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Kurzfassung

Die realistische Beschreibung des Kriechverhaltens von jungem Spritzbeton ist fiir die Bes-
timmung des Auslastungsgrades von Spritzbetonschalen im Rahmen von Tunnelbauprojek-
ten von entscheidender Bedeutung. In den letzten Jahren ermoglichten neuartige experi-
mentelle Methoden sowie Fortschritte im Bereich der Materialmechanik die Entwicklung
sogenannter Mehrskalenmodelle, die eine Beschreibung der fiir das Kriechverhalten von
zementgebundenen Werkstoffen verantwortlichen physikalischen und chemischen Prozesse
auf der Beobachtungsebene erlauben, auf der diese Prozesse tatsichlich wirksam sind. Das
in [16] vorgeschlagene Mehrskalenmodell bildet die Grundlage der vorliegenden Arbeit,
welche folgende Themen umfasst:

e Homogenisierung des elastischen und viskoelastischen Materialverhaltens

Die Bestimmung der makroskopischen Eigenschaften erfolgt ausgehend von der so-
genannten Mortelebene (Aggregat in Zementsteinmatrix) unter Anwendung (i) der
Kontinuumsmikromechanik (Mori-Tanaka Schema) und (ii) der Methode der finiten
Elemente. Die Ergebnisse der beiden Homogenisierungsmethoden werden einander
gegeniibergestellt.

e Kriechexperimente

Fiinf verschiedene Spritzbetonmischungen, welche im Tunnelbauprojekt ”Lainzer
Tunnel” eingesetzt wurden, werden hinsichtlich ihres Kriechverhaltens untersucht.
Die dadurch erhaltenen Kriechnachgiebigkeiten werden in Abhangigkeit des Hydra-
tionsgrades dargestellt.

SchlieBlich erfolgt ein Vergleich der experimentellen Ergebnisse mit den Kriecheigenschaften,
die mit dem Mehrskalenmodell prognostiziert wurden.



Abstract

The realistic description of the creep behavior of early-age shotcrete is essential for de-
termination of the degree of loading of shotcrete linings serving as primary support in
tunnel construction. In recent years, novel experimental methods and progress in the field
of micromechanics have led to the development of so-called multiscale models, allowing
the consideration of physical/chemical processes causing creep of early-age cement-based
materials at the scale of their occurrence. This thesis departs from the multiscale model
outlined in [16] and comprises:

e Upscaling of elastic and viscoelastic material behavior

The macroscopic properties of shotcrete are determined by considering two material
phases (cement paste and aggregate) at the so-called mortar-scale using (i) microme-
chanical methods (Mori-Tanaka scheme) and (ii) the Finite Element approach. The
results obtained from the two upscaling methods are compared.

o Creep experiments

Five different shotcrete mixtures, which have been employed in different sections of
the tunnel construction project ”Lainzer Tunnel”, are investigated experimentally as
regards their creep behavior. The obtained model parameters describing the creep
behavior are determined as a function of the hydration degree.

Finally, the experimentally-obtained results are compared with those predicted by the
multiscale model.
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Chapter 1

Motivation

The increasing traffic of the continuously enlarging European Union requires the construc-
tion of new and the improvement of existing traffic infrastructure. Hereby, subterranean
solutions are chosen in many cases. Therefore, the engineering field of tunnel construction
will even become more important in the near future [15].

For the construction of tunnels according to the New Austrian Tunneling Method
(NATM), the mechanical behaviour of its primary support, i.e, the shotcrete lining, is
essential for the engineering and economic success of the tunnel project. In this con-
text, the creep mechanisms present especially in early-age shotcrete strongly influence the
loading of the shotcrete lining and, thus, the safety of the tunneling process. Recently,
multiscale models for early-age cement-based materials were developed, correlating macro-
scopic material behavior of cement-based materials, such as creep, to physical/chemical
processes occurring at finer scales of observation.

The multiscale model proposed in [16] provides the starting point for this thesis and
is briefly reviewed in Appendix A. In Chapter 2, macroscopic properties of shotcrete are
determined by considering a two-phase material (cement paste and aggregate), employing
two upscaling methods based on continuum micromechanics and the finite element method,
respectively (see also Appendices B to E). Finally, in Chapter 3, creep experiments for five
different types of shotcrete (Appendix G) are presented and compared with the respective
material response predicted by the multiscale model.



Chapter 2

Multiscale modeling of shotcrete

Multiscale models describe the complex material behavior considering information from
different scales of observation. At each scale, the material is characterized by identifying
homogeneous material phases as well as their spatial variation. Depending on the char-
acteristics of the spatial variation, two different groups of modeling approaches can be
distinguished (see [18] ):
e Models based on studying discrete microstructures, which include e.g. (i) Periodic
Microfield Approaches or Unit Cell Methods [1, 19, 12|, (ii) Embedded Cell Ap-
proaches [4, 24, 20|, and (iii) Windowing Approaches [9].

e Models based on statistical information of the inhomogeneous material, such as (i)
Mean Field Approaches (MFA) [21] and (ii) Variational Bounding Methods.

According to [16], MFA may be used to model cement-based materials such as shotcrete,
introducing three additional scales of observations below macroscale (see Figure 2.1):

e At the mortar scale, concrete is treated as a two-phase composite material consisting
of a cement-paste matrix with aggregate inclusions.

e The cement-paste scale allows to split the cement-paste into different phases consist-
ing of anhydrous cement, water, and hydration products.

e Low density (LD) and high density (HD) C-S-H are distinguished at the lowest scale
of observation.

In Appendix A.1, the particular scales are described in detail. Appendix A.2 contains the
hydration model used for determination of the volume fractions of the phases of early-age
cement paste.

2.1 Upscaling of elastic properties

For determination of the macroscopic elastic properties of shotcrete, the two material
phases (cement paste and aggregate) at mortar scale (Scale III) are considered within (i)
the Mori-Tanaka scheme (MT) and (ii) a Finite Element (FE) approach.

