Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt

(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology

(http://www.ub.tuwien.ac.at/englweb/).

Diplomarbeit

Data Cleaning and Performance Tuning
in the GAINS Model

ausgefiihrt am Institut fiir Informationssysteme
Arbeitsbereich fiir Datenbanken und Artificial Intelligence
der Technischen Universitit Wien

unter der Anleitung von Univ.Prof.Dr.techn. Reinhard Pichler und
Dipl.Ing. Katrin Seyr als verantwortlicher Mitarbeiterin

durch

Maciej Piotr Makowski

Dr. F. J. Schicht-Gasse 5/20
A - 2340 Modling

April 25, 2008

Abstract

This paper will discuss how data cleaning and performance tuning can positively
affect a database driven application. Based on the example of the GAINS model
the author will give various examples of actions taken that not only improve the
application from the data modelling point of view, but also guarantee the correct-
ness and completeness of the data presented by the model. Additionally it will
be shown that the measures taken lower the maintenance effort and do not slow
the model down. The introduced changes also set the stage for the introduction of
new concepts like data warehousing or web services in the near future.

Zusammenfassung

Diese Arbeit wird zeigen, wie Datenaufbereitung (“data cleaning”) und Leistungs-
optimierung (“performance tuning”) eine datenbankbasierte Applikation positiv
beeinflussen konnen. Basierend auf dem Beispiel des GAINS Modells wird der
Autor zahlreiche durchgefiihrte Malnahmen anfiihren, die die Applikation nicht
nur unter dem Gesichtspunkt der Datenmodellierung verbessern, sondern auch die
Korrektheit und Vollstindigkeit der durch das Modell priasentierten Daten garan-
tieren. Zudem wird im Laufe dieser Arbeit gezeigt werden, dass diese Malnahmen
den Wartungsaufwand der Applikation verringern und das Modell nicht verlang-
samen. Des Weiteren schaffen die durchgefiihrten Anderungen die Voraussetzun-
gen fiir die Umsetzung neuer Konzepte, wie zum Beispiel Data Warehousing oder
Web Services, in naher Zukunft.

i

il

Acknowledgments

I would like to thank Dr. Markus Amann and Dr. Wolfgang Schopp at the In-
ternational Institute for Applied Systems Analysis (ITASA) for allowing me to be
part of the Atmospheric Pollution and Economic Development (APD) program
over the past two and a half years. I know that I have already benefited a lot from
this opportunity and will do so even more in the future. I would like to thank ev-
erybody in the team for giving me valuable feedback when taking time to answer
my, not always comprehensible, questions. I would like to especially thank Dr.
Schopp and Dr. Fabian Wagner for the help with, and feedback on, my thesis.

I would also like to thank Dipl.Ing. Katrin Seyr and Univ.Prof.Dr.techn. Rein-
hard Pichler at the Database and Artificial Intelligence Group (DBAI) of the Vi-
enna University of Technology not only for the help and feedback, but also for the
possibility to write an external thesis.

It is only with the help of the above mentioned people that [was able to finalize
my thesis and graduate.

I would also like to thank my family: Mamo, Tato, dziekuj¢ za wieloletnie
wsparcie i cierpliwos¢; Jedrek, dziekuje, ze starates si¢ studiowa¢ podobnie dtugo.

To my wife, Karolina: Thank you for your support and the motivation to finish
what I started so long ago. I know I would not be where I am without you.

Last but not least, I would like to thank Kacper: You were never angry when
I did not have time for you and my walks with you gave me the necessary breaks
in working and inspiration.

Dziekuje. Danke. Thank you. Maciek.

v

Contents

1 Introduction 1
1.1 RAINS/GAINS Model 1
1.1.1 Evolution of the Model from a Software Engineering Point

of View L 1

1.1.2 Policy Relevance of the Model 2

1.2 Data Cleaning and Performance Tuning 3
1.2.1 DataCleaning. 3

1.2.2 Performance Tuning 4

1.3 Structure and Goal of this Paper 4
2 GAINS Basics 7
2.1 The Structure of GAINS Database Schemas 7
2.1.1 Regional Data Schemas 7

2.1.2 Central Data Schema 8

2.1.3 Central WebSchema 8

2.2 Basic GAINS Entities 9
2.3 Structureof aScenario oL 9
2.3.1 Scenario-based Emission and Cost Calculation 9

2.3.2 Side Notes on Technologies 12

233 ActivityPathway 15

2.3.4 Control Strategy 16

2.3.5 Emission Vector 17

2.4 Sharing of Scenarios and Their Parts 21
24.1 Sharing of Scenarios, 21

2.4.2 Sharing of ScenarioParts oL 22

2.5 UserManagement 22

CONTENTS vi

25.1 UserGroups i 22

2.5.2 User Rights & Privileges 23

253 UserSharing 23

3 Current Challenges 25
3.1 DeploymentofData. 25
3.1.1 Datalntegrity 26

3.1.2 Long Query Execution Time 26

3.1.3 Runtime Optimization 26

3.2 Consistency in Data Modelling 27
3.2.1 Data Versions versus Version Owner 27

3.2.2 Applicabilities Lo oL 28

3.2.3 Aggregation of Results According to Reporting Standards 29

4 Implementation 31
4.1 Key Issues to Solving Query Runtime Problems 31
4.1.1 IndexingofData 31

4.1.2 Join Strategieso 36

413 OtherPitfalls 38

4.2 Other Oracle Based Solutions to Query Runtime Problem 39
4.2.1 Materialized Views 39

422 Temporary Tables. 41

4.3 Reorganizing Data Structures 42
4.3.1 Materialized Views for Data Deployment 42

4.3.2 Activity/Sector/Technology Combinations 44

4.3.3 Emission Vector Related Data 49

434 Applicabilities 0oL 65

4.3.5 Aggregation of Results According to Reporting Standards 73

4.4 Other Implementation Aspects 81
4.4.1 Calculation of Emissions 81

4.4.2 Initialization of Partial Emission Vectors 85

4.4.3 Display of Scenarios 90

5 Conclusion 99
5.1 Summary 99
5.2 Wheretogofromhere? L. 99

CONTENTS vii

5.2.1 Flexibility in Viewing 99
5.2.2 New Technologies 100

CONTENTS viii

List of Figures

2.1
22
2.3
2.4
2.5
2.6
2.7

4.1
4.2

4.3

4.4

4.5

4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

Structure of a GAINS scenario 10
Examples of BC1/PP_NEW implementation rates for SOy 14
Activity pathway listanddata 15
Control strategy listanddata 17
Emission factor datafor SO, L. 19
Reduction efficiency datafor SO, 20
Cost factors for all pollutants 20
Structure of the “act_sec_tech” table in “rains_data” 33
Execution plan for retrieving activity/sector/technology combina-
tionsrelevantforPMo Lo o000 34
Execution plan for retrieving activity/sector/technology combina-
tionsrelevant for SO, L 35
Execution plan for retrieving activity/sector/technology combina-

tions notrelevant for SOy L 35
Number of relevant activity/sector/technology entries in act_sec_tech
table 36
Execution plan for strategy listing with left outer join 37
Execution plan for strategy listing with nested select. 38
“regions_mv” materialized view 43
Structure of the “act_sec_tech_all” table in “rains_data” 45
Structure of the “act_sec_tech_to_poll” table in “rains_data” 45
Temporary tables for emission vector analysis 51
Tables for listing of emission vectors and user access to them . . . 52
Database tables holding emission factors and removal efficiencies 57
Foreign key constraints on table “emiss_factors_abtd” 59

ix

LIST OF FIGURES

X
4.15 Tables holding applicabilitydata 68
4.16 Tables holding definitions of SNAP and NFR codes 74
4.17 Relation between SNAP1 codes and GAINS sectors 75
4.18 Relation between NFR codes, GAINS sectors and pollutants 78
4.19 Screen shot of results of CH, emission calculation aggregated by

NFR . . . 81
4.20 Temporary database table for initialization of removal efficiencies 86
4.21 Overview of available emission vector data by pollutant and region 92
4.22 Overview of available vector data by pollutant 92
4.23 Database structure for assignment between scenarios and pollutants 93

4.24

Tables holding active user sessions and associated scenario infor-
Mationo e e e e

Listings

4.1 PM relevant activity/sector/technology combinations 34
4.2 SO, relevant activity/sector/technology combinations 34
4.3 Overview of activity/sector/technology combinations 36
4.4 Strategy listing with left outerjoin 37
4.5 Strategy listing withnestedselect. 37
4.6 Create command for materialized view “region.mv” 43
4.7 Create command for mview log on “act_sec_tech all” 46
4.8 Activity/sector/technology/pollutant combinations relevant for emis-
sionfactors 47
4.9 Activity/sector/technology/pollutant combinations relevant for cost
factors 47
4.10 Check of activity/sector/NOC-technology combinations 48
4.11 Check of activity/sector/NSC-technology combinations 48
4.12 Tables having referential constraints to table “versions” 49
4.13 Generating commands to alter constraints on vector related tables 53
4.14 Command to retrieve unabated emission factors for NO, 56
4.15 Command to retrieve removal efficiencies for NO, 56
4.16 Command to retrieve abated emission factors 58
4.17 Incomplete but used emission vectors 60
4.18 Amount of abatement options per vector, pollutant and region . . . 60
4.19 Remove factor combinations of initialization mavericks 61
4.20 Percentage of missing emission factors 61
4.21 Abatement options for which emission factors are missing 62
4.22 Missing emission factors affecting calculation 63
4.23 Collecting data for needed applicability sets 66
4.24 Finding multiple values for applicabilities 67
4.25 Removing duplicate values for applicabilities 67

xi

LISTINGS Xii
4.26 Analysis of sub and master applicability sets 69
4.27 Analysis of sub and master applicability sets 70
4.28 Removing redundant applicability sets 71
4.29 Collecting SNAP & NFR aggregations forNH3 73
4.30 Check of assignment between GAINS sectors and SNAP1 codes . 75
4.31 PL/SQL function to retrieve parent NFR code at a given level . . . 76
4.32 Check of assignment between GAINS sectors and NFR1 codes . . 77
4.33 View guaranteeing the completeness of the GAINS sector to NFR

coderelation. L oL 78
4.34 Emissions aggregated by NFR 79
4.35 View for emission calculation. 81
4.36 Pollutant independent emission calculation. 84
4.37 Retrieving all abatement options for removal efficiencies for NO, 86
4.38 Initialization step setting initial constant removal efficiencies for

NO, . . e 87
4.39 Checking of initialized values 87
4.40 Inserting of initialized values for missing abatement options 88
4.41 Updating of necessary abatement options with initialized values 89
4.42 Data for overview of scenario completeness 90
4.43 Analysis of overview of scenario completeness 91

4.44

User access to available scenarios

Chapter 1

Introduction

1.1 RAINS/GAINS Model

The Regional Air Pollution Information and Simulation (RAINS) model was de-
veloped by the Atmospheric Pollution and Economic Development (APD) pro-
gram, formerly called Transboundary Air Pollution (TAP), at the International
Institute for Applied Systems Analysis (IIASA) in 1983. RAINS provides a con-
sistent framework for the analysis of emission reduction strategies, focusing on
acidification, eutrophication, and tropospheric ozone. It was developed to help
users understand the impacts of future actions - or inaction - and to design strate-
gies to achieve long-term environmental goals (IIASA Options, 1998).

In 2005 the model was extended to meet the new needs of “pollution sci-
ence” as well as modelling emissions by greenhouse gases. The extension of
the scientific approach was also reflected in the new name of the model, namely
Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS). The first
version of the model developed officially under the GAINS methodology was
GAINS-Asia (European Commission - FP6, 2005).

1.1.1 Evolution of the Model from a Software Engineering Point
of View

The RAINS model was originally developed as a stand-alone application. The
first versions were developed in Fortran on mainframe computers (ITASA Options,
1993) followed by C (Witmuess, 1990) and C++ (Amann and Dhoondia, 1994)

1

CHAPTER 1. INTRODUCTION 2

as the programming language. Due to the model’s popularity it soon became
necessary to share the data with scientists all over the world. Because of the rising
popularity of the World Wide Web it was decided to implement a web interface
for the model. The nature of the C programming language necessitated a change
in the underlying programming structure. The first version of the RAINS model
available on the internet was developed in Perl in 1998. Although it only displayed
the results calculated by the PC version on the web, it was already operating on
an Oracle database. In 2001 the programming language changed again, this time
to Java.

The model was initially developed for European countries. In 1994 the World
Bank and ITASA started the RAINS Asia project (IIASA Options, 1993) using the
application logic for Asian countries as well.

When the model became more popular, individual countries became interested
in modelling their national pollution scenarios. During 2004 regional models for
Italy and the Netherlands were developed. Even with the new versions, the model
was still being developed on standalone schemas. This allowed easy modelling
of certain regional aspects that had to be embedded into the model, but it also
increased the maintenance efforts: Every change in the common structure of the
model had to be introduced in each schema separately.

1.1.2 Policy Relevance of the Model

The GAINS model is popular because it can answer policy-relevant questions. For
example, “How much would a migration from one technology to a more effective
one cost and how much emissions would it save?”, or “What is the most effective
way in terms of use of technologies to save emissions within a given budget?”.

Questions like this are answered with the help of the GAINS optimization
module (Wagner et al., 2007). This paper will not only present an example of re-
modelling of data, in particular applicabilities, crucial to the optimization process,
but also give various examples of data remodelling that ensure the correctness and
reliability of input data for the optimization.

For example, the incompleteness of the emission vector, in particular of cost
factors, can lead to wrong calculation results. If a particular cost factor is missing,
it is assumed during the optimization process that this factor is zero. This will
lead to falsely applying this “cheap” technology instead of other technologies and
falsify the results of an optimization run.

CHAPTER 1. INTRODUCTION 3

The policy-relevance of the model is not only one of its biggest assets, but
also one of the biggest challenges from the software and data engineering point of
view. Due to the necessity for continuous development of the model, the develop-
ment team is under constant pressure to provide new functionalities of the model.
This paper will discuss many implementation aspects that are not considered state
of the art in both software and data engineering, but in the context of constant time
pressure it is understandable that they were implemented this way.

1.2 Data Cleaning and Performance Tuning

1.2.1 Data Cleaning

Due to the historical evolution of the model, the pollutant-specific development,
and time pressure to keep up with unfolding policy-relevant questions, the under-
lying database of the GAINS model lacks a common, pollutant-independent data
modelling approach. This leads to redundant storage of data, and occasionally
even inconsistencies or contradictions in data.

Therefore the process of “data cleaning”, also referred to as “data cleansing”
or “scrubbing” (Rahm and Do, 2000), is very important to the successful re-
design of the GAINS model database structure. Data cleaning is most often used
in connection with data warehouses, and there in particular with the extraction-
transformation-loading process (ETL) (Rahm and Do, 2000), or the process of
knowledge discovery in databases (KDD) in a wider sense (Fayyad et al., 1996).

Both scientific fields are very interesting, but there is a long way to go before
the data structure of the GAINS model can be restructured into a well functioning
data warehouse. Therefore we will only focus on data cleaning, and not discuss
the concept of data warehouses in more detail in this paper.

The process of data cleaning itself was done mainly manually, without the
help of tools. A large number of such tools is available, including ones for data
integration which is regarded to be the most important aspect of a data warehouse
(Calvanese et al., 1998), but the challenges of data cleaning in the GAINS model
can be classified mostly on the schema level of single-source problems. Due to
the multi-schema modelling approach there are, of course, some challenges on the
multi-source level, but they are in the minority (Rahm and Do, 2000). Therefore
the use of more sophisticated tools is not justifiable.

CHAPTER 1. INTRODUCTION 4

1.2.2 Performance Tuning

As the amount of processed data is rising constantly, efficient processing becomes
even more important. Processing of SQL queries usually accounts for 60 to 90
percent of resources of an average relational database server (Irizawa and To,
2001). Basic SQL knowledge is relatively easy to gain, but highly complex and
DBMS-specific optimizer algorithms, like those of an Oracle database, often tend
to produce the most surprising performance-related results, especially when the
queries are retrieving large amounts of data. Therefore writing functionally cor-
rect SQL maybe relatively easy, but to write performance efficient SQL is much
harder (Gutjahr and Loew, 2002).

There are many other aspects of performance tuning that should not be dis-
regarded when trying to solve performance problems of a database driven appli-
cation. One of these aspects is the storage layout and I/O performance of Ora-
cle databases (Loaiza, 2000), and data warehouses in general (Nicola and Rizvi,
2003). Also the question of the connection between the web application and the
database (for example over JDBC) can have a positive effect on the performance
of the whole application (Gutjahr and Loew, 2002).

Generally, over sixty percent of performance problems in database
applications are due to poorly performing SQL statements, and the
performance of at least thirty percent of all SQL statements can be
significantly improved (Irizawa and To, 2001).

This paper will therefore mainly focus on performance tuning in terms of bet-
ter SQL performance. We will show how join strategies and conceptual changes
can impact the response times of the GAINS model. We will also demonstrate in
various examples how an execution plan can help to show why SQL queries are
performing poorly. Additionally we will discuss how proper indexing strategies
can boost performance.

1.3 Structure and Goal of this Paper

Chapter 2 will give an introduction to the GAINS modelling approach, both from
an environmental engineering, as well as from a database engineering point of

CHAPTER 1. INTRODUCTION 5

view. In chapter 3 we will discuss the current challenges, and chapter 4 will de-
scribe how these challenges were met by discussing the implementations. Chapter
5 will conclude this paper.

The goal of this paper is to discuss efficient data cleaning and performance
tuning strategies and describe their implementation within the GAINS model. The
actions described in this paper pave the way to reliable data contained in the model
and fast sharing of this data. They also prepare the model for easy introduction
of new scientific modelling ideas in the near future, like the introduction of new
pollutants. Thanks to the restructuring, maintainability of the model is improved
as well, and thus the possibility of mistakes in the future is minimized.

Furthermore these actions can be seen as a first step in the restructuring pro-
cess during which the model can migrate to a data warehouse-based application
that allows flexible and fast viewing of the data. This would also allow the imple-
mentation of a global GAINS model. Since air pollution does not stop at political
borders, a union of all currently available regional GAINS models is desirable to
allow the analysis of global emissions and their impacts.

Another aspect that might be considered in the future is the introduction of
web services that could take the sharing of data to an application-to-application
level. The GAINS model is currently part of a network of models. It relies on
data calculated by other models, and also the results of GAINS calculations are
used as input for other models. Currently this cooperation is the main subject of
the European Consortium for Modelling of Air Pollution and Climate Strategies
(EC4MACS) project funded by the LIFE program of the European Commission
(ECAMACS, 2006). The existing interaction between the models would certainly
benefit from the possibility to link the models on an application-to-application
level.

CHAPTER 1. INTRODUCTION

Chapter 2
GAINS Basics

This chapter will give an overview of the basic data structure of both the GAINS
model and the meta data needed to display the model through the web interface.

2.1 The Structure of GAINS Database Schemas

The database structure needed for storing the scientific information of the GAINS
models and meta data needed to control the display of this information is stored
in different Oracle database schemas.

2.1.1 Regional Data Schemas

29 (X3

The regional data schemas (for example “rains_europe”, “rains_asia”, etc.) hold
the scientific data. Although all these schemas should be identical from the struc-
tural point of view, changes have been gradually introduced to reflect certain re-
gional specifics.

In the previous versions of the web interface, these schemas have been also
holding the meta data needed for the control of the display of scientific data (for
example user information). As more and more regional versions of the GAINS
model were introduced, more and more regional data schemas were needed. This
led to an increase in synchronizing and updating problems because data that had
to be identical, was stored in many places. This problem was addressed by cre-
ating two new schemas that would store the common information centrally. The
following sections will discuss these schemas in greater detail.

7

CHAPTER 2. GAINS BASICS 8

Activity Activity that can be measured
Sector Economical sector in which activities take place
Technology Technology that can be applied

Table 2.1: Basic GAINS Entities

2.1.2 Central Data Schema

The schema “rains_data” stores the basic information about the scientific structure
of the GAINS model. This information includes the list of available GAINS ac-
tivities, sectors and technologies, as well as allowed combinations of previously
mentioned entities. More detailed information about these entities can be found
in section 2.2.

Another very relevant and often referenced piece of information is the com-
bination of activity/sector/technology combinations with the existing pollutants.
This information has to be accessed and referenced by all regional data schemas
as it is the basis for almost every calculation of the GAINS model.

Another aspect of the model that is stored in the “rains_data” schema is the
transformation of allowed input data combinations to output combinations. This
is necessary because the input data for the model can not be used directly for the
emission and cost calculations, but has to be transformed according to given rules.

2.1.3 Central Web Schema

The schema “rains_web” holds all meta data needed for the control of the dis-
play of the scientific data stored in the regional database schemas. Examples for
such data are user-specific data, the SQL commands needed to retrieve data or
information about the display structure of the web interface.

Parts of the data have to be deployed back to the regional data schemas to allow
the join of this data with particular entities of the scientific part. For example
the sharing of scenarios is done by joining the users and their sharing relations
together with the scenarios. This question will be discussed further in section
24.1.

CHAPTER 2. GAINS BASICS 9

2.2 Basic GAINS Entities

Table 2.1 displays basic GAINS entities. The term “activity” was introduced af-
ter the number of activity types was extended to the current set (“agriculture”,
“energy”, “mobile”, “processes” and “VOC sources”). In early versions of the
RAINS model there was only one activity type, namely the “energy” type. That
is why the term “fuel” was used instead of “activity” (Alcamo et al., 1990).

The combinations of activities and sectors, as well as activities, sectors and
technologies, form the basis of input data for the GAINS model. The allowed
combinations are stored in the central “rains_data” schema. This data is then ref-
erenced from a high percentage of tables that hold the input data in the regional
schemas.

In the following the term ‘““abatement option” will be used synonymically with
activity/sector/technology combination.

2.3 Structure of a Scenario

Scenarios are the heart of GAINS: The model is about developing different emis-
sion scenarios to show certain aspects and counter measures of pollution. Each
scenario is thereby individually defined for the available GAINS regions. Depend-
ing on the granularity of available data, a GAINS region can be either a continent,
a country or a part of a country (for example a province in China).

As you can see in figure 2.1 the definition of a scenario for each GAINS region
consists of an emission vector, a control strategy and a pathway for each of the
five activity types.

2.3.1 Scenario-based Emission and Cost Calculation

GAINS calculates emissions and the costs of reducing emission on a scenario
basis. The details of these calculations will be discussed in this chapter.

Emission Calculation

The emissions for a given pollutant, GAINS region, and year within a given
GAINS scenario are calculated according to the following equation (Klaassen
et al., 2005).

CHAPTER 2. GAINS BASICS 10

GAINS Scenario

SAINS Reglon Activity Type

Jcenario Definition Part

Aotivity Pathway Control Strategy

Figure 2.1: Structure of a GAINS scenario

Ep,r,y = Z Ep,r,a,s,t,y = Z Ar,a,s,y ’ szausytvy/loo ’ efp,r,a,s ’ (1 - np7rza78)t)

a,s,t a,s,t
(2.1)
where

p,r,y Pollutant, GAINS region, year,

a,s,t GAINS activity, sector, abatement technology (option),

E,,, Emissions of the specific pollutant p, GAINS region r, and year y,
Ay Activity for a given GAINS activity/sector combination (a, s),

Xrasty Actual implementation rate (0% < X, .4, < 100%) of the
considered abatement option ,

efpras ‘Uncontrolled” (“unabated”) emission factor, and
Nprast Reduction efficiency.

The following sections will explain how this formula is implemented in terms
of database structure. All of the mentioned tables are stored in the regional
database schemas.

Cost Calculation

Similar to the emissions, also the costs of reducing emissions for a given pollutant,
GAINS region, and year can be calculated by the GAINS model according to the

CHAPTER 2. GAINS BASICS 11

following equation as stated in (Wagner et al., 2007):

Cp,r,y - Z C .8ty T Z 6p,(a7s,t) : Ar,a,s,y : Xr,a,s,t,y/loo : Cfr,a,s,t (22)

a,s,t a,s,t

where

Cpry Reduction costs of the specific pollutant p, GAINS region r, and year y,
¢fras+ Unit cost factor of the considered abatement option, and
p,(a,s,r) Kronecker delta function that returns 1 if p is the primary cost
pollutant for abatement option (a,s,t) and 0 otherwise.

There are two main differences between the cost calculation (equation 2.2) and
the emission calculation (equation 2.1): First, unit cost factors are used instead of
the emisson factors. Unlike the emission factors, the cost factors are not pollutant
specific, but only abatement option specific.

Since the interface of the model is designed in a way that the results of the
calculations are displayed by selecting a pollutant, an assignment of costs to pol-
lutants in necessary. Nevertheless the display of costs has to be done without dou-
ble counting of multi-pollutant technologies. Therefore a hierarchy of pollutants
for the purpose of cost calculation display was introduced.

