
A Comprehensive Analysis of the
cf2 Argumentation Semantics:

From Characterization to Implementation

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktorin der technischen Wissenschaften

by

Sarah Alice Gaggl

Registration Number 0026566

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Privatdoz.Dr. Stefan Woltran

Ao.Univ.Prof.Dr. Uwe Egly

The dissertation has been reviewed by:

(Privatdoz.Dr. Stefan Woltran) (Prof.Dr. Pietro Baroni)

Wien, 13.02.2013

(Sarah Alice Gaggl)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Sarah Alice Gaggl
Severingasse 8/6, 1090 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgments

I dedicate this thesis to my brother Lukas who taught me to pursue a goal even

though it is very hard and always to look on the bright side of life.

The support of many persons in my life enabled me to finally complete this thesis. Therefore I
would like to dedicate some lines to say thank you. First of all I am very grateful to my parents,
Albin and Elisabeth Gaggl, and my brother Lukas who always supported me during my studies
and who enabled me to go my way.

Special thanks go to Ülkü who always believed in me, sometimes I think more than I be-
lieved in myself. Without her support, diversion and patience I would have never got so far.
Furthermore, Cornelia, Lili and Sybille where ready to help and listen whenever I needed it. I
know this was not easy all the time.

I am very glad that Stefan Woltran was my supervisor during the last years. I was able to
learn a lot from him. He guided my work as well as he gave me space and time to make my own
experiences and decisions. When it came to review this thesis I could always count on receiving
his feedback within a few days which facilitated my work extremely. I could not have had a
better advisor.

I was lucky to meet and get in contact with many colleagues which resulted in fruitful,
inspiring and also enjoyable conversations. I could never mention everybody so I give a (pos-
sibly incomplete) unordered list of the persons which had most influence on me during the last
years: Magdalena Widl, Uwe Egly, Dov Gabbay, Wolfgang Dvořák, Katrin Seyr, Francesca
Toni, Johannes Wallner, Paul E. Dunne, Reinhard Pichler, Pietro Baroni, Gerd Brewka, Pe-
ter Schüller, Sebastian Rudolph, Hans Tompits, Sanjay Modgil, Thomas Eiter, Torsten Schaub,
Thomas Krennwallner, Georg Gottlob, Federico Cerutti, Nysret Musliu.

Finally I want to thank the Vienna Science and Technology Fund (WWTF) for the funding
of my work through project ICT08-028.

iii

Abstract

Argumentation is one of the major fields in Artificial Intelligence (AI). Numerous applications
in diverse domains like legal reasoning, multi-agent systems, social networks, e-government,
decision support and many more make this topic very interdisciplinary and lead to a wide range
of different formalizations. Out of them the concept of abstract Argumentation Frameworks
(AFs) is one of the most popular approaches to capture certain aspects of argumentation. This
very simple yet expressive model has been introduced by Phan Minh Dung in 1995. Arguments
and a binary attack relation between them, denoting conflicts, are the only components one
needs for the representation of a wide range of problems and the reasoning therein.

Nowadays numerous semantics exist to solve the inherent conflicts between the arguments
by selecting sets of “acceptable” arguments. Depending on the application, acceptability is de-
fined in different ways. Some semantics are based on the idea to defend arguments against
attacks, while others treat arguments like different choices and the solutions stand for consistent
sets of arguments. A systematic analysis of these semantics on a theoretical and practical level is
indispensable for the development of competitive systems. This includes a complete complex-
ity analysis to develop appropriate algorithms and systems, the verification of the behavior on
concrete instances as well as the identification of possible redundancies for specific semantics
to simplify the frameworks.

In this thesis we exemplify such an analysis on the cf2 semantics which does not require
to defend arguments against attacks but is based on a decomposition of the framework along its
strongly connected components (SCCs). This allows to treat cycles in a more sensitive way than
others and to overcome some problems which arise with odd- and even-length cycles. Due to
the quite complicated definition of this semantics it has not been studied very intensively.

To facilitate further investigation steps we first introduce an alternative characterization of
the cf2 semantics. Then we propose a small modification of this semantics to overcome a par-
ticular problematic behavior on specific instances which results in the sibling semantics stage2 .
After a complete complexity analysis and the investigation of equivalences for these two se-
mantics, we apply the obtained results on two different implementation methods, namely the
reduction-based approach of answer-set programming and the direct implementation in terms of
labeling-based algorithms.

v

Kurzfassung

Argumentation ist ein wichtiges Forschungsfeld der Künstlichen Intelligenz. Zahlreiche An-
wendungen in den Bereichen Legal Reasoning, Multi-Agenten Systeme, Soziale Netzwerke,
E-Government, Decision Support und viele weitere machen dieses Gebiet sehr interdisziplinär
und führen zu einer Vielzahl von Formalisierungen. Dabei hat sich das Konzept der Abstract

Argumentation Frameworks (AFs) zu einem der beliebtesten Ansätze entwickelt. Dieses relativ
einfache aber sehr ausdrucksstarke Model wurde im Jahre 1995 von Phan Minh Dung eingeführt.
Dabei stellen Argumente und eine binäre Relation zwischen den Argumenten, genannt Attacken,
die einzigen Komponenten dar um eine große Anzahl von Problemstellungen zu behandeln.

Mittlerweile existieren sehr viele Semantiken um die Konflikte zwischen den Argumenten
zu lösen und zulässige Mengen von Argumenten auszuwählen. Abhängig von der jeweiligen
Anwendung genügen diese Semantiken unterschiedlichen Anforderungen. Einige basieren auf
dem Konzept, dass Argumente gegen Attacken verteidigt werden, wohingegen bei anderen die
Lösungen durch konsistente Mengen von Argumenten gegeben sind. Eine systematische Analy-
se dieser Semantiken, sowohl auf theoretischer als auch auf praktischer Ebene, ist unabdingbar
um wettbewerbsfähige Systeme zu entwickeln. Dazu gehören die Komplexitätsanalyse um ge-
eignete Algorithmen zu designen, die Untersuchung des Verhaltens an konkreten Instanzen und
auch die Identifizierung von möglichen Redundanzen zur Vereinfachung der Frameworks.

In dieser Arbeit werden wir eine solche Analyse anhand der cf2 Semantik durchführen.
Diese Semantik basiert auf einer Zerlegung des Frameworks entlang seiner stark zusammen-
hängenden Komponenten, wobei das Konzept der Verteidigung der Argumente gegen Attacken
vernachlässigt wird. Die cf2 Semantik hat den speziellen Vorteil, dass sie mit Zyklen ungerader
Länge sensibler umgehen kann als andere Semantiken. Dadurch kann die cf2 Semantik auch
für AFs eingesetzt werden, die sowohl Zyklen gerader als auch ungerader Länge aufweisen.
Da jedoch die Definition dieser Semantik relativ kompliziert ist wurde sie bis jetzt noch nicht
besonders ausführlich in der Literatur behandelt.

Um die weitere Untersuchung zu erleichtern führen wir eine alternative Charakterisierung
der cf2 Semantik ein. Dann stellen wir eine geringfügige Abänderung vor, um ein gewisses pro-
blematisches Verhalten an speziellen Instanzen zu beheben, welche zu der verwandten stage2

Semantik führt. Nach einer umfassenden Komplexitätsanalyse und der Untersuchung von Äqui-
valenzen für diese beiden Semantiken, wenden wir die erlangten Resultate für zwei unterschied-
lichen Implementierungsmethoden an, nämlich in Form von Answer-Set Programming und von
Algorithmen die auf der Berechnung von Labelings basieren.

vii

Contents

1 Introduction 1

1.1 Argumentation in Artificial Intelligence . 1
Argumentation Semantics . 2

1.2 Main Contributions . 2
1.3 Structure of the Thesis . 5
1.4 Publications . 6

2 Background of Abstract Argumentation 9

2.1 Semantics of Abstract Argumentation . 10
SCC-recursive Schema and cf2 Semantics . 14

2.2 Properties of the Semantics . 17
2.3 Evaluation Criteria . 21

3 Alternative Characterization 25

3.1 Preliminaries . 26
3.2 New Characterization for cf2 Semantics . 28

∆F,S-Operator . 30
Main Theorem . 32

3.3 Analysis of the New Characterization . 33

4 Incorporating Stage Semantics in the SCC-recursive Schema 35

4.1 Combining Stage and cf2 Semantics . 36
Alternative Characterization of stage2 Semantics 37

4.2 Comparison of stage2 with other Semantics 38
4.3 Evaluation Criteria w.r.t. stage2 Semantics 40
4.4 Discussion of stage2 Semantics . 42

5 Complexity Analysis 45

5.1 Background of Computational Complexity . 46
Basic Concepts . 46
Complexity Classes . 47

5.2 Complexity of Abstract Argumentation . 48
Decision Problems in Abstract Argumentation 49

ix

Complexity of cf2 Semantics . 49
Complexity of stage2 Semantics . 52

5.3 Tractable Fragments for cf2 and stage2 . 53
Acyclic Argumentation Frameworks . 54
Even-Cycle Free Argumentation Frameworks 54
Bipartite Argumentation Frameworks . 56
Symmetric AFs . 58

5.4 Summary and Further Considerations . 59

6 Notions of Equivalence 61

6.1 Background . 62
Strong Equivalence for AFs . 63
The Succinctness Property . 65

6.2 Standard Equivalence . 66
6.3 Strong Equivalence . 68

Strong Equivalence w.r.t. cf2 Semantics . 70
Strong Equivalence w.r.t. stage2 Semantics 71
Strong Equivalence w.r.t. Naive Semantics . 72
Strong Equivalence w.r.t. Stage Semantics . 73

6.4 Discussion and Further Considerations . 75
Comparing Semantics w.r.t. Strong Equivalence 75
Strong Equivalence and Symmetric Frameworks 76

6.5 Conclusion . 78

7 Implementation 79

7.1 ASP-Encodings for Abstract Argumentation Frameworks 81
Background Answer-Set Programming . 81

Representing AFs in ASP . 83
ASP-Encodings for cf2 Semantics . 84
ASP-Encodings for stage2 Semantics . 86

Saturation Encodings for Stage Semantics 86
metasp Encodings for Stage Semantics 89
Saturation Encodings for stage2 Semantics 90
metasp Encodings for stage2 Semantics 91

7.2 Labelings . 92
Labeling Algorithm for cf2 . 93
Labeling Algorithm for stage2 . 95

7.3 Web Application of ASPARTIX . 97
7.4 Summary and Discussion . 98

8 Conclusion 101

8.1 Summary . 101
8.2 Critical Reflection . 102
8.3 Related Work . 103

x

8.4 Future Work . 105

Bibliography 107

A Curriculum Vitae 117

xi

CHAPTER 1
Introduction

1.1 Argumentation in Artificial Intelligence

The concept of Argumentation has been studied within the last years very intensively. In 1995,
Phan Minh Dung first introduced the formalism of abstract Argumentation Frameworks (AFs),
a very simple yet expressive approach to capture certain aspects of argumentation (see [37]).
Arguments and a binary relation between them, denoting conflicts, are the only components one
needs for the representation and reasoning of a wide range of problems. Dung already provided
in [37] many semantics to solve the inherent conflicts between the arguments. Furthermore,
he investigated the relation of abstract AFs to Default Logic, Defeasible Logic and Logic Pro-
gramming (LP). Although the research on dialectic and argumentation can be traced back to
the classical Greek philosopher Plato, Dung inspired with his work many researchers to further
studies. One can say that he gave the theoretical starting point for a whole research field (see
[21] for an overview).

The research done in abstract argumentation ranges from the representation and modeling of
different scenarios [5, 76, 101], the creation of new semantics [9, 12, 17, 25, 96] and extensions
of the framework [13, 19, 20, 32, 77, 92, 93], to a more general view of the problematic by
distancing from the abstract level and taking the whole argumentation process into account [29].
This process includes three major steps:

1. Representation/generation of the arguments;

2. Identification of the conflicts between the arguments;

3. Solving the conflicts via selecting acceptable subsets of arguments.

In abstract argumentation one only takes the arguments and the relation between them into ac-
count by abstracting from the internal structure of the arguments. Hence, the focus is only on
step 3.

1

Argumentation Semantics

The solution of the inherent conflicts is performed on a semantical level, where one has many
different options to select acceptable sets of arguments depending on the specific requirements.
The basic principle of all argumentation semantics is to obtain conflict-free sets of arguments.
Traditional argumentation semantics build on the concept of admissible sets, i.e. sets where each
argument attacking an argument in the set is also attacked by the set. Most of the prominent
semantics count to this category, like preferred, stable, complete and grounded, just to mention
some of them.

However, recent investigations [8, 12, 20, 23] showed that in in certain situations admissible-
based semantics do not provide satisfying results. For instance the appearance of odd-length
cycles and in particular self-attacking arguments as a special case of them, have a strong and
sometimes undesired influence on the computation of solutions. None of the admissible-based
semantics is able to select arguments of such a cycle as accepted, and moreover, they sometimes
reject arguments just because they are attacked by an argument contained in an odd-length cycle.

cf2 Semantics. One way of overcoming these effects is to detach from the need of defending
the arguments but to see the arguments as different choices, where a solution of the conflicts can
be a maximal consistent set of arguments. The so called naive-based semantics do not rely on
the notion of defense, thus one can accept both, arguments in an odd-length cycle, as well as
arguments attacked by an odd-length cycle. Besides the naive (maximal conflict-free) semantics
also stage [96] and cf2 semantics count to this category1.

The cf2 semantics has been introduced in [6] and later in [12], Baroni et al. introduced
a general SCC-recursive schema for argumentation semantics, based on a decomposition of
the framework along its strongly connected components (SCCs), which also contained the cf2

semantics. The cf2 semantics has some significant advantages by treating cycles in a more
sensitive way than others. Hence, it overcomes some problems which arise with odd- and even-
length cycles.

1.2 Main Contributions

Due to the quite complicated definition of the cf2 semantics it is not as well studied as oth-
ers. Therefore, the main focus of the thesis will be on the investigation of this semantics. In
the following we sketch the state-of-the-art of relevant problems arising in the course of this
investigation and describe the main contributions of this thesis. We start with an alternative
characterization of cf2 semantics.

Alternative Characterization. The initial motivation for modifying the definition of cf2 arose
from the difficulties to encode the semantics in answer-set programming (ASP). It turns out to
be rather cumbersome to represent cf2 semantics directly within ASP. This is due to the fact that
the original definition involves a recursive computation of different sub-frameworks. Therefore,
we shift the need of recursion from generating sub-frameworks to the concept of recursively

1One special candidate is stable semantics which is both admissible- and naive-based.

2

component defeated arguments, which can be captured via a fixed-point operator ∆F,S for an
AF F and a set S. Then, we construct an instance of F with respect to ∆F,S and check whether
the set S is a naive extension of both, F and the instance of F . In other words, this allows us to
characterize cf2 semantics using only linear recursion.

With the alternative characterization at hand we are able to design the corresponding ASP
encodings, by first guessing a naive extension S and then checking whether S is a naive extension
of the respective instance of the given AF F . Furthermore, the novel characterization of cf2
facilitates further investigation steps.

stage2 Semantics. Although there have been pointed out several advantages of cf2 in the lit-
erature as mentioned above, also this semantics shows undesired behavior in some situations. In
particular the evaluation of odd-cycle-free AFs e.g. if even-length cycles occur, is now question-
able [64, 69]. On the other side, stage semantics [96] can also handle odd-length cycles and does
not change the behavior of odd-cycle-free AFs. The disadvantages of stage semantics are that
very basic properties are not satisfied, for example the skeptical acceptance of unattacked argu-
ments, i.e. the weak reinstatement property [8] is violated. While naive-based semantics seem
to be the right candidates when the above described behavior of admissible-based semantics is
unwanted, there are several shortcomings with existing approaches, as mentioned above. To
overcome those problems we propose a new semantics combining concepts from cf2 and stage
semantics, which we name stage2 . Thus, we use the SCC-recursive schema of cf2 semantics
and instantiate the base case with stage semantics. It turns out, that the novel stage2 semantics
overcomes the shortcomings of both cf2 and stage semantics. As cf2 and stage2 semantics
are closely related, we include the novel stage2 semantics in the continuative investigation and
compare the obtained results between cf2 and stage2 semantics.

Computational Complexity. An important issue in the analysis of argumentation semantics
has always been the study of computational complexity [36, 39, 48, 50]. Whereas for most of
the argumentation semantics and the respective reasoning problems, an extensive complexity
analysis exists, the cf2 semantics has been neglected in this context. Such an analysis is indis-
pensable for the implementation of efficient algorithms and systems. Therefore, we will study
the standard reasoning problems of the argumentation semantics cf2 and stage2 , namely (i) ver-
ification, (ii) credulous acceptance, (iii) skeptical acceptance, and (iv) existence of a non-empty
extension. Moreover, we provide an analysis of possible tractable fragments [34, 54, 55] which
can help to improve the performance for easy instances of in general hard problems. In particular
we consider acyclic AFs, even-cycle free AFs, bipartite AFs and symmetric AFs.

Notions of Equivalence. As argumentation is a dynamic reasoning process it is of specific
interest to know the effects additional information may cause with respect to a specific seman-
tics. Oikarinen and Woltran [84] identified kernels that eliminate redundant attacks of AFs
and introduced the concept of strong equivalence: two AFs are strongly equivalent w.r.t. a
semantics σ (i.e. they provide the same σ-extensions no matter how the two AFs are simultane-
ously extended), if their σ-kernels coincide. Different notions of equivalence have been studied
in [18, 84] for most of the semantics.

3

To complete the picture we analyze standard and strong equivalence for cf2 and stage2

semantics. Interestingly it turns out that for both of them, strong equivalence coincides with
syntactic equivalence. Thus, there are no redundant attacks at all, which means that every part
of the AF has a potential influence on the evaluation of the extensions. We make this particular
behavior more explicit by defining a new property for argumentation semantics, the succinctness

property. If a semantics σ satisfies the succinctness property, then for every framework F , all its
attacks contribute to the evaluation of at least one framework F ′ containing F .

Implementation. In order to evaluate argumentation frameworks and to compare the different
semantics, it is desirable to have efficient systems at hand which are capable of dealing with a
large number of argumentation semantics. As argumentation problems are in general intractable,
which is also the case for cf2 and stage2 semantics, developing dedicated algorithms for the
different reasoning problems is non-trivial. A promising way to implement such systems is to
use a reduction method, where the given problem is translated into another language, for which
sophisticated systems already exist. It turned out that the declarative programming paradigm
of Answer-Set Programming (ASP) is especially well suited for this purpose (see [95] for an
overview). The attempt to use logic programming to encode argumentation problems is not new,
Dung already highlighted this approach in [37] as well as Nieves et al. in [81, 82, 85], Wakaki
and Nitta in [99] and Egly et al. in [57, 59].

In this work we follow the ASPARTIX approach as introduced by Egly et al., where the
semantics are encoded within a fixed query and the concrete AF to process is provided as the
input for the program. This has several advantages, as the input AF can be changed easily and
dynamically without translating the whole formula, which simplifies the answering of questions
like “What happens if I add this new argument?” Furthermore, the modularity of ASP programs
allows to easily extend, change and reuse parts of the encodings. On the performance side one
can observe that advanced ASP solvers like clasp, claspD, DLV, Cmodels, Smodels, IDP, or SUP
are nowadays able to deal with large problem instances, see [24].

As mentioned above, the alternative characterization allows to encode the cf2 (resp. stage2)
semantics with the widely used Guess&Check methodology for ASP programs. Moreover, re-
cent developments like the metasp front-end [70] for the ASP-system gringo/claspD al-
low to optimize and simplify complicated encodings, like the ones needed for reasoning prob-
lems located at the second level of the polynomial hierarchy, as it is the case for stage2 seman-
tics.

Besides the reduction based approach, one can of course also design algorithms which di-
rectly compute the desired solution of the reasoning problems. In this content we consider here
a labeling-based approach [30, 97]. In contrast to the traditional extension-based approach, so
called labelings distinguish two kinds of unaccepted arguments, those which are rejected by the
extension and those which are neither rejected nor accepted. This distinction is interesting from
a logic perspective but has also proven to be useful for algorithmic issues. Although there has
already been defined a labeling for cf2 semantics in [14], we present here a slightly different
one which reflects the behavior of these semantics more explicitly. Besides the definition of
labelings for cf2 (resp. stage2) semantics we provide labeling based algorithms to compute all
solutions of an AF in terms of labelings.

4

Finally, we point out that although the ASPARTIX system does not require that the user
is an ASP expert, still one needs to have an ASP solver available. Therefore, we developed a
web front-end of ASPARTIX which is freely accessible from any standard web browser2. This
tool makes use of the ASP encodings but the concrete procedure is completely hidden from the
user. Besides the computation of all extensions for a wide range of semantics (including cf2 and
stage2), the tool offers a graphical representation of the input framework and the solutions.

To summarize, this work is dedicated to provide more insights into argumentation seman-
tics, exemplified on the cf2 semantics to make argumentation systems more competitive for the
future.

1.3 Structure of the Thesis

This thesis is organized as follows.

• In Chapter 2, Background of Abstract Argumentation, we introduce all Dung semantics as
well as stage, semi-stable, ideal, eager, resolution-based grounded and of course the cf2

semantics. Then in Section 2.2 we point out some special properties of the semantics and
we classify them w.r.t. their subset-relation. Regarding cf2 semantics we will illustrate
the problematic behavior on frameworks with cycles of length ≥ 6. In Section 2.3 we
recall the evaluation criteria introduced in [8] which are of interest for the naive-based
semantics, and give the respective results for the introduced semantics.

• Chapter 3 is dedicated to the Alternative Characterization of cf2 semantics. After intro-
ducing some preliminaries, we first give the cf2 definition based on the computation of
a set of recursively component defeated arguments RDF (S). Then we prove that the set
RDF (S) can be captured via a fixed-point operator ∆F,S . This allows us to characterize
cf2 semantics using linear recursion only. We conclude the chapter with an analysis where
we point out some advantages of the introduced alternative characterization.

• In Chapter 4, Incorporating Stage Semantics in the SCC-recursive Schema, we introduce
the novel stage2 semantics, which uses the SCC-recursive schema of cf2 and instantiates
the base case with stage semantics. Furthermore, we also formulate stage2 semantics with
the characterization introduced in Chapter 3. In Section 4.2 we compare stage2 with the
other naive-bases semantics, namely with cf2 , stage and stable semantics, and give the re-
spective relations in terms of subset-inclusion. Then, in Section 4.3 we investigate stage2
semantics regarding the evaluation criteria introduced before. Finally, in Section 4.4 we
summarize the obtained results of this chapter.

• In Chapter 5 we concentrate on the analysis of Computational Complexity of cf2 and
stage2 semantics. After a short recapitulation of the basic concepts of computational com-
plexity we investigate the complexity of the main reasoning problems for argumentation
semantics. In Section 5.3 we consider tractable fragments for cf2 and stage2 semantics,
and conclude in Section 5.4.

2 http://rull.dbai.tuwien.ac.at:8080/ASPARTIX

5

http://rull.dbai.tuwien.ac.at:8080/ASPARTIX

• In Chapter 6 we study different Notions of Equivalence. In Section 6.1 we start with in-
troducing the necessary background on standard and strong equivalence followed by the
definition of the succinctness property. Then, in Section 6.2 we consider cf2 and stage2

semantics, as well as their base semantics naive and stage, in terms of standard equiva-
lence. In Section 6.3 we characterize strong equivalence for cf2 and stage2 semantics,
as well as for naive and stage. Finally, in Section 6.4 we compare the semantics with
respect to strong equivalence and we shortly discuss strong equivalence for symmetric
frameworks.

• In Chapter 7 we turn to the Implementation of cf2 and stage2 semantics. After introduc-
ing the basic concepts of ASP, we give the ASP encodings for cf2 followed by the ones
for stage2 semantics. For the latter one we start with the saturation encodings for stage
semantics, as it is the base semantics of stage2 . Thanks to the modularity of ASP we can
then put the different parts together and obtain the desired encodings. Besides the more
involved saturation method we also mirror a novel optimization technique which makes
use of the metasp front-end for the ASP-system gringo/claspD. This allows us to
formulate ASP encodings for stage2 (resp. stage) which are shorter and easier to under-
stand than the saturation encodings, without the loss of performance. In Section 7.2 we
give two algorithms for cf2 and stage2 semantics which are based on the computation of
labelings. Finally, in Section 7.3 we briefly present the web-application of ASPARTIX,
before we conclude the implementation part in Section 7.4.

• Finally, in Chapter 8 we summarize the contributions of this thesis and make a critical
reflection of the obtained results. In Section 8.3 we discuss related work and in Section 8.4
we point out some possible future directions.

1.4 Publications

The growing interest on argumentation led to many publications on different platforms. Articles
from the field of argumentation are under the top citations at Artificial Intelligence journal, the
International Conference on Computational Models of Arguments (COMMA) is held every sec-
ond year since 2006, the first International Workshop on the Theory and Applications of Formal

Argumentation (TAFA) was co-located at the International Joint Conference on Artificial Intel-

ligence (IJCAI) in 2011, recently two textbooks appeared, namely Elements of Argumentation

in 2008 [22] and Argumentation in Artificial Intelligence in 2009 [90].
Parts of this thesis have been published at international conferences, workshops, journal

papers and in a book chapter. In the following we shortly sketch the contributions.
The alternative characterization of cf2 presented in Chapter 3 has been introduced first at the

COMMA’10 conference [67] where the article was awarded with the Best Student Paper Award.
The investigation of notions of equivalence of cf2 , stage and naive semantics has been published
at the ECSQUARU’11 conference [68].

The article in the Journal of Logic and Computation [69] gives a more detailed description
of the alternative characterization of cf2 , the analysis of notions of equivalence w.r.t. cf2 , stage
and naive semantics, the first definition of the succinctness property, as well as the complexity

6

analysis of cf2 semantics as described in Section 5.2. Furthermore, the questionable behavior
of cf2 on longer cycles has been pointed out with a hint to instantiate the base case with stage
semantics instead of naive semantics.

The stage2 semantics as described in Chapter 4 has been formally introduced and presented
at NMR’12 [44], where the authors were awarded with the Best Student Paper Prize. This article
also contains the complexity analysis of the standard reasoning problems for stage2 semantics
as presented in Section 5.2. Then, in the article presented at COMMA’12 [45] the analysis
of computational aspects of cf2 and stage2 semantics has been continued. In particular the
investigation of tractable fragments as described in Section 5.3 and the labeling based algorithm
for cf2 as in Section 7.2 is included there.

The general ASPARTIX approach has been first presented at the ICLP’08 [57] and at the
ASPOCP’08 workshop [58]. An extensive version of the ASP encodings for argumentation
frameworks has then been presented in the journal Argument and Computation [59]. Some of
the techniques we used for the encodings in Section 7.1, like the saturation, the ordering and
stratified programs has been described there in detail. The ASP encodings for cf2 semantics
from Section 7.1 have been presented in [67]. At INAP’11 [52] we presented how to use the
metasp optimization front-end for argumentation semantics located at the second level of the
polynomial hierarchy like preferred, semi-stable and stage semantics. We used this technique
also to simplify the encodings for resolution-based grounded semantics, and the article also
contains the standard saturation encodings of stage semantics. A performance evaluation of the
traditional saturation encodings versus the simplified ones is also included.

Regarding stage2 semantics we only sketched how the encodings can be built in the arti-
cle presented at COMMA’12. The detailed encodings for stage2 , both the saturation and the
metasp ones, are newly described in this thesis. The web application of ASPARTIX has been
presented at the software demonstration session at COMMA’10, and the general ASPARTIX ap-
proach has been presented at the ICLP Doctoral Consortium 2010 [66] and at the poster session
of the ACAI Summer School 2009.

In the Chapter The Added Value of Argumentation of the book Agreement Technologies the
need for a benchmark library for abstract argumentation has been pointed out together with
several ideas how this can be achieved [53]. We will shortly discuss this matter in Section 8.2.

Finally, we mention that an outline of this thesis has been presented at the KR Doctoral

Consortium 2012.

7

CHAPTER 2
Background of Abstract

Argumentation

In this chapter we first introduce the basics of abstract argumentation, the semantics we need
for further investigations and some properties of the semantics we are mainly interested in this
work, the cf2 semantics.

Abstract argumentation frameworks have been first introduced by Dung [37] in 1995. It
is a very simple but also very powerful formalism to reason over conflicting knowledge. The
syntax only consists of a set of statements called arguments and a binary relation between them,
the attacks denoting the conflicts between the arguments. As we are on the abstract level, we
do not concentrate on the internal structure of the arguments but only on their relation to each
other. This means we assume the framework has been instantiated correctly by an expert. The
following definitions of abstract argumentation frameworks and the semantics are based on [12,
37, 96].

Definition 1. An argumentation framework (AF) is a pair F = (A,R), where A is a finite set

of arguments and R ⊆ A × A. The pair (a, b) ∈ R means that a attacks b. A set S ⊆ A of

arguments attacks b (in F), if there is an a ∈ S, such that (a, b) ∈ R. An argument a ∈ A is

defended by S ⊆ A (in F) iff, for each b ∈ A, it holds that, if (b, a) ∈ R, then S attacks b (in F).

In this work we require that the AFs are finite, as it is the case in most of the theoretical inves-
tigations on abstract argumentation. However, in practice this is not always guaranteed. Recent
approaches dealing with infinite AFs are the argumentation frameworks with recursive attacks

(AFRAs) [15, 16] and the extended argumentation frameworks (EAFs) [78].
In the following we fix some notations we will use throughout the thesis. AFs F1 = (A1, R1)

and F2 = (A2, R2) are called disjoint if A1 ∩ A2 = ∅. Moreover, the union between (not
necessarily disjoint) AFs is defined as F1 ∪ F2 = (A1 ∪A2, R1 ∪R2). For an AF F = (A,R),
we will use the notations A(F) and AF to address the arguments of F . When we speak about
attacks we will use R(F) as well as RF .

Such AFs are typically represented as a directed graphs as in the following example.

9

Figure 2.1: The argumentation framework F from Example 1.

Example 1. Consider the AF F = (A,R), consisting of the set or arguments A = {a, b, c, d,

e, f , g} and the attack relation R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, f), (f, f), (f, g),
(g, e)} as illustrated in Figure 2.1. ✸

2.1 Semantics of Abstract Argumentation

The inherent conflicts between the arguments are solved by selecting subsets of arguments,
where a semantics σ assigns a collection of sets of arguments to an AF F . The basic requirement
for all semantics is that none of the selected arguments attack each other; these sets are then
called conflict-free.

Definition 2. Let F = (A,R) be an AF. A set S ⊆ A is said to be conflict-free (in F), if there

are no a, b ∈ S, such that (a, b) ∈ R. We denote the collection of sets which are conflict-free

(in F) by cf (F). A set S ⊆ A is maximal conflict-free or naive, if S ∈ cf (F) and for each

T ∈ cf (F), S 6⊂ T . We denote the collection of all naive sets of F by naive(F). For the empty

AF F0 = (∅, ∅), we set naive(F0) = {∅}.

Clearly, all argumentation semantics are based on conflict-free sets. In the following we give
the definitions of the semantics introduced by Dung in [37], which are all admissible-based, i.e.
sets where each argument in the set is defended by the set.

Definition 3. Let F = (A,R) be an AF. A conflict-free set S ∈ cf (F) is said to be

• a stable extension (of F), i.e. S ∈ stable(F), if each a ∈ A \ S is attacked by S (in F);

• an admissible extension (of F), i.e. S ∈ adm(F), if each a ∈ S is defended by S (in F);

• a preferred extension (of F), i.e. S ∈ pref (F), if S ∈ adm(F) and for each T ∈
adm(F), S 6⊂ T ;

• a complete extension (of F), i.e. S ∈ compl(F), if S ∈ adm(F) and for each a ∈ A
defended by S (in F), a ∈ S holds;

• a grounded extension (of F), i.e. the unique set S ∈ grd(F), if S is the least (w.r.t. set

inclusion) complete extension (of F).

10

Among the semantics from Definition 3, the grounded extension is the only one which has a
unique status approach. This means that for every AF F , |grd(F)| = 1 and it can also be
defined as the least fixed-point (lfp) of the following characteristic function FF (S).

Definition 4. Given an AF F = (A,R) and let S ⊆ A. The characteristic function FF : 2A →
2A of F is defined as

FF (S) = {x ∈ A | x is defended by S}.

To illustrate the different behavior of the introduced semantics we have a look at the AF from
Example 1.

Example 2. Consider the AF F = (A,R) as in Figure 2.1. Then, the above defined semantics

yield the following extensions.

• naive(F) = {{a, d, g}, {a, c, e}, {a, c, g}};

• stable(F) = ∅, this is the only semantics where it can happen that there does not exist

any extension;

• adm(F) = {{}, {a}, {c}, {d}, {a, c}, {a, d}}, note that the empty set is always an ad-

missible extension;

• pref (F) = {{a, c}, {a, d}};

• compl(F) = {{a}, {a, c}, {a, d}};

• grd(F) = {{a}}.

✸

After Dung’s 1995 paper, many more semantics and also extensions of the framework have been
introduced. In the following we recall the semantics which attracted most interest and are in
some relevance to our further investigations. We start with the stage semantics introduced first
by Verheij [96] in 1996 and reinvestigated by Caminada [28]. The stage semantics was the first
approach where the arguments in an acceptable set do not need to defend against all attacks.
Thus, it is the first semantics not based on admissible sets but as we will see later, on naive sets.
In the following we call those semantics naive-based. To this end we define the range of a set
of arguments as follows.

Definition 5. Let F = (A,R) and S ⊆ A. We define the range of S (w.r.t. R) as

S+
R = S ∪ {b | ∃a ∈ S, s. t. (a, b) ∈ R}.

Then, the stage extensions of an AF are the conflict-free sets with maximal range.

Definition 6. Let F = (A,R) and S ∈ cf (F), then S is a stage extension (of F), i.e. S ∈
stage(F), if there is no T ∈ cf (F) with T+

R ⊃ S+
R . We denote the collection of all stage

extensions of F by stage(F).

11

The stage extensions of the AF from Example 1 are stage(F) = {{a, d, g}, {a, c, e}, {a, c, g}}.
One special feature of stage semantics is that they can select arguments out of odd-length cycles
and they can also accept arguments which are attacked by an odd-length cycle. A special case of
an odd-length cycle is a self attacking argument. Whereas admissible-based semantics, which
are all semantics defined in [37], are based on the notion of defense, they are never able to accept
neither an argument out of an odd-length cycle nor an argument attacked by an odd-length cycle.
We are going to demonstrate this special behavior later when we discuss the properties of the
related semantics.

The next semantics we consider is the semi-stable semantics, introduced by Caminada [25]
in 2006 and investigated also in [42]. Semi-stable semantics are located in-between stable and
preferred semantics, in the sense that each stable extension of an argumentation framework F is
also a semi-stable extension of F , and each semi-stable extension of F is a preferred extension
of F . However, in general both inclusions do not hold in the opposite direction. In contrast to
the stable semantics, semi-stability guarantees that there exists at least one extension (in case of
finite AFs). We use the definition given in [42].

Definition 7. Let F = (A,R) be an AF, and a set S ⊆ A. A set S is a semi-stable extension
of F , if S ∈ adm(F) and for each T ∈ adm(F), S+

R 6⊂ T+
R . We denote the collection of all

semi-stable extensions of F by semis(F).

Remember, the AF from Example 1 has no stable extension but two preferred extensions,
namely {{a, c}, {a, d}}. For semi-stable semantics we obtain one extension, hence semis(F) =
{{a, d}} and as stated above, semis(F) ⊆ pref (F) holds.

The ideal semantics, defined by Dung, Mancarella and Toni in 2007 [38], selects the max-
imal (w.r.t. ⊆) admissible set which is contained in every preferred semantics, hence the ideal
semantics also satisfies the unique status approach.

Definition 8. Let F = (A,R) be an AF. A set S ⊆ A is an ideal set of F , if S ∈ adm(F)
and for each T ∈ pref (F), S ⊆ T holds. Then, S is the (unique) ideal extension of F , i.e.

