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Abstract

A biometric template contains biometric traits belonging to a certain person, like e.g. fin-
gerprints or the facial structure. Especially for verification purposes such human charac-
teristics become ever more important. In order to recognize a person by means of his bio-
metric traits a reference template must be available, which can be stored in a database
and also on a  RFID chip. With regard to mobile storage media, and thus only a small
amount of  memory,  there is  a need for  the compression of  biometric  templates.  This
compression may be lossy, possible errors in the recognition however should be kept as
small as possible. In this Master's Thesis in particular a new approach for the compres-
sion of fingerprint templates is developed. These templates contain information about the
positions and orientations of the so-called minutiae, i.e. the endings and bifurcations of
the dermal papillae. In turn this information is represented in the form of points of a d-
dimensional coordinate system, and thus can be conceived as nodes of a graph. Hence,
the focus of this thesis lies on the study of graph-based approaches. The basic idea is to
store the difference vectors between always two points instead of the minutiae. For this
purpose directed spanning trees allow an efficient encoding. Hence in the course of this
thesis different approaches based on specific spanning trees, like e.g. the directed mini-
mum spanning tree, the directed  minimum label spanning tree and the directed  weight
balanced spanning tree, have been studied, and a compression of up to approximately
20% could be achieved.

Zusammenfassung

Biometrische Templates enthalten die zu einer Person gehörenden biometrischen Daten,
wie z. B. Fingerabdrücke oder Gesichtsmerkmale, die vor allem zu Verifikationszwecken
immer mehr an Bedeutung gewinnen. Damit eine Person jedoch anhand ihrer biometri-
schen Merkmale erkannt werden kann, muss stets ein Referenztemplate zur Verfügung
stehen. Dieses kann in einer Datenbank, aber z. B. auch auf einem RFID-Chip gespeichert
sein.  Gerade  im Hinblick  auf  mobile  Speichermedien und damit  verbundene geringe
Speicherkapazitäten  besteht  ein  Bedarf  an  der  Kompression  von  biometrischen  Tem-
plates. Diese Kompression kann verlustbehaftet sein, sollte dabei jedoch mögliche Fehler
bei der Verifikation so gering wie möglich halten. Im Speziellen wird in dieser Masterar-
beit  ein  neuer  Ansatz zur Kompression von  Fingerabdrucktemplates entwickelt.  Diese
Templates enthalten dabei Informationen zur Lage und Orientierung der so genannten
Minutien,  d. h.  den Endungen und Verzweigungen von  Papillarlinien.  Diese  Informa-
tionen werden als Punkte in einem d-dimensionalen Koordinatensystem dargestellt und
können auch als Knoten eines Graphen aufgefasst werden. Der Schwerpunkt dieser Ar-
beit  liegt  daher  auf der Betrachtung von graphenbasierten Kompressionsansätzen.  Die
zugrunde liegende Idee dabei ist, anstelle von Punktkoordinaten die Differenzvektoren
zwischen jeweils zwei Punkten zu speichern. Gerichtete Spannbäume ermöglichen dafür
eine effiziente Kodierung. Im Zuge dieser  Arbeit wurden daher Ansätze basierend auf
speziellen  Spannbäumen,  wie  z. B.  dem  gerichteten  Minimum  Spanning  Tree,  dem
gerichteten Minimum Label Spanning Tree oder auch dem gerichteten  Weight Balanced
Spanning Tree, untersucht und somit eine Kompression von bis zu circa 20% erreicht.
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Chapter 1 - Introduction

“A long journey starts by taking the first step.”
Chinese Saying

Biometric identification stands for an automatic recognition of people by means of their
characteristic traits or behaviors, such as body height, fingerprints or even the mode of
speaking. These individualizing characteristics have been already known to the ancient
peoples. Nowadays, we ever more frequently have to prove our identify to technical sys-
tems, which is mostly done with the aid of keys or passwords. However, by knowing a
password or possessing a key, a person can never prove whether he is really the one who
he claims to be. Thus biometric traits promise a higher certainty in people recognition
since they are strongly bound to its owner, and cannot be removed under normal condi-
tions.

Especially fingerprints have turned out to be an appropriate mean for identification pur-
poses, since they do not change over time, and until now no two people having the same
fingerprints have been found [Maltoni03]. Furthermore they have been extensively stud-
ied since the mid of the 19th century, and since the beginning of the 20th century they are
applied for the identification of criminals. Due to the technological evolution, and thus
the development of automated fingerprint recognition systems, they became interesting
for a widespread use on the private sector, too. A recognition by means of fingerprints is
in many cases based on comparing certain points of interest of the dermal papillae, the
so-called minutiae. That are those points of the fingertips where the dermal ridges either
end or bifurcate. In order to recognize a person an initial set of those minutiae has to be
available, such that it can be compared to a freshly taken input sample of a fingerprint.
This initial set is stored as a template, which in turn contains the absolute coordinates of
the minutiae.

Although biometric characteristics are a secure mean for the recognition of people, they
are not immune against misuse. Whereas passwords can be replaced by new ones, finger-
prints cannot. Thus, for instance in order to make the new European biometric passports
more forgery-proof, an additional embedding of both taken fingerprints into the digital
photograph in the form of a digital watermark is considered. Such an embedding in turn
must be resistant against intentional changes on the carrier image, and also against ran-
dom bit flips. Thereto on the one hand redundancy is necessary, and on the other hand a
strong embedding of the minutiae data into the carrier image. Such an embedding tech-
nique was introduced in [Jain02]. However, since the digital passport photographs are of
very small size, an embedding of both fingerprint templates using this technique is not
possible. Hence, the task of this thesis is to compress the fingerprint minutiae templates.
Since the minutiae can be represented as d-dimensional points in absolute coordinates,
thereto especially graph-theoretical approaches are going to be taken into account. The
main idea is, to store the minutiae by means of a subset of their difference vectors, trust-
ing that this representation uses a fewer number of bits than the original template.

Such a subset is for instance given by the edges of a spanning tree. In order to determine
a spanning tree on the minutiae of a given template, different approaches were analyzed
and implemented within this thesis. A first and very simple approach uses a directed
minimum spanning tree. The second and main approach uses some kind of dictionary
encoding, in which a small set of so-called reference vectors is going to be stored. Then
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the edges of that tree can be represented by a reference to a dictionary entry together
with a small correction vector. Since in this case the dictionary entries must be stored as
well, a possibly small set of reference vectors is to be found. In order to determine the
smallest possible set of dictionary entries from a large set of previously determined ones,
a variant of the directed minimum label spanning tree [Chang96] is going to be applied.
Finally the third and last approach turned out to be a special case of the second one,
where only one dictionary entry is required, namely an offset vector. Hence, on the set of
minutiae a tree is sought, in which the edges can be represented by the greatest common
offset, and thus only some small correction vectors have to be stored. For solving this
problem the directed weight balanced spanning tree [Gupta04] will be applied.

In order to analyze and implement these approaches, heuristic algorithms were devel-
oped and a framework using the C++ language was implemented. Whereas conventional
compression  techniques,  such as  ZIP,  consistently  enlarge  the size  of  the given tem-
plates, the analyzed approaches achieve a reduction of up to approximately 20%.

The main  ideas,  algorithms  and  results  are  going  to  be  presented  within  this  thesis.
Thereto the next chapter will give a short overview about biometrics, whereas in chapter
3 a more detailed description about fingerprint recognition will be given. Chapter 4 will
refer  to  the concrete problem and will  present the application background as well  as
common compression techniques, such that a differentiation to the approach of this the-
sis can be given. Then in chapter 5 the approaches will be introduced in detail, whereas
in chapter 6 the implemented algorithms will be explicitly described. Moreover the im-
plemented framework is going to be briefly introduced in chapter 7. Finally the test data
and results are stated in chapter 8.



Chapter 2 - Biometrics

”A chain is only as strong as its weakest link.“
Saying

Already in ancient Egypt when grain was delivered, or contracts were concluded, hu-
mans were confronted with the problem of authenticating unknown people. For this pur-
pose visible body characteristics, such as eye color, body height, scars or even the com-
plexion of a person were used. However other nations, like the Chinese or the Babylo-
nian, were also familiar with these individualizing traits. Thus Assyrian potters marked
their clay vases with their fingerprints.

Nowadays the task of recognizing people is no longer restricted to humans. As part of the
process of the technological evolution we ever more frequently have to prove our iden-
tity to technical systems. Be it in order to withdraw at cashpoints, to order goods in the
web, or even to get permission for entering a specially secured area. There exist various
means to identify oneself to a human or a machine [BioBSI07]:

• Knowledge. Everything a person can know, such as passwords, personal identification

numbers (PIN), and even watchwords, how they are often used by military, in order to
distinguish between friends and enemies.

• Possession. Things a person can possess, e.g. keys, key cards or identity cards.

• Being. All physiological and behavioral characteristics of a human.

Currently, a lot of authentication methods are based on knowledge and possession. How-
ever, it can never be guaranteed that a person is really the one who he claims to be, since
knowledge and possession can get into the wrong hands. Because biometric traits prom-
ise a greater certainty in people recognition, biometric systems get more and more attrac-
tive. An advantage of such systems consists in the fact that characteristics and behaviors
are strongly bound to its owner and cannot be removed under normal conditions.

First biometric systems are available since the 60s in the form of fingerprint recognition
systems. In the 70s hand geometry scanners followed, and since the 80s there is ongoing
research on iris and retina scans [BioBSI07]. With continual development such systems
gain more and more significance, even on the private sector.

The following section will give a short introduction to biometrics, biometric traits and
the authentication process.

2.1 Definitions and Functions

Derived from the ancient Greek language the term biometrics specifies the ”counting and
measuring of living organisms“ [Duden96]. In technical domains this term is often used
instead of biometric identification. However, this is a process similar to the human recog-
nition with the difference that the used sensors can capture characteristics, which hu-
mans cannot, e.g. fingerprints or the retina structure [Heumann06].

The underlying procedure is called biometric process. It covers both, a first collection of
at least one biometric trait, called reference trait, using a compatible sensor, and a com-
parison of this reference trait with a fresh input sample.



12 Biometrics

Thus, a biometric system is nothing else than the combination of hard- and software for
implementing the biometric process.

Finally, the goal of each biometric identification is to prove or disprove the identity of a
person by means of biometric traits. For this purpose biometric systems can provide two
possible functions:

• Identification. In this case a current input sample is compared to all reference traits

that are stored in a database. If there exists exactly one reference trait that is suffi-
ciently equal to the input sample with respect to a predefined threshold, a person is
being considered recognized. Because of the number of comparisons the identification
process is also called one-to-many comparison.

• Verification. In a verification process, also called one-to-one comparison, a current in-

put sample is only compared to a single reference trait. If the person possesses this
reference trait he just has to provide it to the biometric system. Otherwise he must
identify himself to the system by means of knowledge or possession, like e.g. a pass-
word or a personal identification number. Then the system picks out the appropriate
reference trait from its database. Thus, it is only checked, whether the person is really
who he claims to be. One advantage of this function is the possibility of a decentral-
ized storage of the reference traits.

Due to natural  variations  of  human characteristics  and inaccuracies  in the respective
measuring methods only a certain degree of similarity can be determined  [Behrens01].
Hence in both cases a person is only being considered recognized if this degree exceeds a
predefined threshold.

2.2 Biometric Traits

Biometric traits are the amount of all physiological and behavioral characteristics of a
human.

• Physiological (or static) characteristics are for example the body height, fingerprints or

the facial structure. These traits are generally inherited, but they can also result from
randomized processes during the embryonal stage. Under normal conditions they are
subject to only small temporal variations.

• Behavioral (or dynamic) characteristics are based on an active doing. Mostly they are

semiskilled, but they can be inherited, too. The dynamics of a voice, the typing behav-
ior on a keyboard, but also the signature are of this kind.

But not all characteristics are applicable for a biometric identification. Some are more
eligible than others.  Hence, there are different  criteria,  to pick out the best ones  [Be-
hrens01]. Basically, a biometric trait should be:

• universal – that is, that each person should have this specific characteristic,

• unique – this means that this characteristic should differ from person to person,

• permanent – the characteristic should be resistant against aging, and finally

• collectable – that is, that the specific characteristic should be easily ascertainable for

measuring purposes.
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A biometric trait is being rated as perfect, if it fulfills all these criteria. Especially due to
temporal variations of dynamic characteristics, and a relatively easy possibility to imi-
tate them, static characteristics seem to be more eligible to a biometric identification pro-
cess.

2.3 Biometric Identification Process

Independently from the used biometric trait and the desired function, i.e. verification or
identification, the biometric process can be split up into three subprocesses. In order to
recognize a person, he must be already registered to the biometric system. This happens
during the so-called  enrollment. Thereby the desired biometric traits are captured and
stored as reference traits. If this person must identify himself at a later date another trait
collection takes place. Afterwards the stored trait and the freshly acquired input sample
are compared. The result of this matching process indicates whether the person could be
successfully identified or verified, respectively.

2.3.1 Trait Collection

During the trait collection process at least one physiological or behavioral characteristic
is captured by a capable sensor. Depending on the further use, the obtained raw data
(like e.g. an image) may either be used directly,  or an optional  feature extraction and
template generation takes place.

Templates are mainly used if only marginal disk space is available. For a template gen-
eration the raw data is scanned for characteristic features, which are finally stored into a
file. In case of fingerprints, such features are e.g. the number, position and type of certain
points of the finger ridges.

2.3.2 Enrollment

The enrollment is the most important process of a biometric identification. It covers the
initial trait collection on the one hand and the storage of the captured data on the other
hand.

Figure 1 - Trait collection: By means of a suitable sensor a biometric trait is acquired, that optionally
can be scanned for characteristic features, which are in turn used for the template generation.

Figure 2 - Enrollment: The acquired traits are stored e.g. in a database or on a smartcard.
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With respect to a good recognition rate, the biometric traits must be taken under best
conditions, e.g. according to lighting. Mostly, they are captured more than once, because
a later recognition should be even possible if the conditions during the respective collec-
tion process are much worse  [Heumann06]. Subsequent to the initial collection phase
the captured traits, the so-called reference traits, are stored for example in a database or
on a smartcard. This depends on the further use. In case of an identification the data is
most likely saved into a database. For verification purposes the reference trait may be
stored on a smartcard.

2.3.3 Matching

The result of the matching process finally indicates whether a person could be success-
fully identified or verified, respectively. The process itself depends on the recognition
function.

• Identification. Subsequent to the trait collection phase the captured input sample is

compared to all  reference traits  in the database of the biometric system. If there is
found exactly one sufficiently equal trait according to a predefined threshold the sys-
tem returns a successful identification. Otherwise a recognition is not possible.

• Verification. Here the biometric system first has to obtain the reference trait belonging

to the user. If the user for instance possesses a smartcard on which the reference trait
is stored, he could provide it directly to the system. Otherwise he somehow has to un-
veil his identity, e.g. using a password or a PIN. In that case, the biometric system
picks out the respective reference trait from its database. Finally, the obtained trait
and the captured input sample are compared. If the computed similarity exceeds the
predefined threshold, the user is being recognized successfully.

The predefined threshold is responsible for proving or disproving the identity of a per-
son. But it is also responsible for the efficiency of a biometric system.

Figure  3 -  Matching (Identification):  A fresh input sample  is compared  to all  reference traits
contained in database. The person is identified if exactly one corresponding trait is found.

Figure  4 - Matching (Verification): Parallel to the trait collection the user unveils his identity to
the biometric system by means of knowledge or possession.  In doing so, the system is able to
acquire the reference trait belonging to the user, and hence only these both traits are compared.
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2.4 Requirements of Biometric Systems

How efficient  a  biometric  system  works,  depends  not  only  on  the  kind  of  the  used
physiological or behavioral characteristics but also on the recognition precision of the
system itself. An exact match of two isomorphic images is not possible, since biometric
characteristics  are subject to temporal  variations.  And also changes in lighting condi-
tions, make-up, carrying of a beard or a head coverage make each captured trait unique.
As a result only a certain similarity can be determined. Depending on a threshold and
the computed degree of similarity the biometric system proves or disproves the identity
of a person. Due to this threshold, non-isomorphic characteristics can be recognized as
identical, and vice versa. Hence, the efficiency of a biometric system can be determined
according to some basic rates, which e.g. specify the number of incorrect or correct rec-
ognized persons. The most important are:

• FMR (False Match Rate) – which specifies the percentage of wrongly accepted per-

sons, and

• FNMR (False Non-Match Rate) – which indicates the percentage of wrongly non-ac-

cepted persons.

Besides  the  efficiency there  exist  more  requirements,  that  a  biometric  system  should
meet. Hence such a system should be [Behrens01]:

• technically  realizable – it must be possible to distinguish a sufficiently large number

of persons, 

• cost-effective – the costs must be appropriate and sustainable,

• resistant against circumvention – the system should be robust against direct attacks

that are able to outwit the system, and finally

• acceptable – the user must be willing to use the specific physiological or  behavioral

trait in a recognition process.

After giving a short survey about biometrics, the following chapter will give, with regard
to the task of this thesis, a more detailed overview about the biometric recognition proc-
ess by means of fingerprints.





Chapter 3 - Fingerprint Recognition

„The most secure locked door is that, which can be left

open.“
Chinese Saying

With regard to the biometric identification process fingerprints can be classified as per-
fect. Although they are nothing else than the impression of the epidermal ridges of a fin-
ger tip. These so-called dermal papillae evolve from randomized processes during the
embryonal stage and remain a whole life long. Since lots of inspections on millions of
fingerprints have been performed by experts (beneath them Faulds and Galton), they are
being considered unique. But this assumption is only based on the fact, that until now
no two individuals  have been found,  having the same fingerprints  [Maltoni03].  Even
identical twins are supposed to have different ones.

Under normal conditions every human (but also a huge amount of other mammals) has
fingerprints.  But there are exceptions that are for example based on genetical defects,
skin diseases and also on exterior influences, such as cutting damages or abrasion by me-
chanical work.

The individuality of a fingerprint results from the texture, arrangement and orientation
of the dermal papillae. These form on the one hand large-scale patterns, like e.g. arches,
whorls or loops, and on the other hand these lines themselves are littered with tiny char-
acteristics, the so-called minutiae. That are for example sudden ridge endings, ridge bi-
furcations and also sweat pores.

The usage of fingerprints for identification purposes reaches back to Babylonia, Assyria,
China and Japan. And already in ancient India contracts were signed with fingerprints.
However, a wide-spread use began not before the end of the 19th century.

3.1 History of Fingerprints

First scientific research on fingerprints was performed in the late sixteenth century by
the English plant morphologist Nehemiah Grew, who published a paper in 1684 about
his systematic studies on the ridge, furrow and pore structure of fingerprints. Further re-
search on the anatomical formations of fingerprints by Mayer in 1788 and a first classifi-
cation scheme by Purkinje in 1823 followed [Maltoni03].

But a British colonial civil servant named Sir William James Herschel, grandson of the
astronomer Sir Friedrich Wilhelm Herschel, was the first European with the idea to dis-
tinguish people by means of their fingerprints. In 1858 he introduced the dactyloscopy
(Greek:  daktylos – ”finger“,  skopein – ”to view“) in Calcutta in order to prevent identity
swindle in the payment of pensions  [Beavan01]. For that purpose a fingerprint of each
pensionable Indian was collected. All future payments had to be signed by a new im-
pression of the same finger. This procedure was also introduced in Indian prisons in or-
der to guarantee the identity of exhibited convicts. In the course of time Herschel col-
lected that way several thousand fingerprints. Due to the practical success of the dactylo-
scopy he tried to implement this procedure in the entire British empire. However, he re-
mained without success.
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Henry Faulds lived in Japan and in about 1870 he took notice of prehistoric potteries that
were marked with fingerprints. He started to analyze those skin furrows. However, his
research were focused on ethnological differences. Therefore he collected fingerprints of
various nations, even from apes [Ihmor03]. In doing so he discovered different patterns
in the center of each fingerprint, which he called loops, arches and whorls. Thereupon he
developed a classification system, the so-called Henry System, that is still today used by
experts to compare fingerprints. In 1880 he published an article in the scientific newspa-
per "Nature" where he discussed fingerprints as a mean for people identification. He also
pointed out that fingerprints being left on a crime scene might convict offenders or dis-
burden suspects. His efforts to convince criminal investigation departments from diverse
countries of his idea, including the Scotland Yard, remained yet unsuccessful.

Also Francis  Galton examined differences between fingerprints  from different nations
and races. Eventually he came to the conclusion that there exist none. In 1888 he was
delegated by the British colonial government to develop an uncomplicated system for
people  identification.  But  before  the dactyloscopy could be used for  police  purposes,
some questions had to be answered [Galton03]:

• Are the epidermal ridges resistant against aging?

• Are the differences  between all  fingerprints  sufficiently  large  so  that thousands of

criminals can be easily distinguished?

• Assuming that a fingerprint is already contained in a card index. A second one of the

same finger is supposed to be inserted into that index, too. Is there a classification
possible, so that the already in the index contained fingerprint may easily be found?

Finally, in 1892, with the help of the research results from Herschel and Faulds, Galton
answered to all questions with YES.

A commission that was brought into being in 1887 by the Federal Ministry of Internal Af-
fairs in India in order to prove different possibilities for the identification of criminals,
also took Galton's work into account. In 1897 it came to the result that the dactyloscopy
is most eligible. Thereupon the fingerprint procedure was introduced to entire India [Ih-
mor03].

Faulds, who afterwards was appointed to the position of the chief of the police to Lon-
don, introduced the dactyloscopy in 1901 to England. Other countries followed gradu-
ally.  Among them Saxony in 1903 and France in 1914.

In the 60s, first computer-based systems for detective purposes, the so-called AFIS sys-
tems (Automated Fingerprint Identification Systems), were designed for analyzing and
comparing  fingerprints.  Optical  finger  sensors  succeeded  in  the  80s.  And  also  algo-
rithmic enhancements have been performed, so that the dactyloscopy even became eligi-
ble for people recognition [Behrens01].

3.2 Distinctive Features of Fingerprints

Faulds  supplied  with  his  Henry  System  a  possibility  by  which  fingerprints  can  be
roughly distinguished. Today's classification procedures are based on his system. How-
ever, they consider additional characteristics which result among others from the texture
of the epidermal ridges. Thus, two certain lines in the center of a fingerprint – the type
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lines (see figure 6) – constitute an area that is called pattern area. Within this area large-
scale patterns as well as singularities can be found.

3.2.1 Singularities

These singularities are certain points within the pattern area which result from the ar-
rangement of the epidermal ridges. Thereto belong for example the  delta and the  core
[FingerBSI06].

• A delta may be configured by two diverging dermal papillae which form the Greek let-

ter ∆ (see figure 5A). But also a bifurcating epidermal ridge to whom another convex
ridge comes from a third direction may form such a delta (see figure 5B and 5C)). Be-
cause of its location near to the margin of the pattern area a delta is often called outer
boundary. A fingerprint may contain one, many, or no delta.

• The  core of a fingerprint is commonly a freely chosen point between the type lines

that represents the center of  the respective pattern (see figure  5A + 5B).  If  there is
more than one pattern, a point within the center of all is chosen (see figure 5C).

3.2.2 Patterns

Large-scale  patterns,  which  were  described  by  Faulds,  can  be  classified  into  loops,
whorls and arches [FingerBSI06].

• A loop is characterized by several epidermal ridges, which curve within the pattern

area and return to the side from which they came. In doing so, the papillae either trav-
erse the imaginary line between the core and the delta or they are tangent to it (see fig-
ure 6). Depending on the direction of a loop a distinction into a left or a right loop is
performed. About 60 – 65% of all human fingerprints belong to this category.

• A whorl is characterized by two facts: On the one hand at least two deltas must be

available. On the other hand the dermal papillae in the center of the pattern area must
constitute a whirl. Depending on the declination and the number of whirls a distinc-
tion into  plain,  central pocket and double loop whorls can be made. To this category
belong about 30 – 35% of all fingerprints.

• The arch pattern occurs in less than 5% of all cases. It can be subclassified into plain

and tended arches. Plain arches are characterized by epidermal ridges that run almost
parallel from one side of the impression to the other without forming a delta. How-
ever, the curve of the dermal papillae in a tended arch is so strong, such that a delta is
formed.

Fingerprints can be categorized by means of singularities and patterns. That is why these
features are especially used in systems, where a huge amount of fingerprints has to be
compared (e.g. AFIS). However, in automated access control systems mostly a pure mi-
nutiae match is performed.

Figure 5 - Some delta & core configurations.
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3.2.3 Minutiae

Minutiae are  those points  which give individuality  to each fingerprint.  They are  tiny
characteristics of the epidermal ridges. The most frequent ones are:

• Ridge Ending and

• Ridge Bifurcation.

Both are certain points,  where a dermal papilla  either ends or bifurcates  into two (or
more) branches. But there are much more types, like e.g. ridge crossings, bridges or even
sweat pores. A total of about 150 different kinds is known [Maltoni03]. A complete fin-
gerprint typically contains between 40 and 100 of such minutiae.

