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Abstract 

 

The Moon and Sun exert a gravitational force on the Earth. This influence in a certain point in the 
Earth or on the Earth’s surface is a function of the distance between this point and the perturbing 
celestial bodies. The tidal attraction of the Moon or Sun in a certain point in the Earth is defined as the 
difference between the gravitational attraction in the point itself and the gravitational attraction in the 
geocentre. The tidal forces cause periodic deformations of the Earth’s surface, and the Earth’s 
response to the acting forces depends on Love and Shida numbers, which describe the elasticity of the 
Earth. 
 
Modern space geodetic techniques, such as VLBI (Very Long Baseline Interferometry), allow the 
validation of theoretically estimated global Love and Shida parameters from direct measurements. The 
modelling of tidal displacement of the Earth’s surface, as it is recommended in the IERS Conventions 
is implemented in the VLBI analysis software package OCCAM. In this thesis, a thorough description 
of the components of the tidal displacement is provided. 
 
The main goal of this master thesis is to determine Love and Shida numbers of second degree obtained 
from observations during the CONT05 campaign, i.e. a 15 days continuous VLBI operation carried 
out in September 2005. Before applying the procedure for the determination of the Love numbers to 
real data, a Matlab-based program with simulated observations has been tested. When Earth rotation is 
considered, the Love numbers in the diurnal band become frequency dependent with a resonance 
around the frequency of the Free Core Nutation. In this thesis, the Love number h2, the Shida number 
l2, and Love numbers for six tidal waves (K1 O1 P1 J1 ψ1 Φ1) were estimated. 
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1.  Solid Earth Tides 

 

 

1.1   Introduction 

 

Earth tides are caused by the gravitational attraction of the Moon and the Sun. The Moon, 

which orbits the Earth in an approximate distance of 384000 km, exerts a greater influence 

than does the Sun, being 150 million km away from the Earth.  

When talking about tides, most people are referring to ocean tides (regular rise and decrease 

of ocean water) that can be observed at the ocean’s coasts. However, not only the oceans but 

also the solid Earth is affected by the attracting forces of celestial bodies. 

Nevertheless, the apparent ocean tides that are visible at the sea are the difference between the 

tidal displacements of the ocean and the solid Earth. 

The vertical amplitude, which is caused by the pure solid Earth tides each day, can reach up to 

tens of centimetres. 

 

Since an observer on the Earth’s surface is following the upward and downward motions of 

the ground, the solid Earth tides are difficult to measure. Analogously, one is not able to take 

notice of ocean tides while standing in the middle of the ocean – our eyes must have a 

reference and see both, the ocean and the land. 

 

Earth tides were already indirectly observed about one and half century ago. At that time a 

geological hypothesis existed that introduced the Earth with a molten interior upon which 

rests a relatively thin solid crust. This assumption was based on the extrapolation of the 

measured temperature gradient. 

About 1863, Kelvin analysed observations of fortnightly tides, which were carried out in the 

Indian Ocean. From these observations it appeared that the observed amplitude was only 

about two-thirds of the theoretical one. In other words, the Earth’s crust tides are three times 

lower as compared to the ocean tides. This historical result led to the statement that the 

rigidity of the Earth is about the same as that of steel (Love, 1927). 
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Augustus E.H. Love introduced a new radial parameter (h) describing spherical elasticity in 

1909. In 1912, Shida added the tangential counterpart, i.e., l. These parameters are 

dimensionless numbers, which characterize the ability of the Earth to react elastically to tide-

generating forces. 

For brevity and according to other publications the term “Love numbers” includes both terms, 

i.e. h and l. 
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1.2   Tidal potential 

 
The tidal potential (i.e. the tide generating potential, TGP) tid

V  in a point P on the surface or 

within the Earth is the sum of the gravitational potential )P(grav
V  of the perturbing body (the 

Moon or the Sun) in the point P and of the potential of the centrifugal force )P(Q  due to the 

motion of the attracting body (the Moon or the Sun) around the barycentre of the two-body 

system. 

 

)P()P()P( QVV
gravtid +=        (E 1.1) 

 

The tidal force (i.e. the gradient of the TGP) tends to deform the Earth, and this deformation 

is the Earth tide. 

 

 

Figure (F 1.1): Gravitational force F_grav and tidal force F_tid acting on the Earth. Tidal force is 
obtained by subtracting the gravitational force vector acting in the geocentre F0 from the F_grav. 
Modified from (Wahr, 1995). 
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From the upper part of Figure (F 1.1) it can be seen that the vectors of the gravitational force 

F_grav of the perturbing body on the Earth have unequal lengths and directions. The actual 

gravitational force dependents on the distance of the perturbing body: the closer it is, the 

larger is the gravitational force. 

 

The tidal force F_tid at the actual point in the Earth is obtained by subtracting the vector F0 

(i.e. gravitational force vector in the geocentre) from the gravitational force F_grav at point P 

(F 1.1 middle). The resulting tidal forces are illustrated in Figure (F 1.1 bottom). 

Evidently, in the geocentre the tidal force equals zero. On the line, which connects the point 

underneath the perturbing body with the one on the antipode, the tidal forces are directed 

away from the centre of the Earth. At these sides, the Earth is deformed with two tidal bulges. 

On the perpendicular line (which is equivalent to the Earth’s axis if the perturbing body is in 

equator plane) the tidal forces are directed to the geocentre and cause additional pole 

flattening. 

 

 

Gravitational potential at point P caused by the Moon 

 
Figure (F 1.2): The basic geometry of the two bodies. 
 
Because of the symmetry around the axis connecting the centres of the Earth and the 

perturbing body, the gravitational potential can be described with respect to this axis by 

ρ
agrav GM

V =          (E 1.2) 

, where the topocentric distance ρ can be computed with the law of cosines (see Figure F 1.2) 

ψρ cos222
aeae RRRR −+=  .      (E 1.3) 

In Equation (E 1.3), Ra is the geocentric distance to the perturbing body, and Re the geocentric 

distance to point P. Precise ephemerides allow us to compute the resulting tidal potential for a 

given point and instant, where the potential depends only on the geocentric zenith distance (ψ) 

of the perturbing body. 
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The following mathematical derivation for the tidal potential given by a sum of Legendre 

polynomials (E 1.8) is based on Zeman (2005). 

 

The gravitational potential can be expressed as an expansion in Legendre polynomials (e.g. 

Burša and Kostelecký, 1999): 

( )∑
∞

=








=

0

cos
n

n

n

a

e

a

agrav
P

R

R

R

GM
V ψ        (E 1.4) 

If the two-body system (the Earth – the Moon/Sun) should be in equilibrium, than the 

centrifugal force must be equal to the gravitational force from the perturbing body in the 

geocentre (O): 

a

atid

R

GM
QV =−= )O()O(         (E 1.5) 

As noticed earlier, the centrifugal acceleration in the whole Earth is constant. The 

equipotential surfaces of that centrifugal field are perpendicular to the line connecting the 

geocentre and the perturbing body. The difference in the centrifugal potentials between the 

geocentre (O) and the point (P) on the surface expresses Equation (E 1.6). 

ψcos'OP)O()P(
22 e

a

a

a

a R
R

GM

R

GM
QQ ⋅−=⋅−=−     (E 1.6) 

Deriving Equation (E 1.6) with respect to 'OP  yields a constant acceleration for the whole 

surface. 

 

Introducing Equations (E 1.4), (E 1.5) and (E 1.6) in (E 1.1), the tidal potential becomes: 
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           (E 1.7) 

The second and third term in (E 1.7) are identical to the first two terms of the gravitational 

potential (E 1.4) (i.e. the terms of zero and first degree in Legendre expansion). The final 

equation for the TGP is thus given by a sum of Legendre polynomials, which starts with 

degree two: 
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Constraints of the tidal potential for practical computation 

 
a) Which perturbing bodies do we need to consider? 

 

If we look at the second degree tidal potential, n = 2, i.e.  

( )ψcos2

2

P
R

R

R

GM
V

a

e

a

atid









⋅=  ,  the magnitude of the potential is proportional to 

3
a

a

R

GM
. 

 

In Table (T 1.1a) the values for Sun, Venus and Jupiter are shown relative to the value for the 

Moon. 

Moon Sun Venus Jupiter 

3

3

Moon

Moon

a

a

R

GM

R

GM

 

1 0,46 0,000 05 0,000 006 

Table (T 1.1a): Proportionality of the second degree tidal potential relative to the Moon’s value. 
 

Even for the most precise computation it is sufficient to consider only the lunisolar tides (as 

recommended in the IERS Conventions 2003). 

 
 

b) Up to which degree do we need to sum? 
 

 

It is evident from 
n

a

e

R

R








 that the importance of terms in the sum decreases fairly rapidly with 

increasing n.  
 

Perturbing body n = 2 n = 3 

nn

Moon

e

R

R








≅









60

1
 

3600

1
 

216000

1
 

    
nn

Sun

e

R

R








≅









23000

1
 

529000000

1
 

13102167.1

1

⋅
 

Table (T 1.1b): Importance of higher-degree Legendre polynomials decreases with 
increasing n. 

 
Regarding values in Table (T 1.1b) and according to (McCarthy and Petit, 2004) only second 

degree terms for the Sun and second and third degree terms for the Moon need to be 

considered for precise computations. 
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For further theoretical considerations it is more interesting to express the angle ψ in 

geocentric coordinates (Θ, λ) of the station P and (p, GHAa) of the attracting body A. The 

TGP can be described with respect to the Earth’s axis of rotation, which is more useful than 

the description to the line connecting the mass centre of the Earth with the perturbing body. 

  
Θ colatitude of station 
λ longitude of station 
δa declination of the perturbing body 

p = 90° – δa geocentric polar distance of the perturbing body 
GHAa Greenwich hour angle 

LHAa = (GHAa – λ) local hour angle of the perturbing body = angle 
between the meridian of the celestial object and 
the meridian of the observer 

Figure (F 1.3): Geocentric coordinates of the station (P) and the Moon/Sun (A). 
 

With the spherical law of cosines, the geocentric angle ψ can be expressed in geocentric 

spherical coordinates of the station P and the celestial body A (Figure F 1.3): 

( )λψ −Θ+Θ= aGHApp cossinsincoscoscos      (E 1.9) 

 

Concerning spherical functions, the Legendre polynomials for ψ can be expressed with the 

addition theorem (E 1.10) (e.g. Burša and Kostelecký, 1999).  

( )
( )

( )∑
=

−Θ
+

−
+⋅Θ=

n

m

anmnmnnn GHAmpPP
mn

mn
pPPP

1
000 cos)(cos)(cos

!

!
)(cos)(cos)(cos λψ  

(E 1.10) 

 

 1.2.1   Harmonic expansion of the tidal potential (retaining only second degree) 

 

Due to the periodically changing mutual positions between the point on the Earth’s surface 

and the perturbing body, the tidal forces at the Earth’s surface (and thus also the tidal 

deformation) occur in regular periods.  

