Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

[>

MAGISTERARBEIT

Evaluating Object-Oriented Software
Metrics for Source Code Change
Analysis — A Study on Open Source

Projects

zur Erlangung des akademischen Grades
Magister

(Mag. rer. soc. oec.)
ausgefihrt am
Institut fir Rechnergestitzte Automation
Forschungsgruppe Industrial Software
der Technischen Universitat Wien
unter der Anleitung von
Univ.-Prof. Dipl.-Ing. Dr. techn. Thomas Grechenig und

Projektass. Dipl.-Ing. Bakk.techn. Mario Bernhart

durch

Andreas Mauczka
Burggasse 89/1/2, 1070 Wien

Wien, 02. April 2008

Eidesstattliche Erklarung

Ich erklare an Eides statt, daf? ich die vorliegedeeit selbstandig und ohne fremde
Hilfe verfal3t, andere als die angegebenen Queltdt henltzt und die den benutzten
Quellen wortlich oder inhaltlich enthommenen Steldds solche kenntlich gemacht
habe.

Wien,am =000 e

Danksagung

An erster Stelle mdchte ich meinen Eltern fir ibmerstitzung danken, die es mir
ermdoglichte ein Studium frei jeglichen Leistungstkes zu absolvieren.

Weiters meinem Bruder und meinen Freunden Christtgdbella, Kathi, Markus,
Philipp, Thomas, und allen anderen, zu denen i¢iSarigen und Problemen im Zuge
meiner Diplomarbeit gekommen bin.

Kurzfassung

Ziel dieser Arbeit ist es den Bereich der Softwislietriken, konkreter den Bereich der
Validierung von Software-Metriken, um einen neuamsétz zu erweitern. Die gangige
Vorgehensweise zur Validierung von Software Metmikeesteht darin, die Werte, die
von den Metriken generiert wurden, Fehler-Dateriiver statistischen Analyse gegen-
Uber zu stellen. Die Vorgehensweise in dieser Anvalerspricht diesem Ansatz inso-
fern, als dass die Werte der Metriken dem sogeeanMartungsaufwand (Maintenance
Effort) gegenlber gestellt werden. Dieser Wartunfygand kann in der Form von
Changed Lines gemessen werden und in automatrskesten gesammelt werden. Dies
ermoglicht eine ausreichende StichprobengréRewtbederum zuverlassiger Schllisse
ziehen lasst. Anderungen am Source Code sind msiggtkobehaftet und teuer. Ande-
rungsdaten stellen daher einen interessanten AsleskQualitdtsmanagements dar. Ein
Ziel dieser Arbeit ist es daher ein Model vorzusteldas in der Lage ist, unter der Zu-
hilfenahme von Software Metriken, Anderungen auézgen

Um eine ausreichend grof3e Anzahl an Projekten sieagn zu konnen, werden Open
Source Projekte als Datenquelle benutzt. In dediStwwerden zwei Metriken-Suiten zur
Bewertung der Projekte hinzugezogen. Mittels sedlesthriebener Parser werden die
Daten fur die statistische Analyse aufbereitet. Wadidierung selbst erfolgt durch An-
wendung der Regressionsanalyse. Changed Lines ued Sdmme aus Non-
Commenting Source Statements (NCSS) und Changess Lfiden die abhangigen
Variablen. Die von den Metriken erzeugten Wertdlestedie unabhangigen Variablen
dar.

Ein Set von Hypothesen, basierend auf AnnahmerKandepten aus der einschlagigen
Literatur, wird den Ergebnissen der Regressionyaaajegeniber gestellt. Das Ergeb-
nis zeigt, dass je ,anspruchsvoller* eine Metrik &h. je komplexer sie ist, desto ge-
ringer ist ihre Aussagekraft als Pradiktor fur digh&ngigen Variablen. Zusatzlich zu
dieser Erkenntnis wird ein Satz von Metriken votghts der mehr als 60% der Varianz
in einer der abhangigen Variablen belegt. Aul3erdenth ein zweiter Satz von Metriken
vorgestellt, der sehr frih im Software Entwicklumgdus anwendbar ist, aber dennoch
bereits eine Abdeckung von 38,9% der Varianz irreder abhdngigen Variablen vor-
weisen kann.

Abstract

This study aims to provide additional insight k@ area of Software-Metric Valida-
tion by using a new methodology based on code @&hanglysis. As code changes are
risky and can be expensive, change data providesemesting background for Quality
Management. One of the goals of this work is to/jol® a model to be able to pin-point
change occurrence by using Software Metrics.

The common methodology to validate Software Metrscdy comparing failure data
and the metric-generated value in statistical aislyrhe methodology chosen for this
work is to validate Software Metrics by using changata instead of failure data.
Change data can be gathered in an automated fashevafore allowing for a big sam-
ple size, which in turn delivers more cogent cosidns. This change data is referred to
as maintenance effort in literature.

To be able to access a sufficient sample for stlsanalysis, Open Source projects are
used to gather the change data. Two metric sureemployed to gather the metric

values. Self-written parsers are used to pre-psottes data for statistical analysis. The
statistical method used for validation is regressamalysis. Two dependent variables
are used, Changed Lines and a sum of Non-Comme8bngce Statements — abbrevi-

ated NCSS - and Changed Lines. The metric genevaleés are used as independent
variables.

A set of Hypotheses, based on assumptions and gisniceliterature, is pitted against
the results of the regression analysis. The resbitsv that the more “sophisticated” a
metric, i.e. metrics that are more complex tharehthe less suited it is to predict the
dependent variables. The possible reasons foratkigliscussed in this work. Further-
more a set of metrics is found that serves as g@dior more than 60% of the variance
in one of the dependent variables. Also, a set etfios that can be employed early in
the development cycles and that still delivers 38¢®verage, is introduced.

Index
L O X s I
TaTo Loy e B o 11 =S v
INAEX OF TADIES. ... Vi
1 INtrOdUCTION oo 8
O R CT=T =T - | PP PPPPPPPPPPPP 8
R Y/ (0] 1)YZ= 1 [0 o PP PP 9
1.3 BOAIS ittt 9
1 11 o 1] TR 10
2 Object-Oriented MEtriCSccoivieeiiiiiiie e e e e e e e e eeeannes 11
2.1 GENEIAL ... 11
2.2 Changed LINES MELIICuuuiieee e e e e e 12
2.3 SHUCTUIE MEIIICS ... 14
2.4 COUE MEIIICS. ... 15
3 Selecting and Pre-Processing the Datacccoevieeeeiiivieiiiiiiie e 16
3.l GENEIAL ... 16
3.2 OSSMOIE . 16
3.3 Finding the Parameters.........ccccoeviiieiiiiiiie e 18
3.4 Querying the SQL DUMP....uiiii e e e e 21
3.5 Acquiring the CVS Data........cccceeiiiiiiiiiiiiii e e 23
O AN o] o] = To Y 1= (g (o U) = 24
A1 GENEIAL ...t 24
4.2 JAVANCSS ..o 24
A3 JIDEPENMA ..o 25
4.4 Metrics Plug-In for EClIPSEcoovviiiiiiieieeeeeee e 26
5 FItiNg the Data......ccoeviiiiiiieee ettt e e e e eeaanes 31
5.1 GENEIAL ... 31
5.2 GV S PaArSEI ...ttt e aee 31
5.3 JDepend REPOIt ParSErcccouiiiiiiiiiiiiiiiae et 33
5.4 MEetriCS REPOIT PArSEIuuiiiiiiiiiiieiiiie e 34
5.5 Matching Heuristic and Script Generatorceeeeeeeeeeieeeeiiinnnnn. 34
6 Presenting the RESUILS.........cooiiiiiiiii e 36
6.1 GENEIAL....coiiieiie 36
6.2 HypOtheSEeS teSIeUcoeeeiiiiiiie e 39
6.3 ClASS-SIZE ..ot 39

B0.3.1 COITeIATIONS ... 40

RS T o (=T [1511 o o P 42
G S [1 PP PP PPPPPPPPPP 43
6.4.1 COITEIALION.....ceiiiiiiiiiiiiiiiiiiiiiieeeee ettt 44
6.4.2 Regression SUMNCSS.........ooiiiii e 44
6.4.3 REQIESSION SUM....uiiiiiiiieeeiiiieiiiiise e e e e e e et s e e e e e e e e eeraaa e eeeeees 45
B.5 WWIMC ..ttt ettt e ettt e e e e e e 46
6.5.1 COITEIALION....cciiiiiiiiiiiiiiiiiiiiiiieeee ettt a7
6.5.2 Regression SUMNCSS ... a7
6.5.3 REQIESSION SUMuiiiiiiiieeiiieieeiiii e e e e e et s e e e e e e e e eearaaa e e eeaees 48
GG T O 1 PP P PP 49
6.6.1 COITEIALIONScevviiiiiiiiiiiiiiiiiiiieeee ettt 49
6.6.2 Regression SUMNCSS.........oooiiiii e 50
6.6.3 REQIESSION SUM....uuiiiiiiieeiiiiieeiiiis e e e e e e e e e e e e e e e eereaa e eeeaees 51
G A O = [G PP PP PPPPPPPPPP 51
6.7.1 COITEIALIONSceiviiiiiiiiiiiiiiiiiiieeeeeee ettt eees 53
6.7.2 Regression SUMNCSS.........oooiiiii e 53
6.7.3 REQIESSION SUM .. .cuuiiiiii e eieiiiiiiiiise e e e e e e e a e e e e e e e eererr e eeeaees 55
6.8 Depth of INheritanCe Treeccoeev i 56
6.8.1 COITEIALIONSceiviiiiiiiiiiiiiiiiiiieiieeieeeee ettt 57
6.8.2 Regression SUMNCSS ... 57
6.8.3 REQIESSION SUM...cuiiiiiii i i e e e e e s e e e e e e e e eeren e e eeaees 58
6.9 ADSITACINESS ...ttt e e e eeees 58
6.9.1 COrTeIALIONS ... ittt 59
6.9.2 Regression SUMNCSS.........ooii e 60
6.9.3 REQIESSION SUM ...uuiiiiiiiiiiiiieeiiiiiiae ettt e e e e e e e 61
6.10 Stepwise multiple linear RegresSSioNcoooevvvvveiiiiiiiieeeeeeeeeeeeinn 61
6.10.1 COUE MELICS . .ceeiiiiiiiee et e 61
6.10.2 SErUCTUIE MELIICS ..evviiiii et 65
A B o U 11 (o] o PP PUSPPPPPRTRRN 68
T. 1 GENEIAL...cc i 68
A 2 ©7o To [/ = L o S TP 69
7.2 1 GENEIAL .. 69
7.2.2 Number Of MethodS.........oooiiiiiiiii e 70
7.2.3 Weighted Methods per Class ... 71
7.2.4 Lack of Cohesion Of MethodsScoooviviiiiiiiiiiii e 72
7.2.5 Summary: Code MEtriCS......ccuuuuuuiiiiiee e 72
7.3 SHUCLUIE METIICS. . it 73
7.3 1 GENEIAL ... 73
7.3.2 Efferent and Afferent Couplingccoovviiiiiiiiinnieeieeei e 74
7.3.3 Depth-of-Inheritance Tree ..o 75

T.3.4 ADSITACINESS ... e 76

7.3.5 Summary: Structure MetrCS........ceeiiieeiiieeeiiei e 76
7.4 Stepwise Multiple Regression AnalysSiS.........ccccvvvvvvviiiiiieeeeeeeeiiinnn 77
TAL GENEIAI .ccoiiiiiiiiiiiiiiiiiiiee ettt 77
7.4.2 Multiple Regression Analysis on class level..........ccccoovviieienee, 78
7.4.3 Multiple Regression Analysis on package level.............ccccceeeeeennn. 78
7.5 Comparison with related publicationscccccevvviiiiiiee i, 79

8 CONCIUSION .ottt ettt e et e e e e e eeeeeeeees 83
=71 o]1ToTe =T o] o) Y20 84

Y 0] o 1= T |G i

Index of Figures

Figure 1: Projects per Developer NO., AUQUSE ‘07ccooiriiiiiiiiiiiiiieee e 19
Figure 2: Projects per teamsize in the final sample.........cccccoeeiiiiiiiiiines 22
Figure 3: Directed Strongly Connected Graph, Source [McTh76]cccee... 27
Figure 4: Histogram of NCSS (logarithmized) ..o, 36
Figure 5: Histogram of Sum (logarithmized)cccccoeveiieiiiiiiiieee s 37
Figure 6: Histogram of SUmMNCSS (logarithmized)ccooeeiiiiiiiiiiiiiiiiiiiiiiiinens 38
Figure 7: Non-Commenting Source Statements (NCSS) vs. Sum of CVS

(0] 0 F= T a0 11 RSP RPRPRP PP 40
Figure 8: Sum of CVS changes versus Non-Commenting Source Statements on

O T2 103 € T =N [V = 41
Figure 9: Scatterplot of Residuals and Predicted Values for Sum and NCSS per

(0] F= TS S TTRTPPPPP 42
Figure 10: Scatterplot of Residuals and Predicted Values for Sum and NCSS
[O1ST 0 T= 101 = T [P 43
Figure 11: Scatterplot of SUMNCSS and NOM (Functions) with regression line
.. 43
Figure 12: Scatterplot of Predicted Values and Residuals for NOM and
SUMNGCSS .. e e e ettt e eeeeaaeeeeeeeeeasanssseseeeees 45
Figure 13: WMC and SumNCSS per Class with regression line...........cccccceeeen.n. 46
Figure 14: Scatterplot of Predicted Values and Residuals of WMC and
SUMNGCSS .ttt e e e et e e e e e e e e serenr b e eeeeees 48
Figure 15: LCOM and SUumNCSS per Class and regression line............cccccceuu. 49
Figure 16: Scatterplot of residuals and predicted values.............cccccovvvvvviiiiinnnnnnn. 51
Figure 17: CE and SumNCSS per package with regression line.......................... 52
Figure 18: CA and SumNCSS per package with regression line.......................... 52
Figure 19: Scatterplot of Predicted Values and Residuals of CE and SUumNCSS
.. 54
Figure 20: Scatterplot of Predicted Values and Residuals of CA and SUmNCSS
.. 55
Figure 21: of SUMNCSS and DITccoeviviiiiiiiiiiieee e 56
Figure 22: Residuals and Predicted Values of DIT and SUmNCSS 58
Figure 23: Abstractness (A) and SumNCSS per Class with regression line 59
Figure 24. Scatterplot of Residuals and Predicted Values of Abstractness and
SUMNGCSS .. e e e e e et e ettt e et e aeeeeeeeeeasanssseseeeees 60
Figure 25: Scatterplot of Residuals and Predicted Values of WMC, NOM, LCOM
and DIT and SUMNGCSS ...t 63
Figure 26: Scatterplot of Residuals and Predicted Values of WMC, NOM, LCOM
AN DIT AN SUM L.ttt eeeaeees 65

Figure 27: Scatterplot of SUMNCSS and Instability...........ccccceeeiiiiiiiiieiiiieiiie I..

Figure 28: Scatterplot for Residuals and Predicted values of Sum and NOM i
Figure 29: Scatterplot of Residuals and Predicted Values of Sum and WMCii
Figure 30: Scatterplot of Residuals and Predicted Values of Sum and LCOM...iii
Figure 31: Scatterplot of Residuals and Predicted Values of Sum and Efferent

@0 U o 1 T RSP iii
Figure 32: Scatterplot of Residuals and Predicted Values of Sum and Afferent
@01 U o 1 T RSP \Y
Figure 33: Scatterplot of Residuals and Predicted Values of Sum and DIT Y
Figure 34: Scatterplot of Residuals and Predicted Values of Sum and
ADSITACINESS ...ttt a e e e e e e e e e e e aaaas v
Figure 35: Scatterplot of Ca and A per package..........ccccvvvvveveiiiiiiiiiiiieee e %

Figure 36: Scatterplot of Residuals and Predicted Values (A and Ca) Vi

Vi

Index of Tables

Table 1: SourceForge Projects by Status, AUQUSE ‘07cooeeiiieiiiiiiiiiiieiiiinn 18
Table 2: SourceForge Projects by Language, August '07cooevvvviivvnniiinnnnenn. 19
Table 3: Correlations of SUM and NCSS.........ccooiiiiiiiiii e 40
Table 4: Correlations of NCSS and Sum on package levelcccccccccieiieeennnn. 41
Table 5: Regression of Sum and NCSS per ClassS.....cccoooveiiieeeiiiiiiieeiiiiieen 42
Table 6: Regression of Sum and NCSS per package...........cccoevvvvvieiiiiiviinniinnennn. 42
Table 7: Correlations of SuUmNCSS and Functions (Methods) per Class........... 44
Table 8: Correlations of Sum, NCSS, SumNCSS and Functions per Class 44
Table 9: Regression of SUMNCSS (dependent variable) and NOM (independent
VaIADIE) . e ————————— 45
Table 10: Regression of Sum (dependent variable) and NOM (independent
VaNADIE) ... e 46
Table 11: Correlation of WMC (Value) and SUMNCSSoooviiiiiiiiiinneeeeeeee, 47
Table 12: Correlations WMC, Sum, NCSS and SUMNCSS...........oooviiiiiiiinneennn. a7
Table 13: Regression of SumNCSS (dependent variable) and WMC
(independent variable) ..o 48
Table 14: Regression of Sum (dependent variable) and WMC (independent
VaADIE) . e a e ————————— 48
Table 15: Correlation of LCOM* and SUMNCSSoooiiiiiiiiiiiieeeeeeeeeeeeeied 50
Table 16: Correlations LCOM (Value) with Sum, NCSS and SUumNCSS 50
Table 17: Regression of SumNCSS (dependent variable) and LCOM
(independent variable)...........oooiiieeeece e 50
Table 18: Regression of Sum (dependent variable) and LCOM (independent
VaIADIE) .. et a e ———————- 51
Table 19: Correlations of CE and CA with SUMNCSS. ..., 53
Table 20: Correlations of CE and CA with Sum, NCSS and SumNCSS 53
Table 21: Regression of CE and SUMNCSS ..., 54
Table 22: Regression of CA and SUMNCSSoooviiiiiiiiiii e, 54
Table 23: Regression of Sum (dependent variable) and Efferent Coupling
(independent variable)...........ooo e 55
Table 24: Regression of Sum (dependent variable) and Afferent Coupling
(independent variable)..........oooo e 56
Table 25: Correlation of DIT and SUMNCSS ... 57
Table 26: Correlations of DIT and Sum, NCSS and SUmMNCSScceevveeeee 57
Table 27: Regression of DIT and SUMNCSS ..., 57
Table 28: Regression of Sum (dependent value) and DIT (independent value) 58
Table 29: Correlation of Abstractness (A) and SUMNCSS...........cccooeiiiiiivviiiiiiinns 59

Table 30: Correlations of Abstractness (A) and Sum, NCSS and SumNCSS ... 60
Table 31: Regression of Abstractness and SUMNCSS...............cooiiiieeevieeeee, 60

\1

Table 32: Regression of Abstractness and SuM............cccoooeeiiiiiiiinirceiiinn e 61
Table 33: Multiple linear Regression SumNCSS (dependent variable) and
WMC, NOM (Functions), LCOM and DIT (independent variables)...................... 62

Table 34: Multiple linear Regression Coefficients SumNCSS (dependent
variables) and WMC, NOM (Functions), LCOM and DIT (independent variables)

.. 63
Table 35: Multiple linear Regression Sum (dependent variables) and WMC,
NOM (Functions), LCOM and DIT (independent variables)cccceevveeeeeeeennnnn.. 64
Table 36: Multiple linear Regression Sum Coefficients (dependent variables)
and WMC, NOM (Functions), LCOM and DIT (independent variables).............. 64
Table 37: Multiple linear Regression SumNCSS (dependent variable) and CE,
CA and Abstractness (independent variables)ccccovvviiiiiiciii e, 65
Table 38: Coefficients of multiple linear regression for SUmMNCSS..................... 66
Table 39: Multiple linear Regression Sum (dependent variable) and CE, CA and
Abstractness (independent variables)uuuiiiiiiiis 66
Table 40: Coefficients of multiple linear regression for Sum..........ccccevvvvvicieennn. 67
Table 41: Correlations of Sum, NCSS and SumNCSS with Instability................... [
Table 42: Correlations Of A @nd Ca.........uuuuuiiiiiiiiiiie s Vi

Table 43: Regression of A and Ca..........uiiiiiiiiiiiiii e Vi

Introduction 8

1 Introduction

1.1 General

With the growing importance of quality managemeantsoftware industry since the
early 90’s, several means to measure or improvievacé quality have been tried and
tested. This work will examine a certain aspecimdfasurement of software quality.
Before this aspect can be discussed though, aitiiirof quality that will be used in

this work is required to avoid confusing terms. Tedinition of quality itself is hard to

nail down as it is dependent on the role or vieat th defining it. A customer’s view of

quality in a product is of perceivable flaws, whdesoftware engineer might define
quality of a product as a factor of the maintaitigband reusability of components.