3
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Figure 2.1: Scales of observation for cement-based materials [16] [[=size of representative
volume element (RVE)]

In the FE model, plane-strain elements are used to discretize the RVE (Figure 2.2).
During the numerical simulation, the nodes of the top boundary of the RVE exhibit similar
vertical displacement, with the external force applied at the top, left node. For the left
boundary, all horizontal displacements are locked and for the bottom boundary all vertical
displamecements are restrained. Whereas Young’s modulus in the out-of-plane direction
is obtained from

Ez = faEa + (1 - fa)Em: (21)

where f,, E,, and E,, denote the aggregate volume fraction, Young’s modulus of the
aggregate and the matrix, respectively, E,, and vy, are obtained from Hooke’s law (see
Appendix D) for plane strain, giving

3 2 2 3
EZ (Jzz + OraOyy — O'mm(fyy -0 )

Oge0s, + OzgOyyEaaliy + Opp€anliy, — Oyy0y, — OyyEyylly — OggOyyCyyliy
—02 ey — OpaOuEguFy — Ozp02, + OpzOuuEsnFy + 02 ExulFy + Opyy0?
L 1z OyyEyy Lz 2207, zzO0yyEaz Lz yyCraliz yyOzz (2.3)
Ty = , .

2 2 _ 2 _ 2 _
0403, + OuaOyyEaa By + 05800 By — 003, — 07 80y By — 0000y B,

where 0,, and £,, are the macroscopic stress and strain component. Figure 2.3 shows
a comparison of the effective Young’s moduli determined by the MT scheme and the FE
calculation. The employed material parameters are listed in Table 2.1.
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Figure 2.2: Boundary conditions (deformed shape)

Poisson’s ratio  Young’s modulus

[] [GPa]
matrix 0.24 30
aggregate 0.24 50

Table 2.1: Elastic properties of material phases

2.2 Upscaling of viscous properties

For the upscaling of viscous material properties, the Maxwell model and a three-parameter
model are used to describe the creep behavior of the matrix material (index "m”). The
respective creep-compliance functions read:

1 t
JI () = — 4+ -~ (Maxwell model) (2.4)
Hmo 7]
and
dev 1 t — kot
J(t) = — 4+ — (1 —e ) (three-parameter model), (2.5)
Hmo Hy

where 0 is the elastic shear modulus of the matrix. The viscosity n and the parameter
1, describe the deviatoric creep behavior.

Considering the characteristics of the microstructure at mortar scale, Equations (2.6)
to (2.10) [22] in Table 2.2 give access to the effective parameters prr and ks, representing
shear and bulk modulus of the homogenized material at macroscale. At the mortar scale,
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Figure 2.3: Effective Young’s modulus determined from MT scheme and finite element
model

shotcrete is characterized by the volume fraction f, of the aggregate, the shear moduli p,
and p,,, and the bulk moduli k£, and k,, of the aggregate and the cement-paste matrix,
respectively. The two creep laws introduced in the previous subsection are considered in
the homogenization formulas given in Table 2.2, employing the correspondence principle
outlined in Appendix B.2. The effective creep behavior obtained from application of the
correspondence principle is given in Appendix F.

The employed FE meshes and the boundary conditions were taken from Subsection
2.1. For comparison with the effective creep properties obtained from continuums mi-

dev

cromechanics, the deviatoric creep compliance J¢§7 and the volumetric creep compliance

J22 are determined as:

2(1 + vay) e egptey te

d _ Ty 1 _ _ Caz yy 2z

T = T and g = T = (2.11)
3

Hereby, the definitions for E,, and v,, can be found in Subsection 2.1. g¥! and o™ are
the effective volumetric strain and mean value of the normal stresses, repectively. The
material parameters used for the calculations are listed in Table 2.3. The given values
for p, and k, are used only for the FE calculation. For the continuum micromechanics
approach, u, = k, = 0. Figures 2.4 and 2.5 depict the results of the comparison between
the analytical and the numerical calculations.

Asregards the analytical calculations, homogenization schemes for cylindrical inclusions
are used.

The comparison reveals that the performance of the FE approach is very good and
compares well to the MT results in case of a small amount of aggregate. For increasing
amount of aggregate, the M'T scheme -being restricted to dilute aggregate distributions-
overestimates the effective creep compliance.
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Table 2.2: Effective elastic parameters for different types of inclusions [22]

inclusions of high stiffness

pores
(case D) (case ()
o [MPa] 120 12000
11a[MPa] 1.2-10° 4.0-10°
km[MPa] 200 20000
kq[MPa] 2.0 - 106 6.6-10~°
n[MPa- s| 3.0-10° 3.0-107
oy [MPa] 120 12000

Table 2.3: Material parameters used for upscaling of viscoelastic properties
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Chapter 3

Creep experiments

In this chapter, shotcrete mixtures, which have been employed in different parts of the
tunnel construction project 'Lainzer Tunnel’, are investigated experimentally (see Table
3.1). Hereby, the samples for the tests series II and III were taken from the construction

test series

concrete mix additional differentiating factors

I LT31 mixed in laboratory
II LT31 sample taken from construction site
I11 LT31 sample taken from construction site with high loading
v LT33 mixed in laboratory
V LT44 mixed in laboratory

Table 3.1: Creep test series

site, whereas the samples for the remaining test series are produced in the laboratory.
During testing, the cylindrical samples were loaded by a constant axial force F' (see Tables

3.2 to 3.6). The change in length of each sample was recorded by four inductive
creep sample shrinkage sample
test fo [d] L [mm] D [mm] axialload F' [kN] v [kN/s] L [mm]
O 1.2 206 70 14.8 1.5 210
® 20 197 70 23.1 2.0 179
® 32 177 70 28.1 3.0 178

Table 3.2: Test series I: geometric properties (L: length of sample; D: diameter of sample),
sample age ¢, at loading, and axial load F' (Ls: length of the non-loaded shrinkage sample)

displacement transducers as depicted in Figure 3.1.
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creep sample shrinkage sample
test fo [d] L [mm] D [mm] axialload F' [kN] v [kN/s] Ly [mm]
@ 090 212 73 11.5 1.2 202
®@ 091 234 73 24.1 2.4 237
® 158 227 73 20.1 2.0 241
@ 093 218 73 18.0 1.8 215
G 095 234 73 18.1 1.8 246
® 582 210 73 34.7 3.5 219

