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Zusammenfassung

Im Bereich der multikriteriellen Optimierung ist das Design einer geeigneten Zielfunktion
aus Anwendersicht eine Herausforderung. Der Skyline Operator filtert aus einer potentiell
großen Datenmenge interessante Tupel heraus. Ein Tupel gehört genau dann zur Skyline,
wenn es nicht durch ein anderes dominiert wird, d.h. es gibt kein Tupel, das in allen
Kriterien zumindest gleich gut ist und in zumindest einem besser ist. Unabhängig wie die
Präferenzen innerhalb der Attribute gewählt werden, sind nur jene Tupel, die unter einer
monotonen Scoring-Funktion am besten bewertet werden, Teil der Skyline. Mit anderen
Worten, die Skyline schließt alle Tupel aus, die niemand als Favorit hat. Das Konzept der
Skyline ist auch unter dem Namen Pareto Optimalität und ihre Berechnung als Maximum
Vektor Problem bekannt.

Ziel dieser Diplomarbeit ist PostgreSQL, ein Open Source relationales Datenbankman-
agementsystem (RDBMS), um den Skyline Operator zu erweitern und Skyline Algorithmen
im RDBMS Kontext zu evaluieren. Das Endziel ist eine Skyline-Abfrage-Optimierung zu
entwickeln, die automatisch gute Abfragepläne bezüglich I/O, Zeit und Speicherverbrauch
erstellt. Diese Arbeit ebnet den Boden für weitere Forschung und verpflanzt den Skyline
Operator von standalone Implementierungen in sein natürliches Habitat, das RDBMS.

Unsere Implementierung bietet verschiedene physische Operatoren, um die Skyline zu
berechnen, allen voran: BNL, SFS und eine Variante von LESS. Zusätzlich erweitern wir
die Standardsyntax, um Semantik und verschiedene operationale Aspekte zu beeinflussen.
Als Nebenresultat unserer Arbeit haben wir einen Fehler in der Originalversion von BNL
entdeckt und liefern dazu eine korrigierte Version. Wir schlagen ein neues Einsatzgebiet
für den Elimination Filter (EF) vor und zwar: BNL+EF. Diese Kombination stellt eine
erhebliche Verbesserung gegenüber BNL dar.

Es ist eine bekannte Tatsache, dass die Performance von Skyline Abfragen von einer Reihe
von Parametern abhängt. Aus umfangreichen Experimenten mit unserer Implementierung
haben wir mehrere bemerkenswert einfache und nützliche Regeln abgeleitet, die nur schwer
theoretisch zu gewinnen sind. Unsere Resultate helfen Heuristiken für die Skyline-Abfrage-
Optimierung zu entwickeln und liefern einen Beitrag zum tieferen Verständnis der Skyline-
Abfrage-Charakteristik.

Alle Resultate, der Source-Code und ein Web-Interface zum Testen unserer Implemen-
tierung sind auf http://skyline.dbai.tuwien.ac.at/ verfügbar.
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Abstract

In the realm of multi-criteria optimization designing an appropriate objective function is a
challenging task from a user’s perspective. The skyline operator filters out the interesting
tuples from a potentially large dataset. A tuple belongs to the skyline if it is not dominated
by any other tuple, i.e. there is no tuple which is at least as good as in all and better in
at least one criteria. No matter how we weight our preferences along the attributes, only
those tuples which score best under a monotone scoring function are part of the skyline. In
other words, the skyline does not contain tuples which are nobody’s favorite. The notion of
skyline is also called Pareto optimal set and its computation maximum vector problem.

In this thesis we aim at extending PostgreSQL, an open source relational database man-
agement system (RDBMS), with the skyline operator and the evaluation of skyline algo-
rithms in the RDBMS context, with the ultimate goal of building a skyline query optimizer
to automatically generate a good query plan w.r.t. I/O, time, and memory consumption.
This effort lays the ground for future work in this area and moves the skyline operator from
standalone implementations to the habitat it belongs to: an RDBMS.

Our implementation provides several physical operators for computing the skyline, in-
cluding: BNL, SFS, and a variant of LESS. In addition, we extend the standard syntax to
influence the semantics and various operational aspects. As a byproduct of our work, we
discovered a flaw in the original version of BNL and give a corrected version. We propose a
new use case for the elimination filter (EF), namely: BNL+EF. It turns out that BNL+EF
is a substantial improvement to BNL.

It is well known that the performance of skyline queries is sensitive to a number of pa-
rameters. Extensive experiments on skyline implementations helped us to discover several
remarkably simple and useful rules, which are hard to obtain from theoretical investigations.
Our findings are beneficial for developing heuristics for the skyline query optimization, and
in the meantime provide some insight for a deeper understanding of the skyline query char-
acteristics.