Quality in this work is therefore defined as cotisgp of three parts: product quality,
process quality and customer satisfaction. Progealty and customer satisfaction are
both important aspects of quality; however this kgdiocus is on product quality. The
reasons why product quality was chosen will bec@apparent in the course of this
chapter.

The first step of improvement is to find some safrtmeasurements or scales for the
items of interest. If it cannot be measured, itnipossible to prove any form of en-

hancement. This measurement of quality is done migfrics. While there are metrics

for process quality and customer satisfactioniadtrics examined later on will concern

themselves with product quality.

Product quality for software is often measuredain most basic ways: defect rates (de-
fects per size-unit e.g. lines of code) and rdligb(failures per time-unit) [KaSt02].
These measures are metrics themselves (as defarker)e They represent the most
basic measures of software quality and are thexedtien used to validate more com-
plex metrics.

Since the measurements of defect rate and retyalaite failure-dependent and simple
measures, other software metrics were validateddoyparing their performance and
predictions to actual defect rates ([BaBr96] [Ka&ja§HeKa81], to mention a few).
This work will introduce a different base metria feoftware quality based on the as-
sumption that in the end a failure is something thereases overall effort. The higher
the quality of software the less effort is requitedmaintain it. This effort will be ex-
pressed in changed lines of code per unit.

The structure of this work is based on a standatd-thining process. This means that
the work follows a strict pattern to gain knowledge@st a database is determined, and

Introduction 9

then a dataset is selected according to certaierieri After these steps are finished, the
data is pre-processed to achieve a uniform foratiodata on which the next step, the
actual mining, can be performed [MeSu99]. Out & tretted information, knowledge
will be gathered and used to discard or validagéenypotheses that will be introduced in
this work.

1.2 Motivation

The motivation for this work is to provide a difégrt angle on validating software met-
rics than the “industry standard”. There is, asdatkd in the introduction, a lot of re-
search describing the validation of software msthased on error-data. The material
on maintainability to validate metrics is rare amdy one publication on object-oriented
metric validation was found during research ([LiBBP9Both kind of studies (error and
maintainability based approaches) lack sufficigatistical data. [LiHe93] offers two
projects for validation, which is not enough to pwee a general validation. So one mo-
tivation for this work is the novel approach, tleeend is to actually evaluate the met-
rics against a significant number of projects.

Another motivation for this paper is to shed songhtlin similarity of designs and
“styles” of open source projects. In the area afropource projects, a lot of research is
done to analyze the structure and working mechanisfropen source development
teams. This work will provide insights that canfbeher used to describe the fascinat-
ing open source phenomena.

1.3 Goals

The goal of this work is to evaluate the followitigree hypotheses (similar to
[NaBa06]):

Hypothesis 1: A high value of Changed Lines in a project wiladeto a significant
score of the metric under examination.

Hypothesis 2:If Hypothesis 1 holds true, is there a set of rogthat is valid in all pro-
jects under examination?

Hypothesis 3:Is this set of metrics viable on other open soprogects?

Hypothesis 1 will be evaluated against approxinyattd0 (selected based on pre-
defined selection criteria) projects on SourceFofjedies undertaken in the field of
error-data and validation of metrics indicate ttinre will be a set of metrics that will
hold true (in determined boundaries) for the cotgpample. However these studies
where done on a small number of projects, so theome of this work may be differ-
ent. Based on the different approach of this wthrk,result is expected to vary when it
comes to which metric will be “successful” and whiwon't. Furthermore the used

Introduction 10

programming language, namely Java, is differerthéoonly similar study [LiHe93] in
the field.

This work aims to anticipate which parts of a pcoj@ill require more effort in an early

stage of development based on applying the met8osirceForge projects could be
analyzed at different stages of development tousstalthe performance of the metrics
set constructed in Hypotheses 2. This evaluateeifitvill be discussed in future stud-
ies; this work aims to deliver a solid base foristheesearches.

1.4 Structure

Chapter 2 will give a short introduction into oljeciented metrics in general and code
and structure metrics in detail.

Chapter 3 deals with the first two steps of theadaining process, Selecting and Pre-
Processing the Data. In this chapter it will belyred where the data used in this work
comes from and which criteria were chosen for selgd¢he used sample. Then the way
the data has been formatted and transformed tawitsbke for the parsers and metrics
will be explained.

Chapter 4 will discuss the tools used to gathemtie¢rics and how they implemented
the metrics introduced in Chapter 3. Each metat will be used later on for evaluation
will be explained here in great depth.

Chapter 5 picks the data-mining-process up wherveag left in Chapter 3 and deals
some more with the pre-processing of the CVS dHt#s chapter explains the tools
programmed for this work, however the tools come imse at different parts of the
data-mining-process.

Chapter 6 will present the mined results of theritet There will be results for each
metric and an overall result. This chapter reprisstre mining step.

Chapter 7 tries to derive knowledge out of the nmfation delivered in Chapter 6 and
tries to postulate a set of metrics that is ablgréalict maintainability in modules.

Object-Oriented Metrics 11

2 Object-Oriented Metrics

2.1 General

Before object-oriented metrics can be discussetticaghemselves need to be defined.
As mentioned in the introduction, metrics provitle tneans to measure software qual-
ity. Metrics are available for each kind of qualfproduct, process and customer satis-
faction), but for this work only product metricseasf interest. Some of the most basic
metrics are defect-rates and mean-time-to-failuediapility). The terms failure and
defects can be used interchangeably [KaSt02]. Astatieasurement for quality (a very
simple metric) will be introduced in this work atlte more complex metrics will be
evaluated against it. This metric will be changedd per unit (a unit can be e.g. a class
or a package).

There are several definitions of structure and codéics, and several different ways to
classify metrics. In [HeSe96] metrics are categmtiby what they are measuring, either
external or internal characteristics. External aebtaristics are quality factors, defined
as maintainability, reusability, abstraction, uighiavailability and reliability. Internal
characteristics are objective measures like siaptral flow complexity, inter-module
coupling and modular cohesion. Then they are defimg how they measure. Product
metrics are defined as snapshots of a certain poitime, while process metrics are
defined as measures over time.

These two definitions vary greatly with other lg&ire on this topic so there is need to
define some terms for this paper. While [KaStOZjrais defect-rates and mean-time-
to-failure as product quality metrics, [HeSe96]ide$ these as classic process metrics
as they are measuring over time. The metrics uselis paper are product metrics in
the sense of [HeSe96]; this means that they amenhdnapshots of the projects at the
time of the CVS download. The changed lines magria process metric per definition
of [HeSe96], since it measures all changed lines tive whole project lifetime. How-
ever the parallels to [KaSt02] allow this metris@ato be categorized as a product met-
ric.

After settling for product metrics as broader defom for the employed metrics, the
next step is to detail the kind of metrics whichlwe used in the field. The metrics that
will be evaluated are of two out of three kindsusture, code and hybrid metrics. A
structure metric is a metric that assigns a vatueettain design aspects of a project. A
code metric is a metric that analyzes the sourde dself and assigns a value to certain
design aspects of a code-unit. Structure metricd dgth the relationships between
components, while code metrics concern themseltsthe components themselves.
There is a third category named hybrid metricsciis used for the metrics combining

Object-Oriented Metrics 12

both features (e.g. information flow weighted hyek-of-code) [KaDe85]. Hybrid met-
rics are not used in this work.

The next term that needs definition for this waskhe term of complexity. Some soft-
ware metrics measure quality in the context of demify. Complexity is broadly de-
fined and a metric measures only aspects of contpléX/'hile e.g. McCabe’s cyclo-
matic complexity measures the complexity of a mediildoes not measure the com-
plexity of the interplay of the modules of a systérherefore McCabe’s metric meas-
ures procedural complexity while the coupling-bedw®bjects (CBO) metric measures
design complexity. According to this definition teucture metrics used in this work
measure system design complexity, while the cod&ieceemeasure procedural com-
plexity. These definitions are based on [HeSe9@}) the difference that in [HeSe96]
the metrics are categorized by the phase in theldement process in which they can
be employed. E.g. one would assume that Depth ledritance would be a metric to
measure system design complexity, but since theiaristrun on the code it is classi-
fied as a metric that measures procedural compléxifHeSe96]. This seemed confus-
ing and therefore this work will just use the tersteiucture metrics for metrics that
measure the interplay of components (Inheritanoapling and abstraction) and code
metrics for metrics that measure the componentagbives.

The metrics used in this study have been adaptatesigned for the object-oriented
paradigm.

2.2 Changed Lines Metric

The goal of this study is to show a correlationns®tn changed lines of a unit (be it
package or class) and the score of a metric. Tha@sebeen criticism of using only one
dependent variable (the changed lines) in [KaCad&&ged on the fact that one variable
will introduce too much of a bias, e.g. the styldle programmer has too much of an
impact on lines of code. This might hold true fbe tsize of the sample analyzed in
[KaCa85] where three projects are analyzed. Thigery unlikely to hold true for the
size of the sample analyzed in this work. Whiles tiwork uses up to three dependent
variables at some point, the dependent variablestrderivates of the changed lines
metric and are not different dependent variablébhénsense of [KaCa85].

The term changed lines as is used in this work si@nadded and deleted lines re-
corded in the CVS repository and summed up. Siheages themselves are not offered
as data by the repositories, the sum has to be Uibedreasoning for using the sum is
that the number of undertaken changes would hawe toalculated by heuristics (like
[BoGu06]). While there is a lot of research donghiis area, the goal of this work is to
provide some first insight into validation of sofive metrics by changed lines. Using

Object-Oriented Metrics 13

these heuristics would pan the study into the doeoof the heuristic used and intro-
duce bias into the study. By adhering to the mesidovalue of the sum of additions
and deletes, the possible bias is limited to tharod-pattern of the programmers (e.g.
the number of commits of a single file). This i®eaged out by the size of the sample.

During the preparation process for the study, nésat#on of the changed lines sum via
unit size was considered and then dropped becdube following reason. If class C1
contains 100 lines and 10 methods and has 200 eddmgs and class C2 contains 50
lines and 5 methods and has 100 changed lines,ouave e.g. a Number Of Meth-
ods (a metric) score of C1 = 10 and C2 = 5. Thenatized factor of changed lines/size
would be 2 in both cases. This would make the cbdriges obsolete as the metric in
this example is a size metric. Normalizing the awjemt variable via size would just
render the variable of any insight in the relatlipgo most metrics. However size does
play a part in calculating the changed lines, assike of a class is a one-time addition,
which can be interpreted as a one-time change.dBte will be analyzed with two
variations of changed lines measurement to reftest

The standard for validation of metrics are, as meed earlier, error based measures.
This new way of changed lines should allow for gmialg larger numbers of projects
compared to what has been done so far in this ([BdBr96] [KaCa85], [HeKa81 and
[LiHe93]). The analyzed projects in earlier validas were limited because of the na-
ture of error data. E.g. Error data for SourceFgmggects is handled completely differ-
ent; some projects use their own versions of etata trackers, some import their pre-
vious error data, etc. It just introduces too mhalilities to be able to analyze a suit-
able set of projects. The measure used in this worlot without influences either but
has significantly less. It is influenced by the gs®&f the CVS system and by program-
ming style. This is evened out by the large sample.

The last issue that needs to be explained in thegdd lines measure is the fact that the
sum of added and deleted lines is used. One cagldh@e that if a log contains the same
numbers of added and deleted lines and the difivst®milar code that a change was
done. This work concerns itself with the changaddiat the current stage of the project
though. It does not matter if there was one hugagé or several small changes, nei-
ther does it matter if lines were changed or adaledl deleted. The goal is to find out
that additional effort in form of adding, deleting changing has been introduced at a
certain unit in the system. To interpret this dffsrnot the goal of this work. This work
aims to see whether these changes can be useediotguture effort (again, this effort
Is not interpreted) in modules. To put a valuelenéffort predicted is ground for future
studies. Here heuristics can be used to determhaaege dimension and type. These
heuristics interpret the characteristic of the measised here, while this work inter-
prets the value of the measure against metrics.

Object-Oriented Metrics 14

2.3 Structure Metrics

Structure metrics deal with the coupling of compaeeSimilar to complexity, coupling
requires a definition as it is broadly and ambiglpwsed at the moment. A coarse
definition is that coupling describes the relatiipsbetween objects in the object-
oriented paradigm. There are however different &ioflcoupling. There is intermodule
coupling, described in [HeSe96] (taken from [LoMP3]{ is “measured by the number
of relationships between classes or between sudmgst- [HeSe96] (taken from
[LoM93]). This is a helpful generalisation, but Hotely grained enough to work with.
In [LiHe93] there are three kinds of coupling désed, though only two of interest for
this paper. One is coupling through inheritanceictvlis coupling between a class and
its superclass in a hereditary manner. The othepugpling through message passing,
which is coupling of two classes by communication.

This distinction is important as coupling metricsr®times measure both, sometimes
only one of these. The coupling metrics used ia trk will be introduced in Chapter
4 and it will be explicitly stated which kind of gpling they are measuring.

After defining what is measured by structure msttize implications of the measure-
ment need to be discussed. [MaRo003] gives theviatig definitions for designs ac-
cording to their relationship patterns. The fietnt introduced is stability, which is de-
fined as"... is related to the amount of work required to mmakchange” — [MaRo003]
This definition is then put into context with coragity by claiming that a package
which has many other packages depend on it (theréhareasing design complexity)
increases the difficulty of changing it, becaudetts¢ consequences for the depending
packages have to be considered. Therefore a patkaigeas many packages depending
on it is defined as stable. If a package does epedd on any other packages it is called
“independent”. If a package has no other packageermtling on it is defined as “irre-
sponsible” [MaRo003].

Stability therefore should indicate components tifetnge less, while instable compo-
nents are expected to change more. An instable @oemp does not imply bad design.

If all classes were maximally stable, the systenuld/dbe unchangeable, so an amount
of stable and instable units is required [MaRo003].

Inheritance and Abstractness metrics also fall uttteedefinition of structure metrics in
this work. They are mentioned in the package deslmpter in [MaRo03]. However
inheritance was excluded from design complexityHeSe96], where they are put in
the procedural metric section. This work defindsentance as part of the system design
and therefore are metrics measuring inheritanceqgaghe structure metrics. Abstract-

Object-Oriented Metrics 15

ness is defined as part of the structure metricwedsas it is an aspect of the system
design.

2.4 Code Metrics

Code metrics in this work are defined as metries theasure the procedural complexity
of one unit of code (e.g. a Class) (Refer to thiend®n given in Section 2.1). Proce-
dural complexity includes size, data structure lagit structure. The definition of code
metrics used here is similar to module metrics (lT®tthat measure procedural com-
plexity) in [ChKe91]. Module metrics consist of/l&t metrics, size metrics, data struc-
ture metrics, logic structure metrics and integaiesion metrics.

The first kind of module metrics to explain areesinetrics. Due to the changes of the
programming paradigm from functional to object-otex, size measures that are accu-
rate needed to be designed. Simple lines of codatsroved to be deficient because
of inheritance (there’s mention of a study provingeduce code by 80% when using
the object-oriented paradigm in [ChKe91]). Therefanethods like the Number-of-
Classes metric were designed. Inheritance and &disss are not accounted as size
metrics (see Section 2.3). Size metrics measuralithensions of an object-oriented
program in some form.

The next metrics are logic structure metrics. Thas&ics measure the internal logic of
a unit, e.g. Number of Decisions inside a clas® st popular metric in this area is
McCabe’s cyclomatic complexity, which will be exjplad in detail in Chapter 4.

Data structure metrics and style metrics will netdiscussed in this work. Data struc-
ture metrics concern themselves with the scopanébles (like number of variables, is
the variable referenced once, etc.), while styldricge analyse items like indention,
comments in the code and similar patterns.

Cohesion describes the grouping of related tasksoftware units (e.g. methods of a
class). Therefore, internal cohesion metrics irecbpriented systems measure the
degree of similarity of methods” — [ChKe9dt the lack of it. If two methods are simi-
lar, it is assumed that they will perform relatadks. In [ChKe91], similarity is defined
by the number of shared instance variables of nusthbhe measured lack of similarity
is called Lack Of Cohesion Of Methods (LCOM) irefiature. There are several meth-
ods that measure LCOM, the variant used in thiskwal be described in the metric
suite chapter (Chapter 4) in depth.

Selecting and Pre-Processing the Data 16

3 Selecting and Pre-Processing the Data

3.1 General

This chapter deals with the first two steps ofdlaé&-mining process. It explains which
database will be used in the study and the reagdmhind the decision process. Fur-
thermore, the chapter provides the arguments ahpthe final sample in the study has
been selected and based on which criteria. Thegag of the chapter gives a short
overview of SourceForge [SoFo] and the projecidtas available. The goal is to pro-
vide the reasons behind the selection process,hwikithen performed in the second
part of the chapter. The final part of the chapiescribes how the data was prepared for
the metric tools employed in the later chapterthisf work.

3.2 OSSmole

SourceForge contains a vast amount of free, librepen source software projects
(FLOSS). Due to the nature of open source projeéhtsmajority of these projects is
either done by individuals and/or were startedrmuer finished. Furthermore Source-
Forge contains projects in different programmingplaages. To obtain the best possible
results for our research, it became obvious thedtaof sound parameters must be ob-
tained. To be able to find these parameters statisin SourceForge projects would
need to be assessed. These statistics can beaghbethree means:

» Spidering the SourceForge-Project pages ourselves
* Using the data of someone else that already spld&varceForge
» Obtaining the project data directly from Sourcefeorg

Option one was discarded swiftly on the basis tih@tamount of time required to spider
SourceForge would be tremendous and the effoxtestiris just a pre-selection criterion
for the analysis later on, would not be justifiable any means. The third option was
tempting and SourceForge does indeed offer dumpseofproject data-base for educa-
tional or scientific purposes. To get these durapsapplication to access the data needs
to be filed at the University of Notre Dame witrethpecific project data and then ac-
cess to the data is granted [NoDa]. Needless tdlsagata available is huge and again
was discarded as too much effort for the granutatibdata that would be required. So
option two was selected. Early in the researchgs®the OSSmole-project was discov-
ered and after abandoning the options mentionee d@favas found best suited for the
data needed. The access is simple, it is up-toatatet is completely open for access.