Table 3.3: Test series I1: geometric properties (L: length of sample; D: diameter of sample),
sample age ¢, at loading, and axial load F' (Ls: length of the non-loaded shrinkage sample)

creep sample shrinkage sample
test ¢ [d] L [mm] D [mm] axialload F' [kN] v [kN/s] L [mm)]
O 162 206 73 29.3 2.9 153
@ 168 170 73 29.3 2.9 156
® 274 208 73 41.9 4.2 152
@ 279 192 73 41.9 4.2 139

Table 3.4: Test series III: geometric properties (L: length of sample; D: diameter of
sample), sample age ty at loading, and axial load F' (Ls: length of the non-loaded shrinkage
sample)

3.1 Results

The average strain £(t) = u(t)/L of each sample was obtained from the averaged values of
the displacement measurements (see Figures 3.2 to 3.6).  The history of the temperature
T and the relative humidity A the samples were exposed during testing are documented in
Figures 3.7 to 3.11.
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creep sample

shrinkage sample

test o [d] L [mm] D [mm] axialload F' [kN] v [kN/s] Ly [mm]
@O 1.01 169 70 19.0 1.9 182
@ 1.22 197 70 20.0 2.0 191
® 125 176 70 15.3 1.5 203
@ 2.26 179 70 22.3 2.2 193
G 315 203 70 25.8 2.6 198

Table 3.5: Test series IV: geometric properties (L:

length of sample; D: diameter of

sample), sample age ¢y at loading, and axial load F' (Ls: length of the non-loaded shrinkage

sample)
creep sample shrinkage sample
test to [d] L [mm] D [mm] axial load F' [kN] v [kN/s] Ly [mm]
@O 104 163 70 16.0 1.6 157
® 110 204 70 16.0 1.6 169
® 111 189 70 16.0 1.6 -
@ 116 179 70 16.0 1.6 112

Table 3.6: Test series V: geometric properties (L: length of sample; D: diameter of sample),
sample age to at loading, and axial load F' (Ls: length of the non-loaded shrinkage sample)

Figure 3.1: Test arrangement for uniaxial testing of shotcrete

12



Figure 3.2: Test series I: measured displacement history for the loaded and non-loaded

sample
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Figure 3.3: Test series II: measured displacement history for the loaded and non-loaded

sample
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Figure 3.4: Test series III: measured displacement history for the loaded and non-loaded

sample
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Figure 3.5: Test series IV: measured displacement history for the loaded and non-loaded

sample
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Figure 3.6: Test series V: measured displacement history for the loaded and non-loaded

sample
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Figure 3.7: Test series I: history of temperature 7" and relative humidity A
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Figure 3.8: Test series 1I: history of temperature 7" and relative humidity h
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Figure 3.9: Test series III: history of temperature 7" and relative humidity A
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Figure 3.10: Test series IV: history of temperature 7" and relative humidity h
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Figure 3.11: Test series V: history of temperature 7" and relative humidity A
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3.2 Determination of creep parameters

Figure 3.12 shows the evolution of the overall degree of hydration £ (¢, T) for a constant tem-
perature T' = 30°C for the employed types of cement obtained from differential-calorimetry
experiments. Based on the heat release Q(¢,7) measured during these experiments and
the latent heat L¢, £(¢,T) is obtained as

t,T

1) =S,

where the values for L, are given in Table 3.7. Using the Arrhenius law for modeling the

10 £6[]

0.8 T~ 30°C (differential calorimetry)

T~ 25°C (storage temperatur for series I and II)

T~ 23°C (storage temperatur for series III)

0.2
0
0 1 2 3 4 5 6 Ttimeld
AN
to [d]
Test series IIT and IIT
1.0 =& [ 1.0 — &[] T 30°C (differential calorimetry)
T 30°C (differential calorimet
08 (differential calorimetry) 0.8
T~ 22°C (storage temperatur)
0.6 - T~ 23°C' (storage temperatur) 0.6
0.4 0.4
0.2 0.2
0 0
0 1 2 3 4 5 6 7timeld 0 1 2 3 4 5 6 7 timel[d

Test series IV Test series V

Figure 3.12: Evolution of hydration degree £(t,T) for T = 30°C and for different storage
temperatures (¢y: time instant (age) of loading)

hydration kinetics of shotcrete, with

E
=A E— 2
i acexp |- 2] 32)
the chemical affinity A, can be computed from the measured heat-release rate Q as
. Ea Q Ea
A, — Fa| _ % e 3.3
e = foxp [RT] L¢P [R(273 ¥ 30)} ’ (3:3)
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where F, and R denote the activation energy of the hydration process and the gas constant,
respectively, with E,/R =4000 K (see Table 3.7). In order to determine the hydration
extent of the sample used in the creep experiments at the time instant of loading, £(ty),
the evolution of the hydration extent is determined using the Arrhenius law, considering
the storage temperatur 7" (see Figure 3.12):

1 [t E, E,

The creep compliance J(t, 1) is determined from the measured displacement history and

L¢[kJ/(kg cement)] E,/R[K]

LT31 475 4000
LT33 425 4000
LT44 320 4000

Table 3.7: Input parameters for determination of £(t, 7))
the applied load (see Figures 3.13 to 3.17) as

e(t) _e(t)—e’(t) _ u(t)/L—wu’(t)/Ls
Tt === = 5 De/a) =~ Fj(Demja)

(3.5)

The creep compliance J (¢, ty) is composed of the elastic compliance J(ty), the compliance

J [um/m/MPa]
31118 16 ym/m/MPa, test (1)
%?8 ——136 pm/m/MPa, tests (2) and (3)
120
90 1
o J =
60 Bt
60 (£(t0))
0 = -+
1.0 10.0 time [d]

Figure 3.13: Test series I: creep compliance J(t, )

for short-term creep J,(t, %), and the compliance for long-term creep J(¢,%):
J(t, to) = Je(to) + Jv(t, t()) + Jf(t, to) (36)

The elastic compliance is obtained from

J.(to) = with E(£) = \/€Ex. (3.7)