This leads to the second difference in the cost calculation, namely the addi-
tional Kronecker delta function (Kronecker delta, 2007) (9, (4,5,+)) that prevents
double counting of reduction costs. It returns 1 for the pollutant with the highest
cost priority rating for a given activity/sector/technology combination, and O for
all other pollutants relevant for this abatement option. This way reduction costs
of multi-pollutant abatement options are only displayed once as required. This in
turn means that the following equation has to be true for each abatement option:

> bpasy =1 (2.3)
p

Information about the cost priority rating of pollutants is stored in the central
“pollutant” table in the “rains_data” schema where each pollutant is assigned a
unique “cost_priority” key. For example, NO,, is higher in the hierarchy than PM.
Thus the costs for all technologies that control both NO, and PM emissions are
only accounted for and displayed in the NO,, costs, but not in the PM costs.

How the cost hierarchy information can be used for display and referential
integrity purposes will be discussed in more detail in section 4.3.2.

CHAPTER 2. GAINS BASICS 12

2.3.2 Side Notes on Technologies

The list of available GAINS technologies contains two sets of “special” technolo-
gies with exceptional modelling rules and definitions. They are crucial to rank-
ing all other technologies according to their cost-effectiveness, also referred to as
“cost curves” (Klaassen et al., 2005), and other optimization related tasks. This
section will explain these technologies in more detail.

“No Control - Technology” (NOC)

The “No Control” (NOC) technology is a special technology in that it is not a
technology implementation rate, but the lack of an implementation rate. It shows
which percentage of activities for a given GAINS activity/sector combination is
not controlled by any technology for a given pollutant. In the following we will
not distinguish the label “NOC” from its implementation rate.

By definition the removal efficiency of NOC equals zero for all activity/-
sector/technology combinations it is used in. This is why removal efficiencies
for NOC technologies are not stored in the database. No activity/sector/NOC-
technology combination is causing costs in the GAINS model.

The implementation rate of every activity/sector/NOC-technology combina-
tion is therefore not written into the database upon upload of data as it is for all
other combinations, but calculated from the other activity/sector/technology com-
binations for a given pollutant as shown in equation 2.4.

NOCp = Xr,a,s,t:NOCp,y = 100% - Z Xr,a,s,t,y (24)
t¢{NOC,,NSCp}

where

NOC, NOC implementation rate for a given pollutant p,
NSC, Implementation rate not suitable for control, and
> t¢{NOC,,NSC,p} Xrasty Implementation rates for all other abatement options

It can also be seen from this equation that the sum of all implementation rates
of a given activity/sector combination is not allowed to be greater than 100 per-
cent, as this would lead to a negative implementation rate for the NOC technology,
which is not allowed.

CHAPTER 2. GAINS BASICS 13

“Not Suitable for Control - Technologies” (NSC)

The “Not Suitable for Control” (NSC) technologies are also not real technologies.
They define which percentage of activities for a given GAINS activity/sector com-
bination cannot be subject to any control. In other words, a given NSC technology
defines the minimum NOC implementation rate for a given pollutant as shown in
equation 2.5.

NSCp = Xr,a,s,t:NSC’p,y < NOCp = Xr,a,s,t:NOCp,y (25)

Since the consistency check of implementation rates has to be done already
upon upload of data, it is necessary to reformulate equations 2.4 and 2.5 to show
the dependency between the NSC implementation rates and all other rates up-
loaded into the system without involving the dynamically calculated NOC rate.
This dependency is shown in equation 2.6.

Z Xr,a,s,t,y S 100% - XT,a,S,t:NSCp,y (26)
t¢{NOC,,NSCy}

Although NSC relevant combinations can be assigned to more than one pol-
lutant, every activity/sector/NOC-technology can be constrained by at most one
NSC implementation rate. It will be shown in section 4.3.2 how data consistency
can be ensured so that this requirement is met.

Even though some of the NSC technologies contain the name of a pollutant
(for example “NSC_PM” or “NSC_NOX"), this does not mean that they only con-
strain the NOC implementation rate of the given pollutant. This relation is stored
in the “act_sec_tech” table which will be discussed in more detail in sections 4.1.1
and 4.3.2. “NSC_NOX” for example, sets the minimum for NOCyq, and for
NOCyp,. Another example is the NSC technology “NSC_TRA” that can affect
NOCCH4, as well as NOCNHg’ NOCNOI, NOCPM, and NOCvoc.

The reason for the above mentioned multiple NSC technologies within the
database is the fact that the implementation rates are not stored in a pollutant-
related way. Therefore it would not be possible to assign multiple NSC values for
the various pollutants if only one “NSC” technology existed.

CHAPTER 2. GAINS BASICS 14

0 O NSC_S02
o NoC
@ RFGD

Implemention Rae
g
#

A% m P GO
0%
0%
8 a
0% '
Input & Optimized & hput B Optimized B

Options

Figure 2.2: Examples of BC1/PP_NEW implementation rates for SOy

Examples

To show how these special technologies are used, two simple examples of the
GAINS optimization (Wagner et al., 2007) will be given.

First consider case A in which no NSC constraint is defined. In the baseline
there are implementation rates of 40% for high efficiency flue gases desulphuri-
sation (RFGD) and 20% for wet flue gases desulphurisation (PWFGD) for brown
coal/lignite, grade 1 (BC1) use in new power heat plants (PP_NEW) as shown in
the left bar in figure 2.2. According to equation 2.4, the implementation rate for
NOC is therefore 40%.

Suppose now that the maximum application rate for RFGD is 60%. Then, the
lowest SO, emissions are achieved by applying 60% RFGD and 40% PWFGD
(second bar in figure 2.2).

In case B we assume the same input parameters, but the part of NOC (still
at 40%) not suitable for control (NSC_SO2) is 15% (third bar). In this case the
optimizer has to leave 15% uncontrolled according to equation 2.5 and decides to
set the implementation rates to 60% for RFGD and 25% for PWFGD to achieve
the lowest possible emissions under these constraints (fourth bar).

CHAPTER 2. GAINS BASICS 15

[EACTPATH_N (rains_europe)

#% A PATH_ABB
#% A REGION
T EAFLARe ACTPATH N_FK1 “y & !
¥ A OVVNER #3k A SEC_ABB
¥ A DESCRI #3K P YEAR
ol 789 ACTIVITY

Figure 2.3: Activity pathway list and data

Conclusions

Although these “special” GAINS technologies form only a small percentage of
all available technologies, they are crucial to the calculations of the model, es-
pecially for the optimization and cost curve calculation. Even though the rules
and definitions presented in this section seem to be very straightforward, the im-
plementation of some of them in terms of database constraints has proven to be
difficult. Nevertheless, solutions to this challenge have to be found to assure the
correctness of results calculated by the GAINS model.

2.3.3 Activity Pathway

The activities (A, ,4,5,) mentioned in equations 2.1 and 2.2 are stored in the “act-
path_n” table. The data is grouped into so-called “activity pathways” (also referred
to as “pathways”) stored in the table “path_abb”.

As you can see from the database tables shown in figure 2.3 each of the activity
entries is GAINS region, activity/sector combination, and year dependent. It is
important to understand, that the model stores only combinations for activities
larger than zero. This means that if a combination does not exist in a pathway, it is
assumed to be zero. Because of this modelling constraint, a functionality to check
the completeness of a pathway in terms of data amount cannot be implemented.

There are also other pathway related data that are stored in other tables, for
example applicabilities which will be discussed in section 3.2.2. Other examples
of pathway related data are beyond the scope of this paper.

CHAPTER 2. GAINS BASICS 16

2.3.4 Control Strategy

The second part of equations 2.1 and 2.2, namely the implementation rates of
the considered abatement options (X, ,) are grouped into so-called “control
strategies”. As you can see from figure 2.4 the percentage of the implementation
rate is stored per activity/sector/technology combination and year, but not for a
given region. Although according to the equation, the implementation rate has to
be GAINS region dependent. The control strategies are modeled in this way is
because they can be assigned to different regions.

As you can see from figure 2.4 each control strategy can (and should) have an
assigned primary region (in table “cons_n”’). Nevertheless each control strategy
can be assigned during the scenario definition to each region. This is also how the
implementation rates are used in a region specific way, namely for the region for
which the control strategy was assigned in a given scenario.

This approach has an important advantage when developing scenarios for new
regions: During the initial phase of development, each GAINS region can have
the same generic control strategy. After the initial definition phase of a scenario is
finished, it is presented to national experts, who then take the generic strategy as
the basis for regional strategies. These specific strategies are then introduced step
by step for all GAINS regions of the scenario.

Another area of application for generic strategies is the modelling of groups
of GAINS regions that have the same legislation. Larger countries, like China or
Russia for example, are divided into multiple GAINS regions. All of these re-
gions have the same legislation and since most of the application rates are based
on current legislation, it is very common to use the same control strategy. Another
development that can be observed, is the fact that within the European Union the
legislation and thus the control strategies are becoming more and more similar.
Some special scenarios are calculated with the same control strategy for all coun-
tries of the European Union.

Another type of scenarios that uses common control strategies for multiple
GAINS regions are so-called “no control”, “maximum feasible”, or even global
scenarios.

CHAPTER 2. GAINS BASICS 17

[ECONSTR_N (rains_seurope)

rains_europe) s e 0 e R
#2120 -
#3% A CON_STRAT

CON_STRAT CONSTR_N_FK2 #K A ACT_ABB
OWNER #%k A SEC_ABB
DESCRI #% A TECH_ABB
PRIMARY_REGION #% Ta YEAR

X 7 PERC

Figure 2.4: Control strategy list and data

2.3.5 Emission Vector

The calculations of emissions (equation 2.1) and costs (equation 2.2) can be seen
as vector calculations. This is why the ef,, s - (1 = 1prast) and cf,. o s+ parts of
the equations are referred to as the “emission vector”.

The storage of emission vector related data is more complex. This data is
initialized through a routine that has to be triggered manually. The routine is pol-
lutant specific. It takes data from different tables, calculates the emission vector
related data and writes the results of the initialization process into specified tables.

Another difference in the emission vector, is the fact that all combinations
(also zero values) are stored. Therefore, although the underlying database struc-
ture and the application logic of an emission vector is more complex, the com-
pleteness in terms of data amount can be checked.

Furthermore there is no single table listing all available emission vectors. The
reason behind this might be the fact that there are two different types of emission
vectors. First there are the so-called “version emission vectors” (the challenge of
modelling “versions” will be discussed later in section 3.2.1). These vectors are
developed by experts at [IASA and are guaranteed to be complete in terms of data.
They are usually named after a certain report for which they were developed (for
example “NECOS5”) or a date (for example “Aug06™).

The second type are “user specific emission vectors”. These vectors can be
created through the web interface by any user with appropriate access rights. Due
to the complexity and amount of data related to an emission vector, every user
is allowed to have only one emission vector. Since it cannot be expected that an
average user has enough knowledge to collect all the data needed for the emission

CHAPTER 2. GAINS BASICS 18

vector to be complete, every user specific vector has to be “backed up” by a ver-
sion emission vector when running the initialization. This way data can be taken
from the complete version emission vector if it cannot be provided by the user. In
the current version of the application this approach is not implemented, although
it is an important requirement without which it is nearly impossible for a user to
create their own emission vector.

The duality in the modelling approach combined with the lack of appropriate
modelling led to the previously mentioned fact that there is no table that would
list all available emission vectors. Instead the “owner” column which is meant to
reference the identifier of the emission vector, is in fact referencing the list of all
available users stored in the “login” table. Examples of such references will be
given in the following sections.

Further details about the challenge of modelling versions of emission vectors
will be explored in section 3.2.1. Possible solutions for this problem will be dis-
cussed in section 4.3.3.

Emission Factors

The emission factors (ef,,q s in equation 2.1) are - as mentioned in the previous
section - calculated during the initialization process. In the case of SO, the data
is written into a table called “emivec_s”. Because of the lack of a central list of
available emission vectors, the “owner’”’ column of the table “emivec_s” references
the “login” table that holds all possible users of the application version (see figure
2.5). Thus the values in the column are referencing not only the users for whom
an emission vector exists, but all users. The problem of referencing a user that
does not have an emission vector is prevented by the application logic, but cannot
be prevented by referential constraints within the database.

As can be seen from figure 2.5, the activity type is also included in the
“emivec_s” table. Since the table is filled with data during the initialization pro-
cess, the relation between the sector and the activity type is retrieved correctly
from the “rains_data” schema. The redundancy in data is taken into account to
save query runtime when information is needed during further steps of the emis-
sion calculation based on this table. The problem with this approach is that if the
activity type would be changed, the initializations for all emission vectors would
have to be run again, or the type would have to be adjusted manually in all ta-
bles as there is no single table which includes data of the emission vector for all

CHAPTER 2. GAINS BASICS 19

[E[EMIVEC_S (rains_surope)
[ELOGIN (rains_surope) [Elesles] ¢ [2] 2]
Eﬁ'ﬂ%a|€_i|%|03“|3/|>-| £ %

EMIVEC_S_FK4 _ #%
T #* *

%

o

()

REGION
OWNER
ACT_ABB
SEC_ABB
ACT_TYPE
EEMF

A LOGIN
o A PASSWD
o A

LOGGEDIMN

N

-a
o
P

Figure 2.5: Emission factor data for SO4

pollutants.

It is important to see that there is no referential integrity between the implic-
itly correlated columns “sec_abb” and “act_type” in the table. What cannot be
seen from the structure of the table (and also not from the name of the table) is
the fact that this table should only store activity/sector combinations relevant for
SO,. As explained later in section 4.3.2, the activity/sector combinations relevant
for a pollutant, can change. Nevertheless such changes would not be reflected
through referential constraints set between the tables, but would have to be en-
forced manually through the initialization process. Solutions to this question will
be discussed in more detail in section 4.3.3.

Another fact that easily is observed from figure 2.5 is that the columns
“act_type” and “eemf” can potentially be NULL. Again this is impossible because
of the mentioned application logic, however the columns should be changed to be
NOT NULL to prevent any possible problems already at the database level.

Reduction (Removal) Efficiency

Reduction efficiencies (also called removal efficiencies) are also part of the emis-
sion vector. The data is retrieved during the initialization process and stored in dif-
ferent tables for each pollutant. In the case of SO, the table is called “emivec_sr”.
As you can see from figure 2.6, the structure of the table is very similar to the one
used to store emission factors. The only difference is that - as already stated in
equation 2.1 - the reduction efficiency is also technology dependent (7, 4 s.¢)-

CHAPTER 2. GAINS BASICS 20

EEMVEC_SR {rains_europe
57 2 I e e

[ELOGIN (rains_europe)
5| o] ® c:_;_“ = #k A REGION
EMIVEC SR_FK4 R AR e
3k A LOGIN t #k 0A ACT_ABB
o A FASSWD #k A SEC_ABB
o A LOGGEDIM #xk A TECH_ABB
o A ACT_TYFE
QO g REMEFF

Figure 2.6: Reduction efficiency data for SO,

[EAST (rains_europe)
i eefen] % | 2] 2] -]

EJLOGIN (rains_europe)
gl lon] %121 %] | N
AST Ficq #3k A REGION
#3X A LOGIN = f @D ACT_TYFPE
o A PASSWD oK A ACT_ABB
o A LOGGEDIN #X A SEC_ABA
#3k A TECH_ABB
O EEC

Figure 2.7: Cost factors for all pollutants

Cost Factors

As noted in equation 2.2, cost factors (cf,), unlike emission factors and re-
moval efficiencies, are not pollutant specific. Furthermore, the structure of the
“ast” table holding the cost factors for all pollutants is very similar to the tables
holding the removal efficiencies as can be seen from figure 2.7. Also the consid-
erations regarding NULL columns and the redundant “act_type” column are the
same.

Conclusions

Although all database tables mentioned in this section are filled with data during
the initialization process, the questions of referential integrity as well as complete-

CHAPTER 2. GAINS BASICS 21

ness of data are even more important than in other areas of the model.

Due to the complex process of gathering underlying data, most users rely on
the emission vectors created and published through the web interface by the sci-
entists working at IIASA. An average user only changes the pathway and control
strategy data.

Because of this, the assumption that each emission vector is complete in terms
of needed abatement options, seems to be even more important. If for example
an emission factor is missing for a given abatement option, no emissions will be
calculated even though corresponding activities and implementation rates were
given by the user. While an expert might notice such “gaps” in the resulting
emissions, an average user most likely will not.

Even though most of such inconsistencies have been discovered in the past,
consistency of such large amounts of data should be ensured by the database where
possible and the integrity of the model should not rely on manual checks.

2.4 Sharing of Scenarios and Their Parts

The scenarios and the mentioned region-specific parts of the scenarios (activity
pathway, emission vector and control strategy) have to be shared in a controlled
way. Therefore sharing rules that determine read and write access have to be
defined and implemented.

2.4.1 Sharing of Scenarios

The access of a given user to a scenario is mainly determined by the owner of
the scenario: If a given user shares read or write access with the owner of the
scenario, then the given user has read or write access to the given scenario. How
user sharing works, will be explained in section 2.5.3.

In addition there are also two other possibilities of how a user can be granted
read access to a scenario. The first possibility is that the scenario is made public
by the owner or an administrator. This way all users of the model can view the
scenario. Usually a scenario is made public when its development is finished and
every user should be have access to the results.

The other possibility is to give the user explicit access to a given scenario.
This is mainly used during the development of a scenario when feedback from a

CHAPTER 2. GAINS BASICS 22

given group of experts is required. This permission only enables the user to see
one particular scenario, but has no impact on the access to other scenarios of the
owner of this scenario.

2.4.2 Sharing of Scenario Parts

As each scenario has an owner, the parts of the scenario (activity pathway, emis-
sion vector and control strategy) also have an owner. According to the rule of
granting access to a scenario if sharing access with the owner, access to the parts
of a scenario is determined by the ownership of the parts and sharing relations as
well.

In addition, read access to parts is also granted if a given user has read access
to any scenario in which this part is being used. The reason for this rule is the fact
that a user has to be granted access not only to the results of a scenario, but also
to the underlying data on which the calculation of the results is based.

2.5 User Management

Information about users of the model is stored centrally in the “rains_web”” schema
since a single user may access multiple versions of the model, but always with the
same username and password.

2.5.1 User Groups

Groups of users have two functionalities: Users can be granted privileges (as de-
scribed in section 2.5.2) and share data with other users (as described in section
2.5.3) through membership in groups.

There are two parameters that define how users share access to entities owned
by them within the group: Read and write access. Both flags can be set indepen-
dently for each group. This way users can either share read, or write access, or
both. It is also possible that they do not share access to entities at all and the group
is only used to grant privileges to all members of the group.

CHAPTER 2. GAINS BASICS 23

2.5.2 User Rights & Privileges

User rights regulate the access of users to the different functionalities of the
GAINS model. These rights can be granted to a user personally, or to a group
of users. Privileges assigned to a group are granted to all members of the given
group.

The defined privileges are not hierarchical, in that the granting of one privilege
does not cause other privileges to be granted automatically, although the definition
of the privileges could indicate hierarchical dependency. For example the grant-
ing of the “user” privilege does not cause the automatic granting of the “viewer”
privilege.

Furthermore there are two different types of GAINS versions: Public and pri-
vate. The “viewer” privilege which is hierarchically seen as the lowest privilege,
is granted to all users accessing the public versions automatically, whereas for
private versions every privilege has to be granted manually.

2.5.3 User Sharing

Users not only want to access different functionalities of the model, they also
want to have access to entities of the model created and owned by other users.
Most of the entities have an owner. Sharing of entities is mainly done through the
assignment of users to user groups.

Some entities, like for example the scenarios already discussed in section
2.4.1, can also be made public and thus accessible to all users. Another possibility
also discussed in relation with scenarios, is granting direct access to entities.

The sum of all these rules is essential to the interface since it is the underlying
basis for the display of almost every page of the model. The rules also become
more and more complex. This allows for better control of user access to single
entities of the model. Each additional rule is a potential loss in response time since
even more data has to be parsed before retrieving a result.

A successful modelling strategy has to provide a way to combine all set re-
quirements, while making the model respond in a time that is acceptable for the
users.

CHAPTER 2. GAINS BASICS

24

Chapter 3

Current Challenges

As already mentioned in the previous chapter, the GAINS model is under con-
stant development from a methodological point of view, as well as from the web
interface’s point of view. As the model develops, new ideas emerge and are imple-
mented. These make the model and its display more precise, but each new feature
has the potential to make the display of the model slower. The bottom line of
many of the challenges is finding a way to have a more detailed level of modelling
combined with a high speed response.

The other group of challenges include data and modelling integrity challenges
which were for example already mentioned in the context of emission vectors. It
is essential to be able to keep referential consistency within the model. Especially
because the model handles large amounts of data, and the consistency cannot be
monitored manually.

3.1 Deployment of Data

As already mentioned in section 2.5, all user related information is stored in the
central schema “rains_web”. This data has to be passed to the regional schemas to
be able to join it with the scientific entities in terms of ownership among others.
The same considerations apply to data stored in “rains_data” that defines the basic
GAINS entities available and the relations between them.

In some cases simple views are enough. Especially if the underlying state-
ments can be executed fast and the results of the views are not used by other views.
In other cases simple views are not enough in terms of good performance. The

25

CHAPTER 3. CURRENT CHALLENGES 26

two major reasons why views are not the best structure to use, will be discussed
in the following sections.

3.1.1 Data Integrity

Data integrity plays an important role, especially in large scale databases. It can
be assured by setting referential constraints (foreign keys) between single tables.
Such constraints cannot be set on views. Because of this, data calculated by views
cannot be directly referenced in terms of referential constraints by other tables or
views.

In case of the deployment of user-specific data this possibility is a large disad-
vantage because the user-specific data are further joined with the data of regional
schemas. In some cases foreign keys can be set directly to the central “rains_web”
schema. But this is only possible if the data is used in an one-to-one relation. As
soon as the data is filtered in some way (for example only a subset of users has to
be referenced) a foreign key cannot be set directly.

3.1.2 Long Query Execution Time

Another reason why views are not the optimal solution in many cases is the fact
that essentially the underlying query of a view has to be executed every time.
Oracle can optimize the execution of the query and is able to cache some results,
but it does not store the results of the query completely.

Especially if the base query has a long runtime, and even more so if the under-
lying data changes relatively seldom, views can cause performance losses. Instead
of working with precalculated data, the view has to retrieve the data every time
upon request.

3.1.3 Runtime Optimization

A related challenge is the question of runtime optimization, not only for the run-
time of views, but also of queries retrieving data based on views. In many cases
properly set indices can help to optimize the runtime of queries by improving the
time needed for joins between the tables. Unfortunately this strategy cannot be
used when working with views because indices cannot be created on views. Views

CHAPTER 3. CURRENT CHALLENGES 27

use the indices of base tables when they are executed, but the results retrieved by
a view cannot be indexed additionally.

Materialized views may be a solution as they combine the advantages of a
table and a view. They will be discussed in more detail in section 4.2.1.

3.2 Consistency in Data Modelling

As already mentioned in previous chapters, the model continued and will continue
to be developed for additional pollutants. The pollutants were not only intro-
duced by different people, they were also introduced at different evolution stages
of the model. The result of this is that some aspects of the model are inconsistent
throughout the pollutants, sometimes even leading to contradictions in data.

3.2.1 Data Versions versus Version Owner

Section 2.3.5 already gave a short introduction of the definition of an emission
vector. Unfortunately the already mentioned challenges are only one part of the
data modelling issues to be resolved. This section will elaborate more on the fact,
how the inconsistencies in modelling that were already mentioned arose.

The emission vector is a very large collection of data. In the very beginning of
the development of the RAINS model, it was meant to be a collection of data that
could be regarded as constant. But during the evolution of the model the emission
vector data began to change. First it was changed when a larger update of data
had to be done due to new scientific knowledge. The name of the vector was the
date of introduction of the new version (for example “Apr04”, “Nov04”, etc.). The
current status is that the emission vector for Europe for example is changed with
every new generation of reports that have to be done for the European Commission
(for example “NECO01”, “NECO02”, etc.).

Since the emission vector is not only a very large set of data, but also needs to
hold data that is collected from various scientific fields, the emission vector has
to be generated and maintained by more than one person. This multi-user aspect
created a challenge of how to grant access to multiple users who need to work on
the same data.

The solution was to create user accounts with exactly the same name as the
emission vector. Through this approach everybody who was working on a given

CHAPTER 3. CURRENT CHALLENGES 28

emission vector, could log into the system as “a version of an emission vector”
and be able to modify the data of the vector. This approach was soon extended
to the ownership of scenarios and their parts by creating these entities under the
“ownership of a version”.

