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Abstract

Machine perception is a research field that is still in its infancy and is confronted with many
unsolved problems. In contrast, humans generally perceive their environment without problems.
For the work at hand, these facts were the motivation to develop a bionic model for human-like
machine perception, which is based on neuroscientific and neuropsychological research findings
about the structural organization and function of the perceptual system of the human brain.
Having systems available that are capable of a human-like perception of their environment would
allow the automation of processes for which, today, human observers and their cognitive abilities
are necessary. Potential applications are, among others, security and safety surveillance of public
and private buildings and the automatic observation of the state of health of persons in retirement
homes and hospitals. Furthermore, autonomous robots and interactive environments would take
advantage of more effective mechanisms to perceive their surrounding.
The introduced model is designated for applications in the field of building automation for au-
tonomous monitoring and surveillance systems to observe objects, events, scenarios, and situations
in buildings. Therefore, buildings have to be equipped with a huge number of diverse sensors.
The challenge is to merge and interpret the information coming from these different sources.
For this purpose, an information processing principle called neuro-symbolic information processing
is introduced using neuro-symbols as basic information processing units. The inspiration for the
utilization of neuro-symbols comes from the fact that humans think in terms of symbols, which
emerge from information processed by neurons. Neuro-symbols are connected in a modular
hierarchical fashion to a so-called neuro-symbolic network to process sensor data. The architecture
of the neuro-symbolic network is derived from the structural organization of the perceptual system
of the human brain. Connections and correlations between neuro-symbols can be acquired from
examples in different learning phases. Besides sensor data processing, memory, knowledge, and
focus of attention influence perception to resolve ambiguous sensory information and to devote
processing power to relevant features.
The introduced model was implemented with AnyLogic. The model proved to be successful in
perceiving all test cases specified in the simulation environment. Furthermore, the insights gained
during development allowed it to draw certain conclusions about the inconsistency or incomplete-
ness of neuroscientific and neuropsychological theories including issues like the binding problem,
the processing and storage of perceptual information, the computation of location information,
and stability considerations.
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Kurzfassung

“Machine Perception” ist ein junges Forschungsgebiet, das mit vielen ungelösten Problemen kon-
frontiert ist. In Gegensatz zu Maschinen können Menschen ihre Umgebung im Allgemeinen
mühelos wahrnehmen. Diese beiden Tatsachen waren ausschlaggebend, um im Rahmen der vor-
liegenden Arbeit ein bionisches Modell für menschenähnliche Wahrnehmung zu entwickeln. Dieses
Modell beruht auf neurowissenschaftlichen und neuropsychologischen Forschungserkenntnissen
über die strukturelle Organisation und Funktion des menschlichen Wahrnehmungssystems. Ein
technisches System mit menschenähnlichem Wahrnehmungsvermögen würde es erlauben, eine
Vielzahl von Prozessen zu automatisieren, für die bis jetzt immer noch menschliche Beobachter
und deren kognitive Fähigkeiten notwendig sind. Potentielle Anwendungsbereiche sind die Sicher-
heitsüberwachung von öffentlichen und privaten Gebäuden und die Beobachtung des Gesundheits-
zustands von Personen in Krankenhäusern oder Altenwohnheimen. Abgesehen davon würden au-
tonome Robotersysteme und interaktive Umgebungen von effektiveren Mechanismen zur Wahr-
nehmung ihres Umfeldes profitieren.
Das entwickelte Modell ist im Bereich der Gebäudeautomatisierung für autonome Überwachungs-
systeme vorgesehen, um Objekte, Ereignisse, Szenarien und Situationen in Gebäuden zu beobach-
ten. Zu diesem Zweck müssen Gebäude mit einer Vielzahl verschiedener Sensoren ausgestattet
werden. Die Herausforderung besteht darin, Information von diesen Quellen zu kombinieren und
zu interpretieren. Dafür wird ein Informationsverarbeitungsprinzip genannt neuro-symbolische
Informationsverarbeitung eingeführt. Dieses verwendet Neuro-Symbole als elementare Informa-
tionsverarbeitungseinheiten. Die Verwendung von Neuro-Symbolen ist von der Tatsache inspi-
riert, dass Menschen in Form von Symbolen denken, welche jedoch aus einer neuronalen Informa-
tionsverarbeitung resultieren. Um Sensordaten zu verarbeiten, werden Neuro-Symbole zu einem
so genannten Neuro-Symbolischen Netzwerk verbunden, welches eine modulare und hierarchi-
sche Struktur aufweist, die vom Aufbau des menschlichen Wahrnehmungssystems abgeleitet ist.
Verbindungen und Zusammenhänge zwischen Neuro-Symbolen können aus Beispielen in einer
Reihe von Lernphasen ermittelt werden. Neben der Sensordatenverarbeitung beeinflussen die
Mechanismen Memory, Knowledge und Focus of Attention die Wahrnehmung, um zweideutige
Sensorinformation behandeln und Rechnerkapazitäten auf relevante Merkmale konzentrieren zu
können.
Das vorgestellte Modell wurde mit AnyLogic implementiert und erwies sich als erfolgreich bei der
Erkennung aller spezifizierten Testfälle. Des Weiteren erlaubten die während der Entwicklung
gewonnenen Erkenntnisse bestimmte Rückschlüsse über die Inkonsistenz oder Unvollständigkeit
neurowissenschaftlicher und neuropsychologischer Modellvorstellungen. Diese beziehen sich unter
anderem auf das sogenannte Binding Problem, auf die Verarbeitung und Speicherung von Wahr-
nehmungsbildern im Allgemeinen und Ortsinformation im Speziellen, sowie auf Stabilitätsbe-
trachtungen.
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Preface

The topic of this thesis lies in the field of cognitive science, cognitive computing, and cognitive
automation and aims to develop a bionic model for human-like machine perception based on
neuroscientific and neuropsychological research findings.
To understand the intricacy of the tasks attempted by these research fields, a brief retrospect of
history shall be given first: The fields just mentioned overlap with the research field of artificial
intelligence (AI). About 50 years ago, in the fifties, this research field started to evolve with the
aim to build intelligent machines. The first years of AI were marked by a strong optimism. It was
believed that computers would soon be able to think and reason in a similar effective manner as
humans do. However, at the end of the sixties, it got clear that making computers think – even
on a childlike level – is an extremely complex problem. Therefore, researchers started to focus on
far more simple problems like reacting to situations by using certain rules. Until today, there does
not exist any technical system that can even nearly compete with the capacity and capabilities
of the human mind. Within the last years, several research groups recognized that the reduced
approaches often focused on in current AI projects cannot lead to technical systems with skills and
capabilities comparable to human mental abilities. The AI researcher Marvin Minsky postulates
that, like at the beginning of artificial intelligence research, findings how natural intelligence works
should be the basis for the development of concepts for artificial intelligence [Min06]. This is the
aim of the research fields of cognitive science and cognitive computing. Cognitive automation
aims to automate cognitive activities that are currently performed by human operators.
At the Institute of Computer Technology of the Vienna University of Technology, in the year
2000, Prof. Dr. techn. Dietmar Dietrich formed a research group of interdisciplinary researches
with the aim to model and implement functions of the human brain into technical systems. These
approaches are guided by insights from neuroscience, neuropsychology, and neuro-psychoanalysis
about the human brain and mind. This thesis is a part of this research project and focuses on
the perceptual system and the perceptual capabilities of the human brain.
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Figure 1: Structure of Work

Figure 1 illustrates the structure and organization of this work graphically. In chapter 1, which is
the introductory chapter, the challenges of machine perception are outlined as well as characteris-
tics of human perception are pointed out. The aim of the work is specified in detail, and possible
applications and implications are discussed. Chapter 2 gives an overview about related research
projects and the state of the art in sensor fusion, neural networks, symbolic systems, and hybrid
neuro-symbolic systems, which are related research fields. Chapter 3 describes neuroscientific and
neuropsychological research findings about the human brain, which are the basis for model devel-
opment. Chapter 4 presents the developed bionic model for human-like machine perception. In
chapter 5, it is outlined how this model can be implemented in software and the design methodol-
ogy is summarized. Chapter 6 discusses the developed model based on the requirements identified
in chapter 1, the insights gained during the development and the implementation process, and
the results of simulation experiments carried out. Additionally, a comparison and demarcation to
other existing models is given. Finally, chapter 7 summarizes the issues discussed in the former
chapters, gives a conclusion, recommendation for future research work, and an outlook.

IV



Acknowledgements

Writing this dissertation would not have been possible without the support of several mentors. I
would like to thank Prof. Dietmar Dietrich, Prof. Peter Palensky, and Prof. Wolfgang Kastner
for their guidance, feedback, and comments. Further, I would like to thank all members of the
ARS team at the ICT for fruitful subject-specific as well as humorous private discussions. Last
but not least, deep gratitude goes to my parents, who always supported me on my way.

V



Table of Contents

1 Introduction 1

1.1 The Challenges for Machine Perception . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Possible Applications and Implications . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Work and State of the Art 9

2.1 Project Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 The Smart Kitchen Project . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 The Project ARS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 The PAIAS Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 The Project BASE and the Project SENSE . . . . . . . . . . . . . . . . . . 15

2.2 Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Neural Networks, Symbolic Systems, and Hybrid Approaches . . . . . . . . . . . . 20

2.3.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Symbolic Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Neuro-symbolic Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Neuroscientific and Neuropsychological Backgrounds 27

3.1 Basic Information Processing Units of the Brain and Mind . . . . . . . . . . . . . . 27
3.2 Functional Units of the Brain and Mind . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 The Perceptual System of the Brain . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Bottom-up and Top-down Processes in Perception . . . . . . . . . . . . . . 32
3.3.2 Cerebral Organization of Perception . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Influence of Knowledge on Perception . . . . . . . . . . . . . . . . . . . . . 37

3.4 Merging of Information – The Binding Problem . . . . . . . . . . . . . . . . . . . . 38
3.4.1 The Binding Problem as Key Question to Brain Function . . . . . . . . . . 38
3.4.2 A First Simplified Explanation of the Binding Problem . . . . . . . . . . . 38
3.4.3 Evidence for a Binding Problem in the Brain . . . . . . . . . . . . . . . . . 39
3.4.4 Classes of Binding Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.5 Potential Solutions to the Binding Problem . . . . . . . . . . . . . . . . . . 41

4 Bionic Model 49

4.1 Neuro-symbols as Basic Information Processing Units . . . . . . . . . . . . . . . . 49
4.2 Neuro-symbolic Networks for Perception . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Architecture for Modular Hierarchical Processing of Sensory Information . 52
4.2.2 Modular Hierarchical Arrangement of Neuro-symbols . . . . . . . . . . . . . 55
4.2.3 Information Flow between Neuro-symbols . . . . . . . . . . . . . . . . . . . 56
4.2.4 Properties of Neuro-symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

VI



4.2.5 High-level Neuro-symbolic Information Processing . . . . . . . . . . . . . . 62
4.2.6 Low-level Neuro-symbolic Information Processing . . . . . . . . . . . . . . . 66

4.3 The Neuro-symbolic Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.1 Event-based Neuro-symbolic Information Exchange . . . . . . . . . . . . . . 69
4.3.2 Neuro-symbolic Activation Grades and Thresholds . . . . . . . . . . . . . . 70
4.3.3 Handling Static Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Binding of Neuro-symbolic Information . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.1 Binding within a Sensory Modality . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.2 Binding across Sensory Modalities . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.3 Binding across Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.4 Binding across Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.5 Parallel Processing versus Focus of Attention . . . . . . . . . . . . . . . . . 84
4.4.6 Binding by Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Adaptability of Neuro-symbolic Structures . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.1 Predefining versus Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.2 Supervised Learning for Neuro-symbolic Networks . . . . . . . . . . . . . . 90
4.5.3 Architectural Changes by Flexible Addition and Elimination of Neuro-

symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.6 Influence of Knowledge on Perception . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.7 Modularity and Hybrid System Design . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Design Methodology and Implementation 107

5.1 Tool Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.1 Tool for Model Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.1.2 Tool for Sensor Data Generation . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Model Modularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Interfaces between Model Building Blocks . . . . . . . . . . . . . . . . . . . . . . . 111
5.4 Realization of Model Building Blocks and their Communication . . . . . . . . . . . 114

5.4.1 Neuro-symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.4.2 Memory Symbols and Knowledge . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4.3 Focus of Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5 Methods for Learning and Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.6 Design Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6 Simulation Results and Discussion 135

6.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.1.1 Test Environment and Test Cases . . . . . . . . . . . . . . . . . . . . . . . 135
6.1.2 Configuration, Learning, and Adaptability . . . . . . . . . . . . . . . . . . . 138
6.1.3 Flow of Information and Symbol Activations during Operation . . . . . . . 147

6.2 Discussion based on Lessons Learned from Implementation and Simulation Results 149
6.3 Comparison with Existing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.3.1 Demarcation to Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.2 Neuro-symbolic Networks versus Symbolic Systems and Neural Networks . 157
6.3.3 Neuro-symbolic Networks for Neuro-symbolic Integration and Sensor Fusion 159

VII



7 Conclusion and Outlook 161

7.1 Model Recapitulation and Key Results . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.2 Recommendations and Hints for Future Research . . . . . . . . . . . . . . . . . . . 165
7.3 Intelligent Machine, quo vadis? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Appendices 171

A Low-Level Information Processing of Data from Tactile Floor Sensors 173

A.1 Sensor Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
A.2 Deriving Feature Symbols from Sensor Data . . . . . . . . . . . . . . . . . . . . . . 173

A.2.1 Detecting Non-moving Objects . . . . . . . . . . . . . . . . . . . . . . . . . 174
A.2.2 Detecting Moving Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A.3 Deriving Sub-unimodal Symbols from Feature Symbols . . . . . . . . . . . . . . . . 185

B Literature 189

C Curriculum Vitae 197

VIII



Chapter 1

Introduction

“The best way to have a good idea is to have lots of ideas.”

[Linus Pauling]

The work at hand is embedded in the field of cognitive sciences, cognitive computing, and cognitive
automation. Cognitive science and cognitive computing are interdisciplinary research fields in-
volving various disciplines including neuroscience, psychology, and computer science. They focus
on studying the human mind and the nature of intelligence and on emulating internal information
processing mechanisms of the human brain to develop next generation intelligent information and
software technologies and new architectures of computing systems [Sta07]. The goal of cognitive
automation is to automate cognitive activities such as situation assessment, monitoring, and fault
management that are currently performed by human operators [TBM97].

The concrete goal of this thesis is to develop a bionic model for human-like machine perception
based on neuroscientific and neuropsychological research findings, which shall lead to more ef-
fective artificial autonomous perception systems applicable for example to surveillance systems
in buildings or autonomous robots. In section 1.1 of this chapter, the challenges for developing
such a model are pointed out. Next, in section 1.2, the aim of the thesis is outlined in more
detail. Finally, section 1.3 describes possible applications and implications of the model to be
introduced.

1.1 The Challenges for Machine Perception

Over the last decades, automation technology has made serious progress in observing and con-
trolling processes in order to automate them. In factory environments, where the number of
possible occurring situations and states is quite limited and well known, observation and control-
ling of most industrial processes do no longer pose an unsolvable problem. However, the situation
changes if we go from the observation of industrial processes to the detection of objects, events,
scenarios, and situations in a real world environment. Here, the number of possible occurring
objects, events, scenarios, and situations is almost infinite. As research from image processing,
audio data processing, and natural language processing shows, for a machine, recognition of real
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world situations is still a task far from trivial [Vel07]. On the other hand, humans – even small
children – can perceive such a “real world environment” very effectively. The human brain re-
constructs the environment from the incoming stream of (often ambiguous) sensory information
and generates unambiguous interpretations of the world. The challenging question is what gives
humans the ability to perform these tasks and how to design machines that perform in a similarly
effective and efficient way.

The goal of this thesis is to introduce a bionic model for human-like machine perception, which
is inspired from the working principles and organizational structures of the perceptual system
of the human brain. In this first section, after giving a definition of the terms perception and
recognition, important principles and characteristics that are involved into perception as well as
mechanisms that influence perception are identified, and the occurring difficulties are described
when trying to transpose them to a technical model.

Defining Perception and Recognition

In literature, there cannot be found a single definition of perception but various. According to
the Oxford English Dictionary, the word perception comes from the Latin perception-, percepio,
meaning receiving, collecting, action of taking possession, apprehension with the mind or senses.

The term perception as it is used in this work refers to the whole process of acquiring, selecting,
organizing, and interpreting sensory information. In connection with perception, there can also
be found the term recognition. In literature, the terms perception and recognition are often used
as synonyms. However, several authors consider them as separate processes. According to [Gol07,
chapter 1, p. 7], recognition is the ability to place an object in a category that gives it meaning.
This can also be expressed as the awareness that something observed has been observed before.
Thus, in order to recognize something, it must be familiar. An example would be the recognition
of a certain red object as tomato. [Lur73, chapter 8, p. 239] points out that in recognition,
memory and cognitive processes influence perception. Objects are classified and recognized by
means of prototypic exemplars stored in memory. If the process of recognition is disturbed, a
subject, although he perceives the individual cues of a visual image, is unable to synthesize them
into a single visually perceived entity. The subject can still clearly see an object or picture shown
to him, but is unable to relate it to his past experience. He cannot recognize it. [Gol02, chapter
1] remarks that perception of an object is always associated with its recognition. This statement
implies that, even if perception and recognition might be different processes, both processes are
needed for a workable system. It also seems to be unfeasible to draw a sharp boarder between
perception and recognition. Therefore, in this work, it is not distinguished between the terms
perception and recognition per se. However, to avoid misunderstanding for readers with different
backgrounds, there is only used the term perception in the following chapters. Perception is
considered as the process of acquiring, selecting, organizing, and interpreting sensory information.

One term, which will be often used in this work, is the term perceptual image, for which a
definition shall be given in the following. According to [Rös07, p. 20], “perceptual images are
generated due to sensing and evaluation processes reflecting the concrete changes of the environ-
ment and the organism itself, forming various images of different sensory modalities.” Adapting
this definition for technical purposes, she defines a perceptual image to be “formed by a per-
ception system due to the sensory input via the sensory architecture. The image represents a
snapshot of the environment and/or internal state of the organism or technological system and
can contain other, simpler images. On the lowest abstraction level, images contain symbols that
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have been predefined.” Taking this definition as basis, in the work at hand, a perceptual image
can be understood as meaningful information derived from sensor data of different modalities.
Depending on the hierarchical level of processing they occur, perceptual images can be simple
perceptual features like edges and lines or sounds of a certain pitch or more complex issues like
objects, persons, or melodies, which are made up of these simpler images. The phrase “the image
represents a snapshot of the environment” is not understood literally meaning that a perceptual
image can only represent perceptive information arriving at one distinct moment in time, but
within a certain period of time. That way, perceptual images can also represent activities being
carried out over time. In the following, activities being carried out within a circumscribed area
and a short period of time in the range of some tenths of a second to some seconds will be re-
ferred to as events. Activities taking some more time and consisting of sequences of such events,
which can also occur in different spatial areas, will be referred to as scenarios. Another word
that is used when referring to perceptual images is the term situation, which is best described as
a circumstance or condition caused by the objects being present and events and scenarios going
on in the environment.

Characteristics and Requirements of Human Perception

Having found a definition of perception, it shall now be identified what mechanisms and factors
make human perception that powerful, and it is discussed what are the challenges of integrating
these mechanisms into a technical system. Figure 1.1 shows important factors that form and
influence human perception.

Figure 1.1: Characteristics and Requirements of Human Perception

The mentioned points were identified by analyzing neuroscientific and neuropsychological research
findings about perception and binding being described in the sections 3.3 and 3.4 in more detail.
As the human brain is a complex system where everything seems to be connected to everything, it
is clear that the list might be incomplete and further research may identify additional important
factors, which influence perception. Nevertheless, these characteristics and requirements are the
starting point for developing the bionic model of human-like machine perception. In the following,
each of the mentioned points is described in more detail together with a remark what poses the
difficulties of integrating it into a technical system.
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Diverse Sensory Modalities: To perceive the external environment, our brain uses multiple
sources of sensory information derived from several different modalities, including vision, touch,
and audition. Each of these modalities is based on information coming from a huge number of
sensory receptors. The combination and integration of multiple sources of sensory information is
the key to robust perception [EB04]. This is because no information processing system, neither
technical nor biological, is powerful enough to work accurately under all conditions. If a single
modality is not enough to come up with a robust estimate, information from several modalities can
be combined to complement each other with the effect of increasing the information content. To
achieve a coherent and robust percept, all different sources of information have to be efficiently
merged. The main problem with data from multiple sensory sources is that different sensor
types do not only provide complementary but also partly redundant, contradicting, ambiguous,
and inconclusive information [VPL07]. Additionally, for events happening concurrently in the
environment, there arises the question how to correctly assign diverse sensory information to
different events.

Parallel Distributed Information Processing: As just outlined, for perception, information
from various sources is processed. However, the perceptual system is no unitary central unit that
processes all information in one step. Instead, sensory information is processed in a distributed
fashion. First, information from different sensory receptors is processed separately and in parallel
before being merged in later processing steps. The challenge for a technical model is to develop
an architecture that allows a similar parallel distributed processing and a combination of the
separate processing results to one unified perception. In neuroscience, this problem is referred to
as binding problem (see section 3.4).

Information Integration across Time: To perceive objects, events, scenarios, and situations
in an environment, single-moment snapshots of sensory information provided by different modal-
ities is not always sufficient for unambiguous perception. The course and the succession of sensor
signals over time are also of importance. Therefore, not only a binding of information across
different modalities is necessary but also a binding of sensory information across time. In the
course of time, the brain collects more and more information about perceptual events and finally
resolves ambiguities. Again, the tempting question is how to correctly assign over time certain
sensory stimuli to one event or situation when different events and situations are going in the
environment concurrently.

Asynchronous Information Processing: In the brain, information is processed asynchronously.
The term asynchronous information processing as used here can be understood in a physical sense
and means that signals and there corresponding characteristics arrive at different points in time.
In perception, asynchronous information processing already starts at the lowest sensory levels,
because one event happening in the environment may not trigger sensory receptors of differ-
ent modalities absolutely concurrently. Additionally, information processing and transmission
of different sensor data may take different amounts of time. The research question that has to
be answered is how it can be made feasible to process the data from different sources arriving
asynchronously.

Neural and Symbolic Information Processing: In the human brain, perceptual information
from different modalities is processed by interacting neurons. However, humans do not think in
terms of action potential and firing nerve cells but in terms of symbols. Examples for symbols are
objects, characters, figures, sounds, or colors used to represent abstract ideas and concepts. The
challenge for emulating information processing of the brain is how to come from sensory stimuli via
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neural information processing to symbolic representations and how associations between symbols
result in new symbolic representations.

Learning and Adaptation: The perceptual system of the human brain is not fully developed
at birth. Although certain patterns need to be predefined by the genetic code, lots of concepts
and correlations concerning perception are learned only during lifetime. The challenging question
for a technical model is what needs to be predefined before system startup, what can be learned
from examples and experience, and how this learning can be preformed.

Influence from Focus of Attention: According to the hypothesis of focused attention, what
we see is determined by what we attend to. At every moment, the environment presents far more
perceptual information than can be effectively processed. Attention can be used to select relevant
information and to ignore irrelevant or interfering information. Instead of trying to process all
objects simultaneously, processing is limited to one object in a certain area of space at a time.
An important question is how and on what level attention should interact with perception.

Influence from Knowledge: Perception is facilitated by knowledge. Prior knowledge is often
required for interpreting ambiguous sensory signals. Much of what we take for granted as the
way the world is – as we perceive it – is in fact what we have learned about the world – as we
remember it. Much of what we take for perception is in fact memory. A fundamental question
for a technical model is how knowledge can be represented and how and on what level interaction
with sensory perception should take place.

Looking at the points described above, the challenges for developing a bionic model for human-
like machine perception lie in specifying different “functional systems” and mechanisms involved
in perception, in representing information to be processed in these systems, and in merging
information coming from different systems.

Taking the perceptual system of the human brain as archetype for model development and ac-
quiring neuroscientific and neuropsychological research findings, the problem that has to be faced
is that there does not exist a complete, unitary model for perception neither in neuroscience nor
in any other area of brain research. There exist many different, sometimes contradicting theories
and many blind spots within these theories. This makes it difficult to derive a technical model
from the biological archetype. On the other side, trying to develop such a model can also be seen
as chance to show up weak points of existing brain theories.

1.2 Aim of this Work

Having defined important mechanisms and functions of perception as well as identified problems
and challenges of integrating them into technical systems in section 1.1, there shall now be declared
the concrete aim of this work.

The central goal of the thesis is to develop a bionic model for human-like machine perception. This
model shall make it possible to build technical systems, which are able to perceive objects, events,
scenarios, and situations in a real world environment. Such systems would be very valuable for
automatic surveillance systems – for example in buildings – or for autonomous robots.

To perceive objects, events, scenarios, and situations, a large number of sensors of different types
is required. The challenge that has to be taken up for such a “real world perception” is the
merging and interpretation of the sensory data from these various sources. To solve this problem,

5



Introduction

a bionic approach is used. The chosen approach bases on neuroscientific and neuropsychological
research findings about information processing in the perceptual system of the human brain.

In section 1.1, there were introduced characteristics of and requirements for human perception.
These characteristics and requirements shall be the starting point for model development. There-
fore, mechanisms shall be found how to

� merge information from a large number of sensors of diverse sensory sources

� perform parallel distributed information processing

� bind sensory information across time

� evaluate how asynchronous information processing can be made feasible

� get from neural to symbolic information processing

� learn correlations between data

� restrict and facilitate information processing by focus of attention

� integrate knowledge into the perception process

As far as possible and known, these mechanisms shall follow the principles of how information
is processed in the brain. Neuroscience and neuropsychology present important insights into
the theory of perception. However, as already pointed out in section 1.1, these findings are
not sufficient for a technical realization. If neuroscience and neuropsychology do not provide
an answer to certain problems, the model has to be supplemented by conventional engineering
methods.

For the model, automatic surveillance tasks in buildings are envisioned as first application. The
model shall be capable of handling sensory information of different sensor types like video data,
audio data, tactile information, etc. typically used for such tasks. However, as image processing
and audio data processing are huge and complex research fields themselves, developing new image
processing and audio data processing mechanisms is out of scope of this thesis. Instead, the
model has to be designed in a way that existing image processing and audio data processing
methods can be integrated. Information derived from image and audio data processing shall be
merged and interpreted together with information from other sources following neuroscientific
and neuropsychological principles.

Besides presenting a model for human-like machine perception, it shall also be considered how
such a model can be realized and implemented.

1.3 Possible Applications and Implications

As outlined in section 1.2, the aim of this work is to develop a model for human-like machine
perception. The field of machine perception concerns the building of machines that sense and
interpret their environments [Nev82]. For automatically perceiving objects, events, scenarios, and
situations in a real world environment, a huge amount of diverse sensory information has to be
processed, condensed, and interpreted to result in “perceptive awareness” of what is going on
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in the environment. Today’s information processing systems are barely capable of handling this
task. The aim of the model is to provide methods to handle such problems.

By implementing these information processing methods into technical systems, many tasks could
be automated wherefore today human observers and their cognitive abilities are still necessary.
This would help to pare down personnel for monotonous observation tasks. Valuable applications
would be the surveillance of public and private buildings for safety and security reasons and the
increase of comfort of the occupants. The automatic observation of the activities and the state
of health of persons in retirement homes and hospitals to detect critical situations would be a
further sensible utilization. This would allow it to economize nursing staff. Different scenarios
are conceivable to be perceived like e.g., that an elderly person has collapsed and cannot get up
any more, or that a confused and disoriented person does not find his room or leaves the building
unattended. Such systems could also allow elderly people to live longer independently in their
own homes.

Surveillance in buildings is not the only possible application for the model. An artificial perceptual
system performing similarly efficiently like humans do would also be valuable for a range of other
applications. E.g., for autonomous robots, which are equipped with lots of sensors to navigate
in their environment and to interact with it, in many situations, a more effective and efficient
method of sensor data processing and interpretation is very desirable. Interactive environments
are a further application domain that would benefit from such mechanisms to perceive their
surrounding in order to interact with people.

Considering the project carried out in this work not from the technical but from the neuroscientific
point of view, designing a model of the perceptual system of the human brain, which actually has
to be technically realizable, can identify existing weak points and gaps in the underlying brain
theories, because, unlike neuroscientific and neuropsychological models, functioning technical
models need to be complete and consistent.
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Chapter 2

Related Work and State of the Art

“The next best thing to being clever is being able to quote someone who is.”

[Mara Pettibone Poole]

The work described in this thesis is related to several research fields. At the beginning of this
chapter, previous research work on which the thesis bases and current projects it is connected
to are introduced (see section 2.1). Afterwards, important associated research fields and latest
developments in these areas are described. In section 2.2, there is given an overview about the
research domain of sensor fusion. In section 2.3, neural networks, symbolic systems, and hybrid
neuro-symbolic approaches for the purpose of information processing are outlined.

2.1 Project Environment

This thesis was written at the Institute of Computer Technology (ICT)1 of the Vienna University
of Technology. Several years ago, under the supervision of Prof. Dr. techn. Dietmar Dietrich,
an interdisciplinary operating team of scientists was formed at the ICT, which attended all its
focus on developing next generation intelligent automation systems [DS00]. One application
domain for these systems lies in the field of building automation. Today, building automation is
mainly concerned with simple monitoring of the environment (e.g., temperature) and adjusting
it to predefined value ranges targeting comfort and energy preservation. However, as outlined
in [PP05], [PLD05], and [DLP+06], in future, this will shift towards applications like safety and
self-learning environment control, and more and more sensory information will be available for
processing. Existing approaches will be challenged by this abundant amount of data and the
way in which it shall be responded to them. There will be a need to introduce new concepts for
handling the demands of the upcoming future. A second application is designated to the field of
autonomous agents. Autonomous agents are systems, which are situated in an environment and
have to sense their environment and act on it in pursuit of their own agenda. The agents act
on the environment to change it and therefore influence what is sensed in later stages. Again,

1www.ict.tuwien.ac.at
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perceiving complex environments and reacting on them adequately or “intelligently” challenges
existing approaches in this domain.

Inspiration for designing such intelligent automation systems is taken from biology and particu-
larly from human brain research. This section describes research projects in this field carried out
at the ICT until now. Each of these projects is described briefly. A special focus is put on the
description of the so-called ARS-PC project, which influenced the model developed in this thesis
most. A demarcation of the perceptual model introduced in the thesis at hand to the former
ARS-PC model as it will be described in this section can be found in section 6.3.1.

2.1.1 The Smart Kitchen Project

The first attempts to apply bionic concepts to building automation were carried out in the Smart
Kitchen Project2, which started in 2000 [SRT00, DRT+01]. The aim of the project was to achieve
“perceptive awareness” of what is going on in a building and to react adequately on perceived
situations [TF03, Rus03]. A number of small, inexpensive devices were networked to implement
functions for increasing comfort, security, safety, and better energy management in the home.

The project got its name from the realization and testing environment of the system – the Smart
Kitchen. In the course of the Smart Kitchen project, the institute’s kitchen was equipped with
different sensors and actuators. The developed model for information processing was based on
the idea of the ISO/OSI 7 layer reference model and modular distributed systems and attempted
to include biologic concepts [TDDR01, TFR02]. However, it is questionable how much of the
model can really be regarded as a bionic instead of a pure engineering approach.

2.1.2 The Project ARS

The follow-on project of the Smart Kitchen project was the project ARS3, which started in the
year 2003. The abbreviation ARS stands for Artificial Recognition System. Similar to the Smart
Kitchen project, the aim of the project ARS is to build systems, which are capable of perceiving
their environment and reacting adequately on situations going on in the environment. Envisioned
applications are automatic surveillance systems in buildings and autonomous agents. Concept
development is guided by research findings about the human brain and the human mind. Due to
the complexity of the task, the project was split into two sub-projects: the projects ARS-PC and
ARS-PA.

The abbreviation PC stands for PerCeption. The aim of the PC part of the project is to perceive
objects, events, scenarios, and situations in an environment. The developed model of perception
is inspired from neuroscientific and neuropsychological research findings.

The abbreviation PA stands for PsychoAnalysis. The aim of the PA part of the project is to take
decisions how to react adequately on certain objects, events, scenarios, and situations perceived
in the environment. The developed model of perception is inspired from neuro-psychoanalytic
research findings.

The combination of the ARS-PC and ARS-PA approaches in later stages of development shall
result in a model for a system able to perceive real world sensory information, to evaluate these
data, and to take decisions based on these evaluations.

2http://smartkitchen.ict.tuwien.ac.at/project/project.html
3http://ars.ict.tuwien.ac.at/
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The ARS-PC Model

For the ARS-PC model developed until now, the application is targeted in the field of build-
ing automation for automatic surveillance systems. Therefore, relevant information has to be
extracted from a huge amount of data coming from various sensor types [PP05]. Building on
research results from the Smart Kitchen project, a layered model for sensor data processing was
introduced [PLD05, Pra06, PDHP07]. According to this model, sensor data are processed by
bottom-up information processing in three layers to perceive different scenarios going on in a
building. The layers are labeled as micro symbol layer, snapshot symbol layer, and representation
symbol layer (see figure 2.1). In these layers, information is processed in terms of symbols, which
are called micro symbols, snapshot symbols, and representation symbols. They all exist simultane-
ously, but on different levels. A symbol is seen as a representation of a collection of information
[Pra06, Göt06]. Since learning is not addressed in the model until now, symbols and correlations
between symbols are predefined. This means that the system is only capable of recognizing known
information patterns of the sensors.

Figure 2.1: Layered Structure of the ARS-PC Model

Symbols can be created, their properties can be updated, and they can be deleted. In figure
2.1, symbols are shown as cuboids of different size, indicating that their level of sophistication
increases with each layer. The number of symbols is different at each layer. At the lowest layer,
there occur a large number of micro symbols. At the representation layer, there exist only a few
symbols, where each symbol represents a lot of information of a higher quality. The three types
are defined as follows:

Micro Symbols: Micro symbols are formed from sensory input data. They present the basis
of the symbol alphabet and bear the least amount of information. Similar to the many different
sensations that the human brain has to process every moment, a micro symbol is created from
a few single sensor inputs at a specific instant of time. Micro symbols are created whenever the
real world changes and this change causes sensors to trigger. Micro symbols have an event-like
character and exist for one instant. In the envisioned application, micro symbols will for example
be created delivering basic information like where movements and objects have been detected.

Snapshot Symbols: A group of micro symbols is combined to create one snapshot symbol.
These symbols represent a part of the world at a certain moment of time. The combined snapshot
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symbols represent how the system perceives the world at a given time instant. Whenever the
system perceives a situation or an object of interest, it creates an according snapshot symbol.
However, it is of utmost importance that snapshot symbols are solely created from information
that represents the current state of the outside world. Put in other words, the only information
allowed is provided either by the presence of micro symbols or the absence of specific micro
symbols. This results in an increased creation of snapshot symbols as there are no associations
between new snapshot symbols and previously created ones. For example, if the system perceives
a person moving around, multiple symbols at different positions and with different timestamps
are created. Each of these symbols only exists in the single instant of its respective detection.
Establishing associations between these symbols happens in the next symbol level.

Representation Symbols: The third level of symbolization is the representation of the world.
Similar to snapshot symbols, representation symbols are used to present what the system per-
ceives. The fundamental difference is that representation symbols are created and updated by
establishing associations between snapshot symbols. Thereby, the representation level contains
not only the information how the world is perceived at the current instant but also the history
of this world representation. Compared to the lower levels of symbols, there exist only a few
representation symbols, and these are seldom created or destroyed. Only their properties are
updated regularly. On the representation level, the system has information about the current
state of the world together with the history of recent events. Based on the snapshot symbols, the
system utilizes all currently available perceptions to create a consistent and continuous represen-
tation of the environment. Following the example mentioned above, the representation level is
supposed to hold only one person symbol as long as there is only one person physically present.
All occurrences of snapshot symbols for this person are – if possible – associated to one represen-
tation symbol. As the positions of the different snapshot symbols vary, the representation symbol
experiences a series of updates. It is important to note that the world representation does not
hold the entirety of all sensory information available but just what is defined as relevant. If for
example a person walks around, the world representation does not present information at which
exact positions the person has placed its feet. Rather than that, it presents just a position for
this person, which may be more or less accurate. Representation symbols are the first level used
by applications to obtain information about the world. In contrast, the snapshot symbol layer
and the micro symbol layer are not used by applications since the applications represent higher
cognitive functions that operate on the resulting set of symbols.

The representation layer can be regarded as the interface to applications. Applications are re-
quired to monitor the world representation in order to obtain the information needed to fulfill
their specific tasks. The ARS approach relieves applications from handling large amounts of sen-
sory information and provides a condensed and filtered composition of all this information in a
highly reusable way. When an application is running, it searches the existing world representation
for scenarios that the application knows (e.g., an elderly person has collapsed on the floor). The
events that are required for the scenario to take place can be found on the representation level.
Therefore, the application augments the representation by noting that it has found a scenario.
It does so by creating a scenario symbol. This makes it possible to study the output of appli-
cations later. Additionally, an application can create higher-level scenarios by linking together
lower-level scenarios of other applications. That way, the hierarchy can be even further extended
by having lower-level applications looking for simple scenarios and higher-level applications using
these scenarios to find more complex scenarios.

To validate the developed model, again the institute’s kitchen was taken as test environment
[Göt06]. The kitchen was equipped with about hundred sensors of the following types: tactile
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floor sensors, motion detectors, door contact sensors for the entrance door and the fridge door, one
camera, and one shock detector to indicate if the kitchen’s coffee machine was activated. In a first
implementation, from these sensor values, on the micro symbol level, it was detected if an item’s
operation status changed, if an object occurred, if a movement occurred, if a face occurred, and
if a footstep occurred. On the snapshot symbol level, it was derived from these micro symbols
if something entered or left the room, if something used an item, if something walked, and if
a person was perceived. The only symbol existing at the representation symbol layer was the
symbol “person”. This symbol was specified in more detail by properties it comprised. The
values of these properties were derived from information coming from the snapshot symbols. In
the first implementation, the system was tested only with one scenario, which was called the
“coffee detection scenario”. In this scenario, the system perceived if a person entered the room to
make coffee and whether this coffee was with or without milk. It was determined by hard-coded
rules (if-then-rules) what higher-level symbols to create from which lower-level symbols [Göt06].
In a further step, the implementation was extended by introducing more different scenarios to the
system and using slightly different lower-level symbols. There were defined the following scenarios:
“meeting”, “person makes coffee”, “person manipulates object”, “child near hot stove”, and “child
makes coffee”. In this implementation, the formulations what lower-level symbols correspond to
what higher-level symbols were based on fuzzy rules [Ric07]. The model proved to be suitable to
detect all defined scenarios.

The model just introduced is based partly on neuroscientific and neuropsychological research
findings and partly on engineering methods. The concepts taken from neuroscience are the
hierarchal processing of information in different layers and the fact that information is processed
in terms of symbols. [Bur07] extended this model by introducing additional neuroscientific and
neuropsychological concepts to the model. He adapted symbolic information processing in a way
that is more compliant with the neuroscientific model of information processing in the perceptual
system of the human brain as described by [Lur73] (see also chapter 3). In [Pra06], it was defined
that micro symbols and snapshot symbols can only contain information perceived in one instant
of time. As this rule resulted in difficulties in the implementation, [Bur07] softened this rule
and allowed the processing of sensory information within a certain time period. Additionally, he
suggested to process sensor data from the same sensor type first separately and to combine this
information only later with information derived from other sensor types, which is in accordance
with the neuroscientific archetype. However, in the implementation, it was not strictly complied
with this design rule.

Additionally, in [Bur07] and [BLPV07], a technical model for emotions was introduced, which can
influence perception based on the model of [Pan98]. Therefore, so-called e-systems were suggested,
which correspond to basic emotions in the mammalian brain. However, the introduced technical
model for emotions was not subject to system implementation as it turned out to be difficult to
define useful emotions and correlations between emotions and symbols for the control systems of
buildings.

As already described, in a first instance, the test platform for evaluating the different generations
of ARS-PC models was the institute’s kitchen, which was equipped with about 100 sensors of
different types. However, in the course time, this test environment turned out to allow only
limited testing due to its spatial restriction and the relatively small number of sensors. High
costs and assembly effort did not allow it to enlarge the physical test environment. To overcome
this problem, there is currently a simulator under development, which shall allow it to generate
sensor values based on a virtual environment [HPB05, Har08]. The simulator is developed to
simulate sensor values in order to perceive scenarios in a virtual office environment. The reason
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for simulating the sensor values is on the one hand the already mentioned cost reduction for
testing in comparison to real physical installations. On the other hand, the simulator allows it
to evaluate which sensors are necessary to detect scenarios most effectively and efficiently and
where they should be mounted. There were already performed the first successful tests with this
simulator [Bur07].

To sum up, until now, the ARS-PC model is a model for bottom-up information processing of
sensory data for scenario detection. Bottom-up information processing means that the starting
point for processing are sensor values, which are then processed in several steps. Information pro-
cessing is performed in terms of symbols arranged in three layers. Associations between symbols
of different hierarchical layers are defined by rules and are not subject to learning. The model
proved to be successful at least for the detection of a limited number of scenarios. What has to
be criticized about the model is the fact that it claims to rely on neuroscientific, neuropsycho-
logical, and even neuro-psychoanalytical research findings. However, in [Pra06], who introduced
the first version of the model, besides the fact that information is processed hierarchically in
different layers and that information is processed in terms of symbols, no such concepts are used
for the model. The design decision that symbols up to the snapshot symbol level can only contain
information perceived at one instant of time even contradicts neuroscientific findings, as already
in the lowest areas of the visual cortex there can be found neurons that respond to movements
of objects [Gol02]. In [Bur07], who made certain changes and extensions to the model, it was
suggested to process information in a modular hierarchical fashion, which is in accordance to
neuroscientific research findings. However, it was not strictly complied with this concept in the
implementation of the model.

The ARS-PA Model

The aim of the ARS-PA project is to develop a technical model, which supports the decision
making process of an intelligent autonomous system. By making certain decisions, appropriate
actions shall be chosen without external supervision of a human operator [DLP+06, PLC07,
Rös07, Pal08]. The decision making process is not a straightforward approach but is multi-
layered and contains a number of feedback loops. The bases for the ARS-PA model are neuro-
psychoanalytic research findings about the human mental apparatus. The model includes concepts
like emotions, drives, episodic and semantic memory as well as Sigmund Freud’s Ego-Superego-Id
personality model. According to the model, decisions are taken based on perceived images of the
world, internal states of the system, which are represented by concepts corresponding to emotions
and drives, and memory of different kinds.

There have already been made first attempts to apply this model to building automation. How-
ever, it turned out to be difficult to apply concepts like emotions, drives, etc. to a building,
which consists in fact of dead matter and has no living body with internal states that need to be
represented by emotions and drives. Even when ignoring needed embodiment of emotions and
drives, nevertheless, there arose the question what emotions and drives could be useful for e.g.,
in a kitchen. Therefore, to be able to test the concepts developed in the ARS-PA model, the
so-called Bubble Family Game was developed [DLP+06]. The Bubble Family Game is a virtual
simulated environment with virtual autonomous agents called Bubbles. These agents can navi-
gate through a two dimensional world. They can perceive their environment through simplified
sense organs. They can detect the presence of other agents, energy sources, and obstacles. The
current goal of the agents is to survive in the environment by finding energy sources and filling
up their energy level. Agents compete in different groups and try to find an optimum strategy
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in diverse (unknown) situations [Rös07, DGLV08, LZD+08]. A point that has to be criticized
about the ARS-PA model is the fact that it mixes concepts of different brain research areas and
integrates them at the same level of abstraction. Sigmund Freud’s Ego-Superego-Id personality
model and drives are pure psychoanalytical concepts [Fre15, Fre23]. In contrast, episodic and
semantic memory are terms used in neuropsychology [Tul83]. The concept of emotions occurs in
both disciplines. However, in neuropsychology, they refer to processes excluding consciousness,
whereas feelings are conscious experiences of emotions [Dam94]. In psychoanalysis, the terms
feelings and affects are often used as synonyms for emotions [LP73].

2.1.3 The PAIAS Project

The PAIAS (Psycho-Analytically Inspired Automation System) project, which started in autumn
2007, can be regarded as a next generation approach of the ARS-PA project. Its main focus is
on improving the existing ARS-PA concepts. The research shall discover and define the elements
that are needed between the two borders of perception and action and to formulate a techni-
cally feasible and implementable model of the human mental apparatus. The starting point for
model development is Freud’s psychoanalytic Ego-Superego-Id personality model. In contrast to
former approaches, the most important design premise is to develop the model as a top-down
approach starting with the interacting modules Ego, Superego, Id, and perception-consciousness
and dividing these modules into further interacting sub-modules.

2.1.4 The Project BASE and the Project SENSE

From the project ARS, several side-projects split off – namely the projects BASE and SENSE.
These projects exploit results and mechanisms of the ARS-PC project. However, these projects
focus less on sticking to neuroscientific and neuro-psychoanalytic bases but more on practical and
feasible technical realizations.

The Project BASE

The project BASE (Building Assistance system for Safety and Energy efficiency) introduces a
self-learning system that can learn what is regarded as normality and will alert in the case of
deviations. This project was conducted in cooperation with the ARCS Seibersdorf Research
GmbH (Geschäftsbereich Informationstechnologien) and was running from 2004 until 2006. In
[BSR06], [LBP+07], and [Bru07], it is investigated how statistical methods can be applied to
building automation systems to recognize erroneous behavior and to extract semantic information
and context information from sensor data. Therefore, a hierarchical model structure based on
hidden Markov models is proposed. The lower levels of the model structure are used to observe
the sensor values whereas the higher levels provide a basis for the semantic interpretation of what
is happening in a building.

The Project SENSE

The project SENSE (Smart Embedded Network of Sensing Entities) was started in September
2006 and is founded by the 6th European Framework Program. The SENSE project will develop
methods, tools, and a test platform for the design, implementation, and operation of smart
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adaptive wireless networks of embedded sensing components [PF07, BKVH08]. The network,
which is an ambient intelligent system, shall adapt to its environment, create ad-hoc networks of
heterogeneous components, and deliver reliable information to its component sensors and the user.
Different sensors (video cameras and microphones) cooperate to build and maintain a coherent
global view from local information. Newly added nodes shall automatically calibrate themselves
to the environment, and share knowledge with neighbors. The network shall be self-organizing
based on the physical placement of nodes and is scalable due to local information processing and
sharing. The test platform will be installed in an airport to yield real data and performance goals
from a realistic test environment.

2.2 Sensor Fusion

A research field related to the topic of this thesis is the research field of sensor fusion as both
have – at least to a certain extend – the same aim, which is the combination of sensor data from
diverse sources (and sometimes also other information sources) to achieve a “better perception”
of the environment.

There can be found various definitions of sensor fusion differing slightly in the meaning. According
to the definition of [Elm02], sensor fusion is “the combining of sensory data or data derived from
sensory data in order to produce enhanced data in form of an internal representation of the process
environment. The achievements of sensor fusion are robustness, extended spatial and temporal
coverage, increased confidence, reduced ambiguity and uncertainty, and improved resolution.”

The research field of sensor data fusion is relatively recent and dynamic. A standard terminology
has not yet been adopted. There have been widely used the terms “sensor fusion”, “sensor
integration”, “data fusion”, “information fusion”, “multi-sensor data fusion”, and “multi-sensor
integration” in technical literature to refer to a variety of techniques, technologies, systems, and
applications, which use data derived from multiple information sources [van98, BLS06].

[BRG96], [van98], and [Elm02] enumerate the following advantages expected from fusion of sensor
data from heterogeneous or homogeneous sensors:

� Extended spatial and temporal coverage

� Improved resolution

� Completeness

� Robustness and reliability

� Increased confidence

� Reduced ambiguity and uncertainty

� Robustness against interference

� Reduced system complexity (at higher abstractive levels)

� Deduction of new meaning or qualities
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Applications for fusion are various and range from measurement engineering and production engi-
neering over robotics and navigation to medicine technology and military applications. Examples
for application can be found in [LK89], [LYS02], [BLS06], and [RL07].

Data for sensor fusion can come from data of one single sensor taken from multiple measurements
subsequently at different instants of time, from multiple sensors of identical types, or from sensors
of different types.