S ∈ ideal(F) if it is the maximal (w.r.t. ⊆) ideal set of F .

The idea of ideal reasoning has been continued by Caminada in 2007 [26], where the preferred
extensions have been replaced by semi-stable extensions. Then, an eager extension is the maxi-
mal (w.r.t. ⊆) admissible set which is contained in every semi-stable extension.

Definition 9. Let F = (A,R) be an AF. A set S ∈ adm(F) is an eager set, if for any T ∈
semis(F), S ⊆ T holds. Then, S is the (unique) eager extension i.e. S ∈ eager(F) if it is the

maximal (w.r.t. ⊆) eager set.

For the AF F from Example 1 we obtain, ideal(F) = {{a}} and eager(F) = {{a, d}}. The
ideal reasoning is less skeptical then the grounded semantics and it does not always coincide with
the intersection of all preferred (resp. semi-stable) extensions as exemplified in the following
example given in [38].

Example 3. Consider the AF F of Figure 2.2. The preferred extensions of F are pref (F) =
{{b, d, f}, {b, c, f}}, so {b, f} = {b, d, f}∩{b, c, f}, but ideal(F) = {{b}} since {b, f} is not

an admissible extension of F . ✸

12

Figure 2.2: The argumentation framework F from Example 3.

In 2011, Dvořák, Dunne and Woltran generalized the notion on ideal acceptability to further
semantics [51] .

The last semantics we introduce here is the resolution-based grounded semantics which has
been defined within a the family of resolution-based semantics in [17].

Definition 10. A resolution β ⊂ R of an F = (A,R) contains exactly one of the attacks (a, b),
(b, a) if {(a, b), (b, a)} ⊆ R, a 6= b, and no further attacks. The union of all resolutions of an

AF F will be denoted as res(F). A set S ⊆ A is a resolution-based grounded extension of F ,

i.e. S ∈ grd∗(F) if

(i) there exists a resolution β such that S = grd((A,R \ β));3 and

(ii) there is no resolution β′ such that grd((A,R \ β′)) ⊂ S.

This semantics has been defined, because none of the other semantics satisfies all evaluation
criteria proposed in [8]. We are going to discuss some of the evaluation criteria in Section 2.3.
In contrast to the grounded extensions, the resolution-based grounded semantics belongs to the
multiple status approach, hence an AF can have more than one resolution-based grounded ex-
tension.

We consider the AF F from Example 1 which had one mutual attack between the arguments
c and d. Thus, there are two resolutions of F , i.e. res(F) = {β1, β2} with β1 = {(c, d)} and
β2 = {(d, c)}. The resolution-based grounded extensions of F are then computed as follows.

• grd((A,R \ β1)) = {a, d} = S1;

• grd((A,R \ β2)) = {a, c} = S2.

Both sets fulfill Condition (ii) of Definition 10, as S1 6⊂ S2, S2 6⊂ S1 and there are no further
resolutions of F . Thus, we obtain grd∗(F) = pref (F) = {{a, c}, {a, d}}. Recall, the (single)
grounded extension of F is the set {a}.

The second example we consider for resolution-based grounded semantics is the AF F of
Example 3, consisting of two mutual attacks and the empty set as its grounded extension. For

3Slightly abusing notation, we use grd(F) for denoting the unique grounded extension of F .

13

this AF we obtain res(F) = {β1, β2, β3, β4} with β1 = {(b, a), (d, c)}, β2 = {(b, a), (c, d)},
β3 = {(a, b), (c, d)} and β4 = {(a, b), (d, c)}. Then, the grounded extension of the modified
frameworks are as follows.

• grd((A,R \ β1)) = {c, f} = S1;

• grd((A,R \ β2)) = {d, f} = S2;

• grd((A,R \ β3)) = {b, d, f} = S3;

• grd((A,R \ β4)) = {b, c, f} = S4.

It follows, S1 ⊂ S4 and S2 ⊂ S3. Thus we finally obtain grd∗(F) = {{c, f}, {d, f}}.

SCC-recursive Schema and cf2 Semantics

The cf2 semantics has been originally defined by Baroni and Giacomin in 2003 [6] as an ap-
proach to solve several problems which arise for frameworks with odd-length cycles. Later in
2005 they defined a general SCC-recursive schema for argumentation semantics [12] where the
cf2 semantics is also involved. The authors in [12] describe a general schema which captures
all Dung semantics. The SCC-recursive schema is based on a recursive decomposition of an AF
along its strongly connected components. In this work we only concentrate on one special case
of this schema, the cf2 semantics.

As mentioned before, all admissible-based semantics, i.e. semantics which build on the con-
cept of admissible sets, cannot accept arguments out of an odd-length cycle. We already intro-
duced stage semantics as the first semantics based on naive sets. On the basis of this requirement
one can classify the semantics into admissible-, and naive-based semantics. All Dung seman-
tics fall into the category of admissible-based semantics, whereas naive, stage as well as cf2

and stage2 (introduced next and in Chapter 4) count to the naive-based semantics. Only stable
semantics falls into both groups as we show in the following lemma.

Lemma 1. For any AF F = (A,R) such that stable(F) 6= ∅, stable(F) ⊆ adm(F) and

stable(F) ⊆ naive(F).

Proof. We recall the definition of stable extensions: For any AF F = (A,R) a conflict-free set
S is a stable extension of F , if each a ∈ A is attacked by S in F . It is easy to see that each stable
extension S is also an admissible extension. S is conflict-free and all arguments not belonging
to S are attacked by S, thus all arguments in S are defended by S which meets the definition of
admissible sets.

To show stable(F) ⊆ naive(F), we assume towards a contradiction there exists a set S ∈
stable(F) such that S 6∈ naive(F). Clearly S is conflict-free, so there exists a set T ∈ cf (F)
such that S ⊂ T . Then, there is an argument a ∈ T such that a 6∈ S. From S being a stable
extension we know that each argument not contained in S is attacked by S, thus there exists a
b ∈ S with (b, a) ∈ R. As S ⊂ T it follows b ∈ T which is a contradiction to T ∈ cf (F). Thus,
we showed each S ∈ stable(F), is also a naive set of F .

14

Figure 2.3: The argumentation framework F from Example 4.

Figure 2.4: The argumentation framework F from Example 5.

Example 4. Consider the AF F = (A,R) as depicted in Figure 2.3. Then, the empty set is the

only extension which would be accepted by admissible-based semantics like preferred, complete

or grounded. The stable semantics does not even accept the empty set. On the other side, the

naive sets are {a}, {b} and {c}. ✸

In the following we introduce the naive-based semantics cf2 which is based on a decomposition
along the strongly connected components (SCCs) of an AF. Hence, we require some further
formal machinery.

Definition 11. A directed graph is called strongly connected if there is a path from each vertex

in the graph to every other vertex of the graph. By SCCs(F), we denote the set of strongly con-
nected components of an AF F = (A,R), i.e. sets of vertices of the maximal strongly connected

sub-graphs of F ; SCCs(F) is thus a partition of A.

Moreover, for an argument a ∈ A, we denote by CF (a) the component of F where a occurs in,
i.e. the (unique) set C ∈ SCCs(F), such that a ∈ C.

Example 5. We consider the framework F = (A,R) with A = {a, b, c, d, e, f, g, h, i} and R =
{(a, b), (b, c), (c, a), (b, d), (b, e), (d, f), (e, f), (f, e), (f, g), (g, h), (h, i), (i, f)} as illustrated

in Figure 2.4. F has three SCCs, namely C1 = {a, b, c}, C2 = {d} and C3 = {e, f, g, h, i}.
The argument g belongs to C3, thus CF (g) = C3. ✸

It turns out to be convenient to use two different concepts to obtain sub-frameworks of AFs. Let
F = (A,R) be an AF and S a set of arguments. Then, F |S = ((A∩S), R∩ (S×S)) is the sub-

framework of F w.r.t. S and we also use F −S = F |A\S . We note the following relation (which
we use implicitly later on), for an AF F and sets S, S′: F |S\S′ = F |S − S′ = (F − S′)|S . In
particular, for an AF F , a component C ∈ SCCs(F) and a set S we thus have F |C\S = F |C−S.

For the framework F from Example 5 and the set S = {f}, F |C3
−S = ({e, g, h, i}, {(g, h),

(h, i)}). We now give a definition of cf2 semantics which only differs in notation from (but is

15

equivalent to) the original definition in [12]. We use some of the notation established above, like
the concept of sub-frameworks and the corresponding relations. Moreover,

• DF (S), the set of component defeated arguments, identifies a set of arguments which is
defeated by a set S from outside their component, and replaces the set “DF (S,E)”;

• F |C −DF (S) replaces “F↓UPF (S,E)”;

• the set of unattacked arguments “UF (S,E)” as used in the general schema from [12], is
not required here, because the base function for the cf2 semantics does not make use of it.

Definition 12. Let F = (A,R) be an AF and S ⊆ A. An argument b ∈ A is component-
defeated by S (in F), if there exists an a ∈ S, such that (a, b) ∈ R and a /∈ CF (b). The set of

arguments component-defeated by S in F is denoted by DF (S).

Then, the cf2 extensions of an AF are recursively defined as follows.

Definition 13. Let F = (A,R) be an argumentation framework and S a set of arguments. Then,

S is a cf2 extension of F , i.e. S ∈ cf2 (F), iff

• S ∈ naive(F), in case |SCCs(F)| = 1;

• otherwise, ∀C ∈ SCCs(F), (S ∩ C) ∈ cf2 (F |C −DF (S)).

In words, the recursive definition cf2 (F) is based on a decomposition of the AF F into its
SCCs depending on a given set S of arguments. We illustrate the behavior of this procedure in
the following example.

Example 6. Consider the framework F from Example 5. We check whether S = {a, d, e, g,

i} is a cf2 extension of F (the arguments of the set S are highlighted in Figure 2.5). Following

Definition 13, we first identify the SCCs of F , hence SCCs(F) = {C1, C2, C3} as in Example 5.

Due to the attack (d, f) and d ∈ S we obtain f as the only component-defeated argument,

thus DF (S) = {f}. This leads us to the following checks (see also Figure 2.6 which shows

the involved sub-frameworks). Note here that in case F |Ci
− DF (S) = F |Ci

we only write

(S ∩ Ci) ∈ cf2 (F |Ci
).

1. (S∩C1) ∈ cf2 (F |C1
): the sub-framework F |C1

consists of a single SCC; hence, we have

to check whether (S ∩ C1) = {a} ∈ naive(F |C1
), which indeed holds.

2. (S∩C2) ∈ cf2 (F |C2
): the sub-framework F |C2

consists of a single argument d (and thus

of a single SCC); (S ∩ C2) = {d} ∈ naive(F |C2
) thus holds.

3. (S ∩ C3) ∈ cf2 (F |C3
− {f}): the sub-framework F |C3

− {f} = F |{e,g,h,i} consists of

four SCCs, namely C4 = {e}, C5 = {g}, C6 = {h} and C7 = {i}. Hence, we need

a second level of recursion for F ′ = F |{e,g,h,i} and S′ = S ∩ C3. Note that we have

DF ′(S′) = {h}. The single-argument AFs F ′|C4
= F |{e}, F ′|C5

= F |{g}, F ′|C7
= F |{i}

all satisfy (S′ ∩ Ci) ∈ naive(F ′|Ci
); while F ′|C6

− {h} yields the empty AF. Therefore,

(S′ ∩ C6) = ∅ ∈ cf2 (F |C6
− {h}) holds as well.

16

Figure 2.5: The argumentation framework F from Example 5.

Figure 2.6: Tree of recursive calls for computing cf2 (F) from Example 5.

We thus conclude that S is a cf2 extension of F . Further cf2 extensions of F are {b, f, h},
{b, g, i} and {c, d, e, g, i}. The extensions of the other semantics for this example are as follows:

• stable(F) = ∅;

• grd(F) = grd∗(F) = {∅};

• adm(F) = compl(F) = {∅, {g, i}};

• pref (F) = semis(F) = ideal(F) = {{g, i}}.

For the stage semantics we obtain the same result as for the cf2 semantics, but this is not the

case in general, as we are going to discuss in the next section. ✸

2.2 Properties of the Semantics

In the previous section we already discussed the differences between most of the semantics,
especially the basic semantics defined by Dung are very well known. As the focus of this work
is mainly on naive-based semantics and out of them the cf2 semantics, we point out here some
special properties and differences between those semantics, where our analysis will be mostly
example-driven, and we classify the semantics w.r.t. their subset-relation.

The first example we consider in this context shows one significant difference between cf2

and stage semantics.

17

Figure 2.7: The argumentation framework F from Example 7.

Example 7. Let F = (A,R) with A = {a, b, c} and R = {(a, b), (b, c), (c, b), (c, c)} as in

Figure 2.7. Then, the above defined semantics yield the following extensions.

• stable(F) = ∅;

• adm(F) = {{}, {a}};

• pref (F) = grd(F) = {{a}}; and

• naive(F) = {{a}, {b}}.

Regarding cf2 , we check for the two naive sets S = {a} and T = {b} if they are cf2 extensions

of F . As F has two SCCs C1 = {a} and C2 = {b, c}, DF (S) = {b} and DF (T) = ∅. We first

check if S ∈ cf2 (F) as in Definition 13 .

• (S ∩ C1) ∈ cf2 (F |C1
) holds as {a} ∈ naive(F |C1

), and

• (S ∩ C2) ∈ cf2 (F |C2
− {b}) holds as ∅ ∈ naive(F |{c}).

Thus, S ∈ cf2 (F). Next we make the check for the set T .

• (T ∩ C1) 6∈ cf2 (F |C1
) because (T ∩ C1) = ∅ and naive(F |C1

) = {{a}},

• (T ∩ C2) ∈ cf2 (F |C2
) holds as {b} ∈ naive(F |C2

).

As the first check for T failed, we obtain that T 6∈ cf2 (F).
Regarding stage semantics, both sets S and T are stage extensions. If we have a closer look

at the set T , we see that T+
R = {b, c} and there is no U ∈ cf (F) s.t. U+

R ⊃ T+
R . ✸

The AF of this example shows that stage semantics can accept an extension which does not
include the grounded extension. Moreover, the stage extension T = {b} is attacked by the
unattacked argument a. This can be seen as a drawback and, besides naive sets, stage semantics
is the only one considered so far showing this behavior. In Chapter 4 we introduce the new
semantics stage2 which repairs this drawback.

For stable semantics we already mentioned that it is the only semantics where it can be the
case, that there does not exist any extension. This is due to the fact that the requirements for
stable semantics are very strong. Furthermore, stable semantics is the only one falling into both
categories, the admissible-based and the naive-based semantics.

Next we consider in more detail the cf2 semantics, as it has some special properties which
clearly differ from the admissible-based semantics. Especially the treatment of odd- and even-
length cycles is more uniform in the case of cf2 semantics.

18

Figure 2.8: The modified AF F ′ from Example 5.

Figure 2.9: Framework F . Figure 2.10: Modified Framework G.

Figure 2.11: AF F from Example 9.

For our framework from Example 5 we obtain {g, i} as the only preferred extension. This
comes due to the fact that in an odd-length cycle, as we have it in this example none of the
arguments a, b and c can be defended. We modify the framework in the sense that we include
a new argument x which makes the cycle even, as illustrated in Figure 2.8. Then, we obtain
totally different preferred extensions, namely {b, x, g, i}, {b, x, f, h} and {a, c, d, e, g, i} which
are conform with the cf2 extensions of the modified AF F ′.

The main motivation behind selecting arguments out of an odd-length cycle is to see the
arguments as different choices and to be able to choose between them. Then, there is no need
for defense. Consider the following example which illustrates this idea [88].

Example 8. Suppose there are three witnesses A, B and C, where A states that B is unreliable,

B states that C is unreliable and C states that A is unreliable. Moreover, C has a statement S.

The graph of the framework F is illustrated in Figure 2.9. Any admissible-based semantics re-

turns the empty set as its only extension. But if we have four rather than three witnesses, let’s call

the fourth one X , as in the AF G pictured in Figure 2.10, the situation changes, and the preferred

extensions of G are {a, c, s} and {b, x}. On the other hand, the naive-based semantics return

stage(F) = cf2 (F) = {{b}, {a, s}, {c, s}} and stage(G) = cf2 (G) = {{a, c, s}, {b, x}}. ✸

One special case of an odd-length cycle are self-attacking arguments.

Example 9. Consider the AF F as in Figure 2.11. Then, the empty set is the only preferred

extension, whereas {a} is a cf2 extension. The motivation behind selecting {a} as a reasonable

19

Figure 2.12: AF from Example 10.

extension is that it is not necessary to defend a against the attack from b, as b is a self-attacking

argument. ✸

Till now, we only mentioned positive properties of the cf2 semantics compared to admissible-
based semantics. The next example will show a more questionable behavior.

Example 10. Consider the AF F in Figure 2.12. We obtain

• stage(F) = pref (F) = stable(F) = {{a, c, e}, {b, d, f}}, but

• cf2 (F) = naive(F) = {{a, d}, {b, e}, {c, f}, {a, c, e}, {b, d, f}}.

In this example we have an even-length cycle and the cf2 semantics produce three more exten-

sions. This does not really coincide with the motivation for a symmetric treatment of odd- and

even-length cycles, as now the results differ significantly for an even-length cycle. ✸

One suggestion to repair the undesired behavior from Example 10, is to check in Definition 13
for the case |SCCs(F)| = 1 whether S ∈ stage(F) instead of S ∈ naive(F). In Chapter 4
we formalize this modification of cf2 semantics and introduce a new semantics, the stage2

semantics [44].
As pointed out in Example 6, there is no particular relation between the cf2 and the preferred

semantics, but the stage and the cf2 semantics coincide for this framework. The following ex-
amples will show that in general there is no particular relation between stage and cf2 extensions
as well.

Example 11. Consider the AF F in Figure 2.14. Here {a, c} is the only stage extension of F
(it is also stable). Concerning cf2 semantics, note that F is built from a single SCC . Thus,

the cf2 extensions are given by the naive sets of F , which are {a, c} and {a, d}. Thus, we have

stage(F) ⊂ cf2 (F). ✸

As an example for a framework F such that cf2 (F) ⊂ stage(F), consider the AF from Exam-
ple 7, where cf2 (F) = {{a}} but stage(F) = {{a}, {b}}.

The relations between the introduced semantics are illustrated in Figure 2.13, an arrow from
semantics σ to semantics τ encodes that each σ extension is also a τ extension [7, 10, 14, 17,
25, 26, 37, 38, 96].

Finally, we consider a class of frameworks where stable and preferred semantics coincide,
the so called coherent AFs [37].

20

Figure 2.13: Relations between semantics.

Figure 2.14: AF F from Example 11.

Definition 14. An AF F is coherent if each preferred extension of F is a stable extension of F .

It follows that coherent AFs are odd-cycle free [37]. Furthermore in coherent AFs also semi-
stable and stage semantics coincide with preferred [47]. Whereas this does not hold for cf2

semantics as one can see in Example 10. There, F is coherent but cf2 (F) 6= σ(F), where
σ = {stable, stage, pref , semis}.

2.3 Evaluation Criteria

For a long time the analysis of properties of many argumentation semantics was only example
driven as shown in the previous section. The advantage of this method is to better understand the
behavior of the semantics on different example AFs. Whereas, for a more general understanding
and classification of the semantics a systematic analysis is very important. A first step towards
this direction was made by Baroni and Giacomin in [8], where they introduced several evalu-
ation criteria for the semantics. In this section we analyze the criteria relevant for naive-based
semantics. First we give the definitions for the extension evaluation criteria.

21

Definition 15. A semantics σ satisfies

• the I-maximality criterion if for each AF F = (A,R), and for each S1, S2 ∈ σ(F), if

S1 ⊆ S2 then S1 = S2;

• the reinstatement criterion if for each AF F = (A,R), and for each S ∈ σ(F), if an

argument a is defended by S, this implies a ∈ S.

• the weak reinstatement criterion, if for each F = (A,R), and for each S ∈ σ(F), grd(F) ⊆
S;

• the CF-reinstatement criterion, if for each F = (A,R), for each S ∈ σ(F), ∀b : (b, a) ∈
R, ∃c ∈ S : (c, b) ∈ R and S ∪ {a} ∈ cf (F)⇒ a ∈ S.

• the directionality criterion if for each F = (A,R), and for each set of unattacked ar-

guments U ⊆ A (s.t. ∀a ∈ A \ U there is no b ∈ U with (a, b) ∈ R), it holds that

σ(F |U) = {(S ∩ U) | S ∈ σ(F)}.

The I-maximality criterion states that no extension is a strict subset of another one. All se-
mantics considered here, except complete semantics, satisfy this basic criterion. The reinstate-
ment criterion requires that an argument that is defended by an extension should also belong to
the extension. Unsurprisingly, this criterion is not satisfied by stage and cf2 semantics, as both
semantics are not based on the notion of defense.

Therefore, one can consider the weaker forms of this criterion, namely the weak- and CF-
reinstatement. The first one claims that the grounded extension should be contained in any
extension, whereas the latter requires that if an argument is defended by the extension and is not
in conflict with the extension, then it should belong to the extension. For any semantics σ we
have the relation, if σ satisfies the reinstatement criterion then it satisfies also the two weaker
forms. Furthermore, if σ satisfies weak reinstatement then it satisfies also CF-reinstatement.
The other direction does not hold in general. For cf2 semantics we have the case that weak
reinstatement is fulfilled.

Last, the directionality criterion considers that arguments can affect each other only follow-
ing the direction of attacks. Then, unattacked sets of arguments should be unaffected by the
remaining part of the AF [14]. This criterion is not satisfied by stable, stage and semi-stable
semantics.

Next we recall the skepticism related criteria according to [8, 17]. We start with two skepti-
cism relations between sets of extensions, where σ1 �

E σ2 means σ1 is at least as skeptical as
σ2.

Definition 16. Let σ1 and σ2 be two sets of extensions of an AF F , then

• the elementary skepticism relation is defined as σ1 �
E
∩ σ2 iff

⋂

S1∈σ1

S1 ⊆
⋂

S2∈σ2

S2;

22

naive stable stage cf2 grd compl pref semis ideal grd∗

I-max. ? Yes Yes Yes Yes No Yes Yes Yes Yes

Reinst. ? Yes No No Yes Yes Yes Yes Yes Yes

Weak reinst. ? Yes ? Yes Yes Yes Yes Yes Yes Yes

CF-reinst. ? Yes ? Yes Yes Yes Yes Yes Yes Yes

Direct. ? No No Yes Yes Yes Yes No Yes Yes

�E
∩ -sk. ad. ? Yes ? Yes Yes Yes No No No Yes

�E
W -sk. ad. ? Yes ? Yes Yes Yes No No No Yes

Table 2.1: Evaluation criteria w.r.t. the introduced semantics.

• the weak skepticism relation is defined as σ1 �
E
W σ2 iff

∀S2 ∈ σ2∃S1 ∈ σ1 : S1 ⊆ S2.

In [8] there was also defined the strong skepticism relation �E
S but as stated in [17], this relation

is too strong as it prevents to compare any pair of multiple-status semantics. Therefore, we will
not consider the strong skepticism relation in this work.

To compare semantics w.r.t. the above defined skepticism relations we also need to be able
to compare AFs. The following definition states when to AFs are comparable.

Definition 17. Let F = (A,R1) and G = (A,R2), F �
A G iff conf (F) = conf (G) and

R2 ⊆ R1. Where conf (F) = {(a, b) ∈ R | (a, b) ∨ (b, a) ∈ R} is the set of conflicting pairs of
arguments.

Skepticism adequacy is now granted for a semantics σ if for any two comparable AFs the skep-
ticism relation between their sets of σ extensions is preserved.

Definition 18. Given a skepticism relation �E according to Definition 16, a semantics σ is

�E-skepticism adequate iff for any AFs F , G such that F �A G, σ(F) �E σ(G) holds.

The skepticism adequacy properties are ordered in the way that for any semantics σ it holds that
if σ satisfies �E

W -skepticism adequacy then, σ satisfies �E
∩ -skepticism adequacy. So clearly if a

semantics does not satisfy elementary skepticism than it can not satisfy the stronger form.
In Table 2.1 we summarize the results from [8, 14] for the mentioned evaluation criteria and

the introduced semantics4. The missing entries for naive and stage semantics will be added in
Chapter 4 as they are not included in [8].

4We omit here the eager semantics, as it has not been studied in [8, 14]

23

CHAPTER 3
Alternative Characterization

In the previous section we already discussed the cf2 semantics in detail. In particular we pointed
out the advantages of this semantics compared to admissible-based semantics. Although these
issues were known for some time, the cf2 semantics was somehow neglected in the literature.
One reason for this might be the recursive definition and the recursive computation of sub-
frameworks during the evaluation.

In the original definition of cf2 semantics in [12], the computation is based on checking
recursively whether a set of arguments fulfills a base function (is a naive set) in a single SCC.
Thus, the computation is based on a decomposition of the framework along its SCCs. As normal
for a recursive definition, the decomposition is based on the outcome of the base function of the
previous step. For an implementation of the algorithm in a standard programming language like
JAVA or C++, this definition does not cause any problems and can be encoded straight forward.
Whereas designing compact encodings in a declarative way based on this recursive definition is
not that easy and one can end up with a quite complicated and difficult to understand encoding.
We will come back to this point in Chapter 7.

To facilitate further investigation steps like complexity analysis, analysis of different notions
of equivalence and of course the implementation aspects, we introduce an alternative charac-
terization based on the idea to decompose the framework as well, but differently to the original
approach the decomposition is only recursive in terms of a certain set of arguments, for which we
provide a fixed-point operator. This modification allows us to avoid the recursive computation
of several sub-frameworks. Instead we only compute one, possibly not connected, framework
where we eliminate the arguments and corresponding attacks which are, what we call, “recur-
sively component defeated”. This chapter is organized as follows.

• In Section 3.1 we introduce some formal concepts which we need for the alternative char-
acterization as well as for the correctness proofs.

• In Section 3.2 we successively introduce the alternative characterization, where we first
use the set RDF (S), the recursively component defeated arguments. Then we define the
∆F,S-operator and prove that for a conflict-free set S, RDF (S) equals ∆F,S . Then, we

25

Figure 3.1: Framework F from Example 5. Figure 3.2: Separation of the AF F .

come to our main theorem, an alternative characterization of cf2 which does not require a
recursive computation of several sub-frameworks.

• Finally in Section 3.3 we close the chapter with an analysis.

Parts of this work have been published in [67, 69].

3.1 Preliminaries

For the alternative characterization we need some formal concepts which we introduce here. As
the cf2 semantics is based on a decomposition of the framework along its SCCs, the following
concepts help to relate graph-theoretic to argumentation-based principles. We start with the
separation, where an AF is separated if there are no attacks between different strongly connected
components.

Definition 19. An AF F = (A,R) is called separated if for each (a, b) ∈ R, CF (a) = CF (b).
We define the separation of F as

[[F]] =
⋃

C∈SCCs(F)

F |C .

The separation of an AF always yields a separated AF. For example the separation of the frame-
work F from Example 5 is depicted in Figure 3.2. For comparison, the attacks (b, d), (b, e) and
(d, f) of the original framework as shown in Figure 3.1 were eliminated, as they are situated
between the different SCCs C1 = {a, b, c}, C2 = {d} and C3 = {e, f, g, h, i}.

The following technical lemma will be useful later.

Lemma 2. For any AF F and set S of arguments,

⋃

C∈SCCs(F)

[[F |C − S]] = [[F − S]].

Proof. We first note that for disjoint AFs F and G, [[F]] ∪ [[G]] = [[F ∪ G]] holds. Moreover,
for a set S of arguments and arbitrary frameworks F and G, (F −S)∪ (G−S) = (F ∪G)−S
is clear. Using these observations, we obtain

⋃

C∈SCCs(F)

[[F |C − S]] = [[
⋃

C∈SCCs(F)

(F |C − S)]] = [[(
⋃

C∈SCCs(F)

F |C)− S]] = [[[[F]]− S]].

26

It remains to show that [[[[F]]−S]] = [[F−S]]. Obviously, both AFs possess the same arguments
A. Thus, let R be the attacks of [[[[F]] − S]] and R′ the attacks of [[F − S]]. R ⊆ R′ holds
by the fact that each attack in [[F]] is also contained in F . To show R′ ⊆ R, let (a, b) ∈ R′.
Then a, b /∈ S, and CF−S(a) = CF−S(b). From the latter, CF (a) = CF (b) and thus (a, b) is an
attack in [[F]] and also in [[F]]− S. Again using CF−S(a) = CF−S(b), shows (a, b) ∈ R.

Next, we define ℓF (S), the level of recursiveness a framework shows with respect to a set S of
arguments and then the aforementioned setRDF (S), the set of recursively component defeated
arguments (by S) in an AF F .

Definition 20. For an AF F = (A,R) and a set S of arguments, we recursively define the level
ℓF (S) of F w.r.t. S as follows:

• if |SCCs(F)| = 1 then ℓF (S) = 1;

• otherwise, ℓF (S) = 1 +max ({ℓF |C−DF (S)(S ∩ C) | C ∈ SCCs(F)}).

For the AF F from Example 5 (Figure 3.1) we obtain the level ℓF (S) w.r.t. the set S = {a, d, e, g,
i} as follows. ℓF (S) = 1+max ({ℓF |C−DF (S)(S∩C) | C ∈ SCCs(F)}), where DF (S) = {f}
and SCCs(F) = {C1, C2, C3} with C1 = {a, b, c}, C2 = {d} and C3 = {e, f, g, h, i}. This
leads to the following recursive calls:

• ℓF |C1

(S ∩ C1) = 1,

• ℓF |C2

(S ∩ C2) = 1,

• ℓF ′(S′) = 1 + max ({ℓF ′|C′−DF ′ (S′)(S
′ ∩ C ′) | C ′ ∈ SCCs(F ′)}). Where F ′ =

F |C3
−DF (S), S′ = S ∩ C3 = {e, g, i} and DF ′(S′) = {h}, furthermore SCCs(F ′) =

{C4, C5, C6, C7} with C4 = {e}, C5 = {g}, C6 = {h} and C7 = {i}. As all those SCCs
of F ′ are single SCCs, we obtain in each recursive call level 1.

To sum up, the level of F w.r.t. S is ℓF (S) = 3. One can compare the tree of recursive calls in
Figure 2.5 with the computation of ℓF (S). When the height h of a tree is the length of the path
from the root to the deepest node in the tree, we denote the height of the computation tree for
the cf2 semantics for an AF F w.r.t. S as hF (S), then ℓF (S) = hF (S) + 1.

The next definition is very important for the alternative characterization as it allows us to
recursively compute the component defeated arguments. Remember, in Definition 12 we defined
DF (S), the set of component defeated arguments which only gives us the “locally“ component
defeated arguments. Here we want to compute recursively those arguments, attacked by a set S,
where in each recursive call the current evaluation has an influence on the next call. In particular
the SCCs of the sub-frameworks may change.

Definition 21. Let F = (A,R) be an AF and S a set of arguments. We defineRDF (S), the set

of arguments recursively component defeated by S (in F) as follows:

• if |SCCs(F)| = 1 thenRDF (S) = ∅;

• otherwise,RDF (S) = DF (S) ∪
⋃

C∈SCCs(F)RDF |C−DF (S)(S ∩ C).

27

Consider the AF F from Example 5 (Figure 3.1), and the set S = {a, d, e, g, i}. The SCCs of
F are C1 = {a, b, c}, C2 = {d} and C3 = {e, f, g, h, i} and DF (S) = {f}. Then, following
Definition 21, the set of recursively component defeated arguments are computed as follows,
RDF (S) = {f} ∪

⋃

C∈SCCs(F)RDF |C−{f}(S ∩ C) where the next recursive calls are:

• RDF |C1

({a}) = ∅,

• RDF |C2

({d}) = ∅,

• RDF |{e,g,h,i}({e, g, i}) = {h} ∪
⋃

C∈SCCs(F |{e,g,h,i})
RDF |C−{h}({e, g, i} ∩ C).

The last calls all lead to empty sets as the sub-frameworks all consist of single SCCs or are
empty in the case of F |{h} − {h}. Thus, we finally obtainRDF (S) = {f, h}.

3.2 New Characterization for cf2 Semantics

We are now prepared to give our first alternative characterization, which establishes a cf2 ex-
tension S of a given AF F by checking whether S is a naive extension of a certain separated
framework constructed from F using S.

Lemma 3. Let F = (A,R) be an AF and S be a set of arguments. Then,

S ∈ cf2 (F) iff S ∈ naive([[F −RDF (S)]]).

Proof. We show the claim by induction over ℓF (S).

Induction base. For ℓF (S) = 1, we have |SCCs(F)| = 1. By definition, RDF (S) = ∅ and we
have [[F−RDF (S)]] = [[F]] = F . Thus, the assertion states that S ∈ cf2 (F) iff S ∈ naive(F)
which matches the original definition for cf2 semantics in case F consists of a single strongly
connected component.

Induction step. Let ℓF (S) = n and assume the assertion holds for all AFs F ′ and sets S′ with
ℓF ′(S′) < n. In particular, by Definition 20, for each C ∈ SCCs(F) we have ℓF |C−DF (S)(S ∩
C) < n. By the induction hypothesis, we thus obtain that for each C ∈ SCCs(F) the following
holds:

(S ∩ C) ∈ cf2
(

F |C −DF (S)
)

iff (S ∩ C) ∈ naive
(

[[
(

F |C −DF (S)
)

−R′
F,C,S]]

)

(3.1)

whereR′
F,C,S = RDF |C−DF (S)(S ∩ C). Let us fix a C ∈ SCCs(F).

(

F |C −DF (S)
)

−R′
F,C,S = (3.2)

(

(

F |C −DF (S)
)

−R′
F,C,S

)

−
⋃

C′∈SCCs(F);C 6=C′

RDF |C ′−DF (S)(S ∩ C ′) = (3.3)

(

F |C −DF (S)
)

−
⋃

C∈SCCs(F)

RDF |C−DF (S)(S ∩ C) = (3.4)

F |C −
(

DF (S) ∪
⋃

C∈SCCs(F)

RDF |C−DF (S)(S ∩ C)
)

= F |C −RDF (S). (3.5)

28

Figure 3.3: The separation [[F −RDF (S)]] from Example 12.

As we fixed a C ∈ SCCs(F) we come from (3.2) to (3.3) because for each further C ′ ∈
SCCs(F) (i.e. C 6= C ′), no argument from RDF |C ′−DF (S)(S ∩ C ′) occurs in F |C . From (3.3)
to (3.4): R′

F,C,S is defined for the SCC C and
⋃

C′∈SCCs(F);C 6=C′ RDF |C ′−DF (S)(S ∩ C ′) for

all other SCCs C 6= C ′, then in (3.4) we put all these SCCs together. In (3.5), by Definition (21)
we obtain in the bracketsRDF (S).

Thus, for any C ∈ SCCs(F), relation (3.1) amounts to

(S ∩ C) ∈ cf2
(

F |C −DF (S)
)

iff (S ∩ C) ∈ naive
(

[[F |C −RDF (S)]]
)

. (3.6)

We now prove the assertion. Let S ∈ cf2 (F). By Definition 13, for each C ∈ SCCs(F),
(S ∩ C) ∈ cf2 (F |C −DF (S)). We use (3.6), then for each C ∈ SCCs(F) it follows that
(S ∩ C) ∈ naive([[F |C − RDF (S)]]). By the definition of components and the semantics of
being naive, the following relation follows:

⋃

C∈SCCs(F)

(S ∩ C) ∈ naive
(

⋃

C∈SCCs(F)

[[F |C −RDF (S)]]
)

.

Since S =
⋃

C∈SCCs(F)(S ∩ C) and, by Lemma 2,
⋃

C∈SCCs(F)[[F |C − RDF (S)]] = [[F −
RDF (S)]], we arrive at S ∈ naive([[F − RDF (S)]]) as desired. The other direction is by
essentially the same arguments.

