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Kurzfassung

In Kerndatenevaluationen werden experimentelle Daten und physikalische Modelle zu
Datensätzen für nukleare Anwendungen wie zum Beispiel die Verbrennung von nuk-
learem Müll, Dosimetrie oder medizischen Anwendungen kombiniert. Die von Evalu-
ationsmethoden erstellten Datensätze sollen die in den Evaluationsprozess einbezoge-
nen experimentellen Daten wiedergeben und in Energiebereichen, in denen diese fehlen,
vernünftige Vorhersagen treffen.

Die vollständige Bayesianische Evaluations-Methode [26] bewältigt diese Anforderun-
gen unter Verwendung von Bayesscher Statistik. Die evaluierten Daten bestehen aus in-
tegralen Wirkungsquerschnitten und Kovarianzmatrizen für einfallende Neutronen ober-
halb des Resonanzbereichs bis zu 150 MeV. Der eingesetzte Prior ist durch eine multi-
dimensionale Normalverteilung gegeben. Die ihn definierenden statistischen Kenngrößen,
ein Mittelwert-Vektor und eine Kovarianzmatrix, werden durch ein Stichprobenverfahren
ermittelt, das sich auf Ergebnisse des nuklearen Modell-Programms TALYS [23] stützt.

In dieser Arbeit wurde die vollständige Bayesianische Evaluations-Methode erweitert,
um auch die Einbeziehung differentieller Wirkungsquerschnittsdaten in Evaluationen zu
ermöglichen. Auf diese Weise soll das vorhandene experimentelle Datenmaterial besser
ausgeschöpft werden. Die Eigenschaften der erweiterten vollständigen Bayesianischen
Evaluations-Methode wurden allgemein studiert und die Anwendbarkeit am Beispiel
von Tantal-181 für den totalen und den differentiellen, elastischen Wirkungsquerschnitt
geprüft.

Es konnte gezeigt werden, dass die Annahme einer Normalverteilung die Systematik
der in TALYS implentierten Modelle auch für den differentiellen, elastischen Wirkungs-
querschnitt adequat beschreibt. Als Nebenprodukt wurde eine Methode entdeckt, um
das Resultat von Evaluationen weniger abhängig von experimentellen Daten zu machen,
die als unphysikalische Ausreißer zu betrachten sind. Die beispielhafte Anwendung der
vollständigen Bayesianischen Evaluations-Methode an Tantal-181 zeigte den Einfluss der
Prior-Erwartungshaltung auf das Ergebnis. Die starken Korrelationen im Prior, in Kom-
bination mit der großen Menge an experimentellen Datenpunkten, führten zu evaluierten
Fehlern in der Größenordnung des systematischen Fehler der Experimente. Weiters war
ein Großteil der experimentellen Daten nicht im resultierenden 1-σ Konfidenzintervall en-
thalten. Dieser Effekt kann im Falle des differentiellen, elastischen Wirkungsquerschnitts
vermutlich zu einem Teil auf die Prior-Erwartungshaltung bezüglich des Verhältnisses
zwischen integralem elastischen- und Reaktionswirkungsquerschnitt zurück geführt wer-
den, die im Widerspruch zu den experimentellen Daten steht. Der allgemeine Grund für
das Auftreten dieses Effekts wurde tiefgehend analysiert. Wesentliche Aspekte, die weit-
erer Untersuchung bedürfen, wurden aufgezeigt. Das sind im Besonderen die Gültigkeit
der verwendeten physikalischen Modelle zur Beschreibung der differentiellen Wirkungs-
querschnittskurven im Bereich großer Winkel und die Verfeinerung der Heuristiken zur
Festlegung der Grenzen für die Parameter des optischen Potentials.
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Abstract

In Nuclear Data evaluations, experimental data are combined with model knowledge
to form suitable data sets required for the development of nuclear applications, e.g.
nuclear waste incineration, dosimetry and medical applications. The data sets produced
by evaluation methods should be in accordance with the included experimental data and
give reasonable predictions at energies where experimental data is missing.

The Full Bayesian Evaluation Technique (FBET) [26] tackles these demands by means
of Bayesian statistics. It provides angle-integrated neutron cross sections and covariance
matrices from the unresolved energy range up to 150 MeV. The prior is assumed to be
of Gaussian shape. Its defining quantities, a vector of means and a covariance matrix,
are obtained by a sampling procedure based on the nuclear models code TALYS [23].

The goal of this thesis was to extend the Full Bayesian Evaluation Technique to allow
the inclusion of experimental angle differential cross section data in order to make more
efficient use of the information available. General features of the extended method were
studied and its applicability was tested for tantalum-181.

It could be shown that the prior sufficiently incorporates the systematics of the physi-
cal model also for the angle differential elastic CS channel. As a side product, a procedure
to adapt the prior to reduce the sensitivity of the FBET to experimental outliers was
discovered. The evaluation of tantalum-181 revealed the prior expectation to have a
noticeable influence on the evaluated data sets. Due to strong model correlations and
a large number of included experimental data points, the uncertainties of the evaluated
cross sections dropped to the overall normalization error of the experiments and the
bulk of the experimental data was not contained within the 1-σ confidence intervals.
In the case of the differential elastic CS, the occurrence of this effect may be partially
attributed to the expectation of the prior about the ratio of the integral elastic CS to
the reaction CS, which is in disagreement with the included experimental data. The
reason for the occurrence of this effect in general was discussed in detail and the key
aspects which require further investigation were determined, i.e. the validity of physical
models for differential cross sections in the large angle domain and the refinement of
the heuristics applied for the specification of the optical potential parameter boundaries
used for the construction of the prior.
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1 Introduction

The discovery of radioactivity by Henri Becquerel and further work by Pierre and Marie
Currie at the end of the 19th century can be regarded as the starting point of nuclear
physics. Since then, research in this field has lead to many important technical applica-
tions such as nuclear reactors for energy supply or imaging methods in medicine. Albeit
the emphasis is on the development of the renewable energy technology at present, the
efforts to develop novel nuclear technologies are also required to satisfy environmental
demands and the energy needs of the future. Aspects to be improved are safety measures,
efficiency and the reduction of radioactive waste. Additionally, there is the optimistic
hope to have attained enough knowledge, desirably in a few decades, to construct fusion
reactors capable to satisfy a good fraction of tomorrow’s energy needs.

Advancement in these issues requires profound knowledge of the structural properties
of the nuclei. Especially, accurate estimates for different types of cross sections are
needed as they allow for reactor simulations on the computer, which saves costs required
for the development of new nuclear technologies.

Not only for this reason, nuclear data libraries such as JEFF-3.1.1 [2] in Europe or
ENDF/B-VII.1 [5] in the U.S. were set up to concentrate all the pieces of knowledge
obtained at various facilities. The data included in these libraries are the result of
evaluation processes in which physical models are combined with experimental data.
Thus, the systematic knowledge distilled from experiments is taken into account in order
to make the best use of the information available. At the moment, however, important
data needed for the design of new reactor types, as e.g. the (n,n) cross sections, are
still unsatisfactorily known for the energy range from 20 MeV to 200 MeV. Therefore,
evaluations are required, which give reasonable extrapolated estimates and associated
uncertainties in terms of covariance matrices for this energy range. For this purpose,
several evaluation techniques exist and different techniques are used at different facilities;
until now no standard procedure for uncertainty estimation has been established. An
introduction to the various approaches is given in [3].

One particular method developed by H. Leeb at al. [24] is the Full Bayesian Evaluation
Technique (FBET) which provides by means of Bayesian inference estimates of cross
sections based on both model and experimental data. For obtaining model data, the
nuclear models code implemented in TALYS [23] is used. Since every model is only
an approximation to reality, the method also accounts for systematic deviations of the
model from the experimental data expressed in terms of covariance matrices, which are
obtained by a well defined procedure.

Currently, only integral cross sections are taken into account. This work is the attempt
to extend the FBET to include also angle differential cross section data. Thus, the
information contained in the angular differential data become accessible to the evaluation
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and it is expected that considering differential cross section data also improves the
estimates for integral cross sections. Studying whether this is true is one issue of this
thesis. The general issue of this thesis is to study the properties of the extended FBET
and its applicability to nuclear data evaluation.

In the current implementation of the FBET, the systematics of the physical model
implemented in TALYS are captured in terms of covariance matrices. These are able to
describe only linear relationships between cross sections at different energies and angles.
Therefore, the applicability of covariances as uncertainty measures depends on whether
the underlying physical model can be approximated by linear relationships. This issue
was examined for the total cross section and the angle differential elastic cross section.
Another criterion for the applicability of the FBET is the validity of the underlying
physical models. Thus, the effects of an inadequate model on an evaluation were also
studied.

In order to test the extended FBET, an evaluation of tantalum-181 total neutron
cross section and the angle differential elastic cross section with data from Smith [36]
and Finlay [9] was performed. Since both Smith and Finlay gathered a huge amount
of experimental data points, a comparison of the experimental data and the evaluated
data was possible over a great energy range in the case of the total cross section and
over a great angular range in the case of the angle differential elastic cross section.

In the past, the FBET had been criticised for producing unphysical kinks or oscilla-
tions in the evaluated cross section curves when outliers are present in the experimental
data. Therefore, it was also studied how the method could be adapted to make it less
sensitive to outliers.

The structure of this thesis is as follows: Chapter 2 outlines basic statistical defini-
tions and introduces the framework of Bayesian inference. Furthermore, the principle of
maximum entropy is presented, which is used to assign probabilities to possible values
for the cross sections before experimental data is entered into the evaluation process.
Chapter 3 summarizes the Full Bayesian Evaluation Technique as implemented until
now, thereby showing the actual application of Bayesian statistics. A few remarks and
a brief discussion of conceptual details of the method end this chapter.

Chapter 4 and 5 are the main parts of this thesis. Implementation details of the above
mentioned extensions are discussed and the performance and validity of the extended
method is tested for tantalum-181.
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2 Bayesian statistics as methodical
framework

The task to create estimates and associated uncertainty boundaries using multiple in-
formation sources – in this work given by model data and various experiments – each
of which comprises some uncertainty about the true value can be tackled by methods
for statistical inference. By the choice which sources are used and how they enter the
inference process, one inevitably follows the methodology of one of two statistical schools
of thought, Bayesianism or Frequentism. Both schools work with the same set of equa-
tions for operating on probabilities and for both of them, a probability is a real number
between zero and one. However, they differ in their interpretation of the term ‘proba-
bility’. Frequentists define probability as the limit of the relative frequency of an event
when the number of trials goes to infinity. Thus, Frequentists regard probabilities as
something measurable and restrict their assignment to events which could occur within a
well-defined experiment that could be repeated arbitrarily many times. Bayesians think
of probability as a measure for plausibility. So, according to their view, a probability is
not a physical measureable quantity, but rather reflects the current state of knowledge.

The method used in this work incorporates experimental results and model data given
by the nuclear model code TALYS [23] to produce improved estimates for cross section
values. Results for cross sections obtained by model calculations are dependent on op-
tical potential parameters characterizing the nucleus. For these parameters, reasonable
boundaries have to be imposed and probabilities for intermediate values have to be as-
signed. Although these specifications are made by considering experimental results and
applying reasonable principles, they are not absolutely compelling. Other choices may
be equally justifiable. Hence, these probabilities have to be interpreted in the Bayesian
sense as degree of belief or plausibility and consequently the method of this work utilizes
Bayesian inference.

The next section briefly outlines the fundamental equations of probability theory which
are the cornerstone of the Bayesian inference formula. This formula will be elaborated
on thereafter.

2.1 Basics of probability theory

Several approaches exist to deduce the rules for dealing with probabilities. Two of them
are the Kolmogorov axioms [21] and Cox’s theorem [6]. Although the first approach
relies on set and measure theory and regards events as elements in some set whereas the
second considers propositions and is based on consistency postulates, they are – accord-
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ing to E.T. Jaynes – equivalent [20]. The resulting rules are stated here in a Bayesian
diction without derivation.

Laws of probability theory
Let A and B be propositions that could either be true or false. P (X) is the plausibility
for some proposition X; it can assume values in the closed interval [0, 1]; P (X) = 1
represents absolute certainty about the truth of proposition X and P (X) = 0 absolute
certainty about its falseness. P (A |B) expresses the plausibility of A under the assump-
tion that B is true. A ∨ B stands for the composite proposition ’A orB’ and A ∧ B for
’A andB’. The following equations are available to compute plausibilities:

sum rule P (A ∨B) = P (A) + P (B)− P (A ∧B) (2.1)

product rule P (A ∧B) = P (A |B)P (B) (2.2)

The term plausibility was used here rather than probability to make clear that prob-
abilities have to be understood in the Bayesian sense. Nevertheless, having mentioned
that point, the more common term probability will be used exclusively from now on.

Noteworthy, these equations can be derived from Cox’s theorem which itself was de-
rived by demanding consistency and compatibility to common sense reasoning. Consis-
tency means that whenever there are several ways to calculate a certain probability, all
ways should lead to the same result. Compatibility to common sense means that if all
statements are certain – each having a probability of 1 assigned to it – the equations
should implement Aristotelian logic perfectly. Hence, these rules entail constraints on
the assignment of probabilities to statements. Also, knowing about the incorporated
consistency features and the possibility to model vague knowledge about the validity
of propositions, these equations recommend themselves as foundation for a method of
inference using incomplete information – Bayesian inference. The respective formula
which will be discussed in more detail in the next section is contained in the Bayes
theorem.

Theorem 2.1.1 Bayes equation: A and B are propositions, P (A) and P (B) > 0 their
assigned probabilities, then their mutual conditional probabilities P (A |B) and P (B |A)
relate to each other by

P (A |B) =
P (B |A)P (A)

P (B)
. (2.3)

Proof: Exchange propositions A and B in the product rule (2.2). Because P (A ∧ B) =
P (B ∧ A), one can equate the right hand sides of original and altered equation.

Since this work deals with the estimation of different types of cross section which
are continuous quantities, the above notion of probability has to be adapted. One can
handle these infinitely many propositions by parameterising them, e.g.

A(t) ≡ the total cross section of Tantal-181 is ‘t’ millibarn

t being a real number. To abbreviate the notation, instead of passing a proposition A(t)
as argument to the probability function P , only the real valued parameter t is passed to
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a corresponding function ρ yielding the same probability

P (A(t)) = ρ(t). (2.4)

Furthermore, the case of infinitely many statements requires ρ(t) to be a probability
density function instead of a probability function. Here, only a loose definition is given
suited for the needs of this work:

Definition 2.1.1 A function ρ : R → [0,∞) is called a probability density function
(pdf) if it is associated to a bijective mapping from real numbers to mutual exclusive
propositions A(t), exactly one of them true, such that

P (t1 ≤ t ≤ t2) =

∫ t2

t1

ρ(t) dt, (2.5)

where P (t1 ≤ t ≤ t2) is the probability for the true proposition being located in the set of
propositions corresponding to the numbers in the interval [t1, t2]. Taking t1 = −∞ and
t2 = +∞ yields 1, because then the true proposition is in the covered interval for sure.

As only one value is possible for a certain cross section, propositions stating different
values to be the true one are necessarily mutually exclusive. Thus, the given definition
is completely sufficient for the estimation task to be tackled. Because propositions in
this work exclusively contain statements about numerical values of cross sections, it is
henceforth assumed that propositions exclusively make statements about the value of
some numerical quantity and that the real number indexing a proposition is exactly the
value stated in that proposition for that quantity. Thus, the word proposition will be
dropped in favour of quantity.

Even though the value of ρ(t) for a given t cannot be interpreted as probability any-
more, it still can be regarded as a measure for ‘likeliness‘, meaning that if ρ(t1) is twice
as high as ρ(t2) then the probability for the true value of t being located within a small
interval centered around t1 is approximately twice as high as the probability of it being
located within an interval ofthe same length centered around t2.

If there are two quantities to be considered, the density just gets another argument
ρ(s, t) where s is the value of some quantity q1 and t of some quantity q2. ρ(s, t) expresses
the likeliness that the true value of q1 is s and that of q2 is t simultaneously. Therefore
it has the analogous meaning as P (A ∧ B) for probabilities. The extension of (2.5) to
the case of multiple quantities is straight-forward. The probability for s in [s1, s2] and t
in [t1, t2] can be calculated through

P (s1 ≤ s ≤ s2 ∧ t1 ≤ t ≤ t2) =

∫ s2

s1

∫ t2

t1

ρ(s, t) ds dt. (2.6)

If only the probability for one quantity lying in a certain interval is of interest, in-
dependently of the other quantity, the following procedure – called marginalization – is
applied:

P (t1 ≤ t ≤ t2) =

∫ t2

t1

∫ +∞

−∞
ρ(s, t) ds dt ≡

∫ t2

t1

ρs(t) dt, (2.7)
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s1 s1 + σ1

t 1
t 1

+
τ 1

Figure 2.1: Venn diagram: A (green), B (red) and A ∧B (green & red)

where ρs(t) is called the ‘marginal probability density’. Restating Bayes Theorem (2.1.1)
in terms of probability densities requires the introduction of the concept of ‘conditional
probability density’. For this purpose assume the following propositions

A ≡ s1 < s < s1 + σ1 and t arbitrary (2.8)

B ≡ t1 < t < t1 + τ1 and s arbitrary (2.9)

with s1, t1 arbitrary real numbers and σ, τ1 positive real numbers. Figure 2.1 visualizes
the situation. Each point in the plane represents an elementary hypothesis, expressing
that the considered quantities take the values s and t respectively. Composite propo-
sitions A (green) and B (red) are sets of elementary propositions. The area shared by
both of them represents A ∧ B. The briefly introduced concept of conditional proba-
bility, written as P (A |B), now gets an intuitive meaning. If proposition B is known
to be true, then proposition A could only be realized by elementary propositions in the
area covered by both A and B. P (A |B) could be greater or less than P (A) depending
on the amount of elementary propositions from A being also contained in B and which
probability is assigned to them in relation to the probability of proposition B, so

P (A |B) =
P (A ∧B)

P (B)
, (2.10)

which is the restated product rule (2.2). Inserting the integral expressions for P (A∧B)
(2.6) and P (B) (2.7), one obtains

P (A|B) =

∫ s1+σ1

s1

∫ t1+τ1
t1

ρ(s, t) ds dt∫ t1+τ1
t1

∫ +∞
−∞ ρ(s, t) ds dt

. (2.11)
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When probabilities can be calculated by integrating over probability densities, then
conversely the derivation of probabilities in respect to the integral upper boundary leads
to probability densities. This allows obtaining the conditional probability density by
taking the limit P (A |B)/σ1, σ1 → 0 ∧ τ1 → 0. Assuming σ1 and τ1 to be sufficient
small, the first mean value theorem for integration yields

1

σ1

P (A |B) ≈ 1

σ1

σ1τ1ρ(s1, t1)

τ1
∫ +∞
−∞ ρ(s, t1) ds

=
ρ(s1, t1)∫ +∞

−∞ ρ(s, t1) ds
. (2.12)

Taking the limit σ1 → 0, τ1 → 0 turns the approximation into an exact equation. Re-
membering the definition of a marginalized probability density (2.7), the conditional
probability density ρ(s | t) finally can be expressed as

ρ(s | t) =
ρ(s, t)

ρs(t)
, (2.13)

which can also be regarded as the restated product rule for the continuous quantity
case. Being aware that the same limit procedure applied to the conditional probability
P (B |A) gives

ρ(t | s) =
ρ(s, t)

ρt(s)
, (2.14)

one can make ρ(s, t) explicit in both equations and then equate them, which results in
the Bayes theorem for the continuous case.

Theorem 2.1.2 Bayes equation for continuous quantities: Let s and t be the values
of two quantities, ρ(s, t) their associated probability density, ρs(t) the probability den-
sity for a certain value t without considering values of s (marginal probability density),
and ρ(s | t) the probability density for s under the assumption that the other quantity
takes value t (conditional probability density), then the following equation relates the
conditional probability densities

ρ(t | s) =
ρ(s | t)ρs(t)

ρt(s)
. (2.15)

Having established the Bayes equation for both the ‘finite number of propositions’ and
the ‘continuous quantity’ case, the next section elaborates on how it can be used for an
incremental inference procedure.

