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Kurzfassung

Die Erforschung von Schwarzen Lochern in anti-de Sitter Raumzeiten hat in
den letzen Jahren durch die Aufstellung der Maldacena-Vermutung einiges
an Aufmerksamkeit auf sich gezogen. Der Maldacena-Vermutung zufolge
besteht eine Verbindung zwischen anti-de Sitter Raumzeiten mit Schwarzen
Lochern und konformen Feldtheorien, die am Rand der Raumzeit definiert
sind.

Das Hauptaugenmerk dieser Diplomarbeit liegt auf der Berechnung der Masse
von verschiedenen anti-de Sitter Raumzeiten mithilfe eines quasi-lokalen Ener-
gie-Impuls-Tensors, der durch das Hinzufiigen von Countertermen renormiert
wird. Dabei wird die Entwicklung des Counterterm-Formalismus im Detail
betrachtet und anschlieBend praktisch angewendet.

Abstract

The study of black holes in anti-de Sitter spacetimes has drawn a lot of
attention in the last years since the Maldacena conjecture was proposed. Ac-
cording to the Maldacena conjecture, there exists a duality between anti-de
Sitter spacetimes with black holes and conformal field theories defined on
their boundaries.

The focus of this work lies on the calculation of the mass of various anti-de
Sitter spacetimes with the use of a quasilocal stress tensor, which is renormal-
ized by the addition of counterterms. The development of the counterterm
formalism is reviewed in detail and subsequently illustrated on practical ex-
amples.
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Notation and conventions. All metrics are defined with the signature
(=, +,+,...,+), e.g., the time coordinate has a negative sign in the line ele-
ment, whereas the space coordinates have a positive sign. For the determi-
nant of the metric, the short notation det g,3 = ¢ is used. Greek indices are
used for the full (n + 1)-dimensional spacetime, lower case latin indices are
used for the n-dimensional boundary, and upper case latin indices are used
for (n—1)-dimensional hypersurfaces on the boundary. Covariant derivatives
are denoted by V, or a semicolon in the lower indices, normal derivatives are
denoted by 0, or a comma in the lower indices. The definitions of commonly
known variables are given in Appendix A.



Chapter 1

Introduction

The study of black holes in anti-de Sitter (AdS) spacetimes has gained in
importance in the last years. At the first glance, AdS does not seem to
be a good physical spacetime, because its closed timelike curves violate the
principle of causality. But due to the Maldacena conjecture [1], AdS is related
to a conformal field theory that lives on the boundary of the AdS spacetime
(this is also called the AdS/CFT correspondence). This correspondence is
of great importance because the calculations in AdS (based on gravity) are
much easier than in field theory. In this Introduction, we want to give only
a brief insight into how this conjecture is motivated. For more details and
further references see [1], [2], [3].

The Maldacena conjecture suggests a duality between superstring theory
and a conformal field theory. String theory is a quantum theory that in-
cludes gravity. Particles are described as one-dimensional extended objects
(the strings) instead of being pointlike. The strings can oscillate and different
oscillation modes define different particles. Every string theory produces a
massless particle with spin 2, which has only gravity as a consistent interac-
tion, so gravity is naturally included. String theories do not work in every
dimension, for flat space only 10 dimensions are possible. 10-dimensional
string theory also includes fermions and gives rise to a supersymmetric the-
ory (superstring theory).

Originally, string theory was introduced in the 1960’s to uniquely describe
the growing number of hadrons and mesons. It could indeed make some useful
predictions. Anyway, it turned out later that hadrons and mesons are built
out of quarks and obey the field theory of QCD (quantum chromo dynamics).
QCD is a gauge theory with the symmetry group SU(3) (there are 3 colors).
It is asymptotically free, which means that the coupling constant is high at
low energies (strong interaction at great distances) and small at high energies
(weak interaction at small distances). Because of the energy dependence of
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the constant, one speaks of a running coupling constant. For the case of weak
interactions, calculations can be done by the use of perturbation theory, but
it is quite hard to handle the case of strong interaction for which perturbation
theory breaks down. Today, mostly numerical lattice simulations are used
for the calculations.

In 1974, t’Hooft made the suggestion that increasing N (the number
of colors) could simplify the theory, and that the large N limit is a free
string theory with coupling constant 1/N. It turned out that this large N
limit string theory is the same as the one describing quantum gravity, so
the theories are dual. This duality holds for basically any gauge theory, so
one has the freedom to choose a conformally invariant gauge theory, i.e.,
the coupling constant does not depend on the energy. There is not a large
assortment of conformally invariant gauge theories. One possibility is the
four-dimensional supersymmetric SU(N) gauge theory with N/ = 4 (the
number of spinor supercharges), which has the conformal group SO(4,2).
The dual string theory should have the same symmetries as the field theory.
Strings are not consistent in four flat dimensions, but they can be formulated
in five dimensions. It turns out that five-dimensional anti-de Sitter space
(AdS;) is the only space with an SO(4,2) isometry. Since the field theory
is supersymmetric, this is also required for the string theory. As mentioned
above, superstring theory requires ten dimensions. This can be achieved by
adding a five sphere S® to get the 10-dimensional spacetime AdSs x S°.

The great advantage now is that the couplings of the theories are inverse
to each other. In the regions where the field theory is strongly coupled, the
string theory is weakly coupled, whereas the string theory has strong coupling
when the field theory is weakly coupled. This is quantified by the parameter
G2y N ~ goN ~1/l,, where [ is the radius of AdS and [, is the intrinsic size
of the graviton. If the radius of the spacetime becomes large compared to
the size of the string length (I/l; > 1) then the classical gravity description
becomes reliable. On the other hand if g% ,,N < 1 then the field theory is
valid. So one can make calculations on a great range. But it has also the
disadvantage that it makes the conjecture hard to prove or disprove, because
most of the calculations can only be done in one of the theories. But there
are some quantities which are independent of the coupling constant and can
be calculated in both theories (see [2] for details).

To search for a relationship between gauge theories and string theories
was motivated by studies of D-branes and black holes in string theory. D-
branes are solitons in string theory and occur in various dimensionalities,
which is indicated by writing D-p-brane. p is the number of extended spatial
dimensions. For p = 0, the D-brane behaves like a particle. In string pertur-
bation theory, D-branes are defined as the surfaces on which open strings can
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end. The D-branes have solutions called black branes that are very similar
to extremal charged black holes. The near horizon geometry of D-3-branes is
AdS; x S°. If we consider a black hole in AdSs; with a Schwarzschild radius
greater than the curvature radius of AdS, then it behaves like a black brane
with R? substituted by S3.

In the 1970’s it was shown that black holes have thermodynamical prop-
erties (see [4]) and also a temperature (see [5]). To keep the black hole in
equilibrium it is therefore necessary to assign the surrounding spacetime the
same temperature. Unlike in de Sitter spacetime, anti-de Sitter spacetime
and flat spacetime have no natural temperature associated with and hence
can be assigned any temperature [6]. So the gravitational calculations done
at finite temperature correspond to finite temperature field theories. An in-
teresting application of the AdS/CFT correspondence at finite temperature
was given in [7]. Experiments from RHIC (Relativistic Heavy Ion Collider
at Brookhaven) revealed that Quark Gluon Plasma (QGP) appears to be
strongly coupled and AdS/CFT provides a powerful tool to gain insight be-
hind the physics. For example the QGP appears to have a very low entropy
over shear viscosity and with the correspondence one could get way closer to
the measurement than with other approaches. In [7] a lower bound for this
quantity was conjectured.

In this work however we focus on calculating the mass and momentum of
various AdS spacetimes with the help of the quasilocal stress tensor. Defining
a mass for a closed region of spacetime is not a trivial problem. In the
Newtonian case, the mass is given by the potential ¢(r) o —M/r. This
definition can be applied to asymptotically flat spacetimes by the use of the
ADM prescription (see Section 5.1.1), where the potential is derived from
the time component of the metric g, o< —(1+ 2¢(r)). It is possible to apply
this formalism also to spacetimes with non-flat asymptotic regions, such as
asymptotic AdS, but then one needs to introduce a reference background. In
the case of asymptotic AdS, one would introduce vacuum AdS as reference
spacetime and assign it zero mass, so the mass difference between the two
spacetimes is the mass of the asymptotic AdS spacetime. Another approach
was given by Brown and York in [8], where they introduced a quasilocal stress
tensor from which the mass and momentum of a spacetime can be derived.
The quasilocal stress tensor is defined locally on the boundary metric and
usually diverges as the boundary is taken to infinity. To get a finite result,
one can again try to introduce a reference spacetime in which a boundary
with the same metric is embedded, but it is not always possible to find a
suitable background in which the boundary can be embedded. A solution for
this problem was found by Balasubramanian and Kraus in [9]. In the light of
the AdS/CFT correspondence, the divergences occurring for r — oo can be
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interpreted as the standard ultraviolet divergences of quantum field theory,
which can be removed by renormalization. So they introduced divergent
counterterms defined from the boundary metric to keep the stress tensor
finite. It turned out that only a few counterterms are needed and that there
is no freedom in how to choose them. A formal description of deriving the
counterterms was given by Batrachenko, Liu, McNees, Sabra and Wu in [10]
by the use of the Hamilton-Jacobi formalism.

We will start by recalling some basics of the Einstein equations, and we
will review in detail how they can be obtained through a variation principle.
In Chapter 3, we will state some general properties of AdS spacetimes and
show how to find suitable coordinate systems. In Chapter 4, we will draw
our attention to Schwarzschild black holes in five-dimensional AdS. We will
present the Kruskal extension and the Penrose diagram and discuss some
properties of black holes. In Chapter 5, we will introduce the quasilocal stress
tensor and the counterterm formalism, and in Chapter 6, we will explicitly
calculate the stress tensor and the mass for some AdS spacetimes.



Chapter 2

The Einstein Equations

The Einstein equations are the field equations of general relativity. They
cannot be deduced in a strict sense, but we can give some plausibility ar-
guments by comparison with the field equations for electro-magnetism. The
source of the gravitational field is the stress-energy-momentum tensor Tig
(referred to as stress tensor) that describes the matter and energy content
of the spacetime. We require the properties that it is symmetric T,3 = T},
and covariant conserved V®T,3 = 0. 1,3 is a d-dimensional symmetric ten-
sor, so it has d(d + 1)/2 independent components. As in electrodynamics,
we want to express the stress tensor in terms of the field variable, which for
the gravitational field is the metric tensor g.g. Tng depends on g, and its
first and second derivative. It can be shown that there is only one tensorial
expression that fulfills all these requirements, and that is the Einstein tensor

1
Gag = Rag — §Rga5 (2.1)

R, is the Ricci tensor and R is the Ricci scalar (see Appendix A for the
definitions). Additionally, one is free to add a constant term proportional to
Jas, since gop fulfills the properties of T,3. This term is denoted by A and
called the cosmological constant. The Einstein equations are then given by

1
Rag — §Rga5 —+ Agaﬁ = 87TTQ5. (22)

The left-hand side of the Einstein equations (the Einstein tensor) describes
the structure of the spacetime, the right-hand side (the stress tensor) the
energy and matter content. In contrast to electrodynamics, it is a quite non-
trivial problem to find solutions for the field equations, because the equations
are non-linear. Whereas the electromagnetic field variable A, only depends
on the electrical and magnetic fields, the gravitational field variable g,z de-
pends on the structure of the spacetime itself. The problem is that one cannot
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simply calculate the metric from the stress tensor because one already needs
to know the metric to verify that the stress tensor is indeed covariant con-
served. To avoid this problem, one could simply define the stress tensor to be
the result of the left-hand side of the equation, but this will lead in general to
unreasonable physical properties of the stress tensor. Therefore, one requires
that 7,5 has to fulfill additional conditions, which are local causality and at
least the weak energy condition. The weak energy condition can be related
with the Einstein equation as follows

1 «
Raﬁ - §Rgaﬁ :87TTa6 ‘ g &

R- %533 —8nT
d

Now we substitute the Ricci scalar into the Einstein equations

1
Raﬁ =87 (Taﬁ - ngaﬁ) | . uauﬁ

1
Rogu®u’ = 87 (Taguauﬁ - mT) (2.3)

T.suu’ is the energy density as measured by an observer moving with the
velocity u® (u®u, = ¢* = 1). For a physically reasonable system, the energy
density should be non-negative.

Topu®u® > 0 (2.4)

This is called the weak energy condition. Furthermore, there exists the strong
energy condition, which states that the right-hand side of eqn. (2.3) should
be non-negative, so

1
Tosuu® > ——T 2.5
R (2.5)

With the above relation eqn. (2.3) this is related to the Ricci tensor, so the
energy condition can be expressed through the metric as R,su®u® > 0. The
strong energy condition does not imply the weak energy condition, it is just
a stronger requirement on the physical properties. Finally, there is the domi-
nant energy condition, which requires that if u® is a future directed, timelike
vector, then —T %uﬁ should be a future directed timelike vector. —T%uﬁ is
the energy-momentum current density of matter, so the dominant energy
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condition states that energy flow of matter must always be smaller than the
speed of light. The dominant energy condition does imply the weak energy
condition.

The simplest solutions of the Einstein equations are the vacuum solutions
(with T3 = 0) of spaces with high symmetry. The spaces with constant cur-
vature and maximum symmetry are Minkowski space (flat), de Sitter space
(positive curvature) and anti-de Sitter space (negative curvature), which is
the spacetime we are interested in. We will discuss its properties in Chap-
ter 3.

