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Kurzfassung

Das Ziel dieser Arbeit ist es die Theorie iiber Dualitdtsrelationen fiir Optionspreise in
einem Binomialmodell mit Dividendenzahlungen mit einem Fokus auf asiatische Optio-
nen beziiglich des arithmetischen Mittels versténdlich und umfassend zu présentieren. Im
Allgemeinen sind Dualitétsrelationen Aussagen dariiber, dass der Preis einer Option im
urspriinglichen Modell dem Preis einer bestimmten, anderen Option im dualen Modell
entspricht. Im Spezialfall eines Binomialmodells mit Dividendenzahlungen handelt es sich
beim dualen Modell wiederum um ein Binomialmodell mit Dividendenzahlungen beziiglich
anderer Parameter. Im ersten Teil der Arbeit diskutieren wir das Modell und betrach-
ten einige Beispiele, wohingegen wir im zweiten Teil die Theorie {iber Dualitétsrelationen
fiir européische Vanilla-Optionen, Forward-start-Optionen, Lookback-Optionen und asiati-
sche Optionen und amerikanische Vanilla-Optionen behandeln. Da die Dualitétsrelationen
beziiglich européischer, asiatischer Optionen nicht auf ihre amerikanischen Gegenstiicke er-
weitert werden konnen, versuchen wir im letzten Teil dieser Arbeit eine Menge von Stopp-
zeiten, welche eine spezielle Zeitumkehr-Eigenschaft aufweisen, zu charakterisieren und die
Relationen fiir asiatische Optionen beziiglich des arithmetischen Mittels fiir Stoppzeiten zu
erweitern.
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Abstract

The purpose of this thesis is to comprehensively state the theory on duality relations for
option prices in a binomial model with dividend yield with a focus on Asian options with
respect to the arithmetic mean. In general, duality relations state that the calculation of
prices of specific options for the original model is equivalent to the calculation of prices for
specific other options under a dual model. In the special case of a binomial model with
dividend yield the corresponding dual model is again a binomial model with dividend yield
with respect to other parameters. In the first part of this thesis we discuss the model and
give examples, whereas we treat the theory on duality relations for vanilla options, forward
start options, lookback options and Asian options of European type and vanilla options of
American type in the second part. As the duality relations for Asian options break down
when passing over to the American case, finally, we characterize a set of stopping times
which satisfy a specific time reversal property and try to extend the relations for Asian
options with respect to the arithmetic mean to stopping times.
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1. Introduction

Option pricing is one of the fundamental fields of work of financial mathematics. Unfor-
tunately, there often is not a closed-form solution for the price of an option in a specific
market model available. Therefore, it is very important to obtain relations between differ-
ent types of options, because it can reduce the complexity of calculations immensely, if the
price of a more complicated option can be related to the price of a less complicated one.
In particular, this might be a great deal for path-dependent options such as forward start
options, lookback options or Asian options. For example in the case of a path-dependent
forward start vanilla options one is able to relate the option price to a non-path-dependent
usual vanilla option with different parameters and in the case of Asian options one can
relate the prices of floating and fixed strike options, which reduces the problem of comput-
ing the expected value of two highly dependent random variables, the stock price and the
average price, to the calculation of the expected value of one single random variable, the
average price.

To achieve this, one uses a change of measure to the dual measure and looks at the dual
process and symmetry relations of the original process and the dual process. The dual
process usually is equal to a random factor times the reciprocal of the original price process
and the dual measure is characterised through having the normalized original price process
as density process with respect to the original martingale measure. A comprehensive, thor-
ough and mathematically demanding theory about this approach in a general and abstract
semimartingale setting can be found in the papers [2] and [3] of Eberlein, Papapantoleon
and Shiryaev. The purpose of this thesis is to present this theory for the special case of a
binomial model with dividend yield, which is still often used as an approximation of the
popular model by Black and Scholes. In this special case, the dual model again can be
identified with a binomial model with dividend yield, hence, it can be beautifully illustrated
how the general approach works and which symmetries are used or appear. Furthermore,
we will try to extend the theory about relations for fixed and floating strike Asian options
to stopped processes and investigate which sets of stopping times are stable under time
reversal.

The next chapter starts with a very short reminder of some very basic definitions and
results about stochastic processes and stopping times used in discrete time finance. Then
we continue with the definition and discussion of a binomial model with dividend yield.
A very comprehensive treatment of the notions and theory used in discrete time finance
can be found in the book of Follmer and Schied [4] and theory about binomial models in
particular is treated in the books of Shreve [8] and van der Hoek and Elliott [9].

In Chapter 3 we introduce some standard options and the notations we use throughout
this thesis. Further, we illustrate duality relations for vanilla options, forward start options,
forward start Asian options and forward start lookback options of European type and
vanilla options of American type with examples with just few time steps. We also show
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1. Introduction

that contrary to vanilla options the duality relations for Asian options with fixed and
floating strike cannot be extended to their American counterparts.

Chapter 4 deals with the theory of duality relations presented by Eberlein, Papapantoleon
and Shiryaev in a general semimartingale setting for the special case of binomial models
with dividend yield. We prove several distributional relations for the underlying random
walks between a binomial model and its dual model and use them to obtain the duality
relations for options of European type observed in the previous chapter. We continue
with identifying stopping times with respect to the generated filtration of the underlying
random walk with antichains with respect to the partial order of extension on the set of
finite {—1, 1}-sequences. Using this identification, we define a bijection from the set of
stopping times of the original binomial model to the set of stopping times for the dual
binomial model with changed parameters. Applying this bijection, we are able to prove the
duality relations for vanilla options of American type.

Throughout Chapter 5 we try to extend the theory on duality relations for Asian fixed
and floating strike options with respect to the arithmetic mean for binomial models with
dividend yield. We characterise a set of stopping times which satisfy a distributional
time reversal property for the underlying random walk which can be understood as a
generalisation of the time reversal property used for the proof of the duality relations for
Asian options of European type. We discuss restrictions on how such a stopping time might
look like and finally, we use this property to give proof of duality relations for Asian options
with respect to the stopped processes.
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2. Preliminaries and model

2.1. Martingales and stopping times

In this section we want to recall few basic definitions and results about martingales and
stopping times. The idea behind this section is to give a reader of this thesis who is unfamil-
iar with martingales and stopping times, but has some basic knowledge about probability
theory, a very short introduction to the topic, so that he or she is able to follow the proofs
in the next section and especially Chapter 4 without other literature. Therefore, the defini-
tions, theorems and proofs presented in this section are formulated just in such a generality
as we need it for this thesis, but of course can be easily generalised. A reader familiar with
these topics can skip this section without problems and start reading at the beginning of
the next section.
We start with the definition of a discrete-time martingale with finite time horizon.

Definition 2.1. Let N € Ny. A sequence of random variables M = (M,,)o<n<n is said to
be a martingale with respect to a filtration G = (G, )o<n<n and a probability measure Q if

e M is G-adapted: M, is G,-measurable for all n € {0,..., N},
e M is Q-integrable: Eq [|M,]|] < oo for all n € {0,..., N} and
e M has the martingale property: Eq [M,|G;] = M}, for all k <n, k,n € {0,...,N}.

The concept of martingales corresponds to the idea of a fair game, where the expected
amount of money of the gambler after n rounds of the game, given the information up to
round k, is equal to the gambler’s amount of money after round k, which means that the
gambler is neither expected to win nor to lose money.

We continue with the definition of a discrete-time stopping time.

Definition 2.2. Let N € Ny and G = (G, )o<n<n be a filtration. A random variable 7 with
values in {0,..., N} is called a G-stopping time if {7 <n} € G, for alln € {0,...,N}.

The property {r < n} € G, for all n € {0,..., N} can be interpreted as that the
information whether one should stop or not before or at time n should be contained in the
information available up to time n. In this sense stopping times can be used to model the
exercise strategy of a buyer of an option of American type.

The next lemma deals with the o-algebra of the information up to the stopping time.

Lemma 2.3. Let N € Ny, G = (Gp)o<n<n be a filtration and 7 be a G-stopping time
bounded by N. The set G, := {A € GN|AN{T < n} € G, foralln € {0,...,N}} is a
o-algebra. We call it the o-algebra associated with T.
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2. Preliminaries and model

Proof. We take n € {0,..., N} arbitrarily. First we have to show € G,. We have
QNn{r <n}={r<n}eg,,

because 7 is a G-stopping time. Hence we get () € G,.

Second, we take A € G, and have to show ACeg,. Asa consequence of A € G, we have
A € Gy and, therefore, AC € Gn. So we have verified the first condition in the definition
of G.. Further, we have

An{r<n}=UA°U{r>n})n{r<n}=An{r<a)°n{r <n}.

Since A € G,, we have AN {r < n} € G, and, therefore, (AN {7 < n})® € G,, because
Gy is a o-algebra. As already mentioned above, we also have {7 < n} € G,, because 7 is
a stopping time. Hence, we get A N {r < n} € G, because o-algebras are intersection
stable. Since n € {0,..., N} was chosen arbitrarily, this shows A® € G,.

The third property we have to show is that G, is stable under taking countable unions.
Therefore, we take a sequence (Ag)r>1 with Ay € G, for every k € N. For every k € N
Ap € G, implies Ay, € Gy and further | J,~, Ax € Gy because Gy is a o-algebra. We also
have

U Axn{r<n}={J@An{r <n})

k>1 k>1

and, therefore, get ;> AxN{r < n} € G, because Gy, is a g-algebra and AxN{7 < n} € G,
as a consequence of Ay € G; for every k € N. Asn € {0,..., N} was chosen arbitrarily we
get Ug>1 Ak € Gr, which finishes the proof. O

Now we are able to formulate a statement about the measurability of the random variable
of an adapted process at a stopping time.

Lemma 2.4. Let N € Ng, G = (G,)o<n<n be a filtration and (Zy,)o<n<n be a G-adapted
process. Then Z define via Z;(w) = Z,,)(w) for all w € Q is Gr-measurable for a G-
stopping time T bounded by N.

Proof. Let B an element of the Borel-o-algebra of R and n € {0,..., N}. We have

{Z-eB}n{r<n}= |J {Z €Br=k}

0<k<n

= |J {(ZeBr=k}
0<k<n

= U (ZeBin{r=k}.
0<k<n

For all k € {0,...,n} Zx is G,- measurable because Z is G-adapted and Gy C G,. Hence,
we have {Z; € B} € G,. As a consequence of {7 =k} = {r <k}n{r <k—1}C and {7 <
kY € Gy, {T <k —1}° € G_1, because 7 is a G-stopping time, we get {7 =k} € G C G,,
for all k € {0,...,n}. Since G, is a o-algebra and, therefore, stable under taking finite
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2. Preliminaries and model

intersections and unions and the equation above, we obtain {Z; € B}N{r < n} € G, for all
n € {0,...,N} and as a special case {Z; € B} € Gy, because {T < N} = Q. This implies
{Z; € B} € G., which shows that Z; is G.-measurable, since B was taken arbitrarily. [

The following theorem is a simplified version of Doob’s optional sampling theorem which
tells us that the martingale property can be extended to stopping times in some sense.

Theorem 2.5. Let N € Ny, G = (G,)o<n<n be a filtration, (M,)o<n<n be a G-martingale
with respect to a probability measure Q and T be a G-stopping time bounded by n €
{0,...,N}. Then we have

Eq [MalG:] = M.

Proof. We take A € G,. For k € {0,...,n} we have AN{r =k} = (An{r <k} \(An{r <
k —1}) € G, because of the definition of G,, Gp_1 C Gi and the fact that o-algebras are
closed with respect to taking differences of sets. Hence, we get using the law of total
expectation for conditional expectations and taking out what is known of the conditional
expectation

Eg [Mnla] = Eq [Malani—iy]
k=1

= ZEQ [Eq [MnﬂAm{Tzk}‘gk”
k=1

=" Eq [Eq [MalGh] Langr—ry) -
k=1

Now we can use the martingale property of M and again the linearity of the expected value
to further obtain

Eq [Mn]lA] = ZEQ [Mk:ﬂ-Aﬂ{T:k‘}]
k=1

= Eq [Mr1angr—i}]
k=1

=Eq [M-14],

for all A € G,, which together with Lemma 2.4 and the definition of the conditional
expectation implies that Eq [M,|G;] = M-. O

In the next section we will introduce binomial models with dividend yield.
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2. Preliminaries and model

2.2. Binomial model with dividend yield

In the remaining part of this thesis we will deal with binomial models with dividend yield.
A binomial model with dividend yield is a discrete-time market model which consists of one
riskless bond with price process B and one risky, dividend paying stock with price process
S. We usually view everything up to a finite time horizon T' € Ny, which most of the time
corresponds to the maturity of an option.

We assume that the price of the riskless bond changes by a constant factor b € R, in every
time step from time ¢ to time ¢ + 1 for ¢t € {0,...,7 — 1} and that the price of the stock,
dividend payments included, goes "up” by a factor u € Ry or goes "down” by a factor
d € Ry in each of these time steps. Using this interpretation we can assume d < u without
loss of generality. Hence, we model the behaviour of the stock price in every time step with
a modified Bernoulli random variable X; € {—1,1} for every t € {1,...,T} on a probability
space with sample space €, o-algebra F := o(Xi,...,X7) and a probability measure P
with positive probabilities for going "up” or "down” in each time step and, therefore, get
for the stock price process starting with a deterministic, known price Sy € R+

AR IR 5 PP ¢

Si=Sou Erd 5" fort€{0,...,T}, (2.1)

whereas we get for the price process of the riskless, hence, deterministic bond, which
corresponds to the time value of money and hence starts with price By = 1 at time ¢ = 0,

By =1b"fort €{0,...,T}. (2.2)
Further, we introduce the filtration F := (F})o<¢<7 with
Fo :={0,Q} and Fii=0(X1,...,Xp) forte {1,...,T} (2.3)
and for the reason of simplicity the random variables

Yii= Y Xpforted{0,...,T} (2.4)

1<k<t

and rewrite the price process of the stock as

Y; -Y,
Sy = Sy exp (tj; Llog(u) + ! 5 ! log(d)> . (2.5)

We should note that in general we assume no additional information about the probability
measure P except

P[X, =iy,...,Xp=ip] >0 for (iy,...,ir) € {—1,1}7, (2.6)

which even corresponds to a situation of ”Knightian uncertainty” in contrast to just a
situation of ”risk”, where the exact distributions or at least confidence intervals for the
parameters of the distributions are known. But as we will see in the next theorem we do
not need to know more information about P to find a ”fair” price for options in our model.
We continue with the description of our assumptions about the dividend payments in the
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2. Preliminaries and model

model. We assume that we hold a portfolio of shares with value process V which starts
with one share and in which we reinvest the dividends paid at each time ¢t € {1,...,T'}, so
that no money vanishes on the level of the portfolio. Further, we assume that there exists
a dividend factor a € Ry so that the dividend payment at time ¢ € {1,...,T} is equal to
(at — a'=1)S;, therefore, we get

Vo=25, Vi=5+ (a — 1)51 =aS1 Vo=a5 + (a2 — a)Sg = 0/252,
which leads us per induction to
Vi =a'S, for t € {0,...,T}. (2.7)

We should note that for a dividend factor a > 1 the dividend payments would be increasing
over time for constant stock prices and that for a = 1 there are no dividend payments, we
have V = § and end up with a usual binomial model without dividends. Hence, we should
further note that using this interpretation only a > 1 makes sense.
A second possible and maybe easier to understand and accept interpretation for
Equation 2.7 is that there are no dividend payments, but that the stock is traded in another
currency and we assume that the conversion rate between the two currencies changes by
the deterministic, constant conversion factor a € R4 in each time step.