Concepts for Fusion

Sensor fusion is generally based on the combination of redundant or complementary information.
Among others, [van98], [Elm02], and [RL07] distinguish three types of sensor data fusion, which
are not mutually exclusive: complementary fusion, competitive fusion, cooperative fusion.

Complementary fusion is the fusion of incomplete sensor measurements from several disparate
sources. Sensor data do not directly depend on each other, but are combined to give a more
complete image of a phenomenon under observation.

Competitive fusion is the fusion of redundant sensor measurements from several sources. Each
sensor delivers independent measurements of the same property. Competitive sensor configura-
tions are also called redundant configurations.

Cooperative fusion uses the information provided by independent sensors to derive information
that would not be available from the single sensors. An example for cooperative sensor fusion is
stereo vision. In contrast to complementary and competitive fusion, cooperative fusion generally
decreases accuracy and reliability.

Levels of Abstraction

Fusion of data can be performed at different levels of abstraction. According to [RL07], sensor
fusion can be performed on three levels of abstraction: on the signal level, the feature level, and
the symbol level.

On the signal level, signals of particular sensors are combined directly. A precondition for a
fusion on this level is the comparability of measurement signals. On the feature level, signal
descriptors (features) derived from signals are combined into meaningful representations or more
reliable features. On the symbol level, symbolic signal descriptors are combined at the highest
level of abstraction. This information is often used in decision-based systems. Fusion on a higher
abstractive level is in the majority of cases more efficient [RL07]. In [NGCV04], additionally to
these three levels, a fourth level – the pixel level – is introduced, which is located between the
signal level and the feature level. Pixel level fusion is intended to increase the information content
associated to pixels of images.

Models for Fusion

Concerning models for sensor fusion, it has to be noted that sensor fusion models heavily depend
on the application. Up to now, there does not exist a model for sensor fusion that is gener-
ally accepted, and it seems unlikely that one technique or architecture will provide a uniformly
superior solution [Elm02]. Therefore, there exist numerous models for sensor fusion in the lit-
erature. [Elm07] gives an overview over the most common approaches for sensor fusion models
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and introduces an attempt to classify them. In his article, he mentions the JDL fusion model
architecture, the Waterfall model, the Intelligence cycle, the Boyd loop, the LAAS architecture,
the Omnibus model, Mr. Fusion, the DFuse framework, and the Time-Triggered Sensor Fusion
Model. These models can be classified into three groups: abstract models, generic architectures,
and rigid architectures.

Abstract models serve as a way to think of or explain an aspect of a fusion system without guiding
the engineer in its implementation. Abstract models are the Waterfall model and the Boyd control
loop.

Generic architectures give an outline how to implement an application, but leave open several
design decisions. For example, it is not specified which operating system, hardware, communica-
tion system or database should be used. The JDL model and the Omnibus model belong to the
group of generic architectures.

Rigid architectures guide the engineer well in its implementation at the cost of flexibility, because
several design decisions have already been taken. New systems can be realized quickly by taking
advantage of existing hardware designs, tools, and source code, but the cost of migrating a design
from one rigid architecture to another is high. Examples for rigid architectures are the LAAS
architecture, Mr. Fusion, DFuse, and the Time-Triggered Sensor Fusion Model.

Methods for Fusion

There have been suggested various methods for sensor fusion. According to [RL07], sensor fusion
methods can principally be divided into grid based (geometric) and parameter based (numerical)
approaches whereby in the case of numeric approaches, he makes a further distinction between
feature based approaches (weighted average, Kalman filter), probabilistic approaches (classical
statistics, Bayesian statistics, Dempster-Shafter theory of evidence), fuzzy methods, and neural
approaches. In contrast, [LYS02] classifies fusion algorithms into estimation methods (weighted
average, Kalman filter), classification methods (cluster analysis, unsupervised or self-organized
learning algorithms), interference methods (Bayesian interference, Dempster-Shafter evidential
reasoning), and artificial intelligence methods (neural networks, fuzzy logic). Similar like for
the models of sensor fusion, there also does not exist one sensor fusion method suitable for all
applications.

Biological Sensor Fusion

[PWM03] and [VLBD08] point out that it is well appreciated that sensor fusion in the perceptual
system of the human brain is of far superior quality than sensor fusion achieved with existing
mathematical methods. Therefore, it seems to be particularly useful to study biological principles
of sensor fusion.

Such studies can on the one hand lead to better technical models for sensor fusion and on the
other hand to a better understanding of how perception is performed in the brain. Sensor fusion
based on models derived from biology is called biological sensor fusion. In literature, among
others, the following attempts of biological sensor fusion are described:

[Mur96] reviews literature from biological and cognitive science about sensory integration and
derives an architecture for intelligent sensor fusion systems. This so-called Sensor Fusion Effects
(SFX) architecture is suited for robot navigation and incorporates a concept of two-phase sensor
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fusion activity. [HH92] present an approach to model biological vision with neural networks and
traditional processing. The architecture has two channels: a location channel and a classification
channel. The location channel searches for objects in the field of view. The classification channel
learns and recognizes objects. The Accurate Automation Corporation (AAC) developed a neural
network-based sensor fusion system inspired by how information from multiple sensors is fused by
the central nervous system. Based on this model, a system was developed, which merges two or
more sensor signals to generate a fused signal with an improved confidence of target existence and
position. [Dav97] and [CR04] suggest a neural network for multi-sensory perception. This network
processes auditory and visual information separately in the first layers before combining it in the
next layers. In [KBS01], a mathematical model of the human perception process is presented.
The proposed system’s theoretical framework describes the principles of human perception as
a concatenation of nonlinear vector mappings. In [HG06] and [GJ07], a concept for so-called
hierarchical temporal memory (HTM) is introduced. HTM is a machine learning model that
emulates some of the structural and algorithmic properties of the neocortex using an approach
related to Bayesian networks.

Although there have already been introduced a number of models for biological sensor fusion,
yet success of research efforts incorporating lessons learned from biology into “smart algorithms”
has been limited [PWM03]. One reason therefore might be that the use of biological models in
actual machines is often only metaphorical, using the biological architecture as a general guideline
[KZK97].

Symbolic Processing of Sensory Information

There have been made some attempts to perform sensor fusion by transforming sensor data into
symbols. Approaches to process sensor information symbolically have been described by [Pra06],
[Göt06], [Ric07], and [Bur07], who suggest a layered architecture for this purpose. [JRCC03]
attempt to achieve symbol grounding by adding a sensory concept to an abstract symbol.

Direct and Indirect Fusion

Fusion of sensor data from a set of heterogeneous or homogeneous sensors, soft sensors4, and
history values of sensor data is called direct fusion. However, there also exists indirect fusion.
Indirect fusion uses information sources like prior knowledge about the environment and human
input. Furthermore, it is possible to fuse the outputs of the former two [Elm02].

In literature, different models for such hybrid systems are described. [EB04] claim that it is
impossible to reconstruct the environment “bottom-up” from the sensory information alone, and
that prior knowledge is needed to interpret ambiguous sensory information. Bayesian inference
is suggested to combine prior knowledge with observational, sensory evidence to infer the most
probable interpretation of the environment. [Cro05] points out that many human activities follow
a loosely defined script in which individuals assume roles. A layered, component-based software
architecture model is proposed and illustrated with a system for real-time composition of synchro-
nized audio-video streams for recording activities within a meeting or lecture. [GK02] mention

4Soft sensor – also called virtual sensor or software sensor – is a common name for software where several
measurements are processed together. There may be dozens or even hundreds of measurements. The interaction
of the signals can be used for calculating new quantities that need not be measured. Soft sensors are especially
useful in data fusion, where measurements of different characteristics and dynamics are combined. It can be used
for fault diagnosis as well as control applications [KKvW+06, p. 68].
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that different sources of information do not always keep the same relative reliability and that
a rational perceptual system should adjust the weights that it assigns to different information
sources. A Bayesian approach is suggested to understand how the reliability of different sources
of information, including prior knowledge, should be combined by a perceptual system. [BAR04]
exploit location information about sound signals to conclude from what source a detected sound
originates. For example, a sound originating from the manipulation of dishes is likely to be de-
tected in the kitchen near the sink. [SKSV00] describe a system for the recognition of mixtures of
noise sources in acoustic input signals. The problem is approached by utilizing both bottom-up
signal analysis and top-down predictions of higher-level models. [Ell96] presents a prediction-
driven approach to interpret sound signals. The analysis is a process of reconciliation between
the observed acoustic features and the predictions of an internal model of the sound-producing
entities in the environment. [DTL+03] propose a scheme where perception crucially involves
comparison processes between incoming stimuli and expected perceptions built from previous
perceptions.

2.3 Neural Networks, Symbolic Systems, and Hybrid Approaches

In this thesis, an information processing principle called neuro-symbolic information processing is
introduced, which unifies advantages of neural and symbolic approaches. Therefore, this section
shall give a brief overview about the research field of artificial neural networks, symbolic artificial
intelligence, and existing hybrid approaches.

2.3.1 Neural Networks

Artificial neural networks – also referred to as connectionist systems – can be seen as simplified
models of neural processing in the brain. An artificial neural network involves a network of
simple processing elements (neurons), which can exhibit complex global behavior determined by
the connections between the processing elements. The structure and function principle of artificial
neurons is derived from biological neurons of the human brain consisting of the four basic elements
of dendrites, synapses, cell body, and axon (see section 3.1).

In neural networks, knowledge is represented in a distributed form. An important issue of neural
networks is learning from examples achieved by adjusting the weights of connections between
neurons by certain learning algorithms during a training phase. Learning from examples allows
it to apply neural networks to applications where no algorithmic solutions can be found or where
a structure in existing data shall be discovered. Generally, it can be distinguished between su-
pervised and unsupervised learning [CS97, Roj96]. Neural networks are applied to solve various
information processing problems. There can be handled problems in the field of pattern classifi-
cation, function approximation, prediction, etc. In literature, there have been suggested various
different types of neural networks each of them being best suited for certain applications. The
type most often used is the multi-layer perceptron [MCM96]. An extensive overview about im-
portant facts concerning neural networks as well as examples for their applications can be found
in [Vel06].

In [Hau98], [Sch97], [Vel06], and [Pal08], there are mentioned the following advantages of neural
networks in comparison to other solutions: Neural networks can learn from examples and are
therefore applicable in situations where the usage of algorithmic solutions is difficult. Because
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of the ability to learn and to adapt, neural networks offer a certain degree of flexibility. Neural
networks are able to generalize well to unseen cases and are robust and fault tolerant to exceptions,
noise, and incomplete data. They can process information in parallel and therefore guarantee
high performance. Neural networks can be described mathematically by matrices. This offers the
possibility to simulate them on a computer very effectively.

A problem with neural networks is that their effective usage requires a certain amount of experi-
ence. There need to be determined many parameters before learning can start. This is no trivial
task. For good performance, it is crucial to select appropriate input data for the neural network
and to pre-process them. There also has to be chosen a suitable way to represent the output
data. There has to be selected a network architecture with a certain number of nodes for the
problem at hand. A suitable learning algorithm has to be chosen, and the number of training
epochs has to be selected [Vel06]. Besides the problem of parameter selection, one factor often
considered as disadvantage is that in neural networks, knowledge is represented implicitly by the
weights between neurons. The drawbacks of neural networks lie in the incapacity to provide an
explanation for the underlying reasoning mechanisms. Therefore, neural networks are considered
as black box models [dGBG01].

2.3.2 Symbolic Artificial Intelligence

According to the theory of symbolic systems, the human mind is a symbol system and cognition is
symbol manipulation [Fre96]. An assumption underlying most work in artificial intelligence is that
intelligent behavior can be achieved through the manipulation of symbol structures representing
bits of knowledge [Caw98].

Symbolic artificial intelligence (symbolic AI) concerns itself with attempting to explicitly represent
human knowledge in a declarative form (i.e. facts and rules). Therefore, it is necessary to translate
often implicit or procedural knowledge (i.e. knowledge and skills, which are not readily accessible
to conscious awareness) possessed by humans into an explicit form using symbols and rules for
their manipulation [RN07].

The design process of symbolic artificial intelligence is generally considered as a top-down process.
Intelligence is viewed as computations, which in turn are viewed as rule-based manipulations on
symbols [Pal08]. In symbolic AI, there has to be fixed a set or alphabet of elementary symbols
which is known in advance. The alphabet is finite. The basic symbols can be combined in
various ways, but not all combinations are allowed. Rules of syntax are needed to specify which
combinations are valid. Besides rules of syntax, there also exist rules of semantics, which specify
how the meaning of these combinations depends on the meaning of the component symbols. These
syntax and semantic rules need not themselves be explicitly present. Finally, there exist rules for
manipulating these symbol combinations, which derive new combinations from old [Pai07].

In [Caw98], there are distinguished three main approaches to knowledge representation in artificial
intelligence: frames and semantic networks, logic, and rule-based systems.

Semantic network knowledge is represented as a graph. Nodes in the graph represent concepts,
links represent relations between concepts. The most important relations between concepts are
instance relations and subclass relations. However, other relations are also allowed. Subclass and
instance relations can be used to derive information not explicitly represented. Semantic networks
allow it to represent knowledge about objects and their relations in a simple and intuitive way.
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Frames are a variant of semantic networks. They are often used to represent facts in an expert
system. Information relevant to a particular concept is stored in a single entity called frame.

Logic has a well-defined syntax and semantics and is concerned with truth preserving inference.
Therefore, it seems to be a good candidate to represent and reason with knowledge. The most
important logic for knowledge representation is predicate logic. With predicate logic, complex
facts about the world can be represented and new facts can be derived that are guaranteed true
if the initial facts were true.

Rule-based systems represent knowledge in terms of a set of rules. These rules define what shall
be done or concluded in different situations. A rule-base consists of a set of rules (if-then-rules),
a set of facts, and an interpreter controlling the application of the rules, given the facts.

Symbolic AI had some impressive successes. Artificial systems mimicking human expertise –
so-called expert systems – are emerging in a variety of fields, which constitute narrow but deep
knowledge domains. Game playing programs (e.g., chess) being written now challenge the best
human experts. The big advantage of symbolic systems is that their discrete knowledge rep-
resentations are explicit and manipulable in an open-ended manner. However, the difficulties
encountered by symbolic AI are deep, possibly irresolvable [RN07]. The main problem with sym-
bolic AI is that it can only be used when there is complete information about the part of the world
to be modeled. This problem has become known as the common sense knowledge problem or gen-
eral knowledge problem. While researchers were aware of the fact that in a symbolic AI system,
knowledge has to be explicitly represented, they did not anticipate the vast amount of implicit
knowledge we all share about the world and ourselves. Areas, which rely on procedural or im-
plicit knowledge, such as sensory processes and motor processes are much more difficult to handle
within the symbolic AI framework. In these fields, symbolic AI has had limited success [RN07].
A further problem referred to as frame problem is that the set of relevant features whose changes
have to be tracked has to be known in advance in order neither to miss important changes nor
to be forced to always evaluate every change occurring somewhere in the system [Pal08]. Beyond
simple toy domains, the common sense knowledge problem and the frame problem are rarely
resolvable. Furthermore, according to the symbol grounding problem, symbolic representations
are not grounded in the system’s interactions with its environment. [Har90] claims that symbolic
representations must be grounded bottom-up in non-symbolic representations to give them mean-
ing. Another problem is that symbolic systems cannot be kept effectively in tune with changing
environments. Additionally, they lack generalization ability and fault tolerance. Symbolic repre-
sentations and operations on them are domain-specific, restricted, static, and time-consuming. A
further important point of criticism concerning symbolic AI is that its algorithms are exclusively
sequential and centrally controlled.

2.3.3 Neuro-symbolic Integration

In chapter 4, there will be introduced a concept for information processing of sensor data based
on so-called neuro-symbols. These neuro-symbols combine certain characteristics of neurons and
symbols. Although the approach suggested in this thesis is unprecedented, in AI literature, there
can already be found certain attempts to combine artificial neural networks with symbolic systems
to hybrid neuro-symbolic approaches to solve diverse tasks. The motivation for these attempts
as well as a short overview of existing models and their classification is outlined in the following.
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Motivation for Neuro-symbolic Integration

Both neural networks – also called connectionist systems – and symbolic systems have a broad field
of applications. According to [HU94], neural networks and symbolic systems are two disparate
approaches to model cognitive processes and to engineer intelligent systems. Primary efforts have
generally focused always only on one of these two disparate approaches. Both approaches have
their specific strengths and weak points.

Connectionist systems are robust and can learn from examples. They are fault tolerant, can
handle incomplete information, and are able to generalize to similar input. As they are parallel
distributed systems, they also potentially provide increased speed of processing [WS00]. The
drawbacks of neural networks lie in the incapacity to provide an explanation for the underlying
reasoning mechanisms, wherefore they are considered as black box models [Wer98, Huy99].

Symbolic systems can explain their inference process and use powerful declaration languages
for knowledge representation. They allow explicit control, fast initial coding, dynamic variable
binding, and knowledge abstraction [WS00]. Problems of symbolic systems are a lack of robustness
as well as the inability to handle incomplete information and to generalize. They generally fail
to learn new associations between symbols and to do things on their own [Wer98, Huy99]. One
basic problem with symbolic systems is the question how symbols get their meanings, because
symbols and concept need to be grounded somehow in reality [Har90].

A comparison of the characteristics of neural networks and symbolic systems shows that sym-
bolic systems have certain problems that connectionist systems seem to solve and vice versa.
However, although it seems quite obvious that the weaknesses of connectionist and symbolic
systems could potentially be overcome through a judicious integration of techniques and tools
of both approaches, there has been only little cooperation between these two disciplines until
now. By taking up the challenge to combine connectionist approaches and symbolic approaches,
a new method could be developed that shows the advantages of both without suffering from their
weaknesses [Huy99].

According to [dGGB02, chapter 1], the aim of neural-symbolic integration is to explore and exploit
the advantages that each approach presents. Among the advantages of artificial neural networks
are massive parallelism, generalization capabilities, and inductive learning. Symbolic systems
on the other hand can explain their interference process and use powerful declarative languages
for knowledge representation. From the perspective of cognitive neuroscience, a symbolic inter-
pretation of an artificial neural network architecture is desirable since the brain has a neuronal
structure and the capability to perform symbolic processing [Wer98]. In [WS00, chapter 1], it is
pointed out that cognitive processes are not homogenous but a wide variety of representations and
mechanisms are employed. Some parts of cognitive processes are best captured by connectionist
models, while others by symbolic models. Therefore, in cognitive modeling, there exists a need
for “pluralism”, which leads to the development of hybrid models.

[Wer98] points out the following areas of research, which are interested in the design of hybrid
systems:

� Integration of symbolic and neural techniques for

– integrating techniques for language and speech processing

– integrating different modes of reasoning and inferencing
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– combining different techniques in data mining

– integration for vision, language, and multimedia

– hybrid techniques in knowledge-based systems

– combining fuzzy/neuro techniques

– neural/symbolic techniques and applications in engineering

� Exploratory research in

– emergent symbolic behavior based on neural networks

– interpretation and explanation of neural networks

– knowledge extraction from neural networks

– various forms of interacting knowledge representations

– dynamic systems and recurrent networks

– evolutionary techniques for cognitive tasks (language, reasoning, etc.)

� Autonomous learning systems for cognitive agents that utilize both neural and symbolic
learning techniques

Classification of Integrated Neuro-symbolic Systems

The research field of neuro-symbolic integration is quite recent. Up to now, there does not exist
a model for neural-symbolic integration that is generally accepted. The model heavily depends
on the application. In [Hil97], [WS00, chapter 1], and [dGBG01, chapter 1], a classification of
integrated neuro-symbolic systems as given in figure 2.2 is proposed. According to this classifi-
cation scheme, neuro-symbolic integration systems can roughly be divided into unified strategies
and hybrid strategies. Unified strategies try to attain neural and symbolic capabilities by using
neural networks alone. Hybrid strategies combine neural networks with symbolic models such as
case-based reasoning systems, expert systems, and decision trees.

Figure 2.2: Classification of Neuro-symbolic Integration Systems

Unified strategies base on the claim that there is no need for symbolic structures, because full
symbol processing functionalities emerge from neural structures alone. Unified strategies can be
further subdivided into neuronal symbolic processing and connectionist symbolic processing.
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The objective of neuronal symbol processing is to model the brain’s high-level functions. This
approach is a bottom-up approach with the biological neuron as mandatory starting point. As
the ambitions of this research field are high, it is still immature, and it may take some time before
real world applications can even be envisaged.

In contrast, connectionist symbol processing (or neural symbol processing) lays no claim to neu-
robiological plausibility. Here, artificial neural networks are used as basic building blocks to build
cognitive architectures capable of complex symbol processing. Connectionist symbol processing
can be further divided into localist, distributed, or combined localist/distributed architectures
[Hil97, WS00, chapter 1]. Localist architectures contain one distinct node for representing each
concept. Distributed architectures comprise a set of non-exclusive, overlapping nodes to repre-
sent each concept. To incorporate prior knowledge into a system, it is generally easier to use
localist models, because their structures can be made to directly correspond to that of symbolic
knowledge. In contrast, neural learning usually leads to distributed representations.

Hybrid approaches rest on the assumption that the full range of cognitive and computational
powers can only be attained by synergetic combination of neural and symbolic models. Here, it
is distinguished between translational and functional hybrids.

Translational hybrids (or transformational models) represent an intermediate class between uni-
fied and functional hybrids. Similar to unified models, they rely only on neural networks as
processors. However, they can start from or end with symbolic structures. Their objective is
to transform symbolic structures into neural networks before processing or to extract symbolic
structures from neural networks after processing. Most often, the symbolic structures used are
rules. The key point is that symbolic structures are not processed in translational systems.

Functional hybrids comprise complete symbolic and connectionist components. Besides neural
networks, they comprise both symbolic structures and their corresponding processors (rule inter-
preter, parsers, case-based reasoners, theorem provers, etc.). Functional hybrids achieve effective
functional interaction and synergy among the combined components. Functional hybrids can be
subdivided depending on their integration mode, which refers to the way in which the neural and
symbolic components are configured in relation to each other. [WS00, chapter 1] and [Hil97] dis-
tinguish between loosely coupled architectures, tightly coupled architectures, and fully integrated
architectures considering the degree of integration as a quantitative criterion. Loosely coupled
architectures have separate symbolic and neural modules. The control flow is sequential. Only
one module is active at any time. Processing has to be finished in one module before the next
module can begin. Communication between modules is unidirectional. Tightly coupled archi-
tectures have separate symbolic and neural modules. Control and communication takes place
via common shared internal data structures in each module. The common data structures al-
low bidirectional exchange of knowledge between modules. Fully integrated architectures show
no discernible external difference between symbolic and neural modules. The modules have the
same interface and are embedded in the same architecture. The control flow can be parallel and
communication can be bidirectional between modules.

Potentials of Neuro-symbolic Systems

Neuro-symbolic systems are often reported in connection with the implementation of human cog-
nitive capabilities, especially natural language processing [SA97, dGBG01]. In recent years, the
research field of neuro-symbolic integration has seen a remarkably active development. However,
neuro-symbolic models have often been criticized to have no common foundation, to be purely
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empirical and only designed to solve one precise symbolic or connectionist limitation, to be only
applicable to elementary toy problems, and to be not able to deal with real world applications
including perceptual or behavioral components. Nevertheless, neuro-symbolic systems begin to
be a mature domain, and it has been shown that they can often perform better than purely
symbolic or connectionist approaches [SA97, chapter 20].
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Chapter 3

Neuroscientific and

Neuropsychological Backgrounds

“Brain: an apparatus with which we think we think.”

[Ambrose Bierce]

The human brain is a highly complex system. Different research areas are involved in its research,
including pedagogics, psychology, neuroscience, psychiatry, psychoanalysis, neuro-psychoanalysis,
and cognitive sciences. Different disciplines have diverse, sometimes also conflicting theories and
models about the structural organization and function of the human brain. The concepts devel-
oped in the work at hand will be guided by the research findings of neuroscience and neuropsy-
chology. Neuroscience is devoted to the scientific study of the nervous system. Neuropsychology
is an interdisciplinary branch of psychology and neuroscience that aims to understand the cere-
bral organization of human mental processes and how the structure and function of the brain
relate to specific psychological processes and behaviors [Lur73]. In this chapter, an overview
about research findings relevant for the model to be developed is presented. First, in section
3.1, a distinction between the terms “brain” and “mind” is drawn, and the basic information
processing units of the brain and the mind are discussed. In section 3.2, the functional units of
the brain are discussed. Section 3.3 describes the perceptual system of the brain. Finally, section
3.3 gives an overview about latest research findings concerning the so-called binding problem to
answer the question how information being processed in different areas of the brain is merged.

3.1 Basic Information Processing Units of the Brain and Mind

This section describes the basic processing units of the brain and the mind. However, before
proceeding to this description, the difference between the terms “brain” and “mind” is pointed
out. The brain is the physical, biological matter contained within the skull, responsible for
electro-chemical neuronal processes. In contrast, the mind consists in mental attributes, such
as beliefs, desires, perceptions, and so on. There exist scientifically demonstrable correlations
between mental events and neuronal events. Information processing in the brain as well as in
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the mind takes place by information exchange of many quite simple information processing units.
On the physiological basis of the brain, information processing is regarded as being performed by
neurons1. On the more abstract level of the mind, information processing can be considered in
terms of symbols.

Neural Information Processing

Brain researchers commonly agree that information processing in the brain is performed by in-
teracting neurons or nerve cells. The brain consists of approximately 100 billions of such active
elements, which are massively interconnected. These neurons can be regarded as basic processing
units of the brain. Neurons are specialized cells that can generate an electro-chemical signal. The
basic function of a neuron is to transfer information. There exist different types of nerve-cells.
However, the basic structure of a nerve cell and its function principle is always the same.

A neuron collects input information via dendrites. This information is received from other nerve
cells through specific points of contact – the synapses. The axon of the neuron links up with
a dendrite of other neurons. Each dendrite of a neuron can accept many axon terminals. This
allows multiple interconnections. The cell body reacts on input stimuli and can transmit an
output signal to other neurons through the axon. This transmission only takes place when the
total aggregate strength of the input signals from the dendrites exceeds a certain threshold. The
total strength results from a weighted sum of all input signals. The weighting is achieved by the
synapses. Basically, two different types of synapses can be distinguished: excitatory and inhibitory
synapses. An excitatory synapse results in a positive weighting and an inhibitory synapse results
in a negative weighting of the input signal. By altering the weights of the synapses, the brain has
the ability to learn and to adapt to new situations [Vel06].

To exchange information between neurons, spike trains are used. However, the code by which this
information is transmitted – the neural code – is not yet well understood [SZ96]. The traditional
view in system physiology is that it is the mean firing rate alone that encodes the signal and that
variability about this mean is noise. An alternative view, which has recently gained increasing
support, is that it is the variability itself that encodes the signal [Zad98].

Symbolic Information Processing

Cognitive information processing in terms of interacting neurons as just described is evident as it
has a physiological foundation. Nevertheless, because of the complexity of mental processes, until
now, mental states could not be captured by such low-level explanations. For this reason, infor-
mation processing in the brain is often described in terms of symbols. In the theory of symbolic
systems, processes are not considered on a neural basis but on the more abstract level of symbols.
Symbols are regarded as the basic information processing units of the mind. According to the
theory of symbolic systems, the mind is a symbol system and cognition is symbol manipulation.
Examples for symbols are objects, characters, figures, sounds, or colors used to represent abstract
ideas and concepts. Each symbol is associated with other symbols. Symbol manipulation offers
the possibility to generate complex behavior [Fre96]. Instead of the term “symbol”, other authors
use the labeling “image” [Dam94].

1A second type of information processing in the brain bases on chemical substances including neurotransmitters,
hormones, and peptides. However, chemical information processing will not be considered in the model proposed
in chapter 4.
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3.2 Functional Units of the Brain and Mind

In the last section, the basic processing units of the brain and the mind were described. The
information processing performed by such a basic unit seems to be quite simple. However, what
makes the understanding of the function of the brain so difficult, maybe even impossible, is the
fact that there exist various interconnections between billions of these basic processing units. As
their interconnections are that complex, their true interaction is still not deciphered, and the
function of the brain as a whole still remains a mystery up to a certain degree [Gol02, chapter 1,
p. 2].

Besides the attempt to explain brain functions by such bottom-up methods starting with the basic
processing units, there also exist approaches to consider it in a top-down manner. According to
the Russian neurologist and neuropsychologist Aleksandr Romanovich Luria [Lur73, chapter 2],
three principal functional units of the brain can be distinguished whose participation is necessary
for any type of mental activity. They can be described as the unit for regulation tone and waking
of mental states, the unit for receiving, analyzing, and storing information arriving from the
outside world, and the unit for programming, regulating, and verifying mental activity (see figure
3.1). The three units cannot carry out a certain form of activity completely independently. Each
form of conscious activity is a complex functional system. It takes place through the combined
working of all three brain units. Each of them makes its own contribution.

Figure 3.1: Three Basic Functional Units of the Brain

Each of these basic units has a hierarchical structure and consists of at least three cortical zones
built one above the other. They are referred to as primary, secondary, and tertiary area (see figure
3.2). The primary (projection) area receives impulses from or sends impulses to the periphery. In
the secondary (projection-association) area, incoming information is processed or programs are
prepared. The tertiary area (zone of overlapping) is the latest system of the cerebral hemispheres
to develop and is responsible for most complex forms of mental activity requiring the concerted
participation of many cortical areas. In the following, each of the three principal functional units
is described briefly summarizing research findings outlined in [Lur73] and [ST02].

The Unit for Regulating Tone and Waking of Mental States

For human mental processes, the waking state is essential. Only under optimal waking conditions,
information can be received and analyzed. Precise regulation of mental processes is impossible
during sleep. Organized, goal-directed activity requires maintenance of an optimal level of cortical
tone. The reticular formation of the brainstem is a powerful mechanism for maintaining cortical
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Figure 3.2: Hierarchical Structure of a Basic Functional Unit

tone and regulating the functional state of the brain and is a factor determining the level of
wakefulness. At least three principal sources of activation can be distinguished. The first source is
the metabolic process of the organism. Metabolic processes leading to maintenance of the internal
equilibrium of the organism in their simplest forms are connected with respiratory and digestive
processes, with sugar and protein metabolism, with internal secretion, and so on. More complex
forms are connected with metabolic processes organized in certain inborn behavior systems. These
systems are widely known as systems of instinctive food-getting and sexual behavior. The second
source of activation is of completely different origin. It is connected with the arrival of stimuli
from the outside world in the body. It leads to the production of completely different forms
of activation, manifested as an orienting reflex. The third source of activation plays the most
intimate part. The fulfillment of plans or the achievement of a goal requires a certain amount of
energy and is only possible if a certain level of activity can be maintained.

The Unit for Receiving, Analyzing, and Storing Information Arriving from the Out-

side World

This unit is also referred to as afferent system and is located in the back half of the forebrain.
The component parts of this unit are adapted to the reception of visual, auditory, vestibular, or
general sensory information. The system also incorporates the central systems of gustatory and
olfactory reception. Information coming from the visual, auditory, or other sense organs is first
processed in different, separated parts of the brain and is merged only later on in the processing.

The basis of this unit is formed by the primary areas of the cortex. They consist mainly of
neurons, which possess extremely high specificity. The neurons of the cortical visual systems, for
example, only respond to the narrowly specialized properties of visual stimuli like shades of color,
the character of lines, or the direction of movement. Neurons of the primary auditory cortex
only respond to highly differentiated properties of acoustic stimuli. The primary zones of the
individual cortex regions also contain cells of a multimodal character, which respond to several
types of stimuli. Additionally, there exist cells, which do not respond to any modally-specific
type of stimuli and evidently retain the properties of non-specific maintenance of tone. These
multimodal and non-modally-specific cells, however, form only a very small proportion of the total
neuronal composition of the primary cortical areas. The primary areas are surrounded by systems
of secondary cortical zones. The cells of the secondary cortical zones have much lower degree of
specificity. The tertiary zones are responsible for enabling groups of several analyzers to work
concertedly. This means that the information coming from the different sense organs having been
processed separately until now in the primary and secondary zones of each modality are merged
in these zones. The tertiary zones are specifically human structures. They are almost entirely
concerned with the function of integrating excitation arriving from different analyzers. The great
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majority of neurons of these zones are multimodal in character. They respond to general features
to which neurons of the primary and secondary cortical zones are unable to respond. The tertiary
zones are also responsible for the transition from direct, visually represented syntheses to the level
of operations with word meanings, with complex grammatical and logical structures, with systems
of numbers and abstract relationships. They play an essential role in the conversion of concrete
perception into abstract thinking.

The unit for receiving, analyzing, and storing information can also be considered as perceptual
unit. As this unit is of great interest for model development in this work, a more detailed
description of this unit is given in section 3.3.

The Unit of Programming, Regulation, and Verification of Mental Activity

Reception, coding, and storage of information are only one aspect of human cognitive processes.
Another is the organization of conscious activity. Man creates intentions and forms plans and
programs of his actions. He inspects their performance and regulates his behavior so that it
conforms to these plans and programs. He verifies his conscious activity by comparing the effects
of his actions with the original intentions and corrects any mistakes he has made. This task is
linked with a third fundamental functional system, responsible for programming, regulation, and
verification. This system is also referred to as efferent system and is located in front half of the
forebrain.

The zones of the unit of programming, regulation, and verification of activity are governed by
the same principles of hierarchical organization and diminishing specificity like the system for
reception, coding, and storage of information. The main difference to the second, afferent system,
where processes go from the primary to the secondary and tertiary zone, is that in the efferent
system, the processes run in a descending direction, starting at the highest levels of the tertiary
and secondary zones. There, motor plans and programs are formed. The primary area sends
the prepared motor impulses to the periphery. The second feature distinguishing the efferent
system from the afferent system is that the efferent system does not contain a number of different
modally-specific zones.

Sequential Development of the Primary, Secondary and Tertiary Brain Areas

According to [Lur73, chapter 2], the “localization” of higher mental processes in the human cortex
is never static but moves about essentially during development of the child and at subsequent
stages of training. This is expressed by the law of the hierarchical structure of the cortical zones,
which he proposed to govern the working structure of the unit for receiving, analyzing, and storing
information as well as the unit of programming, regulation, and verification of activity. This law
describes the relationships between the primary, secondary, and tertiary cortical zones, responsible
for increasingly complex synthesis of incoming information. The relationships between these
primary, secondary, and tertiary cortical zones change in the course of ontogenetic development.

In the young child, the formation of properly working secondary zones could not take place
without the integrity of primary zones. The proper working of the tertiary zones is impossible
without adequate development of the secondary cortical zones. A disturbance of the lower zones
in infancy must therefore lead to incomplete development of higher cortical zones. The main
line of interaction between the cortical zones runs “from below upward”. In the adult person,
the higher cortical zones have assumed the dominant role. When he perceives the world around
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him, he organizes (codes) his impressions into logical systems. The highest tertiary zones of the
cortex begin to control the work of the secondary zones. If the secondary zones are affected by
pathological lesions, the tertiary zones have a compensatory influence on their work. The main
line of interaction runs “from above downward”. E.g., in the initial stage, writing depends on
memorizing the graphic form of every letter. With practice, writing is converted into a single
“kinetic melody”, no longer requiring the memorizing of the visual form of each isolated letter.
This fact was already noticed by the neuroscientist Sigmund Freud [Fre91].

In summary it can be said that the hierarchical arrangement of perception and memory reverses
during the maturational process. For small infants, everything depends on the senses, and cog-
nition is driven by concrete perceptual reality. In adults, abstract knowledge derived from these
early learning experiences comes to govern the perceptual process. We see what we expect to see
and are surprised or fail to notice when our expectations are contradicted [ST02, chapter 5].

3.3 The Perceptual System of the Brain

The focus of this thesis is on the development of a model for human-like machine perception. The
primary goal of the perceptual system of the brain is to inform the individual about characteristics
of the environment which are important for life [Gol02, chapter 1]. This section gives an overview
about research findings concerning the cerebral organization and function of the perceptual system
of the human brain.

3.3.1 Bottom-up and Top-down Processes in Perception

Generally, perceptual processes can be considered as the result of bottom-up processing and top-
down processing working together (see figure 3.3). Bottom-up processing, also called data-based
processing, is based on incoming data from the receptors of our sense organs. Incoming data are
always the starting point for perception. Without incoming data, there is no perception [Gol07,
chapter 1, p. 9]. Top-down processing, also called knowledge-based processing, is based on
knowledge. This knowledge can be factual knowledge about objects, pre-experience, knowledge
about the context in which the objects occur, and expectation. According to [Gol07, chapter 1,
p. 9], knowledge is not always involved in perception but it often is and sometimes without the
individual even being aware of it. In contrast, [EB04] report that it is impossible to reconstruct
the environment “bottom-up” from the sensory information alone. Prior knowledge is needed to
interpret ambiguous sensory information.

3.3.2 Cerebral Organization of Perception

As outlined in section 3.2, Aleksandr Luria suggests the brain to be made up of three principal
functional units, each of them consisting of at least three hierarchical areas. The three hierarchical
areas are called primary cortex (projection zone), secondary cortex (association zone), and tertiary
cortex (zone of overlapping). The unit, which Luria calls the unit for receiving, analyzing, and
storing information, can be regarded as perceptual system responsible for perceiving the outer
world.
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Figure 3.3: Bottom-up and Top-down Processes in Perception

The process of outer world perception actually involves five different perceptual systems – the
systems of visual perception, auditory perception, somatosensory perception, olfactory percep-
tion, and gustatory perception. Each of these systems is localized in a separate brain region. As
pointed out in [Lur73, chapter 2], the information from different sense organs is first processed
separately in different brain areas and their outcome is combined and merged not until later in
further processing steps. Visual information is processed mainly in the occipital cortex, auditory
information is handled to a great extend in the temporal cortex, somatosensory information pro-
cessing happens mostly in the parietal cortex, and olfactory and gustatory information processing
can be assigned to activities in the cortex of the insula and the structures inside the temporal
lobe [ST02, chapter 1].

Each of these unimodal sensory processing units have a primary and a secondary cortex that
is responsible mainly only for the processing of information of the particular modality. The
different senses are then merged in the zones at the boundary between the occipital, temporal,
and postcentral regions of the hemisphere where the cortical areas for visual, auditory, vestibular,
cutaneous, and proprioceptive sensation overlap [Lur73, chapter 2]. These zones are labeled
as tertiary zones. As outlined in [Gol02, chapter 3], the primary and secondary cortices of
all perceptual systems are organized in largely the same manner, which facilitates the further
processing in higher levels.

Figure 3.4 illustrates graphically what has just been described about the hierarchical organization
of the perceptual unit. In this model, the five senses mentioned are first processed separately in a
two-layered architecture representing the primary and secondary cortex of each region. The third
layer represents the zones of overlapping in the perceptual cortex. Here, the different unimodal
sensory perceptions are associated and merged with each other to result in a unified multimodal
perception.

Visual Perception

The processing of visual information is mostly carried out in the occipital cortex. Based on
experiments in the visual cortex of cats, David H. Hubel and Torsten N. Wiesel, the Nobel Prize
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Figure 3.4: Modular Hierarchical Organization of the Perceptual System of the Brain

Winners in Physiology and Medicine 1981, suggested a model for visual information processing
in the cortex with a “simple-to-complex hierarchy” – a feed forward sequence of more and more
complex and invariant neuronal representations [HW62]. According to this model, simple cells
have a small receptive field. Complex cells have a bigger receptive field. Complex cells receive
input from several simple cells. These finding conform to the descriptions of [Lur73] about the
hierarchical organization of perception in a primary, secondary, and tertiary cortex.

The primary areas of the occipital cortex are those where fibers from the retina terminate. These
projection zones have a somatotopic (topographic) structure. This means that there is a corre-
spondence between the position of the receptors in the retina activated by a stimulus and the
area of the cerebral cortex that is activated by it. Nerve cells located in the primary cortex react
to stimuli of high specificity in circumscribed areas of the visual field. For example, there exist
neurons, which respond exclusively to shades of color, the character of lines, edges, angles, balks
of a specific length, orientation, or the direction of movement [Gol02, chapter 3, p. 89]. These
types of cells are also called feature detectors. Observations showed that a stimulation of the
primary zones of the occipital cortex by an electric current evoked the appearance of elementary
visual hallucinations in patients like the perception of flashes of lights, tongues of flame, and
colored spots. These phenomena appeared in strictly defined parts of the visual field [Lur73,
chapter 3].

The secondary zones of the occipital cortex are placed over the primary zones. The visual associ-
ation zone is distinctly larger than the primary visual cortex. The secondary cortical zones loose
the character of somatotopical projection of the corresponding sensory structures. The degree of
specificity of neurons is much lower than in the primary cortex. The secondary zones of the visual
cortex play the role of synthesizing visual stimuli, coding them, and forming them into complex
systems. The function of the secondary zones is to combine the features detected in the primary
cortex into complete forms. These zones play a decisive role in the provision of a higher level
of processing and storing of visual information. There have been found neurons that respond
to the presence of objects independent of their size, their location, and their orientation [Gol02,
chapter 4]. E.g., there have been found cells in the secondary cortex that are specialized for the
analysis of faces. Stimulation of a point in the secondary zones of the visual cortex gave rise to
complex recognizable visual hallucinations like images of flowers, animals, familiar persons, etc.
The stimulation could even cause appearances of complex sequences [Lur73, chapter 3].
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Acoustic Perception

The processing of auditory information is mostly carried out in the temporal cortex. Similar to
the visual system, this cortex is divided into primary and secondary auditory zones.

The primary zones of the auditory system contain so-called tonotopic as well as topographic
maps. A tonotopic map contains points on a neural structure that correspond to frequencies of
a sound stimulus. This means that neurons that respond best to low-frequency tones are located
elsewhere than neurons that respond best to high frequency tones [Gol07, chapter 11, p. 256]. A
topographic map contains points on a neural structure that correspond in a systematic way to
locations in space. There exist neurons that respond specifically to sound signals coming from
a certain direction in space [Gol07, chapter 12, p. 272]. There also exists a second method for
localization of sound sources in space based on time differences. As the ears are arranged in a
certain distance from each other, a sound signal commonly does not reach them at the same time.
The receptors in one ear receive it with a relative time delay in relation to the receptors in the
other ear. This time difference between the arrivals of the signal at both ears allows a localization
of sound sources in space. There have been found neurons in the auditory cortex that respond to
specific time differences [Gol02, chapter 11].

Neurons in the primary cortex can be activated by simple sounds, such as pure tones. Neurons
of the areas outside the primary cortex require more complex sounds, such as auditory noise
that contains many frequencies or human vocalizations [Gol07, chapter 11]. The secondary zones
of the auditory cortex are also concerned with the analysis of temporal series of sound signals
[Gol02, chapter 10].

Somatic Sensation

Somatic information is processed in the parietal cortex. The somatosensory system actually
comprises a whole group of sensory systems. First, it is responsible for cutaneous sensations, which
are based on the stimulation of receptors in the skin responsible for tactile sensation, vibration
sense, temperature sense, and pain sense. Secondly, it also includes proprioception – the “body
sense” that leads to a perception of the body. This system processes sensory information coming
from the skin, the muscles, the tendons, and the vestibular system. Thirdly, the somatosensory
system accommodates the sense of position and movement of the limbs called kinesthesis [Gol07,
chapter 14]. Each of these senses is served by a specific type of receptor and projects separately
to the brain. The somatosensory system is of equal complexity as the visual system and has the
same functional organization as in the visual and auditory cortex. It is based on primary zones of
topographic organization. E.g., there exist neurons that respond specifically to tactile movements
over the skin surface in a certain direction [Gol02, chapter 14]. Above these primary zones of the
parietal cortex are superposed its secondary zones. Their stimulation leads to the appearance of
more complex forms of cutaneous and kinesthetic sensation [Lur73, chapter 2].

Olfactory and Gustatory Sensation

In contrast to the other senses, the olfactory and gustatory senses are chemical in nature [ST02,
chapter 1, p. 21]. Science is just beginning to understand the processing of these senses, especially
in the cortex. If the olfactory system follows the pattern observed in the other senses, higher
cortical areas will be involved in perception of complex odors and tastes. Olfactory and gustatory
senses are also closely linked to emotions [Gol02, chapter 15, p. 337 and p. 570].
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Multimodal Perception

The secondary zones of the cortex can be regarded as systems responsible for the highest levels of
special mental forms of modality-specific activity. However, the most complex forms of informa-
tion analysis depend on the combined working of several analyzers. Perception is multisensory.
Many events occurring in our surrounding are registered by the sense organs of more than one
modality. If a single modality is not enough to come up with a robust estimate, information
from several modalities can be combined. The coordination and integration of information de-
rived from different sensory systems is essential for a unified perception of our environment. The
zones of the cortex, which lie between the occipital, temporal, and central regions, are tertiary
in function and play a basic role in the organization of complex simultaneous (spatial) syntheses.
They constitute the specifically human portions of the brain. They mature later than all other
zones of the posterior regions of the cortex. They do not become fully operative until the seventh
year of life. They play a special role in inter-analyzer syntheses. The great majority of neurons
of these zones are multimodal in character. They respond to general features to which neurons of
the primary and secondary cortical zones are unable to respond. The tertiary zones fit together
individual elements of incoming impressions into a single structure.

Much of the history of perceptual research can be characterized as a “sense-by-sense” approach
where researchers have focused on the functional properties of one sensory modality at a time
[CSS04]. Until now, very little is known about how information from different modalities combines
to form a single multisensory representation. [New04] argues that in order for information to be
shared across modalities, the information must be encoded in a similar manner for all modalities.
This assumes a functional equivalence among the modalities.

In general, multimodal perception yields to a more robust perception than could be achieved
with only one sense. However, there sometimes occur problems when cues of different sensory
modalities are incongruent. [KC01] give an example for the occurrence of incongruent visual
and auditory cues by dubbing one syllable onto a movie showing a person mouthing a different
syllable. The listener typically reports hearing a third syllable that represents a combination of
what was seen and heard. This audio-visual illusion has become known as the McGurk effect
or McGurk illusion. It is a striking demonstration of the combined (bimodal) nature of speech
understanding [Gol02, chapter 9, p. 365].

[CSS04] report that when conflicting signals are presented via the different sensory modalities,
the emergent percept is typically dominated by the most persuasive sensory cue in the partic-
ular context. An important question is how the brain weights the inputs it receives from the
different senses in producing a final perceptual output or experience. Vision has traditionally
been viewed as the dominant modality [SKS04]. Vision generally dominates our perception of
space, because visual spatial information is exceptionally reliable and precise. Spatial information
of other sensory systems is almost always less precise and less reliable. If the localization of a
stimulus based on non-visual information is ambiguous or conflicts with visual localization of the
same stimulus, the non-visual percept of location is sometimes drawn to the visually identified
location, a phenomenon called “visual capture”. A traditional view is that visual dominance is an
inherent physiological advantage of visual over other sensory connections in the brain. However,
[WK05] propose an alternative hypothesis that suggests that visual dominance results form the
statistically optimal integration of auditory and visual information. An optimal integration of
bimodal signals requires taking into account the reliability of the encoded stimuli. Vision does
not dominate under all circumstances about the other sense. For instance, for temporal process-
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ing, vision is far less precise than audition. Audition dominates over vision in the time domain
[EB04].

3.3.3 Influence of Knowledge on Perception

According to [Gol02, chapter 1], object recognition is facilitated by knowledge. This knowledge
can be factual knowledge about objects, pre-experience, knowledge about the context in which
the object occurs, and expectation. Much of what we take for granted as “the way the world
is” – as we perceive it – is in fact what we have learned about the world – as we remember it.
Much of what we take to perception is in fact memory. Studies have shown that objects are
recognized more easily if the context is available to which the objects normally belong. [ST02,
chapter 5] mention that we frequently see things that are not there simply because we expect
them to be there. Adults project their expectations onto the world all the time. They largely
construct rather than perceive the world around them. [WC99] propose that the same sensory
stimuli could produce different patterns of errors depending on a subject’s expectations. [Gre97]
points out that perception requires intelligent problem solving based on knowledge. Errors of
perception, which result in phenomena of illusions, can be due to knowledge being inappropriate
or misapplied. It might be that progress in artificial intelligence has been delayed, because it
was not recognized that artificial potential intelligence of knowledge is needed to be compared
to brains. This knowledge is derived from past experience. Thus, perception is largely based on
the past. The majority of studies about object identification in scenes have found that consistent
scene context can facilitate object identification. However, this opinion is not shared by all
scientists [HH98]. [Hen05] discusses the involvement of sensory and cognitive processing of visual
information in real world scene perception. He points out that the use of knowledge about the
laws of physics and the functions of an environment can help to identify objects in a scene more
easily.

