
Masterarbeit

Reliability Assessment of DECOS
System-on-a-Chip Components

ausgeführt am

Institut für Technische Informatik 182/1

der

Technischen Universität Wien

unter der Leitung von

o. Univ - Prof. Dr.phil. Dr.h.c. Hermann Kopetz

und

Univ. Ass. Dr. Roman Obermaisser
als verantwortlich mitwirkendem Assistenten

durch

Hubert Kraut
Matr. - Nr. 0025471

Buchengasse 17-19/10, A–1100 Wien

Wien, im April 2008 .

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

http://www.vmars.tuwien.ac.at/
http://www.tuwien.ac.at/
mailto:h.kraut@gmx.at

Reliability Assessment of DECOS
System-on-a-Chip Components

The Dependable Embedded Components and Systems (DECOS) System-on-a-
Chip (SoC) component model lays the foundation for a next-generation embed-
ded architecture that provides a predictable integrated execution environment for
the component-based design of many different types of embedded applications
(e.g., consumer, avionics, automotive, industrial). At the core of this architecture
is a time-triggered Network-on-a-Chip (NoC) for the predictable interconnection
of heterogeneous components which offers inherent fault isolation to support the
seamless integration of independently developed micro components, possibly with
different criticality levels. Furthermore, mechanisms for integrated resource man-
agement will support dynamically changing resource requirements (e.g., different
operational modes of an application), fault-tolerance, and power-aware system
behavior.

In the scope of this work, the reliability of a single DECOS SoC component, as
well as clusters containing multiple DECOS SoC components are quantitatively
assessed by means of dependability modeling. This work takes into account the
increasing importance of transient faults by Single Event Upsets (SEUs) due to
shrinking semiconductor geometries and lower power voltages and also focuses on
the consequences of design faults in the context of mixed criticality application
systems implemented by DECOS SoC components. Significant parameters for the
reliability assessment are identified (e.g., probability for a transient failure of a
micro component, error containment coverage of a TISS) and used to construct a
generic dependability model, thus permitting a quantitative evaluation of design
decisions and technological/application constraints.

Zuverlässigkeitsanalyse von
DECOS System-on-a-Chip

Komponenten

Das DECOS SoC Komponentenmodell beschreibt eine Architektur der nächsten
Generation, die eine Plattform für die einfache Integration verschiedenster Ty-
pen eingebetteter Applikationen (z.B. Unterhaltungs-, Avionik-, Automobil- und
Industrieelektronik) bietet.

Den Kern dieser Architektur bildet das zeitgesteuerte NoC, das eine determini-
stische Kommunikation zwischen den heterogenen Komponenten über einen ge-
meinsamen Bus untersttzt. Die dadurch inheränte Fehlerisolation ermöglicht eine
nahtlose Integration unabhängig entwickelter Komponenten mit möglicherweise
unterschiedlichen Zertifizierungsgraden.

Zusätzlich unterstützt das DECOS SoC Komponentenmodell die dynamische Re-
konfiguration von Komponenten bei sich ändernden Applikationsanforderungen,
z.B. im Hinblick auf Ressourcenverteilung, Fehlertoleranz und Energiemanage-
ment.

In dieser Arbeit wird ein generisches Zuverlässigkeitsmodell für eine DECOS SoC
Komponente präsentiert mit dem von einer einzelnen Komponente sowie von
verteilten Applikationen aufbauend auf solchen Komponenten die Zuverlässigkeit
quantitativ evaluiert wird. Die Parameter für das Modell werden von einer Prototy-
pimplementierung übernommen. Durch die Variation der Modellparameter werden
Designentscheidungen und Technologie/Applikations-Beschränkungen analysiert.

Besonderes Augenmerk wird auf transiente Fehler gelegt, die durch Partikelein-
schläge (kosmische Strahlung und Rückstände vom Herstellungsprozess) verursacht
werden. Diese haben einen gewichtigen Anteil an der Ausfallsrate elektronischer
Systeme und gewinnen weiter an Bedeutung durch die fortschreitende Miniaturisie-
rung der Halbleitertechnologien und der Verringerung der Spannungsversorgung.
Ein weiterer Fokus liegt bei der Betrachtung von Designsfehlern im Kontext der
integrierten Ausführung von Applikationen mit unterschiedlichen Zertifizierungs-
stufen und bei dem Nutzen von Designdiversität für redundanten Komponenten.

Acknowledgments

Sincerely I want to thank Roman Obermaisser for his excellent mentoring, Prof.
Hermann Kopetz for the chance to write this thesis, Astrit Ademaj, Bernhard
Huber and Christian El Salloum for the numerous discussions and Prof. William
H. Sanders and his team at the University of Illinois at Urbana/Champaign for
their hospitality and support of my work with M”obius.

Hearty thanks to my family for their backing of inestimable value, especially to my
father who inspired my wish to study computer science during many stimulating
discussions.

Last but not least I want to express my deep gratitude to my girlfriend Petra Heiss
for her love and support in all circumstances.

I dedicate this work to my mother.

Danksagung

Ich bedanke mich herzlichst bei Roman Obermaisser für seine ausgezeichnete Be-
treuung, bei Prof. Hermann Kopetz dafür, dass er mir ermöglicht hat diese Arbeit
zu verfassen, bei Astrit Ademaj, Bernhard Huber und Christian El Salloum für
die zahlreichen, hilfreichen Diskussionen. Auerdem bei Prof. William H. Sanders
und seinem Team an der Universität von Illinois in Urbana/Champaign für die
Gastfreundschaft und Unterstützung bei der Arbeit mit Möbius.

Besonderer Dank gebührt meiner Familie für ihren unbezahlbaren Rückhalt. Spe-
ziell meinem Vater, der in mir, durch unsere anregenden Diskussionen, die Freude
an der Informatik erst geweckt hat.

Zu guter Letzt will ich mich bei meiner Freundin Petra Heiss für ihre Unterstützung
in allen Lebenslagen bedanken.

Ich widme diese Arbeit meiner Mutter.

Contents

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Document Structure . 3
1.4 Related Work . 3

1.4.1 Soft Error Rate Estimation of FPGA-based Designs 3
1.4.2 Dependability Modeling Tools 5

2 Basic Terms and Concepts 7
2.1 Basic Terms . 7

2.1.1 Dependability Attributes . 7
2.1.2 Dependability Threats: Faults, Errors and Failures 8
2.1.3 FCRs and ECRs . 9

2.2 Mathematical Concepts . 10
2.3 Dependability Modeling . 12
2.4 Single Event Upset . 15

2.4.1 Cosmic Ray Neutrons . 15
2.4.2 Alpha Particles . 15
2.4.3 Trends for Particle Induced Errors 16
2.4.4 Error Classification . 16

3 TTSoC Architecture 19
3.1 Motivation . 19
3.2 Overview . 20
3.3 NoC . 21
3.4 Micro Component . 21

3.4.1 Structure of the TISS and the UNI 21

ix

3.4.2 Structure of the Host . 23
3.5 TNA . 23
3.6 RMA . 24
3.7 RCU . 25

3.7.1 Support of On-Chip TMR 25
3.7.2 Support of Off-Chip TMR 26

3.8 Gateways . 26

4 Fault Model 27
4.1 Introduction . 27
4.2 SoC - Design Fault Model . 27

4.2.1 Fault Containment Regions 27
4.2.2 Failure Modes and Error Containment 28
4.2.3 Failure Rates . 29
4.2.4 Design Fault Tolerance . 29

4.3 SoC - Physical Fault Model . 30
4.3.1 Fault Containment Regions 30
4.3.2 Failure Modes . 31
4.3.3 Failure Rates . 31
4.3.4 Assumption Coverage . 31

4.4 Repair and Recovery . 32
4.5 Error Detection Mechanisms . 33

4.5.1 TISS - Watchdog Timer . 33
4.5.2 TISS - Power Monitoring . 33
4.5.3 TMA - Schedule Error Detection 33
4.5.4 RCU - Results Comparison 34

4.6 Off-Chip Network Fault Model . 34
4.6.1 Introduction . 34
4.6.2 Fault Containment Regions 35
4.6.3 Error Containment . 36
4.6.4 Number of Tolerable Faults for the Off-Chip Network 36
4.6.5 Failure-, Recovery- and Restart Rates 36

4.7 Failure Rate Estimation . 38

5 Möbius 39
5.1 Overview . 39
5.2 Atomic Models as SANs . 40

5.2.1 Places . 40
5.2.2 Input Gateways . 41
5.2.3 Output Gateways . 41
5.2.4 Timed Activities . 41
5.2.5 Instantaneous Activities . 43

x

5.2.6 SAN Example . 43
5.3 Composed Models . 44

5.3.1 Example of a Composed Model 45
5.4 Reward Model . 46

5.4.1 Rewards on Replicated Models 46
5.5 Solving Models with Möbius . 47

5.5.1 Analytical Solving . 47
5.5.2 Simulation . 48

6 SoC Model with Möbius 49
6.1 Notations . 49
6.2 Global Variables . 49
6.3 Overview . 51
6.4 Common Constructs . 53

6.4.1 Combined Failure Rates and Case Probabilities 54
6.4.2 Modeling of Temporal TISS Failures 55
6.4.3 Model Reactions on TSS and Gateway Failures 56

6.5 Atomic Models . 57
6.5.1 Infrastructure - SAN . 57
6.5.2 Gateway - SAN . 60
6.5.3 Safety-Critical Micro Component in TMR - SAN 66
6.5.4 Safety-Critical Micro Component within a 3-of-4 ensemble -

SAN . 71
6.5.5 Safety-Critical Micro Component - SAN 72
6.5.6 Non Safety-Critical Micro Component SAN 74

6.6 Composed Models . 77
6.6.1 Automotive Example . 77
6.6.2 TMR Comparison . 85

6.7 Reward Models . 87
6.7.1 Automotive Example . 87
6.7.2 TMR Comparison . 87

7 Results 91
7.1 TMR Approaches . 91

7.1.1 Results for Default Parameters 91
7.1.2 Physical Host Failures . 93
7.1.3 TISS-Pulse Manager Failures 93
7.1.4 Application Computer Design Failures & Diversity Coverage 95
7.1.5 Repair Rate . 95

7.2 Automotive Example . 96
7.2.1 Results for Default Parameters 96
7.2.2 Repair Rate . 97
7.2.3 RMA Failure Rates . 97

xi

8 Conclusion 99

A Acronyms 101

References 104

xii

List of Figures

2.1 Bath Tub Function . 11
2.2 Reliability for constant Failure Rate 11

3.1 Structure of the Time-Triggered SoC Architecture 20
3.2 Structure of the TISS . 22
3.3 Structure of the RMA . 24

4.1 SoC Interconnection by a Fault-Tolerant Time-Triggered Network . 35
4.2 Gateway - Micro Component . 35

5.1 Möbius Workflow . 40
5.2 SAN Primitives . 40
5.3 Execution of a Timed Activity . 42
5.4 SAN Example . 43
5.5 Shared State Variables in Composed Models 44
5.6 Example of a Composed Model . 45

6.1 TTSoC Architecture Partitioning into Atomic Models 51
6.2 Composed Off-Chip TMR Model and its Shared State Variables . . 52
6.3 Composed On-Chip TMR Model and its Shared State Variables . . 53
6.4 Composed Off-and-On-Chip TMR Model and its Shared State Vari-

ables . 54
6.5 Detail of a SAN: TISS Failures and Recovery 55
6.6 Detail of a SAN: Reactions on Infrastructure Failures and Recovery 57
6.7 Infrastructure SAN . 57
6.8 Gateway SAN . 60
6.9 SAN for Micro Components in TMR 66
6.10 SAN for Micro Components in 3-of-4 Ensembles 71
6.11 SAN for (simple) Safety Critical Micro Components 72
6.12 SAN for Non Safety-Critical Micro Components 74
6.13 Micro Components of the Automotive Example 77
6.14 Composed Model of the Automotive Example 78
6.15 Composed Model of a Cruise Controller 82

xiii

6.16 Composed Model of a Brake Transducer 83
6.17 Composed Model of a Brake Unit 83
6.18 TMR Approaches . 84
6.19 Composed Model for a TMR Approach Comparison 84

7.1 Reliabilities of TMR Approaches for Default Parameters 92
7.2 MTTFs over Physical Host Failure Rates of TMR Approaches . . . 92
7.3 MTTFs over the Failure Rate of Physical Temporal TISS Failures . 93
7.4 MTTFs over Host Design Failure Rates for different Diversity Cov-

erages of TMR Approaches . 94
7.5 MTTFs over Mean-Time-to-Repair 95
7.6 Reliability Functions for Default Parameters 96
7.7 MTTFs over Mean-Time-to-Repair 97

xiv

List of Tables

2.1 SER Altitude Multiplication Factors 15

4.1 Error Containment in the Design Fault Model 29
4.2 SILs according to IEC61508 . 30
4.3 Failure Rates for the Design Fault Model in FITs (one FIT is one

failure in 109 device-hours) . 30
4.4 Error Containment in the Physical Fault Model 32
4.5 Failure rates for the Physical Fault Model 33
4.6 Error Containment in the Off-Chip Network Fault Model 37
4.7 Failure Rates for the Off-Chip Network Fault Model 37
4.8 Failure Rates for different Memory Classes 38
4.9 Resource Requirements of SoC Components 38

6.1 Global Variables . 50
6.2 Infrastructure SAN - Places . 58
6.3 Infrastructure SAN - Output Gateways 59
6.4 Infrastructure SAN - Activities . 59
6.5 Gateway SAN - Places . 60
6.6 Gateway SAN - Activities . 61
6.7 Gateway SAN - Output Gateways 61
6.8 SAN for Micro components in TMR - Places 69
6.9 SAN for Micro components in TMR - Activities 69
6.10 SAN for Micro components in TMR - Input Gateways 69
6.11 SAN for Micro components in TMR - Output Gateways 70
6.12 Parameters of Activity value failure 72
6.13 SAN for (simple) Safety Critical Micro Components - Places 73
6.14 SAN for (simple) Safety Critical Micro Components - Output Gate-

ways . 73
6.15 SAN for (simple) Safety Critical Micro Components - Activities . . 73
6.16 SAN for Non Safety-Critical Micro Components - Places 75
6.17 SAN for Non Safety-Critical Micro Components - Activities 75
6.18 SAN for Non Safety-Critical Micro Components - Input Gateways . 76
6.19 SAN for Non Safety-Critical Micro Components - Output Gateways 76

xv

6.20 Composed Model of the Automotive Example - Submodels Description 79
6.21 Composed Model of the Automotive Example - Rep-Node Parameters 79
6.22 Composed Model of the Automotive Example - Join Node Param-

eters of SoC 1 . 80
6.23 Composed Model of the Automotive Example - Join Node Param-

eters of SoC 2 . 80
6.24 Composed Model of the Automotive Example - Join Node Param-

eters of SoC 3 . 81
6.25 Composed Model of the Automotive Example - Join Node Param-

eters of SoC 4 . 81
6.26 Composed Model of a Cruise Controller - Rep-node Parameters . . 82
6.27 Composed Model of a Brake Transducer - Join Node Parameters . . 83
6.28 Composed Model of a Brake Unit - Join Node Parameters 83
6.29 Composed Model for a TMR Approach Comparison - Rep Node

Parameters . 85
6.30 Composed Model for a TMR Approach Comparison - Join Node

Parameters . 86
6.31 Möbius Simulator Parameter . 87
6.32 Performance Variables for the Automotive Example - Part 1 88
6.33 Performance Variables for the Automotive Example - Part 2 88
6.34 Performance Variables for the TMR comparison - Part 1 89
6.35 Performance Variables for the TMR comparison - Part 2 90

7.1 MTTFs of TMR Approaches for Default Parameters 91
7.2 MTTFs for Default Parameters . 96

xvi

Chapter 1

Introduction

1.1 Motivation

Dependability is a keyword in system design that comprises a set of attributes.
For example, in the domain of safety-critical applications, e.g., as aircraft and
spacecraft control, the absolute key attribute is the safety, i.e., the absence of
catastrophic consequences on the user(s) and the environment [6][page 2]. If the
considered system must be fail-operational then safety relies on the reliability
attribute, i.e., the ability of the application to deliver service continuously.

Now the essential question to the system designer is how to reach the required
dependability attributes at a minimal expense of system complexity at a minimal
time-to-market.

One weighty part of the answer can be Dependability Modeling. With Depend-
ability Modeling the system designer can model the failure behavior of the sys-
tem to gain quantitative statements about the dependability of the system before
the first (usually expensive) prototype is produced. By this, the designer gets a
powerful tool to accelerate the development cycle due to the reduced number of
design/implementation/test-iterations. Early during the development process the
developer can identify dependability bottlenecks, compare alternative architectures
and has a decision support for the trade-off between costs and reliability.

This thesis presents a generic dependability model for DECOS [7] systems based on
Time-Triggered System-on-a-Chip (TTSoC) [8] components and shows reliability
and availability results for two system examples. The first example examines
the reliability of a single SoC and three different Triple Modular Redundancy
(TMR) approaches and the second example shows the adaption of the generic
dependability model to a system from the automotive domain.

1

1.2. OBJECTIVES CHAPTER 1. INTRODUCTION

1.2 Objectives

The tasks of this thesis can be structured as following:

• Modeling of a DECOS SoC component: A DECOS SoC
component encompasses multiple possibly heterogeneous Intellectual
Property (IP) blocks called micro components, which are intercon-
nected by a Time-Triggered Network-on-a-Chip (TTNoC). The de-
pendability model takes into account that the SoC component contains
architectural elements that are critical for the correct operation of the
entire SoC (TTNoC, Trusted Network Authority (TNA), Trusted Inter-
face Subsystems (TISSs)), as well as elements that are specific to the
application services provided by a particular micro component (i.e.,
hosts of micro components).

• Assessment of component reliability in the presence of tran-
sient faults: The effects of transient faults on a DECOS SoC compo-
nent are quantified. The analysis is based on information from major
publications on transient faults (SEU/SET rates, effects of transient
faults) and significant parameters of the SoC component. Concrete
component failure and recovery rates for the models are derived from
the SoC prototype implemented by the Real-Time Systems Research
Group at the Vienna University of Technology and from typical values
used in the automotive and aeronautic domain.

• Reliability assessment in the presence of design faults: The
effects of design reliability on the application reliability are evaluated
and for TMR the influence of software diversity is shown.

• Modeling of a cluster containing multiple DECOS SoC compo-
nents: The DECOS TTSoC architecture defines gateways for accessing
chip-external networks. Thereby, the construction of a distributed sys-
tem with node computers, implemented according to the time-triggered
TTSoC architecture, becomes possible. In analogy to the modeling of
a single SoC component, a generic dependability model for a complete
cluster is constructed.

• Assessment of reliability improvements through TMR: The re-
liability improvements of on- and off-chip TMR are compared.

• Reliability assessment of a cluster example from the auto-
motive domain: The example cluster contains 4 SoCs and three

2

CHAPTER 1. INTRODUCTION 1.3. DOCUMENT STRUCTURE

Distributed Application Subsystems (DASs) with different safety-
criticality levels, a Cruise-Controller, a Brake and an Entertainment
DAS.

As model formalisms are used Stochastic Activity Networks (SANs) [9] (proba-
bilistic structural based models) for the description of the SoC component failure
behaviors and Rep- and Join models for the composition of SANs. As modeling
and evaluation tool Möbius [10] was chosen.

1.3 Document Structure

The rest of this paper is organized as follows. Section 1.4 (Related Work) sketches
out the different ways of reliability assessment and provides an overview about typ-
ical model formalisms and popular dependability modeling tools. Chapter 2 (Ba-
sic Terms and Concepts) describes the basics of dependability and some math-
ematic fundamentals necessary to understand the dependability model. Next,
chapter 3 (TTSoC Architecture) gives an overview of the DECOS SoC component
model for which chapter 4 (Fault Model) elaborates on the fault hypothesis, the
error containment capabilities of the TTSoC architecture and the estimation of
failure and recovery rates for the model. Chapter 5 (Möbius) describes the de-
pendability modeling tool Möbius and the model formalisms used for this paper.
Upon this foundations chapter 6 (SoC Model with Möbius) describes the model
framework for the DECOS SoC and presents two concrete DECOS cluster model
examples, one which presents the DECOS SoC deployment in the automotive
domain and one which allows a comparison of three different TMR approaches.
Based on this model, chapter 7 (Results) presents results and interpretations of
the reliability assessments and chapter 8 presents the conclusion.

1.4 Related Work

1.4.1 Soft Error Rate Estimation of FPGA-based Designs

A lot of previous studies examined the high sensitivity of Static Random Access
Memory (SRAM)-based devices to high energetic alpha- and neutron particles
(e.g., [11]) and that their overall failure rates are increasing with process scaling
improvements [12]. There are several methods to measure the sensitivity of a
particular device on such single-event effects.

The simplest one is the observation of a large amount of devices over a statistically
sufficient long period in which the number of counted SEUs allows a reasonably

3

1.4. RELATED WORK CHAPTER 1. INTRODUCTION

confident estimation of the Soft Error Rate (SER). Historically the first estima-
tions about SERs were made by the analysis of stored log-files from large computer
systems [11]. On the one hand, this method allows a direct measurement with no
extrapolation and no assumptions about the energetic spectrum but on the other
hand, this method is only possible after the product market introduction or at least
if a sufficient amount of mature prototypes are available. This testing method is
generally referred to as Real-Time System SER test [13].

One step further from Real-Time System SER testing is Accelerated-Soft Error
Rate (ASER) testing. The JEDEC standard for measurement and reporting of
particle induced soft errors defines ASER testing as follows:

In ASER testing, devices are exposed to a specific radiation source
whose intensity and energy spectrum is defined and typically much
higher than the ambient levels of radiation the device would normally
encounter [13][page 6].

Therefore, ASER testing needs much less testing time and only a few prototypes
to gain ASER results from which the real SER can be extrapolated. Although
much faster than Real-Time System SER testing this method is still very time
consuming, as well depends on a relative mature prototype and additionally needs
an expensive laboratory environment. Examples for ASER testing can be found
in [14] and [15].