A representation is usually given by a position, i.e. a point p = (x, y) in a coordinate sys-

tem, a type  t and an orientation angle  , which is measured counterclockwise between

the horizontal  x-axis and the tangent to the epidermal ridge in the point  p. Hence, in a

mathematical way a minutia can be understood as a vector m = (x, y, , t).

All minutiae together establish a template T = (m1, ..., mn) that is used for the comparison
of  fingerprints.  Templates  are  stored  binary.  For  that  purpose  there  are  various  stan-
dards,  like  BioAPI 1.1,  that  is  based  on  the  American  standard  ANSI/INCITS,  or
ISO/ICE 19794-2:2005  [ISO19794-2],  which  is  based  on  DIN V66400  [DINV66400].
Therein 5 bytes are needed to store a single minutia. Another more compact storage for-

Figure 6 - Various kinds of fingerprint patterns, type lines, deltas and cores.
(Fingerprint images taken from the FVC2004 Database DB1_A, see [FVC04])

Figure 7 - Minutiae representation and types
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mat is also defined in the ISO standard, in which only 3 bytes are used. Additional data,
such as the number of minutiae or the size of the template, are stored as metadata.

3.3 Fingerprint Analysis

The biometric identification process was already described in chapter 2. A recognition
by means of fingerprints is very similar to this. First an image of the finger is gathered.
All features, that are needed for the matching process are extracted from that image and
afterwards compared with the stored reference traits. The choice of the capturing method
as well as the following image processing techniques are significantly responsible for the
quality of the extracted features, and hence for the result of the authentication process.
Therefore the following sections will give a short introduction to some capturing tech-
niques, feature extraction steps and the final matching process.

3.3.1 Image Acquisition

There are two basic techniques for acquiring an image of a fingerprint,  off-line and on-
line. In both cases a gray-scale image is produced, in which the ridges appear dark and
the furrows light.

Off-line Sampling

For an off-line recognition the finger is coated with color and afterwards evenly unrolled
on a document from one nail side to the other. This off-line print is subsequently digital-
ized with the aid of a scanner or a digital camera.

Due to the evenly unrolling of the finger the whole ridge information is visualized, in-
cluding the patterns, singularities and minutiae. Nevertheless, this technique may lead to
distortions.  Also unavailable feedback possibilities for quality assurance purposes dis-
qualify this technique for instance for automated access control systems.

On-line Sampling

The on-line sampling techniques are much more important for an automated biometric
recognition. Here a person puts his finger on the surface of a sensor. Thereby only parts
of a fingerprint are acquired. But quality assurance can be performed during the acquisi-
tion, due to a feedback to the image processing component is available. Analogously to
the off-line sampling image distortions may occur. The quality of  a sensor finally de-
pends on its ability to deal with different skin properties, such as dryness, wetness or
even dirt. According to [Maltoni03] current sensors can be subclassified into:

• Optical Sensors. This kind of sensor is currently the most popular one. The user puts

his finger on the transparent glass layer (prism, fiberglass) of the sensor, such that the
epidermal ridges are in direct contact with the sensor. A light-emitting source within
the sensor illuminates the glass layer from beneath in a way, such that the rays of
light are reflected only by the dermal papillae but not by the furrows. The returning
rays are captured by light sensitive elements, like for instance photo diodes. All cap-
tured information is  finally  used for  creating a gray-scale  image of  the fingerprint.
Since the finger is always put directly on the sensor, the surface is frequently con-
taminated and hence must be cleaned from time to time. Another disadvantage is the
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possibility to outwit the system by means of an artificial finger. However, images of a
high resolution (up to 500dpi) are possible.

• Solid-State Sensors. Solid-state, or silicon sensors, are composed of a matrix of smaller

sensors, where each one corresponds to a pixel in the final gray-scale image. These
kind of sensors are able to measure various physical values. So they are subclassified
for instance into:

• thermal sensors, which capture the infra-red image of a finger,

• capacitive sensors, where the sensor surface in combination with the skin of a finger

generates a condenser, whose capacity differs according to the skin relief, and

• electric-field sensors, which measure the local differences in the electric field at the

surface of the skin. These differences occur, because the sensor emits small electric
impulses.

These kind of sensors come also into direct contact with fingers and hence must be
frequently cleaned.

• Ultrasound Sensors. Ultrasound sensors measure the distance between the surfaces of

finger and sensor by emitting an ultrasound signal which is reflected by the finger and
finally captured by the sensor. The waves are not reflected by dirt. Furthermore a di-
rect contact to the sensor is not necessary, thus ultrasound sensors are robust against
contamination. The images being returned are of premium quality, but the acquisition
process may take some seconds. And also because of the price and relative size these
scanners are currently ineligible for a large-scale use.

The gray-scale  images  which finally  emerge from the scanning process  are  mostly  of
varying quality. In order to provide a more or less homogeneous basis for feature extrac-
tion, different image processing steps are performed.

3.3.2 Image Processing Steps

The so-called orientation image is a basis for a large number of extraction steps. It repre-
sents the local orientations of the dermal papillae. To create such an image, the gray-
scale image is partitioned into a certain number of blocks, which for example may con-
sist of only one pixel. The local orientation of each block is computed by means of the
epidermal ridge within the respective block, whereas the orientation is the angle between
the horizontal x-axis and the tangent to the ridge. The set of all blocks finally represents
the orientation image. Because of noise in the original image the orientation image can be
very irregular. That is why a harmonization is performed, which adapts the orientations
of the blocks at each other in a way, such that the orientations of neighboring blocks
only differ slightly. This happens under the assumption, that the epidermal ridges un-
derlie a certain regularity.

Orientation images can for example be used for filtering noise, such as sensor noise, cut-
ting damages of the finger, or badly separated dermal ridges. Therefor a frequency image
is created, which represents an estimation of the local density of the epidermal ridges.
For every block of the orientation image a rectangle is constructed  that is vertically ori-
ented to the local orientation line. The frequency is represented by the number of ridges,
which cross this rectangle. 
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There are more image processing steps, like e.g. the increase of contrast, or the segmenta-
tion which separates a fingerprint from the background, such that an extraction of fea-
tures, which may emerge from background noise, can be avoided.

All these steps are performed in order to enhance the quality of an image and finally,
generate a basis for a subsequent feature extraction.

3.3.3 Feature Extraction

The feature extraction is performed in order to find all individualizing features of a fin-
gerprint. While patterns and singularities are mainly used for classification purposes, mi-
nutiae are needed for generating templates.

Pattern and Singularity Detection

One of the most commonly used technique for the determination of singularities and pat-
terns is the  Poincaré method which uses an orientation image as basis  [Basler05]. For
each block [i, j] the Poincaré index is computed over all eight neighboring blocks dk:

Here  ∢(dk, d(k-1) mod 8) defines each time the difference between the orientation angles of

two clockwise viewed neighboring blocks. Since for the summation of the angle differ-
ences directed orientations are expected [Maltoni03] the direction of the first neighboring
block is arbitrarily chosen. The direction of the next block is determined in a way, such
that the resulting difference to the previous block is minimal. It has been proven that the

Poincaré index on closed curves only adopts the values 0°, ±180° and ±360° [Maltoni03].

Hence for the pattern recognition holds:

• 0° ... the block neither belongs to any pattern nor contains any singularity

• 360° ... the selected block is part of a whorl pattern

Figure 8 - Image processing: A gray-scale image is transformed into an orientation image which is in
turn used for creating a frequency image. Those and further improvements may for instance reduce
noise or increase contrast. (Fingerprint image taken from [Maltoni03])

Figure 9 - Computation of the Poincaré index: On the left side a cutout from an orientation image is
shown, where the orientations of the neighboring blocks of [i, j] are already directed. The formula on
the right represents the computation of the Poincaré index.

P  i , j = ∑
k=0

7

∢d k , dk−1 mod 8  (1)
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• 180° ... the selected block is part of a loop pattern

• -180° ... the selected block contains or is part of a delta

There are more techniques for pattern and singularity detection, which e.g. are based on
local characteristics or even on a partitioning of the orientation image. However, they
will not be regarded in this thesis.

Minutiae Detection

For the extraction of minutiae from a gray-scale image there exist mainly two possibili-
ties. The minutiae are either extracted directly by tracking the epidermal ridges or the
gray-scale image is used for creating a binary image, which is in turn used for extracting
the minutiae [Maltoni03].

In case of a direct extraction from a gray-scale image the fingerprint is understood as a
three-dimensional function. To each point p = (x, y) in the image, f(p) = z is the respec-
tive gray-scale value. An epidermal ridge is a set of local maxima of those gray-scale val-
ues.  The minutiae are determined by tracking the dermal papillae.  The tracking algo-
rithm starts in an arbitrary point  pi on an arbitrary epidermal ridge and covers a fixed
distance into the direction of the orientation of pi (see figure 10).

The reached point p'i defines the starting point for a local search that looks for the local
maximum  pi+1 on the vertical line to the orientation of  pi, which is in turn the starting
point for the next iteration. This is repeated until the examined papilla ends (ridge end-
ing) or runs into an already analyzed one (ridge bifurcation). Iterated over all ridges, fi-
nally all minutiae should be detected.

In case of extracting the minutiae from a binary image, the existing gray-scale image is
first converted to a black-and-white image. Afterwards a line thinning is performed, i.e. a
normalization step that reduces the width of each ridge to exactly one pixel. Finally the
minutiae extraction is done by means of the so-called crossing number cn(p) of a pixel p,
that specifies the number of lines which run into p. For determining the crossing num-
ber, the neighboring pixels pk are taken into account:

cn p = 1
2

⋅ ∑
k=0

7

∣val  pk  − val  pk−1 mod 8∣  (2)

Here the function  val() specifies the color value of the respective pixel. "0" stands for
white and "1" for black. A pixel p is being recognized as a minutia, if the crossing number

Figure 10 - Extracting minutiae from gray-scale images: After covering a fixed distance starting in a
point  pi into the direction  of  its  orientation a local  search is  performed,  that  looks for  the local
maximum  pi+1 on  the  vertical  to  that  orientation.  That  point  pi+1 is  starting  point  for  the  next
iteration, which are  repeated until the dermal papilla either ends or runs into another one.
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equals 1 (ridge ending) or 3 (ridge bifurcation). Since previous normalization steps may
have added additional artifacts to the binary image, the number of minutiae might be ar-
tificially enlarged. Therefore some succeeding steps are performed in order to filter the
best-known wrong minutiae structures [Basler05].

3.3.4 Matching

Bad image quality or errors resulting from the image processing steps, like e.g. additional
or wrongly filtered minutiae, are some of the problematic facts which may occur during
the matching process. Additionally every impression of a fingerprint is unique, since a
finger can never be put twice on a sensor in exactly the same way. This means that a
matching algorithm should also consider variations in the location or rotation of a finger-
print. But also distortions, differences in the resolutions of the images, or pollution of the
finger that may lead to noisy fingerprint images, can finally influence the matching re-
sults. Currently, there are three common matching methods available [Maltoni03]:

• The  ridge feature-based method is basically used in forensic institutes, because it is

especially qualified for erroneous fingerprints and those of bad quality. The impres-
sions are compared on the basis of  characteristic features, such as orientation, fre-
quency and form of the epidermal ridges. Both other methods can be conceived as
sub-classes of this one.

• The correlation-based matching procedure performs a pixel comparison between the

reference and the input image in various positions and rotations.

• The third method is the minutiae-based one. Here the minutiae are compared on the

basis of their placements and orientations. Since this technique considers a lot of the
problematic issues, it belongs to the most reliable ones, and thus will be shortly illus-
trated now.

As already mentioned, minutiae can be mathematically represented by means of vectors: 

m = (x, y, , t). In turn, templates are nothing else than a vector of minutiae. During the

matching process the reference template T R = m1
R ,  , mk

R is compared to the input sam-

ple T I = m1
I ,  , mn

I  with the aid of two distance measures:

Figure  11 - Extracting minutiae from binary images: After a binarization and thinning of the gray-
scale image the minutiae are extracted with the aid of the  crossing number. A subsequent filtering
step removes wrong minutiae structures. (Fingerprint images taken from [Maltoni03])
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• the Spatial Distance (SD)

sd m j
I , mi

R =  x j
I , x i

R2   y j
I , y i

R2 ≤ r0  (3)

with i = 1 ... k, j = 1 ... n, and 

• the Direction Difference (DD)

dd m j
I , mi

R = min ∣ j
I−i

R∣, 360 ° −∣ j
I−i

R∣ ≤ 0  (4)

If both results are located within the tolerance boxes  r0 and  0, the minutiae are being

considered mated. Since common minutiae matching algorithms do not consider the mi-
nutiae types, they are not mentioned here. However a comparison, that also checks the
types on equality, is conceivable.

In order to determine, how many minutiae of an input sample coincide with those of a
reference template, various mathematical transformations are performed on the position
and orientation vectors of the input template. The most important ones are the relocation
of the x- and y-coordinates as well as the rotation of the orientation vector, but also scal-
ing and all further affine transformations. These transformations are performed until a
maximum number of matching minutiae is found. Mathematically spoken:

max
 x , y , , P

∑
i=1

m

mmmap x , y ,mP  i 
I  , mi

R  (5)

At this,  map() defines a function, which maps a minutia m j
I from the input sample into

m j
I ' according to the transformation rules mentioned above. Thereby x and y are the

relocation of the x and y coordinates and  is a rotation of the orientation vector. Further-

more mm() is an indicator function that returns “1”, if m j
I ' and mi

R match according to the

distance measures SD and DD. P(i) = j finally describes an unknown pairing function be-

tween the input sample and reference template, whereby a minutia mi
R of the reference

template has either exactly one or no respective minutia m j
I  '  in the (transformed) input

sample. But a pairing does not necessarily mean, that both minutiae match according to
the distance measures SD and DD.

Figure  12 -  Minutiae  matching:  Minutiae  from  the  input  sample  TI are  transformed  into  the
coordinates of the reference template TR by a mapping function, in order to find an optimal pairing.
The pairing in figure  12a) is based on the minimum distance. The circles visualize the maximum
spatial distance, i.e. the tolerance box r0, and the gray circles denote successfully mated minutiae.
But a pairing that is based on the minimum distance does not always lead to an optimal solution. If
minutia m1

R in figure  12b) would have been paired with m2
I ' , m2

R would have remained unmated.
Hence also other pairing strategies should be applied in order to comply with equation 5. 
(Images adopted from [Maltoni03])
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Solving the matching problem is trivial, if either the pairing  P or the correct alignment

(x, y, ) is known. In both cases the respective alignment or pairing can be determined

[Maltoni03]. In practice mostly none of them are given, and so the matching problem be-
comes a hard one, since testing all possible pairings and transformations would lead to
an amount of solutions, that is exponential in the number of minutiae. However, there
exist some brute force approaches, see for instance [Huvanandana00].

Approaches, which are based on the pattern matching problem, that is known from the
area of pattern recognition, were extensively studied as well. Thereto belong for instance
relation methods or  operational research solutions. Beneath them the  Hough transform-
based approach is the most promising one, wherein the point pattern matching problem
is converted to the problem of finding peaks in the Hough space of transformation pa-
rameters. Respective approaches for the minutiae matching were for example proposed
by Ratha et al. in 1996 or by Chang et al. in 1997, in which, besides realignment of the x-

and y-coordinates and rotation of , a scaling is considered [Maltoni03].

Further approaches perform an absolute or relative pre-alignment, see e.g.  [Jain97]. But
also solutions, which do not use any alignments have been studied, since realignment
takes a lot of time. Bazen and Gerez proposed a very promising approach, that uses an
intrinsic coordinate system, whose axis run along hypothetical lines, which are defined
by the local orientation of the fingerprint pattern [Bazen01]. The minutiae are therein de-
fined with respect to their position in the orientation field. Translations, displacements
and distortions move the minutiae with the orientation field, but do not change their in-
trinsic coordinates. 

With the aid of the maximum number of matching minutiae it is eventually possible to
determine a similarity between an input sample and the reference template,  which in
turn, if exceeding a predefined threshold, indicates whether two templates are being con-
sidered identical.

After dealing with the topic of biometric identification by means of fingerprints in this
chapter, the next one will give more details about the application background and a gen-
eral problem description.





Chapter 4 - Problem Definition

“If  you  wish  to  preserve  your  secret,  wrap  it  up  in

frankness.”
Alexander Smith

In the course of the change to biometric passports two fingerprints will be stored of every
person,  in addition  to  a  digital  passport  photo.  Ensuring the integrity  as  well  as  the
authenticity of the data however, is a sensitive topic. While a lost or stolen PIN or key
can be replaced,  fingerprints  cannot.  Thus in order  to make biometric  characteristics
widespreadly usable, security of the stored data must be guaranteed. Furthermore must
be ensured, that the biometric features stored in the passport indeed belong to that per-
son to whom in turn the passport belongs. For that purpose digital watermarks seem to
be an eligible mean. Thus, a hidden embedding of both fingerprint templates in the pass-
port photograph could increase the fraud resistance on the one hand, and the authentic-
ity of the data on the other hand [Jain02]. However the size of one photograph of 6 – 20
kilobytes [PassSpec06] as well as the memory requirements for a watermark currently al-
low to embed only one template. With regard to the embedding of both templates, differ-
ent compression methods are to be studied, in order to finally reduce the size of the tem-
plates. Since minutiae as well as the nodes of a graph are represented by vectors, i.e. by
absolute coordinates, the study of graph-based approaches seems to be very promising.
Thereby the compression may be lossy, since two fingerprints of the same finger being
captured at different times are never identical and hence their templates differ. The loss
according to the error rates FMR and FNMR, introduced in section 2.4, should be kept
small, in order to guarantee a secure verification.

The following chapter will give an overview about digital watermarking, common com-
pression techniques as well as current fingerprint compression techniques, in order to fi-
nally present a general approach for solution.

4.1 Digital Watermarking

Digital watermarks can be used for providing digital media, like e.g. images, videos or
text files, with additional information. In comparison with the embedding of metadata,
the information is not simply appended but directly complected to the content. There ex-
ist two different kinds:

• Visible watermarks, which are for instance emblems that are visibly embedded into

images or videos in order to ensure authorship.

• Invisible watermarks are embedded in a way such that no difference to the original

data is recognizable, what means that even the presence of additional information is
not certifiable. Hence, this type of watermarking can be understood as a kind of steg-
anography (ancient Greek: “hidden writing”), that is also often called as ”art and sci-
ence of hiding secret information in harmless appearing data“ [Pfitzmann00].

Since the digital photographs of the biometric passports shall be used among others for
verification purposes [PassSpec06], it is necessary that visible changes are only minimal.
Hence the fingerprint templates are supposed to be embedded in an invisible way, i.e. by
steganographical techniques.
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A steganographical  embedding  of  information  can be basically  understood  as  adding
some kind of noise, in which redundant or irrelevant parts of the carrier medium are
completed or replaced by single bits from the information. An additional private or pub-
lic key is used on the one hand to allocate those parts of the media in which the informa-
tion is embedded, and on the other hand to increase the security in a way, such that no
unauthorized person is able to encode the hidden message.

There  are  several  techniques  for  hiding  information  in  digital  images.  According  to
[Katzenbeisser00] thereto  belong for  example substitution  and domain transformation
systems.

4.1.1 Substitution

Substitution systems replace single bits of the carrier medium with single bits of the in-
formation that is supposed to be embedded. One of the best-known techniques regarding
images is certainly the replacement of the least significant bit (LSB), whereby, as its name
implies, the least significant bit of a byte is replaced with one bit of the information. This
is possible, if the embedding changes the color information of a pixel only negligibly. Im-
age formats that are based on color tables, like e.g. GIF, are hence not applicable for this
method, unless the color tables are sorted in a way, such that similar colors are arranged
close to each other.

Another  substitution  technique  is  based  on  pseudo-random  permutation.  Thereby  a
(pseudo) random key is generated which allocates arbitrary bits in the whole carrier me-
dium, that are in turn replaced by the information bits.

In case of replacing the LSB, a JPEG image of 6 kilobyte size, i.e. 6144 bytes, would allow
to embed up to 6144 bits of information, which conforms to 768 bytes. A fingerprint tem-
plate with 40 minutiae, that is encoded by the compact  ISO standard with 3 bytes per
minutia, would need 148 bytes of disk space, including 28 bytes of header information
[ISO19794-2]. Hence, up to 5 templates could be embedded into one photograph. Thus a
need for compression seems not really obvious. Any subsequent manipulation of the im-
age however, may destroy the watermarked information. And also unintended changes,
like e.g. bit flips, can lead to a loss of information in the embedded templates. Although
at least the latter case can be prevented by including error correction codes, like e.g. par-
ity bits, into the embedded information, the substitution technique does not seem appro-
priate for hiding sensitive biometric data in images, since integrity cannot be guaranteed.

Figure 13 - Watermarking: The single bits of a fingerprint template are embedded in those parts of a
digital photograph, which are allocated by a key. With the aid of a respective key for the decoding
the hidden information can be restored again.
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4.1.2 Domain Transformation

In comparison with the substitution method, the domain transformation replaces whole
parts of the carrier image instead of single bits. So on the one hand the embedded infor-
mation becomes more robust against subsequent intentional changes, like e.g. compres-
sion or converting, but on the other hand bit flips will affect parts of the information
more probably.

In order to embed an information in a photograph by means of domain transformation,

the image is partitioned into a number of blocks, which usually consist of 8 × 8 pixels.

Each of them can hold exactly one bit of information. For this purpose the block is trans-
formed into its frequency domain, for instance by means of a  discrete cosine transform
(DCT) or a discrete Fourier transform (DFT), wherein the changes are performed.

According to [Katzenbeisser00] one domain transformation method is to swap the values
of two previously defined points z1 = f(x1, y1) and z2 = f(x2, y2) in the frequency image in a
way, such that z1 ≤ z2 holds if a “0” has to be encoded, and  z1 > z2 otherwise. After em-
bedding the information the whole block is transformed into its original domain again.

Since however only one bit per block can be encoded, the amount of information that fits
into a photograph is very small. Considering the 6 kilobyte JPEG image again: With a
color depth of 3 bytes the picture consists of 2048 pixels. A block size of 8 × 8 pixels
would lead in an ideal case to exactly 32 blocks. Hence, exactly 32 bits of additional in-
formation might  be hidden in that  photograph.  The encoding of  a  148 byte template
would require an enormous compression, without consideration of any error correction
code. Hence also this embedding technique is not applicable for hiding fingerprint tem-
plates in digital photographs.

4.1.3 Hiding Minutiae Templates in Images

A watermarking technique, that can be directly applied in order to embed the fingerprint
templates, was introduced by Anil Jain and Umut Uludag in [Jain02]. It is robust against
subsequent intentional changes on the one hand, and able to minimize information loss
due to bit flips on the other hand. Thereto an amplitude modulation is performed in the
blue channel of a pixel, since the human eye recognizes changes in that spectrum least of
all [Schmitz06]. With the aid of a key those bits of the image are picked out which even-
tually will contain the information. Similar to the domain transformation, the neighbor-

ing pixels of a pixel p are considered within a 5 × 5 block. But the final changes are ex-

Figure 14 - Domain transformation: A block of the image is transformed into its frequency domain.
Since the value z2 of the point p2 = (x2, y2) is larger than the respective value of point p1, both values
are  swapped,  in  order  to  encode  the  information  “0”  and  hence,  to fulfill  the  condition z1 ≤ z2.
Afterwards the block is retransformed to its original domain.
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clusively performed on the selected pixel. Thus the watermarked pixel  PWM (i, j) is com-
puted using the following formula:

PWM  i , j = P  i , j  2 s−1⋅P AV  i , j⋅q⋅1 
PSD  i , j

A  ⋅ 1 
PGM  i , j

B   (6)

At this  P (i, j) is the selected pixel and  s ∈ {0, 1} the bit that is going to be embedded.

PAV (i, j), PSD (i, j) and PGM (i, j) are with regard to the 5 × 5 blocks the average deviation, the

standard deviation and the gradient magnitude at position (i, j), while q is the embedding
strength. Finally A, as well as B, are the respective weights for the standard deviation and
the gradient  magnitude.  Every  bit  is  redundantly  embedded,  like  e.g.  at  30 locations.
This increases the correct decoding rate.

Decoding is done by determining the differences between the estimated and the real val-
ues of all pixels, in which the same watermark bit is encoded. These differences are aver-
aged and afterwards used for computing an adaptive threshold, which indicates whether
the watermarked bit is either a “0” or a “1”.

The 6 kilobyte JPEG image with its 2048 pixels could include the same number of infor-
mation bits,  what conforms to 256 bytes. Hence, nearly two templates without redun-
dancy could be embedded into that picture. Thus, a compression is clearly necessary.

4.2 Data Compression

A data compression is applied, if either memory requirements  or the volume for data
transmissions shall be reduced. This is done by generating a better representation, in
which for instance redundancies are removed or information is omitted. Basically there
are two different forms of compression:

• Lossless. A compression is lossless, if and only if the original data can be faithfully re-

produced after decompression. For this purpose, mainly redundant information is re-
moved. Text and binary data are classical cases of application for this form of com-
pression.