Knowledge of different types influences perception in a top-down process. A fundamental question
is, on which level they interact with sensory perception. The answers to this question are con-
troversy. [HH99] discuss this topic in connection with visual object identification and knowledge
about scene context and summarize the three principal models of object identification in scenes
that exist. Therefore, they describe visual object identification to consist of three component
processes: First, the retinal images are translated into a set of visual primitives (surfaces, edges).
Second, these primitives are used to construct structural descriptions of so-called object tokens
in the scene. Third, these constructed descriptions are matched to stored long-term memory de-
scriptions. When a match is found, identification has occurred, and semantic information stored
in the memory about that object type becomes available. The first two stages can be considered
as perceptual. The matching state can be seen as an interface between perception and cognition.
In this state, perceptual information must make contact with memory representations. Based in
these three levels, models of object identification in scenes can be divided into three groups. The
difference of the models is the stage of object identification at which scene context is proposed
to exert an influence. The first group proposes that expectations derived from scene knowledge
interact with the perceptual analysis in the first two stages. The second group suggests that the
locus of interaction is at the matching stage where the perceptual descriptions are matched to
long-term memory representations. The third group proposes that object identification is isolated
from scene knowledge.
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3.4 Merging of Information – The Binding Problem

In the last sections, different units and organizational structures of the brain have been explained
that have different functions and are specialized to the processing of distinct information. How-
ever, these modules do not work isolated and separated, but interact with each other in order to
form functional systems. For abstracting a technical model from neuroscientific and neuropsy-
chological research findings, a fundamental question is how all these units can interact to result
in a “unified experience”. This is the so-called binding problem. In the last years, there were
published many articles concerning the binding problem in the brain. However, these articles
generally focus on special aspects and do not offer an extensive overview about the research area
as a whole. The aim of this section is to provide such an overview in order to derive mechanisms
of binding for the model introduced in chapter 4.

3.4.1 The Binding Problem as Key Question to Brain Function

The binding problem concerns our capacity to integrate information across time, space, attributes,
and ideas. Language comprehension and thinking depend on correct binding of syntactic and
semantic structures. Binding is also required when we select an action to perform in a particular
context or when we perceive the world around us [Tre99]. The question how the brain solves
the binding problem has puzzled and intrigued physiologist, psychologists, and theoreticians
for decades [GHT96]. According to [Ros99] and [RP99], the binding problem as a theoretical
problem was originally formulated by Christoph von der Malsburg in 1981 in his article “The
Correlation Theory of Brain Function” [von81]. However, the term “binding” itself never occurs
in this article. In fact, von der Malsburg did not formulate the binding problem but suggested a
theorem for a solution to the binding problem which is based on neural signal synchrony. Binding
by neural signal synchrony has already been mentioned in literature before, for example by C.
Legendy in 1970 and P. Milner in 1974 [von99, Gra99]. However, neural signal synchrony is not
the only possible solution suggested to the binding problem (see section 3.4.5). The solutions
of the binding problem proposed in literature until now are controversial and hotly debated in
neuroscience. Years of research have shown that the binding problem cannot be solved easily.
[Ros99] considers the binding problem to be “one of the most puzzling and fascinating issues that
the brain and cognitive sciences have ever faced”. [TvdM96] regard the binding problem as one
of today’s key questions about brain function. [Tre96] points out that a solution to the binding
problem may also throw light on the problem of the nature of conscious awareness.

3.4.2 A First Simplified Explanation of the Binding Problem

The problem of binding is maybe best illustrated by a classical example originally described by
Frank Rosenblatt in 1961 in his book “Principles of Neurodynamics: Perceptrons and the Theory
of Brain Mechanisms” [von95, von99]. Rosenblatt introduced a hypothetical perceptual system
based on a classical neural network. This system consists of four neurons. Two neurons are able
to respond to the presence of objects. One responds to the presence of a triangle (1), the other to
the presence of a square (2). They both generalize over position. The other two neurons indicate
the position of the objects. One responds to the upper half (3) of the image, the other to the
lower half (4). They both generalize over the nature of the object (see figure 3.5).
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Figure 3.5: Example from Rosenblatt to Explain the Binding Problem

When showing a single object to the network, it responds adequately. For example, if the system
is to diagnose the presence of a triangle in the upper half, the neurons (1) and (3) are activated.
If a square in the lower half is presented to the system, the neurons (2) and (4) are activated.
A problem arises in situations where two objects are present simultaneously. If there occurs
a square in the upper half of the image and a triangle in the lower half of the image, all four
neurons are activated. The example of Rosenblatt shows that representing the presence or absence
of features alone is not sufficient to represent multiple objects simultaneously [SH02]. It is not
clear whether the triangle or the square is in the upper position. The neural data structure has
no means of binding the proposition triangle to the proposition top or the proposition bottom to
the proposition square. This is the binding problem. According to [TG80], such a “conjunction
error” can be induced in humans if they are given insufficient viewing time. These misperceptions
are labeled “illusory conjunctions”.

3.4.3 Evidence for a Binding Problem in the Brain

There exist conflicting opinions about the question whether binding is really a problem within
the brain. According to [Gra99], binding is not a problem for nervous systems, as evolution has
sculpted their organization to solve the problem efficiently and effectively. It is only a problem
for those of us trying to understand how the nervous system achieves the task. [IAMN03] states
that the binding problem is a problem naturally processed in our brain, but its mechanism has
been yet unknown. [Ros99] points out that even if the brain usually does not appear to have
a problem in correctly binding signals, scientist still lack an understanding of how information
variously distributed in patterns of neural firing results in coherent representations. [RP99] report
that the binding problem may be only a problem in the eye of the beholder, but is not necessarily
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a problem for all object recognition devices and perhaps may not be one for the brain.

In contrast, [TG80] and [WC99] mention errors such as illusory conjunctions as striking evidence
for a binding problem in the brain. Illusory conjunctions can occur when perceptual features (e.g.,
location or form of objects) become unbound from their original objects and are recombined to
form a new object representation. An example for an illusory conjunction has already been
given in section 3.4.2 when mentioning the example introduced by Frank Rosenblatt to explain
the principle of the binding problem. Illusory conjunctions occur in the normal brain when
there are temporal or capacity limitations, when spatial attention is diverted, when displays are
briefly presented, and/or in peripheral presentation where spatial resolution is decreased. [RD99]
mention that the number of potentially erroneous feature conjunctions increase exponentially with
the number of objects in a larger receptive field. The receptive fields become larger and larger at
each processing stage of the ventral stream. Therefore, an increasing number of erroneous feature
bindings has to be ruled out. The binding problem emerges as a necessary consequence of the
large receptive fields found in higher-order areas.

A binding problem in the brain can also occur in pathological cases and in cases of brain damage.
The most extreme examples of binding errors occur when both parietal lobes are damaged. This
results in a condition known as Balint’s syndrome, which describes the inability to perceive
more than one object at a time. Binding in synaesthesia, in many respects, represents an inverse
problem from that of the Balint’s syndrome [Rob03]. In synaesthesia, there are perceived features
together although one feature in not present in the stimulus. Typical forms of synaesthesia are
phonemic/chromatic, in which sounds induce the perception of color, or graphemic/chromatic, in
which shapes induce the perception of color. An example would be that the written letter A might
induce blue and the digit 7 might induce green. An induced color can appear in different places
relative to the inducer. Synaesthesia is automatic and consistent throughout life. Synaesthetic
experience represents direct connections between cortical feature maps, maybe through synaptic
connections that fail to undergo normal synaptic pruning during development [Rob03]. Most
people appear to experience odor-taste synaesthesia. Certain odors are constantly associated
with certain tastes. For example, the odor of vanilla is consistently reported as smelling sweet
although sweetness is normally associated with the stimulation of the sense of taste. [SB04]
suggest that this odor-taste synaesthesia is learned.

3.4.4 Classes of Binding Problems

The term “binding problem” does not refer to a unitary problem but to a whole class of problems.
According to [Sch01], binding can be spatial or temporal. It can occur within a single modality,
across modalities, or may even require sensory-motor integration. [Ros99] distinguishes between
perceptual binding and cognitive binding. Perceptual binding problems involve unifying aspects of
percepts. Cognitive binding problems include relating a concept to a percept. [Sch01] subdivides
perceptual and cognitive binding in further categories. In connection with perceptual binding,
he mentions the terms visual binding, auditory binding, binding across time, and cross-modal
binding. Cognitive binding includes sensory-motor binding, cross-modal identification, relating a
concept to a percept, and memory reconstruction.

Reading the many different existing types of binding, it becomes obvious that binding is required
almost everywhere in the brain and in all processing levels. However, only very few systems of
the brain have been investigated and discussed in connection with binding. Until now, binding
has been most extensively discussed in the visual system. Visual binding is the process of linking
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together the attributes (color, form, motion, size, and location) of a perceptual object. Seeing
seems to be a deceptively simple process. We perceive objects, symbols, movement, persons,
and other aspects of a visual scene without any effort or awareness of the mechanisms that pro-
cess visual information. However, for this continuous and seamless visual perception, our brain
has to cope with a huge mass of information that continuously streams to us through our eyes.
Concerning other classes of binding, only very view publications can be found. [Rob03] briefly
mentions the problem of cross-modal binding, because the information from different sensory re-
ceptors is registered in diverse areas of the brain and therefore requires binding. [Hom04], [SH99],
and [SH02] describe the binding problem in action control. Like in perception, the simultaneous
representation of multiple actions requires a mechanism for coding which motor features belong
together. The multiplicity of action components, action features, and action control systems
point to an integration or binding problem. [HM07] report about the binding problem across
perception and action arguing that the things we perceive and the actions we perform must be
systematically related to each other. Some integration spanning perception and action is neces-
sary, and this integration somehow needs to be tailored to the current task and context. [ST02],
[Sin01], and [Mas04] write about binding in connection with consciousness. A property of con-
sciousness is that it is generally a unified experience. Each one of us has the impression of being
a single entity, experiencing an integrated perceptual world at each particular moment in time.
The neuro-anatomical structures involved in generating these obviously connected perceptions
are located in different places on the brain. The problem of how all this information comes to-
gether to form an ordinary unified experience of consciousness is also a binding problem. [Ros99]
regards the problem of consciousness as the most mystifying binding problem of all. He arises the
question how something as simple and mechanistic as neural firing can add up to subjectivity,
raw feelings, and self. He asks whether the mechanisms that allow us to attribute the correct
color and shape to an object are the same ones that lead to the unity of phenomenal experience
and if the solution to the binding problem will be the solution to the mystery of consciousness.

3.4.5 Potential Solutions to the Binding Problem

As described in section 3.4.4, binding occurs in many different kinds of brain processes. To explain
how coherent representations can be formed from information that is distributed throughout
the brain, different binding mechanisms have been hypothesized. According to [Ros99], it is
likely that most different forms of binding problems are solved via common mechanisms. On
the other side, he takes in consideration that something as complex as binding may not have
one single mechanistic solution. A number of possible mechanisms have been investigated for
the binding problem which will be discussed in the following. They are not mutually exclusive
[Tre96, Bau05]. Potential solutions to the binding problem can be approached from both cognitive
and neurobiological levels of analysis [Rob03]. The most extensive discussion so far has focused
on the problem of binding in visual perception. The binding problem is usually discussed in the
context of visual perception, presumably because the visual system is particularly well studied,
and because the multiplicity of specialized feature maps responsible for the representation of color,
form, size, and motion it apparently houses makes the consequences of distributed processing
particularly obvious. However, there is no reason to believe that binding problems are restricted
to visual perception [HM07]. In the following, different possible solutions to the binding problem
suggested in literature are described. It must be mentioned that the solutions of the binding
problem proposed until now are controversial and hotly debated in neuroscience [SH02]. The
study of binding is in its infancy. Conclusions will surely change as more data are collected
[Rob03].
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Combination Coding

As described by [HW62], the visual cortex is organized hierarchically (see section 3.3.2). This fact
inspired the model of convergent hierarchical coding, also called combination coding or specificity
coding, which, at first sight, may be the seemingly simplest approach. According to this model,
incoming information is integrated and more and more condensed at higher processing stages.
Each level in this hierarchy carries out operations depending on the input from earlier levels. So-
called combination coding cells react only to combinations of features. For example, a cell reacts
only to an object of a particular shape and color at a particular retinal position. The hierarchical
processing leads to an increase in the complexity of the neuronal representations. That way,
increasingly complex features are represented by higher levels in the hierarchy. A small group of
neurons or a single neuron receives convergent input from populations of neurons at lower levels
in the hierarchy.

In 1941, in his book “Man on His Nature”, Sir Charles Sherrington introduced the notion of one
ultimate pontifical nerve cell as the climax of the whole system of integration and immediately
rejected the idea in favor of a concept of the mind as a cooperation of many cells. [Bar72] agreed
with Sherrington that the “pontifical cell” should be replaced by a number of “cardinal cells”.
Among these many cardinal cells, sometimes also referred to as “grandmother cells” or “connector
cells”, only a few fire at once to represent what is currently going on in the environment and the
body.

Concerning visual perception, evidence for this theory of combination coding is revealed by grad-
ual decrease of retinotopic specificity, the increase in receptive field size, and the dependence
of neuronal responses on increasingly complex stimulus features. In [RP99] and [RP02], such a
hierarchical feed-forward architecture is suggested for the recognition of simple forms on a model
“retina” composed of 160x160 pixels. The model consists of layers of units. Two types of op-
erations, selection and template matching, are combined in a hierarchical fashion. That way,
a complex, invariant feature detector is built up from small, localized, simple cell-like receptive
fields in the bottom layer.

The concept of convergent hierarchical coding surely plays a role in the binding of features, but
cannot be the complete solution to binding problem [Bau05]. One open question is how cells
with these specificities should be created. If they were to be learned, many examples of objects
of all colors and shapes in all possible locations would have to be given to the system before
it would work. If they were prewired, most of the connectivity patterns of the network would
have to be stored in the genes. This is an unlikely proposition [TvdM96]. The other problem
of the convergent hierarchical coding theory is that it would require as many binding units as
there are distinguishable objects. If a cardinal cell is able to represent a whole class of objects,
the individual object cannot be represented in detail, because the signal of a single cardinal cell
is too crude. Or there has to be a cardinal cell for each pattern which would quickly lead to
a combinational explosion of the number of needed cells. This problem is called combinatorial
problem. It would be impossible to recognize new patterns, which differ from familiar ones merely
in detail (for example, a known person with a new facial expression). Additionally, a cardinal cell
would have to be silent until its pattern appeared again (possibly for decades) [von81].

Population Coding

The combinatorial problem can be overcome by a simple modification of the just mentioned
combination coding. Instead of representing the integration of features by the activity of a few
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neurons or even single neurons at specific cortical locations, complex feature combinations could
be represented by the activity of a population of neurons distributed within and across levels
of the cortical hierarchy [Gol02, chapter 4]. Each stimulus pattern could be represented by a
distinct pattern of firing in a distributed population of cells. Therefore, this coding type is either
called population coding or distributed coding. Such a coding scheme would greatly increase the
firing in a representational capacity of the cortical network. The number of distinct patterns of
activity far outstrips the number of neurons available to represent the stimuli. The combinatorial
complexity of the sensory world would no longer pose a problem.

This theory meshes well with many aspect of the anatomical and physiological organization of the
visual cortex. There is strong physiological evidence from both sensory and non-sensory cortical
areas that stimuli are represented by distributed populations of cellular activity.

Attractive though it may be, this model of sensory representation is again incomplete. The
situation becomes far more complex if two objects are presented in the same scene. Then two
populations of neurons would fire. This might particularly pose a problem if the objects are
close to or overlapping with one another. The unanswered question is how one or more distinct
patterns can be identified from the many others that are present in the same network at the same
time. This is the so-called superposition problem. The essence of this problem is the question how
members of a representation are identified as belonging to one representation and how interference
between simultaneously representations is avoided.

Temporal Binding

To overcome the superposition problem of population coding and the combinatorial problem of
convergent hierarchical coding, the temporal binding hypothesis was suggested. The basic con-
cept for temporal binding, also called binding by synchrony or temporal correlation hypothesis,
was formulated independently by C. Legendy in 1970, P. Milner in 1974, and C. von der Malsburg
in 1981 [von99]. They proposed that neurons responding to the same object could be grouped
into assemblies by invoking a temporal dimension to the responses of cells. This seems plausible
because neurons are sensitive to the timing of their synaptic input. Psychophysical observations
suggest that the temporal precision of cortical neurons is important for guiding behaviors. Hu-
mans are sensitive to timing differences as small as 150 µs [GM99]. The basic idea of temporal
binding is that the binding problem can be solved by temporal correlation or synchronization of
neuronal firing. Signals of neurons representing features of the same object are mutually corre-
lated in time. Signals of neurons representing features of different objects are not correlated or
anti-correlated in time. Synchrony serves as a signature of relatedness. Synchrony reinforces the
interactions among the members of the same assembly. Different assemblies are distinguished
from one another by the independence of their firing patterns. Thus, multiple distributed signals
can coexist in the same network of cortical area at the same time. Each signal provides an inde-
pendent representation of grouped features. Binding by synchrony has the advantage that it is
flexible and dynamic [Tre96].

At the time these theories were developed, very little evidence was available for the existence
of cortical neurons engaged in synchronous firing. However, later on, several groups reported
experimental evidence from the visual system in support of this theory [GM99]. Numerous
electrophysiological experiments have demonstrated that cortical neurons engage in synchronous
firing on a millisecond time scale. [Gra99], [Gab04], and [von99] estimated that synchronous firing
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should occur on a time range of 1–10ms. [Sin03] discovered oscillatory modulation of cell firing
in a frequency range between 30 Hz and 90Hz which is called γ-frequency range.

Nevertheless, the role played by synchronous firing in feature binding is still highly controversial
and far from being understood. [SM99] articulate their doubts and concerns about the temporal
binding hypothesis. They mention a number of problems with the idea of binding by a temporal
code. The first is that there is no biophysical evidence that cortical neurons can respond selectively
to synchronous input of such a precision that would be needed. Second, reports of cortical activity
with synchrony of such high precision are rare. Criticisms were also raised about the observations
of synchronized neurons. The data were obtained from anesthetized animals and the correlations
might have been a consequence of anesthesia. Another problem is that the hypothesis is not a
theory about how binding is computed. It is only a theory of how binding is signaled. The theory
proposes that the result of the binding computation is represented by synchronous neuronal
activity. This begs the question how synchrony is achieved [GM99]. In [SM99], it is pointed
out that binding by synchrony might not be computed in the primary cortex. It might be
that synchrony is imposed by feedback connections form the higher cortical areas in which the
computation is done. However, it is unclear what might be the utility of feeding back information
of this kind. In [SGP01], the limits upon the amount of information that an ideal observer is
able to extract from a synchrony code are studied. They try to determine whether the available
amount of information is sufficient to support computational processes such as feature binding.
However, they do not draw a final conclusion.

Temporal binding was suggested to overcome the combinatorial explosion of convergent hierar-
chical coding. However, [GM99] arise the question whether the combinatorial explosion is really a
problem. Considering the visual binding problem, the critical question is not how many different
objects might occur, but rather how many our visual system allows us to distinguish from one
another. Objects that are not seen as distinct need not have different representations in the
nervous system. They estimate that people can distinguish 100,000 different types of objects. To
consider also items that are not counted as object, like text, scenarios, and differences in such
low-level attributes as orientation, brightness, and color, they multiply that number by the factor
100. This calculation results in a final value of 10,000,000 distinguishable items, which is well
below the number of neurons in the visual cortex. This suggests that there is no compelling need
for binding by temporal correlation. Instead, visual performance could depend on the existence
of small groups of neurons with highly specialized response properties. At last, there is to men-
tion that we can of course see differences between objects presented, even if they do not appear
distinct at first glance. However, this discrimination is a sequential process of evaluation, which
would require binding across time. Because there is no need for the visual system to access any
of these different representations simultaneously, a binding of the activity of distributed neurons
with synchronization may not be compelling.

[GM99] point out that, even if there is no absolute need for binding by temporal correlations, it
might play an important role in information processing. It might have a role in recognition learn-
ing. [von95] mentions the limited bandwidth of neural signals as disadvantage that arises from
temporal binding. Only stereotypical tasks have short reaction times. The flexibility required in
unfamiliar situations is obtained only for the price of considerable delays. Therefore, it is quite
conceivable that time-consuming temporal binding is used by the brain only for novel situations.
As soon as a certain binding structure has shown its long-term value, it is frozen into less flexible
but faster and more capacious special circuitry. These structures could be combination coding
or connector cells. [GHT96] point out that for synchronization to provide a binding mechanism,
it would have to occur very close to the stimulus onset. However, synchronization begins at a
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variable time after stimulus presentation and is not phase locked to stimulus onset. Therefore, the
establishment of synchrony is simply too slow to account for normal object perception. For that
reason it seems unlikely that synchronization plays a crucial role in binding during everyday per-
ception of familiar object. However, it might have a role in recognition learning, which may have
a longer time course. [Sin03] supports the theory that the connections between neurons achieved
through temporal binding can be stabilized by learning so that a familiar object activates always
its corresponding neurons.

Binding by Attention

[TG80] propose a hypothesis about the role of focused attention in solving the binding problem.
The hypothesis of binding by focused attention suggests that instead of trying to process all
objects simultaneously, processing is limited to one object in a certain parrot of space at a time.

In [CW01], the following explanation of focused attention – in this case about visual attention –
is given: What we see is determined by what we attend to. At every moment, the environment
presents far more perceptual information than can be effectively processed. Attention can be used
to select behaviorally relevant information and to ignore irrelevant or interfering information.
Attention can modulate or enhance the selected information according to the state and goals of
the perceiver. Active attentional selection occurs over space and time. The spotlight has been a
favorite metaphor for spatial attention. As attention, it can be deployed like a beam of mental
light to reveal what was hidden in the world. Attention can also be split into multiple spots.
Attention can be allocated to regions of different size – the spotlight has a variable width of
focus.

The problem with the temporal correlation hypothesis is that the information about the spatial
information of the combined features is lost. Spatial organization of features is reintroduced by
restricting a hypothetical attentional spotlight to a single object or location in space, so that
only those feature codes that belong to this object or location get activated [HM07]. According
to [TG80], focal attention provides the “glue” that integrates the initially separable features into
unitary objects. They assume that a visual scene is initially coded along a number of separable
dimensions (color, orientation, brightness, direction of movement, etc.). These features are then
related to each other by means of focused attention. Through focal attention, stimulus locations
are processed serially. All features which are present in the same central “fixation” of attention
are combined to form a single object. Visual attention can be used over a small area with high
resolution or spread over a wider area with some loss of detail. Once the features have been
correctly registered, the compound objects continue to be perceived and stored as such. The
authors claim that attention is necessary for the correct perception of conjunctions. Nevertheless,
unattended features are also conjoined prior to conscious perception. However, in the absence of
focused attention, conjunctions could be formed on a random basis. These unattended couplings
can give rise to “illusory conjunctions”. Illusory conjunction may also occur if attention is diverted
or overloaded. [RD99] mention that the number of potentially erroneous feature conjunctions
increases exponentially with the number of objects in a larger receptive field. The receptive fields
become larger and larger at each processing stage. Therefore, an increasing number of erroneous
feature bindings have to be ruled out. The binding problem emerges as a necessary consequence
of the large receptive fields found in higher-order areas. Attention solves the binding problem
by increasing the effective spatial resolution of the visual system. That way, even neurons with
multiple stimuli inside their large receptive field process information only about stimuli at the
attended location.
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Consistent with this interpretation, damage to the parietal lobes, the region which is considered
to be involved in allocation attention, can result in illusory conjunctions during free viewing
[RD99].

Focusing attention can be considered as a top-down approach. However, this top-down approach
is difficult to reconcile with the apparent speed with which object recognition can be proceed and
is incompatible with reports of parallel processing of visual scenes. How can attention be capable
of serially searching all the possible feature combinations in a reasonable amount of time? Object
recognition does not seem to depend only on explicit top-down selection in all situations [RP99].
There have to exist mechanisms that act prior to attention and also serve to attract it [Gra99].

Bundling and Binding of Features

Some hypotheses hold that there exists a pre-attentive stage of processing at which features are
identified and represented completely independently of location. According to them, detection of
features and localization of features are separate operations. However, other studies found only
weak evidence for identification without localization. They found that in many trials, subjects
either reported both the color and shape correctly or got them both wrong. [GHT96] point out
that it would be surprising if the brain did not make use of spatial information freely available to
it at least partially to solve the binding problem. [WC99] propose that there are an unattended
and an attentive answer to the binding problem. In the early stages of visual processing (in
the primary visual cortex), visual information is represented within spatially organized maps
of the visual field (see section 3.3.2). Features are represented as occupying a fairly specific
location, and thus location serves as a means for linking all of the features belonging to a single
object. Although the representations at this early level contain all the information necessary to
determine the relationships between the features in an object, those relationships are not explicitly
represented at this level. Features of this early level can be considered as being loosely “bundled”
together rather than tightly “bound”. In the absence of visual attention, the spatially organized
maps of the visual field prevent features from becoming truly “free floating”. However, without
attention, explicit representation of the relationships among features might not be recoded into
memory. The processes of object recognition require that features are tightly “bound” rather
than loosely “bundled”, as they were in the earlier levels. The simple spatial association used in
early vision may not help in later stages of object recognition, because specific information about
the location of each feature is no longer available. If information from multiple visual fields were
represented simultaneously at a higher level, it would be difficult to determine which features
belong to which objects. Selective attention is the apparent solution of this aspect of the binding
problem. In summary, objects are held together by the spatial organization of the early visual
system. At later stages, a recognized object is held together by the explicit binding of a selected
set of features. Working in tandem, these processes of bundling and binding deliver a coherent
perceptual world. This account neither requires nor contradicts to the other concepts of binding.

Binding by Knowledge

In section 3.3.3, it was mentioned that knowledge of different forms influences perception. These
top-down processes also influence binding. [TG80] suggest that, besides focused attention, con-
textual information and past experience play a role in binding of features. Even when attention is
directed elsewhere, subjects are unlikely to see a blue sun in a yellow sky. Utilizing past experience
and contextual information are considered as top-down-processes. Through top-down processing,
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in a familiar context, likely objects can be predicted. In misleading context, this route to object
recognition can give rise to errors. [EB04] point out that prior knowledge is often required for
interpreting the sensory signals. [WC99] mention that the same stimuli could produce different
patterns of errors depending on subjects’ expectations. Until now, it has not been discovered at
which level knowledge influences the binding process.

The Feature-integration Theory of Attention

[TG80] suggest a model for binding, which they call “the feature-integration theory of attention”.
In their model, features (color, orientation, brightness, direction of movement, etc.) are registered
early, automatically, and in parallel across the visual field, while object are identified separately
and only at a later stage. We become aware of unitary objects in two different ways – through
focal attention and through top-down processing by utilizing contextual information and past
experiences. In normal conditions, these two processes operate together. In extreme conditions,
they may work almost independently of each other.

The True Solution to the Binding Problem?

Looking at the different solutions suggested for the binding problem, it turns out that each theory
presents certain reasonable aspects of how binding could be performed in the brain, but none
of them gives a complete explanation. However, by combining the different methods and by
making certain supplementations, the binding problem could be overcome. Suggestions for how
to combine and supplement different mechanisms of binding in order to get a feasible bionic model
of human-like machine perception will be made in chapter 4.
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Chapter 4

Bionic Model

“A theory should be as simple as possible, but not simpler.”

[Albert Einstein]

In section 1.1, it was outlined that – up to now – machine perception still shows a lot of deficits.
In contrast, humans are generally capable of perceiving real world scenes without problems. For
the work at hand, these facts were the motivation to develop a bionic model for human-like
machine perception, which is based on neuroscientific and neuropsychological research findings
about the structural organization and function of the perceptual system of the human brain. This
chapter presents the developed model. The term “human-like perception” as it is used in this
thesis means that for defining the structure of the bionic model and its information processing
principles, the structural organization of the perceptual system of the human brain and the way it
processes information is taken as archetype. When developing a model of human-like perception,
it has to be clear that a full understanding of how the brain works is still missing. There exist
many blind spots and contradicting theories. Due to complexity, research works often only focus
on very particular and circumscribed topics and problems and leave out a consideration of more
global coherences and an explanation of how the investigated results fit into the big picture.
This makes it difficult to abstract a unified technical model from the variety of incomplete and
contradicting neuroscientific and neuropsychological models. As the model to be developed shall
be actually implementable, it cannot leave parts and functions just open or undefined. Therefore,
if neuroscience does not provide a clear, comprehensible description of a certain part that is
needed for the system, it has to be supplemented by considerations and design decisions taken
by the system engineer.

4.1 Neuro-symbols as Basic Information Processing Units

In section 3.1, there were introduced neurons and symbols as basic information processing units
of the human brain and the mind. In this section, so-called neuro-symbols are introduced, which
shall serve as principle information processing units of the proposed model. These neuro-symbols
combine characteristics of neural as well as symbolic information processing.
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In principle, neural and symbolic information processing are two different approaches to describe
one and the same thing on different levels of abstraction. Neurons have a physiological basis
and can be regarded as basic processing units of the brain. Symbols are detached from the
physiological basis and emerge somehow from neural information processing. Therefore, symbols
can be regarded as basic processing units of the mind. An interesting question is if there is a
connecting link between these two different levels of abstraction. In section 3.3.2, it was outlined
that a stimulation of neurons in the secondary visual cortex gave rise to hallucinations of images
of flowers, animals, persons, etc. Additionally, there have been found neurons in the visual cortex
that specifically respond to the detection of faces or neurons in the auditory cortex that specifically
respond to a certain melody [Gol02, Lur73]. Faces and melodies can be regarded as perceptive
symbols. These results can be considered as evidence for an existing bridge between neural
information processing and symbolic information processing. Inspired from these facts, a so-
called neuro-symbolic information processing concept was developed for the model of human-like
machine perception using interacting neuro-symbols for information processing. Neuro-symbols
represent perceptual images, which can be features, objects, events, scenarios, and situations.
Concrete examples for perceptual images will be given later on in this chapter.

The structure of a neuro-symbol has its paragon in the structure of biological neurons (see section
3.1) and is depicted in figure 4.1. A neuro-symbol has several inputs and one output. A neuro-
symbol can receive input information from several other neuro-symbols which corresponds to
the function of dendrites of neurons. The input information contains – among others – the
activation grade of the symbol it originates from. The activation grades from all incoming neuro-
symbols are summed up likewise in the cell body of a nerve cell. If this sum exceeds a certain
threshold, the neuro-symbol is activated. The information about the activation is passed to other
neuro-symbols it is connected to in analogy to the axon of a neuron. If necessary, the input
information representing the activation grades from connected neuro-symbols can be weighted.
This corresponds to the synaptic connections between neurons. Like in the brain, where many
neurons are active at the same time, different neuro-symbols can process information in parallel.

Figure 4.1: Structure of a Neuro-symbol

The just given description of the structure and function of a neuro-symbol closely resembles the
structure and function of artificial neurons used in neural networks. However, there also exists a
number of differences from this concept.

The first and maybe most important difference is that in artificial neural networks, there can
generally not be assigned an interpretable meaning to single neurons in these networks. There-
fore, neural networks are considered as black box models. From input information presented
to the network, output information is calculated. It is generally not intuitively comprehensible
for humans how this information is determined, because this information results from weighted
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connections between neurons distributed over the whole network. In contrast, when using neuro-
symbols, each neuro-symbol stands for a certain perceptual image and therefore has a concrete
meaning. The activation of a neuro-symbol means that the perceptual image it stands for has
been perceived in the environment. Besides this, the function of weights of connections between
neuro-symbols – if used – is different from the function of weights between artificial neurons. In
neural networks, weights are altered by a learning algorithm to achieve that certain input values
are mapped to certain output values. In neuro-symbolic networks, weights of connections are used
when different sensor modalities deliver information of different reliability (see section 4.4.2).

A second difference lies in the fact that neuro-symbols can contain so-called properties. Neuro-
symbols cannot only pass their activation grade to other neuro-symbols but also the current
values of their properties. The utility of properties will be discussed in section 4.2.4 after having
introduced methods how to structure and connect neuro-symbols to neuro-symbolic networks.

A third difference is the way how information is exchanged between neuro-symbols. For common
neural networks, to calculate output values from certain input values, all the necessary informa-
tion has to be present at the inputs of the network and its succeeding layers always at one instant
of time. To process signals changing over time, there can be used time delay elements. How-
ever, the function of these elements is just the storage of former values in a delay chain to make
available the whole needed signal information at the input neurons of the network concurrently.
In contrast, information exchange between neuro-symbols is event-based, which means that in-
formation is only processed if a new input signal is received. That method allows it to reduce
the communication and information processing effort. The concept of event-based information
exchange will be presented in more detail in section 4.3.1. Neuro-symbols also comprise methods
to handle information arriving asynchronously and certain sequences of events (see section 4.4.4).

The fact that neuro-symbols can contain properties and handle data arriving asynchronously
and/or in a certain temporal succession makes clear that neuro-symbols actually do not cor-
respond to the function of single neurons but to the function of a whole group – also called
population – of neurons.

For a description of further differences between neural networks and neuro-symbolic information
processing as well as for a demarcation to symbolic systems see section 6.3.2.

4.2 Neuro-symbolic Networks for Perception

In the last section, neuro-symbols were introduced as basic information processing units for the
model. To become a powerful information processing tool, neuro-symbols have to exchange
information and therefore have to be interconnected in a suitable manner. By structuring neuro-
symbols to perform a certain task, so-called neuro-symbolic networks emerge. This section de-
scribed how neuro-symbols need to be structured to interact and to exchange information in order
to extract relevant information from sensory raw data provided by diverse sensor types. The ar-
chitecture that serves as archetype for information processing is the structural organization of
the perceptual system of the human brain.
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4.2.1 Architecture for Modular Hierarchical Processing of Sensory Informa-

tion

In section 3.2, the three principal functional units of the brain were introduced. The unit, which
is of most interest for the model to be developed is the unit for receiving, analyzing, and storing
information, which can be regarded as perceptual system of the brain. As described in section
3.3.2, the perceptual system of the brain has a modular hierarchical structure and consists of at
least three cortical zones built one above the other. They are referred to as primary, secondary,
and tertiary area. Human perception does not rely on a single modality but involves different
perceptual systems: visual perception, auditory perception, somatosensory perception, olfactory
perception, and gustatory perception. The somatosensory system actually comprises a whole
group of sensory systems, responsible for cutaneous sensations, proprioception, and kinesthesis.
Each of these senses is served by a specific type of receptor and projects separately to the brain.
Each sensory modality has its own primary and secondary area located in a specific area of the
brain. The primary areas receive impulses from the periphery. They consist mainly of neurons
which have extremely high specificity. The cells of the secondary cortical zones have a much lower
degree of specificity. In the tertiary zones, the information coming from the different sense organs
being processed separately and in parallel until now in the particular primary and secondary
zones is merged.

From this description, a model architecture for sensory information processing is derived. Figure
4.2 illustrates the suggested architecture for modular hierarchical information processing graphi-
cally.

Figure 4.2: Modular Hierarchical Architecture for Sensory Information Processing

According to the model, sensors of different types, which have their analogy in sensory receptors
of the human body, deliver sensor values. In a first processing stage – similar to information
processing performed in the primary cortices of the different sensory modalities – the sensory raw
data are pre-processed to extract features suitable for further processing. In section 3.3.2, it was
mentioned that the primary areas of the brain have a topographic structure, which means that
there is a correspondence between the position of a receptor and the area of the cerebral cortex
that is activated by it. Accordingly, extracted features have a strong correspondence to the posi-
tion of the sensors they are triggered by. The feature layer can in fact consist of a group of layers.
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A more detailed description of the structure of this layer and its information processing principle
will be given in section 4.2.6. After having extracted features from sensory raw data, in the next
two stages, which correspond to information processing performed in the secondary cortices, the
extracted features are combined to result in unimodal perceptions. As outlined in section 3.3.2
when describing the somatosensory system, unimodal perception can result from an integration of
information coming from different sub-unimodal perceptive systems. Sub-unimodal and unimodal
perceptions do no longer have a topographic projection of the corresponding sensory structures.
The processing of information of each layer of the first three levels is performed separately and in
parallel for each sensory modality. In a fourth stage – analogous to the processing in the tertiary
cortex – the information coming from the unimodal perceptive systems is combined and merged
to result in a unified multimodal representation of the environment.

With this modular hierarchical architecture, sensor information from various types can be pro-
cessed and merged. As described in section 3.3.2, human perception involves five different percep-
tual systems: visual perception, auditory perception, somatosensory perception, olfactory per-
ception, and gustatory perception. For a monitoring system that shall perceive objects, events,
scenarios, and situations in a building, the use of similar modalities – at least to a certain extend
– is recommendable. Additionally, it might be useful to utilize information from sensor types,
which have no analogy in sense organs of the human body.

To achieve visual perception – in figure 4.2 symbolized as square with an eye – normal video
cameras, stereo video cameras, infrared cameras, or retina sensors could be used. With these
sensors1, different features like the form, size, color, location, or the motion of objects can be
determined. The splitting of visual information processing into a sub-unimodal layer followed by
a unimodal layer becomes important when more than one of these sensor types (or more than one
entity of one of these sensor types) is used. In this case, information coming from each of these
sensors is first processed separately and yields to independent sub-unimodal visual perceptions.
In the next stage, the information from these sub-systems is combined yielding to a unified visual
perception of the environment.

For perception of acoustic information – in figure 4.2 depictured as square with the symbol of an
ear in it – microphones or arrays of microphones mounted at different positions can be used. The
use of more than one microphone is useful as through differences in signal runtime and signal
amplitude, the location of a sound source can be determined. Again, the information recorded
from each microphone or array of microphones is first processed separately in the sub-unimodal
layer before being merged in the unimodal layer to a unified acoustic representation of a situation.

The squares in figure 4.2 with the picture of a hand inside stand for somatosensory perception.
For surveillance systems in buildings, sensors with similarities to the receptors of the tactile
sensation of somatosensory perception are particularly useful. Therefore, in the following, the
somatosensory sense will be referred to as tactile perception. Sensors utilizable for the purpose
of monitoring systems are, among others, tactile floor sensors, motion detectors, light barriers,
door contact sensors, pressure sensors, or distance sensors2. The principle of processing sensory
information in a sub-unimodal and a unimodal stage as describe for visual and auditory perception
is also applicable to the tactile system.

1Cameras are considered as an array of sensors and are therefore also labeled as sensors in this text.
2If the target system would not be a surveillance system but a robot, additionally, sensors similar to propriocep-

tion – the “body sense” – would be useful, which could be angle transmitters and displacement sensors to determine
the position and/or orientation of joints, actuators, end effectors, and wheels and the velocity or acceleration of
their motion if they are currently moving.
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The olfactory and gustatory senses of the human body are, in contrast to the other senses,
chemical in nature. For an application in building automation, there might probably not be the
need for a gustatory sense. However, sensors comparable to the olfactory receptors could be
smoke detectors or chemical sensors, which detect the presence of certain substances in the air.
In figure 4.2, the symbol for olfactory perception is a square with the image of a nose inside.

In measurement engineering, there also exist sensor types, which find no correspondence in a
sensory receptor of the human body. However, for the purpose of surveillance systems, the
utilization of some of these sensor types might be advantageous. One example are measurements
of electrical power consumption. That way, it could be detected if there are plugged in electric
appliances in sockets and how much power they consume, which could allow to conclude what
kind of electric appliance is plugged in. In figure 4.2, such additional perceptual modalities are
depicted as squares with an abstract symbol inside.

Concept Clarification

To make the proposed architecture more comprehensible, it is applied to a first simple, concrete
example, which will be reused and extended for explanations in further sections. There shall be
detected different activities in a room wherefore a room is equipped with a number of sensors: a
motion detector, two tactile floor sensors, two light barriers, a camera, and a microphone. The
sensors are mounted at different positions as depicted in figure 4.3. They have the property to
have partly overlapping sensory fields of perception and to provide partly redundant information.

Figure 4.3: Environment Equipped with Different Sensors

Figure 4.4 illustrates the modular hierarchical information processing structure for this example.
Multimodal perception is achieved by combining data from three unimodal perceptive systems,
which are – in analogy to their biological archetypes – referred to as visual perception, auditory
perception, and tactile perception. The tactile perceptive system integrates information coming
from three tactile sub-systems corresponding to the three different sensor types used. The visual
and the auditory perceptual systems have no further sub-modalities, because only one camera
and one microphone are used, respectively.
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Figure 4.4: Architecture for Modular Hierarchical Information Processing for a Concrete Example

4.2.2 Modular Hierarchical Arrangement of Neuro-symbols

Following the strategy of modular hierarchical information processing described in section 4.2.1,
neuro-symbols – in the following due to ease of writing also simply referred to as symbols –
can occur in different hierarchical levels. According to the level and the modality in which they
occur, they represent different information. Therefore, they are named differently. In figure 4.5,
an overview about the labeling of the symbols of the different hierarchical levels is given.

Figure 4.5: Neuro-symbol Hierarchy

To process sensor information neuro-symbolically, sensor values have to be transformed into
neuro-symbolic information. In similarity to information processing in the primary cortex of the
brain, relevant features have to be extracted from the sensory raw data in a first pre-processing
step. These extracted features are represented by feature symbols. In the next stage, the feature
symbols of each sensory domain are either directly merged to unimodal symbols if the modality
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has only sensors of one single sensor type or – if different sensor types are used – they are first
combined to sub-unimodal symbols, which are then processed to unimodal symbols. In a further
processing stage, unimodal symbols are merged to multimodal symbols. Depending on the sensory
modalities used in a system, unimodal symbols can be further classified for example as visual
unimodal symbols, acoustic unimodal symbols, tactile unimodal symbols, olfactory unimodal
symbols, as well as other unimodal symbols that do not have an analogy in the human body. In
a similar way, sub-unimodal symbols and feature symbols can be specified in more detail.

Figure 4.6 comprises a schematic representation how neuro-symbols are structured in different
levels and different modalities according to the modular hierarchical architecture introduced.
Sensor values are represented by colored squares. Sub-unimodal, unimodal, and multimodal
symbols are pictured as colored circles with an image inside. Feature symbols are depicted as
colored squares with an image inside. Features symbols have another form than higher-level
symbols, because they are halfway between sensor data and symbols. In contrast to the other
symbol levels, they have a topographic structure and there can exist more than one level of feature
symbols (see section 4.2.6).

Each neuro-symbol represents a certain perceptual image. Concrete examples for neuro-symbols
in the different layers and modalities will be given later on in this chapter. The number of neuro-
symbols used in a certain level and a certain modality is principally not constraint and depends
on the requirements of an application. Before initial system startup, a set of neuro-symbols is
defined. During a learning phase, correlations between neuro-symbols are determined, additional
neuro-symbols can be added, and redundant neuro-symbols can be removed (see section 4.5).

Figure 4.6: Modular Hierarchical Arrangement of Neuro-symbols

4.2.3 Information Flow between Neuro-symbols

In order perform complex tasks, neuro-symbols of different modalities and hierarchical levels need
to interact and to exchange information. In neuroscience and neuropsychology, the question how
information from different distributed sources is merged is called the binding problem, which
was explained in section 3.4. Years of research have not yet given a final answer to the binding
problem. For the model developed in this thesis, there also needs to be solved such a binding
problem. Within this chapter, mechanisms and concepts will be introduced step by step to
overcome the binding problem for neuro-symbolic information processing in perceptive tasks. The
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current section discusses the flow of information between neuro-symbols of and within different
modalities and hierarchical levels. In section 3.3, it was mentioned that bottom-up and top-down
processes influence perception. Accordingly, it is distinguished between an information flow that
is directed bottom-up and one that is directed top-down. Additionally, in the human brain,
there exist feedbacks between neurons [MJS07]. Analogously, in the model, information can be
exchanged through so-called feedback-loops.

Bottom-up Information Flow

As outlined in section 3.3.1, in the brain, incoming sensor data are always the starting point
for perception. Figure 4.7 illustrates the principal of bottom-up flow of information for neuro-
symbolic networks. Bottom-up information flow always goes from lower levels to higher levels.
The colored lines show what lower-level symbols can principally send information to which higher-
level symbols. Sensor information of one sensor type can only be passed to the corresponding
feature symbols and the feature symbols can only send information to the according sub-unimodal
symbols. In the unimodal level, each modality can receive information from all its sub-modalities.
Finally, on the multimodal level, information from all unimodal sources is processed.

Figure 4.7: Bottom-up Information Flow

Feedback Loops

As already mentioned, in the brain, there do not only exist forward connections but also feed-
backs between neurons. However, the function of these feedback connections is largely unknown
[MJS07]. One useful function that can be performed by feedbacks between neuro-symbols is the
inhibition of undesired concurrent activations of neuro-symbols within one modality. To suppress
such concurrent activations, feedbacks from the outputs of neuro-symbols of one modality to the
inputs of neuro-symbols of the same modality are necessary (see figure 4.8). For a more detailed
explanation see section 4.2.5. In the model, feedback connections can exist in the sub-unimodal,
the unimodal and the multimodal layer3. In the feature symbol layer, which in fact can consist of
a group of layers, the problem of undesired activations of symbols is handled without feedbacks
(see section 4.2.6).

3Additionally, they can exist in the scenario symbol level, which will be introduced in section 4.4.4
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Figure 4.8: Feedback Loops

Top-down Information Flow

In the brain, besides processing information coming from sensory receptors, perception is also
influenced by higher cortical processes labeled as top-down processes. Top-down processes that
have effect on perception are knowledge (see sections 3.3.3 and 3.4.5) and focus of attention
(see section 3.4.5). Accordingly, in the model of neuro-symbolic information processing, neuro-
symbols can receive information from such sources, which are labeled as “cognitive information”
in figure 4.9. They are referred to as cognitive information, because higher cortical processes are
involved in the generation of this information. Cognitive information can principally influence
perception on different hierarchical neuro-symbolic levels. For a more detailed description about
the integration of top-down processes in perception see sections 4.4.5, 4.4.6, and 3.3.3.

In the figures 4.7 to 4.9, it was illustrated what neuro-symbols and what higher-level modules
can principally be connected and exchange information. Due to ease of illustration, there was
always depicted only one connection line between different units. However, this connection line
represents in fact potential point to point connections between the different units. In a neuro-
symbolic network, which has already been configured to perceive certain objects, events, scenarios,
and situations in the environment, there do not exist point to point connections between all of
these units but only between a subset of them.

Concept Clarification

To clarify the concept of neuro-symbolic information processing, a first very simple example
shall be given, which only considers bottom-up information processing. Explanations including
feedback loops and top-down information processing will be given in later sections.

In the given example, it shall be detected whether a person enters a room. For this purpose, a
room is equipped with five different sensors: a video camera, a microphone, a motion detector,
a tactile floor sensor, and a light barrier. Figure 4.10 shows where in the room the sensors are
mounted. The detection range of all sensors is directed towards the door.

Figure 4.11 illustrates the symbol hierarchy for detecting that a person enters the room through
a door. To perform this task, there have been defined the symbols “person enter”, “person”,
“steps”, “object enters”, “motion”, “object present”, “object passes”, as well as a number of
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Figure 4.9: Top-down Information Flow

Figure 4.10: Environment Equipped with Different Sensors for Detecting that a Person Enters the Room

feature symbols. To indicate that the system has perceived that a person entered the room, the
symbol “person enters” needs to be activated.