The following presented methods aim for a further decrease of costs and testing
duration for SER estimations. They use SEU rate results gained from Real-Time
System SER and ASER tests for the concrete SRAM-based device which will
eventually host the design and combine them with the analyses about the error
propagation for the considered design.

[16] presents an analysis framework for the estimation of Single-Event Functional
Interrupts (SEFIs) of Field Programmable Gate Arrays (FPGAs), based on the
composition of two complementary environments. The first environment uses radi-
ation testing to identify the most sensitive regions of the device and to estimate the
rate of SEUs within the configuration memory. The second environment injects
single bit flips into the configuration file of the FPGA and simulates the changed
functionality of the device. From the results of these two steps, the SEFI rate is
estimated over the product of the SEU rate and the probability that the device
fails after the occurrence of an SEU within the configuration memory.

The method in [17] also evaluates for a concrete FPGA-based design but uses an
analytical approach to estimates the error propagation probabilities of the FPGA’s
nodes. The structural paths from each potential error site to all reachable outputs
are examined and combined with the signal line probabilities. With the error
propagation probabilities and the raw error rate of an SRAM cell the overall failure

4

CHAPTER 1. INTRODUCTION 1.4. RELATED WORK

rate for the FPGA-based design is computed.

1.4.2 Dependability Modeling Tools

A good classification of dependability modeling tools is given by the overview for
system designer in [18] that elaborates on the methods and benefits of dependabil-
ity modeling during the system design process. A distinction between three types
of models can be made: parts-count models, combinatorial models and state-space
models.

Parts-count models assume that each component failure leads to an overall system
failure and so the overall failure rate is the sum of all component failure rates.

One step higher in complexity rank combinatorial models, including fault trees[19],
success trees[19] and reliability block diagrams[20]. With these formalisms, it is
already possible to describe simple redundant structures but many aspects of fault-
tolerant systems are not considered including repair, reconfiguration and fault
coverage.

The third class is the state-space model. Such models map each possible com-
bination of failed and running components to a corresponding model state. By
numerical analysis or simulation, the probability of being in a dedicated state can
be calculated and so different reliability or performance metrics can be evaluated
easily.

The last model type offers the best flexibility and accuracy for the model but
also comes with a bunch of new problems. The first one is the state-space explo-
sion, which means that a system model described by states and transitions easily
reaches an infeasible amount of states. The second problem is the ratio between
relatively fast and relatively slow transitions, called stiffness which leads to infea-
sible high calculation times when modeling ultra-reliable systems (see 5.5). There
are some different ways to address these problems and actually, there are many
tools on the market using the state-space variant with different types of model for-
malisms, Markovian-variants as structures for the analytical solving process and
solution techniques. Besides Möbius very popular are Hybrid Automated Relia-
bility Predictor (HARP), Semi-Markov Unreliability Range Estimator (SURE)[21]
and SHARPE[22].

5

1.4. RELATED WORK CHAPTER 1. INTRODUCTION

6

Chapter 2

Basic Terms and Concepts

2.1 Basic Terminology of Dependability

Avizienis, Laprie and Randell gave the following definition for dependability in
their paper about the fundamental concepts of dependability:

Dependability of a computing system is the ability to deliver service
that can justifiably be trusted. A systematic exposition of the concepts
of dependability consists of three parts: the threats to, the attributes
of, and the means by which dependability is attained. [6][page 1]

The following subsections go deeper into these topics.

2.1.1 Dependability Attributes

In [6], six main attributes of dependability are considered: availability, reliability,
safety, confidentiality, integrity and maintainability. In the scope of this thesis,
only the reliability and the availability are interesting.

Availability The availability of a system states the probability that a system
is ready to deliver correct service at a given time. If the fault model of the
system considers means of reparation and recovery it is possible to give a time-
invariant measure for the availability, the so-called steady-state availability. Know-
ing the Mean-Time-To-Failure (MTTF) and the Mean-Time-To-Repair (MTTR)
the steady-state availability can be calculated by the following formula:

A =
MTTF

MTTF +MTTR
(2.1)

7

2.1. BASIC TERMS CHAPTER 2. TERMS & CONCEPTS

Reliability The reliability describes the systems’s ability to provide continuous
service. In the result section of this thesis the reliability of a DAS is given either by
its MTTF or by the reliability function R(t) which states the probability that the
system delivers its service continuously at least up to the time point t. In many
papers the reliability is given as a constant probability Rm = R(mission time)
regarding a specific mission time [18], e.g., the duration of the warranty of com-
mercial systems or the maximum flight time of an aircraft.

Usually MTTFs are measured in failures in 109 hourss (FITs) whereby one FIT
means that the device suffers one failure in 109 device-hours.

2.1.2 Dependability Threats: Faults, Errors and Failures

The correctness of a system can be defined over the correctness of the expected
service at its service interface. These services can be specified in various domains
like the time, value and power consumption domain. Based on the definition of a
correct system, [6] differs between the following definitions:

A failure names the deviation of the delivered service from its specification. An
example for a failure is a micro component which omits to deliver correct data.
That part of the system state, which caused the failure, is called error. An error
could be a flipped bit within the memory of the micro component that caused
the subsequent micro component failure. The cause of an error is called fault. As
continuation to the former examples, a fault could be a cosmic particle striking
a memory cell. Since the failure of a component can be seen as a fault for the
encompassing system, the fault-to-failure chain works recursively: fault→ error→
failure→ fault...

Fault Classifications [23] defines many classifications for faults and their
sources. In the scope of this document the following are necessary to know:

The classification after the phenomenological causes provides the following fault
types:

• Physical Faults: Such faults are generated during system operation and
are due to adverse physical phenomena. The fault model within this
paper considers particle strikes and electromagnetic interferences.

• Design Faults: Within this paper a design fault refers to a fault within
program or description code of either a micro controller or an FPGA
and corresponds to the definition of a software fault as e.g. made from
Laprie in [24]. Accordingly, a design fault is the result of a designer’s
failure when implementing the system’s specification. A fault is called

8

CHAPTER 2. TERMS & CONCEPTS 2.1. BASIC TERMS

dormant as long as the system does not reach a state in which the fault
was activated and caused an erroneous system state.

The consideration of the temporal persistence of faults leads to the following dis-
criminations:

• Permanent Faults: The presence of a permanent fault does not depend
on point wise conditions. An example for a permanent fault is the
thermal destruction of a transistor within a device.

• Transient Faults: The presence of a transient fault depends on point
wise conditions. For example, Electro Magnetic Interference (EMI) and
cosmic particles can be counted to physical transient faults.

Failure Classifications According to [23] a system can fail in two different
domains:

• Value Domain Failures: The service delivers values that do not comply
with the specification.

• Temporal Domain Failures: The timing of the service delivery deviates
from its specification.

Since the fault model in this thesis also considers SoC power mode failures, the
list above can be enhanced by:

• Power Domain Failures: The power consumption of the service-
delivering system does not comply with the specification.

Additionally to the failure classification above, it is useful to distinguish refined
modes of failures. A general failure is called an arbitrary failure. If the system
persistently stops to deliver its service this is called a crash failure.

2.1.3 FCRs and ECRs

A Fault Containment Region (FCR) as defined in [25] is used as the smallest unit
of consideration for the fault model of this thesis. The fault model partitions the
considered system into non-overlapping FCRs where each forms a subsystem that
is considered to operate correctly regardless of the state of other FCRs. Therefore,
it is reasonable to put components, which use common resources, into the same
FCR to prevent the sharing of resources between FCRs.

9

2.2. MATHEMATICAL CONCEPTS CHAPTER 2. TERMS & CONCEPTS

Fault-tolerant systems are built with the intention to tolerate a specified amount
of component failures. For this purpose, the system contains structures (e.g., error
detection and masking) which confine the propagation of errors to the service
interface of the system. The region in which the error propagation is confined is
called Error Containment Region (ECR) [26].

2.2 Mathematical Backgrounds of Reliability

As described in [27] the cumulative distribution function for the reliability, R(t),
states the probability that the system delivers its service continuously at least
throughout a period of duration t. Opposite to that the failure probability Q(t) is
defined as

Q(t) = 1−R(t) (2.2)

The corresponding failure probability density function f(t) is defined as

f(t) =
dQ(t)

dt
= −dR(t)

dt
(2.3)

The failure rate λ(t) is specified as the relation between the number of failures and
the number of correct components at time t:

λ(t) =
f(t)

R(t)
= −dR(t)

dt

1

R(t)
(2.4)

Failure Rates characterized by the Bathtub Function

For a broad range of elements λ(t) is often characterized as a ”bathtub func-
tion” [27](see figure 2.1) which considers a failure rate to be divided into three
phases: a ”infant mortality” phase with a rapidly decreasing λ(t), the ”normal
life” phase in which the failure rate is constant and a ”wear-out” phase with a
rapidly increasing λ(t).

Constant Failure Rate: λ(t) = λ

A constant failure rate means that the failure behavior of a component knows no
symptoms of old age. This assumption is often made to model failures caused by
transient faults when such faults and the failure behavior of the component are
assumed independent of the component’s lifetime. The same assumption is usually
used for failures caused by internal, physical faults, although the corresponding
failure rate can rather be characterized by the ”bath tub function”. The usual

10

CHAPTER 2. TERMS & CONCEPTS 2.2. MATHEMATICAL CONCEPTS

Figure 2.1: Bath Tub Function [1]

10
0

10
2

10
4

10
6

10
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
(t

im
e)

time [hours]

λ(t)=10−7

Figure 2.2: Reliability for constant Failure Rate

way is to argue that the ”infant mortality” section can be removed by means of
accelerated stress testing while the ”wear out” section can be ignored due to proper
maintenance actions.

11

2.3. DEPENDABILITY MODELING CHAPTER 2. TERMS & CONCEPTS

A constant failure rate results the following reliability function:

Reliability: R(t) = e−tλ (2.5)

Therefore the failure probability function is:

Failure Probability: Q(t) = 1− e−tλ (2.6)

Formula 2.6 equals the cumulative distribution function of an exponential dis-
tributed variable. Therefore, it follows that if a component has a constant failure
rate then the stochastic variable that states the duration between component fail-
ures is exponential distributed. In the following, such a relation is symbolized by
X1 ∼ Exτ which means that the stochastic variable X1 follows an exponential
distribution with the mean value τ .

The use of exponential distributed time functions brings some mathematical bene-
fits for the model designer. One benefit is the simple relationship between MTTF
and the failure rate λ:

MTTF =
1

λ
(2.7)

Furthermore, be X1 ∼ Exτ and X2 ∼ Exµ then the time to the event that either
one of the components fail is given by the following stochastic variable Y:

Y := min(X1, X2) ∼ Exτ+µ (2.8)

When one of the components failed, the probability that a particular component
failed is given by the following probabilities [5]:

P{Component 1 failed} =
τ

τ + µ
(2.9)

P{Component 2 failed} =
µ

τ + µ
(2.10)

2.3 Dependability Modeling

Dependability Modeling is defined as the process of gaining quantitative state-
ments about the reliability of a system through the analysis of a dependability
model. Such a dependability model usually does not describe the whole func-
tionality of the considered system but models the failure behavior based on the
system’s fault hypothesis. With Dependability Modeling, the system designer gets
a powerful tool to accelerate the development cycle due to the reduced number

12

CHAPTER 2. TERMS & CONCEPTS 2.3. DEPENDABILITY MODELING

of design-implementation-test iterations. The results can be used as evidences in
Safety Cases [28] which are requested by many safety standards for critical control
applications as appear in the telecommunications, automotive, aircraft and space-
craft domain. But for safety-critical applications dependability modeling is only a
good start but not the ultimate mean for the reliability evidence:

The essence of model building lies in accuracy for the stated purpose,
simplification and understandability. Given a set of models that de-
scribe a given phenomenon, the model that requires the smallest num-
ber of concepts and relationships to explain the issue involved is the
preferred one. There is, however, the danger of oversimplification, or
of omitting a relevant property [26] [page 72].

So it is essential do use additional evidences of dependability by means of formal
verification of application algorithms, experimental verifications of fault tolerance
mechanisms by fault injection and by accelerated stress testing of the complete
system.

The steps of Dependability Modeling can be listed as following:

• Creating the Fault Hypothesis (Fault Model): The fault hypothesis
specifies the number and types of faults the system is designed to tol-
erate and consists of the following points:

– Identify FCRs and their Failure Modes

– Identify Fault Tolerance Mechanisms

– Estimate FCR Failure Rates and Component Down-Times

– Appraise the Assumption Coverage: The assumption cover-
age is defined as the probability that the assumptions made
in the model building process prove to be true in practice
conditions. The assumption coverage limits the confidence
into the conclusions derived from the model [26]. The fault
hypothesis used for this paper can be found in chapter 4.

• Choosing Metrics for Analysis [18]: In this step it is decided which
metrics reflects the dependability goals of the system at best. E.g.,
this paper states the results of the dependability evaluations of safety-
critical applications by their reliability probability functions and by
their MTTFs. These measurements concentrate on the continuous-
ness of system’s service because of the potential catastrophic effects of
failures. Opposite to that, evaluation results for non safety-critical ap-
plications considers on the steady-state availability. More information
about the attributes of dependability can be found in section 2.1.

13

2.3. DEPENDABILITY MODELING CHAPTER 2. TERMS & CONCEPTS

• Creating the Dependability Model: Besides the fault model and the
chosen metrics for the analysis there are some other factors that influ-
ence the final structure of the dependability model:

– Constructibility: In the scope of this work constructibility
means that validated and verified models of subsystems can
be stick together to describe any complex system without
the need to redesign or retest the particular submodels.

So for dependability modeling constructibility brings on the
one hand more model reusability and also a more compre-
hensible overall model, but on the other hand each submodel
must implement some structures for state distributions (i.e.
communications between the submodels, for an example see
section 6.4.2). By this, the overall number of system states
increase and leads to increased model calculation times.

Möbius provides the composition of submodels by so-called
Composed Models where the communication between the
submodels run over shared state variables. Please refer to
section 5.3 for a detailed explanation about the Replication-
and-Join formalism in Möbius.

– Simulation versus Analytic Solving: As explained in sec-
tion 5.5 the decision between different solving methods leads
to crucial constraints for the structure of the model.

– Choosing Evaluation Tools and the Model Formalisms: For
this thesis Möbius [10] was chosen as evaluation tool and
the probabilistic structural based models are formulated as
SANs. Refer to chapter 5 (Möbius) for more information
about the used formalism and section 1.4 (Related Work)
for a list of alternative modeling tools.

• Model Verification: None of the examined evaluation tools (Sharpe [22],
SURE [21], Möbius) provides explicit model checking. Instead, in
Möbius, the model designer can use the built-in simulator to debug
the model. To monitor the state of the model during simulation the
simulator can print the model state after each model transition. Ad-
ditionally the SAN formalism in Möbius supports the placing of asser-
tions and print-commands within output- and input-gateways. Refer
to section 5.2 for a detailed explanation of the SAN formalism.

14

CHAPTER 2. TERMS & CONCEPTS 2.4. SINGLE EVENT UPSET

Altitude SER Multiplication Factor
in meters from sea level / New York
sea level 1

500 1.5
1000 2.3
9500 162

Table 2.1: SER Altitude Multiplication Factors described in JESD-89

2.4 Single Event Upset

A long known negative side-effect of the progressing miniaturization of semicon-
ductor devices is their analogously increasing sensibility on strikes of high-energetic
particles. The two main causes for such particles are cosmic ray neutrons and alpha
particles released by contaminants within the chip packaging material.

2.4.1 Cosmic Ray Neutrons

Cosmic ray neutrons are created together with the less problematic pions and
protons by reactions of solar particles in the upper atmosphere. Neutrons are
particularly troublesome as they can penetrate most constructions (a neutron can
easily pass through 1.5 meters of concrete [11]). The neutron pollution varies for
latitudes and altitudes. For example in an airplane, the neutron flux can be 100 to
800 times worse than at sea level [11]. The JEDEC standard for the measurement
of particle induced errors [13] provides a methods to estimates the neutron flux
(given as number of neutrons per cm2−MeV − s) depending on altitude, location
and sun activity. Table 2.1 shows some multiplication factors for different altitudes
in relation to the neutron flux in New York at sea level.

2.4.2 Alpha Particles

Alpha particles are emitted from radioactive impurities in packaging, solder bumps,
etc. left behind from the process of manufacture. The alpha problem was regarded
seriously and, by agreement, chip vendors lowered it to tolerable levels by reducing
the alpha particle flux emitted by packaging and processing materials to generally
< 0.01α/cm2 − hour [29].

15

2.4. SINGLE EVENT UPSET CHAPTER 2. TERMS & CONCEPTS

2.4.3 Trends for Particle Induced Errors

One of the main critical factors that determines the sensitivity of a semiconductor
device to high-energetic particles is the minimum critical charge that must be im-
planted by a particle strike to create a bit-flip within a memory-like element. Due
to the industrial ambitions to make even faster and more power economic chips
the technology trend inclines to lower transistor size, cell capacity and supply volt-
age. On the one hand, this trend leads to a decreasing of the minimum critical
charge but on the other hand, the shrinking transistors decrease the probability
that a particular transistor collects the minimum critical charge to upset the de-
vice. Overall, with process scaling the failure rate per bit is expected to decrease
while the likelihood of particle-induced multi-bit errors will increase as well as the
probability of soft errors within the combinational logic [30] [31].

2.4.4 Error Classification

According to where a particle strike changes the state within a semiconductor
device, the following error classification can be made:

Non Destructive Events

• SEU: Single Event Upset are bit-flips in memory-type elements. If one
particle strike causes multiple memory upsets this is called a Multi Bit
Upsets (MBU). The rate for errors caused by SEUs is usually referred
to as Soft Error Rate (SER).

• SET: Single Event Transients are ”glitches” on signaling lines. Because
of such glitches in the peripheral circuitry of memory elements also
radiation-hardened memory can be affected from single events.

• SEFI: Single-Event Functional Interrupts are errors within configura-
tion memory thus being permanent despite they were caused by tran-
sient faults. In comparison to soft errors, they are often referred to
as firm errors since the data of the memory is not only corrupted but
also the functionality of the device is affected. Especially vulnerable
to SEFIs are SRAM based FPGAs. After a bit-flip within its config-
uration memory, the function of such an FPGA can be disturbed on
arbitrary ways until a reconfiguration of the FPGA. Since not every up-
set in configuration memory leads to a failure, the SEFI rate is usually
in the range of 10% to 20% of the SEU rate [16].

16

CHAPTER 2. TERMS & CONCEPTS 2.4. SINGLE EVENT UPSET

Destructive Events

Single-Event Gate Ruptures (SEGRs), Single-Event Latchups (SELs) and
Single-Event Burnouts (SEBs) denote permanent errors caused by the thermal
destruction of the transistor. This events are quite seldom and their occurrence
can be minimized by adapted chip design [13].

17

2.4. SINGLE EVENT UPSET CHAPTER 2. TERMS & CONCEPTS

18

Chapter 3

TTSoC Architecture

3.1 Motivation

A typical embedded application consists of many concurrently running jobs. One
architectural approach could be the multitasking on a fast single-instruction set
computer. But this solution carries many disadvantages with it: the operating sys-
tem must establish an effective execution environment for the nearly independent
application processes which means a worrying level of complexity and therefore
a hardly affordable certification process for safety critical applications. Addition-
ally the high overhead by the operating system needs a lot of extra computation
time and die area. A faster computer typically needs a higher supply voltage,
which leads through its quadratic effect on the power consumption to a non-linear
increase of the power dissipation [32]. An architecture that provides a single hard-
ware base for many different DASs is called an integrated architecture [33].

Especially popular in the automotive domain is the spatial isolation of application
processes, i.e., each job gets its own electronic unit with a minimum of shared
resources, e.g., power supply and network. The dependencies between jobs are
minimized so that a job can adequately be described by its network interface to its
other partners. An architecture where each DAS has its own dedicated hardware
base is called a federated architecture [33]. This facilitates the integration of Intel-
lectual Property (IP), the verification and the certification. On the other hand this
approach leads to high costs because of the high number of units and networks and
often leads to a waste of resources because of overdimensioned Electronic Control
Units (ECUs) for small processes. Furthermore, more interconnections raises also
the costs and the probability of interconnection faults. In the automotive domain
a typical premium car hosts more than fifty ECUs and five different networks [34].

The TTSoC architecture [35] as depicted in figure 3.1 combines the benefits of
both mentioned architectural approaches. The TTSoC architecture provides the

19

3.2. OVERVIEW CHAPTER 3. TTSOC ARCHITECTURE

Trusted

Network

Authority

(TNA) TISS

Resource

Managem.

Authority

(RMA)

TISS

Host

 Local

I/O

Replica

Coordination

Unit (RCU)

Time-Triggered Network-on-Chip

TISS

Host

 Local I/O

TISS

Host

 Local I/O

Trusted Subsystem

(TSS)

Application

Subsystem 1

Application

Subsystem 2

μC μC μC

micro component

(μC)

Port Manager

Pulse Manager

Application

Computer

Front End

Uniform Network Interface

(UNI)

TISS

Gateway

TISS

Host

 Local I/O

μC

Offchip-network

Figure 3.1: Structure of the Time-Triggered SoC Architecture [2][page 4]

partitioning into a set of nearly autonomous possibly heterogeneous Intellectual
Property (IP)-blocks or micro components that only communicates with each other
via a time-triggered Network-on-a-Chip (NoC). The NoC provides composability
and error containment between DASs and so the inherent fault isolation facilitates
the certification process immensely.

The following sections give as more detailed view of the architectural SoC compo-
nents and see chapter 4 for the corresponding fault model.