The time dependence of tidal waves is on one hand due to the rotation of the Earth, where the 

configuration “point P – perturbing body” is varying with a daily period. On the other hand, 

the frequency bands come from the periodical changes in the geocentric positions of the 

perturbing bodies. This is reflected in the geocentric declination δa, the Greenwich hour angle 

GHAa and the geocentric distance Ra. 
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In order to describe the main frequency bands in the tidal perturbation separately, it is 

necessary to use spherical harmonics, where the tides can be split into three groups: long-

periodic, diurnal, semidiurnal. 

According to Equation (E 1.10) and retaining only the principal term n = 2, the expansion of 

the tide generating potential is introduced in Table (T 1.2). The tidal potential is expressed as 

a sum of spherical harmonics of degree 2 with coefficients representing the periodic functions 

of time. 

 

Zonal part: n = 2, m = 0 

The zonal part of the tidal potential tid
V20  is composed of a zonal harmonic for station 

colatitude )(cos20 ΘP  and a zonal harmonic for polar distance of the perturbing body 

)(cos20 pP . 

A zonal harmonic is a spherical harmonic of the form )(cos20 ϑP , i.e. one, which reduces to a 

Legendre polynomial, where ϑ  is Θ or p, respectively. Nodal lines on a unit sphere, where 

)(cos20 ϑP  vanishes, are parallels of ±35°16’ latitude, which divide the surface into zones 

with different sign. 

At a given time instant, )(cos20 ΘP  is constant for a parallel and )(cos20 pP is constant for the 

entire Earth. The geocentric declination of the Moon varies with time between ±28°45’ with a 

monthly period. The Sun’s declination ranges from 23.5° to °− 5.23  with an annual period. 

Evidently, the value of )(cos20 pP  stays always negative. The zonal part of the tidal potential 

field leads to the long-periodic tides. 

 

Tesseral part: n = 2, m = 1 

The tesseral spherical harmonics are the product of Legendre function )(cos21 ϑP  and Λcos  

ϑ(  and Λ denote colatitude and longitude on a unit sphere). The tesseral harmonic function 

corresponds to a diurnal period. The curve on which they vanish are n – m = 1 parallel of 

latitude (it is the equator) and 2m = 2 meridians (90° from the meridian of the perturbing 

body). Thus, the amplitudes at the equator and at the poles are permanently zero. 

 

Sectorial part: n = m = 2 

The product of Legendre function )(cos22 ϑP  and Λ2cos  is termed sectorial spherical 

harmonic. It is actually a special case of the tesseral harmonics, where the degree n equals the 

order m. The sign does not change within 2m = 4 longitude intervals, so the fundamental tidal 

period is semidiurnal. 
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ZONAL HARMONIC 

 

( ) ( )pPP
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GMV
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e
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tid coscos 20203
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20 Θ=                 (E 1.13) 

 
long period tides 
 
fundamental period   14 days for Moon 

6 months for Sun 
(because of the squared sine 
function of the declination of 
the attracting body) 

does not depend on stations longitude 
 
zero value: latitude = ~35° 
 

 
TESSERAL HARMONIC 

 

( ) ( ) ( )λ−Θ= a

a

e
a

tid
GHApPP

R

R
GMV coscoscos

3

1
21213

2

21  

                                                                          (E 1.14) 
diurnal tides  
 
 
a tesseral function divides sphere into areas, which 
change the sign once in latitude and twice in longitude 
 
 
zero value: latitude = 0°, ±90° 
                   declination = 0° 
                   (GHAa – λ) = ±90° 

 
SECTORIAL HARMONIC 

 

( ) ( ) ( )λ−Θ= a

a

e
a

tid
GHApPP

R

R
GMV 2coscoscos

12

1
22223

2

22  

                                                                          (E 1.15) 
semidiurnal tides 
 
 
the sign does not change within 2m = 4 longitude 
intervals 
 
 
zero value: declination = ±90° 
                   for meridians = (GHAa – λ) ± 45°  

Table (T 1.2): Basic characteristics of the spherical harmonics of second degree. 
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1.2.2   Waves inside frequency bands 

 

Inside the long-periodic, diurnal and semidiurnal frequency band a huge amount of specific 

tidal waves with own frequencies, which are slightly different from the frequency of the band, 

is hidden. 

One reason for their existence is the variation of the inclination of the lunar orbit plane to the 

equator plane and of the inclination of the equator plane to the plane of the ecliptic. Secondly, 

it is caused by the ellipticity of the Moon’s and the Earth’s orbits.  

 

To analyse the tidal phenomena, the components of these motions have to be separated in 

order to describe the tidal potential as a sum of waves having as argument linear functions of 

time. Doodson chose six variables that, when linearly combined, yield the argument of the 

specific tide. 

 

 

Systematic classification of tidal waves 

In 1921, Doodson introduced a notation, which makes possible the automatic classification of 

all tidal waves, deduced from theory, in the order of their increasing speed. The parameter 

used, called the argument number (AN), can be deduced from mathematical expression of the 

argument of the tide (θf). The argument is a function of the six independent variables: 

sf fpeNdpchbsa +++++= ´τθ  

 

The argument number is then obtained by the combination of six successive ciphers: 

( )( )( )( )( ) 654321 nn.nnnn555.55AN =+++++= fedcba  

 

Doodson’s fundamental arguments 

τ mean lunar time  
s mean longitude of the Moon 
h mean longitude of the Sun 
p mean longitude of the lunar perigee 
N´ = – N mean longitude of the ascending lunar node which is changed in sign 

because of retrogression of the node 
ps mean longitude of the perihelion 
  
t = τ + s – h mean solar time 
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The first three variables have the greatest velocity. Thereby, the first three numbers are 

separated from the last three numbers by a dot. 

 Description Separable after 

n1 species number in the sense of Laplace 

0 – long period wave 

1 – diurnal wave 

2 – semidiurnal wave … 

only a few days of observation 

n1n2 group number one month of observation 

n1n2n3 the constituent number at least one year of observations 

Table (T 1.3): The first three digits of the argument number (Melchior, 1983). 
 

The first digit of the argument number is precisely the species number in the sense of Laplace. 

It represents the types of spherical harmonic functions. There are three periods given for the 

spherical harmonics of the second order: long period (n1 = 0), diurnal period (n1 = 1), and 

semidiurnal period (n1 = 2). 

The first two digits of the argument number represent the group number, which characterizes 

the tidal waves separable from one month of observations. 

This first section of three digits of the argument number is called the “constituent number”. 

It differentiates the tidal waves, which we can separate considering that we have at least one-

year of observations. 

The last three indices (n4n5n6) represent effects of a very slow variation. The waves whose 

arguments can only be distinguished in this part of the argument can only be separable if 

extensive continuous observations are available. (Melchior, 1983) 

 

 
 
In this thesis, six diurnal components of tidal waves were selected for Matlab simulations 

(Chapter 4.3). 

Symbol 
Argument 

number (AN) Argument (θf) 
Frequency 

[°/h] 
Amplitude Origin (Lunar, Solar) 

O1 145.555 τ – s 13.943036 +37689 L principal lunar wave 
P1 163.555 t – h 14.958931 +17554 S solar principal wave 
K1 165.555 τ + s 15.041069 –53050 L+S declinational wave 
ψ1 166.554 (t + h) + (h–ps) 15.082135 –423 S elliptic wave of sK1 
Φ1 167.555 t + 3h 15.123206 –756 S declinational wave 
J1 175.455 (τ + s) + (s – p) 15.585443 –2964 L elliptic wave of mK1 
Table (T 1.4): Tidal waves in the diurnal band with largest amplitudes and those lying close to the Nearly 
Diurnal Free Wobble resonance. 
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Conversion of tidal amplitudes defined according to different conventions 

 
The definitions used for the amplitudes of tidal terms differ from each other and various 

definitions of amplitudes are given in literature. 

 

The original definition from Doodson (1921) is dimensionless. The IERS Conventions 2003 

(and the OCCAM source-code) follow the definition from Cartwright and Tayler (1971), 

where the tidal amplitude Hf is expressed as a height of tidal wave in meters. For 

completeness it should be mentioned, that Hartmann and Wenzel (1995) tabulated amplitudes 

in units of the potential [m2s-2]. 

 
 

Factors for conversion to Cartwright-Tayler amplitudes Hf 

 
from Doodson from Hartmann & Wenzel 

426105,0
5

4 1
20 −=−=
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D
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π
 361788,0
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20 ==
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π
 

695827,0
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24
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eg

D
f

π
 511646,0
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695827,0
5
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3
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π
 511646,0
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Doodson constant:              D1 = 2,63358352855 m2 s-2 
g at the equatorial radius      ge = 9,79828685 m s-2   
Table (T 1.5): Conversion’s amplitudes factors (McCarthy and Petit, 2004). 
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1.3   Tidal displacement 

 

If the Earth was a perfectly rigid body, the tidal potential would only cause changes of the 

equipotential areas, e.g. changes in the Earth’s gravitational potential. No transfer of masses 

or deformations of the crust would occur. The Earth is, however, not an ideally 

incompressible rigid body, so it does change its shape. 

 

In 1909, Love introduced a new parameter h in his publication “The Yielding of the Earth to 

Disturbing forces”. The parameter reflects the amount by which the surface of the Earth 

responds to the tide-generating forces. 

It is a constant of proportionality between the radial tidal displacement of the Earth’s crust ρδ  

and the radial tidal displacement of the equipotential surface δρ . (Burša, 1988). 

δρ

ρδ
=h          (E 1.16) 

For a rigid body, 0=ρδ , so the value of h is also equal to zero. For a perfectly fluid, 
2

5
=h . 

A parameter (l) for transverse displacement was introduced in 1912 by Shida and Lambert. 

 

Considering the Earth being “Spherical, Non-Rotating, Elastic and Isotropic”, what is the 

most basic model, the tidal displacement at a given station (Φ, λ) in the topocentric system 

(REN) is described by Equations (E 1.17 – E 1.19). 

 

Radial direction 
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North direction 
Φ∂

∂
⋅⋅=Φ

tid
V

g
lu

1
 (E 1.19) 

 

 

 

Strictly speaking, in Equations (E 1.17 – E 1.19) the tidal potential is considered to be only of  

second degree. Consequently, the Love numbers h and l are constants at Earth’s surface for 
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the second degree of the tide-generating potential. It needs to be mentioned, that each degree 

of the TGP has its own constant of proportionality. If higher degrees of TGP are added, the 

Love numbers for these terms appear. Simultaneously, the Love numbers are also functions of 

the geocentric distance. 

So, the values hn(ρ) = h2 = h and ln(ρ) = l2 = l in (E 1.17 – E 1.19) refer to the Earth surface 

and to the most important term of second degree in the tide-generating potential. 

 

When a more realistic model of the Earth is considered, i.e. the ellipticity, rotation and the 

elastic mantle – fluid core boundary are taken into account, the relationship between the TGP 

and the tidal displacement becomes more complicated. The displacement vector u is 

composed of deformational parts of specific harmonic degree, order and specific frequency 

inside the band. Hereby, also the Love numbers hnm(f ) and lnm(f )become frequency 

dependent. Due to the different rotational axes of mantle and core, the Earth has a normal 

mode with an eigenfrequency in diurnal frequency band. These phenomena lead to a 

resonance (see Chapter 2: Free Core Nutation) and a strong frequency dependence for diurnal 

Love Numbers inside the diurnal tidal band. 

