
zero-shot methods on the same and similar data?

2. How much is the classification accuracy influenced by bias to certain classes, and
what improvements can be made with the normalisation proposed?

As a secondary aim, the viability of using the output of the autoencoder for explainability
is explored.

1.2 Structure of the Thesis

After the introduction, this thesis is structured into four more chapters.

Chapter 2: Essential Background Knowledge outlines the subjects required to
understand the rest of the thesis. This includes a brief introduction into Kolmogorov
Complexity, the definition of zero-shot learning and autoencoders, and some of the tools
used in implementation. Further, four related works are summarised.

Chapter 3: Zero-Shot Classification first describes the datasets used and gives an
overview of the method proposed. Then all involved models are explained in greater
detail.

Chapter 4: Results presents what experiments were made and their outcomes. The
first section is hereby devoted to zero-shot classification, whereas the second section is
about explainability.

Chapter 5: Discussion gives an interpretation of the results achieved and compares
them to previous work. Afterwards possible improvements and future work are described.
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CHAPTER

Essential Background Knowledge

2.1 Kolmogorov Complexity

Kolmogorov Complexity is an area of algorithmic information theory named after Andrey
Kolmogorov, who described it in a 1965 paper[Kol65]. A similar concept has also been
introduced independently by Ray Solomonoff in 1964[Sol64].

Since a practical application of the field served as major inspiration for this project and
may further help to explain the improvements in accuracy achieved in section 3.5, this
section shall give an introduction to its basics and said application.

Everything in this section not otherwise cited is based on [LV93].

2.1.1 Basics

In simplest terms, the Kolmogorov Complexity of an object is the length of its shortest
description, or a bit more formally,

min { Ulp) ==z dp:U(p) ==
Cul@) = 1™ {ip)|Up)=2} Fp:Up) 2.1)

00 otherwise

where z is the object in question, p being descriptions, [(-) is a function giving the length
of the argument, and U(-) is a method of getting an object from its description.

Of course some more restrictions must be set for this definition to be of any use in a
formal context:

e The descriptions are finite, binary strings, i.e., p € {0,1}* Al(p) < oo

— I(p) is therefore the number of bits in the description
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2.

ESSENTIAL BACKGROUND KNOWLEDGE

e The objects are binary strings, i.e., x € {0,1}"
e U is a universal Turing machine

It is trivial to show that the restriction to binary strings does not induce any loss of
generality.

An important property of this definition is that it is equal up to an additive constant for
any choice of universal Turing machine, i.e., for any object x and any universal Turing
machines Uy, Us:

’CU1 (x) - CU2 (33)| < CULUzs (2'2)

where ¢y, 7, only depends on the Turing machines!.

Since it is known that a universal Turing machine exists, one such machine Uy can be
chosen as fixed reference, thus leading to the definition of (unconditional) Kolmogorov
complexity as

C(z) == Cy,(z). (2.3)

2.1.1.1 Pairs of strings

Further of interest, especially for section 2.1.2, is the complexity of pairs of strings.
Clearly shared patterns can lead to a description shorter than the combined descriptions
of both, due to patterns either shared by both strings or even only emerging after the
combination.

Less intuitive, however, is that the complexity might even increase by more than a
constant term. This stems from the fact that simply generating and combining the
descriptions for both requires information about where to split the input. The best upper
bound that can be provided is therefore

C(x,y) < C(z) + C(y) + O(log(min(C(z) ,C(y)))) - (2.4)

2.1.1.2 Incompressibility

A string can be compressed if there is any description of it that is shorter than itself
(C(x) < l(x)). Given that there are only ZZ;& 2k = 2" — 1 binary strings with less than
n characters, but 2" such strings of length n, there are strings of any length which cannot
be compressed, i.e., they are incompressible.

This definition can be extended to c-incompressibility, meaning that there are no descrip-
tions of a string at least ¢ characters shorter than itself (C(z) > [ (x) — ¢). By a similar
argument as above, there are 2" — 2"7¢ + 1 binary strings of length n.

!This assumes using the same enumeration for Turing machines. Comparisons between recursively
isomorphic enumerations still only differ by another additive constant, but no such similarities necessarily
exist between any other enumerations.
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2.1. Kolmogorov Complexity

It can therefore be said that most objects are c-incompressible, already for ¢ = 0 and
even more so for larger c.

2.1.1.3 Notable variations

Not mentioned above is the conditional Kolmogorov complexity C(z|y), which gives the
length of the shortest description of x, given the information y. All properties listed in
this section so far apply to this definition as well?.

Also of note is the prefix Kolmogorov complexity K (z) (or K(z|y) in the conditional
case). By requiring all descriptions x of computable strings, i.e., Uy(x) < 0o, to not be
proper prefixes of any other such description, the definition acquires a number of desired
properties that allow for the definitions in section 2.1.2, but shall not be further discussed
here.

2.1.2 Information & Compression Distance

Vitanyi et al. describe several possible definitions for information distance, i.e., ways
to describe how different two objects are, mostly based on conditional Kolmogorov
complexity.[LV93][BGL 98] However, the most relevant metric to [CV07], and in further
consequence to this thesis, is

E(r,y) = K(z,y) — min(K(z) , K(y)). (2.5)
This is then normalised to avoid the same difference having a larger impact on the distance

between short strings compared to larger ones. Therefore, the normalised information
distance (NID) is defined as

NID(z,y) == (2.6)

K(z,y) — min(K(z), K(y))
max(K(z),K(y))

Since K (z) like C(z) is not computable, an approximation is required for practical appli-
cations. This can be achieved with compression algorithms, resulting in the Normalised
Compression Distance

Co(z,y) — min(Co(x) , Co(y))
max(Co(x) , Co(y)) 7

NCD(z,y) = (2.7)

where Co is the size of the output of a compression algorithm.

2In fact, [LV93] introduces conditional Kolmogorov complexity first and defines unconditional Kol-
mogorov complexity as C(z) = C(z|e).
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2.

ESSENTIAL BACKGROUND KNOWLEDGE

2.2 Zero-shot Learning

In classification tasks labelled training data is often hard to obtain. This can be the
case for many reasons, from classes changing over time, to the amount of classes making
collection unfeasible, to labelling simply being too expensive. Zero-shot learning describes
the group of methods that work with some classes that have no data available at all.
[WZYM19]

For this to be possible information about those classes must be provided in other forms,
i.e, some sort of description. Which form this description takes is highly varied, especially
if it is domain specific [WZYM19]. For example, a task involving the recognition of
handwritten letters with only handwritten digits as training data might use 7 x 5 pixels
representation of the characters in some digital font as description [LEBO0S].

An especially popular form of description are binary attribute vectors. Each position
in such a vector describes a feature a class might have and is set to 1 for all classes it
appears in, otherwise it is 0. [XLSA19][WZYM19]

Attribute vectors simplify the task of zero-shot learning greatly. As long as data for all
attributes is available, the model can be trained with the vectors as output labels. For
classification an input is then assigned to the class with the most similar vector.

In one especially simple approach, the model was trained on the known classes as it would
be in a non-zero-shot situation, except for the last weight matrix M being replaced by
My Ms. Ms was hereby a constant mapping consisting of all known attribute vectors. To
add new classes after training it was only necessary to append the new attribute vectors
to My. [RPT15]

However, while attribute vectors are often easier to obtain than entire sets of samples for
each class, they are still not readily available for every dataset.

Descriptions in natural language are far easier to obtain in comparison. For this reason
works in zero-shot learning increasingly focus on their usage. [BSFS15]

The approach introduced in this paper is one of them, two more are described in the
following section.

2.3 Related Work

Learning Deep Representations of Fine-Grained Visual Descriptions[RALS16]
provides the main dataset used throughout this thesis. To the author’s best knowledge, it
is still the state-of-the-art for the set of description used, and therefore serves as primary
point of comparison. At the time it was released, it even attained accuracies higher than
what was achieved with attribute vectors on the same image sets. (56.8% versus 50.4%,
more details in section 4.1.4.)

Reed et al. present several models based on different text encoders. Since this paper
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2.3. Related Work

was published before the advent of transformers, the text encoders are all convolutional
neural networks, recurrent neural network, or long short-term memory based. Images are
encoded with a convolutional neural network.

Then a scoring function is trained based on the inner products of the features of the
encodings. For classification descriptions are ranked by their score, as they are in this
thesis. This suffers the previously described problem of requiring negative samples.

Predicting Deep Zero-Shot Convolutional Neural Networks Using Textual
Descriptions[BSFS15] uses the same image dataset as the approach above, but generates
class descriptions based on word frequencies in the Wikipedia articles of the classes.
Classification is done in a process involving word embeddings that is fully unrelated to
this thesis, but the accuracies achieved give another point of comparison.

More importantly, they show a method to differentiate known and unknown classes by
considering the uncertainty of the classifier. This allows to only focus on the classification
of unknown classes in zero-shot learning and instead use a conventional classifier when
a known class is detected. A similar method has yet to be implemented for the model
introduced in this thesis, but an idea how it might be possible is described in section 5.2.

Clustering by Compression [CV05] is entirely unrelated to zero-shot learning, but
instead introduces the normalised compression distance that much of this work is based
on. The concept is more extensively described in section 2.1.2.

The normalised compression distance is based on the purely theoretical normalised
information distance, which has been proven to be an optimal. Cilibrasi et al. show that
their distance function is a good approximation in many clustering applications.

Their results are based on the assumption of a lossless compression algorithm and are
therefore not directly transferable to this work.

Objects that Sound [AZ18] describes two models to compare video and audio data.
Both models use still images and the spectrogram of the audio at the same timestamp as
inputs. In the first model those inputs are processed with convolutional neural networks
followed by two fully connected layers before they are connected. Then the euclidean
distance between the processed inputs is evaluated by a small fully connected network to
decide if they are related.

The second model is more important for this thesis. While the audio input is treated
similar to the first model, only convolutional layers are used for the image data. The
connection is then made with pairwise scalar products, and the relation is computed with
max-pooling.

What makes this remarkable is that the last layer before the max-pool can be used as
a localisation map showing what part of the image is connected to the sound. This
shows how a neural network can learn to associate image regions with descriptions in a
human-interpretable way, without the use of labelled image regions.
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2.4 Autoencoders

Autoencoders are a type of Artificial Neural Network (ANN) that has been around since
at least 1985, when they were proposed as a method of unsupervised backpropagation.
In its original and still commonly used form, the network has the same input as output,
but a hidden layer of a smaller size, forcing the model to learn a compressed (encoded)
representation. [RHWS86]

Since then many variations have been developed based on all types of ANN, for example
Convolutional or Recurrent Neural Networks, for both encoding and pre-training purposes.
Another popular use is the removal of noise by training with distorted input images and
using the originals as output. [YZST19]

2.4.1 Mish Activation

As with all forms of ANN, the choice of activation function plays a heavy role in the
performance of autoencoders. It is common to use the same activation function throughout
the network except for the output layer, which is often domain dependent.

The autoencoder in this thesis uses an identity function in the output layer as to not
restrict what kind of inputs can be restored. All other layers use Mish Activation.

Mish is a recently introduced activation function defined as

f(z) ==z - tanh(In (1 + €%)). (2.8)

Figure 2.1 shows the graph of the function.

While more expensive to calculate than the similar and often used ReLU and Swish,
simply replacing the aforementioned functions with Mish show increased accuracy in
several applications.

Misra suggests this might partly be due to small negative inputs being preserved, allowing
for higher expressivity. [Mis19]

As of the time of this writing, the paper introducing Mish has not been published, but
the advertised effect could be confirmed in tests. Compared to using ReLU in all layers
but the last one, zero-shot classification accuracy was improved by 0.64% and the amount
of training epochs required for this result was nearly halved. This more than makes up
for the more time-consuming calculation.
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2.4. Autoencoders

= Mish

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 2.1: The Mish activation function.

2.4.2 Ranger Optimiser

Instead of fixed learning rates, most modern ANN use optimisers that assign individual
learning-rates to every weight and adapt them throughout the training.

Ranger is a combination of two newly developed optimisers, Rectified Adam (RAdam)
and Lookahead, and was suggested in a blog post by Less Wright3. Wright reports
that their team achieved several new records on FastAl leaderboards by using Mish and
Ranger.

Lookahead is designed to build upon another optimiser to increase long term stability

and to reduce sensitivity to suboptimal hyper-parameters like the starting learning-rate.

[ZLHB19]

RAdam improves upon the Adam optimiser by adding a rectifying term that removes
the need for a warmup period [LJH'20].

Both methods are described in greater detail below.

3https://medium.com/@lessw/new—-deep—learning-optimizer-ranger-synergistic—
combination-of-radam-lookahead-for-the-best-of-2dc83£7%9a48d

11
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Like Mish, Lookahead has not been yet published at the time of this writing. However,
replacing the previously used Adam optimiser with Ranger led to faster convergence
during the training of the autoencoder and showed no negative influence on classification.