1
E[&(t)]
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240 ——J=———36 um/m/MPa, test (2)
200 31 um/m/MPa, test ©
160 K ’
120 P
0 “E(E(t0))
0 | -+
1.0 10.0 time [d]
Figure 3.14: Test series II: creep compliance J(t, %)
440 = 7 [m/m/MPa] 42 ym/m/MPa, test )
et 48 um/m/MPa, test (D
320 —1= 52 pm/m/MPa, test (3)
550 T~44 ym/m/MPa, test ()
200
160 .
0 T
40 "
0 | | — I
1.0 10.0 time [d]

Figure 3.15: Test series III: creep compliance J(t, o)

The parameter H describing long-term creep, with

Ti(t o) = %m (%) , (3.9)

is obtained from the creep-compliance rate J see (Figure 3.18) for ¢ > t,. Finally, the
short-term creep compliance is obtained from J,=J — J. — J;. For t > t,, J, converges
to the horizontal asymptote J$°[£(to)], as depicted in Figure 3.19. Figure 3.20 shows the
obtained values of J°[£(%p)] as a function of the hydration degree at the time instant of
loading, £(to). Provided that short-term creep is decaying for completed hydration, with
JP (€ =1) =0, J° can be approximated by

JrlEl = Jo(1 =€) [pm/m/MPa], (3.9)

where JpG is the value of Jp° at £ = 0. Tables 3.8 to 3.12 contain the indentified values for
the creep parameters J;g and 1 /H for the tests of the conducted test series. Table 3.13
contains the average values for the creep parameters for the conducted test series.
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Figure 3.16: Test series IV: creep compliance J(t, to)

J [pm/m/MPa]

16 pm/m/MPa, test (D)

——=——=-— 9 um/m/MPa, test (4

tests @, @

17 pm/m/MPa, tests (2), B)

Figure 3.17: Test series V: creep compliance J(t, %)

test Jog [pm/m/MPal

1/H [pm/m/MPa]

@ 133 16
® 116 36
® 128 36

Table 3.8: Creep parameters obtained from test series I

=+
@D

st Jog [pm/m/MPa]

1/H [pm/m/MPa]

158
125
188
183
183
176

@EEOOE)

29
36
37
31
31
31

Table 3.9: Creep parameters obtained from test series II
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10.0

1.0
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Figure 3.18: Creep compliance rate J and approximation of long-term creep by J r~1/(Ht)

test Jo% [pm/m/MPa] 1/H [um/m/MPa]

©) 227 42
©) 235 48
® 198 52
@ 173 44

Table 3.10: Creep parameters obtained from test series II1
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140 = Jy [pm/m/MPa 200 = Jo [pm/m/MPa]
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Figure 3.19: Short-term creep compliance J, and determination of JS°[E(ty)] = J,(t >

to,to) [outlined in Figure 3.19]
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J* [pm/m/MPa) test series IV: J>°(&) = 410(1 — §)
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Figure 3.20: J° as a function of the hydration degree £

test Jo>% [pm/m/MPa] 1/H [um/m/MPa]
©) 130 10
®) 238 10
@ 164 14
@ 221 12
® 143 12

Table 3.11: Creep parameters obtained from test series IV

test Jo% [pm/m/MPa] 1/H [um/m/MPa]

©) 181 16
® 164 17
® 172 17
@ 189 9

Table 3.12: Creep parameters obtained from test series V

test Joo(§ =0) [um/m/MPa] 1/H [pm/m/MPa]

I 230 30
IT 245 32
ITI 400 47
1Y 410 12
A% 340 15

Table 3.13: Average values for creep parameters for conducted test series
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3.3 Comparison with micromechanical model

The multiscale model outlined in Appendix A was applied to the tested types of shotcrete
with the input parameters listed in Table 3.14. The results of these calculations are com-

unit LT31 LT33 LT44
water /cement-value [-] 0.529 0.442 0.551
aggregate /cement-value [-] 4.5 3.9 5.4
cement [kg/m3] 378 430 350
ambient temperate [°C] 25 22 23
Young’s modulus of the aggregate [GPa] 50 50 50
Poisson ratio of the aggregate -] 0.3 0.3 0.3
Blaine [ecm?/g] 4850 4500 4300
radius of the cement grain [pm] 5 7 12
C3S-ratio [mass-%] 65.7 62.3 46.3
C2S-ratio [mass-%] 11.8 9.5  25.9
C3A-ratio [mass-%] 7.1 51 9.6
C4AF-ratio [mass-%] 6.2 51 7.0
gypsum-ratio [mass-%| 5.0 5.6 3.0
other [mass-%| 4.2 124 109

Table 3.14: Input-parameter set for multiscale model

pared with the experimentally-obtained results as depicted in Figures 3.21 to 3.24. For the
LT31 shotcrete, the multiscale model underestimates both the short-term and the long-
term creep behavior (see Figure 3.21). This could be explained (i) by some additives as
accelerators or the FLUAMIX C mixture added to the LT31 shotcrete, (ii) by the more-
than-average rebound of larger aggregates during application of shotcrete onto the tunnel
wall, increasing the cement /aggregate-ratio of the shotcrete, and (iii) by the larger amount
of air voids introduced during shotcrete application. As regards the rebound of larger ag-
gregates, the creeping cement-paste phase would have more impact on the behavior of the
shotcrete, resulting in a more pronounced creep behavior. Therefore the calculations were
repeated considering a cement content of 750 kg/m?® instead of 378 kg/m3, as depicted in
Figure 3.22.

The results for the LT33 shotcrete are agreeing much better with the experimentally-
obtained results, especially as regards long-term creep. As already mentioned, the samples
for LT33 and L'T44 were mixed in the laboratory. So any effects caused by the application
of the shotcrete were excluded. For the L'T33 shotcrete, an accelerator was used which is
not considered in the underlying hydration model outlined in Appendix A. Accordingly,
the agreement between the experimental results and the multiscale-model prediction is the
best for the L'T44 shotcrete, not containing any accelerators.
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Figure 3.21: LT31: Comparison of the experimental results with the multiscale-model
prediction (378 kg cement/m? shotcrete)
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Figure 3.22: LT31: Comparison of the experimental results with the multiscale-model
prediction (750 kg cement/m? shotcrete)
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Figure 3.23: LT33: Comparison of the experimental results with the multiscale-model

prediction
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Figure 3.24: L'T44: Comparison of the experimental results with the multiscale-model
prediction
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Appendix A