Equations (E 1.20 – E 1.22) for individual tides were determined by Wahr (1981). 
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Further, for a more precise treatment, the anelasticity of the Earth’s mantle can be put into a 

model, which causes a lag of the tidal deformation with respect to the TGP. Mathematically it 

is described by imaginary parts of the tidal displacement, if it is written as a complex 

function.  

According to (Mathews, 1997), the mantle anelasticity causes displacements up to a few 

millimetres. 
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1.4   New definition in IERS Conventions 2003 

 

1.4.1   Theory of latitude dependent Love number parameters 

 

 

A completely new approach in definition of the Love numbers was introduced by Mathews et 

al. (1995).  

“For an oceanless, elastic, spheroidal, rotating and nutating Earth, we present new definitions 

for the latitude dependent Love numbers and gravimetric constant which are free of certain 

drawbacks of the definitions currently in use, and make the computation of quantities of 

observational interest simpler and more direct.” (Mathews et al., 1995). 

 

(Mathews et al, 1995) defined sets of parameters, which are used for the representation of the 

latitude dependence of the effective Love numbers h and l. 

These parameters ´)2()0( ,, hhh  and ´)2()1()0( ,,, llll  are defined by their contribution to the site 

displacement due to a spectral component, which belongs to one of the three frequency bands 

(long period, diurnal, semidiurnal) of the tide generating potential (E 1.13 – E 1.15). 

The values of these parameters, which are relevant for the computational procedure, are listed 

in Table 7.4 in the IERS Conventions 2003 (McCarthy and Petit, 2004). 

 

The model of the solid Earth tides recommended in the IERS Conventions 2003 is based on 

this new definition. 

 
 

Dependence of the effective Love number parameters  
(McCarthy and Petit, 2004) 

 
 

caused by 

Earth's ellipticity latitude dependence + small interband variations 
Coriolis force due to Earth rotation 

frequency dependence  
 
    - within the diurnal band 

very strong, produced by the Nearly 
Diurnal Free Wobble resonance 
(NDFW), associated with FCN  
(see Chapter 2) 

    - within the long-period band from mantle anelasticity 
Table (T 1.6): Causes of the latitude and frequency dependence of the effective Love numbers 
parameters. 
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The following expressions (E 1.23 – E 1.25) result from the evaluation of the defining 

equation “(6)” in Mathews et al. (1995). 

Each frequency band has its own formula, where the frequency f has to be replaced by 

specific tide frequency inside the band. 

 

 

Long period tide of frequency f is expressed as following 
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diurnal tide of frequency f is defined as 
 

































+











ΦΦ−Φ










−Φ+

++







+Φ−ΦΦ+

++ΦΦΦ

−=∆

elll

nlll

rh

Hr

f

f

f

ff

ˆ)cos(2cossin3sin
5

24
)(3

ˆ)sin(
5

24
sin32cos)(3

ˆ)sin(cossin3)(

24

5

)1('

'2)1(

λθ
π

λθ
π

λθ

π

r
 (E 1.24) 

 
 
while semidiurnal tide of frequency f reads 
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where 
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Hf [m] amplitude of the tidal term of frequency f 
(definition according to Cartwright and Tayler) 

Φ latitude of station 
λ east longitude of station 
θf tide argument for tidal constituent with frequency f 
r̂  unit vector in the radial direction 
ê  unit vector in the east direction 
n̂  unit vector in the northward direction 

 
 
 
Note: 

The contributions to the Love number parameters from anelasticity and ocean tidal loading as 

well as those from the centrifugal perturbations due to the wobbles have imaginary parts. 

These imaginary parts cause that the tidal displacement is slightly shifted from the tide 

generating potential (McCarthy and Petit, 2004). Generalization to the complex parameters 

can be done by making the following replacements: 
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where L is a generic symbol for ´)2()0( ,, hhh , ´)2()1()0( ,,, llll . 

 
 
 
Approximate maximum amplitude of the various contributions 

Description 
Radial displacement 

(in phase)   [mm] 

Transverse displacement 

(in phase)   [mm] 

full degree 2 tide 314 65 
full degree 3 tide        1.7      0.2 
degree 2 zonal tide 157 33 
permanent tide 120 25 
degree 2 diurnal tide 189 53 
degree 2 semidiurnal tide 235 65 
   
Latitude dependence effect: degree 2   
l
(1) term in semidiurnal tide ---       1.0 

l
(1) term in diurnal tide ---       0.8 

h
(2) and l(2) terms       0.4       0.1 

Table (T 1.7): Maximum amplitudes of the main contributions to the site displacement (Mathews et 
al., 1997). 
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Table (T 1.8) shows the contribution of the latitude dependence to the nominal values h2 and 

l2 of Love numbers. The defining equations are (E 1.26) and (E 1.27). 

 

0847.0

6078.0

22
)0(

22
)0(

==

==

ll

hh
   

0002.0

0006.0
)2(

)2(

=

−=

l

h
 

 
 
Φ 0° ±30° ±60° ±90° 

( ) ( )Φ⋅ sin2
2

Ph  0.000 30 0.000 08 -0.000 38 -0.000 60 

h2 0.607 8 
h(Φ) 0.608 10 0.607 88 0.607 42 0.607 20 

 
( ) ( )Φ⋅ sin2
2

Pl  -0.000 10 0.000 00 0.000 13 0.000 20 

l2 0.084 7 
l(Φ) 0.084 60 0.084 70 0.084 83 0.084 90 
Table (T 1.8): Contribution of the latitude dependence to the nominal Love numbers h2, l2. 
 

 

 

 

1.4.2   Computation procedure 

 
For practical use, it is very inefficient to compute the tidal deformation with a simple 

summation of Equations (E 1.23 – E 1.25) over the spectral components. This computation 

would lead to a large number of terms, which have to be considered in order to achieve an 

accuracy of 1 mm or better. Nevertheless, from a theoretical point of view it would be 

possible. 

 

A more efficient computation of the variation of the station coordinates due to solid Earth 

tides is done by the use of a two-step-procedure, which was adopted in the IERS Conventions 

2003. This procedure is also implemented in the VLBI data analysis software OCCAM, 

which is used at TU Vienna, and with which the computations for this master thesis were 

performed. The components of the tidal displacement from this procedure are visualised in 

Chapter 4.2 of his work. 
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IERS Conventions 2003 

Chapter 7.1.2: Effects of the solid Earth Tides 

 

 
Step 1 Corrections in the time domain 

S1.a in-phase 
 S1.a.1 for degree 2 tides 
 S1.a.2 for degree 3 tides 

S1.b out-of-phase only for degree 2 
 S1.b.1 diurnal 
 S1.b.2 semidiurnal 

S1.c contribution from latitude dependence 
 S1.c.1 diurnal 
 S1.c.2 semidiurnal 

 
Step 2 Corrections in the frequency domain for degree 2 

S2.a semidiurnal tides negligible 
S2.b diurnal tides in phase corrections 
S2.c long period tides in phase + out of phase 

Table (T 1.9): Two-step-procedure adopted in the IERS Conventions 2003 to computation of station 
coordinates variation due to solid Earth tides. 

 
 
 
 
Step 1 

 
 
� S1.a.1 Displacement due to degree 2 tides 

 

Values of Love numbers for semidiurnal tides )0(
22h  and )0(

22l  are chosen to be nominal values 

for all degree 2 tides. The Love numbers have negligible variation in the semidiurnal band. 

Thus, the computational effort in Step 2 – correction in the frequency domain – is minimized. 

 

6078.0)0(
22 =h  

0847.0)0(
22 =l  

 
Equation (E 1.28) is the initial equation “(9)” in the IERS Conventions 2003 (McCarthy and 

Petit, 2004), p.79, for the degree-2 tide. It corresponds to the basic equation of tide generating 

potential, which was introduced in Chapter 1 (E 1.11) with the displacement given by (E 1.17 

– E 1.19). 
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Conversion of Equation (E 1.17) into the radial part of Equation (E 1.28) is demonstrated in 

(E 1.29): 
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Separation of the transverse displacement into the eastward and the northward direction can 

be found e.g. in Sovers (1998): 
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Xa, Ya, Za geocentrical coordinates of the perturbing body 
xs, ys, zs geocentrical coordinates of the station P 

µa ratio of the mass of the perturbing body to the mass of the Earth 
Re vector from the geocentre to the station P 

with 

 

Ra vector from the geocentre to the Moon/Sun 
 

 

Equation (E 1.32) defines radial displacement (Sovers,1998) and is identical with (E 1.28). 
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(Equations E 1.30 – E 1.32 were used for partial derivatives in my source-code. See chapters 

(Ch 4.3.2) and (Ch 4.4)). 

 
 
 
� S1.a.2 Displacement due to degree 3 tides 

 
h3, l3 are taken to be real and constant. Only the Moon's contribution needs to be computed. 

Radial displacement can reach 1.7 mm, transverse displacement stays lower than 0.2 mm. 
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� S1.b Out of phase contributions from imaginary parts of I

mh
)0(

2  and I

ml
)0(

2  

 
The contributions to radial and transverse displacements are computed with nominal values 

for the whole band (diurnal, semidiurnal). Corrections to this simplification are made in 

Step 2. For zonal tides, there is no closed expression in the time domain. 

 
 
� S1.c Contributions to the transverse displacement induced by latitude dependence  
 
band nominal l(1) real value contribution to the transverse displacement 

zonal 0 0 

diurnal 0.0012 0.8 mm 

semidiurnal 0.0024 1.0 mm 

Table (T 1.10): Contributions to the transverse displacement from the real part of the nominal value l(1)
. 

 

The imaginary part of l
(1) and the intraband variations of the real part are completely 

ignorable. 

 
 
Step 2 

 

Corrections to the radial and transverse station displacement caused by the intraband 

variations of degree 2 Love numbers are taken into account here. 

In the diurnal band the frequency variation is caused by the NDFW resonance. The list of 

11 constituents from the diurnal band with radial correction 0.05 mm or more, is given in 

Table 7.5a in the IERS Conventions 2003 (McCarthy and Petit, 2004)). 

 

In the long period band, the Love numbers frequency dependence is due to the variation of the 

anelasticity contribution. According to Table 7.5b in IERS Conventions 2003 (McCarthy and 

Petit, 2004), the contributions of 5 terms with a radial correction of more than 0.05 mm need 

to be considered. 

 

Corrections due to all constituents listed in (Tables 7.5a and 7.5b, IERS2003) must be taken 

into account to ensure an accuracy of 1 mm (McCarthy and Petit, 2004). 
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Nevertheless, in Mathews et al. (1997), it is stated, that variations of the imaginary parts are 

significant only in the long period band. In the diurnal band the only component that achieves 

the cutoff of 0.05 mm is due to the K1 tide. 
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2. Free Core Nutation 

 

 

The strong frequency dependence in the diurnal tidal response of the solid Earth is caused by 

inhomogeneities in the Earth’s interior. 

This variation of Love numbers with 

frequency in the diurnal band arises from 

resonance behaviour of the Earth, which is 

caused by the presence of the fluid core. The 

rotational axis of the core is slightly inclined 

with respect to the axis of rotation of the 

mantle. In this situation forces arise at the 

elliptical core-mantle boundary (CMB), 

which try to realign the two axes. 