The implementation of Ranger used in this project is provided by Less Wright? and is
based on the official RAdam repository [LJHT20] and the Lookahead implementation by
lonePatient?.

2.4.2.1 RAdam
The first component of Ranger is RAdam, an improvement to the widely used Adam
Optimiser, introduced in [LJH'20].

It has often been observed that Adam requires a warmup heuristic to prevent it from
converging to bad local optima. Liu et al. identify the high variance of the adaptive
learning rate in the early training stages as a likely culprit and attempt to amend it with

a rectifying term
—4 -2
(Poc —4) (Poo — 2) pt

where
2 2t 3%

= — 1 —
P, 1 -4
is the length of the simple moving average (SMA) approximated by the exponential

moving average (EMA) used to calculate the second moment in the Adam optimiser at
timestamp t. Accordingly, B2 here is the second parameter of the Adam optimiser.

(2.10)

For p; > 4 the update of weights ensues as with Adam, i.e.,

—~

Ht — 91‘,71 — atrt@ (211)
Ut

with 7 as in equation 2.9, and model weights 6;, step-size oy, bias-corrected EMA of the
first and second moment 7; and 0; as in the regular Adam optimiser.

For p; < 4 the step is simplified to

Qt — 0t_1 — atﬁz\t. (212)

Experiments show RAdam to achieve faster convergence and improved accuracy compared
to Adam in all attempted tasks[LJH20].

“https://github.com/lessw2020/Ranger-Deep-Learning—-Optimizer
Shttps://github.com/lonePatient/lookahead_pytorch
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2.5. Summary

2.4.2.2 Lookahead

The second part of Ranger is Lookahead, which builds on any given existing optimiser to
further speed up convergence and to reduce sensitivity to suboptimal hyperparameters
[ZLHB19].

This is achieved by keeping two sets of weights called fast weights 6; 1., and slow weights
0t,0- The fast weights are updated by another optimiser A,

9t,k+1 — gt,k + A (Qth_l, R ) , (2.13)

whereas the slow weights are only updated every k steps to

O141,0 < Oro + a (0r . — 010) (2.14)
with a € (0,1).

Informally, this allows for the fast weights to explore the loss surface, with the slow
weights pulling them back from bad local minima.

2.5 Summary

This chapter gave a short overview of the theoretical backgrounds this work is based
upon, as well as over newly developed methods employed in the code.

Section 2.1, and especially section 2.1.2, explained the distance measure approximated
with autoencoders in section 3.4.

Then section 2.4 stated the origins and basic principles of said autoencoders.
In section 2.2 the concept of zero-shot learning is described.

Lastly, sections 2.4.1 and 2.4.2 respectively summarised the principles of the activation
function and the optimiser used throughout the implementation of the models in section
3.4.

13
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CHAPTER

Zero-Shot Classification

3.1 Choice of Datasets & Preparation

This thesis is mostly focused on image data with natural language class descriptions, for
which few datasets exist so far. However, some datasets for image-labelling tasks can be
adapted by either selecting representatives, or by combining the texts after vectorisation.
More about this in section 3.3.

All images are reshaped to 224 x 224 pixels, adding black borders if necessary. Other
methods of adding borders, for example by repeating the last row of pixels to both sides,
showed little difference in performance.

3.1.1 Datasets with Descriptions: Birds

Reed et al. [RALS16] provide two datasets, one of birds and one of flowers. Both contain
ten sentences describing each image, which when combined per species serve as the class
descriptions. Due to complications with the format the flower data is provided in, only
the bird data is used in this project.

The bird dataset contains 6033 images of 200 bird species, with around 30 images per
species. Within their paper, Reed et al. further suggest a specific train/validation/test
split of 100/50/50, which was also used in this project. A list of all classes sorted by this
split can be found in appendix A.

15
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3.1.2 Datasets without Descriptions

As the bias correction introduced in section 3.5 does not require additional labels, any set
of images could be used. In order to evaluate the impact of domain overlap and image
variance, several datasets are used for this purpose.

3.1.2.1 Animals with Attributes 2

Animals with Attributes 2 (AwA2 [XLSA19)) is a dataset intended for zero-shot learning.
It contains 37322 images of 50 different animals, though the numbers per class vary
greatly. Further, 85 binary features are provided for all classes, but are not used in this
thesis. See section 5.2 for possible future applications.

3.1.2.2 Caltech 101

Caltech 101 (Cal101 [FFFPO04]) supplies 9145 images in 102 fairly unconnected categories.

Note: Only 100 of the classes in the provided download have equivalents in the list of
101 categories in the associated paper, and even those often have different names.

3.2 Overview of the Zero-Shot Learning Procedure

The zero-shot classification method introduced in this thesis can be divided into four
steps, with an optional fifth step for explainability. Figure 3.1 gives an overview of these
steps.

1. Vectorisation of Inputs
To keep the the autoencoder used for complexity estimation simple, feature ex-
traction and vectorisation is done in a pre-processing step. This also allows for a
modular setup, i.e, parts of the model can be exchanged quickly without everything
needing to be redone.

Two methods for image vectorisation are used in the following.

One is based on ResNeXt, a model that achieved high accuracies on ImageNet
datasets [XGD'17]. A version trained on ImageNet-1K is first fine-tuned on the
previously introduced bird dataset (section 3.1.1, then the last layer is removed.
The second is a very simple convolutional autoencoder (SCAE) created for this
thesis. It is both meant to test the capabilities of the proposed method with only
rudimentary feature extraction, as well as to provide an image decoder to examine
options for explainability.
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3.2. Overview of the Zero-Shot Learning Procedure

Image Vectorisation o . . w0
mage In mage Out
(ResNeXt or SCAE) ! !

Central Autoencoder

Text Vectorisation
(BERT)

AVerage per class Vi Text In Text Out O

T

Text Reconstruction Error
’this bird has a white body with black wings and R(L T) = MSE(VTa OT)

a large tan-white bill with a black hooked tip.
‘this bird has a large white body, with brown wings and curved bill.” v
‘this bird has wings that are brown and has an orange bill’

Autoencoder Distance
‘ AL T o RET) =Ry (1)
‘this bird has a long orange and black beak, with black spots T ( 5 ) = Ro (1)

around its eyes and a brown back, with a basic white head.’ T

Figure 3.1: Diagram of the entire process except for the calculation of normalisation values.
Grey parts are only for explainability and are not necessary for zero-shot classification.

For text vectorisation only one method is used in this thesis. BERT is a trans-
former based model that provides the option to encoder entire sentences as vectors
[DCLT19].

Since the dataset used here includes descriptions for each image rather than for
each class, all sentences are encoded separately and the average vector per class is
used as class description.

Section 3.3 gives more details about input vectorisation.

2. Compression Distance Approximation
To approximate the combined complexity of an image and a description, first an
autoencoder must learn to associate them. This is done by training it with only
positive samples, i.e., vectorised versions of images and their corresponding class
descriptions.

17
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The distance between a given image and description is then estimated by calculating
the mean squared error between the input description and its reconstruction.

From here on this autoencoder will often be referred to as central autoencoder to
differentiate it from autoencoders used for input vectorisation.

More details on the process and a depiction of the central autoencoder can be found
in section 3.4.

. Bias Reduction through Normalisation

The process in the previous step neglects to consider the different inherent complexity
descriptions have. Since this would introduce a bias to less complex descriptions, a
way to normalise the estimated distance must be found.

Unlike with the Compression Distance the method is based on, the compression
algorithm used here cannot be used to compress the descriptions alone. Instead the
distances of all descriptions to all images of a chosen set is calculated. The mean
and standard deviation of these distances is then used for normalisation.

The normalised text reconstruction error is referred to as Autoencoder Distance.

Section 3.5 describes the motivation behind the Autoencoder Distance and gives
the exact definition. Different possible image sets for bias reduction are considered
in section 4.1.1.

. Classification by Ranking of Descriptions An image is classified by first

choosing a set of possible classes, e.g., all classes of which descriptions are available.
The descriptions are then sorted by their Autoencoder Distance to the image and
the class associated with the top-ranked description is selected.

Chapter 4 describes the results achieved this way.

. Image Reconstruction When an autoencoder is used for input vectorisation,

e.g., SCAE, the output of the central autoencoder can be reconstructed to human-
interpretable form. This may give insights into the inner workings of the model.

Section 4.2 explores two approaches to this.

The first is to directly decode the output of the central autoencoder and to compare
it with the input image.

In the second approach the decoder part of SCAE is applied to the quadratic
difference between the vectorised image and the output of the central autoencoder.

All models are implemented with PyTorch [PGM™19).
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3.3. Input Vectorisation

3.3 Input Vectorisation

The central autoencoder is meant to take two inputs, encode them, and decode them as
closely to the original as possible. For it to take images and texts as inputs directly, it
would need to be able to restore these inputs as well. Besides increasing the required
computational resources, this could also introduce additional points of failure into a
model meant to test the viability of autoencoder distance.

Due to this all inputs, images and descriptions, are first vectorised in a separate pre-
processing step. This can be done with several existing pre-trained models, though
fine-tuning on the training data improves results.

As an additional benefit, this allows feature extraction methods to be easily interchange-
able without having to redesign the entire models. Possible end-to-end train models are
still a consideration for the future and are discussed in section 5.2.

3.3.1 Fine-Tuned ResNeXt-101

ResNeXt [XGD™17] is a convolutional network architecture based, both in name and in
function, on the popular Residual Network (ResNet) [HZRS16] model.

256-d in

256-d in

Y

256,1 x 1,64 | | 256,1 x 1,64 256, 1 x 1,64
256,1 x 1,64 ; ; t(;t;thZQ
¥ ] 64,3 x 3,64 H 64,3 x 3,64 ‘ | 64,3 % 3,64
64,3 x 3,64 ¥ ¥
. ’64,1><1,256H64,1><1,256‘ 64,1 x 1,256
64,1 x 1,256 \?9
¥

; 256-d out ; 2

(a) A block of ResNet (b) A block of ResNeXt with Cardinality 32

56-d out

Figure 3.2: Blocks of ResNet and ResNeXt with roughly equivalent complexity. Layers
are described as (# in channels, filter size, # out channels).
The figure is based on figure 1 in [XGD'17].

Like ResNet, the ResNeXt model is separated into blocks after each of which the input
of the block is added to the output (figure 3.2a). This makes the learning of an identity
function trivial (the block only needs to output 0) and therefore greatly reduces the
vanishing gradient problem.

19
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Unlike ResNet, the blocks in ResNext are not simply a few stacked layers, but instead
several such stacks executed in parallel and summed up at the end of a block. The
number of stacks used is decided by a new hyper-parameter called Cardinality (figure
3.2b). Each of these branching paths has the same topology internally.

This project uses a pretrained 101-layer variant of ResNeXt (ResNeXt-101) provided
by the Torchvision package contained in PyTorch [PGM™19], which was trained on the
ImageNet-1K dataset [RDS'15].

It is fine-tuned by replacing the last linear layer (2048 to 1000) by one fitting the number
of training classes (i.e. 2048 to 100 for the bird dataset), then training with the default
Ranger optimiser (see section 2.4.2), a batch-size of 60, and using 20% of the training
images for validation/early stopping.

The classification layer is then removed again for the creation of image vectors.

All inputs, both for fine-tuning and vectorisation, are normalised with a mean of
[0.485,0.456,0.406] and a standard deviation of [0.229,0.224,0.225], as those are the
values used when the model was pre-trained.

3.3.2 Simple Convolutional Autoencoder

As a second image vectorisation method a simple convolutional autoencoder (SCAE) was
created. The encoder consists of three convolutional layers, each followed by max-pooling
and the Mish activation function. It reduces the three-layered 224 x 224 pixel images to
vectors of size 25088, which is about a sixth of their original size of 224 - 224 - 3 = 150528.

Figure 3.3 shows that SCAE is able to reconstruct images in a recognisable form, but
achieves a lower resolution than resizing the image to 92 x 92 pixels and enlarging it again.
The backgrounds being of a similar quality to the birds themselves further suggests that
it did not learn to recognise bird-specific features.

SCAE was made to provide an decodable image vectorisation to explore explainability op-
tions (section 4.2) and to test the viability of the proposed method with less sophisticated
feature extraction (section 4.1.1.2).

3.3.3 BERT

Bidirectional Encoder Representations from Transformers (BERT) [DCLT19] is, as the
name implies, a transformer based language representation model. It is, as of the time of
this writing, one of the most popular tools in the NLP community.

As a language representation model, BERT learns to encode natural language tokens as
fixed length vectors. A token is hereby usually a number representing a word, but words
may also be split up into multiple tokens in the case of common suffixes or unknown
words. Additionally a [CLS] token is prepended to all inputs, and if a task requires two
input sentences, they are separated with a [SEP] token.
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3.3. Input Vectorisation

(a) Original 224 x 224 pixels (b) Resized to 92 x 92 pixels (c¢) Reconstructed with SCAE

Figure 3.3: Images of Laysan Albatrosses with resolution reduced to approximately a
sixth, compared to reconstruction with SCAE. Differences are especially apparent around
the beaks.