• Lossy. When data are compressed in a lossy way, a faithful reconstruction after de-

compression is not possible. At this, the reduction is achieved by omitting informa-
tion.  Multimedia  data,  such as music,  videos  or pictures,  are typically  reduced by
lossy compression.

These types are not necessarily independent of one another: In order to increase the suc-
cess of compression both forms can be combined. Since there are lots of standard com-
pression techniques, some of them will below be shortly presented and analyzed of being
applicable for compressing fingerprint templates.

4.2.1 Entropy Encoding

Entropy encoding is a kind of lossless compression. It is commonly used for text files,
but e.g. also finds use in the compression of images. Depending on their frequency in a
document single tokens are encoded by bit strings of varying length. Those lengths, i.e.

the optimal number of bits, is defined by the information content  I = −ld (p), whereby

p  [0, 1] is the relative occurrence frequency in the respective document. The less fre-
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quent a token occurs, the larger its information content and the larger the number of bits,
which are necessary for its encoding, whereas tokens, which occur more often, are repre-
sented by shorter strings. Thus, the total length of the resulting bit string is minimized.
The performance of an entropy encoder can be finally determined with the aid of the en-

tropy H = ∑i=1 pi⋅I(pi), i.e. the better the total number of bits, that are needed for encod-

ing, approximates the entropy, the better the performance.

Huffman Coding

Huffman encoders are classical representatives of the entropy encoders and are regarded
as an improvement of the Shannon-Fano coding  [Leweler87]. Both techniques create a
prefix free code, which means that no code word is prefix of another one. Otherwise the
original  information could not  be clearly restored.  The character  string “ABC” for  in-
stance, encoded with A = 10, B = 01 and C = 0, would result in the bit string “10010”,
which in turn could be decoded as “ACA”. The Huffman code is created by means of a
complete binary tree. The respective algorithm, presented below, constructs verifiably al-
ways the best prefix tree [Cormen07].

In a first step the algorithm determines the occurrence frequencies of all tokens and cre-
ates nodes for all of them in the prefix tree. Furthermore links to those nodes are added
to an increasingly sorted list. In every following step the two nodes with the smallest oc-
currence frequencies are determined with the aid of that list. Their links are removed,
and the nodes are combined to a tree by adding a common root node, which in turn ob-

Figure  15 - Huffman coding: Encoding the string “FINGERPRINT”. Leafs are depicted by squares,
labeled with the respective token and the absolute occurrence frequency. Inner and root nodes are
represented by circles, labeled only with the frequency. After creating a node for each token and
sorting them according to their occurrence frequencies,  in every next step the two nodes with the
smallest frequencies are selected and combined to a new tree, whose root node is labeled with the
sum of the frequencies of both selected nodes. Finally a single prefix tree emerges. The entropy for
this example is 2,914, while the Huffman algorithm creates a code that uses exactly 3 bits per token.
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tains the sum of both occurrence frequencies as label and a respective link in the sorted
list. These steps are repeated until the list consists of only one element, which is eventu-
ally the root node of the created prefix tree. In order to determine the code words, the
edges are labeled. Commonly left branches obtain a “0” and right ones a “1”. The code
word of a token emerges by following the branches to the respective leaf starting at the
root node and connecting the labels of all visited edges to a bit string.

Huffman coding is perfectly applicable for text files but for binary documents, such as
templates, it is less appropriate. Since the character set consists of only two elements,
even different  occurrence frequencies,  like for instance 0 = 25% and 1 = 75%, would
lead to the same number of bits: namely exactly 1. An optimal entropy encoder would

only need H = ∑i  {0,1} pi⋅I(pi) = 0.81 bit per token instead.

Arithmetic Coding

Another kind of entropy encoding is the arithmetic coding, whereby the information is
represented in the form of a number from the interval [0, 1) [Leweler87]. Depending on
the number of tokens this interval gets more and more restricted. Thus the information is
not stored by means of single tokens but as a whole, which allows to approximate the en-
tropy in a better way. Encoding is achieved by dividing the starting interval [0, 1) in as
much subintervals as different tokens exist, whereby the sizes of those intervals conform
with the relative occurrence frequencies of the tokens they represent. Every succeeding
step divides the subinterval of the currently to be encoded token in exactly the same
way. Thereby the tokens are step by step processed in that order in which they occur in
the message. The last token finally defines the interval from which an arbitrary number
is chosen, which is in turn afterwards represented as a bit string.

Just like Huffman coding arithmetic coding is perfectly applicable for text files. However,
if a few amount of tokens occurs relatively often, this kind of coding is even better: A

Figure 16 - Arithmetic coding:  Encoding the string “FINGERPRINT” again. The starting interval [0, 1)
is divided in as much intervals as different tokens exist,  while the sizes conform to the respective
occurrence frequencies of the tokens they represent. The succeeding steps repeat doing that always
for the subinterval of the token which is currently to be encoded.  Averagely 3 bits  per token are
needed in this example.
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document containing only zeros for instance could be stored with a single bit – the num-
ber to encode is “0”, whereas the Huffman coding would need as much zeros as exist in
the document. Insofar an encoding of templates by means of arithmetic encoding seems
to be eligible if the occurrence frequencies of the bits differ enormously.

4.2.2 Dictionary Coders

Dictionary coders are a further kind of lossless compression. As the name implies, a dic-
tionary of strings and tokens is  used.  Instead of the real  tokens the encoded message
holds the respective dictionary entries and in many cases the dictionary itself as well.
The basic idea for this method originates from Jacob Ziv and Abraham Lempel, who in-
vented the algorithms LZ77 and LZ78 in 1977 and 1978. The latest one,  LZW (Lempel-
Ziv-Welch), is an improvement of those both, developed by Terry Welch in 1984, and is
nowadays  used for  instance in the image  format  GIF.  LZW is  based on a dictionary,
which is dynamically created during en- and decoding. Thus, additional disk space for
the dictionary is omitted. Therefore the dictionary is initialized with an alphabet, like
e.g. the ASCII tokens. Commonly each entry is composed of 12 bit, so one dictionary can
hold a total of 4096 entries [Welch84]. The encoding algorithm looks as follows:

The FINGERPRINT example, encoded by LZW, would result in the following dictionary
and code string:

Algorithm 1 - LZW Encoding(S)

Input: S – input string
Output: S' – encoded string

initialize dictionary
prefix p ← read first token of input string S, S'  ∅
while (S contains more tokens T) do

T ← read next token of S
if (pT exists in dictionary) then p ← pT
else

S' ← S' + code(p) // code(p) is the entry in the dictionary for p
add pT to dictionary
p ← T

end if
end while
S' ← S' + code(p)
return S'

Figure 17 - LZW: Dictionary, code string and respective entries for the FINGERPRINT example.
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Since usually every dictionary entry is represented by 12 bit, also this compression tech-
nique is not perfectly fitting for the compression of biometric templates. However some
other kind of dictionary in terms of references to minutiae vectors is imaginable, such
that a few amount of minutiae may act as dictionary entries, and thus encoding is done
by means of a reference together with a small correction vector.

4.2.3 Lossy Compression

A lossy compression is commonly used for videos, images and music in addition to a
lossless compression [Schmitz06]. At this, mostly unnecessary information is omitted.

Since the human ear is only able to recognize frequencies between 20 Hz and 20 kHz
[Fellbaum84],  for  the compression of  music  typically the frequency range is  cut. The
same happens with very silent sounds. But also quantization, i.e. the assignment of sig-
nal values to values from a finite domain, is a further possibility of compression, since
the quantized values can finally be used as dictionary entries. There are two types of
quantization:

• Scalar quantization means, that the original domain is first divided into intervals. Af-

terwards all values from one interval are mapped to a certain value from the finite do-
main, whereas that mapping might be either linear or non-linear.

• A vector quantization always involves several values at the same time and represents

them as a vector. Hence instead of intervals the vectors are mapped to certain values,
like for instance to an Euclidian distance measure.

Compressing images in a lossy way is similar to audio signal compression in terms of the
weakness of human perception. Given that the human eye can only distinguish between
up to 350.000 different colors [Fellbaum03], images can be compressed by quantizing the
color information. And also the frequency domain can be compressed in this way. So for
instance higher frequencies are quantized more coarsely, since a loss of information in
fine image structures appears less disruptive [Schmitz06].

In order to compress videos a further technique is used in addition to the compression of
the single pictures: Normally there are 25 frames broadcasted per second. Thus, it is as-
sumable that successive frames only differ slightly, except of complete changes of scene
of course.  So roughly spoken only  the differences  between the successive images  are
stored. This happens with the aid of so-called motion vectors, which specify to what po-
sition an image block from one frame has moved in the next frame.

An adapted version of that motion vectors could be interesting for the compression of
templates. Assuming that the distance values between those minutiae are smaller than
their absolute coordinate values, it is conceivable to store those differences instead. But
also the idea of vector quantization seems to be relevant. So for instance some distance
vectors might be used as dictionary entries. But there are already existing approaches for
the compression of fingerprints, as well, which will now be shortly presented.

4.2.4 Compression of Fingerprint Data

Fingerprints that are captured off-line, i.e. with the aid of ink on paper, are exclusively
bicolored. These two colors are sufficient for representing all information of the finger-
prints, namely the ridges, furrows, minutiae, patterns and singularities. Police authori-
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ties, such as the Federal Bureau of Investigation (FBI), have collections of off-line prints
consisting  of  approximately  several  millions  of  impressions  [Sherlock96].  In order  to
make those prints comparable by means of computers, they get digitalized. But due to
noise and other processes during the scanning procedure the bicolored impressions turn
into gray-scale images [Zirkind07], that are generally stored with one byte per pixel [Fon-
tenot02]. Since normally two colors are sufficient in order to distinguish between the
ridges and the furrows, the FBI used black-and-white images for the comparison of fin-
gerprints for a long time, and thus found out that removing the gray-scales rapidly wors-
ens the image quality  [Zirkind07]. So the gray-scales are necessary for maintaining the
dermal ridge information of the scanned fingerprints. That is why the images are com-
pressed and stored as JPEG with 256 shades of gray. JPEG compression is based on a dis-
crete cosine transform and reaches a compression ratio up to 1:23, independently from
the kind of the image. But specific features of fingerprint images are therein not consid-
ered and afford a starting point for further compression techniques.

So the compression of fingerprints is an active research area, whereby a large number of
work falls back on wavelets, that are for instance used in the image format JPEG2000,
which in turn is the current standard of AFIS systems. Wavelets are a mathematical tool
for hierarchically representing and approximating functions [Grasemann05]. Commonly

a wavelet  j,i is nothing else than a function, that can be adapted by means of transla-

tion (j) and dilatation (i) coefficients. Thus, by altering the coefficients, a huge amount of
functions  emerges.  The  process  of  dividing  the  function  into  wavelet  coefficients  is
hence stated as  wavelet transform. If those coefficients only adopt discrete values,  the
transform is also referred to as discrete wavelet transform (DWT). The quality of compres-
sion strongly depends on the choice of the wavelet,  since wavelets,  that achieve high
compression results for photographs, must not do so for fingerprints. Hence, since the
begining of the 90s there is a lot of research done on this area. Grasemann and Miikku-
lainen [Grasemann05] have run genetic algorithms on fingerprints in order to find suit-
able wavelets. Sherlock  [Sherlock96] studied optimized wavelets,  and also approaches
that use several  wavelets  for compression,  so-called  multiwavelets,  have already been
studied [Sudhakar05].

A further approach, exclusively developed for the AFIS systems of the FBI, is called GBP
compression and reaches a compression ratio of 1:92 by reducing the number of bits,
that are necessary to store an image. This is done by saving the photographs in three col-
ors instead of 256, namely black, white and gray. Thus instead of 8 bit per pixel only 2
bit are sufficient, whereby at least one necessary shade of gray remains. The tricolored
images are afterwards compressed by a discrete cosine transform [Zirkind07].

But also other compression techniques which are based on the extraction of features, and
hence do not consider the pixel  information,  have been studied  [Chong92]. There the
original gray-scale images are afterwards not restorable. Seen from this angle, templates
that are composed of specific features – the minutiae – can be regarded as another kind
of compression, although they are treated as some sort of notation for the fingerprint data
[Jain02]. Hence, the approach being considered in this thesis will not be a conventional
one, since the already very small templates shall be further compressed, in order to use
them as digital watermarks and for verification purposes, as well.
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4.3 General Approach

As already mentioned, a first idea is to treat the minutiae of a template as points of a
graph and to store the preferably small difference vectors between two points instead of
the absolute coordinates, trusting that those difference vectors can be represented by a
smaller number of bits than the coordinates of the given points. Indeed, in a worst case
one bit per dimension can only be saved if the domain borders of the edges are half as
small as the domain borders of the nodes. Hence two bits per dimension are saved if the
edge domain is quarter as small as the node domain, etc. Nevertheless, obtaining an opti-
mal set of difference vectors is for example possible by means of a minimum spanning
tree, where only those points get connected by an edge, which are close to each other ac-
cording to some distance measure. Furthermore the resulting graph is connected, so all
nodes are reachable by a path.

However the main approach of this thesis is based on some kind of dictionary in which a
small set of so-called reference vectors is going to be stored, such that every difference
vector between two points can be represented by a reference to a dictionary entry to-
gether with a small correction vector. Since also in this case only a subset of the differ-
ence vectors is going to be stored which in turn can be represented by a spanning tree,
this thesis will deal with the compression of minutiae templates by means of directed
spanning trees. Therefore the following chapter will present the different spanning tree-
based approaches in detail.



Chapter 5 - Formalization, Basics and Approaches

“The beginning of all science is wondering why things

are the way they are.”
Aristotle

As  already  known,  fingerprint  templates  T = (m1, ..., mn)  consist  of  a  set  of  minutiae

m = (x, y, , t), which in turn characterize the positions, orientations and the types of cer-

tain points of interest on the dermal papillae of a fingertip. In order to obtain a more
compact and hopefully optimal representation of the template data, the minutiae will be
treated as points of a complete and directed graph. On that graph a spanning tree is going
to be determined and afterwards converted into a bit string representation. This thesis
will therefore deal with several approaches, each of them using another kind of directed
spanning tree.

The first  and probably simplest idea consists  in the determination of a directed  mini-
mum spanning tree (MST). Starting at the root node, in this case the edges are going to be
treated and stored as difference vectors between two points.  The second and actually
main approach will use some kind of dictionary, in which a subset of so-called reference
vectors (in [Chwatal08] referred to as template arcs), is memorized. Representing an edge
in that special context means, holding a link to the respective dictionary entry together
with a small correction vector, so that the target node can be losslessly reconstructed. If
treating the reference vectors as some kind of edge labels, an eligible set of dictionary en-
tries can be determined with the aid of a  minimum label spanning tree (MLST), which
was first presented in [Chang96]. Finally the last solution to be dealt within this thesis, is
to find a spanning tree where all difference vectors of the edges are as equal as possible
with respect to their coordinate values. Hence a common offset vector can be obtained,
such that all edges of that tree are representable by small correction vectors. This offset
vector in turn can be viewed as a reference vector, wherefore this kind of solution can be
understood as a special  case of the MLST approach. However the applied algorithms,
which are going to be used for solution, are based on the weight balanced spanning tree (
WBST) [Gupta04]. Hence besides a general formalization, in this chapter the three intro-
duced approaches will be discussed in detail. But first some graph-related definitions are
presented.

5.1 Graph-related Definitions

A graph G is mathematically viewed a tuple of nodes V and edges E. Although there is a
distinction into directed and undirected graphs, for convenience within this section both

variants will be denoted with G = (V, E). At this V = {v1, ..., vn} with n ∈ ℕ represents the

finite set of nodes. The set of edges E ⊆ V × V is a binary relation on V with E = {e1, , em}

or  E = {ei,j | ei,j = {vi, vj}, vi, vj  V ∧ vi ≠ vj}.  Note  that  for  the  directed  set  of  edges

A ⊆ V × V holds A = {ai.j ∣ ai,j = (vi, vj), vi, vj ∈ V}, and that this notation will be used for di-

rected arcs outside of this section.

In an undirected graph an edge ei,j = {vi, vj} is incident with the nodes vi and vj, and both
nodes are adjacent. The respective edge ei,j = (vi, vj) in a directed graph has a source node
vi and a target node vj. Hence vj is adjacent to vi but not vice versa, if there is no respec-

tive backward directed edge ej,i. The degree (v) of a node v conforms in the directed case
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with the sum of all incoming (indegree +(v)) and outgoing (outdegree −(v)) edges and in

the undirected case with the number of edges that are incident with  v. An undirected

graph is complete, if and only if all nodes vi ≠ vj with vi, vj  V are adjacent to each other.

The same definition shall hold in the directed case. Furthermore, a graph G' = (V', E') ⊆ G

is a subgraph of G, if V' ⊆ V and E' ⊆ E with ∀ei,j  E' | vi, vj  V' holds.

A path p, starting at node v and ending at v', is a sequence of nodes 〈v0, ..., v|p|〉, for which

v = v0, v' = v|p| and ei-1,i = (vi-1, vi) ∈ E with i = 1 ... |p|holds. Thereby the number of edges

defines the length |p|. A path is also called a cycle, if v0 = v|p| with |p| ≥ 1 (directed) or

|p| ≥ 3 (undirected), respectively [Cormen07].

A connected component (CC) is a subgraph G' ⊆ G of an undirected graph G, in which a

path from every node  v ∈ G'  to all  other nodes  v' ∈ G'  exists.  If  G is in turn a directed

graph, then the respective subgraph G' constitutes a strongly connected component (SCC).
Thus G' is also referred to as connected or strongly connected, respectively.

An acyclic and undirected graph is also called a forest. If the graph is additionally con-

nected, then it is a tree T = (V, E). In that case it holds, that ∣E∣ = |V| - 1. A directed acyc-

lic  graph in  turn,  is  also  shortly  called  DAG.  Finally,  in  a  directed  tree one  node  is
marked as root node. It has no incoming edges. Nodes without outgoing edges are called
leafs.  All  further nodes  are  simply  inner nodes.  A  spanning tree is  a graph where all
nodes are connected by means of a tree, and a directed spanning tree has a marked root
node.  Finally  an  arborescence is  a  directed spanning tree on  a directed graph, where
there is a path from the root node to every further node.

Thus,  a  minimum  spanning  tree requires  a  weighted  graph  G = (V, E, w(E)),  whereat

w: E  ℝ is a function on the set of edges, which is also called weighting function. A mini-

mum spanning tree is hence a spanning tree TS = (V, ET), ET ⊆ E of a graph G with a mini-

mum overall weight [Cormen07]:

 (7)

Since all important definitions are introduced now a general formalization for the given
problem can be stated.

5.2 General Formalization

Given is a  directed Graph  G = (V, A)  consisting of  a set  of  points  V = {v1, , vn} with

n ∈ ℕ. These points conform to the set of minutiae of a template T and are part of the dis-

crete  domain  D = {0, , v1 } ×  × {0, , v d },  where  the  values v1 , , v d  ℕ with

d ∈ ℕ specify the domain borders, i.e. the largest values for every dimension d. The goal

is to find a directed spanning tree on that graph and afterwards to transform the tree into
an eligible bit string representation, which is in turn as compact as possible. Thus, a gen-
eral solution consists of three steps:

• Creating  a  complete  directed  graph  G = (V, A)  with  A = {ai.j ∣ ai,j = (vi, vj),  vi, vj ∈ V ∧
vi ≠ vj}.

minimize w T S = ∑
e∈ET

w e
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• Determining a directed spanning tree TS = (V, AT) with AT ⊆ A. Thereto the set of edges

A is treated as a set of difference vectors A between all source and target nodes, i.e.

A = {ai,j | ai,j = vj – vi ∧ ai,j  A}.

• Transforming the spanning tree into a suitable bit string representation.

Since  all  the  data  points,  that  are  contained  in  the  resulting  bit  string,  should  be
losslessly reconstructed, the following section will present the idea of en- and decoding.

5.2.1 Encoding and Decoding

In  order  to  convert  a  directed  spanning  tree  into  a  bit  string,  there  are  three  things
needed to be encoded – the root node, the edges and the tree structure. In this special case
the root node r is converted first of all into the bit string S using a constant resolution.
Afterwards the root node is used as starting point for a depth first search (DFS), that in
turn helps to encode the tree structure and the edges. This is done by first appending a
“1” to the bit string S if the search reaches a non-visited node, and afterwards extending
S with the currently visited edge, which is also encoded in a constant resolution. If the
search returns to an already visited node, a “0” is appended to the bit string. A recursive
algorithm for the encoding of the tree structure and the edges hence would look as fol-
lows:

The method  encode() for encoding the edges depends on the applied approach, so the
concrete realization will be presented in the respective sections.  In order to afterwards
reconstruct all minutiae, the algorithm for decoding processes the bit string step by step.
Since the root node is encoded with a constant number of bits, restoring is done by sim-

Figure 18 - Template compression: After creating a complete directed graph on the set of minutiae, a
directed spanning tree is computed.  In order to translate that  tree into a bit  string,  a depth first
search is performed starting at the root node.  Each time the search reaches a node that was not
visited yet, the resulting bit string is first extended with a “1” and afterwards with the currently used,
binary encoded edge. Otherwise, if the search returns to an already visited node, a “0” is appended .

Algorithm 2 - encodeSpanningTree(T, vi, S)

Input: T = (V, AT) – spanning tree, vi – starting node for the DFS, S – bit string
Output: S – bit string

forall (ai,j = {vi, vj)  AT) do
S  S + “1”
S  S + encode(ai,j)
encodeSpanningTree(T, vj, S)
S  S + “0”

end forall
return S
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ply interpreting the first bits. Decoding all further nodes is shown in the algorithm be-
low. Thereby, the method  decode() is the opposite to  encode() and computes the target
node and the respective edge from a passed source node and bit string of constant size.
Note, that the algorithm internally constructs a tree in order to always obtain the correct
source node for the currently to be decoded edge.

Since the original template as well as the encoded data are afterwards in a bit string rep-
resentation, the success of compression can be expressed as ratio between both numbers
of bits. However, we cannot assume that the original data is optimally encoded, because
there might be further information, such as metadata or even redundant bits. So for the
purpose of comparison some objective functions are going to be introduced.

5.2.2 Objective Functions

A general formula for determining the number of bits of the original data emerges from
template specific metadata (METADATA), further minutiae-dependent information of con-
stant size CONSTDATA, such as offsets, and the minutiae themselves [Chwatal08]:

raw = size(METADATA) + size(CONSTDATA) + n⋅∑
i=1

d

⌈ld v i ⌉  (8)

Here the number of minutiae is given by n, d is the number of dimensions, and v i speci-
fies the greatest value for the specific dimension. Finally, size() is a function that returns
the number of bits, that are necessary for encoding the passed data.

In turn, the respective formula for the encoded data is supposed to be the following:

 = size(METADATA) + size(CONSTDATA') + 2(n – 1) + (n – 1) ⋅ size(encode(a)) (9)

As already mentioned, the function encode() depends on the applied approach and will
be later on described in detail. The size of the compressed data hence emerges from me-

Algorithm 3 - decodeDataPoints(S, nr, na)

Input: S – bit string, nr – number of bits for root node, na – number of bits for edges
Output: V – set of data points

V  ∅, AT  ∅, TS  (V, AT)
V  {v}, whereby v is reconstructed from the first nr bits of S
i  nr + 1
while (i ≤|S|) do

if (Si = 1) then // Si ist the bit at position i
{v', (v, v')}  decode(v, substring( S i1 , S ina

))
V  V ∪ {v'}, AT  {(v, v')}
i  i + na + 1
v  v'

else if (Si = 0) then
v  predecessor of v
i  i + 1

end if
end while
return V
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tadata, the tree structure (2 ⋅ (n – 1)), the encoded edges as well as further information.

METADATA as  well  as  CONSTDATA are  at  this  information  of  constant  size.  Note  that
CONSTDATA' must not be identical with CONSTDATA, since the former one may for instance
contain the encoded root node. What specific information belongs to that data depends
on the one hand on the concrete template  and on the other hand on the applied ap-
proach. Thus, more detailed descriptions will be given when introducing the test data
and presenting the results in chapter 8.

5.2.3 Avoiding Negative Values

Since  the  edges  will  be  treated  as  difference  vectors  between  two  nodes,  i.e.

ai,j = vj – vi = ( ai , j
1 , , ai , j

d ),  the  entries  in  general  might  adopt  negative  values.