The definition of cf2 from Lemma 3 allows us to make only one check for each possible set S
in one sub-framework. We consider another time the AF of Example 5 (Figure 3.1).

Example 12. Let F = (A,R) from Example 5 (Figure 3.1) and S = {a, d, e, g, i}. Then

RDF (S) = {f, h} and the separation [[F − RDF (S)]] is depicted in Figure 3.3 where the

arguments in S are highlighted. It is easy to see that S is a naive extension of the separation of

F w.r.t.RDF (S). ✸

Note, the set of recursively component defeated arguments can be different for each set S ⊆ A
and therefore, also the separation may vary. The main difference of the characterization in
Lemma 3 to the one in Definition 13 is that the recursion has been shifted toRDF (S), and there
is only one check for a set S to be a naive extension of a sub-framework of F .

We can not get rid of the recursion in the definition of cf2 but, the computation of several
sub-frameworks, which is still the case in the computation of RDF (S), can be avoided, as we
will show next when we introduce the ∆F,S-operator.

29

∆F,S-Operator

In this subsection, we provide an alternative characterization for RDF (S) via a fixed-point
operator. In other words, this yields a linearization in the recursive computation of this set. To
this end, we require a parametrized notion of reachability.

Definition 22. Let F = (A,R) be an AF, B a set of arguments, and a, b ∈ A. We say that b
is reachable in F from a modulo B, in symbols a ⇒B

F b, if there exists a path from a to b in

F |B , i.e. there exists a sequence c1, . . . , cn (n > 1) of arguments such that c1 = a, cn = b, and

(ci, ci+1) ∈ R ∩ (B ×B), for all i with 1 ≤ i < n.

With the reachability at hand we give the definition of the ∆F,S-operator.

Definition 23. For any AF F = (A,R), D ⊆ A, and a set S of arguments,

∆F,S(D) = {a ∈ A | ∃b ∈ S : b 6= a, (b, a) ∈ R, a 6⇒
A\D
F b}.

The operator is clearly monotonic, i.e. ∆F,S(D) ⊆ ∆F,S(D
′) holds for D ⊆ D′. As usual, we

let ∆0
F,S = ∆F,S(∅) and, for i > 0, ∆i

F,S = ∆(∆i−1
F,S). Due to monotonicity the least fixed-point

(lfp) of the operator exists and, with slightly abuse of notation, will be denoted as ∆F,S .
We have a look at our running Example. The AF F from Example 5 (Figure 3.1) and the set

S = {a, d, e, g, i}, then in the first iteration of computing the least fixed-point of ∆F,S , we have
∆F,S(∅) = {f} because the argument f is the only one which is attacked by S but its attacker
d is not reachable by f in F . In the second iteration, we obtain ∆F,S({f}) = {f, h} because h
is attacked by g ∈ S and h can not reach its attacker in the framework F − {f}. Finally, in the
third iteration we reach the least fixed-point with ∆F,S({f, h}) = {f, h}.

We need two more lemmata before showing that ∆F,S captures RDF (S). The first one
states that ∆0

F,S computes the (locally) component defeated arguments.

Lemma 4. For any AF F = (A,R) and any set S ⊆ A, ∆0
F,S = DF (S).

Proof. We have ∆0
F,S = ∆F,S(∅) = {a ∈ A | ∃b ∈ S : b 6= a, (b, a) ∈ R, a 6⇒A

F b}.

Hence, a ∈ ∆0
F,S , if there exists a b ∈ S, such that (b, a) ∈ R and a does not reach b in F , i.e.

b 6∈ CF (a). This meets exactly the definition of DF (S).

We next prove a certain property ∆F,S satisfies w.r.t. the components of F .

Lemma 5. For any AF F = (A,R) and any set S ∈ cf (F),

∆F,S = DF (S) ∪
⋃

C∈SCCs(F)

∆F |C−DF (S),(S∩C).

Proof. Let F = (A,R). For the ⊆-direction, we show by induction over i ≥ 0 that

∆i
F,S ⊆ DF (S) ∪

⋃

C∈SCCs(F)

∆F |C−DF (S),(S∩C).

30

To ease notation, we write ∆̄F,S,C as a shorthand for ∆F |C−DF (S),(S∩C), where C ∈ SCCs(F).

Induction base. For i = 0, ∆0
F,S ⊆ DF (S) ∪

⋃

C∈SCCs(F) ∆̄F,S,C follows from Lemma 4.

Induction step. Let i > 0 and assume ∆j
F,S ⊆ DF (S) ∪

⋃

C∈SCCs(F) ∆̄F,S,C holds for all

j < i. Let a ∈ ∆i
F,S . Then, there exists a b ∈ S, such that (b, a) ∈ R and a 6⇒D

F b, where

D = A \ ∆i−1
F,S . If b /∈ CF (a), we have also a 6⇒A

F b and thus a ∈ DF (S). Hence, suppose
b ∈ CF (a). Then, a /∈ DF (S) and, since S ∈ cf (F) and b ∈ S, also b /∈ DF (S). Thus,
both a and b are contained in the framework F |C −DF (S) (and so is the attack (b, a)) for
C = CF (a). Moreover, b ∈ (S ∩ C). Towards a contradiction, assume now a /∈ ∆̄F,S,C . This
yields that a⇒D′

F |C−DF (S) b for D′ = A \ ∆̄F,S,C , i.e. there exist arguments c1, . . . , cn (n > 1)

in F |C −DF (S) but not contained in ∆̄F,S,C , such that c1 = a, cn = b, and (ci, ci+1) ∈ R, for
all i with 1 ≤ i < n. Obviously all the ci’s are contained in F as well, but since a 6⇒D

F b (recall
that D = A \∆i−1

F,S), it must hold that at least one of the ci’s, say c, has to be contained in ∆i−1
F,S .

By the induction hypothesis, we get c ∈ ∆̄F,S,C , a contradiction.

For the ⊇-direction of the claim we proceed as follows. By Lemma 4, we know that DF (S) =
∆0

F,S and thus DF (S) ⊆ ∆F,S . It remains to show that
⋃

C∈SCCs(F)∆F |C−DF (S),(S∩C) ⊆

∆F,S . We show by induction over i that ∆i
F |C−DF (S),(S∩C) ⊆ ∆F,S holds for each C ∈

SCCs(F). Thus, let us fix a C ∈ SCCs(F) and use ∆̄i
F,S,C as shorthand for ∆i

F |C−DF (S),(S∩C).

Induction base. Let a ∈ ∆̄0
F,S,C . Then, there is a b ∈ (S ∩ C), such that b attacks a in

F ′ = F |C −DF (S) and a 6⇒A′

F ′ b, where A′ denotes the arguments of F ′, i.e. A′ = C \DF (S).

Since F |C is built from a SCC C of F , it follows that a 6⇒
A\DF (S)
F b. Since b ∈ S, (b, a) ∈ R,

and DF (S) = ∆0
F,S (Lemma 4), we get a ∈ ∆1

F,S ⊆ ∆F,S .

Induction step. Let i > 0 and assume ∆̄j
F,S,C ⊆ ∆F,S for all j < i. Let a ∈ ∆̄i

F,S,C . Then, there

is a b ∈ (S ∩ C), such that b attacks a in F ′ and a 6⇒D′

F ′ b, where D′ = A′ \ ∆̄i−1
F,S,C . Towards

a contradiction, suppose a /∈ ∆F,S . Since b ∈ S and (b, a) ∈ R, it follows that there exist
arguments c1, . . . , cn (n > 1) in F \∆F,S , such that c1 = a, cn = b, and (ci, ci+1) ∈ R, for all
i with 1 ≤ i < n. All these ci’s are thus contained in the same component as a, and moreover
these ci’s cannot be contained in DF (S), since DF (S) ⊆ ∆F,S . Thus, they are contained in
F |C −DF (S), but since a 6⇒D′

F ′ b, there is at least one such ci, say c, contained in ∆̄i−1
F,S,C . By

the induction hypothesis, c ∈ ∆F,S , a contradiction.

Now we are able to obtain the desired relation.

Lemma 6. For any AF F = (A,R) and any set S ∈ cf (F), ∆F,S = RDF (S).

Proof. The proof is by induction over ℓF (S).

Induction base. For ℓF (S) = 1, |SCCs(F)| = 1 by Definition 20. From this and Definition
21, we obtain RDF (S) = DF (S) = ∅. By Lemma 4, ∆0

F,S = DF (S) = ∅. By definition,

∆F,S = ∅ follows from ∆0
F,S = ∅.

31

Figure 3.4: Graph from Example 13.

Induction step. Let ℓF (S) = n and assume the claim holds for all pairs F ′, S′ ∈ cf (F ′),
such that ℓF ′(S′) < n. In particular, this holds for F ′ = F |C −DF (S) and S′ = (S ∩
C), with C ∈ SCCs(F). Note that (S ∩ C) is indeed conflict-free in F |C −DF (S). By
definition we have,RDF (S) = DF (S)∪

⋃

C∈SCCs(F)RDF |C−DF (S)(S ∩C) and by Lemma 5
we know that ∆F,S = DF (S)∪

⋃

C∈SCCs(F)∆F |C−DF (S),S∩C . Using the induction hypothesis,
i.e. ∆F |C−DF (S),S∩C = RDF |C−DF (S)(S ∩ C), the assertion follows.

One important part of Lemma 6 is that S needs to be conflict-free in F . In the following example
we show that for a set T 6∈ cf (F), ∆F,T does not equalRDF (T).

Example 13. Consider the AF F = (A,R) of Figure 3.4, where the set T = {a, c, d} is

highlighted in the graph. F has two SCCs, namely C1 = {a} and C2 = {b, c, d, e}. RDF (T)
is computed as follows,RDF (T) = {b} ∪

⋃

C∈SCCs(F)RDF |C−{b}(T ∩ C) where:

• RDF |C1

({a}) = ∅,

• RDF |{c,d,e}({c, d}) = {d} ∪
⋃

C∈SCCs(F |{c,d,e})
RDF |C−{d}({c, d} ∩ C).

The final calls for the SCCs C3 = {c}, C4 = {d} and C5 = {e} result in empty sets. Thus,

RDF (T) = {b, d}. For comparison we now compute ∆F,T .

• ∆F,T (∅) = {b},

• ∆F,T ({b}) = {b, d, e},

• ∆F,T ({b, d, e}) = {b, d, e}.

Hence, ∆F,T = {b, d, e} 6= RDF (T) = {b, d}. ✸

Main Theorem

We finally reached our main result in this chapter, i.e. an alternative characterization for cf2
semantics, where the need for recursion is delegated to a fixed-point operator.

Theorem 1. For any AF F , cf2 (F) = {S | S ∈ naive(F) ∩ naive([[F −∆F,S]])}.

Proof. The result holds by the following observations. By Lemma 3, S ∈ cf2 (F) iff S ∈
naive([[F − RDF (S)]]). Moreover, from Lemma 6, for any S ∈ cf (F), ∆F,S = RDF (S).
Finally, S ∈ cf2 (F) implies S ∈ naive(F) (see [14], Proposition 18).

32

Figure 3.5: Graph of instance [[F − ∆F,S]]
from Example 14.

Figure 3.6: Graph of instance [[F − ∆F,S′]]
from Example 14.

Figure 3.7: Framework
F from Example 15.

Figure 3.8: Graph of in-
stance [[F −∆F,S]].

Figure 3.9: Graph of in-
stance [[F −∆F,T]].

To illustrate the behavior of the new characterization let us have a look at the following two
examples.

Example 14. Consider the AF F and S = {a, d, e, g, i} from Example 5 (Figure 3.1). We

already computed ∆F,S({f}) = {f, h} above. Then, [[F −∆F,S]] of the AF F w.r.t. S is given

by

[[F −∆F,S]] =
(

{a, b, c, d, e, g, i}, {(a, b), (b, c), (c, a)}
)

.

Figure 3.5 shows the graph of [[F −∆F,S]]. It is easy to see that S ∈ naive([[F −∆F,S]]) as

expected, since S ∈ cf2 (F).
For comparison, if we take another set S′ = {b, f, h}, then ∆F,S′ = {d, e} and the cor-

responding instance [[F − ∆F,S′]] is depicted in Figure 3.6. Also in this case S′ ∈ cf2 (F) as

S′ ∈ naive(F) and S′ ∈ naive([[F −∆F,S′]]). ✸

In the next example we illustrate what happens if we apply Theorem 1 to a set T 6∈ cf2 (F).

Example 15. Let us consider the AF F from Example 7 (Figure 3.7). F has two naive sets,

namely S = {a} and T = {b}. First, we concentrate on the set S and compute ∆F,S = {b}
and [[F −∆F,S]] = ({a, c}, {(c, c)}). Thus, S ∈ naive([[F −∆F,S]]) and clearly S ∈ cf2 (F),
compare Figure 3.8.

For T we obtain ∆F,T = ∅ and [[F−∆F,T]] = (A, {(b, c), (c, b), (c, c)}) as shown in Figure 3.9.

Now, T 6∈ naive([[F − ∆F,T]]), as there is the set T ′ = {a, b} ⊃ T and T ′ ∈ naive([[F −
∆F,T]]). Thus, T 6∈ cf2 (F). ✸

3.3 Analysis of the New Characterization

With Theorem 1 we gave an alternative characterization for the cf2 semantics which does not
require a recursive computation of several sub-frameworks. Instead, we shifted the recursion to

33

the computation of the ∆F,S-operator and for a set S ∈ naive(F) we only compute once a sub-
framework, where we delete the arguments in ∆F,S which are recursively component defeated
by S, and in the remaining framework we eliminate attacks between different SCCs. Then, S
needs to be a naive extension of the obtained instance of F .

Here we want to say some words about the additional check for a set S to be a naive extension
of F . This is not required in Lemma 3, because the definition of RDF (S) ensures that the
arguments component-defeated by S are not in conflict with each other. To be more precise, each
recursive call of RDF |C−DF (S)(S ∩ C) is responsible for this because in the sub-framework
F |C−DF (S) the arguments in conflict with the component defeated arguments are eliminated.
This works similar to the original definition of cf2 by Baroni et al., where the SCC-recursive
schema guarantees that the obtained extensions are conflict-free, if the base function is conflict-
free (compare [12], Proposition 47). On the other side, in Theorem 1 we explicitly check if
S ∈ naive(F). For Theorem 1 to be correct, it would be sufficient to check if S is conflict-
free in F , but as it is known that each cf2 extension is also a naive extension, we apply the
stronger check. This avoids the computation of the instance [[F − ∆F,S]] for sets S which are
no candidates for cf2 extension. Whereas, without the requirement S ∈ cf (F), by Lemma 6
∆F,S 6= RDF (S) and also [[F − ∆F,S]] 6= [[F − RDF (S)]]. Although, we would obtain the
cf2 extensions also in this case, the way how we obtained them is not the same as in the original
definition. To exemplify this, let us consider the following example.

Example 16. Let F = (A,R) from Figure 3.4 and T = {a, c, d}. T 6∈ cf (F) and as we know

from Example 13, ∆F,T = {b, d, e} 6= RDF (T) = {b, d}. Then, the corresponding instances of

F are: [[F −∆F,T]] = ({a, c}, ∅) and [[F −RDF (T)]] = ({a, c, e}, ∅). It is easy to see that T
can not be a naive extension of the two instances. As T is not conflict-free there is an argument

d ∈ T such that d ∈ ∆F,T and d ∈ RDF (T), hence d is not contained in the two instances and

so T 6∈ naive([[F −∆F,T]]) and T 6∈ naive([[F −RDF (T]]). ✸

Still the computation of cf2 extensions requires some technical notation, but we believe that it
has several advantages. Beside the avoidance of the recursive computation of sub-frameworks,
with the arguments in ∆F,S one identifies for the whole framework the ”defeated“ arguments. Fi-
nally in the instance [[F−∆F,S]] one has at one glance the surviving arguments and attacks. The
individual parts are easy to compute and intuitive. This characterization will facilitate further
investigation steps such as an analysis of computational complexity (see Chapter 5), notions of
equivalence (see Chapter 6) and of course the implementation in terms of ASP-encodings which
was the initial motivation for the alternative characterization (see Chapter 7). In the next chapter
we introduce stage2 , a new semantics which combines the concepts of cf2 and stage seman-
tics to overcome some shortcomings of both of them as already mentioned in Section 2.2. In
the course of this we will also exploit the alternative characterization to present the new stage2

semantics.

34

CHAPTER 4
Incorporating Stage Semantics in the

SCC-recursive Schema

In Section 2.2 we pointed out the special advantages of the two naive-based semantics stage and
cf2 . For instance the appearance of odd-length cycles and in particular self-attacking arguments
as a special case of them, have a strong and sometimes undesired influence on the computation of
solutions. None of the admissible-based semantics is able to select arguments of such a cycle as
accepted, and moreover, they reject arguments just because they are attacked by a self-attacking
argument. The reason for this behavior is that in an odd-length cycle, arguments defend their
own attacker. As naive-based semantics do not rely on the notion of defense, one can accept
both, arguments in an odd-length cycle, as well as arguments attacked by such arguments.

However, cf2 semantics treats odd-length cycles in a more sensitive way, the evaluation of
odd-cycle-free (coherent) AFs e.g. if even-length cycles occur, is now questionable (see Sec-
tion 2.2 and [64, 69]). On the other side, stage semantics [96] can also handle odd-length cycles
and does not change the behavior of odd-cycle-free AFs. The disadvantages of stage semantics
are that very basic properties are not satisfied, for example the skeptical acceptance of unattacked
arguments, i.e. the weak reinstatement property [8] is violated (see Section 2.3).

While naive-based semantics seem to be the right candidates when the above described be-
havior of admissible-based semantics is unwanted, there are several shortcomings with existing
approaches, as mentioned above. To overcome those problems we propose a new semantics
combining concepts from cf2 and stage semantics, which we name stage2 . This chapter is
organized as follows.

• In Section 4.1 we combine the concepts of stage and cf2 semantics, where we use the
SCC-recursive schema of cf2 semantics and instantiate the base case with stage semantics.
In this way, we obtain the novel stage2 semantics. Furthermore, we prove that for stage2
one can also give an alternative characterization similar to the one for cf2 .

35

• In Section 4.2 we point out the basic properties of the novel semantics and show that it
overcomes most of the above mentioned problems. In particular, we compare stage2 with
other semantics.

• In Section 4.3 we evaluate stage2 semantics with the criteria proposed by Baroni and
Giacomin in [8].

• Finally in Section 4.4 we close the chapter with a short discussion on the novel stage2
semantics.

Parts of this chapter have been published in [44].

4.1 Combining Stage and cf2 Semantics

In Section 2.2, we observed that stage semantics has a more intuitive behavior on single SCCs
than cf2 semantics. Whereas cf2 satisfies most of the general evaluation criteria.

Our suggestion is to combine the two semantics, where we use the SCC-recursive schema
of the cf2 semantics and instantiate the base case with stage semantics. To retain the naming
introduced by Baroni et al. in [12], we denote the obtained semantics as stage2 .

Definition 24. Let F = (A,R) be an AF and S ⊆ A. Then, S is a stage2 extension of F , i.e.

S ∈ stage2 (F), iff

• S ∈ stage(F), in case |SCCs(F)| = 1;

• otherwise, ∀C ∈ SCCs(F), (S ∩ C) ∈ stage2 (F |C −DF (S)).

The only difference in the definition of stage2 compared to the one of cf2 (Definition 13) is
that in the base case, where the AF consists of one SCC, the set S needs to be a stage extension.
Whereas in the base case of cf2 , S needs to be a naive extension of F . The remaining parts
work equally to cf2 , in particular DF (S) and the recursive computation of sub-frameworks is
performed in the same way.

Let’s consider the examples of Section 2.2, where both cf2 and stage produced questionable
results. First we have a look at the AF from Example 10 illustrated in Figure 2.12 on page 20.
F consists of one SCC, so S is a stage2 extension of F if S is a stage extension of F . Thus
stage2 (F) = pref (F) = stable(F) = {{a, c, e}, {b, d, f}}, whereas cf2 additionally accepts
the naive sets {a, d}, {b, e} and {c, f}. Remember in the case of Example 10, F has an even-
length cycle.

Next we look at Example 7 depicted in Figure 2.7 on page 18. The AF F consists of two
SCCs, C1 = {a} and C2 = {b, c}. In this example {b} is a stage extension although, b is
attacked by the unattacked argument a. For stage2 we obtain the same result as for cf2 , namely
{a} as the single extension. In this case, the computation of stage2 is exactly the same as for
cf2 , described in detail in Example 7.

These two examples showed that stage2 semantics is able to “repair” the undesired behavior
of both, cf2 and stage semantics, but what happens with those AFs where we had nothing to
bother, like the one from Example 5 (Figure 2.4 on page 15). In Example 6 on page 16 we already

36

discussed the results for cf2 and stage semantics, where on this example they coincided. In this
case stage2 semantics also results in the same extensions as the other naive-based semantics.

Alternative Characterization of stage2 Semantics

According to the alternative characterization of cf2 semantics, as introduced in Chapter 3, one
can also formulate stage2 semantics in the same way.

Theorem 2. For any AF F ,

stage2 (F) = {S | S ∈ naive(F) ∩ stage([[F −∆F,S]])}.

The proof of Theorem 2 is similar to the one of Theorem 1, where another time we will make use
of the set of recursively component defeated arguments RDF (S) (Definition 21 on page 27).
Lemma 7 gives the first alternative characterization of stage2 .

Lemma 7. Let F = (A,R) be an AF and S ⊆ A. Then,

S ∈ stage2 (F) iff S ∈ stage([[F −RDF (S)]]).

Proof. We show the claim by induction over ℓF (S).

Induction base. For ℓF (S) = 1, we have |SCCs(F)| = 1. By definition RDF (S) = ∅ and
we have [[F − RDF (S)]] = [[F]] = F . Thus, the assertion states that S ∈ stage2 (F) iff
S ∈ stage(F) which matches the original definition for the stage2 semantics in case the AF has
a single strongly connected component.

Induction step. Let ℓF (S) = n and assume the assertion holds for all AFs F ′ and sets S′ with
ℓF ′(S′) < n. In particular, we have by definition that, for each C ∈ SCCs(F), ℓF |C−DF (S)(S ∩
C) < n. By the induction hypothesis and Equations (3.2)-(3.5) (in the proof of Lemma 3 on
page 28) we thus obtain that, for each C ∈ SCCs(F) the following holds:

(S ∩ C) ∈ stage2 (F |C −DF (S)) iff (S ∩ C) ∈ stage
(

[[F |C −RDF (S)]]
)

. (4.1)

We now prove the assertion. Let S ∈ stage2 (F). By definition, for each C ∈ SCCs(F),
(S ∩C) ∈ stage2 (F |C −DF (S)). Using (4.1), we get that for each C ∈ SCCs(F), (S ∩C) ∈
stage([[F |C − RDF (S)]]). By the definition of components and the semantics of stage, the
following relation thus follows:

⋃

C∈SCCs(F)

(S ∩ C) ∈ stage
(

⋃

C∈SCCs(F)

[[F |C −RDF (S)]]
)

.

Since S =
⋃

C∈SCCs(F)(S ∩ C) and due to Lemma 2,
⋃

C∈SCCs(F)[[F |C − RDF (S)]] =
[[F − RDF (S)]], we arrive at S ∈ stage([[F − RDF (S)]]) as desired. The other direction is
by essentially the same arguments.

Proof of Theorem2. The result holds by the following observations. By Lemma 7, S ∈ stage2 (F)
iff S ∈ stage([[F − RDF (S)]]). Moreover, due to Lemma 6, for any S ∈ cf (F), ∆F,S =
RDF (S). Finally, S ∈ stage2 (F) implies S ∈ naive(F).

37

Figure 4.1: Framework F from Example 17.

4.2 Comparison of stage2 with other Semantics

The novel stage2 semantics is clearly a naive-based semantics due to the way it is defined. In
this section we compare stage2 with other naive-based semantics w.r.t. the ⊆-relations between
the sets of extensions. Furthermore, we consider coherent AFs, as stage semantics also coincides
with stable and preferred on these frameworks but cf2 does not.

We start with stage and stage2 semantics which are in general incomparable w.r.t. set inclu-
sion. For instance, consider the following example.

Example 17. Let F = (A,R) as illustrated in Figure 4.1. Then, the naive sets of F are {a, d},
{a, e}, {b, d} and {b, e}. We consider first stage semantics, therefore we compute the range of

each naive set.

• {b, d}+R = {a, b, c, d, e},

• {b, e}+R = {a, b, d, e, f},

• {a, d}+R = {a, b, d, e} ⊂ {b, e}+R,

• {a, e}+R = {a, b, e, f} ⊂ {b, e}+R.

Thus, stage(F) = {{b, d}, {b, e}}.
The stage2 extensions are {a, d} and {b, d} which are computed as follows.

• For S1 = {a, d}, ∆F,S1
= {e} and S1 ∈ stage([[F −∆F,S1

]]). Thus, S1 ∈ stage2 (F).

• For S2 = {b, d}, ∆F,S2
= {c, e} and S2 ∈ stage([[F −∆F,S2

]]). Thus, S2 ∈ stage2 (F).

• For S3 = {a, e}, ∆F,S3
= {f} but S3 6∈ stage([[F −∆F,S3

]]) because S+
3R′

= {a, b, e}

and there is the set T ∈ naive(F ′) with T = {a, d, e} and T+
R′ = {a, b, d, e} ⊃ S+

3R′

where F ′ = [[F −∆F,S3
]]. Hence, S3 6∈ stage2 (F).

• For S4 = {b, e}, ∆F,S4
= {c, f} but S4 6∈ stage([[F−∆F,S4

]]) because S+
4R′′

= {a, b, e}

and there is the set T ∈ naive(F ′′) with T = {a, d, e} and T+
R′′ = {a, b, d, e} ⊃ S+

4R′′

where F ′′ = [[F −∆F,S4
]]. Hence, S4 6∈ stage2 (F).

✸

Now, we consider the relation between cf2 and stage2 semantics. By Example 10 we know that
there are AFs with cf2 (F) 6⊆ stage2 (F).

38

Figure 4.2: Relations between naive-based semantics

Proposition 1. For any AF F = (A,R), stage2 (F) ⊆ cf2 (F).

Proof. Consider a set S ∈ stage2 (F). By Theorem 2, S ∈ naive(F) ∩ stage([[F − ∆F,S]]).
Now using that for every AF G, stage(G) ⊆ naive(G) we obtain S ∈ naive(F)∩naive([[F −
∆F,S]]). By Theorem 1, S ∈ cf2 (F).

Next, we study the relations between stable and stage2 semantics.

Proposition 2. For any AF F = (A,R), stable(F) ⊆ stage2 (F).

Proof. Consider E ∈ stable(F), from Lemma 1 we know that E ∈ naive(F) and for each
a ∈ A \ E there exists b ∈ E such that (b, a) ∈ R. Hence, a ∈ E+

RF
. It remains to show that

E ∈ stage([[F −∆F,E]]). We show the stronger statement E ∈ stable([[F −∆F,E]]).

To this end, let F ′ = F −∆F,E and F ′′ = [[F −∆F,E]], we have either a ∈ ∆F,E or a ∈ AF ′ .
For a ∈ AF ′ = AF ′′ , we need to show that a ∈ E+

RF ′′
. If a ∈ E clearly a ∈ E+

RF ′′
, hence

we consider a ∈ AF ′ \ E. As E is stable there exists b ∈ E such that (b, a) ∈ RF ′ . Now as

a 6∈ ∆F,E , by Definition 23 we know that a ⇒
A\∆F,E

F b. In other words a, b are in the same
SCC of F ′ and thus (b, a) ∈ RF ′′ . Hence, for every a ∈ AF ′′ \ E there is an argument b ∈ E
such that (b, a) ∈ RF ′′ , hence E ∈ stable(F ′′). As for any AF G stable(G) ⊆ stage(G), it
follows that E ∈ stage(F ′′). Thus, by Theorem 2, E ∈ stage2 (F).

Figure 4.2 gives an overview of the relations between naive-based semantics. An arrow from
semantics σ to semantics τ encodes that each σ extension is also a τ extension. Furthermore, if
there is no directed path from σ to τ , then one can construct AFs with a σ extension that is not
a τ extension.

Now we turn to frameworks which have special properties. We start with AFs which possess
at least one stable extension then, stage coincides with stable semantics. Obviously, this does
not hold for stage2 semantics.

39

Figure 4.3: AF F from Example 18.

Example 18. Consider the AF F = ({a, b, c}, {(a, b), (b, a), (b, c), (c, c)}) depicted in Fig-

ure 4.3. We obtain stage2 (F) = {{a}, {b}} and stable(F) = {{b}}. ✸

However, these semantics comply with each other in coherent AFs, i.e. AFs where stable and
preferred semantics coincide.

Proposition 3. For any coherent AF F , stable(F) = stage(F) = stage2 (F).

Proof. By Proposition 2, stable(F) ⊆ stage2 (F) and thus it only remains to show that also
stable(F) ⊇ stage2 (F) holds for each coherent AF F .

Let us first consider the case where F consists of a single SCC. Then, stage2 semantics coin-
cides with stage semantics and as F is coherent also with stable semantics.

Now, let this be our induction base, and let us assume the claim holds for AFs of size < n. Let
us consider an AF F of size n with (Ci)1≤i≤m being the SCCs of F , such that there is no attack
from Ci to Cj for j < i. If m = 1 we are in the base-case, hence let us assume that m ≥ 2.
Consider S ∈ stage2 (F) and S1 = S ∩

⋃

1≤i<mCi, S2 = S ∩ Cm. By definition of stage2

we know that S1 ∈ stage2 (F − Cm) and S2 ∈ stage2 (F |Cm − S+
1). Note, S1 ∩ S2 = ∅. By

assumption, F is coherent and it is easy to see that also F − Cm is coherent. Hence, by the
induction hypothesis, stable(F − Cm) = pref (F − Cm) = stage2 (F − Cm).

Next, we show that also F |Cm − S+
1 is coherent. By definition, stable(F) ⊆ pref (F). Now,

consider an extension E2 ∈ pref (F |Cm − S+
1). By the directionality of pref and the fact

that S1 ∈ stable(F − Cm), we obtain (S1 ∪ E2) ∈ pref (F). Now, as F is coherent also
(S1∪E2) ∈ stable(F) and thus, E2 ∈ stable(F |Cm −S+

1). Hence, F |Cm −S+
1 is coherent and

again we can use the induction hypothesis.

Finally, we obtain S1 ∈ stable(F −Cm) and S2 ∈ stable(F |Cm−S+
1), combining these results

we get S ∈ stable(F).

Notice, the last proposition implies that on coherent AFs stage2 semantics coincides with pre-
ferred, stage and semi-stable [31] semantics, because on coherent AFs all these semantics coin-
cide with stable semantics.

4.3 Evaluation Criteria w.r.t. stage2 Semantics

To continue the systematic analysis for stage2 semantics we consider in this section the ex-
tension and skepticism evaluation criteria as already discussed in Section 2.1. Remember,
concerning the extension evaluation criteria cf2 semantics satisfies I-maximality, weak- and
CF-reinstatement as well as directionality. Whereas, for stage semantics we only knew that

40

I-maximality is satisfied but reinstatement and directionality are not fulfilled. Regarding the
skepticism evaluation criteria no results for naive and stage semantics were known. Therefor,
we not only consider stage2 semantics, but we also give the missing results for naive and stage
semantics.

We start with some general extension evaluation properties of naive-based semantics.

Proposition 4. I-maximality and CF-reinstatement are satisfied by each semantics σ with

σ(F) ⊆ naive(F).

Proof. Clearly naive semantics satisfies both I-maximality and CF-reinstatement. A set E
which is ⊆-maximal in naive(F) is also maximal in each subset of naive(F) and thus, σ sat-
isfies I-maximality. CF-reinstatement is a property defined on single extensions, and as each
σ-extension is also a naive extension, CF-reinstatement is satisfied.

Among the naive-based semantics, only stable semantics satisfies the reinstatement property,
which is due to the fact that it is also an admissible-based semantics.

Proposition 5. The reinstatement property is not satisfied by semantics which can select non-

empty conflict-free subsets out of odd-length cycles.

Proof. Consider an odd-length cycle F = ({a1, . . . , an}, {(ai, ai+1 mod n) | 1 ≤ i ≤ n}) with
n being an odd integer. We claim that no E ∈ cf (F) and E 6= ∅ satisfies the reinstatement
property. Now, towards a contradiction let us assume there exists a nonempty E ∈ cf (F)
satisfying the reinstatement property. W.l.o.g. assume that a1 ∈ E. Then a3 is defended and by
assumption a3 ∈ E. But then also a5 is defended, and by induction it follows that ai ∈ E if i is
odd. Hence also an ∈ E, but {a1, an} ⊆ E contradicts that E is conflict-free in F .

It follows that naive, stage, cf2 and stage2 semantics do not satisfy the reinstatement criterion.
An example for the cf2 semantics and the unsatisfied reinstatement criterion is a simple AF
consisting of an odd-length cycle with length three.

For instance, consider the AF F = ({a, b, c}, {(a, b), (b, c), (c, a)}). By the conflict-freeness
of extensions we can just select a single argument but this argument defends an other argument,
for instance the set {a} defends argument c. Hence, when considering naive-based semantics we
are usually interested in weaker forms of reinstatement, namely the weak- or CF-reinstatement.

Proposition 6. The weak reinstatement and directionality criterion are not satisfied by naive

and stage semantics.

Proof. Consider the AF F from Example 1. We obtain naive(F) = stage(F) = {{a}, {b}}
and the grounded extension G = {a}. Then, the weak reinstatement criterion is not satisfied
because G 6⊆ {b}. Now let us consider directionality and the sub-framework F |{a}. Then
stage(F |{a}) = {{a}} but {({a} ∩ S) | S ∈ stage(F)} = {∅, {a}}, contradicting the direc-
tionality criterion.

Proposition 7. The weak reinstatement criterion is satisfied by stage2 semantics.

41

Figure 4.4: Framework F . Figure 4.5: Framework G.

Proof. Let F = (A,R) and E ∈ grd(F). Due to [12], for any AF F and any S ∈ cf2 (F),
E ⊆ S. From Proposition 1 we know that for any AF G, stage2 (G) ⊆ cf2 (G). It follows that
for any extension S ∈ stage2 (F), S ∈ cf2 (F) and E ⊆ S.

Next we consider the skepticism related criteria for the naive-based semantics, where we com-
plete Table 2.1 for stage, naive and stage2 semantics.

Proposition 8. Stage and stage2 semantics are not �E
∩ -skepticism adequate.

Proof. Consider the AFs F and G of Figure 4.4 and 4.5.
We start with the proof for stage semantics. According to Definition 18, we need to show that
for any two AFs F and G, such that F �A G, stage(F) �E

∩ stage(G) holds. F �A G clearly
holds as A(F) = A(G), conf (F) = conf (G) and R(G) ⊆ R(F). Due to Definition 16,
stage(F) �E

∩ stage(G) iff
⋂

S1∈stage(F) S1 ⊆
⋂

S2∈stage(G) S2. But stage(F) = {{b}} and

stage(G) = {{a}}. Hence, as {b} 6⊆ {a} the condition for �E
∩ -skepticism adequacy is not

satisfied. The stage2 extensions of these two AFs are exactly the same as for stage semantics,
so the argumentation of the proof for stage2 is the same.

As the weakest form of skepticism adequacy is not satisfied by stage and stage2 semantics,
therefor also the stronger version, �E

W -skepticism adequacy is not satisfied.
For naive sets we have the following observation.

Proposition 9. For any AFs F and G, conf (F) = conf (G) iff naive(F) = naive(G).

Proof. Since for any AFs F and G, conf (F) = conf (G) obviously implies cf (F) = cf (G),
and as two AFs with the same conflict-free sets also coincide with the naive extensions, it follows
that conf (F) = conf (G) implies naive(F) = naive(G). The same argument holds for the
other direction.

From Proposition 9 it follows that naive sets satisfy all skepticism-adequacy criteria.
We summarize the evaluation criteria w.r.t. naive-based semantics in Table 4.1.