All results, the source code, and a web-interface to test-drive the implementation are
available at: http://skyline.dbai.tuwien.ac.at/.
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Chapter 1

Introduction

1.1 General Introduction

In everyday-life we are used to making decisions based on multiple criteria, e.g. price, quality,
and delivery time for products. Frequently there is no clear winner over all criteria, i.e. a
high-priced product with high quality and a cheap product with lower quality. Surely we
are not interested in a product with a high price and poor quality, we will later refer to this
situation as this product is dominated by another one, as there are others which fulfill our
criteria better. The products which are not dominated are more or less equally good based
on our given criteria, and we need to apply additional criteria to come to a decision. These
products are called Pareto optimal based on the given criteria. For this notion Börzsönyi
et al. [2001] coined the term skyline. The associated relational operator is called skyline
operator.

Figure 1.1: Viennese skyline (nightshot with long exposure time, taken by Franz Pflügl / Vienna)

When thinking of the term skyline, images like Figure 1.1 might come to our mind. The
popularity of such photographs is illustrated by following figures: Google images returns
≈ 3,580,000 hits, not counting the hits for the Nissan’s skyline sports car, for the search
term skyline -nissan, and istockphoto.com, a popular website with a collection of member-
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generated royalty-free images, has ≈ 25,000 photos in stock for the search term skyline, as
of May 23 2008. The Merriam-Webster’s online dictionary gives the following definition for
skyline:

1. the apparent juncture of earth and sky: horizon

2. an outline (as of buildings or a mountain range) against the background of the sky

From a more abstract point of view a skyline is made up of objects (buildings, mountains
and such) which do not have another object closer and taller to the eye of the beholder.
If we are only interested in the objects that are “touching the sky”, we consider only the
tallest object in each direction of view. On the other hand if we care about visibility, an
object is visible as long as there is no object closer and taller. We ask the alert reader to
excuse the simplifications we made here, the authors are aware of the concept of perspective
projection and of the fact that the earth is not a disk.

In the realm of database systems the skyline operator is important for supporting multi-
criteria decision making applications. Given a set of d-dimensional data points, the skyline
consists of those points, called skyline points, which are not dominated by any other data
points. One data point r dominates another data point s if it is at least as good as s in all
dimensions and better in at least one. Börzsönyi et al. [2001] proposed a skyline extension
of the SQL syntax with this form:

SELECT ... FROM ... WHERE ...
GROUP BY ... HAVING ...
SKYLINE OF [DISTINCT] a1 [MIN|MAX|DIFF], ..., am [MIN|MAX|DIFF]
ORDER BY ... (1.1)

Computing the skyline is also known as the maximum vector problem [Kung et al., 1975;
Preparata and Shamos, 1985]. The terms skyline and skyline operator in the realm of
databases were coined by Börzsönyi et al. [2001]. The following examples give a motivation
why skyline operator is a good name for this type of preference queries, they also illustrate
the usage of the DIFF and DISTINCT keywords.

In Figure 1.2 the yellow arrow indicates the direction of view and the colored cuboids
illustrate buildings. Table 1.1 shows the coordinates of the lower left edge of each building
and gives them names (a, b, . . .). The same color indicates the same x coordinate. For y we
have only two cases, front and back.

Example 1 (Which buildings are touching the sky?). For sure building c (the green one
in the background) and building f (the blue one in the foreground) are part of the answer
and d and e are not. As a and b do have the same height, we could take them both or make
an arbitrary choice among a and b. We will later see that this taking both or choosing an
arbitrary one can be influenced by the keyword DISTINCT. So overall, possible answers are
{a, c, f}, {b, c, f}, or {a, b, c, f}.

Example 2 (Which buildings are visible?). To answer this question we also have to take
into account how close a building is, i.e. the y coordinate. Building a is covered by b and e
by f , we will later call this property dominance. It is obvious that c and d are part of the
answer. The complete answer is {b, c, d, f}.

The question from Example 1 could be formalized in the following way:

SELECT * FROM building SKYLINE OF x DIFF, z MAX;

In the above query a and b will be part of the answer, whereas in the following one it is up
to the database system to make a choice between a or b, as they are equally good:
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SELECT * FROM building SKYLINE OF DISTINCT x DIFF, z MAX;

On the other hand the query for Example 2 looks like:

SELECT * FROM building SKYLINE OF x DIFF, y MIN, z MAX;

0

1
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-2

0

2y

0.0

0.5

1.0

1.5

z

Figure 1.2: Skyline of buildings

id x y z color row
a 0 1 1.5 red back
b 0 0 1.5 red front
c 1 1 1.25 green back
d 1 0 1.0 green front
e 2 1 0.5 blue back
f 2 0 0.75 blue front

Table 1.1: Data for Figure 1.2

1.2 Why extending SQL?

The skyline operator [Börzsönyi et al., 2001] is within the expressive power of SQL and in
section 2.5 we show how to rewrite an SQL query with a SKYLINE OF-clause into standard
SQL. However there are good reasons for including a skyline or preference operator into SQL
and building it into an RDBMS:

• From a user’s perspective, it is easier to specify and easier to grasp what’s going on
than a query with a correlated subquery or using SQL’s EXCEPT (see Equation 2.18).