Hence, let the domain of the edges be DA = { − v 1 , , v 1 } ×  × { − v d , , vd }, where

the domain borders arise from the given node domain  D.  An encoding of those values
must assure, that a distinction between positive and negative values can be made. So for
that purpose an additional prefix bit would have to be stored for every value. But since
this would unnecessarily enlarge the number of used bits, the following transform of the
edge domain is  going to be applied [Chwatal08]:

ai,j = (vj – vi) mod v (10)

Again  the  vector v =  v 1,, v d represents  the  domain  borders  of  the  set  of  nodes  V.
Hence, after performing the modulo calculation the domain of the edges conforms ex-

actly to the node domain, i.e.  DA = D = {0, , v 1 } ×  × {0, , v d }. Thus, transform-

ing the edge domain at least will not increase the number of bits for encoding.

The approach so far dealt with a lossless compression of the minutiae data. Since how-
ever a lossy approach promises a stronger compression in any case, finally the common
idea will be presented.

5.2.4 k-Node Spanning Tree

The main idea of  lossy compressing the minutiae  data is  to find a suitable subset of
nodes and to create a spanning tree up on them, instead of considering all nodes. Thus, a

k-node spanning tree emerges, whereat  k  ℕ is a predefined value. The computation is

equivalent  to the lossless case:  After creating a complete  directed graph over all  data
points, a directed spanning tree is sought and subsequently converted into a bit string
representation. The difference is, that the algorithm stops as far as a subtree consisting of

Figure 19 - Transform of the edge domain: In order to avoid negative values in the difference vectors,
the edge domain is transformed into the node domain by means of a modulo calculation. On the left
side  an original  edge is  shown,  and  on the right  side  an impression of  the transformed edge is
depicted.
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at least  k nodes has been found. A compression by reducing the number of considered
nodes however, can unnecessarily heighten the error rates FMR and FNMR (see section
2.4). Thus an acceptable tradeoff between compression and error ratio should be found.

Because  the minimized set  of  nodes  can indeed  be identical  with the original  set  of
nodes, all further considerations will refer to the idea of a k-node spanning tree. Hence,
also the number of nodes n in the objective functions will conform to k.

5.3 The Minimum Spanning Tree

A  minimum spanning tree (MST)  TS = (V, ET) is as already mentioned an acyclic,  con-
nected  subgraph  of  a  connected,  undirected  graph  G = (V, E, w(E)),  that  connects  all

nodes v ∈ V by means of a tree. This tree is minimal, if and only if no other tree with a

smaller overall weight w(TS) = ∑e∈ET
w e exists on that graph. Finding such a tree is re-

ferred to as the minimum spanning tree problem. It occurs for example, when designing
electronic circuits or connecting computers. In the graph theory the MST is also a good
mean for solving more complex problems, such as the traveling salesperson route. For
computation there are a few standard algorithms.

5.3.1 Algorithms for Solving the MST Problem

One possibility for determining a minimum spanning tree on a graph is to compute all
possible spanning trees together with their overall weights, and to finally choose the best
one. This brute-force method finds the optimum for sure but is quite inefficient on large
graphs. Hence for the computation so-called  greedy algorithms are used, which succes-
sively create a global solution by always choosing the best local one. This means in the
case of a MST, that beginning with an empty set of edges exactly one edge is added in
every step. Beneath of all possible edges, each time the locally best one is chosen. Greedy
algorithms in general  do not guarantee a globally optimal solution but in many cases
they do [Cormen07], so for example the two best-known ones for solving the MST prob-
lem: The algorithms from Kruskal and from Prim.

Kruskal's Algorithm

For determining a minimum spanning tree on an undirected graph Kruskal's algorithm
starts with a forest of trees, each of them having size one. By adding an edge to the solu-
tion in every iteration step always two trees are combined to a new one. Therefore be-

Figure  20 -  Lossy  template  compression:  On  the  complete  graph,  that  is  induced  by  the  set  of
minutiae, a spanning tree consisting of at least k nodes is computed.
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neath of all edges that are able to connect two trees, that one having the smallest edge
weight is selected, and thus always the best local solution is taken.

In the above algorithm a union-find data structure is used, in order to determine whether
an edge is capable of connecting two trees. Thereby each set contains exactly one tree.
This  is  made  sure  by first  assigning  every  node  to  a  separate  set  using  the function
make_set(), and afterwards successively inserting those edges that connect nodes of dif-
ferent sets. Otherwise there would be cycles formed within the components. The func-
tion find_set() thereby returns the representor nodes of the sets, to which vi and vj belong
to.  Both affected  sets  are  afterwards  united  to  a  new combined  set  by  means of  the
union() function. Sorting the edges according to their weights causes their processing in
the respective chronological order. Thus always the best local edge can be chosen. The
currently  best-known  implementation  of  Kruskal's  algorithm  provides  a  runtime  of
O (m log n) [Cormen07].

Prim's Algorithm

Prim's algorithm is another greedy algorithm. Compared with Kruskal's one however, the
greedy  strategy  consists  in  successively  extending  an  existing  tree  instead  of  always
merging two components. Therefore in every step a non-cycle forming edge with mini-
mal edge weight is added to the solution until finally a spanning tree emerges.  The algo-
rithm (5) below, taken from [Cormen07], uses a priority queue for the purpose of an effi-
cient implementation.

First of all the priority queue is initialized with all nodes of the graph, and their respec-

tive key values are set to ∞, except for the root node, which obtains the value 0. Thus,

the root node is the first one being processed. Thereby all nodes adjacent to vi, that are
still contained in the priority queue and whose key values are larger then the weight of
their respective edge, get a predecessor node and a new key value assigned. Eventually, if
the priority queue is empty, every node, except the root node, has obtained exactly one
predecessor  node.  Hence  the  set  of  minimum  spanning  tree  edges  emerges  from

{(v, (v)) | v  V \ {vr}}. An efficient implementation of the priority queue, like e.g. as Fi-

bonacci heap, results in a runtime of O(m + n log n).

Algorithm 4 - Kruskal-MST(G)

Input: G = (V, E, w(E)) – an undirected, connected graph
Output: ET – a set of edges inducing a minimum spanning tree

ET  ∅
∀v  V: make_set(v)
sort all edges e  E increasingly by their weights w(e)
forall ((ei,j = {vi, vj})  E) do

if (find_set(vi) ≠ find_set(vj)) then
ET  ET ∪ {ei,j}
union(vi, vj)

end if
end forall
return ET
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Both algorithms expect a weighting function. However the minutiae templates only con-
sist of a set of d-dimensional points. Thus the edge weights still have to be defined.

5.3.2 Edge Weights

With regard to the above algorithms a minimum spanning tree is determined by succes-
sively adding those edges to the solution, whose weight is as small as possible. Concern-
ing the minutiae templates those edges are sought, which connect in terms of their spa-
tial distance close together lying minutiae. Since that distance depends on d dimensions
a one-dimensional representation should be found. In order to map the  d-dimensional
difference vectors to a one-dimensional edge weight, beside of the maximum metric with

max {∣v 2
1−v 1

1∣,  ,∣v 2
d−v 1

d∣} for  instance  distance  functions or  even  similarity  measures

seem to be an eligible mean.

Distance Functions

A distance  function  maps the features  of  two objects  to a  non-negative,  real  number
[Schmitt05]. The distance is “0” if both objects exactly conform to each other. In case of
d-dimensional points the features are the individual coordinates. A classical representa-
tive for such a distance function is the Minkowski metric [Ferber03]:

mm(v1, v2) = 
m∑

i=1

d

∣v 2
i −v 1

i∣m
(11)

The Manhattan distance emerges if setting m = 1, whereas m = 2 results in the Euclidian
distance. Note that the Minkowski metric exclusively considers the absolute value of the
spatial  distance between a source and a target node, which means that the difference

vector ai,j = (5, 1) for example has the same distance as ai,k = (1, 5), although it is dif-

ferently oriented. Thus in order to minimize the total number of encoding bits the orien-

Algorithm 5 - MST-Prim(G, r)

Input: G = (V, E, w(E)) - an undirected, connected graph, vr  V – root node
Output: ET – a set of edges defining the MST

forall (v  V) do
key[v]  ∞ // key[v] is a weight
(v)  NIL // (v) is the predecessor node

end forall
key[vr]  0
Q  V // Q is a priority queue
while (Q ≠ ∅) do

vi  extract_min(Q)
forall (vj ∈ V ∣ ei,j = {vi, vj} ∈ E) do

if (vj ∈ Q ∧ w(ei,j) < key(vj)) then
(vj)  vi

key(vj)  w(ei,j)
end if

end forall
end while
return ET  {(v, (v)) | v  V \ {vr}}
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tation of the edges might be of interest as well. Edge ai,l with ai,l = (6, 1) instead of  ai,k

would for instance lead to a higher compression rate. Hence for considering equally di-
rected edges similarity measures might be an appropriate edge weight, too.

Similarity Measures

A similarity measure is a function, which assigns a real number from the interval [0, 1] to
a pair of objects or points, respectively. Thereby “0“ stands for no and “1” for a complete
match. Information retrieval is the major field of application, where the feature vectors of
documents or other objects are compared in order to determine the degree of similarity.
Typical measures are the cosine,  Dice, overlap and Jaccard measure [Ferber03]. For use
as edge weight the  pseudo-cosine measure seems to be most capable. Here those edges
are being considered similar, which are almost equally directed [Ferber03]:

pcos(v1, v2) = 
∑
i=1

d

v 1
i ⋅v 2

i

∑
i=1

d

v 1
i ⋅∑

i=1

d

v 2
i 

(12)

Thus, the similarity of two nodes is basically defined by their scalar product, while their
spatial distance is not considered. However, in order to use the pseudo-cosine measure
as  weighting  function  in  the  MST  algorithms,  w(ai,j)  must  be  computed  as  follows:
w (ai, j) = 1 – pcos(ai,j). After introducing the minimum spanning tree, algorithms for deter-
mination and possible weighting functions, the formerly given general formalization of
the compression problem will be adapted to the minimum spanning tree.

5.3.3 Compressing Templates Using a Minimum Spanning Tree

For a given complete and directed graph G = (V, A) the solution consists in

• an eligible weighting function w(A), and

• a preferably optimal directed minimum spanning tree TS = (V, AT) on G with AT ⊂ A.

For implementation beside of the maximum metric the Minkowski metric with  m = 2
and m = d will be analyzed as weighting functions. Furthermore the following objective
function will hold for the compressed data:

size(encode(a)) = ⌈∑
i=1

d

i⋅1  ld ai  1−i⋅ld v i⌉ (13)

Note that ai and v i define the respective  domain borders of  the difference vectors  and

nodes at coordinate  i. Also note that the domain borders of the difference vectors con-

form to DA, see section 5.2.3, which means that in this case negative edge values are go-

ing to be allowed. Furthermore  i is a  characteristic function [Chwatal08] which speci-

fies, whether dimension  i  is considered for compression (i = 1) or not (i = 0). In the

latter case the respective coordinate value of the target node must be additionally en-
coded. Finally must be mentioned that the above algorithms for determining minimum
spanning trees can only be applied to undirected graphs. Thus some adaptations are nec-
essary. How these will look like in particular, is going to be described in the subsequent
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algorithm chapter. But first the main approach of this thesis, which is based on the mini-
mum label spanning tree problem, is going to be presented.

5.4 The Minimum Label Spanning Tree

Sometimes a spanning tree is sought that in a certain manner is as uniform as possible. A
typical example therefore is the design of communication networks where many differ-
ent transmission media can be used. Besides copper-cored cables such media are for in-
stance fiberglass or even microwaves. A node of that network may communicate with
other nodes using different transmission media. If treating this network as a graph, the
communication media represent the edges that are depending on their types differently
labeled. In order to save costs for construction and in order to minimize the network
complexity it is very useful to use a minimum of different media, i.e. retaining the net-
work regarding the transmission media as uniform as possible. Thus, Chang and Leu pre-
sented in 1996 the minimum label spanning tree (MLST) which can be used for solving
such problems [Chang96].

Hence formally speaking, an undirected graph G = (V, E, l(E)) is given, where l:E  L with

L = {l1, , lk} is a function, that assigns at least one label from L to every edge e ∈ E of G.

On that graph a spanning tree TL = (V, ET, LT) is sought with ET ⊆ E, LT ⊆ L and LT ≠ ∅, such

that the number of elements in LT is minimal and every edge e ∈ ET has assigned at least

one label l ∈ LT. There are already various algorithms for solving that problem, and thus

some major ones will be shortly presented.

5.4.1 Algorithms for Solving the MLST Problem

The minimum label spanning tree problem is considered being NP-complete [Chang96].
Hence exact algorithms can only perform well on small graphs. That is why lots of algo-
rithms have been already studied that do not necessarily return an optimal but a suffi-
ciently good solution in an acceptable time. Thereto belong besides heuristic algorithms
for instance also genetic ones.

An Optimal Algorithm

In [Chang96] the authors introduced an optimal algorithm based on an A* search, which
is a special kind of the best first search algorithms on a graph G. In this special case the

next label l  L to be added to the solution is selected with the aid of an evaluation func-

Figure 21 - Minimum label spanning tree: On the left side a labeled graph is depicted, on which a
MLST is going to be determined. Figures A), B) and C) show different solutions, whereat only variant
A) is optimal. (Figures adopted from [Xiong04])
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tion f(l) = g(l) + h(l) [Russel04], whereat g(l) specifies the number of already used labels.
The heuristic function h(l) in turn computes the estimated number of labels that are at
least still necessary for obtaining a spanning tree. Insofar the heuristic function does not
overestimate the number of labels, the  A* algorithm is considered being complete and
optimal [Russel04].

Note, that in the above algorithm the initial solution is an empty set of labels for which
holds  g(ls) = 0. In turn for that label  lt, that eventually produces a spanning tree, holds
h(lt) = 0.  Experimental  results  have  shown,  that  the  presented  algorithm  works  effi-
ciently  and  that  the  heuristic  function  h(l)  can  be  computed  in  polynomial  time
[Chang96].

Maximum Vertex Cover Algorithm

In addition to the optimal algorithm Chang and Leu introduced two heuristics. One of
them, the Maximum Vertex Cover Algorithm (MVCA), is a construction heuristic, where
in every iteration step a label with its corresponding edges is added to the solution. The
runtime of that algorithm is O(lmn), whereat l is the number of labels, m the number of
edges and n the number of nodes in the considered graph G. In [Krumke98] the authors
presented an approximation algorithm that is based on that MVCA heuristic. They found
a  logarithmic  performance  guarantee  of  (2 ln n + 1),  which  Wan  et  al.  improved  to
(ln (n - 1) + 1) in  [Wan02]. A tighter bound which depends on the label frequency of a
graph bounded by b was obtained by Xiong et al. in [Xiong05]. In worst case the bound

of the MVCA is the bth harmonic number H b = ∑i=1
b 1

i .

Algorithm 6 - OptMLST(G)

Input: G = (V, E, l(E)) – an edge-labeled, undirected graph with l:E  L = {l1, , lk}
Output: TL = (V, ET, LT) – the obtained minimal label spanning tree with ET ⊆ E and LT ⊆ L

lB  ls, LT  ∅ // ls = ∅ is the initial set of labels
OPEN  {l} // the set of generated but unexpanded labels
CLOSED  ∅ // the set of processed labels
repeat

OPEN  OPEN \ {lB}
CLOSED  CLOSED ∪ {lB}
forall (l'  L∖LT) do

if (l' ∉ OPEN ∧ l' ∉ CLOSED) then
compute h(l')
g(l')  g(lB) + 1
f(l')  g(l') + h(l')
OPEN  OPEN ∪ {l'}

end if
end forall
lB  the label with smallest f(l')
LT  LT ∪ {lB}
ET  ET ∪ {e  E | l(e) = lB}

until (TL  is connected)
TL  arbitrary spanning tree after deleting cycle-forming edges from ET

return TL
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This algorithm uses a union-find data structure for managing the connected components.
In every iteration step a label  l, that does not belong to the solution yet, is temporarily
added together with its corresponding edges. Afterwards the number of connected com-
ponents  is  determined,  such that  that  label,  which reduces  the number of  connected
components most, can be obtained and eventually permanently added to the solution. Fi-
nally when the graph is connected, all superfluous edges are to be removed in order to
obtain a spanning tree.

Further Algorithms

The  other  heuristic  introduced  by  Chang  and  Leu  has  turned  out  being  inefficient
[Chang96]. Therein an arbitrary initial spanning tree is created on the graph G. In every
succeeding  iteration  step  one  edge  of  the  solution  is  replaced  by  another  valid  one,
which reduces the number of used labels. The main idea of this algorithm is based on a
local search, i.e. some sort of improvement heuristic, which is in turn often applied sub-
sequent to a construction heuristic.

In [Brüggemann02] the authors have investigated more efficient neighborhoods for local
search algorithms, which swap  k of the available labels instead of the edges. Further-
more, Xiong et al. in 2004 introduced a genetic algorithm which seizes die idea of the
MVCA heuristic, and whose results even outperform MVCA in many cases  [Xiong04].
Another three genetic algorithms were proposed and analyzed in [Nummela06]. One of
them includes a local search in its evaluation function, and thus also outperforms the re-
sults of the MVCA heuristic. Xiong et al. furthermore implemented modified versions of
MVCA in [Xiong06] focussing on the label to be added initially.

The  Pilot Method, a greedy heuristic developed by Duin and Voß in  [Voss99], was ap-
plied to the MLST problem by Cerulli et al. in [Cerulli05]. Compared to other metaheu-
ristics,  such as  reactive  tabu  search,  simulated  annealing and  variable  neighborhood
search, best results were achieved in most cases, although the runtime is very large.

Algorithm 7 - ApproximationMVCA(G)

Input: G = (V, E, l(E)) – an edge-labeled, undirected graph with l:E  L = {l1, , lk}
Output: TL = (V, ET, LT) – the obtained minimal label spanning tree with ET ⊆ E and LT ⊆ L

LT  ∅, ET  ∅
∀v  V: make_set(v) // create a union-find set for every node
repeat

forall (l  L \ LT) do
determine the number of CC's when adding all edges covered by l to ET

end forall
lB  label with the smallest number of connected components
LT  LT ∪ {lB}
forall (ei,j = {vi, vj} ∈ E | l(e) = lB) do

ET  ET ∪ {ei,j}
union(vi, vj)

end forall
until (TL is connected)
TL  arbitrary spanning tree after deleting cycle-forming edges from ET

return TL
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Consoli et al. proposed a greedy randomized adaptive search procedure and different ver-
sions of a variable neighborhood search in [Consoli07]. Compared to the results of an ex-
act algorithm their results are optimal or near-optimal and can be quickly obtained.

Eventually the following section will show how the idea of the minimum label spanning
tree problem can find use in the compression of fingerprint templates.

5.4.2 Compressing Templates Using a Minimum Label Spanning Tree

A complete and directed graph G = (V, A) consisting of the set of nodes V and the set of

edges  A = {ai,j | ai,j = (vi, vj), vi, vj ∈ V ∧ vi ≠ vj}  is  given  again.  Hence,  a  solution  to  the

compression problem consists in [Chwatal08]:

• a set of reference vectors R = {r1, , rl}, whereat R ⊂ D,

• an arborescence, i.e. a directed spanning tree TL = (VT, AT) on G with VT ⊆ V and AT ⊂ A,

• an assignment of all  edges  ai,j  AT to always exactly one reference vector  r  R,  de-

noted by the index i,j ∈ {1, , l},

• an assignment of always one correction vector j  D' to every node vj  VT except the

root node, such that

vj = (vi + r i , j
+ j) mod v (14)

holds, whereat D' = {0, , 1 −1} ×  × {0, , d −1} with D' ⊆ D.

Thus, every node vj  VT but the root node is effectively stored by an index i,j to the re-

spective reference vector and a small correction vector  j, similar to a dictionary com-

pression technique. Hence, with respect to a high compression ratio the domain borders
i with  i = 1, , d of the correction vectors as well as the number of reference vectors

should be as small as possible. Therefore different minimization problems arise.

Minimization Problems

As mentioned above, beside of minimizing the number of reference vectors also mini-
mizing the domain of the correction vectors is conceivable, in order to reduce the total
number of bits for storing a template. This leads to the following minimization problems
[Chwatal08]:

• Min-l: For a given correction vector domain  a solution is sought, in which the num-

ber of reference vectors is minimal.

• Min-  : If the number of reference vectors  l is specified, the solution must minimize

the domain  of the correction vectors.

• Min-: For minimizing the total number of bits neither the number of reference vectors

nor the domain of the correction vectors is stated. Thus, a capable tradeoff between
those values must be found.

For solving the Min-l minimization problem the minimum label spanning tree is appro-
priate. Therefore a set of so-called candidate reference vectors RC will correspond to the
set of available labels L, from which a smallest possible subset, the set of reference vec-
tors R, is going to be determined, which constitute a spanning tree on a graph G. But just
like the weighting function of the MST the set of candidate reference vectors is not given
and thus must be determined at first.
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Candidate Reference Vectors

Let  D = {0, , v1 } ×  × {0, , v d } be the set of vectors, that are induced by the do-

main borders v of a given set of nodes V from a graph G = (V, A). Then the set of candi-

date reference vectors RC ⊆ D is a subset of D, which fulfills formula (14) with respect to

the correction vector domain  . Furthermore let the set of reference vectors R ⊆ RC be the

smallest possible subset from the set of candidate reference vectors, that is able to consti-
tute a spanning tree on G. So the number of reference vectors will be denoted by l = |R|.

In  section  5.2  the  set  of  difference  vectors for  a  graph  G  was  already  defined  by

A = {a1, , a} = {ai,j | ai,j = (vj – vi) mod v ∧ (vi, vj)  A}. Then let A' ⊆ A be an ar-

bitrary  subset  of  A with  A' ≠ ∅.  Furthermore  let  (A') = (1(A'), , d(A'))  with

i(A') = argmax j=1, ,∣A '∣ a j
i−a j−1

i and  i = 1, , d be  the  standard  reference  vector  of

A', which represents all vectors from A' with respect to the correction vector domain  .

Finally let D(r) ⊆ D be the set of all vectors from D, that a certain reference vector  r  R

can represent with respect to  . Then  RC can be represented by the standard reference

vectors of all possible subsets A' of A [Chwatal08]:

RC = {(A') | A' ⊆ A, A' ≠ ∅ ∧ A' ⊆ D((A'))} (15)

However, according to that formula  RC can still contain reference vectors  r  R that are

dominating further reference vectors r'  R, i.e. A(r') ⊆ A(r), whereby A(r) is the set of all

difference vectors from A, that r is able to represent with respect to  . In order to fur-

ther reduce RC, from all equal reference vectors for which A(r) = A(r') holds, only one is

kept. In turn, for those reference vectors r that are covering further ones, those ones are

removed, that are dominated by  r, i.e. for which  ∃r: A(r') ⊂ A(r) holds. Thus  |RC| = 1

emerges as a lower bound for the number of possible candidate reference vectors. The
upper bound in turn depends on the number of dimensions d as well as on the number

of vectors in the set A, which means that |RC| = O(d) [Chwatal08].

In  [Chwatal08] there is also an algorithm given that computes  RC with the aid of a re-

stricted enumeration of all subsets A' ⊆ A. It will be used for implementation as a pre-

processing step, see chapter 6.

Objective Function

In  contrast  to  the MST,  in the MLST approach the edges  are  exclusively  considered
within a ring domain. Therefore only one objective function arises as size for encoding
the edges:

size(encode(a)) = ⌈ld l  ∑
i=1

d

ld i⋅i  ld v i⋅1−i⌉  (16)

At this l is the number of reference vectors again, while i and v i are the domain borders

at coordinate i of the correction vectors and nodes, respectively. Due to additionally stor-
ing the reference vectors in this approach, the global objective function from formula (9)
must be extended, as well:
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 = size(METADATA) + size(CONSTDATA') + 2(n – 1) 

+ (n – 1) ⋅ size(encode(a)) + l ⋅∑
i=1

d

⌈ld v i ⌉⋅i

(17)

Note that also most of the MLST algorithms can only be applied to undirected graphs.
Thus those algorithms must to be adapted for implementation, too. But before these ad-
aptations will be presented, the WBST approach, which can be regarded as extension of

the MLST approach, but however solves the Min-  minimization problem, is going to be

introduced.

5.5 The Weight Balanced Spanning Tree

Similar to the idea of the MLST the weight balanced spanning tree (WBST), sometimes
also referred to as balanced spanning tree, represents a tree on a graph, whose edges are
as equal as possible. However, not the number of different labels or edges is minimized,
but the difference between the smallest and largest edge weight. Thus the weight bal-
anced spanning tree requires just like the MST an edge-weighted graph G = (V, E, w(E))

with  w:E  ℝ. Again, a typical example for this kind of trees are computer networks. If

for instance information packets are to be transferred from one node to all  others, the
buffering requirements within the single nodes should be kept small,  in order to save
memory capacity requirements. Therefore it makes sense to minimize the difference be-
tween the transmission rates of the affected communication media. In a network, consist-
ing of 10, 100 and 1000 Mbps transmission rate media, the MLST approach could for ex-
ample deliver  a  spanning tree,  that only  consists  of  10 and  1000 Mbps transmission
lines. Indeed this would be a valid solution, but not in terms of the WBST problem, since
the difference between the smallest (10 Mbps) and the largest (1000 Mbps) edge weight is
not minimal. This section will restate the compression problem in terms of the WBST,
but first algorithms for computation are given.