Information processing starts with sensor values. In a first processing stage, feature symbols –
pictured as squares – are activated if certain sensors are triggered. In the presented example, for
the case of the sensors of the tactile modalities (floor sensor, motion detector, light barrier), the
associations between the sensor values and the feature symbols are very simple and intuitively
clear due to their binary sensor output values and the fact that there exists only one sensor
of each type. Coherences get more complicated if the number of sensors increases. The feature
symbols for the visual and the auditory modality are more complex. Feature symbols of the visual
modality are for example edges, lines, curves, colors, forms, etc. derived from pixel information.
Feature symbols for auditory processing are for instance spectral components of a sound signal.
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Figure 4.11: Symbol Hierarchy for Detecting that a Person Enters a Room

For the tactile modalities, sub-unimodal symbols are activated when certain feature symbols
are active. The activated sub-unimodal symbol corresponding to the motion detector indicates
that there is perceived motion near the door. From the tactile floor sensor it is derived if an
object is present near the door. From the light barrier the information is extracted whether an
object passes the door. The information of these sub-unimodal tactile systems is combined to a
unified tactile perception, which indicates if an object enters the room. The sub-unimodal and
unimodal symbols of the tactile perceptive system represent states and events of objects. They
are not directly associated with states and activities of a person, because the sensors could also
be triggered by something else like an animal moving in the room or an object positioned in the
room. In case of the visual and auditory sense, only always one camera and one microphone are
used. Therefore, the unimodal symbols can be directly extracted from feature symbols without a
sub-unimodal processing stage. Due to ease of illustration, there is depicted only one connection
line from the feature symbols to the unimodal symbols. In fact, there exists always a point
to point connection between the output of feature symbols and the input of the corresponding
higher-level symbols. From the visual feature symbols it is detected whether a person is present
in the room. From the auditory feature symbols it is extracted whether the characteristic noise
of steps is perceived. It has to be mentioned that visual image processing and auditory data
processing are huge research fields. There might already exist workable solutions to recognize
persons directly from images or to detect the noise of steps directly from audio data. If this
is the case, it is recommendable to use these existing solutions to generate unimodal symbols
and skip the step of explicitly generating feature symbols. However, implicitly, these algorithms
also extract features from the raw data. For further information about the integration of such
workable solution to solve different sub-problems see section 4.7.

Finally, in the multimodal layer, the information coming from the visual, acoustic, and tactile
unimodal layers is combined and results in the activation of the neuro-symbol “person enters”.
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4.2.4 Properties of Neuro-symbols

In neuro-symbolic networks, neuro-symbols can have properties. Properties comprise information
that specifies the neuro-symbols in more detail. The concept of properties can reduce the number
of necessary different neuro-symbols to detect an object, event, or situations. Examples for
properties are the location where objects, events, or situations occur, the size of an object, or the
velocity and direction of a moving object. Properties can have certain values. The information
what value a property currently has needs to be passed to other neuro-symbols. In section 4.1,
it was described that neuro-symbols pass a signal to the other neuro-symbols they are connected
with to “inform” them about their current activation state. Besides indicating their activation,
there can also be transmitted information about the values of properties. Neuro-symbols with
properties can be compared to a group of neurons in the brain, which interact to represent
congeneric perceptual images. One property that is of special importance for merging information
of different sensory sources when events are happening concurrently in the environment is the
property about the location where a certain perceptual image is perceived (see section 4.4.3).

Concept Clarification

The use of properties shall be explained by extending the example described in section 4.2.3. It
shall now not only be detected if a person enters the room, but also if he/she leaves the room.
A simple way to distinguish these two cases is to mount a second light barrier near the first
one. By combining the information of both light barriers, it can be detected which of them is
triggered first when an object passes. This calculation is carried out by the feature symbol layer.
Out of this, the direction of such a pass can be determined. For the sub-unimodal layer, which
processes information coming from the light barrier, two possible strategies exist for symbolic
representation. The first strategy, which is depicted in figure 4.12a, is to distinguish the two
cases by using two different sub-unimodal symbols: “object moves in” and “object moves out”.
This corresponds with the neuroscientific combination coding theory described in section 3.4.5.
However, if not only two but more cases have to be distinguished (for example the velocity of a
moving object with the fuzzy values very slow, slow, medium, fast, and very fast), the number
of possible neuro-symbols would increase drastically. In neuroscience, this problem is referred to
as combinatorial problem. To overcome this problem, neuroscience proposes population coding
according to which perceptual images are coded by a group of neurons. Properties of neuro-
symbols have a similar function. A neuro-symbol with a property corresponds to a population of
biological neurons, which work concertedly.

Figure 4.12b illustrates how the neuro-symbols “object moves in” and “object moves out” can
be reduced to one sub-unimodal symbol “object passes” with the property “direction d”, which
can be “in” or “out”. In the unimodal tactile layer, by this single symbol “object passes”, either
the symbol “object enters” or “object leaves” can be activated depending on the value of the
property “direction d”. It would also be possible to use only one symbol instead of these two and
add a property to it to distinguish these cases. Both methods are possible in the model. The use
of properties becomes especially valuable if they do not have only two but more different values.
The decision to model a certain symbol with a property or to generate separate symbols for each
case is taken by the system engineer.
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(a) (b)

Figure 4.12: Usage of Properties to Reduce the Number of Neuro-symbols

4.2.5 High-level Neuro-symbolic Information Processing

In the perceptual system of the brain, neurons and groups of neurons of different cortical layers
show different characteristics (see section 3.3.2). Similarly, in the model, there exist certain
differences in neuro-symbolic information processing of higher levels and lower levels. In the
model, information processing from the sub-unimodal level upwards is regarded as high-level
neuro-symbolic information processing (see figure 4.13). Information processing from sensor data
up to the sub-unimodal layer is considered as low-level information processing (see figure 4.17).
Characteristics of high-level neuro-symbolic information processing are outlined in this section.
Characteristics of low-level information processing are described in section 4.2.6.

Figure 4.13: High-level Neuro-symbolic Information Processing
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Representation of Location Information

High-level neuro-symbolic information processing corresponds to information processing per-
formed in the secondary and tertiary cortex of the perceptual system of the brain (see sections
3.2 and 3.3.2). In these cortical zones, neurons generally respond to perceptual images indepen-
dent of the location of these images. E.g., there have been found neurons in the secondary visual
cortex, which respond to faces independently from the distance of the face and the position where
it is perceived in the visual field [Gol02]. According to this, in the model, neuro-symbols in the
sub-unimodal, unimodal, and multimodal layer can be activated independently of the position
where in the environment the perceptual images they represent have been perceived. Therefore,
neuro-symbols of these layers contain location information only as a property. Location infor-
mation is of urgent importance for merging information from different modalities when different
events happen in the environment in parallel. A more detailed discussion about the utility of
location information for different purposes is given in section 4.4.3.

Learning of Correlations

At birth, the brain is not completely hardwired. Lots of connections between neurons are only
set in later development stages based on learned concepts and correlations. In section 3.2, it was
pointed out that in the perceptual system of the brain, higher cortical levels can only evolve if
lower ones have already developed. Therefore, in the model, connections between neuro-symbols
from the sub-unimodal layer upwards are not predefined at initial system startup but have to be
learned during a learning phase. Learning is performed based on examples. A detailed description
about neuro-symbolic learning is given in section 4.5.

Interaction with Knowledge

In section 3.3.3 and section 3.4.5, it was described that knowledge can have influence on perception
and the way how information from different sources is merged. However, up to now, scientists
from neuroscience and neuropsychology do not agree about the question at which level knowledge
interacts with perception. For the model presented in this thesis, it was decided that knowledge
can principally interact with perceptual images – which are equivalent to neuro-symbols – not
on the level of feature symbols or even sensor values but on higher neuro-symbolic levels. For a
more detailed discussion see section 4.6.

Feedback of Information and the Single Symbol Activation Principle

When describing the flow of information between neuro-symbols in section 4.2.3, it was mentioned
that information cannot only be directed bottom-up and top-down, but that there can also
exist feedback loops between neuro-symbols. In the brain, the function of feedback connections
between neurons is largely unknown. In the model of neuro-symbolic information processing,
a useful function that can be performed by feedbacks between neuro-symbols is the inhibition
of undesired concurrent activations of neuro-symbols within one modality. In the model, the
employment of feedback connections is reserved for the higher neuro-symbolic layers from the
sub-unimodal level upwards. A detailed description of the utility of feedback connection is given
in the following:
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In a neuro-symbolic network, each neuro-symbol represents a certain perceptual image. The
activation of a neuron-symbol means that the perceptive image it stands for has been perceived
in the environment. One important question for system design is if for one single object, event,
scenario, or situation happening in the environment, one or more neuro-symbols shall be activated
in each modality of each hierarchical level. This decision gets especially important if more than
one object, event, or situation occur concurrently. In such a case, activated lower-level symbols
have to be assigned to the correct higher-level symbol. To minimize the amount of incorrectly
assigned symbols, a design strategy called single symbol activation is applied, which is illustrated
in figure 4.14.

Figure 4.14: Concept of Single Symbol Activation in Neuro-symbolic Information Processing

According to this principle, one event only triggers one symbol of each sub-modality and modality
and only one neuro-symbol in the multimodal layer. On the multimodal level, one situation or
event is always correlated with one and only one multimodal neuro-symbol. On the unimodal
symbol level, for this event or situation, no more than one unimodal neuro-symbol can be activated
in each existing modality. It may also occur that not all existing modalities are involved in the
activation of a neuro-symbol corresponding to a certain event or situation. Viewed from another
point, it could also be said that from the activated neuro-symbols of the different unimodal
systems, only one multimodal symbol shall be triggered. Like on the multimodal and unimodal
level, on the sub-unimodal levels, one single object, event, or situation shall only activate one
single neuro-symbol in each sub-modality. The principle of single symbol activation for each level
and modality is particularly useful if connections between symbols are not predefined but learned
from examples, which will be outlined in section 4.5.

In contrast to the higher symbol levels, on the feature symbol level and the sensor level, the
number of feature symbols and sensors activated by one event is not limited in the different
modalities and sub-modalities. The reason why several feature symbols and sensor values can be
assigned to one event lies in the fact that they have a topographic representation which means that
they have a strong correlation to the position of the sensors they are derived from. Besides this,
correlations between these layers are predefined and the problem of learning, which is facilitated
by the single symbol activation principle, does not occur in these layers (see also section 4.2.6).

To assure that only one symbol is activated in a certain modality at higher layers, feedbacks
between the symbols of this modality need to be introduced. Feedbacks can occur in all hierar-
chical levels from the sub-unimodal layer upwards. Principally, feedback connections could have
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inhibitory as well as excitatory influence on the activation grade of a neuro-symbol. However,
for the concept of single symbol activation, only inhibitory feedbacks are used. These inhibitory
feedbacks are necessary if there exist higher-level neuro-symbols, which are activated by a number
of lower-level symbols that are a subset of the lower-level symbols of another symbol of the same
level and modality. In such a case, more than one symbol would be activated by one single sit-
uation in the particular hierarchical level and modality, which contradicts the principle of single
symbol activation. In such a case, inhibitory feedbacks need to suppress unwanted concurrent
activations of more than one symbol.

Concept Clarification

The concept of single symbol activation and feedbacks shall be clarified by the example already
mentioned in section 4.2.1. It shall be perceived if a person enters a room, leaves a room, walks
around in the room, or stands in the room. Therefore, a room is equipped with a video camera,
a microphone, a motion detector, two tactile floor sensors, and two light barriers (see figure 4.3).
The detection range of the video camera, the microphone, and the motion detector cover the whole
room. The light barriers only detect passes of objects between the door jambs at a certain height.
One tactile floor sensor covers the left half of the room and the area around the door of the room.
The other tactile floor sensor covers the right half of the room. To keep the explanation simple, it
is assumed that there is always only one person in the room. Figure 4.15 shows the neuro-symbol
structure that is used to perceive the different situations. The visual and the auditory perceptive
systems have the same structure as already shown in section 4.2.4. Also the sub-unimodal tactile
layer is quite similar. The only difference is that the neuro-symbol “object present” now also
has a property “location l”, which can be “left” or “right” depending on which of the two floor
sensors is triggered. The unimodal tactile layer now has four different symbols: “object stands”,
“object moves”, “object enters”, and “object leaves”. The symbols “object stands” and “object
moves” can be triggered no matter what value the property “location l” currently has. The
symbols “object enters” and “object leaves” are only activated if the property “location l” has
the value “left”. Depending on the activation of the unimodal symbols from the visual, auditory,
and tactile systems, one of the four multimodal symbols is activated.

Taking a closer look at the unimodal layer of the tactile system in figure 4.15, it attracts attention
that the neuro-symbols “object stands” and “object moves” are connected to a subset of the sub-
unimodal symbols that trigger the symbols “object enters” and “object leaves”. This means that
whenever the symbol “object enters” or “object leaves” is activated from the corresponding event
in the environment, there are also activated the symbols “object present” and “object moves”,
because they result from a combination of a subset of the same sub-unimodal tactile symbols.
For the same reason, the symbol “object stands” is also triggered whenever the symbol “object
moves” is activated. To overcome this undesired activation of more than one symbol at a certain
moment, inhibitory feedbacks are inducted. Their task is to inhibit that more than one neuro-
symbol of a modality is triggered by one and the same event. In figure 4.16, these inhibitory
feedback connections are depicted as dotted lines. If a certain symbol is activated, the output
signal comprising its activation grade is not only transmitted to the next higher symbol level but
also to symbols of the same level it is connected to via feedback connections. For an activated
neuro-symbol that receives such an inhibitory feedback signal, the activation grade is decreased
in a way that it falls below the threshold value and the symbol is deactivated.
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Figure 4.15: Neuro-symbol Hierarchy without Feedbacks

Figure 4.16: Neuro-symbol Hierarchy with Feedbacks

4.2.6 Low-level Neuro-symbolic Information Processing

In the model, information processing from sensor values up to the sub-unimodal level is regarded
as low-level neuro-symbolic information processing (see figure 4.17)4. Neuro-symbolic information
processing in the lower layers of a neuro-symbolic network differs from higher-level neuro-symbolic
information processing in some characteristics. These characteristics are outlined in the following.

4For the case that there does not exist a sub-unimodal layer for a certain modality, feature symbols are directly
merged to unimodal symbols. In this case, the mechanisms normally taking place between the feature symbol level
and the sub-unimodal layer occur between the feature symbol level and the corresponding unimodal level.
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Figure 4.17: Low-level Neuro-symbolic Information Processing

Representation of Location Information

Low-level neuro-symbolic information processing corresponds to information processing performed
in the primary and partly in the secondary cortex of the perceptual system of the brain. As de-
scribed in section 3.3.2, the primary cortices of the different sensory modalities have a topographic
structure. This means that there is a correspondence between the position of a receptor and the
area of the cerebral cortex that is activated by it. In the primary cortical zones, neurons gener-
ally respond to simple perceptual images located at a certain position. These types of cells are
also called feature detectors [Gol02]. Accordingly, in the model, feature symbols have a strong
correspondence to the position of the sensors they are derived from. The location dependency of
neurons gets weaker in higher neural layers until it vanishes completely. In the secondary cortex of
the visual system, there have been found neurons that respond specifically to faces independently
of their location, orientation, or size. In the model, the sub-unimodal level already corresponds
to information processing in the secondary cortex of the brain. Therefore, from the sub-unimodal
layer upwards, location information is handled only as property and a symbol can be activated
independently of the location where the perceptual image that it represents is perceived. For
that reason, there has to be performed a transition from location dependent perceptual images
to location independent images. How such a transition can look like is described by means of
a concrete example in appendix A. Besides this, a more detailed discussion about the usage of
location information is given in section 4.4.3.

Predefinition of Correlations

As outlined in section 3.2, at birth, the brain is not completely hardwired. However, there have
to exist already certain lower-level connections to allow learning in higher cortical levels [Lur73].
Therefore, in the model, lower-level connections between sensor data and feature symbols are
predefined before system startup. Depending on the desired task, correlations between feature
symbols and sub-unimodal symbols can either be predefined or can be learned. However, if
the correlations are learned, the learning methods might differ from learning methods applied
in higher layers (see section 4.7). The setting of feedback connections between sub-unimodal
symbols is already subject to neuro-symbolic learning. The transformation of sensor data into
feature symbols is the first important step for efficient information processing. As outlined in
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section 3.3.2, in different sensory modalities, there exist very different features that neurons
respond to in the primary cortex. Accordingly, it strongly depends on the particular sensor type
that is used how an efficient transformation of sensor information into feature symbols has to
look like. However, certain principles are always the same. In appendix A, it is explained for one
concrete modality how to get from sensor values over features symbols to sub-unimodal symbols.
The basic information processing principles can be taken over for other sensory modalities.

Different Levels of Feature Symbols

As mentioned in section 3.3.2, there exist nerve cells in the primary visual cortex that respond
exclusively to shades of color, the character of lines, edges, angles, balks of a specific length,
orientation, or the direction of movement. The starting point for all these different images
is information coming from only two kinds of visual receptors – rods and cones – which have
different properties. [HW62] suggested a model of a “simple to complex” hierarchy for information
processing in the primary visual cortex. According to this model, the primary cortex consists
of a feed forward sequence of more and more complex and invariant neuronal representations.
Complex cells receive input from several simple cells. Simple cells have a small receptive field.
Complex cells have a bigger receptive field. Inspired from these research findings, the feature
symbol level of the proposed model consists in fact not only of a single layer but comprises a whole
group of layers with a hierarchical structure. Certain feature symbols are derived directly from
sensor values of a certain type. Other feature symbols, which are located in higher levels process
information coming from lower-level feature symbols. Feature symbols of higher hierarchical
layers are generally more complex and cover a bigger receptive field. The principle of information
processing in the feature symbol level is further clarified by the explanation given in appendix A.

Concurrent Activation of Feature Symbols

Unlike for neuro-symbols from the sub-unimodal layer upwards, there exist no feedback connec-
tions between feature symbols. This fact is in accordance with the description of the primary
visual cortex as a feed forward sequence of more and more complex neural representations men-
tioned in section 3.3.2. In contrast to higher layers, there can be activated more than one feature
symbol by one single object, event, scenario, or situation. Therefore, there exists also no necessity
for a mechanism of feedback as described in section 4.2.5. How to get from concurrent activations
of feature symbols to single symbol activations in the sub-unimodal level is outlined in appendix
A for a concrete example.

Interaction with Focus of Attention

In section 3.4.5, it was pointed out that focus of attention can help to correctly assign information
coming from different sources if perception is overloaded. An overloading of perception means
that there are too many perceptual stimuli present at a moment to integrate them all at once
into a unified perception. Similar like in human perception, in the model, it can also happen
that lower-level symbols cannot be correctly combined to higher-level symbols if too many events
occur concurrently. For such a case, there has been integrated a focus of attention mechanism
into the model. By this mechanism, the spatial area within which perceptual images of different
modalities are merged is constrained. In the model, focus of attention interacts with perception
on the feature symbol level. A more detailed description about the interaction mechanism is
given in section 4.4.5.
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4.3 The Neuro-symbolic Code

In section 4.1, neuro-symbols as basic information processing units were introduced. Section 4.2
comprised a description how to structure and interconnect these neuro-symbols to neuro-symbolic
networks. To perform the desired tasks, these connected neuro-symbols have to exchange infor-
mation. The signals occurring between biological neurons to exchange information are referred
to as neural code (see section 3.1). Analogously, the information transmitted between neuro-
symbols is labeled neuro-symbolic code. How this neuro-symbolic code looks like is described in
the following.

4.3.1 Event-based Neuro-symbolic Information Exchange

In section 3.1, the working principle of neurons was explained. To interact, neurons have to
exchange information with other neurons they are connected with. It is generally agreed that
neurons transmit information about their synaptic inputs through spike trains. However, the
code by which this information is transmitted – the neural code – is not yet well understood.
The traditional view in systems physiology is that it is the mean firing rate alone that encodes
the signal, and that variability about this mean is noise. An alternative view, which has recently
gained increasing support, is that it is the variability itself that encodes the signal. As the
principles of the neural code are not yet clear, it does not make sense to take it as archetype
for information exchange in the suggested model. Besides this, an information exchange by spike
trains may be necessary or advantageous between neurons, because transmitted signals are electro-
chemical in nature. However, neuro-symbols are intended for the usage in technical systems and
are therefore detached from a chemical basis. There might be no need for modeling signals by
spike trains. Furthermore, specially if the model is not realized in a hardware structure but
simulated on a computer – which will be certainly the case during the test and evaluation phase
of the model but quite probably also for a range of applications – an exchange of information
between units every instant of time would require a lot of computational resources. In the case
that a system is not just equipped with a small number of sensors like in the concrete examples
presented until now but with a vast amount of different sensors, lots of calculations would have
to be performed every instant to process all the sensory information from the feature level up to
the multimodal level. Therefore, to pare down computational expenses for information exchange
between neuro-symbols, a method of event-based information exchange is used, which is described
in the following.

In section 4.1, it was outlined neuro-symbols receive information about the activation grade of
other neuro-symbols via their input. Unlike in its biological archetype, this activation grade is
not represented by spike trains but by an analogous signal with a value between zero and one.
Zero stands for deactivation, one stands for full activation of the neuro-symbol. The activation
grade is calculated as normalized sum of the activation grades of all input signals. Therefore,
the sum of input activations is divided by the number of inputs. In case of weighting the inputs
(see section 4.4.2), this weighting has to be considered in the calculation additionally. If the
activation grade of a neuro-symbol exceeds a certain threshold, the symbol is activated. The
activation of a neuro-symbol indicates that the perceptual image it represents has been perceived
in the environment.

Information about the activation grade of neuro-symbols is not transmitted continuously but
only if changes in sensor values, in activation grades of neuro-symbols, or in the values of their
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properties occur. This strategy of information exchange is referred to as event-based neuro-
symbolic information exchange. Every time that at least one input value of a neuro-symbol
changes, its activation grade is recalculated and data are sent to neuro-symbols connected to
the output. By using event-based information exchange, computational power can be pared
down, because a transmission and recalculation only needs to be performed if changes in the
environment are perceived. The usage of event-based neuro-symbolic information processing
makes it necessary that every neuro-symbol can store the information about the value it received
via an input until this value is overwritten by new incoming data, which is easily realizable in a
technical implementation.

Concept Clarification

To make the principle of event-based neuro-symbolic information processing even better compre-
hensible, a concrete example is given. Similar like in section 4.2.3, it shall be detected if a person
enters a room. Therefore, information from a video camera, a microphone, a motion detector, a
tactile floor sensor, and a light barrier is used. In the example, all neuro-symbols have a threshold
value of 0.95. Figure 4.18a shows the situation that there have already been triggered certain
sensors and accordingly, there have already been activated the neuro-symbols “person”, “steps”,
and “object present”. Figure 4.18b now shows the case that the motion detector begins to detect
motion. In the figure, connections between which information is currently exchanged are de-
picted as red lines. The sensor data coming from the motion detector activate the corresponding
feature symbol, which in turn sends information via its output and activates the sub-unimodal
symbol “motion”. This symbol sends a message to the symbol “object enters”, which now re-
calculates its activation grade. Although its sum of activations is below the threshold value, a
message is sent to the symbol “person enters”, which also recalculates its activation grade, but
is also not activated. Figure 4.18c now shows the situation that the light barrier is activated
additionally. Accordingly, the corresponding feature symbol is activated, which in turn activates
the sub-unimodal symbol “object passes”. From this symbol, a message is sent to the unimodal
symbol “object enters”, which recalculates its activation grade and is now activated. By sending
a message to the multimodal level, the symbol “person enters” is also activated.

4.3.2 Neuro-symbolic Activation Grades and Thresholds

As outlined in section 4.3.1, whenever a change in input values of a neuro-symbol occurs, the
neuro-symbol transmits information about its recalculated activation grade via its output. The
information sent depends on whether the neuro-symbol is currently active or not.

In section 3.1, when explaining the function principle of neurons, it was described that for one
instant of time, neurons can only be either activated or deactivated. They send an action potential
via their axon if the sum of their inputs is above a threshold value and they remain silent if it
is below the threshold. However, neurons do not only fire once but fire in spike trains with a
certain frequency. The intensity of their activation can be coded in the frequency of firing and
the variability about this mean, respectively.

For the presented model, information about the activation grade is not coded in spike trains but
in analogous values between zero and one. Similar as in artificial neural networks, which can
have different transfer functions, different strategies are possible what information to transmit
dependent on the current activation grade of symbols. One possibility is to transmit the value
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(a) (b)

(c)

Figure 4.18: Illustration of the Concept of Event-based Neuro-symbolic Information Processing

zero if the symbol is not activated and the value one if it is activated. Such a behavior correlates
to calculations performed in artificial neurons of a McCulloch-Pitts network [Vel06, Roj96]. A
second strategy is to always transmit the value of the normalized input sum no matter if it exceeds
the threshold value or not. A similar strategy is applied in neural networks, which have neurons
with a linear transfer function [DB05]. A third possibility would be to transmit the value zero
if the normalized input sum is below the threshold and the value of the calculated normalized
input sum itself if it is above the threshold. The fourth option is to transmit the activation grade
if the sum is below the threshold and to transmit the value one if it is above the threshold. In
many situations, all four mentioned strategies will lead to the same result, which means that the
same highest-level neuro-symbols will be activated. However, there may also appear differences
in certain cases. What strategy is chosen for a system depends on the used sensor data, their
reliability, the error-proneness of sensory modalities, and the used symbol hierarchy. Besides the
chosen strategy, the selection of the threshold value is also of importance.
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Concept Clarification

To illustrate the difference between the four mentioned strategies, a concrete example is given. For
the explanation, the same example is taken as in section 4.2.4, where it was detected if a person
enters or leaves a room. The figures 4.19a to d show the differences between the four mentioned
methods. It is illustrated what value corresponding with the activation grade is transmitted by
each neuro-symbol from the sub-unimodal level up to the multimodal layer when a person enters
the room. Neuro-symbols that are activated in these layers are marked red. For all four cases,
the value of the threshold of all symbols is 0.95. The weights of all input signals are one. The
results of the given examples would change, if the values of the thresholds were different. Figure
4.19a shows the case that there is transmitted the value one if an activation grade is above the
threshold and the value zero if it is below the threshold. Figure 4.19b illustrates the second
mentioned possibility where the transmitted value is equal to the activation grade no matter if it
is above or below the threshold. In figure 4.19c, the case is covered that there is transmitted the
value zero if the activation grade lies below the threshold and the value of the activation grade
itself if it lies above the threshold. Finally, figure 4.19d depicts the case that there is transmitted
the activations grade itself if it is below the threshold and the value one if it is above the threshold.

4.3.3 Handling Static Information

As mentioned in section 4.3.1, in the used concept of event-based neuro-symbolic information
processing, there is only processed and transmitted information if changes in the environment
occur. However, this strategy leaves one question open: How can sensory information be handled
that is already present at initial system startup and does not change later for a certain amount
of time? One example therefore would be the information from a door contact, which indicates
whether a door is open or closed. This information is important as a person can for example
not enter or leave a room when the door is closed. If the door is open at initial system startup
and remains open, the system would never get information about the status of the door although
this information would be important. One way to overcome this problem is to scan all sensors
at initial system startup and to activate certain neuro-symbols, which are important for later
system operation, on the base of these sensor values. Besides activating neuro-symbols, it is also
possible to set so-called memory symbols for this purpose (see section 4.6).

A related question is how to handle objects that are always present in the environment or that are
most certainly present in the environment. Examples for objects always present would be walls,
doors, and windows of a building. Objects that are most certainly present would be furniture
like tables and chairs. For objects that are always present, there is generally no need to perceive
them by sensors. It is in many cases more effective to just let the system “know” that these
elements exist in the environment. In section 4.6, there is described how knowledge can interact
with perception in the introduced model. For objects that are most certainly present, the same
strategy can be applied. If desired, the simple declaration to the system that certain objects exist
in the environment can be complemented by a check if they are actually present, which is based
on sensor data. For example, the presence of a table in a room, which normally always stands at
the same position, can be checked by analyzing if certain tactile floor sensors the table stands on
are active. A similar verification could be performed by the vision system. Such examinations
are generally performed at system startup.

72



Bionic Model

(a) (b)

(c) (d)

Figure 4.19: Different Strategies for Transmitting Information Correlating with the Activation Grade of
Neuro-symbols

4.4 Binding of Neuro-symbolic Information

Neuro-symbolic information processing is a method to process information coming from various
distributed sources. To get a unified representation of the available data, the information from
these different sources has to be merged. In neuroscience and neuropsychology, the question how
to integrate information from different sources is called the binding problem (see section 3.4). The
binding problem concerns our capacity to integrate information across time, space, attributes, and
ideas. To bind information in perception, binding must be performed within single modalities,
across modalities, across space, and across time. Knowledge influences the binding process. There
have been suggested different potential solutions to the binding problem. However, each of these
theories suffers from certain weak points. Years of research have shown that the binding problem
cannot be solved easily. Up to now, there has not been found a satisfying solution. The binding
problem is regarded as one of today’s key questions about brain functions.
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In this section, it is described how to solve the binding problem for the proposed bionic model
for human-like perception. Therefore, different suggested solutions mentioned in neuroscientific
literature serve as archetype and are supplemented by additional considerations. First, it is
explained how to perform binding within a modality. Next it is outlined how to merge information
coming from different modalities. There is performed binding of information across space and
time. Processing of events happening in parallel is considered. Finally, it is discussed how
knowledge can facilitate the binding process.

4.4.1 Binding within a Sensory Modality

The first step in binding of information in perception is binding within a sensory modality. The
term “one sensory modality” refers to the processing of information coming from sensors of one
particular sensor type. In section 4.2.6, it was explained how to process and merge information
from sensors of one sensor type to achieve a sub-unimodal perception. This task is performed by
activating feature symbols based on triggered sensor values and activating sub-unimodal symbols
based on feature symbols. The mechanism chosen for combining sensor data to get feature
symbols is inspired from the principle of combination coding that is one proposed solution to
the binding problem outlined section 3.4.5. The sensor level and the feature symbol level have
a topographic structure. Information from sensors at neighboring spatial areas is combined to
feature symbols and the resulting feature symbols neighboring in location are again combined to
higher-level feature symbols (see appendix A for a concrete example).

4.4.2 Binding across Sensory Modalities

Besides binding of information within one modality, for multimodal perception, information also
has to be bound across modalities. This type of binding can also be referred to as cross-modal
or multimodal binding. In the presented model, binding across modalities is performed to get
from sub-unimodal symbols to unimodal symbols and from unimodal symbols to multimodal sym-
bols. Principally, lower-level symbols can be “bound” to higher-level symbols they are connected
to. Therefore, the connections set between symbol levels comprise the information relevant for
binding. How adequate connections are determined is described in section 4.5. One lower-level
symbol can have connections to different higher-level symbols. Therefore, lower-level symbols
can be regarded as symbol alphabet for higher levels. If there is not only one situation going
on in the environment but different events are happening concurrently, there arises the question
how to correctly assign a lower-level symbol to a higher-level symbol. As mentioned in section
4.4.1, for binding sensory information, in the lowest levels, a principle inspired by combination
coding is used. However, following this principle of combination coding up to the highest level
could lead to a combinational explosion when lots of different images have to be perceived. There
would have to exist a separate neuro-symbol for each different location of a certain perceptual
image. Furthermore, in the brain, there exist neurons in higher cortical levels that react to cer-
tain perceptual images independently of their concrete location, which is not consistent with a
solution only building on combination coding. To overcome the problem of combinatorial ex-
plosion, from the sub-unimodal layer upwards, properties were introduced to neuro-symbols. By
introducing a location property to neuro-symbols from the sub-unimodal layer upwards instead
of using topographic neuro-symbols, the number of needed neuro-symbols can be reduced dras-
tically. The location property represents the information where in the environment a particular
perceptual image is perceived. Therefore, neuro-symbols from the sub-unimodal layer upwards
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can be activated more or less independently from the location of the perceptual image they repre-
sent. Besides location information, there can also be represented other information by properties,
which are also involved in the process of binding information (see also section 4.2.4 and appendix
A). Neuro-symbols with properties can be compared to a group of neurons in the brain, which
interact to represent congeneric perceptual images. In section 3.4.5, this type of coding was
referred to as population coding, which is a second proposed solution to the binding problem.

When considering information from diverse sources, there can occur the case that the data coming
from different modalities have different reliabilities. As outlined in section 3.3.2, for the human
perceptive system, visual information is in many situations considered to be most reliable and
therefore visual information often has more influence on perception than other modalities. This
effect is called visual capture. However, under certain circumstances, also other modalities can be
dominant. In the introduced model, to allow the consideration of information of different reliabil-
ity, information coming from particular modalities can be weighted. Therefore, in neuro-symbols
receiving information from more than one modality or sub-modality, the input information about
the activation grade of symbols of the different modalities is multiplied with a certain value
(weight), which corresponds to the influence that the particular input values shall have. The
weighted inputs are then summed up and can activate the neuro-symbol if they exceed a certain
threshold value.

4.4.3 Binding across Space

As already indicated in the last two sections, location information about the spatial position
of perceived images plays an essential role in integrating and binding of information coming
from different sensor types corresponding to the same object or event. Location information
gets especially important if more than one event is happening in the environment concurrently.
Unfortunately, neuroscience and neuropsychology do not provide a unified theory about how lo-
cation information is handled in the brain. Some hypotheses hold that the detection of perceptual
images and their location are separate operations. There has been found certain evidence that
the visual system contains two functionally distinct visual pathways: a ventral “what” pathway
directed towards the temporal lobe that is involved in object recognition and a dorsal “where”
pathway directed towards the parietal lobe that is involved in spatial localization and the visual
control of action [Tod04]. In contrast, other studies found only weak evidence for identification
without localization. In many trials, subjects either reported both the color and shape of an
object at a certain location correctly or got them both wrong. [GHT96] point out that it would
be surprising if the brain did not make use of spatial information freely available to it at least
partially to solve the binding problem.

In fact, if information about object identity and object location were really coded separately,
location information could not be used for binding processes. Additionally, there would arise the
puzzling question how to merge this information again if necessary. This section describes the
utility of location information for the introduced model of human-like perception and shows how
it can be acquired.

As already outlined, up to the feature layer, location information is coded in form of topographic
maps. In contrast, from the sub-unimodal layer upwards, location information is coded as prop-
erties of neuro-symbols. Information about the location of neuro-symbols can be sent to other
neuro-symbols they are connected to. Neuro-symbols can only be activated from other neuro-
symbols if the perceptual images they represent are located within a certain spatial area.
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From the different solutions suggested to the binding problem, the method of using location
information as feature for binding is most closely related to the theory of temporal binding.
According to the theory of temporal binding, signals of neurons representing features of the same
object are mutually correlated in time. Signals of neurons representing features of different objects
are not correlated or anti-correlated in time. Synchrony serves as a signature of relatedness in
location.

In the model, location information is important in different processes of information binding. If
several events happen concurrently in the environment, location information is absolutely neces-
sary to correctly assign sensory information of various sources to the events they belong to. In
the case that only one event is happening in the environment at a certain time, location informa-
tion can be used for fault detection in binding. The underlying principles will be outlined in the
following. Additionally, if many events happen in parallel, a mechanism called focus of attention
can be used which also makes use of location information and is described in section 4.4.5.

Location Information for Binding between Different Neuro-symbolic Levels

To form neuro-symbolic networks, neuro-symbols of different levels have to be interconnected.
Without considering the location where a perceptual image was perceived, a neuro-symbol of a
lower-level can principally contribute to the activation of all neuro-symbols it is connected to in
the next higher level. However, when different situations happen in parallel in the environment,
this can lead to a merging of neuro-symbols, which in fact do not belong together. That way, an
activation of inadequate higher-level symbols can occur. Location information of neuro-symbols
can help to resolve this problem. There are only bound together lower-level symbols to a higher-
level symbol that lie within a certain spatial area5.

Concept Clarification

The principle of binding neuro-symbols by location information shall be illustrated by means
of a concrete example. Therefore, a room is equipped with different sensors. By a concurrent
triggering of different sensors, the unimodal symbols “person”, “steps”, and “object moves” are
activated. Similar to the example given in section 4.2.5, in the example, these three neuro-
symbols can activate the multimodal symbol “person walks”. However, as illustrated in figure
4.20, the unimodal symbols are perceived in different spatial areas. Therefore, it is very likely
that they origin from different events, and that their binding to the symbol “person walks” would
be incorrect. To avoid an undesired activation of neuro-symbols, it is useful to define how much
certain lower-level symbols may deviate in location to be bound to a higher-level symbol. This
information can either be predefined, which requires knowledge from the system designer, or it
can be learned from examples presented to the system (see section 4.5).

Handling Location Information of Restricted Spatial Resolution

In realistic situations, location information provided from sensors is not of infinite spatial res-
olution. Additionally, the resolution is not the same for all sensor types. Therefore, one event
detected by different sensors may cause the generation of neuro-symbols with slightly different

5Location values of a neuro-symbol can change during the activation time of the symbol. This happens when
certain objects in the environment change their position (e.g., a person walking through a room).
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Figure 4.20: The Role of Location Information in Binding between Different Layers

location values. This is the reason why not only neuro-symbols at one very specific location need
to be merged but neuro-symbols occurring within a certain spatial area. A finite spatial resolution
also has an influence on the determination of the location value of higher-level neuro-symbols.
Higher-level neuro-symbols receive information coming from lower-level symbols. Accordingly,
the values of the location properties of higher-level symbols have to be derived from location in-
formation provided from lower levels. However, due to imprecise mounting of sensors and due to
their limited resolution for determining location information, the location values of all lower-level
symbols might not always correspond perfectly. Therefore, a way must be found to calculate
the location values of higher-level symbols out of the location information from all lower-level
symbols they were activated from. Different strategies are possible to calculate this information.
One method is to calculate the average of all information received. However, as mentioned in
section 3.3.2, in the brain, there seems to be always one modality for determining positions of
perceptual images that dominates over the others for certain cases, because it is of greatest reli-
ability. For locating objects, situations, and events, the dominant modality in human perception
is most often vision. The domination of this modality is called visual capture. If a dominant
modality exists, its location information is weighted more in the calculation of the location. In-
spired from the existence of a dominant modality in the brain, for determining the location of
neuro-symbols, there can also be used location information from all sources, which is however
weighted differently corresponding to their reliability and resolution. Furthermore, there can also
be used only one lower-level modality to determine the location of a higher-level symbol. This
method simplifies the calculation process and makes sense if this modality provides by far more
reliable location information than the other modalities or location information of a better spatial
resolution. Which of the mentioned strategies is actually chosen depends on the concrete sensor
types used and on their reliability and spatial resolution.

Location Information for Feedbacks between Neuro-symbols

Besides connections from lower-levels neuro-symbols to higher-level neuro-symbols, there also
exist feedback connections between neuro-symbols of the same level (see section 4.2.5). Without
using location information, an activated neuro-symbol would influence the activation of all neuro-
symbols to which it is connected by feedback loops. However, it may occur that such an influence
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is not wanted, because the symbol that is influenced is needed to code another situation happening
concurrently. To avoid an unwanted interaction, it is useful to check whether the values of the
location property of the two activated symbols are within the same spatial area. If this is the case,
one of the two symbols was activated because it is made up by a subset of lower-level symbols
of the other symbol. In such a case, its activation should be inhibited by a feedback. If the
locations do not match, an inhibitory feedback is not desired. Again, the location area within
which feedbacks shall have an influence can either be predefined or learned from examples (see
section 4.5).

Location Information for Fault Detection

Location information is important to correctly bind neuro-symbolic information from different
sources. There were already introduced examples how correct binding is facilitated by location
information. Besides the function of binding, spatial information can also have the function
of fault detection. Reasons for errors can be faulty sensors, an incorrect data transmission, or
incorrect binding. There might exist certain objects, events, and situations that occur only at
certain locations. If the location property of the perceptual images they are represented by in
lower layers has a value that is not common, there might have occurred an error in the perception
process. Examples would be that lower-level symbols connected to the symbols “object enters”
or “person enters” are perceived at a location where no door exists. If there is assigned a location
value to a certain lower-level perceptual image that is very atypical for a higher-level symbol it is
connected to, a further processing can be inhibited. This process could be considered as a process
where factual knowledge interacts with perception and could therefore be handled as top-down
process (see section 4.6). However, in the model, there also exists the possibility to handle the
inhibition directly and locally. What are allowed areas for certain perceptual images and which
areas are forbidden can either be predefined or learned from examples (see section 4.5).

4.4.4 Binding across Time

So far, in the description of the model, it has always been assumed that binding of sensory
information is performed for sensor values (or lower-level neuro-symbols) occurring concurrently
or quasi concurrently. This means that during a certain time interval all sensors triggered from
one and the same event are activated, which then leads to an activation of certain neuro-symbols.
Again, in the higher layers, neuro-symbols of lower layers have to be activated concurrently to
activate higher-level symbols.

Concept Clarification

Figure 4.21 illustrates the concept of concurrent activation by means of a concrete example,
which is already known from section 4.2.3. The picture shows that the unimodal symbol “object
enters” is only activated when all three lower-level symbols it is connected to are active, because
only within this time interval, the sum of input activations exceeds the threshold value6. In the
same way, the unimodal symbols “object enters”, “person”, and “steps” would have to be active
concurrently to activate the symbol “person enters”.

6In the given examples of this section, it is assumed the activation threshold to be 0.85.
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Figure 4.21: Temporal Overlapping of Neuro-symbolic Activations

In reality, however, there might also occur the case that not all sensor values belonging to one event
are triggered concurrently. In the example of the object entering, it could for instance happen
that the motion detector shows a certain reaction delay time. In this case, the light barrier might
already be deactivated again although the motion detector has not yet been activated (see figure
4.22). As there does not exist an interval of temporal overlapping of the activation of the different
symbols, the symbol “object enters” would not be activated although the corresponding event
occurred in the environment.

From the description just given, it gets clear that binding of information in the brain as well
as in the introduced model does not only have to occur across space and different modalities.
It also has to occur across time. An interesting question is how the brain “knows” that events
happening one after the other belong together and form a certain scenario. The answers to this
question coming from neuroscience are still very vague. [Eic06] mentions that the hippocampus
– a part of the limbic system located in the forebrain – might be involved in the process of
binding sequential events across time. In [Pra06], certain considerations are made about how
time-dependent events like the perception of speed or successions of events could be experienced
in the brain. It is suggested that physical values like speed and time are represented symbolically
and that processing of physical values by symbols requires an abstraction from an actual object (or
person) to a generic object. Objects moving with different velocities are represented by different
symbols.

The theory of speed being represented symbolically is supported by the fact that there exist
neurons in the brain that respond exclusively to the movement of objects. However, it might
not be one-hundred percent correct that for perceiving movement of a certain speed, the actual
objects are abstracted to generic objects as certain objects show characteristic movement profiles,
which give important clues for identifying them. Besides this, in the primary cortex of the brain,
there were found different neurons firing depending on the direction of movement and the form
and size of the object. Therefore, it should rather be supported the hypothesis that movement
is represented symbolically – or in the model introduced in this thesis neuro-symbolically – and
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Figure 4.22: No Temporal Overlapping of Neuro-symbolic Activations

not only the speed but also the direction and the motion profile and maybe to a certain extend
also the form and the size of the object have influence on the categorization into “speed classes”.
Additionally, the estimation of speed might not only be based on visual impressions but also
be influenced by the sound being produced by the object and the surrounding within which the
object occurs.

Similar as for perceiving velocities, [Pra06] suggests physical relations like time instants relative
to the current time being represented symbolically. He points out that instead of a time difference
measured in time units, the symbolic representations of “before” and “after” are applied. There
is not made a proposition how duration of time could be represented.

The hypothesis that there does not exist an absolute time base is supported by the fact, that
different situations lasting the same time can be subjectively experienced as taking different
amounts of time. However, it does not seem probable that on a pure perceptual level, there exist
symbols like “before” and “after” that are bound together with other perceptual symbols to higher
symbolic representations. Instead, there might exist particular neurons or groups of neurons that
bind together events having occurred one after the other being responsible for the coding of these
sequences. That way, a binding of perceptual data across time could be achieved. A suggestion
how this could be performed is described in the following using the concept of neuro-symbolic
information processing. Two different solutions are conceivable for binding information across
time depending on whether the temporal succession in which different sensors are triggered is of
importance or not.

Usage of Time Windows

In case the temporal succession is not always the same, not known, or of no importance, a time
window of a certain length can be defined for each neuro-symbol. Sensor values (or activated
neuro-symbols) occurring within this time window are considered in the merging process of a
certain neuro-symbol. The usage of such time intervals for binding is in accordance with reports
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from [Sta04], where it is described that for two events occurring very close together in time, it
can happen that we are aware that they occurred at different times, but we cannot say which one
occurred first.

The neuro-symbols for processing information within certain time windows differ slightly form the
neuro-symbol type described until now. They have the additional capability to hold input values
active although the sensory source they came from is already inactive again (see figure 4.23).
The principle works as follows: If a neuro-symbol receives information from a certain activated
neuro-symbol of a lower level, it can hold this signal active for the duration of its time window.
Therefore, even if the input signal is inactive again, it can still contribute to the calculated sum
of activations. The prolonged activation is reset either if the time window has expired or if the
symbol has been activated because the sum of all input values exceeded the threshold value. In
the second case, there is also reset the time window7.

Figure 4.23: Prolongation of the Activation Time by the Usage of Time Windows

On a neural level, a prolonged activation of certain inputs could be achieved by feedback loops
between neurons and synaptic connections of different type and number having the function of
weighting information and also of causing delays in signal transmission. How time windows were
implemented for model simulation is described in section 5.4.1. The length of time windows of
certain neuro-symbols can either be predefined or learned from examples (see section 4.5). Neuro-
symbols with time windows are compatible with the neuro-symbols without time windows used
until now. For representing neuro-symbols without time window, there can be used neuro-symbols
with a time window by just setting the length of the time window to zero. Compatibility between
the neuro-symbol types is necessary if correlations are not predefined but learned, because in this
case, it is not fixed at the beginning which symbol type will be used to code a certain perceptual
image.

7The reset of the time window is not illustrated in figure 4.23.
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Perceiving Successions of Events

Using time windows is sufficient for a range of events and situations and is one possibility to
achieve binding across time. However, sometimes not only the occurrence of certain sensor values
and active lower-level symbols within a certain time interval is of importance but also the temporal
succession in which they occur. Taking the example from section 4.2.3 where an object enters a
room, it is conceivable that the floor sensor is always triggered first followed by the light barrier
and afterwards by the motion detector (see figure 4.24).

Figure 4.24: Neuro-symbol Activated by a Succession of Events

The succession of data is important if a triggering of the sensor values in another succession
is assigned to another event (e.g., to the event that an object leaves the room). On a neural
level, such successions of events could be realized by using a number of neurons and exploiting
feedbacks. A possible neural structure for this purpose is depicted in figure 4.25. Within this
structure, it is followed the principle of neural information processing: If the sum of the input
signals exceeds a certain threshold, which is in the given example a little below one, a signal
with the value one is transmitted via the output to all units it is connected to. The numbers
next to the connections indicate the weights of the connections, which correspond to synapses of
biological neurons. By the positive feedbacks of the neural structure, the activation of a neuron
can be held active even if the input signals coming from the lower level that caused the activation
have already vanished. By negative feedbacks, such a prolonged activation can be annulated.
The negative connections of the neurons b1, c, and e can inhibit the activation of their neighbors
a, b2, and d when being activated first. This measure assures that signal activations arriving in
an incorrect succession do not lead to an activation of units in the next higher layer.

The figures 4.26a to c show three different examples of information processing performed with this
neural structure. The red arrows indicate effective inhibitory connections. In the figures 4.26a
and b, the symbols “object present”, “object passes”, and “motion” are activated in the correct
chronology and therefore, the symbol “object enters” is activated. The difference between these
two cases is that in figure 4.26a, the activations of the three lower-level symbols show temporal
overlapping and in figure 4.26b they do not. In figure 4.26c, the order is incorrect and the
symbol “object enters” therefore remains inactive8. For a technical realization, it is no problem
to consider successions of incoming events even without using feedbacks (see section 5.4.1).

8What is not depicted in figure 4.25 is that the activation of the highest level unit “object enters” has to be
inhibited again after a certain time after its activation by an additional input or by a measure where the activation
grade of the unit is decreased successively until is falls below the threshold value.
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Figure 4.25: Neural Structure with Feedbacks for Detecting a Certain Succession of Events

Introducing Scenario Symbols

In the descriptions about handling data across time given until now, there were always merged
sensor values or neuro-symbols from a lower level to neuro-symbols of the next higher layer. The
typical time span within which data were merged lay in the range of a few seconds. However, there
can also occur the case that a situation consists of a succession of events whereby each of these
events is already represented by a multimodal symbol. Besides this, these situations may take
more time than a few seconds. Reutilizing the example from section 4.2.5, it could be necessary
to detect if a person enters the room, goes to the window, and then stands near the window. In
this case, the multimodal symbols “person enters”, “person walks”, and “person stands” would
be triggered one after the other9. To handle such successions of events – in this thesis labeled
as scenarios – a new symbol layer is introduced, which is called scenario symbol layer (see figure
4.27). Scenario symbols are activated if certain multimodal symbols are activated within a certain
time span or in a defined succession (see figure 4.28 for the scenario “person goes to window”).
The scenario symbol level could be regarded as an implicit form of a short time memory.