4.4 Discussion of stage2 Semantics

In this chapter we proposed the new semantics stage2 which combines concepts of cf2 and
stage to overcome their shortcomings. We provided a broad discussion of stage2 , its properties
and relations to other semantics. First, beside the definition via the SCC-recursive schema we
provided an alternative characterization which is similar to that of cf2 semantics and thus allows

42

naive stable stage cf2 stage2

I-max. Yes Yes Yes Yes Yes

Reinst. No Yes No No No

Weak reinst. No Yes No Yes Yes

CF-reinst. Yes Yes Yes Yes Yes

Direct. No No No Yes Yes

�E
∩ -sk. ad. Yes Yes No Yes No

�E
W -sk. ad. Yes Yes No Yes No

Table 4.1: Evaluation Criteria w.r.t. Naive-based Semantics.

to extend several results for cf2 also to stage2 . Further, we showed that stage2 fixes the short-
comings of stage semantics w.r.t. the extension evaluation criteria proposed by [8]. We related
stage2 semantics to the existing semantics showing that stable(F) ⊆ stage2 (F) ⊆ cf2 (F).
Moreover, we observed that on coherent AFs stage2 semantics coincides with stable and pre-
ferred semantics.

43

CHAPTER 5
Complexity Analysis

Abstract argumentation frameworks are formalized in a simple way but their evaluation require
involved concepts. As we saw in the previous chapters they can be represented as directed
graphs. The challenging part lies in the semantic evaluation. Depending on which semantics
is chosen, the related reasoning problems can be very hard. For example, deciding whether an
argument is acceptable in at least one preferred extensions is known to be NP-complete.

Computational complexity theory deals with classifying computational problems

with respect to the resources needed for their solution, e.g., the time required by the

fastest program that will solve the problem. (Dunne and Wooldridge [43])

The study of computational complexity is very important for the analysis of argumentation se-
mantics, as it gives upper and lower bounds for specific reasoning problems. This then provides
the basis for suitable algorithms to solve the problems.

Computational complexity has been studied for many argumentation semantics. An overview
can be found in [43] as well as in the doctoral thesis of Wolfgang Dvořák [47]. However, re-
garding cf2 semantics the only mentionable reference in this context is the article of Nieves et
al. [82], where the authors state that the decision problem of verifying if a set is a cf2 extension
(Ver cf2) is in P. To complete the analysis of computational complexity also for cf2 and stage2

semantics we will study the standard reasoning problems (which will be introduced in the fol-
lowing) for these two semantics. The alternative characterizations, as formulated in Chapter 3
and Chapter 4, will facilitate the analysis. As all those complexity results are worst-case com-
plexity we will also investigate possible tractable fragments, i.e. instances of the argumentation
frameworks which are easier to solve. We make use of these results in Chapter 7 where we
introduce a labeling-based algorithm for cf2 and stage2 semantics.

This chapter is organized as follows.

• First, in Section 5.1 we recapitulate some basic concepts of computational complexity and
introduce the needed complexity classes.

45

• Then, in Section 5.2 we give the main reasoning problems for abstract argumentation,
summarize known complexity results and investigate the complexity of the introduced
reasoning problems for cf2 and stage2 semantics.

• In Section 5.3 we consider tractable fragments for cf2 and stage2 semantics.

• Finally, in Section 5.4 we discuss the achieved results and future directions.

Parts of this chapter have been published in [44, 45, 69].

5.1 Background of Computational Complexity

This section is based on the summary given by by Dunne and Wooldridge in [43] and the stan-
dard work of Papadimitriou [87]. For a more detailed description we refer to the respective
references.

Basic Concepts

When we speak about computational problems we normally refer to decision problems which
can be divided into instances and the question asked of these instances. A well studied decision
problem in this context is 3-CNF Satisfiability (3-SAT).

Definition 25. A propositional formula ϕ is in 3-Conjunctive Normal Form (3-CNF), if ϕ =
∧m

j=1Cj is given over atoms Z = {z1, . . . , zn} with Cj = lj1 ∨ lj2 ∨ lj3, where (1 ≤ j ≤ m)

and ljk is a literal from Z.

3-SAT is the satisfiability problem of a 3-CNF formula ϕ, i.e. the question: is there a set M ⊆ Z
satisfying ϕ, or is there a truth assignment to the variables in Z such that the formula ϕ evaluates

to true?

Example 19. Let ϕ = (z1 ∨ z2 ∨ z3) ∧ (¬z2 ∨ ¬z3 ∨ ¬z4) ∧ (¬z1 ∨ z2 ∨ z4). Then, the

set M = {z1, z2} is a model of ϕ i.e., the assignment z1 = true, z2 = true, z3 = false and

z4 = false is a YES-instance of ϕ. Thus, ϕ is 3-SAT. ✸

Before we introduce the different complexity classes we need to define the concept of a Turing
machine, which is needed for the classification of the decision problems. Such a Turing machine
is designed to express any algorithm and simulate any programming language.

Definition 26. A (deterministic) k-string Turing machine (TM) is a tuple M = (K,Σ, δ, s),
where

• K is a finite set of states;

• s ∈ K is the initial state;

• Σ is the alphabet of M - a finite set of symbols;

• δ : K × Σk 7→ K ∪ {“yes”, “no”} × Σk × {←,→,−}k is a transition function.

46

Initially the state is s and the cursor points to the first symbol on the tape. Then, according to
δ, the machine changes its state, prints a symbol and moves the cursor. This is repeated till one
of the halting states “yes” or “no” is reached, where the former state accepts the input and the
latter rejects the input.

Next, we generalize the concept of a Turing machine to non-deterministic and oracle Turing
machines.

Definition 27. A non-deterministic k-string Turing machine is a quadruple N = (K,Σ,∆, s),
with K,Σ and s as for an ordinary Turing machine, where the transition relation ∆ gives a

choice between several next actions, i.e.

∆ ⊆ (K × Σk)× [(K ∪ {“yes”, “no”})× Σk × {←,→,−}k].

In contrast to a deterministic Turing machine, where in each configuration there is only one
computation step, a non-deterministic Turing machine has several possible computation steps,
and it accepts the input if at least one of the possible computations accepts it, and it rejects the
input if all possible computations reject it.

Finally we define a C-oracle machine which is a Turing machine that can access an oracle
that decides a (sub)-problem C in one step.

Definition 28. For a language L, an L-oracle Turing machine is a (non-deterministic) k-string

Turing machine with an designated query string and three special states q?, qyes and qno . The

state q? is excluded from the function (resp. relation) δ. The transition step for a configuration

with state q? is handled by the L-oracle. The state changes to qyes if the current string on the

query string is in L and to qno otherwise. The strings as well as the heads positions are not

changed in this step.

Complexity Classes

In computational complexity theory, problems are divided into classes requiring the same re-
sources. In our case we are mainly interested in the time required to solve a problem.

Given a language L, deciding whether x ∈ L can be solved by constructing a program M
such that for a constant value k,

• if x ∈ L, then M returns “accept”, else M returns “reject”;

• M terminates after at most |x|k steps.

Then, the program M provides an algorithm for L with run-time nk which leads to the complex-
ity class of polynomial time decidable languages P. In the following we formulate this in terms
of Turing machines.

The class P is the class of problems which can be decided by a deterministic Turing machine
in polynomial time. Problems in the complexity class P are generally regarded to be computa-
tionally easy or tractable. Next we consider the class NP (non-deterministic polynomial time)
which is the class of problems decidable by a non-deterministic Turing machine in polynomial
time. Problems in NP are called intractable, for example the 3-SAT problem as discussed above
is a typical problem falling into the class NP.

47

Each problem in NP has a remarkable property: Any “yes” instance x of the prob-

lem has at least one succinct certificate (or polynomial witness) y of its being a

“yes” instance. Naturally “no” instances possess no such certificates. We may not

know how to discover this certificate in polynomial time, but we are sure it exists if

the instance is a “yes” instance. (Papadimitriou [87])

These problems are often solved by first guessing all certificates and then checking each of them
to be a “yes” instance. Then, the non-deterministic part is the guessing and the checking can be
done in polynomial time. In the worst case one needs to check each guess to answer the decision
problem. If the instances are very big the procedure may not terminate in reasonable time. Thus,
the problem remains unsolved. This Guess&Check methodology is normally used in answer-set
programming (ASP) which we will discuss in Chapter 7.

The class coNP is the class of problems X where the complement X̄ can be decided by a
non-deterministic Turing machine in polynomial time. The 3-UNSAT problem, i.e., if a 3-CNF
formula is unsatisfiable, is known to be in coNP.

The class EXPTIME (exponential time) is the class of problems that can be solved by a
deterministic Turing machine in exponential time. The class PSPACE (deterministic polyno-
mial space) is the class of problems that can be decided by a deterministic Turing machine in
polynomial space and exponential time.

ΣP
2 = NPNP is the class of problems which can be decided by a non-deterministic polyno-

mial time algorithm that has access to an NP-oracle. ΠP
2 = coNPNP is the class of problems

where the complement can be decided by a non-deterministic polynomial time algorithm that
has access to an NP-oracle.

To classify problems we need the term reduction. We say a problem A is at least as hard
as problem B if B reduces to A. This means, there is a transformation R which produces for
every input x of B, an equivalent input R(x) of A. So, to solve B on input x we have to
compute R(x) and solve A on it. As we want to compare time classes, the reductions need to
be polynomial-time algorithms. Then, B is hard for a complexity class C if for any A ∈ C, A
is polynomial-time reducible to B. A hardness result for a problem provides an upper bound.
Furthermore, B is C-complete if B is C-hard and B ∈ C. Then, completeness of a problem
for a complexity class stands for a lower bound, i.e. that the problem can not be solved with an
algorithm situated in a lower complexity class.

The relation between the introduced complexity classes is as follows:

P ⊆
NP
coNP

⊆
ΣP
2

ΠP
2
⊆ PSPACE ⊆ EXPTIME.

It is known that P is a proper subset of EXPTIME. On the other side, there are still many open
questions. The most prominent of them is P = NP?

5.2 Complexity of Abstract Argumentation

In this section we study computational complexity of abstract argumentation, to be more precise,
we first formulate the standard reasoning problems for argumentation semantics and summarize

48

Ver σ Cred σ Skept σ NEσ

naive in P in P in P in P

grd P-c P-c P-c in P

stable in P NP-c coNP-c NP-c

adm in P NP-c trivial NP-c

compl in P NP-c P-c NP-c

grd∗ P-c NP-c coNP-c in P

pref coNP-c NP-c ΠP
2 -c NP-c

stage coNP-c ΣP
2 -c ΠP

2 -c in P

semis coNP-c ΣP
2 -c ΠP

2 -c NP-c

Table 5.1: Complexity of decision problems (C-c denotes completeness for class C).

known results for the introduced semantics. Then, we investigate the complexity of cf2 and
stage2 semantics.

Decision Problems in Abstract Argumentation

We consider the following decision problems for given F = (A,R), a semantics σ, a ∈ A and
S ⊆ A:

• Verification Ver σ: is S ∈ σ(F)?

• Credulous acceptance Cred σ: is a contained in at least one σ extension of F ?

• Skeptical acceptance Skept σ: is a contained in every σ extension of F ?

• Non-emptiness NEσ: is there any S ∈ σ(F) for which S 6= ∅?

In Table 5.1 known complexity results are summarized5. For a detailed analysis of them we
refer to [47] as well as to [34, 36, 39, 41, 42, 46]. All these results are understood as worst-case
complexity.

Complexity of cf2 Semantics

So far, the complexity of cf2 semantics has not been studied, except for a note in [82], where the
authors state that the decision problem Ver cf2 is in P. In the following we proof this statement
with the help of our alternative characterization.

Theorem 3. Ver cf2 is in P.

5We omit the ideal and eager semantics because for them different reasoning problems are related, which are out
of the scope of this work. For the interested reader we refer to [47].

49

Figure 5.1: AF Fϕ for the example 3-CNF ϕ.

Proof. For any AF F = (A,R) and a set S ⊆ A, to check if S ∈ cf2 (F) can be computed in
polynomial time. We show that all steps in Theorem 1 (on page 32) are in P. Verifying if S ∈
naive(F) can be done in polynomial time [34]. Given ∆F,S , computing the instance [[F−∆F,S]]
can be done efficiently; this follows from known results about graph reachability and efficient
algorithms for computing SCCs [94]. It remains to show that the operator ∆F,S(D) reaches
its fixed-point after a polynomial number of iterations. The operator is clearly monotonic, and
it is easy to see that in every iteration less or equal connections between the arguments do
exist. Hence, the computation terminates when no argument a is attacked by any b ∈ S, and

a 6⇒
A\D
F b.

For the hardness proofs of Cred cf2 and Skept cf2 we use the standard reduction from proposi-
tional formulas in CNF to AFs as in [36, 39].

Definition 29. Given a 3-CNF formula ϕ =
∧m

j=1Cj over atoms Z with Cj = lj1 ∨ lj2 ∨ lj3
(1 ≤ j ≤ m) the corresponding AF Fϕ = (Aϕ, Rϕ) is built as follows.

Aϕ = Z ∪ Z̄ ∪ {C1, . . . , Cm} ∪ {ϕ} ∪ {¬ϕ}

Rϕ = {(z, z̄), (z̄, z) | z ∈ Z} ∪ {(Cj , ϕ) | j ∈ {1, . . . ,m}} ∪ {(ϕ,¬ϕ)} ∪

{(z, Cj) | j ∈ {1, . . . ,m}, z ∈ {lj1, lj2, lj3}} ∪

{(z̄, Cj) | j ∈ {1, . . . ,m},¬z ∈ {lj1, lj2, lj3}}

Figure 5.1 illustrates the AF Fϕ of the formula

ϕ = (z1 ∨ z2 ∨ z3) ∧ (¬z2 ∨ ¬z3 ∨ ¬z4) ∧ (¬z1 ∨ z2 ∨ z4).

Lemma 8. For any cf2 extension E of the AF Fϕ = (Aϕ, Rϕ) and zi ∈ Z for i ∈ {1, . . . , n},
either zi ∈ E or z̄i ∈ E.

Proof. The AF Fϕ has the following singleton SCCs {ϕ}, {¬ϕ}, and {Cj} (1 ≤ j ≤ m).
The remaining SCCs are Si ∈ {S1, . . . , Sn}, with Si = {zi, z̄i}. As all Si are not attacked
from outside their component they remain unchanged in [[Fϕ − ∆Fϕ,E]] and naive(Fϕ|Si

) =
{{zi}, {z̄i}}. Hence, either zi ∈ E or z̄i ∈ E (but never both).

50

Theorem 4. Cred cf2 is NP-complete.

Proof. For hardness, we show that any 3-CNF formula ϕ is satisfied iff the corresponding AF
Fϕ (as in Definition 29) has a cf2 extension containing ϕ.
For the if direction, let ϕ be a 3-CNF formula over Z and M ⊆ Z a model of ϕ. We show that

E = {zi | zi ∈M} ∪ {z̄i | zi ∈ Z \M} ∪ {ϕ}

is a cf2 extension of Fϕ. We need to show

(i) E is a naive extension of Fϕ and

(ii) E ∈ naive([[Fϕ −∆Fϕ,E]]).

Ad (i), from Lemma 8 we know that for all i ∈ {1, . . . , n} either zi or z̄i is in E, so there are
no conflicts between the arguments in Z and Z̄. The argument ϕ is not attacked by any zi at all.
Hence, it is easy to see that E ∈ naive(Fϕ).

Ad (ii), let us first compute ∆Fϕ,E , where

∆Fϕ,E(∅) = {x ∈ Aϕ | ∃l ∈ E : l 6= x, (l, x) ∈ Rϕ, x 6⇒
A
F l}.

As M is a model of ϕ, all clauses in ϕ are satisfied, hence, for each Cj there is an li such that
(li, Cj) ∈ Rϕ, where li ∈ {zi, z̄i} for j = {1, . . . ,m} and i = {1, . . . , n}. Furthermore, ϕ ∈ E,
(ϕ,¬ϕ) ∈ Rϕ and ¬ϕ 6⇒ ϕ. Therefore, we obtain ∆Fϕ,E(∅) = {C1, . . . , Cm,¬ϕ} which is
also the lfp ∆Fϕ,E . Finally, we compute the instance

[[Fϕ −∆Fϕ,E]] = (Aϕ \ {C1, . . . , Cm,¬ϕ}, {(z, z̄), (z̄, z) | z ∈ Z}).

It is easy to see that E ∈ naive([[Fϕ −∆Fϕ,E]]) holds.

Only if: Let E ∈ cf2 (Fϕ) such that ϕ ∈ E. We show that M = {zi | zi ∈ E} is a model of
ϕ. As ϕ ∈ E we know it is not attacked by any d ∈ ∆Fϕ,E . Assume there exists a Cj 6∈ ∆Fϕ,E

with (Cj , ϕ) ∈ Rϕ. We know Cj 6∈ E because E ∈ naive(Fϕ), hence from Definition 23 we
conclude there is no x ∈ E such that (x,Cj) ∈ Rϕ. In this case, the argument Cj is contained
in [[Fϕ − ∆Fϕ,E]], but this is a contradiction to E ∈ naive([[Fϕ − ∆Fϕ,E]]), because the set
E′ = E ∪ {Cj} is conflict-free in [[Fϕ − ∆Fϕ,E]]. It follows that for each Cj there exists a
li ∈ {zi, z̄i} such that (li, Cj) ∈ Rϕ, for j = {1, . . . ,m}. This means that for every clause Cj

there exists a literal li ∈M . Hence, M is a model of ϕ.

For membership one can construct an algorithm as follows. For any AF F = (A,R) and
a ∈ A, guess S ⊆ A with a ∈ S and check S ∈ cf2 (F). As Ver cf2 ∈ P, this yields an NP
algorithm.

Theorem 5. Skept cf2 is coNP-complete.

Proof. For hardness, we show that a given 3-CNF formula ϕ is unsatisfiable iff ¬ϕ is contained
in every cf2 extension of Fϕ, where Fϕ is constructed following Definition 29.
For the if direction, let E ∈ cf2 (Fϕ) such that ¬ϕ ∈ E. If ¬ϕ ∈ E and as (ϕ,¬ϕ) ∈ Rϕ

51

we can conclude that ϕ ∈ ∆Fϕ,E , hence there exists a Cj ∈ E such that (Cj , ϕ) ∈ Rϕ. From
the proof of Theorem 4 we know, if ϕ is satisfiable then Cj 6∈ E for each Cj ∈ {C1, . . . , Cm}
hence, ϕ is unsatisfiable.

Only if: Let E ∈ cf2 (Fϕ) such that ¬ϕ 6∈ E. We show that ϕ is satisfiable. The only reason
for ¬ϕ 6∈ E is ¬ϕ ∈ ∆Fϕ,E . As ϕ is the only argument attacking ¬ϕ, we obtain ϕ ∈ E. In the
proof of Theorem 4 we already showed that if ϕ ∈ E then ϕ is satisfied.

Membership can be shown as follows via the complementary problem. Thus, for given a AF
F = (A,R) and a ∈ A we guess a set S with a 6∈ S and check S ∈ cf2 (F). As Ver cf2 ∈ P,
this yields an NP algorithm for the complementary problem of Skept cf2 . Thus, we obtain that
Skept cf2 is in coNP.

Theorem 6. NE cf2 is in P

Proof. Recall, for every AF F it holds that each cf2 extension of F is a naive extension of F .
Thus, in case we have an F which possesses only the empty set as its cf2 extension, we know,
the empty set is also the only naive extension of F . However, this is only the case if all arguments
of F are self-attacking. Thus, to decide whether there exists a non-empty cf2 extension of an
AF F = (A,R), it is sufficient to check if there exists any argument a ∈ A such that (a, a) 6∈ R.
This can be done in polynomial time.

Complexity of stage2 Semantics

Theorem 7. For stage2 semantics the following holds

• Ver stage2 is coNP-complete;

• Cred stage2 is ΣP
2 -complete;

• Skeptstage2 is ΠP
2 -complete;

• NE stage2 is in P.

Proof. We first consider the membership part starting with Ver stage2 . Given an AF F = (A,R)
a set E of arguments, by Proposition 2 (on page 37) we have to check whether E ∈ naive(F)
(which can be done in P), and whether E ∈ stage([[F − ∆F,S]]). As [[F − ∆F,S]] can be
constructed in polynomial time and Ver stage ∈ coNP, the latter is in coNP and thus also
Ver stage2 ∈ coNP. The problems Cred stage2 and Skeptstage2 can be solved by a standard guess
and check algorithm, i.e. guessing an extension containing the argument (resp. not containing
the argument) and using an NP-oracle to verify the extension.

For the hardness part we give a reduction R mapping argumentation frameworks to argumen-
tation frameworks, such that for each AF F it holds that stage(F) = stage2 (R(F))6. The
hardness results then follow from the corresponding hardness results for stage semantics [46].

Given an AF F = (A,R) we define R(F) = (A∗, R∗) with A∗ = A ∪ {t} and R∗ = R ∪
{(t, t)} ∪ {(t, a), (a, t) | a ∈ A}), where t is a fresh argument. Then, R(F) consists of a

6Such an R is called an exact translation for stage ⇒ stage2 in [49].

52

Ver σ Cred σ Skept σ NEσ

naive in P in P in P in P

stable in P NP-c coNP-c NP-c

cf2 in P NP-c coNP-c in P

stage coNP-c ΣP
2 -c ΠP

2 -c in P

stage2 coNP-c ΣP
2 -c ΠP

2 -c in P

Table 5.2: Computational Complexity of naive-based semantics.

single SCC and hence stage(R(F)) = stage2 (R(F)). It remains to show that stage(F) =
stage(R(F)). First, as (t, t) ∈ R∗, the argument t can not be contained in a stage extension.
Furthermore, the reduction R does not modify attacks between arguments in A and we obtain
cf (F) = cf (R(F)). By the construction of R(F), for each non-empty E ⊆ A we have
E+

R ∪ {t} = E+
R∗ thus, stage(F) = stage(R(F)). It is easy to see that ∅ ∈ stage(F) iff

cf (F) = {∅} iff ∅ ∈ stage(R(F)).

The proof for NE stage2 ∈ P is by the same argument as the proof of Theorem 6.

We summarize the complexity results for naive-based semantics in Table 5.2. The results for
naive semantics are due to [34], the ones for stable semantics are from [36] and the results for
stage semantics have been shown in [46]. Regarding cf2 , the complexity of Credcf2 ,Skeptcf2
and Ver cf2 is the same as for stable semantics, only non-emptiness is in P for cf2 where it
is NP-complete for stable semantics. Considering the plethora of argumentation semantics,
beside stage2 , only for stage and semi-stable semantics the complexity of both skeptical and
credulous reasoning is located on the second level of the polynomial hierarchy. Remember, for
preferred semantics only skeptical acceptance is located on the second level of the polynomial
hierarchy while credulous acceptance is NP-complete [41]. This indicates that stage2 is among
the computationally hardest semantics but in the same breath also among the most expressive
ones.

As mentioned before, the complexity results discussed so far are worst-case scenarios, for
specific classes of problem instances one can achieve better results. In the next section we
investigate for cf2 and stage2 semantics some possible instances where better results can be
obtained.

5.3 Tractable Fragments for cf2 and stage2

As already mentioned, both cf2 and stage2 semantics are computationally intractable, i.e. the
former is on the NP-layer while the latter is even on the second level of the polynomial hierarchy,
naturally the issue of identifying tractable instances arises. The study of special instances of AFs
where efficient algorithms can solve the reasoning problems has been done in [34, 39] as well as

53

in [47]. In the following we study tractable fragments, i.e. classes of problem instances that can
be decided in (deterministic) polynomial time.

First, we identify a relation between credulous and skeptical acceptance. By the following
result, whenever credulous acceptance is tractable we immediately get tractability for skeptical
acceptance.

Proposition 10. Given an AF F = (A,R) and a ∈ A such that (a, a) /∈ R. Then, a is

skeptically accepted with cf2 (resp. stage2) iff no {b | (b, a) ∈ R or (a, b) ∈ R} is credulously

accepted with cf2 (resp. stage2).

Proof. For the proof we abstract from the concrete semantics cf2 , stage2 and consider an arbi-
trary semantics σ with σ(F) ⊆ naive(F).
⇒: Consider E ∈ σ(F) with a ∈ E. As E ∈ cf (F), clearly {b | (b, a) ∈ R or (a, b) ∈
R} ∩ E = ∅.
⇐: Consider E ∈ σ(F) with {b | (b, a) ∈ R or (a, b) ∈ R} ∩ E = ∅. As E ∈ naive(F) and
(a, a) 6∈ R we have a ∈ E.

In the following we consider different graph classes which have been proposed as tractable
fragments for abstract argumentation in the literature and study the complexity of stage2 and
cf2 semantics on these graph classes.

Acyclic Argumentation Frameworks

One tractable fragment for argumentation is the class of acyclic AFs. Tractability is due to the
fact that on acyclic AFs most semantics coincide with the grounded semantics [37]. This result
extends to cf2 and stage2 .

Theorem 8. For acyclic AFs and σ ∈ {cf2 , stage2} the problems Credσ and Skeptσ are in P.

Proof. We first show that, on acyclic AFs, grounded, cf2 and stage2 semantics coincide. Hav-
ing a look at the SCC-recursive schema applied to acyclic AFs, then the base semantics is only
applied to AFs consisting of a single argument and no attack. Thus semantics coincide if they
coincide on these AFs. We have grd({a}, ∅) = naive({a}, ∅) = stage({a}, ∅) = {{a}} and
thus the assertion follows. Now the complexity results are immediate by the fact that these
problems are in P for grounded semantics.

Even-Cycle Free Argumentation Frameworks

By a result in [40], reasoning with admissible-based semantics in AFs without even-length cycles
is tractable. Unsurprisingly this result does not extend to cf2 and stage2 semantics.

Theorem 9. For AFs without even-length cycles:

• Credcf2 is NP-complete,

• Skeptcf2 is coNP-complete,

54

Figure 5.2: AF Fϕ for the 3-CNF ϕ.

• Cred stage2 is NP-hard, and

• Skeptstage2 is coNP-hard.

Proof. The membership part for cf2 follows immediately from the complexity results for ar-
bitrary AFs. For the hardness part we reduce the NP-hard SAT (resp. coNP-hard UNSAT)
problem to Cred (resp. Skept).

Given a 3-CNF formula ϕ =
∧m

j=1Cj over atoms Z with Cj = lj1 ∨ lj2 ∨ lj3 (1 ≤ j ≤ m),
the corresponding AF Fϕ = (Aϕ, Rϕ) is built as follows:

Aϕ = Z ∪ Z̄ ∪ Ẑ ∪ {C1, . . . , Cm} ∪ {ϕ,¬ϕ}

Rϕ = {(z, z̄), (z̄, ẑ), (ẑ, z) | z ∈ Z} ∪ {(Cj , ϕ) | 1 ≤ j ≤ m} ∪ {(ϕ,¬ϕ)} ∪

{(z, Cj) | j ∈ {1, . . . ,m}, z ∈ {lj1, lj2, lj3}} ∪

{(z̄, Cj) | j ∈ {1, . . . ,m},¬z ∈ {lj1, lj2, lj3}}

Figure 5.2 illustrates the AF Fϕ of the formula ϕ = (z1∨z2∨z3)∧ (¬z2∨¬z3∨¬z4)∧ (¬z1∨
z2 ∨ z4).

An SCC of Fϕ either consists of a single argument or is a cycle of length three which is not
attacked by another SCC. As stage and naive semantics coincide on both we have cf2 (Fϕ) =
stage2 (Fϕ). Thus, in the remainder of the proof we only consider cf2 semantics. We now claim

(1) ϕ is satisfiable iff

(2) ϕ is credulously accepted in Fϕ iff

(3) ¬ϕ is not skeptically accepted in Fϕ.

(1)⇒ (2): ϕ is satisfiable and thus it has a model M ⊆ Z. Consider the set

E = M ∪ {z̄ | z ∈ Z \M} ∪ {ϕ}.

55

We next show, E is a cf2 extension of Fϕ. It is easy to check that E ∈ naive(Fϕ). So we
consider ∆Fϕ,E . As M is a model of ϕ each Cj is either attacked by a zi ∈ E or z̄i ∈ E, and as
there are no attacks from Cj to Z ∪ Z̄ we obtain Cj ∈ ∆Fϕ,E for 1 ≤ i ≤ m. Similarly, ¬ϕ is
attacked by ϕ, and as ¬ϕ has no outgoing attacks also ¬ϕ ∈ ∆Fϕ,E .

Now consider Z ∪ Z̄ ∪ Ẑ. Those arguments are not attacked from outside their SCCs, hence
none of the arguments is contained in ∆Fϕ,E . Now consider

F ′ = [[Fϕ −∆Fϕ,E]] = (Z ∪ Z̄ ∪ Ẑ ∪ {ϕ}, {(z, z̄), (z̄, ẑ), (ẑ, z) | z ∈ Z}).

It is easy to see that E ∈ naive(F ′) and we finally obtain, E ∈ cf2 (Fϕ). Hence, ϕ is credulously
accepted.

(1) ⇐ (2): Let E ∈ cf2 (Fϕ) such that ϕ ∈ E. As E is conflict-free and ϕ ∈ E we have
Cj 6∈ E for 1 ≤ i ≤ m. Moreover Cj ∈ ∆Fϕ,E . Assume the contrary, then there exists a
Cj ∈ [[Fϕ − ∆Fϕ,E]], and as Cj is not strongly connected to any argument, it is an isolated
argument in the separation and thus in any naive set of [[Fϕ − ∆Fϕ,E]], a contradiction. Now
as Cj ∈ ∆Fϕ,E , for each Cj there exists l ∈ Z ∪ Z̄ and l ∈ E such that l attacks Cj (which is
equivalent to l ∈ Cj). Notice, as E is conflict-free it can not happen that {z, z̄} ⊆ E. Finally,
we obtain M = E ∩ Z is a model of ϕ.

(2)⇔ (3): This is by the fact that in Fϕ the argument ¬ϕ is only connected to ϕ and thus each
naive (resp. cf2) extension of Fϕ either contains ϕ or ¬ϕ.

While even cycle free AFs are tractable for admissible-based semantics, in particular for stable
semantics, they are still hard for cf2 , stage2 and also for stage semantics [54].

Bipartite Argumentation Frameworks

Bipartite AFs are a special class of frameworks where there exists a partition of the set of argu-
ments A into two sets A1 and A2 such that attacks only exist between A1 and A2 but not within
the sets.

Example 20. Consider the AF F = (A,R) as illustrated in Figure 5.3. We can partition A in

A1 = {a, b, d, g} and A2 = {c, e, f}, and it is easy to see that there are only attacks between

those two sets. Thus, F is a bipartite argumentation framework. ✸

Bipartite AFs have been shown to be tractable for admissible based semantics [39]. In the
following we show that they are also tractable for cf2 and stage2 semantics.

Theorem 10. For bipartite AFs the problems Credcf2 , Skeptcf2 , Ver cf2 are in P.

Proof. Given is a bipartite AF F = (A1, A2, R) with A = A1∪A2. In the following we use the
notation S ֌ a if a set S attacks an argument a. We consider the following procedure. Start
with E1 = A1 and E2 = ∅, iterate (until E1, E2 reach a fixed-point)

(1) E2 := E2 ∪ {b ∈ A2 | E1 6֌ b} and

(2) E1 := E1 \ {a ∈ E1 | E2 ֌ a}.

56

Figure 5.3: The bipartite AF F from Example 20.

By results in [39] the above algorithm works in polynomial time and computes the stable
extension S = E1∪E2 of F , with E1 being the set of credulously accepted arguments of F from
A1 (w.r.t. stable semantics). We next show that this algorithm also applies to cf2 . Due to [98],
in coherent systems an argument is skeptically accepted iff none of its attackers is credulously
accepted. Bipartite AFs are indeed coherent, this property explains intuitively the functioning
of our procedure. To this end let C1 be the set of credulously accepted arguments of F from A1

and S2 the set of skeptically accepted arguments of F from A2 (w.r.t cf2 semantics). We claim
that after each iteration step it holds that

(i) E1 ⊇ C1,

(ii) E2 ⊆ S2 and

(iii) A1 \ E1 ⊆ ∆F,S2
.

As an induction base observe that E1 = A1 and E2 = ∅ trivially satisfies (i)-(iii). Now for the
induction step assume (i)-(iii) holds before applying the iteration step, we have to show that it
also holds afterwards.

First consider (ii): E2 is only changed if there is a b ∈ A2 and E1 6֌ b. But by (iii) this means
that for all E ∈ cf2 (F) all attackers of b are contained in ∆F,E . Hence, for each E ∈ cf2 (F),
the argument b is isolated in the AF [[F −∆F,E]] and thus clearly b ∈ E. Hence, b ∈ S2 and (ii)
is satisfied.

Now consider (i): By (2) an argument a is only removed from E1 if it is attacked by a skeptically
accepted argument. But then a can not be credulously accepted, i.e. a 6∈ C1, and thus still
E1 ⊇ C1.

Finally consider (iii): If an argument a is removed from E1 it is attacked by an argument b such

that for E ∈ cf2 (F) all attackers of b are contained in ∆F,E . Then clearly a 6⇒
A\∆F,E

F b and
thus a ∈ ∆F,E . Now using that S = E1 ∪ E2 is a stable extension, the fixed-point of the above
algorithm is also a cf2 extension. Thus, E1 = C1 and E2 = S2. By symmetry we finally obtain
that in bipartite AFs, the credulously (resp. skeptically) accepted arguments w.r.t. cf2 coincide

57

with the credulously (resp. skeptically) accepted arguments w.r.t. stable7. Hence, the P results
for stable semantics in [39] carry over to cf2 semantics.

In the following we illustrate the procedure of the proof of Theorem 10 on the AF of Figure 5.3.

Example 21. Let F be the bipartite AF of Example 20 with A1 = {a, b, d, g} and A2 =
{c, e, f}. We start the algorithm for computing credulous and skeptical accepted arguments

as in the proof above. First, for E1 = A1 and E2 = ∅ the sets remain unchanged. Thus, we

obtain S1 = {a, b, d, g} as a stable extension of F which is also the set of credulously accepted

arguments of F from A1, and none of the arguments from A2 is skeptically accepted in F . Due

to symmetry we consider now E1 = A2 and E2 = ∅. Then, we obtain

• E2 = {b} and

• E1 = A2 \ {c} = {e, f}.

The set S2 = {b, e, f} is a stable extension of F , the arguments e and f from A2 are credulously

accepted in F and {b} ⊂ A1 is skeptically accepted in F (w.r.t. cf2 and stable semantics).

Finally, the arguments a, b, d, g, e and f are credulously accepted in F (w.r.t. cf2 and stable

semantics). ✸

Even though credulous and skeptical acceptance of cf2 and stable semantics coincide on bipar-
tite AFs, they propose different extensions. For instance consider the AF F from Example 10
(illustrated on page 20). F consists of a cycle of length 6 and is a bipartite, with A1 = {a, c, e}
and A2 = {b, d, f}. The set {a, d} is a cf2 extension of F which is not stable. Furthermore, no
argument is skeptically accepted w.r.t. cf2 and stable semantics but all arguments are credulously
accepted in F . However, for stage2 and stable semantics, also the extensions coincide.

Theorem 11. For bipartite AFs Cred stage2 , Skeptstage2 , Ver stage2 are in P.

Proof. Bipartite AFs are odd-cycle free and therefore coherent [37]. Hence stable and stage
semantics coincide. By Proposition 3 on page 40 we know that also stable(F) = stage2 (F).
Then, the theorem follows from the results for stable semantics in [39].