The next chapters of this thesis deal with calculations and relations for the prices of op-
tions on S. Therefore, the next theorem deals with martingale measures for the discounted
value process V/B, which is necessary for dealing with prices of options on S.

Theorem 2.6. In our binomial model with dividend yield there exists a unique proba-
bility measure Q on (2, F) which is equivalent to P so that the discounted price process
(Vi/Bt)o<t<T is a martingale with respect to the filtration F and the measure Q if and only
if d < b/a < u. In this case, the random variables (X¢)o<t<T are independent and identical
distributed under Q with

b _ g u—2

and we call Q the martingale measure for our model.

Proof. Clearly, the process V/B is adapted to F as a consequence of F; = o(X1,..., X}),
B, = b and

t+ D <<t Xk

5 log(u) +

t— X
Zl;k<t k log(d)>

V; = a'S exp (

for all t € {0,...,T}. Further, V/B is integrable with respect to every probability measure
on (Q, F), because |V;/B| is bounded by a!/b!Syut for every t € {0,...,T}. Therefore, we
just need to find a probability measure Q so that V/B satisfies the martingale property in
Definition 2.1 with respect to the filtration F. As a consequence of the tower property of
conditional expectation and F; C Fiy1, the martingale property is equivalent to

Vi

ft] =5 Ve{o...T-1}

Vig
E
¢ |:Bt+1
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2. Preliminaries and model

So we fix t € {0,...,7 — 1} and get

t+1 Nt
a1 S exp (”E X Jog(u) + = X log<d>)

Vi1
o { o ]’t] — Eqg - 7
C_[Via  (1+ X 1— X
=Eg B exp ( 5 log(u) + 5 log(d) ) | F¢
LV
=5

Now we can use the fact that V;/B; is F;-measurable to take it out of the conditional
expectation and then divide the last equation by V;/B; > 0 to obtain

1+ X 1-X
%EQ [exp <+2t+1 log(u) + Ttﬂ log(d)>

ft} ey

In the next step we divide the equation by a/b and use that X;y; takes only two values to
see

= QX1 = 1Al u+ (1 - Q[Xp1 = 1|7)) d
:d+(u—d) Q[Xt.;,_l = 1‘.7:75]

ISHES

Hence our desired equation holds if and only if

QX1 = 1|Fiq1] (w) = Z; Q-a.s.,

which is equivalent to
b _
a

and Xt+1 AL ]:t-
u—d

QX1 =1] =

This defines a probability measure Q equivalent to [P, which corresponds to positive prob-
abilities for up and down, if and only if, d < b/a < w.

As a consequence of F; = 0(X1,...,X;) and t € {0,...,T—1} chosen arbitrarily we further
get that the random variables (X;)i<;<7 are independent and identically distributed with

b_d w_b
Q[Xlzl]:u_d and Q[Xlz_l]zl_@[xlzl]:u_d7
which finishes the proof. O

The name binomial model is a consequence of the fact that the price of the stock at
a given time can be understood as being determined by the outcome of a sum of i.i.d.
Bernoulli random variables under the martingale measure Q and hence is connected in
some sense to a binomial distribution and binomial coefficients.
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2. Preliminaries and model

In the remaining part of this thesis we will always assume that the conditions for a, b, u
and d in the theorem above are satisfied and denote the unique martingale measure for our
binomial model with Q.

The next corollary deals with the ”change of numéraire”-technique, where one changes
the numéraire from the bond B to the value process V.

Corollary 2.7. The process My = By/Vy - Vi/By for t € {0,...,T} is a martingale with
respect to the filtration F and the martingale measure Q and dQ'/dQ := My defines a
probability measure Q' on (2, F) which is equivalent to Q. We call this measure the dual
measure for our model.

Proof. By Theorem 2.6, the process V;/B; is a martingale with respect to F and Q and still
remains integrable and adapted after multiplication with the constant factor By/Vy = 1/Sp.
We fix s < t, s,t € {0,...,T}. By taking the constant, hence, Fs-measurable factor By/Vj
out of the conditional expectation and using the martingale property of V;/By, we get

By Vi By Vi
| = Bog o,
f} Y [Bt f}

V. B
Eq [M;|F,] = E [t 0 B
0

B, Vo

which shows that M is a martingale.
Further, we have V > 0, By > 0, therefore, M > 0 Q-a.s. and get by using the martingale
property of M and the law of total expectation for the conditional expectation

V()Bo]_1

Eo [Mr] = Eo [Eq [MrlFo]) = Eq [Mo] = Eq | 1

which implies that dQ'/dQ = My defines a probability measure Q" which is equivalent to

Q. O

In the next chapter we continue with examples of binomial models and calculations of
option prices.
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3. Options and examples

In this chapter we introduce some types of options and the notation for their prices which
will be used throughout the rest of this thesis. We also look at examples where we calculate
option prices and then notice relations for option prices. Proofs that these relations hold
in general can be found in Chapter 4.

3.1. Examples for vanilla options of European type

We start with one of the simplest and most popular types of options.

Definition 3.1. We denote the prices of vanilla call and put options of European type with
maturity T € Ny and strike price K € Ry in a binomial model with dividend yield with
parameters (Sp, a, b, u, d), as introduced in the previous chapter, and equivalent martingale
measure Q the following way:

C(S0, K, a,b,u,d, T) := biT Eq|(Sr — K)*,

1
P(S(),K,CL, ba U,d, T) = biT E@[(K - ST)+]‘

Now let us look at an example.

Example 3.2. At time zero our stock should be worth Sy = 100. The stock price either
increases by the factor u = 11/10 or decreases by the factor d = 4/5 and the riskless bond
increases by the factor b = 16/15 in each time step. The factor which corresponds to
reinvesting dividends (or changing currencies) should be a = 28/25. We want to determine
the price of vanilla call and put options with strike price K = 90 and maturity 7' = 1. We
start with the calculation of the equivalent martingale measure Q. By Theorem 2.6 we get

and

Hence, we get the following binomial tree for our stock price S.

10
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3. Options and examples

S1 =110

32
63

So = 100

31
63

S1 =80

We calculate the prices of the options and get

== -7 = = _ - _ +
25’157 10" 5’ 16 Tel(51=90)7]

15 (32 1
<3(11o —90)*" + 3—(80 - 90)+>

C<100,90,28 16 11 4 ) 15

~ 16 \ 63 63
_ 200
21

and

15

28 16 11 4
16

= 2 - = _ +
257 157 107 57 ]EQ[(QO Sl) ]

P <1007 90,

15 (/32 31
= — [ =(90—-110)" + ==(90 — 80)*
16 <63( ) +63( )>
775

_ﬁ.

We also take a look at a second binomial model with parameters
. A 11 16 28 5 10
a,b,u,d) = K,b,a,—,— | = — =, =, —
(807(17 y Uy ) < ) 7a7d7u> <907 1552574511>

for the stock price S and calculate the equivalent martingale measure Q for this model
using Theorem 2.6

So we get the following tree for the stock price S.

11
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3. Options and examples

S =2
/
75
Sy = 90
\
75
S, = 20

11

Again we calculate the prices for vanilla options of European type, but this time with strike
price K = Sy = 100 and maturity T =T = 1:

— 2 21 = By (S — 100)*
15725 4711 78 Eol($1 = 100)7]

25 (31 /225 T 44 /900 +
Skl [l ik | = (== g
28 (75(2 OO) +75<11 OO))

_ 75
168’
16 28 5 10 ) 251@

16 2 1 2
(3(90,100, 628 5 10 > >

71757%717ﬁa == % Q[(IOO—S1)+]

25 (31 225\ " 44 900\ "
=212 (100 - =2 (100 - ==
28(75(00 2) +75(00 11))

20
217

P <90, 100

Hence, we obtain the duality relations

(C<100,90,28 16 11 4 1>:IP’<90,1OO,16 28 5 10 1))

25"15°10° 5’ 15725747 11’

28 16 11 4 16 28 5 10
P(1 22 - 21) = 100, —. 22 2 = 1.
(00’90’ 257157105’ > C<90’ 0 5 95 2 11 )

The general result which corresponds to the relations in the example is Theorem 4.3.

3.2. Examples for forward start options of European type

In this section we want to give examples for forward start call and put options. Contrary
to vanilla options the strike price of a forward start call or put option is the stock price at
a fixed point in time before maturity and hence a random variable itself.
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3. Options and examples

Definition 3.3. The payoff of a forward start call option with maturity T" € Ny and forward
start time ¢ € {0,...,T} of European type is (St — S;)* and the payoff of a forward start
put option with maturity 7" € N and forward start time ¢ € {0,...,T} of European type
is (S¢ — St)T. In a binomial model with dividend yield with parameters (So, a, b, u,d) and
equivalent martingale measure Q we denote the prices of these options by

1

wad(S(),CL, baua da T7t) = ﬁ E@[(ST - St)+]

and
1
wad(S(), a,bu,d,T, t) = ¥ ]EQ[(S,; — ST)+].

Let us look at an example.

Example 3.4. We choose Sy = 6,a =4/3,b="T7/6,u ="T7/4,d = 1/2 as parameters for our
binomial model and we want to calculate the prices of forward start call and put options
with maturity T = 2 and forward start time ¢ = 1. We start with the calculation of the
equivalent martingale measure Q and as a consequence of Theorem 2.6 obtain

b-d_33-3_1-4_3
QX1 =1]=4~ =7 _1 "5 T 1
u—d i—3 9 10
7
QX1=-1=1-Q[X1=1] = 10"
Hence, we get the following tree for the stock prices S.
5= 18
3
10

$ =2
3
10 P
10
S = 2
So =6
S =2
3
7 10
10
S1 =3
\
10
_ 3
Sg—i
13
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3. Options and examples

Now we are able to calculate the prices of the options:

G (-3 o (5 9)
NGRS

243

280’

pras(6 217 520) = (8) mat s
SONICEO RN
- ([ ()]

27

:%‘

Let us take a quick look at a second binomial model with parameters
A N 11 74 _4
a b U d = b —., — = —., = 2 —
(S07a7 7u7 ) <SO7 7a7 d7u> <676737 ) 7)

for the stock price S. We want to calculate the prices for vanilla call and put options with
strike price K = Sy = 6 and maturity T'= T — ¢t = 1. Again we calculate the equivalent
martingale measure QQ for this model by Theorem 2.6 and get

b_ g 64_4 8_4
MNXy =1 =@ _ 7377 _ 77 _ =

Qi =-1=1-Q% =1 =3,

hence, obtain the following tree for the stock prices S.

14
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3. Options and examples

S1 =12

(ST

oW

The prices of the options are

and

and

The generalisation of this result is Theorem 4.5.

15


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3. Options and examples

3.3. Examples for Asian and lookback options of European type

In this section we want to give examples for forward start Asian and lookback call and put
options of European type. Both types of options have in common that there exist floating
strike and fixed strike versions of them. We will start with Asian options.

Asian options are options which depend on the arithmetic mean of the stock price, which
is a random variable itself.

Definition 3.5. Let T € Ny and t € {0,...,T}. Let A(t,T) := 1/(T —t+ 1) 1_, Sk
denote the arithmetic mean of the stock prices from time ¢ up to time 7. The payoffs
of floating strike, forward start Asian call and put options with maturity 7" and forward
start time ¢ of European type are (Sp — A(t,T))", respectively (A(¢,T) — S7)*, and the
payoffs of fixed strike, forward start Asian call and put options with maturity 7', forward
start time ¢ and strike price K € R, of European type are (A(t,T) — K)*, respectively
(K — A(t,T))*. In a binomial model with dividend yield with parameters (So, a, b, u,d)
and equivalent martingale measure Q we denote the prices of these options as

1
A(Cfloat(SOa a, b, u, d7 T, t) =T EQ[(ST - A(t’ T)+]’

= T
1
A]P)float(‘Sbaa) bu U,d, T7 t) = b7T EQ[(A(th) - ST)+]7
1
A(Cfix(SO,K, a, b7 u7d7 T7 t) = b7T EQ[(A(t7T> - K)+]7
1
APfix(SmKa a, ba U,d, T7 t) = b7T E@[(K - A(t,T))+]

As a special case we denote the non-forward start versions of these options as

1
A(Cfloat(s()a a, bv u, da T) = ﬁ EQ[(ST - A(Oa T)+]a
1
A]P)float(‘s(()a a,b,u,d, T) = ﬁ EQ[(A(Oa T) - ST)+]7
1
A(Cfia:(SOa K, a, ba u, da T) = ﬁ EQ[(A(Oa T) - K)+]a
1

A]P)fim(SO)Ku a, baua d7 T) = bi’]" EQ[(K - A(07T))+]

There also exist definitions of Asian options which use the geometric or harmonic mean
instead of the arithmetic mean, but we will focus on the options above, as they are the
most popular.

In general the prices of fixed strike Asian options are simpler to calculate, as they depend
only on the arithmetic mean. Now let us look at an example.