Multiscale model according to [16]

A.1 Observation scales

The multiscale model for upscaling of viscoelastic properties consists of four length scales:

e Scale I comprises the four clinker phases, high-density CSH (CSH-HD) and low-
density CSH (CSH-LD), and the water and air phase. The four clinker phases,
which do not exhibit time-dependent behavior, are condensed into one material phase
(Scale Ia). The constituents showing time-dependent behavior, on the other hand,
are combined at Scale Ib-1, where CSH-HD is located in the space confined by the
previously formed CSH-LD. At the porous CSH scale (Scale Ib-2), water and air are
considered as inclusions in a matrix constituted by the homogenized material of Scale
Ib-1.

e At Scale II (cement-paste scale), anhydrous cement (homogenized material of Scale
Ia), gypsum CSH,, portlandite CH, and reaction products from C3A and C4AF
hydration form inclusions in a matrix constituted by the homogenized material of
Scale Ib-2.

e At Scale III (mortar or concrete scale), aggregates are represented as inclusions in
the cement paste (homogenized material of Scale II).

e Finally, at Scale IV (macroscale), concrete is treated as a continuum, characterized
by customary material properties, such as Young’s modulus, Poisson’s ratio, and
compressive strength.

The four length scales obey the separability of scale condition, i.e., they are separated one
from each other by at least one order of magnitude. For upscaling of information from the
finer scales towards the macroscale, continuum micromechanics is employed. Hereby, the
self-consistent scheme [10, 8] is used for homogenization at Scale Ia. For homogenization
at Scales Ib to III the matrix-inclusion type morphology is taken into account by using
the Mori-Tanaka homogenization scheme [14]. The volume fractions at the different length
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scales entering the homogenization schemes are obtained from the hydration model outlined
in the following subsection.

A.2 Hydration model

For determination of the volume fractions of the phases of early-age cement paste, the
following set of stoichiometric reactions are employed for the four main clinker phases of
Portland cement, i.e., tricalcium silicate (C3S), dicalcium silicate (C5S), tricalcium alumi-
nate (C3A), and tetracalcium aluminate ferrite (C4AF) [23]:

C38+53H — 0.5C34S,Hg + 1.3CH (A1)

CyS+4.3H — 0.5C34S,Hg +0.3CH (A.2)
C4AF+2CH+10H — 2C3(A,F)Hs (A.3)

C3A +3CSHy +26H — CgAS3Ha, (A.4)

C3A +0.5CsAS3H3, +2H — 1.5 C4ASH,, (A.5)
C3A+CH+12H — C,AHy; (A.6)

Equations (A.4) to (A.6) describe the formation of calcium aluminate hydrates from C3A
in the presence of gypsum, which is added to prevent rapid setting of C3A. Initially, CsA
reacts with gypsum to form ettringite [Equation (A.4)]. After all gypsum is consumed, C3A
reacts with the previously formed ettringite to form monosulfoaluminates [Equation (A.5)].
Following depletion of the ettringite supply, C3A reacts with portlandite CH (one of the
products of C3S and CsS hydration). The hydration extent is described by the degree of
hydration of the clinker phases, £c.s, £cys, Ecsa, and Ec,arp. The evolution of &, (z €
{C3S, C3S, C4AF}) is controlled by induction, nucleation, and growth until £, = &,, and
diffusion-limited kinetics thereafter [2]. The aforementioned three stages of C3A hydration
are diffusion limited [17].

For the description of the hydration kinetics of C3S, C3S, and C4AF, kinetic laws given
in [16] [2], including the Avrami law for nucleation and growth kinetics, and the Fuji &
Kondo model [6] for diffusion limited kinetics, are employed. Whereas the first and the
third stage of C3A hydration are characterized by a thickening barrier layer (ettringite
and C4AH;3, respectively, around the anhydrous C3A grain) and, hence, by a decreasing
reaction rate, the second stage is dominated by a thinning barrier layer (ettringite) with
an increasing reaction rate.

Based on the stoichiometric reactions given in Equations (A.1) to (A.6), and the molar
masses M and densities p of the different phases given in [23] (see Table A.1), the volume
fractions of the different phases (at the cement-paste scale) can be determined as a function
of the hydration degrees &, and the mass fractions of the clinker phases m,. This is shown
exemplarily for the volume fraction of C;4S,Hg appearing in Equations (A.1) and (A.2):

mess 0-5M03_452H8 meg,s 0.5./\/[03_452}[8

+&c,s(t) p, (A7)

Jesas,m:5(t) = |Ecss(t
3.452 s( ) 3 ( )M035 DCs 4 SaHs MCQS PC3.48-Hs
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density p molar mass M

kg/m?] [kg/mol]
tricalcium silicate CsS 3150 0.228
dicalcium silicate CaS 3280 0.172
tricalcium aluminate CsA 3030 0.270
tetracalcium aluminate ferrite C4AF 3730 0.486
water H 998 0.018
gypsum CSH, 2320 0.172
calcium hydroxide CH 2240 0.074
hydrogarnet Cs(A,F)Hg 2670 0.407
trisulfate ettringite CeAS3Hs, 1750 1.255
monosulfate C4ASH 5 1990 0.623
calcium aluminate hydrate C4AH;5 2050 0.560
calcium silicate hydrate C3.4S.Hg 1990 0.454

Table A.1: Molar masses M and densities p of different phases given in cement paste
(taken from [23])

with
1
= A.
p %er_/czm : (A.8)
= Pz PH = ’

where w/c denotes the water/cement-(mass)ratio. The volume fractions at the mortar scale
are obtained from commonly know mix characteristics, i.e., w/c, the aggregate/cement-
(mass)ratio a/c, and the cement content ¢ [kg/m®]. The volume fraction of cement paste
at Scale III is determined as

¢ —f—w/ci : (A.9)

Pcem PH

fcp:

with peer, and py denoting the density of anhydrous cement and water, respectively. On
the other hand, the volume fraction of aggregates is obtained as

fazl_fcp- (AlO)

Based on the values of &, determined from the kinetic laws outlined in [16], an overall
degree of hydration, £, is computed as

> me b,

¢ (A.11)
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where z € {C3S, C,S, C3A, C4AF, CSHy} and m, representing the mass fractions of the
z-th material phase. Hereby, {5y, is linearly coupled to ¢, 4 [see Equation (A.4)].