Symmetric AFs

Finally we consider symmetric AFs, which where studied in [34]. In symmetric AFs all attacks
go into both directions, hence all SCCs are isolated in the sense that there is no attack from
one SCC to another (otherwise by symmetry, there would be an attack back and thus, those
SCCs would merge to just one). Thus, in symmetric AFs cf2 coincides with naive semantics
while stage2 coincides with stage semantics. We immediately obtain the complexity result for
cf2 and stage2 by the corresponding results for naive and stage. In the first case this clearly
leads to tractability. In the latter one we have to be more careful. If we follow [34] and assume
that symmetric AFs are also irreflexive then, we have tractability by the fact that such AFs are

7By stable(F) ⊆ stage2 (F) ⊆ cf2 (F) and Proposition 10 this also extends to stage2 semantics. However,
this does not cover the complexity of the Ver stage2 problem.

58

cf2 stage2 stable stage

Credσ
acycl in P in P P-c P-c

Skeptσ
acycl in P in P P-c P-c

Credσ
even−free NP-c coNP-h P-c ΣP

2 -c

Skeptσ
even−free coNP-c coNP-h P-c ΠP

2 -c

Credσ
bipart in P in P P-c P-c

Skeptσ
bipart in P in P P-c P-c

Credσ
sym in P in P/ΣP

2 ∗ in P in P

Skeptσ
sym in P in P/ΠP

2 ∗ in P in P

Table 5.3: Complexity results for special AFs (∗ with self-attacking arguments).

coherent and stable semantics are tractable. However, without the assumption of irreflexivity,
the tractability results for stable and stage semantics do not hold. Thus, they do not hold for
stage2 as well.

We summarize the results for the discussed tractable fragments in Table 5.3. For comparison
we also included the results for stable and stage semantics from [47].

5.4 Summary and Further Considerations

To sum up, we completed the complexity analysis for cf2 and stage2 semantics for the standard
reasoning problems verification, credulous and skeptical acceptance. It turned out that both
semantics are intractable, where stage2 is even on the second level of the polynomial hierarchy.
However, deciding whether there is a non-empty extension is tractable for both semantics.

Furthermore, we considered special instances of AFs and showed that acyclic, bipartite
and symmetric self-attack free frameworks are tractable for both cf2 and stage2 semantics.
Whereas, if self-attacking arguments are contained in a symmetric frameworks, then we do not
have tractability for stage2 . Unsurprisingly, even-cycle free AFs are not tractable for cf2 and
stage2 semantics, which reflects the special behavior of these semantics on those instances.

Another interesting approach towards tractability comes from parametrized complexity the-
ory (see [63]). For so called fixed-parameter tractability (fpt) (see [80]), one identifies prob-
lem parameters, for instance parameters measuring the graph structure, such that computational
costs heavily depend on the parameter but are only polynomial in the size of the instance. Now,
if only considering problem instances with bounded parameter, one obtains a polynomial time
algorithm.

First investigations for fixed-parameter tractability regarding abstract argumentation were
undertaken for the graph parameters tree-width [39, 55] and clique-width [50]. The work in [56]
shows that also reasoning with cf2 semantics is fpt w.r.t. tree-width and clique-width. Moreover,
using the building blocks provided there, one can easily construct a monadic second order logic

59

encoding for stage2 semantics, and by the results presented in [56] this implies fpt w.r.t. tree-
width and clique-width.

Another approach towards fpt is the so called backdoor approach, using the distance to a
tractable fragment as parameter [54]. In particular it was shown that the backdoor approach
does not help in the case of stage semantics and as the counter examples for stage semantics
immediately carry over to stage2 semantics8 there is no benefit in applying the backdoor ap-
proach to stage2 semantics. However, in the case of cf2 semantics and the tractable fragments
of acyclic AFs and symmetric AFs, the backdoor approach looks promising. We leave a more
elaborate analysis for future work.

8Adding an argument that attacks itself and has a symmetric conflict with the original arguments does not change
stage semantics, but ensures that stage semantics coincides with stage2 semantics. Indeed such an operation just
increases the distance to a tractable fragment by one.

60

CHAPTER 6
Notions of Equivalence

Argumentation can be understood as a dynamic reasoning process, i.e. it is in particular useful to
know the effects additional information causes with respect to a certain semantics. Accordingly,
one can identify the information which does not contribute to the results no matter which changes
are performed. In other words, we are interested in so-called kernels of frameworks, where two
frameworks with the same kernel are then “immune” to all kind of newly added information in
the sense that they always produce an equal outcome.

The concept of strong equivalence for argumentation frameworks captures this intuition and
has been analyzed for several semantics which are all based on the concept of admissibility
by Oikarinen and Woltran in [84]. Interestingly, it turned out that strong equivalence w.r.t.
admissible, preferred, semi-stable and ideal semantics is exactly the same concept, while stable,
complete, and grounded semantics require distinct kernels.

We complement here the picture by analyzing strong equivalence in terms of cf2 and stage2

semantics, and we compare the new results with the already existing ones. In contrast to other
semantics, it turns out that for cf2 and stage2 semantics strong equivalence coincides with syn-
tactical equivalence. We make this particular behavior more explicit by defining a new property
for argumentation semantics, called the succinctness property. If a semantics σ satisfies the suc-
cinctness property, then for every framework F , all its attacks contribute to the evaluation of at
least one framework F ′ containing F .

Furthermore, naive and stage have not been considered in [84] and, as they are the base
semantics of cf2 and stage2 we will study them as well in this chapter. Especially in the case
when an AF consists of a single SCC, the base semantics applies, thus the identification of
redundant patterns for naive and stage is also relevant for our purpose. Moreover, we analyze
strong equivalence for symmetric frameworks.

Strong equivalence not only gives an additional property to investigate the differences be-
tween argumentation semantics but also has some interesting applications. First, suppose we
model a negotiation between two agents via argumentation frameworks. Here, strong equiva-
lence allows to characterize situations where the two agents have an equivalent view of the world
which is moreover robust to additional information.

61

Second, we believe that the identification of redundant attacks is important in choosing an
appropriate semantics, in particular if an abstract argumentation framework has been built from
a given knowledge base. Caminada and Amgoud outlined in [29] that the interplay between how
a framework is built and which semantics is used to evaluate the framework is crucial in order
to obtain useful results when the (claims of the) arguments selected by the chosen semantics are
collected together. Knowledge about redundant attacks (w.r.t. a particular semantics) might help
to identify unsuitable such combinations.
This chapter is organized as follows.

• In Section 6.1 we introduce the notions of standard and strong equivalence and summarize
the results from the semantics studied so far in [84]. Furthermore we define the novel
succinctness property for argumentation semantics.

• In Section 6.2 we first consider cf2 and stage2 semantics in terms of standard equivalence.
In particular we analyze if equivalence w.r.t. a semantics implies equivalence w.r.t. another
semantics. As the naive-based semantics are normally closely related to each other we also
consider naive, stable and stage semantics in this context.

• Then, in Section 6.3 we first characterize strong equivalence for cf2 and stage2 semantics.
Then we consider the base semantics of them namely, naive and stage.

• Finally, in Section 6.4 we compare the semantics with respect to strong equivalence and
we shortly discuss strong equivalence for symmetric frameworks.

Parts of this chapter have been published in [44, 68, 69].

6.1 Background

If two distinct AFs possess the same extensions w.r.t. a semantics σ we speak about (standard)

equivalence. Consider the following example.

Example 22. The AFs F and G are illustrated in Figures 6.1 and 6.2. The two AFs differ

in the attacks (a, b), (a, d), (e, d), (e, b) and (e, c). Both AFs have no stable extension, hence

stable(F) = stable(G) = ∅. Thus, F and G are equivalent with respect to stable semantics. ✸

In Section 2.2 (Figure 2.13 on page 21) we gave an overview of the relations between the seman-
tics, and Figure 4.2 (on page 39) completes this picture for stage2 semantics. In the content of
equivalence it is now of interest, if two AFs are equivalent w.r.t. semantics σ, are they also equiv-
alent w.r.t. semantics τ? Oikarinen and Woltran investigated the relations between equivalence
for many semantics in [84]. In the following we briefly summarize the results.

Proposition 11. For any AFs F and G, we have

• adm(F) = adm(G) =⇒ pref (F) = pref (G);

• adm(F) = adm(G) =⇒ ideal(F) = ideal(G);

62

Figure 6.1: AF F from Example 22. Figure 6.2: AF G from Example 22.

• compl(F) = compl(G) =⇒ pref (F) = pref (G);

• compl(F) = compl(G) =⇒ grd(F) = grd(G);

• compl(F) = compl(G) =⇒ ideal(F) = ideal(G).

There is no particular relation between equivalence for the remaining combinations of stable,

admissible, preferred, complete, grounded, ideal, semi-stable and eager semantics.

Argumentation is a dynamic reasoning process, therefore we are interested in identifying infor-
mation which does not contribute to the results no matter which changes are performed. In the
next subsection we consider strong equivalence for AFs, a concept which reflects this intuition.

Strong Equivalence for AFs

Strong equivalence for argumentation frameworks not only requires that two AFs have the same
extensions under a specific semantics but also, if the frameworks are augmented with additional
information, they still possess the same extensions (under the semantics). The following exam-
ple illustrates this for stable semantics.

Example 23. Consider the AFs F and G from Example 22 (Figures 6.1 and 6.2). We add the

new AF H = ({b, e}, {(b, e)}) to each of them. Then, they still have the same stable extensions

stable(F ∪H) = stable(G∪H) = {{b, d}}, as highlighted in the graphs of Figures 6.3 and 6.4.

Furthermore, it can be shown that no matter which framework H one adds to F and G they will

always posses the same stable extensions. ✸

The concept of strong equivalence for argumentation frameworks, as introduced by Oikarinen
and Woltran in [84], meets exactly the behavior described in Example 23. The formal definition
is as follows.

Definition 30. Two AFs F and G are strongly equivalent to each other w.r.t. a semantics σ, in

symbols F ≡σ
s G, iff for each AF H , σ(F ∪H) = σ(G ∪H).

By definition, F ≡σ
s G implies σ(F) = σ(G), but the other direction is not true in general.

To characterize strong equivalence, Oikarinen and Woltran used in [84] so-called kernels for

63

Figure 6.3: F ∪H from Example 23. Figure 6.4: G ∪H from Example 23.

different semantics which implicitly remove the redundant attacks of the compared frameworks.
As shown in [84], deciding strong equivalence then amounts to checking the syntactic equiva-
lence of the kernels of the two compared frameworks. More precisely, such kernels have been
provided for many semantics, viz. for admissible, preferred, ideal, semi-stable, eager, complete
and grounded semantics. All these kernels are non-trivial in the sense that certain attacks are
removed.

In the following we recapitulate the respective kernels for the semantics considered in [84].

Definition 31. For an AF F = (A,R), we define

• Rsk = R \ {(a, b) | a 6= b, (a, a) ∈ R}, and F sk = (A,Rsk) as the s-kernel of F ;

• Rak = R \ {(a, b) | a 6= b, (a, a) ∈ R, {(b, a), (b, b)} ∩R 6= ∅}, and F ak = (A,Rak) as

the a-kernel of F ;

• Rgk = R \ {(a, b) | a 6= b, (b, b) ∈ R, {(a, a), (b, a)} ∩ R 6= ∅}, and F gk = (A,Rgk) as

the g-kernel of F ;

• Rck = R \ {(a, b) | a 6= b, (a, a), (b, b) ∈ R}, and F ck = (A,Rck) as the c-kernel of F .

The next proposition summarizes the results obtained in [84].

Proposition 12. For any AFs F and G:

• F sk = Gsk iff F ≡stable
s G;

• F ak = Gak iff F ≡σ
s G, where σ ∈ {adm, semis, pref , ideal , eager};

• F gk = Gak iff F ≡grd
s G;

• F ck = Gck iff F ≡compl
s G.

Inspecting the respective kernels provides the following picture, for any AFs F , G:

F = G⇒ F ck = Gck ⇒ F ak = Gak ⇒ F sk = Gsk ; F ck = Gck ⇒ F gk = Ggk (6.1)

64

and thus, strong equivalence w.r.t. complete semantics implies strong equivalence w.r.t. grounded
semantics as well as strong equivalence w.r.t. admissible sets (and thus w.r.t. preferred, ideal, and
semi-stable semantics); finally, strong equivalence w.r.t. admissible sets implies strong equiva-
lence w.r.t. stable semantics.

The Succinctness Property

When considering strong equivalence for argumentation frameworks it turns out that for most
semantics there can be identified redundant attacks. Hence, there exists some information in
those frameworks which has no influence on the extensions, i.e. there is at least one attack in
one of the frameworks which can be removed without changing the extensions. Thus, this attack
is redundant w.r.t. semantics σ.

In the next definition we make this idea formal; for AFs F = (A,R) and F ′ = (A′, R′) we
write F ⊆ F ′ to denote that A ⊆ A′ and R ⊆ R′ jointly hold. Moreover, we use F \ (a, b) as a
shorthand for the framework (A,R \ {(a, b)}).

Definition 32. For an AF F = (A,R) and semantics σ we call an attack (a, b) ∈ R redundant
in F w.r.t. σ if for all F ′ with F ⊆ F ′, σ(F ′) = σ(F ′ \ (a, b)).

Consider the AFs of Example 23. There, the attacks {(a, b), (e, b)} in F as well as the attacks
{(a, d), (e, c), (e, d)} in G are redundant under stable semantics.

However, in the context of strong equivalence one compares particular frameworks, here
we define a general property for argumentation semantics. With the succinctness property we
are able to evaluate semantics independent of the specific instantiation method. Therefore, the
succinctness property can be seen as an additional criterion for the evaluation of argumentation
semantics, similar to the one proposed by Baroni and Giacomin [8].

The succinctness property identifies to which extend attacks contribute in terms of a given
semantics. In other words, we are interested here in how many attacks are possibly ignored in
the computation of a semantics. The concept of succinctness is now captured as follows.

Definition 33. An argumentation semantics σ satisfies the succinctness property or is maximal
succinct iff no AF contains a redundant attack w.r.t. σ.

The following theorem gives the link between the succinctness property and strong equivalence.

Theorem 12. An argumentation semantics σ satisfies the succinctness property iff for any AFs

F and G, strong equivalence between F and G w.r.t. σ coincides with syntactic equivalence, i.e.

F = G.

Proof. Suppose σ does not satisfy the the succinctness property, i.e. there exists an F and an
attack (a, b) in F such that σ(F ∪ H) = σ((F \ (a, b)) ∪ H) for any AF H . Obviously,
F ≡σ

s F \ (a, b) but F 6= F \ (a, b).

Suppose F 6= G but F ≡s
σ G. W.l.o.g. let (a, b) be an attack in F which does not occur in G.

Since F ≡s
σ G, σ(F ∪ H) = σ(G ∪ H), in particular for all H not containing (a, b). Since

F ∪ H ∪ (a, b) = F ∪ H , we get that σ(G ∪ (a, b) ∪ H) = σ(G ∪ H) for all H . By setting
G′ = G ∪ (a, b), we observe that (a, b) is redundant in G′ w.r.t. σ. Hence, σ cannot be maximal
succinct.

65

Figure 6.5: AF F from Example 24. Figure 6.6: AF G from Example 24.

Figure 6.7: AF F from Example 24. Figure 6.8: AF G from Example 24.

6.2 Standard Equivalence

In this section we take a closer look at the relations between cf2 and stage2 semantics and the
other naive-based ones in terms of equivalence. Especially we are interested if equivalence w.r.t.
a semantics implies equivalence w.r.t. another semantics? Normally the relations between cf2

and the other semantics in terms of subset inclusion is as depicted in Figure 4.2 (on page 39).
Here we only consider the naive-based semantics cf2 , stage2 , stable, stage and naive in more
detail, because for the admissible-based semantics we already have no relation w.r.t. subset in-
clusion (as one can observe in Figure 2.13 on page 21).

In particular if odd-length cycles are involved in the frameworks there is no relation between
cf2 and admissible-based semantics in terms of equivalence. The next example shows that in
general for two AFs F and G adm(F) = adm(G) 6=⇒ cf2 (F) = cf2 (G) and cf2 (F) =
cf2 (G) 6=⇒ adm(F) = adm(G).

Example 24. Consider the AFs F and G as illustrated in Figures 6.5 and 6.6. We have

adm(F) = adm(G) = {∅} but cf2 (F) = {{b, c}} 6= cf2 (G) = {{b}}. For the other di-

rection, let F and G be as in Figures 6.7 and 6.8. Then, cf2 (F) = cf2 (G) = {{a}, {b}} but

adm(F) = {∅, {a}} 6= adm(G) = {∅, {a}, {b}}. ✸

In the following we concentrate on the relations between cf2 and the other naive-based semantics
and we show in the next examples that there is no particular relation between naive, stage, stable,
cf2 and stage2 semantics in terms of standard equivalence which means that two frameworks
possess the same extensions under a given semantics.

First, we consider AFs F and G such that σ(F) = σ(G) 6=⇒ θ(F) = θ(G), where σ ∈
{naive, stage, stable} and θ ∈ {cf2 , stage2}.

66

Figure 6.9: AF F from Example 25. Figure 6.10: AF G from Example 25.

Example 25. Let F and G be as illustrated in Figures 6.9 and 6.10. The only difference be-

tween those two AFs is the attack (b, a) which is contained in F but not in G. This has the

effect that the framework F consists of a single SCC ; and thus cf2 (F) = naive(F) and

stage2 (F) = stage(F). We have stable(F) = stable(G) = ∅ and stage(F) = stage(G) =
{{a, c}, {a, d}}. Furthermore, naive(F) = naive(G) = {{a, c}, {a, d}}. However, we have

cf2 (F) = stage2 (F) = {{a, c}, {a, d}} and cf2 (G) = stage2 (G) = {{a, c}}.
On the other hand, S = {a, d} is not a cf2 extension of G, since ∆G,S = {b},

[[G−∆G,S]] = ({a, c, d, e}, {(d, e), (e, d), (e, e)}),

and thus naive([[G−∆G,S]]) = {{a, c, d}}. For stage2 and the set S we observe stage([[G−
∆G,S]]) = {{a, c, d}}, and thus S is no stage2 extension of G. Hence,

σ(F) = σ(G) 6=⇒ θ(F) = θ(G)

for σ ∈ {naive, stage, stable}, and θ ∈ {cf2 , stage2} as desired. ✸

The next example shows that σ(F) = σ(G) 6=⇒ θ(F) = θ(G), where σ ∈ {naive, cf2 , stage2}
and θ ∈ {stage, stable}.

Example 26. The AFs F and G are illustrated in Figures 6.11 and 6.12. Then, we obtain

• naive(F) = naive(G) = {{a}, {b}},

• cf2 (F) = cf2 (G) = {{a}} and

• stage2 (F) = stage2 (G) = {{a}}.

On the other side

• stable(F) = ∅ 6= stable(G) = {{a}} and

• stage(F) = {{a}, {b}} 6= stage(G) = {{a}}.

Thus, we showed that σ(F) = σ(G) 6=⇒ θ(F) = θ(G), for σ ∈ {naive, cf2 , stage2} and

θ ∈ {stage, stable}. ✸

Now, we provide frameworks F and G such that σ(F) = σ(G) 6=⇒ naive(F) = naive(G),
where σ ∈ {stable, stage, cf2 , stage2}.

67

Figure 6.11: AF F from Example 26. Figure 6.12: AF G from Example 26.

Figure 6.13: AF F from Example 27. Figure 6.14: AF G from Example 27.

Example 27. Let the AFs F and G be as in Figures 6.13 and 6.14. Then, we have σ(F) =
σ(G) = {{c}}, where σ ∈ {stable, stage, cf2 , stage2} but naive(F) = {{a, b}, {c}} and

naive(G) = {{a}, {b}, {c}}. ✸

Finally, we look at some AFs such that stable(F) = stable(G) 6=⇒ stage(F) = stage(G) and
stage(F) = stage(G) 6=⇒ stable(F) = stable(G).

Example 28. Let the AFs F , G and H be as follows:

• F = ({a, b}, {(a, a), (b, b)}),

• G = ({a, b}, {(b, b)}),

• H = ({a, b}, {(a, b), (b, b)}).

Then, stable(F) = stable(G) = ∅ but stage(F) = {∅} 6= {{a}} = stage(G); and stage(G) =
stage(H) = {{a}} but stable(G) = ∅ 6= {{a}} = stable(H). ✸

6.3 Strong Equivalence

In what follows, we characterize strong equivalence for cf2 and stage2 semantics as well as for
their base semantics naive and stage. All of them have not been considered in [84]. As it turns
out, for cf2 and stage2 semantics strong equivalence amounts to syntactic equivalence, which
means that both of them satisfy the succinctness property. On the other hand the characteriza-
tions for naive and stage semantics do not coincide with syntactical equivalence, thus they are
not maximal succinct.

68

In the following we provide three lemmata which will be useful later. The first shows that
in case two frameworks do not posses the same arguments one can always extend them in a way
that they do not coincide w.r.t. naive, stage, cf2 and stage2 semantics.

Lemma 9. For any AFs F and G with A(F) 6= A(G), there exists an AF H such that A(H) ⊆
A(F) ∪A(G) and σ(F ∪H) 6= σ(G ∪H), for the semantics σ ∈ {naive, stage, cf2 , stage2}.

Proof. In case σ(F) 6= σ(G), we just consider H = (∅, ∅) and get σ(F ∪ H) 6= σ(G ∪ H).
Thus assume σ(F) = σ(G) and let w.l.o.g. a ∈ A(F) \ A(G). Thus for all E ∈ σ(F), a 6∈ E.
Consider the framework H = ({a}, ∅). Then, for all E′ ∈ σ(G ∪ H), we have a ∈ E′. On
the other hand, F ∪ H = F and also σ(F ∪ H) = σ(F). Hence, a is not contained in any
E ∈ σ(F ∪H), and we obtain σ(F ∪H) 6= σ(G ∪H).

The next lemma states that two frameworks at least need to coincide with regard to self-attacking
arguments.

Lemma 10. For any AFs F and G such that (a, a) ∈ R(F) \ R(G) or (a, a) ∈ R(G) \ R(F),
there exists an AF H such that A(H) ⊆ A(F) ∪ A(G) and σ(F ∪ H) 6= σ(G ∪ H), for

σ ∈ {naive, stage, cf2 , stage2}.

Proof. Let the self-attack (a, a) ∈ R(F) \R(G) and consider the framework

H = (A, {(a, b), (b, b) | a 6= b ∈ A})

with A = A(F) ∪ A(G). Then σ(G ∪ H) = {a} while σ(F ∪ H) = {∅} for all considered
semantics σ ∈ {naive, stage, cf2 , stage2}. For example, in case σ = cf2 we obtain ∆G∪H,E =
{b | b ∈ A \ {a}}. Moreover, {a} is conflict-free in G ∪ H and {a} ∈ naive(G′), where
G′ = (G ∪ H) − ∆G∪H,E = ({a}, ∅). On the other hand, cf2 (F ∪ H) = {∅} since all
arguments in F ∪H are self-attacking. The case for (a, a) ∈ R(G) \R(F) is similar.

The following lemma shows that if a set S is conflict-free in the union of two AFs then the
intersection of S with the arguments of each of the two AFs is also conflict-free in the single
AFs (and the other way around).

Lemma 11. Let F and H be AFs and S be a set of arguments. Then, S ∈ cf (F ∪H) iff, jointly

(S ∩A(F)) ∈ cf (F) and (S ∩A(H)) ∈ cf (H).

Proof. The only-if direction is clear. Thus suppose S /∈ cf (F ∪H). Then, there exist a, b ∈ S,
such that (a, b) ∈ F ∪ H . By our definition of “∪”, then (a, b) ∈ F or (a, b) ∈ H . But then
(S ∩A(F)) /∈ cf (F) or (S ∩A(H)) /∈ cf (H) follows.

In the next subsection we start our analysis of strong equivalence with the cf2 semantics.

69

Figure 6.15: F ∪H . Figure 6.16: G ∪H .

Strong Equivalence w.r.t. cf2 Semantics

Interestingly, it turns out that for this semantics there are no redundant attacks at all. In fact,
even in the case where an attack links two self-attacking arguments, this attack might play a role
by gluing two components together. Having no redundant attacks means that strong equivalence
coincides with syntactic equivalence.

Theorem 13. For any AFs F and G, F ≡cf2
s G iff F = G.

Proof. Since for any AFs F = G obviously implies for all AFs H , cf2 (F ∪H) = cf2 (G∪H),
we only have to show that if F 6= G there exists an AF H such that cf2 (F ∪H) 6= cf2 (G∪H).
From Lemma 9 and Lemma 10 we know that in case the arguments or the self-loops are not
equal in both frameworks, there exists an AF H such that cf2 (F ∪H) 6= cf2 (G ∪H). We thus
assume that A = A(F) = A(G) and (a, a) ∈ R(F) iff (a, a) ∈ R(G), for each a ∈ A. Let us
thus suppose w.l.o.g. an attack (a, b) ∈ R(F) \R(G) and consider the AF

H = (A ∪ {d, x, y, z}, {(a, a), (b, b), (b, x), (x, a), (a, y), (y, z), (z, a),

(d, c) | c ∈ A \ {a, b}}),

see also Figures 6.15 and 6.16 for illustration. Then, for a set E = {d, x, z}, we have E ∈
cf2 (F ∪H) but E 6∈ cf2 (G ∪H).

To show that E ∈ cf2 (F ∪H), we first compute ∆F∪H,E = {c | c ∈ A\{a, b}}. Thus, we have
two SCCs left in the instance [[(F ∪H)−∆F∪H,E]], namely C1 = {d} and C2 = {a, b, x, y, z}
as illustrated in Figure 6.17. Furthermore, all attacks between the arguments of C2 are preserved,
and we obtain that E ∈ naive([[(F ∪H) −∆F∪H,E]]), and as E ∈ naive(F ∪H) holds, we
have that E ∈ cf2 (F ∪H) as well.

On the other hand, we obtain ∆G∪H,E = {a} ∪ {c | c ∈ A \ {a, b}}, and the instance G′ =
[[(G ∪ H) − ∆G∪H,E]] consisting of five SCCs, namely C1 = {d}, C2 = {b}, C3 = {x},
C4 = {y} and C5 = {z}, with b being self-attacking as illustrated in Figure 6.18. Thus, the set
E′ = {d, x, y, z} ⊃ E is conflict-free in G′. Therefore, we obtain E 6∈ naive(G′), and hence,

E 6∈ cf2 (G ∪H). F 6≡cf2
s G follows.

In other words, the proof of Theorem 13 shows that no matter which AFs F 6= G are given, one
can always construct a framework H such that cf2 (F ∪H) 6= cf2 (G∪H). In particular, we can

70

Figure 6.17: [[(F∪H)−∆F∪H,E]]. Figure 6.18: [[(G∪H)−∆G∪H,E]].

Figure 6.19: F ∪H . Figure 6.20: G ∪H .

always add new arguments and attacks such that the missing attack in one of the original frame-
works leads to different SCCs in the modified ones and therefore to different cf2 extensions,
when suitably augmenting the two AFs under comparison.

This special behavior of cf2 leads us to the next observation that cf2 is the first semantics
considered so far, which is maximal succinct. By Theorem 12 and Theorem 13 the following
result is obvious.

Corollary 1. The cf2 semantics satisfies the succinctness property.

Strong Equivalence w.r.t. stage2 Semantics

In the previous subsection we showed that for cf2 semantics, strong equivalence coincides with
syntactic equivalence. In other words, there are no redundant patterns at all. In the following,
we show that the same holds for stage2 semantics.

Theorem 14. For any AFs F and G, F ≡stage2
s G iff F = G.

Proof. Since for any AFs F = G obviously implies for all AFs H , stage2 (F∪H) = stage2 (G∪
H), we only have to show that if F 6= G there exists an AF H such that stage2 (F ∪ H) 6=
stage2 (G ∪H).

For any two AFs F and G, strong equivalence w.r.t. naive-based semantics requires that the AFs
coincide with the arguments and the self-attacks (Lemma 9 and Lemma 10). We thus assume
that A = A(F) = A(G) and (a, a) ∈ R(F) iff (a, a) ∈ R(G), for each a ∈ A. Let us thus

71

Figure 6.21: [[(F∪H)−∆F∪H,E]]. Figure 6.22: [[(G∪H)−∆G∪H,E]].

suppose w.l.o.g. an attack (a, b) ∈ R(F) \R(G) and consider the AF

H = (A ∪ {d, x, y, z, z1}, {(a, a), (b, b), (b, x), (x, a), (a, y), (y, z), (z, a),

(z, z1), (z1, z), (z1, z1), (d, c) | c ∈ A \ {a, b}}),

see also Figures 6.19 and 6.20 for illustration.

Then, for E = {d, x, z}, we have E ∈ stage2 (F ∪H) but E 6∈ stage2 (G ∪H). To show that
E ∈ stage2 (F∪H), we first compute ∆F∪H,E = {c | c ∈ A\{a, b}}. Thus, we have two SCCs
left in the instance F ′ = [[(F ∪H)−∆F∪H,E]], namely C1 = {d} and C2 = {a, b, x, y, z, z1}
as illustrated in Figure 6.21. Furthermore, all attacks between the arguments of C2 are preserved,
and we obtain that E ∈ stage(F ′), and as E ∈ naive(F ∪H), E ∈ stage2 (F ∪H) follows.

On the other hand, we obtain ∆G∪H,E = {a} ∪ {c | c ∈ A \ {a, b}}, and the instance G′ =
[[(G∪H)−∆G∪H,E]] consists of five SCCs, namely C1 = {d}, C2 = {b}, C3 = {x}, C4 = {y}
and C5 = {z, z1}, with b and z1 being self-attacking as illustrated in Figure 6.22.

Thus, the set T = {d, x, y, z} ⊃ E is conflict-free in G′ and T+
R(G′) ⊃ E+

R(G′). Therefore, we

obtain E 6∈ stage(G′), and hence, E 6∈ stage2 (G ∪H). F 6≡stage2
s G follows.

By Theorem 12 and Theorem 14 the following result is obvious.

Corollary 2. The stage2 semantics satisfies the succinctness property.

The cf2 and stage2 semantics are the only semantics considered so far, where strong equiva-
lence coincides with syntactic equivalence. This can be seen as another special property of them
which is met by the succinctness property.

We continue our investigation with the two base semantics of cf2 and stage2 , namely the
naive and stage semantics.

Strong Equivalence w.r.t. Naive Semantics

For naive semantics, strong equivalence is only a marginally more restricted concept than stan-
dard equivalence, namely in case the two compared AFs are not given over the same arguments.

Theorem 15. For any AFs F and G, the following statements are equivalent:

72

Figure 6.23: AF F from Example 29. Figure 6.24: AF G from Example 29.

(1) F ≡naive
s G;

(2) naive(F) = naive(G) and A(F) = A(G);

(3) cf (F) = cf (G) and A(F) = A(G).

Proof. (1) implies (2): basically by the definition of strong equivalence and Lemma 9.

(2) implies (3): Assume naive(F) = naive(G) but cf (F) 6= cf (G). W.l.o.g. let S ∈ cf (F) \
cf (G). Then, there exists a set S′ ⊇ S such that S′ ∈ naive(F) and by assumption then
S′ ∈ naive(G). However, as S 6∈ cf (G) there exists an attack (a, b) ∈ R(G), such that
a, b ∈ S. But as S ⊆ S′, we have S′ 6∈ cf (G) as well; a contradiction to S′ ∈ naive(G).

(3) implies (1): Suppose F 6≡naive
s G, i.e. there exists a framework H such that naive(F∪H) 6=

naive(G ∪ H). W.l.o.g. let now S ∈ naive(F ∪ H) \ naive(G ∪ H). From Lemma 11
one can show that (S ∩ A(F)) ∈ naive(F) and (S ∩ A(H)) ∈ naive(H), as well as (S ∩
A(G)) 6∈ naive(G). Let us assume S′ = S ∩ A(F) = S ∩ A(G), otherwise we are done
yielding A(F) 6= A(G). If S′ /∈ cf (G) we are also done (since S′ ∈ cf (F) follows from
S′ ∈ naive(F)); otherwise, there exists an S′′ ⊃ S′, such that S′′ ∈ cf (G). But S′′ /∈ cf (F),
since S′ ∈ naive(F). Again we obtain cf (F) 6= cf (G) which concludes the proof.

By Theorem 12 and Theorem 15 we obtain the next result.

Corollary 3. The naive semantics is not maximal succinct.

Strong Equivalence w.r.t. Stage Semantics

In order to characterize strong equivalence w.r.t. stage semantics, we require here exactly the
same kernel as already used in [84] to characterize strong equivalence w.r.t. stable semantics.

Example 29. Consider the frameworks F and G as illustrated in Figures 6.23 and 6.24. They

only differ in the attacks outgoing from the argument a which is self-attacking and yield the

same single stage extension, namely {c}, for both frameworks. We can now add, for instance,

H = ({a, c}, {(c, a)}) and the stage extensions for F ∪H and G ∪H still remain the same. In

fact, no matter how H looks like, stage(F ∪H) = stage(G ∪H) will hold. ✸

73

The s-kernel from Definition 31 reflects the intuition given in the previous example. The follow-
ing theorem states that two AFs are strongly equivalent with respect to stage semantics if they
have the same s-kernel.

Theorem 16. For any AFs F and G, F ≡stage
s G iff F sk = Gsk .

Proof. Only-if: Suppose F sk 6= Gsk , we show that F 6≡stage
s G. From Lemma 9 and Lemma 10

we know that in case the arguments or the self-loops are not equal in both frameworks, F ≡stage
s

G does not hold. We thus assume that A = A(F) = A(G) and (a, a) ∈ F iff (a, a) ∈ G, for
each a ∈ A. Let thus w.l.o.g. (a, b) ∈ F sk \Gsk . We can conclude (a, b) ∈ F and (a, a) /∈ F ,
thus (a, a) /∈ G and (a, b) /∈ G. Let c be a fresh argument and take

H = {A ∪ {c}, {(b, b)} ∪ {(c, d) | d ∈ A} ∪ {(a, d) | d ∈ A ∪ {c} \ {b}}).

Then, {a} is a stage extension of F ∪H (it attacks all other arguments) but not of G ∪H (b is
not attacked by {a}); see also Figures 6.25 and 6.26 for illustration.

For the if-direction, suppose F sk = Gsk . Let us first show that F sk = Gsk implies cf (F ∪
H) = cf (G ∪ H), for each AF H . Towards a contradiction, suppose an H such that cf (F ∪
H) 6= cf (G ∪H) and w.l.o.g. let T ∈ cf (F ∪H) \ cf (G ∪H). Since F sk = Gsk , we know
A(F) = A(G). Thus there exist a, b ∈ T (not necessarily a 6= b) such that (a, b) ∈ G ∪H or
(b, a) ∈ G ∪ H . On the other hand (a, b) /∈ F ∪ H and (b, a) /∈ F ∪ H hold since a, b ∈ T
and T ∈ cf (F ∪H). Thus, in particular, (a, b) /∈ F and (b, a) /∈ F as well as (a, b) /∈ H and
(b, a) /∈ H; due to Lemma 11 the latter implies (a, b) ∈ G or (b, a) ∈ G. Suppose (a, b) ∈ G
(the other case is symmetric). If (a, a) ∈ G then (a, a) ∈ Gsk , but (a, a) /∈ F sk (since a ∈ T
and thus (a, a) /∈ F). If (a, a) /∈ G, (a, b) ∈ Gsk but (a, b) /∈ F sk (since (a, b) /∈ F). In either
case F sk 6= Gsk , a contradiction.

We next show that F sk = Gsk implies (F ∪H)sk = (G∪H)sk for any AF H . Thus, let (a, b) ∈
(F ∪H)sk , and assume F sk = Gsk ; we show (a, b) ∈ (G ∪H)sk . Since, (a, b) ∈ (F ∪H)sk

we know that (a, a) 6∈ F ∪ H and therefore, (a, a) 6∈ F sk , (a, a) 6∈ Gsk and (a, a) 6∈ Hsk .
Hence, we have either (a, b) ∈ F sk or (a, b) ∈ Hsk . In the later case, (a, b) ∈ (G ∪ H)sk

follows because (a, a) 6∈ Gsk and (a, a) 6∈ Hsk . In case (a, b) ∈ F sk , we get by the assumption
F sk = Gsk , that (a, b) ∈ Gsk and since (a, a) 6∈ Hsk it follows that (a, b) ∈ (G ∪H)sk .