 

 
Figure (F 2.1): Axes of rotation of the fluid core 
and mantle. 

 

In the terrestrial reference frame, this phenomenon is seen as a diurnal motion, and is called 

the Nearly Diurnal Free Wobble (NDFW). In the celestial reference frame it appears as a 

retrograde motion of the celestial pole with a period of approximately 430 days and is 

designated as Free Core Nutation (FCN). 

 

With Very Long Baseline Interferometry the motion of the rotational axis of the mantle in 

celestial frame can be observed. Because any displacement of the core axis induces a 

displacement of the mantle axis, the FCN period can be determined from VLBI data analyses. 

The resonance period of FCN in space is dominated by the shape of the core. The period is 

inversely proportional to its dynamical flattening. If the core was in hydrostatic equilibrium, 

the period would be approximately 460 days – value used by (Wahr, 1981). 

The later analyses of VLBI data show, that the core’s flattening has to be slightly larger, 

because the estimated FCN period is around 430 solar days. 
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One of the most recent estimations of FCN period can be found in Vondrák and Ron (2006). 

Using data from April 1982 to June 2005, they estimated the FCN period to be equal to 

430.55 ± 0.11 solar days (Vondrák and Ron, 2006). 

 

The estimation of the FCN period from the tidal displacement was published, e.g., in Haas 

and Schuh (1996). For the estimation of the FCN period they used a resonance formula for the 

Love numbers in the diurnal tidal band, which was published by Wahr (1981): 
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)(),( 2121 flfh   Love number of a tide T from diurnal band 

FCNOf ωωω ,,
1

  frequencies of each specific tide 

RSRS l,h   resonance strength factor 

 

It was solved for all five parameters: FCNflfh ω,l,h),(),( RSRS2121 . Because Equations (E 2.1) 

and (E 2.2) are not linear with respect to FCNω , iterations had to be carried out. 

The period determined by Haas and Schuh (1996) from about 725000 VLBI observables 

(1979 – 1995) is 426 ± 20 sidereal days. 

 

 

Equation (E 2.1) was used in the Matlab simulations for the determination of the NDFW 

frequency (see section Analysis and Simulations (Chapter 4.3). 
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3.   VLBI (Very Long Baseline Interferometry) 

 

 

 

3.1   Introduction 

 

The geodetic interest in VLBI is based on the use of an inertial frame formed by a given set of 

extremely compact extragalactic radio sources (quasars). 

 

A Quasar (abbreviation of QUASi-stellAR radio source) is an extremely bright and compact 

active galactic nucleus, which doesn’t have measurable proper motions. 

 

VLBI is the only technique that can link the terrestrial reference frame (TRF) and the quasi-

inertial reference frame realized by positions of the radio sources. Due to this connection, 

VLBI is the unique technique for direct measurement of Earth orientation without hypotheses 

of all components. 

 

 

VLBI provides Earth orientation data, 

which are affected by the Earth's 

response to numerous forces. These 

data can be used to extract 

characteristics of the oceans, 

atmosphere and solid Earth.  

 

The main geodynamical phenomena 

such as polar motion, Universal Time 

(UT1), nutation and precession, Earth 

tides or tectonic plate motion are 

monitored via this technique with very 

high accuracy.  

Figure (F 3.1): Numerous phenomena affect the 
orientation of the Earth. (Original drawing by Jos 
Verheijen, 
http://lupus.gsfc.nasa.gov/brochure/bfuture2.html). 
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Through constant improvements in the quality of the observations and their analyses, geodetic 

VLBI results have steadily been improved. Currently, the time difference measurements are 

precise to a few picoseconds. This means, that VLBI determines the relative positions of the 

antennas and the quasar positions  with an accuracy of a few millimetres and fractions of a 

milliarcsecond, respectively. The precision that can be achieved in the VLBI products is 

summarized in the following table. 

 
 

 
Summary of current IVS main data products 

 
IVS Data Product Status 2002 Goals (~2010) 

CRF α, δ 0.25 – 3 mas 0.25 mas + improved sky 
distribution 

∆ε, ∆ψ 100 – 400 µas 25 – 50 µas 
UT1   from 24h session 5 µs 2 – 3 µs 

EOP 

xp, yp 200, 100 µas 25 – 50 µas 
TRF x, y, z   annual solution 1 – 4 mm 1 – 2 mm 
 z,y,x &&&    annual solution 0.1 – 1 mm/y 0.1 – 0.3 mm/y 

 x, y, z 
one solution per session 

5 – 20 mm 2 – 5 mm 

    
Solid Earth tides h, l 5 – 10% 0.1% 
Table (T 3.1): IVS main data products, Final report of IVS Working Group 2 on data analysis 
(Schuh et al., 2002). 

 

 

 

 

Following Chapters (Ch 3.2 – Ch 3.6) are based primarily on Campbell et al. (1992) and 

Campbell (2004). 

 

3.2   Fundamental principle 

 

The fundamental principle of geodetic VLBI is a synchronized observation of an extragalactic 

radio source. VLBI measures the time difference between the arrivals of a radio wavefront 

emitted by a quasar at two Earth-based antennas. This time delay τ, which is the principal 

observable in VLBI, is proportional to the scalar product of the baseline vector b between the 

two telescopes and the unit signal propagation vector k. 
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c is the velocity of light. The negative sign is due 

to the conventions in defining τ and b. 

 

 

 
Figure (F 3.2): Fundamental principle of geodetic VLBI 
measurement (Sovers, 1998). 

 

One VLBI observation lasts a few minutes. The sources are observed at two frequency bands 

(X- and S-band) with frequencies of about 8.4 GHz (wavelength ~ 3.6 cm) and 2.3 GHz 

(wavelength ~ 13 cm), respectively. The observation at two frequency bands allows to correct 

for the ionospheric delay which is dependent on the frequency of the signal. 

 

 

 

3.3   Phase delay or group delay 

 

Despite the fact, that phase measurements are more precise than measurements of group 

delay, the prime geodetic VLBI observable is the wide band group delay of the quasar’s 

signals. 

 

The challenge with the phase measurement is the determination of ambiguities. For the 

observed frequency with a wavelength of 3.6 cm, the a priori geometry has to be known with 

an accuracy of better than 2 cm. For baselines with lengths of several thousands of kilometres, 

this is still a hard constraint. (Campbell et al., 1992) 

 

The phase reference gets lost by the transition to another source. The antenna changes 

observing angle in the range of many degrees and begins to observe the second source with an 

unknown phase value. The connection to previous measurement is lost. 
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Phase delay is still an issue of research and does provide very high accuracy on very short 

baselines. 

 

In the early seventies, the Haystack Observatory in the north of Massachusetts and the 

National Radio Astronomy Observatory of Greenbank, West Virginia, conducted the first 

VLBI experiments that were explicitly aimed at achieving geodetic accuracy on long 

baselines. (Campbell, 2004) 

 

To attain high resolution group delay measurements, it is necessary to record at bandwidths as 

broad as possible. Until that time, the registration was restricted through limited tape 

recording systems, which only allowed recording of a maximum 2 MHz band. In these 

experiments the so-called bandwidth synthesis technique was invented, which helped to 

overcome the limitations of data recording. The principle is, that the time delay is not derived 

from the whole frequency band, but only from the signals at the outer ranges of the band. To 

avoid the ambiguity problem, fixed-frequency channels are also recorded across the spanned 

bandwidth. The a priori station positions need to be known with an accuracy of a few meters. 

(Campbell et al., 1992) 

 

 

 

3.4   Sensitivity of the technique 

 

The signal to noise ratio (SNR) in interference time is given by 

 

BT
TT
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d 2
2

SNR
21

21 ⋅
⋅

⋅
⋅=η        (E 3.2) 

 
η  digital processing loss factor 

Fd  signal flux density (1 Jansky = 10-26 W m-2 Hz-1) 
k Boltzmann’s constant (1.38·10-23 m2 kg s-2 K-1) 

A1, A2 effective antenna areas 
TS1, TS2 noise temperatures of the receiver system 

B bandwidth of the recording system 
T coherent integration time 
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In Equation (E 3.2) it can be seen, that the SNR depends on the product of effective antenna 

areas. If a smaller antenna is used in combination with a large antenna, the resulting effect (in 

terms of SNR) is the same, as if two medium large antennas would be used. 

 

The standard deviation τσ  in the estimate of the group delay derived from bandwidth 

synthesis is proportional to the SNR and the spanned bandwidth effB : 

effB⋅⋅
=

SNR2

1

π
στ          (E 3.3) 

 
 
The effective bandwidth is defined as the root mean square (rms) frequency deviation about 

the mean of the observed frequencies. 
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3.5   Signal detection and signal recording 

 

The main part of a radiotelescope is a movable reflector with a feed horn. There are two 

possible ways of leading the signal to this horn. For a prime focus antenna, the signal goes 

directly from the paraboloidal reflector to the feed horn at the focus position. The second 

types of telescopes have an additional hyperboloidal subreflector. The incoming signal first 

strikes the paraboloidal dish of the antenna, is then reflected up to the subreflector, and finally 

enters the feed horn on the central axis. 

 

To avoid a possible degradation of the signal, the initial stage of its amplification is done right 

under the feed horn. After the first stage of amplification, the signal is heterodyned from radio 

frequency to a lower intermediate frequency of around 300 MHz with a bandwidth of 

400 MHz.  

 

In a control building, the signal is split in several channels and further heterodyned into basic 

bands limited with frequencies between 0 and 2 MHz. 
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The dividing into the channels is performed to get, after a synthesis of all bands, a bandwidth 

as broad as possible. The width of the final band is essential for the precision in estimation of 

the time differences τ. 

 

In the next step, the signal is digitized and marked with time stamps. Time and frequency 

information are provided by a Hydrogen maser (Microwave Amplification by Stimulated 

Emission of Radiation). The current stability of the H-maser supports the accuracy of the 

observable from 20 to 30 ps (the stability of the frequency standard is 1 part in 1014 over 

many hours of operation). 

 

Finally, the data are recorded on high-capacity transportable hard disks and shipped to 
correlators.  
 

 

 

3.6   Signal correlation 

 

Correlators are facilities, in which the signals of two stations are combined. They consist of 

special-purposed signal processing hardware, that is used to determine the difference in 

arrival times at the two stations by comparing the recorded bit streams. 

The signals recorded at all participating antennas are combined pairwise, thereby producing 

an interference pattern. The bit streams are shifted in time relative to each other until their 

cross-correlation function is maximized. It is necessary to have the approximate position of 

stations, sources and clock offsets to calculate an apriori time delay. The correlation process 

can then be limited to a “search window” of a few microseconds. The independent station 

clocks must remain synchronized well enough to obtain signal samples that will form a 

coherent interference pattern. 

 

Most of the observing sessions are correlated with the Mark4/Mark5 correlators at the US 

Naval Observatory (Washington, USA), at the Max Planck Institute for Radio Astronomy 

(Bonn, Germany) and at Haystack Observatory (Westford, USA). Some sessions are 

correlated with the K4/K5 correlators in Kashima and Tsukuba, Japan, and some with the S2 

correlator in Penticton, Canada. (Schlüter and Behrend, 2007) 
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3.7   Data – CONT05 

 
 
CONT05 is a two-week campaign of continuous VLBI sessions, scheduled for observing 

during September 2005 and coordinated by the International VLBI Service for Geodesy and 

Astrometry (IVS). The observations started on September 12 at 17.00 UTC and ended on 

September 27. 