,OSSmole is a collaborative project designed tohgat share and store comparable
data and analyses of free and open source softdewelopment for academic research.

Selecting and Pre-Processing the Data 17

The project draws on the ongoing collection and lgsia efforts of many research
groups, reducing duplication, and promoting comipidity both across sources of
online FLOSS data and across research groups aatyaes.” — [CoH005]

Though OSSmole offers dumps on several “forgesegfhmeat, Rubyforge, etc.),

SourceForge was chosen as it is the largest obriee available. Diversity of projects

was achieved by not limiting the projects to thensagenre, even though only one
“Forge” was used. It is doubtful that the nature@ben Source Projects will vary

greatly between the “Forges”, so only one main-sewf data was chosen. OSSmole
spiders the SourceForge-project pages and offetiseatiata available there as an SQL-
dump. The data is updated on a monthly base. Toik uses the SQL dump of August

2007 for its analysis.

The SourceForge data set available at OSSmolestsrdithe following Data Elements
(Source: [OsS0]):

Project Items
* Project names (long nam&i short unique 'unixname")
* Project Descriptions
* Project URLs (URL on Sourceforge and 'real' URL)
* Project registration date
* Project intended audience(s)
* Project license(s)
« Project programming language(s)
* Project database environment(s)
* Project operating system(s)
* Project donor(s)
« Project status (alpha, beta, mature, etc)
* Project topic(s)
» Project user interface(s)

Developer items
« Project developers (username, real name, Soureéngil address)
» Developer role(s) on project, including whethemaministrator or not

Statistics items
« Project downloads (sum of project downloads oved&® window)
* Project ranks (project rank averaged over 60-dangouv)
* Project tracker sums (sums of tracker opens arsgslover 60-day window)

Selecting and Pre-Processing the Data 18

These data elements represent all informationddwatoe gathered from the project sites
of SourceForge. SourceForge does not offer linesodke or any other form of code

statistics in a centralized fashion. To providersewcode statistics one would have to
access all CVS repositories. OSSmole was therefelected to provide the data re-
quired for the next step of our data-mining procés®ther tool to access source code
information was chosen additionally.

3.3 Finding the Parameters

To find suitable parameters to determine the fprajects and to pre-process the data
from OSSmole, an overview of the available dat&atirceForge was needed. For a
short glimpse of the data, before venturing aheaahiSQL dump, [WeDa05] was used.
The parameters should decrease the whole set of&earge-projects to about 300 (the
aim was 100, but this had to be increased dueaores mentioned later on) and should
provide data that is diverse but significant. Timeans the projects should be big, but
not huge, in a mature and stable part of their ldgwveent process and show a certain
activity. It was necessary to provide an overvidwSourceForge projects to find the

right values for the selection criteria.

SourceForge offers categories for the maturityhefrtprojects. These categories are:

Phase Code in Database No. of Projects
Beta 10 26435
Production/Stable 11 22176

Planning 7 21828

Alpha 9 19670
Pre-Alpha 8 17773

Inactive 358 2931

Mature 12 1914

Table 1: SourceForge Projects by Status, August ‘07

The emboldened rows show the projects of intemstHis work. These projects are
almost completely developed or at least at a paidkevelopment where drastic changes
are not very likely. They were chosen because tteyuld be able to offer solid
changed lines, as all the major changes should bese performed somewhere in the
history of the projects. 24090 projects are in ta¢egories “Mature” and “Produc-
tion/Stable”.

Since it would prove impossible to analyze projeaotall programming languages, a
language had to be chosen.

Selecting and Pre-Processing the Data

19

Description Code in Database No. of Projects
Java 198 25656
C++ 165 21849
C 164 19242

Table 2: SourceForge Projects by Language, Augusd7

The topic of this work is object-oriented metris®, an object-oriented language was
opted for. Java was favoured over C++ becauseedatige number of tools available in

the metric sector for Java. The reason that thidysivas not done on projects of differ-

ent programming languages was the effort of dewegpp parser for each language and
metric suite. There are currently 25656 Java ptsjen SourceForge. On a note worth
mentioning, not all of these projects actually dawa projects. A lot of projects have
been flagged erroneously. E.g. a project with 40.00es of Python code and 1000

lines of Java code is flagged as Java project. iBhae of the reasons the 100 final
projects had to be handpicked out of the set go200 projects.

The next criterion is the number of developers waglon a project.

Projects per Developer No.

100000
90000

80000 -

70000 -

60000 -

50000 -

Projects

40000 -

30000 -

20000 -

10000 - H

0 T T |_| T |_| T 1 T T
N < Lo ©

—

I T,
N~ o oo O «H «
I 4 -

>12 []

Developer

Figure 1: Projects per Developer No., August ‘07

As can be seen in Figure 1 the main portion ofdetsjis developed by a single devel-
oper. The average team size is ~2 (1,9725) develgya team and the standard devia-

Selecting and Pre-Processing the Data 20

tion is 3,5. There are 1436 projects with more thardevelopers. This trend to small
scale projects for SourceForge makes for a haetttseh criterion based on team size.

The next item of interest for this work is the knef code per project. Unfortunately

SourceForge does not offer statistics for thisasother mean to find the lines of code
had to be resorted to. The solution was found ingka, a source code search engine
that holds all SourceForge projects [SoKul].

The next criterion for our selection is the ranksygtem of SourceForge. The aim is to
get active and popular projects, i.e. projects Hratdownloaded regularly and are re-
viewed often. The reasoning is to capture projdws are in similar final stages of de-
velopment. The formula for the SourceForge ranlsggtem is as follows (Source:

[SoDo)):

Traffic:

(log(prior 7 days download total + 1) / log(hig hest all-project
download
total + 1))

+(log(prior 7 days logo hits total + 1) / log(hi ghest all-project
logo hits + 1))

+(log(prior 7 days site hits total + 1) / log(hi ghest all-project
site hits + 1))

)/3

Development:

(log(prior 7 days cvs commit total + 1) / log(h ighest all-project
total + 1))

+((100-age of latest file release (in days, max 100)) / 100)

+((100-days since last project administrator lo gin (max 100)) /
100)

)/3

Communication:

(log(prior 7 days Tracker submission count + 1) / log(highest all-
project total + 1))

+(log(prior 7 days ML post count + 1) / log(high est all-project to-
tal + 1))

+(log(prior 7 days Forum post count + 1) / log(h ighest all-project
total + 1))

)/3

total = traffic + development + communication

The activity ranking of SourceForge consists oé¢haspects, traffic, development and
communication. Each aspect has three subcategtinesiot only an activity value, but
also a ranking system, weighted against the maximaiwe of a project in each sub-
category.

Selecting and Pre-Processing the Data 21

3.4 Querying the SQL Dump

After reviewing the characteristics of interest ®ourceForge, the next step is to find
the boundaries to limit the projects. The latest. $IQmp was imported from OSSmole
(August '07) and a MySql ([MySq]) database waswgetSQL queries were performed
to reduce the set of projects to a solid sample.

The first step was to decrease the pool of allgmtsjon SourceForge to the ones at pro-
duction/stable and/or mature level. This left 24@®06jects as shown in Table 1. Note
that there are a few double entries as some psofente actually two categories (pro-
duction/stable AND mature).

Since this work focuses on Java projects, all gbinejects were discarded. This reduced
the number of projects to 5313.

The next part to furthermore reduce the numberrojepts was to find out lower and
upper boundaries for the actual project size. SEdgse will be a prerequisite of at
least one metric suite employed, the projects shoat be too large. Since the capaci-
ties for running automated analyses will be limigedwell, a few tests were run and the
upper boundary of around 120000 lines of code wasd. These tests were basically
trial and error based, so that a project was ramgamosen and seen if it could be
worked on in a sensible amount of time. 30000 lioesode was chosen as the lower
boundary, as anything below that threshold woult e significant in the structure
metrics (structure metrics use concepts that atenecessarily implemented in small
scale projects). Since SourceForge does not dferlihes of code of a project, the
Krugle Search Engine on SourceForge was useddaofim the lines of code of the cho-
sen projects. However this was only viable as d&sp in the selection process since it
had to be done manually. So a way to predict lofeode of a project had to be found.

To predict project sizes team size was tried aararpeter. Since Figure 1 shows that
there are a lot of small (1 or 2 developers) sieaans, the average team size was out of
the question as a base for selecting projectsinbdut viable developer boundaries, a
random sample of the projects was necessary. Tinedtfe first boundary, twenty pro-
jects between 13 and 18 developers were choseaandbm. Note that the twenty pro-
jects were chosen from the pool of Java projectw@duction/stable or maturity level
and that any projects with a mix of programmingglaages were discarded if the mix
had more lines of code than the Java part. Theageelines of code for this sample
were 126195 and out of the boundary introducedegailen projects with 12 develop-
ers were examined and had an average of 87315 dinesde, which was deemed a
good value for the boundary aim of 120000. Unfcatety the standard deviation for
the sample was at 81304. Still 12 developers wasearh as upper boundary since the
final projects will have to be handpicked anywagsdd on their lines of code after run-

Selecting and Pre-Processing the Data 22

ning the other queries on the projects, so it edps to tighten the pool of projects fur-
ther.

The next step was to find the lower boundary fertéam size. Teams of the sizes 1 or
2 were discarded immediately due to their overrsgmeation and that it was believed
that teams of that size would not produce enougle ¢o run the metrics on. A sample
of 20 projects was taken with a developer size ahé produced an average of ~65000
lines and a standard deviation of ~109000. Sinedbubtful that it will be possible to
get better values for a lower threshold, 6 develper team was chosen.

The high variations in both samples can be exptamethe low numbers of the sample
and because the projects have not been filtereactiyity yet. The reason is that pro-
jects with a high number of lines of code (oneh&f projects in the 6-developer-sample
had 490000 lines of code) maybe had a huge nunilsvelopers at a certain point in

their development process, nowadays the numbedswa&iopers have dwindled though.
Another reason might be copy-and-pasted projeetsstiarted under different surround-
ings. All of these reasons just emphasize the teettk the final projects carefully and

manually.

The boundaries of 6 to 12 developers per projestlted in a pool of 428 candidates.

Projects per teamsize

Figure 2: Projects per teamsize in the final sample

The next step was undertaken to decrease the fwd@round 300 (so it would be
possible to handpick 100 projects for our studyliswas achieved by using the activity

Selecting and Pre-Processing the Data 23

ranking of the projects and picking the first 3@t of these 300 projects about 100
projects were selected for the study.

(Data gathered from [OsSo0])

3.5 Acquiring the CVS Data

The next step after the selection of our database gather the data and to pre-process
it so later on mining via the metrics can be perfed. A small tool was developed to
generate a script that automatically download€¥I6 data from a list of projects. This
tool will be explained in further detail in Chapter After the projects are made avail-
able locally, they are imported into the Eclipserkepace. In the next step the project
file from Eclipse is edited to change the buildethe metrics builder. This step is nec-
essary so the project does not have to be relmniptetely.

After refreshing the project, it is ready for exaation via the metric suite. This step
will be explained in further detail in Chapter 5.

The second part for the analysis stems from the @ig®ry of the projects. This is ac-
quired by running the CVS-log command on the rdpasis and saving the output into
log-files. These log-files can then be parsed dm&dchanged lines for each file in the
repository can be found out. The functionality bé temployed CVS parsers is ex-
plained in Chapter 5 as well.

Applied Metric Suites 24

4 Applied Metric Suites

4.1 General

To gather the data for the evaluation, two suifemetrics have been applied. One met-
ric suite has been used to gather the structurdasetvhile the other has been used to
gather the code metrics (and one structure meftfigithermore a tool has been em-
ployed to automatically count Non-Commenting So8taements (NCSS).

The following metrics have been chosen for thislgtu

Code Metrics
» Weighted Methods per Class (WMC)
» Lack of Cohesion of Methods (LCOM)
e Number of Methods (NOM)

Structure Metrics
« Efferent/Afferent Coupling (EC/AC)
* Depth of Inheritance Tree (DIT)
* Abstractness

The metrics have been chosen because they meaffarend aspects in their relative
resorts. The WMC-metric measures procedural contgléthe complexity of a class),

LCOM-metric measures the similarity of methods aflass and the Number of Meth-
ods metric is considered a size metric. Efferewt Afierent Coupling metrics measure
system complexity from an interaction-based pointiew, while the Depth of Inheri-

tance Tree metric measures system complexity fro@rehitectural point of view.

In the following chapters the metrics will be armdg and the implementation in the
metric suites will be discussed.

4.2 JavaNCSS

JavaNCSS ([JaNc]) was used to count the NCSS #ocldisses and packages. Further-
more it substitutes the NOM-Metric explained in t8et 4.4, as the implementation of
the NOM-Metric in the Metrics-Plug-In proved to effvalues widely varying to the
results achieved by JavaNCSS. The values of Jav8N@&e similar to manually
counting the metric out in a few test-projects tretefore JavaNCSS was used.

Applied Metric Suites 25

4.3 JDepend

JDepend comes as a standalone program or as anpfag-Eclipse [CIJd]. For this
work, the standalone program was chosen (the epottld have been created from the
Eclipse plug-in as well) because of the possilibtyse it from command line and there-
fore to automate it. JDepend implements the thteetsire metrics Efferent/Afferent
Coupling and Abstractness on a package level acuptd [MaRo03]. It offers an In-
stability metric as well, however this metric wob& analyzed in this work. Instability
is just Efferent/Afferent Coupling put togetherarine formula. This poses a problem,
as if there is no Efferent Coupling there is alw#ystability of 0. This work aims to
examine the separate effects of Efferent/Afferenuling on Source Code Change.
The chart for Instability will be added in the Apyoix.

Efferent Coupling

Efferent Coupling represents one half of the sitgbiérm defined earlier. It represents
the number of classes inside a package dependirgdasses outside of that package
[MaRo003]. A high measure of Efferent Coupling tHere suggests an instable package,
because it depends highly on classes in differackgges. It is very likely to change, as
it has many sources for change.

Afferent Coupling

Afferent Coupling represents the number of clasagside of a package depending on
classes inside that package [MaRo003]. Afferent Goggds an indicator for a stable

package, i.e. a package that is unlikely to chaidferent Coupling represents the
other half of stability. Afferent and Efferent Cdung can be used to determine the In-
stability of a package by applying the formula:

C.
C,+C,
If a package does not depend on any other packiaigesompletely stable. This lack of
distinction between a class with high and low Adfer Coupling and no Efferent Cou-
pling renders this formula obsolete for the changess metric.

Both metrics have been implemented by counting mngtatements and qualified
names [MaRo003].

Abstractness

“A package should be as abstract as it is stabldMaRo003]

Applied Metric Suites 26

The reasoning behind this quote is that stablegetea unit that has a lot of other units
depend on it; in this case a package. This meatsftbhanges have to be made they
will be hard to do, because of the impact on thgedding classes, so a design is needed
that is“.. flexible enough to be extended without requgrimodification” — [MaRo003]
This design is the use of abstract classes. Thea#&diisess-Metric implemented in JDe-
pend measures the abstractness of a package waitihest simple formula:

Abstractness is the number of abstract classedatiioy the number of all classes (in
the package).

The following hypotheses are being tested agaiestet metrics:

Hypothesis 1.1:A high value of Efferent Coupling of a packagelvéad to a high
value of changed lines. This is based on the assomghat instable packages are
changed easier and therefore are changed more[bftd003].

Hypothesis 1.2:A high value of Afferent Coupling of a package Iwdad to a low
value of changed lines. According to [MaRo03] agackage is harder to change
and therefore will change less.

Hypothesis 1.3:A high value of Abstractness suggests a stabl&ggmc Therefore a
high value of Abstractness should lead to a lowealf changed lines.

Hypothesis 1.3.1:A high value of Abstractness suggests a stabl&gggcand should
therefore have a high value of Afferent Couplingfd® to appendix for chart.

4.4 Metrics Plug-In for Eclipse

The Metrics Plug-In for Eclipse [SoMe] is used tm the remaining metrics on the pro-
jects from SourceForge. The Plug-In is run withidifgise and generates reports as
XML-Files which are analyzed and parsed. It implatadour metrics that will be used
in this work. These are Weighted-Methods-per-CIa&81C), Lack-of-Cohesion-of-
Methods (LCOM), Depth-of-Inheritance-Tree (DIT) aNdmbers-of-Methods (NOM).
All metrics employed by the Plug-In for this wonkeaun on class base. This means that
each value delivered by the metric responds t@ssclIThis is different to the JDepend
program as it delivers values for packages. Todwoinfusion, the DIT-Metric is a
structure metric following the definition introdwten this work; however it is em-
ployed on class base and not on package baséékather structure metrics.

Applied Metric Suites 27

Weighted Methods per Class

The WMC Metric was introduced in [ChKe91] and briyadkfined as
WMC=> ¢ .

i=1
¢ stands for the complexity of the method i. The aised to measure complexity is
not defined in [ChKe91]; it is just the groundwotkall methods have a complexity of
1 WMC equals the NOM metric. The goal of this neets to measure complexity of a
class by adding the complexities of its method® iftetrics reasoning is that number of
methods and complexity of methods is an indicatdmee and effort [ChKe91]. This is
based on the assumption that complexity (for thiskaMcCabe’s definition of com-
plexity will be used) introduces time and effort.

McCabe’s cyclomatic complexity is based on gramoth. The cyclomatic number of a
graph is calculated as:

v(G)=e-n+p

Where v(G) is the cyclomatic number of Graph Gs ¢hie number of edges, n is the
number of nodes and p are the connected comporido@abe further proposes that
“In a strongly connected graph G, the cyclomaticmier is equal to the maximum
number of linearly independent circuits” — [McTh7@&} graph is strongly connected if
there is a path from any node of the graph to dhgranode of the graph. A node in this
graph represents a block of code that is a sequdiativ. The edges of the graph repre-
sent the branches a program can take. This grdpioisn as the program control graph
[McTh76]. Note that this graph is a directed graplo. satisfy the definition of a
strongly connected graph, the enter and exit paihtkis program control graph need to
be connected.

Figure 3: Directed Strongly Connected Graph, SourcMcTh76]

Applied Metric Suites 28

The nodes a and f are the enter/exit points andntkeesected edge from a to f is the
additional edge to make the graph strongly conuedihis is reflected by modification
of the formula to:

v(G)=e-n+2

For the example presented in [McTh76] and Figurthi3, means that there are five li-
nearly independent circuits. These ateefg bely abeg acfa andadcfa Using these
five basic paths, every path going through the Gi@man be constructed.

The formula used in the Metrics Plug-In is thatoairtter that starts with v(G) = 1 is
incremented by 1 for eacH, for, while, do, case, catch and the ?: ternaygerator, as
well as the && and || conditional logic operators expressions” — [SoMeJThis is in
accordance with the formula presented above (afterief examination of the metric
values on a project).

The WMC value is the summed McCabe’s cyclomatic glexity value of a class. For
a complete introduction into McCabe’s cyclomatiengexity refer to [WaMc96].