The underlying methods for forming scenario symbols are similar to the concepts for binding
across time in lower levels. The only difference is that now, symbols of the same type – multimodal
symbols – are merged and that the time span within which a merging can occur can be longer.
Again, correlations between multimodal symbols and scenario symbols can principally either be
predefined or learned from examples (see section 4.5).

9The value of the location property of each multimodal symbol also has to be considered for the binding process.
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(a) (b) (c)

Figure 4.26: Examples for Detecting a Certain Succession of Events

4.4.5 Parallel Processing versus Focus of Attention

Until now, in the given examples of neuro-symbolic information processing, it was mainly fo-
cused on how to process information origination from only one particular object, event, scenario,
or situation. According to the principle of single symbol activation, in such a case, from the
sub-unimodal layer upwards, only always one neuro-symbol is active for each sub-modality and
modality and only one single symbol is activated at the multimodal layer. This is assured by
inhibitory feedbacks between neuro-symbols (see section 4.2.5). In reality, however, many objects
can be present at the same time in the environment and diverse events and activities can hap-
pen in parallel. Therefore, many different symbols of each level can be active at once belonging
to different events. As mentioned in section 4.4.3, by introducing location information into the
system, it can be determined what activated lower-level symbols belong together to form one
particular higher-level symbol. However, if every possible perceptual image is represented only
by one single neuro-symbol, a problem occurs if different activities shall be perceived in parallel,
which are based on the same lower-level symbols.
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Figure 4.27: Introduction of a Scenario Symbol Level

Figure 4.28: Example for the Binding of Multimodal Symbols to a Scenario Symbol

Concept Clarification

To clarify the occurring problem, it is supposed that two persons are present in a room at the
same time. One is standing in the room and the other one is walking around. Concerning the
symbol structure, the same symbols, properties, and correlations between them are used like in
section 4.2.5. To perceive these two situations, two multimodal symbols – “person walks” and
“person stands” – need to be triggered. Therefore, the unimodal symbols “person” and “object
stands” have to be active to activate the symbol “person stands”. To trigger the multimodal
symbol “person walks”, the unimodal symbols “person”, “steps”, and “object moves” have to be
active. There occurs a problem if both situations are going on in the room at the same time.
In such a case, for both activities there would have to be activated the visual unimodal symbol
“person”. However, in the used symbol hierarchy, there exists only one visual unimodal symbol
“person”.

To overcome the problem just described, different strategies are conceivable. The first possibility
is to use parallel symbol representations, which allow it to represent certain perceptual images
by more than one neuro-symbol. The second possibility is to introduce so-called group activity
symbols. The third possibility is to use a method called focus of attention.
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Parallel Symbol Representations

In the concept of parallel symbol representations, for certain perceptual images, more than one
neuro-symbol can exist if it is likely that this image occurs in the environment several times at the
same moment. Generally, at lower hierarchical neuro-symbolic levels, there will exist more such
parallel symbol representations than at higher hierarchical levels, because lower-level symbols can
be regarded as symbol alphabet for higher symbol levels. Each lower-level symbol that stands for
a perceptual image can potentially contribute to the activation of different higher-level symbols.
As described in section 4.2.6, on the feature symbol level, which is the lowest neuro-symbolic level,
all perceptual images are represented by parallel feature symbols located at different topographic
positions.

Concept Clarification

To overcome the already mentioned problem of concurrently perceiving a person walking and
another person standing, there can be integrated a second symbol “person” into the unimodal
layer of the visual system. Based on the location of the neuro-symbols, they are assigned to
different higher-level neuro-symbols. If three persons are present in the room, there have to exist
three symbols “person”. The same principle needs to be applied to other modalities. If there
are three persons standing in the room, there have to exist three sub-unimodal symbols “object
present”, three tactile unimodal symbols “object stands” and three visual unimodal symbols
“person”.

Such a duplication of symbols a certain number of times might not always be the best solution,
especially not for large configuration with lots of different perceptual images being possible to
occur, because it would require a huge number of symbols. This does not make sense if it is
unlikely that a perceptual image occurs several times at the same moment. Therefore, it is
advantageous to also have available other methods to handle concurrently happening events.

Group Activity Symbol Representations

With the principle of group activity symbol representation, situations can be aggregated and
represented by a group activity symbol. This makes sense if too many activities are going on in
the environment to represent them all by different neuro-symbols.

Concept Clarification

Taking again the example of several persons being present in a room, this situation can be
represented by a group activity symbol “group of persons”, which is added to the visual modality.
In a similar way, there must be added group activity symbols for the other modalities, like a
symbol “various objects present” in the tactile modality.

A disadvantage of group activity symbols can be that the information represented by them is of
less detail. Besides this, it may be difficult to correctly combine such group activity symbols to
higher-level symbols. They can only be combined with other symbols with such a group activity
character.
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Focus of Attention

To overcome the problems mentioned in the description of parallel symbol representation and
group activity symbol representation, the principle of focus of attention is introduced. In section
3.4.5, it was mentioned that in the brain, focus of attention restricts the spatial area that is
considered when binding sensory information. In [Jov97], it is described that focus of attention
inhibits the further processing of information, which has no relevance in the current situation. In
the model, only neuro-symbols are bound to higher-level neuro-symbols that lie within the focus
of attention. The activation of neuro-symbols is inhibited if the perceptual images they represent
lie outside the spatial area that is currently covered by the focus of attention. With this method,
the number of concurrently activated symbols can be reduced which eases the binding process
and makes it unnecessary to have parallel representations of the same symbols.

An important question is on which level focus of attention influences the binding of information.
Statements from neuroscience to this question are very vague. In the model, focus of attention
influences perception on the feature symbol level. As outlined in section 4.2.6, feature symbols
are topographic in structure which means that they have a strong correlation to the position
of the sensors they are derived from. On the feature symbol level, different events happening
concurrently can be represented by feature symbols of different locations. From the sub-unimodal
level upwards, location information is contained only as property of symbols and the number
of concurrent events that can be coded is restricted. By focus of attention, the transmission
of information from feature symbols corresponding to areas outside the focus is inhibited and
therefore, the information coming from them is just not further processed in higher layers. Figure
4.29 illustrates this principle for feature symbols of three sensor types. Feature symbols can only
transmit information to higher layers if they lie within the focus of attention. These feature
symbols are marked red in the pictures. Activated feature symbols outside the focus cannot
activate symbols on the sub-unimodal level, because the input of the focus of attention has an
inhibitory influence and therefore decreases the activation grade of the symbols10.

Figure 4.29: Influence from Focus of Attention on Feature Symbol Activation

After information within a certain spatial area has been processed, the focus of attention has to
switch to another area to also bind other symbols present at the same time (see figure 4.30). It

10If more than one feature symbol layer exists, a transmission of data from one feature symbol layer to the next
higher one shall be possible independent from the current focus of attention. This can be achieved by setting
the threshold for activation of feature symbols to a lower value than the threshold of sub-unimodal symbols. The
processing of feature symbols even without focus of attention is important for later processing stages when the
focus of attention is directed to these areas.
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might happen that information is lost when symbols are only active for a very short period of
time and the focus of attention is not directed to them within this time period. However, the
same problem also occurs in human perception. The size of focus of attention can be altered
depending on how many situations are going on concurrently in the environment and how large
the spatial areas are where they happen. Principally, also the form of the focus could be changed.

Figure 4.30: Altering the Size and the Center Position of the Focus of Attention

During perception, the beam of focused attention needs to be steered and controlled. The direc-
tion of focused attention is for sure to a certain extend influenced by perceived images. In the
model, group activity symbols could be one factor that influences the focus. As mentioned, if sit-
uations cannot be associated to neuro-symbols because there are too many sensors and lower-level
symbols active at the same time, so-called group activity symbols are activated in the different
modalities. They indicate that various activities are going on at the same time and provide
location information about the approximate spatial area where this location is going on. This
location information can be used to direct the focus of attention to a sub-part of this spatial area.
When changing the location the focus of attention is directed to, it is often useful that the new
focus of attention overlaps with the location of the old focus to a certain degree, because there
might have remained lower-symbols that could not be bound to higher-level symbols, because
other correlating lower-level symbols were not within the spatial processing area. They might be
bound with other symbols that lie within the focus of attention of the next step. In the process
of directing the focus of attention, there are most certainly also involved diverse mental processes
not directly assigned to perception. Emotions, knowledge, expectation, etc. might play a role.
However, their influence has not yet been considered in the model.
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4.4.6 Binding by Knowledge

As outlined in the sections 3.3.3 and 3.4.5, knowledge plays an important role in perception
and binding of information and facilitates perception in ambiguous situations. Its influence on
perception can be regarded as a top-down process. An interesting question is on what hierarchical
level the interaction with bottom-up processes of perception takes place. Answers coming from
neuroscience and neuropsychology are controversy. In the model, knowledge can principally
influence perception from the sub-unimodal level upwards and decrease or increase the activation
grade of neuro-symbols. A more detailed discussion about the influence of knowledge is given in
section 4.6.

4.5 Adaptability of Neuro-symbolic Structures

To increase flexibility of systems, it is desirable to give them the ability to adapt and to learn.
How these mechanisms can be integrated into the proposed model is described in the following.
In section 4.5.1 it is discussed what parts should be subject to learning and what has to be
predefined. In the sections 4.5.2 and 4.5.3, the used learning mechanisms are introduced.

4.5.1 Predefining versus Learning

Neuro-symbolic networks are basically made up of neuro-symbols with certain properties and
of connections between these neuro-symbols. It has to be noted that important information –
the “perceptual intelligence” – of a neuro-symbolic network is not only comprised in the neuro-
symbols and their properties themselves but also and especially in the connection between the
neuro-symbols. An important question is how to determine appropriate neuro-symbols, neuro-
symbolic properties, and neuro-symbolic connections and correlations. Principally, they could
either be predefined by the system engineer and therefore already exist at system startup, or they
could be learned from examples. Both approaches have certain advantages and disadvantages.

By using predefinitions, the “overhead” of the system can be kept small, because no methods for
learning and adaptability need to be included into the system. The “overhead” are mechanisms
and functions, which are necessary during system learning and adaptability but are not needed
any more afterwards during system operation of the already configured neuro-symbolic network.
The disadvantage of predefining everything before system startup is that the system designer
needs to have a very deep understanding about correlations between objects, events, scenarios,
and situations and the sensors and neuro-symbols they activate. Besides this, it is a quite time
consuming and monotonous task to define all neuro-symbols, properties, and connections for
all possible situations that can occur in the environment. Additionally, predefining allows little
flexibility of the design. For making changes in the system, reconfigurations need to be done
“by hand”. However, in spite of many disadvantages of using predefined correlations, such a
predefinition cannot always be avoided. Learning from examples cannot be applied if there shall
be defined dangerous events or situation like for instance a fire in a room. Additionally, the
lowest-layer correlations always need to be predefined because – similar as in the brain – a system
cannot learn higher-level correlations if lower-level correlations do not already exist [Lur73]. There
cannot be learned “everything from nothing”.
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The advantage of using learning in neuro-symbolic networks is that the configuration effort for
the system engineer is decreased. Learning offers flexibility and adaptability of the design. The
designer does not need such a deep knowledge and understanding about correlations between
objects, events, and situations and the sensors and neuro-symbols they trigger.

The learning strategy proposed in this work is based on learning from examples. Although the
introduction of learning to the system offers many advantageous, the usage of learning does not
decrease the configuration effort to zero. To allow learning from examples, a certain number of
representative examples for all necessary objects, events, scenarios, and situations need to be
provided.

4.5.2 Supervised Learning for Neuro-symbolic Networks

As just outlined, learning increases the flexibility of the model. However, the fact that not all
correlations and concepts can be “learned from nothing” makes it necessary to predefine certain
items before system startup. This principle is in accordance with research reports from neuro-
science and neuropsychology (see section 3.2). At birth, the brain is not completely hardwired.
There have to exist already certain connections to allow further learning. Unfortunately, the
answers coming from neuroscience and neuropsychology about what has to be predefined in the
brain and what can be learned are controversy and quite vague. Principally, it is reported that
learning takes place by setting neural connections and that lower cortical levels must already be
developed before higher cortical levels can evolve. In accordance to this, in the presented model,
connections between lower levels are predefined and correlations in higher levels can be learned.
The learning method used in the model is based on examples and can be regarded as a super-
vised learning process11. This section describes how to determine adequate connections between
neuro-symbols including considerations of property values and location and timing information.

At initial system startup, a neuro-symbolic network looks as depicted in figure 4.3112. Besides
connections between sensors and neuro-symbols of the features symbol level, there generally do
not exist connections between neuro-symbols. In certain cases and for certain sensory modali-
ties, there can also already exist higher-level connections, especially connections between feature
symbols and sub-unimodal symbols (see section 4.7).

The process of learning applied in the model is divided into four different phases starting with
the determination of correlation between the lower levels (see figure 4.32)13. Each of the four
phases is divided into a phase A and a phase B. In phase A, examples are presented to the system
and forward connections between the hierarchically lower and the hierarchically next higher layer
are determined and set. In phase B, the same examples are presented to the system again and
feedback connections within a certain layer and modality are set.

Before learning can start, certain items have to be predefined. It has to be defined what sensor
types shall be involved in the perception process and how to extract suitable features from the
provided sensor values. Additionally, it has to be defined how sensors of different types are taken
together to certain modalities.

11In the human brain, learning also strongly depends on unsupervised learning processes. However, it is not yet
clear how these learning processes work. Therefore, for the model, at the current state, learning strategies are only
inspired from supervised learning methods.

12Top-down connections from knowledge and focus of attention are not considered in this description.
13In section 4.6, for learning correlations between neuro-symbols and memory symbols, a fifth phase needs to be

introduced.
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Figure 4.31: Connections between Neuro-symbols at Initial System Startup

In the first learning phase, it is learned from examples what combinations of feature symbols
form which sub-unimodal symbols and how sub-unimodal symbols shall influence each other
through feedbacks. Accordingly, the connections between the symbols of these layers are set.
The learning and setting of connections is performed for each sub-unimodal modality separately.
For some modalities, it might occur that there do not exist sub-unimodal symbols. In this case,
there are formed connections directly from features symbols to unimodal symbols based on the
presented examples. For some modalities, it may also be advantageous and less effort to define
correlations “by hand” or to use already existing workable solutions to get from sensor data
via feature symbols to sub-unimodal or unimodal symbols. The modular hierarchical structure
of the model allows it to integrate such workable solutions (see section 4.7). In phase 2, it
is determined based on examples how to best connect sub-unimodal symbols with unimodal
symbols and unimodal symbols among each another. Again, learning and setting of connections
is done for each unimodal system separately. After having available fully functioning unimodal
levels, the relations between unimodal and multimodal symbols and among multimodal symbols
themselves are learned in phase 3. Finally, correlations are set between multimodal symbols and
scenario symbols and scenario symbols are linked to each other in learning phase 4.

As already mentioned, it is learned from examples what symbols need to be connected to perceive
certain objects, events, scenarios, or situations. The learning strategy that is followed is to a
certain extend comparable to how supervised learning is performed in artificial neural networks.
In the model, learning is also referred to as training. During the learning phases, examples for
different objects, events, scenarios, and situations are presented to the system. Each object, event,
scenario, and situation – which is regarded as perceptual image – is assigned to one neuro-symbol.
Consequently, only classes of objects, events, scenarios, and situations can be perceived later by
the system, which have been learned before. For each object, event, scenario, and situation, a
number of examples is presented to the system to give it the ability to generalize. An example
comprises input data and target data. The input data are the values of the sensors that are
triggered when a certain object, event, scenario, or situation occurs in the environment. As
the lower neuro-symbolic levels are already connected, based on the sensor data, certain low-level
symbols are activated and serve as actual input data for the learning procedure. These lower-level
symbols can be active concurrently or can be activated sequentially within a certain time period.
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Figure 4.32: Learning Phases for Determining Correlations between Neuro-symbols

The target data are the higher-level neuro-symbol that shall be activated when the perceptual
image occurs. During the learning phase, the system can memorize a number of examples and can
extract coherences between lower-level symbols and higher-level symbols (or symbols of the same
level) from these examples and set connections accordingly. For learning of correlations, different
methods can be applied. Similar to training algorithms in neural networks, a learning method
needs to offer the possibility to generalize. For a first implementation, statistical calculations were
used to determine what correlations between data are frequent and how these correlations look
like over time. However, other methods are also conceivable. Especially for learning correlations
between feature symbols and sub-unimodal symbols, the usage of neural networks may sometimes
lead to good results (see section 4.7).

In figure 4.33, the principle just described is illustrated schematically for the learning phase 1
for one tactile sub-unimodal system. Exactly the same principle can also be applied to all other
sub-unimodal systems. Input data for the system are available in form of sensor data. Similar to
neural networks, features are extracted out of these sensory raw data before the learning phase
1 starts. These features act as actual input data for learning. Similar to supervised learning in
neural networks, there are also presented target values to the system for the desired output. The
target value for a certain example is the sub-unimodal symbol that shall be activated when the
sensor values of the example occur together. By presenting a certain amount of such input data -
target symbol pairs to the system, a learning algorithm can determine which neuro-symbols need
to be connected and connections are generated.

Figure 4.33a shows the principle how forward connections between two layers are generated based
on examples. However, as described in section 4.2.5, there might also be a need for feedback
connections to inhibit the activation of certain symbols that are triggered in parallel. For this
purpose, the same examples as used in phase 1A are presented to the system a second time
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(a) Learning Phase 1A (b) Learning Phase 1B

Figure 4.33: Learning Phase 1 for a Tactile Sub-modality

in learning phase 1B (see figure 4.33b). As there do already exist connections between feature
symbols and sub-unimodal symbols, one or more sub-unimodal symbols are activated as reac-
tion to the presented examples. The activated sub-unimodal symbols are now compared to the
sub-unimodal target symbol that was intended to be activated. There are generated feedback
connections between sub-unimodal symbols to prevent such undesired activations.

After the forward and feedback connections between feature symbols and sub-unimodal symbols
have been set for each sub-unimodal system, sub-unimodal symbols have to be connected with
unimodal symbols based on examples presented to the system. The learning of these coherences
is very similar to the former level. Figure 4.34a illustrates the training phase 2A for the tactile
system. Again, input data in form of sensor values are presented to the system. This time, not
only sensor values of one sub-unimodal system are used but sensor values coming from all tactile
sensors. Feature symbols are extracted from these sensory raw data and are further passed to the
sub-unimodal layers, because there do already exist the connections between the feature layer and
the sub-unimodal layer. According to the presented sensor data, certain sub-unimodal symbols
are activated. The system also gets the information which unimodal tactile symbol shall be
activated when certain sensor values occur. Based on this information, the connections between
the sub-unimodal tactile symbols and the unimodal tactile symbols are set. In the training phase
2B, similar to phase 1B, feedback connections are set between unimodal tactile symbols to inhibit
the undesired activation of symbols that do not correspond to the target symbol. In figure 4.34b,
the principle is illustrated graphically.

The training phases 3A and 3B follow the same principle like the two former training phases.
This time, the presented examples include sensor values coming from all modalities and their
sub-modalities. Forward connections between unimodal symbols and multimodal symbols as
well as feedback connection between multimodal symbols are formed according to the presented
examples. The figures 4.35a and b illustrate the learning concept of training phase 3 graphically.

In the figures 4.36a and b, the learning phase 4, in which correlations between multimodal symbols
and scenario symbols as well as feedback connections between scenario symbols are determined,
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(a) Learning Phase 2A (b) Learning Phase 2B

Figure 4.34: Learning Phase 2 for the Tactile Modality

is illustrated. Again, sensor data of all modalities contribute to the training process.

As mentioned in section 4.2.4, neuro-symbols can have properties, which specify a neuro-symbol
in more detail. Depending on the current value of the property of a neuro-symbol, it can be
assigned to different higher-level neuro-symbols. Therefore, if necessary, the value of properties
needs to be considered in the training process. Values of properties are generally learned in the
training phase A14.

A special property of neuro-symbols is the location property, which is derived from the spatial
position of triggered sensory receptors in a first instance and from location property values of
lower-levels neuro-symbols in subsequent stages. The location property represents the position
or spatial area where the perceptual image the neuro-symbol stands for has been perceived (see
section 4.4.3). Similar to other property values, the activation of higher-level neuro-symbols can
also depend on the position where the lower-level symbols they are connected to were perceived.
Like for other properties, it is determined in the training phase A of each level what are allowed
spatial areas for lower-level neuro-symbols to activate certain higher-level neuro-symbols. It can
be learned how much different lower-levels symbols belonging to a certain event generally deviate
in position. Additionally, it can be learned in this phase what are principally allowed positions
or areas for certain lower-level neuro-symbols to be bound to a particular higher-level neuro-
symbol. In the training phase B of the different levels and modalities, it can be determined how
close the positions of neuro-symbols need to match to allow an inhibitory influence by feedback
signals. To achieve good results in learning, it is important to have representative examples that
cover all different places where an object, event, or situation can occur. However, due to the
effort for generating examples, it will not be possible to cover really all locations where certain
objects, events, and situation can take place by examples. The system needs to have the ability
to generalize over the presented location information. One method how to implement these
principles is described in section 5.5.

14The values of location properties have to be considered in the training phases A and B.

94



Bionic Model

(a) Learning Phase 3A

(b) Learning Phase 3B

Figure 4.35: Learning Phase 3

Similar to learning spatial correlations, there can also be learned temporal correlations between
neuro-symbols. As described in section 4.4.4, there is the need to bind neuro-symbols occurring
within a certain time window or to consider certain sequences of symbol activations. This infor-
mation can also be extracted from examples and is calculated in the training phase A. A method
how to implement these principles is also given in section 5.5.

Concept Clarification

To make the concept of learning even clearer, it shall be illustrated by means of a concrete exam-
ple. The example uses the same sensor configuration and the same symbol hierarchy as already
described in section 4.2.5. It shall now be shown how to set connections in training phase 2A
and how to set feedback connections in training phase 2B. In training phase 2A, the connec-
tions between sub-unimodal and unimodal symbols are learned and it shall be determined what
values properties of sub-unimodal symbols must have to activate a particular unimodal symbol.
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(a) Learning Phase 4A

(b) Learning Phase 4B

Figure 4.36: Learning Phase 4

Therefore, examples are presented to the neuro-symbolic network. Input data for the learning
module are real world sensor data, which have already been pre-processed and transformed into
sub-unimodal symbols. The target data tell the system what signification the sensor values have.
For instance, to train the system what the symbol “object stands” means, different objects (table,
shelf, person, dog, etc.) are placed at different positions in the room. Because of the few sen-
sors the system is equipped with for this example, the tactile system cannot distinguish between
common objects and living beings like persons or animals. Therefore, in this modality, persons
and animals are handled like other objects. A further specialization of the object type can be
made when using additional information from the camera or the microphone. The values of the
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sensors that are activated by these object placements serve as input data in the training phase.
The meaning of the situation represents the target data.

Figure 4.37a illustrates what sensor activations can trigger the symbol “object enters”. To get
these sensor activations, different examples are presented to the system in which an object enters
the room and the triggered sensor data are recorded. For this situation, there is always activated
only the left floor sensor. Additionally, the motion detector is activated and the two light barriers
are triggered in a certain succession. In the special case of the situation “object enters”, due
to the small number of available sensors, there are always triggered the same sensors. However,
in other situations or in configurations with more sensor types and sensors of higher spatial
resolutions, there can occur differences in what sensors are triggered in different examples of the
same situation. In such a case, the learning algorithm needs to have the ability to generalize over
examples. To bind sub-unimodal symbols to the unimodal symbol “object enters”, there also
have to be considered properties of sub-unimodal symbols.

(a) Learning Phase 2A (b) Learning Phase 2B

Figure 4.37: Example for Input Data, Target Data, and Neuro-symbol Activation in Training Phase 2

The result of setting the forward connections in learning phase 2A corresponds to the connections
set in figure 4.15. After the connections between sub-unimodal and unimodal symbols have been
set in training phase 2A, a certain combination of sensor values that corresponds to one of the
four possible situations defined in the tactile system should trigger exactly one tactile unimodal
symbol. However, as mentioned in section 4.2.5, more than one symbol is activated at the same
time if there exist symbols that are made up of connections from the lower layer, which are
a subset of the connections of other symbols. To avoid these undesired activations, inhibitory
feedbacks are set in the training phase 2B. Therefore, the same “input data - target data pairs”
like in phase 2A are presented to the system a second time. The learning module 2B memorizes
the examples and compares what symbol should be activated in a particular situation and what
symbols are actually activated. Accordingly, feedback connections are set between the unimodal
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tactile symbols. Figure 4.37b illustrates what symbols are activated when presenting an example
of the event “object enters”. Feedback connections are set to overcome the problem of undesired
symbol activation. Figure 4.16 shows the result of training phase 2B after the connections have
been set.

4.5.3 Architectural Changes by Flexible Addition and Elimination of Neuro-

symbols

Determining neuro-symbolic connections, property values, location data, and timing data based
on examples greatly increases the flexibility of the presented system compared to “hardwired”
neuro-symbolic processing. A very useful supplement to these mechanisms would be to detect
redundancy or incompleteness in the data processing structure and to change the neuro-symbolic
structure accordingly to achieve greater efficiency.

Redundancy occurs if different perceptual images of a certain level and modality, which are
assigned to different neuro-symbols in the training phase A, are in fact triggered by the same
sensors and therefore also by the same lower-level neuro-symbols. In such a case, these neuro-
symbols would always be triggered concurrently if one of the corresponding perceptual images
occurs. Therefore, these symbols are redundant and all except one can be eliminated. This is
done in training phase B. As already described, in training phase B, inhibitory feedbacks are
set between symbols if one symbol is activated by a subset of lower-level symbols that activate
another symbol. However, this is not the only function that this training phase has. Additionally,
in this phase it is checked whether two symbols are always activated concurrently, because they
are made up of the same set of lower-level symbols. If such a case occurs, one symbol is eliminated
by removing all its connections to other symbols. Different algorithms are possible to check a
symbol layer for redundant symbols. One suggestion for an algorithm is made in section 5.5.

Concept Clarification

How redundant symbols can be eliminated shall be explained by means of an example in the
tactile system. The same principle can also be applied in the other modalities and the other
layers. For the explanation, the example already described in section 4.5.2 is extended a little.
For the tactile system, there are now defined five unimodal tactile symbols. Additionally to the
former symbols, there is added the symbol “object placed”. The correlations between the sub-
unimodal and the unimodal symbols are learned from examples in training phase 2A. For the
examples presented to the system, the connections set in this phase look as depicted in figure
4.38.

When comparing the connections of the symbol “object stands” with the connections of the
symbol “object placed”, it attracts attention that they are exactly the same. This is due to
the fact that in the examples, the same sensor values were triggered for both examples. There
now exist two symbols with different names that both represent the same situation. Therefore,
one symbol can be eliminated. This is done in training phase 2B by disconnecting the symbol
“object placed” from the sub-unimodal layer. As without connections the symbol will no longer
be activated, it will not be considered in later learning phases and has no influence on later
processing stages. Principally, the symbol can now also be assigned to another perceptual image
if additional symbols are needed in the tactile unimodal layer. In such a case, for being able to
better interpret the system, the labeling of the symbol can be changed.
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Figure 4.38: Connections after Training Phase 2A

Opposite to the case that neuro-symbols are redundant and should therefore be eliminated, there
might also exists only one neuro-symbol for situations that should better be further distinguished
and assigned to more than one neuro-symbol. An example would be to split the situation “person
opens door” into the two perceptual images “person opens door from outside” and “person opens
door from inside”. The differentiation whether the door is opened form inside or from outside
makes sense if these two situations have different meaning to the system and correlating percep-
tions. A splitting of neuro-symbols is done in training phase A of the different levels. The system
can detect a potentially desired splitting if in different examples of the same situation, different
lower-level symbols or different properties of lower-level symbols are triggered (see also section
5.5 and section 6.1).

4.6 Influence of Knowledge on Perception

In the former sections of this chapter, there have been mainly considered bottom-up aspects (also
called data-driven or data-based processes) of perception, which are based on incoming sensory
information. Incoming data are always the starting point for perception. Without incoming data,
there is no perception. However, as outlined in section 3.3.3, in the later stages of processing, per-
ception is often affected by knowledge of different forms. Such processes are said to be top-down
processes (also labeled as hypothesis-driven, expectation-driven, or knowledge-based processes).
Knowledge can be factual (semantic) knowledge, pre-experience, knowledge about the context in
which the objects and events occur, and expectation. Researchers do not yet agree if knowledge
is always involved in perception or not. However, there is broad consensus that prior knowledge
can help to interpret ambiguous sensory information and facilitate perception. Therefore, this
kind of top-down processing shall also be integrated into the perceptual model proposed in this
thesis.

Knowledge integration becomes especially important when not only one out of a few different
objects, events, situations, or scenarios has to be detected but one out of thousands. Under these
circumstances, it may happen that a situation or scenario cannot unambiguously be perceived
from the current sensor values, because two or more situations or scenarios might trigger the same
or very similar sensor values. In such a case, knowledge in different forms as well as “awareness”
of what has happened before may lead to an unambiguous decision. As outlined in section
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3.2, the hierarchical arrangement of perception and knowledge reverses during the maturational
process. For small infants, everything depends on the senses, and cognition is driven by concrete
perceptual reality. In adults, abstract knowledge derived from these early learning experiences
comes to govern the perceptual process. For the model, this means that connections from lower
to higher levels have to be formed first before knowledge can influence perception in a top-down
manner. In pure bottom-up processing, certain neuro-symbols are activated depending on the
sensor inputs. In the model, bottom-up information processing is the starting point for symbol
activation. However, knowledge can influence the activation or non-activation of these neuro-
symbols. Knowledge can have inhibitory or excitatory influence. This means that it can increase
or decrease the activation grade of neuro-symbols.

A fundamental question is on what level knowledge influences perception. Unfortunately, the
answers coming from neuroscience to this question are controversy. In the model of neuro-
symbolic processing, it does not seem to make sense to let knowledge already interact with
the lowest levels of perception like the sensor level or the feature level, because these levels
correspond to brain structures, which are already predefined at birth. Knowledge, however,
evolves only later on during lifetime. Therefore, it makes more sense to let interact knowledge
with layers where correlations are also only learned during system operation. In the model,
an interaction can principally take place from the sub-unimodal level upwards. Which level or
levels are best suitable and most effective for such an interaction is best determined by trying
out the different possibilities and evaluating the results. The results may also depend on the
concrete application. In the following, concepts are introduced how knowledge of different forms
can influence perception. For these concepts, there is also needed memory to make available
information about objects, events, and situations perceived in the past, which are of importance
for current or future perception. Therefore, before giving a more detailed description about
knowledge integration, the concept of storing relevant information from past events is discussed.

Past Perceptions and Memory

In section 4.3.1, it was outlined that information processing in neuro-symbolic layers is performed
event-based. This means that neuro-symbols are activated when certain sensors are triggered and
deactivated when the sensory information disappears. In other words, up to the scenario symbol
layer, symbol activations change when sensor values change. Information disappears when the
sensors are no longer triggered. However, sometimes it might be necessary to store certain
information derived form activated neuro-symbols for longer time. This is the case if certain
events that already happened and are no longer represented by activated symbols influence the
probability that certain other events can occur. In the brain, for storing information, memory is
needed. It is not yet fully understood how memory is coded and retrieved in the brain and on what
cortical levels it influences perception. It does not seem to be located in a small circumscribed
area but to be distributed over large areas of the brain.

In a real world environment, the sensory system can receive lots of information, and many objects,
events, or situations can be perceived every instant of time. However, not all information might
be useful or necessary for future perceptions. Besides this, the huge amount of incoming data
makes it impossible or at least ineffectual to store all information about the past. Therefore, a
selection process has to take place, which has the aim to only store information that is relevant
for future events. For example, when one multimodal symbol is activated, it might not make
sense to store all information coming from all sub-modalities. The information delivered by the
multimodal symbol might be sufficient. Aside from this, in many situations, it is not necessary
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to store the event that occurred itself but abstract from it what influence the event may have on
future perceptions.

Concept Clarification

The described circumstances get clearer by means of a concrete example. The example used is
again the example already introduced in section 4.2.5. There, it was detected if a person enters
the room, leaves the room, stands in the room, or walks around in the room. The event “person
enters” can now have an influence on the other three events. There cannot stand a person in
the room, walk around, or leave the room if he/she has not entered before. Therefore, it should
somehow be memorized if a person entered the room. However, the process of entering itself is
not the relevant information. Instead, the information to be stored should be that a person is
now present in the room.

Up to the scenario symbol layer, symbols are activated and deactivated when sensor values change.
In these layers, there exists no explicit memory that stores past states. In the proposed model,
for storing events or the consequences of events happened in the past, a new symbol layer is
introduced. This is the memory symbol layer (see figure 4.39). This layer comprises so-called
memory symbols, which can – similar to neuro-symbols – also have properties. The difference lies
in the “activation” of memory symbols. Unlike neuro-symbols, memory symbols are not activated
and deactivated based on objects and events appearing and disappearing, but they are rather set
and reset. The setting and resetting is triggered by different neuro-symbols. Memory symbols
are set after certain neuro-symbols have been activated and they are reset after other symbols
have been activated.

Figure 4.39: Introduction of a Memory Symbol Layer to Memorize Important Past Perceptions

One important question is from neuro-symbols of what level memory symbols can be set and
reset. From neuroscience and neuropsychology, there does not yet come a distinct answer to this
question. In the model, memory symbols can principally be triggered from information coming
from neuro-symbols of the sub-unimodal level upwards. However, it might make little sense for
many situations to trigger them from a level as low as the sub-unimodal symbol level, because
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one single symbol of this level does not comprise much information and by itself will not have
much influence on future events. Additionally, lower layers are more often subject to failures and
might deliver wrong information.

To set and reset memory symbols, they need to be connected to other neuro-symbols. One
question is how these connections can be set. One solution would be to let the system designer
choose these connections. However, as already described in section 4.5, for more flexibility, it
is useful to learn the adequate connections from examples. The learning method used for this
purpose is very similar to the methods presented in section 4.5.2. However, there exists only a
learning phase A, and there have to be determined connections that set a memory symbol and
other connections, which have the function to reset it. Therefore, memory symbols have two
independent inputs. Taking over principles from neuroscience as described in section 3.2, to be
able to learn the connections of this layer, the connections between symbols of lower levels they
are set and reset from must already have evolved. An example for the usage of memory symbols
is given further below.

Integration of Semantic Knowledge

As already mentioned in section 4.4.6, knowledge can influence the activation grade of neuro-
symbols. The influence of knowledge can be inhibitory or excitatory. In the following, the
influence of semantic knowledge on perception is described. As outlined in [ST02, chapter 5,
p. 150], semantic knowledge represents basic knowledge of the world. It is stored in the form
of third-person information of the kind that one might find in an encyclopedia. It comprises
bits of objective information about the world and its workings-facts such as “objects fall down”
and “persons do not walk through closed doors”. As already outlined, neuroscience has not yet
answered the question on what level knowledge interacts with perception. In the model, similar
like memory symbols, knowledge can principally interact with perception in levels equal to or
higher than the sub-unimodal level. The interaction of semantic knowledge with perception can
also require the storage of past events as just described.

It is not yet very well understood how semantic knowledge is coded and retrieved in the brain.
Semantic knowledge might – at least to a certain extend – be represented and stored in other
parts than the perceptual system of the brain. Therefore, in the presented model, semantic
knowledge is not represented by perceptive neuro-symbols but is considered to originate from
sources outside the neuro-symbolic network and to only interact with perceptive neuro-symbols.
As semantic knowledge comprises facts about the world, it can be represented by rules. These
rules decide if the activation of symbols is increased or decreased. An important question is how
the rules representing semantic knowledge can be acquired. One variant is to let the system
designer explicitly define and formulate these rules. As semantic knowledge represents world
knowledge, for humans, it is quite simple to define these rules. The second possibility would be
to learn and extract these rules from examples. This possibility is far more complex to implement
than the first one and will not be considered in the current model.

Concept Clarification

In the following, an example is given which clarifies the usage of memory symbols and semantic
knowledge in the perception process. To illustrate this fact, the example of section 4.2.5 is
extended a little by introducing a door contact sensor as additional sensor type to the system
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and some additional neuro-symbols like the sub-unimodal symbol “door status”, the unimodal
tactile symbols “door opens” and “door closes”, the unimodal acoustic signal “door click”, and the
multimodal symbols “person opens door” and “person closes door”. In this concrete example, two
memory symbols are set or reset depending on the activation of multimodal symbols. The memory
symbols have the purpose to store information, which is – together with top-down knowledge –
important for the perception process of objects, events, scenarios, or situations. In the example
depicted in figure 4.40, the system shall “know” that a person can only walk around in the room,
stand in the room, or leave the room if he/she entered before. This means that the symbols
“person walks”, “person stands”, and “person leaves” can only be activated if the symbol “person
enters” was activated before. A second example would be to memorize if the door was opened
or closed. The knowledge that a person can never enter or leave a room if the door is closed can
help to lead to a resolution of ambiguous scenarios where a person comes close enough to the
door to trigger the light barriers but does not enter or leave the room. Furthermore, there cannot
be detected a “person closes door” or “person opens door” situation if the door is already closed
or open. Such rules can be stored as semantic knowledge. A utilization of information of that
kind also requires a sort of memory to store important information from past events. Therefore,
the two memory symbols “person present” and “door open” are introduced. In the example, the
states of the memory symbols are set or reset when certain multimodal symbols are activated.
The memory symbol “person present” is set after the multimodal symbol “person enters” was
activated. It is reset after the symbol “person leaves” occurred. The symbol “door open” is set
by the symbol “person opens door” and reset by the symbol “person closes door”.

Figure 4.40: Interaction of Memory Symbols and Semantic Knowledge with Neuro-symbols

In figure 4.40, the blue dotted lines illustrate how knowledge influences the activation of mul-
timodal symbols. In this example, semantic knowledge can have inhibitory influence on the
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activation of symbols. If the memory symbol “door open” is not set, which indicates that the
door is closed, the activation of the multimodal symbols “person enters” and “person leaves” is
inhibited, because a person cannot pass through a closed door. Additionally, the symbol “person
closes door” cannot be activated, because the door is already closed. In contrast, if the symbol
“door open” is set, only the symbol “person opens door” is inhibited, because an already opened
door cannot be opened a second time. When the memory symbol “person present” is reset, it has
inhibitory influence on the multimodal symbols “person stands”, “person walks”, and “person
leaves”.

Integration of Context Knowledge

As outlined in section 3.3, besides pure factual (semantic) knowledge, context knowledge also has
a not negligible influence on perception. The definitions of context knowledge given by different
authors often differ from each other. A detailed discussion about context and its definitions
is given in [DA99]. In this article, context is defined as “any information that can be used to
characterize the situation of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user and application
themselves.”

Examples for context information that can be used do facilitate perception in the proposed model
for the envisioned applications are knowledge about the location and the environment where an
object or event is perceived or knowledge about the time of day, season, or temperature.

An example for using the information about the time of day would be to decide if a person is
preparing breakfast or supper in a kitchen. Even if the same food is prepared and almost the
same sensor values are triggered, knowledge about the context of time will lead to the decision
what is going on. There might also exist other activities that always take place at a certain time.
For example, the cleaning staff in a building might always work within a certain time period. This
shows that knowledge about the context can greatly facilitate object and event perception from
inconclusive sensor data. The principle how context knowledge influences perception works the
same way as already described above. There could exist a memory symbol “day of time”, which
in this case cannot be only set (time is known by the system) and reset (time is not known by
the system) but has a property, which contains the information about the current time. Stored
rules about which situations are likely to happen at what time can influence the activation of
neuro-symbols in a top-down manner.

In the model, context knowledge about the location of events or objects plays a special role.
Principally, it would be possible to handle location context like other kinds of knowledge and
context only in a top-down manner. However, the information about the location of perceived
images is accessible in all hierarchical levels. Therefore, the contextual location restrictions can
also be performed directly on lower hierarchical levels. This method was already described in
more detail in section 4.4.3.

Influence of Expectation

As described in section 3.2, in adults, abstract knowledge derived from early learning experiences
comes to govern the perceptual process. We see what we expect to see and are surprised or
fail to notice when our expectations are contradicted. Therefore, expectation is also considered
in the model. Expectation can be considered as a type of knowledge and therefore, similar to
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factual knowledge and context knowledge, it influences perception in a top-down manner. The
interaction of expectation with neuro-symbols works similarly to the other types of knowledge
already described. Expectation can increase or decrease the activation of neuro-symbols. In
the brain, the determination what is likely to happen next is not exclusively performed in the
perceptual system of the brain. How expectations are formed in the brain is a question that has
not yet been answered. For the model, it could be determined what events are more probable to
happen at certain locations, at a certain time, or after certain other events happened either by
the system designer or by statistical or other learning methods. Again, the second possibility is
more complex than the first one and will not be considered in the current model.

4.7 Modularity and Hybrid System Design

In the former sections of this chapter, a modular hierarchical model for multisensory information
processing was presented. This model is based on information processing of sensory data in
different modalities and over several hierarchical layers. Principally, information is processed by
so-called neuro-symbols, which are the basic information processing units of the system. Except
for the lowest level, symbols of a higher layer are “formed” by connections of neuro-symbols from
lower layers (or feedback connections from the same layer). On the lowest layer, neuro-symbols
are “extracted” from sensor values. However, especially in the lowest levels where neuro-symbolic
learning cannot be applied, it can require a lot of design effort to define correlations between
lower-level symbols and higher-level symbols. Therefore, in certain cases, it might be easier
to use already existing, workable solutions to extract higher-level symbols directly from sensor
data instead of determining these neuro-symbols by connections over several layers of lower-level
symbols.

The modular hierarchical structure of the model allows it to substitute for certain modules the
neuro-symbolic information processing by other methods. This is recommendable if these methods
achieve the same or a better result with less effort for the designer. When using such solutions, the
otherwise purely neuro-symbolic information processing structure becomes a hybrid system. The
usage of existing solutions is especially recommendable for the visual and the auditory modality.
Visual image processing and auditory data processing are huge research fields. There might
already exist workable solutions to detect and classify various objects and sounds. By using
these existing solutions, sub-unimodal or unimodal visual and acoustic neuro-symbols can be
determined directly from sensor data. The feature symbol level (and in many cases also the sub-
unimodal level) are skipped in processing. However, implicitly, most existing algorithms used
also extract features from raw data.

Concept Clarification

To make the concept of hybrid systems design just outlined even clearer, it shall now be explained
by means of a concrete example (see figure 4.41). Due to the modularity of the model, for certain
modalities or sub-modalities, neuro-symbolic information processing can be substituted by other
strategies. For the explanation, the same example is used that was introduced in section 4.2.5
when explaining the usage of feedback connections.

In the research field of image processing, there do already exist methods and algorithms in image
processing to identify persons from pixel data of a camera. To derive the information whether
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Figure 4.41: Example for Hybrid System Design

a person is present in the room from camera data and activate the unimodal visual symbol
“person” in case of the presence of a person, such a pattern recognition algorithm can be applied.
Generally, for image processing, special characteristics are calculated from pixel images. The
calculation of these characteristics corresponds to the determination of feature symbols. The
pattern recognition algorithms to identify persons based on these features correspond to the
connections between feature symbols and sub-unimodal as well as unimodal symbols.

Similar to the research field of image processing, there do already exist solutions for lots of
situations where certain kinds of sound signals need to be classified. Besides statistical methods,
in literature, lots of articles can be found where sound signals are classified by artificial neural
networks. Therefore, in the example, to detect the characteristic noise of steps, it is suggested
to use neural networks. The advantage of neural networks is that they can learn correlations
between data from examples. Methods how to design and train neural networks for this purpose
can be found for example in [Roj96, CS97]. Again, there are generally extracted certain features
from auditory data before presenting them as input data to neural networks. This corresponds
to the calculation of feature symbols. During the training phase of neural networks, weights of
connections between neurons are set according to the presented examples, which is related to the
connections set during the neuro-symbolic training phase 1A and 2A, respectively15.

In the example, for the tactile sub-modalities, only very few sensors are used. The correlations
between sensor values, feature symbols, and sub-unimodal symbols are quite straightforward. It
does not make sense to learn these very simple correlations. Therefore, they are predefined before
system startup.

15When using only one microphone, connections between features and unimodal symbols are set directly.
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Chapter 5

Design Methodology and

Implementation

“Nothing shocks me. I’m a scientist.”

[Harrison Ford as Indiana Jones]

In chapter 4, a bionic model for human-like perception based on neuroscientific and neuropsycho-
logical research findings was introduced. To evaluate and test the model, it has to be implemented.
This chapter aims to give an overview about the model implementation1. In section 5.1, the used
tools for implementation and simulation are outlined. Section 5.2 describes into what modules
the model is divided for the implementation and section 5.3 describes the interfaces between
the module blocks. How model building blocks are actually realized is drafted in section 5.4.
Section 5.5 gives an overview how learning and adaptation is performed, and section 5.6 finally
summarizes the system design methodology.

5.1 Tool Selection

Principally, the model could be realized in hardware or in software. The advantage of a hardware
realization would be the capability of real parallel processing of data. In contrast to a realization
in hardware, a software simulation offers more flexibility in changing design parameters for the
evaluation process. For test purposes, the proposed model was simulated on a computer. This
section briefly describes the tools used for simulation.

1The aim of this chapter is to give a design overview of the whole system and does not intent to get bogged in
too specific implementation details. For more specific information, it is recommended to take a look at the source
code and its documentation.
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5.1.1 Tool for Model Simulation

To test the model of human-like perception introduced in chapter 4, the design is implemented and
simulated in software. Therefore, a suitable simulation tool has to be chosen. One requirement for
the software tool is to allow parallel processing (or simulated parallel processing) of information,
because sensory information has to be processed separately and in parallel before being combined
and merged. Furthermore, the introduced concept of neuro-symbols, the interconnection of neuro-
symbols, and their information exchange should be easy to implement. Additionally, it is desirable
to have a graphical programming interface where the neuro-symbols can be placed and connections
can be set to improve design clarity. The simulation tool chosen for this purpose is AnyLogic2.

AnyLogic has proven to be successful in the modelling of large and complex systems. The main
building block of the AnyLogic model is the active object. Active objects can be used to model
very diverse objects of the real world: processing stations, resources, people, hardware, physical
objects, controllers, etc. AnyLogic supports the programming language Java. Active object
classes map to Java classes. To implement the neuro-symbolic information processing concept,
besides active objects, state variables, interface variables, ports, connections, messages, timers,
and state charts are used.

Each of the design elements just mentioned is now briefly described to understand how it can
be used to realize the proposed model. For further information about the modelling language
AnyLogic see [Any04]. Figure 5.1 illustrates how the different design elements are represented
graphically in AnyLogic.

Figure 5.1: Design Elements of AnyLogic used for Implementation

Active Objects: As already mentioned, active objects are the main building blocks of the
AnyLogic model. Active objects are instances of active object classes. When developing an
AnyLogic model, there are actually developed classes of active objects and their relationships
are defined. Active object classes map to Java classes and therefore allow inheritance. Once an
active object class is defined, multiple active object instances can be created in the model. It is
also possible to model class hierarchies.

State and Interface Variables: To define some data unit, a variable can be used. Variables
may be either internal (state variables) or public (interface variables). Variables can appear in
differential and algebraic equations and model values changing continuously over time. There
can also be declared Java member variables. Interface variables can be shared with other active

2Version 5.2
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objects. When two interface variables of different objects are linked, changes of one variable are
immediately propagated to the other variable. The value of the variable defined as output will
be passed to the variable defined as input.

Messages: A message is a data packet, which is passed between active objects. Messages can
model various objects of the real world. Usually, a message carries some data. To define a
message, a message class needs to be defined with necessary member variables.

Ports: Ports play the central role in message passing inside objects and between objects. Mes-
sages are sent and received via ports. Ports are bidirectional and serve both for input and output.