Example 3.6. For the stock prices S we look at a binomial model with dividend yield
with parameters Sy = 75,a = 9/8,b = 5/4,u = 6/5,d = 2/3 and our aim is to calculate
the option prices of floating strike, forward start Asian call and put options with maturity

16
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3. Options and examples

T = 3 and forward start time ¢ = 1. Therefore, first we have to calculate the equivalent
martingale measure QQ for this model using Theorem 2.6:

t-a_f5-3 B3 s
QXi=1=2 =% 2 — 8 " @
u—d §-3 5 O
1
QX1 =-1]=1-QMXy =1] = .
Hence, we obtain the tree below.
__ 648
5 S =%
/
Sy = 108
§ \
6
1
‘ Sy = 72
S1 =90
6 : &
3 /53:72
Sy = 60 6
So =75
52:60 %
5 S3 = 40
1 ¢ h
i ° Sy = 40
S1 =50
5 S3 = 40
] 6
g /
8y = 10
T
6
S3:280

Second, we have to calculate the values of the arithmetic mean of the stock prices from
forward start time ¢ = 1 to the time of maturity 7' = 3 and get

17
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3. Options and examples

3 (90 +108 + 588) = 316 if (X, X5, X3) = (1,1,1)
2(90 + 108 + 72) = 90 (X1, X2, X3) = (1 ,1,—1)
1(90 460 +72) =74 (X1, X2, X3) = (1,-1,1)

A(L3) = 1(90 + 60 + 40) = 1% (X1, X2, X3) = (1,—1 -1)

’ 1(50 + 60 +72) = 182 if (X1, X, X3) = (=1,1,1)

%(50+60+40)_50 (X1, X2, X3) = (-1,1,-1)
5 (50 + 150 +40) = 30 if (X1, Xp, X3) = (—1,-1,1)
1(50 + 190 4 200) — 92570 (X1, X2, X3) = (—1,-1,-1)

Now we are able to calculate the options prices:

956 2 4\?
A(Cfloat <75a 50 17 53 57 37 1) = <) EQ[(S?) - A(17 3))+]
3

8
5 648 546 1/5\? 182
_ _ _|_, _ 7 _ _
6 5 5 6 \ 6 3

9

— —40

; (5 )

5 (370 950 200

2 40 it

) o (7 -0) () (3-%)

(YT 5 (B L5 (LY 70, (125 (1)*510  (1)7350
-~ \5 6 6/ 3 6\6/) 3 6/ 3 6/ 69 6
1184

If we look at a second binomial model for the stock prices S with parameters

27
Ve 11\ 5935
( 0)a7b)u7d)_ <S()7b a, d u) - <75747872)6>

TONEE TS T O T
QX1 =1 =4 A:53 5 2 T 710
18
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3. Options and examples

and
QX1 =-1=1-Q[X;=1] = —.

As a consequence we obtain the following tree.

Q 375
A S2 =
So = 75
Q 375
Sy = %
9 10
10
& __ 125
S1 =3
9
10
Q 625
Sy = 35

We want to know the prices for fixed strike, Asian call and put options of European type
with strike price K = Sy = 75, maturity 7' =T — t = 2 and, therefore, have to calculate

the arithmetic mean of the stock prices S up to time T=2:

[\
[\
ot
(=)
J
ot

L7544 225 4 675) — 475 ¢ (X, X)) = (1,1

3 2 7} 1

(5422 4 88) =3B if (X1, X,) = (1,-1)
A0,2) =17 125 | 375\ _ 925 e (% o) — (—

3(75+ 3 + 4)— 12 lf(XlaXQ)_( 171)

B+ P4 ) =B i (6% = (1

Now we are able to compute the option prices:

19
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3. Options and examples

19 /375 9 1 /925
4‘75> 1010 ‘75>+1om<12‘75>]

[(10) 9

8\? |/ 1\%175 1975 9 125

== — ) 4 =

9 10/ 4 "10104 "10101
_ 18
81’

and

956 2 8\ ! 5935
A]P) oaq 10 42 ) o) 71 == ~ A i ) I 41 02 )~ _]- .
st t<75 §153"° ) (9) Cs <75 Pryae? >

The general result which corresponds to this example is Theorem 4.7.

Now we will treat lookback options. These options depend on the supremum or infimum
of the stock prices.

Definition 3.7. Let T' € Ny and ¢ € {0,...,T}. The payoffs of floating strike, forward
start, supremum lookback call and put options with maturity 7', forward start time t
and scaling factor @ € Ry of European type are (Sp — amaxi<k<r Sk)", respectively
(e maxi<k<1 Sk — S7) T, and the payoffs of fixed strike, forward start supremum lookback
call and put options with maturity 7', forward start time ¢ and strike price K € Ry of
European type are (max;<r<r Sk — K)T, respectively (K — max;<i<7 Sk)". The payoffs
of infimum lookback options are defined analogously. In a binomial model with dividend
yield with parameters (Sp,a,b,u,d) and equivalent martingale measure Q we denote the
prices of these options as

20
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LC fi0at (S0, @, b, u, d, T, t, o) := biT Eg <ST B atg}%XTSk>+] |
_ 1 +
LP t100t(So, @, b,u,d, T, t, o) == o Eq [(a tISr}%XTSk - ST> ] ,

1 +
LCfp0t (S0, a,b,u,d, T, t, ) := o Eq (ST — atgllfiélTSk> ] ,

1 +
LP 00t (S0, a,b,u,d, T, t, ) := o Eq [(atg}ﬁiSnTSk — ST) ] ,
_ 1 +
LCfix(S0, K, a,b,u,d,T,t) := o Eg (trgl}ixTSk — K) ] ,
_ 1 +
LP i (S0, K, a,b,u,d,T,t) := oT Eq (K - trgr}caéXTSk) ] ,

1 +
LCy;, (S0, K,a,b,u,d, T,t) := o Eg (tg’lgngSk — K) ] ’

1 +
LP¢;.(So, K,a,b,u,d, T,t) := o Eg (K - tgllgiélTSk) ] i

As a special case we denote the non-forward start versions of these options without the
parameter ¢, analogously to the notation of Asian options of European type (see
Definition 3.5).

Let us again look at an example.

Example 3.8. We continue using the models from Example 3.6. This means that we have
the parameters

956 2
bou,d) = (75,2,2,2,%
(807(17 , U, ) <75v8’47573>

S 11y (..5935
(507a7b7u7d) - (S07b7a7d7u> - <75747 87 276>

for the stock prices S and S and the corresponding equivalent martingale measures Q and

@ with

thele

(]
lio
nowledge

b

i
r

Qi =1=2, Qxi =1 =,
@[Xl = 1] = %, @[Xl = —1] = %
21
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3. Options and examples

First, we want to calculate the price of a floating strike, forward start, supremum lookback
call option with forward start time ¢ = 2, maturity 7' = 3 and scaling factor &« = 5/7 on
the stock prices S. We get

_ 956 2 5 4\*? 5 *
L o) =z E 5
Cfloat<7578a4a5a3’3’ ’7) <5) Q (S3 72<ka§35k>
AN?T/5\> /648 5648 5\%1 5
<5> [(6) 5 7 5>+<6> 6<7 77)
1/5\2 5 1\*5 5
i 2— 272 —] = 140— =4
G 6) (7 77>+<6>6(0 70”
AN T (5% 1296 5\?1144  (1\%?580
5 6) 35 6) 6 7 6) 67
_ 2560
189

Second, we compute the price of a fixed strike, supremum lookback call ‘option with strike
price K = So/a = 105 and maturity T =T —t=1 on the stock prices S and get

— 5935 8 A\
TP, 105,2,2.2 2 1) = S B, | (105 —
fiz <757 05747872767 > 9 [0) <05 Orgl?%(lSk) ]
89
= —— (1 —
910( 05 — 75)
= 24.

Hence, we obtain the following relation

6 2 5 8\? 5935
22322 =(2) TPy, (75,105,°,2.2 2 3-2).
53”7) <9> fa’< 1826 )

7T — 9 5
- LC 75, <, —
5 float < 374

h corresponds to the relation in the example is Theorem 4.9.

The general result whic

3.4. Examples for options of American type

In this section we want to look at examples of options of American type. Contrary to
options of European type, options of American type can be exercised at any point in time
up to the time of maturity. Hence, they are worth more than their European counterparts
as one can exercise them at time of maturity too, but also at other points in time. An
valid exercising strategy has to depend only on the information available up to the time of
exercising, therefore, can be modelled with a stopping time.

We start with vanilla options of American type.

22
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3. Options and examples

Definition 3.9. Let T € Ny. Let 7r denote the set of stopping times with respect to
the filtration F that are bounded by time 7. We denote the prices of vanilla call and put
options of American type with maturity T and strike price K € Ry in a binomial model
with dividend yield with parameters (Sp,a,b,u,d) and equivalent martingale measure Q
the following way:

1

c(So, K,a,b,u,d,T) := sup Eg [bT

TETT

s~ K07

1
p(So, K, a,b,u,d, T) := sup Eg [(K - ST)+] :
TETT b7

Let us look at an example.
Example 3.10. We choose Sy = 10,a = 6/5,b = 4/3,u = 3/2,d = 1/3 as parameters for
the binomial model of the stock prices S and we want to calculate the prices of a vanilla
put option of American type with strike price K = 12 and maturity 7' = 2. Therefore, we
need to compute the equivalent martingale measure and using Theorem 2.6 get

boa_gio} B} o
QX1 =1]= 4~ =3 _1 " 7 T3
u—d 5 -3 s 3
and
1
QX1 =-1]=1-QX; =1] = .
Hence, we obtain the following tree for the stock prices S.
S = 8
/
3
S =15
2 \
3
1
3
Se =5
So = 10
Se =5
/
3
1
3
5 =10
\
3
Sy = 10

23
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3. Options and examples

It is easy to see (for a proof see Lemma 4.13) that there are only five stopping times,

=0 mn=1 13=2,

which can be identified with exercising at the maturities 7' = 0,7 = 1, or T = 2 (and,
hence, options of European type), and

1 ifX;=1 1 if Xj=-1
T4 = ) 5 =
2 else 2 else
in 72. We calculate
F 3\ N
Eo|(7) (12-8,)" =(12-10)=2,
[/3\ 7™ 1 13 10\ 13
Fol|(=)] (12-8.)T|==(12—-—)=—
Q-<4> ( 2) | 34( 3) 67
[/3\™ 1 21 /3\? 12 /3)\2
Eg | = 12-S)"=2=(2) 12=5)+==(%) (12—5

e
[ s B0 () (T (e
Eg Ki)TS (12 — 575)+] _ % (i)z (12— 5) + %3 (12 - 1;) - g,

and obtain

N - A 11 4 6 _ 2
a,b,0,d) = (K, ba,~,~ ) = (12,2,-,3,2
(507a7 , W, ) ( 77a7d7u> ( 73757373>

for the stock price S and calculate the equivalent martingale measure Q for this model
using Theorem 2.6:
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oy i 383 hoi
QX—lZa -~ = = :—’
A=l a—d -2 z 10
ATY Ao 9
QX =-1]=1-Q[X1 =1] = .

Sle sl=

16
3

»
i

We want to calculate the price of a vanilla call option of American type with maturity
T =T = 2 and strike price K = Sy = 10. Analogously to above, there are only the
stopping times

in 7. We get
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Eq (Z) <S+ 10)+ = (12 -10) = 2,
Eq (Z>T2 (8 - 10) —1%%(36—10):%,
Eq (Z)m <S+ 10) |- (110)2 <2>2 (108 — 10) + 1—101% (Z)Q (24 — 10)

Eg

5\ /. + 15 9 1 /5)\2 73
Z - - _ = _ Z - | Z —10) = —=
(6) <ST 10) ] 106(36 10>+10 10 (6) (24=10) = o7

06| G ) o ) =

We should note that for every stopping time 7 € 73 there is exactly one stopping time
7 € Ts so that the expected payoffs of the corresponding exercise strategies of the options
coincide. This is a consequence of Lemma 4.15. We further obtain

46 2 5\ 4
C (127 10,3,5,3,3,2) = sup ]EQ [(6) (S-,”—) ]

GRCEUN

Eg

73

24"

and

6 4 31 46 _ 2
10,12, -, -, =, =,2 ) = 12,10, -,-,3, 5,2 | .
p( ) 75’3’273’ > qj< ) ’3757 737)

The general result corresponding to the relation above is Theorem 4.16.

The second type of options of American type with which we will deal are Asian Options
of American type.

Definition 3.11. Let T' € Ny and K € R;. In a binomial model with dividend yield
with parameters (Sy, a, b, u,d) and equivalent martingale measure Q we denote the prices
of floating strike Asian call and put options of American type with maturity 1" as

thele
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nowledge

b
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r
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3. Options and examples

1
aquloat(SOaaa b?“a da T) i= sup ]EQ |:T(ST - A(077)+:| )
T€TT b

1
AP f10at (S0, @, b,u,d, T) == sup Eq [T(A(OaT) _ ST)*]
TETT b

and the prices of fixed strike Asian call and put options of American type with maturity
T and strike price K as

1
a@fia:(s()v K,a, ba U,d, T) ‘= sup ]EQ |:7—(A(077_) - K)+:| ’
T€TT b

1
ap fi (S0, K, a,b,u,d,T) := sup Eq [(K — A(O,T))Jr] .
TETT b7

Let us illustrate these options with the following example.

Example 3.12. For the stock prices S we look at a binomial model with parameters
So=a=b=1,u=2,d=1/2 and hence by Theorem 2.6 get

b 11

b_og 1-1 1

X:1:(I — 2:2:7

Qi =1] u—d 2-%1 3 3
2
Q[Xlz—l]zl—Q[Xlzl]:§

for the equivalent martingale measure Q. As a consequence, we have the following tree for
the stock prices.
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S =4
1
3
S1 =2
1
3
2
3
So =1
So =1
So =1
1
3
2
3
5 =}
2
3
S =1

We want to calculate the price of a floating strike Asian put option of American type with
maturity 7' = 2. Therefore, we have to calculate the arithmetic means and obtain the

following tree.

A(0,2) =
1
3
A(0,1) = 3
1
3 2
3
A(0,2) =
A(0,0) =1
A(0,2) =
1
5 3
3
A(0,1) =2
2
3
A(0,2) =
28

W~

Qo>
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Again, there are only the five stopping times, 71, 72,73, 74 and 75 of Example 3.10, in 7,
because of Lemma 4.13. Hence, we get

Eg [(A(0,71) — S-)"] =0,
sataor-5.1=3(0-1) =

sl =533 (31) () (2 -3) -3
Bo (0.7 -5 = (2) (1) = o
ro-s1= 3303 (4-3) -5

and obtain

1
alpfloat <1’ 1? 17 27 57 2> = 5271? EQ [(A(07 7') - S‘r)+]
TE 2

= ]EQ [(A(Oa T5) - ST5)+]
13
= 574

Let us note that we have
PP 11 1
(S(),(I, bvua d) = <‘S’07b7a > > = (17171727 2> = (So’a7b7u7 d)
u

and hence the dual model can be identified with the original model. Now we look at
the price of a fixed strike Asian call option with strike price K = Sp = 1 and maturity
T =T = 2. We calculate

EQ [(A(Oa Tl) - 1)+] =0,

and hence get
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1
ac iz (1,1,1,1,2, 2,2) = sup g [(4(0,7) = 1)"]
TC /2

= Eq [(4(0,75) — 1)7]

‘We further obtain

1
APfloat <1> 1,1, 2, 2’t> = EQ [(A(Oa Tt) - STt)+]

= EQ [(A(O’ Tt) - 1)+] = Acfzw <17 1v 17 17 27 ;7t> ’

for t € {0,1,2}, which corresponds to Corollary 4.8, but also

1 1
aP float 1,1,1,2,5,2 # AC iy 1,1,1,1,2,5,2 ,

which shows that this result in general can not be extended to the case of Asian options of
American type.