Lack of Cohesion of Methods

The LCOM Metric for object-oriented programs wagigested in [ChKe91] and de-
fined as“the number of disjoint sets formed by the intetsetr of the n sets” —
[ChKe91], where n are the sets of instance variables ugedrbethods (set belongs
to M, etc). The formula for similarity is:

oM, M,,.M)=l,nl,..nl,

This formula is taken from [HeSe96], as the formgieen in [ChKe91] is erroneous
(refer to [HeSe96] for detailsyz is the similarity of the Methods Mo M, of a class. If
two methods do not share any instance variableslasity is O and they build one dis-
joint set, ergo LCOM = 1.

The implications of this metric are that cohesivs=snef methods is an indicator for well
designed classes, as similar tasks are groupethasgéf cohesion has a low value it is
suggested to break the class up into subclassesthird implication is that low cohe-
sion increases complexity [ChKe91]. The third imation will be of special interest of
this work as it is not clear at all that low coloeshas an impact on complexity at all.

[HeSe96] criticizes this formula for similarity @sis argued that it is very likely that
similarity will be zero or small and therefore #memula in this form is useless. A new
metric is suggested in [ChKe94], which seems ta balid measure for LCOM on first

Applied Metric Suites 29

glance. LCOM is the number of empty intersectiohswvo sets of instance variables of
methods minus the number of non-empty intersectibtise number of empty intersec-
tions is bigger than the number of non-empty irgetisns, otherwise it is O.

As is pointed out in [HeSe96] this measure failglétiver an interpretable result. The
reasoning is that it does not differentiate enobgtween classes with high and low co-
hesion. A new measure for LCOM is suggested in g96%

A set of m methods accesses a total of a attribtedect cohesion is defined as all
methods accessing all attributes. This should debvresult of 0, while if m = a, so all
methods only access a single variable, LCOM* wall1b

;Za_:/‘(Aj) -m

j=1
1-m

LCOM* =

Where ,u(Aj) is the number of methods which access each dathemimplementation

of LCOM used in the metrics suite is accordinghis formula. The author of the plug-
in cautions the use of LCOM* in Java as using gedtel setter methods to access an
attribute will indicate a higher lack of cohesidran there really is as only the method
with the getters and setters will access the aitie directly while the other methods
will access them via the getters and setters. Tinysn this work provides more in-
sight on this matter.

Depth of Inheritance Tree

This metric measures the depth of a class in theritance hierarchy. Following this it
is a measure ofhow many ancestor classes can potentially affdus tclass” -
[ChKe91]. The implications of this metric regard design ptewity. If there are deep
trees, design complexity increases. This work wiasure the absolute position of a
class, not the relative distance of a class irhteerchy against the changed lines value.
This is to prove that the deeper a class is inrtheritance hierarchy, the more methods
are inherited, thus increasing the complexity ef ¢tass.

Numbers of Methods
The Numbers of Methods Metric (NOM) counts the nembf methods of a class.

There have been several definitions of this mefti¢je93] defines it as the number of
external methods, while other authors speak ofsdrae NOM, but divide it into two

Applied Metric Suites 30

different sets of methods (e.g. number of extemathods and number of internal
methods vs. number of instance methods and nunilass methods). For this study,
NOM describes the number of all methods insideasscthis does not include non-
overridden inherited methods).

The following hypotheses are being tested agaiestet metrics:

Hypothesis 1.4:A high value of WMC of a class will lead to a highlue of changed
lines. This is based on the assumption that contglexcreases amount of change done.

Hypothesis 1.5:A high value of LCOM* will lead to a high value aghanged lines. A
low value on LCOM* suggests good design of clasadsle a high value hints at too
many tasks performed by a class. A bad designatdiss should lead to an increase in
changed lines.

Hypothesis 1.6:A high value of DIT for a class suggests a cl&sd inherits a lot of
methods and therefore is of greater design contgleii high value of DIT of a class
should lead to increased changed lines.

Hypothesis 1.7:A high value of NOM suggests much functionalitybadded in a class
and therefore high complexity in the class. Oppdsdtiat is the concept of encapsula-
tion where a high number of methods representsclowplexity.

Hypothesis 1.7.1:NOM and WMC should have significantly differentsots as the
complexity factor measured in WMC should discarel gietter/setter complexity that is
skewing NOM.

Fitting the Data 31

5 Fitting the Data

5.1 General

To fit the data gathered by the metric tools ared@NS log files, several tools had to be
implemented. These tools are written in Java aadestihe same architecture (a configu-
ration file and a file with the locations of thetaldo be accessed). Furthermore a script
has been implemented to generate a batch fileetaeving all CVS data required. An-
other tool was implemented that generates Synteg-for SPSS to help automate the
data imports into the statistic software. It opesavith an input file and a template file.
This step is part of the mining step of the dataing procedure, except for the script
and the SPSS Syntax tool, which are parts of tagpwcessing of the data. The goal is
to provide the results of the metric suites inghfan that can be worked on efficiently.

5.2 CVS Parser

The first step to gather the CVS data is to dowahltbee projects by using the script in-
troduced in Section 5.5. After the projects haverbéownloaded, a CVS log command
is run on the whole project and saved as “logbig.] The directory of the project is

added in the file list for the CVS parser. The ndorehe log file is not configurable at

the moment. This is a typical log entry:

2. RCS file:
/cvsroot/druid/druid/build/src/druid/AntTask.java,v

3. Working file: Druid/build/src/druid/AntTask.java

4. head: 1.2

5. branch:

6. locks: strict

7. access list:

8. symbolic names:

9. V3. 8:1.2.2.2

10. V3 7:1.22.1

11. V3 6:1.2

12. V3 5:1.2

13. Root_V3 X:1.2

14. V3 X:1.2.0.2

15. V3 4:1.2

16. V3 2:1.2

Fitting the Data 32

17. keyword substitution: kv

18. total revisions: 4;selected revisions: 4

19. description:

20. e

21. revision 1.2

22. date: 2003/09/02 02:25:15; author: antoniog;
state: Exp; lines: +5 -5

23. branches: 1.2.2;

24. removing unused and organizing imports

25, e

26. revision 1.1

27. date: 2003/08/26 17:40:55; author: acarboni;
state: Exp;

28. Added files

29, e

30. revision 1.2.2.2

31. date: 2006/01/17 01:54:51; author: antoniog;
state: Exp; lines: +0 -2

32. Remove trailing empty lines at the end of the
files.

33, e

34. revision 1.2.2.1

35. date: 2005/12/22 07:05:51; author: antoniog;
state: Exp; lines: +3 -3

36. Cleanup code: Don't create unnecesary new Ob-
jects.

The parser checks if the RCS file contains the aitiectory (indicating if the file has
been removed from the project). If not, it saves working file name for the package
structure and the number of lines added, deletddt@sum of them. The metrics plug-
in ignores interfaces so the Java files themsehae® to be parsed as well and CVS
entries for interfaces have to be discarded (Ha@éethis is just for the files themselves,
inherited interfaces are still included in the nostrjust not the interfaces themselves).
This is to make matching of metric results to cleghtines values easier. Before inter-
faces are discarded, the package values are daldulEhis is done since interfaces do
account for package complexity as they are pait, afhile an interface does not ac-
count for the complexity of a class that inheritsThis is an arguable point of view as
one could point out that a class incorporates tmptexity of the interface by imple-
menting it. The implications for design complexaye different from the structural
complexity though and for this work the interfaees part of the design complexity and
not part of the structural complexity.

Fitting the Data 33

The output of the parser has the following form:

For a class:
AntTask.java|8|10|18|Druid.build.src.druid

First column is the filename, then the added lif@fwed by deleted lines and the sum
of added and deleted lines. Last entry is the ppekeme generated from the directory
of the file.

For a package:
druid|110,0

First column is the package name, second coluntimeisum of the sums of the classes
in the package. The package name is gathered fontesing the package name gener-
ated from the directory. The output is saved to files in the format “directory
name.txt” for the classes and “directory name +kBge.txt” for the packages.

5.3 JDepend Report Parser

JDepend reports are generated by using the JDeyoemchand line and are saved in the
format “project name + report”. The JDepend Repatser loads a file list holding all
the generated reports. The reports are in XML forana are of the following form:

1. <Package name="com.lowagie.servlets">

2 <Stats>

3 <TotalClasses>4</TotalClasses>

4, <ConcreteClasses>3</ConcreteClasses >
5. <AbstractClasses>1</AbstractClasses >
6 <Ca>0</Ca>

7 <Ce>12</Ce>

8 <A>0.25

9. <I>1</I>

10. <D>0.25</D>

11. <V>1</V>

12. </Stats>

13. </Package>

Output not of interest for the parser has been wehoA DOM parser is used to re-
trieve the information from the file. The metricGinterest are held in the elements Ca
(Afferent Coupling), Ce (Efferent Coupling) and Alfstractness). The values given are

Fitting the Data 34

for whole packages. The output is saved into thgoRe directory. Each project has its
own report in the format “project name + Report.txt

The output itself is in the format:
gj.-awt.geom|V|1|D|0,2|1|0,43|A|0,38|Ce|3|Cal4|Abstr actClass
es|3|ConcreteClasses|5|TotalClasses|8]|

First part is the package name followed by the megric/value pairs analyzed by JDe-
pend.

5.4 Metrics Report Parser

The Metrics Report parser uses a configurationtffige holds the metrics of interest for
this work. These are WMC, LCOM, DIT and NOM. It @leses a file list to load the
reports generated by the metrics plug-in. The m®toutput is saved as XML and the
Metrics Report Parser uses a DOM parser to go gfirdke reports. The output of the
parser has the following form:
NOM]|Generator.java|Generator|9,0|Druid.build.src.mo d.datage
n.generic.torque

First column holds the name of the metric, secaidron holds the file name, followed

by the class name and the metric value in columgetnd four. The last column is the
package name generated from the local path ofiheThis is of relevance for the

matching heuristic used later on to ease analyhieglata.

5.5 Matching Heuristic and Script Generator

The package names constructed from the CVS pacseotdalways match the proper
package; if there is, e.g. a test and a main dirgcontaining the same files in different
states, the CVS parser will deliver two files thah only be differentiated by their file

names. To be able to assign the right packagedsetoight CVS data, a heuristic was
required that matches the package names to thetalyenames. The matcher ranks the
highest matching filenames by similarity and thée tccording package is chosen
manually.

The script generator creates a batch file thatraatcally downloads all projects de-
fined in the generators file list. Only the intdr@@urceForge project name is required,
the rest is generated by the generator. The oldgpks like this:

1. md foureverBase
2. cd foureverBase

35

3. cvs -
d:pserver.anonymous@fourever.cvs.sourceforge.net:/c vsr
oot/fourever checkout .

4. cvs log > logfile.log

5. cd..

There is one entry for every project defined infileelist of the generator.

Another script generator is used to create theagyfdr SPSS to automate the process-
ing of the data. It will substitute a place-holaath the SourceForge name of the pro-
jects and will generate a list of commands usingnaplate file. Inputs for this are the
template to be generated and a list of project$p@us a syntax file for SPSS that con-
tains the template generated for all projects.

Presenting the Results 36

6 Presenting the Results

6.1 General

Out of the 100 projects selected for this studyy @6 could be actually used to provide
data. This was unexpected as a sample of 10 psojiaished in the fore field of this
study, did not come across the problems encouniardus second, larger study. The
issues mainly stemmed from the program structdres.metric suites only deliver rela-
tive results, that is, results are presented package (e.g. the class org.main.Run can
be found in the directory “project/Test” as wellias‘project/Live”; the metric results
will not be distinguishable). Many projects howethetd different versions of the same
project or a test-branch in its path and change® wegistered in all of these. The
classes share the names and the metric valuesyhpirey have completely different
values in the Changed Lines Metric. Since it is padictable with 100% accuracy
which package is the original one, double entrizd to be eliminated. If projects con-
tained too many of those double packages, the gisojgere discarded. The threshold
for this was chosen partly arbitrarily; when théodfto sort the classes became too
large, or more than half of the project was doupied/as discarded. Furthermore if a
project contained more than one version of thegotagjs a branch, the project was dis-
carded as well.

Since the distribution of the CVS data resembleaygmonential distribution, the data
was logarithmized using a logarithm on the basg&Oo&nd adding a constant value of 1
to every dataset. This yields the following histogs for NCSS, Sum and SumNCSS.

Count

2,00 4,00 6,00 8,00

LogNCSS

Figure 4: Histogram of NCSS (logarithmized)

Presenting the Results 37

Figure 5 shows the problem when using only Sumegeiddent variable. A third of the
values mined from the CVS are of a zero value; th@&ns no changes were registered
in the CVS. This does not seem a problem, as ttlasees were most likely rather sim-
ple classes, added after they were developed Yyod¢#diwever this does pose a problem

as they are heavily biasing the results of anyeggion analysis, requiring a normal
distribution of the data.

6000

4000

Count

2000

1,00 2,00 3,00 4,00 5,00

LogSum

Figure 5: Histogram of Sum (logarithmized)

To be able to analyze all data, NCSS was addedro 8der the assumption that class
size accounts as a one-time change (as an addiopdrmbe precise). After undertak-
ing this step the following histogram is gathered.

Presenting the Results 38

Count

100 2,00 3,00 4,00 5,00

LogSumNCSS

Figure 6: Histogram of SumNCSS (logarithmized)

Based on this histogram it is possible to perforlime@ar regression analysis. The corre-
lation analysis for Sum and SumNCSS will be donth Wearson’s correlation.

The results presented here are created by using $RBa]. The statistical analysis is
done with SPSS as well.

The representation is handled in two parts. Tha fiart shows the correlation of the
metric with SUmNCSS, Sum and NCSS. Then a regmessialysis is done to see if a
model can be found that is able to predict valoeStmNCSS and Sum.

Kolmogorov-Smirnov Tests for SUmNCSS, Sum and NGB&ved significant results,
even after being transformed. Significant resultthwhe Kolmogorov-Smirnov Test
imply that the data is not normally distributed wewer the larger the sample is, the
more likely the Kolomogorov-Smirnov Test is to fHANOS]. In previous steps of the
study, Spearman’s correlation was used insteaceafsd®n’s correlation, however after
transforming the data, the results of Pearson’s $mehrman’s were remarkably close
and the histograms for SUmMNCSS and, to a lesseng)X@um after being logarithmized
actually fitted a normal distribution quite wello St was possible to use regression
analysis on the logarithmized data.

The significance level for this study was chosep & 0,001 as the sample size is big
enough.

Presenting the Results 39

6.2 Hypotheses tested

Hypothesis 1.1:A high value of Efferent Coupling of a packagelvaad to a high
value of changed lines. This is based on the assomghat instable packages are
changed easier and therefore are changed more[bftd003].

Hypothesis 1.2:A high value of Afferent Coupling of a package Iwdad to a low
value of changed lines. According to [MaRo03] e gackage is harder to change
and therefore will change less.

Hypothesis 1.3:A high value of Abstractness suggests a stabl&gugc (refer to the
earlier part of this chapter). Therefore a highueabf Abstractness should lead to a low
value of changed lines.

Hypothesis 1.3.1:A high value of Abstractness suggests a stabl&gggcand should
therefore have a high value of Afferent Couplingfd® to appendix for chart.

Hypothesis 1.4:A high value of WMC of a class will lead to a highlue of changed
lines. This is based on the assumption that contglexcreases amount of change done.

Hypothesis 1.5:A high value of LCOM* will lead to a high value aghanged lines. A
low value on LCOM* suggests good design of clasadsle a high value hints at too
many tasks performed by a class. A bad designobdiss should lead to an increase in
changed lines.

Hypothesis 1.6:A high value of DIT for a class suggests a cl&sd inherits a lot of
methods and therefore is of greater design contgleii high value of DIT of a class
should lead to increased changed lines.

Hypothesis 1.7:A high value of NOM suggests much functionalitybEdded in a class
and therefore high complexity in the class. Oppdsetthat is the concept of encapsula-
tion where a high number of methods implies low ptaxity.

Hypothesis 1.7.1:NOM and WMC should have significantly differentsots as the
complexity factor measured in WMC should discarel gletter/setter complexity that is
skewing NOM.

6.3 Class-size

In the first analysis, class-size will be comparedhe changes of the class. This is be-
cause of the dependent variables, planned to lkindbe examination of the metrics.

Presenting the Results 40

Therefore the nature of the relationship of Sum BI@ES needs to be analyzed. The
first diagram shows Non-Commenting Source Statesne@asured against the changed
lines of the CVS. To be able to use Pearson’s ladimae and the linear regression
analysis, the data was logarithmized.

5,00

4,00=

3,00

LogSum

2,00

1,00"

0.\ 00 O@AD O @ O
3 O

0,00=

1,00 2,00 3,00 4,00

LogNCSS

Figure 7: Non-Commenting Source Statements (NCSSyvSum of CVS changes

As can be seen in the diagram, there seems t@bereection between the sums and the
class sizes. This was anticipated, as it only makese that bigger classes cause more
changes.

6.3.1 Correlations

Correlations
LogNCSS
LogSum Pearson Correlation ,A31*
Sig. (1-tailed) ,000
N 18191

**. Correlation is significant at the 0.01 level

Table 3: Correlations of Sum and NCSS

The Correlation Coefficient equals 0,431 and tlgmificance that the two values are
related is high (p < 0,001). The value of 0,431gasfs a low positive correlation. This
is unexpected as one would naturally assume tleapldin size of a class would have

Presenting the Results

41

more of a visual impact on changes in a class. Bveagh this is the case, the effect is

only minor.

The next analysis was done on package level, adebkign metrics will be worked at
this level. Here the scatterplot reveals an everendigstinct pattern of changes in the
CVS measured against the class sizes.

5,00 =

4,00=

3,00

LogSum

2,00

1,00"

0,00=

LogNCSS

Figure 8: Sum of CVS changes versus Non-Commentirgpurce Statements on package level

The corresponding correlations table is shown ibld4:

Correlations

LogNCSS

LogSum Pearson Correlation
Sig. (1-tailed)
N

,523*
,000
2243

**. Correlation is significant at the 0.01 level

Table 4: Correlations of NCSS and Sum on packagevuel

The correlation analysis on package level yieldsenfiavourable results for the assump-
tion of a relationship between size of a unit ahdnges performed on the unit. The
correlation of 0,523 suggests an average posiovelation.

Presenting the Results 42

6.3.2 Regression

As it is of interest to further examine how Sum &@SS relate to each other, a regres-

sion analysis was done with Sum as independerdbdarand NCSS as dependent vari-
able.

Model Summary °

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 ,4318 ,186 ,186 1,00263

a. Predictors: (Constant), LogNCSS
b. Dependent Variable: LogSum

Table 5: Regression of Sum and NCSS per class

With 0,186 as R Square 18,6% of the variance in 81@& covered by Sum. This sug-
gests a low linear relationship. The scatterplostahdardized residuals plotted against
standardized predicted values carries the assumgtithe linear regression model.

Scatterplot

Dependent Variable: LogSum

Regression
Standardized
Residual

Regression Standardized Predicted Value
Figure 9: Scatterplot of Residuals and Predicted Maes for Sum and NCSS per class

Using linear regression on package level leadsmdas results, even though slightly
better than on class level.