Unlike with language embeddings, these vectors are not always the same for a given word,
but depend on context. L.e., giving BERT the sentences ’Lead is a metal.” and ’Lead the
way.” result in entirely different vectors for the word ’Lead’.

Most models before BERT were trained in a left-to-right, or right-to-left fashion, always
predicting the next word in the sentence. This leads to only the context on one side of a
word being considered.

BERT instead uses bidirectional training. To do so, 15% of the input words are masked,
i.e., replaced with as [MASK] token. The model is then tasked to predict the masked
words.

In most applications BERT would afterwards be fine-tuned for the specific task at hand,
e.g., sentence prediction.

When BERT is used on a sentence, all layers of the model keep internal representations
for each input token known as hidden states. The hidden states of the last layer can then
be used for downstream tasks. In this thesis the hidden state corresponding to the [CLS]
token is used, which represents the entire sentence.

This project uses BERTpasg as implemented in the library PyTorch-Transformers
[WDS*19].
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Due to hardware limitations in the earlier stages of this thesis, the model is employed
without fine-tuning. Changing this and reasons why that might be difficult are discussed
in section 5.2.

3.3.4 Combination of Per-Image Descriptions

Most tests for this project were performed on the bird dataset introduced in section 3.1.1,
which did not include descriptions of the bird species involved, but instead contained ten
sentences for every image, each describing the bird pictured.

All sentences were individually transformed to vectors of size 768 with BERTgaAgE, then
several methods of aggregating all vectors of a class were attempted, including;:

1. Mean

2. Selecting the sentence with the lowest distance to all others sentences (Medoid)

3. Selecting the sentence with the lowest distance to the mean
The distance measures used herein were euclidean, absolute, and cosine.

1. outperformed the other methods by a large margin in early tests, with the best of the
others (3. with euclidean distance) reaching at best a third of the Top-1 (T1) and Top-5
(T5) accuracy on part of the validation data (T1 6% and T5 14% versus T1 18% and T5
46%. The results for method 1 have since been improved, as shown in chapter 4).

Together with methods 2 and 3 having a higher T1 accuracy than method 1 on training
data, this suggests that method 1 leads to less overfitting. For this reason method 1 is
used for the rest of this project.

3.4 Compression Distance Approximation with
Autoencoders

The central part of the proposed method is the autoencoder depicted in figure 3.4. The
encoder part takes the image and text vectors V; and Vr separately, followed by still
separate hidden layers F; and Ep, then a combined hidden layer C. The decoder has the
same topology in reverse, taking the input from C, then having two split hidden layers
Dy and D7 and two output layers Oy and Op. Of course the encoder and decoder are
symmetrical, i.e., the size of V7 is the same as of Oy, the same is true for F; and Dy, et
cetera.

All layers use Mish (see section 2.4.1) as activation function, and the loss function L is
L(‘/[,VT) = MSE(V},O[) +MSE(VT,OT), (31)

where MSE is the mean square error, V; and Vp are the vectorised image and text inputs,
and Oy and Op are the respective outputs.
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3.4. Compression Distance Approximation with Autoencoders

Vi Or

I —>| Image Vectorisation

O
O
O
N

T —>| Text Vectorisation

VT OT

Figure 3.4: Topology of the central autoencoder.

In training, the Ranger optimiser (see section 2.4.2) was used with all values set to
their defaults, i.e., f1 = 0.95, B2 = 0.999 and a threshold of 5 for RAdam!, k = 6 for
LookAhead?, and a learning rate of 0.0013.

A batch-size of 60 was chosen as a compromise between available time and computational
resources.

181 = 0.9 and B2 = 0.999 are used in the papers Adam and RAdam were introduced in and have been
shown to generally be a good choice[KB14][LJH*20]. The author of Ranger suggests using 31 = 0.95
instead, and further increases the threshold for regulation to 5.

2Also a value used in the respective paper, though some more optimisation could be advisable
here.[ZLHB19]

3The choice of learning rate is luckily largely irrelevant with the use of Ranger.
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Using BERT and ResNeXt results in V; having size 2048 and V7 size 768. In early tests
E;, Ep and C were all set to size 1400, close to the average of the input sizes. To actually
compress the text input as well, B was later set to size 700 and C to the average of Ey
and Ep, i.e., 1050.

These values were kept for training with SCAE instead of ResNeXt. Due to the extreme
input size differences, more tests on this may be done in the future.

To calculate the Compression Distance shown in equation 2.7, first an approximation Co
of K is needed. Since the autoencoder used here only compresses data to a fixed size,
this can only be done by further approximation. One readily available value for this is
the reconstruction error of the restored data.

Due to the image consistently having a reconstruction error at least a magnitude higher
than the description, likely because of the larger size, it dominated the overall error.
Using this for classification on the validation set only gave results barely better than
random, i.e., around 2%.

Considering only the text reconstruction error, significantly better results of around 17%
could be achieved, which later were improved to the results presented in chapter 4. More
formally, the reconstruction error R is defined as

Co(I,T) ~ R(I,T) := MSE(Vy,Or), (3.2)

where Vr and Or are the vectorised text input and its reconstruction (see also figure
3.4) when the model is used with input image I and input text 7. This error is still
influenced by the input image, due to Or depending on I and T.

Different vectorisation methods, especially ones where the text vector is larger than the
image vector, might warrant a different definition including the image reconstruction
error.

Using this as an approximation for the entire Compression Distance, images can be
classified by choosing the class associated with the description with the lowest distance
to a given image.

However, some texts are less complex than others, which leads to them always producing
lower errors that introduce a bias for their associated classes. This effect is even more
pronounced when those texts have been seen in training.

This is in line with what is known about Kolmogorov Complexity. Some objects are
inherently less complex and therefore easier to compress. A given compressor may also
contain information about some objects and can consequently create smaller encodings
for them. [LV93]

Reducing this bias, and in the process producing an approximation more closely related
to the Normalised Compression Distance, is discussed in the following section.
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3.5. Class Bias Correction through Normalisation

3.5 Class Bias Correction through Normalisation

As stated above, R only gives a very crude approximation of the Normalised Compression

Distance (equation 2.7), fully ignoring the terms min(Co(I), Co(T')) and max(Co(I),Co(T)),

which are specifically meant to account for size differences. It stands therefore to reason
that bias may be reduced by finding appropriate approximations.

Given the larger size of the image vectors used, it is presumed that typically Co(I) >
Co(T), an assumption that is further made likely due to M SE(I;,Oy) consistently being
at least one order of magnitude larger than M SE(Ir,Or). Thus we reach

min(Co(I),Co(T)) = Co(T) (3.3)

and
max(Co(I),Co(T)) = Co(I). (3.4)

Substituting these equations into equation 2.7 results in

Co(I,T) —Co(T)
Co(I)

(3.5)

Since classification only requires the comparison of different descriptions to a constant
image I, the term Co(I) can be ignored, leaving only a need for an approximation of

Co(T).

This can, again, be done by calculating the error of the reconstruction. Though since
the autoencoder is only able to compress image and text inputs together, this cannot be
calculated as directly as the combined value. To circumvent this, a set of normalisation
images Z is chosen and the mean of the reconstruction error R(I,T) is calculated for
each description T over all images I € 7.

More formal, the mean reconstruction error R, for description 7" over a set of images 7

is defined as
> R(i,T)

i€Z
Ry, (T) = GT

(3.6)
Ignoring Co(I) and approximating Co(I,T) with R(I,T) (see equation 3.2) and Co(T)
with R, (T) leads to

R(I,T) ~ Ryy(T). (3.7

This does indeed improve validation accuracy slightly for carefully chosen Z, but never
by more than 2%.

However, when straying a bit further from the Compression Distance formula and
accounting for variance within Z this can be improved further. To do so, the above is
divided by the standard deviation of the text reconstruction error over Z, i.e., R(I,T) is

25
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normalised. Applying the formula of the standard deviation to R(/,7T’) and using R, as
mean results in

> (R(i,T) = Ry, (T))°

(T) = | &L : (3.8)

R
1]

oL

the standard deviation of the text reconstruction error over 7.

With this the Autoencoder Distance A7 can be defined as the normalisation described
above, i.e.,

R(I,T) = Ryr (T)
Ror(T)

Az(I, T) = (39)

Section 4.1 gives more details about the choice of Z and the classification accuracies
achieved by using the Autoencoder Distance.

3.6 Summary

This chapter introduced all the models required for the main part of the thesis project,
and described how they fit into the concepts explained in chapter 2.

First, section 3.3 listed the methods used to vectorise the input images and texts.

For images two such models were shown, a fine-tuned version of ResNeXt used in most
experiments, and a deliberately barely functional convolutional autoencoder herein called
SCAE that demonstrates the concept to still work in less than ideal conditions.

Google’s BERTgagE was the only model introduced for text vectorisation, other possibil-
ities in that regard will be discussed in section 5.2. Further addressed was the problem
of missing class descriptions, and how they were generated from image descriptions in
the bird dataset.

Section 3.4 presented the central autoencoder of the project (see figure 3.4) and how it
was trained. Additionally, it was described how compression size is estimated with the
reconstruction error of said autoencoder to in turn crudely approximate the Compression
Distance from section 2.1.2.

In section 3.5 the concept of Autoencoder Distance was introduced as a more accurate
approximation of Compression Distance. This was done by taking the reconstruction
error of the evaluated text inputs with all images of a given set and then normalising the
reconstruction error with the resulting mean and standard deviation. How this reduces
bias and therefore improves classification accuracy will be discussed in section 4.1 of the
following chapter.
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CHAPTER

Results

4.1 Zero-Shot Classification

The main goal of this project is to provide a new approach to zero-shot learning, so most
of the focus is put on the aspect of classification. One of the method’s biggest flaws,
however, is the bias towards classes encountered in training, so most tests were made
under the assumption of the training data being completely separate from the application.
Further, the data used only provided very few images per class, removing some images
from the training classes for test purposes was therefore considered as less important
than the zero-shot aspects.

Data with different descriptions for training and test of the same classes might alleviate
the first problem, but no such data was available.

All accuracies presented in this section were achieved on the bird dataset introduced in
section 3.1.1 with their descriptions prepared as described in section 3.3.4.

Training, validation, and test data are in the same 100/50/50 split suggested by [RALS16].
Appendix A shows all classes and what set they are in.

As described before, classification is done by ranking. This means for each image, all class
descriptions in the set are ordered by their Autoencoder Distance to that image, and the
class associated with the description that has the lowest distance is the classification.
Top-1 (T1) accuracy refers to the percentage of images classified correctly this way. Top-5
(T5) accuracy means the percentage of images for which the correct class was among the
descriptions with the five lowest Autoencoder Distances to the image.

27



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

REsuULTS

28

4.1.1 Accuracies and Effect of Bias Reduction Measures

To allow for better evaluation on classes not seen in training, training classes are not
considered in this section. This means all tests on validation and test data only rank the
50 class descriptions of their respective dataset.

In section 5.2 an idea is discussed how images belonging to classes already seen during
training may be detected, which would allow this approach even in application. Similar
methods have been suggested previously (e.g. [BSFS15]).

Section 4.1.3 describes the results when descriptions of training classes are included.

Table 4.1: T1 Classification Accuracy on Validation and Test data.

Normalisation Set 7 Validation Accuracy Test Accuracy Number of Images

(None) 17.33% 16.30%

Validation 29.28% 22.60% 2961
Seahorse 28.03% 23.25% 57
Test 28.03% 23.87% 2933
Training & Validation 27.63% 23.08% 8855
Octopus 27.52% 23.59% 35
Buddha 27.02% 21.17% 85
Garfield 26.88% 21.58% 34

Random 22.97% 17.97% 500
Cannon 22.26% 19.98% 43

Dalmatian 19.42% 19.09% 67
Soccer Ball 19.12% 19.09% 64
Random (Not Normalised) 2.87% 7.02% 500

Table 4.1 shows the Top 1 (T1) classification accuracy of the model on validation and
test data. The first row shows the values without de-bias efforts, the following rows use
the process described in section 3.5 with a selection of image sets Z, and are sorted by
the results on the validation data. The full table, including T5 accuracies, can be found
in appendix B labelled with the image set names as they appear in the datasets.
'Random (Not Normalised)’ refers to randomly generated image that were not normalised
the way the ResNeXt model requires before vectorisation (see section 3.3.1). While
it is not a situation that would realistically be encountered when choosing Z, the set
was included to show that it is possible to choose images that reduce the classification
accuracy when used for bias reduction.
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4.1. Zero-Shot Classification

Figures 4.1 and 4.2 show samples of the image sets Z used.