• It is faster to evaluate, as there are numerous algorithms for skyline queries. Further-
more when this preference query is expressed with a correlated subselect it boils down
to a näıve “nested-loop”. Grust et al. [1997]; Braumandl et al. [1998] show that such
a query cannot be unnested.

• The study of preference queries on their own gave birth to a new set of optimization
opportunities [Chomicki, 2003; Kießling and Hafenrichter, 2003].
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• The skyline operator can be integrated with other relational operators, thus more
sophisticated queries can be constructed. Moreover, no work on concurrency control
and transaction management has to be addressed.

• The existing index structures such as R-trees in an RDBMS can be adapted to imple-
ment index-based skyline algorithms.

• If several skyline algorithms are available in an RDBMS, the system is able to select
the most efficient one for the given datasets.

It is well known that the cost estimation of the skyline queries is a non-trivial task
[Chaudhuri et al., 2006] since the performance of a skyline query is sensitive to a number of
parameters [Godfrey et al., 2007]. Hence building a skyline query optimizer is a challenging
task.

1.3 Goal and Main Results

In this thesis we aim at extending PostgreSQL with the skyline operator and the evaluation
of skyline algorithms in the RDBMS context, with the ultimate goal of building a skyline
query optimizer to automatically generate a good query plan w.r.t. I/O, time, and memory
consumption.

We wish to acquaint the skyline operator to a broader audience and lay the ground for
future work in this area by providing an open source implemenation in an RDBMS, which
is the natural habitat for the skyline operator.

The scope of this thesis is restricted to non-index-based skyline algorithms. Dedicated
algorithms have been proposed for the case where the whole relation fits into main memory
[Preparata and Shamos, 1985], nevertheless we do not take them into account as memory is
always a rare resource in a database scenario, either due to the number of concurrent users
or limited total main memory, e.g. on a handheld device.

So far we have implemented the non-index-based algorithms Block Nested Loop (BNL),
Sort First Skyline (SFS), and a variant of Linear Elimination Sort for Skyline (LESS) in
PostgreSQL. We propose a new use case for the elimination filter (EF), namely: BNL+EF.
It turns out that BNL+EF is a substantial improvement to BNL. In addition, we extend
the standard syntax to specify the following aspects:

• The treatment of NULL values (NULLS FIRST and NULLS LAST)

• The usage of order relations other than < and > (USING Op )

• Operational aspects of skyline computation, such as

– method (BNL, SFS)

– tuple window size in terms of memory and/or number of slots

– tuple window policy (append, prepend, entropy, random)

– usage of indexes (NOINDEX)

– usage of elimination filter (EF)

We prove that the original version of BNL does not terminate in all cases and give a
corrected version.

To achieve the goal of building a skyline query optimizer, we conducted extensive ex-
periments on the skyline operator implementations. The experimental environment we have
designed and set up is noteworthy on its own. Our experiments confirm the result from
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Börzsönyi et al. [2001], that specialized algorithms are faster than the same queries in stan-
dard SQL by orders of magnitude.

The comparisons of the skyline algorithms we have so far implemented reveal that there
does not exist a clear winner in all aspects. The efficiency of the algorithms depends on the
properties of the datasets such as dimension, distribution, cardinality and so on.

However we discovered several hidden rules, which are remarkably simple and useful,
but hard to obtain from the theoretical investigation. We expect that our exposition of
experimental results on skyline algorithms could serve as a guideline for developing heuris-
tics of a skyline query optimizer, and in the meantime provide some insight for a deeper
understanding of the skyline query characteristics.

• For instance, the elimination filter is effective only if the selectivity factor for the
skyline query is not more than 0.1, and

• BNL is more efficient than SFS and even LESS, if the dimension of the data is less
than 5 and the number of tuples is relatively small.

For the purpose of repeatability we have set up a website to present our experimental
results. The source code for our implementation and the log-files from our experiments are
online accessible at this website. Furthermore it is possible to test-drive our implementation
through a web-interface. All this is available at: http://skyline.dbai.tuwien.ac.at/.

1.4 Further Organization

The thesis is organized as follows: In chapter 2 we introduce the notation and show mathe-
matical properties of the skyline operator. In chapter 3 we briefly introduce the implemented
skyline algorithms and speak about the closest related works. Chapter 4 gives the very de-
tails of our implementation. Chapter 5 describes the experimental setup and presents the
extensive experiments over various data settings, followed by the analysis of the results.
Directions of future work are discussed in chapter 6. Chapter 7 concludes the thesis.
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Chapter 2

Preliminaries

2.1 Typographical Conventions

For interactive input and output we will show our typed input in a bold font, the output
like this, and comments like this.