 

 

The station network consisted of 11 stations: 

 
Algonquin Park, Canada Gilmore Creek, Alaska, USA HartRAO, South Africa 
Kokee Park, Hawaii, USA Ny Alesund, Norway Onsala, Sweden 
Svetloe, Russia TIGO, Concepcion, Chile Tsukuba, Japan 
Westford, Massachusetts, USA Wettzell, Germany   
 
 
 

 
Figure (F 3.3): Station participating in the CONT05 campaign. 
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3.8   Software 

 

At the Institute of Geodesy and Geophysics, TU Vienna, the OCCAM VLBI software 

package is used for VLBI data analysis. This software is transportable and freely distributed. 

 

The roots of OCCAM go back to the eighties, when at the Geodetic Institute of the University 

of Bonn a software package for a VLBI data analysis called BVSS (Bonn VLBI Software 

System) was programmed. The goal in that time was to generate a software that is flexible to 

handle, easy to modify, and applicable more for special scientific investigations rather than 

for routine operations. The software included most of the geodynamical models to take into 

account all tidal influences on the rotation of the Earth, tidal deformation, various kinds of 

loading effects and also relativistic effects (Schuh, [1]).  

The package consists of several executable programs, which must be used in strict order to 

compute the solution of a VLBI session. It is recommended to use powerful computers for 

data analysis because the modern observational experiments include a large number of 

observation. (Titov et al., 2004) 

 

The input data format with OCCAM is the NGS-Format. NGS files can be downloaded from 

servers of the IVS. 

 

OCCAM computes models and corrections to generate theoreticals for the observables, as 

well as partial derivatives for the adjustment. The adjustment can be carried out using three 

different methods: least squares method, least squares collocation method, and Kalman Filter. 

 

 

 

Model computation menu 

(Description based on OCCAM 6.0. User´s guide (Titov et al., 2004)) 

1. Automatic model computation 

2. Data handling 

3. Precession and nutation 

4. Station corrections and derivatives 

5. Geometric model 
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1. Automatic model computation 

This option is equivalent to manually running options 2, 3, 4, 5. 

 

2. Data handling 

This option reads the original VLBI data files for the experiment given in NGS-Format. 

From global Ephemeris and EOP catalogs the file EPHEM.DAT is created. 

 

3. Precession and nutation 

This program transforms between the J2000.0 Celestial Reference Frame for the quasars 

to their apparent positions at the observation time. EOP and Ephemeris data for Sun, Earth 

and Moon are read from EPHEM.DAT and interpolated to each observation epoch. 

 

4. Station corrections and derivatives 

A. Corrections to the catalog station coordinates due to earth tides 

B. Furthermore, corrections such as antenna deformations, ocean loading, atmospheric 

loading, snow loading, soil moisture and non-tidal ocean loading and secular pole tide 

C. Antenna axis offset contribution to delays and rates 

D. Troposphere models 

E. Local source coordinates (azimuth, elevation, hour angle) 

F. Partial derivatives of the delay with respect to station, source coordinates, nutation 

parameters and ERP 

 

The model for the solid earth tides used in OCCAM 6 is the model by Mathews and 

Dehant (1999), as recommended by the IERS Conventions 2003, except for the part of the 

permanent tide correction. In accordance with the conventional approach, the part for 

permanent tide has not been activated. 

 

During my master thesis the main source-code was done within the subroutine 

“STATION\matthew.f ”, where the solid Earth tide model is stored. 

 

5. Geometric model 

This program computes the theoretical delay and rates for each observable included in the 

original data file. It considers the geometrical configuration of antennas and all relativistic 

effects. 
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4.   Analysis and Simulations 

 

 

4.1   Total tidal displacement 

 

In this chapter the modelled time behaviour of surface deformations caused by solid Earth 

tides is presented in several plots. In Figures (F 4.2) and (F 4.3) the variation of displacement 

for one point on the Earth during one day (January 1st, 2006) is plotted in 30 minutes time 

steps in the geocentric (XYZ) and topocentric coordinate system (REN), respectively. To also 

see the displacement in the long-period tidal band, the time span was extended to one month 

(January 2006) for the same point. The resulting curves are plotted in Figure (F 4.4). 

The deformation of the whole Earth is shown in Figures (F 4.5 – F 4.8) with a spatial 

resolution of 1°x1°. For the vector’s representation in (F 4.6) a 10°x10° grid was used. In all 

four figures the tidal displacement is modelled for January 1st, 2006 at 00 UTC. In addition, 

the time progression was computed for the whole day with two hours steps. These moving 

graphics are stored on the enclosed CD. 

 

The computation was executed with the tidal model coded in the program matthew.f. The 

code of this program is an implementation of the solid Earth tide model, recommended in 

Chapter 7 of the IERS Conventions 2003 (McCarthy and Petit, 2004). For further details, see 

Chapter 4.3. 

 

The input into this program is the time instant and location. The time information goes into 

the model as the Modified Julian Date (MJD). The station coordinates are needed in the 

geocentric system (XYZ). The output is the station displacement in geocentric coordinates 

(dx, dy, dz). 

 

Geocentric coordinates of the perturbing bodies for the year 2006 are listed in file 

“EPHEM.06”. The ephemerides for the bodies are given there with a temporal resolution of 
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12 hours. For the estimation of the position between these time instants, Lagrangian 

interpolation is carried out. 

 

 

The current configuration of the perturbing bodies on January 1st, 2006 is shown in Figure 

(F 4.1), where the Sun’s ephemerides are reduced by a factor of 100. The Moon and the Sun 

just passed through their closest position, when they were aligned at a new moon. So, 

January 1st is the first day after the day, when the amplitude of the tidal displacement reached 

the maximum and is now slowly decreasing. (The minimum will be in the first-quarter moon 

on January 6th.) 

 
 

 
   Figure (F 4.1): Geocentric orbits of the Sun and the Moon on January 1st, 2006. Sun’s ephemerides 

are reduced by a factor of 100. 
 

 

4.1.1   Tidal displacement at a station (15°E/50°N) 

 

For the computation of the displacement due to the solid Earth tides, I chose a “virtual 

station” in Central Europe, placed at 15° East longitude and 50° North latitude. 

 

The temporal variation of the geocentric coordinate differences (dX, dY, dZ) during the whole 

day is shown in Figure (F 4.2). The corresponding values are given in Table (T 4.1). 
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   Figure (F 4.2): Tidal displacement in [mm] at 15°E/50°N in geocentric XYZ coordinates on January 

1st, 2006. 
 
 

MJD dX [mm] dY [mm] dZ [mm]  MJD dX [mm] dY [mm] dZ [mm] 
53736.00 210.3 48.3 159.5  53736.50 -47.7 -13.7 -118.7 
53736.04 193.5 12.8 141.0  53736.54 -52.3 -24.5 -121.8 
53736.08 150.7 -22.3 104.3  53736.58 -68.7 -34.3 -127.7 
53736.12 90.3 -50.6 55.7  53736.62 -91.2 -38.3 -132.8 
53736.17 24.1 -67.8 3.0  53736.67 -111.1 -32.8 -132.0 
53736.21 -36.0 -72.0 -45.9  53736.71 -119.3 -16.9 -121.0 
53736.25 -80.4 -64.5 -85.0  53736.75 -108.7 7.6 -97.0 
53736.29 -103.9 -49.1 -111.0  53736.79 -76.6 36.6 -59.9 
53736.33 -106.8 -31.0 -124.0  53736.83 -25.2 64.1 -13.1 
53736.38 -94.1 -15.7 -126.6  53736.88 37.9 84.2 37.3 
53736.42 -74.1 -7.0 -123.6  53736.92 102.0 92.2 83.9 
53736.46 -56.2 -6.7 -119.8  53736.96 155.2 85.8 119.0 

     53737.00 187.4 65.9 136.8 
Table (T 4.1): Corresponds to (F 4.2). Presented values for tidal displacement at 15°E/50°N are with 
one-hour resolution. 

 
In the topocentric coordinates (F 4.3) the displacement is separated into radial and tangential 

components. In radial direction, the displacement is approximately ten times larger, than in 

the transverse directions. The height difference between the maximum amplitude at 00 UTC 

and the minimum amplitude at 16 UTC is 43.8 cm. From the Figure, it can be seen that the 

displacement shows two local maxima and two local minima during the whole day. It starts at 
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00 UTC on the “opposite bulge”, with respect to the Moon and the Sun, then it arrives due to 

the Earth’s rotation in the area, where the depression of the surface takes place (approx. 

4 UTC – 20 UTC). During this time interval, it achieves a local maximum at about 12 UTC, 

where its distance to the bulge under the perturbing bodies is the shortest. After 20 UTC, the 

surface is lifted again. 

 

 
   Figure (F 4.3): Tidal displacement at 15°E/50°N in topocentric REN coordinates on January 1st, 

2006. 
 
 

MJD dR [mm] dE [mm] dN [mm]  MJD dR [mm] dE [mm] dN [mm] 
53736.00 262.7 5.9 27.0  53736.50 -121.3 0.1 21.1 
53736.04 231.1 20.6 23.5  53736.54 -128.7 4.6 19.4 
53736.08 169.4 31.5 16.8  53736.58 -145.6 7.0 14.4 
53736.12 89.1 36.7 8.4  53736.62 -164.5 5.8 7.6 
53736.17 4.2 35.7 0.5  53736.67 -175.7 0.4 0.8 
53736.21 -71.5 29.4 -5.1  53736.71 -169.6 -8.4 -4.2 
53736.25 -127.4 19.7 -7.1  53736.75 -140.0 -18.7 -5.8 
53736.29 -158.7 9.1 -5.2  53736.79 -86.1 -28.2 -3.7 
53736.33 -166.5 0.1 0.0  53736.83 -13.0 -34.2 2.0 
53736.38 -157.2 -5.5 7.0  53736.88 68.9 -35.1 9.9 
53736.42 -140.5 -6.8 14.1  53736.92 146.1 -30.1 18.1 
53736.46 -126.1 -4.5 19.2  53736.96 205.0 -19.6 24.7 

     53737.00 234.8 -5.6 28.3 
Table (T 4.2): Corresponds to (F 4.3). Presented values for tidal displacement at 15°E/50°N are with 
one-hour resolution. 
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Tidal movement during a month 

 

In Figure (F 4.4) the movement of the same point (15°E/50°N) is plotted for a period of a 

month. The largest amplitudes can be seen around the new moon (December 31st) and full 

moon (January 14th) when Sun, Moon and Earth form a line and the tidal forces due to the 

Sun reinforce those of the Moon. It can been seen, that the amplitude at the full moon is 

actually a little bit smaller, than the one at the new moon.  

 

When the Moon is at first quarter (January 6th) or third quarter (January 21st), Sun and Moon 

are separated by 90° and the forces due to the Sun partially cancel those of the Moon. At these 

points in the lunar cycle, the tide reaches its minimum. 