The input parameters for the hydration kinetic law for ordinary Portland cement [2]
listed in [16] for various types of concrete taken from the open literature are the Blaine, i.e.,
the grinding fineness, the medium initial radius of the clinker grains, the mass fractions of
the clinker phases m,, and the w/c-ratio [2].
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Appendix B

Upscaling of early-age basic creep
according to [16]

B.1 Upscaling of elastic properties

Homogenization schemes based on continuum micromechanics consider a representative
volume element (RVE) subjected to a homogeneous strain E at its boundary. These
schemes depart from the definition of the so-called strain-localization tensor A, linking
the effective strain tensor E with the local strain tensor € at the location x:

e(x)=A(x):E. (B.1)

The effective strain tensor E represents the volume average of the local strain tensor &:

E = (e(x)), = % /V e(x)dV . (B.2)

Inserting Equation (B.1) into Equation (B.2), one gets E = (A(x)),, : E and, thus,
(A(x));, = L. Considering an ellipsoidal inclusion i embedded in a reference medium
characterized by the material tensor ¢, the strain-localization tensor A within the domain
i is constant and given by [5]

Ay=T+8;:(cg' ;=D {Z 148, (cpt e — I[)]_l} = const. , (B.3)

r=0,2

with ¢; as the material tensor of the inclusion ¢ and ¢, as the material tensor of the reference
medium. %; denotes the Eshelby tensor, conditioned by the geometric properties of the
inclusion and the elastic properties of the reference medium.

The volume average of the local stress tensor o (x) determines the effective stress tensor
D%

Y= (o)), = V/Va(x)dV . (B.4)
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Considering a linear-elastic constitutive law for the r-th material phase, linking the local
strain tensor with the local stress tensor,

o, (x) = ¢, : &.(x), (B.5)
and Equation (B.1) in Equation (B.4) one gets
Y= {(c(x):A(x)), :E. (B.6)
Comparison with ¥ = Cg;; : E' gives access to the effective material tensor C,j;:
Cory = () : AG)), - (B.7

Considering the morphology of the composite material, the unknown strain localization
tensor A, which so far is available for a single inclusion [Equation (B.3)], can be estimated
based on the choice of ¢y. In case of a microstructure being characterized by a distinct
matrix/inclusion-type morphology, which is the case e.g. at the mortar scale , ¢, is set
equal to the material tensor of the matrix material ¢,,. This estimation leads to the
Mori-Tanaka (MT) scheme [14]. Using

(A(x))y = % (A + - (AX)y, =T = fo(AX)y, =1- fili, (B.8)

where (A(x)),, = A; = const. was used and f; and fy denote the volume fractions of the
inclusion and reference medium, respectively, and Equation (B.3), one gets the volume
average of the localization tensor over the reference medium as?

(A(x))y, = {Z FrI+8 (gl ier — ]I)]_l} . (B.10)

r€0,2

Considering Equations (B.10) and (B.3) in Equation (B.7) gives access to the effective

! Levin’s theorem states that the effective state equation is of the same form as the local state equation
[25].

fo(A®)y, = I-fi[A]7 :{e}7
= {o}:{o} T filO] i {e}

= ({3} - A1) {o}™ (B.9)
= (foll+S0:(cg" sco — D] 1+ £[O]7 - fi [m]—l) {o} "
= fo{o}7!

with the abbreviations {e} = {ZT:M I+ S, (cgt: e — ]I)]*l} and [O] = [T+ $;: (eg" :e; —T)] .
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material tensor

Cerr = foco : (A(X))vp + fici 1 Ay

= {Zf,a:r: [1[+$T : (COI:GT—H)]_I}

r€0,2
:{Zfr [I+S,: («:gl:@r—ﬂ)]‘l} : (B.11)
r€0,i

Equation (B.11) can be extended to multiple types of inclusions, reading

@eff:{Zfr«:T:[H+$T:(«:olzcr—ﬂ)]1}:{&[“&:(@5““’_@]1} ’
" ' (B.12)

with 7 € { matrix material = reference medium 0, inclusion 1, inclusion 2, ... } for the
case of the MT scheme. In the following, Equation (B.12) is specialized for the application
to cement-based materials, characterized by isotropic material behavior. Thus, Equa-
tion (B.12) can be reduced to the specification of the effective shear and bulk modulus,
tefr and kegr, respectively:

I N e )
S ) R 7 B )

where o and [ represent the volumetric and deviatoric part of the Eshelby tensor $ spe-
cialized for spherical inclusions, reading

3k, 6(km + 20m)
= s, M P s )

Heff =

(B.14)

B.2 Upscaling of creep properties

Viscous material response is characterized by (i) an increase of deformation during constant
loading (creep) and (ii) a decrease of stress for constraint deformation (relaxation). The
viscous response is commonly described by the creep compliance J [Pa™!] and the relaxation
modulus R [Pa], both dependent on time. The creep compliance associated with uniaxial
loading is determined as

g = (B.15)



with e(¢) denoting the measured strain, and o( representing the applied constant stress.
The relaxation modulus, on the other hand, is determined from the measured stress de-
crease o(t) in consequence of a constant strain ¢, as

Ry =20, (B.16)

Introducing the Boltzmann convolution integral, Equations (B.15) and (B.16) can be ex-
panded towards variable (non-constant) stress or strain histories, respectively:

e(t) = /0 J(t—T)ag—S_T)dT and  o(t) = /0 R(t—T)aZ(:)dT, (B.17)

where 7 denotes the time instant of loading. Applying the Laplace transform® to Equa-
tions (B.17) gives

A A

é(p) =pJ(p)6(p) and &(p) =pR(p)é(p), with pJ(p)=

pR(p) (20

considering that the Laplace transform of the convolution integral becomes a multiplication
and O¢ /07 turns into pé. Considering the definition of the Laplace-Carson transformation
as f* = pf in Equations (B.21) yields