Although this worked well for a time, it had one major drawback: Control over
which person was editing which data could not be easily maintained anymore.
Since everybody who had access to the version user accounts could access the
model with the same log in, keeping track of who was editing which data could
only be monitored by logging the IP addresses of the users.

Additionally a legal issue came up with the introduction of the new GAINS
models: The acceptance of the disclaimer that was necessary in earlier versions
of the models at every log in, was changed into a one-time step in the registration
process. This way user accounts that were created by one person, but were used
by many, who possibly never accepted the GAINS disclaimer, became a potential
legal problem.

3.2.2 Applicabilities

The maximum of an application rate is referred to as the “applicability” (X",)
of the abatement option (Wagner et al., 2007). This requirement can also be writ-
ten as shown in equation 3.1. The reason why this information is necessary, is
the fact that some technologies cannot be used beyond a certain limit due to con-
straints in the “real world”. For example, a certain type of car or power plant
may not have enough space to house a given technology. If an applicability does
not exist for a given region, activity/sector/technology combination, and year, it is

assumed to be 100%.

Xr,a,s,t,y < X (31)

— r,a,s,t,y

Based on 3.1 it can be deducted that the applicability of a given abatement op-
tion should have the same attributes as the implementation rate already mentioned
in section 2.3.4. This means that applicabilities are not defined in a pollutant
specific way, but for a given GAINS region, abatement option, and year.

In fact, the applicabilities are currently stored in several tables. Most of these
tables are pollutant specific (by name), but there are also applicabilities stored
across multiple pollutants. Some of the tables are activity pathway specific (not
technology specific), others are emission vector specific.

CHAPTER 3. CURRENT CHALLENGES 29

The complete set of applicabilities for a given emission scenario is determined
by the structure of the scenario, as explained in section 2.3. This means that for
a given region the applicabilities are retrieved by pollutant from the pathway or
the emission vector depending on the definition of the scenario for this region.
As one can imagine, a union of all available applicabilities that is retrieved from
many tables can lead to redundancy, and potentially even to inconsistencies.

Furthermore, as seen in equation 3.1, the consistency between the implemen-
tation rate defined in the control strategy, and the maximum of this rate set by the
corresponding applicability has to be guaranteed. This distributed definition and
storage of data that forms the previously defined constraint does not allow for any
checks with simple database constraints. Especially because the possible incon-
sistencies do not only arise with each change in the region specific scenario defi-
nition, but also with every emission vector, pathway and control strategy change.

What makes the analysis easier in terms of amount of data, is the fact that
applicabilities are only needed for scenarios for which cost curves have to be
displayed through the web interface, or for scenarios that are taken as input for
optimization runs.

3.2.3 Aggregation of Results According to Reporting Standards

Since the results of the RAINS (and also GAINS) models are used by the Euro-
pean Commission, the format in which data is presented has to follow given guide-
lines. An example of such reporting directives are the “Guidelines for Estimating
and Reporting Emission Data under the Convention of Long-range Transbound-
ary Air Pollution” published by the Economic Commission for Europe (Economic
Commission for Europe, 2003).

According to these guidelines, the results for both emission and cost calcu-
lations have to be grouped into given categories. Currently GAINS results are
reported by two standards: SNAP and NFR. The relation between the GAINS
calculation results and the categories of the reporting standards is done based on
activity/sector combinations. In addition these relations are stored in a separate
table for each pollutant.

Initially reporting along with the mentioned standards was only requested for
the results of European models. Therefore the fact that these tables were stored in
the “rains_europe” schema was not a problem. However during the development
of GAINS Asia it turned out that it would also be necessary to report the results

CHAPTER 3. CURRENT CHALLENGES 30

of the Asian models according to these standards and the needed tables were also
copied to other schemas.

Another aspect of this modelling approach that possibly leads to the incorrect
display of calculation results, is the incompleteness of assignments: If a given
activity/sector combination is missing in one of the pollutant specific tables, but
emissions or costs are calculated by the model for this combination and the given
pollutant, the corresponding emissions or costs are not shown in the result tables.
Such inconsistencies can most often be discovered when comparing the reported
sums of emissions and costs with and without the aggregation by the reporting
categories. A successful new modelling approach is needed to solve this problem.

How the described challenges can be solved, will be discussed in section
4.3.5.

Chapter 4

Implementation

4.1 Key Issues to Solving Query Runtime Problems

This section will discuss several key issues to solving query runtime problems in
Oracle. It will give answers to questions such as “Why is the database responding
so slow?” or “How can I make it run faster?”.

4.1.1 Indexing of Data

Proper indexing of data is key in preventing query runtime problems. Especially
when dealing with large amounts of data, the lack of proper indexing will lead to
long query execution times. Of course even when data is properly indexed, there
are limits to what can be achieved in terms of runtime improvement, but proper
indexing can have a significant impact on query runtime.

Indexing of Foreign Keys

In contrast to MySQL (MySQL, 2007) Oracle does not automatically create in-
dices on columns referencing data through a foreign key. This is an important
detail, since database developers used to MySQL or migrating databases from
MySQL to Oracle might forget to create such indices. This in turn might lead
to large performance losses. Indices on foreign key columns should always be
defined unless one of the three following conditions is met (Kyte, 2005):

1. You delete rows from the parent table.

31

CHAPTER 4. IMPLEMENTATION 32

2. You update the constraint in the parent table to which the foreign key is set.

3. There are no queries that join the child table to any other table (especially
the parent table) using the foreign key columns.

In most cases one of the above mentioned statements is met when you create
a foreign key. The last rule should also be applied to columns where no foreign
key exists: If you have an important execution path using a given column or com-
bination of columns, you should most likely set proper indices to speed up access
to data stored in these crucial columns.

Monitoring Query Execution and Index Use

Most database querying tools, like TOra (TOra, 2007) or TOAD (TOAD, 2007),
offer information about the query execution plan (sometimes also called “explain
plan”). Based on this underlying information you can track down access to all
tables, including tables accessed indirectly through views. You can also see,
whether tables are fully scanned, or accessed via an index. This helps to locate
possible performance losses and add additional indices where suitable.

Examples of possible execution plans, will be given in the next section.

Why an Index Might Not Be Used

The possibility of successfully using an index is dependent on the following fac-
tors (Kyte, 2005):

1. The columns on which the index is set (also their sequence)

2. The columns which are selected by the query (also whether they are allowed
to be NULL or not)

3. The way in which data is filtered or joined (through a function for example)

Even if indices are set and the query is written properly, the index might not
be used because Oracle’s Cost Based Optimizer, the so called CBO (Oracle CBO,
2002), might “think” that using the index will be slower. In some cases the CBO
can be wrong because its decision is based on outdated statistics. Such a case
might for example arise if the amount of data in a table multiplies by a large
factor within a short time. The optimizer decides based on a small amount of data

CHAPTER 4. IMPLEMENTATION 33

%A w
| EACT_SEC {rains_data) T
|
"k A IDACT H #3k A IDTECH ot
% A [DIEC & % A IDTECH_TYPE
] % A LABEL_TECH
— %)
=L
% o g[.ﬁ.CT_SEL‘.:_. ECH (rains_data)
_]I i : o e Q
v} _ N
i Q #% A IDacT !
=z = B A IDSEC 3
Eﬁ 5 w¥ A IDTECH =,
o) o * A CONTROL (5
= %) ® 8 GEGUAST 0
Ve = * " CO2 : 2
= « * P CH4 = O
L:—]) ¥ T FOAS i
(7 i ¥ i N20
hl' g ¥ " NHZ
=y Y E ¥ e MO
_ trains_data) = ¥ ™ -
* Ty S02
¥ Ta Voo
% T VOt

Figure 4.1: Structure of the “act_sec_tech” table in “rains_data”

and concludes that a full table scan is faster, whereas in fact using the index would
be faster with the current amount of data. To solve this problem you have to gather
(refresh) the table statistics so that the CBO can make its assumptions based on
the current set of data. However it has to be said, that the CBO is very reliable if
it is basing the decisions on statistics that are up to date.

In some cases when you have gathered the table statistics, set the index and
written your query correctly, the index is still not used. The database table
“act_sec_tech” (shown in figure 4.1) located in the “rains_data” schema is used
as an example of this. It is one of the tables most often accessed in the GAINS
model. It defines which of the known GAINS activity/sector/technology combi-
nations is used for which pollutant.

As you see from the figure, the table joins available GAINS activity/sector
combinations with available technologies. For each combination, a flag is set for
each available pollutant in the respective column indicating whether this combi-

—_

CHAPTER 4. IMPLEMENTATION 34

[B D|§| 3||®Hefresh|l\lnne "” 2w <]
SELECT *

FRCOM act =sec tech
WHERE pm = 1;]

Result I Yisualize | Execution plan | |nformation I Statistics | Logging |
B I Dperation | O ptiars | Obiect name: | aode | Cost | Butes | Cardinality
=-0 SELECT STATEMEMT alL_ROWS 9 E7114 1459

.1 TABLE ACCESS FULL ACT_SEC_TECH AMALYZED 4 E7114 1453

Figure 4.2: Execution plan for retrieving activity/sector/technology combinations
relevant for PM

nation is relevant for this pollutant (“0” means “no”, “1” means “yes”’). What kind
of impact this structure of the table has on the calculation and how the structure
should be changed, will be discussed in section 4.3.2. In this section, the table
will only be used as an example of index use.

Listings 4.1 and 4.2 look very much alike. In both cases we select all activi-
ty/sector/technology combinations that are relevant for the given pollutant. Both
columns of the table (“pm” and “s02”) have the same kind of index. But if we
look at the execution plans of the queries (figures 4.2 and 4.3) we see that in the
case of SO, the index is used to retrieve data, and in the case of PM it is not.

Listing 4.1: PM relevant activity/sector/technology combinations

SELECT =«

2|FROM act_sec_tech

—_

WHERE pm = 1;

Listing 4.2: SO, relevant activity/sector/technology combinations

SELECT =«

2|FROM act_sec_tech

w

WHERE so2 = 1;

Moreover, if you would like to retrieve all activity/sector/technology combi-
nations that are not relevant for SO, (figure 4.4), you will see that in this case once
again Oracle does not use the index created on the “so2” column.

The solution to this question lies partly in the structure of the table (the pollu-
tants are arranged in columns) and partly in the amount of activity/sector/technol-
ogy combinations defined per pollutant. The query showed in listing 4.3 gives an

CHAPTER 4. IMPLEMENTATION 35
PR B’...|G|r‘||ﬁ§Hefresh|None ;” R |

SELECT *
FROM act sec tech
WHERE soZ2 = 1;
Eesult IEisuaIize | Execution plan |lnformati0n |§tatistics | Logging
| Operation I Ophionsg I Ohizct narme I ode | Cosgt I Bytes | Cardinality
-0 SELECT STATEMENT ALL_ROWS 8 18584 404

&1 TABLE ACCESS B INDEx ROWID ACT_SEC_TECH AMALYZED 8 18584 404

L2 INDE¥ RAMGE SCAM ACT_SEC_TECH_IDK11_S02 AMALYZED 1 404

Figure 4.3: Execution plan for retrieving activity/sector/technology combinations

relevant for SO,

bk B’...|G|3||!ﬂ§Hefresh|Nune ;” G

SELECT *
FROM act ssc tech
WHERE soZ = 0;

Besult IEisuaIize | Execution plan | Information Igtatistics II__u:ugging I

| Operation | Options | Object narme I faode I Corst I Butes I Cardinaity
&0 SELECT STATEMENT ALL_ROWS 3 114218 2453
L1 TABLE ACCESS FULL ACT_SEC_TECH AMALYZED 13 114218 2453

Figure 4.4: Execution plan for retrieving activity/sector/technology combinations

not relevant for SO,

CHAPTER 4. IMPLEMENTATION 36

Result |£isualize | E xecution plan I Irfarmation I Statigtics I Logging I
| COMBINATIONS | PM_RELEVANT |S02 RELEVANT |MOT_502 RELEVANT |
1 2934 1459 (49.73%) 404(13.77%) 2530 [86.23%)

Figure 4.5: Number of relevant activity/sector/technology entries in act_sec_tech
table

overview of how many of such combinations are defined in total, how many are
relevant for PM, how many for SO, and how many are not relevant for SO.

Listing 4.3: Overview of activity/sector/technology combinations

SELECT COUNT (%) AS combinations ,

SUM(pm) || * (° || ROUND(SUM(pm)/COUNT(*)*100, 2) || %)’ AS pm_relevant,
SUM(s02) || * (° || ROUND(SUM(s02)/COUNT(x)«100, 2) || *%)’ AS so2_relevant,
COUNT(*)-SUM(s02) || * (* || ROUND((COUNT(%)-SUM(s02))/COUNT(*)%100, 2) || %)’

AS not_so2_relevant
FROM act_sec_tech;

As you can see from figure 4.5 there are far more PM relevant combinations
than SO,. This is why the CBO does not use the index created on the column for
the pollutant when retrieving data for PM, but uses it when retrieving data for SO,.
According to (Kyte, 2005) there is no exact threshold in terms of the percentage
of selected rows below which an index is used and above which the index is not
used, but a full scan of a table is performed. Nevertheless the rule of thumb is that
this threshold lies somewhere between 10 and 20 percent of data. If you try to
access larger amounts of data through an index, this will result in higher runtimes.
This is why the CBO decides not to use the index on the “s02” column when we
reverse the selection for SOs.

4.1.2 Join Strategies

The way in which SQL commands are formed also has a significant impact on
query runtime. Although, there are no golden rules, there are some guidelines
that can be followed when writing queries. Also, as already mentioned in section
4.1.1, the execution plan can help understanding why a query might be running
slowly.

Another short example will demonstrate how the performance of a query can
be improved dramatically by a change in the join strategy between two tables. In

CHAPTER 4. IMPLEMENTATION 37

Biesult IEisuaIize | Execution plan |1nformation Iﬁtatistics |I__ogging |

I Operation I Options I Object name I ode I Cost I Bytes I Cardinality I
-0 SELECT STATEMEMNT ALL ROWS 95320 151180154 2896663
-1 SORT ORDER BY 95820 191180154 2896663
HASH GROUP BY 95820 151180154 2896663
i HASH JOIN OUTER 2633 191180154 2896663
-4 TABLE ACCESS FULL COWS_N ANALYZED 7 78450 1569
B IMDEX FAST FULL SCAM COMSTR_N_FIDKZ AWALYZED 2532 46346704 2896563

Query executed {Duration 0:05,90)

Figure 4.6: Execution plan for strategy listing with left outer join

this example we are seeking a listing of all available GAINS control strategies
with additional information on how many definitions each of the control strate-
gies has. The “constr_n” table holds about 3 million records for about 1500 con-
trol strategies. Since we also want to have control strategies listed that have no
definitions, we have to make a LEFT join between the tables:

Listing 4.4: Strategy listing with left outer join

SELECT c.con_strat, c.owner, c.primary_region, c.descri,
COUNT(d.con_strat) AS def_count
FROM cons_n ¢
LEFT JOIN constr_n d ON (
c.con_strat = d.con_strat)
GROUP BY c.con_strat, c.owner, c.primary_region, c.descri
ORDER BY LOWER(c.con_strat);

~N OB LN~

The query executes in about 6.0 seconds. Even when looking at the execution
plan (figure 4.6), there is no join visible that could be optimized. There is a full
table scan on “cons_n”’, but since we need all rows from this table, this is normal.
The large table “constr_n” is “fast full” scanned on the foreign key index.

Still, the cost of grouping and sorting of the listing seems to be very high.
Of course the grouping cannot be left out in this case. Unless you were able to
leave the left join out (which is always a cost-expensive action). A solution to this
would be a nested select to retrieve the amount of definitions (NVULL values have
to be set to “0” with the NVL function):

Listing 4.5: Strategy listing with nested select

1|SELECT c.con_strat, c.owner, c.primary_region, c.descri,
2| NVL((SELECT COUNT(x*)

3 FROM rains_europe.constr_n d

4 WHERE d.con_strat = c.con_strat

5 GROUP BY d.con_strat), 0) AS def_count

6/FROM rains_europe.cons_n ¢

CHAPTER 4. IMPLEMENTATION 38

Beszult | Vizualize | Ezecution plan | Information I Statistios l Logaing I
I Operation I Options | Object name I tode I Cost | Bytes I Cardinality |
E SELECT STATEMENT ALL_ROWS 8 78450 1563
SORT GROUP BY NOSORT 15 16 1
-2 INDEX RAMGE SCAN COMSTR_M_FIDEZ AMALYZED 15 53616 3391
SORT ORDER BY 2 78450 1563
L4 TABLE ACCESS FULL COMNS_M ANALYZED 7 78450 1563

Cuery executed (Duration 0:02.51)

Figure 4.7: Execution plan for strategy listing with nested select

7‘ORDER BY LOWER(c. con_strat); ‘

The query with the nested select executes in about 2.5 seconds (in around 42%
of the runtime of the left join query). Looking at the execution plan of the query
(figure 4.7), it is visible that the runtime expensive left join could be left out and
the grouping is now also unnecessary. Although the tables are still accessed over
the same indices, there is far less data in terms of bytes that has to be joined. Also
the count of data in the large “constr_n” table can be done by simply accessing the
index.

As already stated, there is no golden rule on how to write joins. Sometimes
you will find that a query unexpectedly works faster. The execution plan can give
hints as to what is causing the runtime trouble, but it does not directly point to
the actual problem. Also query performance can change with rising amount or
changing of data dramatically at some point. Sometimes this might be caused by
outdated statistics that have to be just refreshed, and sometimes you will have to
rewrite the query completely.

4.1.3 Other Pitfalls

There are a few additional pitfalls that should be avoided. For example one should
not use ORDER BY clauses within create commands of views. Of course the view
will always be ordered in the proper way when looked at through a database tool,
but it will also always be ordered when accessed in joins of queries. In most cases
the results of such a query will not be ordered in the same way as the view was
ordered. Therefore runtime is wasted on the ordering of precalculations. In fact
this ordering can cause an even significant time loss, especially when the amount
of data is large.

CHAPTER 4. IMPLEMENTATION 39

Another pitfall that should be avoided, is using UNION commands between
parts of SQL commands that are unique by definition. Instead the UNION ALL
command should be used to avoid unnecessary sorting of the values so that Oracle
can make a complete union of all records of parts of the command. Especially for
large amounts of rows this sorting can be very runtime consuming although it
would not be necessary at all if the same result row cannot be found in more than
one part of the UNION command by definition.

4.2 Other Oracle Based Solutions to Query Runtime
Problem

4.2.1 Materialized Views

Deploying data with the help of materialized views is a common strategy. Most
examples in common literature refer to deploying data over database links be-
tween remote databases, but deployment over different schemas within the same
database is of course also possible. The following sections will give an overview
of the basic idea of materialized views in Oracle. Examples of how materialized
views can be used to cope with the previously mentioned challenges will be shown
in section 4.3.1 and following.

For the sake of simplicity, the term “mview” will be used interchangeably with
materialized view.

Introduction to Materialized Views

First of all it is important to understand that mviews are actually not views, but a
special type of database table. Data is not fetched upon every select request, but
is stored in the mview until the next refresh is triggered. Therefore an mview can
also be seen as a cache from which a copy of data can be accessed quickly (Gupta
and Mumick, 1995).

Mviews are especially suitable for precalculating data in cases when data in
the base tables changes rarely compared to the read requests or if the execution of
the underlying query takes a comparably long time.

Another feature that mviews have in common with tables, is the fact that it is
possible to create indices on them. This is especially convenient if the data stored

CHAPTER 4. IMPLEMENTATION 40

in the mview is further joined with other tables to retrieve data. Examples for
this feature will be given in section 4.3.1. According to indices, foreign keys can
also be created that point to an mview. This way data stored in mviews can be
referenced by other tables maintaining referential integrity between the data. An
example for foreign keys which point to mviews will be given in section 4.3.2.

Refresh Types of Materialized Views

As already stated, mviews are not views, but have to be filled with data. There are
two basic ways how mviews can be refreshed: “Complete” and “fast”. A “forced”
refresh attempts to do a fast refresh, and if this is not possible, executes a complete
refresh.

A complete refresh executes the underlying query and writes all data into the
underlying table. If the query has a long runtime and only a small part of the
fetched rows actually has changed, this approach is not very efficient. In such
cases a fast refresh is more suitable.

This type of refresh only refetches the rows that actually changed in the mview
(Gupta and Mumick, 1995). To provide information about which rows have actu-
ally changed, an additional structure has to be introduced: The materialized view
logs (mview logs). These logs have to be created on every table that is used in a
fast refreshing mview.

This is only one basic restriction that has to be met when creating fast refresh-
ing mviews. There are also various restrictions on the structure of the underlying
query. Some of these restrictions will be explained in more detail later. The bot-
tom line for all these restrictions is that it has to be clear to Oracle how changes
in the underlying tables affect the result of the query. This is why mviews cannot
be based on views, but only on tables.

They can theoretically be also based on other mviews, but one has to be careful
with this approach. Cascading refreshes of mviews are not executed in parallel but
in sequence and can thus take a long time. Also when cascading mviews, if one of
the mviews refreshes completely, all other mviews based on this mview will also
do so, even if they were created to refresh fast. The reason for this is the fact that
the complete refresh fills the mview log with all rows and the “fast” refresh has to
fetch all rows from the log.

CHAPTER 4. IMPLEMENTATION 41

Conclusion

Although mviews seem to be the perfect solution for precalculating results and
thus saving runtime of queries, they actually have many restrictions. Especially
for more complicated calculations as used in the GAINS model, most of the
mviews cannot be written to refresh fast. This is why mviews will mostly be
used for deployment of data between the central data and web schema and re-
gional schemas. Since mviews cannot be seen as the ultimate runtime problem
solution, other solutions must be found.

4.2.2 Temporary Tables

Temporary tables are a special type of database tables (Managing Tables, 2002).
They can hold “private” data, which means that data contained in this these tables
can be managed during the life time of a database connection, but will not be ac-
cessible any other established connection. For the GAINS application this would
mean that data could be precalculated and stored in such a temporary table. This
would create a user specific database cache within the temporary table thus mini-
mizing the amount of time queries with long runtime have to be executed. Since
also indices can be created on temporary tables, the precalculated data stored in
these tables could be fetched faster and save even more runtime.

Temporary tables seem to have a lot of advantages, but they would only work,
if the data in the temporary tables could be preserved over a user session and the
user would be bound to a specific database connection. The first restriction is not
a problem. With the ON COMMIT PRESERVE ROWS clause of the temporary
table CREATE statement data in the temporary table can be preserved over the
life time of a transaction. However, since data would get lost anyway when the
connection to the database is closed, each database connection would not only
have to be assigned to a user (and vice versa), but the connection would also have
to stay alive from the user’s log in until log out (manual or caused by web session
expiration).

This second restriction is problematic because database connections would
have to be held open constantly and could not be reused by other users. It is also
likely that the time they are really used by the user assigned to the connection,
would only be a small percentage of the overall connection alive time.

Because of the relation of standby to overall time in a life time of a user bound

CHAPTER 4. IMPLEMENTATION 42

database connection, it was decided not to use user bound database connections.
Instead the GAINS model uses connection pooling implemented by the Apache
Software Foundation in the Commons project “DBCP” (DBCP, 2007). Although
connection pooling can also have a positive impact on the performance of the
system (Gutjahr and Loew, 2002), a more detailed discussion of this idea is beyond
the scope of this paper.

Conclusion

Temporary tables are a useful tool, but only for caching data within the life time of
one user request to the application. Using them for storing log-in-related data for
each user is not an option because of the connection pooling. Therefore another
method of caching user related data has to be implemented.

4.3 Reorganizing Data Structures

As already indicated in previous sections, the data structure of the GAINS model
has been growing unsystematically over the years and has been developed by
many persons. By analyzing the current structure of the data, some areas of im-
provement can be identified. A few of these areas will be discussed in this section.
The topics shall give insight into how changing the structure will not only affect
the integrity of data, but will also improve access time to data and simplify the
data model altogether.

4.3.1 Materialized Views for Data Deployment

As mentioned in section 4.2.1 mviews can be used to deploy data between differ-
ent databases, as well as between schemas within the same database. An example
of data that has to be deployed to regional schemas, are the GAINS regions needed
for display of calculation results within these schemas.

The list of all regions is stored within the “rains_web”” schema in the “regions”
table shown in figure 4.8. Access to a given region in a given database schema is
controlled through the “region_options” table. This means that for a given schema,
only the regions assigned in the latter table can be displayed.

The SQL command to list all regions according to the previously mentioned
definition is shown in listing 4.6. The second nested select (starting at line no.