Finally we show that for any frameworks K and L such that Ksk = Lsk , and any S ∈ cf (K) ∩
cf (L), S+

R (K) = S+
R (L). This follows from the fact that for each s ∈ S, (s, s) is neither

contained in K nor in L. But then each attack (s, b) ∈ K is also in Ksk , and likewise, each
attack (s, b) ∈ L is also in Lsk . Now since Ksk = Lsk , S+

R (K) = S+
R (L) is obvious.

Thus, we showed that, given F sk = Gsk , the following relations hold for each AF H:

• cf (F ∪H) = cf (G ∪H);

• (F ∪H)sk = (G ∪H)sk ; and

• S+
R (F ∪ H) = S+

R (G ∪ H) holds, for each S ∈ cf (F ∪ H) = cf (G ∪ H) (taking
K = F ∪H and L = G ∪H).

74

Figure 6.25: F ∪H . Figure 6.26: G ∪H .

Thus, stage(F ∪H) = stage(G ∪H), for each AF H . Consequently, F ≡stage
s G.

From Theorem 16 and Proposition 12 we obtain that strong equivalence for stable and stage
semantics coincide. By Theorem 12 and Theorem 16 we obtain the next result.

Corollary 4. The stage semantics is not maximal succinct.

Recall that the results in [84] in combination with Theorem 12 show that many other semantics
are not maximal succinct.

6.4 Discussion and Further Considerations

In this section, we first compare our new results to the known results from [84] in order to get a
complete picture about the difference between the most important semantics in terms of strong
equivalence and redundant attacks. Afterwards, we restrict ourselves to symmetric AFs [34].
This is motivated by the fact that naive-based semantics do not take the orientation of attacks
into account.

Comparing Semantics w.r.t. Strong Equivalence

Together with the results from [84], we now know how to characterize strong equivalence for
the following semantics of abstract argumentation: admissible, preferred, complete, grounded,
stable, semi-stable, ideal, stage, naive, cf2 and stage2 . The first five semantics (which are due
to Dung [37]) as well as semi-stable [25] and ideal [38] semantics yield as extensions admissible
sets. The later four semantics do not yield admissible sets in general. Nonetheless, thanks to
our characterizations we get now a clear picture which kind of attacks are redundant w.r.t. a
certain semantics. First of all, the kernel we used for stage semantics (see Definition 31) exactly
matches the kernel for stable semantics in [84]. We thus get:

Corollary 5. For any AFs F and G, F ≡stable
s G holds iff F ≡stage

s G holds.

According to (6.1) on page 65 we conclude that strong equivalence w.r.t. cf2 semantics implies
strong equivalence w.r.t. complete semantics, etc. To complete the picture, we also note the
following observation:

Lemma 12. If F sk = Gsk (resp. F gk = Ggk), then cf (F) = cf (G).

75

Figure 6.27: Full picture of implication in terms of strong equivalence.

Proof. If F sk = Gsk then due to Lemma 9, A = A(F) = A(G) and from Lemma 10 we know
that for each a ∈ A, (a, a) ∈ R(F) iff (a, a) ∈ R(G). Let S ∈ cf (F), i.e. for each a, b ∈ S,
we have (a, b) /∈ R(F). Then, (a, b) /∈ R(F sk) and by assumption (a, b) /∈ R(Gsk). Now
since a ∈ S, we know that (a, a) /∈ R(F) and thus (a, a) /∈ R(G). Then, (a, b) /∈ R(Gsk)
implies (a, b) /∈ R(G). Since this is the case for any a, b ∈ S, S ∈ cf (G) follows. The converse
direction is analogous.
Showing that F gk = Ggk implies cf (F) = cf (G) can be done by similar arguments.

As an immediate consequence of the above lemma and Theorem 15, we obtain

Corollary 6. For any AFs F and G, we have that F ≡σ
s G⇒ F ≡naive

s G (for σ ∈ {stable ,

stage , grd}).

Together with our previous observation we thus obtain a complete picture of implications in
terms of strong equivalence w.r.t. to the different semantics as depicted in Figure 6.27.

Inspecting the notions of kernels, we also observe that in the case when self-loop free AFs
are compared, all notions of strong equivalence except the one of naive semantics coincide.

Corollary 7. Strong equivalence between self-loop free AFs F and G w.r.t. admissible, pre-

ferred, complete, grounded, stable, semi-stable, ideal, stage, cf2 and stage2 semantics holds, if

and only if F = G.

For naive semantics, we might have situations where F ≡naive
s G holds although F and G

are different self-loop free AFs. As a simple example consider F = ({a, b}, {(a, b)}) and
G = ({a, b}, {(b, a)}). As already mentioned earlier, this is due to the fact that naive semantics
do not take the orientation of attacks into account. This motivates to compare semantics w.r.t.
strong equivalence for symmetric frameworks.

Strong Equivalence and Symmetric Frameworks

Symmetric frameworks have been studied in [34] and are defined as AFs F = (A,R) where R
is symmetric, non-empty, and irreflexive. We consider here a more relaxed such notion. We call
an AF (A,R) weakly symmetric if R is symmetric (but not necessarily non-empty or irreflexive).

76

Strong equivalence between weakly symmetric AFs is defined analogously as in Defini-
tion 30, i.e. weakly symmetric AFs F and G are strongly equivalent w.r.t. a semantics σ iff
σ(F ∪H) = σ(G∪H), for any AF H . Note that we do not restrict here that H is symmetric as
well.

For cf2 and stage2 semantics, strong equivalence between weakly symmetric AFs still re-
quires F = G (basically, this follows from the fact that all steps in the proof of Theorem 13 can
be restricted to such frameworks). Regarding the other semantics, we have two main observa-
tions. First, we can now give a suitable realization for the concept of a kernel also in terms of
naive semantics.

Definition 34. For an AF F = (A,R), define F nk = (A,Rnk) where

Rnk = R \ {(a, b) | a 6= b, (a, a) ∈ R or (b, b) ∈ R}.

Theorem 17. For any weakly symmetric AFs F and G, F ≡naive
s G iff F nk = Gnk .

Proof. By Theorem 15, it is sufficient to show that F nk = Gnk holds iff jointly A(F) = A(G)
and cf (F) = cf (G). Obviously, F nk = Gnk implies A(F) = A(G). Thus, let S ∈ cf (F).
Then, for each a, b ∈ S, neither (a, a) nor (b, b) is contained in R(F). Furthermore, we have
{(a, b), (b, a} ∩R(F) = ∅. Thus, we obtain {(a, a), (b, b), (a, b), (b, a)} ∩R(F nk) = ∅. By the
assumption F nk = Gnk , we know {(a, a), (b, b), (a, b), (b, a)} ∩ R(Gnk) = ∅, and thus neither
(a, a) nor (b, b) is contained in R(G). But then, {(a, b), (b, a)} ∩ R(G) = ∅; hence there is no
conflict between a and b in G as well. Since this holds for all pairs a, b ∈ S, we get S ∈ cf (G).
The other direction is analogous.

Thus, suppose F nk 6= Gnk . In case, A(F nk) 6= A(Gnk) (i.e. A(F) 6= A(G)) we can employ
Lemma 9. In case, there exists an a such that (a, a) is contained in exactly one, R(F) or R(G),
we employ Lemma 10. In both cases we obtain F 6≡naive

s G. Thus, assume F and G possess
the same self-loops. Since F nk 6= Gnk , there exist distinct arguments a, b such that w.l.o.g.
(a, b) ∈ R(F nk) \ R(Gnk). Since, (a, b) ∈ R(F nk), {(a, a), (b, b)} ∩ R(F) = ∅ and by our
assumption above, also {(a, a), (b, b)} ∩ R(G) = ∅, thus (a, b) /∈ R(G). Moreover, since G
is weakly symmetric, also (b, a) /∈ R(G). It follows, {a, b} ∈ cf (G) but {a, b} /∈ cf (F). By
Theorem 15, F 6≡naive

s G.

Second, one can show that for any weakly symmetric AF F , it holds that F sk = F ak . This leads
to the following result.

Corollary 8. Strong equivalence between weakly symmetric AFs F and G w.r.t. admissible,

preferred, semi-stable, ideal, stable, and stage semantics coincides.

Furthermore, we can simplify the kernel F gk for weakly symmetric AFs to F gk = (A,R \
{(a, b) | a 6= b, (b, b) ∈ R}). The other kernels remain unchanged for weakly symmetric AFs.

Finally, we note here that in case the augmented AF is symmetric as well, which means that
none of the AFs contain self-loops, it follows from Corollary 7 that symmetric strong equiv-
alence between two AFs F and G w.r.t. semantics admissible, preferred, complete, grounded,
stable, semi-stable, ideal, stage, cf2 and stage2 semantics holds, if and only if F = G.

77

6.5 Conclusion

In this chapter we provided characterizations for strong equivalence w.r.t. cf2 and stage2 se-
mantics as well as for their base semantics stage and naive. Thus, we completed the analysis
initiated in [84]. Strong equivalence gives a handle to identify redundant attacks.

The identification of redundant attacks is an important preprocessing step and can help to
simplify frameworks before the evaluation. In particular, the knowledge about redundancies
can already been taken into account during the instantiation process. The newly introduced
succinctness property is then satisfied by a semantics if for every framework F , all its attacks
contribute to the evaluation (i.e. all attacks are non-redundant) of at least one framework F ′

containing F .
Redundant attacks exist for all semantics (at least when self-loops are present), except for cf2

and stage2 semantics, which follows from our main result, that F ≡cf2
s G (resp. F ≡stage2

s G)
holds, if and only if, F = G. In other words, each attack plays a role for these two semantics
(at least, an attack closes a cycle and thus is crucial for the actual partition into SCCs of the
AF). Thus, cf2 and stage2 semantics are maximal succinct. Our result also strengthens the
observations from Baroni et al. [12], who claim that cf2 semantics treats self-loops in a more
sensitive way than other semantics.

Regarding stage and naive, we showed that strong equivalence w.r.t. stage semantics coin-
cides with strong equivalence w.r.t. stable semantics. For naive semantics it is only required
that the AFs are given over the same arguments and have the same conflict-free sets. From
the obtained results we conclude that none of the prominent semantics, except cf2 and stage2 ,
satisfies the succinctness property. Besides our characterization for strong equivalence, we also
analyzed symmetric strong equivalence.

78

CHAPTER 7
Implementation

In this chapter we concentrate on the more practical part of our investigation. In order to eval-
uate and compare abstract argumentation frameworks with respect to the numerous semantics
it is indispensable to have efficient systems. As already pointed out in Chapter 5, argumen-
tation problems are in general intractable. Therefore, developing dedicated algorithms for the
different reasoning problems is non-trivial. A promising way to implement such systems is to
use a reduction method, where the given problem is translated into another language, for which
sophisticated systems already exist. It turned out that Answer-Set Programming (ASP) is well
suited for this purpose due to the following three characteristics.

• The prototypical language of ASP (i.e., logic programming under the answer-set seman-
tics [72], also known as stable logic programming or A-Prolog) is very expressible and
allows to formulate queries (in an extended datalog fashion) over databases, such that
multiple results can be obtained. In our context, queries thus can be employed to ob-
tain multiple extensions for AFs, where the actual AF to process is just given as an input
database.

• Advanced ASP-solvers such as clasp, claspD, DLV, Cmodels, Smodels, IDP, or SUP are
nowadays able to deal with large problem instances, see, e.g., [24]. Thus, using our pro-
posed reduction method delegates the burden of optimization to these systems.

• Depending on the syntactical structure of a given ASP query, the complexity of evaluating
that query on input databases (i.e., the data complexity of ASP) varies from classes P,
NP, coNP up to ΣP

2 and to ΠP
2 . Hence, for the different types of problems in abstract

argumentation, we are able to formulate queries which are “well suited” from a complexity
point of view. In other words, the complexity of evaluating ASP queries representing some
argumentation problem lies in the same complexity class as the original problem.

Many argumentation semantics have been already implemented in ASP, see [95] for an overview.
In this work we follow the ASPARTIX approach [57, 59, 66], where a single program is used to

79

encode a particular semantics, while the instance of the framework is given as an input database.
In particular we will present ASP encodings for cf2 and stage2 semantics.

The challenging part in the design of the encodings for cf2 (resp. stage2) semantics is that
the original definition involves a recursive computation of different sub-frameworks which is
rather cumbersome to represent directly in ASP. This was the main reason why we invented
the alternative characterization for cf2 semantics as presented in Chapter 3 (resp. Chapter 4 for
stage2 semantics). With the novel characterization we are able to directly (i) guess a set S of
the given AF F and then (ii) check whether S is a naive (resp. stage) extension of the instance
[[F −∆F,S]]. While the encodings for cf2 are quite short and comprehensible this is not the case
for the standard encodings for stage2 semantics. This semantics is located on the second level
of the polynomial hierarchy and is based on stage semantics which requires a test for subset-
maximality. To perform this test we need to apply a certain saturation technique [60] which is
hardly accessible for non-experts in ASP.

However, recent advances in ASP solvers, in particular, the metasp optimization front-end
for the ASP-system gringo/claspD allows for much simpler encodings for such tests. More
precisely, metasp allows to use the traditional #minimize statement (which in its standard
variant minimizes w.r.t. cardinality or weights, but not w.r.t. subset inclusion) also for selection
among answer sets which are minimal w.r.t. subset inclusion in certain predicates. Details about
metasp can be found in [70]. We will use this optimization to simplify the encodings for
stage2 (resp. stage) semantics.

Besides the ASP approach we will consider the labeling-based approach as a direct imple-
mentation method. Lately algorithms based on labelings attracted specific attention [27, 28, 79,
83, 97]. In contrast to the traditional extension-based approach, so called labelings (see e.g. [14])
distinguish two kinds of unaccepted arguments, those which are rejected by the extension and
those which are neither rejected nor accepted. This distinction is interesting from a logic per-
spective but has also proven to be useful for algorithmic issues. We will present two algorithms
which compute all valid labelings for cf2 and stage2 semantics.

As third contribution we sketch the web-application of the system ASPARTIX9. This is a
user friendly tool which allows to use ASPARTIX without the need of downloading or installing
any ASP solver or encodings. The platform is directly accessible form the web with any standard
browser and provides a graphical representation of the input framework and the solutions.

The remainder of this chapter is organized as follows: in Section 7.1 we provide the nec-
essary background on ASP, then we give the encodings for cf2 semantics. Before we present
the encodings of stage2 semantics we explain the saturation encodings for the base semantics
of stage2 , namely the stage semantics, followed by the metasp encodings for stage semantics.
Then we provide first the saturation and then the metasp encodings for stage2 semantics. In
Section 7.2 we give the definitions of cf2 and stage2 semantics followed by two algorithms
which compute all labelings of these semantics. Finally we close the chapter with a short dis-
cussion of the results.

Parts of this chapter have been published in [45, 52, 59, 66, 67].

9 See http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/.

80

http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/

7.1 ASP-Encodings for Abstract Argumentation Frameworks

In this section we consider ASP as a reduction-based approach for the implementation of AFs.
First we introduce the necessary background on ASP, then we formalize how argumentation
frameworks are represented in ASP and we give the encodings for cf2 and stage2 semantics. All
our encodings are fixed where the instance of an AF is given as input, and they are incorporated
in the system ASPARTIX (see [57, 59] for more details) and available online10. The encodings
from the system ASPARTIX are written in the general datalog syntax. It may be the case that
one needs to adapt the encodings for some ASP solvers. The metasp encodings can only be
performed with gringo/claspD. Furthermore we point out that in this section we give an
informal description of the ASP encodings. For a more formal investigation we refer to [59].

Background Answer-Set Programming

We first give a brief overview of the syntax and semantics of the ASP-formalism we consider,
i.e., disjunctive datalog under the answer-sets semantics [72]. As we will use the metasp op-
timization front-end for for the ASP-system gringo/claspD to simplify the encodings for
stage semantics, we also briefly introduce the syntax and semantics of the #minimize state-
ment (which in its standard variant minimizes w.r.t. cardinality or weights, but not w.r.t. subset
inclusion). The metasp front-end allows to use the #minimize statement also for selection
among answer-sets which are minimal w.r.t. subset inclusion in certain predicates. Details about
metasp can be found in [70]. Finally, we briefly recall some important complexity results for
disjunctive datalog. We refer to [61, 70, 71, 74] for a broader exposition on all of these topics.

In what follows, we fix a countable set U of (domain) elements, also called constants and
suppose a total order < over these elements. An atom is an expression p(t1, . . .,tn), where p is a
predicate symbol of arity n ≥ 0 and each ti is either a variable or an element from U . An atom
is ground if it is free of variables.

A (disjunctive) rule r is of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm

with n ≥ 0, m ≥ k ≥ 0, n +m > 0, and where a1, . . . , an, b1, . . . , bm are atoms, and “not ”
stands for default negation. The head of r is the set H(r) = {a1, . . . , an} and the body of r is
B(r) = {b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore, B+(r) = {b1, . . . , bk} and B−(r) =
{bk+1, . . . , bm}. A rule r is normal (or disjunction-free) if n ≤ 1 and a constraint if n = 0. A
rule r is safe if each variable in r occurs in B+(r). A rule r is ground if no variable occurs in r.
If each rule in a program is normal (resp., ground), we call the program normal (resp., ground).
A fact is a disjunction-free ground rule with an empty body.

A program is a finite set of safe (disjunctive) rules. Employing database notation, we call a
finite set of facts also an input database and a set of non-ground rules a query. For a program π
and an input database D, we often write π(D), instead of the program D∪π, in order to indicate
that D serves as input for π.

10http://www.dbai.tuwien.ac.at/research/project/argumentation/systempage/

81

http://www.dbai.tuwien.ac.at/research/project/argumentation/systempage/

A normal program π is called stratified if no atom a depends by recursion through negation
on itself [4]. More formally, π is stratified if there exists an assignment α(·) of integers to the
predicates in π, such that for each rule r ∈ π, the following holds: If predicate p occurs in the
head of r and predicate q occurs

(i) in the positive body of r, then α(p) ≥ α(q) holds;

(ii) in the negative body of r, then α(p) > α(q) holds.

As an example, consider the following program π

π = { a(X)← not b(X), d(X);

b(X)← a(X) }.

In order to find an assignment α(·) satisfying the above conditions for π, observe that the first
rule of π requires α(a) > α(b), but the second rule, in turn, forces α(b) ≥ α(a). In other words,
each assignment α(·) violates at least one of the conditions, and hence, π is not stratified. For
the following program

π′ = { a(X)← not b(X), d(X);

b(X)← c(X);

c(X)← b(X) },

we can use the assignment α(a) = 2, α(b) = α(c) = α(d) = 1 to show that π′ is stratified.
The concept of stratified programs is very important in logic programming, since it allows for
a restricted form of negation, but does not lead to an increase in the complexity (see also the
complexity results below, which show that stratified programs still can be evaluated efficiently,
while this is not the case for normal or disjunctive programs).

Besides disjunctive and normal programs, we consider here the class of optimization pro-
grams, i.e. normal programs which additionally contain #minimize statements

#minimize[l1 = w1@J1, . . . , lk = wk@Jk] (7.1)

where li is a literal, wi an integer weight and Ji an integer priority level.
For any program π, let Uπ be the set of all constants appearing in π (if no constant appears in

π, an arbitrary constant is added to Uπ), and let Bπ be the set of all ground atoms constructible
from the predicate symbols appearing in π and the constants of Uπ. Moreover, Gr(π) is the
set of rules rτ obtained by applying, to each rule r ∈ π, all possible substitutions τ from the
variables in π to elements of Uπ.

Let the set of all ground atoms over U be denoted by BU . An interpretation I ⊆ BU satisfies

a ground rule r iff H(r) ∩ I 6= ∅ whenever B+(r) ⊆ I and B−(r) ∩ I = ∅. A ground program
π is satisfied by I , if I satisfies each r ∈ π. A non-ground rule r (resp., a non-ground program
π) is satisfied by I , if I satisfies all groundings of r (resp., Gr(π)). An interpretation I ⊆ BU is
an answer-set of π iff it is a subset-minimal set satisfying the Gelfond-Lifschitz reduct

πI = { H(r)← B+(r) | I ∩B−(r) = ∅, r ∈ Gr(π) }.

82

stratified programs normal programs disjunctive programs metasp programs

|=c P NP ΣP
2 ΣP

2

|=s P coNP ΠP
2 ΠP

2

Table 7.1: Data Complexity for datalog (all results are completeness results).

For a program π, we denote the set of its answer-sets by AS(π). We note that for each I ∈
AS(π), I ⊆ Bπ holds. Moreover, a program can have multiple answer-sets. A stratified program
has at most one answer-set, and a constraint-free stratified program has exactly one answer-set.

For semantics of optimization programs, we interpret the #minimize statement w.r.t. subset-
inclusion: For any sets X and Y of atoms, we have Y ⊆w

J X , if for any weighted literal l = w@J
occurring in (7.1), Y |= l implies X |= l. Then, M is a collection of relations of the form⊆w

J for
priority levels J and weights w. A standard answer-set (i.e. not taking the minimize statements
into account) Y of π dominates a standard answer-set X of π w.r.t. M if there are a priority level
J and a weight w such that X ⊆w

J Y does not hold for ⊆w
J∈ M , while Y ⊆w′

J ′ X holds for all
⊆w′

J ′∈ M where J ′ ≥ J . Finally a standard answer-set X is an answer-set of an optimization
program π w.r.t. M if there is no standard answer-set Y of π that dominates X w.r.t. M .

We briefly recall some central complexity results for ASP. Credulous and skeptical reasoning
in terms of programs are defined as follows. Given a program π and a set A of ground atoms. We
denote by π |=c A that A is contained in some answer-sets of π. Likewise, we denote by π |=s A
that A is contained in all answer-sets of π. In the former case, we reason credulously, in the latter
case, we reason skeptically. Since we will deal with fixed programs, we focus on results for data
complexity. Recall that data complexity in our context addresses the problem π(D) |= A where
the query π is fixed, while the input database D and ground atoms A are inputs of the decision
problem. Depending on the concrete definition of |=, we get the complexity results in Table 7.1,
compiled from [35] and the references therein.

Representing AFs in ASP

Here we first show how to represent AFs in ASP, and we give two programs which we need later
on in this section. The first one πcf opens the search space for our solutions via two guessing
rules and eliminates all guesses which are not conflict-free. The second program π< defines an
order over the domain elements.

All our programs are fixed which means that the only translation required, is to give an AF
F as input database F̂ to the program πσ for a semantics σ. In fact, for an AF F = (A,R), we
define F̂ as

F̂ = { arg(a) | a ∈ A} ∪ {att(a, b) | (a, b) ∈ R }.

In what follows, we use unary predicates in/1 and out/1 to perform a guess for a set S ⊆
A, where in(a) represents that a ∈ S (resp. out(a) for a 6∈ S). The following notion of
correspondence is relevant for our purposes.

83

Definition 35. Let S ⊆ 2U be a collection of sets of domain elements and let I ⊆ 2BU be a

collection of sets of ground atoms. We say that S and I correspond to each other, in symbols

S ∼= I, iff

(i) for each S ∈ S , there exists an I ∈ I, such that {a | in(a) ∈ I} = S;

(ii) for each I ∈ I, it holds that {a | in(a) ∈ I} ∈ S; and

(iii) |S| = |I|.

Let F = (A,R) be an AF. The following program fragment guesses, when augmented by F̂ ,
any subset S ⊆ A and then checks whether the guess is conflict-free in F :

πcf = { in(X)← not out(X), arg(X);

out(X)← not in(X), arg(X);

← in(X), in(Y), att(X,Y) }.

Proposition 13. For any AF F , cf (F) ∼= AS(πcf (F̂)).

The proof of Proposition 13 can be found in [59]. For ASP encodings, it is sometimes required or
desired to avoid the use of negation. This might either be the case for the saturation technique or
if a simple program can be solved without a Guess&Check approach. Then, encodings typically
rely on a form of loops where all domain elements are visited and it is checked whether a desired
property holds for all elements visited so far. We will use this technique in our saturation-based
encoding in the upcoming subsection, but also for the computation of the instance [[F −∆F,S]]
for cf2 and stage2 semantics.

For this purpose, an order < over the domain elements (usually provided by common ASP
solvers) is used together with a few helper predicates defined in program π< below; in fact,
predicates inf /1, succ/2 and sup /1 denote infimum, successor and supremum of the order <.

π< = { lt(X,Y)← arg(X), arg(Y), X < Y ;

nsucc(X,Z)← lt(X,Y), lt(Y, Z);

succ(X,Y)← lt(X,Y),not nsucc(X,Y);

ninf(Y)← lt(X,Y);

inf(X)← arg(X),not ninf(X);

nsup(X)← lt(X,Y);

sup(X)← arg(X),not nsup(X) }.

ASP-Encodings for cf2 Semantics

To this end, we provide a fixed program πcf2 which, augmented with an input database repre-
senting a given AF F , has its answer-sets in a one-to-one correspondence to the cf2 extensions
of F . In particular, πcf2 computes cf2 extension along the lines of Theorem 1. The modularity
of ASP allows us to split πcf2 into several modules, where we also make use of the two program

84

moduls πcf and π< introduced above. Then, the program πcf2 implements the following steps,
given an AF F = (A,R):

1. Guess the conflict-free sets S ⊆ A of F .

2. For each S, compute the set ∆F,S .

3. For each S, derive the instance [[F −∆F,S]].

4. Check whether S ∈ naive([[F −∆F,S]]).

Step 1 is computed by πcf , thus we go directly to Step 2. In the module πreach we use the
predicates inf(·), succ(·, ·) and sup(·) from the module π< to iterate over the operator ∆F,S(·).
Given F = (A,R), by definition of ∆F,S it is sufficient to compute at most |A| such iterations
to reach the fixed-point. Let us now present the module and then explain its behavior in more
detail.

πreach = { arg_set(N,X)← arg(X), inf(N); (7.2)

reach(N,X, Y)← arg_set(N,X), arg_set(N,Y), att(X,Y); (7.3)

reach(N,X, Y)← arg_set(N,X), att(X,Z), reach(N,Z, Y); (7.4)

d(N,X)← arg_set(N,Y), arg_set(N,X), in(Y), att(Y,X),

not reach(N,X, Y); (7.5)

arg_set(M,X)← arg_set(N,X),not d(N,X), succ(N,M) }. (7.6)

Rule (7.2) first copies all arguments into a set indexed by the infimum which initiates the com-
putation. The remaining rules are applicable to arbitrary indices, whereby rule (7.6) copies (a
subset of the) arguments from the currently computed set into the “next” set using the successor
function succ(·, ·). This guarantees a step-by-step computation of arg_set(i, ·) by incrementing
the index i. The functioning of rules (7.3)–(7.6) is as follows. Rules (7.3) and (7.4) compute
a predicate reach(n, x, y) indicating that there is a path from argument x to argument y in the
given framework restricted to the arguments of the current set n. In rule (7.5), d(n, x) is ob-
tained for all arguments x which are component-defeated by S in this restricted framework. In
other words, if n is the i-th argument in the order <, d(n, x) carries exactly those arguments x
which are contained in ∆i

F,S . Finally, rule (7.6) copies arguments from the current set which are
not component-defeated to the successor set.

Next, we derive the instance [[F −∆F,S]] with the module πinst . As already outlined above,
if the supremum m is reached in πreach , we are guaranteed that the derived atoms arg_set(m,x)
characterize exactly those arguments x from the given AF F which are not contained in ∆F,S . It
is thus now relatively easy to obtain the instance [[F−∆F,S]] which is done below via predicates
arg_new(·) and att_new(·, ·).

πinst = { arg_new(X)← arg_set(M,X), sup(M);

att_new(X,Y)← arg_new(X), arg_new(Y), att(X,Y),

reach(M,Y,X), sup(M) }.

85

Finally, it remains to verify whether the initially guessed set S is a cf2 extension. To do so,
we need to check whether S ∈ naive([[F − ∆F,S]]). The following module does this job by
checking whether only those arguments are not contained in S, for which an addition to S would
yield a conflict.

πcheck_naive = { conflicting(X)← att_new(Y,X), out(X), in(Y);

conflicting(X)← att_new(X,Y), out(X), in(Y);

conflicting(X)← att_new(X,X);

← not conflicting(X), out(X), arg_new(X) }.

One important observation here is that the checking module has no influence on the guessing
part. This will not be the case when we come to the encodings for stage2 (resp. stage) semantics.
We now have our entire encoding available:

πcf2 = πcf ∪ π< ∪ πreach ∪ πinst ∪ πcheck_naive .

The desired correspondence between answer-sets and cf2 extensions is as follows.

Proposition 14. For any AF F , cf2 (F) ∼= AS(πcf2 (F̂)).

ASP-Encodings for stage2 Semantics

Here we concentrate on implementing the stage2 semantics in ASP. Therefore we will first give
the encodings for stage semantics, and then due to the modularity of ASP we can reuse those en-
codings for the ones for stage2 semantics. In the previous subsection we saw that the encodings
for cf2 semantics are quite simple and short, this can be explained by the low complexity of the
individual components. For stage and stage2 semantics we need more involved programming
techniques like saturation encodings which we will explain in the following.

Saturation Encodings for Stage Semantics

We exemplify on the stage semantics the saturation technique for encodings which solve as-
sociated problems which are on the second level of the polynomial hierarchy. This technique
was introduced by Eiter and Gottlob in [60] and it was already used to encode the preferred
and semi-stable semantics in [59]. While with default negation, one is capable to formulate an
exclusive guess (as we did in the encodings for cf2 semantics), disjunction can be employed for
the saturation technique, which allows for representing even more complex problems. The term
“saturation” indicates that all atoms which are subject to a guess can also be jointly contained in
an interpretation. To saturate a guess, it is however necessary that the checking part of a program
interacts with the guessing part.

The encodings for the stage semantics are very similar to the one of semi-stable extensions
from [59]. The main difference is that for semi-stable extensions the set S ⊆ A needs to be
admissible, whereas for stage extensions the set S is only required to be conflict-free. Therefore
we obtain the encoding for stage extensions by a slight modification of the encoding for semi-
stable extensions.

86

In fact, for an AF F = (A,R) and S ∈ cf (F) we need to check whether no T ∈ cf (F)
with S+

R ⊂ T+
R exists. Therefore we have to guess an arbitrary set T and saturate in case

(i) T is not conflict-free, and

(ii) S+
R 6⊂ T+

R .

The following module (together with πcf) computes for a guessed subset S ⊆ A the range
S+
R of S in an AF F = (A,R) (as introduced in Definition 5 on page 11).

πrange = { in_range(X)← in(X);

in_range(X)← in(Y), att(Y,X);

not_in_range(X)← arg(X),not in_range(X) }.

In the next module we make a second guess for the set T . Then, in/1 holds the current guess for
S and inN/1 holds the current guess for T .

πsatstage = { inN(X) ∨ outN(X)← arg(X); (7.7)

fail← inN(X), inN(Y), att(X,Y); (7.8)

fail← eqplus; (7.9)

fail← in_range(X), not_in_rangeN(X); (7.10)

inN(X)← fail, arg(X); (7.11)

outN(X)← fail, arg(X); (7.12)

← not fail }. (7.13)

More specifically:

• In rule (7.7) we use disjunction for the guess. This is essential for the saturation technique
because it allows for an argument a to have both inN(a) and outN(a) in the same answer-
set which is not possible for the predicates in/1 and out/1 from module πcf .

• Rule (7.8) checks requirement (i), so if the set T is not conflict-free we derive fail.

• Rule (7.9) fires in case S+
R = T+

R (indicated by predicate eqplus/0 described below).

• Rule (7.10) fires if there exists an a ∈ S+
R such that a /∈ T+

R (here we use predicate
in_range/1 from above and predicate not_in_rangeN/1 which we also present below).
As is easily checked one of the last two conditions holds exactly if (ii) holds.

• Next, the rules (7.11) and (7.12) saturate if fail was derived. This means that we derive
for each a ∈ A both inN(a) and outN(a) and therefore blow up the answer-sets.

• Finally, the constraint (7.13) rules out all guesses which do not contain fail.

87

To sum up, exactly those sets S survive where there is no T which is both conflict-free and has
a bigger range than S.

In the module πrangeN we compute the predicate not_in_rangeN/1 via undef_upto/2. We
use here the predicates inf /1, succ/2 and sup /1 to compute the predicate undef_upto(i, a)
which states that the argument a is undefeated up to the i-th argument in the order <. Then, if
an argument a is undefeated up to the supremum, we derive not_in_rangeN(a). Furthermore
we compute the predicate in_rangeN/1 which gives us the range T+

R for the arguments in the
second guess.

πrangeN = { undef_upto(N,X)← inf(N), outN(X), outN(N);

undef_upto(N,X)← inf(N), outN(X),not att(N,X);

undef_upto(N,X)← succ(Z,N), undef_upto(Z,X), outN(N);

undef_upto(N,X)← succ(Z,N), undef_upto(Z,X),not att(N,X);

not_in_rangeN(X)← sup(M), outN(X), undef_upto(M,X);

in_rangeN(X)← inN(X);

in_rangeN(X)← outN(X), inN(Y), att(Y,X) }.

In the module π+
eq we obtain eqplus, if the range from the first guess S and the second guess

T is equal, i.e. if S+
R = T+

R . This is done via the predicate eqplus_upto/1.

π+
eq = { eqplus_upto(X)← inf(X), in_range(X), in_rangeN(X);

eqplus_upto(X)← inf(X), not_in_range(X), not_in_rangeN(X);

eqplus_upto(X)← succ(Z,X), in_range(X), in_rangeN(X), eqplus_upto(Z);

eqplus_upto(X)← succ(Y,X), not_in_range(X), not_in_rangeN(X),

eqplus_upto(Y);

eqplus← sup(X), eqplus_upto(X) };

We note here that both modules πrangeN and π+
eq are stratified. Finally, we put everything to-

gether and obtain the encodings for stage semantics:

πstage = πcf ∪ π< ∪ πrange ∪ πrangeN ∪ π+
eq ∪ πsatstage .

The following result gives the link between the stage extensions of an AF F and the answer-sets
of the program πstage with the input F̂ .

Proposition 15. For any AF F , stage(F) ∼= AS(πstage(F̂)).

The saturation encodings are quite complicated and normally one needs an ASP expert to design
them. As many interesting problems require some kind of meta-reasoning, Gebser and Schaub
designed the metasp optimization front end for the ASP-system gringo/claspD [70],
which also allows for ASP beginners to encode problems which are on the second level of the
polynomial hierarchy. In the next subsection we will explain how one can simplify the encodings
of stage semantics using metasp.

88

metasp Encodings for Stage Semantics

In [52] the metasp approach has been used to simplify the encodings for preferred, semi-stable,
stage and resolution-based grounded semantics. Here we picture this novel method by means
of stage semantics. In particular we present the simplified encodings for stage semantics with
the aid of the #minimize statement which are then evaluated with the subset-minimization
semantics provided by metasp. For our encodings we do not need prioritization and weights,
therefore these are omitted (i.e. set to default) in the minimization statements. The minimization
technique is realized through meta programming techniques, which themselves are answer-set
programs. This works as follows.

• The ASP encodings to solve are given to the grounder gringo which reifies the pro-
grams, i.e. outputs ground programs consisting of facts, which represent the rules and
facts of the original input encodings.

• The grounder is then again executed on this output together with the meta programs which
encode the optimization.

• Finally, claspD computes the answer-sets.

Note that here we use the version of clasp which supports disjunctive rules. Therefore for a
program π and an AF F we have the following execution.

gringo -reify π(F̂) | \

gringo - {meta.lp,metaO.lp,metaD.lp} \

<(echo “optimize(1,1,incl).”) | claspD 0

Here, meta.lp, metaO.lp and metaD.lp are the encodings for the minimization state-
ment. The statement optimize(incl,1,1) indicates that we use subset inclusion for the
optimization technique using priority and weight 1.