Model Summary °

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 ,5234 274 273 1,12236

a. Predictors: (Constant), LogNCSS
b. Dependent Variable: LogSum

Table 6: Regression of Sum and NCSS per package

NCSS covers about 27% of the variance in Sum arldeiefore an average predictor
for Sum. The scatterplot of Residuals and Predivi@des confirms this:

Presenting the Results 43

Scatterplot
Dependent Variable: LogSum

Regression
Standardized
Residual

Regression Standardized Predicted Value
Figure 10: Scatterplot of Residuals and Predicted &lues for Sum and NCSS per package

6.4 NOM

The first metric performance examined was that amler-Of-Methods (NOM). The
scatterplot shown in Figure 11 reveals a trend raoeg to Hypothesis 1.7 (A high
number of NOM will go with a high number of the SN@SS value).

5,00 =

4,00

3,00

LogSumNCSS

2,00= §H

I I I
0,00 1,00 2,00

LogFunctions

Figure 11: Scatterplot of SUmMNCSS and NOM (Functiog) with regression line

Presenting the Results 44

6.4.1 Correlation

Hypothesis 1.7 holds true considering the follownagrelation of the Sum of Changed
Lines and NCSS (further referenced as SumNCSS) tghnumber of functions per
class:

Correlations

LogFunctions

LogSumNCSS Pearson Correlation ,641*4
Sig. (1-tailed) ,000
N 18191

**. Correlation is significant at the 0.01 level

Table 7: Correlations of SUmMNCSS and Functions (Mébds) per Class

The correlation of 0,641 suggests an average pesitirrelation value. This goes along
with Hypothesis 1.7 claiming that on the one harldgh number of functions suggest
high complexity encapsulated in a class a high rermob functions, while on the other
hand also suggests the use of getter/setter methatlsnplies low complexity. Seeing
as the trend is positive and of average value, Hhgsis 1.7 holds true.

The next table illustrates the correlation betwdenNOM-Metric (Column Functions)
and Sum, NCSS and SumNCSS.

Correlations

LogSum
LogSum LogNCSS NCSS
LogFunctions Pearson Correlation ,338*4 , 785*% ,641*4
Sig. (1-tailed) ,000 ,000 ,000
N 18191 18191 18191

**. Correlation is significant at the 0.01 level (1-tailed).

Table 8: Correlations of Sum, NCSS, SumNCSS and Fations per Class

Table 8 shows that the strongest correlation oN@&-Metric is actually with NCSS,
while Sum only shows a rather low correlation &38. This is due to a lot of classes
having no changes at all and thus heavily skewhegesult (the range here is 1 — 2600
NCSS). If the NCSS of a class are treated as aiomeaddition effort however, the
correlation of the metric is closer to what one {daexpect.

6.4.2 Regression SUmMNCSS
To predict values for SUmMNCSS linear regressionwsasl. The results are:

Presenting the Results 45

Model Summary °

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 ,6418 411 411 ,53067

a. Predictors: (Constant), LogFunctions
b. Dependent Variable: LogSUmNCSS

Table 9: Regression of SUMNCSS (dependent variablepnd NOM (independent variable)

SumNCSS is the dependent variable and NOM is tepi@ndent variable. R represents
the correlation after Pearson. R Square represeatpercentage of the variance in the
dependent variable explained by the independentblarin the regression model

[LiHe93]. In this case NOM is able to cover 41,1%tlee variance in the SumNCSS

metric. This value is considered average when g@rym make predictions from this

model. A trend can be perceived and the value4fDis high enough to make predic-
tions. This suggests that encapsulation is lessfattor than anticipated by Hypothesis
1.7.

An indicator for linear distribution is if the relials and the predicted value are
grouped randomly around the zero line, Figure I®vshthis pattern.

Scatterplot
Dependent Variable: LogSumNCSS

E_
=
Ca -
SN 4 8
u
un-E-g 29
25w
ool
T
eH 2
e
T | T T T T
-4 -2 0 2 4 [+

Regression Standardized Predicted Value
Figure 12: Scatterplot of Predicted Values and Reduals for NOM and SumNCSS

6.4.3 Regression Sum

The results and the scatterplot (see Apendix Fi@&efor the residuals and the pre-
dicted values for NOM and Sum are lower than tHaesin the analysis of SUmMNCSS.

Presenting the Results 46

Model Summary °

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 ,3384 114 114 1,04573

a. Predictors: (Constant), LogFunctions
b. Dependent Variable: LogSum

Table 10: Regression of Sum (dependent variable) d@iNOM (independent variable)

While these values seem more in accordance witlothgsis 1.7 it must be remarked
that the low predictive value stems mostly from zbeo values.

6.5 WMC

The next metric of our analysis is the Weightedies-per-Class Metric (WMC).
Hypothesis 1.4 states that a high value of WMC {edld to a high value of changed
lines (SumMNCSS). The scatterplot for WMC and SumB@&Sshown in Figure 8:

5,00 =

LogSumNCSS
8 8

N
8
1

1,00

0,00 1,00 2,00 3,00

LogWwMC

Figure 13: WMC and SumNCSS per Class with regressioline

The scatterplot looks similar to the one presemdeigure 12, however a little bit more
steep, suggesting an even better correlation titNOM-Metric. This is in accordance
with Hypothesis 1.7.1 that states that WMC shoddalbetter indicator for change than
NOM due to the use of getter and setter methodava.

Presenting the Results 47

6.5.1 Correlation
Table 11 presents the correlation of WMC and Sum8ICS

Correlations

LogWMC

LogSumNCSS Pearson Correlation , 7 73*
Sig. (1-tailed) ,000
N 18191

**. Correlation is significant at the 0.01 level

Table 11: Correlation of WMC (Value) and SUmNCSS

The correlation value of 0,773 suggests a strongelaion of WMC and SumNCSS
and therefore Hypothesis 1.4 and Hypothesis 1.@ld thue. The next table shows cor-
relations of WMC with Sum, NCSS and SumNCSS.

Correlations

LogSum
LogSum LogNCSS NCSS
LogWMC Pearson Correlation ,420%4 ,936*4 1 73%
Sig. (1-tailed) ,000 ,000 ,000
N 18191 18191 18191

**. Correlation is significant at the 0.01 level (1-tailed).

Table 12: Correlations WMC, Sum, NCSS and SumNCSS

The correlation of the metric with NCSS is actudligher than the one with SuUmNCSS.
However both correlations (NCSS and Sum) are hitireer with the NOM metric, sug-

gesting that WMC fits the change effort better tiNDM (in all cases). Of interest as
well is the correlation value of 0,936 of WMC an@€8IS. While there is a very strong
correlation of NCSS and WMC, this is not the foofighis work as it is not a measure
of maintenance effort, but just a curious detaittivgointing out.

6.5.2 Regression SUMNCSS

If Hypotheses 1.7.1 holds true, WMC should giveetdy prediction (that is a higher
percentage of variance in the dependent varialp&eed by the independent variable)
than NOM. As can be seen in Table 13, this holas: tr

Presenting the Results 48

Model Summary °

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 7738 ,598 ,598 ,43818

a. Predictors: (Constant), LogWwMC
b. Dependent Variable: LogSUmNCSS

Table 13: Regression of SUMNCSS (dependent variapland WMC (independent variable)

WMC delivers a higher R Square value and can dgtgalver 59,8% of the variance
perceived in the dependent variable (SumNCSS).

Since WMC shows a strong positive correlation vVBUImNCSS, Hypothesis 1.4 holds
true. Furthermore linear regression seems a goodemimr predicting values of
SumNCSS with WMC. Plotting the predicted valueshvitie residuals shows that the
relationship is linear (the residuals are randodngyributed around the zero line).

Scatterplot
Dependent Variable: LogSumNCSS

7.5
50—
25—
00

et

-3,0-

Residual

Regression
Standardized

-4 -|2 0 2 4 53
Regression Standardized Predicted Value
Figure 14: Scatterplot of Predicted Values and Reduals of WMC and SumNCSS

6.5.3 Regression Sum

The regression analysis performed with Sum as épermtlent variable reveals a similar
trend than with SUmMNCSS. The predictive power of @W/Msing a linear regression
model is however lower than with SUmMNCSS (0,17®psosed to 0,598), again the
implication is that the zero values skew the model.

Model Summary °

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 4202 ,176 ,176 1,00852

a. Predictors: (Constant), LogWwMC
b. Dependent Variable: LogSum

Table 14: Regression of Sum (dependent variable) dWMC (independent variable)

Presenting the Results 49

Bearing the zero values in mind, the same conaluiio Hypothesis 1.4 can be drawn
from this regression analysis.

6.6 LCOM*

After showing the results of WMC and NOM, the lastde metric is presented. From
the code metrics, this metric was expected to delike least significant results of the
three as it is not a good metric to measure olggetited design. This has been dis-
cussed in Chapter 4. This work used the added LC@alifes of a file in case of inner

classes as Sum is only available for a whole fiigure 15 shows the scatterplot of
LCOM* and SumNCSS.

5,00

4,007 ¢

3,00

LogSumNCSS

2,00=

1,004 E

0 0,50 1,00

LogLCOM

Figure 15: LCOM and SumNCSS per Class and regressidine

A positive trend as with the other metrics can becgived, however the bandwidth of
zero LCOM* values has a rather big range (1 — 3D SOMNCSS).

6.6.1 Correlations

This should be represented in the correlationsutatied in Table 15:

Presenting the Results

Correlations

50

LogSum
NCSS
LogLCOM Pearson Correlation ,464*
Sig. (1-tailed) ,000
N 18188

**. Correlation is significant at the 0.01 level

Table 15: Correlation of LCOM* and SUmNCSS

LCOM* delivers the lowest correlations of the cadetrics with SUmMNCSS. The corre-
lation of 0,464 is considered a low correlatiorgrificance is high. Table 16 shows the
correlations of Sum, NCSS and SumNCSS.

Correlations

LogSum
LogSum LogNCSS NCSS
LogLCOM Pearson Correlation ,259*% ,572*4 ,464*4
Sig. (1-tailed) ,000 ,000 ,000
N 18188 18188 18188

**. Correlation is significant at the 0.01 level (1-tailed).

Table 16: Correlations LCOM (Value) with Sum, NCSSand SumNCSS

As with the first two metrics, LCOM* too has a lomeorrelation with Sum than with
the NCSS. The correlation of LCOM* and NCSS is nfaaerage level, while Sum is
considered a low correlation. All correlations aignificant at p < 0,001.

6.6.2 Regression SUMNCSS

As has been expected LCOM shows a low predictiymluidity. A linear regression
model is used.

Model Summary °

Adjusted Std. Error of
Model R R Square R Square the Estimate
1 ,4642 ,215 ,215 ,61241

a. Predictors: (Constant), LogLCOM
b. Dependent Variable: LogSUmNCSS

Table 17: Regression of SUMNCSS (dependent variapland LCOM (independent variable)

The R Square value of 0,215 makes LCOM* an avepagdictor for SUmMNCSS, per-
forming worse than NOM and WMC. Plotting the stamdged residuals against the
standardized predicted values shows that the zates of LCOM* skew what other-
wise might be a randomly distributed sample. Thigher indicates why LCOM*
scored lower than WMC and NOM.

Presenting the Results 51

Scatterplot
Dependent Variable: LogSumNCSS

Regression
Standardized
Residual

Regression Standardized Predicted Value
Figure 16: Scatterplot of residuals and predicted &lues

Hypothesis 1.5 holds true for SUmMNCSS. An averaxgitige correlation suggests that a
high value of LCOM* will likely go with a high vakl of SUmMNCSS. Due to LCOM*
covering 21,5% of the variance in SUMNCSS, it isagrage predictor for SUmMNCSS.

6.6.3 Regression Sum

Using linear regression to predict Sum values fGOM* does not net any viable re-
sults. R Square is of a much lower value than SWmNCSS and at 0,067 only 6,7% of
the variance in Sum are accounted for by LCOM*. $hatterplot for the standardized
residuals and standardized predicted values lseiippendix (Figure 30).

Model Summary °

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 ,2592 ,067 ,067 1,07290

a. Predictors: (Constant), LogLCOM
b. Dependent Variable: LogSum

Table 18: Regression of Sum (dependent variable) di.COM (independent variable)

6.7 CE/CA

After presenting the results for the code metrieerent and Afferent Coupling (CE
and CA) of the structure metrics are the next texsmined.

Presenting the Results 52

5,00 o ©O

4,00

3,00

EIRORIEDOO® O 00

LogSumNCSS

2,00= [

1,00+

0,50 1,00 1,50

LogCe

Figure 17: CE and SumNCSS per package with regressi line

The scatterplot shows a recognizable trend of a la@due of CE coupled with a high
value of SUMNCSS. This is reflected by the calooaof the correlation as seen in Ta-
ble 19. Before the correlations are presented tlattesplot of SUMNCSS and CA is
shown in Figure 18:

5,00 o O

(@)

4,00

1 90).@

3,00+

LogSumNCSS

2,00

1,00+

I I
0,00 0,50 1,00 1,50 2,00

Figure 18: CA and SumNCSS per package with regressi line

Presenting the Results 53

A trend as with Efferent Coupling is not recogniealihe scatterplot is randomly dis-
tributed and the regression line is not steep.

6.7.1 Correlations
Table 19 shows the correlations for CE and CA 8itimNCSS:

Correlations

LogSum
NCSS
LogCe Pearson Correlation ,585**
Sig. (1-tailed) ,000
N 2243
LogCa Pearson Correlation ,336*%
Sig. (1-tailed) ,000
N 2243

**. Correlation is significant at the 0.01 level

Table 19: Correlations of CE and CA with SUmMNCSS

As before the results of the correlations for SNGSS and SUmNCSS are presented as
well:

Correlations

LogSum
LogSum LogNCSS NCSS
LogCe Pearson Correlation ,370*4 ,653*4 ,585**
Sig. (1-tailed) ,000 ,000 ,000
N 2243 2243 2243
LogCa Pearson Correlation ,278*4 ,312%4 ,336**
Sig. (1-tailed) ,000 ,000 ,000
N 2243 2243 2243

**. Correlation is significant at the 0.01 level (1-tailed).

Table 20: Correlations of CE and CA with Sum, NCS%nd SumNCSS

Efferent Coupling shows a pattern similar to theeotmetrics, that is a low correlation
with Sum, a higher correlation with NCSS (althowggitl of an average level) and an
average correlation with SUmNCSS. Afferent Coupbnghe other hand has its highest
correlation with SuUmNCSS, while having a lower etation through Sum, NCSS and
SUumNCSS.

6.7.2 Regression SUMNCSS

Efferent Coupling (CE) has an average predictivergyoof 0,342 (34,2% of the vari-
ance in SUmMNCSS accounted for by CE).

Presenting the Results 54

Model Summary °

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 ,5854 ,342 ,342 ,63178

a. Predictors: (Constant), LogCe
b. Dependent Variable: LogSUmNCSS

Table 21: Regression of CE and SUmMNCSS

Afferent Coupling (CA) has a lower correlation wBumNCSS than Efferent Coupling.
With a low predictive value of 0,113, linear regies might not be the right model to
predict SUMNCSS by CA. Only 11,3% of the varianmc&umNCSS are covered by CA.

Model Summary P

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 ,3362 ,113 ,113 ,73340

a. Predictors: (Constant), LogCa
b. Dependent Variable: LogSUmNCSS

Table 22: Regression of CA and SUmNCSS

Hypothesis 1.1 holds true. The correlation is obaarage threshold and while the pre-
dictive quality of the linear regression model idyoaverage as well, there definitely is
a positive connection between Efferent Coupling arugh value of SumNCSS. Hy-

pothesis 1.2 has to be discarded. There should reggative correlation between CA

and SumNCSS. However the correlation is low paositnd significant. There is no

negative trend as expected in Hypothesis 1.2. TBg@are value indicates that the pre-
dictive power of the linear regression model for @Aow. Plotting the residuals and

the predicted values further supports the declirteelinear regression model for CA.

Scatterplot
Dependent Variable: LogSumNCSS

Regression
Standardized
Residual

Regression Standardized Predicted Value
Figure 19: Scatterplot of Predicted Values and Reduals of CE and SumNCSS

Presenting the Results 55

Scatterplot
Dependent Variable: LogSumNCSS

Regression
Standardized
Residual

Regression Standardized Predicted Value
Figure 20: Scatterplot of Predicted Values and Reduals of CA and SumNCSS

The first half of the scatterplots look similar Wever the CA scatter plot shows a trend
that is leaning toward the right lower half of theatter plot, while CE revolves around
the middle with a few outliers.

6.7.3 Regression Sum

The regression for Sum and Efferent Coupling ifofaing the same pattern as the ear-
lier analyses by performing poorly compared to S@8S. A low R Square value
shows that a linear regression model is not a gagto predict Sum by Efferent Cou-

pling.

Model Summary P

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 ,3702 ,137 ,137 1,22320

a. Predictors: (Constant), LogCe

b. Dependent Variable: LogSum

Table 23: Regression of Sum (dependent variable) drefferent Coupling (independent variable)

Afferent Coupling is much closer to Efferent Cougliin predicting Sum. However it
still shows a positive trend where there shouldhbeegative, so Hypothesis 1.2 has to
be discarded, while Hypothesis 1.1 holds true asgetls a significant, if low, positive
trend. However CE cannot be used as a predict@dar. Again linear regression is not
the means to predict any values for Sum by Affef@otipling. The according scatter-
plots of standardized residuals and standardizedigifons can be found in the Appen-
dix (Figure 31 and Figure 32).

Presenting the Results 56

Model Summary °

Adjusted Std. Error of
Model R R Square | R Square | the Estimate

1 2783 ,077 ,077 1,26482
a. Predictors: (Constant), LogCa
b. Dependent Variable: LogSum

Table 24: Regression of Sum (dependent variable) drifferent Coupling (independent variable)

6.8 Depth of Inheritance Tree

The next metric is Depth of Inheritance Tree.Fig@ke shows the scatterplot for
SumNCSS and the DIT values delivered by the metric.

5,00=

4,00

3,00

2,00

LogSumNCSS

1,00= E

Figure 21: of SUmMNCSS and DIT

Depth of Inheritance was examined on class levepgp®sed to Efferent and Afferent

Coupling and Abstractness. The scatterplot doesewatal a trend. This is further em-
phasized by the flat regression line.

Presenting the Results 57

6.8.1 Correlations

As with Afferent Coupling a correlation of SUmNC&&d DIT is unlikely. The correla-
tions are presented in Table 25:

Correlations

LogSum
NCSS
LogDIT Pearson Correlation ,149*4
Sig. (1-tailed) ,000
N 18190

**. Correlation is significant at the 0.01 level

Table 25: Correlation of DIT and SumNCSS

The correlation is highly significant (p < 0,00byt of a very low value. A high value
of DIT has only a very low impact on the SUmMNCS$&ieand vice versa. As with Af-

ferent Coupling, the correlations of DIT with SURCSS and SUmNCSS show a differ-
ent trend than the previous results:

Correlations

LogSum
LogSum LogNCSS NCSS
LogDIT Pearson Correlation ,115*4 , 1474 ,149*4
Sig. (1-tailed) ,000 ,000 ,000
N 18190 18190 18190

**. Correlation is significant at the 0.01 level (1-tailed).

Table 26: Correlations of DIT and Sum, NCSS and SuMCSS

Opposed to the trend of NCSS having a higher arogl than SumNCSS, SUmMNCSS
performs slightly better this time. However it tdls very low value.

6.8.2 Regression SUMNCSS

The scatterplot suggests no linear relationshifh@fdata; therefore the expected regres-
sion results are of a very low value.