2.2 Bayesian inference

The Full Bayesian Evaluation Technique relies on Bayesian inference specialized on the
needs of nuclear data evaluation. In order to ease comprehension, this section describes
the basic working of Bayesian inference along with its common notions. Implementation
details of the Full Bayesian Evaluation Technique for nuclear data evaluation are the
topic of the next chapter.
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Apart from strict logical deduction of propositions from given axioms, the validity of an
inference is not absolutely compelling. This is a consequence of the fact that propositions
from which useful conclusions can be drawn exhibit a rather general character, making it
impossible to check their validity directly. For instance, one might believe the proposition
‘Up until now no human has ever reached the age of 130 years’ is almost certainly true.
Hence, when asked about the life span of a particular deceased person, it would allow the
conclusion ‘not longer than 130 years’ and it should be regarded as almost certainly true
as well. Maybe the high probability of the proposition about the life span is based on the
fact that one has never seen or heard about a person contradicting it. However, there is
no final proof for its validity and perhaps newly acquired information may change that
opinion to a lower probability tomorrow. In addition, the credibility of the information
source could also be subject to an opinion. If one is very sure about the upper limit for
the human life span and a bit in doubt about the credibility of the information source,
one might doubt it even more.

This example for inferences on the basis of vague knowledge can be abstractly stated
as follows: There are some preconceptions about a matter in form of propositions (hy-
potheses), each associated with a certain degree of belief (probability). Then on the
basis of newly acquired information (data), the probabilities of the hypothesis should be
adapted in accordance to obtained data.

This is exactly what the method of Bayesian inference accomplishes in a quantitative
manner. It also assures that probabilities assigned to propositions always remain consis-
tent to the principles of logic. For example, if there are two propositions contradicting
each other and one of them is known to be certainly true, then every change in their
probabilities due to newly acquired data must obey the constraint that they must add
up to one.

The Bayesian inference formula (2.1.1) for a finite number of propositions has already
been introduced in the last section. Using a modified notation for propositions to account
for their meaning in the inference procedure leads to

P (H |D) =
P (D |H)

P (D)
P (H), (2.16)

where H represents a hypothesis for which the probability should be updated due to the
data D. P (H) is the ‘prior probability’ for hypothesis H to be true. The term on the
left hand side, P (H |D), is the ‘posterior probability’ stating the new probability for
H after inclusion of the data D in the Bayesian inference. The term P (D |H) is called
‘likelihood’ and P (D) ‘evidence’. The ratio likelihood to evidence can be regarded as
a scaling factor indicating how many times more likely the hypothesis got compared to
before considering the new data.

The probability assignment for P (H) and P (D) is undetermined without further infor-
mation. The assignment must be made by considering a-priori knowledge and experience
of the experimenter. Therefore, different people may make different choices depending
on their experience and their view on the topic. This represents the subjectivists view
of Bayesian probabilities. On the other hand there is the objectivists approach, in which
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prior probabilities have to be constructed by some principle which can be regarded ra-
tionally. The prior probability (density) assignment to nuclear potential parameters in
this work is achieved by the maximum entropy principle described in the next section.

Because of the dependence of P (H), P (D) and the other terms on a-priori knowl-
edge I, they are frequently expressed as conditional probabilities, e.g. P (H)→ P (H | I).
For simplicity’s sake this is not done in this work, as it does not change the calculations,
but is solely a reminder. Having stated it here explicitly, there is no necessity to be
reminded of it during every formula.

Two examples – one for the finite number of propositions and one for the continuous
quantity case – should demonstrate the features of Bayesian inference. First, assume
following two hypotheses

HV ≡ guinea pigs eat exclusively vegetables

HM ≡ guinea pigs eat exclusively meat

Evidently they are mutual exclusive. Furthermore, assume they are also exhaustive,
meaning that one of them must be true. These two conditions will also be fulfilled later
on when tackling differential cross sections. Every other possibility such as ‘They never
eat’ or ‘They eat both of it’ is assigned an a-priori probability of zero and no amount of
data can change that. These assignments are part of the a-priori knowledge.

Now assume that one is rather sure about guinea pigs being vegetarians, so prior
probabilities might be P (HV ) = 0.8 and P (HM) = 0.2. Data are given by several guinea
pig observations where they have eaten either vegetables V or meat M . The conditional
probabilities necessary for calculating the likelihoods are P (V |HV ) = 1, P (M |HV ) =
0, P (V |HM) = 0, P (M |HM) = 1. By relying on the sum rule, the product rule and
logical conversion of propositions therein one can calculate P (D) by

P (D) = P (D |HV )P (HV ) + P (D |HM)P (HM). (2.17)

If a guinea pig eating a vegetable was observed, the application of the Bayesian update
formula for both hypotheses would yield

P (HV |V ) =
P (V |HV )

P (V |HV )P (HV ) + P (V |HM)P (HM)
P (HV ) = 1 (2.18)

P (HM |V ) =
P (V |HM)

P (V |HV )P (HV ) + P (V |HM)P (HM)
P (HM) = 0 (2.19)

In accordance with the stated hypotheses, one observation would be enough to decide
between them with absolute certainty. However, if the hypothesis of mixed eating had
been included, probability changes would have been smaller and a probability of one
could have never been reached by HV or HM , because no amount of e.g. observations
of vegetable eating guinea pigs could exclude the mixed eating hypothesis, as one single
contrary observation would suffice to make it true.
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The situation is slightly modified if propositions related to continuous quantities are
considered. Let one integral reaction cross section serve as an example. Each distinct
value for x shall represent a hypothesis expressing x to be the true value. To every
distinct x, a prior probability density has to be assigned. This can be done for all
values of x at once by setting up the prior probability density function (pdf). In the
Full Bayesian Evaluation Technique a multi-dimensional Gauss distribution is chosen.
A one-dimensional Gaussian pdf is assumed for the current example:

ρ(x |µmod, σmod) =
1

σmod

√
2π

exp

(
− 1

2σ2
mod

(x− µmod)2

)
. (2.20)

The notation ρ(x |µmod, σmod) was used in order to clarify that the shape of the prior
pdf is parameterised by the so called ‘hyperparameters’ µmod and σmod standing for the
mean and standard deviation respectively. To set up the prior properly, definite values
must be selected for the hyperparameters. Appropriate choices can be made guided by
former experimental results. How this is done in the Full Bayesian Evaluation Technique
is sketched in the next chapter.

The term in the numerator, previously introduced as likelihood, yields the probability
density with which an experimental value is obtained under the assumption that a
specific value for x is the true one. Experimental data is given in terms of an estimate
for the true value µexp and its assigned standard error σexp, indicating how accurate the
estimate is. It is nearly always assumed that this estimate obeys a Gauss distribution,
thus

ρ(µexp, σexp |x, µmod, σmod) =
1

σexp

√
2π

exp

(
− 1

2σ2
exp

(x− µexp)2

)
. (2.21)

A point worth mentioning is the symmetry in the density ρ(µexp, σexp |x) = ρ(x |µexp, σexp).
The last missing piece is the denominator, the evidence, ρ(µexp, σexp |µmod, σmod). Be-
cause the generic hypotheses for different cross section values are mutually exclusive and
exhaustive, this term may be calculated – in analogy to (2.17) – by

ρ(µexp, σexp |µmod, σmod) =

∫ +∞

−∞
ρ(µexp, σexp|x) ρ(x|µmod, σmod) dx (2.22)

With the choice s ≡ µexp, σexp, t ≡ x and using the product rule ρ(s, t) = ρ(s|t)ρ(t), one
sees that this is really the marginal probability density ρt(s) as defined in (2.7).

Therefore, the general Bayesian update formula reads

ρ(x|µexp, σexp, µmod, σmod) =
ρ(µexp, σexp|x, µmod, σmod)

ρ(µexp, σexp|µmod, σmod)
ρ(x|µmod, σmod). (2.23)

With all expressions plugged in and all constants outside the exponential function (in-
dependent of x) subsumed in N , this becomes

ρ(x|µexp, σexp, µmod, σmod) = N exp

(
− 1

2σ2
exp

(x− µexp)2 − 1

2σ2
mod

(x− µmod)2

)
. (2.24)

10



Since a density integrated over the complete real range must yield one, the normalization
factor N can be determined afterwards. Consequently, there is no need to compute
the evidence (2.22) explicitly. The product of two Gauss distributions with arbitrary
means and standard deviations yields a Gauss distribution again, which can be seen by
quadratic extension. It is said that the prior is conjugated to the posterior with respect
to the likelihood. Thus, knowing the posterior to be Gaussian, it suffices to calculate
its mean and variance (standard deviation squared) from the mean and variance of the
likelihood and prior to specify it uniquely:

µnew =
µexp σ

2
mod + µmod σ

2
exp

σ2
exp + σ2

mod

and σ2
new =

σ2
expσ

2
mod

σ2
exp + σ2

mod

. (2.25)

The posterior mean is the weighted average of likelihood and prior mean, where each of
them is weighted by the variance of the other. The new variance resembles the ‘reduced
mass’ in mechanics. If σexp and σmod differ in the order of magnitude, σnew is very
accurately given by the variance having the smaller value. Moreover, σnew is always
smaller than σmod and σexp.

Updating with the data from several experiments can be performed sequentially, where
in each update step the posterior distribution parameters µnew and σnew of the previous
update step are taken as new hyperparameters for the prior distribution.

Remarkably, formula (2.24) is symmetric with respect to the prior information (later
called model data) and the experimental data. Hence, one may regard the experimental
data as prior information and the model data as likelihood; or one may lay down the
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Figure 2.2: The Bayesian update formula updates the prior probability density (green)
by inclusion of experimental data (red) to the posterior probability density
(blue); prior: µmod = −2, σmod = 2, likelihood: µexp = 2, σexp = 1, posterior:
µnew = 1.2, σnew ≈ 0.89
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notions of prior and likelihood completely and think of several information sources being
on equal footing. Each of them predicts a certain value to be the true one and gives an
estimate of the accuracy in terms of a standard deviation. The new prediction included
in the posterior is then a compromise of all these sources. Fig. 2.2 gives an impression
of how the Bayesian update procedure changes the probability density function.

The last example has already shown the essential steps in the Full Bayesian Update
Technique. The main difference is that in the latter case the prior is not only dependent
on one cross section x but on several types of them. This means that the one-dimensional
Gauss distribution is extended to a multi-dimensional one. A physical model places
constraints on variations of these cross sections – if one cross section takes a certain
value, the possible range of values of other cross section types is reduced. This coupling
between different cross section types is achieved by the specification of a covariance
matrix which is a parameter (or rather: a set of parameters) in the multi-dimensional
Gauss distribution. A covariance matrix is the generalization of the variance for more
than one dimension.

2.3 Principle of maximum entropy

Since the method of this work implements Bayesian inference, it relies on the specification
of a prior pdf. In order to unambiguously specify it, reasonable principles are necessary.

One of these principles introduced by E.T. Jaynes is the principle of maximum en-
tropy [19]. It states that one should choose prior probabilities in such a way that the
information entropy is maximised under consideration of eventually imposed constraints,
e.g. the mean being a known quantity. The information entropy is defined as [34]

H = −
n∑
i=1

pi log(pi), (2.26)

with n being the number of propositions and pi the probabilities assigned to them. In
the following, it is shown why pdfs obtained by maximising the information entropy can
be regarded as plausible choices.

If no constraints are imposed on the shape of a pdf, equal probabilities should be
assigned to the propositions since there is no reason to favour any proposition over any
other. However, constraints which are imposed on the shape of a pdf very often forbid to
assign equal probabilities. In this case, a pdf should be chosen which follows the uniform
distribution as close as possible. In order to quantify the ‘closeness’ or distance to the
uniform distribution a measure is required. In the following description of a betting
game – taken from Jaynes [20, p. 351-355] and adapted – the information entropy will
naturally appear as such and its maximisation is associated with the most promising
bet.

Assume that there are m propositions to which probabilities have to be assigned.
Imagine two persons Mr. A and Mrs. B playing the following game. Mr. A has an amount
of N probability quanta available to distribute them among the propositions. Because
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he has no idea of how to do that, he takes one probability quantum at a time and assigns
it randomly, according to a uniform distribution, to some proposition i. Maybe he tosses
a symmetrical and unbiased dice with m sides for that purpose. He does so for every
probability quantum at his avail. When he has worked off all of them, each quantum is
associated with a proposition. Thereafter, he calculates the corresponding probability
for each proposition i by

pi =
ni
N
, (2.27)

where ni is the amount of quanta assigned to proposition i. Then, he shows his result to
Mrs. B. Mrs. B has more information than him. She knows about some constraints that
should be regarded by the probability distribution. If his proposition is consistent with
the constraints, she accepts it, otherwise rejects it. In this manner Mr. A and Mrs. B
continue for several games.

After a while they stop playing and analyse the outcomes of the games where the
probability distribution was accepted. Assuming they played sufficiently many games,
what relative frequency for the realization of a probability pi for a proposition i would
they find?

To resolve this question, one can assume for a moment that there have not been any
constraints and thus Mrs. B would have accepted every outcome as valid. In this case,
the number of possibilities to arrive at the same assignment of probability quanta is
given by the multinomial coefficient

W =
N !

n1!n2!n3! · · ·nm!
. (2.28)

For instance, if there are m = 2 propositions and N = 2 probability quanta for distribu-
tion, obtaining the outcome n1 = 1 and n2 = 1 can be realized by Mr. A first assigning a
quantum to proposition 1 and then the other quantum to proposition 2 or first assigning
a quantum to proposition 2 and then the other to proposition 1 – the same outcome
reached in two different ways, thus W = 2. Since every way is equally likely, the prob-
ability for a certain outcome is proportional to the number of ways it can be realized
– hence proportional to W . To scale the multiplicity W to represent the probability in
the unconstrained case, one has to multiply it by m−N .

The important observation is that imposing constraints on the probability distribution
does not change the number of ways allowed outcomes can be realized, their multiplicity
remains the same. Only the scaling factor to transform multiplicities in probabilities
takes a different value.

Assume that another person Mr. C should bet on the outcome of the next game
which is going to be accepted by Mrs. B. As Mr. C is also aware of the constraints, he
reasonably bets on the outcome which is associated with the highest multiplicity W of all
accepted outcomes. Consequently, he takes values for ni allowed by the constraints which
maximize (2.28). Because maximization of every monotonically increasing function of W
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in place of directly maximising W leads to the same result, one could use the function

1

N
log(W ) =

1

N
log

(
N !

n1!n2!n3! · · ·nm!

)
=

1

N
log

(
N !

(Np1)! (Np2)! (Np3)! · · · (Npm)!

)
=

1

N

(
log(N !)−

m∑
i=1

log((Npi)!)

)
. (2.29)

Because probabilities are ‘smooth’ quantities in the interval [0, 1] and (2.27) produces
rather rough jumps for small N , one could look at the limiting case N → ∞ In this
limiting case, Stirling’s approximation formula

log(N !) = N log(N)−N +
√

2πN +
1

12N
+O

(
1

N2

)
. (2.30)

reduced to the leading term can be applied to Eq. (2.29):

lim
N→∞

log(W ) =
1

N

(
N log(N)−

m∑
i=1

Npi log((Npi))

)

= log(N)−
m∑
i=1

pi log((Npi))

= log(N)− log(N)
m∑
i=1

pi −
m∑
i=1

pi log(pi)

= −
m∑
i=1

pi log(pi). (2.31)

This is exactly the information entropy (2.26) and the probabilities which maximise it
are associated with the most probable outcome of the described betting game.

The whole derivation is a very convincing argument for using the principle of maximum
entropy to select prior probabilities, because a probability assignment is regarded as the
result of a random process where no proposition is favoured over any other. If no
constraints are imposed on the pdf, a uniform distribution is obtained, in accordance
with the principle of indifference.

The entropy formula (2.26) only works out for a finite set of propositions. The ‘con-
tinuous quantity’ version of it is given by [20, p. 375]

Hc = −
∫

dx ρ(x) log

[
ρ(x)

m(x)

]
, (2.32)

with ρ(x) being a probability density function and m(x) an invariant measure. The
introduction of m(x) is necessary as a variable transformation might not change anything
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about the problem, but the principle of maximum entropy would lead to another pdf.
For instance, if there is an experiment in which some length is measured and one has to
set up a prior expressing complete ignorance about the outcome, the prior pdf should be
the same on every length scale. The invariant measure m(x) ascertains the invariance
of the prior pdf under variable transformations. However, if the scale is known, e.g.
the standard deviation takes a certain value at a definite scale and only the mean is
unknown, the invariant measure would only ascertain invariance in respect to translation.
Transformation to another length scale would then indeed change the functional form
of the prior pdf.

Very often one has testable information about a pdf such as knowledge of the arith-
metic mean or variance to which the pdf should be constrained. If there are m different
constraints of the form ∫

dx ρ(x)fk(x) = Fk (2.33)

and, additionally, a constraint due to normalization∫
dx ρ(x) = 1, (2.34)

then maximisation of Hc (2.32) results in the pdf

ρ(x) =
1

Z(λ1, λ2, . . . , λm)
m(x) exp (λ1f1(x) + λ2f2(x) + · · ·+ λmfm(x)) . (2.35)

Z is called partition function because it has an analogous meaning as the partition
function used in statistical mechanics. It assures the normalization of the pdf and
therefore is given by

Z(λ1, λ2, . . . , λm) =

∫
dxm(x) exp (λ1f1(x) + λ2f2(x) + · · ·+ λmfm(x)) . (2.36)

The Lagrange multipliers can be determined by solving the transcendental set of equa-
tions:

Fk = − ∂

∂λk
logZ(λ1, λ2, . . . , λm). (2.37)

If there are no constraints of the form (2.33), the maximum entropy distribution is given
by

ρ(x) =

(∫
m(x) dx

)−1

m(x). (2.38)

Hence, it is only determined by the invariant measure. If the quantity x is known to be
restricted to the interval [a, b] on a definite scale, the maximum entropy pdf reads

ρ(x) =
1

b− a
. (2.39)
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As closing example, assume that the mean µ and the variance σ2 of a distribution are
known. These quantities are defined by

µ =

∫
xρ(x)dx and σ2 =

∫
(x− µ)2ρ(x)dx. (2.40)

These two formulas can be combined to obtain a single constraint for the pdf:∫
dxρ(x) (x− µ)2 = σ2. (2.41)

If it is known to which scale these distribution parameters refer, the invariant measure
is given by m(x) = 1. Inserting f1 = (x − µ)2 in Eq. (2.35) leads to a pdf of Gaussian
shape:

ρ(x) =
1√
2πσ

exp

(
1

2σ2
(x− µ)2

)
. (2.42)

The multidimensional normal distribution is the pdf chosen in this work. The reason
for the restriction to the leading two moments is given in the next chapter. The next
chapter recapitulates the (detailed) implementation of Bayesian inference in the Full
Bayesian Evaluation Technique.
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3 The Full Bayesian Evaluation
Technique recapitulated

The Full Bayesian Evaluation Technique [26] implements Bayesian inference as discussed
in the previous chapter to combine experimental data with model data to generate im-
proved estimates of integral cross sections. Thus, the specification of a prior pdf is
necessary, which is done with the aid of the nuclear reaction code TALYS [23], con-
sideration of physical boundary conditions, the principle of maximum entropy [19] and
some heuristics. These topics are discussed in more detail in the following section ’Prior
Knowledge’. Since for both the prior pdf – relying on model data – and the likelihood
– relying on experimental data – a Gauss distribution is assumed and the model data
is mapped to the experimental grid by a linear transformation, the posterior pdf is also
of Gaussian shape. This allows to calculate the two characteristic quantities, a vector
of mean values and a covariance matrix (the analogon to the variance in the one dimen-
sional case) to uniquely specify the posterior pdf. The derivation of these formulas is
the topic of the section ’Linearized Bayesian Update Procedure’.

Up to now FBET is only capable of dealing with integral cross section data. Details
about the extension to differential cross sections, the subject of this work, are treated
in chapter 4.

Before elaborating on technical details of FBET let introduce the notion of an integral
cross section and make plausible why accurate knowledge about this quantity is helpful.
Integral cross sections are defined by

σ =
IS
II
, (3.1)

where II is the current density of incident particles and IS is the current density of
scattered particles. If a multitude of target nuclei is within the scope of the incident
particle stream, the factor 1/N has to be applied on the right hand side of Eq. (3.1).