In Chapter 5 we try to find subsets of 77 so that the duality relations for Asian options
of American type restricted to one of these subsets hold again.
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4. Theoretical results for the binomial model
with dividend yield

In this chapter we will show that the relations for vanilla options of European and Amer-
ican type, forward start options, Asian options of European type and lookback options
illustrated in the examples of the previous chapter hold in general for binomial models
with dividend yield.

In the whole chapter we look at an arbitrage free binomial model with dividend yield
and parameters (a,b,u,d) € (R \{0})* and T € Ny as described in Section 2.2. We denote
the stock price for ¢t € {0,...,T} by S; = Spexp((t + Y;)/2 - log(u) + (t — Y;)/2 - log(d))
with Sg > 0 and Y; = 22:1 X}, where the random variables X}, take values in {—1,1}
for 1 < k < T. Further, we look for ¢t € {0,...,T} at a riskless bond B; = b' and at the
value process V; = a’S; of a portfolio which reinvests the paid dividends in the stock. By
Q we denote the unique martingale measure for our model with respect to the filtration
F consisting of the sigma algebras F; = o(X1,...,X¢) for 0 < ¢t < T and by Q' the dual
measure.

We also should have a second binomial model with parameters (b,a,1/d,1/u) in our
minds. We denote the correspondlng processes by S Y, X B and V and the unique mar-
tingale measure for this model by Q. The starting value So depends on which relation we
want to show but either will be equal to Sy or K > 0.

4.1. Vanilla options of European type

Before we treat explicit relations we have to show distributional properties of the random
variables (X;)i<;<7 under the dual measure Q" with the density dQ'/dQ = By/Vy - Vr/Br.

Lemma 4.1. Define the dual measure Q" via dQ'/dQ := By/Vy - Vr/Br. Then (Xi)i<i<T
are i.1.d. under Q' and hence especially exchangeable under Q', i.e. for every permutation
m:{1,...,T} = {1,..., T} we have

Law(X;1 <t <T | Q') = Law(X,4);1 <t <T | Q).

Proof. First, we note that Q' is a well defined measure as shown in Corollary 2.7. Second
we fix 7, € R for 1 < ¢ < T and begin to calculate the characteristic function of (X;)i<i<7
under Q':
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4. Theoretical results for the binomial model with dividend yield

T
PXy,..,. X7 (Tla cee 7TT) = ]EQ/ [eXP (Z ZrtXt>
. By V;
exp (zZrtXt) 733—71:
T T
. a' S
=Eq [exp (ZZTtXt> bTSZ] .

Now we use the identities Sz = So exp((T+Y7)/2-log(u)+(T—Y7)/2-log(d)), Yr = S| X;
to further get

T a’ exp (% log(u) + 1517 log(d))
©x,,..xp(r1,...,77) = Eqg |exp iZTtXt T
t=1

T T T T
T+)> X T-5 X
exp (z E rtXt> a exp (+ 2t:1 Llog(u) + ——&=t=1 2t log(d)>]

T
pt b 2

T
, 1+ X 1-X
H <e"tXtZeXp < +2 log(u) + 5 i log(d)))] .

t=1

We continue with using the fact that (X;)i<;<7 are i.i.d. under Q by Theorem 2.6 and the
martingale property of By/Vy - Vi/Br under Q (see Corollary 2.7) to obtain

T -
: 1+ X 1-X
Ox1,. X (11, ., rT) = H]EQ e’”th exp ( + A log(u) + ¢ log(d)>}
Pl b 2 2

T -
, 1+ X 1-X
= HE@ e’”Xl%exp < +2 ! log(u) + 5 ! log(d))]

t=1 -

[ By Vi
— E ire X1 20 V1
[TEo e voBl]

ei?"tXlEQ |: _

t=1 -

Because X7 is F; = o(X;) measurable per definition we can pull the first factor into
the conditional expectation and then as a consequence of the law of total expectation for
conditional expectation conclude
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4. Theoretical results for the binomial model with dividend yield

X, Bo Vi
E E irg X, U0 V1
o [Bo e 30 T

X1 @ﬁ
Vo Br

1
=

Ox1, Xy (T1, oy TT)

dl

“
I
—

I
=
=

Q

)
I

B[]

I
=

i
I

PX; (Tt)u

Il
=

o~
Il
—

which proofs our first claim.
In general, i.i.d. random variables are exchangeable, which can be easily seen by fixing
a permutation 7 : {1,..., T} — {1,...,T} to observe

T
ox1,xr (1, ) = [[oxi (r) = 0x, 0y oXoiry (1 7T),
=1

which implies exchangeability. O

With the next lemma we take a closer look at the relations between our two binomial
models.

Lemma 4.2. The processes X, Y, X and Y satisfy the following two relations:

1. Law(Xp;1 <t <T|Q) = Law(-X;1 <t <T | Q),

2. Law(Y;0 <t <T|Q) = Law(-Y;0 <t <T| Q).
Proof. We know from Lemma 4.1 and Theorem 2.6 that (X;);<;<7 are i.i.d. under Q' and
(Xt)1<t<r are i.i.d. under Q. Therefore, it suffices to focus on the marginal distributions

of X7 and Xp. We start with using the density dQ'/dQ = By/Vy - Vir/Br, the definitions
of Vi, By, St and Y7 and the fact that (X;)1<;<7 are i.i.d. under Q by Theorem 2.6 to get
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4. Theoretical results for the binomial model with dividend yield

QXr =1] =Eg [L{x;=1}]
By Vi
=Eq [E{XT=1}VOBT]
CLTST
=Eq |:]I{XT1}bTSO:|
[ a’ Sy exp (% log(u) + 15T log(d)>
= ]EQ ]]‘{XT=1} bTSO

[ o T+57T X T7-5T x
= ]EQ H{XTil}ﬁ exp (Z;lt log(u) + Z2tlt log(d)

[ a 1+ X 1-X
=Eg ]l{XT=1}g exp ( 5 T log(u) + 5 T log(d))]

T—1 T_1 T-1 y To1_ST-ly
a4 < + 2 X log(u) + 2=t N log(d)

-Eg 71 exp 5 >

. a B() VT_1
= Eo [H{XT:”BU} Eo [Vo BT—1:|
By VT—1:|

a
- Su-Qpxr = 1) Bo [ 2t

It follows from Corollary 2.7 that By/Vy - Vp/Br is a martingale with constant expectation
equal to one under the martingale measure Q and by Theorem 2.6 we have

QX7 =1] = Su Q[Xr = 1]

b

a g—d
T b u—d

1_¢a

_uu—bd
_ud -3

w31
= QXr = —1]
= Q[-Xr = 1]

Since X7 and X7 only take values in {—1, 1} this equation proofs the first relation.
To show the second relation, we fix r; € R for 0 < ¢ < T and look at the characteristic
function of (Y, ..., Yr):
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4. Theoretical results for the binomial model with dividend yield

T
©Yy,..vp (T, .. 1) = Egv |exp (iZTth>
t=0
T t
_Eq |exp (int ZXk)]
t=0 k=1

T t
SOYOym:YT(TO) . 7TT) = ]EQ’ exp <lz’f‘tz _Xk>]
t=0 k=1
T
= EQI exp (Z Z Tt(_Y;S)>
t=0
=P _fpyp (05T,
which finishes the proof. -

Now we have all prerequisites to start with the proof of the duality relation between
vanilla put and call options of European type demonstrated in Example 3.2.

Theorem 4.3. For vanilla call and put options of European type the option prices in a
binomial model with dividend yield satisfy the relations

C(So, K7 a, b7 u, d7 T) = ]P(Kv SO? ba a, 1/d7 1/“7 T) (41)

and
P(So, K,a,b,u,d, T) = C(K, Sy, b,a,1/d,1/u,T). (4.2)

Proof. We start with the price of a vanilla call option of European type and get

1
C(So0, K,a,b,u,d,T) = — Eq [(S7 — K)*]

= bT
1 CLTST 1 SO +

Now we use the identities V; = a'S; and B; = b in a first step, perform a change of
numeraire from B to V', which corresponds to a change of measure from our original pricing
measure Q to the dual measure Q" with density dQ'/dQ = By/Vjy - Vir/Br in a second step
and then rewrite everything in terms of Yp to obtain

By Vp 1 S )ﬂ

K T)=EFEg |———-—=(S) — K—
C(SO7 y A, b,’LL, d7 ) Q |:‘/0 BT CLT(SO ST

1 So
=Ey |—=(Sy — K=)T
1 T+Y, T-Y, *
:CTTEQ/ (SO—K exp (— 5 Tlog(u)— 5 Tlog(d)>> ]
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4. Theoretical results for the binomial model with dividend yield

Further, we use the relation —log(z) = log(1/x), apply Lemma 4.2 to replace Q" with Q
and Ypr with —Y7 and rewrite the formula in terms of St to get Equation 4.1:

C(So, K,a,b,u,d, T) =

! T+ Yr 1\ T-Yr AN
=7 Eq (SO — K exp ( > log <u> + 2 log <d>)> ]
- N +
B 1 T—-Yr 1 T+ Yr 1
=7 EQ (SO K exp ( 5 log <u> + 5 log <d>>> ]
1

~ +
= 7 Eq [(50 - ST) ] — P(K, So,b,a,1/d,1/u,T).

The proof of Equation 4.2 follows analogously. O

4.2. Forward start options of European type

In this section we will treat the duality relations for forward start options illustrated in
Example 3.4. To prove the relations we first have to show a ”time reversal property” for
the random walk (Y;)o<t<7.

Lemma 4.4. The random walk (Yi)o<t<T Satisfies the following "time reversal” property

VO<t<T:Law(Yr—Y; | Q)= Law(Yr_: | Q). (4.3)

Proof. First we fix at € {0,...,T} and a r € R and look at the characteristic function of
Yr —Y; under Q'

Pyr—v, (1) = Eq [exp (ir(Yr — V3))]

)
= Ey _exp (iT > X’“)]

k=t+1
r T
=Eq |exp ( Z ier)]
L k=t+1
= OXpir, Xp Ty, T).

From Lemma 4.1 we know that the random variables (X;)1<;<7 are exchangeable under
the dual measure Q" and, therefore, the distributions of (X¢41,..., X7) and (X1,..., X7_4)
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4. Theoretical results for the binomial model with dividend yield

coincide. Hence, by using this relation we get

oYy (r) = oxy, xr_ (15, T)

()

k=1

= EQI

= EQI [exp (iTYT_t)]
= @vp_ (1),

which finishes the proof.
O

Now we are able to give the proof of the following theorem, which relates the prices of
forward start call and put options to the prices of vanilla call and put options of European

type.

Theorem 4.5. The prices of forward start call and put options with forward start time
t < T in a binomial model with dividend yield satisfy the following two relations:

1
Crwa(So,a,b,u,d,T,t) = o P(So, So0,b,a,1/d,1/u, T —t) (4.4)

Ptwa(So,a,b,u,d,T,t) = — C(So, So,b,a,1/d,1/u,T —t). (4.5)

1
al

Proof. We fix t € {0,...,T} and start with the price of a forward start call option to get

1
(wad(S(), a,b,u,d, T, t) — T

Now we can perform a change to the dual measure Q" with density dQ'/dQ = By/Vy-Vr/Br
-log(u) + (t — Yz)/2 - log(d)) to obtain

and use the definition S; = Spexp((t + Y)/2

Eq[(St — S¢) ]
(1 aTST So +
_177T S() aTST (ST B St) :|

-CLTST 1 St +
TSy aT (SO B SOST>

By Vi 1 S\ "
(5 Ss)]
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4. Theoretical results for the binomial model with dividend yield

(wad(So, a,bu,d, T, t) = EQ/

1 S\ ™"
CLiT <SO - SOST> ]
E 1 o _g Sp exp (t‘gyt log(u) + 5 log(d))
=Rq | = | ©0 — 50
So exp <% log(u) + % log(d))

CLT
=Ey L <50—Soexp(—T_H(Yt_y’*)log(u)—T_t_;YT_mlog(d)>)+].

al 2

We continue with using the identity — log(x) = log(1/z) and substituting Y7_; for Yr —Y;
as a consequence of Lemma 4.4:

wad<507 a, b7 u, d7 T7 t) =

B 1 T—t+Yr, 1\ T—t-Yr, AN
o [ (s0- svom (Tt (1) - T g (1))

Due to Lemma 4.2 we can replace Q" with @ and Ypr_; with —YT,t in the first step, rewrite
the formula in terms of Sp_; in the second step and conclude

(wad(SOa a, ba u, da Ta t) =

N N +
1 T—t— Yo, 1\ T—t+Yr, 1
i (s (5 (1) - ()|

1 1 1
= E E@ |:aT—t (SO - ST—t)+:| = E P(SO>SO>b7a7 1/d7 1/U7T_ t)'

Again Formula 4.5 follows analogously. O

These relations are interesting, because they tell us that instead of calculating the ex-
pected value of two dependent random variables in a binomial model with T" time steps it
suffices to calculate the expected value of a single random variable in a smaller binomial
model with just T — ¢ time steps.

4.3. Asian options of European type

As already mentioned in Section 3.3 there are two types of Asian options we are dealing
with, namely floating strike call and put options and fixed strike call and put options. The
aim of this section is to give a proof for the relations between this types which were pictured
in Example 3.6. A proof for corresponding relations in a Black-Scholes setting can be found
in the paper by Vanmaele, Deelstra, Liinev and Dhaene [10] for a discrete average and in
the paper by Henderson and Wojakowski [6] for a continuous average.

Before we can start to prove the relations, we again have to show a distributional property
of our random walk first.
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Lemma 4.6. For every t € {0,...,T} the random walk (Yy)i<k<r Satisfies the following
"time reversal” property

Law(Yr =Yt <k <T|Q) = Law(Yr_;t <k <T|Q). (4.6)

Proof. First, we fix t € {0,...,T} and (rq,...,r7—¢) € RT=t. Then we look at the charac-
teristic function of (Y7 — Yy, ..., Yy — Yp) and transform it to

r T
OYr Y. Yr—Yr(T0s - - -, 77—t) = Eqv |exp (Z irp—y (Y7 — Yk))
i k=t
i T T k
= EQ! exXp Z irk,t Z Xj — Xj
i k=t j=1 j=1
i T T
= EQ/ exp Z irk_t Z X]
i k=t j=k+1

Now we change the order of summation and get

T 7j—1
PYr—Ye,...Yr—Yr (’I“o, R TT*t) = E@’ exXp Z i (Z Tk—t) Xj

j=t+1 \k=t
T—t—1

= OXpi1, X (T0, 70+ 715011 E Tk)-
k=0

We continue with the application of Lemma 4.1, which states that the distribution of
(Xt¢41,...,Xp) is the same as the distribution of (Xp_¢,..., X7) under the dual measure
Q'. Hence, their characteristic functions are identical and we conclude

T—t-1
OV Yo, Yr— Y7 (T0s -+ s TT—t) = OXp_y, X1 (T0O, 70+ 7150+ 1 Z k)
k=0
T—t-1 [ j
== EQI exXp Z ) ZT‘k XT,t,j
=0 \k=0

Because we want to rewrite everything in terms of Yp_ for t < k < T, we have to change
the order of summation again and obtain
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4. Theoretical results for the binomial model with dividend yield

OV Y Yr—Yr (10, - -, 77—t) = Eq | exp E irg X1y j
k=

T—t—1
:E@/ exp( ZTkYT tk)]
k=0
—t
:E@/ exp( ZT’kYT t— k)]
=0

= PYr_4,...Yo (T0, -y 77—¢)
Since the characteristic functions of (Yr — Yy, ..., Yy — Y7) and (Yr—y,...,Yp) agree on
whole RT—#+1 the distributions have to coincide. O

The previous lemma again states kind of a ”time reversal” property like the one already
shown in Lemma 4.4. Although they look nearly identical at first sight, it has to be made
clear that the property stated in the previous lemma is stronger in the sense that it is a
statement about multidimensional distributions, therefore, implies the statement of
Lemma 4.4 as a special case.