00~ AN N AW =

11
12
13
14
15
16

CHAPTER 4. IMPLEMENTATION 43

HIREGION_CPTIONS (rains_web) LREGION_OPTIONS_Fi1 EIREGIONS (rains_web) BREGIONS_MV (rains_europe)
[llan]# | 2 || B] % | 2] 2| e =212 |-
#X% A IDREGIONS < ER A IDREGIONS #% A IDREGIONS
#X A IDSCHEMAS < X A LABEL_REGION X A LABEL_REGION
X A REGION_PRIY / o A PARENT_REGION o A PARENT_REGION
X e REGION_SORT | X A COU_ABB XA COU_ABB
* A REG_ABE kA REG_ABE
REGIONS_FK{ ™ —-— 0 A 130_EMEP @ 150_EMER
1 REGIONS_FIDH1 1 REGIONS_MY_IDH1
1 REGIONS_MY_IDXZ
1 REGIONS_MY_IDX3

Figure 4.8: “regions_mv”’ materialized view

12) retrieves the name of the schema on which the mview is created from table
“gui_schemas”. This table is very simple: It only has one row and one column. Of
course the name of the schema could also be written into the query, but then the
query would have to be changed for each regional schema.

Listing 4.6: Create command for materialized view “region_mv”

CREATE MATERIALIZED VIEW regions_mv
REFRESH FAST ON COMMIT
ENABLE QUERY REWRITE
AS
SELECT idregions , label_region, parent_region, cou_abb, reg_abb, iso_emep
FROM rains_web.regions r
WHERE EXISTS (
SELECT 1

FROM rains_web.region_options ro
WHERE ro .idregions = r.idregions
AND EXISTS (

SELECT 1

FROM gui_schemas s
WHERE s .idschemas = ro.idschemas
)
)

The mview is distinguished by an “_mv” at the end. Since mviews are treated
by programs such as TOra or TOAD as tables in terms of display, it is recom-
mended to name all mviews according to a unique convention so that they can
easily be distinguished from tables. The mview is also created with an QUERY
REWRITE option. This way the CBO can reduce I/O and processing time by
optimizing access to the underlying resources and therefore returns results faster
(Nanda, 2004).

To further optimize access time to data stored in the “regions_mv’” materialized
view, additional indices are created as shown in figure 4.8. The mview itself is not

CHAPTER 4. IMPLEMENTATION 44

very large in terms of the amount of table rows, but it will be accessed very often
by SQL queries. So although the runtime improvement by creating the indices
may not be very large if accessing data from the table alone, it will help when
joining the table with other tables that have far more records.

Based on the same idea also the list of available users or the available activ-
ities, sectors and technologies can be deployed from the central “rains_web” and
“rains_data” schemas to regional data schemas. How the just created mview can
be used to assure referential integrity, will be discussed in more detail in section
4.3.3.

4.3.2 Activity/Sector/Technology Combinations

As already stated in section 4.1.1, the current structure of the “act_sec_tech” ta-
ble (figure 4.1) impacts how indices on selected columns of the table can be used
for different pollutants. Moreover referential integrity between the available ac-
tivity/sector/technology combinations and the pollutants cannot be implemented
because the pollutants are assigned in the columns of the table. It also has to be
noted, that once a new pollutant is introduced, the structure of the table would
have to be changed.

To solve the mentioned problems, new database tables have to be introduced.
The first new table “act_sec_tech_all” (figure 4.9) combines available activity/sec-
tor combinations (table “act_sec”) with available technologies (table “tech”) and
holds a list of all allowed abatement options.

The additional columns (“emiss_factor”, “cost_factor”, and “impl_rate”) are
flags that define whether a given combination is needed for emission factors, cost
factors and implementation rates. These columns will, for example, be used to
achieve referential consistency for emission and cost factors. This idea will be
discussed in more detail in sections 4.3.2, 4.3.3 and 4.3 .4.

The retrieved combinations can further be combined with all available pol-
lutants in table “act_sec_tech_to_poll”. This table will replace the “act_sec_tech”
table. Through transposing the pollutants from table columns to values in rows
of one column, the table now has more rows, but through purposeful indexing the
access time to data stored within the table can be improved.

What is more important than access time, is the fact that the allowed activity/-
sector/technology/pollutant combinations can now be easily referenced by other
tables. This possibility will play an important role for the next step, namely the re-

CHAPTER 4. IMPLEMENTATION

45

[EACT_SEC {rains_data)

. el a] % | 2] 2] ACT_SEC_TECH_ALL_FK!

ACT_SEC_TECH ALL_FKZ % A

EHTECH (rains_data) A
Bl o] # | 2] 2]

#X A IDTECH
IDTECH_TYPE

T #k A IDACT
#3K A IDSEC

B] # [2] 3]

ACT_SEC_TECH_ALL (rains_data)

A LABEL_TECH
£ TECH_FIDi1

#k A IDACT
! ! #3% A IDSEC
#k A IDTECH
k75 EMISS_FACTOR

kT COBT_FACTOR
K Ty IMPL_RATE

ACT_SEC TECH TO_POLL FK1

EACT_SEC_TECGH_ALL_IDK1
EHACT_SEC_TECH_ALL_FIDK1
HACT_SEC_TECH_ALL_IDX2
FACT_SEC_TECH_ALL_FIDX2
FACT_SEC_TECH_ALL_IDX3

IS FK4

T_SEC_TRANS_CONTROL _Fi{

T_SEC_TRANS CONTROL_FiK2

ACT_SEC_ 3

Figure 4.9: Structure of the “act_sec_tech_all” table in “rains_data”

Ak AR

@ACT_SEC_TECH_ALL (rains_data)
B A S|
#3k A IDACT

#% A IDSEC
#% A IDTECH

ACT SEC_TECH TO_FOLL_FK{

X 75 EMISS_FACTOR
X s COST_FACTOR
X s IMPL_RATE

ACT_SEC_TECH_T0_poLi_pkz GIPOLLUTANTS (rains_data)

HHACT_SEC_TECH_ALL_IDX1
HHACT_SEC_TECH_ALL_FIDX1
HHACT_SEC_TECH_ALL_IDX2
HHACT_SEC_TECH_ALL_FIDX2
SHACT_SEC_TECH_ALL_IDX3

\EACT_SEC_TECH_TO_POLL (rains_data)

e o [2] 2] -

#k A IDACT

#k A IDSEC

#k A IDTECH

#% A IDPOLLUTANTS

8 ACT_SEC_TECH_TO_POLL_FIDXZ
#HACT_SEC_TECH_TO_POLL_FIDX1

EHACT_SEC_TECH_TO_POLL_IDX2

EHACT_SEC_TECH_TO_POLL_IDX1

B o] = [2]
#k A IDPOLLUTANTS
* A LABEL_POLLUTANT
X 7 COST_PRIORITY
2, POLLUTANTS_UK1

Figure 4.10: Structure of the “act_sec_tech_to_poll” table in “rains_data”

AN N AW =

CHAPTER 4. IMPLEMENTATION 46

structuring of emission vector-related data that will be discussed in section 4.3.3.

Referential Integrity through Materialized Views

As mentioned in the previous section available activity/sector/technology combi-
nations are used for different purposes. The above mentioned tables cannot assure
referential integrity for all purposes. One possibility would be to create a new
table for every needed purpose. This solution would lead to additional manual
synchronization efforts, since the relation between abatement options and pollu-
tants is the same independent of the purpose.

As already mentioned in section 4.2.1 foreign keys cannot only point to tables,
but also to mviews. The structure of the SQL command for selecting the emission
factor-relevant combinations (listing 4.8 line no. 5 and below) is fairly simple and
therefore suitable for selecting data for a fast refreshing mview.

The command to retrieve the abatement options needed for cost factors is
shown in listings 4.9. The command to retrieve implementation rate-relevant op-
tions looks the same, except for the flag in line no. 7. The difference between
these commands and the command in listing 4.9, is that abated emission factors
are pollutant specific, whereas cost factors and implementation rates of abatement
options are not. Nevertheless it has to be assured that only options are selected
that are assigned to at least one pollutant in table “act_sec_tech_to_poll”.

To be able to create the fast refreshing view, mview logs have to be created
on the tables used in the underlying query. The command to create a log on
the “act_sec_tech_all” table is shown in listing 4.7. Since the “emiss_factor” col-
umn is used in the subquery to filter combinations, the log has to be created not
only with a ROWID and PRIMARY KEY option, but also with the SEQUENCE
option on the columns used to filter the abatement options. The mview log on
the “act_sec_tech_to_poll” table has to be created accordingly, except for the SE-
QUENCE option that is not needed.

Listing 4.7: Create command for mview log on “act_sec_tech_all”

CREATE MATERIALIZED VIEW LOG ON act_sec_tech_all
WITH
ROWID,
SEQUENCE (emiss_-factor, cost_factor , impl_rate),
PRIMARY KEY
INCLUDING NEW VALUES;

Following this the mview for holding all emission factor relevant abatement

00 NN AW =

— e
A WO = OO

CHAPTER 4. IMPLEMENTATION 47

options should be created as shown in listing 4.8.

Listing 4.8: Activity/sector/technology/pollutant combinations relevant for emis-
sion factors

CREATE MATERIALIZED VIEW act_sec_tech_emiss_mv
REFRESH FAST ON COMMIT
ENABLE QUERY REWRITE
AS
SELECT idact, idsec, idtech, idpollutants
FROM rains_data.act_sec_tech_to_poll astp
WHERE EXISTS (

SELECT 1
FROM rains_data.act_sec_tech_all ast
WHERE ast.idact = astp.idact

AND ast.idsec
AND ast.idtech
AND ast.emiss_factor

)

astp .idsec
astp.idtech
1

Listing 4.9: Activity/sector/technology/pollutant combinations relevant for cost
factors

CREATE MATERIALIZED VIEW act_sec_tech_cost_mv
REFRESH FAST ON COMMIT
ENABLE QUERY REWRITE
AS
SELECT idact, idsec, idtech
FROM rains_data.act_sec_tech_all ast
WHERE cost_factor = 1
AND EXISTS (
SELECT 1
FROM rains_data.act_sec_-tech_to_poll astp
WHERE astp.idact = ast.idact
AND astp.idsec = ast.idsec
AND astp.idtech = ast.idtech
)3

How these mviews are used to assure referential consistency within the emis-
sion and cost factors, as well as the implementation rates of abatement options,
will be discussed in later sections.

Consistency and Completeness of Data

Also within the “act_sec_tech_to_pollutant” table itself, completeness of data can
be checked easier. An example is the check for completeness of activity/sector/-
NOC-technology combinations. One of the conclusions that has to be drawn
from the definition of the NOC technologies in section 2.3.2, is the fact that if

0 NN NN~

[—
N - O O

0NN BN =

DO DD = = s e e s e
— O 0 0NN R WD = OO

CHAPTER 4. IMPLEMENTATION 48

an activity/sector/technology combination exists for a given pollutant, also an
activity/sector/NOC-technology combination has to exist. This requirement can-
not be guaranteed by a database constraint, but it can be checked with the SQL
command shown in listing 4.10.

Listing 4.10: Check of activity/sector/NOC-technology combinations

SELECT =«
FROM act_sec_tech_to_poll astp
WHERE astp.idtech != 'NOC’

AND astp.idact NOT LIKE ‘9NV’
AND NOT EXISTS (

SELECT 1

FROM act_sec_tech_to_poll noc
WHERE noc.idact = astp.idact
AND noc.idsec = astp.idsec
AND noc.idtech = 'NOC’

AND noc.idpollutants = astp.idpollutants

Another definition that can be checked through an SQL command, is the fact
that an NSC technology can only set a minimum NOC implementation rate for
a pollutant to which a NOC technology is assigned for the same activity/sector
combination. In addition each NOC technology can only be controlled by, at most,
one NSC technology. These requirements can be checked with the command
shown in listing 4.11.

Listing 4.11: Check of activity/sector/NSC-technology combinations

SELECT =«
FROM act_sec_tech_to_poll astp
WHERE astp .idtech LIKE °NSC%’
AND astp.idact NOT LIKE ’9NV’
AND (NOT EXISTS (
— check for not existing NOC option

SELECT 1
FROM act_sec_tech_to_poll noc
WHERE noc.idact = astp.idact
AND noc.idsec = astp.idsec
AND noc.idtech = 'NOC’
AND noc.idpollutants = astp.idpollutants
) OR EXISTS (
— check for multiple NSC to pollutant assignments
SELECT 1

FROM act_sec_tech_to_poll nsc
WHERE nsc.idact = astp.idact

AND nsc.idsec = astp.idsec

AND nsc.idtech LIKE ’*NSC%’

GROUP BY idact, idsec, idpollutants
HAVING COUNT(nsc.idtech) > 1

CHAPTER 4. IMPLEMENTATION 49

22’));

4.3.3 Emission Vector Related Data

As already mentioned, the amount of data related to one emission vector is very
large. What makes management of the data even harder, is the fact that it is spread
across many tables. Furthermore the fact, that there is no single table holding a
list of all available vectors makes the analysis of the database structure even more
complicated. Therefore the list of all emission vector related tables cannot be
retrieved by finding all referential constraints pointing to one table.

Finding Tables Holding Vector Related Data

The first step of analysis of the underlying data is finding the relevant database
tables. As already mentioned in section 3.2.1, there are two types of emission
vectors: Version and user specific. The list of available data versions is stored in
the table “versions”, whereas all users that can log in to an application version
running on a given database schema, are stored in the table “login”.

By looking at these two tables, an analysis of tables referencing them can be
started. Since a rough estimation reveals that about 120 tables are referencing
them with referential constraints, more detailed information about the tables has
to be gathered. Listing 4.12 shows an SQL command that retrieves information
about database tables having referential constraints to table “versions”. The same
command can be executed for tables referencing the table “login”.

Listing 4.12: Tables having referential constraints to table “versions”

1| SELECT fk.owner, fk.table_name, fk.constraint_name , fk.delete_rule , t.num_rows,

2 ROWS_TO_STRING (CAST (COLLECT(fc . column_name) AS t_varchar2_column), ’, ’) AS
fk_cols ,

3 ROWS_TO_STRING (CAST (COLLECT(lpad (pc . position , 2, "0) || *: ~ ||

4 pc.column_name) AS t_varchar2_column), ’, ’) AS pk_cols,

5| ROWS_TOSTRING (CAST(COLLECT(lpad (tc.column_id, 2, *0’) || *: * ||

6 tc.column_name) AS t_varchar2_column), ’, ’) AS tab_cols

7|FROM user_constraints fk

8 JOIN user_tables t ON (

9 t.table_name = fk.table_name)

10 JOIN user_cons_columns fc ON (

11 fc.constraint_.name = fk.constraint_name)

12 JOIN user_tab_columns tc ON (

13 tc.table_.name = fk.table_name)

14| LEFT JOIN user_constraints p ON (

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

CHAPTER 4. IMPLEMENTATION 50

p.table_name fk .table_name

AND p.constraint_type 'P’)
LEFT JOIN user_cons_columns pc ON (
pc.constraint_name = p.constraint_-name)
WHERE fk.constraint_type = 'R’
AND EXISTS (
SELECT 1
FROM user_constraints t
WHERE t.constraint_-name = fk.r_constraint_-name
AND t.owner = UPPER(’'rains_europe’)
AND t.table_name = UPPER(’versions)
)
—AND t.num_rows = 0
GROUP BY fk.owner, fk.table_name, fk.constraint_.name , fk.delete_rule , t.num_rows

ORDER fk .owner, fk.table_name, fk.constraint_name;

The command is based on Oracle’s “Data Dictionary Views” (Oracle Data
Dictionary Views, 2002). It retrieves information about the referential constraints
and primary key constraints from the “user_constraints” view (type “R” and “P”).
Information about the columns of the constraints can be retrieved from the
“user_cons_columns” view, and information about the table columns can be re-
trieved from the view “user_tab_columns”. Another interesting question for the
analysis is, how many rows each of the referencing tables has. This information
can be retrieved from the “num_rows” column of the “user_tables” view.

To be able to analyze the retrieved information more easily, the columns of
each of the tables, primary and foreign keys are transposed into a comma separated
string with the PL/SQL function “rows_to_string”. Although it is a custom-made
and not Oracle standard function, discussion of this is beyond the scope of this
paper.

A combination of the lists of tables referencing both the “versions” and the “lo-
gin” has to be filtered further. It also contains, for example, the tables “path_abb”
(mentioned in section 2.3.3) and “cons_n” (mentioned in section 2.3.4) to main-
tain referential integrity between these entities and their owners. Furthermore the
list does not contain some of the emission vector related tables, because a needed
constraint was not set.

To gather more information for analysis of the tables the already mentioned
initialization process of the emission vector has to be analyzed in detail. The
initialization contains a set of SQL commands for every pollutant, and the amount
of queries depends on the pollutant. All together around 140 SQL commands have
to be analyzed.

By looking at the queries, two types of tables can be identified. First, tables

CHAPTER 4. IMPLEMENTATION 51

EMIVEC_TABLES_COPY {rains_europe
BH| nfes] # | 2] 31>

#XK A TABLE_MAME

EMIVEC_TABLES {rains_europe)

Flled e (212 EMIVEC _TABLES COPY _FK{ Y
2 il

EMIVEC TABLES INIT_FiKZ
#3K A TABLE_NAME K

EMIVEC_TABLES_INIT (rains_europe)
]] % | 2] 2] -]

I #3k A POLLUTANT

EMIVEC. TABLES INIT_Fi 1|
#2k A TABLE_MAME_SOURCE

Figure 4.11: Temporary tables for emission vector analysis

holding input data for the emission vectors: Data stored in these tables is uploaded
by experts. This data is then joined during the initialization process to retrieve
data stored in output tables. The result of the manual analysis of commands is
stored in the table “emivec_tables_init” as shown in figure 4.11. The table holds
information about which table provides underlying data for which table for each
of the pollutants for which an initialization can be triggered.

Another source of information retrieval is a script that was written to manually
create a new emission vector. This script steps through a list of tables, selects data
related to a given emission vector stored in this table, and copies it to the same
table, but for a different vector. The results of the analysis of this script are stored
in table “emivec_tables_copy” shown in figure 4.11.

By merging all the different names of database tables stored in the two previ-
ously mentioned tables, a list of all tables can be retrieved. This list is stored in
table “emivec_tables” allowing the possibility to combine the results of the manual
analysis with the results of the analysis of referential constraints. This combina-
tion leads to a list of 79 tables that hold vector specific data. It also reveals that
two tables, namely “housing” and “amoemvec_n” were neither referencing the
“login” nor the “versions” table. During the search process another ten tables
could be identified as spare and were deleted from the system because they are
not used anymore.

CHAPTER 4. IMPLEMENTATION 52

EMISS_VECTORS _FK1
e

s ™~
B|USERS_MV (rains_europe) / A
= e e EMISS_VECTORS {rains_europe
= Sllen]] 2]
¥ A NAME
% IDEMISS_VECTORS
e | Ewios VECTORS FK2 "8 A maetvecton
¥ A PASSWORD O A OWNER_YECTOR
O A ACTIVATED % A DESC_VECTOR
O A ACTWATION_CODE ¥ ™s BHARE_PUBLIC
O A LOGGED N ¥ s LOCKED
EMISS VECTOR_TO USER_FK EMISS_VECTOR_TO USER_FK{

_|EMIISS \/ECTOR _TO_USER (rains_europe
E EE":I * ol 2] =

#% A IDEMISS_VECTORS
#% A IDUSERS

X 78 READ

K e WRITE

1 EMISS_VECTOR_TO_USER_FID®2
1 EMISS_VECTOR_TO_USER_FIDX1

Figure 4.12: Tables for listing of emission vectors and user access to them

Creating a New Data Structure

As already mentioned, one of the origins of the modelling problem is the lack of
a central table holding a list of emission vectors. This table has to satisfy both the
version vector and the user vector constraint. As you can see from figure 4.12 the
new table “emiss_vectors” satisfies this requirements.

Beside the unique name, each of the vectors can also have a “parent_vector”.
For user specific vectors another vector can be assigned to provide data where the
user is not able to provide them for her/his vector. In this case the owner of the
vector has to be assigned. For version specific vectors, no owner is defined. The
constraint on the owner column references the “users_mv” mview that deploys the
list of users stored in the “rains_web” schema to the regional schemas.

Another modelling request that might be implemented in the future because of
the new table structure is that also a version vector is only defined partially. Imag-
ine the following example: Starting from a given version vector, there is a need
to change only a small percentage of values to satisfy the modelling requirements

—_

00 N AN N kW

CHAPTER 4. IMPLEMENTATION 53

for a new generation of scenarios. Copying the complete vector just for a couple
of new values does not seem to be justifiable. In this case it would be possible to
specify a parent vector for a version emission vector, use only the few new val-
ues from this vector, and fill up the rest of the values with values from the parent
vector.

For user-specific vectors the access to the vector by other users is determined
by access rules mentioned in section 2.5.3. For version vectors the read access is
granted to all users through the “share_public” flag or through using the vector in
a scenario that is made public (as mentioned in sections 2.4.1 and 2.4.2). Write
access to a version vector is only granted if the vector is not locked. Locking a
vector is important to provide consistency in scenario results after they have been
published.

During the development phase of a vector it is important to grant write access
to more than one user. Because of the multifaceted nature of the vector data has to
be provided by many experts. Sometimes it is necessary to only grant read access
so that certain users can only read and give feedback, but not change any values.
The management of user access is done based on the “emiss_vector_to_user” table
shown in figure 4.12. Read and write access of single users to selected emission
vectors can be done by setting flags in the “read” and “write” columns.

Redirecting Referential Constraints

After creating the table which holds the list of available emission vectors, the
references of the tables identified in section 4.3.3 have to be redirected. Since
constraints of 79 tables have to be changed, an automated process is preferable.
As already mentioned, a list of these tables is stored in the “emivec_tables” table.
Therefore an SQL command can be written to build the commands necessary for
altering the tables. This command is shown in listing 4.13.

Listing 4.13: Generating commands to alter constraints on vector related tables

SELECT f.table_name , f.constraint_.name , f.fk_cols, 1 AS step,
"ALTER TABLE ° || t.table_name || ° DROP CONSTRAINT ° || LOWER(f.
constraint-name) || ’;’ AS command
FROM emivec_tables t
JOIN emivec_tables_potential f ON (
UPPER(f . table_name) = UPPER(t.table_name))
UNION ALL
SELECT f.table_name , f.constraint_-name , f.fk_cols, 2 AS step,
"ALTER TABLE ° || t.table_name || ° ADD CONSTRAINT ’ || LOWER(f.constraint_.name
)

CHAPTER 4. IMPLEMENTATION 54

9 || * FOREIGN KEY (’ || LOWER(fk-cols) || ’) REFERENCES emiss_vectors (
idemiss_vectors) ON DELETE CASCADE;’ AS command

10{FROM emivec_tables t

11 JOIN emivec_tables_potential f ON (

12 UPPER(f.table_name) = UPPER(t.table_name))

13|ORDER BY step , table_name;

Information about the names of constraints and the names of columns the con-
straints have to be created on, is dynamically retrieved from the “emivec_tables_po-
tential” table. This table holds the results of the referential constraint analysis on
the “login” and “version” tables retrieved by the SQL command in listing 4.12.

The results of the command in listing 4.13 can be exported to Microsoft Excel,
where the columns not further necessary can be easily eliminated. The list of SQL
commands can then be copied back to the SQL tool and executed. During the re-
creation of the constraints, remains of emission vectors that are not meant to be
in the database any more, may be discovered in some of the tables. Since the
referential constraints are created to cascade upon a delete, the easiest way to
cope with this problem is to create the appropriate vectors in the “emiss_vectors”
tables. After all constraints have been successfully re-established, vectors that
are no longer used can be deleted and related data is eliminated by the cascading
referential constraints.

Emission Factors and Removal Efficiencies

As mentioned in section 4.3.3 the analysis of vector related tables also included
the analysis of the initialization process. This process was already also mentioned
in section 2.3.5 when discussing the emission factors and removal efficiencies. For
each pollutant the removal efficiencies and emission factors are stored in separate
tables. These tables are the main target of data generated by the initialization. An
analysis of the process reveals that the tables are not only named inconsistently,
but also the way in which the emission calculation is done varies between the
pollutants.

As mentioned in equation 2.1 emissions of the RAINS model are calculated
based on emission factors and removal efficiencies. But the results of the analysis
presented in table 4.1 reveal that for some pollutants there are no removal efficien-
cies, but only emission factors. What can also be seen from the table is the fact,
that for PM the emission calculation is divided by fractions of PM.