2.1 Variation Principle

We now want to show that the Einstein equations fulfill a variation principle.
Therefore, we need an action S whose variation with respect to the field
variable is required to be zero. From this condition one can then obtain the
field equations. Notice that this is not a derivation of the Einstein equations,
since the action is simply chosen to match the already known result. The
variation must furthermore fulfill the boundary condition that .S is held fixed
on the boundary, i.e., the variation of the field variable is identical zero at
the boundary.

Generally, the action S is defined as the integral over the manifold .# of
a Lagrange density .Z, which is a scalar function of the field variables and
their derivatives.

S:/ da?/—g & (2.6)
M

The gravitational Lagrange density is simply given by .2 « R, and the
according action functional is called the Hilbert term Sglg].

1

Suld) = ~T6:c

/ d""'z/—g R (2.7)
M

If one has also a cosmological constant A the Lagrange density is defined as
< x R —2A, and the action is then called the bulk term Sp.

1
167G

Spuirlg] = / "2 /=g (R — 2A) (2.8)
M

A is a constant and therefore remains unaffected by the variation. So for con-

ciseness we will concentrate on the Hilbert term for the following calculations.

As we will see later, the action furthermore requires an additional term that
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is integrated over the boundary 0.# of .# to guarantee a well-behaved vari-
ation principle. This term is called the boundary term or Gibbons-Hawking
term Scg.

1
Sculgl = 87rG€ 8///dn$\/ Al K (2.9)

K and h are the extrinsic curvature and the determinant of the induced
metric on the boundary, respectively. € = n®n,, is the absolute value of the
normal vector of the boundary and equals +1 on time-like surfaces and —1
on space-like surfaces. Together, these terms form the gravitational action
SG =9 o+ SG H-

2.1.1 Variation of the Hilbert Term

For convenience, we will vary the action with respect to g*? instead of gz
These variations are not independent from each other. If we consider the
variation of the identity g,59°" = 67 (see Appendix A), we find the relation

59&6 = _gaugﬁuégwj (210)
For the Hilbert term we get for the variation §g®°

1
167G

58y = — / A" 2[v/=g §*P0Rap + V=g Rapdg™ + R6\/—g] (2.11)
M

where we have used R = R,39*’. The variation of \/—g (see Appendix A)
gives

1 (0%
V=9 = =5V~ gas0g"’ (2.12)
Inserting this into the variation of the action gives

1
167G

1
8 =15z | alVTI Ry — 3R0u)05" + VG 9"6Ras] (213)
M
We recognize the expression in round brackets as the Einstein tensor. So we
can already leave this part as it is, but the last term needs further attention.
The Ricci tensor is defined as the contraction of the Riemann tensor
_ 14 _TH M v w v
If we calculate R, in a local Lorentz frame, the Christoffel symbols are zero.
Notice that the derivations of the Christoffel symbols need not necessarily to

be zero.
0Rop = 5(1—‘5&,“ - ng,ﬁ) = (5Fgﬁ);u - (5FZM);5 (2.15)
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We have introduced the symbol = for relations that hold only true in a
local Lorentz frame. First we have used the fact that in a local Lorentz
frame only the derivations of the Christoffel symbols contribute. Then we
have exchanged the derivation with the variation (this only works for normal
derivatives, because for covariant derivatives, the variation would also act on
the Christoffel symbols), and finally, we have substituted the normal deriva-
tive by a covariant derivative, which makes no difference in a Lorentz frame
since the Christoffel symbols are zero. But now the equation is tensorial and
therefore holds in all coordinate systems. So we can use it to define the new
variable

9*76 Rag = (g°70Th 5 — g*H0T 1), =2 00", (2.16)
where we have used that the covariant derivative was defined to be metric
compatible, i.e., gag,, = 0, so the derivative can be written to act on the
whole expression. The 5—symbol was used because it has just a symbolic
meaning and should not be understood as the variation of a quantity v*. We
can insert this into the integral and perform the following transformations
by the use of the Gauss theorem

/ dn+1l’ /__g gaﬁéRaﬁ :/ dn+1:l:' /__g S'U’fu _
M M
= jq{ Ay, 0v" = (2.17)
o

= 7{ d"z+/|h|en,6v"
o

For the further calculation of Sv“, we take the definition of the Christoffel
symbols and use the boundary condition of the variation, which states that
the variation of the metric vanishes at the boundary §g®?|5., = 0. With this,
the variation of the Christoffel symbols simplifies to

1 v
005 = 59" (09va,6 + 09upa — 09ap,) (2.18)

Inserting this into the definition of ov* gives

SU“|8J// :gaﬁéfgﬁ — go‘“5fgﬁ =

1 (07 v (07 12
=59 Bg — g™ g% ) (0Guas + 0Gusa — 0Gapy) =

1 1
259/“/(591/575 + 5gua,a - 6gaa,y) - §gau(5g/iﬂ + 59%@ - 590’;,1/) =
:guy(égua,a - 5gaa,y) =

:guygaﬁ(éguﬁ,a - 5gaﬁ,z/)

(2.19)
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and .
5Uu|8</// = gaﬁ(éguﬁ,a - 59&6,1/) (220)

To calculate the product n“gvub «, We use the completeness relation
g°% = en“nf 4 hoP (2.21)

where the metric is separated into a part that is orthogonal to the boundary
and one that is tangential. We then get

nugvuh// :nu(ﬂlanﬁ + haﬁ)(éguﬁ,a - 59&5#) =

’ (2.22)
=n R (8Gup.0 — OGap.p)

In the first line we have used that n#n® is a symmetric quantity, whereas
(09us.0 — 99ap,) is antisymmetric in the indices p and «, so the first term
must vanish. If we further consider the boundary condition dgagsls.s = 0,
which tells us that the metric is held fixed on the boundary, we can conclude
that the derivatives tangential to the boundary must be zero. So the term
h*?8g,5. in the second line also drops out and we get

n“gvubﬂ = —n“ho‘ﬁéga@M (2.23)

Inserting this into the variation of the action functional leads us to the final
result

167G 6Sy = — / d" o/ =g Gop 69°P+
N

+ff d"z/|h| P3G, m"
oM

The aim was to reproduce the Einstein equations, so we must get rid of the
boundary term. Now it becomes clear that the Gibbons-Hawking term was
introduced with the purpose to cancel this term.

(2.24)

2.1.2 Variation of the Gibbons-Hawking Term

We will show now that the variation of the Gibbons-Hawking term indeed
cancels the boundary term that arose in the variation of the Hilbert term.
From the boundary condition we know that the metric is constant at the
boundary, and therefore, the boundary metric hqp is also constant. So the
only thing left that can be affected by the variation is the extrinsic curvature
of the boundary .

1
dSculg] = Fevel {M/d"x\/|h| oK (2.25)
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The extrinsic curvature is defined as
K=-n%= —go‘ﬁna;ﬁ =
= — (en®n” + h*)ny.5 = (2.26)
= — ho‘ﬁna;g = —ho‘ﬁ(na,ﬁ — Fgﬁny)

where we have used n°nq,3 = 3(nn4);3 = 0 in the second line. The variation
0gap only affects the Christoffel symbols

0K =hPsT% 4n,, =

1 «, 14
:§h Pn, g" (09pua,s + 09us.a — 09apu) = (2.27)

1 (0%
== §h %8gaputtu
For the variation of the Christoffel symbols we have first used the bound-
ary condition dg,sla., = 0, and then the resulting fact that the tangential

derivatives of the variation of the metric must vanish as well. Inserting the
above relation into the variation of the action integral gives

1
— d"z+/|h| h*5g, 2.28
6:C° b z+/|h| Gap,up (2.28)

which exactly cancels the boundary term in §.Sy.

dSaulg] =

If we combine our results, we find that we have successfully reproduced
the left-hand side of the Einstein equations

! / d" /=g Gop 69°° (2.29)
M

0(Su + Sau) = ~6nC

2.1.3 Variation of the Matter Terms

What is still left is the right-hand side of the Einstein equations, the stress
tensor. The stress tensor describes the contribution of matter and fields (e.g.,
energy or pressure) to gravity. So we will define an action functional with a
Lagrangian depending on some fields ¢ and their derivatives ¢.,

Sulng] == [ @V aVTGL (6,0 00 (2.30)

Without specifying an explicit expression for ., we get for the variation
1 0L

5SM = — a /dn+1.§lf <$5\/ —g -+ Wéga’a\/—g) =
ga

__i n+1 — af ag _1
- G/d x\/—g dg <@w 23%6

(2.31)
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The stress tensor is defined by

0Z

Toy = Loy — 20
B Gap 090‘5

(2.32)

so that .
Sy = ﬁ/d“l:ﬂ\/—g Top 69 (2.33)

If we put all the parts of the action together and consider the requirement
of the variation principle that the variation of the action must be zero

0=05(Sg+Seu+Su) = A" oy/=g (Gop—87Thp) 69°° (2.34)

16nG J ,

we obtain the Einstein equations (requiring that the above expression should
be valid for all variations §g*°)

Gaﬁ = 87 Taﬁ (235)



Chapter 3

Anti-de Sitter Spacetime

AdS is the maximally symmetric solution of the vacuum Einstein equations
with constant negative curvature. For vacuum solutions of the Einstein equa-
tions in d = n + 1 dimensions, the cosmological constant is given by
n—1
A=—-R 3.1

2(n+1) (3:-1)
(see Appendix A). Multiplying this equation with g,z gives the general ex-
pression for the Ricci tensor

2
Raﬁ = —Agag (32)

n—1
so the Ricci tensor is proportional to the metric.
AdS, 4, has the topology S' x R™, where the 1-sphere S' is time-like
and R" is space-like. To find a metric for AdS,,;;, we introduce a (n + 2)-
dimensional embedding space

ds’ = —du® — dv* + ) _ da} (3.3)
=1

with two time-like coordinates v and v, and n space-like coordinates x;. The
defining equation for AdS,,; is then

—u? —v? + Z r = —[? (3.4)
i=1

with [ the curvature radius of AdS, ;. For comparison, a d-sphere in R%*+!
is defined by Zf:ll z? = [%. Equivalently, as one introduces spherical coordi-
nates on the sphere for easier description, we now introduce new coordinates

17
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that are adapted to the symmetry of AdS.

u =l cosh psin A 0< A< 27 (3.5)
v =l cosh p cos A 0<pu<oo '

These coordinates cover the whole manifold, so we get a global coordinate
system. Furthermore, we require that

1
n 2
Isinh p = (Z :ﬁ) (3.6)
=1

This can be fulfilled by introducing polar coordinates in the z; hypersurface.
Substituting u and v by p and A in the line element eqn. (3.3) gives

ds* = —1%(sinh?ju dp® + cosh?p dN?) + Z da? (3.7)
i=1
with

du = I(sinh pu dpsin A + cosh prcos A d))

3.8
dv = I(sinh p djcos A — cosh i sin A d)) (38)

As yet we did not make any specification on the dimension. For further
use, we will now focus on AdS; and AdSs.

3.1 AdS;

For AdS3; we have to introduce polar coordinates for n = 2 dimensions that
fulfill [ sinh g = /22 + 22, so we define

x1 =lsinh pcosp (3.9)
Ty =[sinh psin ¢ '

With the differentials

dxy =l cosh p dy cos p — [ sinh y sin pdp (3.10)
dxo =l cosh p dpsin p + [ sinh p cos pdy '

we can calculate the line element

2
Z dx; = 1% cosh? dp? + 12 sinh®p dp? (3.11)

i=1
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where dy? = dQ2? is the line element of the 1-sphere S! (which is a circle).
Inserting this into eqn. (3.7) leads to

ds® = 1*(du?® — cosh®p dA\? + sinh?u dp?) (3.12)

Notice that the time-like coordinate A is an angle, which means it is periodic:
A = A+ 27, so we have closed time-like curves (which is consistent with the
statement at the beginning of this Chapter that the topology of AdS includes
a time-like S'). A spacetime with closed time-like curves bears the problem
that is not causal, so we want to get rid of this. Therefore, one has to unwrap
the A coordinate by not identifying A with A+27, and go over to the universal
covering space. We will denote the non-periodic A as t/l and furthermore,
we will set [sinh = r. With

2
d\? = ‘% and dr® = I? cosh®pudp® = (*(1 + sinh®u)dp® = (12 + r?)dp?
the line element evaluates to
2 r’ 2 r2\ 7 2 2 12
ds® = — 1+l—2 dt” + 1+l—2 dr® 4+ r=dQ); (3.13)

These coordinates are called global coordinates, because they cover the whole
spacetime.