$ psql start PostgreSQL interactive terminal
db=# SELECT * FROM a2d1e5s0 SKYLINE OF d1 MIN, d2 MIN; issue a skyline query

id | d1 | d2

-------+-----------------------+-----------------------

417 | 0.660430708919594 | 0.0734207719527077

1329 | 0.0486199019148477 | 0.663867116113964

[. . .] 53 rows omitted
98953 | 0.136247931652335 | 0.607638615081091

(56 rows)

db=# EXPLAIN ANALYZE SELECT * FROM a2d1e5s0 ←↩ long lines are wrapped with ←↩ and →
→ SKYLINE OF d1 MIN, d2 MIN;

[. . .] omitted output is indicated with [. . .]

db=# \q quit psql
$ back at the shell prompt

The example above also illustrates two other concepts: “$” indicates a shell prompt
and “db=#” indicates the prompt for PostgreSQL interactive terminal psql. Furthermore
“db-#” is displayed when psql is waiting for more input. All of them are used throughout
the text.

As long as it did not change the semantics of the input or output we took the freedom
to add and remove whitespace in order to increase readability, to emphasize a certain point,
or just to work around the 80 columns limitation. Where extra long lines are wrapped we
inserted “←↩” before the break and “→” after the break. Furthermore at certain points
we even allowed ourselves to strip some output, we indicated such omissions by an ellipsis
(“[. . .]”).

2.1.1 Pseudo-code

In the real code for our implementation we do concern about issues of software engineer-
ing, like error handling, which we ignore in the pseudo-code to convey the essence of the
algorithms more concisely.

For the presentation we adapt the convention in [Cormen et al., 2001, Page 19], in the
very essence i.e.:
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• No begin/end or curly brackets for blocks, we use indentation to express the block
structure, like in Python or similar languages.

• We do explicitly break at the end of case blocks in a switch-statement, because in
some rare situations we fall through to the next case. Nevertheless we omit the break

if it is unreachable, e.g. because it is preceded by a return-statement.

Furthermore we took the freedom to simplify some function names and remove some nasty
details which are not essential to grasp the algorithms.

2.2 Basic definitions

We are in the realm of the relational model of data. As we aim at an implementation of
the skyline operator into a relational database management system (RDBMS) we restrict
ourselves to finite database instances.

We assume two infinite1 domains: N (numbers) and D (uninterpreted constants). The
domain D will be used for attributes which are not subject to skyline computation, i.e. for
the hotel example from literature we will not use the name of the hotel as a skyline criterion,
therefore D will be used as domain for this attribute. For attributes or expressions which
are subject to skyline computation we use the domain N . No distinction is made between
different numeric domains, since it is not necessary for this thesis. For N we require that
equality (=), inequality (6=), and the binary relations < (strictly less than), ≤ (less than or
equal), ≥ (greater than or equal), and > (strictly greater than) are defined with the usual
properties.

As the skyline operator is a special case of the winnow operator [Chomicki, 2003], we
define it in a very similar way.

Definition 1 (Preference Relation [Chomicki, 2003]). Given the domains Ui, 1 ≤ i ≤ n,
such that Ui is either equal to D or N and the n-ary schema R(a1, a2, . . . , an), such that
the domain of the attribute ai is Ui, a relation B is a preference relation over R if it is a
subset of (U1 × U2 × · · · × Un)× (U1 × U2 × · · · × Un).

To give an intuition, B is a binary relation between pairs of tuples from the same database
relation R with schema R. We say r dominates s in R iff (r, s) ∈B (or in infix notation
r B s). We use the term database relation in the usual sense, a (database) relation R is a
finite instance of a schema R.

We require the relation B to be a strict partial order, i.e. B is irreflexive, asymmetric
and transitive. These properties are formalized as usual:

• irreflexivity: ∀x : ¬(x B x)

• asymmetry: ∀x, y : x B y ⇒ ¬(y B x)

• transitivity: ∀x, y, z : (x B y ∧ y B z)⇒ x B z

The properties for the corresponding partial order D are formalized as:

• reflexivity: ∀x : x D x

• anti-symmetry: ∀x, y : x D y ∧ y D x⇒ x
B= y

• transitivity: ∀x, y, z : (x D y ∧ y D z)⇒ x D z

1Although in a real computer everything is finite.
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If a strict partial order also has the property of

• totality: ∀x, y : x B y ∨ y B x ∨ x = y,

then it is a total order.

Definition 2 (preference formula (pf) [Chomicki, 2003]). A preference formula (pf) C(r, s)
is a first-order formula defining a preference relation B in the standard sense, namely

r B s iff C(r, s).

Because of this close relationship between the first-order formula C and the binary rela-
tion B we will later use skylineB and skylineC interchangeably.

In our case we only focus on intrinsic preference formulas, i.e. the value of C(r, s) only
depends on the attributes of r and s and not on other tuples in the same or other relations.
If the preference formula depends on other tuples, like in “we prefer tuples that are better
than the average”, which involves aggregation, it is called extrinsic preference formula. We
now define a special form of preference formula.