Now we can state the relations we want to show and give their proofs.

Theorem 4.7. In a binomial model with dividend yield the calculation of the prices of Asian
call and put options with forward start time t € {0,...,T} and floating strike A(t,T) =
1/(T—t+1)- Zgzt St can be reduced to the calculation of the prices of Asian put and call
options with fized strike:

1
A(Cfloat(SOa a, b, u, d, T, t) = E APfix(So, So, b, a, 1/d, 1/u, T— t) (47)

1
AIP’float(SO, a,b,u,d,T, t) = E A(Cfix(sb? So, b, a, l/da 1/“’? T— t)' (4'8)

Proof. We restrict ourselves to the proof of Relation 4.7 as the proof of Relation 4.8 works
analogously. At first we fix ¢t € {0,...,T}. Then we start with the price of an Asian call
option with floating strike A(¢,T) and change the measure from the original martingale
measure to the dual measure Q' using the density dQ'/dQ = By/Vy - Vip/Br to get
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4. Theoretical results for the binomial model with dividend yield

1
A(Cfloat(‘S’Oa a, ba u,d, T, t) = ﬁ EQ [(ST - A(t7 T))+]

—1 CLTST So
— —_ —At,T)H*
(S - AT

TS 1 AT\ T
=Eq @ St (50_50<t’)>

bT Sy aT Sr
By Vi 1 A, )\t
—Fn |22 2L _ g5
|V, Brd? (SO g,
1 A, T)\ ™"
— Fry | — _ g5
S <SO So St )

Now we use the definitions A(¢,7) =1/(T —t+1) - Z;}th Sk and Sy = Spexp((t +Y;)/2 -
log(u) 4+ (t — Y:)/2 - log(d)) and rewrite the expression in terms of Y; to obtain

+
g T_%e+1 Zz:zt Sk)
0

1
A(Cfloat(s(]a a, b: u, d: T7 t) = EQ’ G7T (SO - ST

1 T%M Zgzt Sp exp (% log (u) + k}Y’“ log (d))

= EQI — | So — So
So exp (% log (u) + % log (d))

|
=
<
%\HI
VR

T
1 T—k—i—(YT—Yk)
So _SOT—t—I- 1 g—t exp <— 5 log (u)

= log(d)>>+] .

Due to Lemma 4.6 we can use the identity — log(z) = log(1/x), replace Y7 — Y}, with Yr_j
for all k € {t,...,T} and change the summation index from k to j =T — k:
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4. Theoretical results for the binomial model with dividend yield

A(Cfloat(s(% a, b7 u, d7 T7 t) =

T

B 1 1 T—k+(Yr—Y;) 1

=Egy T <SO_SOT—t+1kz_:teXp< 5 log "
T—k—(Yr—Y) 1 +
+ 5 log 7

1 T T- k+Y . 1
J— / . T— —
=Fo cﬂ’<&) —t+— g: ( lg(ﬂ)

T—k—Ypr_ 1 +

A (1))
By | 5—51the T Y 0g (1) 42" Y 10g (L
I C S e e A VT 2 #\da

By applying Lemma 4.2 we are able to interchange Q' with @ and Y; with —}A’j for all
j€{0,...,T —t} to get

+

Acfloat(s()a a, ba u, da T: t) =

) +
1 1 Jj+Y; 1
=E; | = — 1 =
Qlal S0 t—l—lzeXp( g<u>jL 2 Og<d)>
Now rewriting the formula in terms of S leads to
1 1 Tt +
A(Cfloat(so,a, b,u,d, ,I'7 t) = ]EQ afT SO — m Sj
j=0
1 1 . +
1
== APz (So0,b,a,1/d,1/u, T — 1),
which finishes the proof. O

Those relations are very useful, because instead of calculating the expected value of a
function of two highly dependent random variables, namely S and A(¢,T), to get the price
of an Asian option with forward start time ¢ € {0,...,T} and floating strike one just has
to calculate the price of an Asian option with fixed strike, which just corresponds to the
calculation of the expected value of the single random variable A(0, T —t). Hence, this is at
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4. Theoretical results for the binomial model with dividend yield

least theoretically, a great simplification as instead of the two dimensional distribution of
the pair (S, A(t,T)) one just needs to know the one dimensional distribution of A(0, 7" —t).
It is very interesting to note that, because of the ”time reversal” property of Yz, the right
hand side of the relations does not involve the stock prices after time 1" — ¢, whereas the
left hand side does heavily depend on them .
One also should mention that with slight modifications of the poof above similar relations

can be shown for Asian options on the geometric average G(t,T) := 7 y/ H;{:t Sk, in place
of the arithmetic average A(t,T).

Of course we get relations for usual Asian options on the arithmetic mean A(0,7) as a
corollary of the previous theorem for the special case t = 0.

Corollary 4.8. In a binomial model with dividend yield the prices of Asian call and put
options with floating strike A(0,T)=1/(T +1) - ZtT:o Sy satisfy the following relations to
the prices of Asian put and call options with fized strike:

A(Cfloat(SO? a, ba u, d7 T) = A]P)fzac(SOa SUa b7 a, 1/da ]./U, T) (49)
APfloat(S()v a, bv u, d7 T) - Acfzx(s(): SO7 b7 a, 1/d7 1/“7 T) (410)

4.4. Lookback options of European type

In this section we want to proof relations between lookback options with floating strike
and lookback options with fixed strike such as the one we have seen in Example 3.8. One
important ingredient of the proof is again Lemma 4.6, which should not surprise us as the
relations for lookback options look very similar to the relations for Asian options shown in
the section before. Analogously to the relations for Asian options we will proof everything
for forward start lookback options.

Theorem 4.9. The prices of lookback call and put options with forward start time t €
{0,...,T} and a > 0 in a binomial model with dividend yield satisfy the following relations:

1 1

o LCfi0at(So,a,b,u,d, T, t, o) = p LP % (S0, S0/, b,a,1/d,1/u, T —t) (4.11)
1 1

a ]P)float(sm a, bv u, d7 Ta ta a) = E ]L(wa)(SOv SO/O[, ba a, 1/d7 1/“7 T— t) (412)
1 1

o LC o0t (S0, a,b,u,d, T, t, o) = o LP;, (S0, S0/, b,a,1/d, 1/u, T —t) (4.13)
1 1

o LP 100t (S0, @, 0,u,d, T, t, o) = s LCy;, (S0, S0/, b,a,1/d, 1/u, T —t). (4.14)

Proof. At first we fix t € {0,...,7} and o > 0. We start with the price of a lookback call
option with floating strike max;<p<7 Sy and change Q to the dual measure Q' with density
dQl/d@ = BO/‘/O . VT/BT to get
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4. Theoretical results for the binomial model with dividend yield

_ 1 +
LCfi0at(So,a,b,u,d,T,t,a) = o Eg [(ST — at<mka<>% Sk> ]

=Eq :blT ag*jT Cfg’T (ST - atISI}%XT Sk>+]
=Eg :Z;gz;p <So — aSo—maXtékTST Sk>+]
=Eg :X'iggzalT (So — aSo—maXtékTST Sk ) +]
= Egy aiT (SO = ason%’?s’“Y] .

Further, we use the relation S; = Spexp((t + Y:)/2 - log(u) + (t — Y;)/2 - log(d)) to rewrite
the expression in terms of Y, pull Sy > 0 out of the maximum and pull the positive
denominator into the maximum:

mfloat(‘sou a, bu u, d7 T7 t) Oé) =

- +

1 max;<k<T (So exp (% log (u) + kEY’“ log (d)))
= ]EQ/ T S() — OéSo

a So exp (% log (u) + L5 log (d))

r +
1 exp (kzy’“ log (u) + k_TY’“ log (d))

=Eq | Sy — Sy max

a t<E<T exp (LJFQYT log (u) + L_zYT log (d)>

In the next step we use the defining functional equation of the exponential function, the
identity log(z) = log(1/x) and Lemma 4.6 to substitute Y7 — Yy with Yp_j for t <k < T
to obtain
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4. Theoretical results for the binomial model with dividend yield

mfloat(s()v a, b7 u, d7 T) tu Oé) =
B 1 T—k+ (Yr — Yk)
= Ey [aT (SO — aSy tIgr}cang (exp (— 5 log (u)
T—k—(Yr—Y *
~ o =) log(d)>>> ]

_ 1 T—k+ (Yr—Y) 1
= Eq [aT (SO — a5y tISI}CaSXT (exp < > log | —

u

T—k—(Yr—Y) 1 *
S ()
_ 1 T—k+Yr_g 1
= Ey [aT (SO — aSy tg%xT (exp <2 log <u)

()]

As a consequence of Lemma 4.2 we change the measure from Q' to @, replace Yp_; by
—Yp_pfort <k <T, pull S > 0 into the maximum and rewrite everything in terms of
S to get

mflooLt(‘S(Oa a, ba u, da T7 ta Oé) =

o 1 T—-k+ }A/T_k 1
= IEQ [aT (Sg — aSy trgr}faSXT (exp (2 log <u)
T kY, 1 i
—h— Ik
A1) |
B 1 T—k+Yr_p 1
=Eg [aT (SO ST (SO b ( 2 log (U>
+—T_k_f/T_k lo 1 '
2 &\d

1 . +
= EQ [aT <So — atISI}%XTST_k> ] .

Now we change the index and pull the constant o out to conclude

— o 1 So 2\
]L(Cfloat(so,a, b, U,d, T,t,@) = E EQ F E — O<I]Il<fi%(_t S]
o —
= E L]P)fix(So, S()/Oé, b,a, 1/d, 1/U,T — t).
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4. Theoretical results for the binomial model with dividend yield

The other three relations can be shown analogously. O

We should note that not every choice of o > 0 does make sense for every type of lookback
option. For example, if we choose a > 1 we get mﬂmt(so, a,b,u,d, T, t,a) = 0 independent
of the other parameters chosen, because (Sp — amax;<g<r Si)T = 0, therefore, also the
expected value vanishes. Restricting to 0 < o < 1 does not make sense either for every
type of lookback option, as we then have wﬂoat(&),a,b,u,d, T,t,a) = 0 with a similar
argument.

For the choice of t = 0 in the theorem above we get simpler relations for non forward
start lookback options as a corollary.

Corollary 4.10. In a binomial model with dividend yield the prices of lookback call and
put options with o > 0 satisfy

é LC f1oat(So, @ b, u, d, T, @) = TPjia(So, o/ by a, 1/d, 1/u, T) (4.15)
é LB o0t (So, a, b, 4, d, T, ) = LC 2 (S0, So /s by a, 1/d, 1/u, T). (4.16)
é Mﬂoat(&),a,b,u,d, T, «a)= mfm(so,so/a, b,a,1/d,1/u,T) (4.17)
é LP 100 (S0, @, b,u,d, T, @) = LC 15, (S0, So /v, b, a, 1/d, 1/u, T). (4.18)

4.5. Vanilla options of American type

In this section we want to proof relations as in Theorem 4.3 for vanilla options of American
type. Therefore, we have to take a closer look at the set of stopping times 77 = {7 |
7 < T, 7 F-stopping tlme} Our aim is to obtain a bijection between the set 77 and the
analogously defined set Tr of F- stopping times. As the notion of stopping times is a very
probabilistic concept, we want to go over to something non-probabilistic to obtain such a
bijection. This is of course very easily possible as we work with binomial models.

We start with the following definition.

Definition 4.11. Let n € N. We define A,, to be the set of {—1,1}-sequences of at most
length n, i.e.

A, = {(il,...,ik)’kENo,kﬁn,VjG{l,...,k}iij E{—l,l}}.

We define the binary relation R<, C A2 as the set of all pairs (z,y) € A2 so that y is
an extension of z and denote (z,y) € R<,, as ¢ < y, that means for = (i1,...,%),y =

(-5 1)

Ty e (k<) A (G, i) = (1, k)

This order is also known as prefix-order and is also treated in the theory of formal
languages (see for example the paper by Kundu [7]). The use of the symbol ”<” is justified
by the next lemma.
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4. Theoretical results for the binomial model with dividend yield

Lemma 4.12. The relation of extension R< , is a partial order on A,,.

Proof. We have to show reflexivity, antisymmetry and transitivity. Let x = (i1,...,ix),y =
(J1s---51)s2 = (81,...,8m) € An. Then clearly = < z, hence R<, is reflexive.

If we suppose z < y and y < x, we get k <[ and [ < k, which shows that x and y are
of equal length. As a consequence of x < y we further get = (i1,...,i) = (j1,...,Jk) =

(41,---,J1) = y, which shows that R< ,, is antisymmetric.

We assume now x < y and y < z. Then x also has to be shorter than z and we have
x = (i1,...,0) = (J1,---,Jk) = (s1,...,8,). Thus z is an extension of x and R<, is
transitive, which finishes the proof. O

Now we are able to state a bijection between our set of stopping times 77 and a set of
specific subsets of Ar_1.

Lemma 4.13. The function

pr:TJr — Br_1 = {A ‘ A€ P(AT_l),ﬂ(a,b) S A% a < b}
T A= {(X1(w), .., Xy (W) [we Q:7(w) < T}

s a bijection.

Proof. Step 1): Given 7 € Tr we want to show A, € Byr_;. It is clear that A, is a subset
of Ar_1, so it only remains to show that A, satisfies the second condition in the definition
of Br_1. Let wi,wy € 2 so that 7(wy) < T, 7(wz) < T. Without loss of generality we can
assume 7(wq) < 7(w2).