Beside these global coordinates another possibility is to introduce Poincaré
coordinates, which do not cover the whole spacetime. For AdS3; we define

1
u=(" -1+t +2°)—

2r
t
v =l-
r 1 (3.14)
o =P+t -1 — x2)§
) :lz
,

with 7 > 0. With the defining equation of the line element eqn. (3.3) we get
l2

r2

ds* (—dt* + dr* + dz?) (3.15)

3.2 AdS;

We introduce polar coordinates for n = 4 that fulfill

Isinhp = /2% + 23 + 23 + 23
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as follows

x1 = [sinh psin y sin ¥ cos ¢
X9 = [sinh psin x sin ¥ sin (3.16)
x5 = [ sinh psin y cos 9 '

x4 = [sinh pcosy

and calculate the line element the same way we did for AdSs, resulting in

4
Z da? =l cosh? ju dp? + 12 sinh? ju(dx? 4 sin? x (dv? + sin® ¥ dp?) =
i=1

(3.17)
=l cosh? ju dp® + 1% sinh? ju dQ3

where dQ)2 is the line element of the 3-sphere S®. Comparing this with the
result we got for AdS3 shows that the expressions almost match, except that
d$2? is substituted by dQ3. Inserting this into eqn. (3.7) and again introducing
the variables t and r leads to an equation with the same structure as we had
for AdS3

2 2\ —!
ds? = — <1 + %) dt® + <1 + %) dr? + r*dQ; (3.18)

3.3 AdS,.

The general form of AdS,,;; in global coordinates is given by

r2 r2\ !
ds® = — (1 - 1_2) dt* + (1 - 1_2) dr® +r?dQ2_, (3.19)
with dQ?_; the metric of the (n — 1)-sphere S™~!. Notice that this is not the
only possible expression for the metric of AdS. We want to mention here two
other locally equivalent solutions of the same structure as eqn. (3.19). We
can write all three combined in the following equation [11]

2 r? 2 P\ 0, 7o
2dQ2_,  for k=+1
d¥},_ =14 S lda? fork=0
’d=%_,  fork=-1

For k = 1, we get the metric of eqn. (3.19), for & = 0, we have flat space
instead of the sphere, and for k¥ = —1, d=2_, denotes the metric of an
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(n — 1)-dimensional hyperbolic space H"™! (notice that the lowest dimen-
sional hyperbolic space is H?.)

Anti-de Sitter spacetimes have the special property that massless particles
can reach the boundary within finite time. To show this, we use the line
element from eqn. (3.19). Massless particles travel on light-like paths, so
ds? = 0. We have the freedom to choose the path in the direction where all
angles have the value 0. For simplicity, we further let [ be equal 1.

ds* =0 = —(1+7r*)dt* + (1 +r*) " tdr? (3.21)

from which we deduce
dt* = (1+7%)72dr?

If we take the square root of this expression, we can integrate it and get

R
1
t= / dr = arctan R (3.22)
0 1+ r2

If we let R — oo, then we have arctanoco = 7/2, and ¢ remains finite. On
the other hand, if we look on a massive particle, we have a time-like path
with ds? < 0. Therefore we pick up an additional constant, which gives after
integration a contribution proportional to R and therefore ¢ is infinite when
R — 00. So a massive particle can never reach the boundary.



Chapter 4

Schwarzschild Anti-de Sitter
Spacetime

The Schwarzschild solution is an exact solution of the Einstein equations that
describes the exterior field of a static, spherically symmetric body. We are
interested in a vacuum solution of a spacetime with a Schwarzschild black
hole. Schwarzschild black holes are the simplest black holes: they are non-
rotating and uncharged (mass, angular momentum and charge are the only
properties that are necessary to characterize a black hole).
The metric for Schwarzschild-AdS,, ;1 is given by
2 2

1
d82 = —fdlf2 -+ ?d’f’2 + 72in—17 f =1+ % - 7’:0_2 (41>

To shorten the expression, we have introduced the constant r3

) 167GqM 27/

Ty = (= DVol(S™T) and Vol(S" ") = T(n/2)

M is the mass of the black hole. In the limit M — 0, the metric transforms
to AdS without a black hole. Gy is the d-dimensional Newton’s constant
and Vol(S" 1) the volume of a unit (n — 1)-sphere (notice that the volume
of an (n — 1)-sphere is the surface area of an n-ball, not the enclosed area).
The coordinate t is the Schwarzschild time, which is the time measured by a
clock at rest in infinite spatial distance from the black hole. The coordinate
r is the Schwarzschild radial coordinate. It does not measure proper spatial
distance from the origin, but fulfills the condition that the volume of a 3-
sphere centered at the origin with radius r is 2722

We want to examine the function f now a bit more in detail. If we rewrite
it as

Prn=2 4 ¢ — 7’8[2

f l27~n—2

22
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we find that for n > 2, f becomes singular at » = 0, which means that the
component of the metric tensor containing f blows up to infinity, and on
the other hand, 1/f = 0. For such values, the metric is said to be singular,
because the metric tensor becomes singular (i.e., not invertible). For the
numerator we find that in five dimensions (n = 4) it has four zeros where
f=0and 1/f goes to infinity

LT
r=E|-gEy g e (4.2)

If we choose the sign under the square root to be negative, we get two imag-
inary zeros, otherwise we get two real zeros. r is a real coordinate, so the
imaginary zeros do not bother us. We may also require that r is a radial co-
ordinate, and therefore, we are only interested in positive values of r. Then
there is just the value of r with two positive signs left (the most positive
root). We will call this value r,.

So we found that the metric becomes singular at » = 0 and r» = r,, but
what does this mean physically? For r = 0, one finds that the spacetime
has a true singularity where the spacetime curvature goes to infinity. For
r = r,, the metric seems to be singular here as well, but we will show
in the next section that in this case it is just because of a bad choice of
coordinates. Therefore, it is called a coordinate singularity. By introducing
new coordinates, we will find an expression for the metric that is regular at
r = ry and thus, the spacetime curvature remains finite.

4.1 Kruskal Coordinates

We will now introduce a new coordinate system for Schwarzschild AdSs in
order to eliminate the singularity at r, and find the so-called complete analyt-
ical extension of the metric, i.e., the metric is free of coordinate singularities
(see also [12]).

We start by introducing Eddington-Finkelstein coordinates. Eddington-
Finkelstein coordinates are constant on null geodesics, so they are light-like
coordinates. Only the r and ¢ coordinates are transformed, the 3-sphere will
not be affected. From r and ¢ two light-like coordinates can be build. We
define the first one as

v=1+ / %dr (4.3)

where v is constant on radially ingoing null geodesics. So lines of constant v
describe the paths of radial light rays starting at a finite time ¢ from r = oo
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and ending at t = oo at r = r,. With

1 2 1
dv = dt + ?dr = dt’ =dv® - ?drdv + Fdﬁ (4.4)

we can eliminate the ¢t component in the line element (3.18), giving the
ingoing extension
ds® = —fdv® + 2drdv + r*dQ? (4.5)

The second light-like coordinate is defined as

u:t—/%dr (4.6)

where wu is constant on radially outgoing null geodesics. So lines of constant
u describe the paths of radial light rays starting at ¢ = —oo at a finite radial
distance, ending at a finite time ¢ at r = co. With

1 2 1
du = dt — ?dr =  dt* =du®+ ?drdv + Fdrz (4.7)

we can again substitute dt?, which leads to the outgoing extension
ds® = — fdu® + 2drdu + r*dQ? (4.8)

We want to eliminate the r component also, so we use

dt =X (dv + du)
2 (4.9)
dr :§f(dv — du)

and substitute this into the line element (4.1). The result is called the double
null form

ds* = — fdudv + r*dQ? (4.10)
r and ¢ can be expressed as r(u,v) and t(u,v)

1
:§(v + u)
1

t
/%dr —5(v—)

where 7 is only given implicitly. At the first glance, it seems as if we had
already found what we were searching for, as the coefficients of the line
element are only singular for 7 = 0 (which is no coordinate singularity). But

(4.11)
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we also have to examine if the new coordinates are everywhere well-defined.
Evaluation of the integral from the definitions eqns. (4.3) and (4.6) gives

V2r—1 \/m—l
2\ Ar + 12 —1)1 =

1 \/T\/ (Virg+ & =1 In (\/§T+\/Z\/\/4rg+l2—l)
F(r):= [ <dr= +
f 4/ 4r2 + 12
2\/1_3\/2(\/47“8 + 12 4 [) arctan <¢)

Vi \/Ar3+12+1
4/473 + 12

_|_

(4.12)

We recognize the expression \/g \/ (\/4r2 +12 —1) as the zero of f(r) we
called r,. Using this, we can shorten the notation of the expression to

I (8524 + 20 arctan ()

2\/4r3 + 12

The logarithm is singular for r = r,, and therefore, u and v are still not
well-defined at .

The problems caused by the logarithm can be avoided by redefining the
null coordinates in the following way

VAl 2
Vv = exp <¢> (4.14)

F(r) =

(4.13)

l’r‘+

l7“+

o SAZ T2
u' = —exp (W) (4.15)

The factor in the exponent was chosen to cancel the factor of the logarithm
in F(r), up to a remaining factor 1/2, so the logarithm drops out and the
expression remains well-defined at » = r. But due to the remaining factor
1/2 we now have the root of r — r,, which is imaginary if » < r,. So the
coordinates v' and v’ do not cover the whole spacetime. One could argue
that we could have removed the factor 1/2 as well to avoid this problem.
But since we have to make one further coordinate transformation anyway to
return to non-light-like coordinates, we will find it convenient to leave this
factor.

Before turning to new coordinates, we still have to calculate the line ele-
ment for these coordinates. To substitute them into the double null form
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eqn. (4.10), we need

Vard + 12 VAarg + 12
dv' = Lexp <w) dv (4.16)

ZT+ ZT+

/N2 2 _ /N2 2
du' = Arg ! exp( uyAr, 1 )du (4.17)

l7’+ l7“+

J’_

v (4rd + 12)

Now we do the final transformation to Kruskal coordinates by defining

ds* = f dv'du’ + r*dQ); (4.18)

r = %(v' —u') (4.19)
t' = %(v' +u') (4.20)

If we substitute all v’ and v" in the above line element, using the relation
(dt')? — (dr")? = du/dv’, we receive the line element in Kruskal coordinates

[?r? 2F (r)/4rd + 12
ds* = f4r(2] _:12 exp (— ( )lﬁr 0 ) (—(dt")? + (dr')?) +r2d3 (4.21)

During the transformation we picked up a factor 2 in the exponent that now
cancels the 1/2 that made the problems before. So we have finally found a
set of global coordinates that is well-defined for all 7.

For better visualization of our spacetime, we want to plot a diagram
showing lines of constant ¢ and r in our new coordinates ¢ and r’. This
is called the Kruskal diagram. To plot the diagram, we have to find the
expressions for ¢'(r’,t = const) and ' (r',r = const). From the definitions of
t" and 7', (eqn. (4.20) and (4.19)) we find by eliminating either «' or v' and
inserting the definitions for «’, v/, w and v (eqns. (4.15), (4.14), (4.6) and

(4.3))
(t+ F(r))\/4r8 + l2> (422

l’r‘+

t'+r':v':exp<

' —r' =u = —exp (_(t — F)vVArg + l2> (4.23)

Iry
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For lines of constant r we have to eliminate ¢ in the above expression, which
is done by

l7“+

U = (t/>2 . (7”/)2 — —exp (QF(T)\/W>

(4.24)
S exp (2 arctan (L))
T4y T4
By eliminating F'(r), we can construct lines of constant ¢
vt 4 2t\/4rd + 2
ox 204/ 4rg+12 ) 1
TP T , 2t\/4r3 + 2

t = —r'tanh [ =Y 0T (4.26)

ZT+

exp (721&@) +1
Plotting the function #(r’) for constant r leads to the Kruskal diagram as
shown in Fig. 4.1. Lines of constant ¢ are not plotted in the diagram. They
would be represented by straight lines through the origin where the value of
t determines the gradient. The lines for » = r are light-like (null-surfaces)
and represent the event horizon of the black hole. They divide the diagram
into four parts. The event horizon in the upper half plane is called the future
event horizon, the one in the lower half is called the past event horizon.
Notice that apart from the existence of a coordinate singularity, nothing
extraordinary happens to the spacetime at the event horizon. Outside the
black hole (region I and III), the lines of constant r are time-like (as in
Minkowski space), but inside the black hole (region II and IV), the lines of
constant r are space-like. This means, that one cannot remain on a position
of constant r without exceeding the speed of light. So in region II one has
to move towards the singularity at » = 0 (which is also a space-like surface).
On the other hand, in region IV one is repulsed from the singularity. So one
cannot stay in region IV but has to move into region I or IIl. Because this
behavior is opposite to the black hole in region II, region IV is also called
a white hole. The singularity in region IV lies in the past of every point,
whereas the singularity in region II lies in the future of every point. The two
regions outside the black hole are causally separated from each other, since
there is no possibility to send signals from one region to the other. (Any
signal must travel on a time-like or at least light-like curve, so there is no
possibility to travel between the regions I and III)
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7/

e
Ny
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N

Figure 4.1: Kruskal diagram for Schwarzschild AdS. Every point represents
a three-sphere. Light cones are at 45 degrees to the vertical.