It comes with no surprise that choosing Z as exactly those images that are to be classified
yields the best results. Since no labels are required for the normalisation process, this
can be done when a large list of such images is available. As this will often not be the
case, two main approaches, or combinations thereof, offer themselves:

1. Accumulating mean and standard deviation values each time a new image is
classified.

2. Using a fixed image set Z (unrelated or training data)

The first can fairly easily be calculated with equations 4.1 and 4.2, where 4 is the new
image and Z is the set of images accumulated so far. These equations are the result by
substituting Z with Z U {i} in equations 3.6 and 3.8 respectively, and the realisation that
. 2 C 2 2
S (R(,T) = Rup(T))” = % (R(,T)* = Ry (T)°).
T i€l

1€

2] - Rz (T) + R(i, T)

RNIU{i} (T) = Z[+ 1 (4.1)
I|- Roy(T)? + || - Ry (T)? + R(i,T)? — (|T| + 1) - Ry, (T)?
Rm{im:J" (T)" + 7] “()];4—(1 )2 = (IZ + 1) Ruyy,(, (T) 02

It is therefore not required to save all images, unless new labels are added. However, this
method still benefits from having base values for normalisations, at the very least for
improved results on the first dozens of images classified.

For the other approach the image set has to be carefully chosen.

As table 4.1 shows, using images of sea horses or octopuses achieves an accuracy on
validation and test data nearly as good as when the data itself is used, despite the small
set sizes.

(a) Samples of 'seahorse’ from the caltech101 dataset.

Figure 4.1: Samples of image sets that achieve good results at bias correction.
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4. RESULTS
(b) A ’California Gull’, a 'Rusty Blackbird’ and a 'Sooty Albatross’ from the training set.
(e) Samples of ’garfield’ from the caltech101 dataset.
Figure 4.1: Samples of image sets that achieve good results at bias correction.
30
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Figure 4.

(d) Samples of ’soccer_ball’ from the caltech101 dataset.

Samples of image sets that result in low to no benefit at bias correction.
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While one could assume that images more similar to the evaluated data provide better
results, this does not appear to be the case, as even the top values in the table include
images of Buddha statues and the cartoon cat Garfield. A trend that can be observed,
however, is that images from the AwA2 dataset more commonly appear in with the
middling to worse results (see appendix B).

One observable difference between AwA2 and Call01 is that the former tends to have
more regulated and similar images, while the latter often includes decorations or even
drawings. Especially the best images (figure 4.1) include a variety of shapes and especially
colours, whereas the worst images (figure 4.2) are very uniform, with the worst two
mostly being black and white.

There is no clear criterion for what image sets reduce bias best. Examination of the
best sets show that they typically contain a wide variety of shapes in different colours,
whereas lower ranked ones tend to have few colours and very similar shapes. Random
noise also ranks rather low, likely due to no larger shapes being present.

Having said that, tests with combinations of image sets from AwA2 show that while slight
improvements can be achieved by combining the best three image sets (hippopotamus,
horse, walrus), the result of combining all AwA?2 classes is generally worse than just using
the best one.

It appears therefore to be best to start with an image set working well on the validation
data (here for example sea horses) and to possibly add further images over time as by
approach 1. Even then caution is recommended, as using too many similar images of the
same class may over-correct the bias towards this class.

4.1.1.1 Where the Bias Lies

This section presents several confusion matrices with labels and axes that might be hard
to read without zooming in. In all cases the x-axis shows the predicted label and the
y-axis the true label. The labels follow the same order as the lists in appendix A.

Figure 4.3 shows the confusion matrices of T1 classification on test and validation data.
As can be seen, both matrices have a clearly visible diagonal line indicating correctly
classified bird species, and several vertical lines showing bias for certain classes. Red
lines show examples of such bias indicators in figure 4.3a.

Additionally, some classes are especially often confused for a specific other. The most
extreme example of the latter situation is 57 of 60 (95%) Indigo Buntings in the test
data being classified as White-breasted Kingfishers (red box in figure 4.3b). Figure 4.4
shows two of them.

Normalising the errors with the test images themselves (figure 4.5) clearly reduces both
kinds of errors strongly. Especially the misclassified Indigo Buntings are classified nearly
100% correctly, and the vertical lines vanished almost completely. (A red box indicates
the same position as before, this time only a single Indigo Bunting is misclassified as
White-breasted Kingfisher.)
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Figure 4.3: Confusion matrices of the T1 classification without any bias reduction

measures.

(a) On validation data.

(b) On test data.

Figure 4.4: Samples of misclassified Indigo Buntings.
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4. RESULTS

(a) On validation data. (b) On test data.

Figure 4.5: Confusion matrices of the T1 classification using the evaluated data for bias
reduction.

(a) With reduced bias. (b) Difference between figures 4.6a and 4.3b.
Positive (blue) values are higher in the former.

Figure 4.6: Confusion matrix of the T1 classification on test data using images of sea
horses for bias reduction.
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4.1. Zero-Shot Classification

As discussed in the previous section, classification often occurs online and a different
set of images must be selected. Based on the results on validation data, sea horses are
a good choice, resulting in figure 4.6a. A comparison with the previous results (figure
4.7) shows that while some biases are not removed quite as well and a notable error in
the classification of Cape May Warblers is introduced (the only dark red entry on the
diagonal), the overall difference is not overly large.

Figure 4.6b shows the difference between using sea horses for normalisation compared to
the results without bias reduction. The red vertical lines clearly show where previous
bias was strongly reduced.

Though some individual errors were introduced as well (red on the diagonal and blue
anywhere else), no strong new bias was created this way, i.e., highly visible vertical blue
lines on figure 4.6b.

This is, however, not always the case. Choosing a less ideal set of images, for example
ibises (see figure 4.8), most of the same biases are removed, but a new one for Sayornis’
is introduced (highly visible vertical blue line in both parts of the figure).

Comparing the variance of the reconstruction error R,.,, (1) of all test classes T', shows
similar low values for the Sayornis class and the classes of which the bias was reduced,
with a gap to the variance other classes produced.

Since standard deviation, and therefore variance too, has a large impact on the Autoen-
coder Distance, this may allow the detection of classes especially favoured by a given
Z. Comparing the number of such classes may allow to filter out Z that are prone to
over-correction without any labelled data.

No attempts at this were made so far, the possibility is further discussed in section 5.2.

4.1.1.2 Using SCAE for Image Vectorisation

As could be expected, the quality of the image vectorisation plays a large role in the
accuracy achieved.

Section 3.3.2 introduced SCAE, an autoencoder that only learned very rudimentary
image features. Using this for image vectorisation results in a T1 accuracy equivalent to
random if no bias reduction is used, du to all images being assigned to the same class.
With bias reduction this can be improved to around 5% for test, and 7% for validation
classes.

This shows that the proposed method in principle still works with very little information,
though of course the performance suffers.
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4. RESULTS
Figure 4.7: Difference between figures 4.6a and 4.5b. Negative (red) values are higher in
the latter.
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(a) With reduced bias. (b) Difference between figures 4.8a and 4.3b.
Positive (blue) values are higher in the former.
Figure 4.8: Confusion matrix of the T1 classification on test data using images of ibises
for bias reduction.
36


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.1. Zero-Shot Classification

4.1.2 Samples of Individual Results

083.White breasted Kingfisher = 014.Indigo_ Bunting

138.Tree  Swallow 083.White_ breasted_ Kingfisher
095.Baltimore Oriole 138.Tree  Swallow
049.Boat_ tailed Grackle 009.Brewer Blackbird
014.Indigo_ Bunting 051.Horned_ Grebe
V) 156.White__eyed__ Vireo 049.Boat_ tailed Grackle
(a) Indigo Bunting 22 (b) Without bias reduction (c) Sea Horses for bias reduction

this small bird is mostly light turquoise blue, with a darker blue head and a yellow bill.’
’this small colorful bird has a blue belly and a short black bill.’
‘a small bird with a blue breast and a grey belly with a sharp small beak.’

(d) Some of the texts describing images of Indigo Buntings

Figure 4.9: Classification results for a specific image of an Indigo Bunting

_ 083.White_ breasted_ Kingfisher =~ 014.Indigo_ Bunting

098.Scott_ Oriole 083.White_ breasted_ Kingfisher
163.Cape_ May_Warbler 051.Horned Grebe
086.Pacific Loon 053.Western_ Grebe
043.Yellow_ bellied_ Flycatcher 185.Bohemian_ Waxwing
_ 156.White_ eyed_ Vireo 084.Red_ legged  Kittiwake
(a) White-breasted (b) Without bias reduction (c) Sea Horses for bias reduction

Kingfisher 22

’this bird is bright blue and black with a large bill.’
’this bird has bright blue back and primary feathers, with a red crown and large bill.’
’this bird has wings that are blue and has a bornw [sic] body and a large red bill’

(d) Some of the texts describing images of White-breasted Kingfishers

Figure 4.10: Classification results for a specific image of a White-breasted Kingfisher

Figures 4.9, 4.10, and 4.11 show the top results of three individual images of an Indigo
Bunting, a White-breasted Kingfisher, and a Tree Swallow respectively. All three figures
also show the image classified, and some of the texts used to generate the combined
vector (see section 3.3.4).

Sample texts were chosen by being the closest to the combined vector or the medoid
of the class, using euclidean, absolute, and cosine distance. In all cases two or three of
those sentences were duplicates of others and therefore omitted.

The full ranking of classes for each of those images can be found in appendix C, including
the results for using test data as Z, and the values of R(I,T) and Az(I,T).
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038.Great_ Crested_ Flycatcher 138.Tree_ Swallow

095.Baltimore_ Oriole 053.Western_ Grebe
043.Yellow__bellied_ Flycatcher 083.White_ breasted_ Kingfisher
156.White__eyed_ Vireo 051.Horned Grebe
112.Great_ Grey_ Shrike 095.Baltimore Oriole
i _ 031.Black billed Cuckoo 185.Bohemian_ Waxwing
(a) Tree Swallow 41 (b) Without bias reduction (c) Sea Horses for bias reduction

’this bird has a white breast and belly, with a dark gray crown and back.’

’this bird has a shiny blue back and coverts with a blue and black crown and a white throat and brea
’this bird has a flat-shaped head, bright blue eyes, short bill and is white with bright blue wings.’

‘the bird has a small bill that is black and white belly.’

(d) Some of the texts describing images of Tree Swallows

Figure 4.11: Classification results for a specific image of a Tree Swallow

As discussed in the previous subsection, most Indigo Buntings are misclassified as White-
breasted Kingfishers before bias reduction. Figure 4.9 gives one such example, with the
correct classification previously being on the fifth place.

Comparing the descriptions of the top ranked classes without bias reduction (see figures
4.10d and 4.11d for samples of two of them), the biggest similarity besides terms shared
by all classes are mentions of blue and black, indicating that the appearance of a colour
might be the primary feature considered, not so much the location and shape. However,
those are not fully ignored, as, besides the White-breasted Kingfisher, most descriptions
also mention short or sharp beaks.

This pattern also holds up after bias reduction (figure 4.9¢), though it is noteworthy that
the three top ranked classes are those most commonly described as blue, whereas the
descriptions of those directly below rarely mention blue, but often black.

Among the top ranks shown in the figure it can also be observed that the classes ranked
higher than before bias reduction were all slightly over-corrected, as can be seen in figure
4.6 (surrounded by red lines, in order: Brewer Blackbird, Indigo Bunting, Horned Grebe).

The class with the visibly biggest over-correction of those three is the Indigo Bunting itself.
An example of this can be seen in figure 4.10, a White-breasted Kingfisher originally
classified correctly, but considered an Indigo Bunting after bias reduction.

However, the correct class remains on place two, even though the rest of the top ranking
is changed completely.

Appendix C shows the full ranking for figures 4.9, 4.10 and 4.11. This also includes
the values of the reconstruction error R and the Autoencoder Distance Ay for 7 €
{sea__horses,test}, i.e., the reconstruction error normalised with images from those two
sets.

Comparing these values suggests that, before bias reduction, the correct class was chosen
due to actual similarities, while the other top ranking choices only had low distance
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4.1. Zero-Shot Classification

errors due to inherently being easier to reconstruct.

As an example using sea horses for bias reduction:

White-breasted Kingfisher (the true class) has R = 0.000530 and Aseq horses = —3.548267,
moving it to place 2.

Scott Oriole has R = 0.000592 and Ageq horses = —0.736513, moving it from place 2 to
place 14.

Cape May Warbler has R = 0.000601 and Aseq horses = —0.059679, moving it from place
3 to place 19.

Yellow-bellied Flycatcher has R = 0.000665 and Agcq horses = 0.0383943, moving it from
place 5 to place 22.

This is again reaffirmed by several of those down-ranked classes showing clear vertical
lines in figure 4.3b, Yellow-bellied Flycatcher and Cape May Warbler are marked with
red lines.

Tree Swallows show a rather opposite problem to Indigo Buntings, as they are often
misclassified as several different birds, few of which even have a noticeable bias. The
example in figure 4.11 does not even contain the real solution in the top five (appendix C
shows it to be place eleven), but is still corrected after bias reduction, without creating a
significant bias for Tree Swallows in turn.