Suppose we have (X1(w1),..., Xr@)(w1)) = (X1(w2), ..., Xr@)(w2)), which is equiva-
lent to (X1(w1), .-+, Xr@)(w1)) < (X1(w2), ..., Xr(wy)(w2)) in the sense of Definition 4.11.
Our aim is to show that equality must hold, which is under our assumption equivalent to
T(wy) = 7(w2).

Because 7 is a stopping time we have {w € Q | 7(w) = T7(w1)} € Friy) = (X1, -+, Xr))-
This implies that the indicator function 1(;(,)—r(,,)} has to be constant on the atoms
of Fr(w)- Therefore, 1(r()—r()} must be constant on the set {w € Q | Xi(w) =
X1(w1), -+ Xpo) (W) = X7y (w1)}. As a consequence of our assumption we have wq, ws €
fwe Q| Xi(w) = X1(w1), -, Xr(u) (W) = Xr(u;)(w1)} and hence we get 1y (y)—r(w)} =
L7 (w)=r(w1)} = 1. This shows our claim.

Step 2): In this step we want to show that the mapping pr is injective. We start with
two stopping times 71,72 € T so that 71 # 72. Our aim is to show A, # A,,.
There must exist an w; € Q with 71(w1) # 72(w1). Without loss of generality we as-
sume Ti(wy) < To(wse). Because of 79 < T we have 71(w1) < T and, therefore, get
(Xl(wl), e 7XT1(w1)(w1)) € A’T1'
We assume there would exist an wy € Q with (X1(w2), ..., Xp, () (w2)) =
(X1(w1),..., X )), which is equivalent to (X1(w1),..., X7 (w)(w1)) € Ar,. Then

) Tl(w1)(w1
(X1(w2)s -y Xy (o) (w2)) = (X1(w1), - -+, Xop (wp) (1)) would hold and because of

b T2

fweQ|rw) =1(w)} € Fruy = o(X1,..., X)) we would get ma(w1) = 72(w2) =
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4. Theoretical results for the binomial model with dividend yield

71(w1), which is a contradiction. Hence, we have (Xi(w1),..., X7 (w)(w1)) ¢ Ar, and,
therefore, A, # A,,.

Step 3): It only remains to show that pp is surjective. Given A € Bp_1 we define

TA(w) ==

koif 3(7:1, o ,’Lk) €A s.t.(Xl(w), e ,Xk(w)) = (il, R ,’ik)
T else '

It is obvious that 74 is a stopping time bounded by T" and that py(74) = A, which finishes
the proof. ]

The previous lemma tells us that every 7 € Tr can be identified with an antichain of
(Ar_1, <), which means a subset of incomparable elements of Ap_;.

In some sense the mapping pr can be understood as a translation of stopping times from
our original binomial model and the filtered probability space (2, F,F,Q) to a version
of our binomial model, where the new sample space just consists of {—1,1}-sequences of
length up to T and the generated sets A, € Bp_q can be viewed as subtrees of a full,
complete, rooted and directed binary tree of height T', where the level of the leaf of each
path starting at the root gives us the information at which time we should stop, if the
sequence realized by the random variables (X¢)1<t<7 up to this time coincides with the
path. If the random variables do not follow any path existing in the subtree corresponding
to A; to its end, then we stop at time 7. The case that we stop at time 0 almost surely
corresponds to A; = {()}, which can be identified with the subtree only consisting of the
root, whereas the case that we stop at time T" almost surely corresponds to A, = (), which
can be identified with the empty subtree.

We can see that it is very important that the sets in Byr_, are antichains as otherwise we
would not get a bijection using this procedure. Let us take a look at a short example. We
look at the two sets A1 = {(1,—1)} and Ay = {(1,-1),(1,—1,—1)}. The first set tells us
that we should stop at time 2 if we start with "up” in the first step and "down” in the
second step of our random walk and else stop at time 7". The second set gives us the same
information plus the piece of information that we should stop at time 3 if our random walk
goes "up”, "down” and "down” at the beginning. It is obvious that this extra information
we get from our second set is irrelevant, because we have to stop already at time 2 in
this case. Therefore, the relevant information encoded in our two sets using this algorithm
would be the same and hence we would not get a bijection if we allowed for sets which are
not antichains, like As.

We can also look at this problem from a different point of view. If we go to step 3 of
the proof above and look at 74,, then we will notice that this mapping is not well defined
because of the extra information compared to A; and, therefore, not a stopping time, which
will be problematic in the next section about Asian options of American type.

Before we deal with Asian options of American type we still want to proof duality rela-
tions for vanilla options of American type in this section. In the next corollary we want
to use the bijection we obtained in the previous lemma to get a quick estimate for a lower
bound for the number of stopping times in a binomial model.
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4. Theoretical results for the binomial model with dividend yield

Corollary 4.14. The number of stopping times up to time T in a binomial model is at
least double exponentially growing in T and we get as a lower bound

-1

> 2% =1 < [Trl.

k=0
Proof. For T € N we have |Tp| = |Br—_1| because of Lemma 4.13. Now we define for
k€ {0,...,T — 1} subsets of By_; which only consist of antichains consisting of sequences

of length k:
BT*L’C = {{J]‘l,...,xl} ‘ leN,Vi e {1,...,[} : (.I'z € Ar_1 N |ac1] = k),ﬂ 1,7 x; < .I'j}.

These subsets are clearly disjoint, therefore, we get Z;f;ol |Br—1,| < |Br—1]. Further, we
define for k € {0,...,T — 1}

froik : P(PAL ..., kD)\ {0} = Br-1
l
{Ci,....C)} —~ U{((—1)1”{1€Cﬂ, (=)t Theeey

As a consequence of the fact that fr_; , maps to sets of sequences which all have the same

length, these sets are antichains, therefore, elements of Br_1 .
Let C1,Cy € P({1,...,k}) with C1 # Cs. Then there must exist r € {1,...,k} with
r € C1,r ¢ Cy and hence we have

((_1)1-&-]1{1601}7 o (_1)1+]1{kecl}) 7& ((_1)14-11{1602}7 e (_1)1-&-]1{,@602})'

This implies that fr_;j is injective. Therefore, we get

T—1 . T—1 T—1
2E )= IPPHL.. . KID\AB < D Broipl < |Broi| = [Tz,
k=0 k=0 k=0
which is what we wanted to show. O

The previous lemma tells us that it does not make any sense to deal with every single
stopping time on its own as the number of stopping times is growing extremely fast if we
increase the number of time steps. The sets Br_; ) correspond to stopping times which
either stop at time k or at time T

As an important next step on our way to show relations for vanilla options of Amer-
ican type we give a bijection between the sets 7 and T of stopping times and show a
distributional property of this bijection and the random walks Y and Y.

Lemma 4.15. Define the function

g1 : Br—1 — Br—1

{10, ik)s s Gty tnge) F = {001, =01k )y (S0t oo — ik, )
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4. Theoretical results for the binomial model with dividend yield

Then gr is a bijection. Given the bijections pr from Lemma 4.13 and the analogously
defined pr : Tr — Br_1 further define the function hp := ﬁ;l ogropr. Then hp : Tp — Tr
is bijective and for every T € Tr the random walks Y and Y satisfy

~

Law(r,Y; | Q) = Law(hr(1), Vi) | Q). (4.19)

Proof. 1t is clear that gr is bijective and well defined, because it is self-inverse and changing
the signs of all sequences does not change anything regarding the relation of extensions and,
therefore, the antichain property still holds and so gr really maps to Br_1. As pr, gr and
]5;1 are bijective also hp, the composition of them, is bijective.

Hence, it just remains to show that Equation 4.19 holds for all stopping times of our
original binomial model. Let 7 € Tp,t € {0,...,T — 1} and k € Z. Using the definition of
pr(7) = A; we then get

Qlr=tY, =kl =Q'[r=t,Y; = k|

—Q | U welxiw) =in... Xilw) =it}

(/L'l »~~~7it)€AT

i1+ +ir=k
§ : / . .
= Q[Xlzll,...,Xt:Zt].
(31,00t )EAL
i1+ tir=k

Now we use Lemma 4.1, which tells us that (X;)1<;<r are i.i.d under Q' and the definition
of gr to obtain

t
Qr=tY,=k= Y JJUKX;=ij

(41,0508 )EAL =1

i1+ tir=k
t+k t—k
— Z QUX1=1=2Q[X;=-17=
(11,040t )EAL
i1+-+ir=k
tk t—k

= > Qxi=1rQXi=-17.

(;’lvzgt)eAgT(AT)
i1t Fig=—k

In the next two steps we first apply Lemma 4.2 1. and then use the identities gr(A;) =
gropr(t) =pro 13;1 ogr opr(r) = pr o hr(r) = App(r) to conclude
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4. Theoretical results for the binomial model with dividend yield

Ulr=tY,=k= Y  QX=-1%q%=1%
(11, ,Zt)GQT(A )
i1t Fi=—Fk

= Z QX =-1=2QX,=1=.
(%1,..‘,7})GAAhT(7)
bt ie=—k

Because the random variables (X;)1<ij<7 are i.i.d under Q we continue with

~+

Qr=tY-=k= >  J]OX
(i1, Zt)EAhT(T) J=1
i1+ tig=—k
= > QX1 =11,..., X =iy
(i1,-,8t) € AR, (1)
i1+ tig=—k

In the last steps of our proof we use that the events in our sum are disjoint and the definition

of AhT(T) = pr(hp(7)) to get

Qlr=tY, =k =Q U  {velXiw)=ii,..., Xi(w) =i}
(’21,...,7A;t)€AhT(.,.>
i1+t ii=—k

Q[ ( ) =t,~Yin(r) = K,

which finishes the proof for the case 0 <t < T — 1.

For the case t = T we define the sets A, 7 := {(X1(w), ..., X;()(W)) [w € Q:T(w) =

and AhT( = {(Xi1(w),..., X (W) |w e Q: hT( )(w) = T}. We note for fixed
(Zl,.. ) that
(i1,...,i7) € App <= i€ {0,..., T —1}: (i1,...,i;) € A,
«— fj€{0,...,T—1}: (—zl,...,—ij) € gr(A;)
— ﬂjG{O,...,T—l} ( i1, . ’_ij)EAhT(T)
— (—i1,...,—i7) € AhT(T),T‘

Using these equivalences the case t = T' can be shown analogously to the case
t € {0,...,T — 1} above, which finishes the proof.
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4. Theoretical results for the binomial model with dividend yield

Now we are able to proof the relations for vanilla options of American type.

Theorem 4.16. For vanilla call and put options of American type the option prices in a
binomial model with dividend yield satisfy the relations

c(So, K,a,b,u,d, T) = p(K, Sp,b,a,1/d,1/u,T) (4.20)

and

]p(SO> Ka a, ba u, da T) = C(K? SOa ba a, 1/d7 l/ua T) (421)

Proof. We start with the price of a vanilla call option of American type and get
1
br
|: 1 CLTST bTS(]

c(So, K, a,b,u,d,0,T) = sup Eg [ (S; — K)+]
TETT
= sup Eg

TETT bT— bTS(] CLTST

(S; — K)ﬂ .

Now we use the identities V; = a'S; and B; = b’ and perform a change of measure from our
original pricing measure Q to the dual measure Q' with density dQ'/dQ = By/Vy - V/Br
in the first step and then use the law of total expectation for conditional expectations to
obtain

¢(So, K, a,b,u,d,0,T) = sup Eq

[ 1 b7'S,
T€TT

bfT aTST

(s, - K)ﬂ

1 7S,
= sup By |Eg | ————(S; — K)T
2 B [Bo [ 57~ K0

2

We continue with using the fact that 1/b7(S; — K)* is F, measurable as a consequence
of Lemma 2.4, which implies that we can take it out of the conditional expectation and
then use the optional sampling theorem (see Theorem 2.5) for the bounded stopping times
7 € Tr and the Q'-martingale (B;Vy)/(V;By) = (b'S0)/(a'Sy):

[ bT'S, 1
K T) = Eo | Eqn | ——— |l — T_K+
C(S()a 7a7b>uad70> ) 7'86117%1 Q | Q |:CLTST ‘F:| bT(S ) :|
[57Sy 1
= Eq —(S; — K)*
i ) P o O ) ]
1 So\*
= sup Eq (S —K) .
TETT 0 _aT 0 ST

Further, we rewrite everything in terms of Y, use the relation —log(z) = log(1/x) and
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4. Theoretical results for the binomial model with dividend yield

apply Lemma 4.15 to replace Q' with Q, 7 with hp(7) and Y; with —YhT(r) to get

@(S()a K7 a, bv u, d7 0, T) =
1 Y; -Y; -
= sup Eg [ <SO — K exp <—T+2 log(u) — u 5 log(d))> ]

TETT a”

1 T+Y: 1 r—Y; 1 +
= Ey |— (So— K log | = log ( =
ap e o (s a0 (5w (1) 75 s (1))

1 he (1) = Yoy () 1
= sup EQ [ahT(T) (SO - KeXp <2 log <u>

T€TT

Now we rewrite everything in terms of Y and use the fact that hp : Tp — T7 is a bijection
to obtain

1 . +
c(So, K,a,b,u,d,0,T) = sup Ey | o <So — ShT(T))

TETT ahr(7)
1 ~\ T
= sup EQ = (So — S—f-)
7A'€7A-T a

= ]p(K7 SOa b7 a, l/d’ 1/ua OaT)a

which finishes the proof of the first relation. The second relation can be shown analogously.
O
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5. Possible extensions for Asian options

Our aim in this chapter is to find a subset 7;* of 77 on which we can extend the relations
for Asian options shown in Theorem 4.7. As Example 3.12 shows, this is not possible on
the whole set 77, because then we would have the relations for Asian options of American
type. Hence, we have to find a proper subset of stopping times so that we can prove a time
reversal property with respect to these stopping times.

5.1. Time reversal with respect to stopping times

We would like to have a set 75 C Tr of stopping times and a function (bijection) ¢ : T;* —
T; so that for every 7 € T

Law(t,Y; =Y, ....Y; =Yy | Q) = Law(rp (1), Yo, . . -, Yir | Q"), (5.1)

which is equivalent to

Law(t, X;,..., X1 | Q") = Law(rp(7), X1, .. ., Xrr(r) | Q) (5.2)

would hold, because then we could extend the proof of Theorem 4.7 to a proof of relations
for Asian options of American type restricted to the set 7/ like we extended the proof of
Theorem 4.3 to a proof of Theorem 4.16. We start our quest with the following obviously
useful definition.

Definition 5.1. Let n € N. We define
{(i1,17 ey 7;17]“), ey (in,la . ain,kn)} — {(il,kl’ . 77:1,1), cey (in7kn7 . 7in,1)}
and for A € B,_; we call f,(A) the time reversal of A.