5.5.1 Algorithms for Solving the WBST Problem

For solving the WBST problem in literature only one algorithm can be found [Gupta04].
After sorting the edges with respect to their weights, they are successively added to  G',
until this graph is connected. Afterwards the edges, starting with those having the small-
est weight, are successively removed again as long as  G' remains connected. Thus, the
range of the weights is reduced. Since furthermore all possible ranges of weight are cov-
ered by stepwise shifting the indices  low and  high, the algorithm is correct and always
finds an optimal solution. If efficiently checking the connectedness in line 8, using for
instance a depth first search with runtime O(n + m), and since the repeat loop takes time

O(2m) according to alternately increasing high and low by 1, a runtime of O(2m⋅(n + m))

and thus O(m2) emerges. 
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Eventually the question, how fingerprint templates can be compressed by means of the
weight balanced spanning tree, is to be answered.

5.5.2 Compressing Templates Using a Weight Balanced Spanning Tree

Once again a complete and directed graph G = (V, A) is given. A solution this time con-
sists of:

• an eligible weighting function w(A),

• a directed spanning tree TW = (VT, AT) with VT ⊆ V and AT ⊆ A,

• an offset vector rO, and

• an assignment of a correction vector j to every node vj  VT, such that

vj = (vi + rO + j) mod v (18)

holds, whereat vi  VT and v is the node domain, again.

Thus,  analogously  to  the MLST approach every  node  vj  VT except  the root  is  repre-

sented by an offset vector rO and a hopefully small correction vector j. However in con-

trary, the storage space for the index i,j can be dropped due to the existence of only one

single reference vector. This vector emerges dynamically from the computed minimal co-
ordinate values of the edges belonging to  TW. Hence, for the encoding size of the edges
the following objective function arises:

size(encode(a)) = ⌈∑
i=1

d

i⋅ ld i  1−i⋅ld v i⌉  (19)

Algorithm 8 - WBST(G)

Input: G = (V, E, w(E)) – a connected and undirected graph with w:E  ℝ
Output: TW = (V, ET) – a weight balanced spanning tree with ET ⊆ E

sort the edges increasingly according to their weights, such that w(e1) ≤  ≤ w(em)
diff  w(em) – w(e1)
low  1, high  1
lowB  1, highB  m
repeat

G'  (V, E'), E'  ∅
E'  {ei  E | low ≤ i ≤ high}
if (G' is connected) then

if (diff  w(ehigh) – w(elow)) then
diff  w(ehigh) – w(elow)
highB  high
lowB  low

end if
low  low + 1

else high  high + 1
until (high = m ∧ low = m)
ET  {ei  E | lowB ≤ i ≤ highB}
return TW
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Remember that  and v are the domain borders of the correction vectors and the nodes,

and that  i is a characteristic function, which specifies whether dimension  i is consid-

ered for solution, or not. So if the difference between the smallest and the largest edge
weight is minimal,  the domain of  the correction vectors  should be relatively small as
well. Thereto the weighting function should reflect the similarity between the source and
target nodes with respect to their coordinate values, such that those edges are selected
for solution which do only differ slightly in their coordinates. Thus for implementation
similarity measures and distance functions (see section 5.3.2) are going to be examined
of being an eligible  weighting function.  Furthermore  the WBST algorithm is  alike the
other approaches only applicable for undirected graphs. Hence for implementation again
some adaptations are necessary.

Since all approaches are introduced now, the implemented algorithms can eventually be
presented.





Chapter 6 - Algorithms

“Beware of bugs in the above code – I have only proved

it correct, not tried it.”
Donald Knuth

The last chapters have given a review about the fingerprint compression problem, and
further presented in detail the different approaches for solution. Since none of the intro-
duced algorithms can be exactly applied, this chapter will describe the adaptations for
implementing the discussed ideas. Thereto, starting with some methods used by most of
the algorithms, the specifically adapted implementations are going to be explicitly de-
scribed.

6.1 Global Algorithms

Independently from the applied approaches for solution there are algorithms needed for
pre-  and post-processing graphs.  That  are for  instance methods for  creating  complete
graphs,  assigning  edge  weights  or  labels,  and  also  removing  unnecessary  edges  and
nodes. But one of the most important methods, which is used in every approach, is the
test whether a graph contains a directed spanning tree. Thus, this algorithm is first of all
presented in detail.

6.1.1 Looking for a Directed Spanning Tree

A simple way to determine whether a directed graph contains a directed spanning tree of
size k, is to run a depth first search from every node and thus, to look whether the de-
sired number of nodes is reachable. In the worst case the search indeed is performed

from every node in the graph, which leads to a runtime of O(n⋅(n + m)), which conforms

to O(n3)). Some of the algorithms that are going to be presented, especially the MVCA
based  minimum  label  spanning  tree  algorithms,  perform  this  test  in  every  iteration.
Hence this task is  very time critical.  Thus it  makes sense to minimize the number of
depth first search calls. This is on the one hand possible if only those graphs are explic-
itly examined that have a real chance of containing an arborescence, and on the other
hand by running the DFS only from that nodes that come into question as possible root
nodes. A graph can only contain a directed spanning tree, if

• the number of edges is sufficiently large, i.e. |A| ≥ k – 1, and if

• there are enough nodes with incoming edges. Thus, if the number of nodes with inde-

gree zero is larger than |V| − k + 1, then the graph for sure cannot contain a directed

spanning tree.

In both cases no depth first search calls are to be started. Furthermore, as possible root
nodes only that ones are appropriate which have an outdegree larger than zero. Thus the
depth first search calls may only be started from those nodes.

A special  case occurs if a spanning tree is sought on the whole graph, i.e.  if  k = |V|
holds, and if there exists exactly one node without incoming edges. Then this node must
be the root node. Therefore the DFS is only started from that single node and if not all
further  nodes  are  reached,  then  the  graph  does  not  contain  an  arborescence  [Ober-
lechner08]. Thus the implemented algorithm looks like follows:
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First of all is checked whether the graph contains a sufficiently large number of edges,
and  nodes  with  incoming  edges.  If  not  the  algorithm stops.  In  a  next  step  is  tested
whether a spanning tree over all nodes is sought, and whether there exists a single node
with indegree zero. Then the depth first search is called from that node, and afterwards
the algorithm returns. Only then if none of the above cases can be applied, the depth first
search calls are performed from all nodes with outgoing edges, and as far as an arbores-
cence is found the algorithm stops. Thus in a worst case the runtime of O(n3) does not
change, but actually the implemented algorithm runs clearly faster.

6.1.2 Global Pre-processing

The most important step of pre-processing is to create a complete and directed graph,
which is simply done by inserting the forward and backward directed edges between all
pair of nodes. Thus the implemented function createCompleteDirectedGraph(V) creates a

graph  G = (V, A) from the set of nodes  V = {v1, , vn} by inserting the following edges:

A = {ai,j|ai,j = (vi, vj), vi, vj  V ∧ vi ≠ vj}. Further pre-processing steps additionally have to

assign either edge weights or labels to the created edges. But since those assignments de-
pend on the applied approaches, they are presented in the respective sections.

6.1.3 Global Post-processing

According to the implemented strategies of the MST, MLST and WBST algorithms the
graph, which eventually is constituted, must not necessarily be a directed spanning tree
consisting of k nodes. Nevertheless it contains such a tree. This means, that the superflu-
ous nodes and redundant edges still have to be removed. 

The respective algorithm successively removes every edge from the solution and checks
whether the graph still contains a k-node arborescence. If not the respective edge is in-
serted again. Note, that this check is necessary in order to find and finally remove all

Algorithm 9 - containsArborescence(G, k)

Input: G = (V, A) – a directed graph, k – number of nodes to connect
Output: true – if G contains a directed spanning tree of size k, false – otherwise

V 0
  nodes having indegree 0

V 0
−  nodes having an outdegree larger than 0

if (|A| < (k − 1)) then return false // there are not enough edges
if ( ∣V 0

∣ > |V| − k + 1) then return false // to many nodes have indegree zero
if (|V| = k ∧ ∣V 0

∣ = 1) then
v  is the node from V 0

 // this must be the root node
VDFS  DFS(G, v) // VDFS the set of reached nodes
if (|VDFS| ≥ k) then return true

else
forall (v  V 0

− ) do
VDFS  DFS(G, v)
if (|VDFS| ≥ k) then return true

end forall
end if
return false
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separated nodes. Thus eventually exactly k – 1 edges remain. If k does not equal the num-
ber of nodes in the graph, furthermore redundant nodes, i.e. the separated nodes having
no incoming and no outgoing edges, stay over and are afterwards deleted as well.

Due to the containsArborescence() calls for every removed edge a runtime of O(m⋅n3 + n)

and thus O(n5) emerges. Since all fundamental algorithms are introduced now, the fol-
lowing sections will present the single approaches for solution, starting with the algo-
rithms for determining a directed minimum spanning tree.

6.2 Directed Minimum Spanning Tree Algorithm

The basic algorithm for the approach based on the directed minimum spanning tree is
the following: 

The function  assignEdgeWeights() assigns an edge weight to all  edges in the graph  G.
Note that the maximum metric, Minkowski metric with m = 2 and m = d are considered
for implementation. A solution is then computed using the method  computeSolution(),
which returns the subgraph TS of G, that in turn contains the hopefully optimal directed
spanning tree consisting of k nodes. Nevertheless TS may still contain superfluous edges
and nodes that subsequently are to be removed.

Algorithm 10 - removeRedundantEdgesAndNodes(G, k)

Input: G = (V, A) – a graph containing a directed spanning,  
k – number of nodes to connect

Output: G = (V, A) – a directed spanning tree consisting of k nodes and k - 1 edges

Algorithm 11 - DirectedMST(V, k)

Input: V = {v1, , vn} – a set of data points, k – number of nodes to connect
Output: TS = (VT, AT) – a directed minimum spanning tree

forall (a  A) do // remove redundant edges
A  A \ {a}
if not (containsArborescence(G, k)) then

A  A ∪ {a}
end if

end forall // remove redundant nodes
if (|V|≠ k) then

forall (v  V) do
if ((v) = 0) then V  V \ {v}

end forall
end if
return G

G = (V, A)  createCompleteDirectedGraph(V)
G = (V, A, w(A))  assignEdgeWeights(G)
TS = (V, AT)  computeSolution(G, k) 
TS = (VT, AT)  removeRedundantEdgesAndNodes(TS, k)
return TS
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Since the MST algorithms presented in chapter 5 cannot be directly applied to directed
graphs in order to compute a solution some adaptations are necessary. Although Prim's
algorithm is supposed to perform better on dense graphs, it seems to be inadequate for
this problem because a directed spanning tree of size k is sought and no predefined root
node is given. In order to obtain an optimal  k-node spanning tree therefore an adapted
version  would  have  to  be  started  from  every  node,  resulting  in  a  runtime  of

O(n⋅(m + n log n)). Existing algorithms for solving the directed minimum spanning tree,

for instance presented in  [Chu65] and  [Edmonds67] have runtime O(min{m log n, n2}).
However in both cases a root node is needed again and a tree containing all nodes of the
given graph is sought, i.e. that adaptations would heighten the runtime by factor n. Thus
Kruskal's algorithm was chosen to be modified. In order to maintain strongly connected
components instead of only adding the forward directed edges to the graph, the back-
ward directed edges are added as well. Obviously this leads to cycles, which however are
removed during post-processing. Note that this strategy is only applicable if the forward
and backward directed edges have the same weights, which holds in this case according
to the computation of the edge weights, see section 5.3.2. A second adaptation concerns
the early termination of the algorithm as far as a strongly connected component (SSC)
consists of at least k nodes. Since the forward and backward directed edges only differ in
their signs but not in their absolute distances, this algorithm is optimal, alike the original
algorithm of Kruskal.

The runtime conforms to the undirected case with O(m⋅log n), since the only adapta-

tions are a further find_set() operation and the insertion of a further edge in every itera-
tion. Thus, this algorithm provides a very simple and fast approach for solving the tem-
plate compression problem.

6.3 Directed Minimum Label Spanning Tree Algorithms

In order to solve the fingerprint template compression problem by means of a MLST, the
realization focuses on variations of the MVCA heuristic. Thereto two different versions
are implemented. A GRASP algorithm based on the second MVCA approach was imple-

Algorithm 12 - SimpleMST::computeSolution(G, k)

Input: G = (V, A, w(A)) – a complete, directed and edge-weighted graph
k – number of nodes to connect

Output: TS = (V, AT) – a graph containing the directed spanning tree

AT  ∅
∀v  V: make_set(v) // initialize union-find data structure
sort all edges a  A according to their edge weights, such that w(a1) ≤  w(am)
forall ((ai,j = (vi, vj))  A) do

if (find_set(vi) ≠ find_set(vj) then
AT  AT ∪ {ai,j, aj,i}
union(vi, vj)
if (|find_set(vi)| ≥ k) then return TS = (V, AT)

end if
end forall
return TS = (V, AT)
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mented as well. All these algorithms will be described on the following pages, but first
some considerations on upper bounds regarding the runtime are made.

6.3.1 Considerations on Upper Bounds

Let n = |V| be the number of nodes in a graph G. Thus in a directed and complete graph

the number of edges is m = |A| = n⋅(n − 1), what conforms to an upper bound of O(n2).

Each of those edges can be represented by a difference vector  ai,j = vj − vi, that indeed

can be identical for different  edges,  but must not be.  Hence the upper bound for the

number of difference vectors   = |A| in a graph is stated by the number of edges, i.e.

O(m), or even O(n2). Those difference vectors furthermore are used for determining the

candidate reference vectors, for which in turn an upper bound of  ℓ = |RC| = O(d) was

declared in section 5.4.2. With   = O(m) this conforms to O(md) or O(n2d), respectively.

Finally the number of reference vectors  l = |R| depends on the number of edges in a

tree, which is defined with by n − 1, and thus O(n) is an upper bound for l. Since all im-

portant values for subsequent runtime considerations are defined now, the MLST algo-
rithms will be presented starting with some global pre-processing steps.

6.3.2 MLST specific Pre-processing

Subsequent  to  the  global  pre-processing,  i.e.  the creation of  a  complete  and directed
graph, the MLST specific pre-processing is performed. Thereby all candidate reference
vectors RC, which are specific for the given graph G and also depend on the specific cor-

rection vector domain  , are determined and afterwards assigned to the edges of  G by

means of the labeling function l:A  RC. Thereto in the respective algorithm for every dif-

ference vector a  A each candidate reference vector r  RC is checked of being capable

of representing a. If this is the case, r is added to the set of labels l(a) of the respective

edge a. Thus the assignment has a runtime of O(mℓ).

But before the candidate reference vectors can be assigned to the respective edges they
have  to  be  determined  first,  following  the  idea  presented  in  section  5.4.2  from
[Chwatal08]:

The set of candidate reference vectors is determined using a restricted enumeration of all

possible subsets  A' ⊆ A. These sets  A'  in turn can be represented by their  bounding

boxes (BB), i.e. by two vectors r and r that span the smallest possible range, in which all

vectors of  A'  are located. In the algorithm thereto three disjoint sets,  S,  N and  , are

used which at each point in time represent a partitioning of the difference vectors A, i.e.

Algorithm 13 - determineRC(A)

Input: A = {a1, , a} – the set of difference vectors for a graph G
Output: RC – the set of determined candidate reference vectors

checkedBB  ∅, S  ∅, N  ∅, RC  ∅
  {1, , }
RC  determineRC(RC, checkedBB, S, 0, 0, N, )
return RC
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A = S ∪ N ∪ , each of them holding indices to the respective vectors of A. Thereby S

represents  those  difference  vectors  that  are  located  within  the  currently  considered
bounding box. In turn N holds those vectors that are actively excluded from further con-

siderations. Finally  represents the still opened, i.e. not considered vectors of A. So the

actual enumeration algorithm is the following:

In a first step a set of indices I is determined, which represents those vectors of A that

are covered by the currently  considered bounding box (r, r ).  Those indices are after-

wards moved from  to S, and a further set of indices C is obtained, holding those vec-

tors of A that can be added to S by expanding the bounding box. Finally, all indices j of

C are moved from  to S. Afterwards the bounding box is updated, and if it was not con-

sidered yet, determineRC() is called recursively in order to find further reference vectors.

Algorithm 14 - determineRC(RC, var checkedBB, var S, r, r , var N, var )

Input: RC – the set of already found candidate reference vectors
checkedBB – the already checked bounding boxes
S, N,  – sets of indices to vectors from A, r, r  – vectors spanning a BB

Output: RC – the set of candidate reference vectors

I  ∅, C  ∅
if (S = ∅) then C  {1, , }
else 

checkedBB  checkedBB ∪ {(r, r )}
forall (j  ) do // find new vectors in the BB

if ( a j
i ∈ { r i ,  , r i mod v i }, ∀i = 1, , d) then I  I ∪ {j}

end forall
S  S ∪ I,    \ I
forall (j  ) do // find addable vectors

if ( a j
i ∈ {( r i − i + 1) mod v i , , (r + i − 1) mod v i }, ∀i = 1, , d) then

C  C ∪ {j}
end if

end forall
end if
if (C = ∅) then

if not (∃j  N | a j
i  {( r i − i + 1) mod v i , , (r + i − 1) mod v i }) then

RC  RC ∪ {r}
end if

else
forall (j  C) do

S  S ∪ {j},    \ {j}
(r', r ' )  updateBB(r, r ,aj)
if ((r', r ' ) ∉ checkedBB) then

RC  determineRC(RC, checkedBB, S, r', r ' , N, )
end if
S  S \ {j}, N  N ∪ {j}

end forall
end if
S  S \ I, N  N \ C,    ∪ I ∪ N
return RC
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As far as  C is empty no further vector can be added to  S and thus the recursion termi-
nates, but first is checked whether r is dominated by another candidate reference vector
already contained in RC. If not r is added to RC. With the end of each recursion the con-

sidered j ∈ C is moved from S to N and eventually all sets are reset to their original states.

The update of the bounding box before the recursion calls is performed as follows:

According to [Chwatal08] determineRC() has a runtime of O(d) which conforms to O(ℓ),

see  section  6.3.1.  Hence the  total  runtime  of  pre-processing  is  O(ℓ + mℓ),  and  thus

O(mℓ). For large delta values therefore not neglectable runtimes may arise, however for

small delta values the computation of the candidate reference vectors is sufficiently fast.

6.3.3 MLST specific Post-processing

In addition to superfluous edges and nodes, after termination of the MLST algorithms the
solution may contain also redundant reference vectors. In order to not worsen the suc-
cess of compression they ought to be removed, too. However, finding the redundant ref-
erence vectors is supposed to be a hard problem, and thus their determination happens
heuristically: 

Every  reference vector  r  R together  with its  corresponding edges  is  successively  re-

moved from  G. Subsequently is checked whether  G still  contains a directed spanning
tree of size k. If not,  r cannot be removed from the solution, and the respective deleted
edges are to be restored. However, there can be edges that are not only covered by r but

Algorithm 15 - updateBB(r, r , aj)

Input: r, r  – vectors spanning a BB, aj − the difference vector currently added to S
Output: r', r '  – vectors spanning the new BB 

if ( = 0) then
r'  aj, r '  aj

else
for (i = 1, , d) do

if ( a j
i  {( r i − i + 1) mod v i , , ri}) then r'i  a j

i  else r'i  ri end if
if ( a j

i ∈ {( r i , ,(ri
 + i − 1) mod v i ) then r 'i  a j

i else r 'i  r i end if
end for

end if
return (r', r ' )

Algorithm 16 - removeRedundantLabels(G)

Input: G = (V, A, l(A)) – a directed, edge-labeled graph with l:A  R
Output: G = (V, A', l'(A))  – a cleaned graph with A' ⊆ A and l':A'  R', whereat R' ⊆ R

forall (r  R) do
A(r)  {a  A | r ∈ l(a)} // all edges covered by r
∀r' ∈ R: A(r)  A(r) \ {a ∈ A | r' ∈ l(a)} // edges covered by r'
A  A \ A(r)
if not (containsArborescence(G, k)) then A  A ∪ A(r) end if

end for
return G
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also by further reference vectors from  R. Those ones should not be considered on re-
moval.  In  the respective  algorithm presented above  in  every  iteration  step  the  set  of
edges  A(r) is determined, that contains those edges which are covered by  r. That ones
which are also covered by further reference vectors are subsequently removed from A(r).
Thus, according to the containsArborescence() calls with runtime O(n3) for all reference

vectors a total runtime of O(l⋅n3) emerges, which according to the considerations in 6.3.1

conforms to O(m2).

Since all  elementary MLST specific  algorithms for  pre- and post-processing are intro-
duced now, we can proceed to the MLST algorithms starting with the MVCA based con-
struction heuristics.

6.3.4 MVCA based Construction Heuristics

Since the maximum vertex cover algorithm returns  good solutions  for the undirected
MLST problem, the idea was adapted within this thesis and extended for the directed
case. Thereto two different approaches were implemented – the MvcaMLST and the Gree-
dyMLST. The structure of both algorithms is identical, they only differ in their applied
greedy strategies. The overall procedure is described in the following algorithm.

Analogously to the MST algorithms first of all a complete and directed graph is created,
and afterwards the respective  edge labels,  i.e.  the candidate  reference vectors,  are as-
signed.  Additionally  redundant reference  vectors  are removed  during post-processing.
This is necessary because with respect to the computed set of edges there can exist refer-
ence vectors that are redundant with respect to other reference vectors of the solution.

Algorithm 17 - DirectedMLST(V, k)

Input: V = {v1, , vn} – a set of data points, k – number of nodes to connect
Output: TL = (VT, AT, R) – a directed minimum label spanning tree

Figure 22 - Post-processing: Let the left graph G be a computed solution. Figure A) shows a possible
result, if first removing all redundant edges and nodes. The number of reference vectors cannot be
decreased,  although the solution  is  not optimal  for  G.  Figure  B)  in  turn depicts  one of  the  both
optimal  solutions  which  arises  if  first  removing  all  redundant  reference  vectors.  Note  that  for
convenience the modulo calculation of the edges  is not considered within this and the following
images.

G = (V, A)  createCompleteDirectedGraph(V)
G = (V, A, l(A))  assignEdgeLabels(G), with l:A  RC

TL = (V, AT, R)  computeSolution(G, k)
TL = (V, AT, R)  removeRedundantLabels(TL, k)
TL = (VT, AT, R)  removeRedundantEdgesAndNodes(TL, k)
return TL
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Important at this point is that the removal happens before the global post-processing, i.e.
the removal of the redundant edges and nodes. Since the removal of redundant edges
and nodes does not respect the reference vectors but only successively removes edges
until a spanning tree of size k remains, an unnecessarily higher number of reference vec-
tors could remain. Thus it seems to be more suitable to first remove the redundant refer-
ence vectors, although according to the heuristic approach of the  removeRedundantLa-
bels() method indeed an optimal solution is not guaranteed.

A first MVCA inspired Algorithm

The  MvcaMLST algorithm uses a very simple greedy strategy: In every step that candi-
date reference vector is added which covers the greatest number of edges not belonging
to the solution yet.

Thereto, as long as no directed spanning tree of size k emerged those edges, that are cov-
ered by the candidate reference vector r covering the highest number of edges not belong-
ing to the solution yet, are added to the solution, and r is moved from RC to R. Thus, ac-
cording to the containsArborescence() calls, the while loop and finding the candidate ref-
erence vector with the highest number of covered edges in line 3 with a linear runtime of

O(ℓ) a total runtime of O(m⋅(ℓ + n3)), and thus O(m⋅ℓ) emerges.

A MVCA based Greedy Algorithm

In  the  modified  MVCA algorithm by  [Krumke98] in every  iteration  step that  label  is
added to the solution, which reduces the number of connected components most. How-
ever, the MvcaMLST mentioned above only considers the number of newly added edges
without taking into account the number of newly connected nodes. Of course consider-
ing  connected  components  in  a  directed  graph  makes  little  sense.  Nevertheless  the
greedy strategy can be adapted insofar as the next label r to be added to the solution can
be chosen according to the number of edges, that after insertion of  r are still necessary
for spanning a directed tree of size k. So let that number of edges in the following be de-

noted by . The main idea of the GreedyMLST consists in treating the graph, which is in-

duced by the set of reference vectors R, by means of its strongly connected components
(SCC). If shrinking all nodes of a strongly connected component to a single node, and
combining all parallel edges between two different components to a single edge, then by

Algorithm 18 - MvcaMLST::computeSolution(G, k)

Input: G = (V, A, l(A)) – a complete, directed and edge-labeled graph with l:A  RC

k – number of nodes to connect
Output: TL = (V, AT, R) – a graph containing the minimum label spanning tree

AT  ∅, R  ∅
while not (containsArborescence(G, k)) do

r  label from RC covering the highest number of edges not belonging to AT yet
A(r)  {a ∈ A \ AT | r ∈ l(a)} // edges covered by r and not belonging to AT

AT  AT ∪ A(r)
R  R ∪ {r}, RC  RC \ {r}

end while
return TL
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ignoring all edges within one and the same component a DAG emerges. With the aid of

that DAG  can be determined, which in turn is defined by the number of strongly con-

nected components minus one, the root node.