The reason why removal efficiencies are missing for CHy4, CO,, N,O, and

CHAPTER 4. IMPLEMENTATION 55

Pollutant | Fraction | Factor Table | Rem. Eff. Table
CH,4 CH,4 emiv_ch4 (*) | —

CO, COs co2emvec (*) | —

FGAS FGAS emiv_fgas emiv_fgasr
N->O N,O emiv_n2o (*) | —

NH; NH; emivec_a (*) | —

NO, NO, emivec_n emivec_nr
PM PM,; 5 emiv_fin emiv_fir
PM PM;, emiv_pl0 emiv_10r
PM PMrygp | emiv_tsp emiv_tsr
PM PM; emiv_pml emiv_plr
PM PMpgc emiv_bc emiv_bcr
PM PMoc emiv_oc emiv_ocr
SO, SO, emivec_s emivec_sr
VOC vOC emiv_voc emiv_vor

Table 4.1: Tables used for storing emission factors and removal efficiencies

NHjs, is the fact that for these pollutants the formula to calculate emissions (equa-
tion 2.1) was slightly adapted (Wagner et al., 2007):

abated
Epﬂmvy = Z Ep7rzavs’t7y = Z Arvaﬁsvy ’ XT:G,SJLyy e p,T’,(l,S,t (4'1)
a,s,t a,s,t
where
bated __
efprast = €pras (1= 1Tprass)

Since for CH,, CO,, N,O, and NH; the “abated” emission factors (e I’}%eft
are calculated and stored directly, the removal efficiencies are not needed any-
more. The reason for this approach was that the abated emission factors can be
measured, whereas the unabated emission factors and removal efficiencies have to
be calculated from the measures that can be practically gathered.

To achieve consistency in the emissions calculation between the pollutants, the
calculation should be based on equation 4.1 for all pollutants. Since the abated
emission factors can be retrieved through a simple multiplication from the un-
abated emission factors and the removal efficiencies and both values are calculated

during the initialization process, this change can be introduced quite easily.

I

N =

~

CHAPTER 4. IMPLEMENTATION 56

The second goal that has to be achieved when redesigning the data structure
of emission vector related data is the consistency of the data. The activity/sector
combinations of unabated emission factors and activity/sector/technology combi-
nations of removal efficiencies and abated emission factors available for a pol-
lutant have to be consistent with the assignment of activity/sector/technology to
pollutants defined in “act_sec_tech_to_poll” as mentioned in section 4.3.2.

As shown in figure 4.13 the new tables are extended by the “idpollutant_frac-
tions” and the “pollutant” column. Of course the relation of a pollutant fraction to
a pollutant is known and its storage in these tables is redundant, but it is necessary
to assure referential integrity. Since the activity/sector/technology combinations
are defined by pollutant and not by pollutant fraction, the referential constraint
cannot be set on the “pollutant_fractions” column.

Another structural redundancy that can be observed in the tables shown in
figure 4.13 is the “act_type” column. The reason for this redundancy is that this
column is crucial for emission calculations done based on these tables. Since the
data in the tables is precalculated anyway during the initialization process it seems
to be reasonable to store this redundant information to save query runtime by not
having to join the tables to the “sec” table in “rains_data”.

After the tables are created, they have to be filled with data from the tables
listed in table 4.1. The SQL commands for retrieving the unabated emission fac-
tors and removal efficiencies for NO, are shown in listings 4.14 and 4.15. For
the other pollutants which have unabated emission factors the queries are adapted
accordingly.

Listing 4.14: Command to retrieve unabated emission factors for NO,

INSERT INTO emiss_factors

(idemiss_vectors , idregions, idpollutant_fractions , pollutant, idact, idsec,
act_type , factor)

SELECT owner, region, ’NOX’, °NOX’, act_abb, sec_abb, act_type, eemf

FROM emivec_n;

Listing 4.15: Command to retrieve removal efficiencies for NO,

INSERT INTO emiss_remeffs

(idemiss_vectors , idregions , idpollutant_fractions , pollutant, idact, idsec,
idtech , act_type, remeff)

SELECT owner, region, ’NOX’, °NOX’, act_abb, sec_abb, tech_abb, act_type, remeff

FROM emivec_nr;

In the next step the abated emission factors can be retrieved. As already men-
tioned for CH,4, CO,, N2O, and NHj3 they can be copied from the tables listed in

CHAPTER 4. IMPLEMENTATION

57

EMISS_VECTORS_FKT
i

27N

{ }\ EMISS REMEFFS FiKA
EMISS_\/ECTORS {rains_europe)

57) N e e

H**

#3K A IDEMISS_VECTORS
o A PARENT_VECTOR
o A OWNER_VECTOR
X A DESC_VECTOR
¥ T SHARE_PUBLIC
X e LOCKED
o
i
=
=]
<L
o)
g
2
O
=T ;
L-kl EMISS_FACTORS_ABTD {rains_europe
@ |] |2 2]~
E #3k A IDEMISS_VECTORS
#3k A IDREGIONS
#3k A IDPOLLUTANT_FRACTIONS
X A POLLUTANT
#3k A IDACT
#3k A IDSEC
#3k A IDTECH
*x A ACT_TYPE
Xk Peg FACTOR_ABTD

EMISS_REMEFFS {rains_europe)

Efe] = 2] 2]>]

A IDEMISS_WECTORS
#3XK A IDREGIONS
#k A IDPOLLUTANT_FRACTIONS
X A POLLUTANT
#3k A IDACT
#% A IDSEC
#XK A IDTECH
* A ACT_TYPE
ke REMEFF

EMISE_REMEFFS_FIDK1
i EMISS_REMEFFS_FIDK3
EMISE_REMEFFS_FID®2
1 EMISS_REMEFFS_FID®4

EMISS_FACTORS FK{ EMISS_FACTORS {rains_europe)

51 B i e L

#3k A IDEMISS_VECTORS

#%k A IDREGIONS

#3k A IDPOLLUTANT_FRACTIONS
X A POLLUTANT

#K A IDACT

#3k A IDSEC
X A ACT_TYPE
X 7es FACTOR

I EMISS_FACTORS_FIDX4
I EMISE_FACTORS_FIDK3
1 EMISS_FACTORS_FIDK2
] EMISS_FACTORS_FIDK1

A EMISS_FACTORS_ABTD_FIDK2
A EMISS_FACTORS_ABTD_FIDK3
1 EMISS_FACTORS_ABTD_FIDK1
A EMISS_FACTORS_ABTD_FIDK4

Figure 4.13: Database tables holding emission factors and removal efficiencies

E VS I S

0 3 N W

11
12
13
14
15
16

CHAPTER 4. IMPLEMENTATION 58

table 4.1, whereas for the other pollutant they have to be calculated from the two
just mentioned tables according to equation 4.1. This formula can be written in
SQL as a UNION statement as shown in listing 4.16.

Listing 4.16: Command to retrieve abated emission factors

INSERT INTO emiss_factors_abtd
(idemiss_vectors , idregions , idpollutant_fractions , pollutant,
idact , idsec, idtech, act_type, factor_abtd)
SELECT idemiss_vectors , idregions, idpollutant_fractions , pollutant, idact, idsec
’NOC’ AS idtech, act_type, factor AS factor_abtd
FROM emiss_factors
UNION
SELECT f.idemiss_vectors , f.idregions, f.idpollutant_fractions , f.pollutant,
f.idact, f.idsec, r.idtech, f.act_type,
f.factor*x(l.—r.remeff/100) AS factor_abtd
FROM emiss_factors f
JOIN emiss_remeffs r ON (
r.idemiss_vectors
AND r.idpollutant_fractions

.idemiss_vectors
.idpollutant_fractions

mn 1w nn
—h =h Hh o —h

AND r.idregions .idregions
AND r.idact .idact
AND r.idsec .idsec);

As shown in the first part of the UNION command, all unabated emission fac-
tors are joined with the “NOC” technology. As already explained in section 2.3.2,
this special technology has a removal efficiency of zero by definition. Therefore
the unabated emission factor equals the abated emission factor. In the second part
the abated emission factor is calculated from the abated emission factors and the
removal efficiencies as stated in equations 2.1 and 4.1.

In theory the statement could be written as an UNION ALL statement because
of the runtime benefits mentioned in section 4.1.3 since the results of both parts of
the command should not overlap. In fact the two parts of the query can intersect
because the “emiss_remeff” contains removal efficiencies for NOC technologies
although it should not. If this inconsistency in modelling leads to inconsistent
results in terms of abated emission factors, the UNION would produce multiple
abated factors for the same primary key column combination. This in turn would
lead to an SQL error upon inserting these wrong factors into the database and the
error would be discovered. Fortunately it turns out upon importing, that although
there is an inconsistency in modelling of data, it does not lead to wrong abated
emission factors.

CHAPTER 4. IMPLEMENTATION 59

 @IREGIONS_MV (rains_europe)

2 =

[Emm— gr(iz_‘gElgTTEICH_EM\SS_Mv (rains_europe)

LABEL_REGION £ 12 K et

PARENT_REGION [EEMISS_FACTORS_ABTD (rains_europe)
5] e 0] 207

#* %
= EMISS_FACTORS_ABTD_Frg, _ Blade #]a]o| EMISS_FACTORS_ABTD_FK4 | % %
e = % IDEMISS_VECTORS X
= IDREGIONS. Lin23
DPOLLUTANT_FRACTIONS
POLLUTANT
ACT
sl [BISEC_MV (rains_surope)
IDTECH o 2 K3 Py
“% A DPOLLUTANT FRACTIONS AcT_TvPE EMISS_FACTORS_ABTD FK5

3 S ABTD_
8 s | eviss proroms neo Fs, . K A NI WUSSFICIORS SO NG g n e
K A LABEL_POLL FRACTION 2 -
X 78 'ORDER_FRACTION ol SEC_UK1
2, POLLUTANT_FRACTIONS_UK1

®

A pacT
A ipsEc
A IDTECH

A IDPOLLUTANTS

O %% O % %
EEE T

BPOLLUTANT_FRACTIONS_MV (rains_europe) K
o] # 7 2] * Xk

PrPPPrPP

Figure 4.14: Foreign key constraints on table “emiss_factors_abtd”

Consistency of Emission Vector Related Data

As already mentioned the consistency of data within the emission vector tables is
very important for the correct emission calculation. With the new structure of the
initialization related output tables, the requirement of data consistency can now
be guaranteed.

As shown in figure 4.14 the “emiss_factors_abtd” table references four mviews,
namely “regions_mv”’ (already discussed in section 4.3.1), “pollutant_fractions_mv”
(holding all pollutant fractions defined in “rains_data”), “sec_mv” (holding all
GAINS sectors and the assigned activity types defined in “rains_data”), and
“act_sec_tech_emiss_mv” (already discussed in section 4.3.2).

Upon the step of creating the mentioned referential constraints, many incon-
sistencies in the defined abatement options were discovered. These options were
eliminated from the “emiss_factors_abtd” table. After setting the referential con-
straints, such inconsistencies will not occur any more.

Similar considerations have to be taken into account when creating the refer-
ential constraints for cost factors. The only difference is the fact that cost factors
are not pollutant specific as already mentioned in section 2.3.5.

Completeness of Emission Vector Related Data

As mentioned in section 2.3.5 it is very important to understand that incomplete
emission vectors can lead to errors in emission and cost calculation done by the
GAINS model. Other than data integrity, completeness of data cannot be checked
by database constraints. Therefore the application can only give different views
indicating where data is missing.

The following examples of such checks and views are presented for abated

0N AN N AW =

—
W N = OO

CHAPTER 4. IMPLEMENTATION 60

emission factors. Similar routines can be run for checking the unabated emis-
sions factors and removal efficiencies, as well as cost factors. What also has to be
noted, is the fact that such checks would have to be done for every pollutant in-
dependently if the emission factors were not stored in one table, but in a seperate
table for each pollutant, as before the restructuring.

The first check shall give an overview, of whether emission vectors exist that
do not have any factors defined for a given pollutant and whether such vectors
are used in any of the currently available scenarios. As shown in listing 4.17 the
command uses all available pollutants, and fractions and the scenario structure to
retrieve the needed data.

Listing 4.17: Incomplete but used emission vectors

SELECT DISTINCT v.idemiss_vectors ,

COUNT(DISTINCT p.pollutant), COUNT(DISTINCT s.scen)
FROM pollutant_fractions.mv p, emiss_vectors V

JOIN scenario_n s ON (

s.emv_owner = v.idemiss_vectors)
WHERE NOT EXISTS (
SELECT 1
FROM emiss_factors_abtd f

WHERE f.idemiss_vectors = v.idemiss_vectors

AND f.idpollutant_fractions = p.idpollutant_fractions
)
GROUP BY v.idemiss_vectors
ORDER BY 1, 2;

Already this first and sketchy test shows that five out of the eight currently
available emission vectors are not available for at least one pollutant at all. Emis-
sions calculations for the missing pollutants of the scenarios in which these vectors
are used, will always return no result rows because of the missing factors. Such
a matter of fact is of course not desired in terms of usability of the model, but
the lack of the calculation results can be easily interpreted and is not misleading.
Although not presented in this paper, a similar check can be run to analyze which
regions are completely missing within which emission vector.

The next check shall give an overview of the amount of abatement options
given for the defined emission vectors in each region. In the first step a view
is created to hold the amount of activity/sector/technology combinations defined
within all available vectors for all given regions and pollutants (first subselect
starting in line no. 3 and following of listing 4.18) and the amount of needed
combinations (line no. 9 and following).

1
1
1

—_

CHAPTER 4. IMPLEMENTATION 61

Listing 4.18: Amount of abatement options per vector, pollutant and region

1| CREATE OR REPLACE VIEW emiss_factors_abtd_by_region AS

2| SELECT v.idemiss_vectors , p.idpollutant_fractions , r.idregions,
3 NVL ((SELECT COUNT ()

4 FROM emiss_factors_abtd f

5 WHERE f.idemiss_vectors = v.idemiss_vectors

6 AND f.idpollutant_fractions = p.idpollutant_fractions

7 AND f.idregions = r.idregions

8 GROUP BY f.idpollutant_fractions , f.idemiss_vectors),0) AS amount_def,
9 (SELECT COUNT ()

0 FROM act_sec_tech_emiss_mv ast

1 WHERE ast.idpollutants = p.pollutant

2 GROUP BY ast.idpollutants) AS amount_needed

3|FROM emiss_vectors v, pollutant_fractions_.mv p, regions_.mv r;

This check is only run for the regions, which exist within a given emission
vector. As shown this condition can be kept if only vector, region and pollutant
fraction combinations are taken into account where at least one combination is
assigned. Before making the next step of this check routine, abatement options of
all of the just mentioned combinations will be eliminated, where less than 10% of
the needed options are defined (listing 4.19). It is reasonable to remove the com-
binations because it can be assumed that such mavericks must have been created
by mistake during the initialization process or manual copying.

Listing 4.19: Remove factor combinations of initialization mavericks

AND r.idpollutant_fractions = f.idpollutant_fractions

1| DELETE FROM emiss_factors_abtd f

2| WHERE EXISTS (

3 SELECT 1

4 FROM emiss_factors_abtd_by_region r

5 WHERE amount_def > 0

6 AND (amount_def/amount_needed)*100 < 10;

7 AND r.idemiss_vectors = f.idemiss_vectors
8 AND r.idregions = f.idregions

9

0

Now the completeness of the remaining emission factors can be checked as
shown in listing 4.20. Line no. 6 can be commented in, and the comparison
changed to view either all vector/pollutant fraction sets, incomplete, or complete
ones.

Listing 4.20: Percentage of missing emission factors

1| SELECT f.idemiss_vectors , idpollutant_fractions ,

2 ROUND(AVG(100 —(amount_def/amount_needed)*100) ,2) AS perc_missing
3|FROM emiss_factors_abtd_by_region f

4|WHERE amount_def > 0

CHAPTER 4. IMPLEMENTATION 62

5|GROUP BY idemiss_vectors , idpollutant_fractions

6

—HAVING AVG(100—(amount_def/amount_needed)*100) != 0

7/ORDER BY 1, 2;

AN N AW =

10
11
12
13
14
15
16
17
18
19
20

It becomes apparent from the results retrieved by this command that only a
small percentage of emission vectors is complete even for a single pollutant. The
amount of missing emission factors may be very small for some of the vectors and
pollutant fractions, but since it cannot be forgotten that the emission vector has to
be complete, even a single missing factor can potentially lead to wrong emission
calculations.

Therefore the next step of the analysis aims at finding all missing emission
factors. Because of the long runtime of the query, the results are stored in a table
(as shown in listing 4.21) so that further steps based on these results can be done
faster.

Listing 4.21: Abatement options for which emission factors are missing

CREATE TABLE emiss_factors_abtd_fill_up AS
SELECT r.idemiss_vectors , r.idregions ,
r.idpollutant_fractions , ast.idpollutants AS pollutant,
ast.idact, ast.idsec, ast.idtech, s.idsec_type AS act_type
FROM act_sec_tech_emiss_mv ast
JOIN (SELECT DISTINCT idemiss_-vectors , idregions, idpollutant_fractions ,
pollutant
FROM emiss_factors_abtd) r ON (
r.pollutant = ast.idpollutants)
JOIN rains_data.sec s ON (
s.idsec = ast.idsec)
WHERE NOT EXISTS (
SELECT 1
FROM emiss_factors_abtd f
WHERE f.idemiss_vectors = r.idemiss_vectors
AND f.idregions = r.idregions
AND f.idpollutant_fractions = r.idpollutant_fractions
AND f.idact = ast.idact
AND f.idsec = ast.idsec
AND f.idtech = ast.idtech
)

A quick COUNT(*) on both the “emiss_factors_abtd_fill_up” and “‘emiss_fac-
tors_abtd” reveals that around 290.000 combinations have to be filled up compared
to around 2.300.000 that are already defined. This means that more than 10% of
needed emission factors are missing although the analysis takes only vector/pol-
lutant/region combinations into account for which at least one emission factor is
already defined.

The reasons for such a high “incompleteness” rate are various. First, complete-

—_

AN L B W

CHAPTER 4. IMPLEMENTATION 63

ness of the emission factors was never checked in such a systematic way before.
Previosly such a a check has been quite time consuming because it could not been
done by one query, partially because of the former structure of the “act_sec_tech”
table, and partially because of the distribution of the emission factors over many
tables.

Second, the emission vectors were developed over time. The available activ-
ity/sector/technology combinations as well as the assignment of the pollutants to
them changes quite frequently. Since no overview of the missing combinations
was given, the lack of combinations was hard to discover. Some of the missing
combinations can be found in various vectors that are historically dependent on
each other: Since an emission vector is initially created as a copy of an existing
vector, undiscovered holes are also persistent in the new vector.

Third, some of the factors might be missing or be NULL because of the com-
bination of former database tables that allowed NULL values for emission factors,
missing input data and/or mistakes in the initialization process: A mistake in the
initialization process or missing underlying data led to missing combinations or
NULL values of the factors. Since the database structure did not prevent these
values from being stored, the mistakes were not discovered.

Last, but not least, there is also a possibility, that the assignment between the
abatement options and the pollutants within the “act_sec_tech_to_poll” or even the
“act_sec_tech” table might be erroneous.

What has to be noted on the positive side, is the fact that these missing emis-
sion factors do not necessarily lead to mistakes in the emission calculation. They
are errors in the modelling approach because the rule of completeness is not ob-
served, but initially they are only potential mistakes of the model.

To check whether the missing combinations can lead to wrong results in the
emission calculation, it has to be checked in which context in terms of the scenario
definitions the incomplete vector/region combinations are used. This information
can be retrieved according to the SQL command shown in listing 4.22.

Listing 4.22: Missing emission factors affecting calculation

SELECT f.idemiss_vectors, f.idpollutant_fractions , f.pollutant, f.idact, f.idsec,
f.idtech, f.act_type,
ROUND(MAX(a. activity),2) AS activity-max , ROUND(MIN(a. activity) ,2) AS
activity_min ,
ROUND(MAX(c . perc) ,2) AS perc_.max, ROUND(MIN(c.perc) ,2) AS perc_min
FROM scenario-n s
JOIN emiss_factors_abtd_fill_up f ON (
f.idemiss_vectors = s.emv_owner

10
11
12
13
14
15
16
17
18
19
20
21
22
23

CHAPTER 4. IMPLEMENTATION 64

AND f.idregions = s.region
AND f.act_type = s.act_type)

JOIN actpath_trans ON (
a.path_abb s.path_abb
AND a.region s.region
AND a.act_abb_c f.idact
AND a.sec_abb_c f.idsec)

JOIN constr_n ¢ ON

c.con_strat .con_strat

.o = o~ L e

AND c.act_abb = f.idact
AND c.sec_abb = f.idsec
AND c.tech_abb = f.idtech)

WHERE a.activity != 0

AND c.perc 1= 0

GROUP BY f.idemiss_vectors , f.idpollutant_fractions , f.pollutant,
f.idact, f.idsec, f.idtech, f.act_type

ORDER BY 1, 2, 3, 4, 5, 6;

Although around 290.000 emission factors are missing for all vectors to be
complete for the defined regions, the query returns that only around 2.000 of these
missing factors have an impact on the emission calculation. In addition a very high
percentage of these combinations belong to older emission vectors that are rarely
used in the model.

Nevertheless the missing emission factors for the abatement options have to
be provided where needed. As already stated, very similar considerations apply
also to cost factors as to the emission factors.

Conclusions

Although in theory the emission vectors should be complete for all regions and
pollutants, in reality this requirement is not met. Many of the available vectors are
defined only partially, both for regions and pollutants. Adding complete regional
fragments or complete pollutant fragments to the vectors so that it is defined for
all regions and pollutants, is not purposeful in terms of better quality of the results
of the model.

Rather than that, information about the available regions and pollutants should
be provided. Based on this data, the vectors should only be allowed to be used
in scenarios for regions for which data is available. Also, the availability of pol-
lutants for a given emission vector has to be reflected in the display of scenarios.
How this requirement can be modeled and implemented in the interface will be
discussed in more detail in section 4.4.3.

The most important aspect of restructuring the emission vector related data is

CHAPTER 4. IMPLEMENTATION 65

that the emission factors are now stored in only one table for all pollutants. The
positive effects which this has on the emission calculation will be discussed in
4.4.1.

By the clean distinction between complete and partial emission vectors, the
initialization process can also be rewritten to work properly for partial (user-
specific) emission vectors. The significant feature of the model that will allow
users of the interface to create their own emission vectors without necessarily
having the expertise to gather all data on their own, will be discussed in more
detail in section 4.4.2.

4.3.4 Applicabilities

As mentioned in section 3.2.2 the applicabilities are modeled in a very inhomo-
geneous way. This section will show how to achieve more consistency in data
modelling and clean the existing data.

Collecting Applicabilities

Currently the applicabilities are stored in ten different database tables. The first
step of analysis is to copy the data from the various tables into one table (“ap-
plic_collect_all”).

As shown in table 4.2, seven of these database tables are pathway and three
emission vector related. The difference in the amount of available applicabilities
within the tables is very large, two tables are completely empty.

The “applic_nh3” table is the only table, in which the values are not year-
specific. To be able to analyze the values in a common way with all the other
tables, the given applicability rates are assigned to every year available in the
system.

As mentioned in section 3.2.2, applicabilities are maximum application rates.
This is why the activity/sector/technology combinations of the applicabilities have
to be consistent with the definition of available combinations assigned to imple-
mentation rates as discussed in section 4.3.2. Therefore, before further analyzing
the collected data, consistency in terms of allowed abatement options for imple-
mentation rates is checked.

Another check that can be done immediately, is whether any values > 100%
are stored. These values do not need to be analyzed further. Along with the idea

CHAPTER 4. IMPLEMENTATION 66

Purpose | Table name | Type No. records
AGR applic_agr pathway 0
CH, applic_ch4 | pathway 7.056
CROSS | applic_cross | emission vector 13.272
FGAS | applic_fgas | pathway 2.122
N,O applic_n20 | pathway 0
NH; applic.nh3 | emission vector 95.175
NO, appln_n pathway 372.299
PM, ; applfin pathway 4.500
SO, appls_n pathway 235.520
VOC applic_voc | emission vector 268.380

Table 4.2: Database tables holding applicability data

of not storing zero values for implementation rates, applicabilities that are equal
to 100% also do not have to be stored in the database. Out of the around 1.000.000
values listed in table 4.2, around 1/3 can be deleted based on this rule.

Combining Applicabilities Into Sets

After the referential integrity is assured, the applicabilities can be grouped into
sets. This is done by analyzing the scenario structure: The emission vector specific
applicabilities are collected from the vector assigned in the scenario structure for
a given region, the pathway related applicabilities by the assigned pathway.

Since applicabilities are only needed for scenarios for which cost curves can be
displayed, this information from the “scen_master” table, which holds all available
scenarios, is used to narrow down the analysis only for the relevant scenarios.
The pathway related applicabilities are imported as shown in listing 4.23. The
emission vector related values are imported accordingly. Since for now a set is
created for every relevant scenario, the name of the scenario is used to identify
each set.