 

 
   Figure (F 4.4): Tidal displacement at 15°E/50°N during a month (December 31st, 2005 and January 

1st, 2006) in topocentric REN coordinates. 
 
 
 

4.1.2 Global tidal displacement 
 

 
In Figure (F 4.5) the tidal deformation for the whole Earth on 1st January 2006 at 00 UTC in 

radial direction is plotted. The displacement transverse to radial direction is shown in Figure 
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(F 4.6), where the East and North components are put together. In the Figures (F 4.7) and 

(F 4.8) the transverse components are displayed separately. Corresponding values of the 

displacement are stored in txt-files on the enclosed CD. 

 

 
   Figure (F 4.5): Radial component of total tidal displacement on January 1st, 2006 at 00h UTC.  

 
   Figure (F 4.6): Site displacement in the transverse directions on January 1st, 2006 at 00h UTC.  
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   Figure (F 4.7): East component of total tidal displacement on January 1st, 2006 at 00h UTC. 
 

 
   Figure (F 4.8): North component of total tidal displacement on January 1st, 2006 at 00h UTC. 
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4.2    Radial components of tidal displacement following the IERS 
        Conventions 2003 

 

In the following Figures (F 4.9 – F 4.17) the individual components with their contribution to 

the total tidal displacement in radial direction are visualised. The snap shots are taken again 

for January 1st 2006 at 00 UTC. 

Figure (F 4.9) shows the contribution to the displacement from the latitude dependence in the 

nominal Love number h2 = 0.6078. The contribution to the Love number was discussed in 

Chapter 1.4.1 Table (T 1.7). 

In Figures (F 4.10) and (F 4.11) the displacement arising from second degree tidal potential is 

divided into the contributions of the Moon and the Sun, respectively. 

The same separation is shown in (F 4.12) and (F 4.13), where the forming potential is of third 

degree. In Figure (F 4.13) it can be seen, that the contribution of the Sun is quite ignorable. 

The largest displacement is only 0.01 mm. 

 

 

Table (T 4.3) gives an overview about the practical process of the correction’s computation. 

The theoretical approach is described in Chapter 1.4. Numbers in the second column are the 

equations presented in the IERS Conventions 2003 (McCarthy and Petit, 2004). In the third 

column, the corresponding subroutines from the “matthew.f” file are listed and last column 

shows the numbers of the matching figures. 

 

 

Corrections for 
IERS 

Conventions 2003 

subroutines in 

matthew.f 

Figure 

 

Step 1 

the out of phase contributions from 

I
h

)0(
21  and I

l
)0(

21  
14a, 14b ST1IDIU (F 4.14) 

the out of phase contributions from 

I
h

)0(
22  and I

l
)0(

22  
15a, 15b ST1ISEM (F 4.15) 

the latitude dependence in transverse 

displacement due to l(1) term 
12, 13 ST1L1 --- 
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Step 2 

frequency dependence in the diurnal 

band 
16a, 16b STEP2DIU (F 4.16) 

frequency dependence in the long 

period band 
17a, 17b STEP2LON (F 4.17) 

Table (T 4.3): Corrections for station coordinates variation due to solid Earth tides. The 
equivalence between IERS Conventions 2003 and OCCAM source-code is shown. 

 
 
 
 

 
 Figure (F 4.9): Contribution to displacement in radial direction of the latitude dependence of the 

nominal value h2 on January 1st, 2006 at 00h UTC. 
 
 

 
 Figure (F 4.10): Displacements in radial direction due to second degree tides on January 1st, 2006 

at 00h UTC, only Moon’s contribution. 
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 Figure (F 4.11): Displacements in radial direction due to second degree tides on January 1st, 2006 

at 00h UTC, only Sun’s contribution. 
 

 
 Figure (F 4.12): Displacements in radial direction due to third degree tides on January 1st, 2006 at 

00h UTC, only Moon’s contribution. 
 

 
 Figure (F 4.13): Displacements in radial direction due to third degree tides on January 1st, 2006 at 

00h UTC, only Sun’s contribution – ignorable. 
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 Figure (F 4.14): Corrections to displacement in radial direction for the out of phase part of diurnal 

band ( I
h

)0(
21 ) on January 1st, 2006 at 00h UTC. 

 

 
 Figure (F 4.15): Corrections to displacement in radial direction for the out of phase part of 

semidiurnal band ( I
h

)0(
22 ) on January 1st, 2006 at 00h UTC. 

 

 
 Figure (F 4.16): Corrections to displacement in radial direction for frequency dependence in 

diurnal band (in phase and out of phase) on January 1st, 2006 at 00h UTC. 
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 Figure (F 4.17): Corrections to displacement in radial direction for frequency dependence in long 

period band (in phase and out of phase) on January 1st, 2006 at 00h UTC. 
 
 

 

 

4.3   Matlab simulation 

 

the program “LN_FCN.m” was written in the software Matlab to determinate the Love 

numbers from the tidal displacements. The algorithm was then used in OCCAM software to 

analyze the real data. 

Because the input parameters to the simulation program are known, they can be compared 

with the adjusted values in the output and the user is immediately warned about bugs. 

 

Coordinates of all 11 stations, which participated in the CONT05 campaign, and 19 radio 

source positions (selected from the ICRF catalogue) are input to the program. Coordinates of 

the Moon and the Sun are adopted from the “EPHEM.06” file. 

The output parameters from the least-squares adjustment are the nominal Love number h2, the 

nominal Shida number l2, and 6 frequency dependent Love numbers from the diurnal band 

(h21(O1), h21(P1), h21(K1), h21(ψ1), h21(Φ1), h21(J1)). The program continues with these six 

diurnal Love numbers to estimate the frequency of the Nearly Diurnal Free Wobble 

(associated with the Free Core Nutation) and the resonance strength factor hRS. Because there 

is no linear dependence with respect to the NDFW period in the resonance formula (E 2.1), 

the solution of the equation is obtained with a sufficient number of iterations. 
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4.3.1   Input data 

 

Stations 

Station X [m] Y [m] Z [m] 

GILCREEK -2281547.303 -1453645.078 5756993.149 
KOKEE -5543837.621 -2054567.852 2387851.922 
SVETLOE 2730173.860 1562442.670 5529969.070 
WETTZELL 4075539.895 931735.270 4801629.355 
WESTFORD 1492206.597 -4458130.517 4296015.532 
NYALES20 1202462.761 252734.404 6237766.013 
ONSALA60 3370606.043 711917.494 5349830.735 
TSUKUB32 -3957408.308 3310229.259 3737494.482 
HARTRAO 5085442.796 2668263.498 -2768697.043 
TIGOCONC 1492054.257 -4887960.956 -3803541.320 
ALGOPARK 918034.750 -4346132.269 4561971.156 

Table (T 4.4): Real station coordinates were used in the simulation program. 

 

The program uses the stations, which participated in the CONT05 campaign. These are 

defined with geocentric coordinates (X, Y, Z), which were taken from the ITRF97 catalogue. 

 

 

Figure (F 4.18): For the simulations, 11 baselines were selected. 

 

 

 

Celestial Reference Frame 

For the realisation of the celestial reference frame, 19 radio sources from the ICRF catalogue 

were selected. Their equatorial coordinates (Right Ascension and Declination) are given w.r.t. 

J2000.0. 
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Figure (F 4.19): 19 ICRF radio sources used for the simulation program. 

 

Position of the attracting bodies  

The coordinates from the Moon and the Sun are given in geocentric inertial system. 

MJD X [m] Y [m] Z [m]  

53729.00000 8233593836.163701 -134784046257.976196 -58433977955.871803 %Sun 
53729.00000 -379756749.395463 -100612704.007153 -48096337.887375 %Moon 
53729.02083 8288000159.227712 -134781118557.961761 -58432710734.116676 %Sun 
53729.02083 -379161074.083406 -102083087.396467 -48901730.317899 %Moon 
53729.04167 8342431580.075037 -134778171223.183777 -58431434999.754890 %Sun 
53729.04167 -378556971.727286 -103552039.731435 -49706485.346676 %Moon 

… … … …  
Table (T 4.5): Geocentric positions of the perturbing bodies. The program starts with ephemerides 
from January 1st, 2006.  

 

Positions from 01.01.2006 to 10.01.2006 (MJD: 53729 – 53739) in 30 min steps are used in 

the simulation program. The values at the epochs of the observations were estimated with 

Lagrangian interpolation from the coordinates given in “EPHEM.06”, with a temporal 

resolution of 12 hours. 

 

 

4.3.2   Computation procedure 

 
The computation runs in a loop over the epochs. As mentioned above, I chose 10 days for the 

computation. Because the time step between the observations is 30 minutes, the program uses 

480 simulated observation epochs. The number of observations differs in each epoch, because 

the current geometry between baselines and sources needs to be taken into account. The 
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maximal amount of observations is 67, whereas the minimum is 27. From each loop the 

partial derivatives of the tidal displacements for 8 parameters, i.e., h2, l2, h21(O1), h21(P1), 

h21(K1), h21(ψ1), h21(Φ1), h21(J1) are obtained. These parameters are adjusted with the least-

squares method (LSM). The LSM is used to adjust the parameters of the model to get an 

optimal fit of the data obtained from observations. The “optimal fit” means that the sum of 

squared residuals (difference between an observed value and the value given by the model) is 

a minimum. The final A-matrix (design matrix with partial derivatives) has 8 columns 

( 8 parameters) and the number of rows corresponds to the total number of observations, i.e., 

20830. (see T 4.8). 

 

Next step is the determination of ωFCN. The defining Equation (E 2.1) is not linear with 

respect to this parameter and the estimation needs to be done through an iterative process. In 

the LSM adjustment, ωFCN is estimated together with hRS and h21(O1). As an input, i.e. as 

observations, the six estimated frequency dependent Love numbers are used. 

 

 

Detailed description of the program “LN_FCN.m” 

 

 

Figure (F 4.20): Geocentric coordinate systems: 

Earth-fixed and quasi-inertial. 

For the computation, a geocentric coordinate 

system was chosen, which rotates with the 

Earth’s body. The origin of this system is 

situated at the Earth’s centre of mass, the X-

axis points through the intersection of equator 

and Greenwich meridian, the Y-axis is 

positive to the east and the Z-axis goes 

through the pole of the ITRF. 

 

The coordinates of the Moon, the Sun and 

radio sources are given in a geocentric 

coordinate system, which is inertial (inertial 

in the sense that it does not co-rotate with the 

Earth). The X’-axis points to the vernal 

equinox,  the  Z’-axis  is  identical   with  the  

Z-axis of the Earth’s fix system, and the Y'-axis completes the system to a right-hand system. 
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The rotation is related to the angle GMST. Greenwich Mean Sidereal Time (GMST) is the 

hour angle between the Greenwich meridian and the vernal equinox measured westward along 

the celestial equator. 

 

The next step requires the computation of the displacement for each station in the local 

system (REN) with Equation (E 1.32) for the radial direction and Equations (E 1.30 – E 1.31) 

for directions to east and north, respectively. The nominal values of Love numbers are 

h2 = 0.6078 and l2 = 0.0847. To this nominal displacement due to the second degree tidal 

potential, corrections for radial displacement (E 4.1) are added through 6 frequency dependent 

diurnal constituents. Their descriptions are listed in Tables (T 1.3) and (T 4.6). 