Now the module for stage semantics is easy to encode using the minimization statement of
metasp. Remember, a set S is a stage extension of an AF if it is conflict-free and has maximal
range, so we minimize the predicate not_in_range/1 from the module πrange , and the encodings
reduce to:

πstage_metasp = πcf ∪ πrange ∪ {#minimize[not_in_range]}.

The following result follows now directly.

Proposition 16. For any AF F , we have stage(F) ∼= AS(πstage_metasp(F̂)).

Performance tests comparing the saturation encodings with the metasp encodings on different
random instances showed that the use of this optimization front-end not only makes the encod-
ings simpler but also faster. Especially in the case of stage semantics the runtime differences are
in evidence. A detailed representation of the experimental evaluation can be found in [52].

89

Saturation Encodings for stage2 Semantics

Thanks to the modularity of ASP we can now more or less put the parts from computing ∆F,S ,
[[F −∆F,S]] and the encodings for stage extensions together. We just need some small modifi-
cations which we explain in the following. The saturation encodings for computing the stage2

extensions is composed as follows:

πstage2 = πcf ∪ π< ∪ πreach ∪ πinst ∪ π<′ ∪ πrange ∪ π+
eq ′ ∪ πrangeN ′ ∪ πsatstage′ .

The four modules π<′ , π+
eq ′ , πrangeN ′ and πsatstage′ require a slight modification from the original

ones, namely π<′ is defined as the order over the arguments contained in the instance [[F −
∆F,S]].

π<′ = { ltN(X,Y)← arg_new(X), arg_new(Y), X < Y ;

nsuccN(X,Z)← ltN(X,Y), ltN(Y, Z);

succN(X,Y)← ltN(X,Y),not nsuccN(X,Y);

ninfN(Y)← ltN(X,Y);

infN(X)← arg(X),not ninfN(X);

nsupN(X)← ltN(X,Y);

supN(X)← arg_new(X),not nsupN(X) }.

Then the modules π+
eq ′ , πrangeN ′ and πsatstage′ use the predicates defined in π<′ , because the

check if the guess is a stage extension is performed in the instance [[F −∆F,S]].

πsatstage′ = { inN(X) ∨ outN(X)← arg_new(X);

fail← inN(X), inN(Y), att_new(X,Y);

fail← eqplus;

fail← in_range(X), not_in_rangeN(X);

inN(X)← fail, arg_new(X);

outN(X)← fail, arg_new(X);

← not fail }.

πrangeN ′ = { undef_upto(N,X)← infN(N), outN(X), outN(N);

undef_upto(N,X)← infN(N), outN(X),not att_new(N,X);

undef_upto(N,X)← succN(Z,N), undef_upto(Z,X), outN(N);

undef_upto(N,X)← succN(Z,N), undef_upto(Z,X),not att_new(N,X);

not_in_rangeN(X)← supN(M), outN(X), undef_upto(M,X);

in_rangeN(X)← inN(X);

in_rangeN(X)← outN(X), inN(Y), att_new(Y,X) }.

90

π+
eq ′ = { eqplus_upto(X)← infN(X), in_range(X), in_rangeN(X);

eqplus_upto(X)← infN(X), not_in_range(X), not_in_rangeN(X);

eqplus_upto(X)← succN(Z,X), in_range(X), in_rangeN(X), eqplus_upto(Z);

eqplus_upto(X)← succN(Y,X), not_in_range(X), not_in_rangeN(X),

eqplus_upto(Y);

eqplus← supN(X), eqplus_upto(X) }.

Finally we obtain the following result.

Proposition 17. For any AF F , stage2 (F) ∼= AS(πstage2 (F̂)).

metasp Encodings for stage2 Semantics

For stage2 semantics we can also make use of the metasp front end described above. Therefore
we use the modules πcf , π<, πreach and πinst to compute for each guess the instance [[F−∆F,S]].
For the check if the guessed set S is a stage extension of the instance, we first compute the
predicate not_in_rangeN/1 via undef_upto/2 in the slightly modified module πrangeN ′′ .

πrangeN ′′ = { undef_upto(N,X)← inf(N), out(X), out(N);

undef_upto(N,X)← inf(N), out(X),not att_new(N,X);

undef_upto(N,X)← succ(Z,N), undef_upto(Z,X), out(N);

undef_upto(N,X)← succ(Z,N), undef_upto(Z,X),not att_new(N,X);

not_in_rangeN(X)← sup(M), out(X), undef_upto(M,X) }.

Then, we check if S is a naive extension of the instance in the module πcheck_naive′ .

πcheck_naive′ = { conflicting(X)← att_new(Y,X), out(X), in(Y);

conflicting(X)← att_new(X,Y), out(X), in(Y);

conflicting(X)← att_new(X,X);

← not conflicting(X), not_in_rangeN(X), arg_new(X) }.

We put everything together including the minimize statement for not_in_rangeN/1.

πstage2_metasp = πcf ∪ π< ∪ πreach ∪ πinst ∪ πcheck_naive′ ∪ πrangeN ′′

∪ {#minimize[not_in_range]}.

Finally we obtain the following result.

Proposition 18. For any AF F , stage2 (F) ∼= AS(πstage2_metasp(F̂)).

91

7.2 Labelings

In the previous section we already performed a labeling when we computed the extensions of an
AF. In the ASP encodings we “labeled” the arguments with “in” and “out”. In this section we
consider labelings as a direct approach to implement AFs as in [30, 97]. In the labeling-based
approach one assigns each argument a label. Most commonly the arguments are labeled with
in, out and undec, with the meaning that they are either accepted, rejected or one can not decide
whether to accept or to reject the arguments. With this three-valued labels one obtains a more
fine grained classification of the justification status of an argument.

There are definitions in terms of labelings for nearly all prominent semantics, for an overview
we refer to [14], where also a labeling for cf2 semantics is included. However, we present here
a slightly different definition of cf2 labelings because we belief that it reflects more the intuition
of this semantics. Furthermore we also define stage2 labelings and we provide labeling based
algorithms for cf2 and stage2 semantics, which are complexity sensitive in the sense that they
reflect some results from Chapter 5.

In the following we introduce the necessary concepts for labelings and in particular for cf2
and stage2 labelings.

Definition 36. Let F = (A,R) be an AF. A labeling is a total function L : A → {in , out ,

undec}.

Then, a labeling can be denoted as a triple L = (Lin ,Lout ,Lundec), where Ll = {a ∈ A |
L(a) = l}. According to [14] conflict-free and stage labelings are given as follows.

Definition 37. Let F = (A,R) be an AF. Then, L is a conflict-free labeling of F , i. e. L ∈
cf L(F), iff

• for all a ∈ Lin there is no b ∈ Lin such that (a, b) ∈ R,

• for all a ∈ Lout there exists a b ∈ Lin such that (b, a) ∈ R

Then, L is a stage labeling of F , i. e. L ∈ stageL(F), iff L ∈ cf L(F) and there is no L′ ∈
cf L(F) with L′undec ⊂ Lundec .

The following definition of a naive labeling slightly differs from the traditional definition, as
there are no arguments labeled out . We need this special form of the naive labeling for the
definition of the cf2 labeling.

Definition 38. Let F = (A,R) be an AF. Then, L ∈ naiveL(F), iff

• for all a ∈ Lin there is no b ∈ Lin such that (a, b) ∈ R,

• Lundec = {a ∈ A \ Lin} and Lout = ∅,

• for all a ∈ Lundec there is an argument b ∈ Lin , such that a is in conflict with b.

Next, we define cf2 labelings, where an argument is labeled out iff it is attacked by an argument
labeled in which does not belong to the same SCC.

92

Definition 39. Let F = (A,R) be an AF. Then, L is a cf2 labeling of F , i.e. L ∈ cf2L(F), iff

• L ∈ naiveL(F), in case |SCCs(F) = 1|.

• otherwise, ∀C ∈ SCCs(F),L|C\DF (Lin) ∈ cf2L(F |C −DF (Lin)),
and ∀a ∈ A : a ∈ DF (Lin)⇔ L(a) = out .

It is easy to see that there is a one-to-one mapping between cf2 extensions and labelings, s.t.
each extension S corresponds to a labeling L with Lin = S and Lout = ∆F,S .

For stage2 labelings we use our alternative characterization.

Definition 40. Let F = (A,R) be an AF. Then, L is a stage2 labeling of F , i. e. L ∈
stage2L(F), iff L ∈ cf L(F) ∩ stageL([[F −∆F,Lin

]]), where ∆F,Lin
⊆ Lout .

Again there is a one-to-one mapping between stage2 extensions and labelings, and each exten-
sion S corresponds to a labeling L with Lin = S and Lout = S+ \ S.

Labeling Algorithm for cf2

In the following we present a labeling-based algorithm which computes cf2 -labelings/extensions.
This algorithm is complexity-sensitive in the following sense. From Theorem 8 we know that
on acyclic AFs, cf2 coincides with the grounded semantics and thus can be computed in poly-
nomial time. To this end, the following algorithm is designed in the way that on acyclic AFs,
there is no need for recursive calls. Notice that the other tractable fragments, i.e. symmetric and
bipartite AFs, may propose an exponential number of extensions (the tractability for reasoning
tasks was via some shortcut preventing us from computing all extensions) and thus not allow for
an efficient computation of all extensions.

The following proposition identifies two rules to propagate already computed labels.

Proposition 19. For AF F = (A,R) and labeling L = (Lin ,Lout ,Lundec) ∈ cf2L(F). Let

a ∈ A, then att(a) = {b ∈ A | (b, a) ∈ R} denotes all attackers of a.

1. For every a ∈ A: if att(a) ⊆ Lout ∧ (a, a) 6∈ R then a ∈ Lin .

2. For every a ∈ A: if ∃b ∈ Lin , O ⊆ Lout : (b, a) ∈ R ∧ a 6⇒
A\O
F b then a ∈ Lout .

Proof. (1) As mentioned above a ∈ Lout iff a ∈ ∆F,Lin
. If all attackers of a are in ∆F,Lin

we
get that {a} is an isolated argument in [[F − ∆F,S]]. Now, as L ∈ naive([[F − ∆F,S]]) and

(a, a) 6∈ R we finally get a ∈ Lin . (2) Using ∃b ∈ Lin , O ⊆ Lout : (b, a) ∈ R ∧ a 6⇒
A\O
F b

and O ⊆ Lout = ∆F,Lin
, we obtain that ∃b ∈ Lin : (b, a) ∈ R ∧ a 6⇒

A\Lout

F b. As ∆F,Lin
is a

fixed-point we obtain that a ∈ ∆F,Lin
and thus also a ∈ Lout .

93

Algorithm 1 cf2L(F,L)

Require: AF F = (A,R), labeling L = (Lin ,Lout ,Lundec);
Ensure: Return all cf2 labelings of F .

1: X = {a ∈ Lundec | att(a) ⊆ Lout};

2: Y = {a ∈ Lundec | ∃b ∈ Lin , (b, a) ∈ R, a 6⇒
A\Lout

F b};
3: while (X ∪ Y) 6= ∅ do

4: Lin = Lin ∪X,Lout = Lout ∪ Y,Lundec = Lundec \ (X ∪ Y);
5: update X and Y ;
6: end while

7: B = {a ∈ Lundec | Lin ∪ {a} ∈ cf (F)};
8: if B 6= ∅ then

9: C = {a ∈ B |6 ∃b ∈ B : b⇒
A\Lout

F a, a 6⇒
A\Lout

F b};
10: E = ∅;
11: for all L′ ∈ naiveL(F |C) do

12: update L with L′;
13: E = E ∪ cf2L(F,L);
14: end for

15: return E ;
16: else

17: return {(Lin ,Lout ,Lundec)};
18: end if

Description of Algorithm 1. The cf2 labeling algorithm requires as input an AF F = (A,R)
and a labeling L = (Lin ,Lout ,Lundec). If cf2L(F,L) is started with the initial labeling L =
(∅, ∅, A), it returns all cf2 labelings of F .

• At the beginning, the two sets X and Y are computed. Where X identifies those argu-
ments in Lundec which can directly be labeled with in , and Y identifies those arguments
in Lundec which can directly be labeled with out according to Proposition 19. These new
labeling modifications are performed in the “while-loop” till a fixed-point is reached.

• Next, the set B identifies all arguments which are labeled undec and are not in conflict
with the arguments in Lin .

• Then, if B 6= ∅, the set C identifies the next SCCs to be labeled. Note here, C does not
contain all arguments of an SCC, but all arguments which can be labeled in . To be more
precise, self-attacking arguments are omitted in C.

• Next, in Line 11 a separated procedure identifies all naive labelings of the sub-framework
F |C . For each naive labelingL′ we update the actual labelingLwithL′ and call cf2L(F,L)
recursively. Note, this step is a branch between different cf2 extensions.

• Finally, the algorithm returns all cf2 labelings of F .

94

Figure 7.1: The argumentation framework F from Example 30.

Example 30. Consider the AF from Example 5 as illustrated in Figure 7.1. We call cf2L(F,L)
with the initial labeling L = (∅, ∅, A).

At the beginning we have X = ∅, Y = ∅, B = A and C = {a, b, c}. We invoke the

external procedure for computing the naive extensions of F |C which return three naive labelings

L1 = ({a}, ∅, {b, c}), L2 = ({b}, ∅, {a, c}) and L3 = ({c}, ∅, {a, b}). For each of them the

actual labeling is updated with L′ ∈ naiveL(F |C) and cf2L(F,L) is called.

• ForL1 this looks as follows. We call cf2L(F,L) withL = ({a}, ∅, A\{a}). Then, X = ∅,
Y = ∅, B = {d, e, f, g, h, i} and C = {d}. As F |C consists of the single argument d, we

can update the actual labeling to ({a, d}, ∅, A \ {a, d}) and call cf2L again.

– Now, X = ∅, Y = {f} and Lout = {f}. Then, X = {g}, Y = ∅ and Lin =
{a, d, g}. Next, X = ∅, Y = {h} and Lout = {f, h}. Then, X = {i}, Y = ∅ and

Lin = {a, d, g, i}. Thus we obtain B = C = {e} and we can update the labeling

and return ({a, d, e, g, i}, {f, h}, {b, c}).

• For L2 we call cf2L(F,L) with L = ({b}, ∅, A \ {b}). Then, X = ∅, Y = {d, e} and

Lout = {d, e}. Next, B = C = {f, g, h, i} and as F |C has two naive extensions we can

return the two cf2 labelings ({b, f, h}, {d, e}{a, c, g, i}) and ({b, g, i}, {d, e}, {a, c, f, h}).

• Finally for L3 we call cf2L(F,L) with L = ({c}, ∅, A \ {c}). Then, X = ∅, Y = ∅,
B = {d, e, f, g, h, i} and C = {d}. Here we have the same set B as in the step above for

L1, which leads us to the cf2 labeling ({c, d, e, g, i}, {f, h}, {a, b}).

✸

Labeling Algorithm for stage2

Now we give an algorithm for the computation of stage2 labelings. As the approach of stage2
is very close to the one of cf2 , also the algorithm for stage2 labelings follows nearly the same
procedure as Algorithm 1. In the following we first discuss the necessary modifications and then
we present the algorithm, followed by an example where we explain step by step the procedure.

• As each stage2 extension is also a cf2 extension we can apply Proposition 19 to stage2 as
well, but we have to take into account the different definition of Lout . To be more precise,
for cf2 labelings we have Lout = ∆F,Lin

, whereas for stage2 labelings ∆F,Lin
⊆ Lout .

95

• Furthermore, we can not omit the self-loops in the restricted framework F |C , as they are
also necessary for the stage labelings. Thus we need to add them, which is done with the
set D in Line 10 of Algorithm 2.

• Moreover, in Line 12 we have to replace naiveL(F |C) by stageL(F |D).

• For the external procedure for stage labelings one can use the one presented in [28].

Algorithm 2 stage2L(F,L)

Require: AF F = (A,R), labeling L = (Lin ,Lout ,Lundec);
Ensure: Return all stage2 labelings of F .

1: X = {a ∈ Lundec | att(a) ⊆ Lout};

2: Y = {a ∈ Lundec | ∃b ∈ Lin , (b, a) ∈ R, a 6⇒
A\Lout

F b};
3: while (X ∪ Y) 6= ∅ do

4: Lin = Lin ∪X,Lout = Lout ∪ Y,Lundec = Lundec \ (X ∪ Y);
5: update X and Y ;
6: end while

7: B = {a ∈ Lundec | Lin ∪ {a} ∈ cf (F)};
8: if B 6= ∅ then

9: C = {a ∈ B |6 ∃b ∈ B : b⇒
A\Lout

F a, a 6⇒
A\Lout

F b};

10: D = C ∪ {a ∈ Lundec | ∃b ∈ C, a⇒
A\Lout

F b, b⇒
A\Lout

F a}
11: E = ∅;
12: for all L′ ∈ stageL(F |D) do

13: update L with L′;
14: E = E ∪ stage2L(F,L);
15: end for

16: return E ;
17: else

18: return {(Lin ,Lout ,Lundec)};
19: end if

Example 31. Consider the AF F pictured in Figure 7.2. We call stage2L(F,L) with the initial

labeling L = (∅, ∅, A).
We start with X = ∅, Y = ∅, B = {a, b, d, e, f, g, h, i} and C = {a, b}. To complete

the inner loop we compute D = {a, b, c} which also takes the self-attacking argument c into

account. Next we call the external procedure to obtain all stage labelings of the restricted AF

F |D which gives us L1 = ({a}, {b}, {c}) and L2 = ({b}, {c}, {a}). Here we have the first

branch where we update the actual labeling to the ones obtained from stageL(F |D).

• For L1 we call stage2L(F,L) with the updated labeling L = ({a}, {b}, A \ {a, b}). This

leads us to X = ∅, Y = ∅ and B = C = D = {d, e, f, g, h, i}. We call stageL(F |D)
which returns L1,1 = ({e, g, i}, {d, f, h}, ∅) and L1,2 = ({d, f, h}, {e, g, i}, ∅) as the two

stage labelings of F |D. We update the actual labeling with them and branch another time.

96

Figure 7.2: The argumentation framework F from Example 31.

– For L1,1 we call stage2L(F,L) with L = ({a, e, g, i}, {b, d, f, h}, {c, x}), where

we have X = ∅, Y = ∅ and B = ∅. Thus, Algorithm 2 returns the stage2 labeling

({a, e, g, i}, {b, d, f, h}, {c, x}).

– For L1,2 we call stage2L(F,L) with L = ({a, d, f, h}, {b, e, g, i}, {c, x}). Then,

X = ∅, Y = {x} and we obtain Lout = {b, e, g, i, x}. As B = ∅ we return

({a, d, f, h}, {b, e, g, i, x}, {c}).

• For L2 we call stage2L(F,L) with L = ({b}, {c}, A\{b, c}). Then X = ∅, Y = {g} and

Lout = {c, g}. Next, X = {h}, Y = ∅ and Lin = {b, h}. In the next iteration we have

X = ∅, Y = {i} and Lout = {c, g, i} and then X = {d}, Y = ∅ and Lin = {b, d, h}.
We continue with X = ∅, Y = {e, x} and Lout = {c, e, g, i, x} and X = {f}, Y = ∅
and Lin = {b, d, f, h}. Finally X = ∅, Y = ∅ and B = ∅ and the algorithm returns the

last stage2 labeling of F , namely ({b, d, f, h}, {c, e, g, i, x}, {a}).

✸

7.3 Web Application of ASPARTIX

As mentioned above, the ASP encodings described in Section 7.1 are fixed encodings, so one can
use them together with the AF as input and the respective ASP-solver (dlv, gringo/claspD)
without the need of any knowledge of ASP. However the user still needs to have an ASP-solver
available and the encodings are only executable in the command line. To improve the usabil-
ity we designed a web application of the system ASPARTIX which is freely accessible under
http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/. This tool uses the ASP en-
codings as described above and in [59] together with the ASP-solver dlv. However the actual
usage is completely hidden from the user and thus makes the system easy to apply and under-
stand. The advantages of this tool are the following.

• Many semantics are supported (admissible, stable, complete, grounded, preferred, semi-
stable, ideal, cf2 , stage, resolution-based grounded and stage2).

97

http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/

Figure 7.3: Input page of Web-ASPARTIX

• Compact syntax for input representation in terms of relational facts.

• Appealing graphical representation using the GraphMLViewer.

• Platform-independency and no installation is necessary.

• Runtimes scale up to frameworks with over 100 nodes.

• We can easily update the underlying engines (either ASPARTIX or DLV) to gain better
performance or add to new semantics.

In Figures 7.3, 7.4 and 7.5 we pictured the input, the graph representation and the output of
the web application of ASPARTIX where the input AF F = (A,R) is defined with arguments
A = {a, b, c, d, e, f} and attacks R = {(a, b), (a, d), (b, c), (c, e), (d, a), (e, d), (f, d), (f, e)}.
As the evaluation semantics we selected cf2 .

7.4 Summary and Discussion

To sum up, we considered two distinct implementation methods. First the reduction-based ap-
proach with answer-set programming as the target formalism, second a direct approach where
we used labeling-based algorithms to solve the respective reasoning tasks. In our case we mainly

98

Figure 7.4: Graph representation and selection of semantics.

Figure 7.5: Output of extensions.

99

considered cf2 and stage2 semantics. On the ASP side we designed with the help of the alterna-
tive characterization of cf2 (resp. stage2) relatively compact encodings11. As the stage2 (resp.
stage) semantics required the more involved concept of saturation encodings we made use of a
novel optimization technique, the metasp encodings for the ASP-solver gringo/claspD.
An experimental evaluation of the efficiency of the optimized encodings for preferred, semi-
stable and stage semantics in [52] showed that the metasp frontend not only makes the encod-
ings simpler but also has a significant improvement on the runtime.

The labeling-based algorithms for cf2 and stage2 are complexity sensitive in the sense that
they do not perform recursive calls on acyclic AFs. Furthermore, we highlight that although the
worst case runtime of the algorithms are exponential in the size of the AF, they are polynomial
if one considers both the number of extensions and the size of the AF.

11All encodings are available online at http://www.dbai.tuwien.ac.at/research/project/

argumentation/systempage/.

100

http://www.dbai.tuwien.ac.at/research/project/argumentation/systempage/
http://www.dbai.tuwien.ac.at/research/project/argumentation/systempage/

CHAPTER 8
Conclusion

8.1 Summary

We shortly summarize the main results of this thesis. First, the alternative characterization of
cf2 allowed to avoid the recursive computation of several sub-frameworks by shifting the re-
cursion to the fixed-point operator ∆F,S . With this alternative characterization of cf2 several
further investigation steps have been facilitated, like the complexity analysis, the investigation
of equivalence and the implementation of this special semantics.

To overcome some of the shortcomings of cf2 we proposed to use the recursive schema of
cf2 and instantiate the base case with stage semantics instead of only naive semantics. Thus,
we obtained a new semantics which we called stage2 . We showed that this novel semantics
solves the problematic behavior of cf2 on longer cycles, in particular on cycles of length ≥ 6.
Furthermore, stage2 satisfies directionality and weak reinstatement which was not the case for
stage semantics. However, stage2 does not satisfy the weakest form of skepticism adequacy
which is satisfied by cf2 .

We provided the missing complexity results for cf2 and stage2 semantics. We summarize
the obtained results for the standard reasoning problems for argumentation semantics and for
the investigation of tractable fragments in Table 8.1. It turned out that both semantics are com-
putationally hard and moreover, that stage2 is located on the second level of the polynomial
hierarchy, thus it is among the hardest but also most expressiveness argumentation semantics.
We were able to identify tractable fragments for both semantics, namely acyclic, bipartite and
symmetric self-attack free frameworks.

The analysis of equivalence showed that for both, cf2 and stage2 semantics, strong equiv-
alence coincides with syntactic equivalence. Hence, there are no redundant attacks at all. We
made this behavior more explicit with the newly introduced succinctness property, which allows
to relate the semantics according to how much meaning every attack has for the computation
of the extensions. The succinctness property refers especially to semantics and not to specific
frameworks. Thus, it can be seen as an additional possibility to compare argumentation seman-

101

cf2 stage2

Ver σ in P coNP-c

Cred σ NP-c ΣP
2 -c

Skept σ coNP-c ΠP
2 -c

NEσ in P in P

Credσ
acycl in P in P

Skeptσ
acycl in P in P

Credσ
even−free NP-c coNP-h

Skeptσ
even−free coNP-c coNP-h

Credσ
bipart in P in P

Skeptσ
bipart in P in P

Credσ
sym in P in P/ΣP

2 ∗

Skeptσ
sym in P in P/ΠP

2 ∗

Table 8.1: Summary of complexity results.

tics. Furthermore we showed that stage semantics has the same kernel as stable semantics, thus
strong equivalence for stable and stage semantics coincide.

In the implementation part we gave the ASP encodings of cf2 and stage2 semantics, where
the alternative characterization facilitated this step. The encodings for cf2 only require the
standard Guess&Check procedure for ASP programs. As stage2 is located at the second level of
the polynomial hierarchy, we needed more involved programming techniques like the saturation
encodings. To simplify those encodings we applied the novel metasp optimization front-end
from the ASP system gringo/claspD. All these encodings are incorporated in the system
ASPARTIX and available on the web. We also provided labeling based algorithms for cf2 and
stage2 to directly compute the respective extensions. Finally, we illustrated the web application
of ASPARTIX.

8.2 Critical Reflection

This thesis is dedicated to a comprehensive analysis of the cf2 semantics and one can conclude
that this semantics is special in many different ways. Not only the special treatment of odd-
length cycles but although the characterization requires more involved concepts, the computa-
tional complexity is not as hard as for preferred, stage or semi-stable semantics. Both, cf2 and
stage2 satisfy the succinctness property, thus every attack and every argument has an influence
in the computation of the extensions.

Amgoud and Vesic criticized in [3] that the notion of strong equivalence as introduced in

102

[84] is too strong and has no practical application at all. We do agree that for logic-based
argumentation systems no self-attacking arguments do exist, but if one uses a different formalism
for the instantiation process, like the ASPIC+ system [89] or ASP (as proposed by Dung in [37]),
self-attacking arguments can occur. Therefore, knowing about redundant attacks for specific
semantics, and the classification of them in terms of succinctness, is useful and can make the
evaluation easier. As redundant attacks have no influence, they can be omitted already during
the instantiation process which can be a useful simplification step.

In [14], there is a note that naive-based semantics may cause inconsistent conclusions when
instantiated with the ASPIC+ schema as proposed in [29, 89]. This is also the case for cf2 se-
mantics, where a counterexample against consistency has been discovered by Wolfgang Dvořák12

and is explained in [14]. This does not mean that cf2 semantics yields inconsistent conclusions
always, but that using the instantiation method from the ASPIC+ schema is not adequate for
naive-based semantics.

In general the question which semantics is the best is hard to answer. The intention of this
thesis was not to prove that cf2 or stage2 are better than other semantics, instead we wanted
to provide an objective analysis of different computational and practical aspects. We belief that
choosing the “right” semantics mainly depends on the particular application.

One important issue for the improvements of argumentation systems is the need for a bench-
mark library [53]. In [52] the runtime of some specific semantics has been evaluated on ran-
domly generated instances. The cf2 semantics has not been included in this evaluation but we
expect that the nature of this semantics may cause some performance loss as it is the case for the
resolution-based grounded semantics. One crucial point in this context is that till now most of
the systems have only been tested on randomly generated AFs because no real world examples
are available. However, real problem instances may bear a specific structure which can have a
significant effect on the runtime. Therefore, identifying those structures and taking them into
account in the development of algorithms and systems is a very important topic which can cause
significant improvements on the runtime behavior.

On the other hand, argumentation does serve as an application for other fields such as ASP or
SAT solving. This is due to the fact that the representation of AFs as directed graphs is very sim-
ple but the complexity of the reasoning problems can be very hard. Thus, to use argumentation
as benchmarks for these approaches leads to improvements of ASP solvers and subsequently to
a better scalability of argumentation systems based on ASP, like ASPARTIX.

8.3 Related Work

In this section we discuss work which is related to the content of this thesis. As our work is
dedicated to an analysis of the cf2 argumentation semantics, we start with related work on the
systematic evaluation of semantics. Here one can mainly mention the work done by Baroni and
Giacomin [7, 8, 10, 11]. They introduced several general evaluation criteria a semantics should
fulfill. As none of the previously existing semantics satisfied all those criteria, they defined the
resolution-based grounded semantics [9] which closed this gap. Also the cf2 semantics has been
defined by them, to overcome the problems which arise on AFs with odd-length cycles.

12see http://homepage.univie.ac.at/wolfgang.dvorak/files/cf2-challenge.pdf

103

http://homepage.univie.ac.at/wolfgang.dvorak/files/cf2-challenge.pdf

Caminada and Amgoud defined rationality postulates for argumentation systems [29]. In
particular these postulates are defined for the ASPIC system [89] which is based on strict and
defeasible rules. In contrast to the evaluation criteria proposed by Baroni and Giacomin, these
postulates refer to the whole argumentation system and not to the individual semantics. We did
not consider these postulates in more detail in this work because we concentrated on abstract
argumentation only. Furthermore, the instantiation process in the ASPIC system is not adequate
for naive-based semantics like cf2 , because if one instantiates within this framework and then
applies a semantics which is not admissible-based, the outcome turns out to be inconsistent.

Next, we consider different approaches which deal with the problematic of cycles in AFs,
and in particular with odd-length cycles. Of course the cf2 semantics is not the only attempt
to solve this problem. Bodanza and Tohmé introduced the tolerant semantics [23], which has
the intuition that the defense of a set of arguments should not be defined in absolute terms but
relative to other possible challenging sets of arguments. They propose an application of this
semantics in the field of strategic argumentation games, where each player has to choose a set
of arguments to confront with and defend against the possible choices of the other agent.

Gabbay introduced several loop-busting semantics in [64]. One of them, the LB2 semantics
has shown to be equivalent to cf2 . All these semantics are involved in the equational approach to
argumentation networks [65]. The author also defines an equational approach to stage2 seman-
tics in [64], namely LB2 − stage . Furthermore in [1] the authors propose the Shkop semantics
which has been shown to be equivalent to LB4 from the loop-busting semantics in [64].

Roos proposed in [91] the preferential model semantics which also handles odd loops in a
special way. The motivation for this semantics comes from the preferential model semantics for
non-monotonic reasoning systems [73]. There, the attack relation is used to define preferences
over states. So, not one argument is preferred over another one, but one prefers a state where the
attacking argument is valid, over a state where the attacked argument is valid. This semantics
results in different extensions than cf2 , for example consider the AF F = (A,R) with A =
{a, b, c} and R = {(a, b), (b, c), (c, a), (c, c)}. Then, {a} and {b} are cf2 extensions, but only
{a} is a pm extension, because the state a is preferred over the state b, as the only attacker of a
is the argument c which is self-attacking.

Next, we consider work related to the investigation of equivalence as we did in Chapter 6.
We start with Amgoud and Vesic who studied equivalence of logic-based argumentation [3]
with respect to stable semantics. In particular the authors refined and extended the criteria from
Oikarinen and Woltran for logic-based argumentation systems by taking the internal structure of
the arguments into account.

Baumann characterized two new notions of equivalence, namely normal and strong expan-
sion equivalence which lie in-between standard and strong equivalence [18]. There new argu-
ments and attacks can be added with the condition that the attacks between the original argu-
ments remain unchanged.

Cayrol et al. studied the revision of an argument system in [33] oriented on the field of belief
revision [2]. There, the authors study the impact of adding a single new argument to an AF.

Finally we want to mention that the idea of considering strong equivalence of argumentation
framework arose from the work on strong equivalence of logic programs [75, 100]. Therefore
also the notion of strong equivalence for AFs is very similar to the one of logic programs.

104

Last, we say some words about related work on implementations. The only mentionable
reference about a system supporting the cf2 semantics is the work done by Osorio et al. [86].
They presented ASP encodings for the cf2 semantics at COMMA 2010. Thus, at the same time
as we presented the alternative characterization of cf2 and the respective ASP encodings [67].
However, these encodings are not implemented in any system and as they are based on the
original definition of cf2 they are very hard to follow. Moreover, one can observe that disjunction
has been used in some rule heads, thus they are not even adequate from a complexity point of
view. As disjunctive logic programs have a data complexity of ΣP

2 (resp. ΠP
2), but the complexity

of cf2 is NP-complete (resp. coNP-complete).

Regarding other reductions from argumentation to logic programing one can mention the
work of Nieves et al. [81, 82]. One aspect in their work is to use a fixed encoding schema to
represent AFs as logic programs, and then show how different semantics for logic programs can
be used to compute different forms of extensions using this particular schema. Most notably,
they showed that in their setting the stable semantics (for logic programs) captures stable exten-
sions of AFs, the well-founded semantics captures the grounded extension of AFs, and a novel
stratification semantics [82] captures the cf2 semantics. Osorio et al. [85] present an algorithm
for computing preferred extensions (based on abductive logic programming) using a fixed logic
program to characterize the admissible sets in the same manner as it is done in the ASPAR-
TIX approach. In [81], a different approach to compute preferred extensions by means of logic
programs has been proposed. However, this work requires a recompilation of the encoding for
each particular AF. Similarly, Wakaki and Nitta [99] also provide ASP encodings for different
semantics. In contrast to the ASPARTIX approach, their encodings for complete and stable se-
mantics are based on labelings, whereas for grounded, preferred and semi-stable semantics they
use a meta-programming technique applying additional translations for each AF into normal
logic programs.

8.4 Future Work

In the following we will list some possible future directions. Regarding the alternative charac-
terization, we note that it can also be seen as a general schema, where one can exchange the
parts. For example, sem(F) = {S | σ(F) ∩ τ([[F − ∆F,S]])}, where for naive-based se-
mantics σ = naive and for admissible-based semantics σ = adm . One special case of this
instantiation is stable2(F) = {S | S ∈ naive(F) ∩ stable([[F −∆F,S]])} and it clearly holds
that stable2(F) = stable(F). The investigation of other such combinations might reveal new
options.

As it turned out that strong equivalence is indeed very strong for many semantics, it can be
beneficial to relax the notion of equivalence and for example consider a relativized notion, where
source and target of attacks are restricted. This can be interesting in the course of two agents,
where one can only point attacks from and to a specific set of arguments. Also a more fine
grained classification of the semantics with respect to different notions of succinctness can be
identified as a future direction. The information obtained there can help to improve instantiation
methods.

105

Regarding implementations we would like to investigate if an optimization of the ASP en-
codings by using for example aggregates or symmetry breaking can improve the performance.

As far es we know there does not exist yet an appropriate instantiation method for naive-
based semantics. It has been shown that both stage and cf2 semantics produce inconsistent
solutions when instantiated within the ASPIC+ system. Thus, the identification of possible
application scenarios for cf2 and stage2 semantics and the respective instantiation methods is
still open.

With the use of the concept of Modular Logic Programming (MLP) [62] one can implement
the whole argumentation process, from the instantiation of the arguments and attacks to the
computation of the semantics. Due to the modularity of this approach, we plan to instantiate the
frameworks from an input database and embed the existing ASP encodings in one program with
several modules.

106

Bibliography

[1] Michael Abraham, Dov M. Gabbay, and Uri J. Schild. The handling of loops in talmudic
logic, with application to odd and even loops in argumentation. In David Rydeheard, An-
drei Voronkov, and Margarita Korovina, editors, Proceedings of Higher-Order Workshop

on Automated Runntime Verification and Debugging (HOWARD 60), 2011.

[2] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the logic of theory
change: Partial meet contraction and revision functions. J. Symb. Log., 50(2):510–530,
1985.

[3] Leila Amgoud and Srdjan Vesic. On the equivalence of logic-based argumentation sys-
tems. In Salem Benferhat and John Grant, editors, Proceedings of the 5th International

Conference on Scalable Uncertainty Management (SUM 2011), volume 6929 of Lecture

Notes in Computer Science, pages 123–136. Springer, 2011.

[4] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of declara-
tive knowledge. In Jack Minker, editor, Foundations of Deductive Databases and Logic

Programming, pages 89–148. Morgan Kaufmann Publishers, Inc., 1988.