4.1.3 Including Descriptions of Seen Classes

As mentioned above, there were several reasons to not consider images labelled with
training classes in the main part of this evaluation. While there are options to possibly
detect if an image belongs to a class that was used in training, have yet to be fully
explored. As such, some tests were run on validation and test image sets considering
not only the 50 descriptions contained in each set, but also the 100 descriptions used in
training.

Unsurprisingly, tripling the numbers of possible classes reduces accuracy in both cases.
Accuracies for validation and test sets are reported in this section and in more detail for
various Z in appendix B. Confusion matrices will only be shown for validation data, as
they show similar behaviour to those for test data, but stronger and therefore easier to
visually distinguish.

Like in the previous section, the x-axis shows the predicted class and the y-axis the true
class. A black line separates training and validation labels on the x-axis. All labels follow
the same order as in appendix A.

Figure 4.12 shows the confusion matrix of the above without bias reduction. As expected,

barely any images are classified correctly (4.46%), though a fine diagonal line is visible.

On test data only 2.8% T1 accuracy is reached.
T5 accuracy is remarkably higher with 23.64% and 20.25%, an increase by a factor of
over 5 in both cases. In comparison, the factor between T5 and T1 accuracy when only
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Figure 4.12: Confusion matrix of T1 classification on validation images with validation
and training texts without any de-bias measures.

considering validation or set labels is slightly higher than 2. This shows that while there
is s a strong bias towards some training classes, the true class still tends to rank highly.

Figure 4.13: Confusion matrix of T1 classification on validation images with validation
and training texts using images of cannons for bias reduction.

The best Z for bias reduction here is a set of images of cannons, bringing T1 and T5
accuracy to 10.33% and 31.34% respectively. The utterly different choice is likely due to
this set simply indiscriminately reducing scores for training classes, and would likely not
work as well if images of those classes were being classified as well. A further indication
for this is all image sets involving training images working especially well.

A confusion matrix for those results can be seen in figure 4.13, whereas figure 4.14 shows
the difference of the previous two.

The best Z for the validation set here also does not transfer well to the test set, where
cannons only improve accuracies to 3.55% (T1) and 25.2% (T5). However, using training
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4.1. Zero-Shot Classification

Figure 4.14: Difference between the confusion matrices in figures 4.13 and 4.12.

images for bias reduction works well there too, bringing T1 accuracy to 8.24% and T5
accuracy to 30.34%.

As can be seen, the right choice of Z gives somewhat passable results, but it might be
better to, as suggested before, use different descriptors for training classes in training
and application.

Another possible approach would be to use the results on training classes without bias
reduction as an indication if a given image belongs to one of them or a new class, and in

the first case apply a normal non-zero-shot classifier. More about this idea in section 5.2.

4.1.4 Comparison to other Approaches

Not many previous works are directly comparable to this one, as there is no established
benchmark for zero-shot learning with natural language descriptions.

One of the few is the paper that introduced the bird dataset used throughout this thesis
[RALS16]. Reed et al. presented multiply models, several of which achieved a higher T1
classification accuracy than the approach presented here.

Their best model uses a word-level convolutional neural network (CNN) to reduce input
dimensions and then continues with a recurrent neural network (RNN). This RNN is
also fed information from another CNN that encoded the input image and learns to
accumulate a score. For zero-shot classification a per-class average of text embeddings is
used.

With this they achieve a T1 accuracy of 56.8% on the bird dataset, compared to the
maximum of 23.87% reached here. However, their model requires several descriptions per
image to be available during training, whereas this model already uses a single vector
per class that could be replaced with a singular description as long as it contains enough
information about the class. Their T5 accuracy is not reported.
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Another work that uses at least similar data is by Ba et al. [BSFS15]. They use the
same image dataset, but use word frequencies from Wikipedia articles about the classes
as descriptions. Doing so in this thesis was considered as well, but many of the necessary
article contained no visual description of the birds, only their behaviour. While this
apparently did not make classification impossible, it likely contributed to the lower
accuracy Ba et al. achieved. Further, they use a different split with only 40 unseen
classes. All of this limits comparability.

Part of the paper is the evaluation of different performance metrics, most of which are
only possible due to their models being binary classifiers for each class rather than a
single multi-label classifier. The best accuracies on unseen classes they reach are T1 12%
and T5 44%.

4.2 Explainability through Image Reconstruction

As mentioned before, having an autoencoder as distance function also offers a unique
way of providing explainability, since the output can be restored to a human-"readable”
form. The grey areas in figure 3.1 show two ways this can be done.

As explainability was not a main focus of this project, only SCAE, a very simple
autoencoder, was constructed to test this (section 3.3.2). This leads to limited success,
but gives hope for future work with more sophisticated methods. Section 5.2 gives
some ideas for such improvements and how it may be applied to the text input or
non-autoencoder vectorisation methods.

(a) Original image. (b) Reconstructed image.

Figure 4.15: Image of a Laysan Albatross before and after reconstruction.
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4.2. Explainability through Image Reconstruction

Assuming the input was vectorised with an autoencoder as well, the process of recon-
struction is simply to decode the output of the central autoencoder (uppermost image
in figure 3.1). As can be seen in figure 4.15, the direct result of this is only a vague
approximation of the original image.

(a) Absolute difference. (b) Colour-mean of the difference as red overlay
on the original image.

Figure 4.16: Difference between the images in figure 4.15.

The absolute difference between this and the original image already gives a more useful
result. Figure 4.16 shows this difference on its own, and as a red overlay on the original
image. The overlay is created using the mean of the colour values of the image as alpha.
Lighter (left) or redder (right) indicate greater differences.

Similar to the results of the previous section, this mostly shows that large swathes of
similar colours are the primary feature recognised, but approximate shape is considered
as well. Further, an outline can be observed in many images (see also figure 4.17), but
this might also stem from jpeg artefacts in the original image.

To reduce the influence of such artefacts, another option is to decode the squared difference
between the image input and output of the central autoencoder, instead of comparing
the final reconstruction (central reconstructed image in 4.17). This leads to figure 4.18.
Due to the error going through the decoder, it is not completely clear what constitutes a
better reconstruction here. The lighter areas on the border of the image suggest that
those are probably lower errors, which leads to similar insights as the previous method.

While these results show what parts of the image the combined training of image and
texts focusses on, it is perhaps more interesting to compare the outputs using different
texts. Sadly, with the current model this only produces very scattered images with little
more use than interpreting configurations of tea leaves.
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4. RESULTS
(a) Original Image. (b) Colour-mean of the absolute difference to the
reconstruction.
Figure 4.17: Error on an image of a Pomarine Jaeger.
(a) Reconstruction. (b) Colour-mean of the reconstruction as red
overlay on the original image.
Figure 4.18: Reconstruction of the squared error.
44


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.3. Summary

However, since some small differences can be observed, we may hope that using a more
accurate autoencoder for vectorisation also leads to more interpretable results in that
regard.

4.3 Summary

This chapter displayed and shortly discussed all results achieved with the model introduced
in this thesis. Further discussion can be found in section 5.1.

The larger first part focussed on classification, especially in the case of unknown classes.
As has been supposed in previous chapters as well, purely using the reconstruction error
leads to accuracies only a bit better than random, but reducing bias with the methods
described in section 3.5 led to large improvements. Using sea horses as normalisation set,
a T1 accuracy on test data 23.87% could be reached and using the test data itself even
23.87%.

Previous work has achieved better accuracies on the same data, but with less versatile
methods in regard to necessary training data. The method proposed here can compare
any objects that can be encoded as a vector, whereas the outperforming work requires
sequential descriptions for every single image.

No clear answer was found as to which image sets work best for bias reduction, though
besides extreme similarity to the images classified, sets with large but not random variety
in colour and shapes seemed to work best.

The results proof that the concept works as intended, with many avenues being open to
improve accuracies in the future.

Further, the option of using the output of the autoencoder for explainability was explored.

This as well shows promising first results, though so far nothing is shown not already
suggested by the classification results.
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CHAPTER

Discussion

5.1 Viability

The results shown in the previous chapter demonstrate it is generally possible to approxi-
mate Compression Distance with autoencoders.

While the pure reconstruction error on its own already showed the concept to work in
principle, it still a showed major bias towards some classes, as surmised in the intro-
duction. A normalisation method using unlabelled image sets was proposed to reduce
the influence of those biases and improved T1 test accuracy by a factor of about 1.4
and T5 test accuracy by a bit over 1.3. It is assumed that this error normalisation may
also improve accuracies in other comparison based methods, like those based on Siamese
networks.

With that, the main contribution of this thesis is the Autoencoder Distance proposed in
equation 3.9.

However, even with the best choice of normalisation set Z, the accuracies achieved are
still below those achieved by Reed et al. [RALS16], the only work the author is aware
of that uses the same inputs for both images and class descriptions. The differences
between the models used are described in section 4.1.4.

Although this may be seen as an argument against the method proposed, it may still be
worthwhile to continue exploring Kolmogorov based methods in this context. Most of the
work in this thesis is not based on established zero-shot methods and therefore presents
a new approach that still may be improved in many ways. The accuracies achieved are
comparable to, or better than, other methods in their beginnings (e.g. [BSFS15], see
section 4.1.4 for details).

Some possible paths for improvements are given in section 5.2.

Further, it was demonstrated that it is possible to restore the output of the central
autoencoder to a human-interpretable format in two methods.
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In the first, the image output is directly decoded and then compared to the input image.
For the other the quadratic difference between the input and output vectors of the central
autoencoder representing the image is calculated and the result is decoded. Details on
both methods can be found in section 4.2.

Due to this only being a secondary objective, the option was not as thoroughly investigated
as it may have been. In the current form it was still possible to see what parts of the
image were restored best, which depend on the same encoding as the text reconstruction
used for the autoencoder distance.

Due to this, the reconstructed image is slightly different when the same image is encoded
with different descriptions. So far the differences are minimal and therefore not pictured
here, so future work is needed to discover if these fluctuations follow a pattern.

5.2 Improvements and Future Work

As the model proposed in this thesis was mainly intended as a proof of concept, there
are still many opportunities for improvements.

The most obvious avenue is the design of the central autoencoder. Information Distance
and consequently Autoencoder Distance is based on shared patterns in the compared
objects. If the autoencoder can be taught to more actively combine descriptions in its
central layer, classification should improve as well.

A possible way to achieve this is the use of attention, specifically as it is used in
unsupervised cases [YKW*19).

Many of the problems encountered were, as it commonly happens, due to lack of training
data and computational resources. While a fine-tuned ResNeXt worked well enough for
a proof of concept here, a more specialised network might improve classification results
significantly. Especially a more complex convolutional autoencoder would further help
with explainability, as described before.

It would also be possible to use the attribute vectors some datasets provide as input here.
This has not been done as the focus was laid on the use of natural language description,
and it is likely that a model designed for the use of such vectors makes far better use of
them.

Similarly the BERT model could not be fine-tuned, due to both lack in training data, as
well as lacking access to the necessary computational power during the early phases of
the project.

Besides fine-tuning BERT, other methods of sentence vectorisation may be worth a
try. Many offshoots of BERT have been developed in recent times, and some modern
methods not based on transformers show promise, like the convolutional sentence encoder
in [PDCT19].

The convolutional and recurrent neural network based methods in the work of Reed et al.
are designed for a different form of comparison, but could be adapted for use here. This
is unlikely to improve results, as transformer based methods like BERT, that were not
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5.2. Improvements and Future Work

yet available when the paper was written, typically perform better on natural language
related tasks.

This leads to another interesting opportunity. Using a decodable text vectorisation like
in [PDCT19] may allow for similar reconstruction options as shown for images. In theory
this is possible for BERT as well, but the implementation used sadly did not provide any
such option.

Of course both image and text explainability is not limited to the use of autoencoders
for vectorisations. As explainability became more and more popular, methods came up
to map the input activations required to achieve a certain state in later layers. Using
this, it would be possible to compare the mappings of the input and output of the central
autoencoder, and the changes caused by different descriptions.

Further, it may be possible to train approximate decoders for vectorisations not intended
for such. A lot of information required for a fully accurate reconstruction is likely lost in
such a vectorisation, but a comparison of a decoding of the vectorisation with a decoding
of the image output of the central autoencoder may still give a visualisation of what
information is retained.

Another option considered in designing this model was to train the input vectorisation
in combination with the central autoencoder. This, however, could only work if both
vectorisation methods are autoencoders as well, since training with the error of only the
central autoencoder would likely lead to the vectorisations only producing constants.
Further research on autoencoders (e.g. [LBH18]) suggests that stacked training achieves
better results. Fine-tuning afterwards would, again, only be possible with autoencoder-
based vectorisations.

A different problem that came up is the reduced accuracy on new classes when training
classes are considered as well (see section 4.1.3). One possible solution already mentioned
is the use of two descriptions for each training class, one for training and one for
application. Due to lack of such data, this could not be tested so far.