Model Summary P

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 ,1492 ,022 ,022 ,68347

a. Predictors: (Constant), LogDIT
b. Dependent Variable: LogSUmNCSS

Table 27: Regression of DIT and SUmNCSS

As expected from the scatterplot, linear regreséisrthe data very badly. With 2% of
the variance explained by the model, it is insigfit. After seeing the low correlation

Presenting the Results 58

this was expected. Plotting residuals and predivtddes shows the data to be above
the zero line for the most part.

Scatterplot
Dependent Variable: LogSumNCSS

o
Ca
ST

T
" o
EEE %%O e o
oe e 0 ¢ o ©
g ST)

w

L g 0

Regression Standardized Predicted Value
Figure 22: Residuals and Predicted Values of DIT ahSumNCSS

Since correlations are very low, Hypothesis 1.6sdoet hold true. Furthermore linear
regression does not fit the scatterplot. DIT doesgo with a high value of changed
lines according to the data gathered for this study

6.8.3 Regression Sum

The results of the linear regression of Sum and RI€ close to the results of
SumNCSS. This trend can be perceived in all exaimims so far. The same conclu-
sions can be drawn for Sum; linear regressionbsd model to predict Sum by DIT.

About 1% of the variance in Sum is covered by Difie scatterplot of the residuals and
predicted values can be found in the Appendix (FE@B8).

Model Summary P

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 ,1152 ,013 ,013 1,10365

a. Predictors: (Constant), LogDIT

b. Dependent Variable: LogSum

Table 28: Regression of Sum (dependent value) andD(independent value)

6.9 Abstractness

The last metric under examination is the Abstrasgnaetric. The following scatterplot
is presented:

Presenting the Results 59

5,00

4,00 E

3,00=

LogSumNCSS

2,00=

1,00

GDO COOOMETEBDOREXD O@ED

|
&=
g
-,
O
1

,0

LogA

Figure 23: Abstractness (A) and SUmNCSS per Classitlv regression line

The scatterplot reveals that if the zero valuesewerbe removed, the correlation would
most likely be negative. As it is, there is no gévable trend learned from the scatter-
plot.

6.9.1 Correlations

Thus no high correlations are expected and nonsese in Table 29 and Table 30.

Correlations

LogSum
NCSS
LogA Pearson Correlation ,021
Sig. (1-tailed) ,163
N 2243

Table 29: Correlation of Abstractness (A) and SUmMNGS

This metric was performed on package level agame. dorrelation is of a low threshold
andnot significant at p < 0,001. The correlation NESS suggests what could be
glanced from the scatterplot; if there were angdran Abstractness, it would be a nega-
tive one. Unfortunately there simply are too maeyozvalues to be able to perform a
proper analysis of the data. It is not possiblenttke any statement about SUmMNCSS,
Sum or NCSS from the data acquired in this studydigg Abstractness.

Presenting the Results 60

Correlations

LogSum
LogSum LogNCSS NCSS
LogA Pearson Correlation ,052*4 -,048* ,021
Sig. (1-tailed) ,007 ,011 ,163
N 2243 2243 2243

**. Correlation is significant at the 0.01 level (1-tailed).

*. Correlation is significant at the 0.05 level (1-tailed).

Table 30: Correlations of Abstractness (A) and SumMNCSS and SUmNCSS

The correlations are not significant at the p <0Q,&vel selected for this study.

6.9.2 Regression SUMNCSS

With the low correlations it was anticipated thiaehr regression would not be able to
fit the data. Table 31 shows this holds true.

Model Summary °

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 ,0212 ,000 ,000 , 77861

a. Predictors: (Constant), LogA
b. Dependent Variable: LogSUmNCSS

Table 31: Regression of Abstractness and SUmMNCSS

Abstractness explains none of the variance in SuB®BIG&ince the correlations are not
significant at the threshold of p < 0,001 chosertlics study.

Scatterplot

Dependent Variable: LogSumNCSS

Regression
Standardized
Residual

Regression Standardized Predicted Value
Figure 24: Scatterplot of Residuals and Predicted &lues of Abstractness and SUmMNCSS

Hypthoesis 1.3 is discarded according to the abvigldata, as Abstractness fails to de-
liver a negative correlation (or any significantredation).

Presenting the Results 61

6.9.3 Regression Sum

Linear regression is unfit to predict any valuessain by Abstractness. The same con-
clusions as in the SUMNCSS Regression apply héeesgatterplot of the residuals and
the predicted values can be found in the Apperfeigure 34).

Model Summary °

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 ,0524 ,003 ,002 1,31506

a. Predictors: (Constant), LogA
b. Dependent Variable: LogSum

Table 32: Regression of Abstractness and Sum

To examine Hypothesis 1.3.1 the same analysisng dnd regression has been used.
Abstractness is the independent variable, whileewfit Coupling is the dependent
variable for the regression analysis. The scatterplith the regression line can be
found in the appendix together with the scatterpliothe residuals and the predicted
values (Figure 35 and Figure 36). Correlation anéalr regression tables can be found
in the appendix as well (Table 42 and Table 43 fidationship of A and CA is posi-
tive as is suggested by Hypothesis 1.3.1. Howeéwecorrelation is only of a low value,
namely 0,301. This value is sufficient to confirnggdthesis 1.3.1, as it is a significant,
positive correlation. However linear regressionas fit to predict values as R Square is
0,091. This is too low of a value to hold on toree&r model.

6.10 Stepwise multiple linear Regression

6.10.1 Code Metrics

The next step of the analysis was to test for Hypsis 2; if Hypothesis 1 holds true, is
it possible to find a set of methods that is védidall projects. To examine this, multi-
ple linear regression was used on the metrics lpss @nd on the metrics per package
(in two separate runs).

SUMNCSS
First the metrics per class were analysed, usimyNBLSS as dependent variable.

Presenting the Results 62

Model Summary

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 7738 ,598 ,598 ,43816
2 774° ,600 ,599 ,43735
3 ,775¢ ,601 ,601 ,43645
4 7764 ,603 ,603 ,43568

a. Predictors: (Constant), LogWMC
b. Predictors: (Constant), LogWMC, LogFunctions

C. Predictors: (Constant), LogWMC, LogFunctions,
LogLCOM

d. Predictors: (Constant), LogWMC, LogFunctions,
LogLCOM, LogDIT

Table 33: Multiple linear Regression SUmMNCSS (depelent variable) and WMC, NOM (Func-
tions), LCOM and DIT (independent variables)

As can be seen in Table 33, WMC accounts for mbshe variance covered by the
model. This is reflected by the t-values in Table Bhere WMC has the highest value,
while NOM, LCOM and DIT are all low. However all s are highly significant (p <
0,001).

The scatterplot of the standardized residuals aaadardized predicted values resem-
bles the distribution of WMC and further carrieg tissumption that WMC makes up
for most of the predictive value in the model. fere Hypothesis 2 does seem to
hold, however WMC alone is nearly just as goodheswhole model for SUmNCSS.

Since the other independent variables are highlyifitant at p < 0,001, they have to be
included in the model.

Presenting the Results

63

Coefficients 2

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) , 784 ,008 99,647 ,000
LogWMC 1,060 ,006 773 164,483 ,000
2 (Constant) ,802 ,008 98,322 ,000
LogWMC 1,147 ,012 ,837 92,661 ,000
LogFunctions -,137 ,017 -,075 -8,258 ,000
3 (Constant) ,822 ,008 97,367 ,000
LogWMC 1,128 ,013 ,823 89,847 ,000
LogFunctions -,168 ,017 -,092 -9,928 ,000
LogLCOM 276 ,032 ,051 8,704 ,000
4 (Constant) 774 ,010 75,260 ,000
LogWMC 1,116 ,013 ,814 88,406 ,000
LogFunctions -,151 ,017 -,082 -8,888 ,000
LogLCOM ,237 ,032 ,043 7,393 ,000
LogDIT ,104 ,013 ,039 8,116 ,000

a. Dependent Variable: LogSUmNCSS

Table 34: Multiple linear Regression Coefficients 8mMNCSS (dependent variables) and WMC,

NOM (Functions), LCOM and DIT (independent variables)

Regression
Standardized

Figure 25: Scatterplot of Residuals and Predicted &lues of WMC, NOM, LCOM and DIT and

Residual

2,54
5,0

Dependent Variable: LogSumNCSS

Scatterplot

7.5
50

2,5
00

SumNCSS

Hypothesis 2 does hold true, there is a set ofiosetiable for all projects, however that
set could be replaced by just using the WMC me8idl the additional metrics make

T
-2

Regression Standardized Predicted Value

for a higher accuracy of the predictive model.

Sum

Sum shows the same pattern as SUmMNCSS, with lowdictive quality of the metrics.
WMC is covering most of the variance in Sum, wiNi®M, LCOM and DIT contribute

small amounts.

Presenting the Results 64

Model Summary €

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 4192 ,176 ,176 1,00852
2 ,421P A77 77 1,00758
3 ,423¢ ,179 ,179 1,00681
4 4264 ,181 ,181 1,00520

a. Predictors: (Constant), LogWMC
b. Predictors: (Constant), LogWMC, LogFunctions

C. Predictors: (Constant), LogWMC, LogFunctions,
LogLCOM

d. Predictors: (Constant), LogWMC, LogFunctions,
LogLCOM, LogDIT

€. Dependent Variable: LogSum

Table 35: Multiple linear Regression Sum (dependentariables) and WMC, NOM (Functions),
LCOM and DIT (independent variables)

This holds true when looking at the t-values in [€aR6. As before all metrics are of
high significance.

Coefficients 2

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) ,258 ,018 14,247 ,000
LogWMC ,924 ,015 ,419 62,292 ,000
2 (Constant) ,288 ,019 15,334 ,000
LogWMC 1,068 ,029 ,485 37,453 ,000
LogFunctions -,226 ,038 -,077 -5,925 ,000
3 (Constant) ,316 ,019 16,217 ,000
LogWMC 1,041 ,029 AT72 35,939 ,000
LogFunctions -,270 ,039 -,092 -6,932 ,000
LogLCOM ,394 ,073 ,045 5,375 ,000
4 (Constant) 211 ,024 8,898 ,000
LogWMC 1,014 ,029 ,460 34,828 ,000
LogFunctions -,234 ,039 -,079 -5,959 ,000
LogLCOM ,308 ,074 ,035 4,160 ,000
LogDIT 227 ,030 ,053 7,691 ,000

a. Dependent Variable: LogSum

Table 36: Multiple linear Regression Sum Coefficiets (dependent variables) and WMC, NOM
(Functions), LCOM and DIT (independent variables)

The scatterplot of the standardized residuals aedigied values shows the WMC pat-
tern and as before, the zero values are skewinglthe

Presenting the Results 65

Scatterplot
Dependent Variable: LogSum

Residual

Regression
Standardized

1 T I T T T
-4 -2 0 2 4 G

Regression Standardized Predicted Value

Figure 26: Scatterplot of Residuals and Predicted &lues of WMC, NOM, LCOM and DIT and
Sum

Hypothesis 2 has to be discarded for Sum as thanea explained by the metrics is too
low to justify using the model as predictor fordtg Sum values.

6.10.2 Structure Metrics

After running the regression analysis on the metper class, the next step is to exam-
ine the metrics per package; that is Efferent afférént Coupling and Abstractness.
Hypothesis 2 was tested against SUmMNCSS and Sum.

SuUmNCSS

Table 37 shows that CE and CA together providevamage predictor for SUmMNCSS.
Abstractness does not improve the model whatso&Vken looking at the coefficients
it becomes obvious that Abstractness is yet agairsignificant. As with the structure
metrics, one metric seems to explain the biggestgbahe variance, namely CE.

Model Summary ¢

Adjusted Std. Error of
Model R R Square R Square the Estimate
1 ,5852 ,342 ,342 ,63178
2 ,618P ,382 ,381 ,61233
3 ,618¢ ,382 ,381 ,61243

a. Predictors: (Constant), LogCe

b. Predictors: (Constant), LogCe, LogCa

C. Predictors: (Constant), LogCe, LogCa, LogA
d. Dependent Variable: LogSUumNCSS

Table 37: Multiple linear Regression SUmNCSS (depelent variable) and CE, CA and Abstract-
ness (independent variables)

The t-values further strengthen this assumptiomthEumore it is shown that Abstract-
ness is not significant; it does not affect the piad all:

Presenting the Results 66

Coefficients &

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.

1 (Constant) 1,270 ,044 29,129 ,000
LogCe 1,535 ,045 ,585 34,120 ,000
2 (Constant) 1,223 ,042 28,824 ,000
LogCe 1,403 ,045 ,535 31,221 ,000
LogCa 374 ,031 ,207 12,067 ,000
3 (Constant) 1,218 ,044 27,792 ,000
LogCe 1,408 ,046 ,536 30,803 ,000
LogCa ,368 ,033 ,203 11,190 ,000
LogA ,101 ,192 ,009 ,527 ,598

a. Dependent Variable: LogSumNCSS

Table 38: Coefficients of multiple linear regressio for SUMNCSS

CE and CA are highly significant, while accordigthe t-values most of the predictive
guality of the model stems from CE. That is thesogafor the low increase in predictive
guality. Hypothesis 2 only holds true if CE and @re treated as two separate metrics,
because Abstractness has to be discarded; it dadwing any new explanation of the
variance into the model. Furthermore the overdll&af R Square is average, suggest-
ing that linear regression fits the data. The arpld variance in SUmNCSS by CE and
CA is only 0,382 or 38,2%. CA and CE together make average predictor for
SuUumNCSS, therefore Hypothesis 2 holds true for SGRSt

Sum

The multiple linear regression with Sum as depehdad CE, CA and A as independ-
ent variables is shown in Table 39:

Model Summary 9

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 ,3702 ,137 ,137 1,22320
2 ,418P 175 174 1,19644
3 ,419¢ 175 174 1,19633

a. Predictors: (Constant), LogCe

b. Predictors: (Constant), LogCe, LogCa

C. Predictors: (Constant), LogCe, LogCa, LogA
d. Dependent Variable: LogSum

Table 39: Multiple linear Regression Sum (dependentariable) and CE, CA and Abstractness (in-
dependent variables)

Presenting the Results 67

The increase in predictive capability to using o¥ as predictor is similar to
SumNCSS. After the results in the linear regresaimaysis this was expected. Looking
at the coefficients reveals a clearer picture:

Coefficients &

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) ,353 ,084 4,179 ,000
LogCe 1,644 ,087 ,370 18,874 ,000
2 (Constant) ,276 ,083 3,329 ,001
LogCe 1,428 ,088 ,322 16,263 ,000
LogCa ,613 ,061 ,200 10,117 ,000
3 (Constant) ,251 ,086 2,931 ,003
LogCe 1,447 ,089 ,326 16,214 ,000
LogCa ,587 ,064 ,192 9,133 ,000
LogA ,446 374 ,024 1,192 ,233

a. Dependent Variable: LogSum

Table 40: Coefficients of multiple linear regressio for Sum

Abstractness and the constant factor have to lwamied as insignificant. CA contrib-
utes more to Sum than it did to SumNCSS, when fapkit the t-values. Still CE ac-
counts for the major part of the variance in Surgpdihesis 2 does not hold true for
Sum as the portion of the variance explained bys#teof CA and CE fails to account
for a sensible value.

SPSS knowledge was acquired by using [BUAc06] &nN05].

Discussion 68

7 Discussion

7.1 General

The first thing to mention, as it likely had a cmesable impact on this study, is the
quality of the CVS data acquired from SourceFoAgecan be derived from the amount
of projects that could not be worked with, CVS wesagries greatly from project to pro-
ject (and probably user to user). Before going ohttails on the results, it needs to be
pointed out that this might be the reason of theraye performance of the structure
metrics. Another problem that had to be dealt wids the “wrong” usage of CVS,
namely making hard copies of versions into the sdirextory. The metrics could not
distinguish between the directories and the efdérgoing through each project manu-
ally, working the parsers on each file, renamirtg, would have seriously crippled the
automated process that allowed for the huge numibelasses to be analysed. Further-
more, when the CVS was used like that the Sumwlasaobviously wrong, as the Sum
from previous versions should be included in thalfSum.

Therefore only projects that had an insignificatgdending on project size, between 50
and 100 as maximum) amount of double entries vetce used in the study. While this
almost halved the number of projects aimed forhm Ibeginning of the work, 18.000
classes and more than 2.000 packages analyseuugeaamount of data to work with.
There was a small field study performed in the leigig of this work (which is not
documented here) of ten projects that did not emewuhese problems, so this erratic
use of CVS (erratic for the CVS data to be usedHtm work) came unexpected. This
does not imply that the usage of CVS on SourceFpagese is done erroneous; those
projects just do not deliver data that can be uséhis study.

The data gathered from the CVS is not normallyridiisted. Specifically Sum, due to a
lot of classes not having any changes reporteldeasily positively skewed. Even after
taking the logarithm, it still showed a skewed dggam. The histogram for SUMNCSS
after taking the logarithm strongly resembled anmadrdistribution however. This is an
indicator that SUMNCSS is a better measure than @one as it is more finely grained
(Sum has a huge amount of zero values rendermmgrié¢ coarse) and if size is treated as
a one-time addition and therefore as a changs,iit the spirit of maintenance effort as
well. Unfortunately with Sum one third of the dg@thered were cases of zero changed
files. If that data would be eliminated, it would® the outgoing of the study too much.
So it was decided to present SUmMNCSS and Sum, loerh Yooking at the lower results
of Sum, it is necessary to keep in mind that thgel@amount of zero values skews Pear-
son’s correlation.

Discussion 69

Before the code metrics and the results are ird&Fgr it is necessary to analyse the
relationship of Sum and NCSS since Sum and theiaddif Sum and NCSS have been
used as dependent variables for the regressiolysisalAs expected Sum and NCSS
correlated; a low positive correlation could bersedCSS is the most basic predictor
for Sum, following common sense that a class ctingioof many lines of code will
have a high number of changes. This crude measureflected by a low R Square
value and a low Pearson-correlation. The low valagly stems from the zero values
(eliminating the zero values shows an average lediva of 0,521); other reasons are
generated code (GUI designers, Model-Driven Devekt) and various more. On
package level the results of the regression arsalysre more convincing, correlation
was average with NCSS covering 27,4% of the vagancSum. This is closer to the
expected relationship of Sum and NCSS.

As a first step, Code Metrics will be summed umtheconclusion on the Structure Met-
rics will be drawn. Finally the results of the mipllé regressions for both kinds of met-
rics will be evaluated. For categorizing the qyatif a correlation, the categories from
[BUACO6] will be used:

» Less or equal than 0;2 very low Correlation
* Less or equal than 0;5 low Correlation

» Less or equal than 0;? average Correlation
* Less or equal than 0;% high Correlation

* More than 0,9> very high Correlation

The last part of the Conclusion will deal with ttesults of related publications (some of
which have been mentioned in earlier Chapters).

7.2 Code Metrics

7.2.1 General

In general, the code metrics performed better tharstructure metrics. This might be
the case because they interpret less; it seenmdhe sophisticated a metric (the excep-
tion being WMC, but only on first sight), the leska predictive quality it holds. The
following Hypotheses have been examined for the2codtrics:

Hypothesis 1.4:A high value of WMC of a class will lead to a highlue of changed
lines. This is based on the assumption that contglexcreases amount of change done.

Hypothesis 1.5:A high value of LCOM* will lead to a high value cghanged lines. A
low value on LCOM* suggests good design of classasle a high value hints at too

Discussion 70

many tasks performed by a class. A bad designatdiss should lead to an increase in
changed lines.