The range of interaction depends on the projectile as well as the structure of the target
nucleus. For instance, only for charged projectiles the scattering process is influenced by
the Coloumb interaction. Therefore, cross sections are frequently categorized according
to the type of projectile. Furthermore, an interaction may occur in several ways. An in-
cident particle might be absorbed by the target nucleus and integrated into its structure;
or the structure of the target nucleus is preserved and the incident particle only experi-
ences a change in its moving direction. Hence, cross sections are further categorized as
shape-elastic and reaction cross section. In case of absorption, different processes can
take place. At the end of such a process, the nucleus may re-emit another particle, e.g.
an α-particle and thereby turn to a more stable structure. Consequently, reaction cross
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sections are again further divided by the type of (if there are any) outgoing particle(s).
Commonly, all these categorizations are abbreviated in the following formal notation

target nucleus (projectile, ejectile) final nucleus e.g. 181
73Ta (n, α) 178

71Lu (3.2)

If the specific target nucleus is clear from context, its specification is dropped. Addi-
tionally, if the final nucleus is already determined by the specification of target nucleus,
projectile and ejectile it may also be dropped. For some cross section types various final
nuclei occur and they are not measured because of technical limitations. This is the case
for the total cross section (n, tot) where every interaction is taken into account.

All these different kinds of cross sections reveal particular aspects of interactions in
play. As technological progress continues more and better experiments yield more and
more accurate data. This knowledge, in turn, is used to design physical models for
predicting outcomes of scattering processes. At the moment, there are several models
based either on microscopic descriptions of the nucleus or phenomenological considera-
tions. None of them is able to describe all scattering processes for all nuclei at all incident
energies correctly – each model has its domain of validity. However, in the unresolved
energy range reaching from about some MeV to around 200 MeV, the optical potential
approach [17], for instance, describes the total cross section (n, tot) rather well.

Thus, confidence in a certain model may rise to a degree so that one starts using
it for predicting cross sections in energy ranges without experimental data. Further-
more, models are used in energy ranges where data is available to correct estimates
stemming from experiments to better fulfill the systematics of the model. Incorporating
physical models enjoying some trust helps to narrow down uncertainties in areas with
and even without experimental data. Having the predictions of the model with associ-
ated uncertainty information for energy ranges without experimental data could render
some experimental setups expendable. Thus, costs are saved and experiments are only
performed when they are absolutely necessary.

Basically, FBET is not a nuclear model but a statistical meta-model which calculates
cross section estimates by relying on model data and experimental data. In the procedure
described here, the nuclear code TALYS [23], which gives reasonable predictions in the
unresolved energy range, is utilized to produce the model data. However, this is not a
necessity. Data stemming from every other model could be used equally well as long as
some criteria are fulfilled. These will become evident during the course of introducing
the technical details of FBET.

3.1 Prior knowledge

The prior probability density function (prior pdf) in the Full Bayesian Evaluation Tech-
nique is specified with the aid of a physical model.

Such a model is based on concepts of the nucleus structure and relevant interactions
between nucleons. As soon as values are assigned to the parameters required by the
model, the latter can be used to predict outcomes of scattering experiments. Therefore,
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one can regard a model as a function

σc(E) ≡ σc(E ; r1, r2, · · · ), (3.3)

where one passes the incident energy E as argument and gets the value of a certain cross
section associated to a channel c, e.g. (n, tot), as result. The model parameters ri char-
acterize the structural properties of the nucleus and are thus – ideally – fixed quantities.
Effectively, these parameters are obtained by fitting the model to experimental data,
so experimental uncertainties are transferred to uncertainties in the model parameters.
The following section describes how exactly this type of uncertainty enters the prior.

Cross section uncertainties due to parameter uncertainties

TALYS [23] is a phenomenological model that implements the optical potential ap-
proach [17]. It is able to describe cross section from above the resonance range to
about 200 MeV reasonably well. Above that range channels associated with π-particle
production open up which cannot be described properly by a nucleon-nucleon potential.
Therefore, the evaluation is limited to the energy range below 200 MeV.

Together with the also incorporated global parameterization by Koning and De-
laroche [22], TALYS steadily computes cross sections between Mg and Bi by relying
only on the specification of a few parameters. These parameters are determined by
fitting the global optical potential to total CS data obtained for various nuclei. Physi-
cal considerations allow to state intervals for them in which the true values have to lie
with high probability. Their determination is explained in detail in the Ph.D. thesis of
Neudecker [26].

Once parameter boundaries are established for the model parameters, a probability
density function for allowed model parameters has to be specified. Minimizing the
information entropy (2.32) and applying the principle of indifference yields an uniform
distribution.

The prior in FBET is formulated in terms of cross sections and not parameter val-
ues, so the uniform pdf ρ(r1, . . . , rn|E, c) in parameter space has to be mapped to the
associated pdf in cross section space ρ̃(x|E, c). The incident energy E and channel c are
regarded as fixed quantities which specify the scattering process in view. Once they are
set up, the probability for obtaining a certain value x for the selected cross section is
completely determined by the uncertainty of model parameters ri. However, instead of
only regarding a single cross section, the joint pdf for several cross sections at several
energies is considered

ρ̃(σc1(E1), . . . , σc1(EN), . . . , σcM (E1), . . . , σcM (EN)), (3.4)

where σci(Ej) is the value for the cross section associated to channel ci at incident energy
Ej. If each of the M cross sections in the joint pdf is stated for the same N energies,
then all these values can be thought of as constituting a vector containing Z = M ×N
elements. In the following let σi be the i-th entry of this vector. Assuming that the
number of cross section values Z is equal to the number of model parameters L and
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that distinctive realizations of model parameters ~Pi are mapped to distinctive vectors
of cross section values ~σi, the mapping from parameter space to cross section space is a
bijective function ~σ(~P ). In this case, the pdf for the cross section space is given by

ρ̃(~σ) = ρ(~P ) det

(
∂~σ

∂ ~P

)−1

, (3.5)

where ∂~σ/∂ ~P is the Jacobian matrix for the mapping ~σ(~P ). If ~σ is of greater dimension

than ~P , the mapping ~P → ~σ may still be assumed to be injective, but the determinant
is not applicable anymore because the Jacobian matrix is rectangular. Thus, formula
(3.5) has to be adapted. To this end, one has to realize that the above determinant
is a scaling factor stating how many times bigger the infinitesimal volume dṼ in cross
section space is compared to the corresponding volume dV in parameter space. Because
corresponding volumes in both spaces have to be equally probable, a blow up of dṼ
compared to dV has to be compensated by a reduction of the pdf at that point,

ρ̃(~σ) = ρ(~P )
dV

dṼ
. (3.6)

Since the dimension of ~P is lower than of ~σ, the pdf for the cross section space is only
defined for points reachable by the mapping ~σ(~P ). In a sufficiently small environment

around a point ~σ0 reachable by some ~P0, the Jacobian matrix can be used to construct
a local approximation to the function ~σ(~P ):

~σ(~P ) = ~σ(~P0) +
∂~σ

∂ ~P
(~P − ~P0). (3.7)

Thus, the physical model can locally be regarded as linear mapping from RL to RZ with
the image restricted to an L-dimensional subspace. The columns of the Jacobian matrix
define a basis for this subspace. Infinitesimal volume elements dṼr in the cross section
subspace and dV in the parameter space are related through the square root of the Gram
determinant by

dṼr = dV

√√√√det

((
∂~σ

∂ ~P

)T
∂~σ

∂ ~P

)
. (3.8)

Using equations (3.6) and (3.8) yields the following expression for the pdf in cross section
space:

ρ̃(~σc) =

∫
V (P )

ρ(~P ) det
(

(∂~σ/∂ ~P )T (∂~σ/∂ ~P )
)−1/2

δ
(
~σc − ~σ(~P )

)
dZP. (3.9)

Integration is thereby performed over the whole range of allowed parameter vectors. The
argument was renamed to ~σc to distinguish it from the function symbol ~σ establishing
the mapping.

If this exact expression would be chosen for the prior pdf, then – independent of
what experimental data constitutes the likelihood – the posterior pdf would always be
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restricted to cross section vectors reachable by the model. In the case of an inadequate
model, no amount of experimental data could compensate for that.

In practice, it is not possible to use the exact expression, as one TALYS model calcula-
tion takes, depending on chosen incident energies, from several minutes to over an hour.
Even then, only the mapping of one parameter vector to the corresponding cross section
vector is determined. Therefore, the construction of the prior pdf for cross section space
cannot be done exactly and needs to take some assumptions into account. The proce-
dure chosen in FBET is to sample parameter vectors according to a uniform distribution
and calculate the corresponding cross section vectors. Because the resulting point den-
sity in cross section space is far too low to estimate the real pdf non-parameterically,
it is assumed to be of Gaussian shape. The specification of a multidimensional Gauss
distribution requires the calculation of the arithmetic mean

σ =
1

lmax

lmax∑
l=1

~σ(~Pl), (3.10)

with lmax being the number of sample points in parameter space and ~Pl a certain pa-
rameter vector obtained during sampling. Furthermore, the covariance matrix APU is
needed:

APU =
1

lmax

lmax∑
l=1

(
~σ(~Pl)− σ

)(
~σ(~Pl)− σ

)T
. (3.11)

One element of the covariance matrix is given by

APU
ij = cov(σi, σj) =

1

lmax

lmax∑
l=1

(σi(~Pl)− σi)(σj(~Pl)− σj). (3.12)

which is a scale dependent measure for the linear dependence between ~σi and ~σj. A
measure which is invariant under linear transformations of the respective quantities is
the correlation coefficient

corr(σi, σj) =
Aij√
AiiAjj

. (3.13)

It takes a value in the interval (−1, 1): corr(σi, σj) = 1 for a perfect positive linear
dependence (σi = ασj, α > 0) and corr(σi, σj) = −1 for a perfect negative one (α < 0).

The Gaussian associated to that mean vector and covariance matrix is

ρ̃(~σ) =
1

(2π)Z/2
√

det(APU)
exp

(
1

2
(~σ − σ)T (APU)−1(~σ − σ)

)
. (3.14)

This is also the distribution which maximizes the information entropy if only arithmetic
means σi and covariances cov(σi, σj) are given. The consideration of higher moments
would alter the distribution of maximal entropy which might approximate the real dis-
tribution more accurately. However, the enormously increased computational costs do
not seem to justify this step.
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Figure 3.1: Influence of the choice of the center point on the shape of the Gauss distri-
bution. Green: centered at the mean of sampled cross section vectors σ; red:
centered at mapped mean parameter vector ~σ

(
P
)

Due to the non-linear nature of the mapping from the parameter space to the cross
section space, the mean vector in the cross section space differs from the mapping of the
mean parameter vector, so ~σ

(
P
)
6= σ. The situation is visualized in Fig. 3.1. Assume

that the model relies only on one parameter s and maps to two cross sections σ1, σ2.
The reachable points in the cross section space are represented by the black line, where
each point on this line might be considered equally probable. Taking the arithmetic
mean σ as center point leads to the green Gauss distribution; taking the mapped mean
parameter vector ~σ

(
P
)

leads to the red one. As can be seen, the red distribution better
approximates the slope around the point associated with the mean parameter vector,
but at the cost of a higher uncertainty. In the original work of Neudecker [26] ~σ(P )
was chosen as center point. This work will, instead, use σ which can be justified by
several reasons. Firstly, the cross section vectors were obtained by relying on a uniform
distribution in parameter space. Because every parameter set is considered equally likely,
the parameter vector P is not in any way special. The Gauss distribution centered at
the arithmetic mean is – according to the principle of maximum entropy – the more
honest description, in better accordance with the uniform distribution in parameter
space. Secondly, the increased uncertainty when using ~σ

(
P
)

increases the probability
for points not predicted by the model. Thirdly, the trend of the green distribution
follows the model more rigorously regarding all points whereas the red one is only valid
for points around ~σ

(
P
)
.

Even if the most probable cross section point is then not the best guess for the true
point, the true point is still considered very likely. In the above figure, which clearly
shows a highly non-linear model, the true point is within the 70% confidence interval.
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Furthermore, the purpose of the model is not to be accurate from the beginning, but to
adapt experimental data to better fulfill the systematics of the model.

Another important aspect is the singularity of APU. If the parameter space is less
dimensional than the cross section space, model points are restricted to a subspace.
In Fig 3.1, the model is restricted to a line. Non-linearity of the model together with
approximating the true pdf with a Gauss distribution results in the assignment of non-
vanishing probabilities to points not reachable by the model. Nonetheless, sometimes
APU does not have full rank and thus the required inversion in formula (3.14) is not
possible. A covariance matrix is singular if there are directions along which the vari-
ance vanishes. Therefore, one can perform an eigenvalue decomposition to detect these
directions. This yields the covariance matrix relative to its eigenbasis

APU
eigen =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn

 , λi ≥ 0, (3.15)

where λi are the eigenvalues. They state the variance along the principal axes. In
order to obtain a matrix of full rank, one has to remove columns and rows of this matrix
containing a zero eigenvalue. The resulting matrix ÃPU

eigen is associated with an eigenbasis
which is only a basis for a linear subspace in the cross section space. Thus, vectors that
had to be multiplied with the original covariance matrix have to be projected into this
subspace before multiplication. Let ~ei be the normalized eigenvector associated to an
eigenvalue λi, then e.g.

~xT
(
APU

)−1
~x→ ~xT

[
~e1, · · · , ~ei, · · · , ~en

] (
ÃPU

eigen

)−1 [
~e1, · · · , ~ei, · · · , ~en

]T
~x. (3.16)

Only those ~ei are included which correspond to non-zero eigenvalues λi. Through this
procedure no information is lost, because the model would not allow any deviation in
directions associated with zero eigenvalues. The last entity relies on the fact that a
matrix A owns the same eigenbasis as A−1.

Cross section uncertainties due to model deficiencies

Although the approximation of the pdf for the cross section space with a Gauss dis-
tribution leads to non-vanishing probability densities for points not lying on the model
manifold, thereby allowing experimental data to draw the predicted value away from it,
a model inadequate under some circumstance may still constrain the space of possible
cross section vectors too much. Therefore, the systematic error of the model was taken
into account in the FBET expressed in terms of a covariance matrix AMD. Its determi-
nation for a certain isotope relied on other isotopes of the same element The complete
prior covariance matrix is given by A0 = APU + AMD. The procedure to obtain model
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deficiency matrices AMD is formulated for integral cross sections. The extension of this
procedure to differential cross sections is not within the scope of this work. Neverthe-
less, as will be seen in the next chapter, it is possible to incorporate the uncertainty
information for integral cross sections included in AMD consistently into the extended
FBET. Details of the ‘scaling procedure’ to calculate AMD are given in the work of D.
Neudecker [26].

3.2 A linearized Bayesian Update Procedure

In section 3.1, the sampling procedure was described, which yielded a set of cross section
vectors. Each component σi of these vectors represented a cross section value for a certain
channel ci at an incident energy Ei. This sample of cross section vectors was used to
estimate a mean vector σmod and a covariance matrix APU to build up the Gaussian
prior

ρ(~σ|σmod, A
PU) = − 1

(2π)Z/2
√

det(APU)
exp

(
−1

2
(~σ − σmod)T (APU)−1(~σ − σmod)

)
,

(3.17)
which states the probability density that ~σ represents the real cross section vector under
the assumed hyperparameters σmod and APU derived from model data. Z is given by
the dimension (number of rows or columns) of APU.

The likelihood is also given by a Gauss distribution specified by the estimate σexp for
the true cross section vector and covariance matrix B. In general, the dimensions of
~σexp and ~σmod differ. One may only use experimental data giving estimates for channels
contained in the prior to compose the likelihood. Still, it is possible that experimental
data contains estimates for energies not stated in the prior, e.g. the model vector ~σmod

contains cross section values for channel c at energies E1, E2, E3 whereas the experiment
states cross section values for the same channel at energies E ′1, E

′
2 lying between the

model energies. In this case, the application of an interpolation scheme is required. For
this purpose, FBET uses spline interpolation, which can be regarded as linear mapping
from the energy grid of the model to the energies of the experiment

σc;E′
1

σc;E′
2

...
σc;E′

m

 = S


σc;E1

σc;E2

...
σc;En

 , (3.18)

with S being an m× n matrix. Basically, every function of the form

f(E) =
∑
i

αi gi(E), (3.19)

where the gi(E) are arbitrary functions defined at all E values of interest, establishes
a linear mapping, as long as all αi are linear functions of the σc,Ei . Thus, instead of
splines, it would be possible to use e.g. Fourier series or Legendre series.
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Assume some cross section is given for the energies Ei and it has to be mapped to
energies E ′i. The mapping matrix S can be determined by setting σc,Ei = 0,∀i 6= j and
σc,Ej = 1. For this choice, one can determine the coefficients αi in f which leads to the
function fj(E). Now fj is calculated for all m energies E ′i. This procedure is performed
for all j ∈ {1, · · · , n}. The resulting mapping matrix is given by

S =


f1(E

′
1) f2(E

′
1) · · · fn(E ′1)

f1(E
′
2) f2(E

′
2) · · · fn(E ′2)

...
...

. . .
...

f1(E
′
m) f2(E

′
m) · · · fn(E ′m)

 . (3.20)

Let S be the matrix which maps a model cross section vector to the associated vector
in the experiment space, then the likelihood is given by

ρ(σexp|~σ) =
1

(2π)Z/2
√

det(B)
exp

(
−1

2
(S~σ − σexp)TB−1(S~σ − σexp)

)
. (3.21)

It states the probability density that an experimental estimate σexp is obtained assuming
~σ to be the true cross section vector. The true cross section is given with respect to the
model grid. Therefore, the mapping matrix S is applied to transfer it to the experiment
space.

The product of prior and likelihood yields – up to a normalization factor N – the
posterior pdf

ρ(~σ|σexp, B, σmod, A) =

N exp

(
−1

2
(S~σ − σexp)TB−1(S~σ − σexp)− 1

2
(~σ − σmod)TA−1(~σ − σmod)

)
. (3.22)

The product of two Gauss distributions is itself a Gauss distribution. Assuming this to
be true, it should be possible to restate the exponent of Eq. (3.22) in the following form:

−1

2
(~σ − σ̃)T Ã−1(~σ − σ̃) = −1

2

{
~σT Ã−1~σ − ~σT Ã−1σ̃ − σ̃T Ã−1~σ + σ̃T Ã−1σ̃

}
, (3.23)

with σ̃ the new mean and Ã the new covariance matrix of the Gauss distribution. Re-
arranging the exponent of Eq. (3.22), one obtains

−1

2

{
~σT
(
A−1 + STB−1S

)
~σ − ~σT

(
A−1σmod + STB−1σexp

)
−
(
σTmodA

−1 + σTexpB
−1S

)
~σ

+
(
σTmodA

−1σmod + σTexpB
−1σexp

)}
.

(3.24)

The rightmost summand in Eq. (3.23) and (3.24) is not important in the current con-
sideration, because it only changes the normalization factor. If proper normalized pdfs
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for likelihood and prior are used, the Bayesian inference formula guarantees the nor-
malization of the posterior pdf. Comparing (3.23) with (3.24), one can immediately
identify

Ã−1 = A−1 + STB−1S (3.25)

and

Ã−1σ̃ =
(
A−1σmod + STB−1σexp

)
(3.26)

σ̃ =
(
A−1 + STB−1S

)−1 (
A−1σmod + STB−1σexp

)
. (3.27)

In order to obtain the expressions as given in the work of Neudecker [26], one has to
utilize the Woodbury matrix identity [37]

(A+ UCV )−1 = A−1 − A−1U(C−1 + V AU)−1V A−1. (3.28)

Applied to Eq. (3.25), one obtains

Ã = A− AST
(
SAST +B

)−1
SA (3.29)

for the covariance matrix. Inserting (3.29) into (3.27) yields

σ̃ =σmod − AST
(
SAST +B

)−1
Sσmod+

ASTB−1σexp − AST
(
SAST +B

)−1
SASTB−1σexp.

(3.30)

The second line is equal to

AST
(
SAST +B

)−1
σexp, (3.31)

which follows from

ASTB−1σexp − AST
(
SAST +B

)−1
SASTB−1σexp = AST

(
SAST +B

)−1
σexp

B−1 −
(
SAST +B

)−1
SASTB−1 =

(
SAST +B

)−1

1−
(
SAST +B

)−1
SAST =

(
SAST +B

)−1
B(

SAST +B
)
− SAST = B.