However, it might be possible to avoid the problem altogether. Ba et al. suggest a
method where they measure the uncertainty in their classifier to detect images belonging
to known labels and use a standard classifier for those [BSFS15]. It may be possible to
use a similar approach with the model proposed in this thesis by considering the average
reconstruction error an image has on known classes, but far more testing is required to
find an appropriate threshold if one exists.

Lastly, the method proposed for bias reduction introduced a new parameter, the set of
images 7 used for normalisation. Choosing one based on validation data generally seems
to work well, but not perfectly so. Further research into the choice of Z is therefore
warranted.

One path to do so is the comparison of the standard deviation of the error different 7
produce. Due to how the normalisation process works, i.e., classes tend to be ranked
lower after bias reduction when their standard deviation was low. It might therefore help
to remove Z that produce low standard deviations on classes few other Z do so as well.
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APPENDIX

List of Classes in the Bird Dataset

Tables A.1, A.2, and A.3 list all classes in the bird dataset described in section 3.1.1
sorted by the split suggested by [RALS16].

Table A.1: Training classes of the bird dataset (section 3.1.1).

#

Class

005
007
010
011
015
016
018
020
024
025
028
032
039
040
042
044
047
048
050
052
054
056
057
058

Crested_Auklet
Parakeet_ Auklet

Red_ winged_ Blackbird
Rusty_ Blackbird
Lazuli_ Bunting
Painted_ Bunting
Spotted_ Catbird
Yellow__breasted Chat
Red_faced Cormorant
Pelagic_ Cormorant
Brown_ Creeper
Mangrove_ Cuckoo
Least_ Flycatcher
Olive_sided_ Flycatcher
Vermilion_ Flycatcher
Frigatebird
American_Goldfinch
European_ Goldfinch
Eared  Grebe

Pied billed Grebe
Blue Grosbeak

Pine Grosbeak
Rose_breasted_Grosbeak
Pigeon__ Guillemot
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# Class
059 California_ Gull
060 Glaucous_ winged_ Gull
062 Herring_ Gull
069 Rufous_ Hummingbird
070 Green_ Violetear
071 Long_tailed_ Jaeger
073 Blue_ Jay
075 Green_ Jay
076 Dark_eyed_ Junco
077 Tropical__Kingbird
078 Gray_ Kingbird
081 Pied_ Kingfisher
085 Horned Lark
087 Mallard
088 Western  Meadowlark
090 Red_ breasted_ Merganser
092 Nighthawk
093 Clark_ Nutcracker
094 White breasted Nuthatch
099 Ovenbird
100 Brown_ Pelican
104 American_ Pipit
106 Horned Puffin
107 Common_ Raven
108 White necked Raven
110 Geococcyx
113 Baird_ Sparrow
115 Brewer_Sparrow
116 Chipping_ Sparrow
117 Clay_ colored__ Sparrow
118 House_ Sparrow
120 Fox_ Sparrow
123 Henslow_ Sparrow
126 Nelson__Sharp_ tailed_ Sparrow
127 Savannah_Sparrow
128 Seaside_ Sparrow
129 Song_ Sparrow
132 White_ crowned_ Sparrow
136 Barn_ Swallow
139 Scarlet_ Tanager
141 Artic_Tern
142 Black Tern
144 Common_ Tern
146 Forsters_ Tern
149 Brown Thrasher
150 Sage_ Thrasher
151 Black_capped_ Vireo
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Class

153
154
158
159
160
161
162
167
168
171
172
173
174
175
176
178
181
182
184
188
189
190
191
192
193
196
198
200

Philadelphia_ Vireo
Red__eyed_ Vireo

Bay_ breasted_ Warbler
Black and white Warbler
Black throated Blue Warbler
Blue_winged_ Warbler
Canada_ Warbler

Hooded Warbler
Kentucky_ Warbler

Myrtle_ Warbler

Nashville  Warbler
Orange_crowned_ Warbler
Palm Warbler

Pine Warbler

Prairie  Warbler
Swainson_Warbler
Worm__eating  Warbler
Yellow  Warbler

Louisiana,_ Waterthrush
Pileated_ Woodpecker

Red_ bellied_ Woodpecker
Red_ cockaded_ Woodpecker
Red_ headed_ Woodpecker
Downy_ Woodpecker
Bewick Wren

House  Wren

Rock  Wren

Common_ Yellowthroat

Table A.2: Validation classes of the bird dataset (section 3.1.1).

#

Class

012
013
017
019
021
022
026
027
030
041
045
046
055
061

Yellow headed_ Blackbird
Bobolink

Cardinal

Gray_ Catbird

Eastern Towhee
Chuck_will Widow
Bronzed Cowbird

Shiny_ Cowbird

Fish Crow

Scissor__ tailed_ Flycatcher
Northern Fulmar
Gadwall

Evening_ Grosbeak
Heermann Gull
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# Class
063 Ivory_ Gull
064 Ring_billed_ Gull
065 Slaty backed_Gull
067 Anna_ Hummingbird
068 Ruby_ throated_ Hummingbird
074 Florida_ Jay
080 Green_ Kingfisher
082 Ringed Kingfisher
089 Hooded_Merganser
097 Orchard_ Oriole
105 Whip_ poor_ Will
109 American_ Redstart
111 Loggerhead_ Shrike
122 Harris_ Sparrow
124 Le Conte_ Sparrow
125 Lincoln_ Sparrow
131 Vesper__Sparrow
133 White_ throated_Sparrow
134 Cape_ Glossy_Starling
137 Cliff Swallow
140 Summer_ Tanager
143 Caspian_ Tern
145 Elegant_ Tern
148 Green_ tailed  Towhee
152 Blue headed Vireo
155 Warbling_ Vireo
157 Yellow throated Vireo
164 Cerulean_ Warbler
169 Magnolia_ Warbler
170 Mourning Warbler
177 Prothonotary_ Warbler
179 Tennessee  Warbler
194 Cactus_ Wren
195 Carolina_ Wren
199 Winter Wren

Table A.3: Test classes of the bird dataset (section 3.1.1).

# Class
004 Groove billed Ani
006 Least_ Auklet
008 Rhinoceros Auklet
009 Brewers_ Blackbird
014 Indigo_ Bunting
023 Brandts_ Cormorant
029 American  Crow
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Class

031
033
034
035
036
037
038
043
049
051
053
066
072
079
083
084
086
091
095
096
098
101
102
103
112
114
119
121
130
135
138
147
156
163
165
166
180
183
185
186
187
197

Black billed Cuckoo
Yellow billed  Cuckoo
Gray_ crowned_ Rosy_Finch
Purple_ Finch

Northern Flicker
Acadian_ Flycatcher
Great_ Crested_ Flycatcher
Yellow__bellied_ Flycatcher
Boat_tailed Grackle
Horned Grebe
Western_Grebe

Western_ Gull
Pomarine Jaeger

Belted_ Kingfisher

White_ breasted_ Kingfisher
Red_ legged_ Kittiwake
Pacific_ Loon

Mockingbird

Baltimore Oriole

Hooded_ Oriole

Scotts_ Oriole

White_ Pelican
Western. Wood  Pewee
Sayornis

Great_ Grey_ Shrike
Black_throated_ Sparrow
Field Sparrow
Grasshopper__Sparrow
Tree_ Sparrow

Bank Swallow

Tree Swallow

Least Tern

White_eyed_ Vireo
Cape_May_ Warbler
Chestnut__sided  Warbler
Golden_ winged_ Warbler
Wilsons_ Warbler
Northern_ Waterthrush
Bohemian_ Waxwing
Cedar_ Waxwing

American_ Three_ toed_ Woodpecker

Marsh  Wren
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APPENDIX

Accuracies for various 7

Table B.1 shows the T1 and T5 accuracies achieved using various image sets Z for bias
reduction (see section 3.5). The image vectorisation is done with the fine-tuned ResNeXt
model described in section 3.3.1.
Columns labelled "Valid’ and "Test’ show evaluations on only the classes appearing in
the validation and test sets respectively (50 classes each), whereas columns labelled
with "Valid 4+ Train’ also consider training classes, though still only use images from the
validation set (150 classes total). Entries are sorted by their validation T1 accuracy.

The names of image sets Z are as they appear in their respective databases (see sections
3.1.2.1 and 3.1.2.2), with the following exceptions:

'valid’: Images from the validation set

‘test”: Images from the test set

‘train’ Images from the training set

‘trval’: Images from the training and validation sets

‘trtest’: Images from the training and test sets

Any with suffix °_awa2’: Images from AwA2. The names before the suffix are as
they appear in the database.

Excerpts of this table are shown in section 4.1.

Table B.1: T1 and T5 accuracies achieved with different images sets Z for bias reduction,
sorted according to T1 validation accuracy.

Image Set 7 Valid Test Valid + Train Test + Train Valid Test Valid + Train Test + Train #
T1 T1 T1 T1 T5 T5 T5 T5

valid 29.28% 22.60% 6.92% 2.80% 66.80% 57.38% 39.11% 28.50% (2961)

sea__horse 28.03% 23.25% 7.57% 2.76% 63.69% 57.14% 33.16% 27.17%  (57)

test 28.03% 23.87% 7.67% 3.95% 65.52% 58.23% 38.87% 30.21% (2933)

trval 27.63% 23.08% 7.90% 4.02% 65.38% 58.27% 37.35% 30.38% (8855)