Singularity r=0

t<O0 t>0

t=0

Singularity r=0

Figure 4.2: Penrose diagram for Schwarzschild AdS. Every point represents
a three-sphere. Light cones are at 45 degrees to the vertical.
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4.2 Penrose Diagram

The Kruskal diagram has the disadvantage that it is not suitable for mapping
the whole infinite spacetime since 1/, ¢ € [—00, 00]. But through a further
change of variables, we can construct the Penrose conformal diagram, which
maps the infinite spacetime to a finite region, so we can plot the whole space-
time. With the function arctan, we can map the infinite interval [—oo, 0o] to
the finite one [—7/2,7/2]. So we define new variables

V" = arctan(v'), —g <" < g (4.27)
u” = arctan(u'), —g <u" < g (4.28)

with —F <" +v" < 7. Again, we want to plot lines of constant  and ¢, so
we need to calculate the functions u”(v”,t = const) and u"(v”,r = const).
By inserting the definitions for ¢/, v/, v and u (eqn. (4.14), (4.15), (4.3) and
(4.6)), we get the inverse functions

tanv” = exp (<t P () VArg + lz) (4.29)

l’r‘+

l7“+

tanu” = —exp <_(t — P) Vg + p) (4.30)

Now we resolve this for ¢t + F'(r) and ¢t — F(r)

Ir
t+ F(r) = In(tanv” ) ————— 4.31
(1) = i) (4:31)
t— F(r) = —In(— tanu)——t (4.32)
\VAre2 + 12
and get by addition and subtraction, respectively
1 tanv” Iry
t=—-In|— 4.33
9 n( tanu//) /4Tg+l2 ( )
F(r) = 2 In(— tanv” tan u")—=— (4.34)
2 VAars + 12

We stated above that ¢ and r should be constant, so we take t and F(r) as
parameters and resolve the equations to get functions

LW)) (4.35)

u"(v",t = const) = arctan (— tan(v”) exp (— l
T+
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Lo <2F(r)\/47'8—|—l2)> (436

u” (v, r = const) = arctan | —
W, ) tan(v") Iry

In Fig. 4.2, the Penrose conformal diagram is plotted for lines of const r and
t. It should be noticed that the line for r = oo is still spacelike, although it is
very close to a lightlike curve. One could perform one more transformation
that gives the diagram a rectangular shape, where r = oo is the vertical and
r = 0 is the horizontal boundary of the rectangle. Then it becomes clear
that » = oo indeed is a spacelike curve.



Chapter 5

The Quasilocal Stress Tensor

The quasilocal stress-energy-momentum tensor describes the energy and mo-
mentum of gravitational and matter fields in a spatially bounded region. A
useful definition was first given in 1992 by Brown and York [8] by the use of
the action principle and the Hamilton-Jacobi formalism.

5.1 Derivation of the Quasilocal Stress
Tensor

In Chapter 2, we have demonstrated that the Einstein equations can be
expressed as a variation principle. The stress tensor was defined as the
variation of the Lagrangian of the matter action S);, and by the requirement
d(Sym + Si) = 0 connected to the gravitational action Sg. Therefore, the
Lagrangian in the definition of 7,4 is equal to the gravitational Lagrangian.
The quasilocal stress tensor 7T;; can be defined equivalently. Remembering
the steps from Section 2.1.3, we can define
ij _ L‘SSG
\/——7 5%]' .
where we have substituted the metric g,3 by the boundary metric v;;. &
must also be expressed in terms of boundary variables. But instead of ex-
plicitly doing the calculation of the variation of S with respect to d+;;, we
will use Hamilton-Jacobi theory to obtain the result. Hamilton-Jacobi theory
tells us that the variation of the action S over the generalized coordinates
q is the conjugate momentum p = g—g. Furthermore, in the Hamiltonian
formalism the conjugate momentum is defined as

p— %(%—_gi”) (5.2)

(5.1)

31
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In our case, the generalized coordinate is the boundary metric v;;. Eliminat-
ing p gives
0

i
Inserting the boundary metric for the generalized coordinate has lead to the
formal expression 7;;, but it is still unclear how to interpret this quantity.
This question will be answered in the next section. Afterwards we will deal
with the problem to find an expression for .Z that depends only on boundary
variables.

55 = ——(V=92)5%. (5.3)

5.1.1 ADM Decomposition

In the ADM (Arnowitt, Deser and Misner) decomposition, the manifold .# is
sliced into non-intersecting space-like hypersurfaces. Therefore, we introduce
an arbitrary scalar field ¢(z®), where each t = const describes a hypersur-
face ;. The field ¢t must only fulfill the conditions that it is a single-valued
function of z%, and that the unit normal to the hypersurfaces n, o< O,t is
a future-directed time-like vector field. Now we introduce a new coordinate
system (t,y®), where y® are the coordinates on the hypersurfaces. The co-
ordinates on different hypersurfaces need not necessarily be connected with
each other, but to construct a full coordinate system, we will have to intro-
duce a relation between the former. To link the coordinates, we consider
a congruence of curves ~ that intersect the hypersurfaces. The intersection
need not be orthogonal, nor need the curves be geodesics. t should be the
parameter of the curves and t* the tangent vector. If we follow a particular
curve vp that has the intersection points P; with the hypersurfaces ¥;,, we
can identify the y*(FP;) so that y® is held constant along the curves of the
congruence. Expressed in the old coordinates = = z*(t, y*), we have

o 0"
Ot

(5.4)

ya

for the tangential vectors to the congruence. The tangential vectors to the
hypersurfaces ¥; are defined as

o 02
a aya

e (5.5)

t

and fulfill the relation £;e& = 0. Finally, we introduce the unit normal to
the hypersurfaces
No = =Nyt (5.6)



¥ (space-like)

P, (time-like)

S; (space-like)

Coordinates y® 2z wA

3 « 87 «
Tangential vector e es e
Normal vector nees =0 reed =0 nqey =0

Induced metric

hab = ga,B 63 ef

Vij = gaﬂe?ef

_ B8
OAB = Jap€i€pn

Completeness

g% = —nonf + h“begef

g =P + yyefe;

5
i

g = —nonf +rorf 4 oapese

B
B

Extrinsic curvature

_ B
Kab = na;geg‘eb

_ a B
@ij = T'a;86; €j

_ B
19AB = na;ge‘j‘eB

Curvature scalar

K = Kph™ = n?

O =077 =14,

Y = 19ABO'AB

Metric determinant

\/__ =V _gtt\/ﬁ

V=5 = I/

V9 = v Gugi/o

Table 5.1: Definitions of variables on different surfaces. Greek indices are used for the (n + 1)-dimensional space,
whereas for n-dimensional objects lower case Latin indices, and for (n — 1)-dimensional ones upper case Latin indices

are used.

HOSNAL SSHYLS TVOOTISVNAD dHL S HALdVHO

€€
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The scalar function N is called the lapse and ensures proper normalization.
ne and e provide an orthogonal basis nye = 0. t* is not orthogonal to the

hypersurface and can be decomposed into basis vectors
t* = Nn® + N% (5.7)

N® is a vector on the hypersurface called the shift. To get the metric in
the new coordinates, we start from the differential form of the coordinate
transformation =% = x“(t, y*)

ox® ox®
dz® =——dt dy® =
T Ut e
—todt + 2 dy" = (58)
=(Ndt)n® + (Nt + dy®)ey
and get with the definition ds* = g,sdx®dz” of the line element
ds® = —N2dt* + hey(dy® + N°dt)(dy® + N°dt) (5.9)

For our purpose, we are interested in decomposing the spacetime into
time-like hypersurfaces 4, with r = const rather than into space-like hyper-
surfaces ¥;. By adapting the ADM formalism, one can write the metric in
an ADM-like decomposition [9],

ds® = N?dr® + ~;;(d2" + N'dr)(d2’ + N’dr) (5.10)
where ¢t was exchanged by r, and X, by %, with the coordinates z* instead
of y*.

In the ADM decomposition the flow vector is t* and the quantity ¢ is
defined as the Lie derivative along the flow vector [13]. For our ADM-like

decomposition, the flow vector corresponds to r%, so we will use a Lie deriva-
tive along a radial vector and define

Vij = £rVij (5.11)
For the explicit calculation, we use that £,e$ = 0, so the Lie derivative only
acts on the metric tensor gogs

£755 = £(gapele]) = £rgapeie] (5.12)

LrGap =Gasul™ + r'6aGus + gGan =
= grr(fﬁ;a + fa;ﬁ) = (5‘13)

=—2 V grr@aﬁ
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Here we have used ¢,s,, = 0 and introduced the symmetric tensor

1
Ous = —5(Vafs + Vi) (5.14)

which is the extrinsic curvature tensor of the boundary metric. So the result
is

%g = "87‘/71) = _2\/ grr@aﬁ (515)

5.1.2 Foliation of the Spacetime

Now we will turn to the question how to express .Z in terms of boundary
variables. Therefore, we need to distinguish between the different parts of
the boundary. The boundary can be split up into two space-like surfaces ¥,
and Y, at constant times t; and 9, and a time-like surface %, at radius r

OM =Sy U (~1)U B, (5.16)

Notice that the normal vector has to point outward, so we have to change
the orientation of ¥;, which is indicated by the minus sign in front of >
(we will assume t; < t5). To foliate the (n + 1)-dimensional spacetime with
n-dimensional hypersurfaces, we will use surfaces of constant radius %, in
suitable coordinates. Table 5.1 gives an overview of the used symbols on
different surfaces and some basic relations of important variables.

We want to rewrite the gravitational action

d"tt d" hl 1
Sols) = 1o G/ e awyEK (G
in terms of boundary variables and decompose it accordlng to the above

stated structure of the boundary. Therefore we start by splitting up the
boundary term

167TGSG—/ A" ra/= R—|—2/ d"zv/—v O+
2/ d"yx/EK—2/ d"yVh K
21 X:2

(5.18)

With v/h we denote the metric determinant of surfaces of constant t. The
(n 4+ 1)-dimensional Ricci scalar can be evaluated on an n-dimensional hy-
persurface with the Gauss-Codazzi equations (see [13] for details). Here, R
was evaluated for the time-like boundary Z,, with normal vector r* and R
the Ricci scalar with respect to the boundary metric ;;

R=R—-070;+0%+2(r%" —r*r’))., (5.19)
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Substituting this into Sy gives with the use of the Gauss theorem
[ avav=gr= [ar [ @umy= R - ety s e
M By

(5.20)
+ 27{ dZa(rofﬁrﬁ — ro‘rﬁ;ﬁ)
oM

where
+noVh dy on X
Yo =13 —naVhdy on Y,
+ro/—7 d"z on A,

For the evaluation of the surface integral, we use that the normal vectors
are orthogonal r*n, = 0 and normalized r*r, = +1, n“n, = —1, that
r%Ta = 3(rra);s = 0 (this holds true also for n), and the definition of the
extrinsic curvature © = r?,.

7{ dX,(re BT —r 7"56)— 2/ d"y\/ﬁro‘rﬁnaﬁ%—
oM 31

- 2/ d"yV'h r°rPrg.s — (5.21)
Yo

— 2/ d"z\/—v ©
Br

By inserting everything into eqn. (5.18), we see that the boundary term over
A, cancels out and we get

167GSe = / dr / d"2\/Gr/ =7 (R — ©70;; + 0%) +
/ d"yVh (K — 11 ng.5) — (5.22)
/d"y\/_( —1°7%n4.5)

The boundary terms over > can be rewritten by the use of the definition of
the extrinsic curvature K = n,.5 ¢*° = na.5 h*? (see eqn. (2.26)), and the
relation h? = g + nonf.

K — naeprr? =ng.5(g™ + no‘nﬁ) — N7’ =

AB «a

(5.23)
—nagoBeSed =0
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so that we finally get
167S¢q :/dr[ d"2\/Gre/—7 (R — ©70;; + 0%)+
+/dr/s d" W/ G/ 20
—/dr/s d”_lw\/g?\/g 20

Supposing a time-independent metric, the boundary terms over S; cancel
out. The gravitational Lagrangian written in boundary variables is then

&L =g/ (R — 070, + 6?) (5.25)

—~ (5.24)

t1

t2

Now we have everything to calculate the conjugate momentum from
eqn. (5.2), which we will denote with m;;.

g :805?%]-(\/__93(;) =
0Oy, 0
0L, 0O
b -t 5 8 _9

167G 2 \/Grr " OO

(V=9%c) =

[R _ (,yik,yjl _ ,yij,ykl)@ij@kl] @\/__ —

_ — ij _ ~id
6.V 07 —170)
(5.26)
With 65 = 79 67;;, we get for the variation of the action functional
5S¢ = &/ =7 (09 — ©79)5, (5.27)
167TG oM

Knowing that dSg + 65y = 0, we get with the use of eqn. (2.33) the stress
tensor for the boundary metric

T —

1
ij %(@ij — ©7;) (5.28)

5.2 Addition of Counterterms

The stress tensor T;; was defined with respect to a boundary metric v;;,
which was just the metric of a time-like hypersurface %4, where we made no
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specifications about r. If we want v;; to indeed describe the boundary of the
spacetime, we have to take r — oo. The stress tensor will in general diverge
in this case. Brown and York tried to solve the problem in [8] by introducing
a reference spacetime, such as flat space, where they embedded a boundary
with the same intrinsic metric «;;. Then one can subtract the reference
spacetime from the spacetime of interest and get a finite result. The drawback
of this method is that it is not always possible to find a suitable reference
spacetime where the boundary can be embedded. For asymptotically anti-de
Sitter spacetimes this problem was solved by Balasubramanian and Kraus in
[9] with the counterterm formalism. Here the stress tensor is renormalized
by the introduction of a finite series of boundary curvature invariants such
as the metric, the Ricci tensor, or contractions of the Riemann tensor. For
the definition of the counterterms we start from the gravitational action.