We should note that the time reversal of A € By_; has not to be necessarily an element
of Br_; again. If we take for example ' = 3 and A = {(1),(—1,1)}, which corresponds
to the stopping time which stops at the first time at which the random walk Y goes up,
then we observe that fr(A4) = {(1),(1,—1)}, which is not an antichain with respect to the
relation of extension defined in 4.11, therefore, does not correspond to any stopping time in

Ts. Hence, we will take now a closer look at the question for which subsets of By_1 the time
reversal is again an element of Br_1. For this purpose, we give the following definition.

Definition 5.2. Let n € N. We define the binary relation Ry, C A2 as the set of all pairs
(z,y) € A2 so that y is a backward extension of z and denote (z,y) € R<, as < y, that
means for © = (i1,...,i),y = (J1,.- -, J1)

v <y RPN (k<D A (i1, yik) = (imkt1s---201))-
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5. Possible extensions for Asian options

This relation is also known as suffix-order in formal language theory. The notation used
for this relation is justified by the next lemma, which can be proven analogously to
Lemma 4.12.

Lemma 5.3. The relation of backward extension Rs , is a partial order on A,.
Now we are able to formulate the following lemma.

Lemma 5.4. For A € Bp_y the time reversal fr(A) is an element of Br_1 if and only if
A is an antichain with respect to the relation of backward extension. If we further define
the function rp = p;l o fropr on Tr, then for 7 € {7’ € Tr | fr(pr(7")) € Br_1} rr(7)
is again an element of Tp. We call 7 € {7' € Tr | fr(pr(7")) € Br_1} a forward-backward
stopping time and rp(7) the time reversal of T.

Proof. Let A € Bp_y. For (i1,...,ix), (J1,-..j1) € Ar—1 we have

(ila"' 7ik)>(j17"' 7jl) €A = (ik7"-7i1))(jla" . 7j1) € fT(A)

and

(i1y-eevin) < (rseeydt) = (K <D A (1, yik) = (i—kt15- -5 1)
<= ((k? < l)/\((ik,...,il) = (jl)'-'ajl—k+1))
= (ig,...,11) < Uy, 51),

which shows the first claim. The second claim is just a consequence of the definitions of
the functions and the set {7 € 77 | fr(pr(7)) € Br_1}. O

We should note that our function 7 is not a bijection from 77 to itself and that even for
forward-backward stopping times the distributional property 5.2 does not necessarily hold,
because the proof for the case ¢ = T in an analogous proof to that of Lemma 4.15 fails.
If we take for example the forward-backward stopping time 7 € T3 which corresponds to
the set A, = {(1,—1),(1,1)}, then we have that the forward-backward stopping time r3(7)
corresponds to the set A,y = {(=1,1),(1,1)}. Then we get for positive probabilities for
”up” and "down”

QI[T:?),X;;: 1,X2 = 1,X1 = —1] :@,[Xg = 1,X2 = 1,X1 = —1] >O,

whereas we have

Qrs(1) =3, X1 =1,Xo=1,X3=-1] =0,
because 13(7) = 2 on the set {w € Q | X;(w) = 1,Xs(w) = 1} as a consequence of

(1, 1) S Ar3(7)~
Hence, we have to restrict the set of stopping times we are looking at even more.
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5. Possible extensions for Asian options

Definition 5.5. We say that a stopping time 7 is a strong forward-backward stopping
time if and only if the set {(X1(w),..., X;)(w)) |w € Q:7(w) < T} is an antichain with
respect to the relation of backward extension.

The last step we have to take before being able to prove the distributional property
5.1 we want, is the next lemma, which shows how exactly the time reversal of a strong
forward-backward stopping time looks like.

Lemma 5.6. Every strong forward-backward stopping time T € Tr is a forward-backward
stopping time and satisfies

fra({(Xa(w), - Xy (W) [w € Q) = {(X1(w), -+ Xop(ry ) (W) [ w € 2}

Every almost surely constant stopping time T € Tr is a strong forward-backward stopping
time and satisfies rp(T) = T.

Proof. Let 7 € Tr be a strong forward-backward stopping time. Then by definition
{(Xq(w), -+, Xpy(w)) |w € Q: 7(w) < T} is an antichain regarding the order of backward
extension. Because every subset of an antichain is an antichain too and

pr(7) = {(X1(w), ..., Xr()(W)) |w € Q: 7(w) < T},

we get that pp(7) is an antichain regarding the relation of backward extension. Then
Lemma 5.4 implies fr(pr(7)) € Br—1, which means that 7 is a forward-backward stopping
time by definition.

Now let us prove the stated equation. By definition of fr, fry1 and r7 it is clear that
we have

frai({(Xa(w), . Xpy (W) [w € Q:7(w) <T} =pr(rr(r))
={(X1(W), -, Xop ()W) |w € Qirp(r)(w) < T}).

The stopping time 7 must be defined on every atom of Fr and every sequence in the set
{(X1(w), .-, Xpy(W)) |w € Q: 7(w) < T} can be identified with the number of atoms on
which this sequence is realized by the starting sequence of the random variables (X;)1<i<7.
Hence, we know the number of sequences that have to be in fri1({(X1(w), ..., Xrw)(w)) |
w € Q:7(w) =T}, because every sequence in this set counts for exactly one atom and we
further know, using the same argument for r7(7) again, that this number has to be equal to
the number of sequences in the set {(X1(w), ..., X, (r)w)(W)) |w € Q:rp(T)(w) =T} as a
consequence of the equation above. Because T is a strong forward-backward stopping time
it must be possible to add every sequence in the first set to the second set or equivalently to
define r7(7) to take the value T on the corresponding atoms without getting a contradiction
to rp(7) being a stopping time. On the other hand this has to be the only possible choice,
because pr is a bijection (see Lemma 4.13) and we have

(rr) ™ (fra({(X1 (W), -, Xr ) (W) [ w € Qi 7(w) <T}) = rp().

Hence, the sets have to be equal.
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5. Possible extensions for Asian options

For the proof of the last statement let 7 € 77 be an almost surely constant stopping
time which stops at time ¢. That implies that the set pr41(7) has to contain all {1, —1}-
sequences of length t. Hence, we have fri1(prs1(7)) = pr+1(7) and, therefore, rp(7) = 7,
because reversing them does not change anything and it is clear that the set is an antichain
with respect to backward extension as all sequences have the same length. O

Now we are finally able to prove Property 5.1 for the set of strong forward-backward
stopping times and a slightly generalised version of the distributional property in
Lemma 4.15, which we will both use to prove relations for Asian options.

Lemma 5.7. Let 7 € T be a stopping time.

1. Then T is a strong forward-backward stopping time if and only if T satisfies
Law(T, YT - YT, ces ,YT - YZ) ’ Ql) = LCL’U)(TT(T), Yo, ces ,Y}T(T) ’ Ql)
Further rp (1) € Tr is the only stopping time with this property.

2. Then T satisfies

A~

Law(r,Yp,...,Y; | Q) = Law(hy (1), Yo, ..., Vi | Q).
Proof. We start to prove the first statement. First, we note that

Law(r,Y; = Yz,...,Y: =Yy | Q') = Law(rr(7), Yo, ..., Yop(ry | Q)
is equivalent to
Law(t, X;,..., X1 | Q) = Law(rp(7), X1, ... s Xy (7) | Q)

as a consequence of Y; = 2221 Xy, for t € {0,...,T}.
We start with the assumption that 7 € T is a strong forward-backward stopping time
and fix t € {0,...,T} and 4, € {—1,1} for [ € {1,...,T'}. We obtain

QIr=t,X;=1i,.... X1 =01 =Qr =, Xy =4¢,..., X1 = i1

=qQ U {weQ| Xp(w) =if,..., X1(w) = i1}
(jl,...,jt)e{(X1(w),...,XT(w)(w))|w€Q}
(J15esdt)= (41,0 ,0t)
= > QX; =ity ..., X1 = i1).
(j17~'~’ji)€{(X1 (w)r"'vXT(w)(w))IWEQ}
(J1seenndt)=(41,0-0y0t)

Now we use the exchangeability of the random variables (X;)1<i<7 (see Lemma 4.1), Defi-
nition 5.1 and then Lemma 5.6 to get
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5. Possible extensions for Asian options

QI[T:t,XTZit,...,XIZil]Z Z Q/[Xlzitv-'-aXt:il]
(jl7"'7jt)€{(X1(w)r":XT(w)(w))‘weﬂ}
(J1yeesgt)=(31,-.-5¢)

QX1 =1dt,..., Xt =11]

(]

(jt?"'7j1)6fT+l({(X1(
(Jtse91)
= Z QX1 =i, ..., X¢ =11
(Gts-sJ1)EL( X1 (W) o, X (1) () (W) [wERY
(jtv"'vjl):(it,n-,il)

S

)7"'7X7—(w) (w))|wEQ})
(it ye-s01)

=qQ U {we | X1(w) =ig,..., X (w) =1}
(Jtse-ng1)e{ (X1 (w),...,XTT(T)(w)(w))‘weg}
(jt,n.,jl):(it,...,il)

= Q,[TT(T) = t7X1 = ita s 7Xt = Zl] = QI[TT(T) = thl = it) s 7X7‘T(7') = il]a

which finishes the proof of the first direction of the equivalence.

For the other implication, we assume that 7 € 77 is not a strong forward-backward
stopping time. So by Definition 5.5 {(X1(w),..., X7 (w) | w € Q} is not a backward
antichain, which by Definition 5.2 means that there exist k,1 € {0,..., T} sothat k <1 < T
and (i, ..., 41), (i, - -, 11) € {(X1(w), ..., Xpy(w) | w € Q}. Then we have

QI[T:l,Xl:il,...,Xlzil]:Q/[Xl:’il,...,Xlzil] >0

as a consequence of (ij,...,i1) € {(X1(w),..., X;)(w)) | w € Q} and hence {w € Q |
Xi(w) =11,...,Xj(w) =41} € {w e Q| 7(w) =1} and the fact that (X;)i<i<r are ii.d.
under Q' (see Lemma 4.1), we have assumed 0 < P[X; = 1] < 1 (see Section 2.2) and
know that Q' is equivalent to Q by definition (see Lemma 4.1) and Q is equivalent to P
by definition (see Theorem 2.6). Because we know k < T we get (ig,...,41) € A, which
implies (i1,...,ix) € fr(A;). As a consequence of Lemma 5.4 we have fr(A;) € Br_1 and
hence (i1,...,4) ¢ fr(A;). This yields

@/[TT(T) :l,X1 :il,...,Xl :il] =

_¢Q U fweQ| Xiw) =in..., Xiw) = i1}

(J15-dr)EfT (A7)
(F15eesd)=(i1,01,i1)

=Q'(0) =0,

which shows that the desired property does not hold and hence finishes the proof of the
equivalence.
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5. Possible extensions for Asian options

Now we want to show uniqueness. Let 7 € Tr with 7 # rp (7). Without loss of generality
there exists w € Q with 7(©) < r7(7)(w). Because 7 and r7(7) are stopping times we have
weQ|7F(w) =7@)}{w e Q| rr(r)(w) = 7(®)} € Fr)- Hence, the indicator functions
Liz—7@)y and 1y, (7)=7(@)} have to be constant on the atoms of Fx ). Therefore, we get
by the same arguments as above

QF =7(@), X1 = X2(@),.... Xz = X3(@)] = QX1 = X1(@),. .., Xz = X35 (@)] > 0
and
Q’[TT(T) = %(@),Xl = Xl(&)), e, Xz = X?"T(T)(f:))] _ Q/(@) -0,

which implies that the desired property cannot hold for 7 and as a consequence shows
uniqueness.

Now we want to give a proof for the second statement. For this purpose we only assume
that 7 is a stopping time. Again we note that

Law(r, YvOa ey YT | Q,) = Law(hT(T)a _}A/O’ ceey _?hT(T) | Q)
is equivalent to
Law(r, X1,...,X: | Q) = Law(hr(r), = X1, ..., —Xppn) | Q)

as a consequence of Y; = 1, X}, and Y, = S Xy for t € {0,...,T}. Again we fix
te{0,....,T} and 4 € {—1,1} for [ € {1,...,T} and obtain

Q,[T:t,Xl :’L'l,...,szit] :@/[T:t,Xlzil,...,Xt:it] =

=Q U {we Q| Xp(w) =ig...,X1(w) =i1}
(jl,...,jt)G{(X1(w),...,XT(w)(w)ﬂweQ}
(jly"':jt):(il,...,’it)

= Z Q/[X1:i17"'7Xt:it]'
(G150t E{ (X1 (W), X 0 (W) lwER}
(J1seesdt)=(21,0s08)

Now we use the first statement of Lemma 4.2, then view 7 as stopping time in Tp4q and
use Lemma 4.15 to get

Qlr=t, X1 =i1,..., Xy =iy =
= Z Q[_Xl = i17"'7_Xt :Zt]

(jl7--~’jt)€{(Xl(w)f“'vxf(w)(w))‘weﬂ}
(51,008 )=(01,00it)
= Z Q[—Xlzil,...,—Xt:it].
(J1,-3) €941 ({(X1 (W), X7 () (W) WERY)
(F1500de)=(=11,500,—1t)
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5. Possible extensions for Asian options

We know gT+1({(X1(CU), s 7X'r(w)(w)) ‘Aw € T(L‘i) < T}) = gT({(Xl(w)a s 7XT(w)(w)) ’
we:Tw) <T}) =pr(hr(r)) = {(X1(w), -+, Xpp(r)(w) (W) | w € Q@ hy(T)(w) < T}
We further use the fact that 7 and hp(7) are stopping times and note

(Uts--odr) € gra({(Xi(w), ..o, Xy (W) [w € Q}) =
= PO<k<T—1:(j,....5k) € gr({(X1(w), ..., Xr(w)(w)) |w € Q:T(w) <T})
= BO<KE<T—1: (1, k) € {(X1(W), o, Xnp(my() W) | w € Q: hp(r)(w) < T}
= (1, 0dr) €{(X1W), -, Xpp(ry) (@) | w € 2}

Hence, we continue
Q,[T = taXl = ila"'vXT = Zt] =
- 3 Q=K1 = i, ..., —Ke = ]

(jl,--.,jt)e{(X1(UJ),--~,XhT(T)(w) (w))‘weﬂ}
(J15dt)= (=110, —0t)

=Q U {fwe Q| -X1(w) =i1,...,— Xy (w) =i}
(31505 ) E{ (K1 (W) oo X () () (@) [wER}
(jl7~-~7jt):(_i17"'7_it)
=Qlhr(r) =t, X1 =i1,...,— Xy = i) = Qlhy(7) = t, = X1 = i1, ..., ~Xpy(r) = it],
which finishes the proof. O

5.2. Duality relations for strong forward-backward stopping times

In this section we prove duality relations for Asian options with respect to strong forward-
backward stopping times and discuss in which sense they extend or relate to the relations
shown in Corollary 4.8.

The following theorem gives us relations for Asian options with fixed and floating strike
prices for single strong forward-backward stopping times.

