B Informatics

An open-source tool for detecting
violations of object-oriented
design principles in Java

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Software Engineering & Internet Computing
eingereicht von

Roland Oberweger, BSc
Matrikelnummer 01225446

an der Fakultat fir Informatik

der Technischen Universitat Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Franz Puntigam

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Wien, 16. April 2020

Roland Oberweger Franz Puntigam

@ Sibliothek,
Your knowledge hub

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

B Informatics

An open-source tool for detecting
violations of object-oriented
design principles in Java

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Software Engineering & Internet Computing
by

Roland Oberweger, BSc
Registration Number 01225446

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Franz Puntigam

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Vienna, 16" April, 2020

Roland Oberweger Franz Puntigam

@ Sibliothek,
Your knowledge hub

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Erklarung zur Verfassung der
Arbeit

Roland Oberweger, BSc

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 16. April 2020

Roland Oberweger

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Acknowledgements

I want to thank my advisor, professor Franz Puntigam, for his extensive feedback to
improve my thesis. My study colleagues I want to thank for their support during my
study and the great time we had together. Thank-you to my friends and family, especially
my parents who made my study possible. Thanks to my dogs for keeping me company
and enduring all that rubber ducking. Last but not least, I want to thank the love of my
life for all her love and support.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Kurzfassung

Designprinzipien helfen Entwicklern beim Erstellen von Designs, welche leicht imple-
mentiert und gewartet werden kénnen. Designprinzipien sind aber nur Heuristiken. Eine
Verletzung eines Designprinzips zu finden hat zwei Vorteile. Erstens hat eine Designprinzip-
Verletzung, im Gegensatz zu einer Metrik, eine genaue Stelle im Programmcode. Zweitens
ist das Designprinzip selbst schon die Anleitung, um das Problem zu beheben. Nor-
malerweise wird die Einhaltung von Designprinzipien manuell Gberpriift, weil es wenig
bis gar keine Toolunterstiitzung gibt, vor allem im Open-Source Bereich. Verfiigbare
Tools konzentrieren sich auf Metriken, hdufige Programmierfehler und ein paar wenige
Best-Practices, bringen diese aber nie in Verbindung mit Designprinzipien. Die meiste
bestehende Literatur im Bereich der Designqualitdt und ihrer Messbarkeit fokussiert sich
auf Metriken, aber es wurde auch schon daran geforscht Verletzungen von Designprinzi-
pien zu finden. Designprinzipien kénnen in Design-Best-Practices zerlegt werden, welche
konkret genug sind, damit ihre Verletzungen mittels statischer Code-Analyse gefunden
werden konnen.

In dieser Arbeit analysieren wir die Erkennbarkeit von Verletzungen von 23 Designprinzi-
pien. Wir schauen uns alle Prinzipien an die bei einer Websuche aufscheinen und héufig
diskutiert werden. Weil Designprinzipien vage sind, beschreiben wir sie genau. Fiir manche
Designprinzipien gibt es bereits Erkennungsstrategien in der Literatur, fiir die restlichen
haben wir selbst welche entwickelt. Um die Erkennungsstrategien zu evaluieren fithren wir
ein statisches Code-Analyse-Tool ein, welches die Erkennungsstrategien implementiert.
Das neue Tool lassen wir iiber Open-Source Projekte laufen und analysieren das Ergebnis,
um die Eignung der Erkennungsstrategien und das Tool selbst zu bewerten.

Unsere Evaluierung legt nahe, dass Verletzungen von 13 der analysierten Designprinzipien
automatisch erkannt werden kénnen. Wir finden heraus, dass Verletzungen von sieben
Designprinzipien grundsétzlich nicht automatisch erkennbar sind. Bei zwei Prinzipien
waren wir von ihrer automatischen Erkennbarkeit iberzeugt, miissen diese Annahme aber
aufgrund unserer Evaluierung wieder verwerfen. Fiir ein Designprinzip haben wir zu wenig
Information um eine sichere Aussage treffen zu kénnen. Wir denken die automatische
Erkennung von Verletzungen von Designprinzipien ist hilfreich, um die Designqualitét
eines Projekts zu bestimmen. Die Anzahl an gefundenen Verletzungen ist ein Indikator
fiir die Gesamtqualitat. Weiters denken wir, dass die Typen von Verletzungen Aufschluss
dariiber geben, welche Designaspekte vernachlassigt wurden.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Abstract

Design principles help developers to create designs which are easy to implement and
maintain but they are only heuristics. Finding a violation of a design principle has two
benefits. First, unlike a metric a design principle violation has a location in the source
code. Second, the the design principle itself is already the guidance on how to fix the
problem. Usually, compliance with design principles is reviewed manually because there
exists little to none tool support, especially in the open-source field. Available static
code analyzers concentrate on metrics, common programming flaws and some design
best practices but do not bring them into relation with design principles. Most existing
research in the field of design quality and its measurement is focused on metrics but some
research was already conducted on how to find violations of design principles. Design
principles can be broken down into design best practices which in turn are concrete
enough for static code analyzers to detect violations of them.

In this thesis, we analyze the automatic detectability of violations of 23 design principles.
We take all design principles into account which come up via a web search and are
frequently discussed. Because design principles are vague we describe them in detail.
For some principles there are already detection strategies described in the literature, for
others we come up with strategies ourselves. To evaluate the detection strategies we
introduce a static code analyzer that implements the found strategies. We run the new
tool against open-source projects and analyze the output to assess the appropriateness of
the detection strategies and the tool itself.

Our evaluation suggests the automatic detectability of violations of 13 of the analyzed
principles. We find violations of seven design principles are inherently not automatically
detectable. Two of the principles we thought to be automatically detectable, but had
to reject our assumption after the evaluation. For one principle we do not have enough
information to make an informed statement. We find the automatic detection of violations
of design principles useful to assess the quality of software projects because the amount
of violations is an indicator for the overall design quality. We also think the types of
violations give hints about the design aspects that got neglected.

Xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

Kurzfassung ix
Abstract xi
Contents xiii
1 Introduction 1
1.1 Problem Description 1
1.2 Expected Results o 2
1.3 Methodological Approach 3

1.4 Structure of the Thesis 3

2 Object-Oriented Programming 5
2.1 Imtroduction 5

2.2 Concepts . . .o 6
2.3 Java ... 7

3 Software Design Quality 9
3.1 Introduction 9

3.2 Quality attributes and properties 9
3.3 Relevance of design quality 10
3.4 Important terminology L L L 11
3.5 Measuring design quality o oL 13

4 Detectable Design Principles 15
4.1 Single Responsibility Principle (SRP) 16
4.2 Open Closed Principle (OCP) 19
4.3 Interface Segregation Principle (ISP) 22
4.4 Information Hiding (IH) 24
4.5 Law of Demeter (LOD) 25
4.6 Keep It Simple Stupid (KISS) 29
4.7 Don’t Repeat Yourself (DRY) 31
4.8 Information Expert (IE) 34
4.9 Single Choice Principle (SCP) 37
xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.10 Program to an Interface, not an Implementation (PINI)
4.11 Favor Composition over Inheritance (FCOI)
4.12 Common Reuse Principle (CRP)
4.13 Acyclic Dependencies Principle (ADP)
4.14 Stable Dependencies Principle (SDP)
4.15 Stable Abstractions Principle (SAP)
4.16 Option Operand Principle (OOP)

5 Undetectable Design Principles
5.1 Liskov Substitution Principle (LSP)
5.2 Dependency Inversion Principle (DIP)
5.3 Single Level of Abstraction (SLA)
5.4 Common Closure Principle (CCP)
5.5 Integration Operation Segregation Principle (IOSP)
5.6 Command Query Separation (CQS)
5.7 Encapsulate the Concept that Varies (ECV)

6 Tool Implementation
6.1 Selection of base-tool
6.2 Implementation details

7 Evaluation
7.1 Overview e
7.2 Design principles in detail o000
7.3 SUMMATY o o it e e
7.4 Research Questions Revisited

8 Conclusion

A Appendix
A.1 Design best practices L

Bibliography

Web references

40
41
44
45
46
48
51

55
95
58
61
63
64
66
69

71
71
72

77
7
78
83
84

89

91
91

95

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Introduction

1.1 Problem Description

Object-oriented design principles, such as the Single Responsibility Principle described by
Robert C. Martin [29], help developers to create designs that are easy to implement and
maintain, but they are more like heuristics than concrete rules [9]. Usually compliance
with these design principles is reviewed manually, but research on how to measure object-
oriented design was done since Chidamber and Kemerer published an article [7] for a
metric suite in 1994 [4]. Such metric suites can indicate design flaws, but they do not
lead developers to the cause of the problem [27]. Plosch et al. state that the adherence
of design principles can be verified by checking for violations of design best practices.
Design best practices like AvoidPublicInstanceVariables are more fine grained than design
principles and can be checked with static code analyzers [37].

To prove this concept, Plosch et al. built an automatic code analyzing tool called MUSE
[38] that can check for violations of design best practices. The result can be imported
into "Software Product Quality Reporter" (SPQR) [13], which is used to build design
quality models and can be used to map violations of design best practices to violations
of design principles [3]. They only provide design best practices for ten design principles,
although there are many more principles available and used in practice [3]. Furthermore,
MUSE under the hood uses the commercial tool Understand' and MUSE and SPQR
are not available publicly. To get violations of design principles one has to use all three,
Understand, MUSE and a configured instance of SPQR.

The established open-source static code analyzers for Java, namely Checkstyle?, Spot-

Thttps:/ /scitools.com/
https://checkstyle.org/

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.

INTRODUCTION

Bugs?, PMD?* and plugins for SonarQube like SonarJava®, use a mixture of metrics and
code smell detection. What they do not do, is linking the problems they find to design
principles.

Therefore, there currently does not exist an open-source tool that out of the box explicitly
warns developers about possible design principle violations in Java. The only tool that
gives such warnings is MUSE in combination with SPQR which only covers ten principles
and is not available as open-source.

1.2 Expected Results

The expected result is an open-source tool which can identify violations of object-oriented
design principles in Java code. The tool will cover all commonly known principles, i.e.,
those principles that come up via Google and Google Scholar. It will be integrable
into SonarQube, either by being a SonarQube plugin or by integrating into SpotBugs,
respectively PMD, which both are available as SonarQube plugins. An integration with
SonarQube is intended, because it already has the means to manage reported issues, e.g.,
mark them as false-positives.

To achieve this goal two research questions have to be answered:

RQ 1: Which violations of object-oriented design principles for Java can be
detected automatically, and how can we do that?

Not all design principles mentioned in literature might be automatically detectable. First,
existing design principles have to be collected. Only principles which come up via a web
search and are frequently discussed will be considered. For each design principle it has
to be evaluated if and how a violation of it can be detected automatically.

RQ 2: How useful is the automatic detection (according to RQ1) to assess
the quality of a software project?

The methods obtained by answering RQ1 will be implemented in an open-source tool.
Since design principles are just heuristics, the tool to be built is only expected to report
possible candidates for violations. The decision, whether the reported violation is indeed
existent or if the source code does not infringe any design principles, has to be made
by a developer. To not waste the developers time, the tool needs to be evaluated to
what degree it can detect violations of design principles and how many false-positives it
produces.

In summary, the expected results are (1) a list of object-oriented design principles whose
violations are automatically detectable in Java, (2) the description of the detection

3https://spotbugs.github.io/
“https://pmd.github.io/
Shttps://www.sonarsource.com/products/codeanalyzers/sonarjava.html

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.3. Methodological Approach

strategy for each item on the list and (3) an open-source tool that detects violations
of design principles in Java out of the box and integrates with SonarQube. As a side
product (4), a list of design principles whose violations cannot be detected automatically
will be created.

1.3 Methodological Approach

First, a literature research will be conducted on several topics. Research on object-
oriented programming will provide information about the object-oriented programming
concepts that object-oriented design principles are about. Software design quality will
also be researched to get information about what design means, why design quality
matters, how it can be measured and to introduce terms like bad smell, design best
practice and design principle. The next topic to research are design principles themselves,
i.e., which do exist and how violations of each one can be detected.

With the information gathered with the literature research, the tool to automatically
detect design principle violations can be build. For this the above mentioned existing
open-source tools have to be assessed, as to which is best suited to integrate the new tool
with, i.e., which makes the implementation of the new rules the easiest. This will be done
by reading the documentation and, if not decidable by the documentation, writing small
prototypes in each existing tool. To check the functionality of the new tool, examples
will be written that violate design principles on purpose.

The evaluation of the tool will be based on the self written examples and by running the
tool against open-source Java projects. Results of the tool will be checked at least at a
sample basis depending on the amount of found possible violations.

1.4 Structure of the Thesis

Chapter 2 introduces the object-oriented programming paradigm and its concepts. Design
principles make statements about the usage of these concepts, so each concept will be
described shortly.

In Chapter 3 software design quality is described. This includes an introduction and a
section about the relevance of design quality. Furthermore, in this chapter the terms used
later on in the thesis, e.g., design best practice and design principle, are defined. How
design quality can be measured is the last part and will describe different approaches to
measuring design quality.

Chapter 4 contains a listing of design principles whose violations are automatically
detectable. For each principle there is a description and the detection strategy for
violations.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1. INTRODUCTION
Chapter 5 lists those design principles whose violations are not automatically detectable.
This principles are also described and the reason for the non-detectability is given.
Chapter 6 describes the implementation and evaluation of the new tool. First, the
selection process of the base tool is discussed. Up next are selected implementation
details of the new tool followed by the evaluation.

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Object-Oriented Programming

2.1 Introduction

Object-oriented programming is a programming paradigm initially used by SIMULA,
a simulation language created in the 1960s. The first substantial implementation of
object-orientation was SMALLTALK, developed in the 1970s. Other examples for old
object-oriented programming languages are C++ and Eiffel [47][52]. Newer object-
oriented languages include Java, C# and Python.

Encapsulation is important in software development because it is necessary to decompose
systems into smaller units that are simpler to develop and maintain. Object-oriented
languages do this by letting developers encapsulate procedures and local state in objects,
rather than having programs and data separated from one another. Each object provides
a service specified by its interface that other objects can use, i.e., send a message to the
object. Callers only know the interface, the implementation is abstracted and can be
changed independently. Object types can inherit from other object types and objects of
such subtypes can be used wherever an object of supertype is expected. This implies that
the receiver of a message can in general only be determined at runtime. [35][46][47][52]

In the following, the most important object-oriented concepts are briefly and superficially
described. For example, there are single-inheritance and multiple-inheritance, but the
chapter about inheritance will only explain single-inheritance because only the basic
concept gets explained. Since this thesis concentrates on Java the concepts will only be
explained in the way that Java uses them.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

OBJECT-ORIENTED PROGRAMMING

2.2 Concepts

2.2.1 Class

Classes are templates that are used to create one or more similar objects. Apple would
be a class and apple-1 and apple-2 are objects, i.e., instances of that class. Apple is
also the type of apple-1 and apple-2. Classes encapsulate data and procedures because
they have visible operations, but also hidden instance variables and hidden methods. At
runtime, a class gives the information how objects behave to incoming messages. During
development it provides the developer with an interface that tells her or him how to
interact with objects of that class. [1][35][47][52]

2.2.2 Object

Objects only exist at runtime. They are individual, identifiable instances of classes and
therefore have the layout depicted by their classes. Each object has its own instance
variables, but can receive the same messages as other objects of the same class. The state
of an object is usually only accessible for the objects operations. The visible operations
of an object are those of its interface. [1][35][46][52]

OP1
.]
interface OoP2

OP3

Implementations
of
OP1, OP2, OP3

Figure 2.1: Structure of an object [52]

2.2.3 Subtyping

Classes can be subtypes of other classes. Class A is a subtype of class B if its interface
makes it acceptable in contexts expecting type B. Class A might add additional function-
ality to its interface. A being a subtype of B implies, that an object of type A can be
used where B is expected. [35][46]

2.2.4 Inheritance

Inheritance allows a class to be based on another class and inherit its behavior. Inheritance
is therefore primarily a reuse technique. Subclasses might add new operations and instance

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.3. Java

variables to provide more functionality than the superclass, but can also be allowed
to override inherited operations. Many object-oriented languages tie subtyping and
inheritance together, i.e., a subclass is always also a subtype. [1][46][52]

2.2.5 Polymorphism

Polymorphism means "having or assuming different forms". In object-oriented program-
ming it is the ability of objects of different classes to handle the same message, but with
different behavior. A message that can be sent to an object of a supertype can also
be sent to objects of its subtypes. This enables reusability, because at compile-time a
supertype can be specified, but the implementation (in the subtype) to be used, i.e., the
executed behavior, is in general only decided at runtime. [1][35][47]

2.2.6 Abstraction

Users of an object should not make assumptions about its implementation. A class
represents a simplified model, hiding irrelevant details from the user. As long as the
external interface does not change, the implementation details can be changed at will.
[1][46][47]

2.2.7 Encapsulation

Objects keep data and functions together and may hide them from users. The details of
an object’s implementation are kept secret, only an external interface is visible for the
outside world. Therefore, implementation details can be changed without breaking the
contract of the interface. [1][46]

2.3 Java

In Java, classes are defined using the class keyword. Classes can contain members
(data) and methods, but at least have to have one constructor, a special function that is
used to instantiate classes. Creating objects is done with the new keyword.

The visibility of members and methods can be restricted. For example, the private
modifier limits the visibility to the class itself, the protected modifier constrains the
visibility to the class itself and subclasses of it. Therefore, different levels of information
hiding are possible.

A class can inherit from only one other class with the extends keyword. The subclass
may override methods and add additional methods and members. It can only use members
and methods of its superclass if the visibility modifier allows it. Subclasses are also
always subtypes as far as the compiler can decide. Another way to use subtyping in Java
is the utilization of interfaces. Interfaces are defined with the interface keyword and
typically only contain method stubs, i.e., signatures without implementation. Since Java
8 it is possible to provide default implementations for methods. An interface can inherit

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.

OBJECT-ORIENTED PROGRAMMING

from multiple other interfaces. Making a class a subtype of an interface is done with the
implements keyword, whereby a class can be the subtype of multiple interfaces.