As long as no directed spanning tree of size k exists, in the GreedyMLST algorithm that

candidate reference vector rB is added to the solution, which reduces  most. In order to

find this rB each candidate reference vector r from RC is temporarily added to the graph,
and afterwards the strongly connected components are determined. Since the union-find
data structure offers no possibility for determining the degree of a strongly connected

component,  must be computed by first finding all those components having incoming

edges, and by afterwards subtracting their number from the number of all components. 

Again,  containsArborescence()  in  line  2  takes  time  O(n3).  Furthermore  computing  the
strongly connected components in line 7 has runtime O(n + m). Finding those compo-

nents with incoming edges (lines 9 – 11) takes O(m⋅(n)) due to the find_set() operations

having runtime O((n)), whereas  (n) ≤ 4 is  a very slowly growing function, see  [Cor-

men07]. Although a newly added reference vector may decrease the number of strongly
connected components,  it  must  not  necessarily decrease the number of  those compo-
nents having indegree zero. Hence the while loop has runtime O(m). In total, this leads

to O(m⋅(n3 + ℓ⋅((n + m) + (m⋅(n))))), and thus is O(ℓ⋅m2⋅(n) ).

In order to further improve the results a GRASP algorithm was implemented too, whereat
this greedy algorithm serves as a basis for the respective construction phase.

Algorithm 19 - GreedyMLST::computeSolution(G, k)

Input: G = (V, A, l(A)) – a complete, directed and edge-labeled graph with l:A  RC

k – number of nodes to connect
Output: TL = (V, AT, R) – a graph containing the directed spanning tree

AT  ∅, R  ∅
while not (containsArborescence(G, k)) do

rB  ∅ // best reference vector found so far
  ∞ // number of SCCs still to be connected
forall (r ∈ RC) do

A(r)  {a  A \ AT | r  l(a)}, AT  AT ∪ A(r)
SCC  computeSCC(TL) // SCC is a union find structure holding the SCCs
SCC+  ∅ // set of SCCs with incoming edges
forall (ai,j ∈ AT) do // get all SCCs having incoming edges

if (find_set(vi) ≠ find_set(vj)) then SCC+  SCC+
 ∪ {find_set(vj)}

end forall
if ((|SCC| − |SCC+| − 1) < ) then

  |SCC| − |SCC+| − 1 // compute 
rB  r

end if
AT  AT \ A(r)

end forall
AT  AT ∪ {a  A | rB  l(a)}
R  R ∪ {rB}, RC  RC \ {rB}

end while
return TL

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21



Algorithms 67

6.3.5 A GRASP for the Directed Minimum Label Spanning Tree

The GRASP meta heuristic, shortly for Greedy Randomized Adaptive Search Procedure, is
a multi-start algorithm in which every iteration consists of two parts, a construction and
a local search. During the construction phase a valid solution is computed by means of a
greedy randomized construction algorithm. The subsequent local search is for optimizing
the solution with regard to a local optimum. The goal is to find a global optimum with
the aid of different local optima [Resende02].

In order to create different initial solutions, it is important that the greedy construction
heuristic randomizes its solution.

The candidate list (CL) contains all possible extensions for the current solution. The re-
stricted candidate list (RCL) in turn holds only the promising extensions, like for instance
in case of a minimum spanning tree problem a certain number of edges that have the
smallest edge weights. From this set in every iteration one element is randomly chosen
and added to the solution, wherefore the generated solution is neither locally nor glob-
ally optimal.  For finding at least  a locally  optimal solution the local  search is  subse-
quently performed.

The efficiency of the local search strongly depends on some aspects: the initial solution,
the choice of the neighborhood, how the neighborhood is browsed, etc. Usually simple
neighborhoods are chosen [Resende02], like for instance a k-switch or an insertion neigh-
borhood. But also variable neighborhoods are possible. 

Algorithm 20 - GRASP(I)

Input: I – maximal number of iterations
Output: S – the solution

Algorithm 21 - greedyRandomizedConstruction()

Input: −
Output: S – a randomized initial solution

S  ∅
forall (i = 1, , I) do

S'  greedyRandomizedConstruction()
S'  localSearch(S')
if (S' is better than S) then S  S'

end forall
return S

S  ∅
while (S is not a valid solution) do

determine CL // a candidate list of possible extensions for the solution
determine RCL ⊆ CL // a restricted candidate list of promising extensions
chose e ∈ RCL // a randomly chosen element from RCL
S  S ∪ {e}

end while
return S
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For searching the neighborhood there are different step functions available. Some typical
ones are for example:

• Random Neighbor: The next solution is randomly chosen from the neighborhood.

• Next Improvement: The neighborhood is processed in a strict order and the first neigh-

boring solution, which is better then current one, is adopted.

• Best Improvement: The neighborhood is completely searched, and the best solution, as

far as better as the current one, is adopted for the next local search step.

According to the global GRASP structure from above, the greedy randomized adaptive
search procedure for the directed minimum label spanning tree problem is implemented
as follows: 

As greedy randomized construction for  the initial  solution an adapted version of  the
GreedyMLST algorithm is applied. For the subsequent local search phase in turn two dif-
ferent variants were implemented and are going to be introduced below.

Greedy Randomized Construction Heuristic

As already mentioned the  GreedyMLST algorithm serves  as basis for this construction
heuristic. There are only some slight adaptations in order to obtain the restricted candi-
date list RCL from the set of all candidate reference vectors. In every iteration first of all

, i.e. the current number of strongly connected components having indegree zero minus

one, is determined. Afterwards, as in the GreedyMLST algorithm, all candidate reference
vectors are successively temporarily added to the solution, the number of strongly con-
nected components having indegree zero minus one is determined, and if this number at

Algorithm 22 - localSearch(S)

Input: S – an initial solution
Output: SL – a locally optimal solution

Algorithm 23 - GraspMLST(V, k, I)

Input: V = {v1, , vn} – a set of points, k, I – number of nodes to connect and iterations
Output: TL = (VT, AT, R) – a graph containing the directed spanning tree

repeat
chose S ∈ N(S) // N(S) is the neighborhood of a solution S
if (S is better then SL) then SL  S

until break condition
return SL

G = (V, A)  createCompleteDirectedGraph(V)
G = (V, A, l(A))  assignEdgeLabels(A)
while (i = 1, , I) do

G' = (V, A', R')  GreedyRandomizedMLST::computeSolution(G, k)
G' = (V', A', R')  removeRedundantEdgesAndNodes(G', k)
G'  localSearch(G', G, k)
G'  removeRedundantLabels(G', k)
if (|R'|  |R|) then TL  G'

end while
return TL
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least conforms to   or is even smaller, than the restricted candidate list is extended by

the actual candidate reference vector. From this constructed RCL in every iteration even-
tually one candidate reference vector is randomly chosen and permanently added to the
solution.

Since every reference vector, resulting in a number of strongly connected components

having indegree zero that is smaller than or equal to , is added to the restricted candi-

date list the constructed solution is not necessarily a good one. However, if additionally
restricting the RCL to a constant size, like for instance to five candidate reference vectors,
the algorithm delivers fast results. Nevertheless the worst case runtime conforms to the

GreedyMLST algorithm with O(ℓ⋅m2⋅(n)).

First Local Search Method

As  already  mentioned  above  for  the  local  search  two  different  variants  were  imple-
mented. The first one uses the k nodes returned from the construction phase as a neigh-
borhood in a broader sense.

Algorithm 24 - GreedyRandomizedMLST::computeSolution(G, k)

Input: G = (V, A, l(A)) – a complete, directed and edge-labeled graph with l:A  RC

k – number of nodes to connect
Output: TL = (V, AT, R) – a graph containing the directed spanning tree

Figure 23 - Local search 0: On the computed set of nodes a complete and directed graph is created,
and by once again applying the randomized greedy construction a new solution is created.

AT  ∅, R  ∅
while not (containsArborescence(TL, k) do

RCL  ∅
  the current number of SCCs with indegree zero, minus 1
forall (r ∈ RC) do

A(r)  {a  A \ AT | r  l(a)}, AT  AT ∪ A(r)
SCC  computeSCC(TL), SCC+  ∅
forall (ai,j  AT) do

if (find_set(vi) ≠ find_set(vj)) then SCC+  SCC+
 ∪ {find_set(vj)}

end forall
if ((|SCC| − |SCC+| − 1) ≤ ) then RCL  RCL ∪ {r}
AT  AT \ A(r)

end forall
r  chose randomly from RCL
AT  AT ∪ {a  A | r  l(a)}
R  R ∪ {r}, RC  RC \ {r}

end while
return TL
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In particular, the k nodes are used for creating again a complete and directed graph, on
which afterwards the greedy randomized construction algorithm is iteratively applied.

In order to avoid a complete recomputation of  the difference and candidate reference
vectors, the original graph G is delivered to the local search, too. Thus the edges of the
new created graph G' obtain those reference vectors which are assigned to the edges of
the original graph. In the subsequent loop thus G' is passed to the construction heuristic,
which returns a new random minimum label spanning tree T'L. If its number of reference
vectors is smaller than those of the currently best known tree TB, then T'L is memorized as
best tree. According to the repetitive calls of the GreedyRandomizedMLST algorithm the

runtime of this local search is O(IL⋅ℓ⋅m2⋅(n)), whereat IL specifies the number of local

search iterations. However due to randomly constructing a new tree on only a subset of
the nodes this algorithm is not very efficient.

Second Local Search Method

The  second  local  search  algorithm  uses  a  reference  vector  insertion  neighborhood.
Therefore, successively every candidate reference vector is temporarily added to the so-
lution, and thereupon redundant reference vectors are removed.

The goal is to find a candidate reference vector  r ∈ RC that dominates at least two refer-

ence vectors of the current solution, and thus makes them redundant. Since r most likely
will not cover more than two of the existing reference vectors, a next improvement step

Algorithm 25 - localSearch0(TL, G, k, IL)

Input: TL = (VT, AT, R) – an initial solution, G = (V, A, l(A)) – the original graph, 
k – number of nodes to connect, IL – number of iterations for this local search

Output: TB = (VT, AB, RB) – the best found subgraph of G

Figure  24 - Local search 1: The initial solution is extended with a new candidate reference vector.
Subsequently all redundant reference vectors are removed.

TB  TL

G' = (VT, A') createCompleteDirectedGraph(VT)
∀a' ∈ A' := l(a')  l(a)
for (i = 1, , IL) do

T'L = (VT, A'T, R') GreedyRandomizedMLST::computeSolution(G', k)
if (|R'| < |RB|) then TB  T'L

end for
TB  removeRedundantEdgesAndNodes(TB, k)
return TB
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function is used here. Thus, on the other hand also the runtime will not be unnecessarily
heightened. In order that the new reference vector covers a preferably large number of
the current edges or inserts lots of new edges, respectively, the remaining candidate ref-
erence vectors RR are in the beginning sorted according to the number of edges they are
covering. Thus only a promising subset, namely |RR|/c of the remaining candidate refer-
ence vectors whereas c is a variable number, can be examined. This is based on the fact
that those reference vectors that cover only one or two of the edges will not be able to
dominate other reference vectors. Then within the for loop every considered candidate
reference vector  ri is added to the solution and afterwards the redundant reference vec-
tors are removed. If the number of remaining reference vectors is smaller than the num-
ber of vectors in RB then the new created minimum label spanning tree T' is adopted as
new best solution TB, ri is removed from RR, and a new local search step is started.

Since creating the set of edges A' for the graph G' in line 5 takes time O(m⋅l) and remov-

ing redundant labels in line 6 takes O(m2) according to algorithm (16), the total runtime

for this local search is O(IL⋅ℓ⋅m2 ), whereat IL is the number of iterations within the local

search.

Finally, in order to solve the directed MLST problem different algorithms were imple-
mented: the MVCA based greedy construction heuristics  MvcaMLST and  GreedyMLST
and a GRASP, which in turn is based on the GreedyMLST. For the GRASP two different
local searches were implemented. Beneath of them the second variant is the more prom-
ising one with respect to the results and the worst case runtime. But how the runtime in-
deed affects the quality of the solutions will be shown in chapter 8. Before that however,
the directed weight balanced spanning tree algorithms are going to be introduced.

Algorithm 26 - localSearch1(TL, G, k)

Input: TL = (VT, AT, R) – an initial solution, G = (V, A, l(A)) – the original graph,
k – number of nodes to connect

Output: TB = (VT, AB, RB) – the best found subgraph of G

TB  TL

RR  RC \ R // remaining candidate reference vectors
sort RR decreasingly according to the number of edges they represent, i.e. r1 ≥  ≥ rℓ

for (i = 1, , |RR|/c) do // insert ri and perform post-processing
G'  (V, A', R') with R'  RB ∪ {ri} and A'  {a ∈ A | ∃r ∈ R': r ∈ l(a)}
T' = (V, A', R')  removeRedundantLabels(T', k)
if (|R'| < |R|) then

TB  T'
RR  RR \ {ri}
i  0

end if
end for
TB  removeRedundantEdgesAndNodes(TB, k)
return TB
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6.4 Directed Weight Balanced Spanning Tree Algorithms

For a one-dimensional cost function the WBST algorithm presented in section 5.5 always
finds  the optimum spanning tree,  i.e.  that  the difference between all  edge weights  is
minimal.  In order  to obtain possibly  small  delta  values  for  the template  compression
problem, it makes sense that the weighting function describes the similarity of the differ-
ence vectors with respect to their single coordinate values. In general the difference vec-
tor itself can be treated as a d-dimensional cost function. Hence, the classical WBST al-
gorithm would find the optimal spanning tree for a single dimension but not for all di-
mensions together. In order to solve this problem, three different approaches were ana-
lyzed.  In  the first  algorithm,  the  SimpleWBST,  the edge weights  are  computed  analo-
gously to the MST using distance functions and similarity measures, respectively. In par-
ticular the maximum metric, the Minkowski metric with m = 2 and m = d, and further-
more the pseudo-cosine measure are anylzed. By transforming the d-dimensional differ-
ence vectors to one-dimensional edge weights, a weight balanced spanning tree can be
computed, which is optimal with respect to the considered edge weights. In the second
approach in turn, the MultipleWBST, the optimal weighting range for every single dimen-
sion is computed, which results in an optimal bounding box. Subsequently a tree is con-
structed, in which the edge weights are located within this bounding box or do only dif-
fer  slightly  from  it.  Finally  the  third  algorithm  for  solving  the  WBST  problem  is  a
GRASP. Once again in all cases the main structure of the algorithms is similar.

After creating a complete and directed graph a solution is computed and all redundant
edges and nodes are finally removed. Conclusively the offset vector rO is determined and
subtracted from all edges.

6.4.1 A Directed WBST with one-dimensional Edge Costs

The  SimpleWBST algorithm is a straight implementation of the optimal algorithm pre-
sented in section 5.5.1. Therefore all edges obtain a one-dimensional weight, which is ei-
ther computed by a distance function or a similarity measure. However instead of check-
ing the connectedness, in this version a directed spanning tree of size k is sought on the
graph. In the algorithm below, after assigning the weights the edges are sorted according
to their weights in an increasing way. Subsequently the optimal weighting range is deter-
mined and the respective edges are added to the resulting graph TW.

Algorithm 27 - DirectedWBST(V, k)

Input: V = {v1, , vn} – a set of data points, k – number of nodes to connect
Output: TW = (VT, AT, rO) – a weight balanced spanning tree

G = (V, A)  createCompleteDirectedGraph(V)
TW  computeSolution(G, k)
TW  removeRedundantEdgesAndNodes(TW, k)
rO  the minimal values of every edge dimension
AT  subtract offset rO from all edges
return TW
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Since looking for an arborescence in every iteration and successively increasing the vari-

ables high and low the runtime of the SimpleWBST algorithm conforms to O(m⋅n3).

6.4.2 A Directed WBST with d-dimensional Edge Costs

Instead of finding an eligible one-dimensional edge weight representation for the  d-di-
mensional difference vectors of the edges, the MultipleWBST algorithm in a first step de-
termines the optimal weighting range (lowB(i), highB(i)) for every single dimension i. 

Algorithm 28 - SimpleWBST::computeSolution(G, k)

Input: G = (V, A) – a complete, directed graph, k – number of nodes to connect
Output: TW = (V, AT) – a graph containing the weight balanced spanning tree

Figure 25 - Schematic representation of the MultipleWBST algorithm: For a complete (directed) graph
in a first step the optimal weighting ranges (lowB(i),  highB(i)) for every dimension i are computed.
Note that diffB at this is the difference highB – lowB,  which should always adopt  values that are a
power of two. These ranges in turn constitute two vectors, which span a bounding box that in an
ideal case contains all edges for spanning a tree of size k. Since in most cases this number of edges
will not be sufficient,  the bounding box is stepwise expanded around its center point  meanB until
such a spanning tree exists.

G = (V, A, w(A))  assignEdgeWeights(A)
sort the edges increasingly according to their edge weights, i.e. w(a1) ≤  ≤ w(am)
diff  w(am) – w(a1)
low  1, high  1
lowB  1, highB  m
repeat

G'  (V, A') with A'  {ai ∈ A | low ≤ i ≤ high}
if (containsArborescence(G', k) then

if (diff > w(ahigh) – w(alow)) then
diff  w(ahigh) – w(alow)
highB  high
lowB  low

end if
low  low + 1

else high  high + 1
until (high = m ∧ low = m)
AT  {ai ∈ A | lowB ≤ i ≤ highB}
return TW
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Together  these  ranges  constitute  two  vectors,  lowB and  highB,  which  in  turn  span  a
bounding box. In an ideal case a solution of the MultipleWBST thus only consists of those
edges that are located within that bounding box. However, since probably in most cases
this set of edges will not be enough for spanning a tree of size k, in the MultipleWBST al-
gorithm this bounding box is successively expanded until such a spanning tree exists.
Therefore,  the greatest difficulty consists in finding an appropriate update strategy for
the bounding box, because this in turn should not become too large. This first idea of an
update  strategy  increases  the  range  values  of  the  bounding  box,  i.e.  the  differences
highB – lowB, in every dimension to powers of two.

For determining the weighting ranges for the single dimensions the MultipleWBST algo-
rithm uses the SimpleWBST. Therefore before computing the optimal WBST for dimen-
sion i, the SimpleWBST algorithm below has to assign as edge weights the respective co-

ordinate  values  of  the  difference  vectors  at  the  considered  dimension,  i.e.  ai.  The

meanB vector in this algorithm represents the center point of the bounding box. Around
this point the bounding is expanded within the while loop until eventually a spanning
tree of size  k emerges. For expansion always that dimension  i is chosen, in which the
range  high(i)B – low(i)B of  the bounding box is minimal.  Thus, the bounding box effec-
tively is evenly expanded to all dimensions. Computing the WBST for every dimension

takes time O(d⋅m⋅n3) according to the SimpleWBST algorithm. As long as the bounding

box is updates less then d⋅m times, see lines 10 – 15, O(d⋅m⋅n3) is also the total worst

case runtime for the MultipleWBST algorithm, due to O(n3) is the runtime for the contain-
sArborescence() method.

Further update strategies, that for instance expand one dimension right up to the global
domain border v before considering the next one, are possible as well, however will not
be part of this thesis anymore.

Algorithm 29 - MultipleWBST::computeSolution(G, k)

Input: G = (V, A) – a complete and directed graph, k – number of nodes to connect
Output: TW = (V, AT) – a graph containing the optimal weight balanced spanning tree

for (i = 1, , d) do
Ti = (Vi, Ai)  SimpleWBST::computeSolution(Gi, k) // opt. WBST for dimension i
low(i)B, high(i)B  lowest and highest values of A

i

diff(i)B  high(i)B − low(i)B

mean(i)B  low(i)B + ⌈(diff(i)B) / 2⌉ // center of BB(low(i)B, high(i)B)
low(i)B  mean(i)B – (2^⌈ld(diff(i)B)⌉) / 2 // expand BB range to a power of 2
high(i)B  mean(i)B + (2^⌈ld(diff(i)B)⌉) / 2

end for
AT  {a ∈ A | a ∈ BB(lowB, highB)}
while not (containsArborescence(TW, k)) do

i  dimension having the smallest value of diffB

diff(i)B  2^(⌈ld(diff(i)B)⌉ + 1) // update diff(i)B to a next power of 2
low(i)B  mean(i)B – diff(i)B / 2 // update bounding box
high(i)B  mean(i)B + diff(i)B) / 2
AT  {a ∈ A | a ∈ BB(lowB, highB)}

end while
return TW
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6.4.3 A GRASP for the Directed Weight Balanced Spanning Tree

Since the SimpleWBST and the MultipleWBST both not necessarily deliver an optimal so-
lution except for the one-dimensional case, a conclusive GRASP algorithm was imple-
mented. Therein, in order to compare the quality of the single solutions, the total encod-
ing length according to formula (19), see section 5.5.2, is considered.

Furthermore the greedy randomized construction heuristic uses the SimpleWBST. Indeed
the  SimpleWBST is no greedy algorithm, however it  returns the optimal range for the
edge weights with respect to the considered weighting function. This range is used in
turn  for  determining  the  restricted  candidate  list,  which  emerges  by  expanding  the
weighting range with 2k values into both directions and including the respective edges.
The value 2k is chosen, in order to make sure that the RCL always contains a valid solu-
tion, which however is already guaranteed by the computed range, and furthermore a
more or less random solution can be constructed. Afterwards always one edge from the
RCL is randomly chosen and inserted into the graph TW until eventually a spanning tree
of size k emerges. As a conclusive step a post-processing is performed in order to remove
all redundant edges and nodes. 

Algorithm 30 - GraspWBST::computeSolution(G, k)

Input: G = (V, A) – a complete, directed graph, k – number of nodes to connect
Output: TW = (VT, AT, rO} – a weight balanced spanning tree

Algorithm 31 - GreedyRandomizedWBST::computeSolution(G, k)

Input: G = (V, A) – a complete, directed graph, k – number of nodes to connect
Output: TW = (VT, AT, rO) – a weight balanced spanning tree

TW  ∅,   ∞ //  is the total encoding length
repeat

G' = (V, A', rO')  GreedyRandomizedWBST::computeSolution(G, k)
G'  localSearch(G, G', k)
if ( < (G') then

TW  G'
  (G')

end if
until break condition
return TW

G' = (V', A', r)  SimpleWBST::computeSolution(G, k)
lowB, highB  lowest and highest values of A'
if ((highB + 2k) < m) then highB  highB + 2k else highB  m // only valid values,
if ((lowB – 2k) > 0) then lowB  lowB – 2k else lowB  0  // i.e. 0 ≤  ≤ m
RCL  {ai ∈ A | lowB ≤ i ≤ highB}
TW  (V, AT) with AT  ∅
while not (containsArborescence(TW, k)) do

a  randomly chosen from RCL
AT  AT ∪ {a}, RCL  RCL \ {a}

end while
TW  removeRedundantEdgesAndNodes(TW, k)
return TW
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Since the SimpleWBST algorithm in line 1 has runtime O(m⋅n3), containsArborescence()

in line 7 takes O(n3) and the while loop in the worst case is repeated for all edges m, the

total runtime for the GreedyRandomizedWBST conforms to O(m⋅n3).

The respective local search algorithm for the GraspWBST uses a 2-switch neighborhood,
in which always one edge of the solution is replaced. 

First  of  all  the dimension  i of  the current  edge domain a with the highest  coordinate
value is sought, and afterwards the respective edge aW is determined. This is the edge to
be replaced, hence this edge is removed and a new edge  a with a smaller  coordinate
value at dimension i is looked for. If this new edge is potentially better than aW, which
means that the values of  a in all other dimensions do not exceed the values of a , it is
added to the solution. Hence if this new set of edges again spans a tree of size k, then a
better edge and thus a better solution was found. The best of all these better edges, i.e.
that with the smallest value at dimension i, is finally added permanently to the solution,
and the next local search step is started. Thus with respect to the number of search itera-
tions, the number of edges and the containsArborescence() calls in line 14, a runtime for

the local search algorithm below of O(IL⋅m⋅n3) emerges.

All the MST, MLST and WBST algorithms presented within this chapter were imple-
mented together with a framework, which is going to be described in the following chap-
ter.