Listing 4.23: Collecting data for needed applicability sets

1| INSERT INTO applic_set_data_imp
2| (idapplic_sets , path_abb, idregions, idact, idsec, idtech, idyear, applic_value ,

source , table_name)

3| SELECT DISTINCT d.scen, a.path_abb, a.region,

4

a.act_abb, a.sec_abb, a.tech_abb, a.year, a.applic,

CHAPTER 4. IMPLEMENTATION

67

5 a.source, a.table_name

6/FROM scen_master sm

7 JOIN scenario_n d ON (

8 d.scen = sm.scen)

9] JOIN applic_collect_all a ON (
10 a.path_abb = d.path_abb

11 AND d.region = a.region

12 JOIN sec_mv s ON (

13 s.idsec = a.sec_abb
14 AND s.act_type = d.act_type)
15WHERE sm. cost_curves = 1;

The temporary table “applic_set_data_imp” used for import of the data also
stores the information from which of the single tables a given applicability was
copied (columns “source” and “table_name”). After gathering all data for the rel-
evant scenarios, the retrieved values have to be analyzed. Duplicate applicabilities
for the same applicability set, region, abatement option and year can be eliminated
without any further analysis. Inconsistencies in the values have to be analyzed and
a decision made about which value should be kept.

Therefore the next step is to identify the multiple combinations as shown in
listing 4.24. For each unique combination (set, region, act, sec, tech, and year) the
minimum ROWID, as well as the amount of distinct and unique values is stored.

Listing 4.24: Finding multiple values for applicabilities

SELECT idapplic_sets , idregions, idact, idsec, idtech, idyear,
MIN(ROWID) AS rowid_keep ,
COUNT(applic_value) AS all_values ,
COUNT(DISTINCT applic-value) AS d_values
FROM applic_set_data_imp
GROUP BY idapplic_sets , idregions , idact, idsec, idtech, idyear
HAVING COUNT(applic_value) > 1;

~N OB —

With the gathered information it is possible to remove the duplicate values
and keep only the rows with the minimum ROWID. Since there is no primary or
unique key on the table so far (and none can be created on the relevant columns),
comparing the rows by the ROWID is the only possibility. Before duplicate values
are deleted, as shown in listing 4.25, a backup of the not cleaned table is create so
that it is possible to check the consistency of values after the cleaning process.

Listing 4.25: Removing duplicate values for applicabilities

1| DELETE FROM applic_set_data_imp a

2| WHERE EXISTS (

3| SELECT 1

4] FROM applic_set_data_dupl_tmp i

5| WHERE i.idapplic_sets = a.idapplic_sets

0 3 O

11
12
13

CHAPTER 4. IMPLEMENTATION 68

APPLIC_SET_DATA {rains_europe’
[EAPPLIC_SETS (rains_europe) i [5 K e e
BE| ol ew] # | 2] 2| - #3% A IDAPFLIC_SETS
#% A IDAPPLIC_SETS APPLIC_SET_DATA fiq) % A IDREGIONS
#% A IDACT
O 7 AMOUNT
© " REGIONS #% A IDSEC
#% A IDTECH
#% 7 IDYEAR
% 78 APPLIC_VALUE

Figure 4.15: Tables holding applicability data

AND i.idregions = a.idregions
AND i.idact = a.idact
AND i.idsec = a.idsec
AND i.idtech = a.idtech
AND i.idyear = a.idyear
AND i.d_values =1

AND i.rowid_keep != a.ROWID

To delete multiple values, inconsistencies in the values have to be analyzed.
Mainly it is of interest, from which tables shown in table 4.2 the inconsistent val-
ues have been copied. The analysis reveals that there are only inconsistencies
between the applicabilities stored in tables “applic_cross” and “applfin”. Since
the data in “applfin” is more reliable, the inconsistent values associated with “ap-
plic_cross” are deleted from the system.

Now it is possible to copy the applicabilities from the temporary table, to the
“applic_set_data” table. As shown in figure 4.15 this table now has the same struc-
ture as the “constr_n” table discussed in section 2.3.4, except for the “idregions”
column. As already discussed, the regional parameter for control strategies is
retrieved through the scenario structure.

The table “applic_sets” holds all available applicability sets. The columns
“amount” and “regions” are created just for temporary analysis purposes. They
are be deleted after the analysis of applicabilities is finished.

Assuring Referential Integrity

In the next step, referential constraints have to be set to assure integrity that was
initially provided upon collection of data as mentioned in section 4.3.4 also in

CHAPTER 4. IMPLEMENTATION 69

the future. Referential constraints are set to the mviews holding the available
regions and implementation rate relevant activity/sector/technology combinations
according to sections 4.3.2 and 4.3.3. In addition, a foreign key to the “years”
table holding all available years is set.

Assuring Integrity with Implementation Rates

As mentioned in section 3.2.2 applicabilities are setting the maximum for corre-
sponding implementation rates defined in the “constr_n” table. As stated in section
2.3.4 the region for which a control strategy is used, is not an attribute of the strat-
egy itself, but is determined by the assignment of a control strategy to a region in
a scenario.

Therefore the consistency between the applicabilities and implementation rates
can only be checked on a scenario basis. To do a check for the current set of appli-
cabilities and scenarios, the applicability sets have to be combined with the sce-
narios by their names (noting that the sets are currently named after the scenario
they were collected from). In the future this check will be done by the relation
between the sets and scenarios mentioned in section 4.3.4.

Listing 4.26 retrieves all combinations of applicabilities and implementation
rates that do not match equation 3.1. Eliminating such inconsistencies cannot
be done automatically because the decision whether the applicability value or the
implementation rate should be changed, has to be made by experts who developed
the applicabilities and the implementation rates that are causing the problems.
Sometimes it will not even be possible to change specific values, but the creation
of a new applicability set which does not cause any inconsistencies in terms of
equation 3.1 will be necessary.

Listing 4.26: Analysis of sub and master applicability sets

SELECT s.scen, s.owner, d.region, c.con_strat, a.idapplic_sets ,
a.idact, a.idsec, a.idtech, a.idyear,
a.applic_value, c.perc
FROM scen_master s
JOIN scenario_n d ON (
d.scen = s.scen)
JOIN applic_set_data a ON (
a.idapplic_sets = s.scen
AND a.idregions = d.region)

JOIN constr_n ¢ ON (
c.con_strat = d.con_strat
AND c.act_abb = a.idact
AND c.sec_abb = a.idsec

CHAPTER 4. IMPLEMENTATION 70

14 AND c.tech_abb = a.idtech
15 AND c.year = a.idyear)
16| WHERE c . perc > a.applic_value;

Removing Redundancies Between Sets

In the last step we want to analyze which of the retrieved applicability sets are
redundant. As can be seen from the amount of defined applicabilities and regions,
some of the sets seem to be identical. Also, some of the sets could be subsets of
others that have more defined combinations. The SQL command to find the sub
and master sets within the currently available applicability sets is shown in listing
4.27.

Listing 4.27: Analysis of sub and master applicability sets

1| CREATE TABLE applic_sets_master AS

2| SELECT sub.idapplic_sets AS idapplic_sets_sub ,

3 mast.idapplic_sets AS idapplic_sets_master ,

4 sub .amount AS amount_sub, mast.amount AS amount_master ,
5 sub.regions AS regions_sub, mast.regions AS regions_master
6|FROM applic_sets sub, applic_sets mast

7| WHERE ((

8 — find subsets

9 sub . amount < mast.amount

10 AND sub.regions < mast.regions)

11| OR (

12 — find equal sets

13 sub . amount = mast.amount

14 AND sub.regions = mast.regions

15 AND sub.idapplic_sets > mast.idapplic_sets

16|))

17| AND NOT EXISTS (

18| — search for inconsistencies in values

19 SELECT 1
20| FROM applic_set_data d_sub

21 JOIN applic_set_data d_mast ON (

22 d_sub.idregions = d_mast.idregions
23 AND d_sub.idact = d_mast.idact

24 AND d_sub.idsec = d_mast.idsec

25 AND d_sub.idtech = d_mast.idtech

26 AND d_sub.idyear = d_mast.idyear)

27| WHERE d_sub.idapplic_sets = sub.idapplic_sets
28| AND d_mast.idapplic_sets = mast.idapplic_sets

29| AND d_sub.applic_value != d_mast.applic_value
30/) AND NOT EXISTS (
31 — check for completeness of subset within master set

321 SELECT 1

331 FROM applic_set_data d-sub

34| WHERE d_sub.idapplic_sets = sub.idapplic_sets
35| AND NOT EXISTS (

36
37
38
39
40
41
42
43
44
45
46

R R S

CHAPTER 4. IMPLEMENTATION 71

SELECT 1
FROM applic_set_data d_mast
WHERE d_mast.idapplic_sets
AND d_sub.idregions
AND d_sub.idact
AND d_sub.idsec
AND d_sub.idtech
AND d_sub.idyear
)

)
ORDER BY sub.idapplic_sets , mast.idapplic_sets;

mast.idapplic_sets
d_mast.idregions
d_mast.idact
d_mast.idsec
d_mast.idtech
d_mast.idyear

As shown in the WHERE clause of the master select, the condition for finding a
subset of another set (called the master set) is split in two parts: The first part finds
sets that are smaller in terms of amount of data than the master set; the second part
finds all sets that are equal in terms of data and region amount, and classifies the
one that is alphabetically larger as the subset. It would also be possible to remove
the one which is alphabetically smaller, but due to the known naming conventions
the first solution is more suitable.

In the first NOT EXISTS subselect (starting at line no. 10), we search for
inconsistencies in the applicability values for the same region, activity, sector,
technology, and year combination. If any inconsistencies can be found, a given
applicability set cannot be the subset of another master set.

In the second NOT EXISTS subselect (starting at line no. 23) we check the
completeness of the subset within the master set. Without this check it is possible
that a given set is identified as a subset of another set only based on the fact that
there are no inconsistencies in the applicability values. This does not mean that
there cannot be applicabilities in the subset that do not exist in the master set.

By temporarily storing the results of the SQL command in the
“applic_sets_master”, we can use the retrieved data to identify sets that can be
removed because of redundancy: All sets that can be found in the temporary ta-
ble, and are present in the subset column can be deleted from the system. The
command to remove such sets is shown in listing 4.28.

Listing 4.28: Removing redundant applicability sets

DELETE FROM applic_sets s

WHERE EXISTS (

SELECT 1

FROM applic_sets_master m

WHERE m. idapplic_sets_sub = s.idapplic_sets
)3

CHAPTER 4. IMPLEMENTATION 72

Using Applicability Sets

Since the relation between the applicabilities and the scenarios cannot be deter-
mined by the scenario structure after having unbound the data from the pathways
and emission vectors, the relation has to be defined specifically. Since every sce-
nario can only have one set, and this assignment is only needed for scenarios
which are suitable for optimization and cost curves, a new column “applic_set”
allowing NULL values within the “scen_master” table can be created.

If a set is given, the scenario can be used for these two purposes, otherwise not.
In addition the possibility to add an applicability set can be set to an administrative
privilege. Since the process of checking the relation between the applicabilities
and implementation rates described in section 4.3.4 requires specific knowledge
and data editing possibilities, this part of the model cannot be opened to average
users anyway.

The previously mentioned check should also be embedded into the web in-
terface so that it is possible to check consistency between the applicabilities and
implementation rates for every scenario upon request. Since the possible inconsis-
tencies change with every upload of affected control strategies as well as changes
in the scenario structure, this check will have to be frequently performed for sce-
narios that are in the last phases of development.

Binding this check to certain actions done in the model (like the just mentioned
implementation rate upload) is not recommended. Since checking the inconsisten-
cies is only of interest beyond a certain development level of a scenario, constant
notifications upon upload of data will be irritating to the users. Since the applica-
bilities are only needed for scenarios developed by experts from IIASA, triggering
the check routine can be done manually when it is required.

Conclusions

We started with about 1.000.000 records in eight different tables. We did not
reduce the amount of data significantly (only by about 20.000 records), but we
managed to create 18 unique sets. It might be even possible to reduce the number
of sets further, but this has to be done through manual inspection of the data by
experts. These sets can be managed independently from the pathways and emis-
sion vectors. This is especially advantageous for pathways created by users that
do not have the expertise to define applicabilities and thus should not have access
to these values.

AW =

CHAPTER 4. IMPLEMENTATION 73

In addition we also assured consistency between the data used within one set.
We have improved the referential integrity with other tables holding data that the
applicabilities are referencing.

With the new structure it is also easily possible to maintain consistency be-
tween the applicabilities and implementation rates. This check would have had to
be done for every single previously used table.

Another improvement based on the introduced changes is the exchange of ap-
plicabilities between the regional database schemas and the GAINS optimization
module. Previously it was necessary to collect data from the single tables and ana-
lyze it according to the aspects discussed in this section. After introduction of the
applicability sets applicabilities can be easily shared with the optimization mod-
ule and the checks do not have to be done every time since each set is consistent
within itself.

4.3.5 Aggregation of Results According to Reporting Standards
Collection of Data

For successfully solving the challenges discussed in section 3.2.3, the data dis-
tributed over the single pollutant-specific tables needs to be collected. Similar to
the analysis of applicabilities mentioned in section 4.3.4 the data is copied from
the single tables into one temporary table according to SQL commands similar to
the one showed in listing 4.29 for NHj.

Listing 4.29: Collecting SNAP & NFR aggregations for NH;

INSERT INTO snap_nfr_import
SELECT °'NH3’, act_abb, sec_abb, act_type,
snapl, snapl_name,
nfr_1, nfr_1_name, nfr_2, nfr_2_name
FROM rains_europe.asec_nh3_agg;

As can be seen from this command, the structure of the table is redundant in
terms of defined SNAP and NFR codes: There is no reference to another table
that would centrally store the available SNAP and NFR codes. All codes are
listed multiple times with their identifier (columns “snap1”, “nfr_1" and “nfr_2")

29 ¢

and description (columns “snapl_name”, “nfr_1_name” and “nfr_2_name”).

CHAPTER 4. IMPLEMENTATION 74

[E[SNAP_CODES (rains_data) [ENFR_CODES (rains_data)
Ealel2]s] Eadel2ls]>
SNAP_CODES_FKT

#% A IDSMAP_CODES - N /ré #3% A IDNFR_CODES
o A PARENT CODE o A PARENT_CODE
*x A LABEL_ShAP y / *x A LABEL_NFR
% e COMBUSTION ’ | Sk P COMBUSTION
% 7o SMNAP_LEVEL . v %, X 7a MFR_LEVEL

T SNAP_CODES_IDX T I NFR_CODES._ DX

ESNAP:CODESZFIDM NFR_CODES FK1 ENFR:CODES]DXE

H SNAP_CODES_IDX2 %1 MFR_CODES_FIDX1

Figure 4.16: Tables holding definitions of SNAP and NFR codes

Data Definition of Reporting Standards

To get a unique listing of code identifiers and descriptions, separate tables for
SNAP and NFR codes have to be created. An aspect that was not modeled be-
fore, but is very important to understand for the further steps, is the fact that both
SNAP and NFR codes, are designed in a strictly hierarchical structure. This means
that every node within the code tree has exactly one parent code (except the root
node). As shown in figure 4.16 this fact is now also modeled in the structure of
the database tables. Since the codes will be used for all available versions of the
model, the tables are created in the “rains_data” schema.

Next, the tables have to be filled with data according to the official definition
of reporting standards (Economic Commission for Europe, 2003). The data is
available in files in comma separated value (CSV) format and can be imported
into to the database with the Oracle SQL*Loader (SQL*Loader, 2001).

In addition an artificial SNAP code “00” is introduced to create a single root
node that does not exist in the official SNAP tree structure. All SNAP codes
at level one (two digit identifiers “01” to “11”) reference this code in the tree
structure (“parent_code” relation between the codes). Although the “parent_code”
column can hold NULL values, the value is only allowed to be NULL for the root
nodes of both trees. This requirement is assured by application logic.

The columns “snap_level” and “nfr_level” store the level of the given code
within the code tree. This information is redundant because it could be retrieved
recursively (similar to the PL/SQL function shown in listing 4.31) through the
“parent_code” relation (assuming that the level of the root node equals zero). Since

CHAPTER 4. IMPLEMENTATION

75

|EISEC (rains_data)

= e A B

IDSEC
IDSEC_TYFE
PAREMNT_SEC
LABEL_SEC
SEQU_SEC
SOLID_FUELS
NACE
SMNAP_LEVELT
MFR_LEVEL1

PrEr

SEC_FK2

#
¥ KO X ¥ XOX%

e

@lSNAF’iCODES (rains_data)

i [

#3% A IDSNAP_CODES
o A PARENT_CODE
x A LABEL_SNAP
SEC_FK3
Pt =" Xk " COMBUSTION
H* Poa SMNAP_LEVEL

£ SMAP_CODES_IDR1
£ SNAP_CODES_FIDX1
£ SMAP_CODES_IDX2

SNAFP_CODES FK{1

Figure 4.17: Relation between SNAP1 codes and GAINS sectors

the structure of the codes is static by definition, this would lead to unnecessary ad-
ditional query runtime. Therefore it is better to store this information in database

tables.

Assignment of GAINS Results to SNAP Codes

Based on the official list of SNAP codes, previously collected data can be ana-
lyzed. Already the initial visual analysis reveals, that the assignment of a SNAP
code at level one (SNAPI) to a GAINS sector should be unique independently
of the pollutant. Listing 4.30 retrieves all sectors and SNAP1 codes that do not

follow this rule.

Listing 4.30: Check of assignment between GAINS sectors and SNAP1 codes

SELECT sec_abb , COUNT(DISTINCT snapl),

ROWS_TO_STRING (CAST (COLLECT (snapl) AS t_varchar2_column),

FROM snap_nfr_import

GROUP BY sec_abb

HAVING COUNT(DISTINCT snapl) > 1
ORDER BY sec_abb;

>, 7) AS snapl_codes

Since only a few mavericks are returned by this SQL command, they can
be quickly corrected. Because the assignment of GAINS sectors is unique, the
SNAPI code can be stored within the “rains_data.sec” as shown in figure 4.17.

The modelling requirement of only assigning a SNAP1 code to each sector in
the “snap_levell” code is assured by application logic.

Since the results of the GAINS models only have to be displayed aggregated
by SNAP1 categories, the modelling is finished at this stage.

CHAPTER 4. IMPLEMENTATION 76

Assignment of GAINS Results to NFR Codes

The analysis of the “snap_nfr_import” table reveals that both the “nfr_1” and
“nfr_2” columns hold values of NFR codes that cannot be found in the official
listing of NFR codes. In addition, the digits in the names are not meant to indi-
cate the first and second level of the NFR structure tree. Values of these columns
are artificial aggregations of the official NFR codes: For example the artificial
code “1.B.2.a,b” is used instead of a multiple assignment to codes “1.B.2.a” and
“1.B.2.b”. Therefore it is necessary to first manually clean the assignment in table
“snap_nfr_import” to get rid of the artificial codes. It is then necessary to dynam-
ically compare the NFR codes among themselves, in particular their relation in
terms of the “parent_code” relation. To be able to do this, a recursive PL/SQL
function is created as shown in listing 4.31.

Listing 4.31: PL/SQL function to retrieve parent NFR code at a given level

FUNCTION get_nfr_parent_code (p_nfr_code IN VARCHAR2, p_at_level IN NUMBER)
RETURN VARCHAR2
IS
v_parent_code VARCHAR(15);
v_parent_level NUMBER(1) ;
BEGIN
— check the parameters
IF (p-nfr_code IS NULL
OR p-at_level IS NULL
OR p_.at_level < 0) THEN
RETURN NULL;
END IF;

— get the parent code of the given code and its level
SELECT idnfr_codes , nfr_level INTO v_parent_code, v_parent_level
FROM rains_data.nfr_codes p
WHERE EXISTS (
SELECT c.parent_code
FROM rains_data.nfr_codes ¢
WHERE c . parent_code = p.idnfr_codes
AND c.idnfr_codes = p-nfr_code

)

— check whether the parent code could be found
IF (v_parent_code IS NULL) THEN

RETURN NULL;
END IF;

— check whether the found parent level is smaller than the requested level
IF (p-at_level > v_parent_level) THEN

— the parent at the requested level cannot be found any more

RETURN NULL;
ELSIF (p-at_level = v_parent_level) THEN

34
35
36
37
38
39
40

%)

[R)

CHAPTER 4. IMPLEMENTATION 71

— the parent code at the requested level was found
RETURN v_parent_code;
ELSE
— search recursively
RETURN get_nfr_parent_code (v_parent_code, p-at_level);
END IF;
END get_nfr_parent_code;

Based on this PL/SQL function, the relation between the NFR codes and
GAINS sectors can be examined as shown in listing 4.32.

Listing 4.32: Check of assignment between GAINS sectors and NFR1 codes

SELECT sec_abb , COUNT(DISTINCT GETNFRPARENT CODE(nfr_1, 1)),
ROWS_TO-STRING (CAST (COLLECT (GET NFR PARENT_CODE (nfr_1, 1)) AS t_varchar2_column
), 7,) AS nfrl_codes
FROM snap_nfr_import
GROUP BY sec_abb
HAVING COUNT(DISTINCT GETNFRPARENT CODE(nfr_1, 1)) > 1
ORDER BY sec_abb;

Again a few mavericks in the data stored in “snap_nfr_import” have to be re-
moved, but overall the relation between a sector and an NFR1 code can be seen
as unique. Therefore also the NFR1 code can be added to the “sec” table as an
attribute of each available GAINS sector (shown as constraint “sec_fk4” in figure
4.18). The same consideration as to the “snap_levell” column is applied to the
“nfr_levell” column.

Other than the SNAP aggregation that is only needed at level one, the display
of aggregated results by NFR standard has to be more precise. Therefore it is
necessary to assign not only NFR1 codes to GAINS sectors, but also more detailed
NFR codes.

Further analysis of the values gathered in the “snap_nfr_import” table reveals
that this assignment can only be unique if it is not only done by sector, but also by
pollutant. In addition, the assignment is not unique, but multiple assignments of
NFR codes to a sector/pollutant combination are possible. The database structure
needed to hold this relation is shown in figure 4.18.

As can be seen from the database structure, the relation between the “sec” and
“nfr_codes” is modeled redundantly. This redundancy is introduced to guarantee
completeness of the assignment. As already discussed in section 3.2.3, one of the
goals of the new modelling approach was to guarantee that no data is “lost” during
the aggregation process. This can only happen, if some parts of the displayed
results cannot be assigned to a NFR category upon display.

CHAPTER 4. IMPLEMENTATION 78

[EISEC (rains_data) JEMFR_CODES (rains_data) JEPOLLUTANTS (rains_data)
B] # | 2] - [P8 e 5 P e
#X A IDSEC #3k A IDNFR_CODES #3k A IDPOLLUTANTS
* A IDSEC_TYPE c A PARENT_CODE * A LABEL_POLLUTANT
o A PARENT_SEC §§CJ:K4 X A LABEL_NFR X 78 COST_PRIORITY
*x A LABEL_SEC X P COMBUSTION
X s SEQU_SEC * 76 NFR_LEVEL ol
% %8 SOLID_FUELS e
O A NACE ur W
* A SMNAP_LEVEL1 8 8
NFR_LEVEL O O
bt B - SEC_TO_NFR_CODE_FKi oo
L
= E
9\ 9\
oo
[]
LJSEC_TO_NFR_CODE_ALL_V (rains_data) |HISEC_TO_NFR_CODE (rains_data)
B[zl 7]| 5 EEI R
o A IDSEC #k A IDSEC
c A IDPOLLUTANTS Tk A IDPOLLUTANTS
c A IDNFR_CODES £k A IDNFR_CODES
o A SOURCE £ SEC_TO_NFR_CODE_FIDX1

£ SEC_TO_MFR_CODE_FIDX2
£ SEC_TO_MFR_CODE_FIDX3

Figure 4.18: Relation between NFR codes, GAINS sectors and pollutants

Each time a new sector is introduced into the database, a second step, namely
the assignment of the sector to the available NFR codes, has to be done for each
pollutant. This assignment requires special knowledge and should be done by
more than one person. Since it is possible to assign an NFR1 code uniquely for
each sector upon creation of the sector, at least a very rough aggregation can be
guaranteed for each available sector and no data is “lost” upon display of the
results. As shown in listing 4.33 and figure 4.18 the view “sec_to_nfr_code_all_v”
is created in which the complete relation can always be found.