Variables are typed and may hold objects of the specified type or subtypes of it, which
enables polymorphism. Abstraction can, for example, be achieved by using interfaces
or abstract classes which are partly implemented classes that can leave parts of the
implementation to their subclasses. [61]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Software Design Quality

3.1 Introduction

Software design quality is not about the quality of the product itself, but rather the
quality of the code behind it. Human activities are error prone and software design is no
exception. Perfect software design might therefore not be achievable and flaws in the
design may have a strong impact on quality attributes like flexibility and maintainability.
Today there are many legacy object-oriented systems that are monolithic, inflexible and
hard to maintain. Just using an object-oriented language is not enough to produce good
software. The development has to be done with design quality in mind, i.e., design rules
and practices should be applied. [27]

3.2 Quality attributes and properties

Jagdish and Carl defined six quality attributes for their QMOOD metric. They are based
on the ISO 9126 attributes functionality, reliability, efficiency, usability, maintainability
and portability. Reliability and usability were left out because they have more to do
with implementation rather than design. Portability was replaced by extendibility,
efficiency with effectiveness and maintainability with understandability, to better suite
design characteristics. Reusability and flexibility were added as important attributes of
object-oriented design. Table 3.1 provides an overview of the quality attributes. [20]

Quality attributes are not directly measurable because they are too abstract. Design
properties on the other hand are tangible concepts that can be observed directly by
looking at the structure, relationships and functionality of attributes, methods and classes.
The design properties abstraction, encapsulation, coupling, cohesion, complexity, design
size, messaging, composition, inheritance, polymorphism and class hierarchies are often
used as indicators of design quality. Table 3.2 gives the definitions of the design properties.
[20]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3. SOFTWARE DESIGN QUALITY
Quality Attribute Definition
Reusability The design can be applied to new problems with-
out significant effort.
Flexibility Changes can be incorporated into the design.
The design can be adapted to provide function-
ally related capabilities.
Understandability The design can be easily learned and compre-
hended. Correlates directly with the complexity
of the design structure.
Functionality The responsibilities of classes of a design, which
are provided through their public interfaces.
Extendibility New requirements can be incorporated into the
existing design.
Effectiveness The design’s ability to achieve the demanded
functionality and behavior by using object-
oriented concepts and techniques.
Table 3.1: Quality attributes (based on [20])
3.3 Relevance of design quality
Software is subject to constant change. Modern development approaches prefer short
development cycles and raise the need for high maintainability and extensibility. Higher
design quality means code that is easier to understand, maintain and extend. Improve-
ments to design quality can be seen as an investment because they take up resources
now, but reduce costs in the future. Such improvements are most profitable when they
are done as early as possible. [5][44][50]
Trading in design quality for development speed is also known as technical debt. There is
no problem in disregarding design quality for some time, as long as the design is improved
later on and the technical debt is paid back. Stalling the payback for to long is what
might lead to unproportional costs in the future. [5][8]
Experienced developers rate the importance of design quality higher than novices. Overall
design quality is seen as relevant, but not as much as functional correctness. The time
spent on design quality is cut by commercial time pressure. This pressure indicates that
actions concerning design quality need to fit efficiently and effectively into the development
process. This can be aided with appropriate tools especially because experience is a key
factor for design quality which novices do not have. Therefore inexperienced developers
are seen as main contributers to poor quality design. Tools are useful to point out areas
of the code that may need design improvements. To achieve design quality developers
also rely on Clean Code [29] practices and the related SOLID Principles. [50][54]
10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.4. Important terminology

Design Property Definition

Design size The number of classes in a design.

Hierarchies The number of non-inherited classes that have
children.

Abstraction A measurement of the generalization-
specialization aspect, indicated by the depth of
hierarchies.

Encapsulation A measurement of the enclosing of data and

behavior in classes, i.e., attributes and methods
are declared private to prevent access from the

outside.

Coupling Measures the number of objects an object has to
communicate with to function properly.

Cohesion Measures the relatedness of methods and at-
tributes in a class.

Composition Measures the aggregation relationships of a de-
sign.

Inheritance A measure of the '"is-a" relationship between

classes. Correlates to the depth of inheritance
hierarchies, but focuses on the reuse of function-
ality.

Polymorphism The ability to substitute objects with matching
interfaces for one another at runtime. Measured
by the amount of methods whose implementation
is chosen on runtime.

Messaging The number of public methods that are available
to other classes.
Complexity A measure of the difficulty to comprehend the

internal and external structure and the relation-
ships of classes.

Table 3.2: Design properties (based on [20])

3.4 Important terminology

3.4.1 Bad smells

Bad smell is a term coined by Martin Fowler and Kent Beck [10]. Smells are symptoms
of code decay or other problems with the code quality that can lead to maintenance
issues. The description of a bad smell contains a description of the symptom, i.e., what
the code currently looks like and possible refactorings that can eliminate the smell. An
example for a smell is "Duplicated Code". The symptom is code that does (nearly) the
same in multiple places. To improve the code, one can, for example, use the refactorings

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

SOFTWARE DESIGN QUALITY

12

"Extract Method" or "Extract Class". [34][54]

Manually finding bad smells based on textual descriptions is time-consuming and error-
prone. Thus there exist a variety of static code analyzers that can detect bad smells.
Smells are just indicators for possible problems. Bad smells reported by tools still need
human evaluation. Code generators might produce smelly code, but that might be ok if
it does not have to be maintained by humans. [34]

3.4.2 Design best practices

Design best practices are heuristics that shall prevent developers from design pitfalls. In
contrast to bad smells, which have a negative view and therefore describe already existing
problems, design best practices have a positive view. Their descriptions are preventative,
i.e., they describe what should be done to prevent bad smells. Design best practices make
quality issues more tangible for developers because they help to communicate quality
properties. Violations of design best practices can be used to assess the design quality.
More violations equal lower design quality and vice versa. [2][37]

Sticking to the bad smells example, there is the design best practice AvoidDuplicates. It
just states that source code should not be duplicated.

Brauer et al. conducted a survey with 214 participants on the importance of design best
practices. They concluded that the practices AvoidDuplicates, AvoidUsingSubtypesInSu-
pertypes, AvoidPackageCycles, AvoidCommandsInQueryMethods and AvoidPublicFields
are rated as very important. On the not so important end of the spectrum are for example
AvoidManyTinyMethods and AvoidProtectedFields. In summary, 26 of the 49 design
best practices in question were rated as important. [2]

3.4.3 Design principles

Design principles are standards that are used to organize the structural components of
software design. Applying design principles has multiple benefits. They help in building
a common basis of architectural knowledge, help at designing large scale systems and
protect beginners from pitfalls. [15]

Design principles exist on two abstraction layers. There are coarse-grained and fine-
grained design principles. Each coarse-grained principle is one of the four traits of good
object-oriented design, which are low coupling, high cohesion, moderate complexity and
proper encapsulation. These principles are so abstract that they are difficult to apply in
practice. [37][42]

Fine-grained design principles on the other hand are concrete enough to guide developers
to build, understand and maintain high-quality software systems. An example is the
Single Responsibility Principle, which is one of the five SOLID principles by Martin [29].
The SOLID principles are a part of a much bigger catalog of design principles. [29][43]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.5. Measuring design quality

Plosch et al. conducted a survey about the importance of different design principles to the
practitioners. The highest ranking ones are Single Responsibility Principle, Separation of
Concern Principle, Information Hiding Principle, Don’t Repeat Yourself Principle and
Open Closed Principle.

Design principles relate with design best practices in the way, that best practices ensure
the adherence of design principles. Figure 3.1 gives an overview of the relation of bad
smells, design best practices and design principles. [37]

coarse-grained
Design Principle

Y

ensures adherance of

threatens
fine-grained
Design Principle

Y

ensures adherance of

Design Best Practice Bad Smell
prevents

Figure 3.1: Relationship between bad smells, design best practices and design principles
(based on [37])

3.5 Measuring design quality

Measuring design quality makes it possible to identify problems and trends. Further,
it enables the comparison of products and processes. Even though there is no single
definition of quality, which also means there is no simple measure of design quality that
is acceptable to everybody, having quality defined in a measurable way makes it easier to
discuss viewpoints. [12]

3.5.1 Approaches

Manual

The manual approach is an activity executed by a human which is based on guidelines
and expertise. The analyst searches for bad smells in the system under investigation. The

outcome is mainly based on her or his expertise making the result rather unpredictable.

This approach is expensive, unrepeatable and non-scalable. On the upside, a human

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

SOFTWARE DESIGN QUALITY

14

manually assessing a design can incorporate domain specific aspects and design decisions,
for example based on framework usage, into the evaluation. [3][26][42]

Metric-based

The metric-based approach uses software to calculate metric values that represent design
aspects of a system. An early and very influential metric suite was published by Chidamber
and Kemerer. This metric suite consists of six metrics, for example "Number of Children
(NOC)", which reports the number of immediate subclasses of a class. Unfortunately,
a single metric in isolation makes it hard to find the underlying design flaw and does
not imply any possible improvements. To mitigate this weaknesses, Marinescu combined
multiple metrics to so called detection strategies. This approach makes it easier to locate
design flaws. Since metrics are just numbers there need to be thresholds that indicate
problems. Improper adjustment of these thresholds leads to unrecognized flaws and
incorrect suspects, i.e., false-negatives and false-positives. Additionally, metrics cannot
express design flaws that are on a semantic level, for example, flaws related to naming,.
3][6][7][27][34]

Rule-based

The rule-based approach uses software to search for violations of design best practices in
software artifacts. Such artifacts can be for example UML class diagrams, documentation
or source code. Violations of rules can be exactly located. Furthermore, each rule, i.e.,
each design best practice, has a name, a description and an improvement advice, making
it easier for developers to deal with found violations. [3]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

CHAPTER

Detectable Design Principles

In this chapter we deal with all design principles whose violations can be automatically
detected with a static code analyzer. To be discussed in this thesis, a design principle has
to be published in literature and/or has to be frequently discussed on the internet. Hence,
design principles only proposed by someone on the internet without any discussions are
not qualified. Also, principles that are published in a single book or paper but are not
taken up by others or discussed further are also not considered. To find relevant design
principles Google and Google Scholar were used. The websites Principles Of Object
Oriented Design [66], Principles Wiki [67] and Prinzipien der Softwaretechnik [69] proved
themselves as very helpful. The lists on these websites were used as a starting point for
further research. According to our research we found violations of the following design
principles to be automatically detectable:

« Single Responsibility Principle (SRP)
e Open Closed Principle (OCP)

o Interface Segregation Principle (ISP)
o Information Hiding (IH)

o Law of Demeter (LOD)

o Keep It Simple Stupid (KISS)

o Don’t Repeat Yourself (DRY)

o Information Expert (IE)

o Single Choice Principle (SCP)

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

DETECTABLE DESIGN PRINCIPLES

16

o Program to an Interface, not an Implementation (PINT)
o Favor Composition over Inheritance (FCOI)

o Common Reuse Principle (CRP)

o Acyclic Dependencies Principle (ADP)

 Stable Dependencies Principle (SDP)

« Stable Abstractions Principle (SAP)

o Option Operand Principle (OOP)

4.1 Single Responsibility Principle (SRP)
Variants

e One Responsibility Rule
e Separation of Concerns
e Curly’s Law

e Do One Thing

Description

The Single Responsibility Principle states that a class should only have one reason to
change. This principle aims to make the code more cohesive. The idea is that a change
should impact as few dependencies! as possible. Having a class with more than one
responsibility makes the class more likely to change. A class with a single responsibility
is also easier to comprehend which is very important taken into account how often code
is read. A bad example would be the following Employee class:

class Employee

{

public Money calculatePay (...)
public void saveToDatabase(...)
public String reportHours(...)

!Dependency and dependencies are synonymously used with dependence and dependences in this
thesis.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.1. Single Responsibility Principle (SRP)

This class would be changed if the requirements for the payment calculation, for the
database storage or for the format of the hours would change. This class currently has
multiple responsibilities. A change to the database storage mechanism might influence
the format of the hours by accident. By delegating the responsibilities to other classes a
change has less influence. Just introducing these classes would look like this:

class Employee

{

private PayrollCalculator pc;
private DatabaseStorer ds;
private HoursFormatter hf;

public Money calculatePay(...)
{

return pc.calculatePay(this,...)

}

public void saveToDatabase(...)

{

ds.saveToDatabase (this, ...)

}
public String reportHours(...)

{

return hf.reportHours (this,...)

One step further, one can move the three methods to different classes which only have
the responsibility of managing the interaction.

class PayrollEmployee
{

private Employee emp;
private PayRoll pr;

public Money calculatePay(...)

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

DETECTABLE DESIGN PRINCIPLES

18

class DataBaseEmployee {

private Employee emp;
private Database db;

public void saveToDatabase(...)

Making such separations is only advisable if the system really changes in this separate
ways. If a change to the payment calculation always comes hand in hand with a change
of the database storage mechanism, then those two would not benefit from applying
the Single Responsibility Principle since it would unnecessarily increase the complexity.
115][19][29)

Relation to other principles

Encapsulate the Concept that Varies (ECV): Both principles aim at keeping
changes local by encapsulating code that changes together.

Violation detection strategy
Design best practices: AvoidNonCohesivelmplementations

A violation of the Single Responsibility Principle might exist if the class is not very
cohesive. This can be a warning sign because parts of the class do not interact with each
other and should therefore be separated into multiple classes. A commonly used metric
for cohesion is LCOMA4 [17] which results in a value higher than 1 for non-cohesive classes.
It gives the number of disconnected method sets whereby connections are method calls
and the use of the same instance variable. [3][19]

Bréauer[3] proposed a second best practice named CheckUnsuitableFunctionalityOfClass.
He says, if clients typically only use portions of the classes interface, i.e., its public
methods, the class might provide different functionality to different clients. We think this
is a sound best practice for humans, but can be problematic if implemented with a static
code analyzer. Classes can offer nearly the same functionality in slight variations, i.e.,
methods that do nearly the same. Those methods will commonly not be used together
by clients. A counterexample is a class which follows the Option Operand Principle and
has a method with a boolean option split into two methods. The class would be flagged
as violating the Single Responsible Principle because those two methods will probably
not be used both by a single client. To prevent such false-positives we think this best
practice should not be implemented.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.2. Open Closed Principle (OCP)

Origin
The Single Responsibility Principle is one of the SOLID principles by Martin published
in [29].

4.2 Open Closed Principle (OCP)

Variants

Description

Meyer defined the Open Closed Principle over modules that should be open for extension
but closed to change. The solution for him was to use inheritance. The here more relevant
definition comes from Martin. He says that software entities (classes, methods, ...) should
be open for extension but closed for modification. This sounds like a contradiction at
first but still is achievable. [29][32]

If a single change creates a ripple of changes in dependent entities the design is too rigid.

The design was not open for extension. Open for extension here means that the behavior
of the entity can be changed to fulfill new requirements. Closed for modification means
the change in behavior should not need a change in the already working source code. It
should be possible to fulfill the new requirements by adding new code.[29]

Taking the example from [29] we have two shapes, circle and rectangle, and want to draw
a list of shapes somewhere. A solution violating the Open Closed Principle would look
like this:

public class Circle

{
public void draw(){...}

}

public class Rectangle

{
public void draw(){...}

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

DETECTABLE DESIGN PRINCIPLES

20

public void drawShapes (Collection<Object> shapes)
{
for (Object shape : shapes)
{
if (shape instanceof Rectangle)
{
((Rectangle) shape) .draw();
}
else if (shape instanceof Circle)

{
((Circle) shape) .draw();

Adding the shape triangle to this code would need a change of the drawShapes() method.
Most likely, this is not the only code piece that handles shapes so all places with such if/else
cascades need to be changed. To adhere to the Open Closed Principle an abstraction?
can be introduced.

public interface Shape
{
public void draw () ;
}
public class Circle implements Shape
{
@Override
public void draw() {...}
}
public class Rectangle implements Shape
{
@Override
public void draw(){...}
}
public class Triangle implements Shape
{
@Override
public void draw(){...}

2 Abstraction here and later in the thesis is used as a synonym for supertype which can be an interface
or a class (an abstract class).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.2. Open Closed Principle (OCP)

public void drawShapes (Collection<Shape> shapes)
{

for (Shape shape : shapes)

{

shape.draw () ;

The drawShapes() method is now open for extension because new shapes can also be
drawn with it, but closed for modification because a new shape requires no change of the
method. The new requirement is implemented somewhere with new code that produces
triangles and provides them to drawShapes().

Relation to other principles

Encapsulate the Concept that Varies (ECV): The Open Closed Principle aims to
encapsulate the concept that varies in an abstraction. Clients only use the abstraction,
the variations, i.e., the implementations are hidden from clients.

Dependency Inversion Principle (DIP) and Liskov Substitution Principle
(LSP): These principles should also be considered when applying the Open Closed
Principle because these two give advice on the use of abstractions.

Violation detection strategy

Design best practices: DontReturnMutableField, UseAbstractionAsParameterType, Use-
AbstractionAsReturnType, AvoidPublicFields, AvoidPublicStaticFields, AvoidProtected-
Fields, AvoidRuntimeTypeldentification

Detecting a violation of the Open Closed Principle is not straightforward because it
has a lot to do with predicting future requirements and protecting the software entity
from change resulting from that new requirements. Still, some precautions can be taken.
Methods should not return mutable fields and use abstractions as parameter and return
types. The first protects against changes needed because callers start manipulating the
return value. The second leaves the method open for extension as some new requirement
might already be covered by the abstraction. Further, public fields, static and non-static,
as well as protected fields should be avoided. A class that has public or protected fields
might need to change because others depending on these fields are changing, which goes
against the closeness of the Open Closed Principle. Last but not least, runtime type
identification should be avoided. As shown in the example above, such checks might need
to be changed when a new requirement comes in. [3]

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4. DETECTABLE DESIGN PRINCIPLES

Origin
The Open Closed Principle is originally from Meyer[32], but is also one of the SOLID
principles by Martin published in [29].
4.3 Interface Segregation Principle (ISP)
Variants
Description
The Interface Segregation Principle demands that clients should not be forced to depend
on methods they do not use. An interface that has groups of methods that are used by
different clients leads to multiple problems. One comes for classes that implement such
fat interfaces. [29]
In the following example the Mammal interface is a fat interface, that has unnecessary
methods for some implementations.
public interface Mammal
{

void breath();

void fly();
}
public class Tiger implements Mammal
{

@Override

public void breath () {/+codex*/}

@Override

public void fly () {throw new NotImplementedException();}
}
The Tiger class is required to provide a stub implementation for the fly method. This
is unnecessary code that needs to be maintained. If the fly methods signature changes
for some reason, Tiger would also need to be changed, although it cannot fly anyways.
Additional behavior added to the Mammal interface that the Tiger is not capable of also
leads to more changes and more stub methods in the Tiger class. Following the Interface
Segregation Principle, the Mammal interface needs to be split up.

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.3. Interface Segregation Principle (ISP)

public interface Mammal
{
void breath();
}
public interface FlyingMammal extends Mammal
{
void fly();
}
public class Tiger implements Mammal
{
@Override
public void breath () {/*codex/}
}
public class Bat implements FlyingMammal
{
@Override
public void breath () {/*code=*/}
@Override
public void fly () {/*codex/}

The Tiger now only has the methods that its clients really need. Also, changes to the
flying behavior only affects the Bat, but not the Tiger.

Calling clients benefit because in the first version the Tiger has a fly method that only
fails at runtime. This might be obvious in this example, but in a real code base this could
lead to confusion and unintended behavior. Clients also might need to be adapted or at
least recompiled because a part of an interface they do not use is changed. A smaller
interface isolates the clients from each other. Changes to one interface cannot affect
clients of another interface. [29]

Relation to other principles

Single Responsibility Principle (SRP): Entities that have only one responsibility
will also have smaller interfaces, increasing the chance that a client does not depend
on more than he needs. Nevertheless, classes that adhere to the Single Responsibility
Principle can still violate the Interface Segregation Principle because some clients do not
need the whole interface.

Information Hiding: Breaking the interface of a class into smaller pieces enables
information hiding because clients only know about the part of the whole interface that
they need to know.

Program to an Interface, not an Implementation: Having small interfaces defined
for clients facilitates the use of interfaces.