o7



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

B. ACCURACIES FOR VARIOUS Z

o8

Image Set 7 Valid Test Valid + Train Test + Train Valid Test Valid + Train Test + Train #
T1 T1 T1 T1 T5 T5 T5 T5
octopus 27.52% 23.59% 9.22% 2.80% 63.05% 55.71% 35.73% 28.44%  (35)
buddha 27.02% 21.17% 6.42% 2.56% 61.50% 55.47% 33.74% 27.24%  (85)
garfield 26.88% 21.58% 7.77% 3.03% 62.21% 55.61% 34.45% 24.82%  (34)
trtest 26.82% 23.70% 8.00% 4.43% 64.57% 58.03% 37.28% 30.31% (8827)
crayfish 26.58% 21.41% 5.91% 3.24% 63.86% 57.35% 33.94% 28.81%  (70)
scorpion 26.48% 22.50% 9.79% 5.32% 61.26% 57.31% 35.46% 30.48%  (84)
butterfly 26.41% 21.24% 7.94% 4.711% 63.19% 57.55% 35.26% 28.06%  (91)
metronome 26.34% 21.10% 6.89% 2.69% 62.65% 54.48% 33.54% 25.16%  (32)
lamp 26.27% 22.60% 6.55% 3.07% 63.80% 56.53% 33.64% 28.50%  (61)
minaret 26.17% 22.91% 7.23% 3.07% 62.14% 56.46% 33.91% 27.51%  (76)
ant 26.14% 20.35% 7.80% 2.93% 63.09% 57.55% 33.81% 27.17%  (42)
umbrella 26.14% 21.21% 6.55% 3.75% 59.51% 55.78% 31.81% 27.75%  (75)
train 26.11% 22.84% 8.24% 5.05% 63.53% 57.07% 37.05% 30.34% (5894)
ceiling_fan 26.07% 21.28% 7.06% 3.10% 62.95% 57.18% 34.62% 27.55%  (47)
BACKGROUND__Google 26.00% 23.25% 6.69% 3.17% 60.55% 56.29% 33.03% 26.90% (467)
strawberry 25.84% 21.62% 7.70% 3.99% 64.10% 57.07% 33.03% 25.40%  (35)
platypus 25.80% 20.15% 5.88% 2.86% 60.93% 54.72% 31.78% 25.03%  (34)
bonsai 25.77% 21.58% 7.40% 4.67% 60.93% 55.71% 33.60% 29.01% (128)
nautilus 25.73% 22.91% 9.02% 3.14% 61.43% 56.56% 35.33% 29.22%  (55)
brontosaurus 25.63% 21.58% 6.42% 3.48% 58.09% 53.77% 30.83% 25.54%  (43)
electric_ guitar 25.63% 21.62% 6.55% 3.51% 60.11% 55.71% 33.10% 26.53%  (75)
hippopotamus_ awa2 25.60% 21.62% 5.30% 1.33% 60.49% 56.12% 31.27% 24.28% (684)
horse__awa?2 25.50% 21.58% 7.73% 2.90% 59.74% 55.27% 33.70% 26.63% (1645)
laptop 25.50% 20.73% 9.08% 3.41% 60.05% 55.27% 33.16% 27.34%  (81)
walrus__awa2 25.50% 21.96% 5.30% 2.08% 60.93% 57.28% 30.53% 25.95% (215)
chandelier 25.43% 22.20% 8.88% 3.51% 62.68% 57.07% 33.98% 28.40% (107)
dolphin 25.36% 22.60% 5.61% 2.28% 60.25% 55.06% 30.06% 25.16%  (65)
seal _awa?2 25.36% 21.92% 5.88% 2.08% 59.61% 56.02% 30.23% 24.96% (988)
pig_awa2 25.26% 21.38% 8.14% 1.77% 61.33% 55.71% 32.96% 25.91% (713)
water_lilly 25.26% 19.71% 8.98% 2.18% 63.42% 52.06% 34.35% 25.16%  (37)
bat_ awa2 25.23% 21.55% 8.00% 2.59% 62.85% 57.52% 34.08% 26.87% (383)
mandolin 25.23% 19.47% 7.73% 3.07% 62.31% 56.94% 33.50% 25.84%  (43)
german+shepherd _awa2  25.13% 20.32% 6.55% 2.42% 58.93% 54.01% 33.74% 24.51% (1033)
pyramid 25.09% 22.67% 5.94% 3.44% 61.94% 55.44% 32.32% 27.58%  (57)
persian+cat__awa2 25.06% 20.35% 6.69% 1.60% 60.86% 52.95% 33.43% 25.23% (747)
chihuahua_ awa2 25.03% 20.22% 9.29% 3.00% 59.37% 54.79% 34.92% 26.49% (567)
mayfly 25.03% 19.33% 5.74% 2.90% 64.51% 54.35% 30.33% 24.00%  (40)
ewer 24.99% 21.65% 7.84% 3.51% 61.70% 55.64% 33.20% 26.36%  (85)
pagoda 24.96% 20.01% 7.73% 4.13% 59.24% 52.81% 31.17% 23.15%  (47)
hawksbill 24.86% 20.42% 5.57% 3.55% 60.49% 55.74% 31.88% 27.14% (100)
pigeon 24.86% 19.09% 6.32% 2.73% 58.63% 52.44% 33.27% 24.79%  (45)
sheep_awa2 24.86% 20.63% 6.82% 3.17% 59.64% 55.03% 30.40% 27.55% (1420)
trilobite 24.86% 20.56% 8.21% 4.98% 60.59% 54.65% 33.74% 27.04%  (86)
siamese+cat__awa2 24.79% 20.22% 7.77% 3.55% 58.46% 54.18% 34.11% 25.95% (500)
stapler 24.79% 20.73% 5.94% 2.42% 59.84% 53.94% 30.80% 24.38%  (45)
crab 24.76% 20.93% 8.38% 3.65% 63.15% 55.98% 34.58% 28.30%  (73)
wolf _awa2 24.76% 20.76% 6.32% 2.28% 62.88% 55.51% 32.35% 26.22% (589)
airplanes 24.72% 21.00% 5.37% 2.49% 59.54% 53.87% 32.62% 26.32% (800)
snoopy 24.69% 21.99% 8.14% 2.69% 58.97% 54.42% 33.54% 26.05%  (35)
dolphin__awa2 24.65% 21.48% 4.80% 2.52% 58.66% 55.06% 30.23% 25.37% (946)
wrench 24.65% 22.16% 7.87% 2.97% 60.11% 55.13% 30.87% 26.15%  (39)
barrel 24.62% 21.99% 10.10% 3.03% 60.11% 56.73% 34.35% 27.11%  (47)
stop__sign 24.62% 20.42% 5.91% 3.07% 59.78% 53.43% 30.43% 24.04%  (64)
binocular 24.59% 22.84% 7.19% 3.95% 58.76% 55.81% 32.86% 27.96%  (33)
cow__awa?2 24.59% 21.45% 7.53% 3.78% 57.89% 54.79% 32.35% 25.40% (1338)
kangaroo 24.59% 22.37% 7.63% 4.40% 62.21% 56.36% 33.03% 27.11%  (86)
menorah 24.59% 21.10% 7.70% 4.02% 61.63% 54.86% 33.06% 26.87%  (87)
anchor 24.55% 20.01% 8.98% 4.36% 60.49% 55.44% 33.91% 26.49%  (42)
dollar__bill 24.55% 22.84% 7.84% 2.73% 60.45% 53.15% 30.70% 24.14%  (52)
otter_awa2 24.52% 20.87% 6.01% 2.22% 59.51% 55.61% 30.12% 24.62% (758)
ketch 24.48% 22.20% 7.77% 2.73% 60.96% 54.21% 33.77% 24.89% (114)
llama 24.45% 20.87% 6.96% 3.92% 60.55% 55.47% 31.27% 27.58%  (78)
lobster 24.42% 20.83% 8.85% 2.18% 63.26% 57.07% 33.47% 24.55%  (41)
brain 24.35% 22.57% 6.42% 4.36% 59.47% 55.98% 32.86% 28.47%  (98)
chair 24.35% 21.38% 8.31% 3.48% 62.92% 56.12% 33.57% 24.58%  (62)
accordion 24.32% 20.97% 6.52% 2.90% 58.56% 54.59% 32.12% 25.47%  (55)
stegosaurus 24.28% 22.30% 7.77% 3.27% 61.80% 56.90% 31.81% 25.78%  (59)
yin_yang 24.28% 20.56% 7.26% 2.42% 57.58% 53.46% 32.59% 24.38%  (60)
weasel__awa2 24.25% 19.81% 8.85% 3.34% 61.20% 56.77% 32.62% 27.07% (272)
Motorbikes 24.21% 19.95% 8.85% 2.56% 56.50% 53.22% 32.39% 23.59% (798)
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Image Set 7 Valid Test Valid + Train Test + Train Valid Test Valid + Train Test + Train #
T1 T1 T1 T1 T5 T5 T5 T5
flamingo 24.21% 19.50% 6.92% 3.03% 60.89% 54.48% 28.88% 26.49%  (67)
gramophone 24.18% 22.67% 7.43% 3.03% 62.04% 57.01% 34.72% 29.32%  (51)
deer__awa2 24.15% 21.68% 8.14% 3.48% 62.78% 56.05% 34.11% 27.51% (1344)
grizzly+bear__awa2 24.15% 19.91% 7.97% 3.00% 59.57% 55.23% 31.37% 24.86% (852)
humpback+whale_awa2  24.15% 20.66% 3.75% 3.03% 56.06% 51.89% 28.67% 23.32% (709)
killer+whale__awa2 24.05% 19.71% 5.03% 2.52% 55.89% 51.59% 29.69% 23.12% (291)
wheelchair 24.05% 21.00% 9.83% 3.89% 59.30% 55.88% 34.75% 26.08%  (59)
panda 24.01% 20.87% 5.61% 4.09% 56.60% 53.36% 30.97% 27.51%  (38)
chimpanzee__awa2 23.98% 22.57% 6.65% 3.10% 58.93% 55.51% 30.19% 26.12% (728)
cougar_ face 23.94% 20.25% 8.34% 2.32% 60.79% 53.56% 32.46% 24.17%  (69)
elephant__awa2 23.94% 21.99% 6.21% 2.80% 57.24% 54.72% 30.06% 23.05% (1038)
giant+panda_ awa2 23.91% 20.70% 7.40% 3.14% 56.23% 51.89% 32.49% 26.83% (874)
scissors 23.91% 21.34% 7.19% 1.60% 60.66% 54.86% 33.27% 26.73%  (39)
cup 23.88% 19.77% 6.89% 3.78% 58.60% 53.94% 30.23% 26.53%  (57)
watch 23.88% 20.46% 9.05% 3.00% 61.77% 53.49% 32.49% 25.67% (239)
helicopter 23.78% 19.40% 5.10% 2.83% 59.64% 54.86% 31.04% 24.11%  (88)
lotus 23.78% 18.62% 7.29% 3.99% 62.41% 52.68% 30.23% 24.11%  (66)
blue+whale_awa2 23.74% 21.21% 3.34% 3.61% 57.58% 53.02% 28.74% 23.83% (174)
saxophone 23.71% 19.95% 9.49% 3.07% 60.01% 52.78% 31.98% 23.08%  (40)
dragonfly 23.67% 18.82% 7.33% 2.76% 62.01% 55.54% 34.31% 26.76%  (68)
hamster__awa2 23.67% 20.05% 8.38% 2.69% 58.87% 52.30% 32.93% 25.64% (779)
spider+monkey__awa2 23.67% 21.21% 8.75% 3.17% 60.35% 54.99% 33.94% 25.67% (291)
bass 23.64% 20.15% 7.46% 2.93% 61.94% 55.81% 32.02% 24.86%  (54)
moose__awa2 23.61% 21.17% 7.63% 3.14% 58.29% 55.03% 31.44% 23.42% (704)
antelope__awa2 23.57% 21.24% 9.05% 3.68% 60.11% 54.04% 33.40% 26.90% (1046)
mouse_ awa2 23.51% 20.56% 7.50% 2.49% 61.23% 54.35% 31.88% 27.34% (185)
car_side 23.47% 20.70% 5.74% 2.52% 57.62% 53.43% 28.84% 24.92% (123)
ferry 23.47% 20.01% 6.72% 2.39% 59.71% 54.76% 31.64% 25.20%  (67)
rabbit__awa2 23.47% 20.25% 9.52% 4.88% 59.47% 54.59% 34.38% 27.28% (1088)
rooster 23.47% 17.35% 8.34% 2.83% 55.18% 49.91% 30.06% 23.90%  (49)
buffalo_awa2 23.40% 22.64% 6.99% 3.92% 56.81% 53.53% 30.90% 24.21% (895)
collie__awa2 23.40% 19.60% 7.73% 2.22% 56.30% 53.73% 32.52% 23.56% (1028)
grand__piano 23.40% 20.90% 8.54% 3.07% 61.20% 55.23% 30.87% 23.73%  (99)
joshua__tree 23.37% 20.73% 7.73% 4.19% 59.17% 53.49% 32.12% 25.67%  (64)
pizza 23.37% 20.90% 8.21% 2.90% 60.96% 55.54% 33.70% 26.29%  (53)
tick 23.34% 20.05% 7.97% 3.31% 62.11% 57.11% 35.56% 24.68%  (49)
fox__awa2 23.27% 20.32% 9.15% 2.32% 61.53% 53.43% 34.04% 25.03% (664)
hedgehog 23.24% 20.97% 8.00% 3.38% 60.96% 54.65% 31.14% 26.73%  (54)
inline_ skate 23.17% 19.13% 9.35% 3.20% 55.93% 52.54% 30.29% 22.37%  (31)
raccoon__awa2 23.10% 19.50% 9.35% 2.86% 57.85% 54.11% 33.27% 24.96% (512)
giraffe__awa2 23.03% 20.90% 7.63% 3.78% 59.47% 52.78% 30.97% 25.23% (1202)
gorilla__awa2 23.03% 21.75% 6.86% 2.69% 57.21% 54.82% 31.78% 25.54% (872)
rat__awa2 23.03% 20.29% 9.25% 3.07% 58.05% 52.54% 32.59% 25.26% (310)
rhinoceros__awa2 23.03% 21.17% 6.65% 3.10% 56.40% 53.87% 29.48% 23.66% (696)
headphone 23.00% 20.12% 8.14% 3.65% 57.85% 53.73% 32.76% 25.30%  (42)
cougar__body 22.97% 19.26% 8.65% 3.24% 61.06% 55.64% 30.97% 24.58%  (47)
elephant 22.97% 19.95% 6.75% 2.39% 56.60% 53.73% 28.03% 22.13%  (64)
random 22.97% 17.97% 7.23% 3.65% 60.05% 52.47% 30.87% 21.10% (500)
Faces 22.90% 21.58% 7.57% 2.32% 57.11% 53.63% 29.89% 24.72% (435)
okapi 22.90% 19.57% 9.32% 3.07% 58.02% 53.15% 32.69% 25.88%  (39)
cellphone 22.83% 20.12% 8.14% 2.59% 58.26% 53.97% 31.81% 24.55%  (59)
mole_awa2 22.83% 18.96% 8.27% 3.03% 55.93% 51.45% 30.50% 24.31% (100)
beaver__awa?2 22.80% 20.73% 6.72% 2.08% 57.85% 54.28% 29.85% 23.32% (193)
Faces__easy 22.73% 20.56% 8.48% 3.44% 57.62% 54.21% 29.89% 24.41% (435)
polar4bear__awa2 22.73% 21.41% 6.86% 2.69% 61.06% 54.28% 28.06% 24.58% (868)
bobcat__awa2 22.70% 18.34% 8.38% 3.48% 60.69% 51.11% 31.61% 24.04% (630)
camera 22.56% 21.07% 5.61% 2.93% 58.26% 51.52% 28.57% 22.71%  (50)
beaver 22.49% 18.41% 5.78% 2.80% 56.74% 50.87% 27.69% 20.87%  (46)
Leopards 22.39% 18.41% 7.90% 4.06% 59.54% 53.97% 31.00% 23.35% (200)
gerenuk 22.36% 18.72% 6.86% 3.07% 60.93% 53.05% 31.71% 21.82%  (34)
ox__awa2 22.36% 20.32% 7.70% 3.55% 55.86% 53.46% 30.53% 23.90% (728)
emu 22.29% 18.99% 4.90% 4.71% 56.23% 53.32% 26.75% 23.87%  (53)
cannon 22.26% 19.98% 10.33% 3.55% 58.56% 54.14% 31.34% 25.20%  (43)
rhino 22.26% 19.30% 5.71% 3.51% 57.51% 53.53% 29.11% 22.20%  (59)
schooner 22.22% 21.07% 7.67% 3.07% 59.84% 52.98% 31.04% 25.47%  (63)
tiger__awa2 22.19% 18.17% 8.17% 3.65% 58.93% 51.99% 30.77% 22.84% (877)
lion__awa2 22.12% 17.76% 7.50% 3.89% 59.78% 51.35% 30.16% 22.71% (1019)
ibis 22.05% 17.15% 6.01% 3.72% 56.33% 51.04% 24.62% 22.95%  (80)
windsor__chair 22.05% 18.62% 8.71% 4.06% 61.53% 52.10% 30.73% 25.40%  (56)
starfish 22.02% 20.46% 6.01% 2.18% 62.14% 53.87% 30.90% 23.15%  (86)
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Image Set 7 Valid Test  Valid 4+ Train Test 4+ Train  Valid Test  Valid 4+ Train Test + Train #
T1 T1 T1 T1 T5 T5 T5 T5
leopard__awa2 21.92% 18.17% 7.67% 3.55% 59.57% 52.17% 31.27% 21.75% (720)
squirrel_awaZ2 21.92% 19.13% 9.02% 2.97% 57.78% 52.85% 32.76% 25.03% (1200)
sunflower 21.85% 19.23% 8.98% 3.00% 62.95% 52.51% 31.54% 24.17%  (85)
skunk_awa?2 21.82% 19.16% 8.88% 3.00% 54.00% 50.49% 31.64% 22.47% (188)
wild__cat 21.75% 19.84% 8.68% 2.39% 61.47% 54.65% 30.97% 23.97%  (34)
crocodile 21.68% 17.70% 8.95% 3.14% 58.90% 52.74% 30.77% 22.50%  (50)
revolver 21.68% 19.81% 6.92% 3.41% 54.58% 52.34% 31.34% 23.56%  (82)
dalmatian_awa2 21.48% 19.77% 8.17% 2.01% 55.32% 50.12% 29.52% 20.90% (549)
flamingo_head 21.24% 19.16% 5.50% 2.15% 58.60% 51.21% 27.56% 23.90%  (45)
zebra__awa2 20.91% 18.62% 9.56% 4.47% 55.35% 51.41% 30.63% 23.39% (1170)
euphonium 20.80% 18.92% 10.06% 3.58% 56.97% 53.32% 31.41% 22.91%  (64)
crocodile__head 20.67% 19.88% 8.48% 2.93% 59.00% 52.71% 28.44% 23.56%  (51)
dalmatian 19.42% 19.09% 7.46% 2.08% 57.35% 52.27% 28.47% 20.53%  (67)
soccer__ball 19.12% 19.09% 8.31% 2.56% 55.72% 52.81% 25.60% 20.70%  (64)
None 17.33% 16.30% 4.46% 2.80% 47.38% 43.81% 23.64% 20.25% (0)
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APPENDIX