Listing 4.33: View guaranteeing the completeness of the GAINS sector to NFR
code relation

1| CREATE OR REPLACE VIEW sec_to_nfr_code_all_v AS

2|— all assigned sector/pollutant/nfr combinations

3| SELECT idsec , idpollutants , idnfr_codes, ’assigned’ AS source

4/FROM sec_to_nfr_code

5| UNION ALL

6|— filled up by all needed combinations,

7|SELECT s.idsec, p.idpollutants , s.nfr_levell AS idnfr_codes, ’filled’ AS source
8|FROM sec s, pollutants p

9| WHERE NOT EXISTS (

Ju—
=

— which cannot be found among the defined combinations
11 SELECT 1

12| FROM sec_to_nfr_code stnc

13| WHERE stnc .idsec = s.idsec

14| AND stnc.idpollutants = p.idpollutants

CHAPTER 4. IMPLEMENTATION 79

15’);

Another benefit of assigning the NFR1 to each sector is the fact that the values
that can be assigned on the detailed level for each pollutant can be filtered to be
only the subtree of the already assigned NFR1 code. This way not only the con-
sistency between the “sec_fk4” and “sec_to_nfr_code_fk1” relation is guaranteed,
but also the assignment is completed more easily and faster since only a fraction
of the codes can be chosen to be assigned through the graphical user interface.

Display of Results on Detailed NFR Level

The display of results aggregated by SNAPI and NFR1 is not a big challenge.
Since every GAINS sector can be uniquely assigned to one code, the results of the
aggregation can be retrieved through a simple JOIN and GROUP BY statement.

As can be seen from figure 4.18 assignment of the GAINS sector to NFR
codes on more detailed levels is not unique anymore. For example to provide in-
formation on which part of the calculated emissions belongs to a given NFR code,
it would be necessary to provide fractions along with every sector/code/pollutant
combination. To correctly model such fractions, they would also have to be region
and year specific. Although such an assignment would theoretically be possible,
it is not maintainable in practice and therefore not implemented.

Consequently the grouping of data retrieved for displaying the aggregated re-
sults cannot aim at single NFR codes, but hast to aim at unique groups of these
codes. Listing 4.34 shows the command to aggregate the results of CH, emissions
for scenario “NEC_NAT_CLEV4” in Austria (“AUST_WHOL”) by the assigned
NFR codes.

Listing 4.34: Emissions aggregated by NFR

SELECT nfr_code , year, SUM(emiss) AS emiss
FROM (
SELECT e.sec_abb, year,

RAINS_DATA .ROWS_TO_STRING (
CAST(COLLECT(stnc .idnfr_codes) AS rains_data.t_varchar2_column),
>, or
’) AS nfr_code,

SUM(e . emiss) /COUNT(DISTINCT stnc.idnfr_codes) AS emiss

FROM emiss_CH4_agg e

JOIN rains_data.sec_to_nfr_code_all_v stnc ON (
e.sec_abb = stnc.idsec)

JOIN rains_data.nfr_codes nc ON (
nc.idnfr_codes = stnc.idnfr_codes)

WHERE scen = "NECNAT_CLEV4’
AND idpollutants = *CH4’

15
16

CHAPTER 4. IMPLEMENTATION 80

AND region = “AUST_-WHOL’
GROUP BY e.sec_abb, e.year

17))
18|GROUP BY nfr_code , year
19|ORDER BY nfr_code , year;

What can be deducted from the SQL command and the underlying structure
(shown in figure 4.18), is that one NFR code can be displayed multiple times in
different groups of codes as shown in figure 4.19. As can be seen, 4.59 kt of emis-
sions in year 1990 cannot be clearly divided into codes “1.B.2.a” and “1.B.2.b”,
whereas 25.02 kt can be uniquely assigned to NFR sector “1.B.2.b”. For the anal-
ysis of the shown aggregated emissions in year 1990 the minimum and maximum
emissions can be deducted as shown in the following table.

NFR sector | Min. Emissions | Max. Emissions
1.B.2.a 0 kt 4.59 kt
1.B.2.b 25.02 kt 29.61 kt

In the previous version of the modelling approach such a display combination
was named “1.B.2.a,b” and the emissions were said to be 29.61 kt. The new
approach is also not able to provide exact information for all single NFR sectors,
but it shows more details about the aggregations where possible.

Conclusions

We have managed to identify the needed aggregations of results as being depen-
dent only on the GAINS sectors and pollutants. By storing the relation between
the sectors and codes at level one in the central “rains_data.sec” table, we have
not only removed the redundancy in previously stored data, but also guaranteed
completeness of the relation. Thus we can now guarantee that no data is “lost”
when aggregating results according to the discussed standards.

In addition, we have minimized the maintenance effort which used to be much
higher and led to inconsistencies in data when the aggregation information was
stored in the regional database schemas. Therefore it is important to note that
this solution is not only scientifically correct, but also maintainable. To provide
a solution that would exactly allocate, for example, a given amount of emissions
to NFR sectors on a detailed level, more detailed information would have to be
provided by the model.

CHAPTER 4. IMPLEMENTATION 81

s GAINS

HASA - Atmospheric Pollution Program Greanhouse Gas - Air Pollution Interactions and Synergies

CH4 Emissions by UN-ECE NFR Sector (Detailed)

Scenario: NEC_NAT_CLEY4 (ID: NEC_NAT_CLEY4)
Region: AUST_WHOL

Unit: [kt CH4]

User: maciek

Dizplay table in an export format

NFR code 1990 1995 2000 2005 2010 2015 2020
1.A.1.a: Public electricity and heat production 2.32: 274 2681 248 Z.64 2.59 2.59
1.A.1.b: Petroleum refining, or 0.81 0.66 0.50 0.40 0.35 0.30 0.24
1.A.1.c: Manufacture of solid fuels and other energy industries
1.A.2: Manufacturing industries and construction 1.89 245 269 237 2.25 21z 1.93
AL civil avigtioo 001 o pz_ oozl
TTEB Tae——Miing and REARATMI———""" =T 1.37 | U058 | 028 TPt~
1.B.2.a.iv: Refining f storage 0.46 0.45 0.32 n.1s 0.01 0.01 0.01
1.B.2.a: 0il, or 459 449 325 118 0.0z 0.01 001
1.B.2.b: Natural gas
1.B.2.b: Natural gas 25.02° 25.05: 24,96 24,953 27.67 3060 33.18
4.A.1.a: Dairy, or 5948 7541 70,82 66.93 6682 68.04 69,69
4.B.1.a: Dairy

Figure 4.19: Screen shot of results of CH, emission calculation aggregated by
NFR

4.4 Other Implementation Aspects

4.4.1 Calculation of Emissions

Due to the storage of emission vector related data in the set of tables mentioned
in section 4.1 and the fact that for some pollutants abated and for other unabated
emission factors were used, the emission calculation had to be done in a separate
view for each pollutant. By using only the abated emission factors and introducing
a new table “emiss_factors_abtd”, the emission calculation can be based on the
same view for all pollutants. The CREATE statement for this view is shown in
listing 4.35. This view does not show detailed emissions by technology as they are
not needed for most user requests: The ten most frequently used functionalities of
the model do not display results by technology. For detailed technology-specific
emissions another view has to be created. This view will not be discussed in this

paper.

Listing 4.35: View for emission calculation

1| CREATE OR REPLACE VIEW emiss_all_agg AS
2| SELECT scen, path_abb, idregions, year,
3 idemiss_vectors , idpollutant_fractions , pollutant,

TS

31

CHAPTER 4. IMPLEMENTATION

82

idact, idsec, act_control, sec_control, unit, act_type,
activity , factor_noc, factor_rem_abtd, (factor_noc — factor_rem_abtd) AS
factor_impl ,
— calculate emissions from the implied emission factor
activity x(factor_noc — factor_rem_abtd) AS emiss
FROM (

SELECT s.scen, s.path_abb, e.idregions, y.year,
e.idemiss_vectors , e.idpollutant_fractions , e.pollutant,
e.idact, e.idsec, e.act_type,

NVL(ac.act_control , e.idact) AS act_control ,
NVL(ac.sec_control , e.idsec) AS sec_control ,
(SELECT unit
FROM rains_data.act_sec_all u
WHERE e.idact = u.idact
AND e . idsec = u.idsec) AS unit,
(SELECT activity
— transform activities stored in actpath_n with view actpath_trans
FROM actpath_trans a
WHERE s .path_abb = a.path_abb
AND s.region a.region
AND e.idact = a.act_abb
AND e.idsec = a.sec_abb
AND e.act_type = a.act_type
AND y.year = a.year) AS activity ,
e.factor_abtd AS factor_noc ,
NVL(
— calculate the control strategy weighted sum of emission
— factors for given activity/sector combination
(SELECT SUM(percx(e.factor_abtd — r.factor_abtd))/100.
FROM constr_n c
JOIN emiss_factors_abtd r ON (
r.idtech = c.tech_abb)
WHERE c.con_strat = s.con_strat
AND r.idemiss_vectors = s.emv_owner
AND r.idregions = s.region
AND y.year = c.year
AND c.act_abb = NVL(ac.act_control , e.idact)
AND c.sec_abb = NVL(ac.sec_control , e.idsec)
AND r.idpollutant_fractions = e.idpollutant_fractions
AND r.idact = e.idact
AND r.idsec = e.idsec) ,0.) AS factor_rem-_abtd

FROM scenario_n s

JOIN scen_master_year y ON (
s.scen = y.scen)

JOIN emiss_factors_abtd e ON (
S.emv_owner = e.idemiss_vectors
AND s.act_type = e.act_type
AND s.region = e.idregions)

LEFT JOIN rains_data.act_sec_trans_control ac ON (
ac.idact = e.idact
AND ac.idsec = e.idsec)

— get only the unabated emission factors

WHERE e .idtech = ’NOC’

)

CHAPTER 4. IMPLEMENTATION 83

57’WHERE activity > 0;

The emission calculation using the NOC implementation rate is proportionally
seen very time consuming, as can be seen from table 4.3 (column “old style”). The
above mentioned query avoids this time consuming step by using the mean con-
trol strategy weighted emission factor, also called the “implied emission factor”
(Wagner et al., 2007). By using this factor, the emission calculation shown in
equation 2.1 can be reformulated as shown in equation 4.2.

implied
Ep7T7y = Z E 7,8,y = Z Arva:&y ' ef ,T‘,IZZ,S,y (4'2)
a,s a,s

The implied emission factor can be calculated for a given GAINS activity/sec-
tor combination as shown in equation 4.3. The formula was reformulated using
the relations already mentioned in equation 2.4.

implied — __ . abated

€ p,7,a,8,Yy - ZXT,G/7S,t,y € p,T‘,a,S,t/lOO (4'3)
t

o abated

- Z XT:G,S»tyy € p,r,a,s,t:NOC/lOO

t

abated abated
- ZXT#LS,L?J ' (6 p,r,a,8,t=NOC ~— € p,r,a,s,t)/loo
t

abated
= € p,r,a,8,t=NOC

abated abated
- Z Xr»fh&t,y ’ (6 pra,st=NOC — € p,r,a,s,t)/loo
t¢NOC

The emission calculation based on the implied emission factor (column “sin-
gle” in table 4.3) is much faster than the previously used emission calculation
(column “old style”). The reason for this is the lack of time-consuming full table
scans and outer joins in the execution plan of the underlying queries when using
the implied emission factor.

What is even more important to see from this step, is the impact that this
pollutant independent view has on the whole model and its interface: For the first
time it is possible to calculate emissions of the model for all pollutants in exactly
the same way. As can be seen from the SQL command in listing 4.36 due to
the structure of the new view “emiss_all_agg”, the pollutant becomes a parameter
within the query and can be used in the same way as the scenario and the region.

o lEN e Y N S

10
11
12

CHAPTER 4. IMPLEMENTATION 84

Region(s) | Pollutant(s) “old style” “single” “multi”

Austria CH,4 13.40 | 0.39 (2.88%) | 0.39 (2.88%)
EU27 CH, 84.45 | 8.54 (10.12%) | 8.61 (10.20%)
Austria CH,4, NO,, SO, 30.85 | 0.87 (2.81%) | 0.92 (2.99%)
EU27 CH,4, NO,, SO, 129.86 | 19.41 (14.95%) | 21.34 (16.44%)

Table 4.3: Query runtime comparison between emission calculation based the
implied emission factor for single pollutant views and the multi-pollutant view
“emiss_all_agg”, as well as previously used “old style” emission calculation (all
times in seconds)

Listing 4.36: Pollutant independent emission calculation

SELECT e.idregions , e.year, e.pollutant, SUM(e.emiss) AS emiss
FROM emiss_all_agg e
WHERE e .scen = 'NEC_NAT_CLEV4’
AND e.idregions = 'AUST-WHOL’
AND EXISTS (
SELECT 1
FROM rains_data.pollutant_to_group pg
WHERE pg.idpollutants = e.pollutant
AND pg.idpollutant_groups = 'GHG’
)
GROUP BY e.idregions , e.year, e.pollutant
ORDER BY e.idregions, e.year, e.pollutant;

Therefore it is now easily possible to calculate, for example, the emissions
of any group of pollutants. In this case the emissions of all greenhouse gases
(CHy4, COq, N20, and FGAS) are retrieved by the definition of the group in ta-
ble “rains_data.pollutant_to_group”. Previously it was necessary to calculate the
emissions of all greenhouse gases in four different steps and combine them in one
view. It would have also been necessary to introduce additional database struc-
tures, to show emissions for any other requests in terms of a new pollutant group.
The new view saves redundancy in database structures and maintenance efforts.

For the sake of completeness it also has to be mentioned that the emissions are
calculated in different units for different pollutants. For example to sum up the
emissions for greenhouse gases, the emissions caused by single pollutants have to
be converted into one unit. This unit is chosen to be kilotons of CO, equivalents
emissions.

Table 4.3 shows that calculations based on the new multi-pollutant view (col-
umn “multi”) are up to two seconds and 10% slower for some of the calculation re-

CHAPTER 4. IMPLEMENTATION 85

quests for the previously mentioned scenario “NEC_NAT_CLEV4” than the same
improved calculation approach with a view for each pollutant (column “single”).
Nevertheless, this time loss is acceptable because of all the previously mentioned
benefits.

To prevent possible differences in caching strategies, either of the database or
the SQL client itself, the times were measured as the average of five executions of
each query. The queries for retrieving data for multiple pollutants do not sum up
and convert the emissions to a unique unit, but only retrieve the data emissions of
the single pollutants.

4.4.2 Initialization of Partial Emission Vectors

As already mentioned in section 3.2.1, it is important to provide an initialization
functionality that can also handle emission vectors that are not complete in terms
of the underlying data. As discussed in section 4.3.3, each vector that is not com-
plete, has to have a parent vector that is complete.

Additional Database Structures

For the initialization approach we will use temporary tables discussed in section
4.2.2. As shown in figure 4.20 a temporary table is created to hold the values
retrieved during the initialization process. The structure of the table is basically
identical with the structure of the “emiss_remeffs” table (figure 4.13), except for
the additional column “source_vector” and the allowed NULL values in column
“remeffs”. Similar tables can be created for the initialization of abated and un-
abated emission factors, as well as cost factors.

A temporary table is created with the ON COMMIT DELETE ROWS option.
Since the initialization is done within one database transaction, it is not necessary
to preserve the values in the table. Should it be necessary to hold values over var-
ious transactions, the concept of a temporary table would have to abandoned. As
already mentioned in section 4.2.2 data cannot be preserved in temporary tables
because of the used database connection pooling.

Initialization of the Process

The initialization process is performed for a selected emission vector and a pollu-
tant. In the initial step of the process, all possible combinations of needed removal

o lEN e Y R N S

=)

11
12
13
14

CHAPTER 4. IMPLEMENTATION 86

EMISS_REMEFFS_INIT_TMP {rains_europe)
] e ¢ |) -

IDEMISS_VECTORS
SOURCE_WVECTOR
IDREGIONS
IDPOLLUTANT_FRACTIONS
POLLUTANT

IDACT

IDSEC

IDTECH

ACT_TYPE

REMEFF

OXXXXXXXO0X%
-2 - - S

~a
o
P

Figure 4.20: Temporary database table for initialization of removal efficiencies

efficiencies are retrieved and copied into the temporary table as shown in listing
4.37. In the selected example the partial user-specific emission vector “maciek”
backed up by values from the complete vector “NECO04” is initialized for Austria.

Listing 4.37: Retrieving all abatement options for removal efficiencies for NO,

INSERT INTO emiss_remeffs_init_tmp

(idemiss_vectors , idregions,
idpollutant_fractions , pollutant,
idact , idsec, idtech, act_type)

SELECT ’maciek’ AS idemiss_vectors, 'AUSTWHOL’ AS idregions ,
p.idpollutant_fractions , p.pollutant,
ast.idact, ast.idsec, ast.idtech, s.act_type

FROM act_sec_tech_emiss_mv ast
JOIN pollutant_fractions-mv p ON (

p.pollutant = ast.idpollutants)
JOIN sec_mv s ON (
s.idsec = ast.idsec)
WHERE ast.idpollutants = 'NOX’
AND ast.idtech = "NOC’ ;

As can be seen from the SQL command the columns “‘source_vector” and “re-
meff” are not mentioned and therefore they are initialized with NULL values. Val-
ues of these columns will be set in later steps of the process.

Calculation of Values

After having gathered all necessary combinations of removal efficiencies, various
steps of the initialization process have to be executed to gather the needed removal
efficiency for each of the implementation options. An example of a step of this

0NN B WN—

10
11
12

B WP~

CHAPTER 4. IMPLEMENTATION 87

process is shown in listing 4.38. This step sets the initial constant values for the
removal efficiencies. The values are retrieved from table “cotecnox_v” with a
primary key on columns “versions” and “tech_abb”.

Listing 4.38: Initialization step setting initial constant removal efficiencies for

NO,
UPDATE emiss_remeffs_init_tmp e
SET (source_vector, remeff) = (
SELECT c.version, c.eff_const
— value for selected emission vector
— (1) idemiss_vectors
— (2) parent vector
FROM cotecnox._v c¢

WHERE c . version = ’maciek’ — (2) ’'NEC04’
AND c.tech_abb = e.idtech

)

WHERE ¢ .remeff IS NULL

AND e.idregions = 'AUST-WHOL’ ;

The query is executed two times: In the first run the query attempts to retrieve
the values from the partial vector “maciek”. In the second run all values that
were not set before (are still NULL, line no. 11) are retrieved and set from the
parent vector “NEC04”. The information from which emission vector the data
was retrieved is written into the “source_vector” column.

Other initialization steps and queries have to be rewritten according to the
same idea.

Checking of Calculated Values

Before the values can be copied from the temporary table to the “emiss_remeffs”
table, it has to be checked whether all combinations have been initialized as shown
in listing 4.39.

Listing 4.39: Checking of initialized values

SELECT =«

FROM emiss_remeffs_init_tmp
WHERE remeff IS NULL
OR source_vector IS NULL;

The check is fairly simple: The SQL command tests only whether all needed
combinations have been assigned a removal efficiency during the initialization
process. In addition also checks whether the information about the source vector
of the removal efficiency value was documented properly are performed.

00N N AW~

— = = e
B WD = O 0

CHAPTER 4. IMPLEMENTATION 88

If any rows are returned by this query, the initialization process can already
be stopped at this stage and the failing combinations presented to the user of the
web interface or reported as an exception to the development team. Additionally
a logic that based on the privileges of the user can be implemented to make this
decision.

Without an introduction of the temporary table it would not have been possible
to store NULL values directly for the value of the removal efficiency. Therefore
checking the correctness by the completeness of the initialization process would
only have been possible after writing the values into the “emiss_remeffs” table.

Storing Values Persistently

After assuring the completeness of the data, the values can be copied to the
“emiss_remeffs” table. The values are copied in two steps: First, all implementa-
tion options that are not available in the current working set are inserted as shown
in listing 4.40.

Listing 4.40: Inserting of initialized values for missing abatement options

INSERT INTO emiss_remeffs

SELECT idemiss_vectors , idregions, idpollutant_fractions , pollutant,
idact, idsec, idtech, act_type, remeff

FROM emiss_remeffs_init_tmp tmp

WHERE NOT EXISTS (
SELECT 1
FROM emiss_remeffs r

WHERE r.idemiss_vectors tmp.idemiss_vectors

AND r.idregions = tmp.idregions

AND r.idpollutant_fractions = tmp.idpollutant_fractions
AND r.idact = tmp.idact

AND r.idsec = tmp.idsec

AND r.idtech = tmp.idtech

This step guarantees the completeness of the initialized emission vector for
the selected region and pollutant fraction. A DELETE command is not necessary
because any disallowed combinations are removed automatically by cascading
constraints if needed.

The second step sets the values in the “emiss_remeffs” table by overwriting
them with values retrieved in the initialization process. As shown in listing 4.41
only the values that are different from the ones already stored are updated.

00NN AW~

11
12
13
14
15
16
17
18
19
20
21
22
23

CHAPTER 4. IMPLEMENTATION 89

Listing 4.41: Updating of necessary abatement options with initialized values

UPDATE emiss_remeffs r SET

remeff = (
— get the value from the temporary table
SELECT remeff
FROM emiss_remeffs_init_tmp tmp

WHERE r.idemiss_vectors = tmp.idemiss_vectors

AND r.idregions = tmp.idregions

AND r.idpollutant_fractions = tmp.idpollutant_fractions
AND r.idact = tmp.idact

AND r.idsec = tmp.idsec

AND r.idtech = tmp.idtech

) WHERE EXISTS (
— check which values are different and have to be updated

SELECT 1

FROM emiss_remeffs_init_tmp tmp

WHERE r.idemiss_vectors = tmp.idemiss_vectors

AND r.idregions = tmp.idregions

AND r.idpollutant_fractions = tmp.idpollutant_fractions
AND r.idact = tmp.idact

AND r.idsec = tmp.idsec

AND r.idtech = tmp.idtech

AND r.remeff != tmp.remeff

It is not necessary to give further details on the updated emission vector, region
and pollutant fraction since the temporary table can only hold the set of removal
efficiencies that was inserted by the SQL command in listing 4.37. By committing
the updates in the “emiss_remeffs” table, the values in the “emiss_remeffs_init_tmp”
table are automatically deleted.

Updating only the changed removal efficiencies and not all of them, is not only
faster, but also enables the user running the initialization process, to view exactly
how many values were updated and inserted during the process.

Conclusions

The most important success of the new initialization process is the fact that it
is now possible to initialize not only complete vectors, but also partial vectors.
Furthermore we have assured the completeness of the part of an emission vector
that is initialized by filling up necessary abatement options that were not present
before.

By choosing a temporary table as the stage for the initialization process, we
have to lock the target table of the initialization process (“‘emiss_remeffs” in the
mentioned examples) only for a much shorter time. The process can also be com-

AN B WD =

CHAPTER 4. IMPLEMENTATION 90

pleted faster because only the initialized subset of abatement options is stored and
manipulated in the temporary table.

In addition, only the values that have changed, have to be copied from the
temporary table to the target table. This does not only save time, but also increases
the usability of the process by providing exact information about which values
have been changed during the last initialization run.

4.4.3 Display of Scenarios

In theory, each GAINS scenario should be available for all defined pollutants and
regions. However as already mentioned in section 4.3.3 practice has shown that it
is often only possible to provide fractions of data, either in terms of the available
regions, pollutants or both.

To reflect this change in requirements, additional data has to be provided.
Based on this data we have modified the display logic of the interface to fit the
requirements.

Analysis of Scenario-To-Pollutant Relation

The analysis of the completeness of emission vectors can be extended by the in-
formation about scenario structures to conclude which scenarios can be displayed
for a given pollutant. An analysis by manual visual comparison of the emissions
and costs of currently about 150 scenarios for all nine pollutants would take very
long. Since an overview of the available emission vector data can be presented
very fast, this laborious process can be skipped.

To provide the data for the overview, first a view is created to gather the
needed data. The command creating this view is shown in listing 4.42. It joins
all available pollutant fractions with the scenarios as defined in the scenario struc-
ture (“scenario_n”) and the analysis of the emission vector data retrieved by the
“emiss_factors_abtd_by _region” view (described in listing 4.18).

Listing 4.42: Data for overview of scenario completeness

CREATE OR REPLACE VIEW scenario_by_emivec AS
SELECT s.scen, s.owner AS scenario_owner, m.share_public AS public_scenario ,
s.region, s.emv_owner, p.pollutant,
f.amount_def, f.amount_needed,
(f.amount_def — f.amount_needed) AS diff_amount,
ROUND(ABS ((f.amount_def — f.amount_needed)/f.amount_needed)*100, 2) AS
diff_perc

10
11
12
13
14

CHAPTER 4. IMPLEMENTATION 91

FROM rains_data.pollutant_fractions p

JOIN scenario_.n s ON (1 = 1)

JOIN scen_master m ON (
m.scen = S.scen)

LEFT JOIN emiss_factors_abtd_by_region f ON (
f.idpollutant_fractions p.idpollutant_fractions
AND f.idemiss_vectors s.emv_owner
AND f.idregions s.region);

Based on this view the data can be further conveniently filtered. Listing 4.43
shows a few basic filtering options that allow a manual visual check of the re-
trieved data.