 

)sin()2sin()(
24
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21)(r λθδ

π
δ +Φ−= fff fhHu      (E 4.1) 

 
 
Hf Cartwright-Tayler amplitude of the tidal term 

δh21(f ) difference of h21(f ) from the nominal value h2 

(Φ, λ) station coordinates 
θf  tidal argument 

 
 
Tide Love number h21(f ) 

(IERS2003) 
Cartwright-Tayler amplitude Hf [mm] 
(Values in (T 1.3) converted with factor f21) 

Argument (θf) 
(from T 1.3) 

O1 0.6028 –262 τ – s 

P1 0.5817 –122 t – h 

K1 0.5236   369 τ + s 

ψ1 1.0569       3 (t + h) + (h–ps) 

Φ1 0.6645       5 t + 3h 

J1 0.6108     21 (τ + s) + (s – p) 

Table (T 4.6): Input parameters for the 6 diurnal waves: frequency dependent Love number h21(f ), 
amplitude Hf in millimetres and tidal argument (θf). 
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Doodson’s fundamental arguments 

(see also Ch 1.2.2) 
'GMST s−=τ  

   
32 T580.00000002-T0.00038793T53636000.77004280.46061815fhr  GMST ⋅⋅+⋅++⋅=  

   
32' T1390.00000185T890.00146638-T94481267.88163218.316645 ⋅+⋅⋅+=s  

Pr' += ss  

  
432 T70.00000000T10.00000002T90.00030888T81.39697127  Pr ⋅+⋅+⋅+⋅=  

432 T6540.00000000T00000002.0T20003032222.0T7697489.3600046645.280 ⋅−⋅+⋅+⋅+=h  

432 T2630.00000005T910.00001249-T2220.01032172-T5254069.01363283.3532431  ⋅+⋅⋅⋅+=p  

432 T650.00000001T9440.00000213-T1110.00207561-T1971934.1362699234.955444  ⋅+⋅⋅⋅+='
N  

432 T3340.00000000-T7780.00000001-T8890.00045688T6671.7194576698282.937340  ⋅⋅⋅+⋅+=sp  

 

T: time expressed in Julian centuries, starting with 2000 January 01, at 12 UT 

Table (T 4.7): Doodson’s fundamental arguments. 

 
 
The equation for the real part of radial displacement due to the tidal term of frequency f 

(E 4.1) is obtained from the defining equation (E 4.2) given in [“(16a)” IERS2003 p.81]. 

 
[ ] )2sin()sin()(r Φ+= λθδδ fff Ru        (E 4.2) 

 
where  

fff hHR δ
π

δ
24
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−=    221 )( hfhh f −=δ  

 

The total displacement is transformed from the local system to the geocentric Earth-fixed 

system by rotations around Z(λ) and Y(Φ) axis. Hereby, the coordinate shifts due to the 

modelled tidal displacement are expressed in X, Y, and Z direction. 

 

Then, for each baseline two baseline vectors (F 4.19) are computed. The “observed” one 

comes from coordinate differences of the stations, which are changed by the tides. The 

“computed” baseline vector is the reference without tides, i.e., simply the difference between 

the ITRF station coordinates. 

 

Observations, in units of metres, are defined as the time difference between arrival times of 

the wavefront at the baseline stations multiplied by speed of light. In the simulation, 

observations are obtained by multiplication of the baseline vector with the unit vector in 

source direction. The observations are computed for the “observed” and for the “computed” 
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baseline vectors. The difference between these two values goes into the L-vector in the least-

squares adjustment, see Equation (E 4.9). 

 

The A-matrix in the adjustment is filled with partial derivatives of the tidal displacement with 

respect to the estimated Love numbers (Table T 4.8). 

 

Because the L-vector contains the differences of the observations in the source direction, it is 

essential to have the partial derivatives in the A-matrix also in this particular direction. Thus, 

the values need to be transformed from the local coordinate system (REN) with the zenith 

angle (zst1(2)) and azimuth (azst1(2)) into source direction, where st1(2) in the argument stands 

for one of the baseline stations. 

The tidal displacement function u, used in Equations (E 4.3 – E 4.5) is defined in (E 1.30 – 

E 1.31). For the frequency dependent correction of the displacement δur(f) see Equation 

(E 4.1). 
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(E 4.5) 
Table (T 4.8): Structure of the design matrix A (20830, 8) filled with partial derivatives of the tidal 
displacement function. 
 

A test, added in the program, discovers simulated observations with a zenith distance larger 

than 90°. If this case happens, a warning message is displayed: 

 

!!! ERROR !!! 

Zenit distance at these stations to sources is more than 90deg! 

Do not use this combination! 

 

and the program is terminated. 
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In addition, it is stated for which time epoch the observation has been excluded. 

 
The resonance formula for the Love numbers of specific tide in the diurnal band h21(f ) (E 2.1) 

contains the FCN frequency in the terrestrial reference frame in which we are interested. 

Equation (E 2.1) is solved for h21(O1), hRS and ωFCN. Because of the non-linear dependence of 

ωFCN, iterations need to be carried out for ωFCN and hRS. 

 

In the LSM adjustment the L-vector is filled with the six frequency dependent Love numbers 

of the previous part of the program. 

 

The A-matrix is filled with partials derivatives of Equation (E 2.1) with respect to h21(O1), hRS 

and ωFCN (E 4.6 – E 4.8). 
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where the Equations (E 4.7) and (E 4.8) are equal to zero for the reference tidal wave O1. 

 

 

4.3.3   Output values 

 

The adjusted mean values in the vector X are obtained with the least-squares method (E 4.9). 

Corresponding formal errors σx, (i.e. a measure how tightly all the computed values are 

clustered around the mean) are defined in Equation (E 4.10) 

 

LAAAX
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The obtained adjusted values from the simulation program for h2, l2, h21(O1), h21(P1), h21(K1), 

h21(ψ1), h21(Φ1), h21(J1) are identical with the input values. This confirms that there are no 

mistakes in the source code when evaluating the partial derivates of the tidal displacement. 

However, one can see that the formal errors for the Love number corresponding to the ψ1 tide 

and Φ1 tide are extremely large. The main reason for this behaviour is that these two waves 

have small amplitudes (3 mm and 5 mm, respectively) and lie close to the NDFW resonance. 

Extreme uncertainties in determining these two waves are also obtained by the evaluation of 

the real data (see Chapter Ch 4.4.2). 

 
 

 h2 l2 h21(O1) h21(P1) h21(K1) h21(ψ1) h21(Φ1) h21(J1) 

mean 
value 

0.6078 0.0847 0.6028 0.5817 0.5236 1.0569 0.6645 0.6108 

standard 
deviation 

±0.0604 ±0.0222 ±0.2600 ±12.1187 ±4.5083 ±574.2080 ±280.9325 ±8.6703 

Table (T 4.9): Love parameters with their standard deviations from the simulation. 
 

 

Results from the “second” part of the program for hRS and ωFCN can be seen in Figures 

(F 4.21) and (F 4.22) or in the connected Tables (T 4.10) and (T 4.11), respectively. It 

follows, that five iterations were necessary. 

 

The estimated value for h21(O1) is 0.6027, which differs from the input value 0.6028. This 

difference is due to the fit of the defining curve to only frequencies from five tides. 

 

 

i hRS 

0 -0.00240000 
1 -0.00253013 
2 -0.00251613 
3 -0.00249957 
4 -0.00249503 
5 -0.00249496 
6 -0.00249496 
7 -0.00249496 
8 -0.00249496 
9 -0.00249496 

Figure (F 4.21): Iterative process for hRS in Matlab 
simulation. 
 

Table (T 4.10): 9 iteration’s steps for hRS. 
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i Frequency [°/h] 

0   15.08000000 
1   15.07850975 
2   15.07697917 
3   15.07607088 
4   15.07588370 
5   15.07587747 
6   15.07587746 
7   15.07587746 
8   15.07587746 
9   15.07587746 

Figure (F 4.22): Iterative process for NDFW frequency 
in Matlab simulation. 
 

Table (T 4.11): 9 iteration’s steps for ωFCN. 
 

 
 

4.3.4   Influence of inexact h2 on radial displacement 

 

To get an idea, how large the influence of a wrong Love number h2 on the estimated site 

displacement is, see Figure (F 4.23). The displacement due to the second degree tidal 

potential was computed once with the correct Love number h2 = 0.6078 and then with 

h2 = 0.5078. As follows from the (F 4.23) the difference of 0.1 in the nominal Love number h2 

can cause a displacement error up to 6 cm (station HartRAO at 11 h UTC). 

 
Figure (F 4.23): Influence of wrong second degree Love number (h2_wrong = 0.5078; dotted line). 
The correct Love number h2 = 0.6078 is plotted in solid line. The displacement error in radial direction 
reaches up to 6 cm. 
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4.4   Analysis in OCCAM 
 

 
In OCCAM the model for solid Earth tides is coded in the program “matthew.f” and follows 

the currently recommended model from the IERS Conventions 2003. The theoretical 

computation procedure is described in detail in Chapter (Ch 1.4). 

Partial derivatives of the tidal displacement with respect to the Love numbers h2, l2 and to the 

six frequency dependent numbers h21(O1), h21(P1), h21(K1), h21(ψ1), h21(Φ1), h21(J1) have been 

added. The code is described in Chapter (Ch 4.3.2). The essential equations are (E 4.3 – 

E 4.5) together with (E 1.30 – E 1.32). 

 
The program allows to estimate from one VLBI session the Love numbers separately or 

together; however, only these combinations are possible: 

h2&l2;  h2&h21(f );  l2&h21(f );  h2&l2&h21(f ) 

i.e., only one frequency dependent Love number can be estimated at a time. 

 

In this diploma thesis, the estimation of the frequency dependent numbers is considered only 

as a first attempt to determine these values. From one-day sessions it is very problematic to 

obtain realistic values, and therefore in the future it will be necessary to estimate h21(f ) from a 

global VLBI solution involving a large time span of several years. This is the reason, why I 

did not estimate more frequency dependent values. 