1 1
_ / 0o/ TG (R—20) — —— dey/ =7 O+ S (5.29)
]_67TG N

817G Jou

The action functional itself is divergent for r — oo, so the counterterm has
to be chosen to cancel this divergence and must only depend on invariants of
the boundary metric, such as the determinant of the metric tensor, the Ricci
scalar, or contractions of the Ricci or the Riemann tensor. The number of re-
quired counterterms depends on the dimension of the spacetime. It turns out
that there is no freedom in how to choose the counterterms. Through dimen-
sional analysis one can show that in three dimensions only one counterterm
is required, which is

Sa

S = /6 day= (5.30)

In four and five dimensions, the additional term

Sy :/ d"z/—y R (5.31)
oM

is required. In six and seven dimensions, one needs two additional terms

Sy = / d"zv/—y R* (5.32)
oM

S4 = / dnl’\/ - Rinij (533)
oM

Higher dimensions require even more counterterms.
To get the general structure of a local counterterm for the stress tensor
we start in analogy to Sy, (see 2.1.3) with a general Lagrange function for

Se and get
Tet — 2 0S5

RN

(5.34)
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For the first two counterterms, this gives

1
1
1 1 1
v GG R T 3R = g (539

By doing the explicit calculations (see Chapter 6) and through the require-
ment that the counterterms must cancel the divergences, one finds the renor-
malized expressions

3
Sreg = Sbulk + SGH - 751 (537)
re 1 (1)
Tz‘j I =T;; — szg =
1 1 (5.38)
=50 (O = O = 77s)
for AdSs, and
3 [
Sreg = Sbulk + SGH + jSl + ZSQ (539)
re 3, L
Tijg =T;; — 7ng + §ng =
1 3 I (5.40)
=5 (O = O — 7% + 59i)

for AdSs.

5.3 Hamilton-Jacobi Formalism

Balasubramanian and Kraus did not give a strict formalism on how to cal-
culate the factors of the counterterms. They were simply chosen in the right
way to get a finite result. It was shown by Batrachenko, Liu, McNees, Sabra
and Wen in [10] that all the counterterms and factors can be derived from a
Hamilton-Jacobi approach.

We start from a gravitational action

1 1
Slges: 0" Aol =~ 1 / A=y (R 5081 0a0" 0" 6"

(5.41)
1 I af J
- EGIJ(@FaﬁF - V(9))
which describes the bosonic part of a general matter-coupled system (see also

[14]). The ¢ are scalar fields, V(¢) is a scalar potential, and the F!; are the
field strenght tensors, defined as

Fofﬁ = 6aAé — 0gAL
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The indices a, b, [ and J are field indices and not coordinate indices. We can
again use the Gauss-Codacci equations to express the curvature scalar R in
terms of boundary variables. In Section 5.1.2, we have found the relation

/ vV—g R= / V=g (R — 6,07 + 6?2 (5.42)
M M
which we substitute into eqn. (5.41). With the use of

g°P = rorP 4 B 5 and O* = g™ 0

we can rewrite the remaining terms so that we can express everything in
boundary variables

1 ’
S=-= / "o/ —g (R — 0,07 + 0%
gD, 0 gab 790,60, (5.43)

2
— GO E] = SGi0) 1 FLr B - V(9))

In Hamilton theory, the Hamiltonian density ¢ is

H = Zﬂif_ii -Z (5.44)
and the Hamilton equations are |
G = %fj and ;= Oﬁf (5.45)
The conjugate momentum is defined as
T = %q?f (5.46)

Usually, the Hamiltonian density and the conjugate momenta are defined
with respect to t, but the holographic principle of flows in radial direction
tells us to define them with respect to r instead. So the dotted variables are
derivatives with respect to r. For the generalized coordinates ¢; we have the
field variables ¢%, Al and 7ij- The ¢; are the Lie derivatives £, of the field
variables

Q'Sa - £T’¢a =" a¢a
Al = £, AL = re, AL (5.47)
Vi = £ = =24/ —7 Oy
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For the last relation we have used eqn. (5.15). Now we can calculate the
conjugate momenta.

0.7
g —=———— —
09,
_ 1 9 1 (9),.an 4a,.Ba by _ 5.48
167G 8(r0‘8a¢“)(2g“b T 0ad"1"0p0") = (5.48)
L )asq
~Tonglar T 989

géf) is symmetric in @ and b, so we can exchange ¢* and ¢°, and get an

additional factor 2 from the derivation. For the calculation of the conjugate
momentum of the field variable A, we use the definition of the field strength
tensor Fl; = 0, A — Og Al and get

i 02
"ToAl
1 (3G (0.AL - AL 5.49
~167G d(reaan) 201 Ol = 0 )rEy) = (5.49)
o1,
= _ i, 8 .
Tera

The derivation of 9;A! is zero, so this term vanishes. We have already cal-
culated the momentum conjugate to the induced metric in eqn. (5.26), with
the result

ij 0L
T == =
8%‘;‘
1 0 g
— O _ 02 —
167TG —2\/97“7" a@U (GUG @ ) (550)
ey - o)

:167TG,/gM,

Now we have everything we need to calculate the Hamiltonian density. For
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the products m;¢; we get

Tad =n gLy 1 0ad" =

=16nGnm, = 167TG7TCL7Tbg((;£)
W}AZI :Glfyijﬂ;]raaaflf =

=Gyl (Fl + 0;A]) =

=Gy ) (16nGr] + 0 A,) (5.51)
(770,60 — 870;;) =

gA - T
T 167G
2 2 7 .
=~ 1eg\® 90 =

=2 16nG(m"m;; — 1
n J—

o 7T§ )

(see Appendix A for the details of the last step). If we further consider the

substitution (see Appendix A)
L G il BT 16xGEGy it ! 5.52
16:C2 Yt Fy Ty = 167 5 YT (5.52)

we can write down the Hamiltonian density 5 [m,, ¢%, 7, Al 7, ~;;] as

1 1 . g 1 o
H =167G (ﬁGabﬂ'aﬂ'b + §G1J’YZJ7TZ-I7T}-] +7T2]7Tij — n_ 171';71';) +

(5.53)
167G

+ G[J’}/ijﬂ}]aiAi

1 1 g 1 .
+ ( — 300 110:6°0;0" — ZGIIFYIF] - V) +

Now we turn to Hamilton-Jacobi theory. Here the conjugate momenta
are written as functional derivatives of the on-shell action

___1 8S

CT V0

.1 68

== (5.54)
=TV
1 49

ij

Bl V=7 07
and we have the Hamilton-Jacobi equation

5S . 88 ., oS

a T2 Al T2 )
5¢a?¢75AiI’ 27672'].7,}/7/] 0 (555)
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To determine the counterterms, we make the following ansatz for the action

1

Sa-gig [ d"x\/—_v<W(¢) " owm) (5.56)

which contains the counterterms we need for up to five dimensions. In three
dimensions we only need the first term, whereas in four and five dimensions,
we need both terms. The conjugate momenta of the counterterm action are

1 68y

Neak

_ 1 <0W+0CR)

8rG \ dp* ~ 0p®

1 684

V=7 07 (5.57)

1 1
i i
o (3w —cev)
r__ L 95
N
=0

P, =

ij _

We substitute them into the Hamilton density eqn. (5.53)

1 7 a 17
16G(R— ~g\ 911 9,0%0,¢" — V——G,JFg.FJJ)+

2 [1 ) (OWOW OCAC _, OWIC .  IW iC
5 G[ (aasa o5 "o 00 < T osr o5 T agr oo
1 L
W 4+ GGy — IG,OW
1 1 o

2gab

(5.58)

and use the Hamilton-Jacobi equation 2 = 0. Solving this equation order-
by-order in the metric gives three equations 7 = 0, ¢ = 0,1, 2, where the
index denotes the order of the metric. In zeroth order we have

167G 2 06" o n —1

We can solve this for the scalar potential V' (¢) in terms of the superpotential
W (¢) and get

1 -
W2 -V — ZGUF;;F” I) =0 (5.59)

¢ OW oW n

V=205 0p* 9P m—1

w? (5.60)
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The constant term Vy = —=-TW? is related to the AdS length scale [10] by

B n(n —1)
[ = v (5.61)

so we have found the relation
n—1
l

In first order, we have all terms containing the metric itself or the Ricci
scalar. Both contributions are separately zero.

1 oW aC oW aC
=150 9 (G0 + g oge) )
+ K - 1) 42—RC’W +R - 1gab 770, qsaajgsb] =0

n—1

W:

(5.62)

(5.63)

The last term has to vanish identically, and with gi‘é’) symmetric in a and b,
we get for the R dependent terms

np a¢aa¢b+2 — OW +1=0 (5.64)

We can solve this equation for C' by inserting the expression we found for W
(eqn. (5.62)), and get
l

Finally, the quadratic terms are left.

1 3 0C 0C _, o [ i n—4
M =T6rG [2 Jab aqsaaTSbR +4C< g 4 ) }

pew

n_

(5.66)

We had three equations for two unknown variables, so the last equation is
already completely determined. Obviously, the terms do not cancel each
other and the expression seems to be non-zero. Indeed, if the dual field
theory contains Weyl anomalies, this term will not vanish. For the solutions
we are interested in, one can argue that it goes to zero sufficiently fast if r is
taken to infinity. The Ricci tensor of induced AdS is given by

1
Rtt = 0, Rij X ’}/Uﬁ for Z,j 7é t (567)
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so R? and R;;RY are proportional to r—*.
Inserting for W eqn. (5.62) and for C eqn. (5.65) into the ansatz eqn. (5.56)
gives the result

Sy=—— [ aay= <”;1+2( : 2)R> (5.68)

e oM n—

Comparing this for n = 2 (here we have only the first term) with eqn. (5.37)
and for n = 4 with eqn. (5.39) shows that the derived results match the
empirically found relations. Variation leads to the regulated stress tensor as
defined in eqn. (5.38) and eqn. (5.40), respectively.

5.4 Mass and Momentum

From the stress tensor we can determine the mass and angular momentum
of the entire matter and gravity system. Therefore, an ADM decomposition
of the boundary metric v;; is used

ds® = y;;d2'd2? = —N3,dt* + oap(NAdt + dw™)(NPdt + dw®)  (5.69)

with N4 representing the shift vector embedded in the hypersurface S;, and
Ng, being the lapse function that ensures normalization of the normal vector
n; to this hypersurface.

nie'y =0 n' = —" Ns, = /—gu
According to [9], the mass is defined as

M= | & 'eo n'T,e (5.70)
St

€' is a time-like Killing vector generating an isometry of the boundary geom-
etry ' ' '
£§UAB =0 fl = 5Z0 = Ngtn’

The momentum is defined as

PA:/ A" ra/o oagTPn, (5.71)
St



Chapter 6

Calculation of the Quasilocal
Stress Tensor

In the previous chapters, we have provided the theoretical framework for
the quasilocal stress tensor and discussed some properties of anti-de Sitter
spacetimes. Now we want to explicitly calculate the quasilocal stress tensor
and the mass and momentum for various spacetimes. As already mentioned,
for the AdS/CFT correspondence, AdS5 x S® is of special interest. However,
we will start with spacetimes of lower dimensions to get a better insight into
the calculations. The first spacetime we will deal with is AdSs;. In three
dimensions, we have a manageable number of components for the various
tensors, so the calculations can easily be done "by hand”. Then we will have
a look at AdS; and finally, we will turn to AdS; x S5 and generalizations of
it, where the 10-dimensional metric has product form only asymptotically.

All metric constants used during the calculations, such as the Christoffel
symbols, the Ricci scalar, or the Einstein tensor, are listed in Appendix B.

6.1 AdS;

The metric of global AdS3; was already given in eqn. (3.13) as

2 r? 2 r\ 7 2, .2.702
Further we had the non-global Poincaré patch eqn. (3.15)
2 12 2
ds* = _l_zdt2 + ﬁdrz + l—2d1’2 (6.2)

where x = lp. The unit normal vector to surfaces of constant r is given by
To = \/Grr Oar. We can see from the above definitions of the metrics that

46
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Poincaré coordinates have the advantage that one does not have to make a
series expansion when taking the square root of the metric component g,,.
We will start with the easier case of Poincaré coordinates, and deal with the
global metric afterwards.

6.1.1 Poincaré AdS;

For Poincaré coordinates, we have 7, = %50”. The extrinsic curvature tensor
was defined in eqn. (5.14) as

1
®aﬁ = —§(Vof5 + nga)

If we explicitly write down the expression for the covariant derivative

l l
aA :5o¢rar_5 r_Fp 57“_ 6.3
Vai'g ~0r = LogOpr— (6.3)

we see that this expression is already symmetric in o and (3, so the extrinsic
curvature tensor simplifies to

@ag = @ga = —Vafﬁ (64)

From the Kronecker deltas in eqn. (6.3) we can deduce that the first term
only contributes to ©,,, and that only Christoffel symbols I'] ; occur in the
second term (a list of the Christoffel symbols is given in Appendix B). Explicit
calculation gives for the components of the extrinsic curvature tensor with
non-vanishing Christoffel symbols

o~ 1l
T T

oL r?
@tt == _Ftt; = +l—3 (65)
[ r?
@:c:c =17 —=——
o 3

The extrinsic curvature tensor is supposed to describe the curvature of the
boundary, so it fits to our expectations that it has no r components. To
make this explicit in the notation, we will from now on write ©;; instead of
O,p. The curvature scalar is defined as

and evaluates with ¥** = —«% = i—z to

0= —% (6.7)
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The stress tensor was given in eqn. (5.28) as T;; = 5 (0;; —©;;). Inserting

our results for ©;; and © gives

B 1 72
1 r2 (6.8)
wa Sy 12
87G I3
ﬂm —Txt =0

The boundary of AdS lies at r = oo, where the stress tensor diverges with
r2. The divergence can be eliminated by adding a suitable counterterm.
Although we have already given the complete expressions for the regulated
action and the regulated stress tensor in eqn. (5.37) and eqn. (5.38), respec-
tively, we will go through the calculation step by step to make transparent
what happens. We will first calculate the action according to eqn. (2.8) and

eqn. (2.9)

3
Shulk = 16 e d°z/—g (R—2A) =

B 167rG/ dt/%ld*”/ dr_<__):

_/Gwl r?