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

DETECTABLE DESIGN PRINCIPLES

24

Violation detection strategy
Design best practices: AvoidStubForInheritedMethod

For the Interface Segregation Principle Brauer[3] again proposed the CheckUnsuitable-
FunctionalityOfClass best practice. If clients of an interface commonly consume only a
part of the interface, this might indicate that the interface is too fat and needs to be
split up. Again we think this is a valid best practice to be used by humans, but not by
static code analyzers for the same reasons depicted in the Single Responsibility Principle
chapter. Methods that provide nearly the same functionality with different options will
frequently not be used together by a single client. Having a separate interface for each
client would make the system overly complex to maintain and is not viable. Thus, in our
opinion this best practice would produce unjustifiable false-positives.

An implementable warning sign are classes that do not provide an implementation for a
method of an interface they implement. Not providing an implementation here means an
empty method body or a body with a single statement which throws an exception. [3][29]

Origin
The Interface Segregation Principle is one of the SOLID principles by Martin published
in [29].

4.4 Information Hiding (IH)

Variants

Description

Information Hiding is a principle that says to hide implementation details as much as
possible. If there is information in a class A that B does not need to know to use A, then
it should be hidden. This ensures that changes to A that are not modifying its interface
stay local, they do not cause ripples in the system. Changes to the hidden internals
cannot affect B because B does not even know about them. [36].

It is to note that encapsulation is not the same as information hiding. Encapsulation
means combining data and functions but they are not necessarily hidden. So encapsulation
enables information hiding but does not enforce it. [51]

To hide information one should use the lowest possible access modifier for variables and
methods.

Access to attributes should be prohibited and if necessary only be possible through
methods. As Meyer describes in his Uniform Access Principle[32], all data accesses
should happen in a uniform way, i.e., only through methods. This way, the source of the

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.5. Law of Demeter (LOD)

requested value is hidden. What can be a field now may need to be calculated on request
in the future which only a method can do.

Fitting abstractions will not let others modify their state directly through setter methods.
Because they can change the internal state the setters should contain checks to prevent
an invalid state. Leaking internals can be prevented by copying objects before returning
them or making them immutable.

Relation to other principles

Information Segregation Principle: Breaking the interface of a class into smaller
pieces enables information hiding since clients only know about the part of the whole
interface that they need to know.

Law of Demeter (LOD) and Information Expert (IE): Both principles also try to hide
implementation details and keep clients from depending on them.

Violation detection strategy

Design best practices: AvoidPublicFields, AvoidProtectedFields, AvoidSettersForHeavi-
lyUsedFields, DontReturnMutableField, UseAbstractionAsReturnType

The most massive violation of the Information Hiding Principle are public fields. Classes
that have public fields lost the control over their state and can be changed from the
outside at any time in unpredictable ways. Protected fields have the same problem.
Setting heavily used fields from the outside should not be possible at all. Heavily used
is pretty subjective and should be configurable as the percentage of methods which
use the specific field. Internals that leak through return values are also a violation.
Returning a mutable field of the class by reference makes it de facto public and enables
arbitrary changes to the internal state. The use of concrete types as return types may
also needlessly leak information about the internals of a class. [3]

Origin

Information Hiding was first described by Parnas in [36].

4.5 Law of Demeter (LOD)

Variants

e Principle of Least Knowledge

e Don’t Talk to Strangers

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4. DETECTABLE DESIGN PRINCIPLES
Description
The Law of Demeter as described by Lieberherr, Holland, and Riel[23] states that a
method M of class C should only call the following methods:
1. Methods directly in its class C
2. Methods of fields of class C
3. Methods of parameters of M
4. Methods of objects created by M
It is not allowed to call the method of an object returned by neither of the above method
calls. This principle aims to prevent objects knowing too much about the internals of
other classes. Calling a method on the result of a method call means the caller needs to
know about the internals of the result. This also aids testability since only the direct
objects from above need to be mocked, but not results of calls to them. A study also
found a correlation between violations of the Law of Demeter and the bug proneness of
projects. [63][14]
The following code piece illustrates all of the allowed calls from above (referenced by
their number) and illegal calls.
public class House
{
private Set<Person> persons = new HashSet<>();
private Floor floor;
private boolean ownerIsHome;
public void openDoor () {}
public void closeDoor () {}
26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.5. Law of Demeter (LOD)

public void letInPersons (Persons persons)
{
// Case 1: Method of the same class
openDoor () ;
// Case 3: Method of a parameter
Iterator<Person> it = persons.iterator();
// Illegal case A
while (it .hasNext ())
{
// Illegal case A
Person p = it.next();
// Case 2: Method of a field
this.persons.add(p);
// Illegal case B
if (p.getBelongings () .getHouse () .equals (this))
{

ownerIsHome = true;

}

closeDoor () ;

Dirt dirt = new Dirt ();

// Case 4: Method of locally created object
dirt.stickTo (floor);

Case B is the one that the Law of Demeter tries to prevent. House is now coupled to the
Belongings class and knows about the internals of Persons, Person and Belongings. To
adhere to the Law of Demeter, a new method needs to be provided by Persons because
this is the only object letInPersons() may send messages too.

if (persons.anyIsLivingIn (this))

{

ownerlIsHome = true;

With this function call House is only coupled to Persons and knows nothing about its
internals. On the other hand Persons has to provide a specialized method. Following the
Law of Demeter leads to more methods.

Case A is in conflict with the Law of Demeter but is also a very common construct in
Java since Iterators can only be used this way. One could refactor the code in a way

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

DETECTABLE DESIGN PRINCIPLES

[\
co

that the Persons object handles the entrance but this would mean two more methods.
Persons needs to provide a method to give the House to and House needs a method to
add a single Person.

persons.enter (this);

house.addPerson (person) ;

Adherence to the principle can lead to more complex code than necessary. This is the
reason why the Law of Demeter is controversial. To obey the law, a high number of
delegate methods may be needed that do nothing than provide the methods of internal
objects to the outside. [53]

The extreme case are objects that only hold data, so called plain old java objects or
POJOs. These objects provide no action, data can only be set and retrieved. Such
POJOs can also be nested.

public class Car

{

private SteeringWheel steeringWheel;
private Engine engine;

more fields

getters and setters

}

public class Engine

{

private IgnitionPlug ignitionPlug;

If a caller now wants to get the production date of the ignitionPlug, it has to chain some
getter calls.

car.getEngine () .getIgnitionPlug () .getProductionDate ()

Applying the Law of Demeter means to provide a method in car that returns that date
directly.

car.getIgnitionPlugProductionDate ()

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.6. Keep It Simple Stupid (KISS)

Such delegate methods would be needed for every nested getter method which bloats the
interface of Car. Thus it was proposed to not apply the Law of Demeter on POJOs but
only on objects that are containing behavior. [64]

Other exceptions are in our opinion the builder pattern and APIs with a functional
style, like the Stream API. Those use method call chains for simpler use and readability,
making the principle not applicable for them.

Relation to other principles

Information Hiding (IH): Both principles try to hide implementation details and keep
clients from depending on them.

Information Expert (IE): Information Expert advocates to have active objects that
are asked to do a task rather than having passive objects that get queried for information
and maybe updated. Objects should not reach through to strangers but only communicate
with the information expert.

Violation detection strategy

Design best practices: AvoidChainedMethodCalls

Detecting violations of the original Law of Demeter would be straightforward because
all chained method calls are forbidden. Masking the chained calls with local variables is
also detectable, but as already described there are common exceptions from the Law of
Demeter. We think that for a human the principle is a good guide to avoid unnecessarily
nested calls, but a static code analyzer does not have the same context at hand. Simply
flagging all chained calls would lead to an unreasonable number of false-positives. POJOs
can be detected by their structure because their methods only set or return fields. In our
opinion chained calls to POJOs should be legal to minimize the number of false-positives
and special cases like Iterators, Streams and the builder pattern should also be excluded
from the rule.

Origin
The Law of Demeter was first described by Lieberherr, Holland, and Riel [23].

4.6 Keep It Simple Stupid (KISS)

Variants

e Rule of Simplicity

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

DETECTABLE DESIGN PRINCIPLES

30

Description

Keep It Simple Stupid means to find the simplest solution that works. Developers can
be tempted to write unnecessarily complex code to prove their ability to handle this
complexity. It might also be the case that they want to write future proof code. This
leads them to the usage of hard to understand language features like inheritance and
polymorphism. The solution they built might never be needed because one cannot look
into the future, but its now implemented that way and harder to understand and maintain
in the future. The fault might not even be with developers, but with product managers
who want features implemented which will never get used. These also can influence the
maintainability of the overall code base. [39]

The principle advices to avoid complex language features but only if they are not the
easiest solution. If inheritance and polymorphism are the right tool for the job they
should by used by all means. [40]

As Keep It Simple Stupid is a very general principle the ways to adhere to the principle are
also general. One should try to avoid complex language features. Premature optimization
can result in more complex code although a simple solution might also have worked.
Large and complex code blocks are also to be avoided. Long methods and many control
statements are harder to understand and might be avoided with more classes and methods.
[33][40]

Relation to other principles

Violation detection strategy
Design best practices: AvoidLongMethods, AvoidComplexMethods

As already stated, Keep It Simple Stupid is a general principle. Therefore, there is no
straightforward way to detect violations, i.e., overly complex solutions. A static code
analyzer does not have enough context to decide if a problem could, for example, also
have been solved without the use of inheritance. If a specific code piece needs to be
optimized or not and if a feature is needed at all are not decidable for a static code
analyzer.

We think the only interpretation of Keep It Simple Stupid that a static code analyzer
can check for are hard to read code constructs like long methods or a high cyclomatic
complexity of methods. Both decrease the readability and are therefore violating the
principle.

Long method means the number of lines exceeds a predefined threshold. This threshold
is opinion based since there is no number at which readability decreases drastically. The
maximum number of lines should be set by the developers of a project according to their
shared opinion. Books and discussions on the internet [74][58][28][31] recommend sizes of

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.7. Don’t Repeat Yourself (DRY)

around 20 to 30 lines but others advocate for 100 to 200 lines. A higher number than
200 was not recommended by anyone so this can be taken as a defensive default value.

Cyclomatic complexity is a metric that measures the complexity of a program. It was
developed by McCabe [30] and calculates the number of linearly independent paths
through a program. Sequential statements do not increase the cyclomatic complexity but
control statements like if and while do. Figure 4.1 shows the complexities of common
control statements whereby e is the number of edges, n is the number of nodes and p
the number of connected components (in these cases always 1). In the original paper 10
was stated as the upper bound at which methods become more difficult to comprehend.
McConnell [31] has the same opinion and therefore it can be chosen as a default value to
indicate problematic methods.

CONTROL STRUCTURE CYCLOMATIC COMPLEXITY
*v=e-n+2p

SEQUENCE Q >O v=1-2+2=1

IF THEN ELSE V=4-4+2=2
WHILE v=3-3+4+2=2
UNTIL v=3-3+2=2

Figure 4.1: Cyclomatic complexities (based on [30])

Origin

The principle is reported to first be stated by Kelly Johnson, an engineer working for
Lockheed and building military aircrafts. [41]

4.7 Don’t Repeat Yourself (DRY)

Variants

e Single Point of Truth
» Single Source of Truth

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

DETECTABLE DESIGN PRINCIPLES

32

Description

"Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system.” [18]

Requirements of software are constantly changing and so the software has to change too.
Having duplications in the code, i.e., the same knowledge or behavior is implemented
multiple times though doing (nearly) the same, leads to more effort. Every change has
to be performed on every duplication. Forgetting to change a duplication can create
contradictions. The Don’t Repeat Yourself principle states to avoid duplications, but
only have one implementation. Thus, only one part of the code has to be changed and
no other part can be forgotten. [18]

Some degree of duplication is unavoidable because documentation is always a duplication
of what is written down in code. This duplication should be minimized as much as
possible. To mitigate the problems that come with duplication the Self Documentation
Principle[32] suggests to put documentation next to the code, i.e., it should be part of
the module. In Java this can be done with Javadoc and inline comments. The spacial
proximity increases the chance of consistency, i.e., if code is changed, the documentation
is also updated.

Hunt and Thomas[18] describe four reasons for duplicated code:

e Imposed duplication: During development different representations of the same
information are needed. For example a Java class that matches the corresponding
database table. Such duplications may be avoided with code generators that build
the different representations from a single source. Documentation can also be a
duplication of the code. Therefore it should not document what the code does, but
give higher-level information, e.g., why the code does this.

e Inadvertent duplication: Mistakes in the design can lead to duplication. An
example are classes with unnormalized data. A Line class should not have a length
attribute besides a start and an end point, because the length can always be
calculated. A separate field may be forgotten to update and contradict the other
information. Having a field for performance reasons is valid, but should be hidden
behind a method.

e Impatient duplication: Time pressure and laziness can tempt a developer to
just copy an existing code part and make the small needed changes instead of
extracting the shared functionality. This saves a short time now but may cost a lot
more in the future. This sort of duplication can easily be detected and prevented,
but needs discipline and resources to spend up front.

e Interdeveloper duplication: Multiple developers working on the same project
simultaneous can implement the same behavior at the same time without knowing

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.7. Don’t Repeat Yourself (DRY)

about the other implementation. Such duplications can be undetected for years
because nobody reads both pieces. Technical leads may realize the similarity in
tasks and bring attention to the developers so they talk with each other. Another
way is to appoint responsibilities, i.e., some developers know how to implement
something and the already existing tools for the task. This information can also be
provided in a wiki or some other form of shared knowledge space.

To prevent duplication of code, the existing code has to be easy to reuse. Documentation
aids the reusability since it tells other developers when and how to use existing code.
Public interfaces, classes, enums, annotations and methods should be documented. Big
chunks of inline comments should be avoided on the other hand because they might only
tell what the code is doing, which is duplication. [3][18]

Relation to other principles

Single Choice Principle (SCP) and Encapsulate the Concept that Varies
(ECV): These two principles support the Don’t Repeat Yourself principle because
both try to keep a list of choices in only one place. This prevents duplicated code that
decides between the possibilities in multiple places.

Violation detection strategy

Design best practices: AvoidDuplication, DocumentPublicInterfacesClassesEnumsAnd
Annotations, DocumentPublicMethods, AvoidMassivelnlineComments

An obvious violation of Don’t Repeat Yourself is duplicated code. A number of lines that
do exactly the same thing should not occur in the system. To avoid the creation of too
many methods, there should be a threshold for the number of lines that are duplicated
since two lines that are copied might be more understandable and easier maintainable
than a separate method in another class. [73]

As described the Don’t Repeat Yourself principle is not only about having no code dupli-
cation, but also about helping to avoid duplication. We therefore think that insufficient
documentation is also a violation. Interfaces, public classes, enums, annotations and
public methods should all have Javadoc attached, so another developer can use them
easier. Inline comments however should not be needed on more than a quarter of the
statements.

Origin

The Don’t Repeat Yourself principle was first described in [18] by Hunt and Thomas.

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4. DETECTABLE DESIGN PRINCIPLES
4.8 Information Expert (IE)
Variants
e Tell Don’t Ask
e Do It Myself

Description
The Information Expert principle gives advise about the responsibilities of objects. It
says the responsibility for a task should be with the object which has the largest subset
of the required information. In practice, it can be used to find the place to put a needed
method. Following this principle leads to lower coupling because the information expert
does not need to ask other objects for information or at least the minimal amount of
other objects since it has the most information at hand. If a responsibility is not given to
the information expert, the now responsible object has to ask for information. Therefore,
also the variant Tell Don’t Ask. [22]
The following example from [22] demonstrates the use of Information Expert. There are
already three classes Sale, SaleLineltem and ProductDescription.
class Sale
{

private List<SaleLineltem> items;
}
class Salelineltem
{

private ProductDescription product;

private int quantity;
}
class ProductDescription
{

private double price;

private String name;
}
Currently, there is no method to get the total amount of a sale and it should be added. To
calculate the total for each sold item, the quantity and the price are needed. According
to Information Expert, the class to give the responsibility to is the one with the most
information. Because sale already has the list of sold items it is the expert and getTotal()

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

4.8. Information Expert (IE)

should be added to it. The first solution looks like this, but violates the Information
Expert principle.

class Sale {
private List<SalelLineltem> items;
public double getTotal () {
double total = 0.0;
for(SalelineItem item: items) {
ProductDescription product =
item.getProductDescription();
total += item.getQuantity () * product.getPrice();
}

return total;

This works, but Sale is not the expert in calculating the subtotal per item. SaleLineltem
has more information since it already knows about the quantity so it should be responsible
for the subtotal.

class Sale
{
private List<SalelLineltem> items;
public double getTotal ()
{
double total = 0.0;
for(Salelineltem item: items)
{
total += item.getSubtotal();
}

return total;

}
class Salelineltem
{
private ProductDescription product;
private int quantity;
public double getSubtotal ()
{

return quantity x product.getPrice();

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

DETECTABLE DESIGN PRINCIPLES

36

In this solution every object is the information expert because ProductDescription
is the expert for the price. In contrast to the first solution, Sale is not coupled to
ProductDescription.

There are situations where applying Information Expert would lead to higher coupling
and lower cohesion. Many applications need some sort of persistence. For example
we want to save a Dog object. According to Information Expert, Dog would be the
information expert for saving itself because it knows everything about itself. Giving the
responsibility for saving to another object means it has to ask for all the information
stored in Dog. In this case the latter is preferable because otherwise Dog would need
information about the database schema and database connections and so on. This lowers
the cohesion of Dog and couples it to database related classes which might even be on
another application layer. [22]

Relation to other principles

Law of Demeter: By applying the Information Expert principle, obeying the Law of
Demeter gets easier because one does not have to ask for information in many places
which includes strangers.

Violation detection strategy
Design best practices: AvoidGetAndSet, AvoidUnnecessaryInformationTransfer

We think a violation might exist if for an attribute first the getter and then the setter
method is called. This means the calling object asks for information, performs a task
with it and stores the (probably) changed information back. In this case the called object
might be the information expert and the task should be performed in the called object,
not the calling object.

Calling multiple getter methods of a single object can in our opinion also be an indication
of a violation. The called object is the expert, otherwise the getter calls would not be
needed and it is probably able to perform the needed task itself.

Also, calling multiple getter methods of different objects in one place means the calling
object gathers a lot of information to do something with it. In this case there are multiple
partial information experts. The principle says to give the responsibility to the partial
expert with the most information. If there is someone with more information than others
the second violation case would alert because multiple getter calls go to one object. If
the information is split equally, the responsibility should be, according to the principle,
given in such a way that lowest coupling and highest cohesion are the goal. This type of
violation is hard to detect in a helpful way. The static code analyzer could only check for
multiple getter calls but cannot evaluate if this is the right spot for them. Therefore, we
believe it would likely produce a high number of false-positives and due to that this case
should not be enforced with a tool.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.9. Single Choice Principle (SCP)

Origin
The Information Expert principle originates from Larmans book "Applying UML and

Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Devel-
opment" [22].