) =T ) ad o'0) = BEEE) . vith S0)= g (B2)
The analogous form of 0* = R*¢ in Equation (B.22) and the elastic constitutive law
0 = Ege is the basis for the “correspondence principle” [13, 11]. According to this principle,
viscoelastic problems can be solved using the respective solution of the elastic problem in
the Laplace-Carson domain. Hereby, elastic material parameters, e.g., the shear compliance
J4 = 1/u, where p is the shear modulus, are replaced by the Laplace-Carson transform of
the respective viscoelastic material parameters, e.g., the Laplace-Carson transform of the

3Whereas the Laplace transformation of f(t) is defined as

Clro) = o) = [ s e, (B.18)
0
with p as the complex variable. The Laplace-Carson transformation of f(t) is given as
oo
Celft) = 1) =p [ fOe (B.19)
0
Hence, f*(p) = pf(p). The inverse Laplace-Carson transformation is defined in the complex plane as

el = 10 = 5 [ FWerg (B.20)

where (2 is a parallel to the imaginary axis having all poles of f*(p) to the left.
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creep compliance associated with deviatoric creep J%*. The solution of the viscoelastic
problem in the time domain is obtained by inverse Laplace-Carson transformation. E.g.,
application of the correspondence principle to the MT scheme introduced for upscaling
of elastic properties in Subsection B.1 gives access to the effective creep compliance of
matrix-inclusion type composites (see, e.g., [3] for the application of the correspondence
principle to the self-consistent scheme).
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Appendix C

Eshelby tensor for cylindrical
inclusions

The Eshelby tensor for the case of cylindrical inclusions for the plane-strain situation is
given by [7]:

-5+ 4y, 4y, — 1 Vm \
— 0 0 O
( 8(Um — 1) 8§1/m —1) 2(1—vp)
v, — 1 -5+ 4y, Vi 0 00
8wm—1) 8wm—1) 2(1—vy)
" 0 0 0 0 0 O o1
a = _3 4: m bl .
0 0 0 Ty g (€1
8(Vm — 1) X
0 0 -0
0 0 1 1
\ 0 0 0 0 0 5

where v, is Poisson’s ratio of the matrix material.
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Appendix D

Hooke’s law for transversal isotropic
materials

[ 1 Vzy V(,y)z ]
- - 0 0 0
Eqy Eqy E,
Vy 1 (z,9,2
- - 0 0 0 \
( Exx ) Em’y Ez’y E, ro'a:a:
Eyy V(a,y)z V(a,y)z i Oyy
0 0 0
< €az [ _ E, E, E, < o \ (D.1)
;%y 0 0 0 2(1]; ) 0 0 Ty
Exz z,y Ogz
1
( 2622 ) 0 0 0 0 u 0 <y
(z,y)z
0 0 0 0 0
| H(z,y)z

compliance tensor D = C~!
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Appendix E

FE meshes representing
matrix-inclusion materials used in
Subsection 2.1

Figure E.1: FE meshes: f, < 0.25
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fa=0.284 f.=0.319 fa=0.338

£,=0.343

£,=0.458 £,=0.464

Figure E.2: FE meshes: 0.25 < f, < 0.55
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fo=0.585 fa=0.678

£,=0.718

Figure E.3: FE meshes: 0.55 < f,
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Appendix F

Effective creep compliances for the
case of cylindrical inclusions

(&

F.1 J% and J". for Maxwell model
eff i

Applying the correspondence principle to the effective creep compliance obtained by the
MT scheme [Equation (2.6)], the Laplace-Carson transform of the effective deviatoric creep
compliance reads:

1 1
Jg;?*(p): * = * * =
e —
Hers(P) i, + fa - uni—u*
1 1_ a m
A T
_ 1 (F.1)
Ful _M) ’
a a
M Lo + TP
+ Nimp 20 pmp
Hom TP (1 — £,) (s + 1) (10 — —) (e, + )
Lo, + TP Lo, + 1P
( LT +1
2npmp(km +
T 4+ M

where the Laplace-Carson transform of the deviatoric creep compliance of the matrix ma-
terial is given for the Maxwell model as:

1 11 2
(») i, (p) [T ()] L 1D Hn () np + fim (F.2)

Assuming (i) the cylindrical particles to exhibit elastic behavior, with u* = p,, and (ii)
the matrix material to exhibit elastic behavior under hydrostatic loading, £k}, = k,,, the
inverse Laplace-Carson transformation [see Equation (B.20)] gives access to the effective
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deviatoric creep compliance in the time domain:

v — CUVx N
JI(t) = LCTH IS (p)] = D’ (F.3)
with
N = n(_ua(/«&a - /f'm)km(Qlum + km)fa?’
+ (=4 + 4°)Nm2 — 2kmim — ka),Ua2 + ki (=4 + 80) i, + 3km) e
+ 4(_1 + .)Um2km2)fa2 + (((4 - 4.)Um2 + 2kml«’/m + kmz),ua2 (F 4)
+ tiank (10 — 8) fhmn + 3k ) ta + 4(1 — ) i 2 ki) fo '
+ Nakm(,umkm + :ua(2:um + km)))
- (fa2 - 1)/1'a/1'mkm(/1'a(2/1'm + fakm + km) - (fa - l)ﬂmkm)t
(fa + 1)/1'a/1'mkmt
e =exp |— F.5
10t T b & o) — (o — Do) (F-5)
and
D = n(fa + 1)2ﬂaﬂmkm [Na(2,um + fakm + km) - (fa - 1)/Lmkm]' (F6)

In analogy to Equation (F.1), the Laplace-Carson transform of the effective volumetric
creep compliance is obtained from Equation (2.7) as:

J'uol*( ) 1 _ 1 _ 1
eff k* () k* — k* = f(k —k) .
eff Jo* ; a * * a\lva m -
Vin L _MHmP_
M + NP
(F.7)

Performing the inverse Laplace-Carson transformation gives access to the effective volu-
metric creep compliance:

Tefp () = L€ [J77 (p)] =

€ €

Mmkakmt

B a 1 alMm ku - km 2
P T Fatton (ba = Fom) + (s + o) i) (fa = 1) faim( ) P
— fa,um(ka - km) + (,me + ka)km a’ra a avm
- kokm
(F.8)

In case of cylindrical pores, the effective creep compliances are obtained from Equations
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(2.9) and (2.10):