Listing 4.43: Analysis of overview of scenario completeness

SELECT DISTINCT scen, scenario_owner, public_scenario ,
region, emv_owner, pollutant,
amount_def, amount_needed, diff_amount, diff_perc
FROM scenario_by_emivec
—WHERE NVL(diff-perc, 100) != 0 — incomplete combinations
—AND public_scenario = 1 — public scenarios
—AND pollutant = 'SO2° — certain pollutant
—AND emv_owner = 'FCCC2000’ — certain emission vector

ORDER BY 1, 4, 6;

After checking the analysis on correctness, the data has to be presented to the
experts developing the scenarios. Only they can decide which scenarios are meant
to be shown for which pollutants. Since most of the scientists are not database
experts, it is not convenient for them to view the data directly through a database
querying tool and check the data as shown in the previous listing.

Therefore the data has to be exported and presented in an external program.
A convenient solution for this requirement is offered by Microsoft Excel. The
complete data set retrieved by the SQL command shown in listing 4.43 is exported
to a worksheet within a Microsoft Excel workbook. Based on this data a pivot
table (Collins, 2006) can be created as shown in figure 4.21. In the pivot table view
shown in this figure, the table is filtered to show only data for a given emission
vector, a scenario owner, and a set of regions and pollutants.

By giving the scientists the possibility to easily filter the data and allow-
ing flexible views on the data, conclusions can be drawn faster even though the
amount of data is very large. For example it is easily visible that in figure 4.21
data for Moldovia (“MOLD_WHOL”) is missing in the “NECO05” emission vector
and FGAS. Such a maverick can quickly be corrected.

Another pivot table can be created to show an overview of the average avail-
ability of pollutant specific emission factors over all regions of a scenario. As

CHAPTER 4. IMPLEMENTATION 92

i [Average of DEF % [POLL [

. [SCEN ~[OWHNER +[PUELIC «[REGION __ «[R PRI »[EMIWEC =|CH4 COZ [FGAS |M20

i [NAT_CLE_CEIL_EUWI_Ws janusz D[AUST WHOL |viewer MECOS 100.00] 100.00 100.00] 100.00
i | GERM_WHOL |vigwer MECOS 100.00] 100.00100.00] 100.00
E MOLD_WHOL [uger MECOS 100,00 10000 0001 100.00
! POLA WWHOL |viewer MECOS 100.00] 100.00] 100.00] 100.00
I [NAT_CLE_CEIL_EUVI_¥5 Total 100.00] 10000 75000 100.00
1 [NAT200B_CLEip_CEIL_EUvI_VS janusz D[AUST_WHOL [viewer MECOS 100.00] 100.00 100.00] 100.00
1] GERM_WHOL [vigwer NECOS 100,00 100.00 100.00] 100.00
2| WMOLD_WHOL |user MECO5 10000 10000 0.00] 100.00
2 (=l aTRFIERY ¥ = Tal] e KEMNE 400 nn 40N nn 40N nn 40N nn

Figure 4.21: Overview of available emission vector data by pollutant and region

Ayerage of DEF % POLL |

SCEM | CH4 co2 FGAS W2O MH3 M P 502 WOC
MWEC MAT CLE4REW 0000 ¥aEd 0.00 000 B8508] 9355 9353 9752 9309
MEC_MAT CLEWY 10000 7334 97 B2 9771 8512 9553 9952 9753 9506
MEC MAT ELW HDYW W 10000 7934 97B2 9771 8512 9559 9952 O7 63 9506
MEC_MAT OPT2 000 ¥aed 0.00 000 B8508) 9355 9353 97E2 G309
MWEC _PRIMES20_CLEW2 000 ¥aed 0.00 000 B8508] 9355 9353 9752 9309
MEC PRIMES20 OPTZ2 000 Faed 0.00 000 B8508] 9355 9353 9752 9309
MEC PRIMESS0_CLEWZ 000 Fasd 0.00 000 8508 9355 93853 9752 2809
NEC _PRIMESS0 OPTZ2 000 Fasd 0.00 000 8508) 93655 9353 97652 9309
MEC PRIMESCOH ELM HOW WY 10000 G752 G7F2 10000 8530) 10000 9962 9983 S95397
Grand Total 3333 8107 3254 3282 @524 09373 9907 9780 G518

Figure 4.22: Overview of available vector data by pollutant

shown in figure 4.22 the conclusions for the display of the scenarios shown in the
given pivot table view can drawn fairly fast: For scenario/pollutant combinations
where the average of available emission factors per region is 100% or close to
it, the scenarios will be displayed. For availability rates close to 0% the scenarios
should not be displayed. Rates between 25% and 75% have to be explored in more
detail, to see whether only a few regions are incomplete or complete, or whether
the emission vectors used in this case have a systematic problem independent of
the region.

The conclusion of this process is a matrix that flags a scenario/pollutant combi-
nation with 1 if the scenario shall be shown for the pollutant, and with O otherwise.

Assignment of Scenarios to Pollutants

Based on the results of the analysis done in the previous section, an assignment of
scenarios to pollutants can be done in the database as shown in figure 4.23.

CHAPTER 4. IMPLEMENTATION 93

A LABEL_SCENARIO
A SCEMNARIO_SHIP
789 COST_CURVES #K A IDSCENARIOS
- #3R A IDPOLLUTANTS

| || # |) | -

SCEN_MASTER {rains_europe) L% POLLUTANTS MV (rains_euUrope)
e ek R I e | BB]S =
=

#3% A SCEN S #% A IDPOLLUTANTS

% A OWNER =5

% A TYFE =

% A DESCR o

X " D |

¥ 7. DEFD 2

b S ML Zl

* 75 SHARE_PUBLIC % [EISCEN_TO_POLLUTANT (rains_europe;

¥ %]

o

X

SCEN_TO _POLLUTANT_FK1

Figure 4.23: Database structure for assignment between scenarios and pollutants

Assignment of Scenarios to Regions

According to the assignment of scenarios to pollutants, also an assignment of sce-
narios to regions for which the scenarios should be displayed can be created and
stored in table “scen_to_region”. It may not be possible to use scenarios that are
complete in terms of the amount of regions for all functionalities of the applica-
tion (for example for map display where scenarios have to be complete), but this
option may be interesting for other aspects.

Experience has shown that creating emission vectors only for a given group of
countries (for example European Union member countries) or even single coun-
tries is requested. To display results of such use cases, scenarios have to be created
that use these emission vectors. Such scenarios had to be “filled up” for the rest of
the GAINS regions available within the model to guarantee completeness in terms
of regions.

Since information about the availability of regions for a given scenario is now
existing, it is not necessary to define a scenario for all regions. To correctly display
only the defined regions, the web interface of the model has to be developed in
a way that allows only the selection of available regions for a given scenario and
not all of them.

CHAPTER 4. IMPLEMENTATION 94

User Access to Scenarios

Several parameters determine whether or not a user is granted access to a given
scenario. The requirements will be explained based on the SQL command that
retrieves all necessary data to display the scenarios available for a given user in a
given application version shown in the order in which they appear in listing 4.44:

e Table “scen_master” holds the list of all available scenarios,

e Table “scen_master_year” and view “gui_user_years” store information about
which years a scenario is defined and which of these years a given user can
see. This depends on the privilege needed to view data of a given year and
the rights the user has in a given application version,

e Table “scen_to_pollutant” holds the assignment of scenarios to pollutants as
mentioned in the previous section,

e Table “pitem_accesses” and view “gui_user_rights” determine which of the
available pollutants a given user is allowed to see. As already mentioned,
the display of the model interface for emissions and costs is pollutant driven.
Since the available pollutants are in different development stages, access to
the data can also be restricted by assigning appropriate privileges to the
pollutants in table “pitem_accesses”,

e Tables “scen_to_group” and “scen_groups” aggregate the available scenarios
into groups. Since there are around 150 scenarios currently defined in the
European version of the model, a multi-level selection is more user friendly,

e The “share_public” attribute of a scenario, and tables “scen_to_user” and
“gui_user_sharing” determine whether a given user has read access to a
given scenario as mentioned in section 2.4.1,

e The last step is the check, whether a given scenario has a defined structure
in table “scenario_n”.

Listing 4.44: User access to available scenarios

1| SELECT DISTINCT y.idvers, y.idusers, stp.idpollutants,

2
3

s.scen AS idscenarios, y.year AS idyears,
s.label_scenario , s.owner, s.type, s.share_public, s.cost_curves,

[IEN Be QLU NN

\O

1
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

CHAPTER 4. IMPLEMENTATION 95

y.idprivs AS priv_year ,
sg.idscenario_groups , sg.label_sgroup
FROM scen_master s

JOIN scen_master_year smy ON (
smy.scen = S.scen)

JOIN gui_user_years y ON (
smy.year = y.year)

JOIN scen_to_pollutant stp ON (
stp.idscenarios = s.scen)

JOIN rains_web .pitem_accesses pta ON (
pta.pitem_idpitem = stp.idpollutants
AND pta.vers_idvers = y.idvers)

JOIN gui_user_rights r ON (
r.idprivs = pta.priv_idprivs
AND r.idvers = y.idvers
AND r.idusers = y.idusers)

LEFT JOIN scen_to_group stg ON (
stg.idscenarios = s.scen)

LEFT JOIN scen_groups sg ON (
sg.idscenario_groups = stg.idscenario_groups)

WHERE y.idusers = \$(idusers) — selected user
AND y.idvers = \$(idvers) — selected version
AND (s.share_public =1

OR EXISTS (

SELECT 1
FROM scen_to_user stu
WHERE stu.idusers = y.idusers
AND stu.idscenarios = s.scen
) OR EXISTS (

SELECT 1
FROM gui_user_sharing us
WHERE us .idusers = y.idusers
AND us.idvers = y.idvers
AND us.idowner = s.owner
AND us.read =1

)

AND EXISTS (

SELECT 1

FROM scenario_n d

WHERE d.scen = s.scen

)

Thus the previously mentioned assignment of scenarios to regions is not checked
and retrieved in the query because currently a scenario is assigned to about 40 to
120 regions, depending on the version of the application. Therefore the amount
of records retrieved per user would be multiplied by this factor. This would lead
to an increase in query runtime upon insert, select and delete actions. This loss
in efficiency is unproportionally high compared to the minimal runtime loss when
joining in the regional information when needed.

CHAPTER 4. IMPLEMENTATION 96

The runtime of the just mentioned command is around 5 seconds. This is not
very long for an average query runtime, but the information this query is retriev-
ing, is needed on almost every page of the web interface, because most function-
alities of the model are based on the scenario selection. The execution of the
query upon every page refresh would lead to unacceptable page refresh times and
therefore cannot be accepted.

Caching of User-specific Scenario Data

As mentioned in the previous section, some kind of caching strategy has to be
provided so that the scenarios needed for a given user have to be fetched only
upon login of the user into the model and not on every page refresh.

As discussed in section 4.2.2 temporary tables would theoretically be able to
hold such information over the life time of a user log in. But this strategy cannot
be applied because of the connection pooling. Another possibility to save runtime
would be mviews. Due to the complexity of the query shown in listing 4.44 and
the restrictions for queries retrieving data for mviews, this strategy can also not
be implemented very easily. Since all native Oracle based solution seem to fail on
this question, a custom-made solution to this challenge has to be found.

The database structure of the solution is presented in figure 4.24. Table
“user_session_scenarios” holds all scenario related information retrieved for a given
user session as shown in listing 4.44. The table does not have a primary key be-
cause of the fact that the NOT NULL are not unique. To create a primary key on
the table, the columns “idscenario_groups™ and “label _sgroup” would have to be
eliminated from the table. Since the table is filled with data dynamically and the
information is needed, a primary key is not created. Instead, indices are created
for all important data filtering possibilities (the indices are not shown in figure
4.24 due to space considerations).

What is more interesting in the figure, is the logic behind the “user_sessions”
table. It holds a unique combination of a web session identifier and a version.
Furthermore it stores the user name bound to this session and the time when it
was created.

Upon each login the information is written into this table and the needed sce-
nario information is fetched. When the user logs out of the application, the cor-
responding user session is removed from the table and the associated scenario
information is deleted by the cascading constraint “user_user_session’ scenarios.

CHAPTER 4. IMPLEMENTATION 97

USER_SESSION_SCENARIOS {rains_web)
5] s g e
AR IDSESSIONS
USER SESSION _SCENARIOS FKT X A IDVERS
i ¥ A IDUSERS
UvSER_SIES?SIONS frains_web) o A BRI
Bl # [4o > % A IDSCENARIOS
#X A IDSESSIONS b IDYEARS
#3% A IDVERS * A LABEL_SCEMARIO
¥ A USERID X A OWNER_SCENARIO
XK CREATED *®OA TYPE_SCEMARIC
A Pey SHARE_PLIBLIC
#Tey COST_CURVES
*®OA PRIV_YEAR
o A IDSCENARIO_GROUPS
@A LABEL_SGROUP

Figure 4.24: Tables holding active user sessions and associated scenario informa-
tion

In many cases, due to various reasons, the user may not log out manually. Such
abandoned sessions would unnecessarily stay in the system. Therefore garbage
collection based on the expiring of a web session is necessary. This is done by
implementing the HttpSessionBindingListener interface of the javax.servlet.http
package (HttpSessionBindingListener, 2003) and cleaning values bound to a given
web session, when the expiration of a web session is reported through the “value-
Unbound” method of the interface.

Similar approaches could be used to cache other user session relevant infor-
mation by storing it in the database for the life time of an user login.

CHAPTER 4. IMPLEMENTATION

98

Chapter 5

Conclusion

5.1 Summary

Based on the selected examples in chapter 4 we have shown that correct data
modelling not only assures integrity of the available data itself, but also leads
to the integrity of the results calculated and presented based on this data. The
importance of integrity and consistency of data becomes even more important
with the rising amount of data, since human checks, although made by highly
skilled experts, become more and more difficult and thus unreliable.

By showing ways of making the underlying data structures independent of
single pollutants and modelling data from a multi-pollutant point of view, we have
eliminated many single points of failure. At the same time we have also assured
that the suggested approach is not only correct from the data modelling point of
view, but also returns results in a reasonable amount of time.

5.2 Where to go from here?

5.2.1 Flexibility in Viewing

Currently the model forces one hierarchical view on the data due to the structure
of the interface: First a pollutant, then one scenario, and lastly a single region or
a group of regions has to be selected. This approach was developed due to the
pollutant specific development of the model. The flexibility of other views and

99

CHAPTER 5. CONCLUSION 100

more flexible ways of drilling-down into available data was not possible because
of the data structure.

Thanks to the remodelling of the emission calculation approach, the pollutants
can now also be regarded as selection and query parameters similar to the scenar-
10s and regions. They can also be flexibly grouped allowing a bigger variety of
views on the available data.

These three basic selection parameters can now also be flexibly rearranged.
This would allow not only the current selection sequence of pollutant, scenario
and region, but also other sequences. It would even be possible to let each user
decide in which order he would like to drill down into the data.

For example for some aspects it may be more interesting to select a given
GAINS region, a few scenarios and a few pollutants. Assuming that a given user
would like to compare three different scenarios for two different, arbitrarily cho-
sen, pollutants, six different calculation requests would have to be sent with the
current approach. After retrieving the data, the user would have to combine the
data using an external tool. With flexible viewing approaches, all needed data
could be retrieved in one request and presented in a single overview.

5.2.2 New Technologies

Thanks to the successful data cleaning, it will also be easier to analyze and investi-
gate the possibility of managing and sharing data with the help of other technolo-
gies. Such possibilities could for example include a data warehousing concept.
By implementing a data warehouse based on GAINS data it would be possible to
allow a variety of views in a much faster time than it is possible with the current
database structure. Such a data warehouse would also be capable of holding and
displaying not only the currently available regional GAINS models, but also a
global GAINS model. This would allow the analysis of global emissions and their
impacts and would be an important milestone in the development of the GAINS
model.

Another already mentioned aspect is the fact that the GAINS model is part of a
large network of scientific models: Much of the data used as input for calculations
of the GAINS model are provided by other models, and the results are further used
as input for other models. The cooperation between these scientific models is also
the main subject of the EC4AMACS project funded by the LIFE program of the
European Commission. This interaction could certainly benefit from developing

CHAPTER 5. CONCLUSION 101

a network of web services through which it would be automatically possible to
exchange data between the models.

CHAPTER 5. CONCLUSION 102

Bibliography

Alcamo, J., Shaw, R., and Hordijk, L. (1990). The RAINS Model of Acidification.
Kluwer Academic Publishers.

Amann, M., Cofala, J., Heyes, C., Klimont, Z., Mechler, R., Posch, M.,
and Schopp, W. (2004). RAINS Review 2004 - The RAINS Model.
Technical report, International Institute for Applied Systems Analysis
ITASA. Available at http://www.iiasa.ac.at/rains/review/
review—full.pdf (April 25, 2008) .

Amann, M. and Dhoondia, J. (1994). Regional Air Pollution Information and
Simulation - RAINS-Asia, User’s Manual.

Calvanese, D., Giacomo, G. D., Lenzerini, M., Nardi, D., and Rosati, R. (1998).
Source Integration in Data Warehousing. In In Proc. of DEXA-98. IEEE
Computer, pages 192-197. IEEE Computer Society Press. Available at
http://www.dblab.ntua.gr/~dwg/DWDOT-98_dwqg.pdf (April
25, 2008) .

Collins, J. C. (2006). Microsoft Excel Pivot Tables. Technical report, Mi-
crosoft. Available at http://www.microsoft.com/dynamics/
using/excel_pivot_tables_collins.mspx (April 25, 2008) .

DBCP (2007). Database Connection Pooling (DBCP). Apache Software Founda-
tion. Available at http://commons.apache.org/dbcp/ (April 25,
2008) .

EC4MACS (20006). European Consortium for Modelling of Air Pollu-
tion and Climate Strategies. Technical report, European Commis-
sion. Available at http://ec.europa.eu/environment/

103

BIBLIOGRAPHY 104

life/project/Projects/index.cfm?fuseaction=home.
createPage&format=p&s_ref=LIFE06%20PREP%2FA%
2F000006&area=6&yr=2006&n_proj_id=3200&cfid=
11667912 (April 25, 2008) .

Economic Commission for Europe (2003). Guidelines for Estimat-
ing and Reporting Emission Data under the Convention of Long-
range Transboundary Air Pollution. Technical report, United Na-
tions. Available at http://www.unece.org/env/documents/
2003/eb/air/ece.eb.air.80.E.pdf (April 25, 2008) .

European Commission - FP6 (2005). GAINS-Asia - Greenhouse Gas and Air
Pollution Interactions and Synergies with special emphasis on South-East
and East Asia. Technical report, European Commission. Available at ht tp:

//ec.europa.eu/research/fp6/ssp/gains_en.htm (April 25,
2008) .

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From Data Min-
ing to Knowledge Discovery in Databases. Al Magazine, (17):37-
54. Available at http://www.aaal.org/aitopics/assets/PDF/
AIMagl7-03-2-article.pdf (April 25, 2008) .

Gupta, A. and Mumick, I. S. (1995). Maintenance of Materialized Views:
Problems, Techniques and Applications. IEEE Quarterly Bulletin on Data
Engineering; Special Issue on Materialized Views and Data Warehous-
ing, 18(2):3-18. Available at http://citeseer.ist.psu.edu/
gupta95maintenance.html (April 25, 2008) .

Gutjahr, J. and Loew, A. (2002). Scalability and Performance: JDBC Best Prac-
tices and Pitfalls. Technical report, Sun Microsystems Gmbh. Available at
http://citeseer.ist.psu.edu/552192.html (April 25,2008).

HttpSessionBindingListener (2003). Jjavax.servlet.http Interface HttpSes-
sionBindingListener. Sun Microsystems. Available at http:
//Jjava.sun.com/j2ee/1.4/docs/api/javax/servliet/
http/HttpSessionBindingListener.html (April 25, 2008) .

ITASA Options (1993). Acidification - Modeling Transboundary Air Pollu-
tion. IIASA Options Winter 1993. Available at http://www.iiasa.

BIBLIOGRAPHY 105

ac.at/Admin/INF/OPT/options—backissues—-scanned/
opt93-4win.pdf (April 25, 2008) .

ITASA Options (1998). Cleaner Air for a Cleaner Future. IIASA Options Summer
1998. Available at http://www.iiasa.ac.at/Admin/INF/OPT/

options—-backissues-scanned/opt98-2sum.pdf (April 25,
2008) .

Irizawa, F. and To, R. (2001). Why is SQL Tuning Important to Your Business?
The SQL Quality Challenge. Technical report, LECCO Technology. Avail-
ableat http://www.hkcs.org.hk/dbwpl805.doc (April 25, 2008)

Klaassen, G., Berglund, C., and Wagner, E. (2005). The GAINS
Model for Greenhouses Gases - Version 1.0: Carbon Dioxide (CO,).
Technical report, International Institute for Applied Systems Analy-
sis IITASA. Available at http://www.iiasa.ac.at/Admin/PUB/
Documents/IR-05-053.pdf (April 25, 2008) .

Kronecker delta (2007). Kronecker delta. Wikipedia. Available at http://en.
wikipedia.org/wiki/Kronecker_delta (April 25, 2008) .

Kyte, T. (2005). Expert Oracle Database Architecture. Springer-Verlag New
York, Inc.

Loaiza, J. (2000). Optimal Storage Configuration Made Easy. Technical
report, Oracle Corporation. Available at http://www.oracle.com/
technology/deploy/availability/pdf/oow2000_same.
pdf (April 25, 2008) .

Managing Tables (2002). Oracle Database Administrator’s Guide 10g, Re-
lease 2 (10.2), Managing Tables. Oracle Corporation. Available at
http://download-uk.oracle.com/docs/cd/B19306_01/
server.102/b14231/tables.htm#11006400 (April 25, 2008) .

MySQL (2007). MySQL 6.0 Reference Manual - 12.5.6.4 FOREIGN KEY
Constraints. MySQL. Available at http://dev.mysgl.com/doc/
refman/6.0/en/innodb-foreign-key-constraints.html
(April 25, 2008) .

BIBLIOGRAPHY 106

Nanda, A. (2004). Oracle Database 10g: The Top 20 Features for DBAs - Materi-
alized Views. Available at http://www.oracle.com/technology/
pub/articles/10gdba/weekl12_10gdba.html (April 25, 2008) .

Nicola, M. and Rizvi, H. (2003). Storage Layout and I/O Performance in
Data Warehouses. In Lenz, H.-J., Vassiliadis, P., Jeusfeld, M. A., and
Staudt, M., editors, DMDW, volume 77 of CEUR Workshop Proceed-
ings. CEUR-WS.org. Available at http://sunsite.informatik.
rwth—-aachen.de/Publications/CEUR-WS/Vol-77/07_
Nicola.pdf (April 25, 2008) .

Oracle CBO (2002). Oracle9i Database Performance Tuning Guide and Ref-
erence, Release 2 (9.2) - Introduction to the Optimizer. Oracle Cor-
poration. Available at http://download-uk.oracle.com/docs/
cd/A97630_01/server.920/a96533/optimops.htm (April 25,
2008) .

Oracle Data Dictionary Views (2002). Oracle9i Database Concepts, Re-
lease 2 (9.2) - The Data Dictionary. Oracle Corporation. Avail-
able at http://download.oracle.com/docs/cd/B10501_01/
server.920/a96524/c05dicti.htm (April 25, 2008) .

Rahm, E. and Do, H. H. (2000). Data Cleaning: Problems and Current Ap-
proaches. [EEE Data Eng. Bull., 23(4):3-13. Available at http://
sites.computer.org/debull/AO0ODEC-CD.pdf (April 25, 2008)

SQL*Loader (2001). Oracle9i Database Ultilities, Release 1 (9.0.1),
Part II - SQL*Loader. Oracle Corporation. Available at http:
//download-uk.oracle.com/docs/cd/A91202_01/901_
doc/server.901/a90192/part2.htm (April 25, 2008) .

TOAD (2007). TOAD - Tool for Application Developers. Quest Software, Inc.
Available at http://www.toadsoft.com/ (April 25, 2008) .

TOra (2007). TOra - Toolkit for Oracle. Quest Software, Inc. Available at http:
//tora.sourceforge.net/ (April 25, 2008) .

BIBLIOGRAPHY 107

Wagner, F., Amann, M., and Schopp, W. (2007). The GAINS Optimization Mod-
ule as of 1 February 2007. Technical report, International Institute for Ap-
plied Systems Analysis IIASA. Available at http://www.iiasa.ac.
at/Admin/PUB/Documents/IR-07-004.pdf (April 25, 2008) .

Witmuess, A. (1990). Regional Acidification Information and Simulation Model -
RAINS, Version 5.1, User’s Manual.

	arbeit.title
	arbeit.body