Connections: To establish inter-object interaction, interface elements of active objects (ports,
interface variables) have to be connected with connectors. A connector is a line connecting two
ports or two variables. Connecting two ports means that messages will be passed between them.
Connecting variables means that they will have the same value at any moment of time.

Timers: The activities within the active object can be defined using timers. Timers are used to
schedule user-defined actions.

State Charts: Active objects perform operations in response to external or internal events
and conditions. The existence of a state within an active object means that the order in which
operations are invoked is important. For some objects, this event- and time-ordering of operations
can best be characterized in terms of a state transition diagram – a state chart. A state chart is
used to illustrate the state space of a given algorithm, the events that cause transitions from one
state to another, and the actions that result from state changes.

5.1.2 Tool for Sensor Data Generation

To test the model and its implementation, sensors are necessary that are triggered when certain
activities are going on in the environment. These sensor data are the starting point for information
processing in the model. For simulation and test, objects, events, scenarios, and situations in a
building shall be perceived. However, in principle – with certain modifications – the model could
also be applied to other applications (see section 1.3).

As described in section 2.1.2, in the ARS-PC project, for test purposes, a room – the institute’s
kitchen – has been equipped with about 100 sensors. Among the sensor types are tactile floor
sensors, motion detectors, door contact sensors for the entrance door and the fridge door, a
camera, and a shock detector to indicate if the kitchen’s coffee machine is activated. This envi-
ronment can be used to get test data. However, as it turned out, this sensor configuration only
allows limited testing due to the relative small number of sensors, the spatial restriction of the
test environment, and the fact that the configuration is fixed and cannot be changed to perform
different experiments. In contrast, the developed simulator mentioned in section 2.1.2 offers more
flexibility for testing and allows the consideration of lager areas and whole virtual buildings. With
the simulator, the number, types, spatial resolution, and location of sensors can be varied. For
this reasons, for implementation and test, simulated sensor data of sensors typically occurring
in a building are used. The simulator is capable of calculating from simulated activities going
on in the virtual environment what sensor values would be triggered from these activities. The
simulation on sensor basis is possible for tactile floor sensors, motion detectors, light barriers,
and door contact sensors. For audio and video data, a fragmentation down to the sensor level
has not been implemented until now. For these two modalities, there can be generated symbolic
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information like for example that a person is perceived by a video camera or that the sound
of steps or a voice was detected. For the simulation of the model presented in this work, this
fact is not necessarily considered as a disadvantage. The provision of symbolic data for the vi-
sual and acoustic modality allows it to skip the lowest-level processing steps for these modalities
which reduces the design effort without significant loss of testability of the model. It also is in
accordance with the principle of modularity and hybrid system design of the model (see section
4.7), according to which for certain modalities – specially for video and audio data processing –
workable solutions should be used to extract higher-level symbolic information directly from raw
data if this reduces the design effort.

5.2 Model Modularization

To implement and simulate the model introduced in chapter 4, the design is spilt into two main
building blocks, both modelled as active objects (see figure 5.2). The first block is the sensor
value generator and the second is the perceptual system. The perceptual system comprises an
implementation of the model introduced in chapter 4. The sensor value generator is responsible
for producing sensor values or in certain cases also symbolic information to test the model. As
outlined in section 5.1.2, for evaluation purposes, sensor data are simulated. This allows flexible
changes in the sensor configuration and the environment, which is an advantage during testing
and evaluation versus a fixed hardware installation of sensors. The perceptual system receives
information from the sensor value generator via ports. Due to the modular splitting into the two
blocks, the sensor value generator can be easily substituted by a system providing data from a
real world configuration suited for a certain application.

Figure 5.2: Two Main Building Blocks for Simulation

How data provided by the sensor value generator can be generated is not subject of this thesis.
A discussion of this topic can be found in [Har08]. What shall be discussed in more detail in this
chapter is how to implement the perceptual system. The perceptual system can be further divided
into the modules neuro-symbols, memory symbols, knowledge, and focus of attention depicted in
figure 5.3. The modules “neuro-symbols” and “memory symbols” are in fact not single modules
but are here represented in place of all single neuro-symbols and memory symbols existing in the
perceptual system (see figure 5.5). The modules knowledge and focus of attention can directly
communicate with single neuro-symbols and memory symbols, respectively, without having to
interact through a separate interface.

As outlined in section 4.2.2, there exist different types of neuro-symbols for different hierarchical
levels and modalities. As described in section 5.1.2, for testing, it is not necessary for all modalities
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Figure 5.3: Division within the Perceptual System

to process perceptive information from the sensor data up to the scenario level. This would lead
to a lot of design effort for defining correlations between the lowest levels without significant gain
of insights. The sensor value generator provides the possibility not only to provide sensor data
but also symbolic data by just not splitting its perceptive information down to the sensor level.

Figure 5.4 shows from which level upwards information processing has been implemented for the
different hierarchical levels and modalities. The sub-modality of tactile floor sensors is the only
modality where information processing can actually start from sensor data. Therefore, the first
information processing level is the feature symbol level. For the other tactile sub-modalities, the
sensor value generator is expected to deliver already sub-unimodal symbols. In the visual and
the acoustic modality, there shall even be provided unimodal symbolic information.

As already mentioned, the perceptual system is modeled as active object. Similarly, neuro-
symbols, memory symbols, the knowledge module, and the focus of attention module are also
modeled as active objects. These model building blocks can now be placed in the perceptual
system (see figure 5.5). For the neuro-symbols and the memory symbols, more than one instance
of their corresponding active object is used.

5.3 Interfaces between Model Building Blocks

In the last section, the model was divided into different modules. To perform the desired per-
ception task, these modules have to interact and communicate with each other. To allow such
a communication, so-called ports and connectors are used in AnyLogic. Ports are graphically
depicted as squares and connectors as lines.

Figure 5.6 shows the interface between the sensor value generator and the perceptual system. Both
the sensor value generator and the perceptual system have seven ports being interconnected by
connectors. The flow of information is directed from the sensor value generator to the perceptual
system. Therefore, the ports of the sensor value generator are configured as output ports and the
ports of the perceptual system are configured as input ports. To exchange information via ports,
messages are used. How messages for different purposes have to look like will be explained later
on in section 5.4.
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Figure 5.4: Implemented Levels and Modalities of Neuro-symbolic Information Processing

Taking the sensory receptors of the human body as archetype, there would have to exist as many
ports as different sensors. However, as already outlined, for all modalities and sub-modalities
except for the tactile floor sensors, the sensor value generator already provides symbolic data.
Therefore, it is sufficient to use only one port for each of these modalities and sub-modalities,
respectively. To preserve straightforwardness of the design, for the sub-modality of the tactile
floor sensors, there is also used only one single port in the simulation. The information from what
sensor data originate is coded in the messages sent via the port. Therefore, in sum, there exist six
ports for information exchange of sensor data and symbolic data. The seventh port of the sensor
value generator and the perceptual system is used to exchange control data. Control data are not
necessary after the system is once configured correctly. However, control information is necessary
at startup during the learning phases where correlations between sensor values are learned from
examples.

As depicted in figure 5.5, within the perceptual system, there exist different model building blocks.
To communicate, these blocks also have to be equipped with ports. Memory symbols and the
knowledge module additionally use so-called interface variables. Their practical effect will be
explained in section 5.4.2. Figure 5.7 depicts the building blocks including their communication
interfaces. As can be seen in the picture, there exist additional so-called learning ports, which
are needed during the training phases of the system. After training, they are no longer required.

For information exchange between connected units, messages are sent via the ports. There exist
different message types for different building blocks. Neuro-symbols use so-called neuro-symbol
messages to transmit information. Neuro-symbol messages will be introduced in section 5.4.1.
For information exchange between memory symbols and knowledge, there are not used messages
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Figure 5.5: Placement of Model Building Blocks in Perceptual System

Figure 5.6: Ports and Connectors for Information Exchange between Sensor Value Generator and Per-
ceptual System
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Figure 5.7: Ports and Interface Variables for Information Exchange between Building Blocks within the
Perceptual System

but communication takes place by so-called interface variables depicted as triangles (see section
5.4.2). For the focus of attention module and the knowledge module, there also exist special
message types (see sections 5.4.2 and 5.4.3). Besides these messages for information exchange
between building blocks responsible for the perceptive task within the perceptual system, there
also exist messages, which are generated from the sensor value generator and are passed via the
input ports of the perceptual system to the units they are connected to. For this purpose there
exists a message type to transmit sensory data. For sending symbolic data, the same message
type is used like for the information exchange between neuro-symbols. Additionally, there exist
so-called control data messages comprising control information in addition to sensor data and
symbolic data necessary during the different learning phases.

5.4 Realization of Model Building Blocks and their Communi-

cation

In the figures 5.5 and 5.7, different model building blocks necessary for the implementation were
depicted. This section comprises a description how to realize these model building blocks and
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their communication in AnyLogic. The main building blocks are neuro-symbols of different types
(see section 5.4.1), memory symbols (see section 5.4.2), knowledge (see section 5.4.2), and focus
of attention (see section 5.4.3).

5.4.1 Neuro-symbols

In chapter 4, the information processing principle in terms of neuro-symbols was introduced.
Neuro-symbols are the basic information processing units of the system. This section starts with
a description of how neuro-symbols can principally be realized in AnyLogic and continues with
an outline about implementation particularities for neuro-symbols of different hierarchical levels.

Principal Realization of Neuro-symbols and their Information Exchange

Basic Neuro-symbols and their Information Exchange: In AnyLogic, neuro-symbols can
be modelled as active objects (see figure 5.8). To simulate neuro-symbols and their informa-
tion exchange with other neuro-symbols – in the following also simply referred to as symbols –
besides active objects, the following AnyLogic design elements are used: state variables, ports,
connections, and messages.

Figure 5.8: Realization of a Basic Neuro-symbol in AnyLogic

Each active object has an input port and an output port. Through the input port, the symbol can
principally receive information in form of messages from the sensor value generator, from other
symbols, from the knowledge module, or the focus of attention module. Through the output
port, messages containing the actual activation grade of the symbol and the values of properties
are passed to other symbols to which this port is connected. Each neuro-symbol has a location
property, which is represented by state variables. For a first implementation, there are considered
the x- and the y-position of a neuro-symbol represented by the state variables symbolLocationX
and symbolLocationY both of the type double. Principally, it would also be possible not to
represent the position by single coordinate points but by areas within which a perceptual image
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was perceived. Neuro-symbols can also comprise additional properties being represented as state
variables of various types3.

As just mentioned, information between neuro-symbols is exchanged by messages. A basic mes-
sage contains information about the type and the name of the neuro-symbol it was sent from,
about its activation grade, and the x- and y-location of the perceptual image the neuro-symbol
represents. In a message, the type, the name, the activation grade, and the property values are
represented as member variables of a message class (see figure 5.9).

Figure 5.9: Message for Information Exchange between Neuro-symbols in AnyLogic

Whenever a message is received at the input port of a feature symbol, certain calculations are
performed. The functions that shall be executed are defined in the on receive action section of the
input port (see figure 5.8). The functions themselves as well as additional variables can be defined
in the additional class code section of the active object representing the neuro-symbol. When a
message is received via the input port, first the message type is checked by the function checkIn-
putMessageType(msg). If the message is of a valid type, its member variables are extracted and
further processing steps are performed. If the message comes from another neuro-symbol, based
on the message and the values of the activation grade and the location properties, the current
activation grade and the location values of the neuro-symbol are calculated by the functions cal-
culateSymbolActivationGrade(msg) and calculateSymbolLocation(msg). These two functions can
also consider information of different reliability coming from different modalities. If the message
comes from the knowledge module or the focus of attention module, the step of recalculating the
location information can be skipped. Next, it is checked by the function checkIfSymbolActive(),
which is defined in the additional class code section, whether the sum of incoming activations
exceeds the threshold value of the symbol. If the threshold is exceeded, the symbol is activated.
The function createAndSendOutputPortMessage() is responsible for creating an output message
based on the incoming data as well as for sending this message to other symbols via the output
port.

Neuro-symbols with Time Window: As described in section 4.4.4, neuro-symbols reacting
to input activations all occurring concurrently are not sufficient in all cases. In certain situa-
tions, it is also necessary to consider activations occurring within a certain time window. To
cover these cases, the basic symbol type has to be extended. Therefore, a timer with a certain

3The assignment of symbols to spatial areas and additional properties are left out in the description of the basic
neuro-symbol type given here.

116



Design Methodology and Implementation

expire time is added to the active object that represents the neuro-symbol (see figure 5.10). The
necessary length of the time window can be derived from examples during the learning phase.
In comparison to the basic neuro-symbols described in the last paragraph, the method calcu-
lateSymbolActivationGrade(msg) has to perform some additional functions. The principle for
considering activations within a certain time window has already been explained in section 4.4.4.
If the symbol received input information from an activated neuro-symbol the first time, the timer
with an expire time corresponding to the length of the time window is started. There are now
considered activations coming from all inputs until the time window is expired or the activation
grade exceeds the threshold value of the symbol. If one of these two conditions is fulfilled, the
timer is stopped and its value is reset and not started until the next message of an activated
neuro-symbol is received via the input port. The stopping and resetting of the timer is performed
in the function checkIfSymbolActive().

Figure 5.10: Realization of a Neuro-symbol Considering Activations within a Time Window

Neuro-symbols Considering Temporal Successions: In some cases, it is necessary to con-
sider temporal successions of received symbol activations. The principle for handling successions
of events was already outlined in section 4.4.4. In AnyLogic, there can be used state charts
including timers for handling such successions (see figure 5.11).

Figure 5.11: Realization of a Neuro-symbol Considering Temporal Successions of Activations

Within the state chart, the necessary temporal succession of events can be stored. If the succession
of incoming activations shall be learned from examples, a state chart structure as depicted in figure
5.12 can be used. Between the particular states, transitions with transition conditions exist which
can be configured according to the values derived from the presented examples. The forward
connections between states depicted as short lines and labeled as “go to next state” represent the
transition conditions for getting from one state to the next. A transition takes place whenever the
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next neuro-symbol necessary for the temporal succession is activated. Transitions from a state
to the initial state – here labeled as “go to initial state” – are run through if a timeout occurs.
A timeout takes place when there was not made a transition from one state to the next for a
certain time, because there was not activated the neuro-symbol necessary for this transition. In
such a case, neuro-symbols activated until now have to be activated again to run through the
start chart. The time that can pass before there is made a transition to the initial state can be
extracted from examples presented to the system. The transitions from the different states to the
final state labeled as “go to final state” are necessary, because the number of states needed for a
particular neuro-symbol is not known at initial system startup but only after the training phase.
For a neuro-symbol considering temporal successions, there are reserved in advance a number
of states, which will be sufficient in any case. If it turns out during the training phase that
only fewer states are necessary, there is set the transition condition from the last state needed
to the final state to true. By this measure, the states coming after this state are skipped. If the
final state of the state chart is reached, the corresponding neuro-symbol is activated. For neuro-
symbols including state charts, the function calculateSymbolActivationGrade(msg) is responsible
for extracting information from incoming messages and for setting variables necessary for state
transitions.

Figure 5.12: State Chart for Learning Temporal Successions of Activations of a Neuro-symbol

General Neuro-symbols: To allow the determination of correlations by learning from examples,
it shall not have to be fixed at initial system startup if a neuro-symbol shall handle only concurrent
activations, activations occurring within a time window, or temporal successions of activations.
Therefore, it is desirable to have available one general neuro-symbol type that can principally
handle all three possibilities. The decision which of the three possibilities is needed shall be
determined only during the learning phase. As can be seen from figure 5.13, such a general
symbol type comprises both a timer for considering activations within time windows and a state
chart for considering temporal successions of events. During the learning phase, it is determined
which neuro-symbol type is actually needed and the parameters of the timer and the state chart
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are set accordingly. If the timer or the state chart or both are not needed, the parameters are
set in a way that they make no contribution in the process of determining the activation grade
of the neuro-symbol.

Figure 5.13: Realization of a General Neuro-symbol

Realization of Neuro-symbols of Different Hierarchical Levels

As mentioned in chapter 4, in the model, there exist neruo-symbols of different types: feature
symbols, sub-unimodal symbols, unimodal symbols, multimodal symbols, and scenario symbols.
The requirements for neuro-symbols in different hierarchical levels and modalities differ slightly.
In the following, these different neuro-symbol types are discussed. Principally, the neuro-symbols
being described now inherit the variables and functions of the neuro-symbols just introduced.
Additionally, there are added further necessary variables and functions. Inherited functions can
also be overloaded.

Feature Symbols: Feature symbols are a special kind of neuro-symbols, which have a close
connection to sensory raw data and to the topographic arrangement of the sensors. Each feature
symbol has a location value represented by the variables symbolLocationX and symbolLocationY.
Unlike to neuro-symbols of higher layers, the values of these two variables are fixed and corre-
spond to the location of the sensors the neuro-symbols are correlated with. Therefore, the call
of the function calculateSymbolLocation(msg) can be skipped. The feature symbol layer is also
the layer where focus of attention interacts with perception (see section 4.4.5). The spatial area
the focus of attention is currently directed to as well as the size of the focus of attention is circu-
larized to the feature symbols by messages sent from the focus of attention module (see section
5.4.3). The processing of this information is performed by a sub-function called by the function
calculateSymbolActivationGrade(msg) of each feature symbol. The function calculateSymbolAc-
tivationGrade(msg) is also responsible for determining if the value of the location property of
a feature symbol lies within the spatial area of the current focus of attention or not. If it lies
outside the focus of attention, information about the activation grade of the feature symbol is
not transmitted to neuro-symbols of the next higher hierarchical layer, which is generally the
sub-unimodal layer. For transmission of information to higher layers, the function createAnd-
SendOutputPortMessage() is responsible. In the model, depending on the sensor type the feature
symbol is derived from, the appearance of feature symbols can differ slightly as they can have
different properties. However, all feature symbol types can be derived from the basic feature
symbol type just described.
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Sub-unimodal Symbols: Sub-unimodal symbols receive information from feature symbols and
the knowledge module. For sub-unimodal symbols, the topographic location information of the
feature symbols is transformed into location information only contained as properties. Besides
the location property, sub-unimodal symbols can comprise additional properties. The additional
properties that sub-unimodal symbols can have strongly depend on the sensor type and the
feature symbols they are derived from. For the simulation, there are implemented sub-unimodal
symbols extracted from sensor data of tactile floor sensors and their feature symbols. For the sub-
modalities correlating with motion detectors, light barriers, and door contacts, there are already
used symbolic data.

Unimodal Symbols: Unimodal symbols receive information from different sub-unimodal sym-
bols and from the knowledge module. Like the other symbol types, they can also comprise other
properties additionally to their location property. In the implementation, there are realized vi-
sual, auditory, and tactile unimodal symbols. Visual and auditory neuro-symbols are directly
activated by symbolic information from the sensor value generator. For the tactile modality,
unimodal neuro-symbols are activated as a result of sub-unimodal symbol activations. These
sub-unimodal symbols comprise location information. As outlined in section 4.4.3, location in-
formation is an important factor in the process of binding. Therefore, there have to be defined
additional variables and sub-functions to calculate, store, and check such location data. The cal-
culation of these data is performed during learning (see section 4.5.2). In the operation phase, the
function calculateSymbolLocation(msg) is responsible for checking matches of lower-level symbols
based on location information as well as for calculating the location of the current symbol.

Multimodal Symbols: Multimodal symbols receive information from different unimodal sym-
bols and from the knowledge module. Again, multimodal symbols can comprise properties ad-
ditionally to their location property. Similar as for tactile unimodal symbols, for multimodal
symbols, location information plays an important role for binding of information. The handling
of location information is equivalent to the handling in the unimodal tactile layer.

Scenario Symbols: Scenario symbols can receive information from a succession of different
multimodal symbols and from the knowledge module. Scenario symbols can represent situations
taking place within longer time periods, and the multimodal symbols that trigger them can
be spread over different locations. Therefore, for scenario symbols, a location property is not
obligatory. However, it often makes sense to locate a scenario symbol within a certain spatial
area. Again, scenario symbols can contain different additional properties.

5.4.2 Memory Symbols and Knowledge

In section 4.6, it was described how memory and knowledge can influence perception. Integration
of memory and knowledge is important for resolving ambiguous sensor data, which occur if the
system shall be capable of perceiving many different objects, events, scenarios, and situations.
Memory symbols are used to store important consequences of past events. For realizing memory
symbols in AnyLogic, again, active objects are used (see figure 5.14). Memory symbols can
be set and reset by different activated neuro-symbols from the sub-unimodal level up to the
scenario symbol level. Memory symbols have two distinct input ports labeled as inputPortSet
and inputPortReset. Neuro-symbols, which are responsible for setting a certain memory symbol,
are connected to inputPortSet. Neuro-symbols that shall reset it are connected to inputPortReset.
Similar like neuro-symbols, memory symbols can have properties. Unlike for neuro-symbols, a
location property is only optional. At system startup, memory symbols are generally neither set
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nor reset, but their state is undefined. The current state of a memory symbol is represented
by the variable symbolActivationState. This variable is of the type enum and can have three
different states: set, reset, and undefined. The variable is declared as interface output variable
and is connected to an interface input variable of the knowledge module via a connector (see
figure 5.14). This means that the corresponding variable of the knowledge module is changed
whenever the variable of the memory symbol gets a new value. The setting and resetting of the
variable is performed in the on receive action sections of the two input ports.

Figure 5.14: Realization of a Memory Symbol in AnyLogic

Figure 5.15 illustrates the flow of information from memory symbols to the knowledge module and
back to neuro-symbols. Due to easier interpretation and overview, the connections from neuro-
symbols to memory-symbols are not depicted. Activated neuro-symbols from the sub-unimodal
level up to the scenario level can set and reset memory symbols. Depending on the set memory
symbols, knowledge interacts with neuro-symbols by increasing or decreasing the activation grade
of certain neuro-symbols. This interaction can take place at neuro-symbol levels higher than the
feature symbol level.

The task of the knowledge model is to determine based on set memory symbols and correlat-
ing rules what neuro-symbols shall be influenced and in what way their activation grade shall
be modified. Accordingly, messages are sent via the output port to these neuro-symbols. The
determination what messages shall be sent is performed by the function determineRetroaction()
defined in the additional class code section of the knowledge module. The sending of messages
is carried out by the function createAndSendOutputPortMessage(). These functions are called
whenever an interface variable of the knowledge module changes. To register these changes, for
each interface variable, a state chart with two states is used in which the value of the interface
variable serves as transition condition between the states (see figure 5.16). The reason for using
interface variables and state charts instead of the communication via a port is due to “stability
reasons” to avoid multiple circulations of messages caused by feedback connections to lower pro-
cessing stages (see section 6.2). In the action section of each transition, the mentioned functions
determineRetroaction() and createAndSendOutputPortMessage() are called. A message sent from
the knowledge module to neuro-symbols has the format depicted in figure 5.17. It contains in-
formation about the type of the target neuro-symbol and its name. Additionally, it is indicated
by the variable activationGrade in what way the activation grade of the target symbol shall be
modified.
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Figure 5.15: Interaction between Memory Symbols, Knowledge, and Neuro-symbols

Figure 5.16: Realization of Knowledge Module with Interface Variables and State Charts

5.4.3 Focus of Attention

In section 4.4.5, it was explained how focus of attention can resolve the binding problem in
perception in case of multiple events happening concurrently. For the model, it was suggested
that focus of attention should interact with perception on the feature symbol level. This decision
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Figure 5.17: Message for Information Exchange between Knowledge Module and Neuro-symbols

was taken due to the topographic structure of the feature symbol level.

Figure 5.18 illustrates graphically how focus of attention interacts with neuro-symbolic perception
on the feature symbol level. For feature symbols corresponding to spatial areas lying outside the
focus, their activation grade is decreased to inhibit further information processing in sub-unimodal
level. A further processing of the information in the next-higher feature symbol level is however
possible. For other modalities, which already receive symbolic information, there is implemented
a filter, which filters out symbols with location values lying outside the current focus of attention.
However, this is not depicted in this figure.

As described in section 4.4.5, the beam of attention needs to be guided somehow. This process
might be influenced from perceived images as well as from knowledge, expectation, but also from
other processes like emotions. It is very probable that there are involved processes, which are
not explicitly assigned to the perceptual system of the human brain. At the current state of the
model, it is not considered by means of which processes the beam of attention is directed. It
is assumed that the coordinates where the beam is directed as well as the size of the beam are
provided from an external source and there has only been programmed the interface to perception
based on the given coordinates and the size of the beam. The focus of attention interface has one
input port and one output port and contains variables representing the position and size of the
beam (see figure 5.19). The input port has the function to collect information from perception
and other brain processes. In the current implementation, the input port is not connected.

The variables attentionCenterLocationX and attentionCenterLocationY indicate at what location
the center of the focus of attention lies. The variables attentionWidthX and attentionWidthY
determine the size of the beam. The variables are of the type double. In the implementation, the
beam has a rectangular form. However, with slight modifications in the implementation, it could
also have other shapes. Via the output port, the values of the variables attentionCenterLoca-
tionX, attentionCenterLocationY, attentionWidthX, and attentionWidthY are sent as message to
the feature symbol level. The member variables of the messages sent from the focus of atten-
tion module are depicted in figure 5.20. A message is sent whenever the size or the center of
the beam of attention changes. The values of the member variables are set by the function di-
rectFocusOfAttention(double attentionCenterLocationX, double attentionCenterLocationY, double
attentionWidthX, double attentionWidthY) defined in the additional class code section. The same
function is also responsible for sending the message via the output port. The message is sent to
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Figure 5.18: Interaction of Focus of Attention with Feature Symbol Level

Figure 5.19: Realization of the Focus of Attention in AnyLogic

every feature symbol that is connected to the output port of the focus of attention module. At
system startup, the beam covers the whole spatial area.
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Figure 5.20: Message Format sent from Focus of Attention to Feature Symbols

5.5 Methods for Learning and Adaptation

In section 5.4.2 and section 5.4.3, it was already explained how focus of attention and knowledge
interact with neuro-symbols and memory symbols and how these units are interconnected. These
connections are fixed at initial system startup. In contrast, connections between neuro-symbols –
at least in higher hierarchical levels – as well as connections between neuro-symbols and memory
symbols need not be predefined but can be learned from examples. Therefore, for these symbols,
there do not exist interconnections at initial system startup. Instead, neuro-symbols are connected
to so-called learning ports. In figure 5.21, it is illustrated in what way neuro-symbols are connected
to different learning ports at initial system startup.

In the described implementation, there can be learned feedback connections between neuro-
symbols of the sub-unimodal tactile modality of the tactile floor sensors (1). There can be
determined the connections between the different sub-unimodal tactile neuro-symbols and uni-
modal tactile neuro-symbols (2). On the unimodal tactile level, there are also learned feedbacks
between unimodal tactile neuro-symbols (3). In a further processing stage, there can be deter-
mined connections between different unimodal symbols and multimodal symbols (4) as well as
feedbacks between multimodal symbols (5). The learning port (6) is responsible for setting the
connections between multimodal symbols and scenario symbols and the port (7) for the feedback
connections between scenario symbols. Port (8) allows it to determine connections between neuro-
symbols of different levels and memory symbols. For the learning port responsible for learning
correlations between neuro-symbols of different levels and memory symbols, the connections are
only adumbrated with arrows of the colors of the corresponding neuro-symbols to preserve the
clarity of the graphic.

As can be seen from figure 5.21, to each learning port, neuro-symbols of certain types as well
as the control port of the perceptual system are connected. Via the control port, control data
from the sensor value generator containing information about the current training phase and the
meaning of the data currently sent via the other six ports are transmitted. After training is
completed, all necessary connections between neuro-symbols and memory symbols are set, the
connections to the learning ports are cancelled, and the ports no longer have an influence on
information processing.

As already outlined in section 4.5, learning is based on examples and is carried out in different
phases starting at the lowest level and continuing with the next higher level. As the system
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Figure 5.21: Connections from Neuro-symbols to Learning Ports

shall be able to learn connections between symbols from examples, additional variables, arrays
of variables, and functions have to be defined for the perceptual system that are only active and
necessary during learning. After the learning phase, the variables and functions do no longer
take influence on the system. The variables and functions are responsible for memorizing the
presented examples during the training in order to determine the most suitable connections and
also to set adequate spatial areas within which a binding of information is possible. Additionally,
the influence of other property values of neuro-symbols for symbol activation is specified. There
also have to be determined the duration of time windows and the temporal succession of events.
These processes are performed by the functions memorizeExamples(msg) and calculateAndSet-
Correlations(). These functions exist for each learning port and differ for each port slightly in
the tasks they have to perform. The general aim of the function memorizeExamples(msg) is
to memorize a certain number of examples to allow the determination of correlations between
examples representing the same situation.

The function calculateAndSetCorrelations() is the centrepiece of each learning phase and has
the task to determine the correlations between the example data and to set correlations accord-
ingly. To calculate correlations, different algorithms are conceivable. For the performed analyses,
statistical methods are used for determining the most likely coherences (see below). After corre-
lations have been determined, the connections between the symbols and further necessary data
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like properties, location data, and timing data are set. As described in section 4.5.3, there can-
not only be determined correlations between symbols during the learning phases. It can also be
determined if certain neuro-symbols are redundant and can therefore be deleted. The determina-
tion if a neuro-symbol is redundant is performed in the function calculateAndSetCorrelations()
of the learning ports responsible for determining feedback connections. If there are identified
redundant symbols, the connections to these symbols set in the former training phase can be
cancelled. In a similar way, neuro-symbols can be added if needed. This is performed by the
function calculateAndSetCorrelations() of the learning ports responsible for generating forward
connections.

Learning Forward Correlations and Adding of Neuro-symbols

As already mentioned, for learning forward connections and correlations between neuro-symbols
of different levels, there need to be presented examples to the system which have to be stored until
correlations between them are calculated. The function memorizeExamples(msg) is responsible
for storing these examples. There is stored the name of the received neuro-symbol and the x-
and y-position where its perceptual image was perceived. If the neuro-symbol contains additional
properties, the values of these properties are also stored. The function memorizeExamples(msg)
is called whenever a message from a lower-level neuro-symbol is received at the corresponding
learning port. In the training phases A, there is always presented and memorized the whole set
of training examples corresponding to one particular perceptual image and then, the correlations
between lower-level symbols and the higher-level symbol representing this perceptual image are
calculated and set by calling the function calculateAndSetCorrelations(). The call of this function
is invoked by messages sent from the control port.

In the implementation, the information of incoming neuro-symbols is stored in arrays. The
function calculateAndSetCorrelations() searches through these arrays to calculate correlations. As
already mentioned, for the calculation of the correlations, different algorithms are conceivable.
The algorithm 5.1 used for a first implementation to calculate forward correlations – in the
following labeled as algorithm for learning phase A – is described below.

Algorithm 5.1: Algorithm for Learning Phase A
For each modality

Determine which neuro-symbols occur most often
If one neuro-symbol of one modality occurs in more than c1 percent of all cases

Set connection
If two neuro-symbols of one modality occur in more than c2 percent of all cases

Use two separate higher-level neuro-symbols and set connections
For each neuro-symbol type connected

Calculate average x- and y-location
Calculate average x- and y-location-deviation
Determine property values

Calculate x- and y-inter-modality location deviations between neuro-symbols
If necessary

Consider temporal character of data

After all examples belonging to one perceptual image have been stored, it is searched through
the arrays and for each modality it is determined what neuro-symbols occur most often. If
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a particular lower-level symbol of one modality occurs in more than c1 percent of all cases, a
connection between this symbol and the higher-level symbol is set. As value for c1, the rate
70 % proved to be suited for the test cases used during simulation (see section 6.1). The reason
why a certain lower-level symbol does not need to occur in 100 % of all examples is to have
the possibility to rule out faulty or not representative data as there might occur cases where
sensors fail or where within the examples there are triggered or covered sensors from other events
incidentally occurring at the same time. If two different lower-level neuro-symbols of the same
modality occur always in more than c2 percent of all examples, the perceptual image is represented
by two separate neuro-symbols. Connections are set accordingly. For the used test cases, a value
of c2=35% proved to be suitable. For the investigated test cases, these two distinctions turned
out to be sufficient to calculate correlations. For more complex cases, the algorithm would have
to be extended.

After the connections have been set, the arrays are searched through again. From each of the
lower-level neuro-symbols which is of the type of the connected neuro-symbols, the location infor-
mation is taken to calculate an average x- and y-position as well as an average x- and y-deviation
according to the formulas 5.1 to 5.4, where the letter i represents the location information of the
current example and the letter n the number of valid examples for one perceptual image4. This
average x- and y-location as well as its average deviations represent the range within which a
lower-level symbol can occur to contribute to the activation of the particular higher-level symbol.

AverageLocationX =

∑
n

i=1
LocationXi

n
(5.1)

AverageLocationY =

∑
n

i=1
LocationYi

n
(5.2)

AverageLocationDeviationX =

∑
n

i=1
|AverageLocationX − LocationXi|

n
(5.3)

AverageLocationDeviationY =

∑
n

i=1
|AverageLocationY − LocationYi|

n
(5.4)

After learning is finished, during system operation, lower-level neuro-symbols of the connected
types lying within the range AverageLocationX±2 ·AverageLocationDeviationX and the range
AverageLocationY ± 2 · AverageLocationDeviationY can contribute to an activation of the
higher-level neuro-symbol. This allows it to generalize to a certain extend over location data
to handle also examples not seen during the training phase. For each neuro-symbol, the valid
location ranges are stored as variables in the neuro-symbol. During operation, the check whether
the symbol lies within the valid range is done in the on receive section of each neuro-symbol
by the function checkInputMessageType(msg) (see section 5.4.1). If certain lower-level symbols
comprise properties in addition to their location property, the values of the properties are also
extracted and stored in variables of the higher-level symbol.

As outlined in section 4.4.3, besides the information what and within which spatial area lower-
level neuro-symbols can principally contribute to the activation of a higher-level symbol, it also

4For calculating location data, other algorithms would also be conceivable. However, for the test cases outlined
in section 6.1, the used algorithms deliver satisfactory results.
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has to be considered how big the spatial deviation between lower-level neuro-symbols of different
modalities belonging to one particular higher-level symbol can be. In the used simulation, this
is calculated during the training phase A by determining one dominant modality and searching
through the examples for the maximal location deviation between the symbol of this modality
and the symbols of other modalities (see formulas 5.5 and 5.6).

InterModalityLocationDeviationX = max
i

(|domLocationXi − LocationXi|) (5.5)

InterModalityLocationDeviationY = max
i

(|domLocationYi − LocationYi|) (5.6)

In the simulations performed in chapter 6, the tactile floor sensor modality will be considered as
most reliable and therefore dominant modality on the sub-unimodal level. On the unimodal level,
tactile neuro-symbols directly take over the location values of the sub-unimodal symbols of this
modality. For the used test cases, every higher-level neuro-symbol comprises information coming
from this modality. If a certain symbol did not include information from this sensory modality, the
modality with the next highest reliability would be taken as dominant modality for the calculation.
During system operation, lower-level neuro-symbols can only be bound to a higher-level symbol
if they lie within a distance of less than or equal ±1.5 · InterModalityLocationDeviationX and
±1.5 · InterModalityLocationDeviationY .

In the sections 4.4.4 and 5.4.1, it was mentioned that in certain cases, neuro-symbols need to offer
the possibility to handle data arriving over time. This is necessary if not all lower-level neuro-
symbols being responsible for the activation of a higher-level symbol are active concurrently at
least for a short instance of time. The learning of the size of time windows or the configuration of
state charts for temporal successions based on examples is also performed in the training phase
A of each level. To derive the length of the time window within which the incoming activations
of neuro-symbols shall be considered, there just has to be determined the maximum time that
occurred between the first neuro-symbol activated and the last neuro-symbol activated within the
examples for a certain perceptual image. Taking this value and multiplying it with a factor of 2
results in the size of the time window for the corresponding neuro-symbol. As outlined in section
5.4.1, for handling temporal successions of incoming data, neuro-symbols contain a standard
state chart, which is adapted to the special requirements of the corresponding perceptual image
during the training phase A. Therefore, the examples with the lower-level symbols responsible for
activating a certain symbol have to be stored in arrays for determining correlations between data
in a next step. There are stored the succession of activated symbols, the location where they were
perceived, their properties, and the time when they were activated. The storage is performed by
the function memorizeExamples(msg).

After all existing examples for one perceptual image have been seen, correlations for this image
are determined and set. The determination what lower-level neuro-symbols are involved in the
activation of a particular higher-level symbol as well as the adaptation of the state chart based on
the succession of neuro-symbols is again performed by the function calculateAndSetCorrelations().
Based on the examples, it is learned what lower-level neuro-symbols are involved in the activation
of a particular higher-level symbol and in what succession they take place, in what location range
each of them occurs, and how long the time between two symbol activations is. This information
is stored in the transition conditions between states. There can occur the case that different
examples comprise activations of different multimodal symbols. The task of the learning algorithm
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is to determine what symbol activations all examples have in common and at what locations they
occur around and to use only the common activations to configure the state chart. For determining
the spatial area, the formulas 5.1 to 5.4 are used for each activated lower-level symbol. Similar as
already described for neuro-symbols without state charts, all activated neuro-symbols of a certain
type occurring within a spatial area of AverageLocationX±2 ·AverageLocationDeviationX and
AverageLocationY ±2 ·AverageLocationDeviationY are valid. This information is necessary to
define rules for the forward transitions between states.

Additionally, it is determined what period of time typically passes between symbol activations
of different symbols. This is done by taking the maximum time durations that occurred in the
examples between two particular symbols (see formula 5.7).

ActivationT ime = max
i

(Ti) (5.7)

The values of the variable ActivationTime is important for setting timeouts responsible for tran-
sitions between a certain state and the initial state of the state chart. When a timeout occurs,
a transition from the current state to the initial state is performed. This means that informa-
tion about neuro-symbols activated until now is no longer considered for the perception of the
scenario. A timeout occurs after a time period of 2 · ActivationT ime. In section 6.1.2, it will be
shown by means of a concrete example how a state chart can be configured.

Learning Feedback Connections and Correlations and Eliminating Neuro-symbols

As described in section 4.5, in the training phases A, forward connections between neuro-symbols
of different levels are set, valid values for location properties as well as other properties are de-
termined, and handling of data over time is considered. In the training phase B, based on these
determined correlations, it is calculated what feedback connections are necessary and what sym-
bols are redundant. This is performed by presenting the same examples as used in training phase
A to the now connected neuro-symbols a second time and observing via the corresponding learn-
ing port if besides the desired neuro-symbol also other neuro-symbols are activated concurrently.
However, unlike in training phase A, there are presented not always only the examples belonging
to one particular perceptual image followed by a setting of the corresponding correlations, but
all examples are presented to the system at once one after the other and for each example it is
memorized what neuro-symbols were activated and what the target symbol was. Therefore, the
function memorizeExamples(msg) is called whenever a message from a neuro-symbol connected to
the learning port responsible for learning feedback connections is received. In the implementation,
the information is stored in a multi-dimensional array. After all examples were presented and
memorized, the function calculateAndSetCorrelations() is responsible for determining feedback
connections and eliminating redundant symbols. The call of this function is invoked by messages
sent from the control port. The function calculateAndSetCorrelations() searches through the
array to calculate correlations. The mechanism for determining feedbacks and eliminating redun-
dant symbols is best explained by representing target symbols and actually activated symbols of
the presented examples in a tabular form (see figure 5.22). Ideally, for each presented example,
only one neuro-symbol should be activated. For neuro-symbols for which this case is fulfilled,
there only exist entries in the main diagonal of the table. This is fulfilled for the symbols B and
D. If two diverse neuro-symbols are always activated concurrently no matter which of the two
corresponding perceptual images was presented to the system, one of them is redundant. In the

130



Design Methodology and Implementation

table, this case occurs for the symbols A and E. To eliminate a redundant symbol, all the existing
connections from its ports to other ports are removed. If one neuro-symbol is always activated
when another neuro-symbol is active but not vice versa, a feedback connection has to be set.
In the table of figure 5.22, this is the case for symbol C, which needs a feedback connection to
symbol B. In section 6.1.2, these facts will be illustrated by means of a concrete example.

Figure 5.22: Determination of Feedback Connections and Redundant Symbols

What was not mentioned until now is that additionally to the setting of connections, it has to be
determined within which spatial range the inhibition of a feedback shall be effective. Therefore,
from the presented examples, it is memorized within what spatial area neuro-symbols were ac-
tivated concurrently. From the memorized examples, there is then calculated an average x- and
y-position as well as a deviation range (see formulas 5.8 to 5.11).

FeedbackAverageLocationX =

∑
n

i=1
domLocationXi

n
(5.8)

FeedbackAverageLocationY =

∑
n

i=1
domLocationYi

n
(5.9)

FeedbackAverageLocationDeviationX =

∑
n

i=1
|FeedbackAverageLocationX − domLocationXi|

n
(5.10)

FeedbackAverageLocationDeviationY =

∑
n

i=1
|FeedbackAverageLocationY − domLocationYi|

n
(5.11)

For the simulation, during system operation, feedbacks coming from neuro-symbols with location
values lying outside the range FeedbackAvarageLocationX ± 2 · FeedbackLocationDeviationX
or FeedbackAvarageLocationY ±2 ·FeedbackLocationDeviationY cannot inhibit the activation
of the neuro-symbol receiving the feedback signal.

131



Design Methodology and Implementation

Learning Correlations between Neuro-symbols and Memory Symbols

Similar to learning of correlations between neuro-symbols, there can also be learned connec-
tions between neuro-symbols and memory symbols. Therefore, the learning principle for learning
forward connections in training phase A can be taken over with the little difference that a mem-
ory symbols has two input ports and that there are now determined adequate connections to
lower-level neuro-symbols for both input ports. Principally, there can exist connections from all
neuro-symbols form the sub-unimodal layer upwards. In the test cases described in section 6,
multimodal symbols will be the only neuro-symbols that set and reset memory symbols.

5.6 Design Methodology

In chapter 4, a model for human-like perception was introduced and explained. In the former
sections of this chapter, it was described how this model can be implemented and simulated with
the modeling language AnyLogic. This section now described how to apply the model and its
implementation to a certain application and what design steps are therefore necessary.

The first step that has to be taken is to decide what objects, events, scenarios, and situations shall
be perceived by the perceptual system to fulfill the requirements of the particular application.
As described in chapter 4, such perceptual images are represented by neuro-symbols. Activated
neuro-symbols indicate that the perceptual image they stand for has been perceived in the envi-
ronment. Neuro-symbols up to the unimodal level are only accessible within the modules of the
model. In contrast, multimodal symbols and scenario symbols additionally function as outputs
of the system to indicate what was perceived by the system. Therefore, it first has to be defined
what multimodal symbols and what scenario symbols shall exist. Neuro-symbols of these types
can also have properties, which have to be defined.

In a next step, it is determined what sensory modalities and sub-modalities shall contribute to
the perception process and by what unimodal and sub-unimodal neuro-symbols these perceptions
shall be represented. It also has to be fixed if they shall comprise further properties additionally
to their location property. Based on these decisions, the types, number, and position of sensors
for the different modalities and sub-modalities are determined and what feature symbols shall be
calculated from these sensor data.

Similar to neuro-symbols representing perceptual images, there also have to be defined memory
symbols, which signal what influence these images have on later perceptions.

As already outlined in former sections, certain connections between model building blocks have
to be predefined by the system engineer and others are learned based on examples. Connections
and correlations that are already set and defined before learning starts are the connections and
correlations between sensor data and the first neuro-symbolic level and in certain cases also the
connections to the second neuro-symbolic level. Neuro-symbols that are not yet interconnected
with each other are connected to several learning ports. Furthermore, the output port of the focus
of attention module is already connected to the input ports of feature symbols. There also exist
connections between memory symbols and the knowledge module as well as connections from the
output port of the knowledge module to the inputs of neuro-symbols from the sub-unimodal level
upwards. However, knowledge only interacts with neuro-symbols after learning has already been
completed.
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The next step in the design methodology is to select suitable examples for training the sys-
tem. For each neuro-symbol for which correlations to other neuro-symbols shall be learned, there
need to exist examples comprising information about what sensors (or lower-level symbols) are
activated when the perceptual image represented by the neuro-symbol occurs. As already men-
tioned, learning takes place in different phases. There have to be learned correlations between
lower levels first before higher-level connections can evolve. Neuro-symbolic learning starts at
the sub-unimodal level and ends at the scenario symbol level. Similar like for neuro-symbols,
there also have to be presented examples to the systems comprising information about under
what circumstances certain memory symbols shall be set and reset. In this case, only a training
phase A is needed. Training of memory symbols can only be performed if according connections
between neuro-symbols have already been set. After all connections from neuro-symbols to mem-
ory symbols have been set, it has to be defined in what way top-down processes from knowledge
shall influence the neuro-symbol activations. Therefore, rules have to be defined in the knowledge
module.
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Chapter 6

Simulation Results and Discussion

“The most exciting phrase to hear in science, the one that heralds new
discoveries, is not ’Eureka!’ (I found it!) but ’That’s funny ..’ ”

[Isaac Asimov]

In chapter 4, a model for human-like perception was introduced. Chapter 5 gave a description
how this model can be implemented in software for simulation and evaluation purposes. The aim
of this chapter is to show simulation results for a number of test cases (see section 6.1) and to
discuss important issues of the model based on these simulation results and insights gained during
model development and implementation. The insights gained during this process also allow it to
draw certain conclusions about the correctness, incorrectness, or incompleteness of neuroscientific
and neuropsychological models (see section 6.2). Additionally, a comparison of the model to other
existing models it is related to is made in section 6.3. There are discussed the differences to the
ARS-PC model introduced in section 2.1.2 and the differences to neural networks and symbolic
systems. Furthermore, it is pointed out in what manner the developed model could be classified
as a model of sensor fusion or as a model for neuro-symbolic integration.

6.1 Simulation Results

To test and evaluate the model, a number of simulations were performed which are outlined in the
following. In section 6.1.1, the used test environment and test cases are described. Section 6.1.2
shows by means of concrete examples how learning is performed in the neuro-symbolic network.
Finally, section 6.1.3 illustrates the flow of information within the system for a number of cases
after learning has already been completed.

6.1.1 Test Environment and Test Cases

For reasons outlined in section 5.1.2, the model is tested with simulated sensor data (or symbolic
data) provided by the sensor value generator. To evaluate the model and allow a comprehensible
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illustration and discussion of the simulation results, a set of test cases is used that is extensive
enough to test and explain all important design issues but limited in a way to avoid loosing track.
Figure 6.1 shows the test bed, which is a room equipped with a stereo video camera, an array
of microphones, motion detectors, tactile floor sensors, light barriers, and a door contact sensor.
These sensor data are processed to perceive activities carried out by persons in the room. The
room is of rectangular form and has a door and a window. In the figure, there is also depicted a
Cartesian coordinate system, which will become important when discussing the location property
of neuro-symbols. The reason why the origin of ordinates is not in the left lower corner but even
further left is that there shall not only be considered activities within the room but also outside
the room in an area close to the door1.