4.9 Single Choice Principle (SCP)

Variants

Description

"Whenever a software system must support a set of alternatives, one and only
one module in the system should know their exhaustive list."[32]

Having to decide between multiple alternatives is common in software systems. The
following code pieces are an example of such a case differentiation over a known set of
values.

enum EDepartment
{

SALES,

HR;

switch (department)
{
case HR:
new HumanRessources () .getNumberOfEmployees () ;
break;
case SALES:
new Sales () .getEmployees () .size();
break;
default:

Such switch statements (or their corresponding if/else versions) can be distributed over
the source code. If a new department has to be added all of these switch statements have
to be changed. The compiler will not notice a problem and so some differentiation might

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4. DETECTABLE DESIGN PRINCIPLES
be forgotten, leading to unindented behavior. The new department would fall into the
default case or if there isn’t one nothing would be executed in this case. The problem
will only show during runtime. Following the Single Choice Principle, there would only
be one instance of such a case distinction and this is the only one that knows all possible
alternatives. Adding a new department requires only changes in one place, not many.
32]
Now that there exists a single point of choice, clients need to make use of it. A possible
way is offered with polymorphism and dynamic binding. Polymorphism enables the
clients to rely on abstractions, not knowing the concrete type they are working with
at runtime. Dynamic binding ensures the method of the runtime type is called. In the
following example, a Department interface is introduced to enable polymorphism. A
method decides which implementation should get used and the client uses polymorphism
and dynamic binding to avoid having a case differentiation. [32]
interface Deparment
{
int getNumberOfEmployees();
}
//Single point of choice
Department getDepartment (EDepartment department)
{
switch (department)
{
case HR:
return new HumanRessources();
case SALES:
return new Sales();
default:
throw new IllegalArgumentException (
"Department unknown");
}
}
//Client that needs no case differentiation
getDepartment (department) .getNumberOfEmployees () ;
The mapping from enum value to Department subtype can also be done in EDepartment,
making a switch statement or such completely unnecessary.
38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.9. Single Choice Principle (SCP)

enum EDepartment
{
SALES
{
@Override
Department getDepartment () {
return new Sales();

I
HR

@Override
Department getDepartment () {
return new HumanRessources () ;

bi
abstract Department getDepartment () ;

Relation to other principles

Don’t Repeat Yourself (DRY): The Single Choice Principle prevents duplication of
code that decides between alternatives, therefore it supports the Don’t Repeat Yourself
principle.

Violation detection strategy
Design best practices: AvoidRuntimeTypeldentification, AvoidCaseDistinctionOverEnums

If the distinction is done over runtime types, it can be detected by looking for symptoms
like getClass() calls and the usage of the instanceof operator. The usage of runtime type
identification should not be necessary at all.

Differentiation over enum values is of course allowed to be used, but according to the
Single Choice Principle only one module, so in the case of Java only one class, should
contain it. If a client needs to decide something based on an enum value, it should ask the
single point of choice to do it for it. In Java switch statements and if/else cascades can
be used to discriminate between cases. The use of a single if statement is an exception
that is allowed in our opinion because only a specific value is considered. If there are two
or more cases we guess a violation might be present.

Sometimes int values or the like or strings are used as cases. In our opinion such
distinctions over non-enum values cannot be recognized as violations because these types
are used for all kinds of things. Flagging every usage of case distinctions over such types
might lead to many false-positives. Enums on the other hand are designed to represent a
finite list of alternatives.

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

DETECTABLE DESIGN PRINCIPLES

40

Origin
The Single Choice Principle was introduced by Meyer [32].

4.10 Program to an Interface, not an Implementation

(PINT)

Variants

Description

Program to an interface, not an implementation means that the static type of variables
should never be a concrete implementation. Fields, parameters and local variables should
have an interface or an abstract class as their static type. Following this advice brings
two benefits. First, clients don’t know about the objects they use. Second, clients
don’t know about the classes that define those objects. Clients are therefore only bound
to the interfaces, respectively the abstract classes. Interfaces and abstract classes are
said to be more stable than concrete implementations, which mitigates ripple effects if
implementations are changed. The use of interfaces can also restrict the access of clients
to the concrete implementation. An implementation might have more public methods
than the interface it implements. Clients that rely on interfaces only have access to the
methods defined in the interface. [11][48][49]

Relation to other principles

Open Closed Principle (OCP): Using abstractions supports the idea of closeness
against modification because future behavior changes might already be covered by the
used abstractions.

Dependency Inversion Principle (DIP): If abstractions are used as much as possible,
high-level modules will use abstractions too, which is one of the goals of the Dependency
Inversion Principle.

Violation detection strategy
Design best practices: UselnterfacelfPossible, ProvideAbstractionForClass

According to the principle the types of fields, variables, parameters and return types
should all be abstractions, not concrete classes. A type that is not an interface or abstract
class is therefore a violation of the principle. [3]

If it is necessary for every class to have an abstraction, is an open discussion. We
think adding abstractions for classes that are nonvolatile or which only have (and most
likely will have) one implementation would not bring any benefit though it increases the

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.11. Favor Composition over Inheritance (FCOI)

complexity of the system. To mitigate false positives in such cases, a type declaration
should in our opinion only be flagged if a usable abstraction already exists for the concrete
class.

To enable the former, every public class has to provide an abstraction. A class that does
not inherit from an abstract class or implements an interface is therefore a violation of
the principle [3]. This again goes against the opinion of many developers, but this rule
can just be disabled by them.

Origin
"Program to an interface, not an implementation' originates from "Design Patterns:
Elements of Reusable Object-Oriented Software" by Gamma et al. [11].

4.11 Favor Composition over Inheritance (FCOI)

Variants

e Composite Reuse Principle

Description

To reuse code in an object-oriented system two techniques can be used, inheritance and
composition. Reuse by inheritance means, the superclass has functionality that a subclass
also uses. Internals of the superclass can be visible to the subclass. Reuse by composition
works by composing complex behavior through the use of other objects. The complex
object delegates tasks to other objects. It can only use public methods, internals stay
hidden. [11]

If inheritance is used, the subclass can modify the inherited behavior by overriding

methods, which is an advantage. The disadvantages are the reason this principle exits.

Because inheritance is defined at compile time, the behavior cannot be changed at runtime,
which is possible with composition. The biggest drawback is the tight coupling between
superclass and subclass. Subclasses have access to details of the parents implementation,
which breaks the encapsulation of the parent. Changes to the superclass have a high
chance of causing changes to its subclasses. Introducing a subclass can also require

changes to the future parent if the parents implementation is not fully appropriate.

[11][45]

Favoring composition over inheritance aids encapsulation and helps to keep classes small
and focused. Especially class hierarchies are prevented from overgrowing. The drawbacks
are more objects and more interrelationships between them. [11]

A common example for a misused inheritance is a Stack class that inherits from ArrayList:

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4. DETECTABLE DESIGN PRINCIPLES
class Stack<T> extends ArrayList<T>
{
public void push (T value)
{
add (value) ;
}
public T pop/()
{
return remove (size() - 1);
}
}
To keep the example short the class is incomplete and lacks exceptions, but it works for
valid usage. Implementation was fast and simple, other useful methods like size() are
inherited from ArrayList and work out of the box. The problem is that Stack now really
is a List and a client can use it as such. Nothing prevents a client from calling remove()
directly on an element in the middle of the Stack or manipulating it in other ways. The
way elements are stored cannot be changed easily in the future because this would break
inheritance. Any client that is relying on Stack being a List would not compile anymore.
An implementation based on composition would look like this:
class Stack<T>
{
private List<T> stack = new ArrayList<>();
public void push (T value)
{
stack.add(value);
}
public T pop/()
{
return stack.remove (stack.size() - 1);
}
public long size ()
{
return stack.size();
}
}
The interface of Stack now only has the methods it should have. Direct access or
manipulation of elements in the middle of the stack is not possible. The implementation
of Stack can be changed without a client noticing because the decision to use ArrayList is
42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.11. Favor Composition over Inheritance (FCOI)

encapsulated. The drawbacks are forward methods like the size() method. Such forward
methods are common when composition is used.

Relation to other principles

Liskov Substitution Principle (LSP): Favoring composition over inheritance prevents
subtyping that is only done to achieve code reuse, but actually violates the Liskov
Substitution Principle.

Violation detection strategy

Design best practices: UseCompositionNotInheritance, CheckUnusedSupertype, Only-
InheritFromAbstractClasses

Based on [3] we think a violation may exist if a subclass only uses public functionality of
the superclass and does not override any method. This case might not be a proper is-a
relationship, thus inheritance is unnecessary. The stack example above is such a case. In
the first implementation variant, Stack only makes use of public methods of ArrayList,
which is why composition can be used and should be favored. If a subclass overrides a
method, it most likely will also be used as a subtype of the superclass. There can be
false-positives if a subclass fulfills the criteria for a violation but a subtype relationship
is still desired.

Client usage of a subclass can also be an indicator. If clients only use methods of
the subclass, but not the superclass, there might be a problem in the hierarchy. The
subclass probably does not have an is-a relationship with the superclass and should use
composition instead. [3]

To mitigate the tight coupling and consequential ripple effects by changes, classes should
only inherit from abstract classes. Those provide none or little implementation, making
changes less likely. [11]

Origin
Favor composition over inheritance is one of the principles introduced by "Design Patterns:
Elements of Reusable Object-Oriented Software" [11].

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

DETECTABLE DESIGN PRINCIPLES

44

4.12 Common Reuse Principle (CRP)

Variants

Description

"The classes in a component are reused together. If you reuse one of the
classes in a component, you reuse them all." [29]

Component here is synonymous with package. If a class reuses a class from another
package, the whole package has to be available. Therefore, the using class is also
dependent on the whole package. Reused classes seldom are standalone, which reinforces
the argument. Either multiple reusable classes are used by a client, which should all be
in the same package according to the principle, or the reused class uses other non-public
classes in the package. The negative interpretation of the principle says that a dependency
on all classes of a package should be required. If the reuse of a class is possible without
the usage of other classes in the package, they should not be in the package in the first
place. Classes in the package should be inseparable. Depending on one class, but none of
the others should not be possible. [21][29]

Relation to other principles

Common Closure Principle (CCP): The Common Reuse Principle and the Common
Closure Principle both are package cohesion principles and can contradict each other.
Classes that are used together might not change together and vice versa.

Violation detection strategy
Design best practices: CheckUnsuitableFunctionalityOfPackage

We think violations of the Common Reuse Principle can be detected by looking at the
usage of a package by clients. If clients commonly only use a part of the public classes,
the principle might be violated because the classes do not have to be used together and
should be split up in more packages.

Origin

The Common Reuse Principle is one of the cohesion package principles by Martin
published in [29].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.13. Acyclic Dependencies Principle (ADP)

4.13 Acyclic Dependencies Principle (ADP)

Variants

Description

"Allow no cycles in the component dependency graph." [29]

Component here is synonymous with package. When a class in package A uses a class in
package B, package A becomes dependent on package B. These usages form a directed
graph. The principle now states that this graph should be acyclic. Having cycles in the
dependency graph leads to problems. [29]

Direct cycles between two packages can be detected easily. The problem here is tight
coupling. Because the packages are so tightly coupled, they could be one, but this violates
the Common Closure Principle. Releasing the packages also becomes a problem. If a
dependency is acyclic, the depended on package is standalone. Developers can work on
it independently from other packages. When they release a new version, the dependent
package can incorporate the changes. If the two packages are depending on each other,
it is not clear were to start. Development has to be conducted on both at the same time
and the package developers have to interact with each other. [21]

Since dependencies are transitive, bigger cycles can occur. In the example in Figure
4.2 the red line is the problem which creates the cycle. If the red dependency was not
there, ErrorHandler is standalone, it depends on nothing. If the red dependency is added,
ErrorHandler now depends on every other component because UserInterface does. To
break the cycle two strategies can be used.

One is the Dependency Inversion Principle. ErrorHandler can provide an interface that
the class in UserInterface inherits, which reverses the dependency. ErrorHandler can be
released independently again because in the interface it specified what it needs and which
implementation is used is only determined at runtime.

The second option is the introduction of a new component that both ErrorHandler and
UserInterface depend on. ErrorHandler now also has a dependency, but there is no cycle

that makes it depend on every other component transitively because of UserInterface.

[29]

Relation to other principles

Stable Dependencies Principle (SDP) / Stable Abstractions Principle (SAP):

All three principles are concerned with the coupling between packages and should therefore
be applied together.

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

4.

DETECTABLE DESIGN PRINCIPLES

46

“g User Interface

v

g Deposit | .) % Database

v

¥
g ErrorHandler g DBModel

Figure 4.2: Dependency graph [75]

Violation detection strategy
Design best practices: AvoidPackageCycles

Violations are cycles in the dependency graph, so the whole dependency graph has to be
built and checked for cycles.

Origin

The Acyclic Dependencies Principle is one of the coupling package principles by Martin
published in [29].

4.14 Stable Dependencies Principle (SDP)

Variants

Description

"Depend in the direction of stability." [29]

In a software system there are packages that are stable and some which are unstable.
Stable packages are hard to change, unstable packages are easier to modify. The Stable
Dependencies Principle decides the stability of a package based on its incoming and
outgoing dependencies. [21][29]

A package that only has incoming dependencies, i.e., other packages depend on it, is as
stable as possible. Figure 4.3 depicts such a case. First, changes to the stable package x

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

4.14. Stable Dependencies Principle (SDP)

would create ripple effects in the many dependent packages. Second, because the stable
package does not depend on any other package, nothing can force it to change. [21][29]

l |

Figure 4.3: Stable package [29]

Figure 4.4 shows the most unstable package possible. It only has outgoing dependencies.

It can be changed at any time because nothing depends on it. Furthermore, changes to
the packages it depends on may require changes to it, too. To be clear, unstable is not
bad per se. A fully stable system would be very hard to change. Unstable components
enable easy changeability of systems. Therefore, some packages need to be flexible and
unstable. [21][29]

Figure 4.4: Unstable package [29]

However, the Stable Dependencies Principle says that packages should not depend on
more unstable packages. Such a dependency would make the unstable package harder to
change. The unstable package is designed to be changed, so it will most likely need to
get changed in the future. These changes may now require changes to stable packages
that depend on the unstable one. To prevent such problems, every dependency should
be a conscious decision. [21][29]

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

DETECTABLE DESIGN PRINCIPLES

48

Martin also defined a metric to measure the stability of a metric based on its dependencies.
1= %, whereby I is the instability, Ca is the number of classes outside this package
that depend on a class inside the package and Ce is the number of classes inside the
package that depend on classes outside the package. Therefore an I = 0 has no outgoing
dependencies and marks the most stable package possible. An I = 1, would only have
outgoing dependencies, making it the most unstable package possible. The Stable
Dependencies Principle in this terms says, if a package A depends on package B, I(A)

should be higher than I(B), i.e., I(A) > I(B). [21][29]

Relation to other principles

Acyclic Dependencies Principle (ADP) and Stable Abstractions Principle
(SAP): All three principles are concerned with the coupling between packages and
should therefore be applied together.

Violation detection strategy
Design best practices: DependInTheDirectionOfStability

To find violations of the Stable Dependencies Principle, the instability metric has to be
calculated for every package. Having the metric values at hand for each dependency of
packages in the system, the metric values have to be compared. If a package A depends
on a package B with a higher instability metric, i.e., I(A) < I(B), a violation has been
found.

Origin
The Stable Dependencies Principle is one of the coupling package principles by Martin
published in [29].

4.15 Stable Abstractions Principle (SAP)

Variants

Description

"A component should be as abstract as it is stable." [29]

Component here is synonymous with package. Because of the Stable Dependencies
Principle dependencies run in the direction of stability. The Stable Abstractions Principle
adds that stable packages should be abstract and unstable packages concrete. Stable
packages need to be abstract to keep up the extensibility. Unstable packages should be
concrete because concrete code is easier to change. [21][29]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.15. Stable Abstractions Principle (SAP)

In a well designed system the following two statements [21] hold:

e More stable packages containing a higher number of abstract classes or interfaces
should be heavily depended upon.

o Less stable packages containing a higher number of concrete classes should not be
heavily depended upon.

Abstraction can be measured with a simple relation metric. A = %—‘c‘, whereby A is the
abstraction level, Na the number of abstract classes and interfaces and Nc the overall
number of classes and interfaces in the package. A value of A = 1 means that there are

no concrete classes. A value of A = 0 implies the lack of abstractions in the package.

Values around A = 0.5 are to be avoided since these packages are neither abstract nor
concrete. [21][29]

Because the principle reasons over stability and abstraction and there is also the instability
metric, the relation between both values can be determined for a package. Figure 4.5 shows
this relation. Packages should reside in proximity to the "Main Sequence". Especially
the zones around (0,1) and (1,0) are worth striving for. Packages in these zones are
either abstract and stable or concrete and instable. The other two corners of the diagram
should be avoided. Packages in the "Zone of Pain" are stable but concrete. They are not
extensible because of the lack of abstraction, but also hard to change because they are
stable. There are valid exceptions because some concrete classes offer utility functionality
that is not subjected to permanent change. Classes that represent database schemas also
fall into this zone.

The "Zone of Uselessness" holds packages which are abstract and unstable. Unstable
means the package does not have many dependents which an abstract package should
have. [29]

Relation to other principles

Acyclic Dependencies Principle (ADP) and Stable Dependencies Principle
(SDP): All three principles are concerned with the coupling between packages and
should therefore be applied together.

Violation detection strategy
Design best practices: PackagesShouldBeAsAbstractAsStable

To find violations of the Stable Dependencies Principle, the instability metric and the
abstraction metric have to be calculated for every package. With those the distance to
the "Main Sequence" can be calculated: D = |A+ I — 1. [29]

As a human reviewer, the goal is to have packages as close as possible to the two end
points of the "Main Sequence", i.e., (0,1) and (1,0). The evaluation of a deviation from
those points and the "Main Sequence" can be done case by case. A tool only has the

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4. DETECTABLE DESIGN PRINCIPLES
(0,1)
(0,0)
Figure 4.5: Stability abstraction relation [29]
calculated distance at hand, so it needs a threshold for violations. Since no value was
proposed for the threshold it has to be determined. Figure 4.6 shows the values of the
the distance function. We think a threshold of D < 0.7 seems to be suitable because it
excludes the "Zone of Pain" and the "Zone of Uselessness" but does not restrict values in
the desired corners which should keep the number of false-positives low.
1
0.8
- 0.6
2
£ 0.4
0.2
0
0.4 0.6
Abstractness
Figure 4.6: Distance function [55]
50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4.16. Option Operand Principle (OOP)

Origin
The Stable Abstractions Principle is one of the coupling package principles by Martin
published in [29].