(3.32)

Hence, replacing the second line of (3.30) by (3.31) and rearranging yields the final
expression for the mean value σ̃

σ̃ = σmod + AST (SAST +B)−1(σexp − Sσmod). (3.33)

This derivation shows that, as long as a linear mapping is chosen for the transfer
of the model cross section vectors to the experiment space, the posterior pdf (3.22) is
again a Gauss distribution. In order to obtain the important parameters, i.e. the mean
value σ̃ and the covariance matrix Ã which completely specify its shape, it sufficed to
identify which terms in the exponent of (3.22) constitute the mean vector and which the
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covariance matrix. As Eq. (3.25) and (3.29) are equivalent, connected by the Woodbury
matrix identity, it would also be possible to calculate the covariance matrix directly:

Ã =
(
A−1 + STB−1S

)−1
. (3.34)

However, this is not done in practice, as it would require the inversion of the huge model
covariance matrix A. Because A is known in the beginning, the Woodbury matrix
identity allows to calculate the inverse of (3.34) without the need to compute A−1.
Therefore, only the inversion of the much smaller matrix (SAST +B) is required.

Another issue to be resolved is whether the update formulas (3.29) and (3.33) are
always valid. For instance, the direct formula (3.34) relies on the inversion of A which
is not always possible, because A is only guaranteed to be positive semi-definite. The
application of the Woodbury matrix identity leads to the allegedly equivalent formula
(3.29) requiring the inverse of A−1, which would be just A. As A−1 sometimes does not
exist, it has to be clarified what is really calculated by Eq. (3.29) in such a case. On close
inspection, it turns out that formula (3.29) invisibly implements the projection of A into
a subspace as described around formula (3.16). To see this, let T be the transformation
matrix for the mapping into this subspace. Its rows are given by the eigenvectors of A
associated with non-zero eigenvalues. Furthermore, assume Ared to be the covariance
matrix A in respect to this subspace, then

A = T TAredT and Ared = TAT T . (3.35)

Because A is symmetric, the eigenvectors are orthogonal and so is the transformation
matrix they build up, which means T T = T−1. Every matrix X of same dimensions as
A could be equally projected by calculating Xred = TXT T . Transforming all quantities
into the subspace, A−1

red is now well-defined, and thus formula (3.34) reads

Ãred =
(
A−1

red + TSTB−1ST T
)−1

. (3.36)

Applying the Woodbury matrix identity (3.28) once again yields

Ãred = Ared − AredTS
T (ST TAredTS

T +B)−1ST TAred. (3.37)

Up-projecting by multiplying both sides with T T from the left and T from the right
and substituting T TAredT → A, the original expression (3.29) is obtained. The last
consideration also shows that experimental uncertainties associated with directions not
lying in this subspace are simply trimmed out. This is reasonable, as the model does
not allow any deviation in these directions; thus the uncertainty of the experiment along
the same direction does not have any influence on the prediction.

Performing several updates with experimental data, the question arises whether the
order matters in which data is included. To answer this, assume two experimental data
sets σexp,1, B1 with the mapping matrix S1 and σexp,2, B2 with S2. Instead of considering
the change of σ̃ and Ã due to updates one can also look at Ã−1 and Ã−1σ̃. The first
update with experiment 1 yields, according to equations (3.25) and (3.26),

Ã−1
1 = A−1 + ST1 B

−1
1 S1 (3.38)

Ã−1
1 σ̃1 = A−1σmod + ST1 B

−1
1 σexp,1. (3.39)
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Thereafter, using the obtained posterior quantities as prior quantities and updating with
experiment 2 results in

Ã−1
12 = Ã−1

1 + ST2 B
−1
2 S2 = A−1 + ST1 B

−1
1 S1 + ST2 B

−1
2 S2 (3.40)

Ã−1
12 σ̃12 = Ã−1

1 σ̃1 + ST2 B
−1
2 σexp,2 = A−1σmod + ST1 B

−1
1 σexp,1 + ST2 B

−1
2 σexp,2. (3.41)

Updating in the opposite order amounts to a change of indices 1 → 2, 2 → 1. As
both Ã−1

12 and Ã−1
12 σ12 are symmetric in respect to index swapping, the result remains

unchanged. Hence, as long as experiment 1 is independent of experiment 2, i.e. if
their common covariance matrix is block diagonal, the order of updating is irrelevant.
However, if there are correlations between the experiments, they must both be included
during the same update step.

To conclude this section, it shall be explained why this update procedure is referred
to as ‘linearized’. The first reason is the choice of a Gauss distribution for the prior.
This distribution only takes linear relationships between different cross sections in the
model cross section vector ~σ into account. This is probably always sufficient to model
dependencies between different energies, which are not far apart in the same channel.
Non-linear features of the physical model may dominate when energy differences increase.
If the real probability density function has several maxima, the Gauss distribution would
also be inadequate. In extreme cases, the correlation coefficient could turn to zero,
although one cross section value is able to exactly predict the other. Another domain
where the Gauss approximation could fail is within the resonance energy range. When
both the location of peaks as well as their width is sensitively dependent on the model
parameters, the assumption of linear relationships between cross sections perhaps cannot
explain their dependency.

The second reason is the restriction to linear mappings from the model space to the
experiment space. Only in this case, the likelihood and, consequently, also the posterior
are of Gaussian shape. As long as the model energy grid is dense compared to changes
of the slope of σ(E), there is no cogent reason to doubt about the applicability of spline
interpolation. Reversely, if the grid were too rough, no interpolation scheme – lacking
knowledge of the function trend between the grid points – would be any more plausible.
For a non-linear mapping, one would have to minimize (3.22) numerically.

However, as this work relies on spline interpolation, the mapping from model space
to experimental space is linear. Thus, the important update formulas for this work are:

σ̃ = σmod + AST (SAST +B)−1(σexp − Sσmod) (3.42)

Ã = A− AST
(
SAST +B

)−1
SA. (3.43)
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3.3 Comparison of the linearized Bayesian Update
Procedure with MLE

Maximum likelihood estimation (MLE) is a common method in conventional statistics
(Frequentism) to estimate the parameters of a model. In this section, the conceptual
differences between the linearized Bayesian update procedure (LBUP) and MLE will be
demonstrated.

MLE is based on the assumption that the model adequately describes reality but,
due to measuring inaccuracies, the observed data cannot be fitted exactly by the model.
Errors of measurement are assumed to be normally distributed. This can be expressed
as

~σ = m(~P0) + ε with ε ∼ N (~0, B), (3.44)

where m(~P0) is a function which maps the correct parameter vector ~P0 to the true
cross section vector ~σ0. However, due to the noise ε, the observed quantity is ~σ. The
covariance matrix B is estimated from experimental data. The reasoning for obtaining
an estimate for the true parameter vector P̂0 is as follows: Suppose the true value ~σ0

and hence also ~P0 were known. Then, the pdf for obtaining ~σ in a measurement is given
by

ρ(~σ) = N exp

((
~σ −m(~P0)

)T
B−1

(
~σ −m(~P0)

))
(3.45)

The maximum likelihood principle states that the best guess for ~P0 is the parameter
vector P̂0 which maximizes the probability density function for obtaining the observed
cross section vector ~σ. Because only model parameters are adjusted, the best estimate
σ̂0 is always reachable by the model, in other words, included in the image of m(~P ).

If the Bayesian update procedure would use the distribution in the cross section space
which is in exact correspondence to the uniform distribution in the parameter space,
the Bayesian update procedure would also restrict evaluated cross section vectors to
elements of the image of m(~P ). In this case, the difference between MLE and the
Bayesian procedure amounts to different a-priori probability assignments for the vectors
in cross section space. The Bayesian procedure favours points where the mapping ~P → ~σ
is contracted, i.e. where the ratio Vc/Vp of corresponding volumes in cross section space
(Vc) and in parameter space (Vp) is small. Contrarily, MLE does not favour any cross
section vectors a priori. Thus, MLE is equivalent to a Bayesian procedure in which a
uniform prior in respect to the cross section space is chosen.

Both methods perfectly regard the dependencies between different cross sections im-
posed by the model. To which amount their predictions differ depends on the uncertainty
of the experimental data compared to the prior uncertainty. If the prior is rather broad
and the experiment makes a sharp prediction where the prior assumes a high probability,
the location of the posterior is almost completely determined by the experiment. This is
visualized in the left box of Fig. 3.2. In this case, the model only imposes its systematics
on the posterior, i.e. the best guess is restricted to the model manifold and the Bayesian
update yields similar results to MLE. If the prediction of the experiment is not regarded
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Figure 3.2: left: unspecific prior and sharp prediction by experiment lead to compareable
results of MLE and the Bayesian update procedure; right: prior is at odds
with experiment about the true value, MLE and Bayes procedure lead to
substantially different results

to be very probable by the prior, MLE and the Bayesian update procedure substantially
differ. The behaviour of the Bayes procedure in this scenery is qualitatively shown in
the right image in Fig. 3.2.

Since the parameter boundaries set by D. Neudecker [26] are fairly cautious, the prior
in cross section space turns out to be rather broad for integral cross sections. Hence,
similar results as those of MLE can be expected. However, the previous discussion
assumed the perfect Bayesian update procedure. In the real linearised Bayesian update
procedure of this work, the pdf in cross section space is approximated by a Gauss
distribution. By approximating the non-linear features of the model linearly, the perfect
systematics of the model are loosened and the prediction could be drawn to points not
within the model space. If the model is absolutely accurate, this is a disadvantage, but
otherwise could be an advantage.
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4 Extension to differential cross
sections

The extension of the Full Bayesian Evaluation Technique to differential cross sections as
performed in this work is only an extension of parameter space, but not in concept. All
structural properties of the method described in the last chapter remain unchanged: the
prior is still given by a Gauss distribution and the mapping from model cross section
space to experiment space is unaltered conveyed by a linear transformation. In short,
the linearised Bayesian Update Procedure (LBUP) as presented in the previous chapter
is used.

Merely the prior hyperparameters for the Gauss distribution are adapted. Extra
blocks are added in the covariance matrix to account for uncertainty information of the
differential cross section data stemming from the physical model. Thus, the inclusion
of experimental data measuring this channel becomes feasible in LBUP. The specific
modifications in the prior are the topic of the next section.

Thereafter, the details of the mapping of the model data to the energies and angles
of the experiment are described. At that point, all methodical and structural properties
of the extended FBET are completely defined.

In the remaining two sections, the impact of the included experimental data on the
posterior is studied and an alternative update scheme for the posterior cross section
vector is described.

4.1 Modification of the prior

Integral reaction cross sections are determined by measuring the fraction of incident
particles experiencing a reaction of a specific type. Differential cross sections include
additional information on either the angular distribution or the energy distribution of
outgoing particles. Both quantities reflect essential information on the structure of the
target nucleus.

From the point of view of informatics, these two quantities are not really different,
because they can be modelled by the same data structures. Nevertheless, this work
exclusively deals with differential cross sections with respect to angle. If the differential
cross section shows no dependence on the azimuthal angle, it is related to the integral
cross section by

σc(E) = 2π

∫ π

−π

dσc
dθ

(E, θ) sin(θ) dθ, (4.1)
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where c denotes a certain channel, E is the energy of incident particles and θ is the
scattering angle.

At a certain incident energy E, the differential cross section is a function of the
scattering angle θ. Since its functional form cannot be expressed analytically, its function
values have to be calculated numerically for a discrete set of angle values. Therefore,
one ends up with a function defined roughly by a table containing pairs of parameters
and function values.

The degree of smoothness of the function dσ/dθ determines the mesh of angles required
to describe the underlying angular dependence sufficiently well. For instance, sharp
oscillatory features require a rather dense grid to ensure that peaks are not completely
between two angle points and thereby remain unrecognised.

The amount of grid points necessary to adequately describe a function can eventually
be reduced by expanding it into a sum of linearly independent functions. In this work
dσ/dθ(E, θ) is expanded in terms of Legendre polynomials

dσ

dθ
(E, θ) =

∞∑
l=0

αl(E)Pl(cos θ). (4.2)

The coefficients αl depend on the incident energy but not on the angle. There are two
reasons for the choice of Legendre polynomials as expansion functions: At low incident
energies, the first few leading terms already suffice to describe the differential cross
section very accurately over the complete angular range (as the energy increases, more
terms are necessary for the same level of accuracy). The second reason concerns the
possibility to use model deficiency covariance matrices (AMD), generated for integral
cross sections in the course of Neudeckers Ph.D. thesis [26]. Inserting the expansion
(4.2) into formula (4.1) and relying on the orthogonality between the Pl, it turns out
that the first coefficient α0 completely defines the integral cross section:

σc(E) = 4πα0(E) . (4.3)

Thus, the integral cross section of some channel is nicely separated from features of the
angular distribution. As P0(cos θ) = 1, the coefficient α0 represents an overall shift for
the complete angular differential cross section curve. This makes it easy to account
for monitoring errors in differential cross section experiments. Uncertainty information
included in AMD can be incorporated by adding its elements cov(σc(E), σc′(E

′)) divided
by (4π)2 to the elements cov(αc,0(Ei), αc′,0(Ej)) of the extended APU, see Eq. (3.12).

The model cross section space of the original FBET was constituted by vectors of the
form

~σ = (σc1,E1 , · · · , σc1,En , σc2,E1 , · · · , σc2,En , · · · , σcm,E1 , · · · , σcm,En)T , (4.4)

with σci,Ej being the integral cross section associated to channel ci at incident energy
Ej. As each TALYS calculation returns every cross section at the same incident energies
specified in the input file, every model cross section vector contains m×n elements – m
channels and for each channel n incident energies.
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In the extended FBET, every σci,Ej corresponding to a channel for which differential
cross section data should be taken into account is removed from Eq. (4.4). In their place,
a certain amount of coefficients of the Legendre series (4.2) is inserted. As was pointed
out in Eq. (4.3), the information on the integral cross section is already contained in α0.
Therefore, a model cross section vector of the extended FBET could read

~σ =
(
σc1,E1 , · · · , σc1,En , α0

c2,E1
, · · · , αLc2,E1

, · · · , α0
c2,En

, · · · , αLc2,En
)T
. (4.5)

αicj ,Ek represents the i-th order Legendre coefficient of the differential cross section for
the channel cj at incident energy Ek. Since TALYS outputs at most 61 coefficients for
a differential cross section curve, this was also the choice for the model cross section
vector.

To estimate the hyperparameters σmod and APU the same procedure as described in
section (3.1) is applied. In particular, these two quantities are calculated by relying on
Eq. (3.10) and (3.11).

4.2 Transfer from model cross section space to
experiment cross section space

In Section 3.2 the procedure to construct mapping matrices to transfer an integral cross
section defined on the energy grid of the model to the energies of the experiment was
outlined. In addition, differential cross section data have to be mapped from the rep-
resentation in Legendre coefficients to the angles of the experiment. For the following,
it is assumed that the model cross section vector contains only differential cross section
data for a single channel c

~σDA
c =

(
~α(E1)

T , ~α(E2)
T , · · · , ~α(Em)T

)T
with ~α(Ei)

T = (α0(Ei), · · · , αL(Ei)) . (4.6)

The transformation matrix S can be constructed in a two step procedure: In the first
step, the matrix SE is built up, which maps the Legendre coefficients given for incident
energies Ei to the energies E ′j of the experiment (see Fig. 4.1). The effect of SE is the
same as splining the αi based on model energies Ei and subsequently using the obtained
spline to calculate αi(E

′
j). In matrix notation, the mapping reads

~α(E ′1)
~α(E ′2)

...
~α(E ′m)

 = SE


~α(E1)
~α(E2)

...
~α(En)

 . (4.7)

In the second step, the resulting Legendre coefficients αi(E
′
j) are mapped to the angles

θk(E
′
j) at which differential cross sections were measured in the experiment. For one
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Figure 4.1: Legendre coefficients αi of every order are splined based on model energy
points Ei and subsequently their intermediate values at experimental energies
E ′j predicted. The mapping from the set of energies {Ei} to energies {E ′j}
can be expressed as a linear transformation.

particular obtained ~α(E ′j), the mapping is given by


θ1(E

′
j)

θ2(E
′
j)

...
θm(E ′j)

 =

Sθ︷ ︸︸ ︷
P0(cos θ1) P1(cos θ1) . . . Pn(cos θ1)
P0(cos θ2) P1(cos θ2) . . . Pn(cos θ2)

...
...

. . .
...

P0(cos θm) P1(cos θm) . . . Pn(cos θm)



α0(E

′
j)

α1(E
′
j)

...
αn(E ′j)

 . (4.8)

In general, in an experiment data at different angles may have been measured at different
energies; hence the notation Sθ(E

′
i) is used indicating that the matrix Sθ with angles

~θ(E ′i) = (θ1(E
′
i), θ2(E

′
i), · · · ) provides the mapping at incident energy E ′i. The complete

transformation for all ~α(E ′i) to all angles ~θ(E ′i) is given by


~θ(E ′1)
~θ(E ′2)

...
~θ(E ′m)

 =

Sθ( ~E)︷ ︸︸ ︷
Sθ(E

′
1) 0 . . . 0

0 Sθ(E
′
2) . . . 0

0 0
. . .

...
0 0 . . . Sθ(E

′
m)



~α(E ′1)
~α(E ′2)

...
~α(E ′m)

 . (4.9)

As the diagonal entries Sθ(E
′
i) are rectangular matrices, the ‘0’s are also rectangular

zero matrices of appropriate dimension.
The complete mapping matrix SDA performing the transfer of Legendre coefficients

to new energies and consecutively transforming them to angles is obtained by

SDA
c = Sθ( ~E)SE, (4.10)

where the label c indicates that this matrix maps differential cross section data of a
particular channel. Finally, the mapping of a model cross section vector (containing
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differential cross section data for multiple channels) to the space of experiments is per-
formed by 

~σDA
c1,exp

~σDA
c2,exp

...
~σDA
cn,exp

 =


SDA
c1

0 . . . 0
0 SDA

c2
. . . 0

...
...

. . . 0
0 0 . . . SDA

cn



~σDA
c1,mod

~σDA
c2,mod

...
~σDA
cn,mod

 . (4.11)

It turns out that mapping matrices S are always block-diagonal, because mapping
does not occur between different channels. This is a consequence of the fact that the
transformation takes place between different representations of the same cross section
data of a specific channel. If necessary, the block diagonal feature can be used to speed
up the matrix multiplication conveying the mapping.

4.3 Effect of updating a single channel

The following example demonstrates the effect of the inclusion of experimental data and
its covariance via a Bayesian update procedure.

In regard to an experiment, cross section data of the prior can be categorized in two
groups: cross section data associated with the channel c of the experiment and the cross
section data for other channels. In principle, each of these other channels has to be
updated in the same way. Thus, it is sufficient to consider two channels.

Let ~σexp be the vector composed of M experimental cross section estimates for chan-
nel c and B the associated covariance matrix. Model cross section data consisting of
N estimates for the same channel are subsumed in ~σc. The vectors ~σexp and ~σmod may
differ in number of included data points as well as style of representation. For instance,
the experiment vector ~σexp could state differential cross section values at certain angles
whereas the model vector states them in terms of Legendre coefficients. Additionally,
the prior contains L estimates for another channel ~σr. The necessary quantities for
computing the posterior estimate vector (3.33) and covariance matrix (3.29) are

~σmod =

(
~σr
~σc

)
, S =

(
0M×L S2

)
, A =

(
A11 A12

A21 A22

)
. (4.12)

The mapping of the model cross section vector to the experimental cross section grid is
achieved by

~σmap
mod = S~σmod = S2~σc. (4.13)

The partial expressions needed for calculating the posterior quantities are

AST =

(
A12S

T
2

A22S
T
2

)
, SAST = S2A22S

T
2 ,

SA =
(
S2A21 S2A22

)
, Xc = (S2A22S

T
2 +B)−1 .

(4.14)
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Inserting these expressions into Eq. (3.43) and Eq. (3.42) one obtains

σ̃ =

(
σ̃r

σ̃c

)
=

(
~σr + A12S

T
2 Xc(~σexp − S2~σc

~σc + A22S
T
2 Xc(~σexp − S2~σc

)
(4.15)

and

Ã =

(
Ã11 Ã12

Ã21 Ã22

)
=

([
A11 − A12S

T
2 XcS2A21

] [
A12 − A12S

T
2 XcS2A22

][
A21 − A22S

T
2 XcS2A21

] [
A22 − A22S

T
2 XcS2A22

]) . (4.16)

These equations for the posterior quantities show that it is possible to update with
experimental data for a channel not considered in the prior initially. As long as S2, Xc

together with the samples which were used to produce prior estimate and covariance
matrix are available, every other channel not included in the prior in the beginning can
be updated later, e.g. when a prediction for it is really needed.