Selected Individual Results

Full results for the three individual images discussed in section 4.1.2. R(I,T) is hereby
the text reconstruction error as defined in equation 3.2, and Az(I,T") the Autoencoder
Distance defined in equation 3.9.

To save space, columns labelled #1 only give the numbering of classes. The names can
be found in appendix A.

Table C.1: Full results for I as the Indigo Bunting in figure 4.9.
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# ‘ R(I» T) #T ‘ Aseaihorses (Ia T) #T ‘ Atest (Iu T) #T
1 0.000549 083 —4.564322 014 —2.528211 014
2 0.000745 138 —3.478106 083 —1.884309 083
3 0.000793 095 —2.665579 138 —1.560511 138
4 0.000804 049 —2.504240 009 —1.465517 009
) 0.000935 014 —2.252132 051 —1.190418 051
6 0.000951 156 —1.558213 049 —1.007489 049
7 0.000984 006 —0.820472 095 —0.412795 095
8 0.000999 043 —0.685278 053 —0.303238 006
9 0.001026 008 —0.304119 185 —0.252425 008

10 0.001062 163 —0.292540 096 —-0.162729 023

11 0.001081 051 —0.077329 008 —0.130145 053

12 0.001086 035 0.148064 084 0.066383 029

13 0.001134 079 0.646196 006 0.077494 185

14 0.001173 098 0.715314 023 0.204967 096

15 0.001179 038 0.941319 156 0.435466 084

16 0.001186 096 1.361169 029 0.733414 079

17 0.001201 023 1.479536 186 0.837785 186

18 0.001237 031 1.633388 036 0.857270 156

19 0.001253 053 1.944241 079 0.982149 004

20 0.001264 066 2.251958 098 1.182192 036
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C. SELECTED INDIVIDUAL RESULTS

# ‘ R(I, T) #T ‘ Asea_horses (I; T) #T ‘ Atest (I, T) #T
21 0.001277 086 2.254295 043 1.402957 035
22 0.001290 185 2.504939 038 1.519953 098
23 0.001316 091 2.642324 163 1.583461 163
24 0.001330 186 2.875505 147 1.629241 043
25 0.001347 112 2.946767 034 1.679566 037
26 0.001414 034 3.054409 086 1.719536 031
27 0.001428 180 3.144106 035 1.782594 033
28 0.001435 009 3.406167 114 1.823253 038
29 0.001462 135 3.548604 112 1.914408 121
30 0.001468 037 3.822119 033 1.927405 147
31 0.001469 084 3.951225 066 1.972980 086
32 0.001500 033 4.239897 004 2.171114 114
33 0.001513 114 4.397454 166 2.187786 119
34 0.001523 187 4.818616 165 2.217805 103
35 0.001541 072 4.937165 031 2.224244 112
36 0.001566 029 5.200638 037 2.304851 066
37 0.001578 130 5.594457 130 2.345478 091
38 0.001586 119 5.612985 121 2.355086 034
39 0.001772 121 5.857708 180 2.548031 135
40 0.001887 036 6.264458 119 2.615060 180
41 0.001913 103 6.514968 135 2.675150 130
42 0.001914 183 6.604708 103 2.755081 197
43 0.002033 165 6.668827 187 2.824020 187
44 0.002070 102 8.515936 101 2.824239 166
45 0.002088 197 8.723020 091 2.862465 165
46 0.002153 166 8.875541 072 2.879075 102
47 0.002288 147 8.927152 197 2.939401 001
48 0.002503 001 10.490552 183 2.970409 101
49 0.002595 004 10.998594 001 3.293729 183
50 0.003146 101 12.320220 102 3.600309 072

Table C.2: Full results for I as the White-breasted Kingfisher in figure 4.10.

‘ R(I, T) #T ‘ Asea?horses (Ia T) #T ‘ Atest (Iv T) #T

1 0.000530 083 —4.020404 014 —2.216745 014
2 0.000592 098 —3.548267 083 —1.925928 083
3 0.000601 163 —2.663526 051 —1.413098 051
4 0.000611 086 —2.535479 053 —1.390855 053
5 0.000665 043 —2.238555 185 —1.234865 084
6 0.000683 156 —2.102324 084 —1.219072 009
7 0.000690 079 —2.017088 009 —1.160596 049
8 0.000723 053 —1.862865 049 —1.118919 185
9 0.000730 049 —1.859066 096 —0.994207 138
10 0.000751 096 —1.783666 138 —0.987591 096
11 0.000774 084 —0.905983 036 —0.798818 079
12 0.000798 185 —0.889191 079 —0.738117 023
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# ‘ R(I, T) #T ‘ Asea_horses (I, T) #T ‘ Atest(la T) #T
13 0.000798 095 —0.791174 095 —0.638717 036
14 0.000815 034 —0.736513 098 —0.450270 098
15 0.000866 112 —0.530423 023 —0.431332 086
16 0.000914 038 —0.420436 156 —0.389948 095
17 0.000939 023 —0.373882 086 —0.198223 147
18 0.000956 035 —0.327960 147 —0.170542 029
19 0.000963 051 —0.059679 163 —0.150026 156
20 0.000976 066 0.220640 034 —0.108257 163
21 0.000986 187 0.352224 008 0.017809 008
22 0.000991 138 0.383943 043 0.102628 006
23 0.001003 033 0.585653 166 0.262717 043
24 0.001027 031 0.720087 186 0.282322 033
25 0.001075 130 0.847673 029 0.315197 186
26 0.001092 180 0.901831 033 0.351714 034
27 0.001110 072 0.959939 112 0.476177 166
28 0.001117 008 1.064986 038 0.616946 004
29 0.001125 006 1.448543 006 0.657053 112
30 0.001135 036 1.787624 165 0.850133 038
31 0.001157 014 1.981721 114 0.858438 035
32 0.001159 166 2.028339 066 0.927682 187
33 0.001162 135 2.300109 035 0.968592 031
34 0.001182 186 2.788797 130 1.000586 165
35 0.001231 091 2.935952 187 1.161564 066
36 0.001248 114 3.225982 031 1.264340 130
37 0.001263 147 3.400896 004 1.278289 180
38 0.001367 165 3.493834 180 1.329583 114
39 0.001370 183 4.368231 135 1.431522 101
40 0.001446 029 5.092729 101 1.612215 001
41 0.001549 119 5.331520 072 1.615944 135
42 0.001595 037 5.701634 121 1.805276 183
43 0.001618 009 6.015319 119 1.913921 072
44 0.001788 121 6.115742 037 1.956855 121
45 0.001815 197 6.356506 103 2.023326 091
46 0.001846 102 6.499019 183 2.064498 037
47 0.001872 103 7.200656 197 2.083365 119
48 0.001950 001 7.247634 001 2.117669 103
49 0.002397 004 7.792199 091 2.130418 197
50 0.002451 101 10.396680 102 2.308183 102
Table C.3: Full results for I as the Tree Swallow in figure 4.11.

# ‘ R(I7 T) #T ‘ Aseaihorses (17 T) #T ‘ Atest (I7 T) #T
1 0.000315 038 —3.445313 138 —2.061203 138
2 0.000410 095 —3.030115 053 —2.016731 095
3 0.000442 043 —2.971871 083 —1.792153 186
4 0.000483 156 —2.957348 051 —1.727896 053
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C. SELECTED INDIVIDUAL RESULTS
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# R(I, T) #T ‘ Asea_horses (I; T) #T ‘ Atest (I, T) #T
5 0.000487 112 —2.877356 095 —1.614431 096
6 0.000493 031 —2.850474 185 —1.584014 083
7 0.000500 163 —2.682474 096 —1.572137 051
8 0.000502 114 —2.342418 186 —1.497379 185
9 0.000517 035 —2.193628 038 —1.352039 038

10 0.000523 096 —2.036952 114 —1.157119 079

11 0.000527 138 —1.743499 014 —1.044561 114

12 0.000564 135 —1.551768 079 —0.985666 035

13 0.000581 053 —1.442100 156 —0.939257 031

14 0.000586 186 —1.369947 009 —0.912910 014

15 0.000587 079 —1.301589 049 —0.905756 156

16 0.000598 098 —1.121450 031 —0.894723 008

17 0.000617 091 —1.098301 008 —0.891690 009

18 0.000642 185 —1.078201 112 —0.878518 049

19 0.000679 086 —0.866234 043 —0.670993 006

20 0.000683 066 —0.704820 098 —0.650694 043

21 0.000686 072 —0.686284 036 —0.576847 112

22 0.000691 083 —0.648515 163 —0.481178 036

23 0.000702 130 —0.558229 035 —0.476925 163

24 0.000708 034 —0.359358 033 —0.429375 098

25 0.000719 187 —0.271704 084 —0.365603 033

26 0.000788 119 —0.264862 034 —0.296322 091

27 0.000788 033 —0.080811 006 —0.242145 135

28 0.000807 008 —0.021456 086 —0.184170 086

29 0.000856 006 0.049330 166 —0.158630 023

30 0.000868 049 0.073768 066 —0.038093 119

31 0.000869 183 0.088770 135 —0.014744 187

32 0.000880 051 0.137042 165 —0.013335 165

33 0.000918 037 0.711589 130 —0.005071 034

34 0.000975 180 0.724188 023 —0.000562 066

35 0.001005 165 0.953709 119 0.017003 037

36 0.001019 166 1.080820 187 0.019526 029

37 0.001024 121 1.089863 091 0.030979 121

38 0.001105 103 1.152362 147 0.123896 084

39 0.001138 197 1.248207 037 0.145803 166

40 0.001200 036 1.259613 029 0.219827 130

41 0.001203 023 1.679590 121 0.254125 072

42 0.001247 102 1.766523 103 0.265870 103

43 0.001340 084 1.843386 072 0.437297 183

44 0.001543 029 2.667693 180 0.583848 197

45 0.001737 147 2.830554 183 0.782807 102

46 0.001778 001 2.926120 197 0.784030 147

47 0.001861 009 4.480021 004 0.811106 180

48 0.002085 014 5.257147 102 1.086671 004

49 0.0026562 004 6.085886 001 1.201159 001

50 0.002659 101 6.117440 101 1.892176 101
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