2
o G dx\/—v © =

B 2w ,,,2 2

Buwy 212

8rG [?
where we have used R = —6/1? and A = —2/I? (see Appendix B). w; = 27 is
the volume of the unit 1-sphere S!, and 3 = 27 /Ty is the periodicity interval
of time, with Ty the Hawking temperature (see e.g. [15] for further details).
The complete action

Scr =

Buwy 1
8w G 12
diverges like r? for r — oo. We want to find a counterterm with the same
r dependence that is a local, covariant function of the intrinsic geometry of
the boundary. The simplest possible term is

/ \/__5“”7 (6.11)

Sa = Spuik + Saun = — (6.10)
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which indeed has the right r dependence to cancel the divergence. In fact, it
is readily shown that this is the only possible term to cancel the divergence.
So the regulated action is given by

1
Sreg = Svuik + San + 751 (6.12)

and has the result
Sreg =0 (613)

Variation of S; with respect to 7;; (see Appendix A)
05 = L/0[2:)36\/— = L/0[2‘171\/—7 7985 (6.14)
e G 2 Y '

in combination with eqn. (5.1) leads to the counterterm of the stress tensor

w_ 1
T — _— 1
* 87G Y (6.15)
To eliminate the divergences in eqn. (6.8) we define
re 1 1 1 1
T =Ty - 77}%) = 5.0 (O — O = 7). (6.16)
This gives the result
T =0 Vi (6.17)

which is clearly free of divergences. It follows immediately that the mass and
the momentum are also zero since they are extracted from 7T7.

6.1.2 Global AdS;

With the metric from eqn. (6.1), we have the normal vector

1

fa = grr(sra = —
V31t+5

We are interested in calculating objects on the boundary, so we can make a
series expansion for r — oo

imi=(L-L co(L))s (6.19)
el T \r T 28 o " '

Sy (6.18)
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The extrinsic curvature tensor can now be calculated from eqn. (6.4).

2 1 { 1
@tt:_l—‘:{f’:rr—‘l'——T—‘—O(—)

320 8r? r4
ER 3 ] (6.20)
9%0%0 —F 7‘_—[—54‘@4—0(—4)
and the curvature scalar © = 0;;7" evaluates to
2 I3 1
92_7_@+O<r_5) (6.21)

Inserting ©;; and © into the definition of the stress tensor eqn. (5.28) gives
T /r* 3 3 1
Ttt—_%<l—3+ﬂ+ﬁ)+0<ﬁ)

0 (%) (6.22)

One can see that the stress tensor again diverges with 72, just as for Poincaré
coordinates. For the action we have

3 —_ e
Shuik = 16 e d’z\/—g (R —2A)

27
= 167rG/dt/ dgp/drr( ):

ﬁwl r?

87TG 2
2
San = - G d°z\/—v O =

ﬁwl 27’
871G < [? 1o <r2))

where we have used a series expansion to evaluate the square root in Sgg.
The gravitational action is then

B _ Puwn r? 1
Sa = Spuk + Sag = % <_l_2 -1+0 <—)) (624)

(6.23)
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The counterterm for the action was defined in eqn. (5.30) and gives

1 9 w1 1

which we insert into the expression for the regulated action eqn. (5.37)

1 Bwy —1 1
Sreqg = Sputk + Sau + 751 = ﬁ? +0 (r_Q) (6.26)

For the stress tensor, we get with eqn. (5.38)
1 1 3l 1
Treg N el O -
" G (2[ * 87’2) * <7°4>
1 (1 38 1 (6.27)
Tre9 — .~ [ 2 T _
oo )0 (3)
1,7 =T," =0

The mass was defined in eqn. (5.70) and gives

1
M= | dx\/o
S vV Gt
2m I B\ -1 /1 3l 1
/0 vr (r 27"3) G (21 + 87’2) +0 (r4) ( )
__r_r
- 8G 32Gr?

itrpreg cjt
FUTT969t —

The surprising result that the mass of Poincaré AdS; and global AdS; are
not the same occurs because the time coordinates are different and therefore
the definition of energy differs. The momentum is zero because 77 has no
off-diagonal components.

6.1.3 Perturbed Poincaré AdS;

Now we want to study a spacetime with small deviations from AdS3;. The
metric is given by

a5 = — a4+ Dt 0 Tt 4 sgsdntds? (6.29)
TR TR TR Joo @t 0¥ |

where 0g,p represents the perturbation. Working to first order in dg,s, the
normal vector is 7, = (ﬁ + éégrr)éw, and for the extrinsic curvature tensor
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we get with eqn. (6.4)

r? rt T
Oy = 3 905 OGpr ﬂarégtt
e r (6.30)
@xx - l3 2l5 697“7“ - ﬂar(sgxx
O = —2—lar59tx

The curvature scalar evaluates to

2

@ 597’7’ -

l 1

1
(the covariant components of the metric are given in Appendix B). Inserting
in eqn. (5.38) yields the regulated stress tensor

o= 2 (g 4 s —185
“ T grG \ o I e 08
1 4
reg __
T = o ( 00 + légtt larégtt) (6.32)
1 T
reqg __ _ o
e’ =ga (159“” 21&59””)

With eqn. (5.70) and eqn. (5.71), we can calculate the mass and momentum,
respectively.

2w
M= / d:)s\/gmic?”T 5t =

I v ’, (6.33)
r
2w )
P, = / A/ Gog 04 — " 4G0e =
0 Yt (6.34)

1 1 T
—% /dI (759m - ﬂ&ﬁgm)

We want to compare these results with the spinning BTZ (Banados, Teit-
elboim, Zanelli) solution (see [16], [17], [18]). The metric of the BTZ black
hole is given by ([9])

2
ds® = —Ndi* + p*(dip + NVdt)? + NTT/ﬂdr? (6.35)
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with

2(..2 2 2
2_T(T —r) 2 9 2 T3
4
r¥ = 8GIVM?2% — J? N¢:-Q¥
)

Evaluating the metric components for r — oo and assuming that
J? << M??, we can identify the results with the metric components we
had for perturbed Poincaré AdS;

2

r
—N? + p*(N¥)? ~ 7 +8GM = gy + Ogu

2 2 8GI'M
r o+

Nip St = 9t 0
PPNY = —4GJ = Sguy
p2 ~ 7”2 = g¢¢

With the substitution z — ¢ and [dz — 1 fozw di), we can insert these re-
sults into the equations for the mass (6.33) and the momentum (6.34), and
get the identities P, = J and M = M, which shows that the equations re-
ceived from the counterterm formalism reproduce the results of conventional
techniques.

If we insert the values we have calculated for the mass and momentum
we find that for M = —% and J = 0 the BTZ metric reproduces the metric
of global AdS; (eqn. (6.1)), whereas for M = 0 and J = 0, it reproduces
Poincaré AdS; (eqn. (6.2)).

6.1.4 Schwarzschild AdS;
The metric of Schwarzschild AdSs is given by

2

) -1
ds® = — (1 + % - rg) dt* + (1 + % - 7’8) dr® + r*dQ} (6.36)

and has the normal vector

1
fa = grr(sra = —67“04 (637)

r2 2

which we again expand for r — oo

hmf:<£—§91ﬂ@+o<i))@a (6.38)

r—00 r 2T3
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The extrinsic curvature tensor follows from eqn. (6.4)

2 1_2 1_22 1
O = — ttr—r——i- "o —Z( TO) —i—O(—)

3 21 872 r4
6.39)
. 2 1(1—r2) PBl-rd)? 1 (
GSOSOZ_F%DT:_T_ 2 _'_ 8’]”2 +O<T_4)
and the curvature scalar evaluates to
2 PBP(1-
0= —T+——7 TO +0 ) (6.40)
With the definition of the stress tensor eqn. (5.28), we get
1 /r* 3(1-1rd 311—7’0
="%a (z_ M O
1 r? (1 —rd) 3[3 1- 7“3)2 (6.41)
To—_ - (T _
=" &G ( I
irtcp Lot = 0

If we compare these results with the results for global AdSz, we see that
they are equivalent up to the factors (1 — r2), which is not surprising since
the constant terms in the metric are 1 for global AdS3 and (1 — r?) for
Schwarzschild AdSs. The divergent term proportional to r? is the same in
both cases. The action is

16G d*rv/—g (R —2A) =

27
= 167rG/dt/ dap/dr( )
-3
BqG : (6.42)
Scr =5C d*z/—v 0 =

M/ TR

:_g%(z;*(l 0)+4r (1 =)’ +O<r4>)

where we have again used a series expansion to evaluate the square root in
Scu. Notice that the integration bounds of the r-integral now start at the

Shuik =
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horizon of the black hole and not at » = 0. If we use the defining equation
T2 . .

of the horizon, f(r;) = 0, we get the identity (1 —r§) = —F. Substituting

this into Sy, leads to the following expression for the gravitational action

- _ Be B 1
Se = Spuik + Sen = 87TG<Z2+47’2(1 r5)° | + 0O (6.43)

The counterterm for the action eqn. (5.30) gives
1
S =—— | &x/— =
"8G / W
Bwi (r? 1 A . 1
et N (A R S —
8rG \ [ * 2( o) 7’2( o) ) +0 ré

and for the regulated action eqn. (5.37), we get

(6.44)

1
Sreg =Svutk + Sau + 751 =

3 1 512 1 (6.45)
“5re (511 - et =) +o ()

The regulated stress tensor follows from eqn. (5.38) and gives

1 1—7r2 31 —1r2)? 1
T, = — 0 0 O —
" G ( 21 * 8r2 ) * r

g _ L (1(1 —13) 3B —rg)2) ‘o (i) (6.46)

v T 8@ 2 8r2 rd
ngg :T;teg =0

6.2 AdS;
6.2.1 Schwarzschild AdS;

The metric of Schwarzschild AdSs can be written as

1
ds? = —fdt* + ?dr2 + 72(dp? + sintp dv? + cos*y dp?) (6.47)
‘ 2 g2
Wlthf:1+l—2—r—g.

For the sphere we have used an alternative line element (see [9]) instead of the
usual dip? +sin? ¢ (d¥? +sin? 1)dp?). The used line element has the advantage
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that only angular functions of ¢) occur, and therefore, some of the expressions
take a simpler form. The unit normal vector is given by 7, = \/1/fd,, and
has the large r expansion

3 5 3 1
1imfa=£—l—+i+l—+0<—) (6.48)

r—oo ro 2r3  8rd  2r r6

For the calculation of the extrinsic curvature, we can use eqn. (6.4), with the
result

2
@ T“_l’r’o\/*

(6.49)
@izz—;\/?%'i for i = ,7, ¢
In the limit of r — oo this evaluates to
r? 1 l 7’(2] 1
Gtt—z—s+ﬂ‘@+ﬁ+o(—4)
o - " L P g 1
WL 2 T2 2 g
r2 3 lr(z] 9 (6.50)
@1919—(—7—54—@4‘%)8111 ID—FO(ﬁ)
r2 3 e )
@¢¢—<—7—2+§+ﬁ>COS ¢—|—O<—4)
and for the curvature scalar we find
4 l 1
O=——-——4+0|—= 6.51
[ r? - <r6> (6.51)
For the stress tensor (eqn. (5.1), we get
Lo 32 9 94\ (1
"TRrG\ B 2 8lr2 i
L /3 1 (P - 47‘8)) 1
Tww = — ( + + O —
7CG 8r2 4
i " : (6.52)
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Again, we want to explicitly evaluate the action integral to find the counter-
terms. By substituting R = —?—S and A\ = —% (see Appendix B) into Spux
(eqn. (2.8)), we get

Shuik = / dt/ dr'r '3/ ng —

/6(.4}37" —r+
e e

with w3 = 272 the volume of the unit 3-sphere S®. The boundary term

evaluates to
1 B
= dt ds? 39 =
SGH 87T G / /S‘a 3\/?7‘ @
4

(6.54)

where we have used the large r expansion

lim \/f ==+ — — ﬁ — l7’0 (6.55)
r—00 8r3 27"3
_2+

TZ_T2 .
= o in Spuk

If we further consider that f(r;) = 0, we can substitute
and get by addition of Sgy for the gravitational action

4 2122 1
Se = P <_3i — 3t 22 12 - ﬂ) + 0 (—) : (6.56)

87 [? r? r4
To cancel the divergences for r — oo, we find that the counterterm introduced
for AdS;

1 Bws (r* 2l B 2l
Si=c—= | day—A="c|++—-=-2 6.57
187rGMx787rG<l282 (6.57)
removes the r* divergence, but there still remains an 72 divergence. We have
already stated in Section 5.2 that we need an additional counterterm, which

was defined in eqn. (5.31)

1 612 33 3ril
Sy =— d4 V—AR=—|—+31-"— =L 6.58
2= %G v 8G<l+ 12 7’2) (6.58)
This counterterm removes the r? divergence, and for the regulated action we

find in accordance with eqn. (5.39)

l

3
Sreg :Sbulk + SGH + 751 + 152 =

6.59)
1 , T2 32 1 (
e (ﬁ‘f?) +O<ﬁ)
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The regulated stress tensor was defined in eqn. (5.40) as

TE. 1 3 l
Ty = —87TG(9U — O — 7 i + 5%) (6.60)
and evaluates to
1 3l 3r2 1
reg _ - [ 2V 9T 4
Tn™ = 8rG (87’2 21r2) O (7,4)
1 3 Ir? 1
reg - [ v Ty 4
T¢¢ - 871G (87’2 * 27"2) +0 (7"4)
1 13 l’f’g ) (661)
reqg __ v o . L
Tyy = 370 (87‘2 + 27"2) sin“¢ + O (74)
1 & Ir? 1
reg .~ [ " o 2 1
1.7 = e <8r2 + 2T2) cos” 1 + O (7"4)
For the mass we get from eqn. (5.70)
1
M= | dz/o Tres =
St V — Gt (662)

312 3mr? 1

= o=
3G 3G (ﬂ)
where the second term corresponds to the standard solution for the mass of
Schwarzschild AdSs;. The first term is the mass of pure global AdS5 when
ro = 0 (i.e., when the mass of the black hole is zero). From the gravitational
point of view, pure AdS; is a vacuum and should have zero mass, but from

the view of the AdS/CFT correspondence it turns out that this mass comes
from the Casimir energy (see [9]). The momentum is zero.