Definition 3 (Skyline Preference Formula). Given the two tuples

r = (r1, . . . , rk︸ ︷︷ ︸
MIN

, rk+1, . . . , rl︸ ︷︷ ︸
MAX

, rl+1, . . . , rm︸ ︷︷ ︸
DIFF

, rm+1, . . . , rn︸ ︷︷ ︸
extra

)

and
s = (s1, . . . , sk︸ ︷︷ ︸

MIN

, sk+1, . . . , sl︸ ︷︷ ︸
MAX

, sl+1, . . . , sm︸ ︷︷ ︸
DIFF

, sm+1, . . . , sn︸ ︷︷ ︸
extra

)

both elements of an n-ary relation R, then the skyline preference formula is of the form:

C(r, s) =

“ MIN at least as good”︷ ︸︸ ︷ ∧
1≤i≤k

ri ≤ si

 ∧

“ MAX at least as good”︷ ︸︸ ︷ ∧
k+1≤i≤l

ri ≥ si

 ∧
“ DIFF equal”︷ ︸︸ ︷ ∧

l+1≤i≤m

ri = si

 ∧
∧


 ∨

1≤i≤k

ri < si


︸ ︷︷ ︸
“ MIN better than”

∨

 ∨
k+1≤i≤l

ri > si


︸ ︷︷ ︸

“ MAX better than”

. (2.1)

To state (2.1) in an informal way, a tuple r dominates a tuple s if it is equal in all DIFF
dimensions, at least as good in all MIN/MAX dimensions and better than in at least one of the
MIN/MAX dimensions. The above formula corresponds to a skyline query with the following
skyline clause:

SKYLINE OF a1 MIN, . . . , ak MIN, ak+1 MAX, . . . , al MAX, al+1 DIFF, . . . , am DIFF

To simplify the definition of formula (2.1) and combine the “MIN- and MAX-at least as
good” condition to a just “at least as good” condition we define:

�i :=


≤ if 1 ≤ i ≤ k,
≥ if k + 1 ≤ i ≤ l,
undefined otherwise

(2.2)
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Same for the “better than” condition:

�i :=


< if 1 ≤ i ≤ k,
> if k + 1 ≤ i ≤ l,
undefined otherwise

(2.3)

Using the above two definitions formula (2.1) simplifies to:

r B s :=

 ∧
l+1≤i≤m

ri = si


︸ ︷︷ ︸

“ DIFF equal”

∧

 ∧
1≤i≤l

ri �i si


︸ ︷︷ ︸
“at least as good”

∧

 ∨
1≤i≤l

ri �i si


︸ ︷︷ ︸

“better than”

(2.4)

We now define the skyline operator which is a special case of the winnow operator
[Chomicki, 2003], where the preference formula has exactly the form of formula (2.1).

Definition 4 (Skyline Operator). Let R be a relation schema and C a skyline preference
formula defining a preference relation B over R, then the skyline operator is denoted by
skylineB(R), and for every instance R ∈ R:

skylineB(R) := {r ∈ R|@s ∈ R : s B r}

To give the intuition, the skyline operator returns all tuples which are not dominated, in
other words all tuples that do not have a witness.

We now like to introduce some further concepts:

Definition 5 (Weak Preference). There is a weak preference between r and s if r is equal
in all DIFF dimensions and at least as good in all other skyline dimensions compared to s,
formally:

r D s :=

 ∧
l+1≤i≤m

ri = si


︸ ︷︷ ︸

“ DIFF equal”

∧

 ∧
1≤i≤l

ri �i si


︸ ︷︷ ︸
“at least as good”

(2.5)

Definition 6 (Non Distinct). If two tuples r and s are equal on all skyline dimensions, we
say r and s are non distinct, denoted by:

r
B= s :=

 ∧
1≤i≤m

ri = si

 (2.6)

If r B= s and in case of SKYLINE OF DISTINCT, then it is left up to the implementation to
include either r or s in the skyline, otherwise r and s are included. Please note that in
general r = s is not equivalent to r B= s, only when m = n, i.e. all attributes are subject to
skyline computation.

For convenience we define the following two commutator relations:

s C r :⇔ r B s.

s E r :⇔ r D s.
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Without proof we give the following equivalences:

r D s⇔ r B s ∨ r B= s (2.7)

r B s⇔ r D s ∧ ¬(r B= s) (2.8)

r
B= s⇔ r D s ∧ r E s (2.9)

Definition 7 (Incomparable). If neither r dominates s nor s dominates r then r and s are
incomparable:

r ‖ s := ¬(r B s) ∧ ¬(s B r)

In case of r ‖ s, r and s may both be part of the skyline, if none of them is dominated by
another tuple t ∈ R\{r, s}. The commutativity of ‖ is obvious from its definition, i.e.

r ‖ s = s ‖ r.

Definition 8 (Comparable). The tuples r and s are comparable iff r dominates s or s
dominates r:

r ⊥ s := r B s ∨ s B r

It is clear from the definition that ⊥ is commutative, i.e.

r ⊥ s = s ⊥ r.