Hypothesis 1.7:A high value of NOM suggests much functionalitybadded in a class
and therefore high complexity in the class. Oppdsdtiat is the concept of encapsula-
tion where a high number of methods implies low ptaxity.

Hypothesis 1.7.1:NOM and WMC should have significantly differentsodts as the
complexity factor measured in WMC should discarel gletter/setter complexity that is
skewing NOM.

The Hypotheses will be evaluated in the accordimgpters followed by a summary of
the performance of the Code Metrics.

7.2.2 Number Of Methods

“Hypothesis 1.7:A high value of NOM suggests much functionalitpesded in a class
and therefore high complexity in the class. Oppdsetthat is the concept of encapsula-
tion where a high number of methods implies lowmerity.”

The NOM metric should have positive correlationtswBumNCSS and Sum according
to Hypothesis 1.7. Furthermore the correlation &hbe of an average value. This is the
case with SUmMNCSS. The correlations in detail 6#0,with SUmMNCSS and 0,338 with
Sum suggest an average and a low connection of M@Mthe tested dependent vari-
ables. Since it is a positive correlation and gdigant, Hypothesis 1.7 holds true. How-
ever the R Square value for Sum is too low to waremy reliability for NOM as pre-
dictor for Sum. The R Square value of 0,411 for S@8S indicates that NOM is an
average predictor for SUmMNCSS. The lower perforreasfcSum was expected due to
the skewed nature of the data. Furthermore, theageecorrelation value of SUmMNCSS
and NOM imply that Hypothesis 1.7 holds true fog thata used in this study. The aver-
age value was expected due to the nature of trectobjiented paradigm that conflicts
with the idea behind NOM. With 41,1% of the variae SUmMNCSS covered by NOM,
NOM makes for a rather good predictor for SumNCBBile the low value of 11,4%
variance-coverage with Sum makes NOM not viableSiom.

The R Square value of SUmMNCSS and NOM is considgaat” in this study, because
it is actually higher than expected from Hypothdsia

Discussion 71

7.2.3 Weighted Methods per Class

“Hypothesis 1.4:A high value of WMC of a class will lead to a higdlue of changed
lines. This is based on the assumption that contpléxcreases amount of change
done.”

As with NOM, WMC shows a big discrepancy in cortielas between SumNCSS and
Sum (0,773 for SUmMNCSS as opposed to 0,420 for SU3 leads to a very good R
Square value for SUMNCSS and a low R Square valu&dm. The performance of
WMC is overall better than NOM and suggests Hypsithé.7.1 holds true, as well as
Hypothesis 1.4. WMC covers 59,8% of the variancBumNCSS. This makes WMC a
very good predictor for SUmNCSS, while 17,6% cogeraith Sum shows the same
conclusion as with NOM apply. WMC is a better potoli than NOM for both depend-
ent variables and a trend can be perceived with batiables as well. Correlation is
positive and there is a linear relationship of Wisl@l the dependent variables.

If simple percentages of predicting qualities asedi(R Square values as percentages),
WMC is roughly 20% (41,1% vs 59,8%) more efficiéhan NOM. This is however a
very crude assumption; more accurate is that WM& hetter predictor than NOM for
the data gathered in this study. This is mostly luthe nature of WMC and its inde-
pendence regarding programming paradigms, while N©Nbt. The complexity meas-
ure (McCabe’s cyclomatic number) itself is impleneehas a basic count of certain
operators in the program. A correlation this higithwNCSS is worthy of another ex-
amination in a different study.

While WMC seems to be a rather sophisticated medricloser look reveals that it is
not. It sums up the operators listed in Chaptef dagh method, which are then added
up for each class. And this might be the reason thbycorrelation of NCSS and WMC
is that high, since those operators make up mosteotode in a program, except for
Getter and Setter methods. Thus this correlatige3@ NCSS/WMC correlation) sug-
gests that only a small part of classes are agt@sitapsulation objects. This needs
however further examination and can be only assumhéus point.

Hypothesis 1.7.1 states that WMC should perfornteb¢hhan NOM and the data seems
to carry this Hypothesis. All correlations and esgion analyses are of a higher value
with WMC. The relationship of NOM and WMC alone @fdill a scientific paper, but

is not a point of interest in this study; it woude interesting to know how much of
NOM is represented in WMC for instance. Part o$ ttupic will be briefly touched in
the multiple linear regression model analysis, withgoing into the required depth of a
thorough examination.

Discussion 72

A remark as to why WMC performed poorly for SumtHé zero values are removed
for Sum, the R Square values rise to 0,274. Thasrather big improvement and further
indicates that the zero values skew Sum. Howeverigmot valid for this study as the

interest lies in all classes and cutting out orniedtbf the data can hardly be deemed
representative.

7.2.4 Lack of Cohesion Of Methods

“Hypothesis 1.5:A high value of LCOM* will lead to a high value dfanged lines. A

low value on LCOM* suggests good design of classbde a high value hints at too
many tasks performed by a class. A bad designctdss should lead to an increase in
changed lines.”

Of the three code metrics, LCOM* had the lowest@ations (and therefore the lowest
R Square values). LCOM* shows low correlations w8bmNCSS and Sum, with

SumNCSS on the upper end of low correlations (0,46¥l Sum at the lower end of
low correlations (0,259). LCOM* covers 21,5% of theriance in SUumNCSS and 6,7%
of the variance in Sum. Since the correlation indely positive for both dependent

variables, Hypothesis 1.5 holds true. However LCQddes not make a good predictor
for both dependent variables.

This result was already anticipated in the theoattpart of this work. LCOM* meas-
ures grouping of similar tasks by counting out sharariables (simply put). The impli-
cation is that a low cohesion is an indicator fadllesign and therefore increased com-
plexity. LCOM* measures the absence of cohesioareflore a high value of LCOM*
implies a high value of changed lines. LCOM* “pemes$” the use of getters and set-
ters, therefore skewing the results of the exangnatThe low predictive quality of
LCOM* therefore suggest a high usage of getters sa@iters, which is directly coun-
tered by the high correlation of WMC and NCSS. 8ib€OM* is a rather troubled
metric and subject to frequent changes in its imletation, this study is inclined to
value the score of WMC more, as it is less soptastid than LCOM* and therefore less
error-prone. This is an assumption based on irgény the results born of the assem-
bled data however and do not imply a general state.

7.2.5 Summary: Code Metrics

All Hypothesis about the nature of the relationsbipdependent variables and Code
Metrics held true. There were significant and pesitcorrelations for all three of the
metrics. Furthermore the expected ranking of th&ioseexpressed in Hypothesis 1.7.1
held true as well. The gathered data supports tagsamptions. The low score of
LCOM* was anticipated as well, as has been indcc@eChapter 4. LCOM* has un-
dergone significant changes and on top of thatitatizes the usage of encapsulation

Discussion 73

objects. This is reflected by the low scores ofreeuSUmMNCSS proved to be the “bet-
ter” dependent variable, as the metrics were ablereédict it much better. This stems
from the fact that all three code metrics haveghéi correlation with NCSS than with
Sum and therefore SUmMNCSS. However NCSS is nattefast for this study as it is
not an indicator of effort needed to be put intataie classes during development and
maintenance. Sum suffers heavily from the 30% ob x@lues found in the CVS and a
conclusion from the high number of zero values \@dg that a high number of getters
and setters were used. This assumption is neggtdtelyvery high correlation of NCSS
and WMC. At this point of the study it is impos&hb tell whether a high number of
setters and getters was used (zero values in chasigey, low LCOM* value) or the
discrepancy stems from using pre-generated classeég, reuse, etc. A whole set of
studies could be undertaken in this area.

This does not change the fact though that WMC eshibist predictor for both Sum and
SumNCSS in the gathered data followed by NOM an®MZ on the last place. All
results are significant at p < 0,001.

The next step of the analysis is to look into Hyesis 2 for the Code Metrics. This will
be done in the multiple regression analysis, afténg through the structure metrics.

7.3 Structure Metrics

7.3.1 General

The structure metrics were executed on package, lewh the exception of the DIT

metric, which was performed on class level. As nogred earlier, the performance of
the structure metrics was worse than the perforemanfthe code metrics. Considering
the better NCSS/Sum correlation on package lels, 9eems irritating. Why the met-
rics performed in the fashion they did will be exaed in this chapter. The following

Hypotheses were tested:

Hypothesis 1.1:A high value of Efferent Coupling of a packagelvalad to a high
value of changed lines. This is based on the assomghat instable packages are
changed easier and therefore are changed more[bftd003].

Hypothesis 1.2:A high value of Afferent Coupling of a package Iwdad to a low
value of changed lines. According to [MaR003] abkgoackage is harder to change
and therefore will change less.

Discussion 74

Hypothesis 1.3:A high value of Abstractness suggests a stabl&gugc (refer to the
earlier part of this chapter). Therefore a highueabf Abstractness should lead to a low
value of changed lines.

Hypothesis 1.3.1:A high value of Abstractness suggests a stabl&gggcand should
therefore have a high value of Afferent Couplingfd® to appendix for chart.

Hypothesis 1.6:A high value of DIT for a class suggests a cl&sd inherits a lot of
methods and therefore is of greater design contgleii high value of DIT of a class
should lead to increased changed lines.

7.3.2 Efferent and Afferent Coupling

“Hypothesis 1.1:A high value of Efferent Coupling of a packagd Veiad to a high
value of changed lines. This is based on the assomghat instable packages are
changed easier and therefore are changed more @¥taRR003].”

If Hypothesis 1.1 holds true for the analyzed datgositive correlation is expected.
With an average correlation of 0,585 with SumNC®8 a low correlation of 0,370
with Sum, Hypothesis 1.1 holds true. However witiyaan average R Square of 0,342
(34,2% of the variance in SUmMNCSS covered by Eftef@oupling) with SUmNCSS
and 0,137 (13,7% of the variance in Sum coveregfigrent Coupling), Efferent Cou-
pling is only of average predictive quality.

This average performance of Efferent Coupling watsempected as the data on package
level seemed “better”; that is Sum and NCSS wereetading better. If the analysis of
Efferent Coupling was a slight letdown, the anayer Afferent Coupling was stagger-

ing.

“Hypothesis 1.2:A high value of Afferent Coupling of a packagel Vveihd to a low
value of changed lines. According to [MaRo003] ab#tapackage is harder to change
and therefore will change less.”

While Efferent Coupling presents the number of sgasinside a package depending on
outside classes (representing an instable packagejent Coupling presents the num-
ber of classes outside of a package dependingagsead inside of the package, therefore
suggesting a stable package (See Section 4.3 for-depth explanation). Basically an
opposing trend to Efferent Coupling was expectdtkrAcalculating the correlations, a
significant albeit low positive correlation was fal A stable package is therefore more
likely to change than not. This is curious and clatgby opposite to the Hypothesis 1.2
and an explanation is hard to find. Basically tagadyathered for this study supports the

Discussion 75

concept of instability as propagated in Sectionwih@e not supporting the opposite of
this concept. The exact correlations are 0,336 $itmNCSS and 0,278 with Sum.

The data gathered in this study therefore supptypothesis 1.1, but negates Hypothe-
sis 1.2 at a significance level of p < 0,001. Adietr Coupling shows an R Square value
of 0,113 with SumNCSS and 0,077 with Sum, whichmsealow predictive quality for
both.

7.3.3 Depth-of-Inheritance Tree

“Hypothesis 1.6:A high value of DIT for a class suggests a clasg inherits a lot of
methods and therefore is of greater design comgyleRi high value of DIT of a class
should lead to increased changed lines.”

Hypothesis 1.6 suggests a positive connection @f&d SumNCSS/Sum. With corre-
lations of 0,149 and 0,115 significant with p <@, Qthis is the case. However it is a
very low positive correlation (Figure 21 shows ayvBat regression line), suggesting
that the predictive quality of DIT will be close tol. Actually DIT shows R Square
values of 0,022 with SUmNCSS and 0,013 with Sumvelmidh is not enough to be able
to predict anything by using DIT and the linearresgion model. One of the reasons for
the bad performance of DIT may be that the linegression model is just not able to
fit the data, however from the scatterplots of theduals and the predicted values (in
Figure 22) and DIT and SUmNCSS (in Figure 21) nitepa emerges which would ac-
tually fit the data better.

Another reason for the bad performance of DIT mightfound in the implementation
of the metric itself. If a class has several inclasses, the DIT position is the summed
up class value. However if only the classes withonér classes are examined (~15000
classes) the correlation of DIT and SUmMNCSS and &ctomally becomes insignificant.
If only the classes with inner classes are analytterlcorrelation is low, but significant
again. If the SumNCSS and Sum values are dividetthdyumber of classes and corre-
lated, significant correlations slightly above zemmerge. No pattern can be deducted
from this though. Basically the last few steps dtiqarovide insight how the value of
DIT was generated; Manipulating the data and spmdjtit up won’t change the fact that
DIT does not deliver any predictive value or proggothesis 1.6 for that matter. With
values this close to zero Hypothesis 1.6 has tdisearded or at least handled scepti-
cally.

Discussion 76

7.3.4 Abstractness

“Hypothesis 1.3:A high value of Abstractness suggests a stabl&gugc Therefore a
high value of Abstractness should lead to a lowealf changed lines.”

Abstractness uses a similar premise as Afferenplday The concept of a stable pack-
age is used which is reasoned to be an indicataa foece of code that is not likely to
change. This is reflected by Hypothesis 1.3. Whth tesults from Afferent Coupling,
Abstractness should be an indicator whether theequtrof stable packages is applicable
or not. With a correlation value of 0,052 with Samd 0,021 with SumNCSS the impli-
cation that the concept of stability is not fittitigthe change data gathered in this study
is strong. Again where a negative correlation wgseeted, a very low positive correla-
tion is found (except for NCSS and Abstractnesscivitioes show a negative correla-
tion). However opposed to Afferent Coupling, theserelations (including NCSS) are
NOT significant at the threshold chosen for thiglgt(p < 0,001). Hypothesis 1.3 has to
be discarded as no correlation between metric aperttient variable could be found.
Following the insignificant correlations, regressemalysis yields no results.

After gathering these results, the expectationgHeranalysis of Hypothesis 1.3.1 were
small:

“Hypothesis 1.3.1:A high value of Abstractness suggests a stablegggcand should
therefore have a high value of Afferent CouplingteRto appendix for chart.”

Since both Abstractness as well as Afferent Cogplimeasure stable packages, they
should have a positive correlation (if the conaapa stable package is applicable) with
each other. This Hypothesis holds true as the lebiva between the metrics is 0,301.
With R Square of 0,091 Abstractness cannot be aseal predictor for Afferent Cou-

pling.

7.3.5 Summary: Structure Metrics

After analysing the relationship of Sum and NCS6dackages, it was expected that
the structure metrics should actually yield betesults than the Code Metrics (except
DIT of course, which was performed on class lewdhile Efferent Coupling proved to
be of more predictive power than LCOM*, the weakestle Metric, the other metrics
failed partly. DIT showed the expected tendencwy @iositive correlation; however the
values were too low to be able to use it as predidihe concept that a stable package is
unlikely to change is not carried by the data asdedhin this study. A stable package
identified by Afferent Coupling and Abstractnesactually more likely to change than
not (to be more precise: the package will havendaen number of changes unrelated to
Afferent Coupling or Abstractness). However theaapt of the unstable package does

Discussion 77

hold true as it is implemented by Efferent Coupliéhile this seems like a conflict at
first glance, when looking at the way the metriaxkit does make sense that it is pos-
sible that one metric is delivering good resultslevthe others do not.

Efferent Coupling measures the numbers of classeisle a package depending on
classes outside the package. Afferent Coupling oreaghe numbers of classes outside
a package depending on classes inside of a pacBadetferent Coupling and Afferent
Coupling actually measure independent items. Thar ¢nerefore is more likely to be
found in the definition of a stable package andh® measurement of it. Abstractness
on the other hand is per definition an accompaninoérstability. It is the number of
abstract classes of a package divided by the nuoibell classes. If a lot of abstract
classes are found in a package, it means a loadtgges will depend on it, thus dis-
couraging change in this package, since any chadges here will affect numerous
classes. This is basically the definition of staléed for Afferent Coupling. However
the data does not reflect this behaviour. Obviotlstychange for a stable package var-
ies so much that it is not possible to come to ¢beaclusion given in literature
[MaRo003] by means of the data gathered in thisystud

As with the Code Metrics, the Structure Metrics avbetter predictors for SUmMNCSS
than for Sum; the exception being Abstractnesschvis negligible since the correla-
tions themselves are not significant enough fas Htudy. This is of course due to the
already discussed nature of the data acquired tinenCVS.

After discussing the implications of each metrie tesults for the multiple regression
analysis will be discussed.

7.4 Stepwise Multiple Regression Analysis

7.4.1 General

Multiple regression analysis was used to find otethier using a set of metrics will
make for a better predictor than using a singlerime®ince most of the Structure Met-
rics operate on package level, two analyses hae tone; one on class level, using the
Code Metrics and DIT and one on package level uBifgrent and Afferent Coupling
and Abstractness. These analyses were used to @ogscard) Hypothesis 2:

“Hypothesis 2:If Hypothesis 1 holds true, is there a set of mogtthat is valid in all
projects under examination?”

Since Hypothesis 1 held true for all Code Metricd for DIT as well, the results of the
analysis of the Code Metrics were expected to [s#tipe as well. However Hypothesis

Discussion 78

1 did not held true for two out of the three metnised on package level, so the expec-
tations for viable results for these were low.

7.4.2 Multiple Regression Analysis on class level

The metrics were entered by their correlationstisawith WMC having the highest
value going to DIT with the lowest value.

SumNCSS

The improvement from only WMC to using all four mes is minimal (an increase of
0,003 in correlation and 0,005 in R Square) yetradirics are significant at p < 0,001
suggesting that they should be included in theession formula. The t-values for the
metrics are similar to this, as WMC has the higlgstar, which means that it contrib-
utes the most. This also suggests that WMC covarssa all predictive quality in the

other three metrics, except for those 0,5% added.fof the best fit of the model all

four are required. This means Hypothesis 2 holde for the four metrics, the set is
valid, since it is significant for all projects ugrdexamination. Due to the major role of
WMC, using just this metric singularly seems suint for practical use.

Sum

The improvement for Sum of using four metrics asdmtors is bigger than with
SumNCSS for the correlation, yet the pattern resie same. The increases are 0,007
in correlation and 0,005 in R Square. WMC coverstiuod the predictive power of the
model, yet all factors are significant at p < 0,00dthe regression formula. Hypothesis
2 holds true for Sum.

7.4.3 Multiple Regression Analysis on package level

As with the Code Metrics, the metrics were entenetered by their correlations; that is
first metric was Efferent Coupling, followed by &fient Coupling and Abstractness as
last metric. As expected, Abstractness was noifgignt for either Sum or SUmNCSS.

SumNCSS

Efferent Coupling is showing the biggest correlatwith SUmMNCSS, when adding Af-
ferent Coupling the correlation of the model riggs0,033. This is a bigger improve-
ment than the improvement of all three Code Metaitded to WMC together. The pre-
dictive power grows by 0,039 (3,9% more of the asace in SUmMNCSS are explained
by this model). Abstractness, as indicated eaiisenot significant for this model. With
a correlation of 0,618 and 38,2% of the varianc&SumNCSS covered by this new

Discussion 79

model, it is actually viable to use both metriceef@ though Afferent Coupling does not
measure what it is supposed to). The gain in ptigdipower by using both metrics is
definitely notable and Hypothesis 2 holds trueusing the set of Efferent and Afferent
Coupling to predict SuUmNCSS.