Figure 6.1: Test Environment for Illustrating Simulation Results

Figure 6.2 shows the “symbol alphabet” from the sub-unimodal level upwards for perceiving
different activities of persons. Because determining of correlations between neuro-symbols from
the sub-unimodal level upwards is subject to learning, the symbol hierarchy is unconnected at
initial system startup. As outlined in section 5.1.2, there do not have to be processed sensory
video and audio raw data, but there are already provided unimodal symbolic data from the sensor
value generator. Therefore, for these two modalities, only unimodal symbols are used. From visual
data, it can be detected that a person is somewhere present in the room indicated by the symbol
“person”, and from audio data, the noise of an opening or closing door or the sound of steps can
be perceived represented by the symbols “door click” and “steps”. These symbols can principally
occur at each location in the room and also outside the room in an area around the door. In this
section, for the tactile modalities, information processing is considered from the sub-unimodal
level upwards. Therefore, no feature symbols and no sensors are presented in the symbol hierarchy
of figure 6.2. For a description and discussion about lower-level information processing from sensor
data to feature symbols and sub-unimodal symbols, have a look at section 6.2 and appendix A.
On the sub-unimodal level of the tactile modality, there exist the symbols “motion”, “object
present”, “object passes”, and “door status”. The first two symbols represent the presence and

1In the following, if not explicitly mentioned, location values will always be given in meters.
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the motion of an object. As this information is derived from a number of sensors distributed over
the room, these neuro-symbols can principally be perceived at every location in the room and
outside the room around the door. It is assumed that the symbol “object present” derived from
tactile floor sensors has a spatial resolution of 0.1 and the symbol “motion” resulting from motion
detectors has a spatial resolution of 0.5. Therefore, the spatial resolution of corresponding neuro-
symbols cannot be higher than these values. The symbols “object passes” and “door status”
are derived from two light barriers and one door contact sensor, which are mounted at the door.
Therefore, they are assigned to a fixed x- and y-position, which has the x-value 0.9 and the y-value
2.5. Additionally to their location property, the symbols “object passes” and “door status” have
the properties “direction” and “status”, respectively, which indicate in which direction an object
passed the door and whether the door was closed or opened. On the unimodal tactile level, the
information of these four sub-unimodal tactile symbols is combined to get the symbols “object
stands”, “object moves”, “object enters”, “object leaves”, “door is opened”, “door is closed”,
and “object placed”. On the multimodal level, there are used the symbols “person opens door”,
“person closes door”, “person stands”, “person walks”, “person enters”, and “person leaves”.
Furthermore, there exist two symbols labeled as “symbol 1” and “symbol 2”, which will become
important when discussing the topic of adding symbols during learning. In the test set, on the
scenario symbol level, there only exists the symbol “person goes to window”. The memory symbol
level comprises the symbols “door open” and “person present”.

Figure 6.2: Symbol Alphabet for Specified Test Set

As already outlined, the finding of adequate connections as well as the determination of other
correlations between symbols is subject to learning. This learning is performed in different phases.
Figure 6.3 illustrates the final result of this learning. Location information and timing information
is not depicted. Particularly interesting details of different learning phases will be discussed in
the following. Afterwards, the flow of information from sensor data to symbolic perception
will be illustrated by means of a number of selected examples. If not mentioned separately,
for the simulations, the weight of connections from all modalities are set to 1, and the symbol
activation thresholds have the value 0.85. Concerning the event-based information exchange,
there is transmitted the value of the activation grade if it exceeds the threshold value and the
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value 0 if it is below this threshold. Feedbacks and messages from the knowledge module have an
inhibitory influence on a neuro-symbol’s activation.

Figure 6.3: Symbol Hierarchy after Learning is Finished

6.1.2 Configuration, Learning, and Adaptability

As described in section 4.5, correlations between neuro-symbols of different layers and modalities
and correlations between neuro-symbols and memory symbols can be determined from examples
presented to the system. Figure 6.3 illustrates the connections resulting from such a learning
process. In the following, the learning procedures and their results are illustrated for a number
of cases of the chosen test set.

Learning of Correlations in Training Phase A

To illustrate the results of learning of forward connections and further correlations in the training
phases A, there shall be discussed the case that a person walks around in the room, which is
represented by the multimodal symbol “person walks”. Additionally, to illustrate how to detect
a necessary splitting of a certain perceptual image into two separate ones, the situation that a
person opens the door represented by the symbol “person opens door” is used.

To determine the correlations between the symbol “person walks” and lower-level symbols, a
number of training examples is necessary. Figure 6.4 and the table in figure 6.5 show the examples
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used for training to determine the correlations for the symbol “person walks”. Actually, they
contain the neuro-symbols of the next lower level – the unimodal layer – activated when a person
walks around in the room as well as the x- and y-location assigned to the symbols in the particular
examples. For the concrete case of the perceptual image “person walks”, all lower-level symbols
are active at the same time. Therefore, timing behavior of data does not have to be considered.

Figure 6.4: Graphical Visualization of Training Examples for the Multimodal Symbol “Person walks”

As can be seen from the examples, when a person walks around in the room, there are generally
activated the unimodal symbols “person”, “steps”, and “object moves” concurrently. Looking at
the table in figure 6.5, it attracts attention that in example 3, the symbol “person” and in example
4, the symbol “steps” is not active. Such cases might occur due to a failure in one modality or
because the view of vision is covered by another object. Generally, if possible, corrupt or atypical
data should be best avoided in the training data. However, as this is not always possible, the
learning algorithm used should allow it to drop out a certain number of such atypical data. By
applying the algorithm described in section 5.5, there are set forward connection from the visual
unimodal symbol “person”, the auditory unimodal symbol “steps”, and the tactile unimodal
symbol “object moves” to the multimodal symbol “person walks” (see figure 6.3).

After the connections have been set, for each connected symbol, certain location data are calcu-
lated based on the location information provided by the examples (see section 5.5, formulas 5.1
to 5.4). In the formulas 6.1 to 6.4, the calculation is illustrated for the symbol “person”. As can
be seen from these formulas, the data from example 3 and 4 are excluded from the calculation
process, because they are not representative for the particular perceptual image, which generally
consists of three unimodal symbols instead of only two. The results for the symbols “steps” and
“object moves” are shown in the table of figure 6.6. These values specify the valid range within
which these lower-level symbols can principally occur to be bound to the higher-level symbol
“person walks”. The valid location ranges are stored as variables in the neuro-symbol “person
walks”. The check whether the symbol lies within the valid range is performed in the on receive
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Figure 6.5: Training Examples for the Multimodal Symbol “Person walks” in Tabular Form

section of the neuro-symbol “person walks” by the function checkInputMessageType(msg) (see
section 5.4.1).

AverageLocationX =
1.4 + 2.4 + 2.5 + 5.9 + 6.3

5
= 3.7 (6.1)

AverageLocationY =
2.7 + 3.8 + 0.4 + 1 + 3

5
= 2.18 (6.2)

AverageLocationDeviationX =

|3.7 − 1.4| + |3.7 − 2.4| + |3.7 − 2.5| + |3.7 − 5.9| + |3.7 − 6.3|
5

= 1.92
(6.3)

AverageLocationDeviationY =

|2.18 − 2.7| + |2.18 − 3.8| + |2.18 − 0.4| + |2.18 − 1| + |2.18 − 3|
5

= 1.18
(6.4)

Additionally to the information where lower-level symbols can principally occur to be bound to
a higher-level symbol, there also has to be considered the information how much their location
values can deviate within each particular example. This information is calculated by the formulas
5.5 and 5.6. In the concrete case, the tactile modality is the dominant modality. How to calculate
the inter-modality location deviation between the symbols “object moves” and “person” is shown
in the formulas 6.5 and 6.6. The rest of the results is illustrated in the table of figure 6.7. As the

140



Simulation Results and Discussion

Figure 6.6: Calculation of Location Information of the Multimodal Symbol “Person walks”

symbol “object moves” is the symbol of the dominant modality, the deviations in the last row
of this table are zero. In the implementation, again, these values are stored in variables in the
symbol “person walks”.

InterModalityLocationDeviationX =

max(|1.9 − 1.4| + |2.1 − 2.4| + |2.6 − 2.5| + |6.4 − 5.9| + |6.4 − 6.3|) = 0.5
(6.5)

InterModalityLocationDeviationY =

max(|2.7 − 2.7| + |3.9 − 3.8| + |0.9 − 0.4| + |0.6 − 1| + |3.1 − 3|) = 0.5
(6.6)

Figure 6.7: Calculation of Inter-modality Location Information of the Multimodal Symbol “Person
walks”

In algorithm 5.1 presented in section 5.5, for determining correlations between lower-level neuro-
symbols and a higher-level neuro-symbol from examples, it was defined that there shall be used
two neuro-symbols instead of only one if two different lower-level neuro-symbols of the same
modality occur always in more than c2=35% of all examples. In the used test cases described
in section 6.1.1, a splitting of symbols occurs for the symbol “person opens door” when using
the examples given in the table of figure 6.8. A similar splitting will occur for the neuro-symbol
“person closes door”. Again, it is assumed that all symbols are active concurrently at least for
one instant of time and that therefore a consideration of timing can be omitted.

As can be seen from the examples given in the table, in 50 % of the cases, the neuro symbols
“door click”, “door is opened”, and “person” are activated when a person opens the door. In the
other 50 %, only the symbols “door click” and “door is opened” are activated. This is plausible,
because when a person opens the door from outside the room, the video camera cannot detect the
visual symbol “person”. Therefore, the situation that a person opens the door is split into the two
cases “person opens door from inside” and “person opens door from outside”, and connections
are set according to the presented examples (see figure 6.3). The location information for these
two symbols is calculated in a similar manner as described for the symbol “person walks”.
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Figure 6.8: Training Examples for the Multimodal Symbol “Person opens door” in Tabular Form

Learning of Correlations in Training Phase B

As described in section 4.5, in training phases A, forward connections between neuro-symbols
of different levels are set and valid values for location properties as well as other properties are
determined. Figure 6.9 shows the result of the training phase A of the unimodal tactile level for
the used symbol configuration described in section 6.1.1.

Figure 6.9: Connections between Sub-unimodal and Unimodal Tactile Layer after Training Phase A

In training phase B, based on these correlations, it is determined what feedback connections
are necessary and if there exist redundant symbols. This is determined by presenting the same
examples as already used in training phase A to the neuro-symbolic network a second time with
the difference that now forward connections between neuro-symbols of the mentioned two layers
are already set. For each neuro-symbol, a number of examples is used. For the simulation, for
each unimodal tactile neuro-symbol, there exist six examples. In section 5.5, it was explained how
to identify redundant symbols or symbols that need feedback connections from elements lying
outside the main diagonal of a table. To get the entries of the table, in training phase B, it is
observed what other neuro-symbols are always activated concurrently with the particular desired
neuro-symbol.

The table of figure 6.10 shows the results of this observation. There are depicted the desired
target symbols and the symbols actually activated when presenting the example data for a certain
perceptual image. As can be seen from figure 6.9 and figure 6.10, one of the two symbols “object
stands” and “object placed” marked orange in the table is completely redundant. Both symbols
are always activated concurrently. Therefore, one of these two symbols can be omitted. For the
simulation, the symbol “object placed” was selected to be the one to be eliminated. This happens
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by removing existing connections of its input and output port. For the symbols “object stands”
and “object moves”, in the table if figure 6.10, there exist undesired symbol activations lying
outside the main diagonal. To avoid such undesired activations, there have to be set feedback
connections from the target symbols to these two neuro-symbols marked blue. Figure 6.3 shows
the result of the process of eliminating redundant symbols and stetting feedback connections.

Figure 6.10: Determination of Redundant Symbols and Feedbacks between Unimodal Tactile Symbols

Besides determining needed feedback connections, it also has to be defined how close in position
two symbols have to lie one next to the other for such an inhibitory feedback to be effective
(see formulas 5.8 to 5.11). In the following, the results of these calculations are outlined for the
tactile unimodal symbol “person enters”, which has inhibitory connections to the symbols “object
stands” and “object moves”. The data used for the calculations are given in the table of figure
6.11. In the examples, the symbols “motion” and “object passes” are always detected at the same
location, because the symbol “object passes” is determined by two light barriers mounted at a
fixed position and the symbol “motion” is activated by data coming from motion detectors, which
do not have a spatial resolution high enough to get different location values. The formulas 6.7
to 6.10 show the results of the calculations, which are valid for both the symbol “object stands”
and “object moves”.

FeedbackAverageLocationX =
1 + 1.1 + 0.9 + 1.2 + 0.8

5
= 1 (6.7)

FeedbackAverageLocationY =
2.3 + 2.1 + 2.2 + 2.9 + 2.8

5
= 2.46 (6.8)

FeedbackAverageLocationDeviationX =

|1 − 1| + |1 − 1.1| + |1 − 0.9| + |1 − 1.2| + |1 − 0.8|
5

= 0.12
(6.9)

FeedbackAverageLocationDeviationY =

|2.46 − 2.3| + |2.46 − 2.1| + |2.46 − 2.2| + |2.46 − 2.9| + |2.46 − 2.8|
5

= 0.31
(6.10)

143



Simulation Results and Discussion

Figure 6.11: Training Examples for the Unimodal Symbol “Object enters”

Learning of Time Successions

As outlined in section 4.4.4, besides location information and other properties, the activation of
sensors and symbols over time is of importance. In the model, data occurring within a certain
time window as well as temporal successions of events can be handled. As described in section 5.5,
for learning successions of events, state charts are used. How these state charts can be configured
shall now be illustrated by means of a concrete example, which is the scenario that a person
enters the room and goes to the window. This situation is represented by the scenario symbol
“person goes to window” (see figure 6.2).

For the used test set, to configure the state chart, three different examples are presented to
the system. The figures 6.12a to c show the examples. As can be seen, they can comprise the
activation of different multimodal symbols. The numbers in brackets indicate at what x- and
y-position the multimodal symbols corresponding to the scenario were perceived. The task of the
learning algorithm is to determine what symbol activations all examples have in common and in
what spatial area they occur. For the presented examples, the used algorithm will identify the
succession of the symbols “person enters”, “person walks”, and “person stands” as common and
connect them to the mentioned scenario symbol (see figure 6.3). Concerning their position, the
symbol “person enters” will occur next to the door and the symbol “person stands” next to the
window. The symbol “person walks” has a special meaning when considering symbol activations
over time, because it changes the value of its location property due to the movement of the person.
For the scenario “person goes to window”, only the start and the end position of this symbol are
relevant. The person has to begin to walk near the door and has to go to the window within a
certain time. In between, he/she can also stop and therefore activate the symbol “person stands”.
Besides this, the symbol “person goes to window” is detected no matter if the person opened or
closed the door.

Figure 6.13 illustrates how the state chart and its transition conditions look like after learning
has taken place. Transitions not used are not depicted. To represent the scenario “person walks
to window”, apart from the initial and the final state, four states are necessary. For this reason,
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(a) (b)

(c)

Figure 6.12: Training Examples for the Scenario Symbol “Person goes to Window”

state 5 and 6 of the state chart are not used. In transition T1, which stands for the activation of
the symbol “person enters”, in the used test bed, no condition for the spatial area within which
the symbol can occur needs to be defined, because there only exists one door through which a
person can enter. Therefore, the symbol can only occur within the spatial area around this door.
The situation would change if a test environment with a certain number of rooms were used.
The location values of the transitions T2, T3, and T4 as well as the timing information of T8
and T9 are calculated as described in section 5.5 in the formulas 5.1 to 5.4. For T4 and T8, the
calculations are shown explicitly in the formulas 6.11 to 6.15.

AverageLocationX =
6.8 + 6.7 + 6.9

3
= 6.8 (6.11)
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AverageLocationX =
2.6 + 3 + 2.8

3
= 2.8 (6.12)

AverageLocationDeviationX =
|6.8 − 6.8| + |6.8 − 6.7| + |6.8 − 6.9|

3
= 0.07 (6.13)

AverageLocationDeviationY =
|2.8 − 2.6| + |2.8 − 3| + |2.8 − 2.8|

3
= 0.13 (6.14)

ActivationT ime = max(6.8, 4.7, 3.2) = 6.8 (6.15)

In state 3, an activation of the symbol “person stands” causes a transition to state 4 when occuring
within the range of AverageLocationX±2·AverageLocationDeviationX and AverageLocationY ±
2 ·AverageLocationDeviationY . If within a time of 2 ·ActivationT ime after the symbol “person
walks” was perceived at a location close to the door, there is not activated a symbol “person
stands” at a location close to the window, it is returned to the initial state of the state chart. For
the transition T7, a default timeout value of 5 s is used. This is because T7 is the transition for
indicating that a person walked to the position next to the window but did not stop there. This
case cannot be covered by the positive examples of persons going to the window used for training.
Therefore, this timeout value cannot be determined from examples. The transitions T5 and T6
are performed immediately after state 4 and the final state have been reached, respectively.

Figure 6.13: Configured State Chart of the Scenario Symbol “Person goes to Window” after Learning
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6.1.3 Flow of Information and Symbol Activations during Operation

As described in chapter 4, in the proposed model of human-like machine perception, information
is processed by neuro-symbols arranged in different hierarchical levels. Between neuro-symbols,
there exist forward connections from lower-level symbols to symbols of the next higher level as
well as feedback connections between neuro-symbols of a certain level and modality. Information
processing between neuro-symbols is event-based. In figure 6.14, it is shown what neuro-symbols
from the sub-unimodal level upwards are activated when a person enters the room. For the
performed investigations, location information is not of importance and therefore omitted.

Figure 6.14: Symbol Activations when a Person Enters the Room
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The first five signals of the diagram show the activation over time of the tactile sub-unimodal
and the visual and auditory unimodal neuro-symbols, which are activated by data sent from
the sensor value generator. The last six signals show what higher-level neuro-symbol activations
result from these activations assuming connections between symbols as depicted in figure 6.3. The
numbers above the time signals indicate the activation value that is sent from the corresponding
neuro-symbol to other connected neuro-symbols. For symbol activations having a value below the
threshold, the value zero is transmitted to other symbols via the output. In figure 6.14, these cases
are depicted with dotted lines and in lighter color. Points in time where a feedback message is sent
to another symbol are marked with a red arrow. As long as a feedback is effective, the activation
grades of the symbols receiving the feedback signal are set to zero. Figure 6.14 shows that for the
symbol “object stands”, there can occur a short activation peak when the symbol “object enters”
is activated. This is due to the fact that the symbol “object moves” has an inhibitory influence
on the symbol “object stands”. On the other hand, the symbol “object enters” has an inhibitory
influence on the symbol “object moves” and on the symbol “object stands”. If now the inhibitory
feedback message of the symbol “object enters” reaches the symbol “object moves” before the
symbol “object stands”, the symbol “object moves” is deactivated and its inhibitory influence on
the symbol “object stands” is rescinded before the feedback of the symbol “object enters” can
get effective. This results in an activation of the symbol “object stands” for a very short time.
In the simulation, where the time for transmitting and processing of data can be set to zero,
the length of the peak can be assumed to be zero. However, when implementing the model into
hardware, signal runtimes and time for data processing have to be considered, which will result in
such peaks of a certain length. It has to be assured that these peaks do not influence succeeding
information processing. Therefore, for setting and resetting memory symbols and delivering a
valid value to the output of the system, neuro-symbols have to be active for a certain minimum
time.

Besides forward connections and feedbacks, in the test set, knowledge can also have an inhibitory
influence on neuro-symbol activations. In section 4.6, it was described that for storing effects
and consequences of events happened, memory symbols are used. Via information stored in these
memory symbols, knowledge interacts with neuro-symbols. Figure 6.15 illustrates a number of
examples, which show when a memory symbol is set and reset and when the state of a memory
symbol has influence on the activation grade of a neuro-symbol. For the intended investigations,
location information and timing is irrelevant and therefore not considered. All depicted activations
have the value one. Figure 6.15 shows that the memory symbol “person present”, which is set
(or active) at the beginning, is reset (or deactivated) when the symbol “person leaves” occurs
and reactivated when the perceptual image “person enters” is perceived. If the memory symbol
“person present” is not set, the symbols “person stands” and “person walks” cannot be activated,
even though according to the bottom-up information processing of sensory data, their activation
grade would exceed the threshold value. In figure 6.15, these cases are depicted as dotted lighter
colored rectangles labeled with the numbers 1 and 2. The memory symbol “door open”, originally
set, is reset when the symbol “person closes door” is activated. After this event occurred, an
activation of the symbol “person leaves” is inhibited by top-down influence of knowledge (see
dotted light colored rectangle with labeling 3).
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Figure 6.15: Examples for Interaction of Memory Symbols and Knowledge with Neuro-symbols

6.2 Discussion based on Lessons Learned from Implementation

and Simulation Results

Section 6.1 gave an outline of simulation results for a given test set. Based on these simulation
results as well as lessons learned during model development and implementation, this section
comprises a discussion of important issues of the presented model. Additionally, from the gained
insights, conclusions are drawn about the correctness, incorrectness, or incompleteness of neuro-
scientific and neuropsychological research findings and models of the brain.

Importance of Sensor Configuration and Feature Symbol Selection

The first issue that shall be discussed is the importance of the sensor configuration and the
selection of feature symbols for further information processing. In traditional approaches, the
structure and architecture of information processing are held responsible for the representational
function of a cognitive system. However, in [Pes94], it is suggested that sensory systems play
an equally important role in information processing and that the representational function of
a cognitive system becomes only meaningful if it is physically coupled to the environment by
a sensory (and motor) system. From the insights gained during model development, the theory
that the configuration of the sensory system is important for information processing of perceptual
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images can be supported. First of all, of course, the types of used sensors are important for the
effectiveness of the perception process. Additionally, the place where they are mounted as well as
their number and spatial resolution play a decisive role. A high number of sensors and a higher
spatial resolution potentially allow it to distinguish many different perceptual images. However,
in such a case, the effort for information processing in the feature symbol level also gets higher
and more computational resources are needed. As for many modalities the correlations between
sensor data and neuro-symbols have to be predefined by the system designer, besides a higher
hardware effort, this also requires a higher design effort and longer development times. If too
many sensors are used, the effort and the needed resources increase without additional gain of
perceptual discrimination abilities.

If only fewer sensors and therefore a smaller spatial resolution are available, many perceptual
images that would be distinguishable by having available more sensors are assigned to the same
neuro-symbol, because there cannot be detected a difference in sensor activations. The advantages
of fewer sensors are simpler correlations between sensor data, feature symbols, and sub-unimodal
symbols and therefore the necessity of fewer processing units.

For most efficient processing, a balance has to be found between the two extreme cases of many
sensors and many different neuro-symbols causing much design effort and needing high computa-
tional resources and few sensors and few possibilities to distinguish perceptual images. From these
observations, it can be concluded that the sensor configuration already plays an important role
in efficient information processing. Additionally, an extraction of suitable features from sensor
data is of great importance to allow efficient processing. Generally, concerning the number and
spatial resolution of sensors, it is not mandatory to have the same spatial resolution at all places.
Drawing a conclusion back to neuroscience, this means that the type, number, and arrangement
of sensory receptors of our body already play a crucial role for the efficiency and manifoldness of
our perception.

One Single Structure for Storage and Processing of Information

In classical computer architectures like suggested by von Neumann, storage and processing of
information is performed by different modules. In contrast to this technical approach, [JLN05]
hypothesize that in the brain, storage is mediated by the same brain structures that process
perceptual information. The neuro-symbolic network developed in this thesis shows such an
architecture being responsible for storing and processing perceptual information at the same
time. Neuro-symbols in neuro-symbolic networks are both memory cells and processing units.
Therewith it was shown that such a structure is principally feasible. Additionally, it turned out
that such a structure is very efficient for information processing as there are needed no explicit
memory access and no explicit comparative operations for comparing input data and stored data.
Having shown that an architecture incorporating storage and processing of information is feasible
and is expected to work very efficiently, the hypothesis that in the perceptual system of the brain
the structure for storage of information is also responsible for processing of information gains
additional support. Taking over this principle for computational systems, this could lead to more
efficient controllers.

Adaptability of Design

In section 4.5, it was described how flexibility and adaptability of the design can be achieved by
supervised learning from examples. During testing, it turned out that the efficiency of learning
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strongly depends on the quality of the example data. The more representative the examples,
the better are the achieved results. If the examples contain too many atypical or faulty data,
there might be learned undesired connections and correlations. If necessary, the used learning
algorithm needs to have the capability to rule out or to detect and eliminate faulty or atypical
data. Additionally, similar as for neural networks, the algorithm needs to offer a certain ability
to generalize over presented examples to be able to handle also unseen cases.

Concerning the ability to add neuro-symbols in different layers, the algorithm needs a certain
ability to generalize to not create new neuro-symbols for every single example representing one
and the same object, event, or situation. For the function of such a splitting of neuro-symbols, it
is advisable to let the designer provide information in what cases an addition of neuro-symbols
shall be performed and to allow the designer also to circumvent a suggested splitting. Concerning
the capability of the system to eliminate redundant symbols, the learning algorithm should not
generalize too grossly over data to not eliminate too many designated symbols. Generally, it
makes sense to have different generalization abilities for different parameters. It turned out that
in most cases, it makes sense to generalize to a certain extend over location data, because it would
require too much effort to generate examples of one and the same event at all different locations
where it can occur and train the system with these data. In the same manner, it makes sense to
“generalize over time” as the duration of certain events or situations can vary.

Redundancy, Fault Tolerance, and Conflict Resolution

Human perception relies on information coming from different sensory receptors. In a similar
manner, the introduced model for human-like perception acquires information from different
sensor types. However, the usage of multiple sensor types brings some problems along that have
to be solved by an intelligent system design. Data belonging to one event can be redundant,
incomplete, contradicting, or of different reliability. In the following, it is discussed how the
model can handle redundant data, how fault tolerance can be achieved, and how conflicts caused
by ambiguous sensor data can be resolved.

In many cases, multisensory data originating from one and the same event include redundancy.
For example, when using video cameras, motion detectors, and tactile floor sensors, all three
sensor types can detect movement of objects. The data from the different sensors have to be
merged and it has to be avoided that – instead of one single moving object – three moving
objects are detected. The model presented in chapter 4 allows it to merge redundant data quite
effectively by its modular hierarchical neuro-symbol structure. The connections between the
neuro-symbols of different levels as well as their properties contain the information which sensor
data are likely to belong to the same object or event. Connections in lower levels have to be
predefined, connections in higher layers are derived from examples. Location information plays
a very important role in the process of integrating diverse sensory data.

Redundancy of data can be exploited to achieve fault tolerance if a certain modality fails partly
or completely. There can occur the cases that a modality delivers no data, or that it delivers
faulty data. The case that a certain modality just does not contribute data is the case easier
to handle. The case that faulty data are transmitted is critical, because these faulty data could
be coincidentally assigned to neuro-symbols representing perceptual images they actually do not
belong to. First, the case shall be discussed that sensory modalities fail and just do not contribute
sensory data to the perception process:
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Neuro-symbols, which receive input information from different information sources, are potentially
more robust to failures, because they can exploit a certain redundancy in data. If for example a
video camera, motion detectors, and tactile floor sensors are used to detect movement of objects,
a moving object could be perceived even if for example the visual modality failed. For allowing
fault tolerance, it is important to set the threshold of neuro-symbols to an appropriate value. If
the threshold is too high, the symbol will only be activated if all modalities serving as input data
provide a contribution. If it is too low, there will be activated symbols that do not correspond to
the perceptual image currently perceived. The value of the threshold best to be chosen depends on
the probability for the occurrence of failures. If the probability for a failure is low, a high threshold
value leads to the best result. If the number of errors occurring is high, a lower threshold value is
more recommendable. Additionally, it might have an influence on performance what information
correlating with the activation grade of a neuro-symbol is transmitted to other neuro-symbols.
The efficiency of perception in case of faulty data is by far better if the system “knows” what
modality failed. If the system does not know about the failure, in the worst case, it can occur
that there are activated neuro-symbols not corresponding at all to the object, event, scenario, or
situation currently going on in the environment. This particularly occurs if neuro-symbols of one
level are activated by largely the same lower-level neuro-symbols and therefore comprise little
redundancy. Therefore, if possible, the system should be “aware” of occurrences of malfunctions
of certain modalities. Comparing this concept to the human brain, humans are generally also
aware that they have e.g., momentarily closed their eyes and can therefore not acquire visual
information for perception. If the malfunction is known, by influence of knowledge, perception
can be facilitated. The question is how the system can notice the malfunction of a modality.
Possibilities would be to build in self tests into the system or to integrate mechanisms into the
system that detect that certain neuro-symbols are triggered remarkably often or seldom and that
therefore a sensor malfunction is probable.

In the last paragraphs, it was described how perception of the system can be preserved if one
sensory modality fails and does not contribute information to the perception process. Now, it
shall be investigated how the system behaves if one modality fails, and the sensors do not simply
deliver no data but, instead, delivers faulty data. If the system is “aware” of this malfunction, it
can exclude the faulty data and the problem handling works like described in the last paragraphs
where one modality falls out completely. If the system is not “aware” of the failure, for one single
event, different sensor modalities can provide contradicting data. If there is enough redundancy
in the sensor data of the different modalities, this does not pose a great problem. For example,
if motion of an object is detected by a video camera, motion detectors, and floor sensors, if
one modality fails, there are still two modalities left working correctly that can overrule the
faulty data. The situation gets more complicated if the faulty modality coincidentally activates
neuro-symbols that can contribute to the activation of other neuro-symbols. In such a case, also
higher-level symbols could be activated that do not represent the real events and situations going
on in the environment. The number of undesired higher-level neuro-symbol activations can greatly
be decreased exploiting location information about data. Additionally, top-down influences from
knowledge can facilitate perception in such situations.

Binding and the Importance of Location Information

In section 3.4, the so-called binding problem, which is regarded as one of the most puzzling
problems ever faced in neuroscience, and its potential solutions were introduced. Binding has
to be performed across space and time. However, each of the currently existing theories suffers
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from certain weak points. Chapter 4 comprised a suggestion how to combine and supplement the
different proposed mechanisms of binding in order to get a feasible bionic system being capable
of parallel distributed information processing of sensory data. In lower levels of information
processing, combination coding proved to be a reasonable solution. In higher levels, a combination
of principles inspired from population coding and temporal coding turned out to be suitable.
Additionally, top-down mechanisms coming from memory and knowledge showed their utility in
the binding process.

Furthermore, as outlined in section 4.4.3, besides the utilization of information occurring at the
same instant or interval of time for binding, location information of sensory data is crucial for
the binding process. First of all, location information is of urgent importance if different objects,
events, and situations are going on concurrently. Location information allows it to correctly
assign activated lower-level neuro-symbols to higher-level symbols. Location information is also
very useful to detect faulty data and to avoid undesired binding of such data. To consider loca-
tion information, the used learning algorithms need a certain ability to generalize over location
data. The higher the resolution of the location data, the better the generalization capabilities
of the algorithm have to be. If perception is overloaded by too many events happening concur-
rently, focus of attention can help to correctly assign sensory and neuro-symbolic information.
This mechanism also acquires location information by restricting the spatial area within which
information is processed. As can be shown from the description just given, location information
seems to be necessary at all hierarchical levels of perception for binding of perceptual information
and might therefore be the key to solve the binding problem in perception.

In neuroscientific basic literature, it is generally reported that in the visual system, there exist
two distinct, separate pathways for object recognition and spatial object location being directed
towards two different brain areas. However, as insights gained during model development in this
thesis showed, the hypothesis of completely distinct streams of information about object type
and object location is relatively unlikely. In this case, location information could not be used for
the binding process and there would arise the problem how to merge this separated information
again in later processing stages. Therefore, it should rather be sympathized with the hypothesis
of [GHT96] according to which it would be surprising if the brain did not make use of spatial
information freely available at least partly for solving the binding problem.

Focus of Attention versus Parallel Processing

In section 4.4.5, different mechanisms were introduced to handle objects, events, and situations
occurring concurrently. There principally exist the possibilities of parallel symbol representations,
of the usage of group activity symbols, and the mechanism of focus of attention, each of them
having certain advantages and weak points.

The method that leads to the best and fastest perception results is the method of parallel symbol
representation, because with this method, events can actually be processed in parallel. However,
when considering the design effort, there has to exist a certain number of neuro-symbols for
each perceptual image from the sub-unimodal layer upwards. This requires lots of basic informa-
tion processing units and therefore high computational resources. Additionally, mechanisms are
necessary to avoid that different neuro-symbols representing the same type of perceptual image
are activated concurrently by this perceptual image occurring in the environment. Therefore,
this method is only recommendable for perceptual images occurring concurrently very frequently
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and/or that are triggered from sensor values and low-level symbols being active only for a short
time.

For other cases, the usage of focus of attention is generally preferable, because it offers the
possibility to get along with a smaller number of neuro-symbols. However, one problem can occur
when using focus of attention instead of parallel symbol representation. As focus of attention
processes information sequentially from the sub-unimodal level upwards, it can happen that
information being represented by activated feature-symbols only for a short instance of time
cannot be processed if the focus of attention is currently directed to another spatial area. This
information is then lost. From the neuroscientific point of view, there cannot yet be given an
answer by what mechanisms the focus of attention is steered. For test purposes, in the simulation,
this information was provided to the system by an external source2. A contribution to determine
the current area of focus of attention could be made by using group activity symbols. The
activation of such symbols could steer the focus of attention to certain spatial areas if a more
detailed investigation of certain situations is desired.

If no parallel symbol representations are used and too many activities are going on in the envi-
ronment to represent them all by different neuro-symbols, group activity symbols can be used.
Information represented by group activity symbols is of less detail, which can be an advantage
but also a disadvantage depending on what shall actually be perceived. A further restriction is
that lower-level group activity symbols can only be combined with other symbols of such a group
activity character.

Neuro-symbolic Level for Interaction with Knowledge and Memory

In section 4.6, mechanisms were introduced to allow knowledge and memory about past events to
influence the activation of neuro-symbols. It was described that neuroscience and neuropsychol-
ogy do not give a decisive answer on what level interaction between knowledge and perception
takes place in the brain. Therefore, it was declared that this interaction can principally take place
in layers between the sub-unimodal level and the scenario symbol level. During model implemen-
tation and simulation, it turned out that an interaction at higher hierarchical neuro-symbolic
levels is generally more efficient than an interaction at lower levels. The effect of suppressing or
increasing the activation of neuro-symbols by knowledge already at lower levels is in many cases
too crude, because a certain lower-level symbol can be combined to many different higher-level
symbols with quite different meaning. An interaction at higher hierarchical levels is more specific.
Generally, single neuro-symbols of lower layers comprise less specific information, which is also
often less intuitively interpretable than higher-level information. Therefore, they offer less possi-
bility for a meaningful interaction with knowledge and memory. Additionally, neuro-symbols of
lower levels are based on data from fewer sensory modalities and are therefore often less redundant
and more likely to be subject to false activations. For the performed simulations, the multimodal
layer and the scenario layer generally seemed to be the best levels for interaction. They are also
the only levels that can deliver information used as output information of the system. Using only
these two levels for interaction with knowledge and memory reduce the implementation effort for
learning mechanisms to determine what neuro-symbols shall set and reset memory symbols and
the number of necessary connections between the modules.

2e.g., by an algorithm searching through space or by the system engineer
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Drawing a conclusion from the bionic model back to neuroscience, this would mean that – besides
for the very lowest levels – an interaction between abstract knowledge and perception is principally
conceivable in all layers. However, it might be more likely to occur in higher cortical layers.

Stability of Perception

In section 4.2.3, it was mentioned that information in neuro-symbolic networks is processed
bottom-up from sensor data, that neuro-symbols are influenced top-down from knowledge and
focus of attention, and that there can exist feedbacks within neuro-symbolic levels. Information
exchange is carried out event-based by passing messages between units (see section 4.3.1). As
discussed in section 6.1, due to the existence of top-down information flow and feedbacks, this
can lead to a circulation of messages between neuron-symbols several times before a stable value
is reached. During this “message circulation phase”, there can temporarily be activated certain
neuro-symbols, which do not correspond to the actual perceptual image being currently present
in the environment.

For a computer simulation, this does not pose a problem, because in the simulation, the time
for transmitting and processing messages between neuro-symbols can be assumed to be zero.
Concerning the activations of neuro-symbols in the multimodal level and the scenario level, which
also serve as system output, (and for lower-level neuro-symbols if they set or reset memory
symbols), only the last values of the neuro symbols that were delivered at a certain instant of
time are taken into account. However, if the model is implemented into hardware, there have to
be considered certain signal runtimes and processing times, because the correct activation values
for neuro-symbols will only be available after the message circulation phase is terminated.

The occurrence of circulating messages was the reason why in the implementation, for communi-
cation between memory symbols and the knowledge module, interface variables and state charts
with certain transition conditions were used instead of ports and messages like for other parts of
the model. Without this measure, it can happen that messages are circulated within the model
ad infinitum without reaching a stable value. When using only event-based information process-
ing, whenever a memory symbol receives a message, it processes this information and sends a
message to the knowledge module no matter if the data in the message have actually changed or
not. This module calculates information and sends information back to diverse neuro-symbols.
The neuro-symbols again process information and send it upwards to higher neuro-symbols and
again to memory symbols and finally to the knowledge module, which transmits information to
neuro-symbols and so on. By using interface variables and state charts, a calculation of top-down
influences from knowledge to memory symbols is not performed whenever a message is received
but only when the state of a memory symbol changes. There are only sent messages from the
knowledge module to neuro-symbols, which are influenced by these changes. This measure acts
as a kind of filter mechanism and allows it to reduce the number of circulating messages and the
number of periods needed for circulation until a final stable value is reached.

The occurrence of circulating messages in the model caused by feedbacks and top-down informa-
tion flow is an interesting result. Although in the brain, information does not seem to be necessar-
ily exchanged event-based, there can be drawn certain conclusion about information transmission
in the brain. The brain is made up of approximately 100 billions of neurons being interconnected
and exchanging information every instant of time. Within these neural structures, information
does not flow only in one direction, but there exist plenty of feedbacks from higher cortical layers
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to lower ones. It takes a certain amount of time to transmit information via neurons. Therefore,
in the brain, there might occur comparable “circulating signals”.

Taking a look at the perceptual system of the brain concerning signal circulations, information
coming from sensors will be processed bottom-up. In later processing stages, higher-level infor-
mation can influence and change neural activations in lower layers, which again influence the
higher levels and so on, which can theoretically proceed ad infinitum. Additionally, every instant
of time, the activations can be influenced from parts of the brain lying outside the perceptual
system of the brain. Feedbacks and top-down influences might not only be negative (inhibitory)
but also positive (excitatory). This arises the question how the brain can ever get to stable sig-
nal representations and therefore to a stable, unified perception of the world. In the presented
model, higher-level functions were responsible for filtering and inhibiting the activation of neuro-
symbolic processing units. In the brain, there might also have to exist certain higher-level filter
or inhibition mechanisms to suppress the activation of certain processing units and to reduce the
amount of transferred information.

6.3 Comparison with Existing Models

The model proposed in this thesis introduces a new principle of information processing called
neuro-symbolic information processing to interpret data coming from sensors. The model is
designated for applications in the field of machine perception – particularly for monitoring and
surveillance systems in buildings. The aim of this section is to demarcate the model to already
existing related models proposed from different research domains. First, there are outlined the
main differences to the model developed in the project ARS-PC (see section 2.1.2). Next, there
is made a comparison to neural networks and symbolic systems. Finally, it is attempted to bring
the model in line with the research fields of neuro-symbolic integration and sensor fusion.

6.3.1 Demarcation to Prior Work

As mentioned in section 2.1.2, the developed model of human-like machine perception described
in this thesis was influenced from prior work in the project ARS-PC. In the context of this project,
there was developed a model for bottom-up information processing of sensor data in three layers
in order to perceive different scenarios. The information within these three layers is processed
in terms of symbols. Correlations between lower-level symbols and higher-level symbols have to
be predefined by the system engineer in form of rules. However, although the model claims to
apply neuroscientific, neuropsychological, and neuro-psychoanalytical concepts, besides the fact
that information is processed hierarchically in different layers and that information is processed
in terms of symbols, no such concepts are used for the implemented model.

In contrast to this prior model, this thesis attempted to actually concentrate on neuroscientific
and neuropsychological research findings and to use them to design a technically functioning
and implementable model. The model introduced neuro-symbols as basic processing units, and
therefore allows it to combine advantages of both neural and symbolic processing, which are
considered as two disparate approaches to explain information processing in the human brain.
Additionally, there is defined a strict modular hierarchical structure how information from differ-
ent sensory modalities has to be processed, which is derived from the structural organization of
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the perceptual system of the human brain. Accordingly, neuro-symbols are combined to neuro-
symbolic networks. The functions of neuro-symbols in different modalities and hierarchical levels
correspond to the functions of processing units in the different parts of the perceptual system
of the brain. Location information plays a crucial role in binding of information. The lowest
neuro-symbolic level is topographic in structure whereas higher-level neuro-symbols respond to
perceptual images independently of their location. In contrast to the former model where in-
formation was only processed bottom-up beginning with sensor data, in this model, there exist
feedbacks between neuro-symbols as well as an information flow, which is directed top-down.
Furthermore, in comparison to its precursor, the model offers the possibility to learn correla-
tions between neuro-symbols from examples. Additionally, there were introduced mechanisms
like memory, knowledge, and focus of attention to facilitate perception when sensor data are
ambiguous and when many events happen in parallel.

6.3.2 Neuro-symbolic Networks versus Symbolic Systems and Neural Net-

works

Symbolic Systems

In section 2.3.2, a short overview about symbolic systems was given. What neuro-symbolic net-
works have in common with symbolic systems is the fact that knowledge – in the designated
application perceptual knowledge – is represented symbolically. The figures in chapter 4 illustrat-
ing neuro-symbol hierarchies might convey the impression that neuro-symbolic networks resemble
semantic networks. However, there exist many differences between neuro-symbolic networks and
symbolic systems. This allows it to circumvent certain problems that arise when using pure
symbolic approaches.

With symbolic systems, knowledge can be represented explicitly. However, in section 2.3.2, it was
mentioned that sensory processes are generally considered as implicit knowledge, which is hard
to model by symbolic AI frameworks. In contrast, the model presented in this work is designed
to fit the needs of sensory processes.

A problem of symbolic system, which is generally referred to as the frame problem, is to let the
system know what are relevant features that should be tracked. In neuro-symbolic networks, this
problem is evaded as each neuro-symbol only receives input information that is relevant for its
processing and during learning there can be set time intervals within which arriving information
shall be considered. Additionally, a mechanism called focus of attention is designated which
allows it to consider only information within a relevant spatial range.

Neuro-symbolic networks also circumvent another problem of symbolic systems described in sec-
tion 2.3.2, which was referred to as the symbol grounding problem. By deriving neuro-symbolic
data from sensor data, neuro-symbols become grounded.

Symbolic systems are often said to be unable to generalize and to be fault tolerant. In contrast
to most symbolic systems, neuro-symbolic networks have the potential to learn correlations and
relations between neuro-symbols from examples. Learning algorithms used in neuro-symbolic
networks allow it to configure the network in a way to give it the ability to generalize to unseen
examples. Additionally, by using partly redundant data from different sensory sources and in-
tegrating knowledge into the perception process, fault tolerance is obtained. Neuro-symbols can
also handle data that involve time, which is critical or even not feasible in many methods used
for symbolic systems.
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An important characteristic of neuro-symbolic networks is that the neuro-symbolic structure that
represents perceptual knowledge is at the same time also the structure that processes the data.
This means that neuro-symbols are memory cells and processing units at the same time, which
allows fast and effective information processing.

Unlike symbolic systems that have sequential and centrally controlled algorithms, neuro-symbolic
structures allow distributed parallel processing. This is a second reason why they guarantee high
performance.

There exists one part in the model of human-like perception where for the current state of
development, the use of pure symbolic systems would make sense. This part is the knowledge
module (see figure 5.3). In section 4.6, it was mentioned that the abstract knowledge contained
in this module is currently represented by rules. For coding these rules, symbolic systems would
be suitable. However, the focus of future work will be on finding mechanisms to represent this
knowledge in a similarly efficient and neuroscientifically related way like perceptual images within
the neuro-symbolic structure. Unfortunately, until now, neuroscience and neuropsychology do not
provide much information to this topic utilizable for a bionic model.

Neural Networks

Section 2.3.1 gave a brief overview about the research field of neural networks. There exist cer-
tain similarities between neural networks and the proposed concept of neuro-symbolic networks.
Similar as in neural networks, the basic processing units of neuro-symbolic networks sum up
input information about the activation grade of connected entities and are themselves activated
if this value exceeds a certain threshold. Like in neural networks, basic processing units are
combined to perform complex tasks. In both cases, connections between units can be weighted.
However, besides these similarities, there also exist many differences between neural networks
and neuro-symbolic networks. In contrast to neural networks, where information is represented
in a distributed and generally not interpretable form via weights of connections, every single
neuro-symbol has a certain interpretable meaning as each neuro-symbol represents a certain per-
ceptual image. When a neuro-symbol is activated, this indicates that the perceptual image it
stands for has been perceived in the environment. Unlike neurons, neuro-symbols can contain
properties, which specify a perceptual image in more detail. A special property of neuro-symbols
is their location property, which represents information about the location where a perceptual
image assigned to a particular neuro-symbol occurs in the environment. This allows it to correctly
merge information in case of different events triggering diverse sensors concurrently and offers a
mechanism for fault detection.

For artificial neural networks, only the structure and function of a single nerve cell serves as
biological archetype. For connecting particular neurons, there are generally not applied concepts
taken from neuroscience. In contrast, in neuro-symbolic networks, the structural organization of
the perceptual system of the human brain serves as archetype for their architecture.

A further difference is the function of weights of connections in neural networks and neuro-
symbolic networks. Whereas weights in neural networks are altered by a learning algorithm
to achieve a mapping of input values to output values, in neuro-symbolic networks, weights of
connections are used when different sensor modalities deliver information of different reliability.

Another difference between neural networks and neuro-symbolic networks in the way how learning
is performed. In contrast to neural networks, in neuro-symbolic networks, learning is performed
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in several stages for different modalities and hierarchical levels. Lower-level correlations have
to be determined before higher-level correlations can evolve. For each hierarchical level, two
training phases exist. The first is responsible for calculating forward connections and the second
is responsible for calculating and setting feedback connections. In these learning phases, there
can also be determined further parameters like location and timing data and values of proper-
ties. Additionally, the possibility exists to adapt the neuro-symbolic architecture by adding or
eliminating neuro-symbols.

The next difference is the way how information is exchanged between neuro-symbols in contrast
to neural networks. For calculating output values from certain input values, in common neural
networks, all the necessary information has to be present at the input of the network at one
instant of time. To process time signals, there can be used time delays. However, the purpose of
the time delays is just to make available the whole needed signal information at the input layer of
the network at the same time. In neuro-symbolic networks, neuro-symbols comprise mechanisms,
which make it possible to process information arriving asynchronously within a certain time
window or in a certain succession. Besides this, information exchange between neuro-symbols is
event-based. This means that information is only processed if a new input message is received.
This method allows it to reduce the communication and information processing effort.

A big advantage of neuro-symbolic networks compared to neural networks is their interpretable
structure as each processing unit is assigned to a certain perceptual image. In neural networks,
output information is represented by numeric values, which have to be mapped to a desired
meaning. This fact also makes it difficult to connect neural networks to ensemble and modu-
lar multi-net systems [Sha98]. In neuro-symbolic networks, output information is represented
symbolically. This symbolic output information can be used as input for further neuro-symbolic
networks.

6.3.3 Neuro-symbolic Networks for Neuro-symbolic Integration and Sensor

Fusion

In section 2.3.3, an overview about existing research approaches in the field of neuro-symbolic
integration was given. In this thesis, a model for neuro-symbolic information processing was intro-
duced. As in this model, principles from neural as well as from symbolic information processing
are used, it can be regarded as a particular method of neuro-symbolic integration. In section
2.3.3, a classification scheme for categorizing existing neuro-symbolic integration approaches was
introduced. It shall now briefly be discussed how the proposed model fits into this classification
scheme.

In the classification scheme depicted in figure 2.2, neuro-symbolic systems were divided into
unified approaches and hybrid approaches, which are further divided into neuronal symbolic and
connectionist symbolic processing and into translational and functional hybrids. When trying
to fit the proposed model of neuro-symbolic information processing into this scheme, it best
fits into the category of functional hybrids. The characteristic of functional hybrids is that
they comprise complete symbolic and connectionist components, which is also the case for neuro-
symbolic networks. Functional hybrids can be further classified into loosely coupled architectures,
tightly coupled architectures, and fully integrated architectures. Neuro-symbolic networks can be
assigned to the category of fully integrated architectures, which have the characteristic to show
no discernible external difference between symbolic and neural modules.
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In section 2.3.3, for unified approaches, it was outlined that connectionist symbol processing can
be further divided into localist and distributed architectures. Localist architectures contain one
distinct node for representing each concept. Distributed architectures comprise a set of non-
exclusive, overlapping nodes to represent each concept. Considering neuro-symbolic networks,
they would be classified as localist architecture.

In the sections 2.3.1 and 2.3.2, it was mentioned that both neural networks and symbolic systems
suffer from certain weak points. In section 2.3.3, it was mentioned that the weak points of neural
networks and symbolic systems are complementary and that with hybrid approaches, they could
be overcome. By using neuro-symbolic networks, certain advantages of neural networks and
symbolic systems can be combined. Potential advantages in contrast to pure connectionism or
symbolic approaches were already outlined in section 6.3.2.