3.2 Overview

Figure 3.1 depicts an SoC that hosts two application subsystems, perceptible in
the figure by the different colors of the hosts. The shaded components deliver
essential architectural services to the micro components and belong to the Trusted
Subsystem (TSS), which is assumed to be free of design faults and therefore must
be certified to the highest criticality level of any host within the SoC. The hosts
implement application specific services and belong to a specific Distributed Appli-
cation Subsystem (DAS). Each host uses the Trusted Interface Subsystem (TISS)
to communicate via the NoC. Together they are forming a micro component.

20

CHAPTER 3. TTSOC ARCHITECTURE 3.3. NOC

3.3 NoC

The on-chip network interconnects the micro components within an SoC thus being
the core of the SoC platform. The NoC provides the following essential services:

Clock Synchronization: To establish a time-triggered communication it is es-
sential to establish a system-wide global time base [35] despite the existence of
multiple clock domains. The time-triggered NoC uses a uniform time format which
has been standardized by the OMG in the smart transducer interface [36].

Deterministic Message Transport: The NoC uses time-division-multiple-
access (TDMA) for bus arbitration which divides the available network bandwidth
into conflict free periodical communication slots, each assigned to a dedicated mi-
cro component. Therefore the NoC provides a deterministic communication with
inherent fault isolation between the DASs.

3.4 Micro Component

A micro component is a self-contained computing element, e.g. it can be realized
by a general purpose processor or by special purpose hardware. As depicted in
figure 3.1 a micro component consists of an application specific host and a TISS
to access architectural services. A host implements one job of a DAS and a DAS
can be running on one micro component or be distributed over a group of possibly
heterogeneous micro components.

The TISS on the one hand provides TTSoC architectural services like the global
time base and on the other hand guards the temporal access to the time-triggered
NoC, preventing a faulty host from interfering with the communication slots of
other micro components. Thus, faulty hosts can only affect other hosts which
belong to the same DAS but then only by providing faulty input values to them,
via the sent messages. For this purpose the TISS must know exactly the sending
slots of the micro component and so can act as temporal firewall. The TISS
is essential to create fault isolation and therefore belongs to the TSS, i.e., it is
considered to be free of design faults.

3.4.1 Structure of the TISS and the UNI

The TISS is structured into two layers, the port manager and the pulse manager
(see figure 3.2). The pulse manager accesses the TTNoC. It sends and receives mes-
sages according to the definitions stored in the Message Descriptor List (MEDL)
and consists of three interfaces:

21

3.4. MICRO COMPONENT CHAPTER 3. TTSOC ARCHITECTURE

UNI Memory

DP - RAM

Slave

Host

Master

Slave (128 bit)

Port Manager

Master (128 bit) Slave

Pulse Manager

NoC Interface

Master

Slave

S
la

v
eTISS CP

Interface

S
la

v
eTISS CP

Interface

Temporal Firewall Interface

Local

DM/CP

Port Interface TISS

Uniform Platform Interface

Figure 3.2: Structure of the TISS (based on a figure in [3])

• the TTNoC is accessed via the NoC interface.

• the TISS Configuration and Planning (CP) interface is accessed by the
TNA in order to reconfigure the message schedule.

• the Port interface connects the pulse manager to the port manager.

Whenever a message is received, the pulse manager hands it over to the port
manager. On the other hand, when a message is scheduled to be transmitted by
the pulse manager, the pulse manager issues a request to the port manager.

Between host and port manager the Uniform Network Interface (UNI) is located.
The port manager controls the access to the UNI memory. Based on the port
configuration table the port manager maps each message that is received or sent
by the pulse manager to the corresponding address in the UNI. Additionally, the
port manager provides the programmable timer-interrupt service, the watchdog
service and the power control service.

The port manager incorporates three interfaces:

• it exchange messages with the host over the UNI.

• it communicates with the pulse manager via the port interface.

• the configuration of the watchdog and the power mode of the host are
set by TNA via the TISS CP interface.

22

CHAPTER 3. TTSOC ARCHITECTURE 3.5. TNA

• the port configuration table and the timer interrupt service are config-
ured via the local Configuration and Planning (CP) and Diagnosis and
Management (DM) interface.

The UNI is implemented as dual ported memory between host and port manager
and therefore acts as temporal firewall for the host. Contrary to the TISS, the
UNI is highly adaptable according to the specific requirements of a given micro
component.

3.4.2 Structure of the Host

The host can be divided into the application computer and the front end. The
application computer realizes the application functionality while the front end
implements a domain-specific network interface to the application computer, e.g.,
event queues or the temporal firewall interface [37]. It can incorporate middleware
bricks to add additional communication functionalities, e.g., for security (e.g.,
encryption, authentication) or fault-tolerance mechanisms (e.g., voting).

3.5 Trusted Network Authority

The TNA is part of the TSS and therefore has to be certified at least to the same
level as the job of the most critical application subsystem hosted on the component.
The TNA provides the following essential architectural services:

• Establishment and Maintenance of the Global Time for all
TISSs: Because of the time-triggered NoC, a chip-wide global time
base is a mandatory requirement for the SoC component. An additional
option is the synchronization of the global time with an external time
reference over a gateway.

• Configuration of the Micro Components via their CP Inter-
faces: During runtime the Resource Management Authority (RMA)
is responsible to create new Time-Division Multiple Access (TDMA)
schedules on demand, e.g. if a micro component issues a system mode
switch. Because of the complexity of the RMA, it is not part of the
TSS and so the job of checking the schedule feasibility and configur-
ing of the micro components is done by the TNA. The TNA is the
only component of the TTSoC architecture which can assign essential
network configuration parameters to the micro components. So the
TNA guarants that the micro components always access a conflict free
channel.

23

3.6. RMA CHAPTER 3. TTSOC ARCHITECTURE

Micro-

Component 2

Micro-

Component 1

RCLIF

Job A.1

RMA

RM A RM B RM N

RCLIF RCLIF RCLIF

TNA

R
C

L
IF

R
C

L
IF

CP

Micro-

Component 2

Job A.2

RCLIF RCLIF

Job B.1

Micro-

Component 2

RCLIF

Job N.1

CPCP CP CP

Global Rule Base

Global Resource Scheduler

resource coordination linking

interface

resource manager of particular

application subsystem

Figure 3.3: Structure of the RMA [4][page 36]

• Protection of Statically Assigned Resources: During design time
a list of minimum resource requirements for privileged application sub-
systems like safety-critical ones can be established within the TNA.
During runtime the TNA checks new schedules on this rules.

The TTSoC architecture is adaptable in that sense, that it can be dynamically
reconfigured in order to meet changing requirements of the hosted application
subsystems, e.g. a mode change of the application enforced by the user. The
reconfiguration of the architecture is performed solely by the TNA, which forms
together with the time triggered on-chip network and the TISS the trusted subsys-
tem of the TTSoC architecture. Since failures within these core components are
likely to cause failures of the entire SoC component, the TNA has to be certified at
least to the same level as the job of the most critical application subsystem hosted
on the component. In order to ease this certification, the complexity of the TNA
is kept as low as possible.

3.6 RMA

The Resource Management Authority (RMA) is a dedicated micro component for
the dynamically creation of new resource assignments to the micro components.
Because of the high RMA complexity it is not part of the TSS and is not considered
to be free of design faults. So the created configuration parameters must be passed

24

CHAPTER 3. TTSOC ARCHITECTURE 3.7. RCU

to the TNA which checks and forwards them to the micro components as depicted
in figure 3.3. The following resources are essential for the RMA:

• Communication Resources: The RMA must build a conflict free
schedule which at least fulfills the requirements (e.g., bandwidth, la-
tency) for all safety-critical applications.

• Computational Resources: Computational resources, like clock fre-
quency, can be dynamically reassigned if the host supports dynamic
reconfiguration.

• Power: A power-aware SoC where the micro components supports
dynamic reconfiguration can perform power management by regulation
of the clock frequencies of hosts.

The structure of the RMA can be partitioned into the global resource scheduler,
the global rule base and one Resource Manager (RM) per application subsystem
(figure 3.3). The purpose of an application-specific RM is the interaction with a
host to handle resource requests and to resolve resource conflicts between hosts
within the application subsystem. In this way, the RM creates a configuration
vector for the hosts of its application subsystem. The global rule base checks the
acceptance of the resource allocations created by the RMs and resolves component-
wide conflicts. In case of conflicts, the global rule base possesses a list of allowed
degraded modes for each application subsystem. On the decisions made by the
RMs and the global rule base, the global resource scheduler consolidates all host
configuration vectors and forwards the resource allocation to the TNA.

3.7 RCU

The Replica Coordination Unit (RCU) is part of the TSS and has the purpose of
detecting transient host failures and managing the recovery and reintegration of
faulty hosts. It works together with the voter middleware in the host-front end of
replicated hosts by comparing the redundant computational results.

3.7.1 Support of On-Chip TMR

The messages of all replicas are routed to the RCU which compares the values. In
case of deviations between replicas, it sends a restart-request to the TNA which has
direct access to the TISSs which in turn can reset their micro components. In case
of transient faults, the faulty micro component can be immediately restarted and
reintegrated into the TMR assemble by synchronizing its internal state with the

25

3.8. GATEWAYS CHAPTER 3. TTSOC ARCHITECTURE

other replicas. Each replica periodically transmits its internal state and overwrites
its internal state with the voted result synchronous (within the same global tick)
with the other replicas.

In case of permanent faults it is likely that the micro component will fail again
after a short time. Therefore, in order to detect permanent or intermittent faults,
the RCU can make use of failure counters, which increments after failure occur-
rence and automatically decrements after some failure-free time. If the counter
exceeds a certain threshold, the corresponding micro component is switched off
and maintenance actions are triggered.

3.7.2 Support of Off-Chip TMR

If the replicas are located on different SoCs we are speaking of off-chip TMR. For
off-chip TMR exists no central element which can decide to reset a faulty micro
component. Instead, the RCU of each SoC must receive all messages to decide
if the local micro component is faulty and must be reset. From a global point of
view a SoC is a self-checking component in which only the local RCU can trigger
recovery actions. The drawback of this solution is the dependence on the local
TSS. Since there architecture does not provide a central element which can reset a
complete SoC, no recovery actions in case of TSS faults can be taken. The reason
for this architectural decision is, that a central element would facilitate a single
point of failure and could not be used for ultra-high dependable systems.

3.8 Gateways

Since component failure rates are usually in the range of 103 to 104 FIT [38] it is
imperative for ultra-dependable systems to use redundancy off-chip level to reach a
system failure rate of less than one FIT. For this, the TTSoC architecture supports
gateways to access public networks (e.g., the Internet), to construct distributed
systems connected by off-chip networks and for the synchronization to external
time reference.

When the gateway connects to off-chip network which also works with the time-
triggered paradigm (e.g., TTP [39] or TTE [40]), then it is possible to align the
periods and phases of the on-chip network with the transmission start instances of
the off-chip network to reach bounded message delays with minimum jitter. Also
the alignment of the pulsed data stream with the messages of the off-chip networks
enables the receiving of the messages by all replicated SoCs at the same global time
instance. This is a essential requirement for archiving replica determinism [41] as
needed for TMR with exact voting.

26

Chapter 4

Fault Model

4.1 Introduction

As foundation for the Möbius SoC models, this chapter presents the fault model
for a single SoC as well as clusters containing multiple DECOS SoC components.
Because of the limited independence of IP cores within an SoC, the conventional
approach for a fault model would be the consideration of the complete chip as
a single FCR for physical- and design faults, as outlined in [26]. Justified by the
distributed, fault-tolerant architecture of the TTSoC architecture, this fault model
exhibits a more detailed structuring of FCRs. The resulting assumption coverage is
bounded by the probability of common mode faults, e.g., power supply variations.

Because of the reusability of design, design faults are not subject to the same
containment as physical faults and so the fault model for a SoC component is
partitioned into a design fault model and a physical fault model. The design fault
model comprises hardware and software design faults and the physical fault model
describes faults caused by physical exposures.

Since the TTSoC architecture does not impose a specific technology for inter-SoC
communication, the network fault model is given for a fault-tolerant, time-triggered
off-chip network and is described apart of the SoC fault model.

4.2 Design Fault Model for a single SoC

4.2.1 Fault Containment Regions

The design fault model contains the following FCRs:

27

4.2. SOC - DESIGN FAULT MODEL CHAPTER 4. FAULT MODEL

Replicated Host: This FCR includes the application computer and the front
end. In case of replication, all replicas (possibly on different SoCs) belong to the
same FCR.

TSS: This FCR comprises the safety-critical infrastructure of an SoC and con-
sists of the RCU, the NoC, the TNA and the TISSs. The TSS is assumed to be
free of design faults. The simplicity of the TSS’s design in the TTSoC architec-
ture facilitates a thorough validation (e. g., by means of formal verification) which
substantiates this assumption.

RMA: The RMA is not part of the TSS. The reason for this is, that due to the
high complexity of the RMA, which has to dynamically compute time-triggered
communication schedules from the reconfiguration requests, validation to the high-
est criticality levels (e. g., class A according to DO-178B or SIL4 according to
IEC61508) would generally be infeasible. So the RMA (or parts) can be developed
by different vendors and exhibit a lower rigidity in the development process. The
potential residue of design faults in the RMA is taken into account by means of a
resource allocation protection by the TNA. The TNA protects safety-critical ap-
plication subsystems from being disturbed by reconfiguration actions by a faulty
RMA. Thus, only non safety-critical application subsystems can be affected by an
RMA failure.

4.2.2 Failure Modes and Error Containment

Table 4.1 identifies all failure modes per FCR for the design fault model and
the corresponding error containment mechanisms applied within the TTSoC ar-
chitecture. The first column states the failing FCR, while the second column
differentiates a FCR failure into failure modes. The third column states the com-
ponent of the TTSoC architecture which is responsible for failure detection or
masking and the forth column states the error containment mechanism and its
success-probability (also referred to as coverage).

Since the TSS is assumed to be free of design faults, the TTSoC architecture
possesses no error containment mechanisms for TSS failures.

1Value errors produced by faulty hosts can never exceed the boundary of the respective
application sub system. Within this boundary a value error can propagate to other hosts.

2The coverage is bounded by the probability (=design fault correlation) that all host replicas
concurrently suffer from a common design fault. Since more than one micro component would
fail, TMR would not work.

3It is not a requirement on the TTSoC architecture to have a detection coverage of 100% for
errors in resource allocations, which only affect non-safety critical sub systems.

28

CHAPTER 4. FAULT MODEL 4.2. SOC - DESIGN FAULT MODEL

failing FCR
Failure
Modes

detecting FCR Containment Mechanisms

Replicated Hosts

crash failure Port Manager
detection: Watchdog Timer
coverage: 100%

temporal
domain

UNI
masking: temporal firewall
by UNI 1; coverage: 100%

value domain
receiving
Host-Front Ends

masking: TMR
coverage: ≤ 100% 2

power mode
failure

Port Manager
detection: TISS power
detection; coverage: 100%

RMA
crash failure Port Manager

detection: Watchdog Timer
coverage: 100%

temporal
domain

UNI
masking: temporal firewall
by UNI; coverage: 100%

value domain TNA

masking: Resource
Assertions
coverage(1): 100% for
safety-critical sub system
requirements
coverage(2): <100% 3 for
non-safety-critical sub
systems

TSS arbitrary no error containment!

Table 4.1: ECRs for the Design Fault Model

4.2.3 Failure Rates

The design failure rates can be estimated by means of the desired Safety Integrity
Levels (SILs) per FCR (according to the IEC61508 standard, see table 4.2). When
using design diversity each application computer can be considered as own FCR.
The according assumption coverage is bounded by the design fault correlation
which is determined by the usage of common resources like development tools,
compiler, specification representation etc. ([42]). Table 4.3 summarizes the design
failure rates.

4.2.4 Design Fault Tolerance

The system architecture assures correct service for safety critical applications in
case of any arbitrary design faults in the RMA and in hosts of other application
subsystems. The architecture assumes zero design faults in safety-critical hosts

29

4.3. SOC - PHYSICAL FAULT MODEL CHAPTER 4. FAULT MODEL

SIL FIT Severity of Failure
4 [1, 10) Catastrophic
3 [10, 100) Hazardous/Severe
2 [100, 1000) Major
1 [1000, 10000) Minor

Table 4.2: SILs according to IEC61508

FCR SIL Failure Rate
Safety Critical Host 4 10 FIT
Non Critical Host 1 1000 FIT

RMA 2 100 FIT
Trusted Subsystem 4 1 FIT

Table 4.3: Failure Rates for the Design Fault Model in FITs (one FIT is one failure
in 109 device-hours)

and in the TSS.

In case of a RMA failure, the system architecture runs in a degraded service
mode, which means that no more schedule changes and switches between opera-
tional modes of the system are possible. Because the TNA guarantees only correct
resource allocations to safety critical applications, the correct service of non-safety
critical applications is not any longer assured in case of RMA failures.

4.3 Physical Fault Model for a single SoC

4.3.1 Fault Containment Regions

The physical fault model contains the following FCRs:

Host + UNI + Port manager: For physical faults, a host in conjunction with
the port manager constitutes an FCR. Neither the port manager nor the host can
interfere with the correct operation of the pulse manager or the NoC.

Pulse Managers + TNA + RCU + NoC: The pulse manager is the sole
part of a micro component which has direct access to the NoC. So a failure of one
of the pulse managers can cause an overall SoC failure. Also the TNA can cause a

30

CHAPTER 4. FAULT MODEL 4.3. SOC - PHYSICAL FAULT MODEL

common mode failure and therefore it is reasonable to combine all pulse managers
and the TNA together into one FCR.

RMA: Since the resources of safety-critical application subsystems are protected
by the TNA, a fault in the RMA can affect exclusively non safety-critical applica-
tion subsystems.

4.3.2 Failure Modes

Table 4.4 identifies all failure modes per FCR for the physical fault model and the
corresponding error containment mechanisms applied within the TTSoC architec-
ture. The first column states the failing FCR, while the second column differenti-
ates a FCR failure into failure modes. The third column states the component of
the TTSoC architecture which is responsible for failure detection or masking and
the forth column states the error containment mechanism and its probability of
success (coverage).

4.3.3 Failure Rates

The failure rates for the physical fault model refer to neutron and alpha-particle
induced SEUs in SRAM based FPGAs at sea level in New York. Failure rates
for permanent faults are estimated by multiplying the failure rates for transient
faults with a constant permanent-to-transient fault ratio factor. A common as-
sumption is a proportion of about 1:10000 from permanent to transient faults [26].
Further details to the estimation process of transient failure rates can be found in
section 4.7.

4.3.4 Assumption Coverage

The assumption coverage is bounded by the probability of common mode failures:
Faults, affecting the whole die like a damaged power supply, physical damage by
force, etc.

5Value errors produced by faulty hosts can never exceed the boundary of the respective
application sub system. Within this boundary a value error can propagate to other hosts.

6It is not a requirement on the TTSoC architecture to have a detection coverage of 100% for
errors in resource allocations, which only affect non-safety critical sub systems.

31

4.4. REPAIR AND RECOVERY CHAPTER 4. FAULT MODEL

failing FCR
Failure
Modes

detecting FCR Containment Mechanisms

Host

crash failure Port Manager
detection: Watchdog Timer
coverage: 100%

temporal
domain

UNI
masking: temporal firewall
by UNI; coverage: 100%

value domain
receiving
Host-Front Ends

masking: TMR
coverage: 100%

power mode
failure

Port Manager
detection: TISS power
detection; coverage: 100%

UNI value domain
receiving
Host-Front Ends

masking: TMR
coverage: 100%

Port Manager
temporal
domain

Pulse Manager
masking: temporal firewall
by Pulse Manager 5

coverage: 100%

value domain
receiving
Host-Front Ends

masking: TMR
coverage: 100%

RMA
crash failure Port Manager

detection: Watchdog Timer
coverage: 100%

temporal
domain

UNI
masking: temporal firewall
by UNI; coverage: 100%

value domain TNA

masking: Resource
Assertions
coverage(1): 100% for
safety-critical sub system
requirements
coverage(2): <100% 6 for
non-safety-critical sub
systems

TSS arbitrary no error containment!

Table 4.4: ECRs for the Physical Fault Model

4.4 Repair and Recovery Durations

In the fault model we distinguish between repair and recovery in that way that
repair removes permanent faults and is executed by an external force while recov-
ery happens autonomously after transient faults. We got concrete values for the
durations from typical values of the aviation and the automotive domain: For the
MTTR we took the typical airplane mission time of 10 hours and for the recovery
time we took the maximum allowed activator freezing time of 50 ms for automotive
systems.

32

CHAPTER 4. FAULT MODEL 4.5. ERROR DETECTION MECHANISMS

Component
Transient Permanent

Failure Rate Failure Rate
Host 104 FIT 1 FIT

TISS-Port manager + UNI 276 FIT 0.03 FIT
TISS-Pulse manager 319 FIT 0.03 FIT

RMA 404 FIT 0.04 FIT
TNA 144 FIT 0.02 FIT

Table 4.5: Failure rates for the Physical Fault Model in FITs (one FIT is one
failure in 109 device-hours)

4.5 Error Detection Mechanisms

4.5.1 TISS - Watchdog Timer

In order to detect crash failures of the host (respectively RMA) the TISS provides
a watchdog service. The period by which the live sign has to be set by the host
can be parametrized by the TNA. This detection mechanism does not detect
the type of the underlying fault (permanent or transient) and always triggers a
reset and reintegration of the micro component. In case of permanent faults, the
permanently switching off and the replacement action must be initiated by the
RCU.

4.5.2 TISS - Power Monitoring

The TISS has physical control over the power lines or the clock lines of the host
in order to be able to reset the micro component in case it does not operate in
conformance to its specification. The host can be powered down via the TISS
Configuration and Planning (CP) interface which can be exclusively accessed by
the TNA.

4.5.3 TMA - Schedule Error Detection

The TNA acts as a guard for the reconfiguration activities performed by the RMA
and provides the following features:

• detection of potential collisions on the time-triggered NoC.

• detection of violations of resource reservations of privileged application
subsystems.

33

4.6. OFF-CHIP NETWORK FAULT MODEL CHAPTER 4. FAULT MODEL

• resetting of a faulty RMA.