Theorem 5.8. Define wr := hporp. Let 7 € Tr be a strong forward-backward stopping
time for our binomial model with parameters (Sp, a,b,u,d). Then wr(T) is a stopping time
for the binomial model with parameters (So,b,a,1/d,1/u) and we have the relations

Eq [blT (5, - A(O’T))+:| — By [awi(ﬂ (§0 - A(07TUT(T))>+:|
and
Eq [bl (A, 7) sf] ~ e Lwim (‘Z‘(O’W(T»_%H
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5. Possible extensions for Asian options

Proof. We restrict ourselves to the proof of the first relation as the proof of the second
relation works analogously. We start with the left-hand side and change the measure
from the original martingale measure to the dual measure Q' using the density dQ'/dQ =
B()/Vb . VT/BT = (aTST)/(bTSO) to get

1 1 a8y b7,
" beatt (St = A(O’Tw”))Jr] ~Fa |:bTCall bT'Sy aT' St (Sreau — A(O,Tcall))+:|

1 'S,
= Ey [WQTST(SMH - A@ﬁcall))ﬂ :

Now we use the law of total expectation for conditional expectations and the fact that
1/beatt (S, . — A0, 7equ)) " is Fy,,,-measurable as a consequence of Lemma 2.4 and the
property of taking out what is known of the conditional expectation to obtain

1 1 bS8y
Eq bTeall (S‘Fcau - A(OvTcall))Jr} = Eq [E@’ |:b-rm”aT5'T(STcau - A(O7Tcall))+ | F‘rcau”
b’ Sy 1
= Ey {EQ’ [aTS’T | FTcall:| broa Orean = A(Oﬁcall)ﬁ] :

We continue with applying the optional sampling theorem (see Theorem 2.5) for the
bounded stopping time 7., € Tr and the Q'-martingale (B,Vy)/(V;Bo) = (b'Sy)/(a'Sy)
and the definition A(0,) = 1/(t +1)- 3 5_, Sk:

1 challSO 1
Eq bTeall (STcall - A(OvTcall))Jr} = Eqy [arcauSTC(l”chall(STcau - A(O7Tcall))+]

TC(Z +
! (So - S0 Tcalllﬂ 2iZ0 Sk) ] )

Teall
a‘ce STcall

= EQ’

Further, we use the definition S; = Sy exp((t+Y;)/2-log(u) + (t —Y;)/2-log(d)) and rewrite
the expression in terms of Y; to obtain

1
EQ |:chall (STcall - A(O’ TCG”))+:| =

i et Soexp (5% log (u) + £ log (d) )

= E@/ So — So —
QaTcall SO exp (Tcall';YTca“ log (U) + Teall 2YTcall ].Og (d))
1 1 o Teall — Kk + (Y — Yk)
= En S — S R E __‘ca Tcall 1
° [anau < O+ 1 pard exp( 2 og (u)

 Teal — K — ;YM” —Y) log (d)>>+].
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5. Possible extensions for Asian options

Due to Lemma 5.7 we can replace 7oy With 77(7eqn) and Yz, — Yi with Y, . for
all k € {0,...,77(Teau)}, use the identity —log(z) = log(1/z) and change the summation
index to get

1
EQ m (STcall - A(()? Tcall))+:| -

. 1 T (Teall) rr(Teat) — k + Y, (reatt)—k 1
_ E / 1 S B S L T\Tcall 1 -
Q| g1 (rean) 0 OTT(Tca”) +1 =0 P ( 2 . <u>
+
+TT(TCCL”) - k - Y"T(Tcall)fk log <1)>> ]
9 d
TT(Tcall
=FEy | ——— - u
Q arT(Teat) S0 = S0 1 TT(Tcall =0 P ( o8 (u>

A2 ()) ]

By applying the second statement of Lemma 5.7 we are able to interchange Q' with Q,
TT(Tcall) with wT(Tw”) = hT(TT(Tm”)) and }fj with —Yj for all j € {0, - ,’w(Tca”)} to get

1
EQ chall (STcall - A(07T0all))+:| =

w (Tcall) . s
1 1 7 i-Y; 1
=FE+s | ——— - Sy— E EA i | -
Q awT(Tcall) SO SO wT(Tcall) +1 - P ( 2 08 <u>

Now rewriting the formula in terms of S and A leads to

1 1 wT(Tcall +
- _ Tt | —— | &
EQ b’T’call (STCG‘” A(()’ Tca”)) :| - EQ aWwT (Tcall) SO wT (Tcall Z ']
Jj=
1 . . +
= EQ m <SO - A(O, wT(Tcall))) )
which finishes the proof. O

The next lemma shows that wr is a bijection and maps (strong) forward-backward
stopping times to (strong) forward-backward stopping times.
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5. Possible extensions for Asian options

Lemma 5.9. The function wp := hp o rp is a bijection from {7 € Tr|T is a forward-
backward stopping time} to {T € 7A’|f is a forward-backward stopping time}. If T € Tr is a
strong forward-backward stopping time, then wp(7) € T7 is also a strong-forward backward
stopping time.

Proof. Let T € Tp. As a consequence of the definition of forward-backward stopping times
(see Lemma 5.4) rp(7) is a stopping time. Because 7 is a stopping time, pp(7) is an
antichain with respect to forward extension (see Lemma 4.13) and hence it is easy to see
that fr(pr(7)) = pr(rr(7)) is an antichain with respect to backward extension, which is
obviously equivalent to fr(pr(rr(7))) being an antichain with respect to forward extension.
This shows that rp(7) is a forward-backward antichain. Obviously, fr is injective and hence
rr is injective on the set of forward-backward stopping times to itself, which shows that it
is bijective on this set.

For 7 being a strong forward-backward stopping time, we get using Lemma 4.13 for
n = T+1 and 7 viewed as an element of 7711 that the set ({(X1(w), ..., X;()(W)) |w € 2})
is an antichain with respect to forward extension. Hence, fri1({(X1(w),..., X;w)(w)) |
w € }) is an antichain with respect to backward extension. Combined with Lemma 5.6,
which tells us

frii({(Xi(w), .., Xpy (W) [w € Q) = {(X1(w), .-+, Xy (r)() (W) | w € QF,

this shows that r7(7) is a strong forward-backward stopping time.

Lemma 4.15 tells us that hp is a bijection too. Therefore, wp = hp o rp is a bijection.
Clearly gr and g7 leave the antichain properties with respect to forward and backward
extension unchanged and hence hp maps (strong) forward backward stopping times to
(strong) forward backward stopping times, which finishes the proof. O

The next corollary is a statement about duality relations for Asian options of American
type restricted to the smaller set of strong forward-backward stopping times, which was
the result we intended to show in this section.

Corollary 5.10. Let T C Tt be a set of strong forward-backward stopping times for our
binomial model with parameters (So, a,b,u,d). Then we have

sup Eg [blT (S, — A(o,T))ﬂ — sup By [1T (5 - A, %)ﬂ
TeT #ewr(T) a
and
1 I 1 P A\t
syl 0a0-99] - [ o))
Proof. This is a direct consequence of Theorem 5.8. O

There is still the open question, whether there exist strong forward-backward stopping
times that are not constant. The next lemma shows that strong forward-backward stopping
times cannot only take exactly two consecutive points in time as values, which at least
constrains the set of possible strong forward-backward stopping times a little bit.
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5. Possible extensions for Asian options

Lemma 5.11. Let 7 € T be a strong forward-backward stopping time with

— mi <1
DT ST =

Then T 18 constant.

Proof. Let T be such a stopping time. First, we denote n := min,cq 7(w),
A= {(Xl(w)7 cee X‘r(w)(w)) | w e Q}

and (i1,...,in) = (X1(w), ..., Xr(u)(w)) for an w € Q with 7(w) = n. Our aim is to show
that A contains only sequences of length n. For this purpose we will reconstruct A using
an iterative procedure.

We start with A% := {(i1,...,i,)}. Because 7 is a strong forward-backward stopping
time the set A is a backward antichain. Hence, (i1,...,4,) € A implies (1,i1,...,i,) ¢ A
and (—1,i1,...,i,) ¢ A. Using this result, the fact that there exist wj,we € Q with
(1, il, ves ,in) = ((Xl(wl), NN ,Xn+1(w1)) and (—1,i1, ‘e ,in) = ((Xl(wg), ve ,Xn+1(WQ))
and 7(w1),7(w2) € {n,n + 1} by our assumption, we obtain

(1, ST ,in_l), (—1,i1, R ,in_l) € A.

We define
AY = AV U{(jr, i1, ine1) | € {=1,1})
and get
Al C A
Now we can iterate the arguments above for every element of {(j1,41,...,9n-1) | J1 €

{—1,1}} and define for every k € {2,...,n}
AR = APV UG, ke i1y inek) | G-k € {—1,1}}  with A, C A.

We should note that the sequence (A* )o<k<n is strictly increasing because we have |A°| = 1
and |A*| < |A*=1| + 2% therefore, by induction

k—1
’Ak_l‘ < Z2T - 2k —-1< 2k = ‘{(.jlw"’jk:ilw . '77;n7k) ’jla'- . 7jk S {_171}}‘
r=0

We further note that this iterative procedure stops in step n and we have

A" ={(j1, -5 dn) | J1s- - dn € {~1,1}} C A.

We see that A™ contains every {—1, 1}-sequence of length n and nothing else. As adding
any other sequence would violate the forward (or backward) antichain property, we must
conclude A™ = A, which finishes the proof. O
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5. Possible extensions for Asian options

Because we know (see Lemma 5.6) that constant stopping times are strong forward-
backward stopping times, Corollary 4.8 can be derived as special case of Corollary 5.10.
If it turned out that there exist strong forward-backward stopping times which are not
constant, then Corollary 5.10 would be a strictly stronger result than Corollary 4.8.

Otherwise, if it turns out that the set of strong forward-backward stopping times coincides
with the set of almost surely constant stopping times, then Theorem 5.8 and Corollary 5.10
will be direct consequences of Corollary 4.8, hence both corollaries and Theorem 5.8 will
be equivalent and we will further get that constant stopping times are the only stopping
times in a binomial model with properties 5.1 and 5.2, which in my opinion will reduce
the chance to extend the relations for Asian options to stopping times drastically. So both
outcomes of the open question whether strong forward-backward stopping times that are
not constant exist imply interesting consequences for the theory presented in this section.
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A. Appendix

In this appendix we just want to shortly show how the valuation of Asian options of
American type with respect to the arithmetic mean in a binomial model with dividend
yield can be implemented. For this purpose, we use the free software Octave [1].

A.1. Code for Asian options of American type

The theory about pricing American options in discrete time models using the Snell envelope
can be found in chapter 6 of the book of Follmer and Schied [4]. The following code is a
basic implementation of the defining backward recursion of the Snell envelope to get the
prices of all four types of Asian options of American type discussed in this thesis. The
parameters are denoted as in the theory presented in the other chapters.

function [fix_call, fix_put, float_call, float_put] = american_asian(S_0,K,a,b,
u,d,T)
#calculate equivalent martingale measure
p=(b/a-d) / (u-d) ;
q=1-p;

#create matrix with paths of the stock price process as rows
paths=ones (2°T,1) *S_0; #column for time t=0
for t=1:T
factor=mod (linspace (0,2°t-1,2"t),2)+1;
count=ones (1,27°t)*«2" (T-t);
paths (:,t+1l)=paths(:,t) .* (repelems ([u,d], [factor;count]))’; #add column for
time t
endfor

#create matrix with paths of the arithmetic mean process as rows
temp=triu(ones (T+1,T+1))./linspace (1, T+1,T+1);
average=pathsxtemp;

##calculate option prices

#calculate value of the options at each time step if they are exercised
fix_call=max (average-K,O0);

fix_put=max (K-average,0) ;

float_call=max (paths—-average,0);

float_put=max (average—-paths,0);

#backward recursions for option values

for t=T:-1:1
for k=1:2"(T+1-t) :2°T
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A. Appendix

#calculate maximum of value if exercised and discounted expected value at
time t+1

fix_call(k,t)=max(fix_call(k,t), (p*xfix_call (k,t+1l)+gxfix_call (k+2" (T-t),t
+1)) /b);

fix_put (k,t)=max (fix_put (k,t), (pxfix_put (k,t+1) +gxfix_put (k+2° (T-t),t+1)) /b
)

float_call (k,t)=max(float_call(k,t), (pxfloat_call (k,t+1l)+grfloat_call (k+2~ (
T-t),t+1)) /b);

float_put (k, t)=max (float_put (k,t), (pxfloat_put (k,t+1)+grxfloat_put (k+2" (T-t)
,E+1)) /o) ;

endfor
endfor

#return only prices at time t=0

fix call=fix_call(1l,1);

fix_put=fix_put(1l,1);

float_call=float_call(1l,1);

float_put=float_put (1,1);
endfunction

The problem with the algorithm above is that it takes ©(27) time and hence is only useful
to get the option prices for Asian options of American type up to 7' = 25 time steps. A
faster algorithm for lower and upper bounds for option prices of Asian options of American
type with respect to the arithmetic mean is for example discussed in Gaudenzi, Zanette
and Lepellere [5] and another algorithm for approximate pricing devised by John Hull and
Alan White can be found in Section 8.5 of the book by van der Hoek and Elliott [9].
Sometimes it might be useful to get exact prices for small examples like in

Chapter 3. We should note that if the input parameters Sy, K, a, b, u, d for the algorithm
above are rational numbers, then the option prices will be rational numbers too. Hence, we
can use the symbolic package for Octave to calculate exact prices for rational parameters.
Unfortunately, we cannot use the code above to do this, because it is not compatible with
symbolic variables, but we only have to replace the lines 6 to 12 of the code above with the
following lines.

#create matrix with paths of the stock price process as rows and matrix with
paths of the arithmetic mean process as rows
paths=ones (2°T, 1) *S; #column for time t=0
average=paths; #column for time t=0
for t=1:T
factor=1;
for k=1:2"(T-t) :2°T
paths (k:k+2" (T-t)-1,t+1l)=paths (k:k+2" (T-t)-1,t) » (factor+u+ (l-factor) xd) ;
if (factor==1)
factor=0;
else
factor=1;
endif
endfor
average (:,t+1l)=(average (:,t) xt+paths (:,t+1))/ (t+1);
endfor

As these changes and using symbolic variables make the code take even longer it really
should be used only for very small examples with just few time steps. To calculate with
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symbolic rational numbers in Octave, we first have to load the symbolic package and then
initialise the rational input parameters as in the following example.
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pkg load symbolic;

syms S_0 u d a b K;

S_O=sym(3) ;
u=sym(5) /2;
d=sym (1) /3;
a=sym(3)/2;
b=sym (5) /4;
K=sym (4) /3;
T=5;

[fix_call, fix_put, float_call, float

_put]=american_asian_sym(S_0,K,a,b,u,d,T);
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