Section 2.2 comprised a brief description of the research field of sensor fusion. Similar like in
sensor fusion, the model introduced in this thesis aims to combine sensor data from diverse sensory
sources (and sometimes also other sources) to achieve a better perception of the environment.
Therefore, the presented model can also be considered as a model for sensor fusion. As it was
outlined in section 2.2, existing models for sensor fusion strongly depend on the application, and
up to now, there does not exist a generally excepted model. When discussing biological sensor
fusion, it was pointed out that sensor fusion in the perceptual system of the human brain is of far
superior quality than sensor fusion achieved with existing mathematical or algorithmic methods.
This makes it particularly useful to study the biological principles of sensor fusion. Therefore, the
presented model for merging and interpreting sensor data based on studies about the perceptual
system of the brain could lead to a more efficient and more generally applicable method in sensor
fusion.
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Chapter 7

Conclusion and Outlook

“Science is a wonderful thing if one does not have to earn one’s living at it.”

[Albert Einstein]

The aim of this work was to present a bionic model for human-like machine perception. In
section 1.1, it was outlined that up to now, machine perception can by far not compete with
the perceptual capabilities of humans. This was the motivation to use the perceptual system of
the human brain as archetype for developing a model for machine perception. The foundation
for model development was laid by an extensive study of neuroscientific and neuropsychological
backgrounds about the human brain and particularly about its perceptual system. In section 7.1,
the most important aspects of the developed model are summarized briefly, it is outlined how
the characteristics and requirements of human perception described in section 1.1 are fulfilled,
and the key results of the work are recapitulated. In section 7.2, based on lessons learned from
the performed investigations, interesting directions for further research are identified. Section 7.3
gives an outlook about expected and recommended developments in the research field the thesis
is embedded in.

7.1 Model Recapitulation and Key Results

Model Overview

In this thesis, a model was introduced, which aims to emulate the perceptual system of the
human brain to build next generation machine perception systems. Therefore, neuroscientific and
neuropsychological research findings about the organization and function of the perceptual system
of the brain served as archetype. Having available systems capable of a human-like perception
of their environment would be valuable for many applications like the surveillance of public and
private buildings for safety and security reasons and the increase of comfort of the occupants, the
automatic observation of the activities and state of health of persons in retirement homes and
hospitals to detect critical situations, for autonomous robots, and interactive environments. The
first designated application for the model is in the field of building automation for monitoring
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systems. By automating such processes, personnel for monotonous observation tasks could be
pared down.

For this purpose, buildings need to be equipped with a large number of diverse sensors. The chal-
lenge that has to be taken is to merge and interpret the information coming from these various
sensory sources. To get a unified perception of what is going on in the environment, information
provided by these sensors has to be “bound” within sensory modalities, across diverse modalities,
and across space and time. Current solutions are barely capable of handling this task. There-
fore, a new information processing principle was introduced called neuro-symbolic information
processing. According to this method, sensory data are processed by so-called neuro-symbolic
networks to result in “awareness” of what is going on in the environment. The basic process-
ing units of neuro-symbolic networks are neuro-symbols. The inspiration for the utilization of
neuro-symbols came from the fact that humans think in terms of symbols, which emerge from
information processed by neurons. In the model, neuro-symbols represent perceptual images of
different grades of complexity. Neuro-symbols can have so-called properties that specify them
in more detail and consider location and timing information of input data. To perform com-
plex tasks, neuro-symbols need to be connected in order to exchange information and to interact.
Therefore, neuro-symbols are arranged in a modular hierarchical manner, which was derived from
the structural organization of the perceptual system of the human brain. Similar like between
neurons in the brain, within neuro-symbolic networks, there exist forward and feedback con-
nections between particular neuro-symbols. Additionally, mechanisms called focus of attention,
memory, and knowledge – which are also concepts taken over from neuroscience and neuropsy-
chology – influence the perceptive process in a top-down manner and help to devote processing
power to relevant features and to resolve ambiguous sensory information. In the proposed model,
correlations between neuro-symbols do not all have to be predefined but can be acquired from
examples in a supervised manner. Similar like in the brain, only the lowest-level connections do
already have to be fixed at startup, because it is not feasible to “get everything from nothing”.
Based on these prerequisites, higher-level correlations can then be learned successively.

Fulfillment of Requirements

In section 1.1, a number of characteristics and requirements for human perception were outlined,
which were the starting point for model development. Furthermore, it was claimed that the
developed design shall allow it to integrate already existing workable video and audio processing
methods, and that the model has to be actually realizable in a technical system. How these
characteristics and requirements are fulfilled by the introduced model are briefly summarizes in
the following:

Diverse Sensory Modalities and Parallel Distributed Information Processing: As out-
lined in section 1.1, to perceive the environment, the brain needs to integrate a huge amount of
information coming from various sources being processed in parallel and in a distributed fash-
ion. The challenge was to develop a technical model with an architecture that allows a similar
distributed parallel processing and to combine the separate processing results to one unified per-
ception. In the proposed model, to solve the problem of processing data from various sources, a
layered modular hierarchical information processing architecture was suggested which is inspired
by the modular hierarchical structure of the perceptual system of the brain. Sensors of different
types are grouped to different sensory sub-modalities and modalities and are finally merged to a
unified multimodal perception. Information of different modalities or sub-modalities is processed
separately and in parallel. A merging always takes place at the next higher layer. By the usage of
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neuro-symbols, which are activated when the sum of their input signals exceeds a certain thresh-
old, and by structuring them to neuro-symbolic networks, complementary, redundant, and also
contradicting and inconclusive data can be handled. In case of contradicting and inconclusive
data, influence from knowledge and memory can help to solve ambiguity. For handling events
happening concurrently, there were introduced the concepts of parallel symbol representations,
of group activity symbol representation, and of focus of attention.

Neural and Symbolic Information Processing: In the human brain, perceptual information
from different modalities is processed by interacting neurons. However, humans think in terms of
symbols. Therefore, in the model, so-called neuro-symbols were introduced which are structured
to neuro-symbolic networks. In a first processing stage, neuro-symbolic information is derived
from sensory raw data. In the following steps, neuro-symbolic information of a more and more
abstractive level is processed. Higher-level neuro-symbolic information can be interpreted by
humans intuitively.

Information Integration across Time and Asynchronous Information Processing: To
perceive object, events, and situations in an environment, it is necessary to consider information
arriving asynchronously, information arriving within a certain time interval, and to conceive
certain successions of events. To handle such data, in section 4.4.4, standard neuro-symbols
where extended in a way that they are capable of considering data arriving within a certain time
window or certain temporal successions of data.

Learning and Adaptation: To allow flexibility and adaptability to different situations, a
system needs to have the ability to learn certain correlations within data. In the model, there can
be learned correlations between neuro-symbols representing perceptual images in a supervised
learning process. Therefore, a number of examples comprising sensor data being triggered when
certain perceptual images occur is used. The learning process is divided into several learning
phases, starting with lower levels and continuing with higher hierarchical levels.

Influence from Focus of Attention: In real world environments, it can happen that at a
certain moment, more perceptual information is available than can be effectively processed. In
particular cases, instead of trying to process all objects simultaneously, processing needs to be
limited to a certain area of space at a time by focus of attention. Therefore, a concept was
introduced to integrate such a focus of attention into the developed bionic model. This focus
limits the spatial area within which information is processed. Interaction takes place at the
neuro-symbolic feature symbol level, which is topographic in structure. A method for considering
only events happening within a certain time interval is directly implemented into every single
neuro-symbol.

Influence from Knowledge: For a perceptual system that can perceive lots of different ob-
jects, events, scenarios, and situations, the case can occur that sensor data are ambiguous. This
means that very similar sensor patterns can correspond to different object, events, scenarios, and
situations. In such a case, knowledge can help to interpret ambiguous sensory signals. In the
model, memory symbols and an interface between perception and knowledge were introduced to
increase or decrease the activation of neuro-symbols representing perceptual images.

Hybrid System Design: In section 1.1, additionally to the fulfillment of the requirements and
characteristics of human perception, it was claimed that the developed model shall be able to
integrate existing methods and algorithms for audio and video data processing to reduce the
design effort. This is enabled by the modular hierarchical structure of the model which allows it
to substitute certain neuro-symbolic modalities by other solutions. The usage of existing workable
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solutions is also permitted for other sensory modalities or sub-modalities if they provide for a
particular case an advantage compared to the suggested neuro-symbolic information processing
principle.

Model Feasibility: Besides the pure suggestion of a model for human-like machine perception,
it was demanded that this model is also actually technically realizable. The proof of technical
feasibility of the proposed model was given in chapter 5 and chapter 6, where the implementation
of the model and its simulation results were outlined.

Key Results

The suggested model was implemented and simulated with the modeling language AnyLogic. Test
data came from simulated sensory and symbolic values being triggered when certain activities
are going on in a virtual building. As illustrated in section 6.1, the model proved to be successful
for the specified test environment and it is expected to achieve satisfying results also for larger
system configurations and a greater number of perceptual images to be detected. In section 6.2,
based on lessons learned from model development, implementation, and simulation, important
issues of the bionic model were discussed including the necessity of generalization for learning
from examples and the achievement of fault tolerance and conflict resolution by redundancy of
sensor data.

Furthermore, besides pure technical performance considerations, the insights gained during model
development, implementation, and simulation allowed it to draw certain conclusions about the
correctness, incorrectness, or incompleteness of neuroscientific and neuropsychological research
findings. The most important results concerning this issue are briefly summarized in the following.
For a more detailed description please review section 6.2.

� The first point to mention is that unlike assumed in traditional approaches, the “configura-
tion” of sensory receptors in the body and the lowest levels of information processing turned
out to be already of crucial importance for the efficiency and manifoldness of perception.

� A second outcome is that it is very likely that the neural units in the perceptual system
of the brain are both memory cells and processing units of perceptual information at the
same time. It is presumable that for the rest of the brain, a similar concept applies. It was
argued that compared to classical computer architectures like suggested by von Neumann,
such structures incorporating both storage and processing of information can work very
efficiently as there do not have to be performed explicit memory access and comparative
operations.

� One question not yet being conclusively answered from neuroscience and neuropsychology
is on what level abstract knowledge about the world interacts with perceptions based on
sensory information. Concerning this question, it was shown that besides on the very lowest
levels of perception only providing information about simple features derived from sensor
data, an interaction is principally conceivable and possible at all levels. However, it turned
out that an interaction at the higher levels might be more efficient, because the perceptual
information being available at lower levels is often quite crude and can belong to many
different higher-level perceptual images with quite different meaning.

164



Conclusion and Outlook

� Another point that was discussed was how to combine and supplement different proposed
solutions to the binding problem – which is considered as one of the key questions to brain
function – to get from distributed parallel sensor data processing to a unified perception of
the environment. In lower levels of processing, it was suggested to use combination coding
for binding of sensor data whereas in higher levels, a combination of principles inspired from
population coding and temporal coding turned out to be suitable. Additionally, top-down
mechanisms coming from memory, knowledge, and focus of attention showed their utility in
the binding process. A further result that could be derived is that in perception, for solving
the binding problem, besides the utilization of data occurring at the same instant of time or
within a certain time interval, location information is of crucial importance. Furthermore,
it is outlined that the textbook line that there exist two distinct, separate pathways for
object recognition and spatial object location in the visual system being directed towards
two different brain areas should be reconsidered. The hypothesis of completely distinct
streams of information about object type and object location is relatively unlikely, because
in this case, location information could not be used for the binding process, and there would
arise the problem how to merge the separate information again in later processing stages.

� Last but not least, it was discovered that when using structures being made up of a huge
number of particular processing units where information is not only processed bottom-up,
but where also feedbacks and top-down interactions are possible, the stability of the system
is raised to question. In such a case, signals could theoretically circulate ad infinitum within
the different layers and units and not allow the system to ever get to a stable state. This
arises the question how the perceptual system of the brain (or the brain as a whole), which
without doubt comprises such feedbacks and top-down influences, can ever be stable and
lead to a conclusive perception and experience of the world. For this purpose, certain
higher-level filter or inhibition mechanisms might be necessary.

7.2 Recommendations and Hints for Future Research

During model development, implementation, and simulation, there were identified a number of
topics that are worth to be subject of further research work to round out the model and make
it even more efficient and applicable to a broader range of problem domains. This potential of
improvement is outlined in the following. It is started with issues being realistic to be achieved
and resolved in near future and being rather tasks for engineers. Afterwards, it is succeeded with
topics, which – due to their complexity – rather have to be considered as long term goals and will
require interdisciplinary efforts from neuroscientists, neuropsychologists, and engineers.

Hardware Realization: Until now, the introduced model has only been tested and verified on
the PC by simulating parallel processing. However, the time required for simulation increases with
the number of neuro-symbols, which limits the possible expansion of the model. To truly take
advantage of the parallel distributed structure of the model, it would be interesting to implement
the model into a chip, which would allow it to perform real parallel processing.

Neuro-symbolic Network Toolbox: The proposed model provides a powerful and flexible tool
for information processing of sensor data to perceive objects, events, scenarios, and situations in
an environment. By making certain adaptations, neuro-symbolic information processing could
also be used for other applications. What will be subject to further work is to develop a toolbox
for neuro-symbolic networks comparable to the existing toolboxes for neural networks, which will
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allow fast and comfortable development and testing. With this toolbox, the method of neuro-
symbolic information processing shall be made attractive for a broader group of users.

Learning Spatial Configuration of Sensors: As outlined in section 4.4.3, location information
is important for binding perceptual data. Location information is derived from the location of
triggered sensors. In the introduced model, it was assumed that the positions where individual
sensors are mounted as well as their detection ranges are known to the system at initial system
startup. This approach seems to be in accordance with the circumstances in the human body and
brain. Sensory receptors of the body are connected via nerve cells to the primary cortices of the
perceptual system, which are topographic in structure. It is very likely that these connections
already exist at birth and are therefore defined by genes. However, for a technical system,
the exact assembling and configuration of sensors in the environment require a certain effort.
Therefore, it would be desirable to have available a method to learn the positions where sensors
are mounted only during operation. This could be performed by having sensors of different
modalities with overlapping detection ranges. If an event happens in the environment, diverse
sensors covering the same spatial detection range are activated concurrently. From this concurrent
activation, there could be drawn conclusions about the position of the sensors.

Emerging a Dominant Modality and Detection of Failures: In section 3.3.2, it was
described that there generally exists one sensory modality that dominates over the other modal-
ities, because it delivers generally the most reliable information. Vision has traditionally been
considered as the dominant modality. The classical view is that visual dominance is an inherent
physiological advantage of visual over other sensory perceptions in the brain. In accordance to
this, in the proposed model, it was also predefined what sensor modality shall be dominant. How-
ever, an alternative hypothesis suggests that visual dominance is not inherited but emerges during
development, because visual information proves to be most accurate and reliable in the majority
of cases. Following this suggestion, it would be interesting to find a mechanism to determine
only during system operation what sensory modality of a certain sensor configuration delivers the
most reliable information. Concerning the reliability of sensory information, a second issue would
be of interest. In section 6.2, it was discussed how the system behaves when a sensory modality
fails partly or completely. As pointed out, in case of failure, the performance of perception is sig-
nificantly higher when the system “knows” about the failure of the modality. Therefore, it would
be desirable to have available effective mechanisms to detect the malfunction of the modality.
For instance, besides the integration of low-level self tests into the systems, there could also be
integrated mechanisms that detect when certain neuro-symbols are triggered remarkably often or
seldom, which is an indication for sensor malfunction.

Unsupervised Learning within Neuro-symbolic Networks: As outlined in section 4.5, for
learning correlations between neuro-symbols, supervised learning methods are used. However, in
the human brain, especially in the lower levels, which evolve at early developmental stages, it is
very unlikely that there can be made use of supervised learning. Here, neural structures either
have to be predefined or the brain needs to offer the possibility to learn correlations between
data in an unsupervised manner. For learning, data of the same sensory sources changing over
time as well as data from different sensory sources being assigned to the same spatial position in
the environment might be the key to extract such correlations. Identifying and emulating these
mechanisms of unsupervised learning, which might be the same through all hierarchical levels,
could allow it to make a great leap forward in understanding the brain as well as in the field
of cognitive science and artificial intelligence and would bring us closer to the aim of developing
technical systems with real cognitive capabilities.
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Knowledge Acquisition: In section 3.3, it was pointed out that knowledge and memory of
what happened in the past is very important for perception. The complexity of bottom-up sensor
data processing as well as its error-proneness can be drastically reduced by using knowledge.
In the model, until know, knowledge and its influence on neuro-symbol activations have been
represented by explicit predefined rules. This approach is obvious, because abstract knowledge –
especially semantic knowledge – can easily be described in an encyclopedic form of third-person
information. Nevertheless, it would be interesting and desirable to extract a certain amount
of these rules in a learning process and to represent knowledge not in a rule-based form but
to find another suitable representation being inspired from how knowledge is “coded” in the
brain. However, brain research does not yet provide detailed information about these issues.
For acquiring knowledge, there might have to exist reinforcement mechanisms or concepts like
emotions. Coding of knowledge might follow similar principles as discovered for the perceptual
system of the brain, where units seem to be memory elements and processing elements at the
same time. Cooperation between neuropsychologist and engineers could lead to new insights not
being achievable by these two disciplines when researching independently from each other.

Steering the Beam of Attention: Section 3.4 described how focus of attention can help to
bind information when different events happen in parallel. In section 4.4.5, it was proposed to
constraint the spatial area within which information is processed by a focus of attention. The
interaction between focus of attention and neuro-symbols was suggested to take place on the
feature symbol level. However, neuroscience and neuropsychology do not yet provide a decisive
answer by which mechanisms the beam of attention is steered and directed to certain areas.
Therefore, this part was left out in model development by defining that the steering of the
focus of attention is performed by an external source. Nevertheless, this issue is a topic that
is recommendable for future research work. Where focus of attention is directed to is for sure
influenced to a certain extend by perception itself. However, there are most certainly also involved
mental processes not being part of the perceptual system of the brain. Emotions, knowledge,
expectation, and even action might play a role.

Experience of Time: In the model, within neuro-symbols, mechanisms were introduced to allow
it to consider input signals arriving within a time window and certain successions of events. It
was outlined how time windows and successions of events could be modeled by neural structures
including feedbacks. Such circuits are conceivable to exist at the lower cortical levels of the brain.
However, at the highest hierarchical levels responsible for experiencing long time periods, such
mechanisms might no longer be applicable. It would be an interesting topic to find out how such
a time experience can emerge from neural or neuro-symbolic structures and whether the usage of
such mechanisms could bring advantages also for technical systems.

Neural Code: As outlined in section 3.1, neurons exchange information by spike trains. How-
ever, the neural code by which this information is transmitted is still not well understood. In
chapter 6, it was described that structures including not only bottom-up information flow but also
feedbacks and top-down directed connections can be subject to “signal circulations”. It is most
obvious that the brain is a system to which this description applies. Under these considerations,
it would be conceivable that the transmission of information in neurons via spike trains is no
general characteristic of neural tissue but a result of these circulating signals. However, therefore,
feedbacks would have to be effective down to the lowest layers of neural processing. Nevertheless,
in any case, circulating signals could have an influence on the characteristics of these spike trains.
It would be interesting to investigate and analyze the characteristics of spike trains considering
these circumstances.
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Stability, Epilepsy, and Consciousness: As outlined in section 6.2, signal circulations caused
by feedbacks and top-down mechanisms can challenge the stability of systems. In the brain,
which answers to this description, stability can generally be achieved. However, stability is not
self-evident as can be seen from patients with epileptic fits. The World Health Organization
estimates that there exist 40 to 50 million people with epilepsy throughout the world. It seems
quite plausible that such epileptic seizures are the visible effect of stability problems within the
brain. The tempting question that results from this is what mechanisms are responsible for
keeping the brain stable. In the suggested bionic model, undesired multiple signal circulations
were avoided by integrating certain filter mechanisms into the knowledge module, which is the
topmost module of the introduced perceptual model . Drawing conclusion from the bionic model
to its biological archetype, which is of course a critical step, this would mean that the highest
cortical levels of the brain are responsible for guaranteeing stability by filtering and suppressing
lower-level neural activations. Consciousness, which allows us to get a unified stable experience
of ourselves and our world [ST02], might be what remains after these filtering and suppressing
mechanisms. Proving or negating this theorem is a further interesting issue recommended for
future research. In any case, when emulating the information processing structure of the brain,
further analyses of stability need to be performed.

7.3 Intelligent Machine, quo vadis?

“Within a generation ... the problem of creating ’artificial intelligence’ will substantially be
solved.” This is the famous declaration of Marvin Minsky made in 1967. About 30 years later,
in 1996, a young researcher named Push Singh, who happened to be working under Minsky, pub-
lished a paper called “Why AI Failed” [Nut08]. What can be learned from this wrong forecast is
that making predictions in artificial intelligence (AI) and related research fields is far from easy.
Therefore, in the following, there shall rather be made a recommendation what way should be
pursued in future instead of making prognoses.

First of all, to avoid mistakes already made in the past, it is important to understand the history
that this research field went through until now: About 50 years ago, in the fifties, with the advent
of the computer, the research field of artificial intelligence emerged with the aim to build machines
being equally intelligent as humans are. The first days of AI were marked by strong optimism,
and it was believed that computers would soon think, reason, and behave in a similar manner as
humans do. However, at the end of the sixties, it got clear that making computers think – even
on a childlike level – is an extremely complex problem. Therefore, researchers started to focus
on by far less complex problems like planning algorithms, pattern recognition, expert systems,
reacting to situations by using certain rules, etc., each of them being dedicated and applicable
only to very narrow and specific problem domains. Until today, there does not exist any technical
system that can even nearly compete with the capacity and the capabilities of the human mind.
Within the last years, it had to be admitted that such reduced approaches often focused on in
current AI projects can never lead to technical systems with skills and capabilities comparable
to humans’ mental abilities. Therefore, like at the beginning of artificial intelligence research,
again, findings about how natural intelligence works have to be the basis for developing concepts
for technical approaches trying to achieve intelligence.

In this thesis, a neuroscientifically and neuropsychologically inspired approach for human-like
machine perception was presented based on insights about the internal structural organizations
and information processing principles of the perceptual system of the human brain. Nevertheless,
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in future applications, it will not only be desirable to make machines perceive their environment
in a human-like fashion, but to also to let them react on perceived situations in a more human-like
way, which means to analyze the situations and to choose the most advantageous actions from
a range of possibilities during a decision making process. Like taking the perceptual system of
the human brain as archetype for modeling perception, concerning the action control system, it
is recommendable to take the mechanisms of the human brain responsible for action generation
as archetype for model development. For advanced systems incorporating perception as well as
action, it has to be considered that taken actions cause changes in the environment and therefore
again have influence on perception. For this reason, there have to exist connections between the
system of perception and the system for decision making and action control.

Emulating the structural organization and the mechanisms and principles of information process-
ing of the perceptual system and the action system of the human brain will most certainly lead
to more effective and efficient autonomous technical systems. However, it is doubtable that this
alone will suffice to achieve real human-like capabilities and behavior. As outlined in section 3.2,
state of the art neuropsychological research findings about the brain describe it to consist of three
principal functional units: (1.) the unit for receiving, analyzing, and storing information arriv-
ing from the outside world, which is responsible for perception, (2.) the unit of programming,
regulation, and verification of mental activity, which is responsible for action, (3.) the unit for
regulating tone and waking of mental states, which is closely connected to metabolic processes.
These three functional units do not work in isolation. Complex forms of mental activity take place
through the combined working of all three brain units. According to Aleksandr Luria [Lur73],
one of the leading neuropsychologists of his time whose research findings are still considered as
being state of the art, “an insight into the nature of the cerebral mechanisms of mental activity
can only be obtained by studying the interaction of these three units”. Therefore, for achieving
machines really performing, perceiving, and behaving in a human-like manner, a model of all
three principal functional units as well as a definition of their interaction will be necessary. Addi-
tionally, it has to be noticed that the human brain and mind and the body are tightly interwoven
and one influences the development and abilities of the other. Perception requires information
from sensors located in the body. Actions need the human body to be carried out. Information
about internal body states being processed in the unit for regulating tone and waking of mental
states influences perception as well as action. Therefore, it might not be sufficient to emulate the
information processing principles of the brain, but also its information exchange within the body
might have to be considered.

To develop such models of the brain, today’s knowledge of brain research will not suffice. A deeper
understanding about the function principles and mechanisms taking place in the brain needs to
be gained. The key to future brain research and AI research is most certainly interdisciplinarity.
Different disciplines concerned with the investigation of the brain, which today provide diverse
and even contradicting theories, will have to join forces and work out a unitary, unambiguous
model. Engineers trying to transform these research findings into technically feasible systems
will make very important contributions, because by this process, lots of weak points, contradic-
tions, blind spots, and errors of existing brain theories will be discovered. The incorporation of
different research disciplines might lead to synergy effects allowing it to make a leap forward in
the understanding of the human brain and mind. However, as long as this level is not reached,
and AI continues focusing on pure technical and algorithmic solutions, we will still have to admit
the famous sentence of the Austrian computer pioneer Prof. Heinz Zemanek: “If the computer is
intelligent, then I am something different.”
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Appendix A

Low-Level Information Processing of

Data from Tactile Floor Sensors

In the section 4.2.6, there were pointed out characteristics of neuro-symbolic information pro-
cessing in the lower hierarchical layers from sensor data up to the sub-unimodal layer. These
characteristics are principally the same for all used sensory modalities. To make the information
processing concepts even better understandable, in this appendix, they will be outlined in de-
tail for one sensory modality. For the explanation, the modality of tactile floor sensors is used.
The result of information processing from sensor data up to the sub-unimodal layer shall be the
detection of objects of different sizes at different positions, being static or moving with different
velocities and in different directions. Section A.1 outlines the used sensor configuration. Sec-
tion A.2 illustrates how to get from sensor data to feature symbols, and section A.3 shows the
transition to the sub-unimodal level.

A.1 Sensor Configuration

As already outlined, for explaining characteristics of low-level information processing, the modal-
ity of tactile floor sensors is used. Therefore, a room is equipped with a number of quadratic
tactile floor sensors covering the whole floor (see figure A.1). Each floor sensor provides a binary
signal (zero or one) depending on whether it is activated by an object or not.

A.2 Deriving Feature Symbols from Sensor Data

From the sensor data provided by the tactile floor sensors, different information can be derived.
Among others, it can be determined where an object is present and what size, shape, and ori-
entation the base of this object has. It can also be identified if the object stands still or moves.
If an object is moving, it activates different floor sensors over time. In case of movement, the
location and direction of the movement and its velocity can be calculated. Such information
derived from sensor data is represented by feature symbols. The feature symbol level comprises a
certain number of different feature symbol layers. Different feature symbol types are responsible
for detecting different features derived from sensory raw data or lower-level feature symbols. In
correspondence to their biological archetype, there are used different feature symbols to represent
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Figure A.1: Room Equipped with Tactile Floor Sensors

objects of different sizes and shapes and for moving objects also different directions and velocities
of movement. There can exist feature symbols reacting to small round non-moving object, others
reacting to small square object, again other ones reacting to medium-sized quadratic objects,
and so on. Again, different types of feature symbols are triggered for moving objects of a cer-
tain velocity and direction of movement. One feature symbol of a certain type only reacts to
a specific feature at a certain position. Another feature symbol of the same type reacts if the
same feature is detected at another position. To illustrate the principle how to get from sensor
data to feature symbols, in the following, it shall be described how to perceive non-moving and
moving objects that trigger tactile floor sensors. The objects have different sizes and can move
in different directions with different velocities.

A.2.1 Detecting Non-moving Objects

In the following, it is described how feature symbols can be extracted from sensory raw data cor-
relating to the size of non-moving objects standing on the floor. For detecting objects of different
sizes, different feature symbol types are necessary. For the examples given in the following, there
are always used objects with a cylindrical form, which stand on the circular base. However, the
configuration could be extended to perceive also objects of other forms by introducing additional
feature symbol layers.

Concerning the feature symbols for detecting objects of different sizes, there is made a distinction
between three different classes of objects. This distinction is made according to the maximal
number of tactile floor sensors that are activated by an object either in x- or y-direction. Each
class is represented by a certain type of feature symbol:

� Small Non-moving Object: Objects belonging to this class trigger one or two sensors in
x- or y-direction (see figure A.2). Objects are depicted as red circles. Activated sensors are
always colored pink. The diameter of objects is smaller than the length of two tactile floor
sensors.
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� Medium-sized Non-moving Object: Objects of this class activate three to five sensors
in x- or y-direction. Examples therefore are given in figure A.3. The diameter of these
objects is bigger than the length of one tactile floor sensor and smaller than the length of
five tactile floor sensors.

� Big Non-moving Object: Objects of this class are objects that activate five to nine floor
sensors in x- or y-direction. The diameter of objects is bigger than the length of three tactile
floor sensors and smaller than the length of nine tactile floor sensors.

Figure A.2: Sensors Triggered by Small Objects

Figure A.3: Sensors Triggered by Medium-sized Objects

The distinction of these three sizes is exemplary to illustrate the underlying concept. It can be
extended easily to detect bigger objects. A particularity concerning the dimension of the objects
is that the three defined classes have no sharp borders. For categorizing an object into one of
the three classes, not the actual size of the object is of importance but the maximum number
of sensors it triggers in x- or y-direction. Therefore, not only the size but also the position of
the object influences the categorization. This results from the limited spatial resolution of the
sensors.

To detect objects of three different sizes, three layers of feature symbols are needed, which are
structured one above the other (see figure A.4). The enumeration of the feature symbol levels with
odd numbers (layer 1, 3, and 5) will get clear when adding layers to detect moving objects, which
will be labeled with even numbers (see section A.2.2). In the first layer, information coming from
the sensors is processed. This layer is responsible for detecting small objects. The third layer
receives information from the first layer and detects whether middle-sized objects are present.
The fifth layer receives information from the third layer and detects big objects. The number
of layers could be increased to detect even bigger objects. However, to explain the underlying
principle, three layers are sufficient.
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Figure A.4: Feature Symbol Layers for Detecting Steady Objects of Different Sizes

Each of the three layers is further divided into four sub-layers. Figure A.5 illustrates this fact
for layer 1. The principle for detecting steady objects of a certain size will now be explained
beginning with the description of layer 1, which is responsible for detecting small, non-moving
objects.

Figure A.5: Sub-layers of Layer 1

Detecting Small Objects

To detect where in the room a small, non-moving object is present, layer 1 is divided into four
sub-layers labeled as layer 1a, layer 1bx, layer 1by, and layer 1c. The layer 1a receives information
directly from the sensors. The layers 1bx and 1by receive information from layer 1a. Layer 1c
receives information from the layers 1bx and 1by.

As mentioned in section 4.2.6, feature symbols are topographic in structure. Therefore, for each
perceptual image (small object, medium-sized object, big object) there exist a lot of equal parallel
feature symbols differing only in their position. This fact is best illustrated graphically. Figure
A.6 shows the dependency between tactile floor sensors and the corresponding feature symbols
of layer 1. Tactile floor sensors are depicted as grey cubes. Feature symbols of different sub-
layers are illustrated as cubes of different colors. In the picture, the pink squares indicate where
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an object activates sensors and therefore also feature symbols. The picture makes clear that it
depends on the location of the object what feature symbol of a certain level is activated.

Figure A.6: Topographic, Hierarchical Arrangement of Feature Symbols in Layer 1

Connections between the sensor level and the feature symbol level 1a are one to one connections.
Each sensor is assigned to one single feature symbol of this level (see figure A.7a). In the case
that an object triggers only one single tactile floor sensor, only one feature symbol in layer 1a is
activated (see figure A.6, object 1).

(a) (b) (c) (d)

Figure A.7: Correlations between Sensors and Feature Symbols of Different Sub-levels of Layer 1

The situation gets a little bit more complicated if the object activates two tactile floor sensors.
As can be seen from figure A.6 (object 2 and 3), in this case, two feature symbols of layer 1a are
activated although there is only one object present. To resolve this problem, the sub-layers 1bx

and 1by are used. In comparison to layer 1a, layer 1bx is shifted in x-direction by half the length
of one tactile floor sensor. A feature symbol of the level 1bx receives information from always
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two feature symbols of the former layer 1a (see figure A.7b). In this layer, a feature symbol
is activated when the two feature symbols in layer 1a it receives information from are active.
By using a mechanism considering signal runtimes and processing times, only the activation of
this higher level feature symbol is processed further in later processing stages (see section A.3).
Similar to layer 1bx, there has to exist a layer 1by, which is shifted by half the length of a tactile
floor sensor in y-direction. Like layer 1bx, layer 1by processes information coming from always
two feature symbols of layer 1a (see figure A.7c). A feature symbol of this layer is activated if
the two symbols of layer 1a it receives information from are active.

To cover the case that one object activates four tactile floor sensors (see figure A.6, object
4), again another layer has to be added. In this layer, which is labeled as 1c, each feature
symbol receives information from always two feature symbols of layer 1bx and 1by (see figure
A.7d). A feature symbol is activated if all four feature symbols from layer 1bx and 1by it receives
information from are active. Again, mechanisms considering signal runtimes and processing times
are responsible for resolving conflicts caused by concurrent symbol activations in different sub-
layers corresponding to the same object (see section A.3).

Detecting Medium-sized Objects

Layer 3 of figure A.4 is responsible for detecting medium-sized objects. Similar like in layer 1, layer
3 consists of four sub-layers one built above the other. Except for layer 3a, which has the special
property to allow semi-activation, the sub-layers function equally as in layer 1. The concept of
semi-activation is explained further below. Each symbol of layer 3a receives information from four
feature symbols of layer 1c (see figure A.8a). Symbols of layer 3bx and 3by receive information
from always two features symbols of layer 3a (see figures A.8b and A.8c). Each symbol of layer
3c receives information from always two symbols of layer 3bx and 3by (see figure A.8d).

(a) (b) (c)

(d)

Figure A.8: Correlations between Feature Symbols of Layer 1c and Sub-levels of Layer 3

To activate a symbol of layer 3a, at least two of the four feature symbols of layer 1c it receives
information from have to be active. For the activation of a feature symbol of layer 3bx and 3by,
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both lower-layer symbols they are connected to have to be active or semi-active (see below). A
symbol of layer 3c is activated if all four corresponding symbols of the layers 3bx and 3by are
active. Similar like in layer 1, mechanisms exploiting runtimes and processing times avoid the
activation of multiple symbols by one single object in the sub-unimodal layer (see section A.3).

In figure A.9, the arrangement of feature symbols up to the level 3c is given. The figure also
shows the symbol activations for a medium-sized object for a concrete example.

Figure A.9: Hierarchical Arrangement of Feature Symbols in Layer 1 and 3

In contrast to layer 1a, layer 3a (and also layer 5a) have the possibility of semi-activation of
symbols. Unlike in layer 1a where each feature symbol receives information from always only one
sensor, in layer 3a and 5a, a feature symbol is connected to always four neuro-symbols of layer 1c
and 3c, respectively. In the following, the principle of semi-activation is explained for layer 3 (see
figure A.10). For layer 5, the same principle applies. To activate a symbol of layer 3a, at least
two of four symbols it receives information from have to be active. For the case that only one
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symbol of layer 1c is active, the symbol of layer 3a is semi-activated (indicated as yellow square).
Semi-activation of a symbol means that it can activate a symbol of a higher layer when this
higher level symbol additionally receives information from at least one other active or semi-active
lower-level symbol. An example for activating a symbol of layer 3bx by semi-activated symbols of
layer 3a is illustrated in figure A.10.

Figure A.10: Principle of Semi-activation in Layer 3a

Detecting Big Objects

The detection of big objects is performed by layer 5. Similar to layer 3 and layer 1, this layer
consists of four sub-layers, which follow the same principles as outlined for layer 3. Figure A.11
illustrates the sum of feature layers and sub-layers necessary for detecting small, middle-sized,
and big steady objects.

As can be seen from figure A.11, due to the shift in x- and y-direction, for bigger objects, there
do not exist feature symbols at the borders. However, as for realistic applications this area is
small in comparison to the whole spatial area equipped with floor sensors, this fact can generally
be neglected.
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Figure A.11: Feature Symbol Layers for Detecting Steady Objects

A.2.2 Detecting Moving Objects

As mentioned at the beginning of this chapter, there shall not only be detected steady objects
from sensor data but also moving objects. Until now, it is not known how motion of objects
is perceived in the primary visual cortex of the brain [RP05]. In the following, a concept is
introduced how moving objects (moving in different directions and with different velocities) can
be detected by feature symbols. Therefore, additional layers have to be added to the feature
symbol level of the tactile floor sensor sub-modality (see figure A.12). These layers are referred to
as layer 2, 4, and 6 and are responsible for detecting the movement of small, medium-sized, and
big objects. Similar to the layers 1, 3, and 5, they consist of a certain number of sub-layers. These
sub-layers are responsible for detecting objects moving in different directions. The sub-layers are
further divided to detect objects moving with different velocities. However, unlike in the layers
1, 3, and 5, these sub-layers always process information from the layers 1, 3, or 5 and do not use
information coming from their own sub-layers.

Detecting Small Moving Objects

In the following, it is described how small moving objects can be detected. As an object can move
in different directions, different feature symbols are needed to cover the different cases. There
are distinguished the cases of movement in positive and negative x- and y-directions as well as
diagonal movements (see figure A.13).

For detecting objects moving in these eight directions, eight parallel sub-layers are needed, each of
them being responsible for one particular direction (see figure A.14). According to the direction
of movement they can detect, the layers are labeled as 2x+, 2x-, 2y+, 2y-, 2x+y+, 2x-y-, 2x-y+, and
2x+y-.

The principle for detecting objects moving in a certain direction shall be explained by means of
the direction x+. Detecting objects moving in other directions works analogously. When detecting
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Figure A.12: Feature Symbol Layers for Detecting Steady and Moving Objects of Different Sizes

Figure A.13: Possible Directions of Movement

Figure A.14: Parallel Layers for Detecting Movement in Different Directions

a moving object, additionally to its direction, there also has to be considered its velocity. For
different velocity ranges, different feature symbols are needed. To outline the used concept, three
different velocities are considered labeled as fast (v1), middle (v2) and slow (v3). For each of these
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velocities, a two-layered feature symbol level is needed processing information from the layers 1bx

or 1c. Therefore, these layers are labeled as 2x+v1bx, 2x+v1c, 2x+v2bx, 2x+v2c, 2x+v3bx, and 2x+v3c
(see figure A.15).

Figure A.15: Sub-layers for Detecting Movements of Different Velocities in Layer 2x+

Each symbol of these layers receives information from two feature symbols of the layer 1bx and
1c, respectively (see figures A.16a to f). The signal coming from the left feature symbol is
temporally delayed via a delay element with a certain delay time (T1, T2, and T3). By this
measure, movements of objects within a certain velocity range can be perceived. The delay
element guarantees that – for a certain velocity range – the signal of the left lower-level feature
symbol, which is activated before the right symbol during object movement in x+-direction, arrives
not until the right symbol is active. That way, the activation threshold value is exceeded and the
higher-level neuro-symbol is activated.

(a) (b) (c) (d)

(e) (f)

Figure A.16: Correlations between Feature Symbols of Layer 1 and Layer 2 for Detecting Movement in
Direction x+

In figure A.17, an example shows what neuro-symbols of different layers are activated when
an object moves in direction x+ with a velocity of about v1. Again, mechanism considering
signal runtimes are responsible for resolving conflicts caused by concurrent symbol activations in
different sub-layers (see section A.3).
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Figure A.17: Hierarchical Arrangement of Feature Symbols in Layer 1 and 2x+v1

Similar to layer 2x+, the layers 2x-, 2y+, and 2y- are also divided into sub-layers receiving infor-
mation from the layers 1b and 1c, respectively (see figures A.18a to c).

The figures A.19a to f illustrate the connections between feature symbols for detecting movement
with a velocity of about v1.

For detecting movement in diagonal directions, which is performed by the layers 2x+y+, 2x-y-,
2x-y+, and 2x+y-, the arrangement of layers changes slightly. These layers only receive information
from layer 1c (see figures A.20a to d and figures A.21a to d).

The figures A.21a to d illustrate the connections between feature symbols for detecting movement
in diagonal directions with a velocity of about v1. What has to be considered for diagonal
movements is the fact that the moving objects must have a certain minimum diameter, which
is equal to the length ltfs of one tactile floor sensor multiplied by the factor

√
2/2. For objects

with a diameter smaller than this size, there will be alternately detected a movement in x- and
y-direction (see figure A.22).

Detecting Medium-sized and Big Moving Objects

For detecting movement of medium-sized and big objects, the same principles as just described
for layer 2 are applied to the layers 4 and 6. Layer 4 receives information from the layers 3b and
3c, layer 6 from the layers 5b and 5c.
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(a) (b)

(c)

Figure A.18: Sub-layers for Detecting Movement of Different Velocities in the Layers 2x-, 2y+, and 2y-

(a) (b) (c)

(d) (e) (f)

Figure A.19: Correlations between Feature Symbols of Layer 1 and Layer 2 for Detecting Movement in
Direction x-, y+, and y- for the Velocity v1

A.3 Deriving Sub-unimodal Symbols from Feature Symbols

In section A.2, it was described how to get feature symbols out of sensor data coming from
tactile floor sensors. This section explains how to get from feature symbols having a strong
location dependency to sub-unimodal symbols, which contain location information only as a
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(a) (b)

(c) (d)

Figure A.20: Sub-layers for Detecting Movements of Different Velocities in Layer 2x+y+, 2x-y-, 2x+y-,
and 2x-y+

(a) (b) (c)

(d)

Figure A.21: Correlations between Feature Symbols of Layer 1 and Layer 2 for Detecting Movement in
Direction x+y+, x-y-, x+y-, and x-y+ for the Velocity v1

property. The transition from the feature level to the sub-unimodal level is the place where
location dependent information is transformed into information, which is mostly independent of
the location it originates from and only comprises the location information as a property. In
the following, it is explained how the transition between location dependent feature symbols and
location independent sub-unimodal symbols looks like for the modality of tactile floor sensors.
In the used example, on the sub-unimodal level, there exist the neuro-symbols “small steady
object”, “middle steady object”, “big steady object”, “small moving object”, “middle moving
object”, and “big moving object”. The direction and velocity of movement of objects are coded
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Figure A.22: Minimum Size of Objects Moving along a Diagonal

as properties of the corresponding sub-unimodal symbols.

As outlined in section A.2, to detect static and moving objects of different sizes, a number of
feature symbol levels and sub-levels are necessary arranged in a hierarchical manner. E.g., by
a small object, which triggers a number of tactile floor sensors, neuro-symbols in different sub-
layers can be activated. Therefore, there has to exist a mechanism that avoids it to erroneously
perceive more than one object if only one object is present. This problem can be handled by
exploiting signal delays caused by signal runtimes and signal processing times. The used principle
is illustrated in the figures A.23a to d. It is assumed that the time for processing within a feature
sub-layer takes longer than the transmission of signals to the sub-unimodal layer.

(a) (b) (c) (d)

Figure A.23: Transition from Feature Level to Sub-unimodal Level

Figure A.23a shows the case that four tactile floor sensors are activated by one small object.
This results in an activation of four feature symbols of layer 1a. These four activated feature
symbols send a message to the sub-unimodal symbol “small steady object”, which is activated
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subsequently (see figure A.23b). By using different signal runtimes for neighboring connections,
it can be achieved that the four messages do not reach the sub-unimodal symbol concurrently but
one after the other. Concerning the value of the location property of the sub-unimodal symbol,
the location value of the feature symbol arriving last overwrites prior location values. Parallel
to the sub-unimodal symbol “small steady object”, the information about symbol activations is
also transmitted to the feature symbol layers 1bx and 1by. After the information is processed,
this results in an activation of neuro-symbols of these layers. Again, neuro-symbols of layer 1bx

and 1by transmit information to the sub-unimodal layer (see figure A.23c). By this information,
the location value of the symbol is again overwritten. Concurrently, the information of layer 1bx

and 1by is transmitted to layer 1c. In this layer, only one single feature symbol is activated and
from this symbol, information about its activation as well as its location is transmitted to the
sub-unimodal symbol “small steady object”. As this information arrives at the symbol after the
messages coming from lower levels, it overwrites them (see figure A.23d). By exploiting these
delays caused by signal runtimes and processing times, a distinct assignment between the feature
symbol level and the sub-unimodal symbol level can be achieved.

The detection of steady objects of other sizes as well as moving objects works similarly. However,
one question has been let open until now: If for example an object of middle size is present in the
room, according to the description given until now, there would be activated the sub-unimodal
symbols “middle steady object” as well as “small steady object”, because in the feature symbol
hierarchy, there are activated feature symbols of both levels. However, in reality, only one object
of middle size is present. To avoid the activation of the symbol “small steady object”, there has to
exist a feedback connection to this symbol from the symbol “middle steady object”. The utility
of feedback connection has already been outlined in section 4.2.5. Via the feedback, whenever the
symbol “middle steady object” is activated, it inhibits the activation of the symbol “small steady
object” presumed that their location values lie close together. In figure A.24, it is illustrated what
inhibitory feedback connections have to exist between the sub-unimodal symbols of the tactile
floor sensor modality. Necessary feedback connections between sub-unimodal neuro-symbols can
be learned from examples (see section 4.5.2).

Figure A.24: Feedbacks between Sub-unimodal Symbols
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Springer Lehrbuch, 1996.

[Ros99] Adina L. Roskies. The Binding Problem. Neuron, 24:7–9, September 1999.
[RP99] Maximilian Riesenhuber and Tomaso Poggio. Are Cortical Models Really Bound

by the “Binding Problem”? Neuron, 24:87–93, September 1999.
[RP02] Maximilian Riesenhuber and Tomaso Poggio. Neural Mechanisms of Object Recog-

nition. Current Opinion in Neurobiology, 12:162–168, 2002.
[RP05] Khaleel A. Razak and Sarah L. Pallas. Neural Mechanisms of Stimulus Velocity

Tuning in the Superior Colliculus. Neurophysiol., 94:3573–3589, 2005.
[Rös07] Charlotte Rösener. Adaptive Behavior Arbitration for Mobile Service Robots in

Building Automation. PhD thesis, Vienna University of Technology, 2007.
[Rus03] Gerhard Russ. Situation-dependent Behavior in Building Automation. PhD thesis,

Vienna University of Technology, 2003.
[SA97] Ron Sun and Frederic Alexandre. Connectionist-symbolic Integration. Lawrence

Erlbaum Associates, 1997.
[SB04] Richard J. Stevenson and Robert A. Boakes. Sweet and Sour Smells: Learned Synes-

thesia Between the Senses of Taste and Smell. In The Handbook of Multisensory
Processes. MIT Press, 2004.

[Sch97] Andreas Scherer. Neuronale Netze – Grundlagen und Anwendungen. Vieweg Verlag,
1997.

[Sch01] Jan Scholz. The Binding Problem. Theoretical Neuroscience, Dezember 2001. Uni-
versity of Osnabrück.

[SGP01] Simon R. Schultz, Huw D.R. Golledge, and Stefano Panzeri. Synchronisation, Bind-
ing and the Role of Correlated Firing in Fast Information Transmission. In 2036,
editor, Emergent Neural Computational Architectures Based on Neuroscience, pages
212–226. Springer Berlin / Heidelberg, 2001.

[SH99] Gijsbert Stoet and Bernhard Hommel. Action Planning and Temporal Binding of
Response Codes. Experimental Psychology: Human Perception and Performance,
25(6):1625–1640, 1999.

[SH02] Gijsbert Stoet and Bernhard Hommel. Interaction between Feature Binding in
Perception and Action. In Wolfgang Prinz and Bernhard Hommel, editors, Common
Mechanisms in Perception and Action, volume 19, pages 538–552. Oxford University
Press, 2002.

[Sha98] Amanda J.C. Sharkey. Combining Artificial Neural Nets Ensemble and Modular
Multi-Net Systems. Springer-Verlag, June 1998.

[Sin01] Wolf Singer. Consciousness and the Binding Problem. Annals of the New York
Academy of Sciences, 929:123–146, 2001.

[Sin03] Wolf Singer. Synchronization, Binding and Expectancy. In The Handbook of Brain
Theory and Neural Networks, pages 1136–1143. MIT Press, 2003.

[SKS04] Ladan Shams, Yukiyasu Kamitani, and Shinsuke Shimojo. Modulations of Visual

194



B LITERATURE B LITERATURE

Perception by Sound. In The Handbook of Multisensory Processes. MIT Press, 2004.
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