• if an erroneous resource schedule is detected, the current configuration
remains unchanged and the new schedule is rejected.

Detection Limitations: The TNA does not detect missing slot allocations for
non critical sub systems.

4.5.4 RCU - Results Comparison

The RCU receives the computational results of all replicated micro components
and triggers their recovery or replacement in case of detected failures (see chapter
3.7). For on-chip TMR, the RCU is capable to detect failures in the value domain
and to trigger reset or replacement, as long as the TSS is running. For off-chip
TMR, an RCU can also remove local micro component failures but since the ar-
chitecture does not offer a central element which can reset a complete SoC (to save
a distributed systems from single point of failures), an SoC can not be recovered
after a TSS failure.

4.6 Fault Model for an Off-Chip Network

4.6.1 Introduction

This chapter explains the fault model for safety critical inter-SoC time triggered
networks like TTP [39] and TTE [40] as a foundation for the SoC cluster models,
later presented in this paper.

Figure 4.1 depicts schematically the interconnection of four SoCs over a time-
triggered, star-coupled network.

For fault-tolerance purposes two switches are used, each enclosed from a guardian
which protects the whole network from temporal domain SoC failures. Each
Guardian has exact knowledge about the sending times of each SoC and acts
as temporal firewall in the same way as the TISS for the NoC does. The con-
nection between an SoC and the cluster network is made by the gateway micro
component.

Figure 4.2 depicts the structure of a gateway. The gateway consists of a gate-
way host as intelligent mediator between intra and inter-SoC network and two
redundant communication controllers.

34

CHAPTER 4. FAULT MODEL 4.6. OFF-CHIP NETWORK FAULT MODEL

SoC

4

Star

Coupled

Switch

Guardian

Star

Coupled

Switch

Guardian

SoC

1

SoC

2

Micro

Component

Micro

Component

Micro

Component

TNA RMA Gateway

TT-NoC

CC CC

CC .. Communication

Controller

Time Triggered Offchip Network

Figure 4.1: SoC Interconnection by a Fault-Tolerant Time-Triggered Network

TISS

Gateway-Host

Communication

Controller A

Communication

Controller B

Star

Coupled

Switch

Star

Coupled

Switch

Physical Link A Physical Link B

Guardian Guardian

Figure 4.2: Gateway - Micro Component

4.6.2 Fault Containment Regions

The following table summarizes the FCRs of a fault-tolerant SoC Cluster connected
by a time-triggered off-chip network:

35

4.6. OFF-CHIP NETWORK FAULT MODEL CHAPTER 4. FAULT MODEL

Switch + Guardian: Physically the Guardian is a part of the switch and in
this way, together, they form a FCR.

Physical Link: A physical link is a bidirectional physical connection between
an SoC and a Switch. Because the two physical links to the redundant off-chip
network are spatial close together, the assumption coverage is bounded by the
probability of correlated channel failures (e.g. caused by EMI).

Communication Controller: A communication controller is part of the Gate-
way micro component. One controller per physical link is assumed.

Gateway Host: A gateway application computer has the purpose of mediation
between the NoC and the off-chip network.

4.6.3 Error Containment

Table 4.6 identifies all failure modes per FCR for the physical fault model and
the corresponding error containment mechanisms applied within the TTSoC ar-
chitecture. The first column states the failing FCR, while the second column
differentiates a FCR failure into failure modes. The third column states the com-
ponent of the TTSoC architecture which is responsible for failure detection or
masking and the forth column states the error containment mechanism and its
success-probability (coverage).

4.6.4 Number of Tolerable Faults for the Off-Chip Network

In the following, the set of related communication controller, physical link and
switch is called a channel. An SoC has a valid off-chip network interconnection if
its TSS, the gateway host and at least one of its two channels are valid.

4.6.5 Failure-, Recovery- and Restart Rates

The failure rates for communication controller and gateway application computer
are estimated over their resource usages as mentioned for the SoC fault model.
Also the repair and recovery durations are the same as in the chip fault model.

The failure rate for switches are taken from typical assumptions about electrical
devices while for simplification restart-, recovery rates and permanent-to-transient
fault ratio are taken from the SoC fault model.

36

CHAPTER 4. FAULT MODEL 4.6. OFF-CHIP NETWORK FAULT MODEL

failing FCR
Failure
Modes

detecting FCR Containment Mechanisms

Gateway Host

crash failure Port Manager
detection: Watchdog Timer
coverage: 100%

temporal
domain

UNI
masking: temporal firewall
by UNI; coverage: 100%

value domain
receiving
Host-Front Ends

masking: TMR
coverage: 100%

power mode
failure

Port Manager
detection: TISS power
detection; coverage: 100%

Comm. Controller
temporal
domain

Switch
masking: temporal firewall
by Switch-Guardian;
coverage: 100%

value domain
receiving Comm.
Controller

detection: CRC check
coverage: ≤100%

Physical Link
temporal
domain

Switch
masking: temporal firewall
by Switch-Guardian;
coverage: 100%

value domain
receiving Comm.
Controller

detection: CRC check
coverage: ≤100%

Table 4.6: ECRs for the Off-Chip Network Fault Model

FCR
Transient Permanent

Failure Rate Failure Rate
Switch + Guardian 104 FIT 1 FIT

Physical Link7 105 FIT 104 FIT
Communication Controller 700 FIT 0.07 FIT

Gateway Host 100 FIT 0.01 FIT

Table 4.7: Failure Rates for the Off-Chip Network Fault Model in FITs (one FIT
is one failure in 109 device-hours)

For physical links the failure rate and failure duration are taken from typical EMI
occurrences, which are assumed to occur with a rate of 105 FIT while existing for
about two seconds. The rate for permanent link faults, i.e., broken links, is taken
from the automotive domain and is valued at 104 FIT.

Table 4.7 summarizes the failure rates for the off-chip network fault model.

37

4.7. FAILURE RATE ESTIMATION CHAPTER 4. FAULT MODEL

FIT per MBit
SRAM
configuration
memory

Flip Flops
SRAM ap-
plication
memory

Neutron Induced 188 FIT 613 FIT 770 FIT
Alpha Induced 229 FIT 748 FIT 939 FIT

Table 4.8: Failure Rates for different Memory Classes of an Altera Cyclone II
EP2C20 [43]

Component
Configuration Application

Flip Flops
Bits Bits

Host 1M 10M 7.2K
TISS-Port manager + UNI 400K 6.4K 600

TISS-Pulse manager 600K 16K 1.5K
RMA 600K 100K 1.5K
TNA 300K 15K 0.5K

Table 4.9: Resource Requirements of SoC Components

4.7 Failure Rate Estimation for SRAM-based

FPGA

This paper uses a quite simple approach to estimate transient failure rates of
SoC subcomponents implemented within an SRAM-based FPGA. With the FPGA
radiation results of an Altera Cyclone II EP2C20 [43] (summarized in table 4.8)
which examines the upset rates for configuration and application bits, Flip Flops
and combinatorial logic (whereby the last point is negligible for the Cyclone II) and
the resource usage per subcomponent (TISS, TNA, RMA, etc.) a rough estimation
of subcomponent failure rates could be done. Since not each SEU causes a failure
the subcomponent failure rates can rather be seen as upper bounds. Consequently
the reliability assessments deliver conservative results. The necessary resource
usage was estimated by means of a prototype implementation ([44] [45] [46]) (see
table 4.9).

38

Chapter 5

Möbius

5.1 Overview

Möbius (for a complete description see [10]) is a software tool for modeling per-
formance and dependability of complex systems. It uses an integrated multi-
formalism, multi-solution approach, i.e., the overall model can be divided into
smaller pieces and treated with different model formalisms and solution techniques.
Möbius was developed by the Performability Engineering Research Group at the
University of Illinois at Urbana-Champaign. Head and founder of this group is
Prof. William H. Sanders.

Figure 5.1 shows how Möbius divides the workflow of system attribute assessment
into successive work packages, each supported by its own model formalisms. The
classical modeling work is done in atomic and composed models. Atomic models
are the basic modeling elements which consist of states, state transitions and
parameters. Composed models assemble a set of atomic- or composed models
to an overall composed model of your system. On the basis of composed and
atomic models the reward model describes the calculation of so-called performance
variables, e.g., MTTF or Availability. Within theses models, parameters can be
represented by global variables so the last step of defining a concrete model is the
assignment of parameter values by means of an own study editor. A complete set
of value assignments is called an experiment, while a set of experiments is called
a study. Möbius provides two different solution approaches for the evaluation of
the performance variables: analytical solving and simulation.

39

5.2. ATOMIC MODELS AS SANS CHAPTER 5. MÖBIUS

Atomic

Models

Composed

Models

Reward

Models

Experiments

State Space

Generator

Analytical

Solver

Simulation

Figure 5.1: Möbius Workflow

Figure 5.2: SAN Primitives

5.2 Atomic Models as SANs

For this thesis all atomic models for SoC reliability evaluations were created as
SAN as presented in [9]. SANs are stochastic extensions to Petri-nets which can use
arbitrary data structures instead of simple Petri-net places and allow the execution
of functions on the model state before and after state transitions.

SANs consists of five basic elements: places, timed activities, instantaneous activi-
ties, input gates and output gates. Figure 5.2 shows their graphical representation
in Möbius and the following sub-chapters describe them in detail:

5.2.1 Places

Places in SANs have the same meaning as in Petri nets and can hold a natural
number greater or equal than zero. Usually this number is referred to as number
of marks stored in the place. Additionally places are able to hold more complex

40

CHAPTER 5. MÖBIUS 5.2. ATOMIC MODELS AS SANS

data structures like floating point numbers, timestamps and records.

Another feature of SAN places is that they are accessible from all over the whole
SAN and from the rewards models by means of C expressions. Please refer to [47]
for details about the programming language C. For example the place PC OK can
be accessed over PC OK->Mark().

5.2.2 Input Gateways

Graphically, the input gateway only must be connected to activities, but for the
purpose of documentation input gateways can also be connected to places. Input
gateways possess the following two parameters which both must be given in C
code:

• Input Predicate: The input predicate defines an enable-condition
for all connected activities. The predicate is a C expression defined on
the state variables of the SAN. If the predicate is true, the lines to all
connected activities are enabled.

• Input Function: If a connected activity completes, then the C ex-
pression of the input function is executed.

5.2.3 Output Gateways

Output gateways defines a function which is executed when a connected activity
completes. They must be connected to activities, but may be connected to places
for documentation purposes, as explained for input gateways the sub-section be-
fore.

5.2.4 Timed Activities

An activity represents a transition from one system state to another state within
an either deterministic or stochastic distributed amount of time. The activity
can be in three different states: Initially the activity is disabled and becomes
enabled if all places and input-gates, connected to the activity by input-lines,
contain at least one mark or are enabled, respectively. While being in the enabled
state the activity is running down an internal counter which was initialized by
the activity time. After the expiration of this term the activity is said to be
completed. In this case each place connected towards the activity looses one
mark. All places which are connected to the activity output gains a mark and
all connected output-gates are activated. An additional feature of activities are

41

5.2. ATOMIC MODELS AS SANS CHAPTER 5. MÖBIUS

activity time

Activation Completion

activity time

Activation Completion

& Activation

Completion

activity time

activity time

Aborted

activity time

activity time

Reactivation

a)

c)

b)

d)

Figure 5.3: Execution of a Timed Activity [5]

case probabilities. Graphically, a case is indicated by a small circle at the activity
output. From these cases originate output lines towards output-gateways and
places. When the activity completes, determined by user-defined probabilities, a
case is chosen and only output-gates and places connected to the chosen case are
further considered.

An activity possesses the following properties:

• Time Distribution Function: This property gives the firing time
distribution for the activity and can either be deterministic or stochas-
tic, e.g., exponential distributed.

• Rate, Mean, Variance: According to the chosen distribution func-
tion the activity possesses different lists of distribution parameters.
E.g., if the activity time is normal distributed, then the parameters
Mean and Variance must be set.

• Case 1, Case 2, ...: To determine the case chances, each case must
be weighted by a real number. So when the activity fires, Möbius
calculates the probability for each case and then randomly chooses one
of them.

• Reactivation Function: The reactivation function gives the neces-
sary conditions of the system state to trigger a reactivation of the activ-
ity. This parameter is optional, figure 5.3-(d) shows a possible timeline.

Figure 5.3 shows four example time lines for the execution of a timed action.
Shaded areas represent the enabled state and the even areas the disabled state of
the activity. After the activity time in (a) the activity completes and the following
actions changes the system state in that way that the activity becomes disabled.
In (b) after the first activity completion the activity is still enabled so that a

42

CHAPTER 5. MÖBIUS 5.2. ATOMIC MODELS AS SANS

a) Place Names Initial Markings d) Timed Activity: PC_fails

PC_OK 1 Distribution Parameters Rate: 10

Repairable_Damage 0 Case Distributions case 1: 50

Total_Damage 0 case 2: 50

b) Output Gate PC_repaired e) Timed Activity: buy_new_one

Function PC_OK->Mark() = 1; Distribution Parameters Rate: 50

c) Input Gate: is_PC_OK f) Timed Activity: repair

Predicate PC_OK->Mark() > 0 Distribution Parameters Rate: 20

Function ;

Figure 5.4: SAN Example

new activation cycle begins. The activity in (c) looses its enabled state before
completion and so the action is aborted. In (d) before the activation can complete
the activity is reactivated and so a new activation cycle begins. This timeline is
only possible, if the reactivation function of the activity is set.

Since the effects of actions can be marking-dependent, the following order of events
after activity completion must be considered (as defined in [9]):

1. If the activity has cases, a case is (probabilistically) chosen.

2. The functions of all the connected input gates are executed (in an
unspecified order).

3. Tokens are removed from places connected by input arcs.

4. The functions of all the output gates connected to the chosen case are
executed (in unspecified order)

5. Tokens are added to places connected by output arcs connected to the
chosen case.

5.2.5 Instantaneous Activities

Instantaneous activities have the same execution rules like the timed activities but
with the difference that completion happens immediately after activation.

5.2.6 SAN Example

Figure 5.4 depicts the graphical representation and its corresponding configuration
tables of a simple SAN example. It models a personal computer (PC) which either
can suffer a total or a repairable damage and the PC can be replaced or repaired,
respectively. In any cases, the model always reaches the state where the PC is
running again, after some time.

43

5.3. COMPOSED MODELS CHAPTER 5. MÖBIUS

PC_OK Total_Damage

PC_OK Repairable_Damage

SAN 2:

SAN 1:

Shared State

Variable

Figure 5.5: Shared State Variables in Composed Models

So the model consists of three places with the initial markings shown in table (a) of
figure 5.4.PC OK is one, if the PC is running, zero otherwise. Total Damage is one if
the PC is assumed to be non repairable, zero otherwise. And Repairable Damage

is one if the PC must become repaired.

The only input-gateway is is PC OK, described by table (c). It defines a predicate
that checks the state of PC OK. So if this place is greater than zero, then the input-
gateway is enabled and by the connection to the activity PC fails it defines the
enable-condition for the activity. Since the initial marking of PC OK is one, the
activity is enabled from the start. After the activation time of PC fails, the
activity chooses between two cases. Table (d) shows their case distributions. By
a fifty-fifty chance, either Total Damage or Repairable Damage is filled with a
mark by the activity. If Total Damage is filled with a mark, every input-line of
buy new one is enabled and so the activity is enabled, which in turn fills PC OK

with a mark after the activation time. In the other case, Repairable Damage is
filled with a mark which enables repair and which in turn leads to an execution
of the output-gateway function of PC repaired. As one can see in table (b), the
function sets PC OK back to one. So in either case the whole model is back in its
initial state where the whole cycle can start again.

5.3 Composed Models

Complex models can possess a great amount of redundant structures, e.g., when
describing TMR. Therefore it is reasonable to define an own class of meta-models
to describe submodel replications and their information exchange. For this purpose
Möbius provides composed models with the so-called Rep & Join formalism ([5]).
The building blocks of composed models are atomic or other composed models.
These submodels can be connected by replication-operators (Rep-nodes) or join-
operators (Join-nodes). In this manner connected submodels share information by

44

CHAPTER 5. MÖBIUS 5.3. COMPOSED MODELS

a) Rep Node Reps

b) Join Node Submodel Variables

Infrastructure->TSS_OK

TMR->TSS_OK
TSS_OK

TMR 3

SoC

Shared State Variables

DAS_OK

Microcomponents_Failed

TSS_OK

State Variable Name

Figure 5.6: Example of a Composed Model

means of shared state variables as depicted in figure 5.5. This figure shows two
SANs which both share the place PC OK. Both SANs have access to the same vari-
able. Since analytical solvable models must not have more than one deterministic
activity at any time, the access collision issue is confined to simulation which offers
no rules for mutual exclusions but uses the principle of contingency.

5.3.1 Example of a Composed Model

Figure 5.6 shows an example of a composed model. It describes a system
with three replicated micro components (the corresponding sub model is named
Safety Critical Microcomponent in TMR) on a chip, whereby the service function-
ality of the chip itself is modeled by the submodel called Infrastructure.

In the figure, table (a) describes the parameters of the Rep-node: The Rep-node
TMR defines the triple replication (stated in the Reps column of the table) of the sub
model Safety Critical Microcomponent in TMR. The column Shared State Vari-
ables of table (a) lists common used places of the replicated submodels. So ,e.g.,
by the sharing of the place Microcomponents Failed each submodel can incre-
ment this variable in case of a failure and so a common view on the system state
for all submodels is realized.

The Join-node has the purpose to connect the submodel Infrastructure with the
replicated micro components (Rep-node TMR). Table (b) shows the corresponding
parameters. The first column holds the name of the Join-node, the second column
defines a new name for the state variable and the third column lists all variables
from the connected submodels which shall share a common storage. So in the
example if the Infrastructure model clears the variable TSS OK then, because of
the Join-node and the Rep-node, each submodel in the composed model has the
same view on the cleared TSS OK.

45

5.4. REWARD MODEL CHAPTER 5. MÖBIUS

5.4 Reward Model

The reward model is built on top of atomic and composed models and specifies
measures by defining so-called performance variables, e.g., measures to evaluate
the availability or the MTTF. The core of a performance variable is determined
by one or both (as sum) of the following rewards:

• Rate Reward: A rate reward specifies measures on the state of the
model at an instant of time.

• Impulse Rewards: An impulse reward is a function on the state of the
system and the state of a single action. The impulse reward function
is evaluated each time the assigned action completes.

Either of the two reward types consists of a predicate on the model state and a
reward function. So if the predicate is true at a point in time, then reward function
is calculated and added to the performance variable. The reward can be specified
to be calculated at the following times:

• Instant Of Time: Gives the performance variable for specific points
in time.

• Interval Of Time: Gives the integral of the performance variable over
an interval.

• Time Averaged Interval Of Time: Gives the integral divided by
the interval duration.

• Steady State: Gives the mean value of the performance variable at
an initial transient time and at some far away lying points of time.

In Möbius the reward must be given in C notation, whereby the predicate is
formulated as IF-condition and the reward function is coded as return statement.

5.4.1 Rewards on Replicated Models

When a reward is defined on a replicated submodel and the reward function returns
the value of a shared state variable, then it is necessary to divide the reward
function by the number of replicas. The reason is that Möbius evaluates the
reward over all replicas. The next code listing shows an example reward for a
TMR system. The reward should return 1 if less than one replica failed and
because Möbius would evaluate the reward three times it is necessary to divide
the reward function by three:

46

CHAPTER 5. MÖBIUS 5.5. SOLVING MODELS WITH MÖBIUS

i f (TMR−>r e p l i c a f a i l e d −>Mark () < 1)
{

r e turn 1 .0 / 3 . 0 ;
}

5.5 Solving Models with Möbius

5.5.1 Analytical Solving

Analytical solvers calculate their solutions by analyzing the underlying state space
of the discrete-state stochastic Poisson process, inherent in a model. So the ana-
lytical approach of Möbius is divided into two steps. First the model state space
must be generated by the so-called State Space Generator and then on this in-
terim result one of Möbius’s analytical solvers can work out the results for the
performance variables. The big benefit of analytical solvers is the capability of
providing statistically accurate solutions up to machine precision. One drawback
are the strong restrictions on the model:

• All timed activities are deterministic or exponentially distributed.

• At most one deterministic activity is enabled at any time and its firing
delay must not be state-dependent.

• The model must have a finite, small state space.

• When instantaneous activities are used:

– The model must start in a stable state.

– The model must be self-stabilizing and well-specified.

A second drawback are the high calculation times for systems with a mix of very
slow and very fast transition rates (i.e. stiff model [48]) where the rate of the Pois-
son process is determined by the fastest rate, but the time points of interest are
often in the scale of the slow rates causing a high number of solver iterations. Nat-
urally models of ultra-reliable systems possesses two different groups of transitions:
relatively fast transitions that characterize fault/error handling mechanisms and
relatively slow transitions that describes the fault-occurrence mechanisms. A stiff-
ness ratio of 1010 together with a state space of 105 states still appears infeasible
for numerical solving techniques [49].

47

5.5. SOLVING MODELS WITH MÖBIUS CHAPTER 5. MÖBIUS

5.5.2 Simulation

Instead of analyzing Markov chains the discrete event simulator gets its results
by experimentation and statistical analysis of a number of simulation batches.
Therefore the big benefit of the simulator is that it can solve every model without
restrictions, even stiff models and non-Markovian models, and delivers statisti-
cally accurate solutions determined by a user-specifiable confidence interval. The
drawback is that more result accuracy is paid in calculation time.

For the evaluations presented in this paper it was decided to use the discrete event
simulator from Möbius because of the mix of very fast recovery rates and very
slow failure rates in the SoC model. The analytical solver shows unbearable long
calculation times. Instead the simulator is used with a confidence level of 95% and
a confidence interval of 10%.

48

Chapter 6

SoC Model with Möbius

6.1 Notations

• P{...}: Probability of ...

• A{...}: Availability of ...