6.2.2 Electrical Charged Black Hole in AdS;
We take the following metric as an ansatz for static electrically charged black
hole solutions in AdS,,

1
iG]

and set n = 4. B(r) is some function depending on the charges which we

d82 — —6_2(n_2)B(r)f(’f’)dt2 + 62B(7’) ( d’f’2 + ,r,Zin_l) (663)

will specify later. With the unit normal vector 7, = eZf _%5,,04 we have for
the extrinsic curvature tensor according to eqn. (6.4)

L yue P\ f
2f

1
O = — (B/ + ;) %’z’e_B\/? for e =4, p, %

®tt - — (-23/ +
(6.64)
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(primed variables are derived with respect to r), and the curvature scalar is
0=—cbf B’+£+§ (6.65)
N 2f 7 '
So we get for the stress tensor (eqn. (5.1))

1 , 1 _
Ty = S G (B —) 3e B%t\/?

1 # (6.66)
- for i —
T 87TG< T ) Py f - fori=19,0,9
For the gravitational action we take
S[gaﬁv (bav Ai] = d5$ vV (R - _gab ¢aaa¢b (¢)
16 G
1 (6.67)
- FI Focﬁ J 4 —
4G1J(¢) af )+ p—e (M/d /=7 ©

which describes the bosonic part of a general matter coupled system ([14],[19]).
The Einstein equation written in Ricci form is ([14],[19])

1 1 1 1
Rop = igif)aawaﬁ(f?b + §G1J(F0{AF,B)\ 7 - ggaﬁFffanU )+ ggaﬁv (6.68)

Its trace gives the Ricci scalar

1 5 3
= 2gab 0% 0" + GIJ(l - E)F,ETUFW T+ §V (6.69)

which we substitute into the action eqn. (5.41) and get the expression

1

- _ - - I af J
Shulk = 167G y x\/ < G, F 5F + 3V) (670)

For spherically symmetric black holes, the fields are functions only of the
radial coordinate

¢*=¢"(r) and A = Aj(r)

The other components of Al are zero. If we write down the Ry, component
of the Ricci tensor from eqn. (6.68), we find

1 1
— — G FP7 ) + 39wV (6.71)

1
R gab 0¢¢“8b+ G[J(F,i)\F AT G

T2
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The first term is zero because ¢* is independent of ¢). The second term is
also zero because AL does neither depend on 4, nor it has a t¢-component.
Multiplication with gy, gives

1 2
2R} = (—BGUF;BFW I+ gV) (6.72)

which is exactly the same expression we had in the action integral eqn. (6.70),
SO we can write

d%\/— Ry (6.73)

Shu
bulk = 8G

Now we calculate the explicit form of R:ﬁ with the Christoffel symbols (see
Appendix B) and get

v _
Rw—__

e BB+ "B+ fir v 2f + fr°B" - 2) (6.74)

which we insert into the action integral. Integration gives

Stulk = gw(g,;( SfB + 13 (f—1)+17) (6.75)
For the boundary term we get with the curvature scalar from eqn. (6.65)
1 ﬁW3 1
= d* B 3epl g Z 3y 2 '
Scu G J,,, /7 © — <r B+ 5" I+ 3r f) (6.76)

Combining these terms, we find that the B” dependent terms cancel out and
we get the divergent expression

TG

This can be regulated by adding the counterterms defined in eqns. (5.30) and
(5.31), which evaluate with the given metric to

1
Stulk + Scu = Py (—27”2f - §T3f/ —r? + Ti) (6.77)

_ 1 dt ﬁ w3 3 B
Si=gG | TV g6 =7V fe (6.78)
Sy = 1 d%ﬁRz ﬂ > fe P (6.79)
8¢

The regulated action S,y = Sbulk + Sag + 2 51 + - 52 is then

. Bws 2 3 ¢ 2 2 3 B -B
S?“eg = % 2T f 57’ f T +7’H+377ﬂ \/?6 —|—§l7°\/?6
(6.80)

In general, this result is not manifestly finite, but we will see that it is indeed
finite for the case of R-charged black holes.
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R-Charged Black Holes in AdS;

For R-charged black holes, the function B is expressed through the harmonic
function H: B = é In’H. In the STU model, the harmonic function H is given
by the product of three harmonic functions ([14], [19])

3
= ity =] (1+-2) (6.81)

=1

where the ¢; are the charges. The metric for R-charged black holes in AdSs
is then given by

ds® = —H_%fdt2 LM (%alr2 + r2d§2§) (6.82)
with N N
2 or
f=1-840nH

Inserting f and H into the action integral (6.80) and making an expansion
for r — oo leads to

o /6(4}3 3 2 2 1 2 1 (1)2 1 (2) ]_
Sr’eg = % gl + T+ — 57’0 — ﬁ — ﬁ + O ﬁ (683)
with the abbreviations

QY =g +q+qs and QY = g2 + 23 + G

So the action is indeed free of divergences. But we find that it is nonlinear in
the charges, which is not inherently wrong, but unexpected since it does not
correspond to a definition of mass for which BPS bounds could be formu-
lated [19]. This problem can be solved by adding a finite counterterm, which
corresponds to a renormalization procedure in field theory. Finite countert-
erms can be constructed from the matter fields ¢* and A’,. Since these fields
are only functions of the radial coordinate r, we only consider the following
counterterm, which does not have two-derivatives

_ Bws — ) 0
Spr = ooV~ Yay ¢ (6.84)

In the STU model, there are three U(1) gauge fields X* and two scalars ¢,,
which are defined by

Xl :e—%(bl—%ﬁb — Hl—lH%
X2 = IR = iy (6.85)
X3 :e‘%qsl _ Hg—lH%
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so that X' X2X3 = 1. The two independent scalars can then be expressed as

1
=—(nH;+InHy —2In H.
1 \/5( 1 2 3)
1 (6.86)
=—(InH —InH
¢2 \/5( 1 2)
With gy ¢°¢? = ¢ ¢, = ¢* we get
1
#-dra-(Gem-w)ro() e
Inserting this into eqn. (6.84) gives the finite expression
/6(413 (1)2
-2 .

S = oo Q Qv (6.88)
which can be used to cancel the charge dependence of the regulated action
(6.83)

ﬁng 2 1, 3
re S =1 .
S, g+2l5¢ e\t 27‘0—1—8 (6.89)

This is now identical to the Schwarzschild AdSs solution (6.59). We can
define a general expression for the action of black holes in AdS; with or
without charge as

3 l

Scomplete - Sbulk + SGH + I

S 6.90
TR (6.90)
If the black hole has no charge, then the last term vanishes.

We have already calculated the general form of the extrinsic curvature in
eqn. (6.64). Inserting the explicit values for the metric defined in eqn. (6.82)
gives after series expansion for the unregulated stress tensor (eqn. (5.1))

1 32 9 QW 1 9 3QW 9r 1
T, = — (- - = = 4+ (= 0 O
“ 87TG< B2 B +r2( s T 21))+ (M)
(6.91)

For the regulated stress tensor we had eqn. (5.40)

re 3 1 2
TtthC/}t—zﬂ(t)ﬂLZY}(t):

11 <3l2 37“0

l

. (6.92)

3l2

_ - 2 (1 (2) _ »H(1)2
QU+ 2 (@ - Q%))
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Again, we have a nonlinear charge behavior, which can be removed by adding
the finite counterterm )
2 a
5 = g% ' (6.93)
which follows from variation of Sy (eqn. (6.84)). So we finally end with the
renormalized stress tensor

1

e 2

Ty =Ty + ﬂTg (6.94)
1 1 (/32 3
Tren — _—__— [ <o (1) )
" 87rGlr2<8 o e (6.95)
For the mass we get from eqn. (5.70)
M :/\/Edﬁg T =
—Gut
=— ([=+=2+0Q
4G \ 8 2

6.3 AdS; x S5

For spacetimes that can be (at least asymptotically) decomposed into
AdSs x S5 we can use the counterterm formalism of AdSs and do not need
to introduce additional counterterms.

6.3.1 Rotating Three-Charged Black Hole in
10 Dimensions

The line element of a rotating three charged black hole in 10 dimensions is
given by ([20],[21])

ds®* =vVA (—%dtz + %drz + 7’de2) +

13 (6.97)
+—= Y PHi(dp? + pi(de; + A'dt)?
\/Z; ( ( )%)
with
r? 3 R = 3
feph=y A= T ) ﬂ_HZE (6.98)
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The harmonic functions H and H; are the same as defined in eqn. (6.81)
with n = 4. The ¢; are the charge parameters. One might wonder that the
line element seems to have 11 instead of 10 variables, but the u; are not
independent of each other. They parametrize a 2-sphere and have to fulfill
the condition Y u? = 1.

[ = cos o = sin ¥ cos i3 = sin ¥ sin ¢ (6.99)

So we have in fact only two independent variables, 9 and ¢, with the familiar
line element of the 2-sphere Y du? = di? + sin®dyp?®. x is a 3-vector and
represents flat space. This corresponds to a spacetime with k& = 0 (see
Section 3.3).
For simplification we will choose all three ¢; to be equal and get for the
line element
3

f 2 H 2 2 2 2 2 2 2
Tt + fdr +r2Hdx® + 1 ;(dui + p2(dg; + Adt)?)  (6.100)

ds* =
Notice that the metric has off-diagonal components, and therefore, a de-
composition into AdSs x S° is not possible. But in the limit r — oo, the
off-diagonal components vanish and the metric can be decomposed, where
the variables ¢, r and x belong to AdSs, and the variables p; and ¢; belong
to the five-sphere. For later use we will introduce for the metric determinants
the names v, for the induced AdSs, and S° for the S° (see Appendix B).
With the normal vector 7o = /Gy 0pq of the simplified metric eqn. (6.100)
we calculate the extrinsic curvature tensor (eqn. (6.4)),

_ Pr2 + (¢ +r?)

O, =

" B(qg+1?)%a

roap

o, — __VTyak (6.101)

s (g +12)%a

1

Opp, = ——

(k2 la

where we introduced for a short notation

o q—+r?
0= \/ PR (6.102)

For the curvature scalar, we get

(Prglg +2r%) = 4(g +7°)%)a
l(q+1r?)?

o= (6.103)
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To calculate the stress tensor, we start from the action integral and use
the Type IIB superstring theory low-energy effective action where we neglect
the string corrections [21]

1 10 1 2
__ V= (R-—(F 104
Shuik 167TG10/Md x 9<R 4‘5!( 5)) (6.104)

The Ricci scalar vanishes for the given metric, and the five form is given by

1 4qrd 8

2 _
4—5'(F5) = S + 2 (6.105)
Integration gives
PwsVs s [ 4 2 4 2 qrd qrs
Stk = [ 2qre —nri —2 — 6.106
bulk 87TG10 T T+ T+ * q+ T-2i- q+ r2 ( )

where ws (the volume of a 5-sphere) is the result of the integration over the
1 and ¢;, and V3 is the volume of the 3-dimensional space defined by the z;.
For the boundary term
1
(G 10

Scr =

/ d’z\/—7 © (6.107)
oM
we get after integration

_ Bws V3
87TG10

2 1
ScH I? (—47’4 — 8qr? + 21217 — 4¢® + Toq) +O (—4) (6.108)
r

gy
As mentioned above, if we work in the limit 7 — oo, we can use \/—7; - V/.S°
instead of \/—7 and get the same result. This is crucial for the counterterms,
because therefore we can use the counterterms and prefactors of AdSs, and
do not need to bother about additional counterterms for higher dimensions.
So for the first counterterm, we can use eqn. (5.30) and consider the five
sphere as an additional factor

1
S, = / d4x\/——74/ dPx\/ S5 (6.109)
87Gho Joadss S5
with the result
V l2 2
51 = s:glz /! <7’4 +2qr° + ¢* — %) (6.110)

which turns out to be already sufficient to cancel the divergences. The second
counterterm

1
N 87TG10

Sy / d* 2/ =75 Ry / d°zV'S? (6.111)
0AdSs S5
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is zero, because the Ricci scalar R, vanishes. So the regulated action
eqn. (5.39) reduces to

3
Sreg - Sbulk + SGH + jsl (6112)

and has the result

_ PBwsVy g 3?2 Tl N
Sreo = gran L\ o T T AT
1 1 12 1
2
_ - o=
T <2<q+ri> Ag+r) >> ' <)
(6.113)

It should be noticed that we only get a well defined result for S,., if we use the
decomposed metric. For the counterterm S; it makes no difference because it
only contains the metric determinant, and for r — oo we already stated that
V=7 — v/=71-V'S5. But in the counterterm Sy, the Ricci scalar occurs, and
R4 # Rg. Whereas R4 = 0 and the divergences are clearly canceled by Sy,
Rg = 20/1? would produce a counterterm S, that is proportional to S, and
therefore, one could arbitrarily combine S; and S5 to cancel the divergences.