 

 

The main settings of the software for the VLBI data analysis were as follows: 

 

� Catalogue of the radio sources: ITRF2005.G27 

� Cut off elevation angle: 5.0° 

� No estimation of source coordinates 

 

 

 

 

 



  - 61 - 

4.4.1   Nominal values h2 and l2 

 
 

 

Deviations from theoretical value h2 = 0.6078 

 

All 11 stations 
10 stations  

(without TIGOCONC) 
l2 estimated l2 not estimated l2 estimated 

Datum 

free net fix net free net fix net free net fix net 
05-09-12   0.0142 -0.0074   0.0197 -0.0019   0.0153 -0.0073 
05-09-13   0.0296   0.0112   0.0204   0.0015   0.0288 0.0110 
05-09-14   0.0299 -0.0149   0.0304 -0.0120   0.0248 -0.0115 
05-09-15 -0.0125 -0.0328 -0.0072 -0.0266 -0.0185 -0.0376 
05-09-16 -0.0200 -0.0555 -0.0195 -0.0548 -0.0216 -0.0592 
05-09-17 -0.0208 -0.0336 -0.0197 -0.0300 -0.0176 -0.0317 
05-09-18   0.0048 -0.0265   0.0048 -0.0268   0.0112 -0.0236 
05-09-19   0.0118 -0.0252   0.0121 -0.0212   0.0071 -0.0287 
05-09-20   0.0352 -0.0034   0.0365   0.0006   0.0304 -0.0061 
05-09-21   0.0002 -0.0159   0.0009 -0.0148   0.0017 -0.0151 
05-09-22   0.0096 -0.0143   0.0091 -0.0166   0.0145 -0.0151 
05-09-23   0.0041 -0.0303   0.0039 -0.0290   0.0001 -0.0323 
05-09-24   0.0338   0.0111   0.0277   0.0030   0.0357   0.0103 
05-09-25   0.0130 -0.0225   0.0240 -0.0161   0.0117 -0.0251 
05-09-26   0.0270 -0.0083   0.0294   0.0038   0.0278 -0.0093 

mean 
value 

  0.0106 -0.0179      0.0115 -0.0161   0.0101 -0.0188 

standard 
deviation 

±0.0070 ±0.0058 ±0.0068 ±0.0055 ±0.0071 ±0.0058 

Table (T 4.12): Deviations from nominal Love number h2 estimated from CONT05 campaign. 
 
 

Several configurations in the computational approach were applied. The first set of values in 

Table (T 4.12) and Table (T 4.13) refers to the free network solution, where the station 

coordinates were estimated with an NNR/NNT condition (no net rotation / not net 

translation). In the second column are the results obtained from data evaluation with fixed 

station coordinates. In both columns, both Love numbers (h2 and l2) were estimated. The 

following two columns refer again to a free network and fixed network, respectively; however 

in this case only the Love number h2 was determined. 

As one can see, the differences between the values obtained from the fixed network (green 

lines in Figures (F 4.24 and F 4.25)) and from the free solution (black lines) are shifted by an 

offset of about 0.02 for Love number h2. For the Shida number l2 the values are about the 

same. 
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Focusing on the solid and dashed lines in Figures (F 4.24 and F 4.25) it follows, that a 

simultaneous estimation of the Love numbers and a separate estimation of h2 or l2, causes no 

significant difference in the obtained values. 

 

Because of the big differences between the values from individual sessions, there was an idea 

(due to previous experience) to exclude the station TIGOCONC from the experiment, hoping 

to obtain less variable results. However, this hypothesis was not confirmed. As can be seen in 

the last two columns of tables (T 4.12) and (T 4.13) and in Figure (F 4.26) for h2, no 

improvement concerning the spread in the estimated Love numbers was obtained. 

 
 
 
 
 
 

 

Deviations from theoretical value l2 = 0.0847 

 

All 11 stations 
10 stations  

(without TIGOCONC) 
h2 estimated h2 not estimated h2 estimated 

Datum 

free net fix net free net fix net free net fix net 
05-09-12 -0.0024 -0.0023 -0.0030 -0.0019 -0.0022 -0.0025 
05-09-13   0.0054   0.0052   0.0045   0.0048   0.0053   0.0051 
05-09-14 -0.0010 -0.0018 -0.0019 -0.0014 -0.0009 -0.0016 
05-09-15 -0.0036 -0.0037 -0.0034 -0.0028 -0.0040 -0.0040 
05-09-16 -0.0012 -0.0007 -0.0011   0.0002 -0.0016 -0.0012 
05-09-17 -0.0027 -0.0028 -0.0027 -0.0022 -0.0027 -0.0028 
05-09-18   0.0001   0.0003   0.0002   0.0006 -0.0002   0.0001 
05-09-19 -0.0044 -0.0034 -0.0044 -0.0030 -0.0045 -0.0035 
05-09-20 -0.0037 -0.0030 -0.0038 -0.0029 -0.0041 -0.0032 
05-09-21 -0.0007 -0.0008 -0.0007 -0.0003 -0.0011 -0.0010 
05-09-22   0.0003   0.0012   0.0001   0.0019   0.0007   0.0012 
05-09-23   0.0001 -0.0005 -0.0001   0.0010 -0.0014 -0.0014 
05-09-24   0.0028   0.0034   0.0008   0.0026 0.0034   0.0032 
05-09-25 -0.0050 -0.0027 -0.0058 -0.0010 -0.0052 -0.0032 
05-09-26 -0.0014 -0.0030 -0.0024 -0.0026 -0.0019 -0.0034 

mean 
value 

-0.0024 -0.0023 -0.0030 -0.0019 -0.0022 -0.0025 

standard 
deviation 

±0.0009 ±0.0008 ±0.0009 ±0.0008 ±0.0009 ±0.0009 

Table (T 4.13): Deviations from nominal Shida number l2 estimated from CONT05 campaign. 
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Figure (F 4.24): Deviations from nominal Love number h2 estimated from CONT05 campaign. Green 
and black lines show the values obtained from fixed and free network, respectively. Results from 
approach, where Shida number l2 was simultaneous estimated are plotted in solid lines, whereas the 
dotted lines stay for separate h2 estimation. 

 
 

 
Figure (F 4.25): Deviations from nominal Shida number l2 estimated from CONT05 campaign. Green 
and black lines show the values obtained from fixed and free network, respectively. Results from 
approach, where Love number h2 was simultaneous estimated are plotted in solid lines, whereas the 
dotted lines stay for separate l2 estimation. 
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Figure (F 4.26): Comparison between δh2 estimated from measurements at all stations participated in 
CONT05 campaign (red line) and at only 10 stations – without TIGOCONC(blue line). 

 

 

 

mean values of estimated theoretical Love numbers: 

h2 = 0.6078 

l2  = 0.0847 

 

All 11 stations 
10 stations  

(without TIGOCONC) 
parallel estimation of 

h2 and l2 

separate estimation of 
h2 or l2 

parallel estimation of 
h2 and l2 

Datum 

free net fix net free net fix net free net fix net 

h2   0.6184   0.5899   0.6193   0.5917   0.6179   0.5890 

standard 
deviation 

±0.0070 ±0.0058 ±0.0068 ±0.0055 ±0.0071 ±0.0058 

l2   0.0823   0.0824   0.0817   0.0828   0.0825   0.0822 

standard 
deviation 

±0.0009 ±0.0008 ±0.0009 ±0.0008 ±0.0009 ±0.0009 

Table (T 4.14): Mean values of Love numbers h2 and l2 estimated from CONT05 campaign. 
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4.4.2   Frequency dependent h21 for six diurnal waves 

 
 

Love number h21(f ) Tide 
Argument 
number (IERS Conventions 2003) (Haas and Schuh, 1996) This thesis 

O1 145.555 0.6028   0.560±0.012   0.631±0.016 
P1 163.555 0.5817   0.574±0.005   0.578±0.036 
K1 165.555 0.5236   0.496±0.002   0.537±0.012 
ψ1 166.554 1.0569 –0.136±0.228 –1.484±1.459 
Φ1 167.555 0.6645   0.702±0.121   1.559±0.879 
J1 175.455 0.6108   0.538±0.031   1.039±0.250 

Table (T 4.15): Estimates of frequency dependent h21(f ), see (F 4.33). 
 
 
 

 
Figure (F 4.33): Estimates of frequency dependent Love numbers in diurnal band h21(f ). The 
frequency of NDFW was fixed. 
 
 
 
Figure (F 4.33) shows the mean estimated value of frequency dependent Love numbers in 

diurnal band from the CONT05 campaign (red ones). It is compared with results achieved by 

Haas and Schuh (1996) plotted in blue lines. The black dotted line interpolates between 

currently adopted Love number values (McCarthy and Petit, 2004) from diurnal band. The 

frequency of NDFW was fixed. It is evident, that the values from the weak tides close to the 

resonance become larger and their formal errors are huge. It is interesting that a similar shift 
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of h21(ψ1) is found here which has already been reported by Haas and Schuh (1996). The 

estimated value is on the other part of the resonance curve. The “official value” is 1.0569, 

whereas the results of Haas and Schuh (1996) and this thesis provide a negative values of 

228.0136.0 ±− and –1.484±1.459, respectively. However, it should be paid attention to the 

enormous standard deviation making my result uncertain. 

The weak J1 tide also does not correspond to its expected value. The reason should be in the 

low amplitude and the time span, which is not adequate for its estimation. 

 

On the other hand, one can see agreeing results for the three strong tides: K1, O1, P1. They are 

close to their theoretical values and the difference is less than twice the standard deviation. 

 
 
In the following six figures (F 4.27 – F 4.32) the sequence of the estimated values for each 

tide is plotted as derived from 24-hours VLBI – sessions from the period 12th – 26th 

September 2006. 

 
 

 
   Figure (F 4.27): Deviations of h21(K1) from the value defined in IERS2003. 

δh21(K1) = 0.013±0.012 
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   Figure (F 4.28): Deviations of h21(O1) from the value defined in IERS2003. 

δh21(O1) = 0.028±0.016 
 

 
   Figure (F 4.29): Deviations of h21(P1) from the value defined in IERS2003. 

δh21(P1) = –0.004±0.036 
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   Figure (F 4.30): Deviations of h21(J1) from the value defined in IERS2003. 

δh21(J1) = 0.428±0.250 
 

 
   Figure (F 4.31): Deviations of h21(ψ1) from the value defined in IERS2003. 

δh21(ψ1) = –2.541±1.459 
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   Figure (F 4.32): Deviations of h21(Φ1) from the value defined in IERS2003. 

δh21(Φ1) = 0.8945±0.879 
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5.   Conclusions 
 

 

Second degree Love and Shida numbers of the solid Earth tide model were determined from 

24-hour VLBI sessions of the CONT05 campaign. 

 

Considering the Earth being spherical, non-rotating, elastic and isotropic, the Love numbers 

on the Earth’s surface are dependent only on the degree of the tide generating potential. The 

estimated value corresponding to h2 is 0.618±0.007, which differs by 0.011 from its 

theoretical value. The estimate for the Shida number l2 is 0.082±0.001 with a difference of 

about 002.0−  from its theoretical value. Better results with respect to the predicted values 

were found with a free network solution instead of fixed station coordinates. 

 

One possible reason for the larger differences in the h2 estimates is its dependence on the 

displacement in radial direction. The radial component (i.e. the differences in height of the 

station) is often subject to errors caused, e.g., from the signal’s travel through the atmosphere 

or from approaches, which do not correct disturbing influences on VLBI measurements 

precisely enough, e.g., atmosphere and ocean loading corrections. 

 

The determination of frequency dependent Love numbers, which arise under the assumption 

of a rotating Earth, was rather an attempt to see if any reasonable values from 24-hour 

sessions can be obtained than a rigorous determination. Sufficient results were achieved for 

the tides K1, O1, P1 with large amplitudes for which the estimated values differ from the 

theoretical values by less than twice their standard deviation. For the three weak tides J1, ψ1, 

Φ1 close to the NDFW resonance the obtained values are “insignificant” with respect to their 

large standard deviations. The improvement in the determination of these tides will be based 

on the extension of the time span of VLBI sessions. In other words, these tides need to be 

estimated within a global VLBI solution over at least several years. 
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