4.16 Option Operand Principle (OOP)

Variants

Description

"The arguments of a routine should only include operands (no options)." [32]

An operand is a value that the function will operate upon. An option on the other hand is
a mode of operation. Operands tend to stay the same but options are likely to be added
or removed. The distinction of both is based on the possibility to find a default value for
the argument. If a client hypothetically would not provide a value for an argument and
it is possible to find a reasonable default value, the argument is an option. [32]

In the following code piece dividend and divisor are operands, there are no default values
for them. The function cannot operate without them. roundingMethod is an option
because one of the rounding methods can be chosen as the default.

public int divide(
int dividend,
int divisor,
ERounding roundingMethod)

double result = ((double) dividend) / divisor;
if (roundingMethod == ERounding.ceiling)
{

return (int) Math.ceil (result);

}
else if (roundingMethod == ERounding.floor)

{

return (int) Math.floor (result);

}

else

{

return (int) Math.round(result);

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4. DETECTABLE DESIGN PRINCIPLES
A violation of the Option Operand Principle, i.e., a method that has an option as a
parameter, can be resolved in two ways. Either it is possible to split the method into
multiple methods, each for one possible value of the option. This approach is especially
useful for boolean options because just two methods are needed. Or, make the option a
field of the object and make it modifiable with an extra method. In the setter method
the option becomes an operand because the setter operates upon it. [32]
For the example from above one could introduce three different methods divideCeil(int
dividend, int divisor), divideFloor(int dividend, int divisor) and divideRound(int dividend,
int divisor). The option is now in the name of the method. The second way for
refactoring creates divide(int dividend, int divisor), which only has the two operands and
roundingMethods becomes a field set to a default value.
private ERounding roundingMethod = ERounding.ceiling;
public void setRoundingMethod (ERounding roundingMethod) {
this.roundingMethod = roundingMethod;
}
public int divide (int dividend, int divisor)
{
double result = ((double) dividend) / divisor;
if (roundingMethod == ERounding.ceiling)
{
return (int) Math.ceil (result);
}
else if (roundingMethod == ERounding.floor)
{
return (int) Math.floor (result);
}
else
{
return (int) Math.round(result);
}
}
Adhering to the principle has multiple benefits. As already mentioned, options are likely
to be added or removed which would be a change to the methods signature, breaking
existing client code or would require the introduction of an overloaded method. If options
are fields, not parameters, changes to them will not have such a huge impact on clients
or not impact them at all. A new option can have the current solution as the default
value, keeping everything the same for existing clients and new clients can configure the
new option via a new setter method.
52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.16. Option Operand Principle (OOP)

Having defaults also means that options only have to be set if they diverge from the
norm. For the most common cases the default values might be right, making client code
simpler. Novices can use classes easier without thinking about advanced options but
sophisticated users can change options as they please. Last but not least, options as
fields are persistent in the object, therefore multiple consecutive method calls can use
the same options. [32]

Relation to other principles

Violation detection strategy
Design best practices: AvoidOptionParameters

We think detecting violations of the Option Operand Principle is limited because static
code analyzers can in general not distinguish between operands and options. To detect
an option, it would have to be an argument that is used in a condition and a reasonable
default value must exist for it. If a reasonable default value exists, is not decidable for

the analyzer, leaving the usage in a condition as the only thing an analyzer can check.

Now the problem is that operands are also used in conditions since the behavior of the
method can depend on the value of an operand, which nonetheless does not make it an
option.

Only if a boolean parameter is used in a condition, it is in our opinion very likely that it

is an option because it splits the code into two paths and decides the mode of operation.

One of the paths can be selected as the default, so there always exists a reasonable default
value.

Origin
The Option Operand Principle is described in [32] by Meyer.

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

CHAPTER

Undetectable Design Principles

In this chapter we describe those design principles whose violations cannot be detected
with a static code analyzer. These principles also fall under the selection criteria stated
in the previous chapter. We believe violations of the following design principles cannot
be detected by a static code analyzer:

« Liskov Substitution Principle (LSP)

o Dependency Inversion Principle (DIP)

 Single Level of Abstraction (SLA)

o Common Closure Principle (CCP)

o Integration Operation Segregation Principle (IOSP)

o Command Query Separation (CQS)

o Encapsulate the Concept that Varies (ECV)

5.1 Liskov Substitution Principle (LSP)
Variants

Description

Liskov originally defined the principle as follows:

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

UNDETECTABLE DESIGN PRINCIPLES

56

'If for each object ol of type S there is an object 02 of type T such that for
all programs P defined in terms of T, the behavior of P is unchanged when
ol is substituted for 02 then S is a subtype of T." [24]

Martin put it in easier terms:
"Subtypes must be substitutable for their base types." [29]

According to the principle, subtypes should behave as the supertype is expected to. A
method m can declare the supertype T as the type of a parameter p, but at runtime a
subtype S might be passed to m. The developer that codes method m only knows about
the behavior that T promises. If S has a different behavior, then m will malfunction
because the developer did not plan for it. Promised behavior in this case are preconditions,
postconditions, invariants and history constraints. Preconditions are conditions that the
caller has to ensure. Breaking them might lead to unexpected behavior. Postconditions
are ensured by the called object, they are promises that the caller can expect to hold
after the call. Invariants hold true all the time (except over defined intervals during
method execution). History constraints (server- and client-controlled) restrict the way an
objects state may change. For example a counter variable may only be increased one by
one (server-controller) and some methods may only be called in a specific order (client-
controlled). Subtypes may only weaken preconditions and strengthen postconditions
and invariants. Server-controlled history constraints can be limited further in subtypes,
client-controlled history constraints can be extended. [24]]25][29]

An example for a violation of the Liskov Substitution Principle is a Square that is a
subtype of Rectangle (adapted from [29]). Mathematically this relation would be correct
because a square is a rectangle. But, the behavior of these two objects in code is different
and this principle is about behavior. The Rectangle class already provides behavior
that is common for rectangles. It has a height and a width and provides a function to
calculate the area.

public class Rectangle

{
private double width;

private double height;

public void setWidth (double width)

{
this.width = width;

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

5.1. Liskov Substitution Principle (LSP)

public void setHeight (double height)

{
this.height = height;

public double area/()

{
return width * height;

To make the Square class work as a subclass of Rectangle the setter methods have to be
overridden since width and height of a square are always the same. Each setter therefore
has to set both attributes.

public class Square extends Rectangle
{
@Override
public void setWidth (double wvalue) {
super.setWidth (value) ;
super.setHeight (value);

@Override

public void setHeight (double value) {
super.setWidth (value);
super.setHeight (value);

The Square class is now valid for itself. A caller that works with a Square reference will

not experience any problems but this class still violates the Liskov Substitution Principle.

The problem is that it behaves differently than the Rectangle class, more precisely it
weakened the postconditions of the setter methods. The original setWidth() of Rectangle
ensures that width is set to the new value but height stays the same. The overridden
method in Square does not ensure the latter. A caller might have the following code:

o7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

UNDETECTABLE DESIGN PRINCIPLES

58

void g(Rectangle r)
{
r.setWidth (5);
r.setHeight (4);
if(r.area() !'= 20)
throw new Exception("Bad area!");

The developer of g() worked with the pre- and postconditions of Rectangle. Therefore,
the exception should never be thrown but if a Square object is passed to g() the exception
will be thrown. This function is an example in which Square is not substitutable for
Rectangle, so Square cannot be a subtype of Rectangle.

Relation to other principles

Violation detection strategy

We think violations of the Liskov Substitution Principle are not detectable with a
static code analyzer in Java because preconditions, postconditions invariants and history
constraints are not part of the language. There is no way to programatically state these
conditions and let them be checked. Only preconditions are sometimes checked in the
form of guard clauses, e.g., checks for null values, but those are simple if statements that
are part of the normal program code. These checks are furthermore often not equivalent
to the preconditions. If at all, preconditions, postconditions and invariants are stated in
comments which clearly cannot be processed with a tool. Therefore, it cannot be checked
if subtypes weaken or strengthen the conditions, which is needed to detect violations.

Origin
The Liskov Substitution Principle is named after Barbara Liskov who described it in [24].
It is also one of the SOLID principles by Martin published in [29].

5.2 Dependency Inversion Principle (DIP)

Variants

Description

"A. High-level modules should not depend on low-level modules. Both should
depend on abstractions.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.2. Dependency Inversion Principle (DIP)

B. Abstractions should not depend upon details. Details should depend upon
abstractions." [29]

A common way to write software is to implement low-level modules that can be reused
and reusing them in high-level modules. Often the low-level modules are hardwired into
the high-level modules. This approach prevents the reuse of high-level modules because
the low-level modules cannot be exchanged. To make the low-level modules exchangeable,
high-level modules should depend on abstractions, not concrete implementations. [29]

A naive interpretation of the principle would be that one just has to use abstractions
everywhere. But, this leaves out an important part of the Dependency Inversion Principle
which is ownership. If abstractions are used but they are owned by the implementations of
the abstractions, changes in the implementations can break through the abstractions. The
principle tells us to invert the ownership, so the client has control over the abstractions.
[29]

The benefit can be shown with a simple example, taken from [29]. In the first version
there is a Button class that can turn a Lamp on or off. The Button class has a poll
method that somehow is executed. When receiving the poll message Button decides
whether the Lamp has to be turned on or off.

public class Button
{
private Lamp lamp;
public void poll ()
{
if (/+xsome conditionx/)
{
lamp.turnOn () ;
}
else

{
lamp.turnOff;

In this implementation Button directly depends upon Lamp and can be therefore only be
used to control Lamps, but nothing else. Button is not reusable to control other devices.
To fix this, an abstraction has to be introduced. A button can be used to switch devices
on or off, so SwitchableDevice is a good candidate for an abstraction.

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

UNDETECTABLE DESIGN PRINCIPLES

60

public interface SwitchableDevice
{

void turnOn () ;

void turnOff ();

public class Button
{
private SwitchableDevice device;
public void poll ()
{
if (/*some condition=*/)
{
device.turnOn () ;
}

else

{

device.turnOff;

Now Lamp has to implement the SwitchableDevice interface, so Button only has to
depend upon SwitchableDevice. It is now reusable with every implementation of a
SwitchableDevice. It is important to note that the ownership of the interface has to be with
Button, not Lamp or with none of both. If Lamp had the control over SwitchableDevice,
changes to the Lamp can influence Button, which should not happen because Button is
the high-level module here. In the best case SwitchableDevice is independent of both.
This enables Buttons to control any SwitchableDevice but also enables SwitchableDevices
to be controlled by anything that can work with SwitchableDevices.

Relation to other principles

Program to an interface, not an implementation (PINI): If a lot of abstractions
are used, it becomes easier to apply the Dependency Inversion Principle because high-
level modules already depend upon abstractions. Though, only programming against
abstractions is not enough since the Dependency Inversion Principle also specifies the
ownership of the abstractions.

Open Closed Principle (OCP): Making high-level modules depend upon abstractions
also makes them open for extension but closed for modification, which is the proposition
of the Open Closed Principle.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.3. Single Level of Abstraction (SLA)

Violation detection strategy

Violations of the Dependency Inversion Principle are in our opinion not detectable by
a static code analyzer. Looking for the usage of concrete types alone would be the
same naive approach already described above. Since nonvolatile classes may be used
directly, an abstraction is not needed and this would create many false-positives. The
second problem is the inversion part. To fully cover the principle, the ownership of
abstractions would need to be determined, which a tool cannot do. The placement of
the classes in the packages would be the best indicator for ownership, but is not reliable
enough. Abstractions and implementations could be in separate packages, but still belong
together. Last, but not least, used libraries do provide their abstractions themselves. The
ownership of the abstraction cannot be with the client of the library but this would still
be a violation since the ownership resides on the wrong side, namely with the provider of
the implementations. Since the usage of libraries is also common practice there would be
too many false-positives.

Origin
The Dependency Inversion Principle is one of the SOLID principles by Martin published
in [29].

5.3 Single Level of Abstraction (SLA)

Variants

Description

The Single Level of Abstraction principle says that statements in a method should all
act on the same level of abstraction. High level statements should not be mixed with low
level statements. [28]

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5. UNDETECTABLE DESIGN PRINCIPLES
File writeUserFromDatabaseToFile (String id, String filePath)
{
User user = getUserFromDatabase (id);
File file = new File(filePath);
try A
BufferedWriter writer = new BufferedWriter (new FileWriter (file));
writer.write (user.getName ()) ;
writer.newlLine () ;
writer.write (user.getAddress());
writer.close();
} catch (IOException e) {
}
return file;
}
The getUserFromDatabase() method is on a higher level than the writing to the file. The
lines to write the user are a separate block that should be extracted to a method that is
on the same level. getUserFromDatabase() only states what is done but not how. The
writing on the other hand is very explicit. Extracting it to writeUserToFile() hides the
how and emphasizes the what.
File writeUserFromDatabaseToFile (String id, String filePath)
{
User user = getUserFromDatabase (id);
return writeUserToFile (filePath, user);
}
Relation to other principles
Violation detection strategy
We believe detecting violations of this principle is not possible with a static code analyzer
because it cannot decide at which abstraction level a particular class or function sits.
A human sees a meaning behind the used abstractions and has a mind map to classify
abstractions. This information is not accessible for a tool. The examples mentioned in
[71] are useful for developers but implemented in a static code analyzer they would create
an unjustifiable amount of false-positives. The first example are loop bodies containing
multiple statements that could be extracted to a method. A human could tell if the body
is indeed working on another abstraction level as the surrounding code but a tool cannot.
The second example are code blocks in a function, formatted with an empty line and often
a comment before each block. Those surely are candidates to be extracted in separate
62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.4. Common Closure Principle (CCP)

methods where the comment becomes the method name. However, the existence of such
blocks does not mean that the code is not on the same abstraction level. Each block is
on a higher level but the contained code might be on the same. Therefore, reporting
violations based on these signs would not be helpful.

Origin
The Single Level of Abstraction principle is a rule of Martin published in [28].

5.4 Common Closure Principle (CCP)

Variants

Description

"The classes in a component should be closed together against the same kinds
of changes. A change that affects a component affects all the classes in that
component and no other components." [29]

Component here is synonymous with package. The Single Responsibility Principle states
for classes that they should only have one reason to change and the Common Closure
Principle states the same for packages. Classes that are anticipated to be changed
together if a requirement changes or is added should reside in the same package. If a
change only affects one package, other packages stay untouched and the work required
to release and redeploy a new version is reduced. [21]]29]

Relation to other principles

Common Reuse Principle (CRP): The Common Reuse Principle and the Common

Closure Principle both are package cohesion principles and can contradict each other.

Classes that are used together might not change together and vice versa.

Violation detection strategy

We think violations of the Common Closure Principle cannot be detected with a static
code analyzer. A violation would exist if classes that might change in the future are not
in the same package. This kind of foresight is not possible at all for a tool and even
developers can only guess the future.

Origin
The Common Closure Principle is one of the cohesion package principles by Martin
published in [29].

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

UNDETECTABLE DESIGN PRINCIPLES

64

5.5 Integration Operation Segregation Principle (IOSP)

Variants

Description

According to the Integration Operation Segregation Principle there are two kinds of
methods: integrations and operations. Integrations do not contain any logic, logic is only
allowed to occur in operational methods. Integration methods may call other integrations
and operations but only one kind, otherwise integration and logic would be mixed.
Operation methods are the leafs of the dependency tree as depicted in Figure 5.1. As can
also be seen in the figure, operation methods do not depend on each other, so they depend
on nothing. This contradicts the common schema in which method calls are hardwired in
other operational methods. This leads to functional dependencies. The dependencies have
to be injected into methods with logic, which makes testing cumbersome because fake
objects are needed to isolate a test case. Following the Integration Operation Segregation
Principle leads to integration methods that are less error-prone since they only call some
other methods without any control statements. The produced operational methods do
not have dependencies and can therefore be tested autonomously. [70][68]

Integration Unit
(Entry Point)

} |

Integration Unit Integration Unit Operational Unit

l }

Operational Unit Operational Unit Integration Unit Operational Unit

!

Operational Unit Operational Unit

Time

Figure 5.1: Integration and operational methods [70]

In the following example getUsersWithBirthdayToday() mixes the logic of getting the
users, with the integration of the later method calls. This makes the code harder to
understand because it mixes levels of abstraction. filterByBirthdayToday() also has a
violation because it is an operational method, but knows about another operational
method, namely today(). It depends on today() and in a test today cannot be set
arbitrarily. today() could be injected in some way into filterByBirthdayToday(), making

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.5. Integration Operation Segregation Principle (IOSP)

a mock possible, but the easiest way is to just provide the data since this removes the
functional dependency.

Set<User> getUsersWithBirthdayToday ()
{
DataTable rawbData = new SQL("SELECT x FROM users;")
.execute () ;
Set<User> users = convertToUsers (rawData) ;
Set<User> usersWithBirthday = filterByBirthdayToday (users);
return usersWithBirthday;

private Set<User> filterByBirthdayToday (Set<User> users) {
Date today = today();
return users.stream()
.filter(user -> user.getBirthday () .equals (today))
.collect (Collectors.toSet ());

Transforming the code according to the Integration Operation Segregation Principle

requires two things. First the SQL select has to be moved to an operational method.

Second, the call to today() has to be moved out of filterByBirthdayToday().

Set<User> getUsersWithBirthdayToday ()
{
DataTable rawData = getAllUsers();
Set<User> users = convertToUsers (rawData) ;
Date today = today();
Set<User> usersWithBirthday = filterByDate (users, today);
return usersWithBirthday;

private Set<User> filterByDate (Set<User> users, Date date) {
return users.stream()
.filter (user -> user.getBirthday () .equals (date))
.collect (Collectors.toSet ());

getUsersWithBirthdayToday() now only integrates. It can easily be checked with a
review, because it is easy to read since all the details are hidden. A test case only has to
check if all necessary steps are executed but can ignore details. filterByDate() can be
tested independently.

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

UNDETECTABLE DESIGN PRINCIPLES

66

Relation to other principles

Violation detection strategy

Detecting violations of this principle with a static code analyzer is in our opinion not
possible. The analyzer would have to be able to distinguish between integration methods
and operational methods, but as can be seen in the example above both kinds look the
same to an analyzer. The kind of a method is based on semantics so only a human can
decide it with confidence.

Additionally, the author of the principle acknowledges the need for exceptions of it [62].
According to him, sparse use of control statements like an if or the use of for-each loops
is permitted in integration methods if it aids the readability, but does not lead to details
leaking into the integration. Such exceptions cannot be built into a static code analyzer
that needs clear rules to work properly.

Origin
The author of the Integration Operation Segregation Principle is Ralf Westphal. It was
first mentioned by him in [68].

5.6 Command Query Separation (CQS)

Variants

Description

"Functions should not produce abstract side effects." [32]

According to the Command Query Separation principle, methods should be either a
command or a query, but not both at the same time. Functions, as in the quote, are
queries. Queries return a value, but do not change the observable state of an object, i.e.,
they do not have abstract side effects. This means they can be called multiple times in a
row and will always return the same result. In other words, the question does not change
the answer. Commands change the state but do not return a value. [57][32]

Henney [16] brings the (shortened) Iterator interface of Java as an example:

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.6. Command Query Separation (CQS)

public interface Iterator<kE>
{

boolean hasNext () ;

E next ();

void remove () ;

The method hasNext() is a query. It will not change the state of the iterator, i.e., it
can be called multiple times and will always return the same element. remove() is a
command. Indicated by the return type void, it does not return anything, but removing
an element is changing the state. next() is a problematic mix of query and command. It
does return the element the iterator is currently pointing at but also has the side effect of
advancing the pointer. Calling next() multiple times in a row will return another element
each time because of the side effect. [16]

Having side effects in queries makes reasoning about programs harder. A query following
the definition of the principle keeps referential transparency sound. Referential trans-
parency means, an expression can be replaced by its value without changing the behavior
of the program. In the following example the method n() has a side effect. A call to a
newly created object will always return 1 for n(), but 1 and n() are not interchangeable
because multiple calls to n() will change the result. Especially n() * 2 would be 2, but n()
+ n() would be 3. While reading program code such side effects can easily be overlooked.
32]

class Number
{
private int value = 0;
public int n ()
{
value++;
return value;

Number number = new Number ();
number.n() // ==
number.n() // == 2

It appears that keeping queries completely side effect free makes code easier to read and
use. Queries can be used in any order and multiple times in succession. Commands
often have temporal constraints, so they need to be called in a specific order. On the
other hand, having only queries without any side effects would be too restrictive because
there are legitimate side effects. That is the reason for differentiating between concrete

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

UNDETECTABLE DESIGN PRINCIPLES

68

side effects and abstract side effects. Concrete side effects, as defined by Meyer, are
assignments to attributes and calls of commands. Abstract side effects are concrete
side effects that change the publicly observable state. Side effects that only change the
internal state do not change the outcome of public queries, meaning that those side effects
are not observable for a client and thus not forbidden. Only side effects that interfere
with public queries are a problem. Caching is an example for such useful side effects.

class Users
{
private int cachedId = -1;
private User userCache;
public User getUser (int id)
{
if (cachedId !'= id)
{
cachedId = id;
userCache = getUserFromDB (id) ;
}

return userCache;

getUser() is a query, but it also changes the internal state because it updates cachedld
and userCache. However, these side effects are not abstract because for a client the state
change is transparent. Multiple consecutive calls to getUser() will return the same result,
but the performance of the method is increased since roundtrips to the database are
prevented. Fowler [57] also explicitly states that he likes to adhere to the Command
Query Separation principle but is ready to break it if it aids the program code. He brings
the pop() method of a stack as an example, that both returns (query) the latest element
on the stack, but at the same time removes it (command). Splitting such a method in
two methods can be more cumbersome than breaking the principle intentionally.