Assume the vectors ~σexp, ~σc and ~σr contain only a single data point. Further assume,
~σc and ~σexp are given in the same representation, i.e. S2 = 1. For instance, this would
be the case if both are integral cross sections for the same incident energy. Under these
assumptions, the corresponding quantities in Eq. (4.15) and (4.16) are scalars. The
posterior estimate for channel σc is given by

σ̃c = σc +
A22

A22 +B
(σexp − σc) =

Bσc + A22σexp

A22 +B
, (4.17)

which is just the weighted mean as already obtained in the example with the one dimen-
sional Gauss distribution, see Eq. (2.25). Prior estimates and covariance elements of
other channels have no influence on its prediction. The other model cross section value
σr for the channel without experimental data is

σ̃r = σr +
A12

A22 +B
(σexp − σc). (4.18)

If the experimental covariance B is much smaller than the model covariance A22, then
A12/(A22+B) ≈ A12/A22. In this frequently occurring situation Eq. (4.18) is exactly the
formula for linear regression with σexp resembling the independent predictor variable, σc
its assumed mean value and σr the dependent observable. Furthermore, if the covariance
A12 vanishes, there is no influence on the channel without experimental data.

The posterior covariance matrix Ã is exclusively determined by A and B. The model
estimate and the experimental estimate have no influence. The variance associated with
σr is reduced by

∆A11 = − A2
12

A22 +B

B�A22

≈ −corr2(σr, σc)A11. (4.19)

The squared correlation coefficient (Eq. 3.13), yields the percental reduction of A11 if
the experimental variance is much smaller than the model variance.
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4.4 Another update approach

Besides the Bayesian update formula for the mean (3.42) there is the possibility of
directly weighting the samples with regard to experimental data. Under the assumption
that sampling vectors ~Xi are distributed according to a multinomial Gauss distribution

~Xi ∼ N (~µ,Σ), (4.20)

both update schemes yield the same result in expectation. The quantity ~µ is the real
center point of the Gaussian distribution which is estimated by ~σmod from the drawn
samples ~X1, ~X2, · · · , ~XN (Eq. (3.10). The true covariance matrix Σ is estimated by
the sample covariance matrix A (Eq. 3.11). Assume experimental data {~σexp, B}, the
posterior estimate σ̃ can be calculated by

σ̃ =
1

N

N∑
i=1

~XiCL exp

(
−1

2

(
~σexp − S ~Xi

)T
B−1

(
~σexp − S ~Xi

))
, (4.21)

with CL the normalization factor for the likelihood. This yields under the assumption
(4.20) in expectation the same result as

σ̃ = ~σmod + AST (SAST +B)−1 (~σexp − S~σmod) . (4.22)

In order to prove this statement, the definition of the expectation value is required,

E[X] =

∫
V (X)

X ρ(X) dX, (4.23)

with X a random variable X and the probability density function ρ(X). The integration
is performed over the complete range of allowed values. The expectation operator E is
linear

E[cX + Y ] = cE[X] + E[Y ] . (4.24)

Using (4.23) and (4.24), the expectation value of (4.21) can be obtained,

E

[
1

N

N∑
i=1

~XiCL exp

(
−1

2

(
~σexp − S ~Xi

)T
B−1

(
~σexp − S ~Xi

))]
(4.25)

= E

[
~XCL exp

(
−1

2

(
~σexp − S ~X

)T
B−1

(
~σexp − S ~X

))]
(4.26)

=

∫
~X CL exp

(
−1

2

(
~σexp − S ~X

)T
B−1

(
~σexp − S ~X

))
(4.27)

CP exp

(
−1

2

(
~X − ~µ

)T
Σ−1

(
~X − ~µ

))
d ~X

= ~µ+ ΣST (SΣST +B)−1 (~σexp − S~µ) , (4.28)

with the normalization factor CP for the Gauss distribution of the vectors Xi. It was
possible to write the result of the integral (4.27) immediately, because the multiplication

37



of the two Gauss distributions is of the same form as in section 3.2, where the expression
for the mean was proven to be of the form (4.28). Since A and ~σmod are unbiased
estimators, the expectation value of (4.22) is also given by (4.28).

However, the validity of this result requires the assumption (4.20) to hold. If it does not
hold, the weighting procedure yields a better estimate for the true mean in expectation
as the Bayesian update procedure does. This is due to the fact that the Bayesian update
procedure assumes a Gaussian pdf for the prior whereas no assumptions are made for
the prior pdf in the weighting approach – it is implicitly determined by the sampling
process and the utilized pdf for the parameters of the optical potential.

Unfortunately, tentative application of the weighting approach indicated that the num-
ber of samples which can be calculated in a reasonable amount of time is far too low
to obtain reasonable results. Experimental data is usually measured with uncertain-
ties in the percent range. Hence, if only a few points in a sample vector deviate from
the experimental estimates by a few percent, the assigned weight by the experimental
data is already very low. Furthermore, weights of different sample vectors differ orders
of magnitude which causes the posterior estimate to be almost exclusively determined
by the sample vector with the highest weight. In order to circumvent this problem, it
would be necessary to apply importance sampling, i.e. adaptively alter boundaries for
the parameters of the optical potential to obtain vectors with significant weights.
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5 Application of the extended Full
Bayesian Evaluation Technique to
tantalum-181

5.1 Parameter uncertainties for tantalum-181

The nuclear model code TALYS 1.2 [23] was used to produce 1000 cross section samples
containing total CS, integral elastic CS and differential elastic CS with neutrons as
incident particles. Each of these cross sections was computed for the same set of 75
incident energies ranging from 0.3 MeV to 160 MeV. With increasing incident energy,
the distance between two energies of the grid was also increased. The following table
depicts the utilized step sizes for different energy intervals:

energy [MeV] 0.3 1.0 10 30 50 60 160

increment [MeV] 0.1 0.2 1 2.5 5 10 –

Table 5.1: Two consecutive energies E1 and E2 in the first row define an energy interval.
The distance between the mesh points in this interval is given by the value in
the second row below E1.

For example, in the energy interval from 0.3 MeV to 1.0 MeV a mesh size of 0.1 MeV
was used. From these samples, the mean cross section vector and the covariance matrix
were calculated to define the Gaussian prior.

One of the models implemented in TALYS is the optical potential approach [17] with
the global parametrisation of Koning and Delaroche [22]. There is an optical potential
assigned to every particle type such as neutrons and protons. Because only neutrons
were considered as incident particles, it would have sufficed to specify the parameters for
the neutron optical potential to describe the total and shape-elastic cross section well in
the unresolved energy range. However, as experiments are unable to distinguish between
shape- and compound-elastic CS and hence can only measure the total elastic CS, the
calculation of the compound-elastic CS is necessary to compare model predictions against
experimental results.

The compound-elastic CS is part of the reaction channel and competes with other
reactions and therefore it depends on optical potential parameters of other involved
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particles. In addition, the parameters of the level density models implemented in TALYS
have an impact on these channels.

Nonetheless, an analysis showed that the compound-elastic CS is of minor significance
for the integral elastic CS. Above an incident energy of 2 MeV, its fraction of the integral
elastic CS is less than 3% (Fig 5.1). Thus, one will not lose important features by varying
only the neutron optical potential parameters. This fact was not clear in the beginning,
and therefore the neutron optical potential parameters as well as level density parameters
for the Fermi gas model were varied.

The parameter boundaries were taken as obtained by D. Neudecker during the course
of her Ph.D. thesis [26]. They are given in Table 5.2. Values in between were sam-
pled according to an uniform distribution. A random number generator of Mersenne-
Twister [25] type was used in order to avoid the unpleasant feature of linear congruential
generators which deliver random numbers restricted to a set of parallel hyperplanes.

Neutron optical potential (global parametrisation)

rv 1.0645 1.4000 d1 10.6937 15.1184
av 0.4700 0.8318 d2 0.0171 0.0192
v1 40.4318 61.3587 d3 9.8829 13.1171
v2 0.0051 0.0088 rSO 0.9098 1.2322
v3 0.000016 0.000016 aSO 0.4500 0.7300
w1 13.3422 17.0932 vSO1 5.1359 7.7941
w2 79.1430 96.7360 vSO2 0.0035 0.0045
rd 1.0715 1.4340 wSO1 −2.7179 −3.4821
ad 0.3716 0.6576 wSO2 160.000 160.000

Level density parameters (Fermi gas model)

α 0.011402 0.030059 γ1 0.331541 0.615719
β 0.126247 0.332833 γ2 0.000000 0.000000
∆ −3.000000 3.000000

Table 5.2: Lower and upper boundaries of neutron optical potential and level density
parameters used in the sampling process. Intermediate values were selected
according to an uniform distribution.
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Figure 5.1: Portion of the compound-elastic CS on the integral elastic CS. It amounts
to 30% at 0.5 MeV, drops below 10% at 1.6 MeV and is about 3% at 2 MeV

5.2 Prior studies

In principle, the Full Bayesian Evaluation Technique allows the use of very general
probability density functions (pdf). However, in actual implementations for pragmatic
reasons the prior is assumed to be of Gaussian shape. As was pointed out, the probability
distribution in cross section space results from the uniform distribution in parameter
space and is given by G−1/2, where G is the Gram determinant (see Eq. 3.8).

Thus, the applicability of the actual implementation of the FBET depends on whether
G−1/2 resembles the essential features of a Gauss distribution. The high dimensionality of
the parameter space – 16 parameters of the neutron optical potential are varied – renders
the calculation of G for a sufficiently dense grid almost impossible. This is the reason why
the mapping from parameter space to cross section space is only determined for a sample
of parameter sets. The sample size is far too small to obtain a non-parametric estimate
of the resulting probability density distribution. Hence, the calculation is restricted to
the lowest two moments of the cross section vectors. Knowing only these two quantities,
the principle of maximum entropy leads to a pdf of Gaussian shape.

In the following we study the features of the sample distribution in order to gain
knowledge on the true distribution and thus of the validity of the implemented FBET.
The more features the real distribution shares with the Gauss distribution, the better
the prior implements the systematics of the model.

Another aim is the investigation of the mapping from parameter space to cross section
space established by the model. In the vicinity of a parameter vector, the function can
be approximated by a linear mapping from R16 (due to 16 optical potential parameters)
to a 16-dimensional linear subspace in cross section space, see (Eq. (3.7)). Globally, the
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parameter vectors are mapped to a manifold in cross section space which may be bent
as a whole and may exhibits points of contraction. Points located within a small volume
in the vicinity of these points of contractions get mapped to an even smaller volume in
cross section space leading to an increased probability density there. Hereby, volumes
are defined by the Lebesgue measure1.

The following analyses were carried out with the statistical programming languageR [29].
In particular, the following packages were utilized: ‘robustbase’ [32] for outlier detection,
‘np’ [16] for non-parametrically density estimation, ‘mclust’ [12, 13] for cluster analysis
and ‘car’ [11] for scatterplots.

5.2.1 Analyzing (n,tot)

The total CS was calculated for 75 incident energies. Therefore, every obtained cross
section curve can be regarded as a vector in a 75-dimensional vector space.

Outliers. First of all, an outlier test based on the Stahel-Donoho outlyingness [14] was
performed. The utilized measure of outlyingness for a vector Xi of the sample is given
by

out(Xi) := sup
α

(out(Xi, α)) = sup
α

(
|αTXi −med(αTX)|

IQR(αTX)

)
, (5.1)

where α is a normalized vector; αTXi represents the projection of Xi onto the direction
given by α; med(αTX) denotes the median of the projected samples {Xj}, j = 1, . . . , n
with n being the number of sample vectors and IQR(αTX) denotes the interquartile
range of the projected sample vectors. Thus, the outlyingness of a vector Xi is the
maximal distance occurring for this vector from the median normalized by the IQR in
a particular projection direction.

In practice, the outlyingness can only be approximately computed by projecting the
samples onto hundreds or thousands of randomly selected vectors α and take the highest
obtained value for out(Xi, α) as the outlyingness.

A cross section vector was treated as outlier if its outlyingness was greater than two.
If samples are obtained according to a Gauss distribution the outlier test is expected to
identify about 0.5% of the vectors as outliers which are actually not.

The number of projection directions was increased until convergence in the number of
outliers was observed. 66 curves out of 1000 were identified as outliers – by far more than
the expectable 0.5%. Some of these are shown in the top row of Fig. 5.2. Nearly all of
them possess remarkable features at 3.2 MeV. Either there is a huge reduction of the CS
perceivable as a sharp negative peak or local oscillations occur. Further analysis revealed
the negative peak to stem from the calculated reaction cross sections (see Fig. 5.3).

This sudden drop – in some cases over several barn – appears unphysical and can
probably be attributed to numerical instabilities in the TALYS code. Thus, these outliers
were removed from the sample for the subsequent analysis.

1In one, two and three dimensions this amounts to length, area and volume in the usual sense.
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Additionally, the sampled vectors were classified according to their number of maxima.
The number of maxima (= number of minima) ranged from two to six and a negligible
amount of vectors – all identified as outliers – featured more than four maxima (cf.
Fig. 5.4).

x

y1

4
5

6
7

8
9

x

y1

x

y1

x

y1

1 2 5 10 20 50 100

3
4

5
6

7
8

9

x

y1

2 5 10 20 50 100

x

y1

2 5 10 20 50 100

Energy [MeV]

n.
to

t [
B

]

Figure 5.2: The top row displays some of the total cross section curves rated worst by
the outlier test. The bottom row shows the worst rated vectors after outliers
were removed. Nearly all outliers exhibit peculiar features at 3.2 MeV.
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outliers within each class. Classes associated with higher numbers of maxima
contain a higher percentage of outlier curves.
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Principal component analysis. Since only 16 optical potential parameters were var-
ied and level density parameters are – except perhaps for the outlier vectors – of minor
significance for the result, cross section curves must not have more than about 16 degrees
of freedom. In the case of a linear mapping from parameter space to cross section space,
the curves would be restricted to a linear 16-dimensional subspace. Non-linear fea-
tures of the mapping may cause the cross section manifold to be bent, thereby reaching
more than 16 dimensions (see Fig. 3.1). To study how many dimensions are important,
an eigenvalue decomposition of the covariance matrix was performed. This pictorially
means to align the coordinate axes parallel to the principal axes of the assumed Gauss
distribution. The eigenvalues represent the variances along these axes. Directions as-
sociated with the highest variances contain the most significant information about the
features of a vector. This decomposition technique, invented in 1901 by K. Pearson, is
called principal component analysis [27].

The result of the eigenvalue decomposition is illustrated in Fig. 5.5. The corresponding
normalized eigenvectors are visualized in Fig. 5.6. The stated ‘mean’ values denote the
expectation and the stated ‘sd’ values the uncertainty (standard deviation) the prior
assigns to the directions given by the eigenvectors. The prior estimate for the total
CS curve (cf. 5.28) can be obtained by σ(E) = m1v1 + · · · + mnvn with mi being the
mean value for the direction given by eigenvector vi. The 1-σ-confidence interval can be
calculated by δ = (δ2

1 + · · ·+ δ2
n)1/2 with δi being the standard deviation in direction of

the eigenvector vi.
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Figure 5.5: The eigenvalues of the covariance matrix for (n, tot) in descending order.
They represent the variances along the principal axes of the assumed Gauss
distribution. Their rapid decline indicates there are a lot of negligible direc-
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Figure 5.6: Normalized eigenvectors of the prior covariance matrix for the total CS
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As can be seen, the variances rapidly decrease and the variance associated with the
16th principal axis is already about a factor 10−4 smaller than the one of the first principal
axis. Hence, a linear combination of only a few of the eigenvectors associated with the
biggest eigenvalues should suffice to reproduce the majority of the cross section vectors
of the sample.

In order to determine the number of required eigenvectors ~ei, the following procedure
was applied: All cross section vectors within the sample were projected onto the prin-
cipal axes of the covariance matrix. Thereafter, only the coordinates xi for the axes
corresponding to the n biggest eigenvalues were kept, all other were set to zero. Each
cross section vector was subsequently approximated by a linear combination of the eigen-
vectors associated with the coordinates which were kept: x1~e1 + x2~e2 + · · ·+ xn~en. The
resulting vectors were compared to the original ones in terms of several error measures.
As error measure for a single curve, either the maximal absolute residue or the median of
the absolute residues was taken. The error measure for the whole sample was either given
by the maximal error occurring for a vector therein or by the median of the errors for the
vectors. These errors were calculated for different numbers of considered coordinates n.
The results are shown in Fig. 5.7. Furthermore, the same error measures were used for
the relative residues (Fig. 5.8). These figures indicate that the leading 16 eigenvectors
suffice to describe all vectors with good accuracy. The median of the single curve errors
given by the maximal residue is about 10 millibarn; the maximal percental deviation
occurring in the sample lies below 1%. The median of the maximal percental deviation
is in the magnitude of one-tenth of a percent (see Fig. 5.8). Thus, the model can be
indeed understood as a mapping from R16 to a linear 16-dimensional subspace in cross
section space. Moreover, even without further research, the assumption of bijectivity
seems very plausible.

In order to gain an even better understanding of the quality of the approximation, the
probability density to obtain a certain relative deviation of the approximated vector from
the original one was estimated for each incident energy in the grid. In other words, the
conditional probability density ρ(rrel|E) was calculated. The result is shown in Fig. 5.9.
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Figure 5.7: The bars represent the error for the whole sample if approximations with a
specific number of eigenvectors are used. The error for the whole sample is
based on different error measures for a single vector. For the sub-diagrams
of the top row, the error measure for a vector is given by the maximal
absolute deviation of the approximation from the original vector. For the
sub-diagrams of the bottom row, the error measure for a vector is given
by the median of the absolute deviations of the approximation from the
original vector. The error measure for the whole sample in the left column is
determined by the maximal error occurring for a vector within the sample.
The error measure for the whole sample in the right column is determined
by the median of the errors for the vectors in the sample.
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Figure 5.8: The bars represent the error for the whole sample if approximations with a
specific number of eigenvectors are used. The error for the whole sample is
based on different error measures for a single vector. For the sub-diagrams
of the top row, the error measure for a vector is given by the maximal
relative deviation of the approximation from the original vector. For the
sub-diagrams of the bottom row, the error measure for a vector is given by
the median of the relative deviations of the approximation from the original
vector. The error measure for the whole sample in the left column is deter-
mined by the maximal error occurring for a vector within the sample. The
error measure for the whole sample in the right column is determined by the
median of the errors for the vectors in the sample.
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Figure 5.9: The estimated probability density for the relative deviation of the approxi-
mated (=dimension reduced) curves from the original vectors at each incident
energy. For a randomly selected cross section curve of the sample, the prob-
ability for the approximation of this curve to deviate from the original by
more than 0.3% at any energy is negligible.
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Investigation of the mapping. The previous analysis has indicated the existence
of a mapping from R16 to a 16-dimensional linear subspace in cross section space, the
question arises whether it is approximately even a linear or quadratic mapping. Thus,
the following three relationships were considered:

f1 : σi = ai +
n∑
j=1

bijPj (5.2)

f2 : σi = ai +
n∑
j=1

bijPj +
n∑
j=1

cijP
2
j (5.3)

f3 : σi = ai +
n∑
j=1

bijPj +
n∑
j=1

n∑
k=j

cijkPjPk (5.4)

where σi is the i-th component of the cross section vector, Pj the j-th component of the
parameter vector, n = 16 the number of parameters and ai, bij, cijk the coefficients which
have to be determined. The values of the latter were obtained by a linear regression
analysis for each σi individually. Neither the linear model f1 nor the quadratic models
without mixed terms f2 and with mixed terms f3 were able to describe the cross section
curves in a satisfying manner. The biggest deviations were found below 2 MeV. Above
this energy, the approximations f1,f2 and f3 were adequate for most vectors. As was to
be expected, the quadratic approximation with mixed terms f3 always outperformed f1

and f2. One sample vector for which the approximations were less satisfactory is shown
in Fig. 5.10.
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Figure 5.10: A total cross section curve which was not approximated well by f1, f2 and
f3. The quadratic relationship f3 outperforms the linear relationship f1 and
the quadratic relationship without mixed terms f2. As f2 is not better than
f1, the mixed terms PiPj seem to be important.
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Marginal probability density. Although the cross section space has too many dimen-
sions to estimate the pdf in a non-parametric way, the marginal probability densities for
two degrees of freedom can be estimated well. This means to project the sample cross
section vectors onto a 2-dimensional plane and estimate the probability density for the
points thereon. If the distribution in cross section space is a multi-dimensional Gauss
distribution, the cross section vectors projected onto arbitrary planes should also follow
a Gauss distribution. The first two principal axes of the assumed Gauss distribution
are associated with the highest variances. Hence, they contain the highest amount of
information about the shape of a particular cross section vector and thus their joint
probability density distribution was examined. The estimate for the joint pdf was deter-
mined with the aid of the R-package ‘np’ [16]. It implements kernel-density-estimation
with likelihood cross-validation. A diagonal Gaussian kernel was chosen, therefore the
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Figure 5.11: The probability density function projected onto the first two principal axes
obtained via kernel density estimation.
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true pdf was approximated by

f̂(x1, x2;h1, h2) =
1

2πnh1h2

n∑
i=1

exp

(
−1

2

(
x1 − xi,1

h1

)2
)

exp

(
−1

2

(
x2 − xi,2

h1

)2
)
,

(5.5)
where the coordinate of the first principal axis is x1 and of the second principal axis
x2. The quantities xi,1 and xi,2 are the projections of the i-th sample vector onto the
first and second principal axis respectively. The optimal bandwidths h1 and h2 for
determining the degree of smoothing were obtained by likelihood cross-validation. This
method splits the sample vectors repeatedly into two sets, a training set and a validation
set, and generates an estimate of the pdf (5.5) by using only vectors from the training
set. The log-likelihood according to the obtained pdf is subsequently calculated for the
validation set. It is defined by

logL(x1, . . . , xn|f̂) =
n∑
i=1

log(f̂(xi,1, xi,2)) . (5.6)

Values for the bandwidth parameters h1 and h2 are selected which maximize the log-
likelihood function. The result is presented in Fig. 5.11.