2.2.1 DIFF-Induced Equivalence Relation

Please note that the following subformula (2.10) of formula (2.1) induces an equivalence
relation on R, i.e. R is partitioned into groups where the attributes al+1, . . . , am are equal:∧

l+1≤i≤m

ri = si. (2.10)

As noted in [Chomicki et al., 2003], the DIFF directive works like a GROUP BY within the
skyline, and the skyline for each group of DIFF attributes’ values is found. This property
can be exploited, if an ordered index on any subset of the attributes al+1, . . . , am exists,
since the tuple window can be flushed each time the group is changed, see section 6.3.4

2.3 Properties of the Skyline Operator

2.3.1 Monotone vs. Linear Scoring Functions

One might be tempted to assume that the result of the skyline operator can also be produced
with linear scoring functions, but that is not true, we take the example from [Chomicki et al.,
2002] to show this. Before going into detail let us define the class of linear scoring functions:

Definition 9 (Linear Scoring Function). Let the wi’s be positive real constants, then we
define a positive linear scoring function W over all the tuples r ∈ R as:

W (r) =
∑

1≤i≤n

wiri.

Let us consider the relation R = {(4, 1), (2, 2), (1, 4)}. It is clear that all tuples are part
of the skyline, i.e. skyline(R) = R. Finding a linear scoring function that prefers (4, 1) or
(1, 4) is obvious. Now let us try to find a linear scoring function that gives (2, 2) the highest
score. We require that:
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1. 2w1 + 2w2 ≥ 4w1 + 1w2, which simplifies to w2 ≥ 2w1, which in turn is equivalent to
2w2 ≥ 4w1, and

2. 2w1 + 2w2 ≥ 1w1 + 4w2, which simplifies to w1 ≥ 2w2

Chaining the inequalities from (1) and (2) yields w1 ≥ 2w2 ≥ 4w1, i.e. w1 ≥ 4w1, which
does not have a solution for w1 > 0. Therefore there is no linear scoring function which
gives (2, 2) the best score.

It should be noted that it might be difficult to come up with appropriate weights for the
different attributes from a user’s perspective.

On the other hand the class of monotone scoring functions is defined as follows:

Definition 10 (Monotone Scoring Function). Let the fi’s be monotone increasing functions
with fi : N → R, where N is the domain of the attributes of schema R, then a monotone
scoring function S which ranks a tuple r ∈ R, where R is an instance of R, has the form:

S(r) =
∑

1≤i≤n

fi(ri).

A nice property of the skyline operator is stated in the following theorem:

Theorem 1 ([Chomicki et al., 2002]). The skyline contains all, and only tuples yielding
maximum values of monotone scoring functions.

One of the nice conclusions of Theorem 1 is, no matter how we weight our preferences
along the attributes, our favorite is part of the skyline, as long as we weight each attribute
with a monotone increasing function. Furthermore only tuples which score best under at
least one scoring function are part of the skyline, in other words, the skyline does not contain
tuples which are nobody’s favorite.

We now give an example to emphasize our assertion, that it is possible to give the tuple (2, 2)
a higher score than the tuples (4, 1) and (1, 4). Using the monotone increasing functions

f1(x) = f2(x) =

{
0 if x < 2,
1 otherwise

we define the monotone scoring function

S(r) = f1(r1) + f2(r2),

which has the asserted property:

1. S( (2, 2) ) = f1(2) + f2(2) = 1 + 1 = 2 > 1 = 1 + 0 = f1(4) + f2(1) = S( (4, 1) ), and

2. S( (2, 2) ) = f1(2) + f2(2) = 1 + 1 = 2 > 1 = 0 + 1 = f1(1) + f2(4) = S( (1, 4) ).

2.3.2 Independence of Attribute Order

The following property is a well known fact about the skyline operator:

Property 1 (Independence of Attribute Order). The semantics of the skyline operator is
independent from the order in which the attributes are specified in the query.

Proof. This property immediately becomes clear, when looking at the definition of the pref-
erence formula (2.1), as logical and (∧) and logical or (∨) are commutative.

To give a simple example the following queries will yield the same result:
SELECT * FROM a15d1e5 SKYLINE OF d1 MIN, d2 MIN;

SELECT * FROM a15d1e5 SKYLINE OF d2 MIN, d1 MIN;
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2.4 Further Notions

2.4.1 Dominance and Anti-dominance regions

In the context of the skyline operator the following two notions naturally arise:

Definition 11 (Dominance Region). The Dominance Region DRB(r) of a tuple r of the
relation R is the set of tuples in R that are dominated by r, formally:

DRB(r) := {x ∈ R|r B x}

Definition 12 (Anti-Dominance Region). The Anti-Dominance Region ADRB(r) of a tuple
r of the relation R is the set of all tuples in the relation R that dominate r, formally:

ADRB(r) := {x ∈ R|x B r}

The question if a point is a skyline point can be answered by checking if the anti-
dominance region is empty. This can be done with a range query, or even facilitating an
index.