[5] Katie Atkinson, Trevor J. M. Bench-Capon, and Sanjay Modgil. Argumentation for
decision support. In Stéphane Bressan, Josef Küng, and Roland Wagner, editors, Pro-

ceedings of the 17th International Conference on Database and Expert Systems Applica-

tions (DEXA 2006), volume 4080 of Lecture Notes in Computer Science, pages 822–831.
Springer, 2006.

[6] Pietro Baroni and Massimiliano Giacomin. Solving semantic problems with odd-length
cycles in argumentation. In Thomas D. Nielsen and Nevin L. Zhang, editors, Proceedings

of the 7th European Conference on Symbolic and Quantitative Approaches to Reasoning

with Uncertainty (ECSQARU 2003), volume 2711 of Lecture Notes in Computer Science,
pages 440–451. Springer, 2003.

[7] Pietro Baroni and Massimiliano Giacomin. Evaluating argumentation semantics with
respect to skepticism adequacy. In Lluis Godo, editor, Proceedings of the 8th European

Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty,

(ECSQARU 2005), volume 3571 of Lecture Notes in Computer Science, pages 329–340.
Springer, 2005.

107

[8] Pietro Baroni and Massimiliano Giacomin. On principle-based evaluation of extension-
based argumentation semantics. Artif. Intell., 171(10-15):675–700, 2007.

[9] Pietro Baroni and Massimiliano Giacomin. Resolution-based argumentation semantics.
In Philippe Besnard, Sylvie Doutre, and Anthony Hunter, editors, Proceedings of the

2nd Conference on Computational Models of Argument (COMMA 2008), volume 172 of
Frontiers in Artificial Intelligence and Applications, pages 25–36. IOS Press, 2008.

[10] Pietro Baroni and Massimiliano Giacomin. A systematic classification of argumentation
frameworks where semantics agree. In Philippe Besnard, Sylvie Doutre, and Anthony
Hunter, editors, Proceedings of the 2nd International Conference on Computational Mod-

els of Argument, (COMMA 2008), volume 172 of Frontiers in Artificial Intelligence and

Applications, pages 37–48. IOS Press, 2008.

[11] Pietro Baroni and Massimiliano Giacomin. Semantics in abstract argumentation systems.
In Iyad Rahwan and Guillermo R. Simari, editors, Argumentation in Artificial Intelli-

gence, pages 25–44. Springer, 2009.

[12] Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida. SCC-recursiveness: A gen-
eral schema for argumentation Semantics. Artif. Intell., 168(1–2):162–210, 2005.

[13] Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Giovanni Guida. Encom-
passing attacks to attacks in abstract argumentation frameworks. In Claudio Sossai and
Gaetano Chemello, editors, Proceedings of the 10th European Conference on Symbolic

and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2009), volume
5590 of Lecture Notes in Computer Science, pages 83–94, 2009.

[14] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argu-
mentation semantics. Knowledge Eng. Review, 26(4):365–410, 2011.

[15] Pietro Baroni, Federico Cerutti, Paul E. Dunne, and Massimiliano Giacomin. Computing
with infinite argumentation frameworks: The case of AFRAs. In Sanjay Modgil, Nir
Oren, and Francesca Toni, editors, Revised Selected Papers of the First International

Workshop on Theorie and Applications of Formal Argumentation (TAFA 2011), volume
7132 of Lecture Notes in Computer Science, pages 197–214. Springer, 2011.

[16] Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Giovanni Guida. AFRA:
Argumentation framework with recursive attacks. Int. J. Approx. Reasoning, 52(1):19–37,
2011.

[17] Pietro Baroni, Paul E. Dunne, and Massimiliano Giacomin. On the resolution-based
family of abstract argumentation semantics and its grounded instance. Artif. Intell., 175
(3–4):791–813, 2011.

[18] Ringo Baumann. Normal and strong expansion equivalence for argumentation frame-
works. Artif. Intell., 193:18–44, 2012.

108

[19] Trevor J. M. Bench-Capon. Value-based argumentation frameworks. In Salem Benferhat
and Enrico Giunchiglia, editors, Proceedings of the 9th International Workshop on Non-

Monotonic Reasoning (NMR 2002), pages 443–454, 2002.

[20] Trevor J. M. Bench-Capon. Persuasion in practical argument using value-based argumen-
tation frameworks. Journal of Logic and Computation, 13(3):429–448, 2003.

[21] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial intelligence.
Artif. Intell., 171(10–15):619–641, 2007.

[22] Philippe Besnard and Anthony Hunter. Elements of argumentation. MIT Press, 2008.

[23] Gustavo A. Bodanza and Fernando A. Tohmé. Two approaches to the problems of self-
attacking arguments and general odd-length cycles of attack. Journal of Applied Logic, 7
(4):403–420, 2009. Special Issue: Formal Models of Belief Change in Rational Agents.

[24] Francesco Calimeri, Giovambattista Ianni, Francesco Ricca, Mario Alviano, Annamaria
Bria, Gelsomina Catalano, Susanna Cozza, Wolfgang Faber, Onofrio Febbraro, Nicola
Leone, Marco Manna, Alessandra Martello, Claudio Panetta, Simona Perri, Kristian
Reale, Maria C. Santoro, Marco Sirianni, Giorgio Terracina, and Pierfrancesco Veltri.
The third answer set programming competition: Preliminary report of the system compe-
tition track. In James P. Delgrande and Wolfgang Faber, editors, Logic Programming and

Nonmonotonic Reasoning, volume 6645 of Lecture Notes in Computer Science, pages
388–403. Springer Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-20895-9_46.

[25] Martin Caminada. Semi-stable semantics. In Paul E. Dunne and Trevor J. M. Bench-
Capon, editors, Proceedings of the 1st Conference on Computational Models of Argu-

ment (COMMA 2006), volume 144 of Frontiers in Artificial Intelligence and Applications,
pages 121–130. IOS Press, 2006.

[26] Martin Caminada. Comparing two unique extension semantics for formal argumenta-
tion: Ideal and eager. In Proceedings of the 19th Belgian-Dutch Conference on Artificial

Intelligence (BNAIC 2007), pages 81–87, 2007.

[27] Martin Caminada. An algorithm for computing semi-stable semantics. In Khaled Mel-
louli, editor, Proceedings of the 9th European Conference on Symbolic and Quantitative

Approaches to Reasoning with Uncertainty (ECSQARU 2007), volume 4724 of Lecture

Notes in Computer Science, pages 222–234. Springer, 2007.

[28] Martin Caminada. An algorithm for stage semantics. In Pietro Baroni, Federico Cerutti,
Massimiliano Giacomin, and Guillermo R. Simari, editors, Proceedings of the 3rd Con-

ference on Computational Models of Argument (COMMA 2010), volume 216 of Frontiers

in Artificial Intelligence and Applications, pages 147–158. IOS Press, 2010.

[29] Martin Caminada and Leila Amgoud. On the evaluation of argumentation formalisms.
Artif. Intell., 171(5–6):286–310, 2007.

109

[30] Martin Caminada and Dov M. Gabbay. A logical account of formal argumentation. Studia

Logica, 93(2–3):109–145, 2009.

[31] Martin Caminada, Walter A. Carnielli, and Paul E. Dunne. Semi-stable semantics. Jour-

nal of Logic and Computation, 2011. doi: 10.1093/logcom/exr033.

[32] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. On the acceptability of argu-
ments in bipolar argumentation frameworks. In Lluis Godo, editor, Proceedings of the 8th

European Conference on Symbolic and Quantitative Approaches to Reasoning with Un-

certainty (ECSQARU 2005), volume 3571 of Lecture Notes in Computer Science, pages
378–389. Springer, 2005.

[33] Claudette Cayrol, Florence Dupin de Saint Cyr-Bannay, and Marie-Christine Lagasquie-
Schiex. Revision of an argumentation system. In Gerhard Brewka and Jérôme Lang,
editors, Proceedings of the Eleventh International Conference on Principles of Knowl-

edge Representation and Reasoning (KR 2008), pages 124–134. AAAI Press, 2008.

[34] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Symmetric argumentation
frameworks. In Lluis Godo, editor, Proceedings of the 8th European Conference on Sym-

bolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005),
volume 3571 of Lecture Notes in Computer Science, pages 317–328. Springer, 2005.

[35] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and
expressive power of logic programming. ACM Computing Surveys, 33(3):374–425, 2001.

[36] Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in logic programs
and Default Theories. Theor. Comput. Sci., 170(1–2):209–244, 1996.

[37] Phan M. Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358,
1995.

[38] Phan M. Dung, Paolo Mancarella, and Francesca Toni. Computing ideal sceptical argu-
mentation. Artif. Intell., 171(10–15):642–674, 2007.

[39] Paul E. Dunne. Computational properties of argument systems satisfying graph-theoretic
constraints. Artif. Intell., 171(10–15):701–729, 2007.

[40] Paul E. Dunne and Trevor J. M. Bench-Capon. Complexity and combinatorial proper-
ties of argument systems. Technical report, Dept. of Computer Science, University of
Liverpool, 2001.

[41] Paul E. Dunne and Trevor J. M. Bench-Capon. Coherence in finite argument systems.
Artif. Intell., 141(1/2):187–203, 2002.

[42] Paul E. Dunne and Martin Caminada. Computational complexity of semi-stable semantics
in abstract argumentation frameworks. In Steffen Hölldobler, Carsten Lutz, and Heinrich

110

Wansing, editors, Proceedings of the 11th European Conference on Logics in Artificial

Intelligence (JELIA 2008), volume 5293 of Lecture Notes in Computer Science, pages
153–165. Springer, 2008.

[43] Paul E. Dunne and Michael Wooldridge. Complexity of abstract argumentation. In Iyad
Rahwan and Guillermo R. Simari, editors, Argumentation in Artificial Intelligence, pages
85–104. Springer, 2009.

[44] Wolfgang Dvorák and Sarah A. Gaggl. Incorporating stage semantics in the scc-recursive
schema for argumentation semantics. In In Proceedings of the 14th International Work-

shop on Non-Monotonic Reasoning (NMR 2012), 2012.

[45] Wolfgang Dvorák and Sarah A. Gaggl. Computational aspects of cf2 and stage2 argumen-
tation semantics. In Bart Verheij, Stefan Szeider, and Stefan Woltran, editors, Proceedings

of the 4th International Conference on Computational Models of Argument (COMMA

2012), volume 245 of Frontiers in Artificial Intelligence and Applications, pages 273–
284. IOS Press, 2012.

[46] Wolfgang Dvorák and Stefan Woltran. Complexity of semi-stable and stage semantics in
argumentation frameworks. Inf. Process. Lett., 110(11):425–430, 2010.

[47] Wolfgang Dvořák. Computational Aspects of Abstract Argumentation. PhD thesis, Vienna
University of Technology, 2012.

[48] Wolfgang Dvořák and Stefan Woltran. Complexity of semi-stable and stage semantics in
argumentation frameworks. Inf. Process. Lett., 110(11):425–430, 2010. doi: 10.1016/j.
ipl.2010.04.005.

[49] Wolfgang Dvořák and Stefan Woltran. On the intertranslatability of argumentation se-
mantics. J. Artif. Intell. Res. (JAIR), 41:445–475, 2011.

[50] Wolfgang Dvořák, Stefan Szeider, and Stefan Woltran. Reasoning in argumentation
frameworks of bounded clique-width. In Pietro Baroni, Federico Cerutti, Massimiliano
Giacomin, and Guillermo R. Simari, editors, Proceedings of the 3rd Conference on Com-

putational Models of Argument (COMMA 2010), Frontiers in Artificial Intelligence and
Applications, pages 219–230. IOS Press, 2010.

[51] Wolfgang Dvořák, Paul E. Dunne, and Stefan Woltran. Parametric properties of ideal
semantics. In Toby Walsh, editor, Proceedings of the 22nd International Joint Conference

on Artificial Intelligence (IJCAI 2011), pages 851–856. AAAI Press, 2011.

[52] Wolfgang Dvořák, Sarah A. Gaggl, Johannes P. Wallner, and Stefan Woltran. Making
use of advances in answer-set programming for abstract argumentation systems. CoRR,
abs/1108.4942, 2011.

[53] Wolfgang Dvořák, Sarah A. Gaggl, Stefan Szeider, and Stefan Woltran. Benchmark li-
braries for argumentation. In Sascha Ossowski, editor, Agreement Technologies, volume 8
of LGTS, chapter The Added Value of Argumentation, pages 389–393. Springer, 2012.

111

[54] Wolfgang Dvořák, Sebastian Ordyniak, and Stefan Szeider. Augmenting tractable frag-
ments of abstract argumentation. Artificial Intelligence, 186(0):157–173, 2012. ISSN
0004-3702. doi: 10.1016/j.artint.2012.03.002.

[55] Wolfgang Dvořák, Reinhard Pichler, and Stefan Woltran. Towards fixed-parameter
tractable algorithms for abstract argumentation. Artificial Intelligence, 186(0):1 – 37,
2012. ISSN 0004-3702. doi: 10.1016/j.artint.2012.03.005.

[56] Wolfgang Dvořák, Stefan Szeider, and Stefan Woltran. Abstract argumentation via
monadic second order logic. In Eyke Hüllermeier, Sebastian Link, Thomas Fober, and
Bernhard Seeger, editors, Scalable Uncertainty Management - 6th International Confer-

ence, SUM 2012, Marburg, Germany, September 17-19, 2012. Proceedings, volume 7520
of Lecture Notes in Computer Science, pages 85–98. Springer, 2012.

[57] Uwe Egly, Sarah A. Gaggl, and Stefan Woltran. Aspartix: Implementing argumentation
frameworks using answer-set programming. In Maria Garcia de la Banda and Enrico
Pontelli, editors, Proceedings of the 24th International Conference on Logic Program-

ming (ICLP 2008), volume 5366 of Lecture Notes in Computer Science, pages 734–738.
Springer, 2008.

[58] Uwe Egly, Sarah A. Gaggl, and Stefan Woltran. Answer-set programming encodings
for argumentation frameworks. In 1st Workshop on Answer Set Programming and Other

Computing Paradigms (ASPOCP 2008), 2008.

[59] Uwe Egly, Sarah A. Gaggl, and Stefan Woltran. Answer-set programming encodings for
argumentation frameworks. Argument and Computation, 1(2):144–177, 2010.

[60] Thomas Eiter and Georg Gottlob. On the computational cost of disjunctive logic pro-
gramming: Propositional case. Ann. Math. Artif. Intell., 15(3–4):289–323, 1995.

[61] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive datalog. ACM Trans.

Database Syst., 22(3):364–418, 1997. ISSN 0362-5915. doi: http://doi.acm.org/10.1145/
261124.261126.

[62] Thomas Eiter, Georg Gottlob, and Helmut Veith. Modular logic programming and gener-
alized quantifiers. In Jürgen Dix, Ulrich Furbach, and Anil Nerode, editors, Proceedings

of the 4th International Conference on Logic Programming and Nonmonotonic Reason-

ing (LPNMR 1997), volume 1265 of Lecture Notes in Computer Science, pages 290–309.
Springer, 1997.

[63] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. Springer, 2006.

[64] Dov M. Gabbay. The equational approach to cf2 semantics. In Bart Verheij, Stefan
Szeider, and Stefan Woltran, editors, Proceedings of the 4th International Conference on

Computational Models of Argument (COMMA 2012), volume 245 of Frontiers in Artifi-

cial Intelligence and Applications, pages 141–152. IOS Press, 2012.

112

[65] Dov M. Gabbay. Equational approach to argumentation networks. Argument and Com-

putation, 3(2–3):87–142, 2012. doi: 10.1080/19462166.2012.704398.

[66] Sarah A. Gaggl. Towards a general argumentation system based on answer-set program-
ming. In Manuel V. Hermenegildo and Torsten Schaub, editors, Technical Communica-

tions of the 26th International Conference on Logic Programming (ICLP 2010), volume 7
of Leibniz International Proceedings in Informatics, pages 265–269. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2010.

[67] Sarah A. Gaggl and Stefan Woltran. cf2 semantics revisited. In Pietro Baroni, Federico
Cerutti, Massimiliano Giacomin, and Guillermo R. Simari, editors, Proceedings of the

3rd Conference on Computational Models of Argument (COMMA 2010), volume 216 of
Frontiers in Artificial Intelligence and Applications, pages 243–254. IOS Press, 2010.

[68] Sarah A. Gaggl and Stefan Woltran. Strong equivalence for argumentation semantics
based on conflict-free sets. In Weiru Liu, editor, Proceedings of the 11th European

Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty

(ECSQARU 2011), volume 6717 of Lecture Notes in Computer Science, pages 38–49.
Springer, 2011.

[69] Sarah A. Gaggl and Stefan Woltran. The cf2 argumentation semantics revisited. Journal

of Logic and Computation, 2012. doi: 10.1093/logcom/exs011.

[70] Martin Gebser, Roland Kaminski, and Torsten Schaub. Complex optimization in answer
set programming. Theory and Practice of Logic Programming, 11(4–5):821–839, 2011.

[71] Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten Schaub. Answer Set

Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012. doi: 10.2200/S00457ED1V01Y201211AIM019.

[72] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and dis-
junctive databases. New Generation Comput., 9(3–4):365–386, 1991.

[73] Sarit Kraus, Daniel J. Lehmann, and Menachem Magidor. Nonmonotonic reasoning,
preferential models and cumulative logics. Artif. Intell., 44(1–2):167–207, 1990.

[74] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona
Perri, and Francesco Scarcello. The dlv system for knowledge representation and rea-
soning. ACM Trans. Comput. Log., 7(3):499–562, 2006. ISSN 1529-3785. doi:
http://doi.acm.org/10.1145/1149114.1149117.

[75] Vladimir Lifschitz, David Pearce, and Agustín Valverde. Strongly equivalent logic pro-
grams. ACM Trans. Comput. Log., 2(4):526–541, 2001.

[76] Nicolas Maudet, Simon Parsons, and Iyad Rahwan. Argumentation in multi-agent sys-
tems: Context and recent developments. In Nicolas Maudet, Simon Parsons, and Iyad
Rahwan, editors, Proceedings of the 3rd International Workshop on Argumentation in

113

Multi-Agent Systems (ArgMAS 2006), volume 4766 of Lecture Notes in Computer Sci-

ence, pages 1–16. Springer, 2006.

[77] Sanjay Modgil. Hierarchical argumentation. In Michael Fisher, Wiebe van der Hoek,
Boris Konev, and Alexei Lisitsa, editors, Proceedings of the 10th European Conference

on Logics in Artificial Intelligence (JELIA 2006), pages 319–332. Springer, 2006.

[78] Sanjay Modgil. Reasoning about preferences in argumentation frameworks. Artif. Intell.,
173(9–10):901–934, 2009.

[79] Sanjay Modgil and Martin Caminada. Proof theories and algorithms for abstract argumen-
tation frameworks. In Guillermo Simari and Iyad Rahwan, editors, Argumentation in Ar-

tificial Intelligence, pages 105–129. Springer, 2009. doi: 10.1007/978-0-387-98197-0_6.

[80] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in
Mathematics And Its Applications. OUP Oxford, 2006.

[81] Juan C. Nieves, Mauricio Osorio, and Ulises Cortés. Preferred extensions as stable mod-
els. Theory and Practice of Logic Programming, 8(4):527–543, 2008.

[82] Juan C. Nieves, Mauricio Osorio, and Claudia Zepeda. Expressing extension-based se-
mantics based on stratified minimal models. In Hiroakira Ono, Makoto Kanazawa, and
Ruy J. G. B. de Queiroz, editors, Proceedings of the 16th International Workshop on

Logic, Language, Information and Computation (WoLLIC 2009), volume 5514 of Lec-

ture Notes in Computer Science, pages 305–319. Springer, 2009.

[83] Samer Nofal, Paul E. Dunne, and Katie Atkinson. On preferred extension enumeration
in abstract argumentation. In Bart Verheij, Stefan Szeider, and Stefan Woltran, editors,
Proceedings of the 4th International Conference on Computational Models of Argument

(COMMA 2012), volume 245 of Frontiers in Artificial Intelligence and Applications,
pages 205–216. IOS Press, 2012.

[84] Emilia Oikarinen and Stefan Woltran. Characterizing strong equivalence for argumenta-
tion frameworks. Artif. Intell., 175(14–15):1985–2009, 2011.

[85] Mauricio Osorio, Claudia Zepeda, Juan C. Nieves, and Ulises Cortés. Inferring acceptable
arguments with answer set programming. In Proceedings of the 6th Mexican International

Conference on Computer Science (ENC 2005), pages 198–205. IEEE Computer Society,
2005.

[86] Mauricio Osorio, Juan C. Nieves, and Ignasi Gómez-Sebastià. CF2-extensions as answer-
set models. In Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Guillermo R.
Simari, editors, Proceedings of the 3rd Conference on Computational Models of Argu-

ment (COMMA 2010), volume 216 of Frontiers in Artificial Intelligence and Applications,
pages 391–402. IOS Press, 2010.

[87] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

114

[88] John L. Pollock. Justification and defeat. Artif. Intell., 67(2):377–407, 1994.

[89] Henry Prakken. An abstract framework for argumentation with structured arguments.
Argument and Computation, 1(2):93–124, 2010.

[90] Iyad Rahwan and Guillermo R. Simari. Argumentation in Artificial Intelligence. Springer,
2009.

[91] Nico Roos. The relation between preferential model and argumentation semantics. In
In Proceedings of the 13th International Workshop on Non-Monotonic Reasoning (NMR

2010), 2010.

[92] Nicolás D. Rotstein, Martín O. Maguillansky, Alejandro J. García, and Guillermo R.
Simari. An abstract argumentation framework for handling dynamics. In Proceedings

of the 12th International Workshop on Non-Monotonic Reasoning (NMR 2008), pages
131–139, September 2008.

[93] Nicolás D. Rotstein, Martín O. Moguillansky, Marcelo A. Falappa, Alejandro J. García,
and Guillermo R. Simari. Argument theory change: Revision upon warrant. In Philippe
Besnard, Sylvie Doutre, and Anthony Hunter, editors, Proceedings of the 2nd Confer-

ence on Computational Models of Argument (COMMA 2008), volume 172 of Frontiers in

Artificial Intelligence and Applications, pages 336–347. IOS Press, 2008.

[94] Robert E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput., 1
(2):146–160, 1972.

[95] Francesca Toni and Marek Sergot. Argumentation and answer set programming. In Mar-
cello Balduccini and Tran C. Son, editors, Logic Programming, Knowledge Representa-

tion, and Nonmonotonic Reasoning, volume 6565 of Lecture Notes in Computer Science,
pages 164–180. Springer Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-20832-4_11.

[96] Bart Verheij. Two approaches to dialectical argumentation: Admissible sets and argumen-
tation stages. In John-Jules Ch. Meyer and Linda C. van der Gaag, editors, Proceedings

of the Eighth Dutch Conference on Artificial Intelligence (NAIC 1996), pages 357–368.
University of Utrecht, 1996.

[97] Bart Verheij. A labeling approach to the computation of credulous acceptance in argu-
mentation. In Manuela M. Veloso, editor, Proceedings of the 20th International Joint

Conference on Artificial Intelligence (IJCAI 2007), pages 623–628, 2007.

[98] Gerard Vreeswijk and Henry Prakken. Credulous and sceptical argument games for pre-
ferred semantics. In Manuel Ojeda-Aciego, Inman P. de Guzmán, Gerhard Brewka, and
Luís M. Pereira, editors, Proceedings of the European Workshop on Logics in Artificial

Intelligence (JELIA 2000), volume 1919 of Lecture Notes in Computer Science, pages
239–253. Springer, 2000.

115

[99] Toshiko Wakaki and Katsumi Nitta. Computing argumentation semantics in answer set
programming. In Hiromitsu Hattori, Takahiro Kawamura, Tsuyoshi Idé, Makoto Yokoo,
and Yohei Murakami, editors, New Frontiers in Artificial Intelligence (JSAI 2008), Con-

ference and Workshops, volume 5447 of Lecture Notes in Computer Science, pages 254–
269. Springer, 2008.

[100] Stefan Woltran. A common view on strong, uniform, and other notions of equivalence
in answer-set programming. Theory and Practice of Logic Programming, 8(2):217–234,
2008.

[101] Adam Z. Wyner, Trevor J. M. Bench-Capon, and Katie Atkinson. Towards formalising ar-
gumentation about legal cases. In Kevin D. Ashley and Tom M. van Engers, editors, Pro-

ceedings of the 13th International Conference on Artificial Intelligence and Law (ICAIL),
pages 1–10. ACM, 2011.

116

APPENDIX A
Curriculum Vitae

117

Curriculum Vitae

Sarah Alice Gaggl

Address

Institute of Information Systems
Database and Artificial Intelligence Group
Vienna University of Technology
Favoritenstraße 9
A-1040 Wien
Austria
Phone: +43-1-58801-18438
Fax: +43-1-58801-18492
Email: gaggl@dbai.tuwien.ac.at
Homepage: www.dbai.tuwien.ac.at/staff/gaggl/

Personal Details

Gender: Female
Date of birth: 22th of February, 1980
Place of birth: Villach, Austria
Present Citizenship: Austria

Education

08/2010 22nd European Summer School in Logic, Language and In-
formation (ESSLLI 2010), Denmark, Copenhagen, August
9-20, 2010.

08/2009 Advanced Course in Artificial Intelligence (ACAI 2009), GB,
Belfast, August 23-29, 2009.

07/2009 21st European Summer School in Logic, Language and Infor-
mation (ESSLLI 2009), France, Bordeaux, July 20-31, 2009.

Since 04/2009 PhD student at the Vienna University of Technology.

2001–2009 Student of Computer Science at the Vienna University of
Technology; graduation as a Bachelor of Science (BSc) in
Medicine and Computer Science, and graduation as a Mas-
ter of Science (MSc) in Computational Intelligence with dis-
tinction.
Thesis: Solving Argumentation Frameworks using Answer
Set Programming ; Supervisor: Ao.Univ.Prof. Dr. Uwe Egly.

Working Experience and Reviewing

04/2009-09/2012 Research Assistant at the Database and Artificial Intelli-
gence Group of the Institute of Information Systems at the
Vienna University of Technology.

Project title: New Methods for Analyzing, Comparing, and
Solving Argumentation Problems; Supervisor: Privatdoz. Dr.
Stefan Woltran.
Supported by the WWTF under grant ICT 08-028.

• Reviewing for Journal of Logic and Computation, Special Issue on 20 years
of Argument-based Inference (JLCabi 2011).

• Reviewing for international conferences and workshops including: 20th
European Conference on Artificial Intelligence (ECAI 2012), 8th Reason-
ing Web Summer School 2012, 4th International Conference on Agents
and Artificial Intelligence (ICAART 2012), 25th Conference on Artifi-
cial Intelligence (AAAI 2011), 11th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR 2011), 1st Inter-
national Workshop on the Theory and Applications of Formal Argumen-
tation (TAFA 2011), 19th European Conference on Artificial Intelligence
(ECAI 2010), 20th International Conference on Automated Reasoning
with Analytic Tableaux and Related Methods (Tableaux 2011)

Awards

06/2012 Best Student Paper Prize at the 14th International Work-
shop on Non-Monotonic Reasoning (NMR 2012) for the arti-
cle Incorporating Stage Semantics in the SCC-recursive Sche-
ma for Argumentation Semantics, joint work with Wolfgang
Dvořák.

09/2010 Best Student Paper Award at the International Conference
on Computational Models of Argument (COMMA 2010) for
the paper cf2 Semantics Revisited.

Research Visits

03/2011 Prof. Ken Satoh, National Institute of Informatics (NII),
Tokyo, Japan.

12/2009 Group of Prof. Gerd Brewka, Univ. Leipzig, Germany.

Grants and Internships

• COST Travel Grant for attending the Doctoral Consortium at KR 2012.

• COST Travel Award for attending the London Argumentation Forum
(LAF) in April 2012.

• IJCAI Travel Grant for attending IJCAI 2011.

• International Internship at National Institute of Informatics (NII), Tokyo,
Japan, 2011.

• ECCAI Travel Award for attending ACAI 2009.

Invited Talks and Presentations

• Incorporating the Stage Semantics in the SCC-recursive Schema for Ar-
gumentation Semantics. London Argumentation Forum (LAF). King’s
College, London, April 20, 2012.

• Making Use of Advances in Answer-Set Programming for Abstract Argu-
mentation Systems. Computational Logic and Knowledge Representation
Workshop. Invited Talk. UPS University, IRIT, Toulouse, France, Octo-
ber 21-22, 2011.

• Strong Equivalence for Argumentation Semantics based on Conflict-free
Sets. Argumentation Christmas Meeting. Presentation. Vienna Univer-
sity of Technology, Austria, December 7-8, 2010.

Teaching Experience

At the Vienna University of Technology.

• Seminar “Logic Seminar”, (3.0 ECTS), summer term (ST) 2012.

• Exercises for the course “Introduction to Knowledge-based Systems”, (5.0
ECTS), ST 2012.

• Exercises for the course“Introduction to Artificial Intelligence”, (3.0 ECTS),
ST 2012.

• Course“Abstract Argumentation”, (4.5 ECTS), winter term (WT) 2011/12.

• Teaching Assistant for Laboratory Exercise “Introduction to Knowledge-
based Systems”, (1.5 ECTS), WT 2008/09.

• Teaching Assistant for Laboratory Exercise“Logic-oriented Programming”,
(3.0 ECTS), ST 2008.

• Teaching Assistant for Lecture and Exercise “Fundamentals of Computer
Science”, (6.0 ECTS), ST 2002–2008, WT 2005/06–2008/09.

Publications

[16] W. Dvořák, S. A. Gaggl. Computational Aspects of cf2 and stage2 Ar-
gumentation Semantics. In Proceedings of the 4th International Confer-
ence on Computational Models of Argument (COMMA 2012), Vienna,
Austria, September 10-12, 2012, volume 245 of Frontiers in Artificial
Intelligence and Applications, pages 273-284. IOS Press, 2012.

[15] W. Dvořák, S. A. Gaggl. Incorporating Stage Semantics in the SCC-
recursive Schema for Argumentation Semantics. In Proceedings of
the 14th International Workshop on Non-Monotonic Reasoning (NMR
2012), Rome, Italy, June 8-10, 2012.

[14] S. A. Gaggl, S. Woltran. The cf2 Argumentation Semantics Revisited.
In Journal of Logic and Computation 2012; doi: 10.1093/logcom/exs011.

[13] W. Dvořák, S. A. Gaggl. Incorporating Stage Semantics in the SCC-
recursive Schema for Argumentation Semantics. Technical Report
DBAI-TR-2012-78, Technische Universität Wien, 2012.

[12] S. A. Gaggl, S. Woltran. The cf2 Argumentation Semantics Revisited.
Technical Report DBAI-TR-2012-77, Technische Universität Wien, 2012.

[11] W. Dvořák, S. A. Gaggl, J. P. Wallner, S. Woltran. Making Use of
Advances in Answer-Set Programming for Abstract Argumentation Sys-
tems. In Proceedings of 19th International Conference on Applications
of Declarative Programming and Knowledge Management (INAP 2011),
Vienna, Austria, 2011.

[10] W. Dvořák, S. A. Gaggl, J. P. Wallner, S. Woltran. Making Use
of Advances in Answer-Set Programming for Abstract Argumentation
Systems. Technical Report DBAI-TR-2011-70, Technische Universität
Wien, 2011.

[9] S. A. Gaggl, S. Woltran. Strong Equivalence for Argumentation Se-
mantics based on Conflict-free Sets. In Proceedings of 11th European
Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECSQARU 2011), Belfast, Ireland, pages 38–49, 2011.

[8] S. A. Gaggl, S. Woltran. Strong Equivalence for Argumentation Se-
mantics based on Conflict-free Sets. Sarah Gaggl, and Stefan Woltran.
Technical Report DBAI-TR-2011-68, Technische Universität Wien, 2011.

[7] S. A. Gaggl, S. Woltran. cf2 Semantics Revisited. In Proceedings of the
Third International Conference on Computational Models of Argument
(COMMA 2010), Desenzano del Garda, Italy, volume 216 of Frontiers
in Artificial Intelligence and Applications, pages 243–254. IOS Press,
2010.

[6] S. A. Gaggl. Towards a General Argumentation System based on
Answer-Set Programming. In ICLP (Technical Communications) 2010:
265–269.

[5] U. Egly, S. A. Gaggl, S. Woltran. Answer-Set Programming Encodings
for Argumentation Frameworks. In Argument and Computation, 1(2):
147–177 (2010).

[4] S. A. Gaggl. ASPARTIX: A System for Computing Different Argu-
mentation Semantics in Answer-Set Programming; Advanced Course in
Artificial Intelligence (ACAI 2009), Belfast, Ireland; Poster.

[3] U. Egly, S. A. Gaggl, S. Woltran. ASPARTIX: Implementing Argu-
mentation Frameworks Using Answer-Set Programming. Proceedings of
the 24th International Conference on Logic Programming (ICLP 2008),
Udine, Italy pages 734-738. Springer LNCS 5366, 2008.

[2] U. Egly, S. A. Gaggl, S. Woltran. Answer-Set Programming Encodings
for Argumentation Frameworks. 1st Workshop on Answer Set Program-
ming and other Computing Paradigms (ASPOCP 2008), Udine, Italy,
2008.

[1] U. Egly, S. A. Gaggl, S. Woltran. Answer-Set Programming Encodings
for Argumentation Frameworks. Technical Report DBAI-TR-2008-62,
Technische Universität Wien, 2008.

Language Knowledge

German native
English very good
Spanish excellent

character:

Vienna, February 15, 2013

	Introduction
	Argumentation in Artificial Intelligence
	Argumentation Semantics

	Main Contributions
	Structure of the Thesis
	Publications

	Background of Abstract Argumentation
	Semantics of Abstract Argumentation
	SCC-recursive Schema and cf2 Semantics

	Properties of the Semantics
	Evaluation Criteria

	Alternative Characterization
	Preliminaries
	New Characterization for cf2 Semantics
	F,S-Operator
	Main Theorem

	Analysis of the New Characterization

	Incorporating Stage Semantics in the SCC-recursive Schema
	Combining Stage and cf2 Semantics
	Alternative Characterization of stage2 Semantics

	Comparison of stage2 with other Semantics
	Evaluation Criteria w.r.t. stage2 Semantics
	Discussion of stage2 Semantics

	Complexity Analysis
	Background of Computational Complexity
	Basic Concepts
	Complexity Classes

	Complexity of Abstract Argumentation
	Decision Problems in Abstract Argumentation
	Complexity of cf2 Semantics
	Complexity of stage2 Semantics

	Tractable Fragments for cf2 and stage2
	Acyclic Argumentation Frameworks
	Even-Cycle Free Argumentation Frameworks
	Bipartite Argumentation Frameworks
	Symmetric AFs

	Summary and Further Considerations

	Notions of Equivalence
	Background
	Strong Equivalence for AFs
	The Succinctness Property

	Standard Equivalence
	Strong Equivalence
	Strong Equivalence w.r.t. cf2 Semantics
	Strong Equivalence w.r.t. stage2 Semantics
	Strong Equivalence w.r.t. Naive Semantics
	Strong Equivalence w.r.t. Stage Semantics

	Discussion and Further Considerations
	Comparing Semantics w.r.t. Strong Equivalence
	Strong Equivalence and Symmetric Frameworks

	Conclusion

	Implementation
	ASP-Encodings for Abstract Argumentation Frameworks
	Background Answer-Set Programming
	Representing AFs in ASP

	ASP-Encodings for cf2 Semantics
	ASP-Encodings for stage2 Semantics
	Saturation Encodings for Stage Semantics
	metasp Encodings for Stage Semantics
	Saturation Encodings for stage2 Semantics
	metasp Encodings for stage2 Semantics

	Labelings
	Labeling Algorithm for cf2
	Labeling Algorithm for stage2

	Web Application of ASPARTIX
	Summary and Discussion

	Conclusion
	Summary
	Critical Reflection
	Related Work
	Future Work

	Bibliography
	Curriculum Vitae