Obviously, the pdf does not really have a Gaussian shape. The local maximum located
on the right hand side of the global maximum is related to a volume where the Gram
determinant takes low values. However, as this is only the pdf for a projection of the
75-dimensional cross section space onto a plane, more points of contraction could exist
which are not steadily discernible in this projection plane. It would be an analogous
problem to try to extract information about the position and structure of furniture in a
room by only looking at the shadows on one wall. If the shadows of two objects overlap,
it is not possible to discriminate between them. Perhaps the bump in the front is also
associated with a point of contraction.

Cluster analysis. In order to detect preferably all points of contraction a clustering
algorithm [12] was applied. Firstly, all cross section curves were projected onto the
subspace spanned by the leading 15 eigenvectors of the covariance matrix associated
with the highest variances. After this reduction of dimension, different Gaussian mixture
models were fitted by the expectation-maximisation algorithm [7] as implemented in the
R-package ‘mclust’ [13] to describe the pdf of the reduced cross section vectors as well
as possible. A Gaussian mixture model is defined by

ρ(x) :=
K∑
k=1

ωk (2π)−p/2 det(Σk)
−1/2 exp

(
−1

2
(x− µk)TΣ−1

k (x− µk)
)
, (5.7)

with the weighting factor ωk, the mean vector µk and the covariance matrix Σk for the
k-th Gauss distribution, also called the k-th component. The dimension p is given by the
number of elements of the occurring vectors x and µk. In order to ensure normalization
the ωk have to sum up to one.

53



The suitability of several Gaussian mixture models which differ in the number of
components and number of degrees of freedom for each component was examined. The
specific restrictions which are imposed on the components can be explained on the basis
of the covariance matrices, parametrised in the following way [13, p. 53]:

Σk = λkDkAkD
T
k , (5.8)

with the orthogonal matrix of eigenvectors Dk, the diagonal matrix Ak containing the
scaled eigenvalues ẽk,i of Σk and a scalar λk. The scalar and the scaled eigenvalues are
determined by the conditions

∏p
i=1 λkẽk,i = 1 and λkẽk,i = ek,i where ek,i denotes the

original unscaled eigenvector. Dk determines the orientation, i.e. the alignment of the
principal axes, Ak determines the shape and λk determines the volume of an ellipsoid
resembling the density contours of a component k.

Only the specific restrictions of the models tagged EEV, VEV, VVV in Fig. 5.12 are
described since they are of particular interest. For a general description of all probability
density models occurring in Fig. 5.12, the reader is relegated to the ‘mclust’ manual [13].

The model EEV constrains all components to have the same values for λk and Ak
and allows them to have only different choices for Dk. Thus, the ellipses defined by the
isosurfaces of probability density for different components have equal volumes and equal
shapes. They are only allowed to differ in their orientation. The model VEV permits
individual choices of λk and Ak for the components, therefore they are restricted to have
equal shape but are allowed to differ in volume and orientation. Finally, the model VVV
permits the components to differ in volume, shape and orientation.
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Figure 5.12: BIC values for different models. The models EEV (=equal volume and
shape, varying orientation), VEV (=equal shape, varying volume and ori-
entation) and VVV (=varying volume, shape and orientation) obtained the
highest values for 6 components.
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These models were fitted to the dimension reduced cross section sample vectors by
the expectation-maximisation algorithm [7]. In order to determine their suitability the
Bayesian information criterion (BIC) [33] was used. The BIC value for a model is given
by

BIC ≡ 2 logL−N log n, (5.9)

where L is the maximised likelihood of the model, N is the number of free parameters
of the model and n is the number of observations, i.e. number of sample vectors. The
higher the BIC value the better rated the model. The likelihood is given by

L =
n∏
i=1

ρ(Xi), (5.10)

where Xi denotes a sample vector and ρ is the probability density function (Eq. 5.7).
The Bayesian information criterion is a measure for goodness of fit which takes into
account that an increasing amount of model parameters automatically improves the fit
although the model is still inadequate. Therefore, in order to avoid over-fitting and
find an adequate model, the Bayesian information criterion incorporates a term which
punishes models relying on more free parameters.

Fig. 5.12 shows the BIC values obtained for different models for a varying number of
components. The models EEV, VEV and VVV with six components attain a maximal
BIC and they are superior to the other considered models. The current implementation
of FBET works with the density model VVV and one component. Thus, the switch
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Figure 5.13: The classification of cross section vectors was transferred to the correspond-
ing parameter vectors. The parameter vectors of different classes are nicely
separated in the (rv, v1)-plane. The values of rv and v1 are given relative to
the middle values of the allowed parameter ranges.
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to Gaussian mixture models with more components would allow to better mimic the
unknown true probability density function.

Gaussian mixture models are not only used to model probability density distributions
but also for the identification of latent variables, i.e. attributes assigned to sample
vectors which were not determined during the sampling process. For instance, one can
hardly expect the weight distribution of fish to follow a Gauss distribution because the
mean weight of a shark is very different from the mean weight of a goldfish. Nonetheless,
the assumption of a Gauss distribution for each ‘class’ of fish may be fulfilled.

Therefore, one can interpret the result that six components describe the data best
as there are six classes of cross section vectors. According to the model VVV with six
components which obtained the best BIC, most of the cross section vectors are well
separated, i.e. clearly attributable to a component in the Gaussian mixture model.
For 90% of the cross section vectors the conditional probability to stem from a certain
component is over 99%; for 95% of the vectors it is still more than 96%.

Tracing back the cross section vectors to their respective optical potential parameter
vectors and imposing the classification in cross section space onto the parameter vectors,
the classes are well separated in respect to the optical potential parameters rv and v1

(cf. Fig. 5.13)

Marginal probability density within a class. In the present situation where a
uniform distribution is chosen in parameter space, the features of the distribution in
cross section space are only defined by the functional relationship from parameter space
to cross section space given by the physical model. Consequently, the estimation of the
probability density reveals properties of the mapping. More specific, it is connected
to values of the Gram determinant which itself can be regarded as a modulus of the
derivation generalized to arbitrary dimensional vector spaces.

The preceding analyses demonstrated the mapping to be of a complex structure.
Nonetheless, a cluster analysis detected clearly six different clusters with a low probabil-
ity for misclassification. This means there are distinct domains in parameter space where
the mapping strongly contracts volumes compared to the transient regions in between
these domains.

The question emerges whether the mapping is of a less complicated structure within
these classes. Various density estimations for projection planes indicated that this is not
the case. For example, Fig. 5.14 shows the projection plan with highest variance for the
class associated with parameter sets in the bottom left of Fig. 5.13.
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probability density

Figure 5.14: Marginal density distribution for the class associated with the parameters
on the bottom left of Fig. 5.13 for the projection plane with highest vari-
ance.

Intermediate summary. The previous analyses allow two important conclusions.
Firstly, considering the total cross section, the physical model is, in good approximation,
a mapping to a 16-dimensional subspace in cross section space. The energy grid seems
– except for the outliers – sufficiently dense to have smooth transitions from one grid
point to another. Thus, a linear combination of 16 basis functions is appropriate to
describe each of the 1000 cross section curves within the sample sufficiently well. These
are shown in Fig. 5.6.

Secondly, the density estimation and the cluster analysis proved the true probabil-
ity density to deviate substantially from the Gauss distribution – a sum of six Gauss
distributions resembles the real situation more accurately. However, the investigation
of marginal density distributions within different classes indicated features which even
cannot be aptly described by a mix of Gauss distribution (Fig. 5.14). This does not
necessarily mean the model manifold in cross section space is left. In the first place it
simply means that the Gauss distribution is not in exact correspondence to the uniform
distribution assumed for the optical potential parameters.

These two findings point at ways for future improvements: the use of dimension re-
duction techniques to extract only the significant information and thereby allowing to
handle the information of numerous sources more efficiently; and the incorporation of
more sophisticated probability density models, i.e. Gaussian mixture models, which bet-
ter resemble the true density in order to better follow the systematics of the model and
the uniform distribution in parameter space. Nonetheless, in this work the Full Bayesian
Evaluation Technique is exactly implemented as described in the previous chapters.
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General distribution features. In the following analysis, a more specific point of
view is taken. Fig. 5.16 visualizes the probabilities for points in the E-CS diagram to
be reached by cross section curves. Increasing intensity of the blue colour denotes areas
with increased number of sample vectors in vicinity. The cross section values show a big
spread of several Barn in energy ranges where the curves tend to decrease. Additionally,
a high spread can be observed for energies above 100 MeV. The very blue areas are
caused by the crossing of decreasing curves which have not yet returned to a positive
slope and curves which have already performed that transition. Notably, some of the
curves seem to fork between 70 MeV and 80 MeV.

The probability density functions for cross section values at some incident energies are
shown in Fig. 5.17. These correspond to vertical slices in Fig. 5.16. Even for incident
energies associated with very blue colours in Fig. 5.16, denoting a high concentration of
cross section curves, the standard deviation is still between 10% and 20%.

The observed fork in Fig. 5.16 at around 70 MeV appears as a small notch in the
bottom right diagram of Fig. 5.17. As can be seen, the assumed Gauss distribution,
denoted by the green curve, is in spite of the notch still a fairly good approximation for
the true probability density function.

Due to the high spread of cross section values over the whole range of incident energies
compared to typical experimental uncertainties of some percent, it can be expected that
the model merely imposes its systematics on the experimental data. This means if
only a single cross section value for a particular energy is included during a Bayesian
update step, the resulting prediction for the cross section value at the energy of the
experiment is primarily given by the estimate of the experiment. Furthermore, the
resulting uncertainty is also mainly determined by the experiment, consider Eq. (2.25).
However, the situation changes if experimental points for several energies are included.
As was shown, the model – in good approximation – only allows curves which are a
linear combination of 16 basis functions. This can be seen by considering the standard
deviations listed in Fig. 5.6. The 16th basis function (eigenvector) is associated with
a standard deviation of 0.039 barn. Together with the fact that this basis function
has a maximal value of 0.2 barn around 0.5 MeV, this leads to the conclusion that the
deviation of the cross section curve caused by the coefficient of this base function is not
more than 10 millibarn. Since the cross section takes values in the magnitude of 10 barn
at 0.5 MeV, the relative standard deviation associated with the 16th basis function is of
the magnitude of 0.1%. Thus, if the experimental data points are not representable by
the set of basis functions, the predicted curve after the Bayesian update step will be –
in good approximation – a linear combination of them again.

Because the regarded cross section space is 75-dimensional, the approximate restriction
to 16 dimensions indicates that there are many directions in which no flexibility is
permitted. This in turn implies high correlations which show up in the correlation
matrix (Fig. 5.15). Notably, all the correlations are positive. Above an incident energy
of 100 MeV all cross sections are highly correlated with each other.

In addition, some stripes of looser correlations occur in the graph, correlations attenu-
ate for increasing energy differences and then rise again. They regain their highest values
for energy differences between 20 to 30 MeV. Expectedly, cross sections for energies up
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to 60 MeV are only weakly correlated with cross sections above 100 MeV, which can be
seen by the brighter areas in the top left and bottom right corner of Fig. 5.15.

The high correlations even for energy differences of more than 40 MeV indicate that
despite the true probability distribution is not Gaussian, a Gauss distribution is still
able to capture a lot of the systematics of the model.

Figure 5.15: Correlations between different incident energies within the total cross sec-
tion channel.
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Figure 5.16: Probability density that a model cross section curve for (n,tot) crosses some
point in the (E,CS) plane. Bluer points are reached by more cross section
curves than whiter ones.
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Figure 5.17: These probability density functions correspond to vertical slices in Fig. 5.16
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5.2.2 Analyzing (n,el)

The primary goal of this master thesis is the inclusion of differential cross section data
into the FBET. Especially, the angle differential elastic cross section should be included
in this work. Therefore, differential elastic cross section data are considered. Differen-
tial cross sections are expressed for every of the 75 incident energies in terms of Leg-
endre coefficients up to the order of 60. Hence, a sample cross section vector contains
61×75 = 4575 elements associated with the elastic channel. The corresponding block in
the covariance matrix consists of 45752 = 20930625 elements which amounts to approx-
imately 170 MByte. Despite this size, the calculation of the Bayesian update was not a
problem. One update step took a few minutes on an Intel CPU with 3 GHz and 4 Gbyte
of main memory. Nonetheless, in the future differential data for other channels may be
included in the prior and as the number of elements in the covariance matrix scales with
the square of elements in the sample cross section vectors, computability and storage
needs have to be taken into account. Therefore, the first analysis is going to focus on
the issue whether the same dimension reduction technique as for the total cross section
channel is applicable to the elastic one.

The second analyses tackles the issue to what extent the assumed Gauss distribution
is able to capture the systematics of the model for differential elastic data. Thus, the cor-
relations within the elastic channel between different energies and also between different
angles are considered. Additionally, the magnitude of correlations between differential
elastic cross sections and the total cross section is investigated.

Dimensionality. A vector with differential angular cross section data can be con-
sidered as the discretised image of a function in two variables, i.e. order of Legendre
coefficients and the incident energy. The function for the mean sample vector is shown
in Fig. 5.18. Assuming that the functions represented by the other sample vectors are of
a similar structure, one may expect that there exists a suitable representation in which
much less than 75× 61 = 4575 (number of energies and number of Legendre coefficients
per energy) values are needed for their characterisation. Furthermore, these vectors are
still the result of a mapping from the 20-dimensional parameter space2 and consequently
they are restricted to a 20-dimensional manifold in this 4575-dimensional cross section
space.

The result of the principal component analysis [27] is presented in Fig. 5.19. The
variances decrease quickly but not as quickly as for the total cross section. A value of
around 10−5 already reached at the 30th principal axis in the case of the total cross section
is not reached before the 90th principal axis for the differential elastic one, compare to
Fig. 5.5. Consequently, a higher number of eigenvectors has to be taken into account to
provide a satisfying description of the differential CS data.

In order to determine the required number of eigenvectors, the same procedure as for
the total cross section was applied: For every sample vector all coordinates associated
with the differential CS were determined by projection to the eigenbasis of the covari-

216 varied parameters for the optical potential and 4 varied parameters for the Fermi level density
model. It is not certain whether the latter can be neglected for the differential elastic CS.
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ance matrix. Subsequently, all coordinates except for the leading n were set to zero.
Thereafter, all curves were back-projected onto the original basis and the maximal ab-
solute deviation of an approximated curve from the original curve was determined. This
procedure was performed for different choices of n. The result is shown in Fig. 5.20.

There are some aspects concerning this diagram which require discussion. The maxi-
mal absolute error is not a monotonically decreasing function of the number of utilized
eigenvectors. At first glance this seems strange, since the addition of vectors in the linear
combination should always reduce the error. However, if the coefficients associated to
the eigenvectors are determined by projection – which was done here – only the error
given by the euclidean distance is to be guaranteed to decrease monotonically. It would
be another situation if the values of the coefficients were found by directly minimizing
the maximal absolute error. Then additional eigenvectors denote additional degrees of
freedom and the maximal error thus must be a monotonically decreasing function of the
number of eigenvectors.

Another point is the stagnancy of error reduction between 100 and 260 eigenvectors.
Considering Fig. 5.21 which displays the median of the maximal absolute errors of the
single curves, one can see that this stagnancy is not occurring there. Thus, the approxi-
mation for a lot of curves steadily improves in the range from 100 to 260 eigenvectors, but
for some curves eigenvectors are important which get included in the linear combination
at a much later point.

Notably, very often the maximal absolute deviation occurs for the zero-th order Legen-
dre coefficient. Since this coefficient denotes an overall shift for the complete differential
cross section curve, it is very important to get its error sufficiently small. What suffi-
ciently small means depends on the actual case. Regarding the experimental data which
will be presented in the next chapter, an error in the magnitude of 0.1 millibarn ap-
pears acceptable. Fig. 5.22 shows the quantiles of the maximal absolute error within the
sample for different number of eigenvectors. Using a linear combination of the first 400
eigenvectors, the maximal absolute error is not greater than 0.1 millibarn. Furthermore,
for 90% of cross section curves the error is less than 0.05 millibarn.

At first glance the requirement of 400 base functions (eigenvectors) seems quite high
to describe each differential cross section curve within the sample well. Though, these
basis functions refer to incident energies and Legendre coefficients at once. If one would
regard the differential cross section curve for each of the 75 incident energies individually,
it would be equivalent to have found a generic function – the same function for every
incident energy – that relies on 5 parameters for a satisfactory approximation of the
differential CS at all considered incident energies.

However, one small doubt remains about the generality of this result. A number of 16
basis functions was enough in the case of the total cross section to adequately describe
1000 functions represented by vectors within the sample. In contrast to that, 400 base
functions are necessary to approximate 1000 differential cross section curves. The ratio
for the latter is a lot closer to one. To consider an extreme case as an example, to be
able to describe well 1000 functions by 1000 other functions may not be regarded as a
big surprise. Still there are reasons to believe that the number of required eigenvectors
would not change drastically by considering a sample of 10000 cross section vectors.

63



number of leading eigenvectors

m
ax

. e
rr

or
 w

ith
in

 s
am

pl
e 

[m
B

]

1 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

Figure 5.20: The maximal absolute deviation of an approximation from the original
curve as a function of the number of considered eigenvectors. The order
in which eigenvectors are included in the linear combination is determined
by their associated variances. Eigenvectors associated with high variances
come first.
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the curves the approximations constructed by 400 eigenvectors deviate not
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In order to understand this, it is better to drop the conceptual framework of functions
and return to that of vectors again. Assume 1000 points were selected randomly in a
restricted domain of a 4575-dimensional vector space. The probability for all of them to
lie approximately in a 400-dimensional linear subspace is near to zero. Therefore, having
found this to be true for the differential elastic cross section vectors is indeed significant.