2.4.2 Skyline Stratum and K-Skyband

In [Chomicki, 2003] the concept of skyline stratum is called iterated preference, and they
speak of ranking, we prefer to use the term stratum, and we reserve the term ranking for
scoring functions (see section 2.3.1). To the best of our knowledge the term skyline stratum
first appeared in [Chan et al., 2005]. The n-th skyline stratum skylinen

C is recursively defined
as:

skyline1
C(R) := skylineC(R) (2.11)

skylinen+1
C (R) := skylineC(R\

⋃
1≤i≤n

skylinei
C(R)) (2.12)

To give an example, the query skyline2
C(R) returns the set of “second-best” tuples. The

strata are of interest especially if there is a single killer tuple or very few tuples which are
dominating the entire dataset. In the context of the relation Hotel(Price, Distance to beach),
a barrack on the beach is cheaper and closer to the beach than any other accommodation,
but might not meet our standards. Another example, if we are bored always having lunch
at the same “best” restaurant, we might want to try the “second-best” and enjoy the little
bit longer walk we would have to take in that case.

A K-skyband query, introduced by Papadias et al. [2005], is a concept similar to the
skyline stratum. A K-skyband query reports all tuples which are dominated by at most
K points. The skyband rank of a point p can be computed by counting the points in the
anti-dominance region of p.

It might be tempting to see a direct relationship between skyline stratum and K-skyband,
but as can be seen from the following example, there is no straightforward relationship
between these two concepts:
Let R = {r, s, t} and B= {(r, t), (s, t)}, i.e. r B t and s B t, then skyline1

B = {r, s} and
skyline2

B = {t}, but skyband0
B = {r, s}, skyband1

B = {r, s} and skyband2
B = {r, s, t}.

Hence no easy general relation can be established between K-skyband and skyline stratum,
which is intuitive as K-skyband involves counting while skyline stratum involves just an
existential quantifier. So the following holds:
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skyband0
C(R) = skyline1

C(R) (2.13)

skybandn
C(R) 6=

⋃
1≤i≤n+1

skylinei
C(R) for n ≥ 0 (2.14)

skylinen
C(R) 6= skybandn+1

C (R)\ skybandn
C(R) for n ≥ 1 (2.15)

The branch-and-bound-skyline (BBS) algorithm [Papadias et al., 2005] supports the
computation of K-skyband queries, as stated by Papadias et al. [2005], BNL and SFS can
compute K-skybands, this can be easily done by maintaining the number of tuples that
dominate a tuple in the tuple window. Increase the number by one each time a tuple in the
tuple window is dominated by the current tuple and once this count is greater than K drop
the tuple from the tuple window.

An interesting combination of SKYLINE OF and TOP k is given by the top-k-skyline op-
erator [Brando et al., 2007; Goncalves and Vidal, 2005b,a], where as many skyline strata
are computed until at least k tuples are found, otherwise the entire relation is returned.
Nevertheless it should be noted that the selectivity of the top-k-skyline operator is even less
than the skyline operator alone.

2.5 Rewrite Skyline Queries into Standard SQL

Let rel be a relation with the attributes a1, . . . , an, and a non empty target list ∅ 6=
target list ⊆ {a1, . . . , an}, then a skyline query with at least one criterion (0 ≤ k ≤ l ≤
m ≤ n and 1 ≤ m ≤ n) and the following form:

SELECT target list FROM rel AS r WHERE condition
SKYLINE OF a1 MIN, . . . , ak MIN, ak+1 MAX, . . . , al MAX, al+1 DIFF, . . . , am DIFF (2.16)

can be rewritten, as exemplified in [Börzsönyi et al., 2001], into

SELECT o.target list FROM rel AS o WHERE (condition{r ← o}) AND NOT EXISTS
(SELECT * FROM rel AS i WHERE (condition{r ← i})
AND i.a1 <= o.a1 AND . . . AND i.ak <= o.ak -- "MIN" as good2

AND i.ak+1 >= o.ak+1 AND . . . AND i.al >= o.al -- "MAX" as good
AND i.al+1 = o.am AND . . . AND i.am = o.am -- "DIFF" equal
AND (

i.a1 < o.a1 OR . . . OR i.ak < o.ak -- "MIN" better
OR i.ak+1 > o.ak+1 OR . . . OR i.al > o.al -- "MAX" better

)
) (2.17)

Note that the attributes specified as criteria in the skyline query need not necessarily
appear in the target list. The correspondence with the basic definition of the skyline opera-
tor (cf. Definition 4) and with the definition of a binary preference relation (2.1) is obvious.
The join is a θ-join and not an equi-join. A little notion we use here is condition{r ← o} to
express that any reference to the relation alias r must be replaced with the alias o. Another
way to rewrite the query is given in [Godfrey, 2004, Page 3]:

SELECT target list FROM rel WHERE (condition)
EXCEPT
SELECT o.target list FROM rel AS i, rel AS o
WHERE (condition{r ← i}) AND (condition{r ← o})