• Failure rates usually refer to transient failure rates, while perma-
nent failure rates are estimated by multiplying the transient failure
rate by the permanent-to-transient fault ratio. (Parameter name:
perm trans ratio)

• The formula (1 + perm trans ratio) ∗ transient-failure-rate calculates
the totalized failure rate for transient and permanent failures.

• Place->Mark(): Mark() allows the access to the value of the state
variable Place.

• Notation for names of shared state variables: Names of shared places
in SoC models are in uppercase.

6.2 Global Variables And Their Default Values

Möbius supports global variables within the models to allow the simple creation
of studies by means of variable value assignments by so-called Experiments. Ta-
ble 6.1 shows a description of the global variables of the SoC model. The table is
partitioned into sections:

49

6.2. GLOBAL VARIABLES CHAPTER 6. SOC MODEL WITH MÖBIUS

a) Failure Rates for Transient Physical Faults

FCR
Transient

Failure Rate
Model Parameter

Host 10
4
 FIT host_fr

TISS-Port Manager + UNI 276 FIT tiss_value_fr

TISS-Pulse Manager 319 FIT tiss_temp_fr

RMA 404 FIT rma_fr

TNA 144 FIT tna_fr

Switch 10
3
 FIT switch_fr

Gateway Host 100 FIT gateway_host_fr

Communication Controller 700 FIT comm_controller_fr

Physical Link 10
4
 FIT tr_link_fr

b) Failure Rates for Permanent Physical Faults

FCR
Permanent
Failure Rate

Model Parameter

Host 1 FIT perm_trans_ratio * host_fr

TISS-Port Manager + UNI 0.03 FIT perm_trans_ratio * tiss_value_fr

TISS-Pulse Manager 0.03 FIT perm_trans_ratio * tiss_temp_fr

RMA 0.04 FIT perm_trans_ratio * rma_fr

TNA 0.02 FIT perm_trans_ratio * tna_fr

Switch 0.1 FIT perm_trans_ratio * switch_fr

Gateway Host 0.01 FIT perm_trans_ratio * gateway_host_fr

Communication Controller 0.07 FIT perm_trans_ratio * comm_controller_fr

Physical Link 10
3
 FIT pm_link_fr

c) Error Rates for Design Faults

FCR
Design

Error Rate
Model Parameter

Safety-Critical Application Computer 10 FIT critical_host_design_fr

Non Safety-Critical Application Computer 10
3
 FIT non_critical_host_design_fr

RMA 100 FIT rma_design_fr

Trusted Subsystem 1 FIT tss_design_fr

d) Probabilities and Ratios

Parameter Description Value Model Parameter

Design Fault Correlation 0.1 % design_fault_correlation

TSS Recovery Probability 80 % tss_recovery_p

Permanent-to-Transient Fault Ratio 10
-4

 perm_trans_ratio

Probability of correlated failures on both
physical communication links

10% correlated_channel_failure_p

e) Recovery Rates and the corresponding Mean Durations

Parameter Description Rate Duration Model Parameter

Recovery Rate for Physical Link Failures 1800 2 s physical_link_recovery_r

Recovery Rate for SoC Sub-Components 72000 50 ms recovery_r

Repair Rate for SoC Components 0.1 10 hours repair_r

Table 6.1: Global Variables and their Default Values

50

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.3. OVERVIEW

Sections a to c describe design and physical failure rates of SoC subcomponents
with the first column stating the afflicted SoC subcomponent, the second column
stating the failure rate and the third column stating the model parameter. If the
introduction of a new parameter is not mandatory the model parameter is given
as function (in C notation) of two other model parameters.

Section d depicts case probabilities and ratios.

Section e describes recovery rates and their corresponding mean durations.

6.3 Overview

To describe the whole TTSoC two different model formalisms are combined: The
Rep & Join formalism for an abstract (composed) view of the SoC and the SAN
formalism to describe the building blocks of the composed model in detail.

How the architecture is partitioned into atomic models, is shown by figure 6.1:
RCU, TNA and RMA are combined together by the Infrastructure SAN. The
Gateway SAN comprises the failure behavior of the gateway and the channels to the
off-chip network, i.e., physical links and switches. Micro components are described,
according to the safety-criticality of the corresponding application, either by a SAN
for safety or non safety-critical micro components. Since the NoC is realized by the
TNA and the micro component TISSes, the modeling of the NoC failure behavior
is distributed over the micro component models, the Gateway model (which also
possesses a TISS) and the Infrastructure model.

Micro

Component

Safety-Critical

Microcomponent

SAN

Micro

Component

Non Safety-

Critical

Microcomponent

SAN

Gateway

Gateway

SAN

TNA RMARCU

Infrastructure

SAN

TT-NoC

off-chip

network

Figure 6.1: TTSoC Architecture Partitioning into Atomic Models

The overall SoC model is composed of SANs by means of model replication and
combination. Figure 6.2 gives a schematic representation of the submodel relations.

51

6.3. OVERVIEW CHAPTER 6. SOC MODEL WITH MÖBIUS

Microcomponents

_Failed

DAS_OK

Gateway_

OK

RMA_OK

TSS_OK

Infrastructure

SAN

Non Safety-Critical

Microcomponent

SAN

Gateway

SAN

Safety-Critical

Microcomponent

SAN

SoC 1

Safety-Critical

Microcomponent

SAN

SoC 2

Safety-Critical

Microcomponent

SAN

SoC 3

etc.

etc.

Gateway_

OK
SAN in write-relation to Shared State VariableSAN

Atomic model formulated as Stochastic Activity Network

Gateway_

OK
SAN in read-relation to Shared State VariableSAN

Shared State Variable

Figure 6.2: Composed Off-Chip TMR Model and its Shared State Variables

The left side of the picture holds a dashed box, representing SoC 1, which comprises
all necessary atomic models to describe the failure behavior of an SoC. The data
exchange between the submodels take place over shared state variables depicted as
red circles, e.g., TSS OK and RMA OK. An arrow which points towards a shared state
variable means a write-to-variable-relation, while an arrow towards a submodel
means a read-by-SAN-relation. The combination of these relations is also possible.

Figure 6.2 shows an example for a composed model which consists of three SoCs
where only SoC 1 is depicted completely. The states of the architectural services
of each SoC are described by three shared state variables: Gateway OK, TSS OK

and RMA OK. Each of the SoCs has a set of these variables. Dependent on the re-
quirements of a micro component, the associated micro component model shares
some of these variables. The Gateway OK is only shared between the Gateway
model and the micro component models which depends on the state of the off-chip
network. RMA OK is only shared between the Infrastructure model and micro com-
ponent models which describe the behavior of non safety-critical models. TSS OK

describes the state of the trusted sub-system and must be shared by all atomic
models which belong to the same SoC.

Opposite to this SoC bounded variables, the figure also shows the use of appli-
cation specific variables: DAS OK and MICROCOMPONENTS FAILED. Since each micro
component belongs to a distributed application sub-system, each micro component

52

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.4. COMMON CONSTRUCTS

Microcomponents

_Failed

DAS_OK

RMA_OK

TSS_OK

Infrastructure

SAN

Non Safety-Critical

Microcomponent

SAN

Safety-Critical

Microcomponent

SAN

SoC 1

Safety-Critical

Microcomponent

SAN

Safety-Critical

Microcomponent

SAN

Figure 6.3: Composed On-Chip TMR Model and its Shared State Variables

model must have access to the according DAS state variable. In the example the
variable is shared by micro component models belonging to different SoCs. If a
micro component is part of a TMR (as in the example the three safety-critical
micro component models), it must share the variable MICROCOMPONENTS FAILED

which states the number of failed replicas.

Figure 6.3 shows an example for a composed model similar to that depicted in figure
6.2 but with only one SoC. This SoC hosts three Safety-Critical Micro Component
models, forming on-chip TMR. The big difference to the off-chip TMR example
is that all three Safety-Critical Micro Component models now share the same
architectural services state variable, i.e, TSS OK.

Figure 6.4 shows the schematic of a composed model which combinates off-and
on-chip TMR. To distribute the number of failed TMRs among all SoC models,
the composed model possesses an additional shared variable, called TMRS FAILED.
If TMRS FAILED is greater than one, the application is considered to be failed and
the shared variable DAS OK is cleared.

6.4 Common Constructs of SoC SANs

This section describes recurring structures within the atomic models of the SoC.

53

6.4. COMMON CONSTRUCTS CHAPTER 6. SOC MODEL WITH MÖBIUS

Microcomponents

_Failed

DAS_OK

RMA_OK

TSS_OK

Infrastructure

SAN

Non Safety-Critical

Microcomponent

SAN

Safety-Critical

Microcomponent

SAN

SoC 3

Safety-Critical

Microcomponent

SAN

Safety-Critical

Microcomponent

SAN

TMRS_FAILED

SoC 1

etc.

SoC 2

etc.

Figure 6.4: Composed Off-and-On-Chip TMR Model and its Shared State Vari-
ables

6.4.1 Combined Failure Rates and Case Probabilities

In some cases it is useful to combine the failure rates for transient and permanent
failures of a component to reduce the number of activities. E.g. if trans fr is the
transient failure rate and perm fr is the permanent failure rate of a component
which has exponential distributed times-to-failure, the overall failure rate is given
by trans fr + perm fr.

If the model should react differently for these two different failure classes, then this
can be modeled by creating two cases for the overall activity: One for permanent

54

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.4. COMMON CONSTRUCTS

and one for transient failures. The case probabilities are calculated by the two
following formulas:

P{transient failure} =
trans fr

trans fr + perm fr

P{permanent failure} =
perm fr

trans fr + perm fr

If perm fr can be estimated from trans fr over the permanent-to-transient-fault-
ratio by perm fr = trans fr ∗ perm trans ratio, then the overall failure rate
equals (1+perm trans ratio)∗ transient-failure-rate and the case probabilities for
a common activity are calculated by:

P{transient failure} =
1

1 + perm trans ratio

P{permanent failure} =
perm trans ratio

1 + perm trans ratio

6.4.2 Modeling of Temporal TISS Failures

The following structure is used in all atomic models. Figure 6.5 depicts the corre-
sponding detail of a micro component model.

Figure 6.5: Detail of a SAN: TISS Failures and Recovery

Each micro component has an access point to the NoC by the pulse manager of its
TISS. Since physical faults in the pulse manager can lead to temporal domain fail-
ures which disturb the on-chip communication, each additional micro component
increases the failure rate of the whole NoC.

One model approach could consider a central activity within the Infrastructure
model with an activation rate that equals the overall NoC failure rate. The draw-
back of this solution is, that the number of modeled pulse managers must be given
explicitly as a model parameter which would be used for all instances of the In-
frastructure model. As a consequence, this imposes a restriction on the reusability
of the Infrastructure model within composed models of distributed applications:
All SoCs would be restricted to contain the same number of micro components.

55

6.4. COMMON CONSTRUCTS CHAPTER 6. SOC MODEL WITH MÖBIUS

The solution used for this thesis allows a better composability of SoC subcompo-
nents: Each micro component model describes failures and recoveries of its own
pulse manager (by the tiss temporal failure and the tiss temporal recovery

activities).

The TISS recovery-duration is described by the tiss recovery activity which dif-
fers between two cases: The first case considers transient TISS failures, where the
TISS down-time is given by the duration of an autonomous recovery. The second
case considers permanent TISS failures which only can be removed by an external
maintenance action. The maintenance time is described by the system repair

activity. The case probabilities of tiss recovery are calculated as described in
the following paragraph:

Case Probabilities of tiss recovery: Since a distributed system build upon
the TTSoC architecture offers no central element which allows the external reset of
an SoC, the recovery depends on the type of the causing fault, i.e., if the resulting
failure is limited in time. E.g., if a SEU alters some essential configuration data of
the TSS, then the SoC fails permanently while an SEU striking some volatile ap-
plication memory, would cause only a limited number of faulty messages. For this
reason the case probabilities of the tiss recovery activity takes into account that
the probability of a recovery after a transient fault (P{TSS recovery after fault})
can be smaller than one:

P{transient failure} =
1

1 + perm trans ratio
(as described in sub-section 6.4.1)

P{recovery} = P{no TSS recovery after fault} = 1−P{repair}
P{repair} = P{transient failure} ∗P{TSS recovers after transient fault}

6.4.3 Model Reactions on TSS and Gateway Failures

The following structures are used in all micro component models and in the Infras-
tructure model. Figure 6.6 depicts the corresponding detail of a micro component
model.

The functionality of each micro component depends on the TSS and in case of dis-
tributed applications also on the gateway. Therefore the states of TSS and the gate-
way are distributed by the shared state variables TSS OK and GATEWAY OK. Their
values are used within the input-gateway infrastructure not ok which enables
the activity infrastructure failed. So in case of a TSS or gateway failure the
function of the output-gateway job is failing is executed, which clears the value
of microcomponent ok, increments the value of MICROCOMPONENTS FAILED and
computes the new state of DAS OK. After this, the place infrastructure failed

56

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.5. ATOMIC MODELS

Figure 6.6: Detail of a SAN: Reactions on Infrastructure Failures and Recovery

contains a mark. The enable of the activity infrastructure recovered now only
depends on the input-gateway infrastructure is ok which is activated if the
gateway and TSS are considered to be valid. After activation the output-gateway
set microcomponent ok resets the micro component model.

6.5 Atomic Models

6.5.1 Infrastructure - SAN

Figure 6.7: Infrastructure SAN

A collective model describes the failures and recoveries of TNA, RMA and RCU.
The model summarizes the failure rates of TNA and RCU within the TSS failure

activity, while RMA failures are modeled by the RMA failure activity, see fig-
ure 6.7. Tables 6.2 to 6.4 give the complete parameter set for the Infrastructure
SAN.

The RMA failure activity summarizes the failure rates for failures caused by tran-
sient and permanent physical faults and by design faults. The RMA recovery

activity possesses two cases: The first one considers transient failures and refills
the place RMA OK which represents the RMA recovery. The second case leads to
the permanent failure place which indicates that only an external maintenance
action can recover the RMA. The case probabilities are given by the following

57

6.5. ATOMIC MODELS CHAPTER 6. SOC MODEL WITH MÖBIUS

formulas:

P{case 1} = P{RMA recovery after fault} = P{transient failure}

=
trans fr

trans fr + perm fr

P{case 2} = P{no RMA recovery after fault} = P{permanent failure}

=
perm fr

trans fr + perm fr

TSS failures are similar modeled as RMA failures but with a additional factor to
consider not recoverable failures caused by transient faults. So the case probabili-
ties of the recovery activity are:

P{case 1} = P{recovery}
= P{transient fault} ∗P{TSS recovery after fault}

P{case 2} = P{repair}
= P{transient fault} ∗ (1−P{TSS recovery after fault})

+ P{permanent fault}

A detailed explanation for the formulas can be found in sub-section 6.4.2, para-
graph Case Probabilities of tiss recovery:.

The repair duration after a permanent failure of TNA, RMA or RCU is ex-
pressed by the system repair activity, which resets the model by triggering
repair infrastructure (output gateway) after completion.

Place Names Initial Markings

RMA_OK 1

RMA_failed 0

TSS_OK 1

infrastructure_failure 0

permanent_TSS_failure 0

permanent_failure 0

Table 6.2: Infrastructure SAN - Places

58

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.5. ATOMIC MODELS

Output Gate Function

repair_infrastructure

RMA_failed->Mark() = 0;

RMA_OK->Mark() = 1;

permanent_failure->Mark() = 0;

if (permanent_TSS_failure->Mark())

{

 permanent_TSS_failure->Mark() = 0;

 TSS_OK->Mark() = 1;

}

Table 6.3: Infrastructure SAN - Output Gateways

Activity Exponential Rate Cases

RMA_failure
 rma_fr * (1 + perm_trans_ratio)

+ rma_design_fr

RMA_recovery recovery_r

case 1
1 - perm_trans_ratio

case 2
perm_trans_ratio

TSS_failure

 tss_design_fr // TSS design failure

+ (1 + perm_trans_ratio)

* (tna_fr // TNA physical failure

 + tiss_temp_fr // TNA-DLL physical failure

 + tiss_temp_fr // RMA-DLL physical failure

)

TSS_recovery recovery_r

case 1
1 - (1 - perm_trans_ratio)

 * tss_recovery_p

case 2
(1 - perm_trans_ratio)

* tss_recovery_p

system_repair repair_r

Table 6.4: Infrastructure SAN - Activities

59

6.5. ATOMIC MODELS CHAPTER 6. SOC MODEL WITH MÖBIUS

6.5.2 Gateway - SAN

Figure 6.8: Gateway SAN

Place Names Initial Markings

GATEWAY_OK 1

permanent_failure 0

TSS_OK 1

permanent_temporal failure 0

temporal_failure 0

transient_com_failure 0

Table 6.5: Gateway SAN - Places

The Gateway model (figure 6.8) describes the SoC gateway together with its inter-
connection to the off-chip network, i.e., the failure behavior of the physical links
to the star-coupled switches, the communication controllers, the gateway host and
the TISS (described in section 4.6). The model parameters are depicted in the
tables 6.5 to 6.7.

A plain gateway model which maps one failure-cause to one SAN activity would
create much computing time during simulation. The reasons for this are on the
one hand the high failure rates of the two redundant channels and on the other
hand the high number of activities in total within a composed distributed model.
The high number of activities arises as a result of the redundant structures within
a plain Gateway model and of the necessity to incorporate one Gateway model
per SoC within a composed model of a distributed system.

To reduce the number of activities with high firing rates and consequently the
simulation execution time, it is possible to combine failure and repair rates of the

60

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.5. ATOMIC MODELS

Activity Exponential Rate Case Probabilities

system_repair repair_r -

TISS_recovery recovery_r

case 1
1.0 - (1.0 - perm_trans_ratio)

 * tss_recovery_p

case 2
(1.0 - perm_trans_ratio)

* tss_recovery_p

tiss_temporal_failure tiss_temp_fr

*(1 + perm_trans_ratio)

communication_recovery min(recovery_r,

 physical_link_recovery_r)

permanent_communication_failure
see sub-section

Permanent Gateway Failures

transient_communication_failure
see sub-section

Transient Gateway Failures

Table 6.6: Gateway SAN - Activities

Output Gate Function

repair_gateway_host

GATEWAY_OK->Mark() = 1;

transient_com_failure->Mark() = 0;

temporal_failure->Mark() = 0;

permanent_failure->Mark() = 0;

if (permanent_temporal_failure->Mark())

{

 permanent_temporal_failure->Mark() = 0;

 TSS_OK->Mark() = 1;

}

Table 6.7: Gateway SAN - Output Gateways

redundant Gateway subcomponents by exploiting the mathematical benefits of
exponential distributed activity times.

The transient communication failure activity models transient failures in the
value domain of the whole gateway, while permanent communication failure

does a similar job for permanent failures: The activities models the failures of
the gateway host, the TISS and of both redundant channels (each comprising a
communication controller, a physical link and a switch).

The communication recovery activity models the recovery duration after tran-
sient link-, switch- and communication controller failures. To reduce the activity
complexity, the rate is chosen to be the minimum of the link-recovery-rate (for
recoveries after interferences on the physical link) and the switch/communication
controller recovery rate. Therefore in some cases, the model uses a longer mean-
time-to-recovery after gateway failures. But this circumstance carries no weight

61

6.5. ATOMIC MODELS CHAPTER 6. SOC MODEL WITH MÖBIUS

for the system evaluation, since the two different recovery rates are assumed to be
of a similar order of magnitude. The system repair activity describes the repair
duration after permanent failures.

Since TISS failures in the temporal domain affect the whole on-chip com-
munication, their occurrence and their removal are covered by the activities:
tiss temporal failure and TISS recovery. A detailed explanation can be found
in sub-section 6.4.2.

The following sub-sections describe the Gateway model activities and the cal-
culation of their activation-rates. The theoretical backgrounds for the following
equations are described in 2.2 (Mathematical Concepts).

Transient Gateway Failures

Transient gateway failures are modeled by the transient comm failure activ-
ity. Its overall failure rate is calculated by formula 6.13 which is build upon the
formulas 6.1 to 6.12.

Combined Availability for a Communication Controller and a Switch:
The combined transient failure rate for a communication controller and a switch
is calculated by formula 6.1.

tr controller fr = comm controller fr + switch fr (6.1)

The permanent failure rate can be estimated by multiplying the transient fail-
ure rate with the factor perm trans ratio. In sum the total (i.e., permanent +
transient) failure rate for a communication controller and a switch is given by for-
mula 6.2. Since all activity times are assumed to be exponential distributed, the
failure rate equals the reciprocal MTTF.

controller fr =
1

MTTFcontroller+switch

= tr controller fr ∗ (1 + perm trans ratio)

(6.2)

Depending on whether the failure was caused by a transient or a permanent fault,
the communication controller and the switch have different down-times:

time-to-restart =

{
recovery-duration : case probability = 1

1+perm trans ratio

repair-duration : case probability = perm trans ratio
1+perm trans ratio

(6.3)

62

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.5. ATOMIC MODELS

The corresponding MTTR is defined as the expectancy value for the time-to-restart
in equation 6.3 and is calculated by formula 6.4:

MTTRcontroller+switch =
recovery-duration + perm trans ratio ∗ repair-duration

1 + perm trans ratio
(6.4)

Applying preliminary findings on the common formula for the availability (for-
mula 6.5) results in the combined availability for a communication controller and
a switch, see formula 6.6.