1 1
T = s =

Skt
(= fo)p + py) (ko + 223,)

1
2np(ky, + 5,)
1
NP 1 oktmP (F.9)
20,
Um + ND (1_fp)<km+%>
(m +mp) | 1 — ” ";
) (km + 7’")
P, + 1P
- 20 folttm + fokmttim + kmtibm + Nk + 1 fpkm
Jgev EC Jgev* — P P p F . 1 0
() = [Jer ()] TP S, . (F.10)
and
1 1 1
Tttt = = F.11
i (p) = k:ff( ) e Ipk?, b Fokm ( )
R O /)L (= fkn
kx + ko 4 NHmD
P, + 1P

V0 — V0 Nitm + fak t,um + 77fa

T (t) = LC7 [T (0)] = (F.12)

Nimkm — 1 fatbmkm

F.2 J)} and J!¢; for three-parameter model

For the three-parameter model, the Laplace-Carson transform of the deviatoric creep com-
pliance of the matrix material reads

1 fim (o + 1P)
Jdev* p) = = LC Jdev ) = — + * p) = F.13
m ) 1 (D) [T ()] Pm Mo+ 0D n®) [ + Ho + 1P (F.13)
giving the Laplace-Carson transform of the effective deviatoric creep compliance as
1 1
Jdev*( ) — —
ff x _ o+
+(1_fa) ak* +m*
% Fm T P
"+ 20, (F.14)
1
N f ( _ .U'm(l‘v‘i"’]p))
fom (1o + 1D) o \Ho ™ i+

+ 2 +
fan + o 7P (A= fa) i+t ) (pa = S LD ) (ki + et

24t (o -+1p) (m +- b0 )

)41
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Application of the inverse Laplace-Carson transformation to Equation (F.14) gives

Jéeu(t) = £C7" [Jd(p)] =

€ e

Ot
4e W(Ma(2ﬂm + fakm + km) - (fa - 1):umkm) (fa — 1)fa,u?n(lua + km)2
(fa + 1)(,Ua(2,um + fakm + km) - (fa - 1)Nmkm)<>
oo ((fm + o) bm + fa(pokm + pim 2ty + km)))
tbto(Ha((fo + Dtk + tn 2ty + Fokim + ) — (fa — Dptmptokm) — (F-15)
B (fa = D ba(ttm + po) (Hokm + thm (280 + ki)
fm b (o ((fa + 1) piokm + pim (2pt0 + fakm + km)) — (fa — 1) imbtokm)

exp [—’%’t} (fa—1)
(fa+ 1) pto

+

with
O = g [(fa + 1)/1'vkm + ,Um(QMv + fokm + k )] - ( - 1),Um,uvk (F'16)

In a similar manner, the Laplace-Carson transform of the effective volumetric creep com-
pliance is obtained as

1 1 1
J’uol*( ) _ _ '
eff * k* — k*
Bl sy fa N ( k’”) + km
R b
(F.17)

Application of the inverse Laplace-Carson transformation gives

[ €

_ o(pm — foka + ko + fakm)
B fa,um(ka - k’m) + (Mm + ka)km
o (o= faka + ka + fakm) + pm (o — faka + ka + fakm)) (F.18)
fattmtto(ka — km) + (ke + i (o + ka) )k
to (= faka + ko + fakm) + (o — faka + ko + fakm)
fa,um,uv(ka - km) + (,uvka + Nm(,uv + ka))km ’

Tefp () = £C [Je77 (0)] =

with

(fattmtto(ka — km) + (poka + fim(po + ko)) bm )t
N(fattm(ka = km) + (m + ka)km)

(F.19)

e =exp |[—
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In case of cylindrical pores, the effective deviatoric and volumetric creep-compliance func-

tions are obtained as:

1

1

Jgev* —
1 #) = 1 ff (p)

Joliy,

Moy, —

(1 — fp) (P + pi) (ke + 2417,)

2np(ky, + 13,)
1

1—

— pm(p + 1)

Hom + oy + NP

(0 = £0 57 )] =

€ €

2fa,umlu'v + fakm,uv + kmlu'v + (1 — €xp [_

fabtm (o + 1P)
2 (1 + np)>
— fa km TNy T
1-7) ( * fom, + oy + TP

5 (km+ um(uv+np))
Mm + oy + 1P

(fom + iy +1p) | 1 —

(F.20)

/’[’nvt:| ):U'mk + (1 — €xp [_%:| )faﬂ'm ™m

lflm,ulvkm - falu'm,ukam
(F.21)
1 1 1
» . e - — A (F.22)
" _ (1 - fp)k;n " 1 — (1 B fa)km
* *

k¥ + pk, k. + o (o + 1D)

Mo+ oy + 1D

Mo Moy + fakm,uv — €Ip [_u_vt] faﬂmk + faﬂmkm
. (F.23)

Tofp(t) = LCT [ 127y (p)] =

M bwkm — faltmpokm
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Appendix G

Recipes for the tested types of
shotcrete

Lainzer Tunnel LT31

CEM I 52.5 R, Lafarge, Mannersdorf 378 kg/m3
Fluamix C, company Lafarge, plant Mannersdorf 43 kg/m3
aggregate RK 0/4, Reiterer 872 kg/m3
aggregate RK 0/4, Springer 432 kg/m?
aggregate RK 4/8, Reiterer 412 kg/m?
total water 209 kg/m3
superplasticizer ECO-SL 2,5-5,0 (Betontechnik) 4.6 kg/m?
accelerating admixture Mapequick 6.5 m-% of (cement+Fluamix)
total mass 2375 kg/m?

Lainzer Tunnel LT33

CEM 1II 42.5 R, Lafarge, Mannersdorf 430 kg/m?
aggregate RK 0/4 1176 kg/m?
aggregate RK 4/8 504 kg/m?
total water 190 kg/m?
superplasticizer 0.9 m-% of cement
air-entraining agent 0.02 m-% of cement
accelerating admixture 0.75 m-% of cement
total mass 2307 kg/m?
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Lainzer Tunnel LT44

CEM IT A/M 42.5 N, Lafarge, Mannersdorf 350 kg/m?

total water 193 kg/m?
aggregate (lime, dolomite) 1840 kg/m3
total mass 2383 kg/m®
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