Algorithm 32 - GraspWBST::localSearch(G, TW, k)

Input: G = (V, A, l(A)) – the original graph, TW = (VT, AT, rO) – an initial solution, 
 k – number of nodes to connect

Output: TB = (VB, AB, RB) – the best found weight balanced spanning tree

TW  (V, AT)
repeat

aW
i  edge conforming to max( a1 , , ad ), whereas a is the current edge domain
      and i the respective dimension

AT  AT \ {aW}, AT'  A \ AT

forall (a ∈ AT') do
if (ai < aW

i ) then // checking the coordinate value at dimension i
potb  true // indicates whether a is potentially better than aW

for (j = 1, , d) do
if (aj

 > a j ) then potb  false
end for
if (potb = true) then

AT  AT ∪ {a} // add a to AT and look for directed spanning tree
if (containsArborescence(TW, k)) then aW  a
AT  AT \ {a}

end if
end if

end forall
AT  AT ∪ {aW}

until no better edge was found
TB  removeRedundantEdgesAndNodes(TB, k)
return TB
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Chapter 7 - Implementation

“In general, an implementation should be conservative

in its sending behavior, and liberal in its receiving
behavior.”

Jonathan Postel

For implementing the algorithms of the template compression problem, in the course of
this thesis a framework was developed, which provides functions for reading and writing
templates, results and reference vectors, for compression and of course for the computa-
tion of the respective spanning trees. This Biometric Template Compression (BTC) frame-
work is going to be presented on the following pages in more detail. Beside of informa-
tion to the applied programming language and used libraries, also an overview about the
packages, classes and important functions will be given. Furthermore the main program
and its usage will be introduced.

7.1 Programming Language and Frameworks

The main requirement when choosing the programming language was object orientation
and reusability. In order to furthermore keep the amount of programming within a limit,
also already existing frameworks should be integrable. Since for the template compres-
sion problem also genetic algorithms were developed, which are based on the EAlib2 li-
brary  [Wagner05] for meta heuristics, developed at the Institute for Computer Graphics
and Algorithms of the Vienna University of Technology, eventually C++ using the gcc-
4.1 compiler was chosen. Additionally for dealing with graphs and classical graph algo-
rithms the  LEDA library version 5.1  [Leda] was integrated, which was developed since
the end of the 80s by the Max Planck Institute for Computer Science, and which is dis-
tributed by the Algorithmic Solutions Software GmbH since 2001. Beside of graph algo-
rithms therein also classical data structures and algorithms for network and optimization
problems are provided.  Furthermore the CPLEX 11 library  for integer and linear  pro-
gramming was applied.

7.2 Biometric Template Compression Framework

The Biometric Template Compression Framework consists of five packages: io, graph, al-
gorithms, compression and tools.

As its name implies the io package is responsible for reading and writing data from and
to the file system, like for instance templates or stored reference vectors. The graph and

Figure 26 - Package overview: The dotted arrows depict the usage dependency relation for the single
packages.
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algorithm packages  provide  interfaces  and  implementations  for  solving  the  different
spanning tree problems presented in chapter 6. Transforming the computed spanning
trees into the respective bit string representations is done with the aid of the compression
package. Finally the  tools package provides some globally useful functions, like for in-
stance converting numbers into bit strings, mathematical conversions, or cost function
computations.

7.2.1 Package io

The classes of the io package provide methods for reading and writing files from and to
the file system.

Thereto two abstract class types are available: Reader and Writer. The Reader classes are
responsible  for  reading files.  All implementing classes  have to pass a filename to the
Reader class, and have to provide the method readAll() which reads in the data from the
specified file. Currently the following subclasses are available:

• TemplateReader is the main abstract class for reading minutiae templates. In order to

read in templates of a special type, this class has to be derived and the methods get-
NoOfPoints() and  getPoints() are to be provided, which return the number of points
and  the  data  points  themselves,  respectively.  Current  implementations  are  the
FhgTemplateReader,  which reads in minutiae templates encoded in the Fraunhofer
template format (see chapter 8), and the TextTemplateReader for getting comma sepa-
rated minutiae data.

• The  ReferenceVectorReader class  is  for  reading reference vectors,  which have  been

saved into a file.  This class is used by the MLST algorithms.

The  Writer classes in turn provide functions for writing data into files. Analogously to
the Reader, all implementing classes have to pass a filename to the Writer class, and fur-
thermore have to provide the method  writeAll(),  which writes a passed string into the
previously specified file. Here the following subclasses are available at the moment:

• The  ReferenceVectorWriter class writes those reference vectors  that have been com-

puted by the MLST algorithms into a file, such that other MLST algorithms can use
them at a future date.

Figure  27 - Class overview for the io package: The arrows ending with a hollow triangle depict the
generalization relation and the arrow with the solid triangle depicts the usage dependency.
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• CodeWriter is an abstract class for writing the compressed templates into a file. Cur-

rently the only implementation is the FhgCodeWriter that takes the computed tree and
an Encoder class (see compression package, section 7.2.4) as input, encodes the tree
with the aid of the encoder and writes the resulting bit string extended with the meta
data from the original template into a file.

• The  TemplateWriter class in turn is for encoding and writing the minutia data in a

specific format, like e.g. the Fraunhofer minutiae template format. This may be used
for instance if having computed a  k-node spanning tree, and thus to check whether
the matching results of the reduced minutiae template still conform to those of the
original one. Thus, the only implementation for the moment is the FhgTemplateWriter.

• The ResultWriter is responsible for writing important results of the spanning tree algo-

rithms into a file. These results are to be passed as a string.  The implementing class
ResultObjectWriter therefore creates a string from a passed ResultObject, transfers it to
the ResultWriter and thus the result is written into a file.

Finally the ResultObject class is created within all spanning tree algorithms and contains
all  important approach specific results.  It is mainly used in order to make the results
from the different algorithms comparable.

7.2.2 Package graph

The graph package provides data structures for dealing with minutiae and miscellaneous
data points, which are representable in the form of vectors, such as difference and refer-
ence vectors. Furthermore main interfaces for the realization of the different spanning
tree algorithms are contained within this package.

For dealing with data points and vectors respectively, the classes  DataPoint,  EdgeLabel
and ReferenceVector are used.

• DataPoint is the basic class for representing points and minutiae, which both in turn

are nothing else than vectors. Within this class the single coordinate values are con-
tained, and furthermore functions for modifying vectors, such as adding, subtracting,
comparing with respect to the finite ring structure, etc. are provided. In addition there
are functions available for checking whether these vectors are located within a bound-
ing box, and whether vectors are covered or dominated by other ones, respectively.

• EdgeLabel is a special implementation of the DataPoint class. In general it conforms to

the definition of a difference vector  as,t. Hence, an  EdgeLabel has a source node  vs

and a target node  vt, whereas the coordinate values for the single dimensions  i con-

form to the distance values v t
i – v s

i . Furthermore an edge weight can be assigned and

also a set of reference vectors, that are able to represent this specific difference vector
or edge, respectively.

Figure 28 - Class overview for the graph package
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• ReferenceVector is another special implementation of the DataPoint class, which how

its name implies corresponds to the definition of a reference vector. Thus every spe-
cific reference vector stores the set of difference vectors it is able to represent.

As already mention this package contains furthermore some interfaces for realizing the
spanning tree algorithms presented in chapter 6.

• SpanningTree is the main representation of a spanning tree and thus provides some

major functions for the specific implementations. Thereto belong the global pre- and
post-processing functions for creating a complete and directed graph from a passed
set of nodes, and for removing redundant edges and nodes. Furthermore the function
containsArborescence() is contained in here. All implementing classes thus, have at
least to provide the computeSolution() method.

• MST,  MLST and  WBST are the interfaces to the actual implementations of the intro-

duced algorithms. Therein mainly the specific pre- and post-processing functions of
the different approaches are to be found.

Finally the concrete implementations of the presented algorithms are located within the
algorithms package.

7.2.3 Package algorithms

The algorithms package contains all the implemented algorithms which were introduced
in the previous chapter.

Since the algorithms, whose names conform to the class names depicted ahead, were al-
ready presented in detail in chapter 6, no further description is given here. Only note,
that all these classes provide the method computeSolution() which has to be called after
class initialization in order to obtain the respective resulting spanning tree.

7.2.4 Package compression

In order to encode the computed spanning trees, i.e. transforming them into the respec-
tive bit string representation presented in chapter 5, mainly the compression package is
responsible.

Figure 29 - Class overview for the algorithms package: Note that the classes MST, MLST and WBST,
depicted in a gray color, belong to the graph package, and that they are illustrated here in order to
show the hierarchy of inheritance.
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Here the abstract class  Encoder is the main compression object, which contains the re-
sulting bit string, the spanning tree and the assigned root node. Hence, the implementing
classes have at least to provide the method encode() which eventually creates a bit string
from the passed tree. The current implementations MSTEncoder with its subclass for the
SimpleMST results, MLSTEncoder as well as WBSTEncoder are rough realizations for the
compression of the respective spanning trees, which in general conform to the objective
functions presented in chapter 5. However they are not well tested yet, and thus are to be
taken with a pinch of salt.

7.2.5 Package tools

Within the tools package on the one hand some globally useful functions and classes are
to be found, and on the other hand the different cost function implementations are lo-
cated in here.

The Converter class contains functions for converting integer values into bit strings of a
certain length and vice versa, furthermore for computing the logarithm dualis for (non-)
negative integer values, for translating bit strings into byte arrays, and also for getting in-
teger vectors from a comma separated list of numbers.

In turn the abstract class  CostFunction represents an interface for those algorithms that
need a cost or weighting function on their edges. Here the implementing classes at least
have  to  provide  the method  computeCosts()  that  should  return  the costs  for  either  a
passed difference vector or two passed points, respectively. Current subclasses are the
PseudoCosineMeasure,  MaximumMetric,  EuclidianDistance and  MinkowskiMetric.  Note
that the latter one returns the Minkowski metric for m = d.

7.3 Main Program

In order to run one of the presented spanning tree algorithms, the main program has to
be invoked from the console using the  FPC command. Thereto some parameters exist,
that are going to be introduced now.

Figure 31 - Class overview for the tools package

Figure 30 - Class overview for the compression package
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f: The name of the template file to be processed.

a: The algorithm to  be called.  Currently  the  following algorithms are  available:  Sim-
pleMST,  MvcaMLST,  GreedyMLST,  GraspMLST,  SimpleWBST,  MultipleWBST and
GraspWBST.

d: The delta values for the MLST algorithms. For passing these values, they have to be
written in a comma separated style without any blanks, e.g. -d 10,10.

n: The  number  of  dimension  to  be  considered  during  computation,  i.e.  n ∈ {1, , d}

whereas d is the number of all dimensions. This parameter is only interesting for the
MST and WBST algorithms, since in the MLST case the number is implicitly given by
the number of passed delta values.

t: The template  reader to be used.  Hereby “fhg” stands for  Fraunhofer templates and
“txt” for simple comma separated template files. Note that if no template reader is set,
by default the Fraunhofer template reader will be used.

c: The cost function for the MST and WBST algorithms. The Euclidian distance is se-
lected by “ed”, the Minkowski metric with  m = d by “mm”, the maximum metric by
”max”, and finally the pseudo-cosine measure by “pcm”. Also in this case a default
value is set, namely the Euclidian distance.

v: Specifies the verbose mode. At this a value v ∈ {0, , 3} can be set. Thereby 0 stands

for no output, 1 for some important messages, 2 for more detailed and 3 for all possi-
ble output messages.

k: The number of nodes to connect. If no value is passed, all nodes will be considered.

i: The number of search iterations for the GRASP algorithms. Like with the delta values,
a comma separated list of integer values is expected, e.g. -i 100,100,1. The first num-
ber specifies the number of GRASP iterations and the second one the number of local
search iterations. Since there are two local search types for the GraspMLST algorithm
available the third number is only for the MLST case and defines the local search
type, whereas the number conforms to the names presented in chapter 6. The default
values in this case are 5,100,1.

e: The domain size of the raw data. This is mainly used for computing the total encod-
ing length according to the formulas presented in chapter 5, but also finds use in the
actual encoding algorithms within the compression package. Also here the values are
to be passed in the form of a comma separated list. If this parameter is not specified,
the Fraunhofer domain size with 9,9,9,1 (see chapter 8) is set by default.

Thus typical calls for the different algorithms could look as follows:

• MST: FPC -f <file> -a SimpleMST -n 2 -t fhg -c max -v 0 -k 15

• MLST: FPC -f <file> -a GreedyMLST -d 20,20 -t txt -v 2 -k 20 -e 12,12,9,1

FPC -f <file> -a GraspMLST -d 15,15,15 -t fhg -v 1 -i 100,50,1

• WBST: FPC -f <file> -a MultipleWBST -n 3 -t fhg -c mm -v 1 -k 30

Finally the framework with its classes, packages and usage was described. Thus, the test
data and results are going to be presented conclusively.



Chapter 8 - Results

“The gratification comes in the doing, not in the results.”
James Dean

The previously presented approaches and algorithms were all tested on a small set of mi-
nutiae that was provided by the Fraunhofer Institute for Production Systems and Design
Technology. All tests were run on a machine with a 1,83 gigahertz Intel Core 2 Duo proc-
essor, having 3 gigabyte of  RAM and 2 megabyte of L2 cache. The respective test data
and results are going to be presented in detail on the next pages. In order to make all in-
troduced approaches comparable to one another, the evaluation will focus on the com-
pression ratio, which is computed as follows:

compression ratio [in %] = 100 −
100 ⋅ raw


(20)

According to formula (8) raw specifies the size of the raw data. In turn  conforms to the

objective  function depending on the applied approach.  A positive  compression result
will state the value by which the original data could be reduced, whereas a negative ratio
specifies that value by which the data actually were increased. 

Additionally, in case of the minimum label spanning tree algorithms also runtime and
the computed number of reference vectors will be examined. But first the provided test
data are going to be introduced.

8.1 Fraunhofer Test Data

The Fraunhofer test data set consists of 20 templates belonging to four fingers. Thus, for
every finger there are five impressions. Each of them contains between 15 and 40 minu-
tiae. The main template structure is the following:

• 48 byte  of  METADATA.  These  are  template  specific  information,  such as  resolution,

number of minutiae, etc.

• 4 byte of CONSTDATA. An offset for the x and y coordinates.

• 4 byte  per  minutia.  Every  minutia  consists  of  four  dimensions,  see  section  3.2.3,

whereby the x and y coordinates both are encoded with 10 bits, the angle with 9 bits
and the type with 3 bits. 

A more detailed analysis of these templates revealed that the minutiae resolution is not
completely exhausted, which means that actually only 9 bits for the x and y coordinates
and 1 bit for the type are used. For comparing the test results this “real” encoding size

will be used as raw data raw and no METADATA is going to be considered. Furthermore the

CONSTDATA of the original templates will be neglected as well. Hence, if a template con-
tains 15 minutiae, only these minutiae each with 28 bits resolution will  be treated as
original encoding size, in order to not obtain a compression result which is based on the
omission of redundancy.
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8.2 Minimum Spanning Tree Results

The minimum spanning tree approach  SimpleMST provides a very simple and fast ap-
proach for solving the fingerprint template compression problem. In all cases the algo-
rithm runtime was smaller than 1 second, and a compression ratio of up to 17% could be
achieved. Remember that according to the formulas (9) and (13), see chapter 5, the fol-
lowing objective function holds for the SimpleMST algorithm:

 = size(CONSTDATA') + 2(n – 1) + (n – 1) ⋅ ⌈∑i=1
d i⋅1  ld ai  1−i⋅ld v i⌉ (21)

As already mentioned METADATA is set to zero. In turn CONSTDATA' contains the root node
in the original encoding size of 28 bits. Furthermore the domain of the edges regarding
the considered number of dimensions, and for the remaining dimensions the domain of
the nodes is saved. Thus further 28 bits belong to CONSTDATA'. 

In order to analyze the SimpleMST results, the compression ratio will be considered with
respect to different parameters: the  cost function, the number of considered  dimensions
and the number of nodes to connect.

SimpleMST compared by Cost Function

In chapter 5 three different cost functions were introduced: The Minkowski metric with
m = 2 (Euclidian distance) and m = d, the maximum metric and the pseudo-cosine meas-
ure. In the figure below these cost functions except for the pseudo-cosine measure are
compared over all test data and considered dimensions with respect to their mean com-
pression ratios.

Obviously  the  Euclidian  distance,  Minkowski  metric  and  maximum  metric  perform
nearly identical. However note, that in the one-dimensional case by definition the Min-
kowski metric, Euclidian distance and maximum metric must lead to the same compres-
sion results. The same holds in the two-dimensional case for the Euclidian distance and
the Minkowski metric. Thus the only differences might occur for three and four consid-
ered dimensions.

SimpleMST compared by the Number of considered Dimensions

Altogether  the  results  for  the  three  different  cost  functions,  Euclidian  distance,  Min-
kowski metric and maximum metric, are very similar. In all three cases the best results

Figure 32 - SimpleMST compared by cost function. The compression ratios are a mean value over all
test data and considered dimensions.
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were achieved by considering three of the four available dimensions for compression, i.e.
if considering x and y coordinates and the angle.

However the best overall results were obtained by applying the Minkowski metric. Since
eventually the total number of used bits shall be minimized the metric for determining
the edge costs must consider the values of the dimensions in a respective manner. The
maximum  metric  thereby  considers  only  that  dimension  holding  the  greatest  value,
which leads to the fact that the vector (3,0,0) for instance obtains the same costs as the
vector (3,1,2), although actually more bits are needed for representing the second one.
The  Minkowski  metric  in  turn  computes  the  costs  by  weighting  the  greatest  values
stronger than smaller ones, whereat the weighting furthermore intensifies with a higher
number of dimensions.  Thus the Minkowski metric seems to be the most appropriate
weighting function for representing the length of a  d-dimensional edge, at least for this
algorithm. 

Since furthermore the number of  nodes  to  connect  k was  modified,  the three-dimen-
sional results computed by applying the Minkowski metric are examined in more detail
with respect to k.

SimpleMST compared by the Number of Nodes to connect

As already mentioned the test data templates consist of 15 to 40 minutiae. In order to
perform a lossy compression different values of k were analyzed, in particular 5, 10, 15,
20 and 25 nodes. For these values the following compression results arose.

Figure 33 - SimpleMST compared by number of considered dimensions.

Figure 34 - SimpleMST compared by the number of nodes to connect. The ratios are a mean value
over all 20 templates, and the table on the right states the maximum and minimum compression
ratio, as well as the standard deviation from the mean compression ratio for every considered k.

k Max in % Min in % Std. Dev.

5 11,69 3,90 2,25
10 16,67 -1,70 4,16
15 16,13 0,00 3,88
20 10,80 0,87 3,09
25 11,48 1,40 2,94
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By connecting 10 nodes  a  mean compression  ratio  averaged over  all  20 templates  of
nearly  12%  could  be  achieved.  Thereby  the  greatest  compression  ratio  conforms  to
nearly  17%. If  connecting more than 10 nodes  the compression  ratio  consistently re-
duces. However 10 nodes might not be sufficient for verification purposes.

SimpleMST Matching Results

Since the Fraunhofer Institute furthermore provided a matching algorithm, it can be ex-
amined whether the obtained subset of minutiae is sufficiently high for verification pur-
poses. Remember that the test data consist of 20 templates from four fingers. In particu-
lar there are five templates for every finger. Thus it can be checked, whether a  k-node
template can still be successfully mated or non-mated to all other templates.

The figure above depicts the FMR, FNMR (see section 2.4) and the mean compression ra-
tio averaged over all templates with respect to the number of nodes to connect. It turned
out, that a number k smaller than 10 leads to a false non-match rate of 100%. Thus, 10 is
the smallest number of minutiae by which a verification is still possible, at least for the
Fraunhofer  templates  and  the used  matching algorithm.  However,  although the  FMR
conforms  to 0% in all  cases,  the number of  falsely non-mated templates is  extremely
high. When connecting 10 nodes the FNMR conforms to 74%. For a higher value of  k,
like e.g. 25, the FNMR decreases to 17%, which seems to be an acceptable ratio when
considering that the original templates have a FNMR of 5%. However, by connecting 25
minutiae the compression ratio shrinks to approximately 5%.

8.3 Minimum Label Spanning Tree Results

The computational experiments for the minimum label spanning tree algorithms were

performed for various parameter values of the correction vector domain  , the number of

considered dimensions and the number of nodes to connect k. Since the analysis focuses
on the compression ratio, remember that the following objective function according to
formulas (16) and (17) is used for computation:

 = size(CONSTDATA') + 2(n – 1) +

(n – 1) ⋅ ⌈ld l  ∑i=1
d ld i⋅i  ld v i⋅1−i⌉ + l ⋅∑i=1

d ⌈ld v i ⌉⋅i  
(22)

Figure 35 - Matching results for the SimpleMST algorithm using the Minkowski metric.
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In this case  CONSTDATA'  contains beside of the root node with 28 bits the node domain
with further 28 bits for a faithful reconstruction of all nodes. Furthermore the number of
computed reference vectors must be stored, using further 4 bits.

The  three  minimum  label  spanning  tree  algorithms  MvcaMLST,  GreedyMLST and
GraspMLST delivered varying results regarding the compression ratio, runtime and the
number of computed reference vectors. The MvcaMLST was thought as a first and rough
implementation of a MVCA-based algorithm, whereat the compression results look quite
poor. The GreedyMLST delivers much faster and also better compression ratios of up to
9%. Finally, with up to 12% the results of the GraspMLST are even better. However note,
that  the  runtime for  the  candidate  reference  vector  determination  for  values  of  delta
larger than 30, and a relatively high number of minutiae in a template, e.g. larger than
35, could last up to a few hours. However for small delta values the respective runtime is
sufficiently fast.

8.3.1 Results for the MvcaMLST Algorithm

The image below depicts the mean compression ratios depending on the delta values and
the considered dimensions for the MvcaMLST algorithm.

If considering only one dimension for compression the results are exclusively positive,
although not very high. At this, especially small delta values between 5 and 15 lead to
the best results. In turn for a higher number of considered dimensions the results differ
enormously. Nearly all delta values result in an increased template size. Hence, at least
for this algorithm only the one-dimensional case could be of interest. 

However, as already mentioned, the  GreedyMLST results are better than this, and thus
the MvcaMLST results will not be examined in detail.

8.3.2 Results for the GreedyMLST Algorithm

The runtime of the GreedyMLST algorithm in most cases took not even a second. How-
ever for delta values larger than 40 in a few cases it could last up to 5 seconds. Note that
these values do not contain the computation of the candidate reference vectors, but only
the computation of the solution for a given complete, directed and edge-labeled graph.

Figure 36 - Results for the MvcaMLST algorithm analyzed with respect to the considered dimensions
and  delta  values.  Furthermore  the  highest  mean  compression  ratios  for  every  delta  value  are
depicted.
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Nevertheless from a general overview the results for this algorithm look already promis-
ing.

Again  the  compression  ratios  for  the  one-dimensional  case  are  exclusively  positive.
However this time the results for the two-dimensional case with up to 6,28% for a delta
value of 31 look good, as well. In turn the results for the three- and four-dimensional
cases are not very sufficient. Nevertheless, the results with respect to all considered di-
mensions are going to be analyzed in more detail.

GreedyMLST Results for one considered Dimension

Regarding the runtime and compression ratio, especially for very small deltas the one-di-
mensional case could be of interest, i.e. for delta values that are smaller than 20. Hence,
the following cases are depicted in the figure below.

The best mean compression results for the one-dimensional case could be obtained for a
delta value of 3 and if connecting 20 nodes, although the highest overall compression re-
sults of 13,82% were obtained for a delta of 5. Hence, if considering only one dimension
and small delta values for compression fast results and a mean compression of about 9%
can be achieved for the Fraunhofer templates.

Figure  37 -  Results  for  the  GreedyMLST  algorithm  analyzed  with  respect  to  the  considered
dimensions and delta values. For every delta value the highest mean compression ratio is depicted.

Figure 38 - GreedyMLST results for one considered dimension. The table on the right states the lowest
and highest compression ratios for the considered delta values, and the standard deviation for that k
resulting in the highest mean compression ratio.

 Max % Min % Std. Dev.

3 10,50 0,00 1,59
5 13,82 0,00 1,22
7 13,03 0,00 2,44
10 13,03 3,06 1,40
15 9,66 0,00 0,00
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GreedyMLST Results for two considered Dimensions

In contrast to the one-dimensional case better compression results were obtained here
for larger values of delta. In particular delta values larger than 15 are analyzed in detail.

With  = (30, 30) and  = (45, 45), both with k = 25, the best results for two considered

dimensions were achieved having a mean compression ratio of 7,94%. For  = (35, 35)

actually  a compression of  maximally  15,13% could be reached.  In turn for  this  delta
value also the lowest ratio of -6,12% occurred. However delta values larger than 30 al-
ready have a relatively high computation time for pre-processing. Hence the two-dimen-

sional results for  = (25, 25) or  = (20, 20) and k = 25 are indeed slightly worse but bet-

ter regarding the runtime, and thus lead to a better tradeoff between compression ratio
and runtime.

GreedyMLST Results for three considered Dimensions

Neither regarding the compression ratio nor the runtime the three-dimensional results
are better than for one or two considered dimensions.