Availability =
MTTF

MTTF +MTTR
(6.5)

A{controller+switch} = 1 / (1

+ tr controller fr ∗ recovery-duration

+ tr controller fr ∗ repair-duration ∗ perm trans ratio

)

(6.6)

Physical Link Availability: The calculation of the availability for a physical
link succeeds just like the availability calculation for the communication controller
and the switch, but with the physical link interference rate as transient failure
rate, pm link fr for permanent link failures and the interference duration instead
of the recovery duration. For later calculations the link availability does not take
correlated physical link failures (where both links are affected coincidently from an
interference) into account since these are considered directly in the final transient
gateway failure rate in formula 6.13. To eliminate correlated physical link failures
from the availability calculation , tr link fr is multiplied with the probability that
a transient fault does not hit both links coincidently, P{uncorrelated link failure}.

tr link fru = tr link fr ∗P{uncorrelated link failure} (6.7)

MTTFphysical link =
1

pm link fr + tr link fru
(6.8)

time-to-restart =

{
interference-duration : case probability = tr link fru

pm link fr+tr link fru

repair-duration : case probability = pm link fr
pm link fr+tr link fru

(6.9)

63

6.5. ATOMIC MODELS CHAPTER 6. SOC MODEL WITH MÖBIUS

The corresponding MTTR is defined as the expectancy value for the time-to-restart
in equation 6.9 and is calculated by formula 6.10:

MTTRphysical link =
tr link fru ∗ interference-duration

pm link fr + tr link fru

+
pm link fr ∗ repair-duration

pm link fr + tr link fru

(6.10)

Applying preliminary findings on the common formula for the availability (for-
mula 6.5) results in the availability for a physical link, see formula 6.11.

A{physical link} =1 / (1 + pm link fr ∗ repair-duration

+ tr link fru ∗ interference-duration)
(6.11)

Combined Failure Rate for Redundant Channels: Having the availabil-
ities of a physical link and of the combination of communication controller
and switch, it is possible to calculate the overall failure rate for two redun-
dant channels. From the equation P{channel failed} = 1 − A{channel} and
A{channel} = A{physical link} ∗A{controller+switch} follows:

tr channels fr = (1−A{channel}) ∗ (tr contr fr + tr link fru) (6.12)

Overall Failure Rate for Transient Gateway Failures: Finally, the gate-
way failure rate for transient failures is given by the sum of formula 6.12, the
failure rates for gateway host, TISS failures (for TISS failures in the value domain;
temporal failures are considered by an other activity) and correlated physical link
failures (tr link fr ∗P{correlated link failure}):

transient gateway fr = host design error rate

+ gateway host fr

+ TISS value fr

+ tr link fr ∗P{correlated link failure}
+ tr channels fr

(6.13)

64

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.5. ATOMIC MODELS

Permanent Gateway Failures

Permanent gateway failures are modeled by the permanent comm failure activity.
The overall failure rate is calculated by formula 6.16, which is build upon the
formulas 6.14 to 6.15.:

Combined Permanent Failure Rate for Redundant Channels: The com-
bined, permanent failure rate for a communication controller and a switch is
calculated by multiplying the failure rate for transient failures with the factor
perm trans ratio:

pm controller fr = tr controller fr ∗ perm trans ratio (6.14)

With the availabilities of the physical link and of the combination, communication
controller and switch (see formulas 6.11 and 6.6), it is possible to calculate the
overall failure rate for permanent failures of two redundant channels.

pm channels fr = (1−A{channel}u) ∗ (pm contr fr + pm link fr) (6.15)

Overall Failure Rate for Transient Gateway Failures: Finally, the gateway
failure rate for permanent failures is given by the sum of formula 6.15, the failure
rates for gateway host and TISS failures (for TISS failures in the value domain;
temporal failures are considered by an other activity):

permanent gateway fr = pm channels fr

+ perm trans ratio ∗ (gateway host fr + TISS value fr) (6.16)

65

6.5. ATOMIC MODELS CHAPTER 6. SOC MODEL WITH MÖBIUS

6.5.3 Safety-Critical Micro Component in TMR - SAN

Figure 6.9: SAN for Micro Components in TMR

The SAN model depicted in figure 6.9 is considered to work within a composed
TMR model. For this purpose the model shares a state variable to count the
number of failed replicas and a state variable to set or reset the state of the
corresponding DAS. To allow reactions on state changes of gateway and TSS, the
model shares also the state variables GATEWAY OK and TSS OK. The SAN model
parameters are depicted in the tables 6.5 to 6.7.

The model covers the following events:

• Physical Faults in the TISS-Pulse Manager:

– Physical faults in the pulse manager can lead to temporal do-
main failures which can disturb the whole NoC and therefore
must be signaled to all other submodels, associated with the
same SoC. This is done by clearing the value of the shared
place TSS OK. A detailed explanation can be found in sub-
section 6.4.2 (Modeling of Temporal TISS Failures).

– Also the model must react to temporal TISS–failures sig-
naled from other models (e.g. Infrastructure, Gateway and
other micro component models). Since, this model struc-
ture appears in all other models, too, this details got its own

66

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.5. ATOMIC MODELS

subsection, see 6.4.3 (Model Reactions on TSS and Gateway
Failures).

• Gateway Failures: The model gets the state of the off-chip interconnec-
tion by the state variable GATEWAY OK shared with the Gateway model.
If the gateway fails, the micro component would have no connection to
the off-chip network. Within the model, this event is treated as if the
micro component itself fails. For more details see sub-section 6.4.3. If
the micro component model is considered to be independent of the off-
chip network, then this case can be modeled within the encompassing
composed model by not sharing the place GATEWAY OK.

• Physical Faults in Host and TISS-Port Manager: Failures caused by
such faults can only yield to failures in the value domain which only
affects the involved micro component and the application. Since the
modeled micro component is considered to be part of a TMR, the RCU
detects value domain failures and resets the micro component if neces-
sary. So in the model transient faults always lead to recoverable failures
(see activity recovery) and permanent failures need maintenance ac-
tions (modeled by the activity system repair) .

• Application Computer Design Faults: Failures caused by such faults are
modeled by the design failure activity which possesses two cases:
The first case considers a common application computer fault in all
micro components belonging to the same TMR. This case leads directly
to a DAS failure. The second case considers only micro component
local design faults which lead to a local micro component failure. The
calculation of the activity rate and the case probabilities are done in
paragraph Failure Rate and Case Probabilities for Design Faults:.

If one of the described activities fires, the place MICROCOMPONENTS FAILED is incre-
mented by one, except for common application computer design faults, which set
MICROCOMPONENTS FAILED to 3. Whenever a change of this place occurs, the model
solver checks if MICROCOMPONENTS FAILED ≤ 1, which is the requirement
for TMR to work properly. The first time the number of failed micro components
is to high, the place DAS OK is permanently set to 0, which means that the whole
DAS is considered to be failed because one of the ECUs of the distributed appli-
cation system failed. In this way, by setting DAS OK permanently to zero after the
first DAS failure, the Möbius simulator can evaluate the MTTF.

Failure Rate and Case Probabilities for Design Faults: The
design failure activity combines the failure rates of failures caused be local and

67

6.5. ATOMIC MODELS CHAPTER 6. SOC MODEL WITH MÖBIUS

common (i.e., among all micro components of the same TMR) design faults. The
probability that a design fault within one micro component is not as well within
other micro components of the TMR is given by the grade of design diversity
P{common design fault} (model parameter: design fault correlation).

Therefore, the failure rate for a micro component in TMR which fails because of
a local design fault is given by:

design-failure-rateuncorr = critical host design fr∗(1−P{common design fault})

and the failure rate for common design failures is given by:

design-failure-ratecorr = critical host design fr ∗P{common design fault}

To spare an atomic model which would have only the purpose to model common
micro component failures of a TMR, the value of the latter formula can be dis-
tributed amongst all TMR micro component models. This is done by adding the
following formula to each local design failure rate of a micro component within
TMR:

design-failure-ratecorr
Number-of-running-micro-components

So in sum, the rate of the design failure activity is calculated by:

design-failure-rate =
design-failure-ratecorr

Number-of-running-micro-components

+ design-failure-rateuncorr

As explained in 6.4.1 (Combined Failure Rates and Case Probabilities), the case
probabilities for the design failure activity which combines the failure rates of
common and local design faults can be calculated as following:

P{case 1} =
design-failure-ratecorr

design-failure-rate ∗ Number-of-running-micro-components

P{case 2} =
design-failure-rateuncorr

design-failure-rate

68

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.5. ATOMIC MODELS

Place Names Initial Markings

DAS_OK 1

GATEWAY_OK 1

MICROCOMPONENTS_FAILED 0

TSS_OK 1

infrastructure_failed 0

infrastructure_ok 1

microcomponent_ok 1

permanent_failure 0

permanent_temporal_failure 0

temporal_failure 0

transient_failed 0

Table 6.8: SAN for Micro components in TMR - Places

Activity Exponential Rate Case Probabilities

design_failure critical_host_design_fr

/ (3 - MICROCOMPONENTS_FAILED->Mark())

case 1
design_fault_correlation

case 2
1.0 - design_fault_correlation

physical_value_failure (tiss_value_fr + host_fr)

* (1 + perm_trans_ratio)

recovery recovery_r

case 1
1.0 / (1.0 - perm_trans_ratio)

case 2
perm_trans_ratio

/ (1.0 - perm_trans_ratio)

system_repair repair_r

tiss_recovery recovery_r

case 1
tss_recovery_p / (1 + perm_trans_ratio)

case 2
(perm_trans_ratio + 1 - tss_recovery_p)

/ (1 + perm_trans_ratio)

tiss_temporal_failure tiss_temp_fr

* (1 + perm_trans_ratio)

Table 6.9: SAN for Micro components in TMR - Activities

Input Gate Predicate

infrastructure_is_ok TSS_OK->Mark()

&& GATEWAY_OK->Mark()

infrastructure_not_ok

(!TSS_OK->Mark()

|| !GATEWAY_OK->Mark()

)

&& DAS_OK->Mark()

Table 6.10: SAN for Micro components in TMR - Input Gateways

69

6.5. ATOMIC MODELS CHAPTER 6. SOC MODEL WITH MÖBIUS

Output Gate Function

common_design_failure MICROCOMPONENTS_FAILED->Mark() = 3;

DAS_OK->Mark () = 0;

dec_microcomponents_failed MICROCOMPONENTS_FAILED->Mark () --;

inc_microcomponents_failed

MICROCOMPONENTS_FAILED->Mark()++;

if (MICROCOMPONENTS_FAILED->Mark() > 1)

{

 DAS_OK->Mark() = 0;

}

else transient_failed->Mark() = 1;

job_is_failing

if (microcomponent_ok->Mark())

{

 microcomponent_ok->Mark() = 0;

 MICROCOMPONENTS_FAILED->Mark()++;

 if (MICROCOMPONENTS_FAILED->Mark() > 1)

 {

 DAS_OK->Mark() = 0;

 }

}

repair_microcomponent

permanent_failure->Mark() = 0;

if (!microcomponent_ok->Mark() && DAS_OK->Mark())

{

 transient_failed->Mark() = 0;

 microcomponent_ok->Mark() = 1;

 MICROCOMPONENTS_FAILED->Mark()--;

}

if (permanent_temporal_failure->Mark())

{

 permanent_temporal_failure->Mark() = 0;

 TSS_OK->Mark() = 1;

}

set_microcomponent_ok

if (!microcomponent_ok->Mark()

 && !transient_failed->Mark()

)

{

 microcomponent_ok->Mark() = 1;

 MICROCOMPONENTS_FAILED->Mark()--;

}

Table 6.11: SAN for Micro components in TMR - Output Gateways

70

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.5. ATOMIC MODELS

6.5.4 Safety-Critical Micro Component within a 3-of-4 en-
semble - SAN

Figure 6.10: SAN for Micro Components in 3-of-4 Ensembles

This section describes the model of a micro component which works within an
ensemble of four, not replicated, micro components, where the system is considered
to be valid if at least three of four micro components are running. Each of the
micro component application computers is assumed to have its own independent
design, i.e., no common design failures must be considered within the model. In
section 6.6.1 this micro component model is used to describe the brake system of
an automotive system.

Figure 6.10 depicts the SAN of the micro component. The SAN is nearly the same
as for the micro component model for TMR (sub-section 6.5.3), but differs in the
following point:

• No Common Design Faults: The design failure rate for a single safety-
critical application computer is added to the overall failure rate for
failures in the value domain, which are modeled by the value failure

activity. Table 6.12 shows the parameter for the value failure activ-
ity.

71

6.5. ATOMIC MODELS CHAPTER 6. SOC MODEL WITH MÖBIUS

Activity Exponential Rate

value_failure (tiss_value_fr + host_fr) * (1 + perm_trans_ratio)

+ critical_host_design_fr

Table 6.12: Parameters of Activity value failure

Figure 6.11: SAN for (simple) Safety Critical Micro Components

6.5.5 Safety-Critical Micro Component - SAN

The following SAN describes a micro component with a safety-critical applica-
tion computer which forms no kind of an error containment region together with
other micro components, i.e., the corresponding application relies completely on
the functionality of the micro component. This model makes no sense for the mod-
eling of safety-critical applications but establishes a base for comparisons between
different TMR approaches, as presented in chapter 6.6.2. The graphical represen-
tation of the SAN is depicted in figure 6.11 and the model parameters are depicted
in the tables 6.13 to 6.15.

The model considers two failure classes:

• Temporal Domain Failures: Like all other micro component SANs this
model also contributes to the NoC failure rate, modeled by the activities
tiss temporal failure and tiss recovery. A detailed description

72

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.5. ATOMIC MODELS

can be found in sub-section 6.4.2.

• Value Domain Failures: The value failure activity comprises failures
of host and port manager caused by transient and permanent faults.
Additionally, if the place GATEWAY OK is shared with the Gateway, then
the model also reacts on gateway failures.

After each failure, the state variable for the distributed application, DAS OK, is
(permanently) set to zero, which indicates a DAS failure.

Place Names Initial Markings

DAS_OK 1

GATEWAY_OK 1

TSS_OK 1

microcomponent_ok 1

permanent_temporal_failure 0

temporal_failure 0

Table 6.13: SAN for (simple) Safety Critical Micro Components - Places

Output Gate Function

repair_pulse_manager TSS_OK->Mark() = 1;

Table 6.14: SAN for (simple) Safety Critical Micro Components - Output Gate-
ways

Activity Exponential Rate Case Probabilities

value_failure
 (tiss_value_fr + host_fr)

* (1 + perm_trans_ratio)

+ critical_host_design_fr

system_repair repair_r

tiss_recovery recovery_r

case 1
tss_recovery_p / (1 + perm_trans_ratio)

case 2
(perm_trans_ratio + 1 - tss_recovery_p)

/ (1 + perm_trans_ratio)

tiss_temporal_failure tiss_temp_fr

* (1 + perm_trans_ratio)

Table 6.15: SAN for (simple) Safety Critical Micro Components - Activities

73

6.5. ATOMIC MODELS CHAPTER 6. SOC MODEL WITH MÖBIUS

6.5.6 Non Safety-Critical Micro Component SAN

Figure 6.12: SAN for Non Safety-Critical Micro Components

This sub-section describes the SAN model for micro components with non safety-
critical application computers, as depicted in figure 6.12. It is considered to be
no part of an error containment unit and so the corresponding non safety-critical
application is considered to fail if one of its non safety-critical micro components
fail.

The SAN is similar to the micro component model for TMR (sub-section 6.5.3),
but differs in the following points:

• No Common Design Faults: The design failure rate for a single non
safety-critical application computer is combined with the failure rate
for value domain failures caused by physical faults. Value domain fail-
ures are modeled by the value failure activity. Table 6.12 shows the
parameter for the value failure activity.

• Reactions on RMA Failures: The model can share the place RMA OK

with the Infrastructure model and considers a micro component failure
if the RMA is down.

• The model never reaches a stable state: In contrast to the micro com-
ponent model for TMR, after the first DAS failure the model contin-
ues to model value domain failures and recoveries. In this way the

74

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.5. ATOMIC MODELS

model enables the evaluation of the availability of the corresponding
non safety-critical DAS.

The SAN model parameters are depicted in the tables 6.16 to 6.19.

Place Names Initial Markings

RMA_OK 1

DAS_OK 1

GATEWAY_OK 1

MICROCOMPONENTS_FAILED 0

TSS_OK 1

infrastructure_failed 0

infrastructure_ok 1

microcomponent_ok 1

permanent_failure 0

permanent_temporal_failure 0

temporal_failure 0

transient_failed 0

Table 6.16: SAN for Non Safety-Critical Micro Components - Places

Activity Exponential Rate Case Probabilities

value_failure
 (tiss_value_fr + host_fr)

* (1 + perm_trans_ratio)

+ non_critical_host_design_fr

recovery recovery_r

case 1
1.0 / (1.0 - perm_trans_ratio)

case 2
perm_trans_ratio

/ (1.0 - perm_trans_ratio)

system_repair repair_r

tiss_recovery recovery_r

case 1
tss_recovery_p / (1 + perm_trans_ratio)

case 2
(perm_trans_ratio + 1 - tss_recovery_p)

/ (1 + perm_trans_ratio)

tiss_temporal_failure tiss_temp_fr * (1 + perm_trans_ratio)

Table 6.17: SAN for Non Safety-Critical Micro Components - Activities

75

6.6. COMPOSED MODELS CHAPTER 6. SOC MODEL WITH MÖBIUS

Input Gate Predicate

infrastructure_is_ok
 TSS_OK->Mark()

&& GATEWAY_OK->Mark()

&& RMA_OK->Mark()

infrastructure_not_ok
 !TSS_OK->Mark()

|| !GATEWAY_OK->Mark()

|| ! RMA_OK->Mark()

Table 6.18: SAN for Non Safety-Critical Micro Components - Input Gateways

Output Gate Function

dec_microcomponents_failed MICROCOMPONENTS_FAILED->Mark()--;

inc_microcomponents_failed MICROCOMPONENTS_FAILED->Mark()++;

DAS_OK->Mark() = 0;

job_is_failing

if (microcomponent_OK->Mark())

{

 microcomponent_OK->Mark() = 0;

 DAS_OK->Mark() = 0;

 MICROCOMPONENTS_FAILED->Mark()++;

}

repair_microcomponent

permanent_failure->Mark() = 0;

transient_failed->Mark() = 0;

if (infrastructure_ok->Mark())

{

 microcomponent_ok->Mark() = 1;

 MICROCOMPONENTS_FAILED->Mark()--;

}

if (permanent_temporal_failure->Mark())

{

 permanent_temporal_failure->Mark() = 0;

 TSS_OK->Mark() = 1;

}

set_microcomponent_ok

if (!transient_failed->Mark()

 && !permanent_failure->Mark()

)

{

 microcomponent_ok->Mark() = 1;

 MICROCOMPONENTS_FAILED->Mark()--;

}

Table 6.19: SAN for Non Safety-Critical Micro Components - Output Gateways

76

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.6. COMPOSED MODELS

SoC 4SoC 3SoC 2

SoC 1

BS

LF

BA

LF

VS

1

VS

2

VS

3

CC

1

CC

2

CC

3

TMR

TMR

Box

LF

BC

1

BS

RF

BA

RF

BC

2

BS

RR

BA

RR

BC

3

BS

LR

BA

LR

Box

RF

Src

MP3

Mixer

Box

RR

Box

LR

Src

CD

 TMR

Safety Critical DAS:

Cruise Controller

Safety Critical DAS:

Brake System

Non Safety Critical

DAS:

Entertainment

System

 3 of 4

 3 of 4

Figure 6.13: Micro Components of the Automotive Example

6.6 Composed Models

6.6.1 Automotive Example

Introduction to the Automotive Example

Figure 6.13 outlines an example for a safety-criticality mixed system with three
logical independent DASs in an automotive environment. At each wheel an SoC
is located, e.g., for brake controlling, audio signals decoding or throttle activation
calculations. The SoC components are assumed to be physical independent and
the three distributed DASs are logical independent.

The Cruise Controller DAS consists of two on-chip-TMR protected safety-critical
tasks: The velocity-sensor (VS) and the cruise-controller task (CC). The DAS is
considered to be valid as long as at least two replicas per task are working.

The safety-critical Brake System DAS consists of a brake-sensor (BS) and a brake-
actuator (BA) task per wheel and an off-chip-TMR protected brake-control (BC)
task. The DAS tolerates the loss of one sensor, one actuator and one brake-control
job.

The Entertainment System DAS is non safety-critical. In this way the jobs have a
minor SIL level and no redundancy. The DAS consists of two multimedia source

77

6.6. COMPOSED MODELS CHAPTER 6. SOC MODEL WITH MÖBIUS

Figure 6.14: Composed Model of the Automotive Example

tasks (e.g., a CD jukebox and a MP3 player), a sound-mixer task and one music-
box-task per SoC, with the purposes of decoding signals from different multimedia
sources.

Composed Model of the Automotive Example

Figure 6.14 depicts the composed cluster model where each branch (originating
from the Join-node System) represents an SoC. For each SoC a Join-node com-
bines micro component models, a Infrastructure model and a Gateway model. See
table 6.20 for a detailed explanations for the submodels. The first column states
the caption of a submodel within the composed model while the second column
specifies the name of the original SAN or composed model. The third and the
fourth column describe the purpose of the submodel.

Table 6.21 specifies the Rep-node parameters for the composed model.

The tables 6.22 to 6.25 describe the shared state variables of each of the four SoC
branches in the composed model.

78

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.6. COMPOSED MODELS

Submodel Instance of … Description Notes

Cruise_Controller Cruise_Controller
Composes the micro components of the
Cruise Controller DAS

The cruise controller is

implemented by two on-chip-
TMRs on SoC 1

SoC_Infrastructure Infrastructure
Models the SoC Infrastructure: TNA,
RMA and RCU

The overall system model
incorporates one

Infrastructure and one

Gateway model per modeled SoC Gateway{1,2,3,4} Gateway
Describes the interconnection with the
off-chip network.

Brake_Unit1 Brake_Transducer
Describes the sensor- and the actuator
tasks of the Brake-DAS at wheel 1

The brake-controller is
implemented by means of off-chip-

TMR. The sensors and actuators
are part of 3-of-4 ensembles. I.e.,
the brake is available if 3 of 4
nodes are running.)