Correlations. On the next pages the correlations between different Legendre coeffi-
cients are visualized. Fig. 5.23 shows the correlations for Legendre coefficients of differ-
ent order at the same incident energy. There are strong correlations and they are usually
positive. Only coefficients of very high-order are negatively correlated with low-order
coefficients. Some diagrams feature a blue square-like structure in the bottom left. Thus,
for the leading order Legendre coefficients strong correlations persist over several orders.
Then at a particular Legendre order the blue square is continued by a tail-like structure
in the diagonal. This means that the range of strong correlations over several orders
is abruptly reduced. With increasing incident energy also the size of the blue square
in the bottom left increases. Therefore, the relationship between differential Legendre
coefficients becomes more and more linear. In consequence also differential cross section
values for different angles become linear functions of each other. Explanations for the
other diagrams are given in the figure descriptions.
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Figure 5.23: Correlations between Legendre coefficients for different energies. The deep-
est blue in the diagonal indicates a perfect positive correlation; a ‘paper
white’ indicates no correlation; and red negative correlations. The colour
code is the same as for Fig. 5.15
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Figure 5.24: Correlations between Legendre coefficients up to the order of 15. This dia-
gram includes incident energies where experimental data are usually avail-
able. All correlations are positive. The colour code is the same as for
Fig. 5.15
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Figure 5.25: Correlations between Legendre coefficients up to the order of 30. This dia-
gram includes a broad range of incident energies from 10 MeV to 100 MeV
thereby demonstrating how strong the model couples cross section data of
different energies together. Notably, correlations still exist between 10 MeV
and 100 MeV and even strong ones between 10 MeV and 50 MeV. Low order
Legendre coefficients at 50 MeV are weakly negatively correlated to Legen-
dre coefficients at 100 MeV. Hence, if the integral cross section is above the
average at 50 MeV, the probability is slightly increased that it is below the
average for 100 MeV.
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Figure 5.26: Correlations between the total cross section and Legendre coefficients for
the elastic channel up to the order of 15. The 0-order Legendre coefficient
is strongly correlated to the total CS at the same energy visible by the blue
diagonal in the top-left diagram. Thus, there exists in good approximation
a linear relationship between the integral elastic and the total CS. Notably,
with increasing energy difference correlations are dying away but at some
point rise again which can be seen by the white wave-like stripes. Remark-
ably, the total CS in the range from 2 MeV to 5 MeV is strongly correlated
to the integral elastic CS between 20 MeV and 30 MeV. All diagrams contain
a little blue square in the top right corner. Therefore, Legendre coefficients
for high energies (above 80 MeV) are strongly correlated to the total CS at
high energies but only weakly to the total CS at lower energies.
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5.3 Presentation of the utilized experimental data

This work considers experimental data for the total neutron cross section and the angle
differential elastic neutron cross section for tantalum-181. The data was taken from the
EXFOR database [1]. The following table summarises the suitable data for which the
papers were available:

experimenter year E1 [MeV] E2 [MeV] num.pts ref

total neutron cross section data

Finlay et al. 1993 5.0 600 474 [9]
Foster et al. 1971 2.5 15.0 243 [10]
Islam et al. 1972 1.0 2.0 101 [18]

angle differential elastic neutron data

Smith 2005 0.3 10.0 714 [36]
Hansen et al. 1985 14.6 14.6 15 [15]
Ferrer et al. 1976 11.0 11.0 26 [8]
Benenson et al. 1973 14.8 14.8 8 [4]
Rosen et al. 1957 14.0 14.0 8 [31]
Remund 1956 3.3 3.3 9 [30]

Table 5.3: Suitable experimental data for the total neutron CS and for the differential
elastic neutron CS available in the EXFOR database [1].

For the total CS, the data from R. W. Finlay et al. [9] and D. G. Foster et al. [10] were
selected because they offer measurements over a broad range of energies. Furthermore,
they state coherent estimates in the common energy range from 4.5 MeV to 15 MeV.
Since Finlay et al. provide total CS up to 600 MeV – an energy domain where the
optical model is certainly inadequate – only the subset of their data featuring incident
energies below 160 MeV was included in the Bayesian update procedure. An overall
normalization error of 0.5% for the Finlay data and 3% for the Foster data was assumed.
The experimental data and the prior is visualized in Fig. 5.28.

Concerning the angle differential elastic data, only estimates from A. B. Smith [36]
from 5 MeV to 10 MeV were taken into account. An amount of 480 values had been
measured automatedly on a regular angle-energy grid. At each energy, estimates were
obtained for 40 angles between 15◦ and 160◦. Here, an overall normalization error of 5%
was assumed. The differential elastic data is presented in Fig. 5.29.

The paper of Smith [36] explicitly denotes that due to the limited energy resolution
of 360 keV for the scattered neutrons, obtained differential ‘elastic’ cross section curves
contain inelastic contributions up to and including scattering at the fifth level at about
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Figure 5.27: The blue curve corresponds to the model sample vector which approximates
the experimental data best if only elastic scattering is considered. The
red curve corresponds to another sample vector which approximates the
experiment best if also inelastic contributions are included. The measure
for goodness of fit for a sample curve is given by the maximal relative
deviation from the experimental data.

338 keV. In order to include these contributions into the prior, Legendre coefficients αij
of each order i for different levels j were summed up, so αinel,i =

∑5
j=1 αij. The result-

ing Legendre coefficients were treated as belonging to another type of differential cross
section channel. Therefore, the covariance matrix was extended by another block to
include associated covariance elements. The mapping from model space to the exper-
iment space, where the latter includes these inelastic contributions, was performed by
calculating both the sensitivity matrix Sel to map the elastic channel of the model to
the experiment and Sinel to map the inelastic channel. The overall sensitivity matrix
was given by S = Sel + Sinel.

Transferring the samples calculated by TALYS [23] to the experiment space and com-
paring them to the measured cross sections of Smith indicated the inelastic contributions
to be indeed important to describe curve features at higher angles adequately. Fig. 5.27
illustrates the sample vectors whose maximal relative deviation from the experimental
data is the smallest of all sample vectors. The red curves of all three sub-figures are
associated with the same sample vector which is closest to the experimental data if
mapped by S; the blue curves are associated with the sample vectors which is closest to
the experimental data if data is mapped by Sel.

Treating the experiment as only the elastic cross section had been measured, one
would use Sel to map from model space to experiment space. However, as can be seen
by the blue curve, then the model systematically underestimates the cross sections. Ad-
ditionally, this deviation cannot be explained by a normalization error of the experiment.
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Figure 5.28: The prior in comparison to the experimental data for the total cross section.
The 1-σ-confidence interval is marked by a green dashed line for the prior
and by vertical bars for the experiments. Since the total error in the Finlay
data is below 1%, error bars are not discernible from the points.
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Figure 5.29: The prior in comparison to the experimental data for the differential ‘elastic’
cross section. The experimental data is contaminated by inelastic contri-
butions from the first five levels at 6, 136, 159, 302 and 338 keV. These
contributions are also included in the prior curve.
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Applying a factor of about 1.6 to the model curve minimizes the maximal relative devi-
ation from the experiment. However, a normalization error of 60% seems very unlikely
for a modern experiment; and even then the experimental curve is still slightly above
the model curve. Consequently, the difference between elastic model curve (blue) and
experiment is due to also measured inelastic contributions and they have to be taken
into account in the Bayesian update procedure.

5.4 Performing the Bayesian update procedure

The correlation diagrams (Fig. 5.23 - 5.25) demonstrated very high correlations between
Legendre coefficients of different orders and different energies. Furthermore, strong
correlations between the Legendre coefficients and the total CS exist at all energies (see
Fig. 5.26). Thus, updating with total CS data should lead to significant changes for the
different elastic channel; reversely, updating with differential elastic data should lead to
significant changes in the total CS channel. The quality of these modifications due to
updating is studied in the following sections.

5.4.1 Updating with total CS data

The update with total cross section data from Finlay et al. [9] and Foster et al. [10]
leads to the evaluated curves presented in Fig. 5.30 for the total CS and Fig. 5.31 for
the differential elastic CS.

The evaluated curve for the total CS resembles well the shape of the experimental data
but is slightly displaced. The associated 1-σ-confidence interval is very close to 0.5% in
the whole range and the bulk of experimental points is not within its boundaries. The
magnitude of the evaluated uncertainty results from the smallest normalization error
of 0.5% given by the Finlay data. The strong correlations between different energies
and an overwhelming amount of data points with uncertainties of 1% or less cause the
statistical errors to disappear. The reason for this behaviour of the Bayesian update
procedure will be elaborated on in section 5.7.

Interestingly, the prior curve for the total CS (Fig. 5.28) tends to overestimate the
total CS, whereas the posterior curve underestimates it over a broad energy range.
At first glance, the location of the prior suggests that the normalization error of the
experiment should lead to an evaluated curve somewhere between the prior curve and
the experimental data – hence it should lie above and not below experimental data.
The Bayesian update procedure can also be regarded as generalised least-squares fit
to experimental data, in which the data of the model is considered as stemming from
an artificial experiment. In this framework, the observed effect is known as ‘Peelle’s
Pertinent Puzzle’ [28] – the occurrence of evaluated estimates below the estimates of the
experiments which entered the evaluation.

This seemingly paradox behaviour is understandable by recalling the eigenvectors of
the prior covariance matrix (cf. Fig. 5.6). The model restricts the shape of the evaluated
curves to be representable by a linear combination of these eigenvectors. The prior curve
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can be obtained by multiplying every eigenvector by the associated mean (also given in
Fig. 5.28) and summing these products up. By projecting the experimental curve onto
the directions given by these eigenvectors, one obtains the ‘mean’ values the experiment
would assign to these directions. Furthermore, by projecting the experimental covariance
matrix onto the same eigenvectors, one obtains the variances along the eigenvectors the
experimental data is associated with. If for the representation of the shape of the
experimental curve, eigenvectors are important which are associated with very small
variances in the prior, and if additionally, the eigenvectors which caused the prior curve
to lie above the experimental data are very unlikely by the latter, the observed posterior
can occur. The given argument – reduced to its very core – says that the prior regards
the experimental data as rather unlikely and the experimental data reversely renders
the prior curve very unlikely. The resulting behaviour of the Bayesian update procedure
in this case has already been demonstrated qualitatively in the right part of Fig. 3.2.

Although no differential elastic data entered the evaluation, the evaluated differential
elastic CS curve at high angles is closer to the experimental data than the prior curve
(cf. 5.31 and 5.29) and the experimental data lies within the 1-σ-confidence bands.

At low angles, the evaluated curve is significantly shifted downwards compared to
the experimental curve and evaluated confidence bands render the experimental data as
highly unlikely.
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Figure 5.30: The total CS experimental data in comparison to the posterior. Only total
CS experimental data entered into the evaluation. The evaluated uncer-
tainty is about 0.5%, which is also the normalization error of the Finlay
data. The posterior systematically lies below the experimental data and
the latter is not within the 1-σ-confidence interval of the posterior.
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Figure 5.31: Although only total CS data entered into the evaluation, the posterior re-
sembles the differential elastic data far better than the prior. However, the
differential CS in the forward-scattering domain are systematically to low.
Thus, the model favours a higher portion of the reaction CS on the total
CS than the Smith data ascertain.
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5.4.2 Updating with differential elastic CS data

The following pages feature evaluated curves in comparison with the experiments where
only the differential elastic data from Smith [36] entered into the evaluation. Fig. 5.32
and Fig. 5.33 show the results when all the data from 4.5 MeV to 10 MeV is entered into
the evaluation with a normalization error of 5%. The evaluated curves from Fig. 5.34
and Fig. 5.35 arise if data for angles greater than 50◦ is ignored. Finally, using the data
for all angles but without regarding a normalization error results in the evaluated curves
of Fig. 5.36 and Fig. 5.37.

In the update scenarios in which a normalization error (5%) was considered, the
evaluated uncertainties are in the magnitude of the normalization error (2% - 9%),
but the evaluated curves do not match the experimental data in the forward-scattering
region. This is due to the fact that the model is biased towards lower cross section
values. Ideally, the model should be ignorant of possible CS curves and only impose
its systematics. That this is not the case is already visible when considering the prior
in Fig. 5.29. Quite some of the experimental data points lie outside the 1-σ-confidence
interval. As the posterior covariance matrix is completely determined by the covariance
matrices of experiment and prior (cf. Eq. 3.43), the bias could only be removed by
adjusting the prior covariance matrix – in which way remains an open question.

Furthermore, the predicted curve for the total CS reacts sensitively to different choices
of the normalization error; even differential CS values at large angles which are usually
small quantities have a significant influence on the shape of the total CS curve over the
whole energy range. It is questionable if the model is really accurate enough to let it
allow to modify its prediction for the total CS curve at energies above 100 MeV because
some differential data at 5 MeV in the large angle domain had been included.

However, disregarding the too small evaluated uncertainties, the posterior curves gen-
erally resemble the experimental data much better than the prior curves.
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Figure 5.32: The posterior in comparison to total cross section data if only differential
elastic experimental data enter into the evaluation. The posterior resembles
the experimental data at energies below 50 MeV far better than the prior.
Above 100 MeV, it substantially deviates from the experiment and the data
of the latter in this energy region is not contained in the 1-σ-confidence
interval of the posterior.
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Figure 5.33: The posterior in comparison to differential elastic experimental data if only
the latter enter into the evaluation. The posterior approximates the struc-
ture of the experimental data well but is shifted. The evaluated uncertain-
ties are between 2% and 9%. Thus, the minimal evaluated error goes below
the assumed 5% normalization error of the Smith experiment.
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Figure 5.34: The posterior in comparison to the experimental data for the total CS if
only differential elastic experimental for angles below 50◦ enter into the
evaluation. Comparing with Fig. 5.32, one sees that even small differential
CS at angles above 50◦ have a significant impact on the prediction for the
total CS at energies above 100 MeV.

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●●

●

●
●

●●●
●
●

●

●

●

●
●

●

●

●
●●●●

●
●

20 50 100

10
20

50
10

0
50

0
20

00

angle [deg]

di
ff.

el
.C

S
 [m

B
/S

r]

5 MeV
●

●

●

●

●

●

● ●
●

● ●

●

●

●

●
●

●

●

●●●
●

●

●

●

●
●●●●

●
●
●●●●●

●
●

●

20 50 100

7.5 MeV
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●
●●

●
●

●

●●

●●
●
●●

●

20 50 100

10 MeV
Smith 2005
posterior

Figure 5.35: The posterior in comparison to the experimental data for the differential
elastic CS if only differential elastic experimental for angles below 50◦ enter
into the evaluation. Comparing with Fig. 5.33, visual judgement does not
reveal any significant difference in the forward-scattering domain. The pos-
terior resembles the structure of the CS curve at angles greate 50◦ where
no experimental data was included better than the prior. Expectedly, un-
certainty bounds are wider than in Fig. 5.33.
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Figure 5.36: The posterior in comparison to the experimental data for the total CS if
only differential data enter into the evaluation and no normalization error
is assumed. The posterior differs significantly from Fig. 5.32 and Fig. 5.34.
The posterior overestimates the CS and evaluated uncertainties do not in-
clude the bulk of the experimental data.
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Figure 5.37: The posterior in comparison to the experimental data for the differential
CS if only differential data enter into the evaluation and no normalization
error is assumed. The posterior perfectly fits the experimental data that
entered the evaluation.
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5.4.3 Updating with both experimental data types

The inclusion of both total CS and differential elastic experimental data leads to the
posterior curves in Fig. 5.41 and Fig. 5.42. The result for the total CS is almost the
same as if only total CS data were included (cf. Fig. 5.30). The same is true for the
differential elastic CS (cf. Fig. 5.33).

The structure of the posterior covariance matrix has been altered completely by the
experimental data. The correlation diagram for the total CS channel (Fig. 5.38) shows
that nearly all elements corresponding to energies where experimental data were included
are strongly positively correlated with each other.

High correlations over the whole energy range indicate that the model is very certain
about the shape of the cross section curve. Thus, updating again the obtained poste-
rior with experimental should only lead to significant changes if the experimental data
supports a shape which is regarded as likely by the posterior.

Concerning the differential elastic CS channel, the inclusion of experimental data
weakens the correlations and, especially in the case of correlations between the differ-
ential elastic CS and the total CS, the covariance matrix loses most of its complicated
structural properties.

Figure 5.38: Correlations between different incident energies within the total CS channel
after a Bayesian update with all experimental data. There is an almost
perfect linear dependence between arbitrarily selected energies – one known
CS value at any energy almost completely determines the shape of the whole
curve.
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Figure 5.39: The correlation matrix for the differential elastic CS channel after a
Bayesian update with all (Foster, Finlay, Smith) experimental data. The
structural properties are significantly altered compared to the prior (cf.
Fig. 5.25). Especially, the correlations are much less pronounced. This
probably means that the posterior does not possess the comfortable feature
of fast decreasing eigenvalues any more. Many differently structured eigen-
vectors contribute considerably to the evaluated covariance matrix. The
colour code is the same as in Fig. 5.38
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Figure 5.40: Correlations between the total cross section and Legendre coefficients for
the elastic channel up to the order of 15 after the Bayesian update with all
experimental data. The white wave-like structures observable for the prior
in Fig. 5.40 vanished. The correlations are weaker than for the prior and
more uniform. The correlations between low order Legendre coefficients
and the total CS, where one of these quantities is associated with an energy
below 2.5 MeV and the other to an energy above 2.5 MeV, are not or slightly
negatively correlated. Via the correlations, the exp. estimates for the total
CS lead to predictions for energies below 2.5 MeV for the diff. el. CS which
are at odds with the model expectation. Thus, the associated correlations
are cancelled out by the Bayesian update procedure.
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Figure 5.41: The posterior in comparison to the experimental data for the total CS if all
experimental data (Foster, Finlay, Smith) enter the evaluation. The result
is optically the same as when only total CS data would have been entered
into the evaluation (cf. Fig. 5.30). The evaluated uncertainty is about 0.5%
and the same for every incident energy.
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Figure 5.42: The posterior in comparison to the experimental data for the differential CS
if all experimental data had been included in the evaluation. The evaluated
uncertainties are between 0.9% and 7.5% which is slightly less than in the
case of only updating with differential elastic data (1.8% and 8.6%). The
median of the relative deviation of the prediction from the exp. estimates
is 24.2% – only updating with diff. el. data, it is 25.1%.
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5.5 Prior smoothing by linear dimension reduction
(PCA)

In the past the Full Bayesian Evaluation Technique had been criticised for being sensitive
to experimental outliers. For some energy regions, the total cross section curve is to be
expected to have a smooth shape without any oscillatory features. However, performing
the Bayesian update procedure with displaced data, i.e. their location in comparison to
the whole curve is unphysical, the evaluated curve possesses kinks or oscillations at the
energies of the outliers. The result of such an evaluation is illustrated in the left image
of Fig. 5.44.

A possible solution to this problem is to diagonalise the prior covariance matrix,
set all eigenvalues which fall below a certain value to zero and afterwards transform
the truncated matrix back to the original basis. Diagonalising the covariance matrix
pictorially means to align the coordinate axes along the principal axes of the ellipsoids
representing the isolines of probability density associated with the Gauss distribution.
For instance, after a rotation by 45◦ of the coordinate system plotted in Fig. 5.47, the
coordinate axes are aligned to the principal axes of the green ellipse assigned to the
prior.

Since the eigenvalues represent the variances along the principal axes, setting these to
zero which already have a small value, means to remove degrees of freedom in directions
for which the prior makes sharp predictions, i.e. estimates associated with a small un-
certainty. If the removed eigenvalues are order of magnitudes smaller than the leading
ones, the structure of the correlation matrix is retained.

As the eigenvalues of the prior covariance matrix for the total CS indeed decrease
rapidly (cf. Fig. 5.5), it is sufficient to keep the ten leading eigenvectors. Visual in-
spection of the correlation matrix of the reduced prior (Fig. 5.43) reveals hardly any
differences compared to the unaltered prior (Fig. 5.15).

Performing the Bayesian update procedure again on the same data which caused the
kinks, this time using the reduced prior, yields the evaluated curve pictured in the right
part of Fig. 5.44. No unphysical oscillations are visible there. Furthermore, the outliers
hardly affect evaluated uncertainties. The evaluated confidence bands are even at the
energies of the outliers in the magnitude of the experimental normalization error.

Though, one should be aware that the model becomes more restrictive by truncating
the covariance matrix. If the model is deficient, i.e. it regards the ‘true’ curve highly
unlikely or maybe completely excludes it, truncation worsens the situation. Then, inde-
pendent of how overwhelming experimental evidence indicates a particular curve shape,
the evaluated curve will never resemble it adequately, but nevertheless evaluated uncer-
tainties tend towards zero.

In the case of tantalum-181, the model seems to be reliable. Fig. 5.44 shows evaluated
curves resulting from calculations with truncated prior covariance matrices in comparison
to the used experimental data (Finlay [9]). In order to reduce the influence of the model
bias on the result to a minimum, the experimental normalization error was disregarded
for the evaluation. Fig. 5.45 demonstrates that already the truncation to 5 eigenvalues
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results in an evaluated curve resembling the experimental data quite well. The evaluated
curves which arise by using 10 and 15 eigenvalues are hardly discernible from each other
and optically fit the experimental data perfectly.