Relation to other principles

Violation detection strategy

We think the meat of the principle that queries should not produce abstract side effects
cannot be checked with a static code analyzer. In theory a query could be detected
because it is a method with a return type that is not void. The problem is the detection
of abstract side effects. To distinguish between concrete side effects (that are detectable)
and abstract ones, the analyzer would have to find out if the state change in the query

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.7. Encapsulate the Concept that Varies (ECV)

does affect any query in the class. Taking the Users class from above as an example, the
analyzer could recognize getUser() as a query and updates to chachedld and userCache,
so it detected concrete side effects. Now it has to check if the side effects are abstract
side effects. It can now recognize that the used attributes affect the outcome of getUser(),
which is a public query. Tough, raising a violation here would be a false-positive because
the cache mechanism is not an abstract side effect, but the analyzer cannot reliably
determine how the internal state influences the outcome of getUser().

The other aspect of the principle, namely that commands are not allowed to return
something, is also not detectable in our opinion. A command could be detected by
looking for concrete side effects, which are detectable if other commands are assumed to
have return type void. So if a method changes any attribute or calls a method that does
have void as return type, it is detected as a command. If the method itself has different
return type as void, a violation would have been found. The problem is the same as
before. Queries that do not have non-abstract side effects look like commands with a
return value to a static code analyzer. Because it cannot distinguish between concrete
and abstract side effects a detection is not possible.

Origin
The Command Query Separation principle is originally from Meyer[32].

5.7 Encapsulate the Concept that Varies (ECV)

Variants

Description

The advice of this principle to encapsulate the concept that varies works for two different
aspects of software development. The first is code that needs to change during mainte-
nance. If some code is expected to be changed in the future, it should be encapsulated
to keep the needed changes as local as possible. With proper encapsulation the change
might be done in one place only.

The second aspect is code that needs to change during runtime. Using abstractions,
the code to execute can be chosen at runtime by using a different implementation. The
abstraction encapsulates the concept that varies, whereby the variations are hidden from
the user. New variants can be added by creating new implementations of the abstraction.
Existing code does not have to be changed. [11][40]

Relation to other principles

Single Responsibility Principle (SRP): A responsibility can be seen as a concept
that varies over time, so both the Single Responsibility Principle and the Encapsulate

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

UNDETECTABLE DESIGN PRINCIPLES

70

the Concept that Varies principle recommend to encapsulate this concept.

Open Closed Principle (OCP): To apply the Open Closed Principle, abstractions have
to be used, that encapsulate the varying behavior of the implementations. Encapsulate
the Concept that Varies has the same goal.

Single Choice Principle (SCP): The Single Choice Principle encapsulates the decision
between multiple alternatives. Because such lists of alternatives tend to change, the
Encapsulate the Concept that Varies principle would also suggest to encapsulate the
decision because it is a varying concept.

Don’t Repeat Yourself (DRY): If the concept that varies is encapsulated, it cannot
be repeated over and over in the source code, which prevents duplication.

Violation detection strategy

Detecting violations of the principle is in our opinion not possible for neither of the two
aspects. A static code analyzer cannot presume which code might need changes in the
future. Developers can have guesses based on experience and planning but an automatic
detection is impossible. For the second aspect, the tool would need to find scattered
code pieces that are variants of the same concept. For example, there would be case
distinctions over authentication methods in multiple places, i.e., if or switch statements
that decide which method to use. This would be a violation because authentication
methods are prone to change and should be encapsulated in one place. To flag this as
a violation, the static code analyzer would need to make sense of the case distinction,
which it cannot do.

Origin
The principle, to encapsulate the concept that varies is described in "Design Patterns:
Elements of Reusable Object-Oriented Software" [11].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Tool Implementation

6.1 Selection of base-tool

Because integration with SonarQube is a requirement for the tool it can only be imple-
mented in limited ways. To keep the implementation as simple as possible it should
use an already existing SonarQube plugin that provides means to traverse Java source
code. Plugins that can be used are SonarJava! (the official Java plugin for SonarQube),
SpotBugs?, PMD? and Checkstyle?. All this options provide the possibility to add
custom rules. The rules for all options are written using the visitor pattern, i.e., we fill in
callbacks for nodes in the syntax tree, check for a condition and maybe report a problem.

Checkstyle does fulfill the requirements from above, i.e., we can write custom rules filling
in a visitor pattern, but it comes with limitations that render it useless for the detection
of violations of design principles. Checkstyle does not provide information about the full
inheritance hierarchy. This means, it is for example not possible to check if some class
inherited from another. [56]

SpotBugs requires the SonarJava plugin but does not provide a simpler way to write
custom rules than the SonarJava plugin itself. To minimize the requirements to run the
tool SpotBugs is eliminated as an option. [59]

PMD also is not simpler to use than SonarJava. Furthermore, custom rules for SonarQube
can be packed in a standalone JAR-file, whereas the custom rules for PMD need to be
packed with the PMD plugin for SonarQube. [65][60][72]

To summarize, SonarJava is picked because it needs the least dependencies, the new
custom rules can be distributed as a single JAR-file that only needs to be put into the

"https://www.sonarsource.com/products/codeanalyzers/sonarjava.html
?https://github.com/spotbugs/sonar-findbugs
3https://github.com/jensgerdes/sonar—pmd
‘https://github.com/checkstyle/sonar-checkstyle

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.

TooL IMPLEMENTATION

72

plugins directory of SonarQube and it is the official plugin for Java code analyzing in
SonarQube. [72]

6.2 Implementation details

6.2.1 Overview

The tool is implemented as a plugin for SonarJava. An example project is provided by
SonarJava which already has the build process configured via Maven®. The resulting
jar archive has to be placed in the plugin folder of the SonarQube instance. SonarQube
automatically detects the plugin.

For writing rules the class IssuableSubscriptionVisitor is the starting point. It provides
the means to visit nodes of the syntax tree and to report issues. Typically one would
write an automatic test for a rule. SonarJava provides helper classes to run rules against
self written Java files that are annotated with the comments "// Noncompliant" and "//
Compliant". The helper classes check if all expected issues were reported.

To represent the method of detection by using design best practices, an interface Best-
Practice was created. For each best practice an instance of BestPractice was written
which handles the detection of violations. Because multiple design principles can use
the same best practice the class DesignPrincipleRule was introduced which also extends
IssuableSubscriptionVisitor. For each best practice that a design principle uses there
exists an instance of DesignPrincipleRule. The following code pieces show a best practice
and a design principle rule.

®https://docs.sonarqube.org/display /PLUG /Writing+Custom+Java+Rules+101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6.2. Implementation details

public class AvoidPublicFields implements BestPractice {
@Override
public List<Tree.Kind> nodesToVisit () {
return ImmutableList.of (Tree.Kind.CLASS) ;

@Override
public Stream<? extends Tree> checkViolation (
JavaFileScannerContext context, Tree toCheck) {
return Utils.getFieldsOfClass ((ClassTree) toCheck)
.filter(field -> field.symbol () .isPublic())
.filter (field —>
! (field.symbol () .isFinal ()
&& field.symbol () .isStatic()))
.map (field —>

new Violation (field, "Public field used."));
}
}
QRule (
key = "IHAvoidPublicFieldCheck™",
name = "Information Hiding Principle violation. " +

"Public fields should not be used.",
priority = Priority.INFO,
tags = {"design"})
public class AvoidPublicFieldsCheck extends DesignPrincipleRule {

@Override
public BestPractice bestPractice() {
return new AvoidPublicFields();

The best practice specifies to visit only classes, so checkViolation() will only be called
for classes and the parameter toCheck is always instance of ClassTree. checkViolation()
searches for public fields and returns all found fields, so DesignPrincpleRule can report
issues for them, with the message specified in AvoidPublicFieldsCheck.

How rules can be written in general is sufficiently good documented, but how the syntax
tree is composed can only be guessed since there is little documentation about it. The
most help are the existing rules for SonarJava available in their Github repository®.
Another way to find the needed part of the syntax tree is writing examples and looking

®https://github.com/SonarSource/sonar-java

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.

TooL IMPLEMENTATION

74

at the tree in the debugger. After some time we got the hang of it because often the
same methods are used.

Next up are implementation details for selected design principles.

6.2.2 Keep It Simple Stupid (KISS)

Because the acceptable length for methods is a subjective value we implemented it as
a rule parameter with a default value of 200 lines. Cyclomatic complexity is already
provided by the SonarJava API and is only checked against the maximum value which
can also be configured.

6.2.3 Don’t Repeat Yourself (DRY)

The detection of duplicate code is a separate feature of SonarQube so we did not implement
it again for the tool.

6.2.4 Single Choice Principle (SCP)

We implemented AvoidCaseDistinctionOverEnums in a way that every case distinction is
flagged as a violation even if there is only one in the whole project. The way SonarJava
analyzes files makes this the easiest implementation, but it also makes sense from the
point of view that even a single case distinction should be avoided and the decision moved
into the enum itself. Case distinctions are switch expressions or if/else cascades. We do
not count single if expression as a problem since it only targets a single case, which is
not as problematic as a distinction over all or most values of an enum.

6.2.5 Program to an Interface, not an Implementation (PINI)

For the best practice UselnterfacelfPossible we filtered "usable abstractions" by a blacklist
because, e.g., Serializable or Comparable are abstractions, but mostly not used as static
types for parameters or return values.

6.2.6 Favor Composition over Inheritance (FCOI)

We implemented CheckUnusedSupertype per client, i.e., if a single client only uses
methods of the declared subtype, but none of the supertype, the subtype relation is
marked as a possible violation. Other clients that do use supertype methods do not
prevent the violation.

6.2.7 Package principles (CRP, ADP, SDP, SAP)

As it turned out, the way SonarJava analyzes files is on a file per file basis. This means
it is only possible to get information about other types declared in a class, but it is not
possible to get the usages of a method for example, i.e., places were it is called. This kind
of information is needed to detect violations of package principles. Therefore, we had

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6.2. Implementation details

to implement a ProjectSensor which has access to all Java files of the analyzed project
but not the syntax trees that SonarJava usually provides. So we used another library,
namely JavaParser’, to get the needed information. If this problem would have shown
up earlier in the implementation process we probably could have implemented the whole
plugin with JavaParser but the package principles unfortunately were the last ones. The
decision to use SonarJava as the base tool was still the right choice because the other
options operate in the same manner, i.e., on a file per file basis and SonarJava is always
available on SonarQube.

"https:/ /javaparser.org/

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Evaluation

7.1 Overview

During the development of the tool we used small self written examples to test the
functionality. This process is also described in Chapter 6.2.1. Those tests prove the
ability of the tool to find intended violations of design principles but to assess its usefulness
for real projects it has to be evaluated against real projects. Therefore, we selected two
open-source projects based on their popularity, constant development in the last years
and size. We searched GitHub! for Java projects sorted by the number of stars which are
an indicator for popularity. We determined if a project was constantly developed over the
last years by looking at its commit history. In terms of size we were looking for projects
that span multiple packages with multiple classes in each, so we might find violations of
package principles. The upper limit regarding size was the number of violations found by
the tool because the evaluation has to be done manually. According to these criteria we
chose MPAndroidChart? and fastjson®. MPAndroidChart contains 17,000 lines of code
in 159 files which hold 183 classes, interfaces and enums. fastjson contains 40,000 lines of
code in 176 files which hold 227 classes, interfaces and enums.

With the way we evaluated the tool we were only able to recognize false-positives but
not false-negatives. To minimize false-negatives we already tried to cover, as well as
possible for us, all aspects of the design principles with design best practices. The best
practices we researched and came up with are additionally specified in a way that they
only find candidates, which have to be reviewed by a developer. This means, they are
designed to rather produce false-positives than false-negatives. Furthermore, since design
principles are only heuristics, a complete coverage of them with a tool is impossible
in our opinion. Because of these reasons we decided to concentrate our evaluation on

"https://github.com/
https://github.com/PhilJay /MPAndroidChart
3https://github.com/alibaba/fastjson

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7. EVALUATION

78

false-positives and leave the evaluation of false-negatives to future research endeavors.
Finding false-negatives for example does not have much overhead if the tool is actively
used in a project and reviews are conducted, which can reveal design flaws that the tool
did not report.

Running our tool against the two projects we found the violations depicted in Table 7.1
on page 87 and Table 7.2 on page 88.

The majority of violations in both projects is caused by a lack of documentation (DRY),
the usage of concrete types (OCP, PINI) and the usage of public and protected fields
(IH). The high amount of violations of AvoidRuntimeTypeldentification in fastjson is due
to its nature of being a JSON serializer/deserializer. The library has to accept objects of
type Object and gather the needed type information itself.

The only best practices for which the tool could not find any violations are those of the
principle Information Expert. All other best practices were violated at least once in one
of the two projects.

7.2 Design principles in detail

7.2.1 Don’t Repeat Yourself (DRY)

Detecting missing Javadoc works reliably and we think it gives a good impression if
a project is trying to provide Javadoc or not. fastjson provides very little Javadoc
which can indicate a conscious decision against it. MPAndroidChart however only lacks
Javadoc on some parts of the code which implies a problem with the consistency of the
documentation. The tool does help here to find places were Javadoc is missing.

We have to emphasize that only missing Javadoc is detected. Javadoc that only consists
of useless information in regards to implementation, for example a Copyright notice, is
treated as existing Javadoc which distorts the results.

The detection of too many inline comments delivers mixed results. On the one hand
problematic comments are pointed out which in our opinion can be deleted after adapting
the code. Commented out code could be deleted because it should also exist in the version
control system. Comments which describe code blocks could be deleted after extracting
the block into a method with a expressive name. Comments that describe every line
could be deleted after renaming variables and also extracting code into methods to make
the intention of the code clearer. Comments that are used to provide the reader the
meaning of an integer, for example in a switch clause, could be deleted after the integer
is refactored to an enum.

On the other hand we think many comments marked as violation are meaningful and
needed. This means the tool delivers many false-positives for AvoidMassivelnlineCom-
ments. Users of the tool might have to change the allowed amount of comments to their
needs but we still think this is a useful rule because developers have to think twice over
the comments and can always dismiss the violation in SonarQube later.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7.2. Design principles in detail

As already stated before SonarQube has a built in code duplication detection which
assesses fastjson with 14.7% and MPAndroidChart with 4.0% duplication. In the web
user interface of SonarQube users are able to see which lines of code are duplicated and
where.

7.2.2 Open Closed Principle (OCP)

The detection of public, public static and protected fields, the detection of runtime type
identification and the detection of mutable class members that are returned by methods
works reliably. Projects like fastjson that have to rely on runtime type identification can
always turn off AvoidRuntimeTypeldentification in SonarQube. We think these rules are
useful.

Detecting concrete types as parameter or return type turned out to be error-prone.
Although the tool found plenty of violations we were not able to approve a single one.
The vast majority of alternatives (supertypes) the tool suggested are types that only
make sense in specific contexts. In MPAndroidChart for example there is a type Poolable
which is inherited by a lot of other classes to make them able to be stored in a Pool.
The tool suggests Poolable for every parameter type and return type that inherits from
Poolable. Even if the tool would be made configurable so these types can be ignored there
would still be too many false-positives. The tool currently only searches for supertypes of
the declared type but does not evaluate whether it can really be used or not, i.e., if using
the suggested supertype would break the existing code. To mitigate these problems the
algorithm could be made more sophisticated. For parameters for example it could rule
out supertypes which do not provide the methods called on the parameter object.The
problem with such a solution would be that it only assesses the current code but would
not force the developer to think about the type decision and try to solve the problem
with a higher abstraction. UseAbstractionAsParameterType could still be beneficial if it
only suggests supertypes that can be used in the existing code if evaluations against other
projects show a benefit. Based on the evaluation of MPAndroidChart and fastjson we
suggest to remove UseAbstractionAsParameterType and UseAbstractionAsReturnType
completely.

7.2.3 Program to an Interface, not an Implementation (PINI)

Detecting concrete classes that do not have any supertypes works as expected. A problem
are classes like the before described Poolable in MPAndroidChart which are inherited by
many classes. This kind of supertypes suppress violations of ProvideAbstractionForClass
but we would not consider them real abstractions because they are more like indicators
that enable a specific functionality. An enhancement for the tool would be to make
classes configurable that are ignored as supertypes.

UselnterfacelfPossible in general has the same problems as UseAbstraction AsParame-
terType and UseAbstractionAsReturnType. The vast majority of violations are false-
positives because the tool does not check whether using the suggested type would break

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7. EVALUATION

80

the existing code. Unlike with the other two best practices we were able to find some
valid violations of UselnterfacelfPossible. In a few cases concrete types of collections,
e.g., ArrayList or HashSet, were used as declared types of variables. From these cases we
only consider those as problematic were the variable is a class member. Variables with
concrete declared types in short methods are no problem in our opinion. Summarized, to
be more beneficial we think the tool should only check for class members with concrete
types and should only suggest supertypes that work with the existing code.

7.2.4 Information Hiding (IH)

As described before the detection of public, public static and protected fields and the
detection of mutable class members that are returned by methods work reliably and we
think they are useful.

The only best practice that is unique for Information Hiding is AvoidSettersForHeav-
ilyUsedFields. Based on the violations found in the two projects we think Avoid-
SettersForHeavilyUsedFields can only report violation candidates, i.e., it may report
false-positives. In our opinion, in some cases the current code is easier to maintain than
having to inject the value of the field through the constructor and making the passed
object immutable. Immutability is required because otherwise the injector would still be
able to manipulate the passed object from the outside. Nevertheless we think the rule
is helpful because it forces the developer to reflect the necessity of the setter and think
about alternatives.