Sum

Using Efferent and Afferent Coupling on Sum revealpattern already shown by the
class level. The gains of predictive power of thedel are about the same; correlation
increases by 0,048 and R Square by 0,037. The sanwusion for Hypothesis 2 can
be drawn from the analysis. It is better to usehlBtferent and Afferent Coupling.
Worth mentioning is that the constant factor whema stepwise multiple regression
analysis becomes insignificant as well.

7.5 Comparison with related publications

The first study of interest to look at is [LiHe93|s it uses the same measurements as
used in this study. One of the most obvious difiees is the handling of the data.
Whether or not the data in [LiHe93] has been Idgarized cannot be found out at this
point; looking at the distribution of their datacs¥s exponential data. There are 110
classes collected from two projects. The Kolomogdsmirnof-Test for the change
data (after logarithmizing it) is insignificant {@&0); the change data is normally dis-
tributed. There are no zero-change classes intthy.sThis is due to the nature of the
projects. Both projects are commercial productsthedefore are prone to stricter code
(and change data) monitoring. This leads to lesss&i (the zero classes) in the data.
However it is apparent that two projects from thens developer can hardly be repre-
sentative. Code handling, developing routines arghrozation in general introduce
bias. The analysis done in [LiHe93] might be repntsative for the Software Developer
that the projects originate from; it is hardly repentative for the appliance of metrics
on general projects, even less on projects witloeertax handling of change data track-
ing that are common in the Open Source Community.

Due to the restrictions in [LiHe93], the resultstioéir analyses were overall better than
the results found in this study. There is a se8 ahetrics introduced that delivers R-
Square values of 0,9030 and 0,8680 (the analysi®one for each of their projects).
This is overall better than the result of the atvd1C, NOM, DIT and LCOM* in this
study; since there was no single metric analystgettaken, it is hard to determine if the
trends for the single metrics are the same. Thergérend is similar though (strong
positive correlation and a good predictive quali§dpstractness, Efferent and Afferent
Coupling were not introduced in [LiHe93].

Discussion 80

Studies like [GyFeO05] that were analysing faulesaaind related parameters are hard to
compare as, due to the nature of their data, teesbes are using logistic regression
analysis. These studies are predicting if a classamy faults or no faults at all, while
this work uses linear regression. The study in [€8] is remarkable because it cov-
ered 8.000 classes, so it is of significant sizeweler it is not clear whether the data
used in the study were logarithmized or not. LagiRegression assumes normal distri-
bution as well. The second part of [GyFe05] rungear regression analysis on the
metrics and reveals trends similar to this work. @kerformed better than LCOM and
both perform better than DIT. The low results forrelations are explained, as Spear-
man’s correlation should have been used insted@eafson’s. This would very likely
have netted better results for the correlationschviare all below average or of lower
level. Furthermore a requirement for linear regmegsnamely normally distributed
data, was not met if the data was not logarithmiZem further fit the data, the data
should have either been logarithmized or non-panatneegression should have been
used.

One of the reference studies for [GyFe05], [BaBr@6gs 180 classes for a similar
analysis. While [GyFe05] uses a more than sufficeample size and therefore reveals
similar trends to this study, [BaBr96] uses only k8asses and suffers from the low
sample size, as only 36% of the classes actuallyagwed faults and 86% of these
classes contained less than three faults. Thiserenahy statement about the metrics
useless. Furthermore the already low sample isléd/into three categories, which only
decreases the sample and power of their study. €hdyup with R Square values of
0,007 for the dependent variable faulty classemtdgpendent variable WMC. Another
curious note worth mentioning is that obviously-aatue for the study was not set in
advance of the study. This is bad style according-tAn05]. It is therefore impossible
to compare [BaBr96] with this study (even thougintts are similar from [BaBr96] to
[GyFe05] in the logistic regression part).

[HeKa81] examined 165 procedures in a Unix systéhe study correlated metrics
between themselves and with errors reported. Timysised McCabes and Halsteads
and achieved very good results with their erroadBtowever, not enough information
can be found on the statistical methodology usefHaKa81] to effectively compare
their work with this study. Furthermore only McCab€yclomatic Complexity was
used as part of WMC in this study and detailedItedar only McCabe’s per function
have not been examined. Additionally this studylsl®dth the Object-Oriented Para-
digm, while [HeKa81] does not.

[KaCa85] uses an approach completely different ftbrm work. This study does not
use regression analysis, but uses a thresholdeafitbsen dependent variables and the

Discussion 81

independent variables. This threshold is the dalbtandard deviation. The study ana-
lyzes whether or not the independent value is bthethreshold if the dependent value
is outside of that threshold. The reason for thy$esof examination is that they find
regression analysis not suited for metric datarasipus studies only yielded low re-
sults and therefore discouraging the use of regnesmalysis. One of the reasons for
the low results in previous studies might have bibenunsatisfactory usage of regres-
sion analysis though. [GyFe05] and [BaBr96] showamential distribution patterns of
their raw data. Whether or not the data has begarithmized cannot be learned from
the studies. If it was not logarithmized they birest one of the requirements for regres-
sion analysis, namely normally distributed data.

While [KaCa85] brings a new, interesting point aw into play, the threshold system
has several drawbacks. The first one is that theskiold is defined by the measured
data and therefore it is not possible to globakyirte it (It can only be gathered after
measuring the data you want to predict). Seconsliygustatistical outliers as base of an
examination seems unorthodox. Thirdly there is ramglation; either a case is outside
the threshold or within. The distance from thae#imold does not play a role in the
analysis. However [KaCa85] is about the validatidmetrics and not about metrics as
predictors, therefore their approach is useabldhfeir study. The approach is not use-
able in case of the study performed in this wonkéner.

[YuSy02] run a similar analysis to [GyFe05] withfew different metrics. However
[YuSu02], [GyFe05] and this work share a set ofrrogtand these metrics deliver the
same ranking of predictive quality discovered iis thork, namely NOM, followed by
LCOM, followed by DIT. This fascinating parallel dicates a relationship between
Changed Lines and Fault-Proneness. The reasohisosimilarity might stem from the
fact that the data in [YuSy02] was normalized; lert information on the statistical
methods used is not given however, making yet agalimect comparison of the results
impossible.

Due to the unique approach of this work it is hlrdompare the results gathered from
this study with existing studies. As stated in Gbagd, most metrics are validated
against failure data. Additionally to the differardture of the other studies, those other
studies use a different statistical way of analgzimeir data. Logistic regression is used
instead of linear regression. Furthermore themoisenough information given on the
way the data was handled in the studies. Thereliatgbutions shown in some studies
(|[GyFe05] and [BaBr96]), those are not normallytraisited, yet regression was applied
on that data. Whether the data was logarithmizedghieve normal distribution) or not
can only be assumed at this point.

Discussion 82

The [LiHe93] study shows a similar trend than thedg in this work, but again it is
impossible to say whether the data of this study tk@nsformed or not. The tests given
in this work were not performed in [LiHe93], but bye author of this work with data
catalogues given in the appendix of [LiHe93].

To make assumptions about connections betweenubes presented in this last part
and the study in this work can only be done inualerfashion. Basically it is impossible
to state more than:

* The ranking of the metrics is mostly the same dhimstudy

* If the data was transformed (and this transfornmatias commented in the
study), the results are closer to this study

* Fault-Proneness and Change Data seem to be codinecte

« Change Data performs better than Fault Data

» ltis easier to work with Change Data than with I[FBata

Furthermore the programming languages were diftdrethe other studies ([GyFe05]
uses C++ e.g.).

Conclusion 83

8 Conclusion

The analyzed Software Metrics show a definite r@tabetween most of the metric-
produced values and the measured change data.ddeMetrics provide overall better
results than the Structure Metrics. Of the CoderlgetWMC and NOM deliver the best
results and show a good correlation with Change DEbe more complex the metrics
are, i.e. the more concepts they try to realize, |¢éiss of a correlation can be found be-
tween metrics and Change Data. This can be seeciablp in the analysis of the Struc-
ture Metrics. However, while the Structure Metnitsed in a stand-alone fashion gener-
ally fail to deliver strong correlations (excepteometric), a set of Structure Metrics
could be found that showed an average correlatadnev(and an average R- Square
value) for Change Data. Considering the fact thas¢ metrics can be applied early in
the development of a project (only imports are ¢albi required for the coupling met-
rics), this is a favourable result for the Struetivetrics.

A concept introduced in literature, the conceptStdibility [MaRo03], has to be dis-
carded for this study. The results delivered by rdgression analysis are completely
opposite of this concept. Part of this failure loé tStability concept is the Abstractness
metric. Out of all the examined metrics only Abstreess was not able to deliver sig-
nificant results with Sum and SumNCSS.

Out of the two analyzed dependent variables, th&iecseshowed a higher correlation
with SUmMNCSS than with Sum. The reasons for thislmafound in the CVS usage of
the SourceForge-Community. Out of 100 projectsinaidy aimed for, only 46 could be
finally used for various reasons. In the final stddB000 classes and over 2000 pack-
ages were analyzed.

For future studies it will be of interest to examithe relationship of the metrics intro-
duced in this study with Change Data in the futlil@s study examined the status of
Change Data and metrics at the same timeframe \{flzadkapproach) — the capability of
the metrics to provide future Change Data stilldse¢éo be examined (forward ap-
proach).

84

Bibliography

[KaSt02]

[BaBro6]

[KaCa85]

[HeKa81]

[NaBaO06]

[MeSu99]

[ChKe91]

[KaDe85]

S. Kan: Metrics and Models in Software @yaEngineering, Second
Edition. Addison Wesley, 2002

V. R. Basili, L.C. Briand, W.L. Melo: A Malation of Object-Oriented
Design Metrics as Quality IndicatordlEEE Trans. Softw. Eng2, 10
(Oct. 1996), 751-761.

D. Kafura, J. Canning: A validation of sadire metrics using many me-
trics and two resources. Proceedings of the 8th international Confe-
rence on Software Engineerin@.ondon, England, August 28 - 30,
1985). International Conference on Software Enginge IEEE Com-
puter Society Press, Los Alamitos, CA, 378-385.

S. Henry, D. Kafura, K. Harris: On theatbnships among three soft-
ware metrics. IfProceedings of the 1981 ACM Workshop/Symposium on
Measurement and Evaluation of Software QuakiyJ. Highland, Ed.
ACM, New York, NY, 81-88. 1981.

N. Nagappan, T. Ball, A. Zeller: Mining tries to predict component
failures. InProceeding of the 28th international ConferenceSarftware
Engineering(Shanghai, China, May 20 - 28, 2006). ICSE '06.NAC
New York, NY, 452-461.

M. Mendonca, N.L. Sunderhaft: Mining Sedte Engineering Data: A
Survey. A DACS State-of-the-Art Report, Survey far Force Research
Laboratory Information Directorate, 525 Brooks Ré@mime, NY 13441-
4505, 1999.

S.R. Chidamber, C.F. Kemerer: Towards #riogsuite for object ori-
ented design. Il€onference Proceedings on Object-Oriented Program-
ming Systems, Languages, and Applicati{fisoenix, Arizona, United
States, October 06 - 11, 1991). A. Paepcke, Ed. &@P91. ACM
Press, New York, NY, 197-211.

D. Kafura: A survey of software metrice. Proceedings of the 1985
ACM Annual Conference on the Range of Computingd-8@'s Pers-
pective: Mid-80's Perspectividenver, Colorado, United States). ACM
'85. ACM, New York, NY, 502-506.

[HeSe96]

[BoGu06]

[LoM93]

[LiHe93]

[MaRo003]

[ChKe91]

[CoH005]

[SoFo]

[OsSo]

[JaNc]

[MySq]

[SoKu]

85

B. Henderson-Sellers: Object-Oriented Mgtmeasures of complexity;
Prentice Hall PTR, Upper Saddle River, New Jerseib8 1996

S. Bouktif, Y.G. Gueheneuc, G. Antoniolxtiacting Change-patterns
from CVS RepositoriesReverse Engineering, 2006. WCRE '06. 13th
Working Conference onvol., no., pp.221-230, Oct. 2006

M. Lorenz: Object-Oriented Software Devefoent: A Practical Guide.
Prentice Hall, New Jersey, 227 pp. 2003

W. Li, S. Henry: Object-oriented metridsat predict maintainabilityd.
Syst. Softw23, 2 (Nov. 1993), 111-122.

R. Martin: Agile Software Development -rieiples, Patterns, and Prac-
tices. 2003 Pearson Education, Upper Saddle Riax, Jersey 07458

S.R. Chidamber, C.F. Kemerer. Towards atrioge suite for object
oriented design. IConference Proceedings on Object-Oriented Pro-
gramming Systems, Languages, and Applicatifsoenix, Arizona,
United States, October 06 - 11, 1991). A. PaepEke, OOPSLA '91.
ACM, New York, NY, 197-211. .

M. Conklin, J. Howison, K. Crowston: Cdilaration using OSSmole: a
repository of FLOSS data and analysesPtnceedings of the 2005 in-
ternational Workshop on Mining Software Reposi®(i6t. Louis, Mis-
souri, May 17 - 17, 2005). MSR '05. ACM, New YoMy, 1-5.

SourceForge, Open Source software developwen site.
http://sourceforge.net12.03.2008

FLOSSmole, Project Page.
http://ossmole.sourceforge.net?.03.2008

JavaNCSS, Project Page.
http://www.kclee.de/clemens/java/javancds.03.2008

MySQL, Project Page.
http://www.mysql.com/12.03.2008

Krugle Search Engine for SourceForge, Sedftigine Homepage.
http://sourceforge.krugle.com

[WeDa05]

[NoDa]

[SoDo]

[SoMe]

[Clad]

[StPa]

[McTh76]

[WaMc96]

[ChKe94]

[BUACO6]

[FiAn0S5]

86

D. Weiss: A Large Crawl and Quantitativeadysis of Open Source
Projects Hosted on SourceForge. Institute of Comgucience, Pozia
University of Technology, Poland, Research Rep@+dR1/05, 2005

University of Notre Dame, SourceForge.nes&ech Data.
http://www.nd.edu/~oss/Data/data.htrhP.03.2008

SourceForge Statistics, DocumentD04.
http://sourceforge.net/docs/D04/eh?2.03.2008

Metrics 1.3.6, Project page.
http://metrics.sourceforge.nel/2.03.2008

JDepend, Project Page.
http://www.clarkware.com/software/JDepend.hti2.03.2008

SPSS Homepage.
http://www.spss.com/12.03.2008

T. McCabe: A complexity measure. Broceedings of the 2nd interna-
tional Conference on Software Engineeri(@an Francisco, California,
United States, October 13 - 15, 1976). Internati@anference on Soft-
ware Engineering. IEEE Computer Society Press, Alasnitos, CA,
407.

A. Watson, T. McCabe: Structured TestiAgTesting Methodology Us-
ing the Cyclomatic Complexity Metric. Computer-Sysis Laboratory
National Institute of Standards and TechnologyGaghurg, MD 20899-
0001, August 1996

S.R. Chidamber, C.F. Kemerer: A Metricst&tor Object Oriented De-
sign.IEEE Trans. Softw. En@0, 6 (Jun. 1994), 476-493.

A. Buhl: SPSS 14 — Einfihrung in die madddatenanalyse. Pearson
Studium, Martin-Kollar-Straf3e 10-12, D-81829 Munal&ermany 2006

A. Field: Discovering Statistics using SP.SSage Publications Ltd, 1
Oliver’s Yard, 55 City Road, London EC1Y 1SP 2005.

[GyFe05]

[YuSy02]

87

T. Gyimothy, R. Ferenc, |. Siket: Empiticdalidation of Object-
Oriented Metrics on Open Source Software for F&u#diction.|[EEE
Trans. Softw. Eng31, 10 (Oct. 2005), 897-910.

P. Yu, T. Systa, H. Muller: Predicting FRaBroneness Using OO Me-
trics: An Industrial Case Study. Proc. Sixth European Conf. Software
Maintenance and ReenCSMR 2002), pp. 99-107, Mar. 2002.

Appendix

5,00

4,00

3,00

LogSumNCSS

2,00

1,00

0,00 0,10

Logl

Figure 27: Scatterplot of SUmMNCSS and Instability

Correlations
LogSum
LogSum LogNCSS NCSS
Logl Pearson Correlation -,102*4 -,029 -,079*
Sig. (1-tailed) ,000 ,084 ,000
N 2243 2243 2243

**. Correlation is significant at the 0.01 level (1-tailed).

Table 41: Correlations of Sum, NCSS and SumNCSS witinstability

Scatterplot

Dependent Variable: LogSum

2=

-2

Regression Standardized Residual
CONENNNND @ O

4

T T | T T
4 -2 0 2 4

Regression Standardized Predicted Value

Figure 28: Scatterplot for Residuals and Predictedalues of Sum and NOM

Scatterplot

Dependent Variable: LogSum

4 o
[
3 o
(]
o £}
o
T
N °
=
=
(]
=
&

[i]
i]
=
2
wn
wn
2
o -2
[+ 1]
o

T T T T
4 -2 a 2 4

Regression Standardized Predicted Value

Figure 29: Scatterplot of Residuals and Predicted &lues of Sum and WMC

Scatterplot

Dependent Variable: LogSum

Regression Standardized Residual

T T T T T
-2 0 2 4 [g 10

Regression Standardized Predicted Value

Figure 30: Scatterplot of Residuals and Predicted &lues of Sum and LCOM

Scatterplot

Dependent Variable: LogSum

Regression Standardized Residual
T n
00 CXENEEENEDID

2 0 2 4
Regression Standardized Predicted Value

Figure 31: Scatterplot of Residuals and Predicted &lues of Sum and Efferent Coupling

Scatterplot

Dependent Variable: LogSum

3

1

(o]

Regression Standardized Residual

T T T T
-2 -1 0 1 2 3 4

Regression Standardized Predicted Value

Figure 32: Scatterplot of Residuals and Predicted &lues of Sum and Afferent Coupling

Scatterplot

Dependent Variable: LogSum

Regression Standardized Residual

Regression Standardized Predicted Value

Figure 33: Scatterplot of Residuals and Predicted &lues of Sum and DIT

Scatterplot

Dependent Variable: LogSum

Regression Standardized Residual

oooc:_mo&m

Regression Standardized Predicted Value

Figure 34: Scatterplot of Residuals and Predicted &ues of Sum and Abstractness

2,00=

1,50

@
O
(@]
O 1,00 X
- O{&
[
0,50 =
0,00= 0]
I I I I
0,00 0,10 0,20 0,30

LogA

Figure 35: Scatterplot of Ca and A per package

Vi

Scatterplot

Dependent Variable: LogCa

Regression Standardized Residual

Regression Standardized Predicted Value

Figure 36: Scatterplot of Residuals and Predicted &ues (A and Ca)

Correlations

LogA
LogCa Pearson Correlation ,301*
Sig. (1-tailed) ,000
N 2243

**. Correlation is significant at the 0.01 level

Table 42: Correlations of A and Ca

Model Summary P

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 ,3012 ,091 ,090 ,41031

a. Predictors: (Constant), LogA

b. Dependent Variable: LogCa

Table 43: Regression of A and Ca