Apart from truncating for the purpose of smoothing evaluated curves, truncating may
also be reasonable for a statistical reason. The prior covariance matrix is estimated
from a limited number of sample vectors. Therefore, the obtained sample correlations
are only estimates for the true correlations. Conceivably, fluctuations of only a few
percent in their values lead to significant modifications of the eigenvectors associated
with eigenvalues magnitudes of order smaller than the biggest eigenvalues. Supposedly
modifications are significant, these eigenvectors tell little to nothing about the model
systematics but are only artefacts of the sampling procedure. In this case, it might be
advantageous to remove them as well.

Figure 5.43: The correlations implemented in the reduced prior where the covariance
matrix for the total CS is truncated to the 10 leading eigenvalues. Com-
parison with the correlations established by the unaltered prior shown in
Fig. 5.15 reveals hardly any differences.
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Figure 5.44: The left diagram features an evaluation with the unaltered prior and ex-
perimental data containing unphysical outliers. The evaluated curve in
the right diagram results from a calculation with a prior truncated to 10
eigenvalues. The experimental data from Finlay [9] was taken and artificial
outliers were inserted.
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Figure 5.45: The resulting curves of evaluations with prior covariance matrices truncated
to different numbers of eigenvalues. The number in the box denotes the
number of kept eigenvalues. The scale is given for the lowest curve. Each
other curve is shifted away by 500 mB from the lower neighbour curve.

86



5.6 Discussion of the results

The previous sections demonstrated that an update with the total CS data leads to a
posterior curve which resembles the total CS data well (Fig. 5.30). However, the as-
sumption of an overall normalization error of 0.5% causes the posterior to be located
slightly but visible below the experimental data. The evaluated uncertainty is approxi-
mately 0.5% at every energy. Updating with the total CS data, but without considering
a normalization error, the evaluated total CS curve differs nowhere more than 1% from
the experimental curve and the evaluated uncertainties are between 0.052 % and 0.17 %
– seemingly far too low to be a plausible result.

Regardless of the choice for the normalization error, an update with the total CS data
leads to a blatant underestimation of the differential elastic CS at low angles (Fig. 5.31).
Furthermore, evaluated error boundaries in forward direction become very narrow and
render the differential elastic CS data from Smith [36] highly unlikely. This means either
Smith measured the differential elastic CS completely inaccurate – relative errors of 60%
have to be assumed to justify the evaluated model curve – or the model predicts the
portion of the reaction CS at the total CS seriously wrongly. A wrong prediction for
a channel without data is acceptable in the first place, because it is only a guess for
the true value. However, the small uncertainties exclude possibilities for the differential
elastic CS curve which do not follow the model curve closely.

Thus, the model possesses defects concerning the ratio of reaction CS to total CS.
Further indication for this statement to be true is given by Fig. 5.32. If the model is
forced to exactly fit the differential elastic CS curve by setting the normalization error
to zero, the total CS curve is moved upward.

Updating only with the differential elastic CS data from Smith with a normalization
error of 5% leads to the evaluated differential elastic CS curves in Fig. 5.33. The error
boundaries at all angles are narrow and do not include the experimental data. The max-
imal observed deviation in forward direction of the model curve from the experimental
data is 985 mB.

If the optical potential implemented in TALYS [23] is believed to describe the total
CS and the differential elastic CS of tantalum-181 adequately, there has to be a problem
with the chosen parameter boundaries for the optical model, which have been used for
sampling and constructing the prior covariance matrix. If the optical model is in principle
not able to describe the CS features of tantalum-181, a statistical method based on the
wrong physical model is pointless. Before further efforts are undertaken to incorporate
differential elastic experimental data into the method, this issue must be resolved.

In all performed calculations the evaluated uncertainties were in the magnitude of the
assumed overall normalization error of the experiment, e.g. updating with the differential
elastic CS data of Smith [36] and an assumed normalization error of 5% led to evaluated
uncertainties between 2% and 8%.

Ensuring evaluated uncertainties not to drop significantly below the normalization
error of the experiment is a necessary (but not sufficient) criterion stated in the Ph.D.
thesis of D. Neudecker [26] to obtain a valid evaluation. Another criterion could be that
the evaluated uncertainties for channels without experimental data should not drop to
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very low values as it was observed for the differential elastic channel by updating with
total CS data.

5.7 Discussion of the method

The symmetric prior covariance matrix is only guaranteed to be positive semidefinite,
hence does not need to have full rank. A reduced rank indicates directions in which no
deviation is allowed. The concerned vector space is spanned by vectors with cross section
values for different channels, incident energies and angles as elements. The directions
in which cross sections are allowed to vary are given by the eigenvectors of the prior
covariance matrix associated with eigenvalues greater than zero. It has been shown
that the Bayesian update formulas Eq. (3.42) and Eq. (3.43) implement the projection
into the subspace spanned by the eigenvectors with non-zero eigenvalues. Thus, the
prediction resulting from a Bayesian update step is restricted to lie in this subspace.
Consequently, if the eigenvectors are explicitly known, there is no need to consider the
whole cross section space. The Bayesian update formulas can be stated for all quantities
reduced to this subspace. In order to update with experimental data, the experimental
data then must be projected into this subspace before the Bayesian update step can be
performed.

In section 5.2.1 the eigenvalue decomposition of the block in the prior covariance
matrix associated with the total CS revealed a lot of directions to be negligible. And
indeed, the Bayesian update procedure with a trimmed prior covariance matrix, where
all except for the 16 biggest eigenvalues were set to zero, yielded optically the same
evaluated curve for the total CS as if the full prior covariance matrix would have been
used (Fig. 5.45). This finding is of great use for speeding up the method, because the
covariance matrix block for the total CS can be reduced to 16 dimensions without losing
important features of the model.

However, at the same time it is questionable if real measured cross section curves can
always be described accurately by a linear combination of a very limited set of functions
which are allowed by the physical model. Likely, some features of the experimental
data cannot be described, as it would mean the model can be fitted perfectly to the
experimental data. In order to understand what happens when the model is not able
to predict all features of the experimental curve, a toy model will be studied in the
following.

Assume that the model exclusively allows the same cross section value at each incident
energy. Thus, the model restricts cross section curves to straight horizontal lines and
the only degree of freedom is an overall shift. Further assume that the experimental
data points follow a diagonal line and are given for the same energies as the model data
points. In this case, the sensitivity matrix to map from model to experiment space is
the identity matrix which will simplify the subsequent considerations. The situation is
pictured in Fig. 5.46.

One degree of freedom means that the prior covariance matrix has rank 1, therefore
only one eigenvector is associated with a non-zero eigenvalue. Every element of this
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Figure 5.46: Visualization of the toy model: the model exclusively allows the same CS
value at every energy. The measured values of the experiment resemble a
diagonal line. Thus, the model is deficient.

eigenvector is given by the same value, which implements the restriction to a a horizontal
line. The eigenvalue v associated with this eigenvector represents the variance nδ2

mod

along the latter, where n is the number of energy grid points and δ2
mod the variance at

every energy grid point assumed by the model. The variance nδ2
mod along the eigenvector

can also be regarded as the 1× 1 matrix Ared obtained by projecting the original n× n
prior covariance matrix A to the 1-dimensional subspace defined by v. The factor n is
necessary because otherwise the variance of the model at every energy grid point would
be dependent on the number of grid points. This is due to the fact that back projecting
the variance associated with the eigenvector into the whole vector space leads to an
additional factor 1/n caused by the normalization of the eigenvector. The formulas
for reducing the prior covariance matrix A to the subspace of allowed directions and
extending the reduced matrix to the original representation are given by Eq. (3.35).

The important quantities needed for the Bayesian update step are:

vT =
1√
n

n elements︷ ︸︸ ︷
(1, 1, · · · , 1) Ared = nδ2

mod

A = vAredv
T = Jnδ

2
mod Bred = vTBv =

1

n

n∑
i=1

n∑
j=1

Bij

xT = c

n elements︷ ︸︸ ︷
(1, 1, · · · , 1) xred = vT x = c

√
n

yred = vT y =
1√
n

n∑
i=1

yi = y
√
n

x is the prior and y the experimental estimate for the true CS vector; the factor c denotes
the y-value of the prior estimate for the horizontal line and y is the mean value of the
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experimental CS values; the matrix A is the prior and B the experimental covariance
matrix; v is the normalized eigenvector of the matrix A associated with the only non-
zero eigenvalue nδ2

mod; Bij denotes the element at row i and column j in the matrix B;
analogously yi denotes the i-th element in the experimental estimate vector y, so each
yi is the CS value at a certain incident energy Ei; Jn is the n×n matrix of ones – every
element is one. All ‘red’ quantities are obtained from the original ones by projecting
them into the 1-dimensional subspace defined by v.

In order to obtain the posterior covariance matrix Ãred, one can use for convenience
formula (3.34) instead of update formula (3.43) which was derived from the former by the
Woodbury matrix identity (3.28). Since the sensitivity matrix S is the identity matrix,
one finds the expression

Ãred =
(
A−1

red +B−1
red

)−1
=

AredBred

Ared +Bred

=
δ2
mod

∑
Bij

nδ2
mod + 1

n

∑
Bij

. (5.11)

For the sake of simplicity, counter variables are not written under the sum symbols which
denotes the summation over all n2 elements Bij.

A simple experimental covariance matrix may include a statistical error ∆2
stat in the

diagonal and an overall normalization error ∆2
sys affecting every element:

Bij = ∆2
statδij + ∆2

sys, (5.12)

where δij is the Kronecker-Delta, being 1 for i = j and 0 otherwise. Inserting Eq. (5.11)
into Eq. (5.11) yields

Ãred =
δ2
mod n∆2

stat

nδ2
mod + ∆2

stat + n∆2
sys

+
δ2
modn

2∆2
sys

nδ2
mod + ∆2

stat + n∆2
sys

. (5.13)

Finally, this result can be transferred back to obtain the complete evaluated covariance
matrix Ã:

Ã = vÃredv
T =

Ãred

n
Jn =

(
δ2
mod ∆2

stat

nδ2
mod + ∆2

stat + n∆2
sys

+
δ2
modn∆2

sys

nδ2
mod + ∆2

stat + n∆2
sys

)
Jn

(5.14)
The first important observation is that the evaluated uncertainties are completely deter-
mined by the prior and experimental uncertainties. The prior and experimental estimates
have no influence. Furthermore, all elements of the evaluated covariance matrix Ã are
equal, which indicates a perfect correlation for arbitrary pairs of CS values at different
energies. This is a consequence of the fact that the toy model only permits an overall
shift of the horizontal line.

Setting the normalization error ∆sys to zero and assuming δmod � ∆stat results in
Ãij ≈ ∆2

stat/n. Thus, the uncertainties decrease by a factor 1/
√
n. This proportionality

remains valid even if the assumption δmod � ∆stat does not hold.
Setting the statistical error ∆stat to zero and assuming δmod � ∆sys, the evaluated

uncertainty is approximately given by the normalization error ∆sys of the experiment.
If on the other hand δmod � ∆sys, the evaluated uncertainty is given by δmod.
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For an increasing amount of experimental data, the influence of the statistical er-
ror ∆stat on the evaluated uncertainties tends to vanish and the latter is exclusively
determined by the model uncertainty δmod and the normalization error ∆sys.

To obtain the expression for the evaluated estimate, update formula (3.42) reduced to
the allowed subspace is applied:

x̃red = xred + Ared(Ared +Bred)−1(yred − xred)

=
xredBred + yredAred

Ared +Bred

=
c
√
n∆2

stat + c n3/2∆2
sys + y n3/2δ2

mod

nδ2
mod + n∆2

sys + ∆2
stat

.
(5.15)

The transfer back to the original representation yields

x = v xred =
c 1
n
∆2

stat + c∆2
sys + y δ2

mod

δ2
mod + ∆2

sys + 1
n
∆2

stat

~1, (5.16)

where ~1 is a column vector with n elements, all equal one. If the normalization error ∆sys

is zero and the prior model uncertainty δ2
mod large compared to the quantity ∆2

stat/n,
the posterior estimate for the CS value at each energy grid point is given by the mean
value of the experimental CS values. Therefore, the toy model completely ignores the
information at which energies the data were obtained.

If the systematic error ∆2
sys is not vanishing and enough experimental data has been

collected to render the statistical error negligible, the evaluated estimate is a compromise
between the model prediction c and the mean value of the experimental data y. In
the limiting case ∆sys � δmod, the posterior estimate is given by y and in the case
∆sys � δmod by c. Independent of these assumptions, the evaluated CS curve will
always resemble a horizontal line perfectly.

These considerations yield an important conclusion: If the model strongly correlates
CS values at different energies, but simultaneously excludes the shape of the ‘true’ CS
curve as a possible solution, the prediction can become arbitrarily bad. Furthermore,
if a huge amount of experimental data is entered into an evaluation, the evaluated un-
certainties are determined by either the experimental normalization error or the model
uncertainty depending on which quantity is smaller. Hence, there is no guarantee that
the experimental curve lies anywhere close or within the confidence bands of the evalu-
ated curve. A case for cross sections at two different energies where this behaviour could
occur is schematically visualized in Fig. 5.47.

Based on the knowledge obtained by the studies on the toy model, the results of
section 5.4 can be interpreted as follows: The eigenvalue decomposition of the block in
the prior covariance matrix associated with the total CS proved the bulk of directions to
be negligible (Fig. 5.5). This fact is also expressed by strong correlations illustrated in
Fig. 5.15. Thus, the model is very restrictive about the shape of the evaluated total CS
curve. Nonetheless, it seems to be a valid description of reality as a linear combination
of the 16 leading eigenvectors associated with highest variances is able to reproduce
the experimental curve really well – optically it is a perfect fit (Fig. 5.45). However, at
about the 10th leading eigenvector, the uncertainties along the eigenvectors get into the
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magnitude of the experimental normalization error. Therefore, ∆sys � δmod does not
hold and the bias given by the a-priori model estimate has a perceivable influence on
the posterior estimate – the evaluated total CS curve is visibly shifted away from the
experimental CS curve (Fig. 5.30).

The same behaviour – though more extreme – is observed for the differential elas-
tic CS channel. An evaluation with the differential elastic data of Smith [36], without
considering a normalization error, resulted in a perfect fit of the evaluated curve to the
experimental data (Fig. 5.37). Thus, in principle, the experimental curve is allowed by
the model, but the experimental curve is also regarded as highly unlikely by the model
and consequently the posterior estimate is visible biased towards the prior estimate.
The evaluated uncertainty is in the magnitude of the normalization error. This indi-
cates eigenvectors associated with high variances mainly contribute because otherwise
the evaluated uncertainty would not lie in the magnitude of the normalization error.
Nonetheless, many more eigenvectors with much lower variances are needed to resemble
the shape of the experimental curve. For these eigenvectors, the model uncertainty is
much less than the experimental uncertainty and the evaluated estimates along these
are strongly biased by the model expectation.
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Figure 5.47: Two-dimensional Gaussian prior (green) and experimental (green) density
for two cross sections x1 and x2 at energies E1 and E2 respectively. Accord-
ing to the model, x1 and x2 are strongly positively correlated perceivable by
the high eccentricity of the green ellipses. The inner ellipses represent the
1-σ-confidence area and the outer the 2-σ-confidence area. The CS x1 and
x2 are also strongly correlated according to the experiment which means
the normalization error is much greater than the statistical error. The left
diagram features a situation where the normalization error is in the direc-
tion of high model uncertainty. The evaluated uncertainty is determined by
the normalization error. In the right diagram the experimental uncertainty
is in a direction (i.e. specified by an eigenvector) of low model uncertainty.
Then, the evaluated uncertainty is determined by the a-priori uncertainty
of the model. Furthermore, the experimental estimates are not included in
the evaluated 2-σ-confidence area.
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6 Summary

The aim of this thesis was to extend the Full Bayesian Evaluation Technique (FBET)
to allow the inclusion of experimental angle differential elastic cross section data into
evaluations and test its applicability to this new data type.

In order to test the applicability, the extent to which the utilized multi-dimensional
Gauss distribution assumed in the actual FBET is able to capture the systematics of the
model, i.e. the real probability density function, was investigated. Although a cluster
analysis has shown that the assumption of a multi-dimensional Gauss distribution is
not the most appropriate choice, the latter is still capable to capture the restrictions
imposed by the model, which was indicated by the existence of strong correlations:
In both the total CS channel and the differential elastic CS channel, cross sections at
different energies were found to be strongly correlated. In addition, strong correlations
for differential elastic CS at different angles were observed. Also, strong correlations
between the total CS and the differential elastic CS channel exist.

An eigenvalue decomposition of the block in the prior covariance matrix associated
with the total CS demonstrated that about 16 basis functions are sufficient to mimic
the majority of the total CS sample curves with an accuracy of about some tenth of
a percent. For the differential elastic CS, about 400 basis functions are required to
resemble the differential elastic CS sample curves with an accuracy of about 0.1 mB/Sr.
This finding represents not only additional support for the applicability of covariance
matrices to capture the systematics of the model, but also suggests a way for speeding
up the method, i.e. the reduction of the prior covariance matrix by removing negligible
dimensions. In the implementation of this work, differential CS data are associated
with a block in the prior covariance matrix of dimension 5000× 5000, and therefore the
reduction of dimension is an important step to make the FBET feasible to work with
several differential CS channels.

Since the included experimental differential elastic CS data contain contributions from
inelastic scattering due to the limited energy resolution of the experiment, the effect of
these contributions was also studied. At large angles, where differential elastic cross
sections are small quantities, the inelastic contributions indeed have a non-negligible
impact on the shape of the angular distribution. Consequently, they must be considered
in evaluations of differential elastic CS data.

Evaluations of tantalum-181 demonstrated the strong coupling between the total CS
and the differential elastic CS channel. Updating with experimental total CS data re-
sulted in significant changes of the evaluated estimates for the differential elastic CS;
updating with experimental differential elastic CS data lead to great changes in the
evaluated total CS. Even small differential elastic CS values for large angles at energies
below 10 MeV had a great impact on the evaluated total CS over the complete energy
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range from 0.3 MeV to 160 MeV. Due to strong correlations and the large number of ex-
perimental data points available for both channels, the evaluated uncertainties dropped
to the magnitude of the normalization error of the experiments. For both channels,
the evaluated curves did not match the included experimental data points; neither was
the latter contained within the evaluated 1-σ-confidence bands. In the case of the to-
tal CS, the evaluated CS values were slightly below the experimental data; in the case
of the differential elastic CS, the posterior underestimated the experimental data more
pronounced. Therefore, the expectation of the prior about the cross sections has a signif-
icant influence on the result of an evaluation. The deviations of nearly one barn observed
for the differential elastic CS at low angles indicate that the prior regards the included
experimental differential elastic CS data as highly unlikely. The underestimation at low
angles even occurs if only total CS data entered into the evaluation. This finding sug-
gests that the prior is based on an expectation about the ratio of the integral elastic CS
to the reaction CS, which is in disagreement with the experimental data. Therefore, the
parameter boundaries for the optical potential used for constructing the prior may be
inadequate. Further research on this issue is necessary.

Furthermore, the evaluation of tantalum-181 showed that the result of an evaluation
reacts sensitively to the inclusion of experimental differential elastic CS data at large
angles. If the physical model is not valid in this angle domain, even the evaluated total
CS is inappropriately altered. Thus, future investigation of the validity of the physical
models, especially with regard to the large angle domain, is required. If the models will
turn out to be deficient, the Full Bayesian Evaluation has to account for that. Otherwise,
unreasonable evaluations have to be expected.

Apart from studies of the behaviour of FBET extended to angular differential CS, the
issue of unphysical kinks and oscillations in the evaluated curves caused by experimental
outliers was tackled. It was shown that it is possible to reduce the sensitivity to outliers
by truncating the prior covariance matrix, i.e. eliminating eigenvalues smaller than a
critical value. By this procedure, directions in cross section space which are associated
with low uncertainty are removed. In these directions, the model bias significantly influ-
ences the results of evaluations. A huge amount of experimental evidence is necessary
to overcome it. By truncating the prior covariance matrix, the degree of freedom along
the concerned directions is completely removed and the estimate for these directions ir-
revocable frozen to the model expectation. Therefore, the application of this procedure
requires high trust in the underlying physical models.

Albeit the main goal of this work, the extension of the Full Bayesian Techniques to
angular differential elastic data, was achieved, its applicability to routine evaluations
requires still further investigation. Considering the influence of the prior expectation on
the results, the question arises whether the uniform distribution in the parameter space
of the optical model is the most practicable choice. An uniform distribution in the cross
section space which also imposes the restrictions of the model may be more appropriate,
thereby eliminating the model bias. How this can be done is a technical question – if it
should be done a philosophical one.
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