Brake_Unit{2,3,4} Brake_Unit

Describes the sensor-, actuator and

controller tasks of the Brake-DAS at the
wheels 2 to 4

MM_Job{1,2,3,4}
Non_Safety_Critical

_Microcomponent

Each sub-model stands for an
Entertainment task

-

Table 6.20: Composed Model of the Automotive Example - Submodels Description

Rep-Node Reps # Shared State Variables

MM_Jobs2 2

DAS_OK

GATEWAY_OK

MICROCOMPONENTS_FAILED

RMA_OK

TSS_OK

MM_Jobs3 3

DAS_OK

GATEWAY_OK

MICROCOMPONENTS_FAILED

RMA_OK

TSS_OK

Table 6.21: Composed Model of the Automotive Example - Rep-Node Parameters

79

6.6. COMPOSED MODELS CHAPTER 6. SOC MODEL WITH MÖBIUS

Shared State Variable Sub-model Variables

BA_MICROCOMPONENTS_FAILED Brake_Unit1->BA_MICROCOMPONENTS_FAILED

BS_MICROCOMPONENTS_FAILED Brake_Unit1->BS_MICROCOMPONENTS_FAILED

DAS1_OK Cruise_Controller->DAS_OK

DAS2_OK Brake_Unit1->Brake_DAS_OK

DAS3_OK MM_Job1->DAS_OK

GATEWAY_OK

Brake_Unit1->GATEWAY_OK

MM_Job1->GATEWAY_OK

Gateway1->GATEWAY_OK

MM_MICROCOMPONENTS_FAILED MM_Job1->MICROCOMPONENTS_FAILED

TSS_OK

Cruise_Controller->TSS_OK

Brake_Unit1->TSS_OK

MM_Job1->TSS_OK

Infrastructure1->TSS_OK

Gateway1->TSS_OK

RMA_OK
MM_Job1->RMA_OK

Infrastructure1->RMA_OK

Table 6.22: Composed Model of the Automotive Example - Join Node Parameters
of SoC 1

Shared State Variable Sub-model Variables

BA_MICROCOMPONENTS_FAILED Brake_Unit2->BA_MICROCOMPONENTS_FAILED

BC_MICROCOMPONENTS_FAILED Brake_Unit2->BC_MICROCOMPONENTS_FAILED

BS_MICROCOMPONENTS_FAILED Brake_Unit2->BS_MICROCOMPONENTS_FAILED

DAS2_OK Brake_Unit2->Brake_DAS_OK

DAS3_OK MM_Jobs3->DAS_OK

GATEWAY_OK

MM_Jobs3->GATEWAY_OK

Brake_Unit2->GATEWAY_OK

Gateway2->GATEWAY_OK

MM_MICROCOMPONENTS_FAILED MM_Job1->MICROCOMPONENTS_FAILED

TSS_OK

MM_Jobs3->TSS_OK

Brake_Unit2->TSS_OK

Infrastructure2->TSS_OK

Gateway2->TSS_OK

RMA_OK
MM_Jobs3->RMA_OK

Infrastructure2->RMA_OK

Table 6.23: Composed Model of the Automotive Example - Join Node Parameters
of SoC 2

80

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.6. COMPOSED MODELS

Shared State Variable Sub-model Variables

BA_MICROCOMPONENTS_FAILED Brake_Unit3->BA_MICROCOMPONENTS_FAILED

BC_MICROCOMPONENTS_FAILED Brake_Unit3->BC_MICROCOMPONENTS_FAILED

BS_MICROCOMPONENTS_FAILED Brake_Unit3->BS_MICROCOMPONENTS_FAILED

DAS2_OK Brake_Unit3->Brake_DAS_OK

DAS3_OK MM_Job3->DAS_OK

GATEWAY_OK

Brake_Unit3->GATEWAY_OK

MM_Job3->GATEWAY_OK

Gateway3->GATEWAY_OK

MM_MICROCOMPONENTS_FAILED MM_Job3->MICROCOMPONENTS_FAILED

TSS_OK

Brake_Unit3->TSS_OK

MM_Job3->TSS_OK

Infrastructure3->TSS_OK

Gateway3->TSS_OK

RMA_OK
MM_Job3->RMA_OK

Infrastructure3->RMA_OK

Table 6.24: Composed Model of the Automotive Example - Join Node Parameters
of SoC 3

Shared State Variable Sub-model Variables

BA_MICROCOMPONENTS_FAILED Brake_Unit4->BA_MICROCOMPONENTS_FAILED

BC_MICROCOMPONENTS_FAILED Brake_Unit4->BC_MICROCOMPONENTS_FAILED

BS_MICROCOMPONENTS_FAILED Brake_Unit4->BS_MICROCOMPONENTS_FAILED

DAS2_OK Brake_Unit4->Brake_DAS_OK

DAS3_OK MM_Jobs2->DAS_OK

GATEWAY_OK

Brake_Unit4->GATEWAY_OK

MM_Jobs2->GATEWAY_OK

Gateway4->GATEWAY_OK

MM_MICROCOMPONENTS_FAILED MM_Jobs2->MICROCOMPONENTS_FAILED

TSS_OK

Brake_Unit4->TSS_OK

MM_Jobs2->TSS_OK

Infrastructure4->TSS_OK

Gateway4->TSS_OK

RMA_OK
MM_Jobs2->RMA_OK

Infrastructure4->RMA_OK

Table 6.25: Composed Model of the Automotive Example - Join Node Parameters
of SoC 4

81

6.6. COMPOSED MODELS CHAPTER 6. SOC MODEL WITH MÖBIUS

Composed Model of a Cruise Controller

The Cruise Controller consists of two TMR systems: One that fetches sensor values
and one that calculates servo values for the throttle activator. The corresponding
composed model is depicted in figure 6.15. Each task is described by an instance
of the safety-critical micro component model for TMRs. The Rep-node TMR forms
a TMR by tripling the micro component models which in turn is duplicated by
the Rep-node Sensors and Controller.

Figure 6.15: Composed Model of a Cruise Controller

Rep-Node Reps # Shared State Variables

Sensors_and_Controller 2
DAS_OK

TSS_OK

TMR 3

DAS_OK

TSS_OK

TOTAL_MICROCOMPONENTS_FAILED

Table 6.26: Composed Model of a Cruise Controller - Rep-node Parameters

Composed Models of a Brake Unit and a Brake Transducer

For the Brake-DAS two composed models are used for the automotive example:
The Brake Transducer model shown in figure 6.16 describes the combination of a
brake sensor and an actuator, each modeled by a safety-critical micro component
model for 3-of-4 ensembles. The Brake Unit model in figure 6.17 enhances the
Brake Transducer with a brake controller, which is specified by the safety-critical
micro component model for TMR.

82

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.6. COMPOSED MODELS

Figure 6.16: Composed Model of a Brake Transducer

Shared State Variable Sub-model Variables

BA_MICROCOMPONENTS_FAILED Brake_Actuator->MICROCOMPONENTS_FAILED

BS_MICROCOMPONENTS_FAILED Brake_Sensor->MICROCOMPONENTS_FAILED

Brake_DAS_OK
Brake_Sensor->DAS_OK

Brake_Actuator->DAS_OK

GATEWAY_OK
Brake_Sensor->GATEWAY_OK

Brake_Actuator->GATEWAY_OK

TSS_OK
Brake_Sensor->TSS_OK

Brake_Actuator->TSS_OK

Table 6.27: Composed Model of a Brake Transducer - Join Node Parameters

Figure 6.17: Composed Model of a Brake Unit

Shared State Variable Sub-model Variables

BA_MICROCOMPONENTS_FAILED Brake_Transducer->BA_MICROCOMPONENTS_FAILED

BC_MICROCOMPONENTS_FAILED Brake_Control->MICROCOMPONENTS_FAILED

BS_MICROCOMPONENTS_FAILED Brake_Transducer->BS_MICROCOMPONENTS_FAILED

Brake_DAS_OK
Brake_Transducer->Brake_DAS_OK

Brake_Control->DAS_OK

GATEWAY_OK
Brake_Transducer->GATEWAY_OK

Brake_Control->GATEWAY_OK

TSS_OK
Brake_Transducer->TSS_OK

Brake_Control->TSS_OK

Table 6.28: Composed Model of a Brake Unit - Join Node Parameters

83

6.6. COMPOSED MODELS CHAPTER 6. SOC MODEL WITH MÖBIUS

SoC 1

Host

Host

Host

SoC 2

Host

Host

Host

SoC 3

Host

Host

Host

on-chip TMR

off-chip TMR

non-redundant

host

combination of

on- and off chip

TMR

Figure 6.18: TMR Approaches

Figure 6.19: Composed Model for a TMR Approach Comparison

84

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.6. COMPOSED MODELS

6.6.2 TMR Comparison

The composed model in figure 6.19 combines four different implementation ap-
proaches of an application which possesses only one task. Figure 6.18 depicts a
schematic representation of the four approaches: A simple implementation with
one job running on one SoC and three different approaches of TMR as described
in sub-section 6.3. The tables 6.29 and 6.30 specify the complete parameter set
for the composed model.

Rep-Node Reps # Shared State Variables

onchip_TMR1 3

DAS_OK

GATEWAY_OK

MICROCOMPONENTS_FAILED

TSS_OK

offchip_TMR_3 3
DAS_OK

MICROCOMPONENTS_FAILED

onchip_TMR_4 3

DAS_OK

GATEWAY_OK

MICROCOMPONENTS_FAILED

TSS_OK

TMRS_FAILED

TMR_OK

TOTAL_MICROCOMPONENTS_FAILED

offchip_TMR_4 3

DAS_OK

TMRS_FAILED

TOTAL_MICROCOMPONENTS_FAILED

Table 6.29: Composed Model for a TMR Approach Comparison - Rep Node Pa-
rameters

85

6.6. COMPOSED MODELS CHAPTER 6. SOC MODEL WITH MÖBIUS

a) On-Chip Approach - Join-Element: onchip_TMR_1

Shared State Variable Sub-model Variables

TSS_OK
onchip_TMR1->TSS_OK

Infrastructure1->TSS_OK

b) Off-Chip Approach - Join-Element: SoC_3

Shared State Variable Sub-model Variables

DAS_OK Safety_Critical_Microcomponent_in_TMR3->DAS_OK

GATEWAY_OK
Safety_Critical_Microcomponent_in_TMR3->GATEWAY_OK

Gateway3->GATEWAY_OK

MICROCOMPONENTS_FAILED Safety_Critical_Microcomponent_in_TMR3->MICROCOMPONENTS_FAILED

TSS_OK

Infrastructure3->TSS_OK

Safety_Critical_Microcomponent_in_TMR3->TSS_OK

Gateway3->TSS_OK

c) Combined Off- and On-Chip Approach - Join-Element: SoC_4

Shared State Variable Sub-model Variables

DAS_OK onchip_TMR_4->DAS_OK

GATEWAY_OK
onchip_TMR_4->GATEWAY_OK

Gateway4->GATEWAY_OK

TMRS_FAILED onchip_TMR_4->TMRS_FAILED

TOTAL_MICROCOMPONENTS_FAILED onchip_TMR_4->TOTAL_MICROCOMPONENTS_FAILED

MICROCOMPONENTS_FAILED Safety_Critical_Microcomponent_in_TMR3->MICROCOMPONENTS_FAILED

TSS_OK

onchip_TMR_4->TSS_OK

Infrastructure4->TSS_OK

Gateway4->TSS_OK

d) Non-Fault_Tolerant_Approach - Join-Element: non_fault_tolerant_approach

Shared State Variable Sub-model Variables

TSS_OK
Infrastructure2->TSS_OK

Safety_Critical_Microcomponent2->TSS_OK

Table 6.30: Composed Model for a TMR Approach Comparison - Join Node Pa-
rameters

86

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.7. REWARD MODELS

Confidence
Level 95%

Interval 10%

Simulation Stop Time 10
10

 hours

Table 6.31: Möbius Simulator Parameter

6.7 Reward Models

This section describes the performance variables used for the evaluations of the
example SoC systems. As explained in section 5.5 (Solving Models with Möbius)
the Möbius simulator is used as solver. The common simulation parameters for all
performance variables are given by table reftab:simparameter.

Backgrounds to reward models in Möbius can be found in section 5.4.

6.7.1 Automotive Example

Tables 6.32 and 6.33 specifies performance variables to calculate the MTTFs and
the reliabilities for the automotive example.

The DAS OK variables in table 6.32, (c) is divided by 6 since the variable belongs
to the Safety Critical Microcomponent submodel (as depicted in sub-section 6.6.1)
which is replicated ternary for the controller task and additionally ternary for
the sensor task. In sum the composed model contains 6 replications. Since the
Möbius simulator summarizes the output of the reward functions for each of the
replications, the performance variable result would be six times too high. The
reward functions of the other performance variables can be explained similarly.

6.7.2 TMR Comparison

Figures 6.34 to 6.35 specifies performance variables to calculate the MTTFs and
the reliabilities for the different TMR approaches.

87

6.7. REWARD MODELS CHAPTER 6. SOC MODEL WITH MÖBIUS

a) Entertainment DAS – Mean Time To Failure

Reward Function return MM_Job1->DAS_OK->Mark();

Type Interval of Time

b) Brake DAS – Mean Time To Failure

Reward Function return Brake_Control->DAS_OK->Mark() / 3;

Type Interval of Time

c) Cruise Controller DAS – Mean Time To Failure

Reward Function return Safety_Critical_Microcomponent_in_TMR->DAS_OK->Mark() / 6;

Type Interval of Time

d) Entertainment DAS – Availability

Reward Function

if (!MM_Job1->MICROCOMPONENTS_FAILED->Mark())

{

 return 1.0;

}

else return 0;

Type Time Averaged Interval of Time

Table 6.32: Performance Variables for the Automotive Example - Part 1

a) Brake DAS – Reliability

Reward Function return Brake_Control->DAS_OK->Mark() / 3;

Type Instant of Time

Time Points [hours] 1E1,1E2,1E3,1E4,1E5,1E6,2E6,4E6,6E6,8E6,1E7,2E7,4E7,6E7,8E7,1E8,2E8,4E8,6E8,8E8,1E9

b) Cruise Controller DAS – Reliability

Reward Function return Safety_Critical_Microcomponent_in_TMR->DAS_OK->Mark() / 6;

Type Instant of Time

Time Points [hours] 1E1,1E2,1E3,1E4,2E4,4E4,6E4,8E4,1E5,2E5,4E5,6E5,8E5,1E6,2E6,4E6,6E6,8E6,1E7

Table 6.33: Performance Variables for the Automotive Example - Part 2

88

CHAPTER 6. SOC MODEL WITH MÖBIUS 6.7. REWARD MODELS

a) Single Job – Mean Time To Failure

Reward Function return Safety_Critical_Microcomponent2->DAS_OK->Mark();

Type Interval of Time

b) On-Chip TMR – Mean Time To Failure

Reward Function return Safety_Critical_Microcomponent_in_TMR->DAS_OK->Mark() / 3;

Type Interval of Time

c) On- and Off-Chip TMR combination – Mean Time To Failure

Reward Function Safety_Critical_Microcomponent_in_off_and_onchip_TMR->DAS_OK->Mark() / 9;

Type Interval of Time

d) Off-Chip TMR – Mean Time To Failure

Reward Function return Safety_Critical_Microcomponent_in_TMR3->DAS_OK->Mark() / 3;

Type Interval of Time

Table 6.34: Performance Variables for the TMR comparison - Part 1

89

6.7. REWARD MODELS CHAPTER 6. SOC MODEL WITH MÖBIUS

a) On-Chip TMR – Reliability

Reward Function return Safety_Critical_Microcomponent_in_TMR->DAS_OK->Mark() / 3;

Type Instant of Time

Time Points [hours]
1E1,1E2,1E3,1E4,2E4,4E4,6E4,8E4,1E5,2E5,4E5,6E5,8E5,1E6,2E6,4E6,6E6,8E6,1E7,2E7,
4E7, 6E7,8E7,1E8

b) Off-Chip TMR – Reliability

Reward Function return Safety_Critical_Microcomponent_in_TMR3->DAS_OK->Mark() / 3;

Type Instant of Time

Time Points [hours]
1E1,1E2,1E3,1E4,2E4,4E4,6E4,8E4,1E5,2E5,4E5,6E5,8E5,1E6,2E6,4E6,6E6,8E6,1E7,2E7,
4E7, 6E7,8E7,1E8,2E8,3E8,4E8,5E8,6E8,7E8,8E8,9E8,1E9

c) On- and Off-Chip TMR combination – Reliability

Reward Function
Safety_Critical_Microcomponent_in_off_and_onchip_TMR->DAS_OK->Mark()

/ 9;

Type Instant of Time

Time Points [hours]
1E1,1E2,1E3,1E4,2E4,4E4,6E4,8E4,1E5,2E5,4E5,6E5,8E5,1E6,2E6,4E6,6E6,8E6,1E7,2E7,
4E7, 6E7,8E7,1E8,2E8,3E8,4E8,5E8,6E8,7E8,8E8,9E8,1E9

d) Single Job – Reliability

Reward Function return Safety_Critical_Microcomponent2->DAS_OK->Mark();

Type Instant of Time

Time Points [hours]
1E1,1E2,1E3,1E4,2E4,4E4,6E4,8E4,1E5,2E5,4E5,6E5,8E5,1E6,2E6,4E6,6E6,8E6,1E7,2E7,
4E7, 6E7,8E7,1E8

Table 6.35: Performance Variables for the TMR comparison - Part 2

90

Chapter 7

Results

7.1 TMR Approaches

This section compares the simulation results of four different system configurations:
non-redundant, on-chip TMR, off-chip TMR, and combined on-chip and off-chip
TMR. Table 6.1 (see page 50) states the applied default model parameters for the
evaluations.

7.1.1 Results for Default Parameters

Table 7.1 depicts the simulation results as MTTFs for the different TMR ap-
proaches and the non-redundant system. Figure 7.1 shows the corresponding reli-
ability in the form of a probability function. The x-axis states the systems lifetime
while the y-axis states the probability that the system experienced no failure yet.

For default parameters the evaluations show clearly the improvement of system
reliability by each form of TMR deployment. Furthermore, from the comparison
with the exponential distributed reliability function example, showed in figure 2.2
on page 11 can be seen, that the reliability functions of the different systems are
also following an exponential distribution.

System MTTF in Hours

Non redundant host 9,0328E+04

On-chip TMR 5,7203E+05

Off-chip TMR 2,9805E+09

Combined Off- and On-chip TMR 3,8974E+09

Table 7.1: MTTFs of TMR Approaches for Default Parameters

91

7.1. TMR APPROACHES CHAPTER 7. RESULTS

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [hours]

R
(t

im
e)

Non Redundant Rel
On−Chip TMR Rel
Off−Chip Rel
Combined TMR Rel

Figure 7.1: Reliabilities of TMR Approaches for Default Parameters

1,00E+04

1,00E+05

1,00E+06

1,00E+07

1,00E+08

1,00E+09

1,00E+10

10 100 1000 10000

Non Redundant MTTF

On-Chip TMR MTTF

Off-Chip TMR MTTF

Combined TMR MTTF

[h
o

u
rs

]

host failure rate [FIT]

Figure 7.2: MTTFs over Physical Host Failure Rates of TMR Approaches

92

CHAPTER 7. RESULTS 7.1. TMR APPROACHES

1,00E+04

1,00E+05

1,00E+06

1,00E+07

1,00E+08

1,00E+09

1,00E+10

1 10 100 1000 10000

Non Redundant MTTF

On-Chip TMR MTTF

Off-Chip TMR MTTF

Combined TMR MTTF

[h
o

u
rs

]

temporal TISS failure rate [FIT]

Figure 7.3: MTTFs over the Failure Rate of Physical Temporal TISS Failures

7.1.2 Physical Host Failures

Figure 7.2 shows the effect of the physical host failure rate on the reliabilities of
the three TMR approaches and the non-redundant system. Along the horizontal
axis, physical host failure rates are distinguished while the vertical axis shows the
evaluated MTTFs.

As can be seen in figure 7.2 on-chip TMR outperforms a non-redundant solution for
host failure rates of 300 FIT or worse. In case of host failure rates better than 300
FIT, the failure rate of the TSS is dominant and undermines potential reliability
gains through active replication of hosts on the chip. In addition, in case of low
host failure rates, compared to the failure rate of the TSS, on-chip TMR does not
contribute towards a better reliability, because each additional TISS worsens the
reliability of the TSS.

7.1.3 TISS-Pulse Manager Failures

Figure 7.3 shows the effect of the TISS-Pulse Manager failure rate on the relia-
bilities of the three TMR approaches and the non-redundant system. Along the
horizontal axis physical failure rates for the TISS-Pulse Manager (which also can
be interpreted as the failure rates for temporal domain failures of the TISS) are
distinguished . The vertical axis shows the evaluated MTTFs.

Assuming that the failure rate for micro component failures in the value domain is
about 104 FIT, the figure shows that the MTTFs of the non-redundant system, the

93

7.1. TMR APPROACHES CHAPTER 7. RESULTS

1,00E+03

1,00E+04

1,00E+05

1,00E+06

1,00E+07

1,00E+08

1,00E+09

1,00E+10

1 10 100 1000 10000

On-Chip TMR, 0.1% correlation

On-Chip TMR, 1% correlation

On-Chip TMR, 5% correlation

On-Chip TMR, 100% correlation

Off-Chip TMR, 0.1% correlation

Off-Chip TMR, 1% correlation

Off-Chip TMR, 5% correlation

Off-Chip TMR, 100% correlation

M
TT

F
[h

o
u

rs
]

host design failure rate [FIT]

Figure 7.4: MTTFs over Host Design Failure Rates for different Diversity Cover-
ages of TMR Approaches

off-chip TMR approach and the combined approach begin to decline from about a
ratio of 1:10 (in the figure at 1000 FIT) of temporal to value domain failures. This
reliability decline even worsens from a ratio of 1 (in the figure at 10000 FIT). Since
the on-chip TMR approach has a tripled chance to fail due to the tripled failure
rate of the NoC it shows the highest sensitivity to worsen TISS-Pulse Manager
failure rates and at about 10000 FIT it even brings a worse reliability than the
non-redundant system. Analogous is true for the comparison between the off-chip
and the combined TMR approach. After some point, the off-chip TMR approach
outperforms the combined TMR approach.