7.2.5 Single Choice Principle (SCP)

Detecting runtime type identification works reliably as described before. Finding case
distinctions over enums does deliver valid violations but also produces false-positives. The
valid violations can either be resolved by moving code into the enum itself or by avoiding
code duplication through the use of methods. There are two types of false-positives. Some
case distinctions have to stay were they are because otherwise the Single Responsibility
Principle would be violated, e.g., in MPAndroidChart different chart types calculate the
position of the legend based on the legends orientation and alignment which are enums.
By moving the calculation into the enums they would have to know about the different
kinds of charts which only moves the problem but does not resolve it. The second type
of false-positives are enums that do not represent alternatives but rather possibilities.
fastjson makes heavy use of enums that represent features which can be enabled. The
code that gets executed if a feature is enabled can also not be moved due to the Single
Responsibility Principle. Nevertheless, because of the found valid violations we still think
AvoidCaseDistinctionOverEnums is a useful best practice.

7.2.6 Keep It Simple Stupid (KISS)

The tool is able to find long and complex methods as expected. With a threshold for
cyclomatic complexity of ten, all found violations look complicated enough to us to

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7.2. Design principles in detail

deserve a refactoring. Teams with other opinions can configure the threshold.

7.2.7 Single Responsibility Principle (SRP)

Finding non cohesive classes is currently error-prone but we still think it is beneficial.
We were able to identify classes that have more than one responsibility, e.g., classes in
fastjson that can serialize and deserialize despite those two methods having no shared
members. The most false-positives are POJOs because they are inherently non cohesive.
Each member builds a group with its corresponding getter and setter methods. Other
false-positives emerge because the tool currently ignores type hierarchies when grouping
together connected members and methods. Template methods, which are methods that
need to be implemented in the subclass, appear to be standalone in the subclass despite
being used with other members and methods in the superclass. To enhance the tool the
relationship of members and methods in superclasses has to be considered and POJOs
should be ignored completely.

As a side effect, dead code, e.g., unused fields and methods as well as empty methods, is
reported as non cohesive because dead code does not connect with any other members
and methods. Although it is not the main goal of the implementation of this principle
we still think it is helpful.

7.2.8 Favor Composition over Inheritance (FCOI)

Of the three best practices used for this principle we can only approve UseComposition-
NotInheritance as a strong indicator for a violation. In our opinion all violations reported
by it can be resolved by using composition. The other two best practices produced
many false-positive cases for which we could not find a way to solve them without
inheritance. For example OnlyInheritFromAbstractClasses raises violations for exceptions
that inherit from other exceptions which is common practice. Many libraries, the JDK
included, only provide concrete classes that have to be inherited to use them. We think
OnlyInheritFromAbstractClasses and CheckUnusedSuperType should be removed as
standalone best practices but be added as an extension to UseCompositionNotInheritance.
If UseCompositionNotInheritance finds a problem the other two best practices can be
used to emphasize the violation.

7.2.9 Acyclic Dependencies Principle (ADP)

Detecting package cycles works reliably. A purely cosmetic enhancement would be to
also display the classes that are part of the cycle not only the packages. Currently a user
would have to use external tools to find the involved classes.

7.2.10 Option Operand Principle (OOP)

As described the tool can only detect boolean option parameters and this works as
expected. We found two false-positives in fastjson because one deserialization class has

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7. EVALUATION

82

two methods which accept boolean values and write strings according to the value. This
behavior looks like an option to the tool but we do not consider it a problem because this
usage of a boolean parameter seems like a specialty of libraries like fastjson to us. Two
violations in MPAndroidChart are debatable because boolean parameters here are used
to enable/disable a feature. The enabling/disabling is executed through other methods,
not by setting a boolean member. We would argue that it is a question of style whether
someone prefers one method setXEnabled() or two methods enableX()/disableX() and
therefore we also do not consider these two violations real false-positives.

7.2.11 Interface Segregation Principle (ISP)

All reported violations of not implemented inherited methods are correct. Either they are
completely empty or just throw an exception like an UnsupportedOperationException
which indicates that this method is not implemented.

7.2.12 Law of Demeter (LOD)

After evaluating the Law of Demeter against the two projects we think this principle
should be removed from the tool because the automatic violation detection is too error-
prone. Some false-positives arise if collections are used since it is forbidden to call a
method of an object which was fetched from a collection. Resolving some other violations
would lead to more complex code in our opinion. We think none of the found violations
justify the automatic detection of this principle.

7.2.13 Stable Dependencies Principle (SDP)

We were able to identify stable packages which depend on much more instable packages
with the tool. The detection works as expected but the results have to be assessed by a
developer because currently even a difference in instability of 0.01 is a violation. Humans
have to decide whether this is really a problem. The tool could also have a configurable
threshold for the difference in our opinion to minimize false-positives.

7.2.14 Common Reuse Principle (CRP)

The tool is able to find classes which are used separated from other classes in the same
package. For example, for MPAndroidChart classes are currently grouped into packages
by their role, i.e., there are packages named charts, renderer and datasets. Based on
the found violations though we think the classes should be grouped by chart type (line,
bar, pie) to conform better with the Common Reuse Principle. This result is only based
on the class usage inside the library itself. We are aware that for libraries like fastjson
and MPAndroidChart the way clients use the classes can be completely different from
internal usage. Still, the tool showed its capability to detect violations of the principle.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7.3. Summary

7.2.15 Stable Abstractions Principle (SAP)

The tool identified packages in both projects which are stable but concrete. Therefore,
we conclude that the tool reliably detects violations of the Stable Abstractions Principle.

7.2.16 Information Expert (IE)

Because our tool did not find any violations of the Information Expert principle we
were not able to evaluate if the automatic detection of this principle makes sense and is
beneficial.

7.3 Summary

Based on our evaluation we think the tool is able to detect violations of the following
principles reliably: Keep It Simple Stupid (KISS), Option Operand Principle (OOP),
Interface Segregation Principle (ISP), Acyclic Dependencies Principle (ADP), Common
Reuse Principle (CRP), Stable Dependencies Principle (SDP), Stable Abstractions
Principle (SAP)

For the principles Don’t Repeat Yourself (DRY), Information Hiding (IH) and Single
Choice Principle (SCP) the tool is able to find violations but also reports false-positives.
Nonetheless, we think the automatic detection of violations of these three principles is
helpful.

In its current state the tool showed the potential to detect violations of the principles
Program to an Interface, not an Implementation (PINI), Single Responsibility Principle
(SRP) and Favor Composition over Inheritance (FCOI). Fundamentally, violations are
found but the tool reports many false-positives. We already described possible enhance-
ments to minimize the false-positive rate above and think that with them the automatic
detection of these principles can be useful.

For the Open Closed Principle (OCP) the in our opinion important best practices
UseAbstractionAsParameterType and UseAbstractionAsReturnType are error-prone and
based on the evaluation we recommend to not use them. There are still best practices left
that are able to find violations but we do not think they are covering the main proposition
of the principle. The left over best practices are also included in other principles so we
currently do not think the automatic detection of violations of the Open Closed Principle
is beneficial.

Automatically detecting violations of the Law of Demeter (LOD) proofed itself to be
very error-prone in the evaluation and because of that we do not think that it is useful.

The tool did not find any violations of the Information Expert (IE) principle, therefore
we are not able to make any statements about the usefulness of its automatic violation
detection.

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

7. EVALUATION

84

The tool showed its ability to find design problems and report their location in the source
code. Because each problem is based on a design principle the solution to fix the design
flaw is to not violate the principle. From a developers perspective problems are delivered
with a possible solution and we think this makes the tool useful.

In contrast to SonarJava, Checkstyle and SpotBugs the tool is focused on design. All three
other analyzers cover some parts of the tool, i.e., SpotBugs detects circular dependencies
but on a class level, Checkstyle detects missing Javadoc, too high cyclomatic complexity,
too open visibility and long methods and SonarJava detects too high cyclomatic com-
plexity, missing Javadoc, long methods and empty methods. This intersection exists but
the found violations are not connected to design principles. The tool we implemented is
able to detect far more design flaws and connects them to design principles, giving the
developer more context for an existing problem.

7.4 Research Questions Revisited

RQ 1: Which violations of object-oriented design principles for Java can be
detected automatically, and how can we do that?

We found violations of the following principles to be detectable automatically by a static
code analyzer:

o Keep It Simple Stupid (KISS)

o Option Operand Principle (OOP)

o Interface Segregation Principle (ISP)

o Acyclic Dependencies Principle (ADP)
o Common Reuse Principle (CRP)
 Stable Dependencies Principle (SDP)
 Stable Abstractions Principle (SAP)

o Don’t Repeat Yourself (DRY)
 Information Hiding (IH)

« Single Choice Principle (SDP)

o Program to an Interface, not an Implementation (PINI)
« Single Responsibility Principle (SRP)

o Favor Composition over Inheritance (FCOI)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7.4. Research Questions Revisited

Violations of the these principles are in our opinion inherently not detectable by a static
code analyzer:

o Liskov Substitution Principle (LSP)

o Dependency Inversion Principle (DIP)

 Single Level of Abstraction (SLA)

o Common Closure Principle (CCP)

o Integration Operation Segregation Principle (IOSP)
o Command Query Separation (CQS)

o Encapsulate the Concept that Varies (ECV)

Based on the evaluation of our tool we had to reject our assumption that violations
of the Open Closed Principle (OCP) and the Law of Demeter (LOD) can be detected

automatically because our tool produced too many false-positives for these principles.

We think that violations of the Information Expert (IE) principle can be detected
automatically but our tool did not find any violations for the two projects we ran
it against. Therefore, we can not give any informed statement about its automatic
detectability.

To find violations of design principles we broke them down into design best practices
because design principles are too abstract. Each design best practice covers an aspect of
the design principle. If a best practice is violated, then the design principle, which the
best practice is a part of, is also violated. Detailed descriptions of the detection strategies
can be found in Chapter 4. To detect violations of best practices the abstract syntax
tree of the code has to be scanned for problematic patterns. Our tool for example looks
for missing Javadoc (DocumentPublicMethods) or switch expressions over an enum type
(AvoidCaseDistinctionOverEnums).

RQ 2: How useful is the automatic detection (according to RQ1) to assess
the quality of a software project?

With our tool we were able to detect violations of 13 design principles. Each reported
violation is a design flaw but the severity of the flaw has to be assessed by a developer. We
think, missing Javadoc for example can be fixed much easier than problematic inheritance
hierarchies that should be replaced by composition. The number of found violations
nonetheless is in our opinion an indicator for the design quality of a project. The type

of found violations also gives information about the kind of problems the project has.

For example, many Information Hiding violations indicate a very open design in terms
of visibility. In such a project, changing the internals of objects can be hard. Many
violations of the Single Choice Principle may mean the developers have insufficient
knowledge or experience in object-oriented programming. Violations of the Interface

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

7. EVALUATION

86

Segregation Principle and the Favor Composition over Inheritance principle suggest
problems in the inheritance and type hierarchies. If violations of Don’t Repeat Yourself,
Single Responsibility Principle, Keep It Simple Stupid or Option Operand Principle are
found, then the code might be hard to read. Many violations of package principles may
indicate that the way classes are grouped into packages was not, or insufficiently, thought
through.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

7.4. Research Questions Revisited

Design Principle

Design best practice

Name | Violations | Name Violations | False-positives
UselnterfacelfPossible 730 ee® @
PINT a4 ProvideAbstractionForClass 14000
DocumentPublicMethods 592 | OO O
DRY 691 | AvoidMassivelnlineComments 52 | ® @ O
DocumentPublicInterfacesClassesEnums... 47| OO0 O
AvoidProtectedField 272 | © 0O
UseAbstractionAsParameterType 148 | e 0@
UseAbstractionsAsReturnType 126 e @ @
OCP 636 | AvoidPublicField 40000
DontReturnMutableField 201 00O
AvoidRuntimeTypeldentification 20 00O
AvoidPublicStaticField 1000
AvoidProtectedField 272 | © 0O
UseAbstractionsAsReturnType 126 oo @
TH 471 | AvoidPublicField 40| 00O
DontReturnMutableField 20| 00O
AvoidSettersForHeavilyUsedFields 4|/ @00
SRP 84 | AvoidNonCohesivelmplementations 84 | @ @O
SCP 62 AvoidCaseDistinctionOverEnums 42 | ® O O
AvoidRuntimeTypeldentification 20 00O
AvoidComplexMethods 42 | 00O
KISS 42 AvoidLongMethods 0lo0oOoO
ADP 36 | AvoidPackageCycles 36| 000
OnlyInheritFromAbstractClasses 2| eoee
FCOI 29 | UseCompositionNotInheritance 6] 000
CheckUnusedSuperType 1 eoe®
ISP 21 | AvoidStubForInheritedMethod 21| 000
010) 15 | AvoidOptionParameters 15| @00
SDP 9 | DependInTheDirectionOfStability 91000
CRP 5 | CheckUnsuitableFunctionalityOfPackage 51000
LOD 3 | AvoidChainedMethodCalls 3 000
SAP 2 | PackagesShouldBeAsAbstractAsStable 21000
IE 0 AvoidGet AndSet 0|-
AvoidUnnecessaryInformation Transfer 01-

O O O =none, ® OO0 =few, ® ® O = many, ® ® ® = 3 great many

Table 7.1: Violations in MPAndroidChart

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

7. EVALUATION

Design Principle Design best practice
Name | Violations | Name Violations | False-positives
DocumentPublicMethods 1069 | © 0 O
DRY 1260 | AvoidMassivelnlineComments 119 | ® ® O
DocumentPubliclnterfacesClassesEnums... 72| 000
AvoidRuntimeTypeldentification 655 | © O O
UseAbstractionAsParameterType 200 | o0 @
AvoidProtectedField 104 | 00O
OCP 1167 | AvoidPublicField 100 | 00O
UseAbstractionsAsReturnType 6l | oo @
AvoidPublicStaticField 24| 000
DontReturnMutableField 14 000
UselnterfacelfPossible 978 | @ @ @
PIN 1014 ProvideAbstractionForClass 36 | 00O
SCP 691 AvoidRuntimeTypeldentification 655 | 00O
AvoidCaseDistinctionOverEnums 36 | ® @O
AvoidProtectedField 104 | 00O
AvoidPublicField 100 | ©0 O
IH 287 | UseAbstractionsAsReturnType 6l | oo @
DontReturnMutableField 14| 000
AvoidSettersForHeavily UsedFields S| @00
AvoidComplexMethods 222 | 00O
KISS 234 AvoidLongMethods 12000
SRP 120 | AvoidNonCohesivelmplementations 120 | ® ® O
CheckUnusedSuperType 3| eee
FCOI 46 | OnlyInheritFromAbstractClasses 9,000
UseCompositionNotInheritance 3/]000
(010) 29 | AvoidOptionParameters 29 | ® 0O
LOD 26 | AvoidChainedMethodCalls 26 | eo® @
ADP 21 | AvoidPackageCycles 21000
SDP 10 | DependInTheDirectionOfStability 10] 00O
ISP 9 | AvoidStubForInheritedMethod 9|/ 000
CRP 3 | CheckUnsuitableFunctionalityOfPackage 3| 000
SAP 3 | PackagesShouldBeAsAbstractAsStable 3|/000
B 0 AvoidGet AndSet 01-
AvoidUnnecessaryInformationTransfer 0] -
Table 7.2: Violations in fastjson
O O O =none, ® O O = few, ® ® O = many, ® ® ® = 3 great many
88

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Conclusion

After summarizing concepts of object-oriented programming we gave an overview of
software design quality. We explained why design quality is important, how it can be
measured and defined terms like design principle and design best practice. To answer
the research questions we researched design principles and determined whether violations
of them could be automatically detectable. To proof the assumed detectability we
implemented a static code analyzer and evaluated it against two open source projects.

We identified 13 principles whose violations can be found by a static code analyzer.
Violations of seven of the investigated design principles are in our opinion inherently
not detectable. For two principles we had to reject our assumption that violations of
them can be detected automatically, because the evaluation of our tool showed that the
detection of them is too unreliable. For one principle we did not get enough information
in our evaluation to make an informed statement about its automatic detectability.

We think that the number of found violations by our tool is an indicator for a projects
design quality. The type of violations also gives insight about the design aspects that
need to be improved.

Future Work For the future we think it would be beneficial to perform a survey, like
Bréauer [3] did, to get more opinions on the appropriateness of the best practices we came
up with for the design principles. This survey should evaluate whether or not the best
practices cover all aspects of the design principles and might provide input for new best
practices. To further improve our tool it should be run against more projects to get more
information about the appropriateness of our rules. We especially need more information
for the Information Expert principle because we did not get any in our evaluation. Also,
more information is needed for the Open Closed Principle and the Law of Demeter
since further evaluation might prove their automatic detection useful, contrary to our
evaluation result. Another way to improve the tool would be its continuous use in an
active project. This could bring up more false-positives that have to be fixed but more

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

8. CONCLUSION
importantly false-negatives could be found. If a developer finds a design flaw that the
tool did not report they found a false-negative and the tool has to be changed to cover
this case too, if possible. Finding false-negatives is labor-intensive in an evaluation but
does not have much overhead during project development if reviews are performed.

90

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

APPENDIX

Appendix

A.1 Design best practices

This is a list of all design best practices in the thesis together with the pages they appear
on. Further descriptions and sources can be found on the referenced pages.