From the regulated action one can calculate the thermodynamic poten-
tial [10]. The relation between them is given by

Sreg = BQ (6114)
To express everything in field variable quantities we use further the relation

1 W _2N2

6= (6.115)

where N is the number of colours in the field theory. So we get for the
thermodynamic potential

Q:N2V3 @—f Ti 2
47 2 2

+qrg b +£ ol
PO\ n) T 2Ag ) e o

Now we will calculate the stress tensor. From the definition in eqn. (5.28)

(6.116)
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we get
1 3 612 (q—|—3r2)
T, — _ e 2y2 _ 2T0 | 544707 )
e “(z:’»(q”) [ T )
1 o(q +3r%)
Tigs = —— a\/ 13 Prg
b 87TG10a ( 5+ TOZ( r))
1 3
Tmimi = 87TG1() a (z(q + T2)2 - lrg) (6117)
1 (¢ +2r?)
Tog = 4] —Br 27
7 8rGho ¢ ( (a:+77) O (q+1r2)?

Tgpgp = T1919 sin229
Ty, = Too 113

For the regulated stress tensor, we can use the formula we had for AdSs;
(eqn. (5.40)). We already know from the action that we only need the first
counterterm and that the second counterterm vanishes. So we get for the
regulated stress tensor

Te 1 3
T = —SWG(@U — Oy — 7%’9’) (6.118)

which evaluates to
T = _Sﬂé 0\/7%7“?% o (:_3)
1 1 1
= s+ O ()
Trer — Bﬂéwz e (ig)
T = 87TG10lsm219 +0 <r13)
T = gl + 0 (:—3)

From the stress tensor we can calculate with eqn. (5.70) the mass

1
pr2(1+ 4L = 12
167TG103 ( +’l“2> +O<’F4) (6 0)

(6.119)
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and with eqn. (5.71) the momenta

Ws 46,2 /| 2 31
Py, = ——1"u; 1

2y

214

2

0
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Chapter 7

Conclusions

With the use of the quasilocal stress tensor and the counterterm formalism,
we were able to calculate the masses of several anti-de Sitter spacetimes in
a consistent way. These results can be used for thermodynamical calcula-
tions. The ADM-mass we calculated is identified with the energy E, and
the action 5,4 is related with the thermodynamic potential by S,., = 32
(see [10]). For black hole thermodynamics, it has already been shown that
the first law of thermodynamics, dE/ = T'dS, holds rather generally. For these
spacetimes, which exist for pure gravity (with a cosmological constant), the
thermodynamic potential €2 is equivalent to the Helmholtz free energy F,
therefore we have also satisfied F' = E — T'S. However, for AdS/CFT one
also wants to consider more general matter coupled systems, such as the R-
charged black hole discussed in Section 6.2.2. It turned out that in addition
to the regularization with infinite counterterms it was necessary to introduce
a finite counterterm for renormalization. After this renormalization we were
able to recover the classical result, where the action and the stress tensor
are linear in the charges. The thermodynamic potential is then given by
QO =FE—-T8S — ¢'Q;, where the Q; are the conserved R-charges and the ¢!
are the corresponding electric potentials. In classical thermodynamics, one
would have the chemical potential instead of the ¢’. So black hole thermody-
namics is very similar to ordinary thermodynamics, which can be used in the
AdS/CFT correspondence to get results in finite temperature field theory.

In recent work, the counterterm formalism was also successfully applied
to asymptotically flat spacetimes. This generalization is not trivial, because
flat spacetimes do not have a dimensionful parameter such as the curvature
scalar | to make the counterterms of the action dimensionless. For further
work on this subject, see e.g. [22] and [23].
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Appendix A

Definitions and Derivations

A.1 Definitions

Christoffel symbol

1
Top = 59" (9vas + Gupa = Gapw) (A1)

The Christoffel symbols are symmetric in the lower indices I'j, = I'}, and
metric compatible, i.e., the covariant derivative of the metric vanishes

Guvip = 0.

Covariant derivative
Vavg =005 — Fgﬁvu
V0P =005 + Fguv“ (A.2)
VoT? =0,T° + 15,7 —Tu 1",

Lie derivative
Lev® =E°050" — 0P 958"
Levg 255851)& + vgaafﬁ (A.3)
LeT% =£10,T% — Tﬁ’ﬁ&,ga + 1,058

Riemann tensor

e} _ T« fe a M a M
Byd T T Boy T Fﬁmé + Fmrﬁé - Fuérﬁv' (A-4)
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Ricci tensor

Rps = R, (A.5)

Ricci scalar

R = R%, (A.6)
Cosmological constant for vacuum spacetimes in (n+ 1) dimensions
]_ C\(ﬁ
Raﬁ + iRgaﬁ + Agaﬁ =0 | g

R— %R(n+ 1) 4+ A(n + 1) =0 (A7)
n—1

) =A

Volume of the (n — 1)-sphere

271'”/2
T T(n/2)

A.2 Derivations of Used Relations

A.2.1 Variation of the Metric

To derive the relation between dg,s and dg*° we use the variation of the
identity

0=6(37) = 0(gasg™)
0 =0959"" + 9apdd™ |- gn
0 :5904655 + gaﬁgwégm
09ap = —Gougpn 09" (A.9)

For the calculation of §,/—g we use the relation ([24])

dA 1 d

Notice that g denotes the determinant of g,s3, so we have to insert g,z for
the matrix A. By substituting the derivation with the variation, we get

tr [5ga5 gﬁq = éég
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8Gap 950‘ g=14g
1

5y/=g = _V—_

W__V—_

With the use of the relation in eqn. (A.9), we can express this in terms of
5g*?

1
0V=9 = =5V~ gasdg"”’ (A.11)

The variation of \/—7v is done exactly the same way.

A.2.2 Hamilton-Jacobi Formalism

1 1. « ]' «
W§G1J’yj’/’ FI 6Fﬁj 57’ FI
:iGIﬂUW}]TaFo{i =
- (A.12)
:167TG—7T’J7T‘-] =
—167TG G[J’}/U ! J
7TZ]7TZ'] ﬁ(hljhij@2 - 2h”@ij® + @U@ij) =
(167G) ) (A.13)
~Tercy " 2)0” + 070
tad = th? 2 — Z, ‘7. Z. ‘7. =
" = engy M0 - 2000 + 616
1 2 2
:(167TG)2(n —2n+1)0° = (A.14)
1

= (16:G)? (n —1)262



Appendix B

List of Metric Constants

B.1 AdS;

General form of the line element

1
ds* = —fdt* + —dr® + r’dy?

f
Metric determinant
VEi=r

Christoffel symbols for AdSs

Fr o T Ft o Fr . r 1 r

tt_l_gf rt — rr_l_gf nggp:_rf
Ricci tensor
n 2

Raﬁ = l_zgozﬁ = ﬁgaﬁ

Riceci scalar

n(n+1) 6
R=——F—"=""n
Cosmological constant
_ nn—-1) 1
A= 202 12
B.1.1 Global AdS;
2
f=1+2
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(B.1)

(B.2)
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Christoffel symbols

l2 2
F;t:T( tr) F;r:_l—ﬂ;t:_ :
l4 l2 + 7"2 (B 8)
2,2 :
P;cp:_r(l +7%) T :1
2 Yoo
B.1.2 Schwarzschild AdS;
Christoffel symbols
l2 2 _ l2 2
rr 7( +7°l4 ) IR = 27’ -
e (B.10)
. r(i? 4% —1?r}) . 1
Lop = — 2 [P = -
B.1.3 Poincaré AdS;
r? x
f=y o e=? (B.11)
Metric determinant .
Christoffel symbols
T ’["3 T ’["3 T xr 1
Ptt = l_4 wa = _l_4 Frr = Fit = Prw = ; (B13)
B.1.4 Perturbed Poincaré AdS;
r? x
f= 2 ¥ = 7 (B.14)
Contravariant metric components (in the limit » — oo)
r2 -1 12 4
9" = (—Z_Q + 5gtt) S ﬁ59tt
12 -1 2 rl
= (ﬁ N 5gw> Sp (B.15)
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Christoffel symbols

.o 172 ., 172
Ly = 7 l_ﬁégrr - 51_28759“ Lo = _§Z_287‘59ﬂ
., r3 rd 172
Voo = =30 + 3509 = 5 5000z
B.2 AdS;

General form of the line element
1
ds® = —fdt* + ?drz + 1r2(dep? + sin® Ydi? 4 cos? Ydip?)

Metric determinant
V=g = r*sin1 cos 1
Christoffel symbols

T 1 T
Iy = Qfarf v = —rf
[, = —rfsine I,=-rf cos? 1
o.f 1
t r __ YT Yo _
Frt - _Frr - ? Frw - Frﬂ - ngo - ;
Ffﬁﬁ:—coswsinw Fngcostbsintb
Iy, =—tany F%zcot@b
Ricci tensor
n 4
Raﬁ = 1_29015 = l_zgoeﬁ
Ricci scalar
R nn+1) 20

2 [?
Cosmological constant

A:_M:_E

B.2.1 Induced Metric on AdS;

Einstein tensor

3f

Gi=—"5  Gu=-1  Gygy=—sin’¢  G,,=—cos’t

72
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(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)
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Ricci tensor

Ryp =2  Rypp=2sin*yp R,y =2cos’t (B.24)
Ricci scalar 6
R=- (B.25)

B.2.2 Schwarzschild AdS;

2

2
r T
f:1+l—2—r—g (B.26)
Christoffel symbols
L (Bt =2 (rt 4 r21?) . Pr? 4+t — 2]
D = {45 9 = T 12r

(Ir? + r* — r212) sin® ¥
12r

(112 + 7% — r21%) cos® 9
12y

roo__ LA—
Pop =~ Lyy = —

B.2.3 R-Charged Black Hole in AdS;

Line element

d82 — _fe—4Bdt2 + %62Bdr2 + 7’262B(d'l/)2 + SiIl2 'l/)d’192 + COS2 ¢d¢2) (B27)

P2 2
f:1+Hl—2—r—g (B.28)
Metric determinant
V=g =r3*P sint cos (B.29)
Christoffel symbols
r 1 - T
I = —5e 8B f(4f0,B —0,f) Iy =—rf(1+70.B)
Thg = —rf(1+7d,.B)sin® I, =-rf(1+ro.B) cos 1)
e _2f0,B—0,.f rt _ —4f0.B+0,f
" 2f " 2f (B.30)
1+ro0.B
Y _ Y _ T
Przp - Frﬁ - F;“Dgp - T
F% = —cosysiny Fiw = cos Y sin Y

Iy, = —tani Fzﬁ = cot 1)
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77

B.3 Rotating Three-Charged Black Hole in

10 Dimensions

Line element

I
fiE [;

3
ds® =

i=1
Metric determinant

V=g = 1°r(q+ %) cos ¥ cos psin® ¥ sin ¢
Ricci scalar

R=0

Determinant of the induced metric

V= =/ (q+72)((q + r2)® — 12mr2) cos ¥ cos @ sin® ¥ sin

Ricci scalar of the induced metric

20
R=%

Einstein tensor of the induced metric

10(g +7r?)  2m(3q + 5r?)

Gy = L 12(q + 12)2
617 /Mg 10(q +*)
Gio: = =73 Orws ==
l(g+12) l
Gyy = —6 Gpp = —6siny Goisi = —647

B.3.1 AdS5 X S5

I 3
ds* = (—i + 12A2) dt* + 7dr2 +r2Hdx?* + 12 Z(al,ul2 + p2dg?)

H?
N _ i=1
Vv A -

H
dt* + —dr® + r?Hdx® + 12 (dp? + i} (d¢; + Adt)?)

g

AdS5 S5
Metric determinant of S°

V55 = I° cos 1) cos p sin® ¥ sin ¢

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)
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Metric determinant of induced AdSs

NESTES %\/(q +72)((q +r2)? — 12r3r?)

Ricci scalar of induced AdSs
R=0

Einstein tensor of induced AdSs
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(B.39)

(B.40)

(B.41)
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