94

CHAPTER 7. RESULTS 7.1. TMR APPROACHES

1,00E+04

1,00E+05

1,00E+06

1,00E+07

1,00E+08

1,00E+09

1,00E+10

10 100 1000 10000

Non Redundant MTTF

On-Chip TMR MTTF

Off-Chip TMR MTTF

Combined TMR MTTF

[h
o

u
rs

]

Mean Time to Repair [hours]

Figure 7.5: MTTFs over Mean-Time-to-Repair

7.1.4 Application Computer Design Failures & Diversity
Coverage

Figure 7.4 depicts the MTTFs of different TMR approaches in comparison to a
system with only one SoC. Along the horizontal axis different rates of failures
caused by design faults are distinguished. The figure also shows the effect of
different correlations between FCRs (between 0.1% and 100%). The rate of failures
caused by physical faults is not varied.

The figure shows that for on-chip TMR, the reliability improvements of design
diversity is less significant because of the dominant failure rates due to physical
faults. For off-chip TMR, on the other hand, diversity has a significant positive
impact for increasing failure rates due to design faults.

7.1.5 Repair Rate

Figure 7.5 shows the influence of MTTR on the reliability of the system. The
MTTR has obviously no effect on the reliability of the two single-chip realizations
while it significantly influences the off-chip and the combined TMR approach.

95

7.2. AUTOMOTIVE EXAMPLE CHAPTER 7. RESULTS

System MTTF in Hours

Cruise Controller DAS 2,5626E+05

Brake DAS 3,4378E+08

Entertainment DAS 7,2721E+03

Table 7.2: MTTFs for Default Parameters

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [hours]

R
(t

im
e)

Brake System Reliability
Cruise Controller Reliability

Figure 7.6: Reliability Functions for Default Parameters

7.2 Automotive Example

This section presents the simulation results for the three DASs of the automo-
tive system example. Table 6.1 (see page 50) states the applied default model
parameters for the evaluations.

7.2.1 Results for Default Parameters

Table 7.2 depicts the MTTFs evaluated by simulation for default parameters.
Figure 7.6 shows the corresponding reliabilities as probability function. The x-
axis states the systems lifetime while the y-axis states the probability that the
system experienced no failure yet.

Although, compared with the other DASs, the Entertainment DAS showed a bad

96

CHAPTER 7. RESULTS 7.2. AUTOMOTIVE EXAMPLE

1,00E+03

1,00E+04

1,00E+05

1,00E+06

1,00E+07

1,00E+08

1,00E+09

10 100 1000

Cruise-Controller DAS MTTF

Brake DAS MTTF

Entertainment DAS MTTF

[h
o

u
rs

]

Mean Time to Repair [hours]

Figure 7.7: MTTFs over Mean-Time-to-Repair

Reliability, the simulation resulted a Availability of 99.9976%.

7.2.2 Repair Rate

Figure 7.7 shows the influence of MTTR on the reliability of the different DASs.
The y-axis states the MTTFs in hours while the x-axis lists different MTTRs also
measured in hours.

The Cruise Controller DAS is quite unaffected by the repair rate. The reason for
this is, that the DAS is completely realized on only one SoC which means that the
overall failure rate, caused by TSS failures, is dominant compared to permanent
failures of replicas of the on-chip TMR.

Opposite to that the Brake DAS reliability shows a strong dependence on main-
tenance times. The reason for this is that the functionality of the two integrated
off-chip TMRs are highly dependent on the state of the physical connections, which
possess a quite high permanent failure rate.

7.2.3 RMA Failure Rates

The model was simulated with RMA failure rates from 10 FIT to 10000 FIT
but because of the dominant effects of other failure rates and the fact that the
Entertainment DAS deploys no kind of redundancy, the Entertainment Availability
is quite uninfluenced by the RMA failure rate less or equal 10000 FIT and lies at

97

7.2. AUTOMOTIVE EXAMPLE CHAPTER 7. RESULTS

at about 99.9976%.

98

Chapter 8

Conclusion

This thesis showed that the TTSoC architecture enables the integrated execution
of many different applications at a minimal loss of fault isolation (due to failures of
the Trusted Subsystem) and without losing predictability. In consequence it was
shown that ultra reliable systems can be built upon DECOS SoC components.

At architecture side, mainly responsible for this properties is the Time-Triggered
Network-on-a-Chip (TTNoC), which can only be accessed over the TISSs. Since
the inter- and the intra SoC communication takes place only at defined time points,
the TISS forms a so-called temporal firewall that hinders an arbitrary failed host
from disturbing the communication between other hosts. Therefore, the TTSoC
architecture allows the integration of applications with different certification levels.

Being the sole part that directly accesses the NoC, the TISS also is the sole weak
point. This means that even one temporal domain failure of the TISS can lead to
an overall SoC failure and that each TISS contributes to the overall SoC failure
rate. Especially for exponential distributed failure times, the overall NoC failure
rate can be estimated by the sum of all TISS failure rates. From the reliability
point of view the consequence is that only a bounded number of cores can be
feasibly integrated on a single chip.

The dependability model of a complex system based on SoC components can be
easily composed from the generic SoC model presented in this thesis. Two concrete
SoC cluster examples were presented.

The first example compared the reliability of different TMR approaches.

With the chosen default parameters only the off-chip TMR and the combined
approach (off-chip and on-chip TMR combined) reached a reliability which was
adequate for ultra reliable applications. The on-chip TMR approach had only a 6
times better reliability than a non-redundant approach. When the host failure rate
was experimentally reduced to the scale of the TISS failure rate the positive effect

99

CHAPTER 8. CONCLUSION

diminished. The overall failure rate of the NoC grew dominant and undermined
the potential reliability gains of the host replication. Nevertheless, the failure rate
of the host is assumed to be much higher than the failure rate of the TISS because
of its higher resource consumption. This assumption has been confirmed by the
first prototype implementation.

Furthermore, the usefulness of different grades of design diversity for the TMR
approaches in case of different design safety integrity levels was evaluated. The
results have shown that for on-chip TMR, the reliability improvements of design
diversity are less significant because of the dominant failure rates due to physical
faults. For off-chip TMR, on the other hand, diversity has a significant positive
impact for increasing failure rates due to design faults.

The second example for a DECOS SoC based cluster came from the automotive
domain. The considered system mixes safety-critical and non-safety-critical appli-
cations and consists of a cruise controller DAS, a brake DAS and an entertainment
DAS. This example showed how to compose a complex real-world example from
the generic SoC model created within Möbius.

100

Appendix A

Acronyms

ASER Accelerated-Soft Error Rate

CP Configuration and Planning

DAS Distributed Application Subsystem

DECOS Dependable Embedded Components and Systems

DM Diagnosis and Management

ECR Error Containment Region

ECU Electronic Control Unit

EMI Electro Magnetic Interference

FCR Fault Containment Region

FIT failures in 109 hours

FPGA Field Programmable Gate Array

FTU Fault-Tolerant Unit

HARP Hybrid Automated Reliability Predictor

IP Intellectual Property

MBU Multi Bit Upsets

MEDL Message Descriptor List

MPSoC Multi-Processor System-on-a-Chip

101

APPENDIX A. ACRONYMS

MTTF Mean-Time-To-Failure

MTTR Mean-Time-To-Repair

NoC Network-on-a-Chip

PC personal computer

QoS Quality of Service

RCU Replica Coordination Unit

RM Resource Manager

RMA Resource Management Authority

SAN Stochastic Activity Network

SEB Single-Event Burnout

SEFI Single-Event Functional Interrupt

SEGR Single-Event Gate Rupture

SEL Single-Event Latchup

SER Soft Error Rate

SET Single Event Transients

SEU Single Event Upset

SIL Safety Integrity Level

SoC System-on-a-Chip

SRAM Static Random Access Memory

SURE Semi-Markov Unreliability Range Estimator

TDMA Time-Division Multiple Access

TISS Trusted Interface Subsystem

TMR Triple Modular Redundancy

TSS Trusted Subsystem

TNA Trusted Network Authority

102

APPENDIX A. ACRONYMS

TTE Time-Triggered Ethernet

TTNoC Time-Triggered Network-on-a-Chip

TTSoC Time-Triggered System-on-a-Chip

UNI Uniform Network Interface

103

References

[1] Wikipedia. Bathtub curve, 1. Feb 2008. At http://en.wikipedia.org/

wiki/Bathtub_curve. 11

[2] R. Obermaisser, H. Kraut, and C. Salloum. A transient-resilient system-
on-a-chip architecture with support for on-chip and off-chip tmr. Research
report, Vienna University of Technology, Institute of Computer Engineering,
Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2007. 20

[3] H. Kopetz, B. Huber, R. Obermaisser, C. Salloum, G. Engleder, R. Seiger,
and B. Weirich. Design of system-on-a-chip component. Project diliverable,
Vienna University of Technology, Institute of Computer Engineering, Treitl-
str. 1-3/182-1, 1040 Vienna, Austria, Not finished. 22

[4] Deliverable d1.1, fit-it project 813299/7852. Research report, Vienna Univer-
sity of Technology, Institute of Computer Engineering, Treitlstr. 1-3/182-1,
1040 Vienna, Austria, March 2007. 24

[5] Performability Engineering Research Group, Coordinated Sci-
ence Laboratory, University of Illinois, USA. Mobius Manual.
http://www.perform.csl.uiuc.edu/mobius/manual/MobiusManual.pdf.
12, 42, 44

[6] B. Randell A. Avizienis, J.-C. Laprie. Fundamental concepts of dependability.
In LAAS-CNRS, 2001. 1, 7, 8

[7] H. Kopetz, R. Obermaisser, P. Peti, and N. Suri. From a federated to an
integrated architecture for dependable embedded systems. Research Report
22/2004, Technische Universität Wien, Institut für Technische Informatik,
Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2004. 1

[8] H. Kopetz, R. Obermaisser, C. El Salloum, and B. Huber. Automotive soft-
ware development for a multi-core system-on-a-chip. 4th International ICSE
workshop on Software Engineering for Automotive Systems (SEAS’07), May.
2007. 1

104

http://en.wikipedia.org/wiki/Bathtub_curve
http://en.wikipedia.org/wiki/Bathtub_curve

REFERENCES REFERENCES

[9] J.F. Meyer A. Movaghar W.H. Sanders. Stochastic activity networks: Struc-
ture behavior and application. In Proc. of the International Workshop on
Timed Petri Nets, pages 106–115, july 1985. 3, 40, 43

[10] ”G. Clark T. Courtney D. Daly D. Deavours S. Derisavi J.M. Doyle W.H.
Sanders P. Webster”. ”the mobius modeling tool”. In ”Proc. of 9th Inter-
national Workshop on Petri Nets and Performance Models”, pages 241–250,
sept 2001. 3, 14, 39

[11] E. Normand. Single event upsets at ground level. IEEE Transactions on
Nuclear Science, 43(6):2742–2750, 1996. 3, 4, 15

[12] Cristian Constantinescu. Impact of deep submicron technology on depend-
ability of vlsi circuits. dsn, 00:205, 2002. 3

[13] JEDEC. JEDEC standard JESD89, Measurement and Reporting of Alpha
Particles and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor
Devices, August 2001. 4, 15, 17

[14] G. Asadi, S.G. Miremadi, H.R. Zarandi, and A. Ejlali. Fault injection into
sram-based fpgas for the analysis of seu effects. Field-Programmable Technol-
ogy (FPT), 2003. Proceedings. 2003 IEEE International Conference on, pages
428–430, 15-17 Dec. 2003. 4

[15] J. Arlat, Y. Crouzet, and J. Laprie. Fault injection for dependability valida-
tion of fault-tolerant computing systems. Fault-Tolerant Computing, 1995, ’
Highlights from Twenty-Five Years’., Twenty-Fifth International Symposium
on, pages 400–, 27-30 Jun 1995. 4

[16] M. Ceschia, M. Violante, M.S. Reorda, A. Paccagnella, P. Bernardi, M. Re-
baudengo, D. Bortolato, M. Bellato, P. Zambolin, and A. Candelori. Identifi-
cation and classification of single-event upsets in the configuration memory of
sram-based fpgas. Nuclear Science, IEEE Transactions on, 50(6):2088–2094,
Dec. 2003. 4, 16

[17] M.B. Tahoori G. Asadi. Soft Error Rate Estimation and Mitigation for SRAM-
Based FPGAs. International Symposium on Field Programmable Gate Arrays,
2005. 4

[18] M. Veeraraghavan A.-L. Reibman. Reliability modeling: An overview for
system designers. Computer, 24(4):49–57, 1991. 5, 8, 13

[19] A. Wild. The synergistic twins: fault trees and success trees. Reliability and
Maintainability Symposium, 2005. Proceedings. Annual, pages 445–450, Jan.
24-27, 2005. 5

105

REFERENCES REFERENCES

[20] M. Sahinoglu, C.V. Ramamoorthy, A.E. Smith, and B. Dengiz. A reliability
block diagramming tool to describe networks. Reliability and Maintainability,
2004 Annual Symposium - RAMS, pages 141–145, 2004. 5

[21] R. W. Butler. The sure reliability analysis program. pages 198–204, August
1986. 5, 14

[22] K. Trivedi. Sharpe 2002: Symbolic hierarchical automated reliability and
performance evaluator. dsn, 00:544, 2002. 5, 14

[23] J.-C. Laprie. Dependability: Basic Concepts and Terminology. Springer Ver-
lag, Vienna, Austria, 1992. 8, 9

[24] M. Lyu, editor. Handbook of software reliability and system reliability.
McGraw-Hill, Inc., Hightstown, NJ, USA, 1996. 8

[25] Lala J.H. and Harper R.E. Architectural principles for safety-critical real-time
applications. In Proceedings of the IEEE, volume 82, pages 25–40, jan 1994.
9

[26] H. Kopetz. Real-Time Systems, Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, Boston, Dordrecht, London, 1997.
10, 13, 27, 31

[27] Dhiraj K. Pradhan, editor. Fault-tolerant computer system design. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1996. 10

[28] Peter Bishop and Robin Bloomfield. A methodology for safety case develop-
ment. In Felix Redmill and Tom Anderson, editors, Industrial Perspectives
of Safety-critical Systems: Proceedings of the Sixth Safety-critical Systems
Symposium, Birmingham 1998, pages 194–203. Springer, 1998. 13

[29] A. Ditali A. Hasnain. Building-in reliability: Soft errors - a case study. In
Proceedings. 30 Intl Reliability Physics Symposium, page 276, April 1992. 15

[30] C. Constantinescu. Trends and challenges in vlsi circuit reliability. IEEE
Micro, 23(4):14–19, 2003. 16

[31] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi. Modeling
the effect of technology trends on the soft error rate of combinatorial logic.
In Proceedings. Intl Conference on Dependable Systems and Networks, pages
389–398, 2000. 16

[32] T. Furuyama. Deep sub-100 nm design challenges. In Proceedings of the 9th
EUROMICRO Conference on Digital System Design, pages 9–16, 2006. 19

106

REFERENCES REFERENCES

[33] R. Obermaisser, H. Kopetz, C. Salloum, and B. Huber. Error containment
in the time-triggered system-on-a-chip architecture. International Embedded
Systems Symposium (IESS’07), Jun. 2007. 19

[34] J. Leohold. Automotive systems architecture. In Architectural Paradigms for
Dependable Embedded Systems, 2005. 19

[35] R. Obermaisser, H. Kopetz, C. Salloum, and B. Huber. Error containment in
the time-triggered system-on-a-chip architecture. In Proc. of the Int. Embed-
ded Systems Symposium IESS2007, May 2007. 19, 21

[36] Object Management Group. Smart Transducers Interface Specification, 2002.
21

[37] H. Kopetz and R. Nossal. Temporal firewalls in large distributed real-time
systems. Proc. of the 6th IEEE Workshop on Future Trends of Distributed
Computing Systems (FTDCS ’97), 1997. 23

[38] B. Pauli, A. Meyna, and P. Heitmann. Reliability of electronic components
and control units in motor vehicle applications. In VDI Berichte 1415, Elec-
tronic Systems for Vehicles, pages 1009–1024. Verein Deutscher Ingenieure,
1998. 26

[39] H. Kopetz and G. Grünsteidl. TTP – a protocol for fault-tolerant real-time
systems. Computer, 27(1):14–23, January 1994. Vienna University of Tech-
nology, Real-Time Systems Group. 26, 34

[40] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer. The Time-
Triggered Ethernet (TTE) design. Proc. of 8th IEEE Int. Symposium on
Object-oriented Real-time distributed Computing (ISORC), May 2005. 26, 34

[41] S. Poledna. Replica determinism in distributed real-time systems: A brief
survey. Real-Time Systems, 6:289–316, 1994. 26

[42] W. Schutz A. Avizienis, M.R. Lyu. In search of effective diversity: A six-
language study of fault-tolerant flight control software. Eighteenth Interna-
tional Symposium on Fault-Tolerant Computing (FTCS-18), 1988. 29

[43] iRoC Technologies. Radiation results of the ser test of actel fpga december
2005. Technical report, December 2005. 38

[44] R. Seiger. An extensible interface subsystem for a novel time-triggered system-
on-a-chip architecture. Master’s thesis, Vienna University Of Technology,
2007. 38

107

[45] B. Weirich. Resource management in an on-chip network. Master’s thesis,
Vienna University Of Technology, 2007. 38

[46] G. Engleder. Time-triggered network-on-a-chip. Master’s thesis, Vienna Uni-
versity Of Technology, 2007. 38

[47] Int. Standardization Organisation, ISO/IEC 9899:1999. ISO C99, 1999. 41

[48] A.-L. Reibman, R. Smith, and K. Trivedi. Markov and markov reward
model transient analysis: An overview of numerical approaches. European
Journal of Operational Research, 40(2):257–267, May 1989. available at
http://ideas.repec.org/a/eee/ejores/v40y1989i2p257-267.html. 47

[49] R. Geist and K. Trivedi. Reliability estimation of fault-tolerant systems: Tools
and techniques. Computer, 23(7):52–61, 1990. 47

	Titlepage
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Document Structure
	1.4 Related Work
	1.4.1 Soft Error Rate Estimation of FPGA-based Designs
	1.4.2 Dependability Modeling Tools

	2 Basic Terms and Concepts
	2.1 Basic Terms
	2.1.1 Dependability Attributes
	2.1.2 Dependability Threats: Faults, Errors and Failures
	2.1.3 FCRs and ECRs

	2.2 Mathematical Concepts
	2.3 Dependability Modeling
	2.4 Single Event Upset
	2.4.1 Cosmic Ray Neutrons
	2.4.2 Alpha Particles
	2.4.3 Trends for Particle Induced Errors
	2.4.4 Error Classification

	3 TTSoC Architecture
	3.1 Motivation
	3.2 Overview
	3.3 NoC
	3.4 Micro Component
	3.4.1 Structure of the TISS and the UNI
	3.4.2 Structure of the Host

	3.5 TNA
	3.6 RMA
	3.7 RCU
	3.7.1 Support of On-Chip TMR
	3.7.2 Support of Off-Chip TMR

	3.8 Gateways

	4 Fault Model
	4.1 Introduction
	4.2 SoC - Design Fault Model
	4.2.1 Fault Containment Regions
	4.2.2 Failure Modes and Error Containment
	4.2.3 Failure Rates
	4.2.4 Design Fault Tolerance

	4.3 SoC - Physical Fault Model
	4.3.1 Fault Containment Regions
	4.3.2 Failure Modes
	4.3.3 Failure Rates
	4.3.4 Assumption Coverage

	4.4 Repair and Recovery
	4.5 Error Detection Mechanisms
	4.5.1 TISS - Watchdog Timer
	4.5.2 TISS - Power Monitoring
	4.5.3 TMA - Schedule Error Detection
	4.5.4 RCU - Results Comparison

	4.6 Off-Chip Network Fault Model
	4.6.1 Introduction
	4.6.2 Fault Containment Regions
	4.6.3 Error Containment
	4.6.4 Number of Tolerable Faults for the Off-Chip Network
	4.6.5 Failure-, Recovery- and Restart Rates

	4.7 Failure Rate Estimation

	5 Möbius
	5.1 Overview
	5.2 Atomic Models as SANs
	5.2.1 Places
	5.2.2 Input Gateways
	5.2.3 Output Gateways
	5.2.4 Timed Activities
	5.2.5 Instantaneous Activities
	5.2.6 SAN Example

	5.3 Composed Models
	5.3.1 Example of a Composed Model

	5.4 Reward Model
	5.4.1 Rewards on Replicated Models

	5.5 Solving Models with Möbius
	5.5.1 Analytical Solving
	5.5.2 Simulation

	6 SoC Model with Möbius
	6.1 Notations
	6.2 Global Variables
	6.3 Overview
	6.4 Common Constructs
	6.4.1 Combined Failure Rates and Case Probabilities
	6.4.2 Modeling of Temporal TISS Failures
	6.4.3 Model Reactions on TSS and Gateway Failures

	6.5 Atomic Models
	6.5.1 Infrastructure - SAN
	6.5.2 Gateway - SAN
	6.5.3 Safety-Critical Micro Component in TMR - SAN
	6.5.4 Safety-Critical Micro Component within a 3-of-4 ensemble - SAN
	6.5.5 Safety-Critical Micro Component - SAN
	6.5.6 Non Safety-Critical Micro Component SAN

	6.6 Composed Models
	6.6.1 Automotive Example
	6.6.2 TMR Comparison

	6.7 Reward Models
	6.7.1 Automotive Example
	6.7.2 TMR Comparison

	7 Results
	7.1 TMR Approaches
	7.1.1 Results for Default Parameters
	7.1.2 Physical Host Failures
	7.1.3 TISS-Pulse Manager Failures
	7.1.4 Application Computer Design Failures & Diversity Coverage
	7.1.5 Repair Rate

	7.2 Automotive Example
	7.2.1 Results for Default Parameters
	7.2.2 Repair Rate
	7.2.3 RMA Failure Rates

	8 Conclusion
	A Acronyms
	References