Although the highest overall compression ratio of 13,03% was achieved for a delta value

of 30, the best mean compression results of 6,12% were obtained for  = (45, 45, 45) and

k = 25. Thus the results are about 2% poorer than the two-dimensional, and about 3 –
4% worse than the one-dimensional ones. Since the best results in this case were ob-
tained for delta values of 45 or 35, where the computation of the candidate reference vec-

Figure  39 -  GreedyMLST results  for  two considered dimensions.  The table on the right  states the
lowest and highest compression ratios for the considered delta values, and the standard deviation for
that k resulting in the highest mean compression ratio.

Figure  40 - GreedyMLST results for three considered dimensions. The table on the right states the
lowest and highest compression ratios for the considered delta values, and the standard deviation for
that k resulting in the highest mean compression ratio.

 Max % Min % Std. Dev.

20 12,61 -6,12 2,89
25 12,61 -3,06 1,62
30 13,59 -3,06 2,45
35 15,13 -6,12 2,57
40 11,76 0,46 2,63
45 11,76 0 3,61

 Max % Min % Std. Dev.

30 13,03 -9,18 2,8
35 12,24 -12,24 3,53
40 6,3 -15,31 1,88
45 10,08 -6,12 1,9
50 12,21 -6,12 3,87
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tors is not sufficiently fast anymore, this number of considered dimensions is not very
promising.

GreedyMLST Results for four considered Dimensions

Finally the results for four considered dimensions are yet a bit poorer than the three-di-
mensional ones.

Analogously to the three-dimensional case the best results with a mean ratio of 5,70%

were obtained for 25 nodes and  = (45, 45, 45, 3), which also led to the highest overall

result. However also this time the computation time of pre-processing for that delta val-
ues can not be neglected.

Best GreedyMLST Results

The last sections have given an independent insight to the compression results of the
GreedyMLST algorithm. Hence a conclusive overview about the best results is given here.
In particular only the one- and two-dimensional results are considered. Since further-
more the runtime and the number of computed reference vectors was not mentioned be-
fore, the respective numbers are stated here as well.

The one-dimensional case provides a very fast approach and already relatively high com-
pression results. By increasing the number of dimensions at least for the considered pa-

Figure  41 - GreedyMLST results for four considered dimensions.  The table on the right states the
lowest and highest compression ratios for the considered delta values, and the standard deviation for
that k resulting in the highest mean compression ratio.

Figure  42 - Runtime for the best GreedyMLST results.  Beside of the mean compression ratios the
mean runtime over all 20 templates for the given correction vector domain and k is depicted.

 Max % Min % Std. Dev.

35
40
45

9,24 
5,88 
9,80 

-22,79 
-16,33 
-6,80 

2,48 
1,91 
1,94 
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rameters no better results could be achieved. However the runtime without considering
the determination of the candidate reference vectors  is  in all  cases  clearly fast.  For a
higher number of considered dimensions and a larger correction vector domain it rises
only very slightly.

The number of computed reference vectors in turn for the parameter constellations de-
picted below is always  located between one and four.  Thereby, regarding the average
number of reference vectors, a greater correction vector domain leads to a lower number
of used reference vectors but not necessarily to a better compression result, since greater
delta values of course need a higher number of bits for encoding.

Thus for one considered dimension and k = 25 delta values between 3 and 5 lead to the
highest compression results and for two considered dimensions delta values of 25 result
in the best tradeoff between compression and runtime if considering the determination
of candidate reference vectors.

8.3.3 Results for the GraspMLST Algorithm

The GraspMLST algorithm was only examined for those parameters, which returned the
best results in the GreedyMLST case. Therefore the following delta values were analyzed
for k = 25: (3), (5), (7), (15), (25, 25), (30, 30), (40, 40) and (35, 35). In section 6.3.5 differ-
ent types of local searches were presented. The figure below shows the respective com-
pression results and the mean runtime. 

Figure  44 -  GraspMLST  compared  by  the  type  of  the  applied  local  search.  Beside  of  the  mean
compression ratio furthermore the mean runtime is stated.

Figure  43 -  Number  of  reference  vectors  for  the  best  GreedyMLST  results.  Beside  of  the  mean
compression ratios the maximum, minimum and mean numbers of computed reference vectors over
all 20 templates for the given correction vector domain and k are depicted. 
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Note that the GraspMLST was run with 20 iterations for the local search 0, which in turn
had 100 local  iterations.  The local  search 1 was  run with 200 GRASP iterations.  Al-
though the local search 0 was started with the smallest number of GRASP iterations it
had the longer runtime with averagely 5,71 minutes and with a mean of 6,56% poorer
compression results. Applying the local search 1 led to more promising results regarding
the runtime and the compression ratio. Thus, it is going to be analyzed in more detail. 

GraspMLST Results for the Local Search 1

The local search 1 uses some kind of reference vector insertion neighborhood, i.e. that in
every  iteration  one  candidate  reference  vector  is  added to the solution.  Afterwards  a
post-processing is performed in order to remove all redundantly gotten reference vectors.
Using  this  strategy  for  those  parameters  that  returned  the  best  results  for  the  Gree-
dyMLST algorithm, the results depicted in the image below occur.

The results became only slightly better as for the GreedyMLST algorithm, especially for
two considered dimensions,  compare  to figure (42). Furthermore the runtime for 200
GRASP iterations is depicted above, which pends in a mean between a few seconds and
up to nearly five minutes for a greater correction vector domain and a higher number of
considered dimensions. Below the used number of reference vectors is depicted.

Figure 45 - Runtime for the GraspMLST using local search 1. Beside of the mean compression ratios
the mean runtimes over all 20 templates for the given correction vector domain and k are depicted.

Figure 46 - Number of reference vectors for the GraspMLST using local search 1. Beside of the mean
compression ratios the maximum, minimum and mean numbers of computed reference vectors over
all 20 templates for the given correction vector domain and k are depicted. 
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Also the mean number of used reference vectors decreased only slightly. Thus the results
are  not  significantly  better.  This  is  especially  dependent  on  the  fact,  that  the  Gree-
dyMLST algorithm in many cases already returns the optimal results with respect to the
given correction vector domain. Hence, the following section will give a short compari-
son of the GreedyMLST and GraspMLST results with respect to the optimal results com-
puted by an exact algorithm.

Compare of Greedy and GRASP Results with Respect to the optimal Results

The following table gives a small overview about the results of 10 from the 20 given tem-
plates. The  GreedyMLST and  GraspMLST algorithms were run for the parameter values
 = (25, 25) and  = (30, 30), both with k = 20 and k = 25, and compared to the results

computed by an exact branch-and-cut algorithm [Chwatal08].

Template  k GreedyMLST GraspMLST B&C
|R| t |R| t |R| t

1 25,25 20 2 0 s 2 1 m 2 51 s
25 2 0 s 2 1 m 2 57 s

30,30 20 2 0 s 1 1 m 1 1 h
25 2 0 s 2 2 m 2 1 m

2 25,25 20 2 0 s 2 53 s 2 16 s
25 3 0 s 3 54 s 2 16 s

30,30 20 2 0 s 2 66 s 2 55 s
25 3 0 s 2 1 m 2 47 s

3 25,25 20 2 0 s 2 2 m 2 3 m
25 3 0 s 2 4 m 2 2 m

30,30 20 2 0 s 2 3 m 2 11 m
25 2 0 s 2 4 m 2 22 m

4 25,25 20 3 0 s 3 14 s 3 6 s
30,30 20 2 0 s 3 19 s 2 0 s

5 25,25 20 2 0 s 2 3 m 2 57 h
25 2 0 s 2 4 m 2 10 m

30,30 20 2 0 s 1 5 m
25 2 0 s 2 6 m 2 33 m

6 25,25 15 3 0 s 2 3 s 2 51 s
30,30 15 2 0 s 2 3 s 1 1 h

7 25,25 20 3 0 s 2 36 s 2 16 s
25 3 0 s 3 34 s 2 16 s

30,30 20 3 0 s 2 51 s 2 55 s
25 3 0 s 3 52 s 2 47 s

8 25,25 20 3 0 s 2 29 s 2 3 m
25 3 0 s 2 29 s 2 2 m

30,30 20 2 0 s 2 38 s 2 11 m
25 2 0 s 2 36 s 2 22 m

9 25,25 20 3 0 s 2 45 s
25 3 0 s 3 32 s 3 6 s

30,30 20 2 0 s 2 44 s 2 0 s
25 3 0 s 2 47 s

10 25,25 20 3 0 s 2 60 s 2 57 h
25 3 0 s 3 1 m 2 10 m

30,30 20 2 0 s 2 1 m
25 3 0 s 2 1 m 2 33 m

Figure 47 - Compare of the GreedyMLST and GraspMLST algorithms. The table states the results for
the  GreedyMLST,  GraspMLST  and  an  exact  Branch-and-Cut  algorithm  for  10  of  the  20  given
templates. Beside of the number of reference vectors also the runtime is depicted. The gray, bold lines
depict those parameter constellations for which both, the GreedyMLST and the GraspMLST, deliver
optimal results. The italic lines in turn depict those parameter values for which the GRASP improved
the results of the greedy algorithm.
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The GreedyMLST algorithm in many cases already delivers optimal or at least nearly op-
timal results for the given parameter values, and also the runtime taking not even a sec-
ond is clearly fast. Whereas in turn the runtime for the branch-and-cut algorithm could
last up to a few hours, also the GraspMLST with a runtime of up to 6 minutes was suffi-
ciently fast. Furthermore in many cases the GRASP algorithm could improve the results
of the greedy algorithm up to the optimum. Hence both algorithms, the GreedyMLST and
GraspMLST deliver high quality results that are in many cases optimal or at least nearly
optimal. However finally still has to be checked whether the compressed templates dur-
ing mating still lead to sufficient matching rates.

8.3.4 MLST Matching Results

Since the approach of compression is identical for all MLST algorithms, i.e. treating the
edges as part  of a ring structure and representing them by a reference vector  together
with a small correction vector, only the GRASP results are going to be mated. It is assum-
able that a different  number of considered dimensions and also different delta values
may lead to differently distributed resulting minutiae, and thus matching is performed
here for a one- and a two-dimensional example.

Analogously to the MST algorithm the false match rate in all cases conforms to 0%. How-
ever the false non-match rate differs for the different numbers of considered dimensions.
Of course it must be mentioned that if running the tests again the results may differ, due
to the random computation of the GRASP algorithm.

The one-dimensional case was analyzed for  = 5. There the best compression result was

obtained for  k = 25, having a mean ratio of 8,96%. For this number of nodes also the
FNMR of 14% is furthermore sufficiently small. In turn for two considered dimensions
delta values of 30 were analyzed. Thereby the compression ratio is best for 24 nodes
with 9,22%, whereas  the FNMR of  23% is  relatively  high.  However  if  connecting  25
nodes, which results in a mean compression ratio of 8,59%, the FNMR decreases to 20%.

Thus altogether, if connecting more than 22 nodes the FNMR of maximally 23% is rela-
tively high, but could be acceptable, because remember that the original uncompressed
templates have a FNMR of 5%.

Figure  48 -  Matching results  for  the GraspMLST for  different  numbers of  considered dimensions.
Furthermore the FMR and FNMR is depicted.
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8.4 Weight Balanced Spanning Tree Results

The weight balanced spanning tree approach is based on the idea that one reference vec-
tor might be sufficient for representing all tree edges, such that finally only small correc-
tion vectors have to be stored. The implemented algorithms SimpleWBST, MultipleWBST
and GraspWBST thereby led to varying results.

Remember that according to the formulas (9) and (19) the following objective function
holds:

 = size(CONSTDATA') + 2(n – 1) +(n – 1) ⋅ ⌈∑i=1
d i⋅ld i  1−i⋅ld v i⌉  (23)

CONSTDATA' in this case contains the root node with 28 bits, the domain of the nodes with
28 bits, the domain of the correction vectors and the offset vector for the considered di-
mensions, whereas the respective values are encoded using the original encoding size.

The parameters that were considered for analysis conform to the MST approach – the
cost function, the number of considered dimensions an the number of nodes to connect.

8.4.1 Results for the SimpleWBST Algorithm

A first overview about the SimpleWBST results states a poor image. Except for the Min-
kowski metric the mean compression ratios are negative.

Note that this time also the pseudo-cosine measure has been analyzed of being an appro-
priate weighting function. However the respective results look not too promising, which
might be based on the fact that instead of the absolute value only the orientation of the
edges  is  considered,  and  thus  a  vector  (1, 1)  obtains  the  same  weighting  as  a  vector
(10, 10). Thus it seems that at least for this case the pseudo-cosine measure is not a good
choice for a weighting function. In turn the mean compression ratio for the Minkowski
metric of 0,61% is not very promising, too. However the three best cost functions Euclid-
ian distance, Minkowski metric and maximum metric are going to be analyzed in more
detail.

SimpleWBST compared by the Number of considered Dimensions

At least for one considered dimension the results for the SimpleWBST algorithm are sur-
prisingly high, which means that the results with a mean compression ratio of 11,79%
are better than for the MST and MLST algorithms, see figures (33) and (38).

Figure 49 - SimpleWBST compared by cost function. The compression ratios are a mean value over
all test data, considered dimensions and the following numbers of nodes: 10, 15, 20 and 25.
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Indeed  the  results  for  the  one-dimensional  case  are  even  optimal,  because  the  Sim-
pleWBST algorithm delivers the optimal spanning tree for a one-dimensional cost func-
tion, and the costs given by the Euclidian distance, the Minkowski metric and the maxi-
mum metric directly conform to the distance values of the edges. However for a higher
number of dimensions the results are not satisfyingly anymore. Nevertheless the runtime
in all cases was less than one second.

SimpleWBST compared by the Number of Nodes to connect

Analyzing the one-dimensional results in more detail by the number of nodes to connect
leads to the following results.

The highest compression ratio of 12,54% averaged over all 20 templates can be reached if
connecting 20 nodes, whereat the maximum compression ratio conforms to 15,85%. In
case of  k = 25 thereby the correction vector domain is between 5 and 10. Compared to
the results of the currently available MLST results this seems to be very promising. Nev-
ertheless the results of the MLST approach should be identical, due to the WBST ap-
proach is just a special case of the MLST, in which the number of used labels conforms
to one. That means that at least for one considered dimension in the optimal case delta
values between 5 and 10 would also in the MLST approach lead to one reference vector.

SimpleWBST Matching Results

The matching results for the  SimpleWBST do not look too satisfyingly, due to also for
larger values of k the false non-match rate remains relatively high.

Figure 50 - SimpleWBST compared by number of considered dimensions.

Figure 51 - SimpleWBST compared by the number of nodes to connect. The ratios are a mean value
over all 20 templates, and the table on the right states the maximum and minimum compression
ratio, as well as the standard deviation from the mean compression ratio for every considered k.

k Max in % Min in % Std. Dev.

10 13,61 10,54 1,46
15 14,06 10,83 1,48
20 15,85 9,23 1,07
25 13,59 10,22 1,64
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However for k = 25 the FNMR again is equal to the MLST results and thus should be ac-
ceptable. Furthermore like for all other matching results the FMR conforms to 0%.

8.4.2 Results for the MultipleWBST Algorithm

Since the one-dimensional case can already be optimally solved using the SimpleWBST
algorithm, for evaluating the MultipleWBST results this case is not considered anymore.
However the results of this algorithm were surprising too, because they do not depend
on the choice of the cost function, anyway. 

The results for the different numbers of considered dimensions are identical for every
analyzed cost function. At least for the Minkowski metric and the maximum metric this
is based on the fact that in the algorithm first of all an optimal bounding box is com-
puted with respect to the optimal weighting ranges for every single dimension. After-
wards an expansion of that bounding box takes place in order to finally obtain a span-
ning tree whose edges are located within this bounding box. With regard to this expan-
sion the choice of the weighting function in the end becomes more or less unimportant.
Nevertheless eventually relatively high compression results were obtained. In the two-di-
mensional case a mean compression of nearly 7,75% was achieved. However, the best re-
sults for this algorithm were obtained for four considered dimensions with a mean com-
pression ratio of 8%. Furthermore in all cases the runtime was less than 4 seconds.

MultipleWBST compared by the Number of Nodes to connect

Analogously to all other results, in which the edges are treated as part of a ring domain a
higher compression ratio is achieved if connecting a higher number of minutiae. In par-

Figure 52 - Matching results for the SimpleWBST algorithm.

Figure 53 - SimpleWBST compared by number of considered dimensions.
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ticular the best results for this algorithm with a mean compression ratio of 9,24% could
be obtained for 25 nodes to connect.

Although the maximum compression ratio of 19,39% was achieved for 10 nodes, the re-
spective matching results for such a small number of nodes would not be sufficient. Nev-
ertheless, a maximum compression ratio of 14,29% for 25 nodes to connect looks still
good. However note, that the correction vector domain computed by the MultipleWBST
algorithm is relatively high, namely in most cases between 60 and 160 for the x and y co-
ordinates and the angle. The respective domains were not analyzed for the MLST algo-
rithms due to the large runtime of pre-processing. From this point of view, the WBST ap-
proach is a good alternative to the MLST, since relatively good compression results can
be obtained  in a  short  runtime.  Of  course  with respect  to  the update  strategy of  the
bounding box the results for this algorithm must not be optimal.

MultipleWBST Matching Results

In contrary  to the  SimpleWBST matching results,  the respective results  for  the  Multi-
pleWBST look quite better.

Although the highest mean compression result of 9,71% for this algorithm was achieved
for 16 connected nodes, a ratio of 9,24% for 25 nodes and a respective FNMR of 13%
look very satisfyingly.

Figure 54 - MultipleWBST compared by the number of nodes to connect. The ratios are a mean value
over all templates, and the table on the right states the maximum and minimum compression ratio,
as well as the standard deviation from the mean compression ratio for every considered k.

Figure 55 - Matching results for the MultipleWBST algorithm.

k Max in % Min in % Std. Dev.

10 19,39 1,02 4,38
15 12,90 3,23 2,60
20 12,54 2,61 2,61
25 14,29 4,20 2,57
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8.4.3 Results for the GraspWBST Algorithm

The  GraspWBST algorithm was introduced in order to state a further approach for im-
proving the results of the SimpleWBST algorithm for a higher number of considered di-
mensions. Although this results are better than the SimpleWBST results, they are neither
very satisfying nor is the approach a very fast one.

For all analyzed cost functions the mean compression ratios conform to approximately
2%. Although the SimpleWBST algorithm could surprise with optimal compression ratios
for the one-dimensional case, some further evaluation of the  GraspWBST revealed that
the best results were reached using the pseudo-cosine measure for 2 dimensions, and if
connecting 25 nodes.  However,  since this  ratio  of  7,5% is smaller than for the  Multi-
pleWBST algorithm and for the MLST algorithms, a further analysis will not be given.

8.5 Some Conclusive Remarks

Altogether the results for the Fraunhofer templates are already very promising. The MST
algorithm as a very initial idea delivered compression results of up to 17%, however the
respective matching results are not satisfying. In turn the MLST algorithms delivered op-
timal or nearly optimal results with respect to the number of used reference vectors, and
compression results of up to 13%. And also the false non-match rate seems to be accept-
able. However delta values larger than 30 for more than one dimension lead to very high
runtimes  based  on  the  determination  of  the  candidate  reference  vectors.  Finally  the
WBST approach is actually a special case of the MLST approach, but instead of deter-
mining the reference vectors the correction vector domain is computed, and thus com-
pression ratios of up to 14% can be reached in a very short runtime. However note that
the mentioned compression ratios do not reflect the actual ratios regarding the original

template sizes, since for computation of raw only k nodes instead of all are considered.

Figure 56 - GraspWBST compared by the applied cost function.

algorithm and parameters compression ratio in % FNMR in %
SimpleMST, Minkowski metric, 3 dimensions k = 20 45,62 30

k = 25 33,11 17
GraspMLST,  = (30,30) k = 20 46,35 36

k = 25 35,63 20
SimpleWBST, Minkowski metric, 1 dimension k = 20 49,07 38

k = 25 38,26 20

Figure 57 - Real compression ratios. The table above depicts the real mean compression ratios with
respect to the real template size, which is in a mean 1012 bits for all 20 templates. Note that only
those algorithms and parameters are considered that returned the best results.
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With  respect  to  the  application  background indeed the  compression  ratios  are  much
higher. Thus, for those parameter constellations and algorithms, which previously deliv-
ered the best results, the real mean ratios depicted above can be obtained. With regard to
an acceptable false non-match rate thus compression ratios of 30 to 40% can be reached.
If considering the 6 kilobyte image from section 4.1, in which 256 byte of additional in-
formation can be embedded, and if furthermore considering the mean template size of
1012 bits of the Fraunhofer templates, which conforms to approximately 127 byte, with-
out compression 2 templates could be embedded. A compression of 30% however would
eventually allow to embed up to 3 templates, which however is still not sufficient for the
regarded compression technique from  [Jain02] introduced in section 4.1.3, because the
necessary redundancy cannot be ensured. However for slightly larger images, like for in-
stance such of 10 kilobyte size, at least a double embedding of two templates becomes
possible.



Chapter 9 - Conclusions

"In the end, everything is a gag."
Charly Chaplin

In order to embed fingerprint templates in the form of digital watermarks in digital pass-
port photographs by means of a secure and robust embedding technique introduced in
[Jain02] a compression of these templates is necessary. Such fingerprint templates con-
tain information about the positions and orientations of the so-called minutiae, i.e. those
points of a fingertip where the dermal papillae either end or bifurcate. Since this infor-
mation is represented as points of a  d-dimensional coordinate system, and thus can be
conceived as points of a graph, especially graph-based approaches are of interest for this
thesis. The basic idea is to store a subset of the difference vectors between the minutiae
instead of the given absolute coordinate values. For this purpose directed spanning trees
provide a compact encoding format. Thus if starting at a root node by performing a depth
first search all further nodes can be reached and encoded. Since the compression can be
lossy as well, the idea was adapted to a k-node directed spanning tree. Within this thesis
different approaches based on various directed spanning trees are introduced. In particu-
lar, the directed minimum spanning tree, the directed minimum label spanning tree and
the directed weight balanced spanning tree are considered. For testing and analyzing a
small set of templates and a respective matching algorithm was provided by the Fraun-
hofer Institute for Productions Systems and Design Technologies.

The first and very simple approach introduced in this thesis applies the directed mini-
mum spanning tree. The presented algorithm SimpleMST is an adapted version of Krus-
kal's algorithm and already provides relatively good results. With respect to acceptable
matching results the SimpleMST algorithm delivers compression ratios of averagely 5%.

The main approach of this thesis uses some kind of dictionary for compression in which
a small subset of the difference vectors between all pairs of nodes is stored. The edges
are represented by a reference to the respective dictionary entry, a so-called reference
vector, together with a small correction vector. In order to compute the smallest possible
subset of dictionary entries from a pre-computed set of candidate reference vectors with
respect to a given correction vector domain the directed minimum label spanning tree is
applied. All implemented algorithms, i.e. the  MvcaMLST,  GreedyMLST and  GraspMLST
are greedy heuristics or metaheuristics respectively, based on an adapted version of the
maximum vertex  cover  algorithm introduced in  [Chang96].  The presented  algorithms
were analyzed with respect to a different number of considered dimensions for compres-
sion and different  correction  vector  domains.  It  turned out  that if  considering one or
even two dimensions the highest compression results of up to 15% could be achieved. At
this,  the  GraspMLST algorithm performed averagely  up to  1,5% better  than the  Gree-
dyMLST, whereat the latter one in many cases already returned optimal results with re-
spect to the computed number of reference vectors. However the respective domain of
the correction vectors with values of up to 35 leads especially for greater template in-
stances to a relatively high runtime of the pre-processing, which delivers the candidate
reference vectors. Thus if considering a smaller correction vector domain a mean com-
pression ratio of 8% in a sufficiently fast runtime is achievable. Independently from this
thesis also other algorithms applying the minimum label spanning tree were developed
at the Institute for Computer Graphics and Algorithms of the Vienna University of Tech-
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nology,  in  particular  an  exact  branch-and-cut  algorithm  and  genetic  algorithms,  see
[Chwatal08].

A third and last approach is a special case of the second one. However instead of deter-
mining the smallest  possible  subset  of  reference vectors  one common offset  vector  is
sought. For solving this problem a directed version of the weight balanced spanning tree
is applied, that determines a spanning tree in which the difference between the smallest
and largest edge weight is minimal. If considering only one dimension for compression
the  introduced  algorithm  SimpleWBST delivers  fast  and  optimal  results  with  a  mean
compression ratio of up to 13%. Both other implemented algorithms, the MultipleWBST
and the GraspWBST deliver mean compression results of 8% and 5%, respectively.

If considering the real template size instead, which is not bound to the number of nodes
to connect, much higher compression ratios of up to 40% in a mean and in a few cases
up to 80% in total can be reached. However only a small amount of data was tested and
the modifiable parameters were not exhaustively varied. Thus still higher compression
ratios are possible. Since common compression techniques, such as ZIP, moreover con-
sistently increase the size of the considered templates, the techniques presented within
this thesis seem to be a highly promising approach.
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