AvoidCaseDistinctionOverEnums

Case distinctions in the form of switch expressions or if/else cascades should be
avoided, because changes to the enum may need follow up changes to every one of
these case distinctions. 39

AvoidChainedMethodCalls
Calling methods on the results of method calls should be avoided. Such chains lead
to tight coupling with the result types. The nearer type becomes more difficult to
change, because his internals are used. 29

AvoidComplexMethods
Methods should not be too complex in terms of cyclomatic complexity, as a high
cognitive demand reduces the readability. 30

AvoidDuplication
Code (and knowledge in general) should not be duplicated. 33

AvoidGet AndSet

Instead of getting a value or multiple values of an object and setting some value
on it afterwards, the object should be asked to make the update, because it is the
information expert. 36

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

A.1 DESIGN BEST PRACTICES

92

AvoidLongMethods
Long methods reduce the understandability and should therefore be avoided,
whereby the acceptable length is subjective. 30
AvoidMassivelnlineComments
If a method needs a lot of inline comments, it might need refactoring to make the
code more clear without the comments. Comments can become out of sync with
the implementation and should be avoided whenever possible. 33
AvoidNonCohesivelmplementations
Non cohesive implementations have multiple responsibilities, hence also multiple
reasons to change, making them more fragile. Therefore they should be split up. 18
AvoidOptionParameters
Parameters that only influence the behavior of a method should be transformed
to option fields. In the case of boolean parameters the method can also be split
into two methods. Option parameters complicate the method signature, decreasing
readability and are not reusable, contrary to fields. 53
AvoidPackageCycles
The usage graph of packages should not have any cycles because the release order
of packages becomes unclear. 46
AvoidProtectedFields
Protected fields open up the internals of a class for its subclasses, making it harder
to change in the future. 21, 25
AvoidPublicFields
Public fields leak the internals of a class completely, making changes to it compli-
cated. 21, 25
AvoidPublicStaticFields
Public static fields create a tight coupling between clients and the field, making
changes to the class more difficult. 21
AvoidRuntimeTypeldentification
Runtime type identification is not future proof against new types and poses a risk
for future changes. 21, 39
AvoidSettersForHeavilyUsedFields

If a class heavily uses a field internally, it should not be setable from the outside.
Internals can be changed much easier, if they cannot be manipulated from the
outside. 25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

A.1 Design best practices

AvoidStubForInheritedMethod

A subtype that overrides a method but does not provide a meaningful implementa-
tion (empty body or only throws exception) is an indicator for a invalid subtype
relation. 24

AvoidUnnecessaryInformationTransfer

If multiple getter calls to an object are made, information is transferred that the
object is the expert on. Whatever task the information is for, the object is probably
better suited to execute it, because it already has the information. 36

CheckUnsuitableFunctionalityOfPackage
Classes of a package should have to be used together. If clients can use a part of a
package alone it might have to be split up. 44

CheckUnusedSupertype

If clients only use methods of the subtype, not the supertype, the subtype relation
might be invalid and only exists for code reuse in the subtype. 43

DependInTheDirectionOfStability
Pacakges should only depend in the direction of stability. 48

DocumentPublicInterfacesClassesEnumsAndAnnotations
Documentation on public classes, interfaces, enums and annotations simplify their
reuse, because developers can easier understand when and how to use them. 33
DocumentPublicMethods
Documentation on public methods aids their reuse, because developers can easier
understand when and how to use them. 33
DontReturnMutableField

If a mutable field is returned by a method, the client can manipulate the state of
an (maybe even private) field. The object lost control over its own state. 21, 25

OnlyInheritFromAbstractClasses

Abstract classes are more stable than concrete ones, making ripple effects less likely
to occur when the superclass is changed. 43

PackagesShouldBeAsAbstract AsStable

Packages that are stable should also be abstract but packages that are unstable
should be concrete. 49

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

A.1 DESIGN BEST PRACTICES

94

ProvideAbstractionForClass

For every class there should be an abstraction, so clients do not need to couple
with concrete classes. 40

UseAbstractionAsParameterType
Using abstractions as parameter types makes methods open for future subtypes,
without needing to change their source code. 21
UseAbstractionAsReturnType
Using abstractions as return types keeps the internals of methods hidden, making
changes to the implementation easier. 21, 25
UseCompositionNotInheritance

Inheritance should not be used for code reuse, composition is the way to go.
Inheritance for code reuse might leak implementation details or create invalid and
complicated type hierarchies that might be hard to entangle in the future. 43

UselInterfacelfPossible

If an abstraction exists for a type it should be used, to decouple the client from the
concrete implementation. 40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Bibliography

Deborah J. Armstrong. “The quarks of object-oriented development”. In: Commu-
nications of the ACM 49.2 (2006), pp. 123-128. 1ssN: 00010782. por: 10.1145/
1113034.1113040.

Johannes Brauer et al. “A survey on the importance of object-oriented design best
practices”. In: Proceedings - 43rd Furomicro Conference on Software Engineering
and Advanced Applications, SEAA 2017 (2017), pp. 27-34. DO1: 10.1109/SEAA.
2017.14.

Johannes Bréauer. “Measuring and Assessing Object-oriented Design Principles”.
PhD. Thesis. Universitat Linz, 2017.

Johannes Bréauer et al. “Measuring object-oriented design principles: The results
of focus group-based research”. In: Journal of Systems and Software 140 (2018),
pp- 74-90. 1sSN: 01641212. po1: 10.1016/73.3ss.2018.03.002.

Johannes Briuer et al. “On the suitability of a portfolio-based design improvement
approach”. In: Proceedings - 2018 IEEE 18th International Conference on Software
Quality, Reliability, and Security, QRS 2018 (2018), pp. 249-256. DO1: 10.1109/
QRS.2018.00038.

E Capra, C Francalanci, and F Merlo. “Software design quality and development
effort: an empirical study on the role of governance in Open Source projects”. In:
IEEE Transaction on Software Engineering 34.6 (2008), pp. 765-782.

S. R. Chidamber and C. F. Kemerer. “A metrics suite for object oriented design”.
In: IEEE Transactions on Software Engineering 20.6 (June 1994), pp. 476-493.
ISSN: 0098-5589. DOI: 10.1109/32.295895.

Ward Cunningham. “The WyCash portfolio management system”. In: ACM SIG-
PLAN OOPS Messenger 4.2 (2007), pp. 29-30. 1sSN: 10556400. DOI: 10.1145/
157710.157715.

John Dooley. “Object-Oriented Design Principles”. In: Software Development and
Professional Practice. Berkeley, CA: Apress, 2011, pp. 115-136. 1SBN: 978-1-4302-
3802-7. DO1: 10.1007/978-1-4302-3802-7_10.

Martin Fowler. Refactoring: Improving the Design of Existing Code. Boston, MA,
USA: Addison-Wesley, 1999. 1SBN: 0-201-48567-2.

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

[11]

[12]

96

E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series. Pearson Education, 1994. 1SBN:
9780321700698.

Puneet Kumar Goyal and Gamini Joshi. “QMOOD metric sets to assess quality of
Java program”. In: Proceedings of the 2014 International Conference on Issues and
Challenges in Intelligent Computing Techniques, ICICT 2014 (2014), pp. 520-533.
DOI: 10.1109/ICICICT.2014.6781337.

H. Gruber et al. “Tool Support for ISO 14598 based code quality assessments”. In:
6th International Conference on the Quality of Information and Communications
Technology (QUATIC 2007). Sept. 2007, pp. 21-29. pO1: 10.1109/QUATIC.2007.
11.

Yi Guo et al. “An empirical validation of the benefits of adhering to the law of
demeter”. In: Proceedings - Working Conference on Reverse Engineering, WCRE
(2011), pp. 239-243. 1SSN: 10951350. DOL: 10.1109/WCRE.2011 . 36.

Wang Haoyu and Zhou Haili. “Basic design principles in software engineering”.
In: Proceedings - 4th International Conference on Computational and Information
Sciences, ICCIS 2012 (2012), pp. 1251-1254. po1: 10.1109/1ICCIS.2012.91.

Kevlin Henney. “A tale of two patterns”. In: Java Report 5.12 (2000), pp. 84-88.

Martin Hitz and Behzad Montazeri. “Measuring Coupling and Cohesion In Object-
Oriented Systems”. In: Angewandte Informatik 50 (1995), pp. 1-10.

Andrew Hunt and David Thomas. The Pragmatic Programmer: From Journeyman
to Master. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.
ISBN: 0-201-61622-X.

Habib Izadkhah and Maryam Hooshyar. “Class Cohesion Metrics for Software
Engineering: A Critical Review”. In: The Computer Science Journal of Moldova 25
(2017), pp. 44-74.

Bansiya Jagdish and G Davis Carl. “A Hierarchical Model for Object-Oriented
Design Quality Assessment”. In: IEEE Transactions on Software Engineering 28.1
(2002), pp. 4-17. DOL: http://dx.doi.org/10.1109/32.979986.

Kirk Knoernschild. Java Design: Objects, UML, and Process. Pearson Education,
2001. 1sBN: 0201750449.

Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development (3rd Edition). Upper Saddle River,
NJ, USA: Prentice Hall PTR, 2004. 1SBN: 0131489062.

K. Lieberherr, I. Holland, and A. Riel. “Object-oriented programming: An objec-
tive sense of style”. Ini ACM SIGPLAN Notices 23.11 (1988), pp. 323-334. ISSN:
15581160. bor: 10.1145/62084.62113.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

[24]

Barbara Liskov. “Keynote Address - Data Abstraction and Hierarchy”. In: Ad-
dendum to the Proceedings on Object-oriented Programming Systems, Languages
and Applications (Addendum). OOPSLA ’87. Orlando, Florida, USA: ACM, 1987,
pp. 17-34. 1SBN: 0-89791-266-7. DOI: 10.1145/62138.62141.

Barbara H. Liskov and Jeannette M. Wing. “A Behavioral Notion of Subtyping”. In:
ACM Trans. Program. Lang. Syst. 16.6 (Nov. 1994), pp. 1811-1841. 1sSN: 0164-0925.
DOI: 10.1145/197320.197383. URL: https://doi.org/10.1145/197320.
197383.

Radu Marinescu. “Detecting Design Flaws via Metrics in Object-Oriented Systems A
Metrics-Based Approach for Problem Detection”. In: International Conference and
Technology of Object-Oriented Languages and Systems (TOOLS) (2001), pp. 173—
182.

Radu Marinescu. “Detection strategies: Metrics-based rules for detecting design
flaws”. In: IEEE International Conference on Software Maintenance, ICSM (2004),
pp- 350-359. 18SN: 1063-6773. DOI: 10.1109/ICSM.2004.1357820.

Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2008. 1sSBN: 0132350882,
9780132350884.

Robert Cecil Martin. Agile Software Development: Principles, Patterns, and Prac-
tices. Prentice Hall PTR, 2003. 1SBN: 0135974445.

T. J. McCabe. “A Complexity Measure”. In: IEEE Transactions on Software
Engineering SE-2.4 (Dec. 1976), pp. 308-320. 1ssN: 0098-5589. DO1: 10.1109/TSE.
1976.233837.

Steve McConnell. Code Complete, Second Edition. Redmond, WA, USA: Microsoft
Press, 2004. 1sBN: 0735619670, 9780735619678.

Bertrand Meyer. Object-Oriented Software Construction. 1st. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1988. 1sSBN: 0136290493.

Subhas C. Misra and Virendra C. Bhavsar. “Relationships Between Selected Soft-
ware Measures and Latent Bug-Density: Guidelines for Improving Quality”. In:
Computational Science and Its Applications — ICCSA 2003. Ed. by Vipin Kumar
et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 724—732. ISBN:
978-3-540-44839-6.

Naouel Moha et al. “DECOR: A method for the specification and detection of code
and design smells”. In: IEEE Transactions on Software Engineering 36.1 (2010),
pp- 20-36. 18SN: 00985589. DOI: 10.1109/TSE.2009.50.

Oscar Nierstrasz. “Object-oriented Concepts, Databases, and Applications”. In:
ed. by Won Kim and F. H. Lochovsky. New York, NY, USA: ACM, 1989. Chap. A
Survey of Object-oriented Concepts, pp. 3-21. 1sBN: 0-201-14410-7. pOI: 10.1145/
63320.66468.

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[44]

[45]

[48]

[49]

98

D. L. Parnas. “On the Criteria to Be Used in Decomposing Systems into Modules”.
In: Commun. ACM 15.12 (Dec. 1972), pp. 1053-1058. 1sSN: 0001-0782. DOI: 10 .
1145/361598.361623.

Reinhold Plésch et al. “Measuring, Assessing and Improving Software Quality based
on Object-Oriented Design Principles”. In: Open Computer Science 6.1 (2016),
pp. 187-207. po1: 10.1515/comp-2016-0016.

Reinhold Plésch et al. “MUSE: A Framework for Measuring Object-Oriented Design
Quality.” In: The Journal of Object Technology 15.4 (2016), 2:1. 1sSN: 1660-1769.
DOI: 10.5381/j0t.2016.15.4.a2.

Eric S. Raymond. The Art of UNIX Programming. Pearson Education, 2003, p. 17.
ISBN: 0131429019.

Christian Rehn. “A Principle Language for Object-Oriented Design”. Master thesis.
Technische Universitiat Kaiserslautern, 2013.

Ben R Rich. Clarence Leonard (Kelly) Johnson 1910-1990: A Biographical Memoir.
Washington D.C., 1995.

Ganesh Samarthyam et al. “MIDAS: A design quality assessment method for indus-
trial software”. In: Proceedings - International Conference on Software Engineering
(2013), pp. 911-920. 15SN: 02705257. DOL: 10.1109/ICSE.2013.6606640.

Tushar Sharma, Ganesh Samarthyam, and Girish Suryanarayana. “Applying Design
Principles in Practice”. In: Proceedings of the 8th India Software Engineering
Conference. ISEC ’15. Bangalore, India: ACM, 2015, pp. 200-201. 1SBN: 978-1-4503-
3432-7. DOI: 10.1145/2723742.2723764.

Sandra A. Slaughter, Donald E. Harter, and Mayuram S. Krishnan. “Evaluating the
cost of software quality”. In: Communications of the ACM 41.8 (2002), pp. 67-73.
ISSN: 00010782. DOI: 10.1145/280324.280335.

Alan Snyder. “Encapsulation and Inheritance in Object-oriented Programming
Languages”. In: Conference Proceedings on Object-oriented Programming Systems,
Languages and Applications. OOPSLA ’86. Portland, Oregon, USA: ACM, 1986,
pp- 38-45. 1SBN: 0-89791-204-7. DOI: 10.1145/28697.28702.

Alan Snyder. “Encapsulation and inheritance in object-oriented programming
languages”. In: ACM SIGPLAN Notices 21.11 (2005), pp. 38-45. 1sSN: 03621340.
DOI: 10.1145/960112.28702.

Mark Stefik and Daniel G. Bobrow. “Object-Oriented Programming: Themes and
Variations”. In: The AI MagazineAI Magazine 6.4 (1985), pp. 40-62. 1SSN: 0738-4602.
DOI: 10.1609/aimag.v614.508.

Friedrich Steimann. “Role = Interface - A merger of concepts”. In: Journal of
Object-Oriented Programming 14 (2001), pp. 23-32.

Friedrich Steimann and Philip Mayer. “Patterns of interface-based programming”.
In: Journal of Object Technology 4 (2005), pp. 75-94.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[54]

Jamie Stevenson and Murray Wood. “Recognising object-oriented software design
quality: a practitioner-based questionnaire survey”. In: Software Quality Journal
26.2 (2018), pp. 321-365. 1sSN: 15731367. por: 10.1007/s11219-017-9364-8.

L. Tahvildari and A. Singh. “Categorization of object-oriented software metrics”. In:
2000 Canadian Conference on FElectrical and Computer Engineering. Conference
Proceedings. Navigating to a New Era (Cat. No.00TH8492). Vol. 1. May 2000,
235-239 vol.1. po1: 10.1109/CCECE.2000.849705.

Peter Wegner. “Concepts and Paradigms of Object-oriented Programming”. In:
SIGPLAN OOPS Mess. 1.1 (Aug. 1990), pp. 7-87. 1sSN: 1055-6400. DOI: 10.1145/
382192.383004.

Rebecca Wirfs-Brock and Brian Wilkerson. “Object-oriented design: A responsibility-
driven approach”. In: Conference Proceedings on Object-Oriented Programming
Systems, Languages and Applications, OOPSLA 1989 503 (1989), pp. 71-75. DOI:
10.1145/74877.74885.

Aiko Yamashita and Leon Moonen. “Do developers care about code smells? An
exploratory survey”. In: Proceedings - Working Conference on Reverse Engineer-
ing, WCRE (2013), pp. 242-251. 1SsN: 10951350. por: 10.1109/WCRE . 2013.
6671299.

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Web references

Alternative distance function for Stable Abstractions Principle. accessed 3. Oc-
tober 2019. URL: http://www . lexicalscope . com/blog/2012/10/
31/alternative-distance-function-for-stable-abstractions-
principle/.

Checkstyle documentation for writing custom rules. accessed 7. July 2019. URL:

https://checkstyle.sourceforge.io/writingchecks.html (visited
on 07/08/2019).

CommandQuerySeparation. accessed 8. October 2019. URL: https://martinfowler.

com/bliki/CommandQuerySeparation.html.

Function Length. accessed 30. August 2019. URL: https://martinfowler.com/
bliki/FunctionLength.html.

Github sonar-findbugs. accessed 8. July 2019. URL: https://github.com/
spotbugs/sonar-findbugs.

Github sonar-pmd. accessed 8. July 2019. URL: https://github.com/jensgerdes/

sonar—pmd.

Java language specification. accessed 9. April 2019. URL: https://docs.oracle.
com/javase/specs/jls/sel2/html/index.html.

Kontrollstrukturen in der Integration. accessed 4. October 2019. URL: https://
ccd-school.de/2017/02/kontrollstrukturen-in-der—-integration/.
Law Of Demeter Makes Unit Tests Fasier. accessed 23. August 2019. URL: http:
//wiki.c2.com/?LawOfDemeterMakesUnitTestsEasier.

Law Of Demeter Revisited. accessed 23. August 2019. URL: http://wiki.c2.

com/?LawOfDemeterRevisited.

PMD documentation for writing custom rules. accessed 8. July 2019. URL: https:
//pmd.github.io/latest/pmd_userdocs_extending_writing_pmd_
rules.html.

Principles Of Object Oriented Design. accessed 23. August 2019. URL: http :
//wiki.c2.com/?PrinciplesOfObjectOrientedDesign.

Principles Wiki. accessed 23. August 2019. URL: http://www.principles—
wiki.net/principles:start.

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

102

Prinzip der gegenseitigen Nichtbeachtung. accessed 4. October 2019. URL: https://
blog.ralfw.de/2012/12/prinzip-der—-gegenseitigen-nichtbeachtung.
html.

Prinzipien der Softwaretechnik. accessed 23. August 2019. URL: http://prinzipien—
der-softwaretechnik.blogspot.com/.

Refactoring Patterns - The Integration Operation Segregation Principal. accessed
4. October 2019. URL: https://www.deepakrb.com/blog/integration—
operation-principal-en20180422/.

Single Level of Abstraction (SLA). accessed 25. September 2019. URL: http://www.
principles-wiki.net/principles:single_level_of_abstraction.

SonarJava documentation for writing custom rules. accessed 8. July 2019. URL:
https ://docs . sonarqube . org/display/PLUG/Writing+Custom+
JavatRules+101.

SonarQube Metric Definitions. accessed 9. September 2019. URL: https://docs.
sonarqube.org/display/SONARqube71l/Metric+Definitions.

What is the ideal length of a method for you? accessed 30. August 2019. URL: https:
/ / softwareengineering . stackexchange . com/questions /133404 /
what—-is-the-ideal-length-of-a-method-for-you.

Why component dependency cycle is bad. accessed 27. September 2019. URL: https:
//www.lvguowel .me/post /why—-component —dependency-cycle—is-—
bad/.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Description
	Expected Results
	Methodological Approach
	Structure of the Thesis

	Object-Oriented Programming
	Introduction
	Concepts
	Java

	Software Design Quality
	Introduction
	Quality attributes and properties
	Relevance of design quality
	Important terminology
	Measuring design quality

	Detectable Design Principles
	Single Responsibility Principle (SRP)
	Open Closed Principle (OCP)
	Interface Segregation Principle (ISP)
	Information Hiding (IH)
	Law of Demeter (LOD)
	Keep It Simple Stupid (KISS)
	Don't Repeat Yourself (DRY)
	Information Expert (IE)
	Single Choice Principle (SCP)
	Program to an Interface, not an Implementation (PINI)
	Favor Composition over Inheritance (FCOI)
	Common Reuse Principle (CRP)
	Acyclic Dependencies Principle (ADP)
	Stable Dependencies Principle (SDP)
	Stable Abstractions Principle (SAP)
	Option Operand Principle (OOP)

	Undetectable Design Principles
	Liskov Substitution Principle (LSP)
	Dependency Inversion Principle (DIP)
	Single Level of Abstraction (SLA)
	Common Closure Principle (CCP)
	Integration Operation Segregation Principle (IOSP)
	Command Query Separation (CQS)
	Encapsulate the Concept that Varies (ECV)

	Tool Implementation
	Selection of base-tool
	Implementation details

	Evaluation
	Overview
	Design principles in detail
	Summary
	Research Questions Revisited

	Conclusion
	Appendix
	A.1 Design best practices

	Bibliography
	Web references