2Note that “--” starts a single line comment in SQL.
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AND i.a1 <= o.a1 AND . . . AND i.ak <= o.ak -- "MIN" as good
AND i.ak+1 >= o.ak+1 AND . . . AND i.al >= o.al -- "MAX" as good
AND i.al+1 = o.am AND . . . AND i.am = o.am -- "DIFF" equal
AND (

i.a1 < o.a1 OR . . . OR i.ak < o.ak -- "MIN" better
OR i.ak+1 > o.ak+1 OR . . . OR i.al > o.al -- "MAX" better

) (2.18)

The principle used here is different, the skyline of a set is the set without those tuples that
have a witness that they are dominated. This can be formally expressed as:

skylineB(R) = R\{r ∈ R|∃s ∈ R : s B r} (2.19)

Computing the skyline this way is expensive, as the intermediate results can get very
large.

2.5.1 Rewrite queries with SKYLINE OF DISTINCT

In the presence of the optional DISTINCT modifier in the SKYLINE OF-clause the situation is
changed, such a query has the following form:

SELECT target list FROM rel AS r WHERE condition
SKYLINE OF DISTINCT a1 MIN, . . . , ak MIN, ak+1 MAX, . . . , al MAX,
al+1 DIFF, . . . , am DIFF (2.20)

Before we describe how to rewrite such a query into standard SQL and where the limits of this
transformation are, we shall repeat what the intended semantics of SKYLINE OF DISTINCT
is from [Börzsönyi et al., 2001]. If the DISTINCT modifier is present, then duplicates are
eliminated in the following way: if for two tuples r and s the condition∧

1≤i≤m

ri = si,

(i.e. they are equal on all skyline criteria, in other terms r B= s (cf. (2.6))) holds, then either
r or s is retained, and the choice is left to the implementation. Note that the attributes
am+1, . . . , an are not affected by this, they are still part of the retained tuple, i.e. no implicit
projection is performed. This indicates some difficulties, standard SQL does not have any
non-deterministic feature, so we somehow have to express whether a set of tuples coincides
on the skyline criteria {a1, . . . , am}, i.e. if r B= s:

1. if target list is not a subset of the skyline criteria target list 6⊆ {a1, . . . , am}, then how
to pick just one tuple, the first, the last, an arbitrary one, but just one, or

2. otherwise target list ⊆ {a1, . . . , am}, how to eliminate duplicates.

The latter is easy, as we just have to eliminate duplicates, which can be done with the
DISTINCT keyword in the SELECT-clause. As a result, the rewritten query of (2.20) is the
same as in (2.17), except for an additional DISTINCT:

SELECT DISTINCT o.target list FROM rel AS o
WHERE (condition{r ← o}) AND NOT EXISTS
(SELECT * FROM rel AS i WHERE (condition{r ← i}) [. . .] (2.21)

The same effect can be achieved by aggregating over all attributes in the target list.
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Things get more involved in the first case. If we can establish an order on the tuples,
then we are able to pick the first or the last3. In the presence of a unique and ordered key4

this is obvious, in the other case as long as on each attribute a total order exists, we can
construct a lexicographic order. Duplicate elimination with SELECT DISTINCT might still
be necessary.

To exemplify this, let the target list be {aj1 , . . . , ajh
}, {j1, . . . , jh} = J , with J ⊆

{1, . . . , n} and J ∩ {m + 1, . . . , n} 6= ∅, i.e., the target list contains at least one attribute
that is not a part of the skyline criteria. Then the query (2.20) can be rewritten into:

SELECT DISTINCT o.aj1 , . . . , o.ajh

FROM rel AS o WHERE (condition{r ← o}) AND NOT EXISTS
(SELECT * FROM rel AS i WHERE (condition{r ← i})
AND (
( i.a1 <= o.a1 AND . . . AND i.ak <= o.ak -- "MIN" as good

AND i.ak+1 >= o.ak+1 AND . . . AND i.al >= o.al -- "MAX" as good
AND i.al+1 = o.al+1 AND . . . AND i.am = o.am -- "DIFF" equal
AND (

i.a1 < o.a1 OR . . . OR i.ak < o.ak -- "MIN" better
OR i.ak+1 > o.ak+1 OR . . . OR i.al > o.al -- "MAX" better

)
) -- i dominates o
OR (

i.a1 = o.a1 AND . . . AND i.am = o.am -- non distinct
AND (i.aj1 < o.aj1

OR (i.aj1 = o.aj1 AND i.aj2 < o.aj2

OR (i.aj2 = o.aj2 AND i.aj3 < o.aj3

...

OR (i.ajh−1 = o.ajh−1 AND i.ajh
< o.ajh

). . .) -- order lexical.
)

)
) (2.22)

In the above query we retain the first tuple. In case such an order cannot be established,
e.g. an order operator is not defined for the used data type, then in Microsoft SQL we can
work around this with the special aggregate functions FIRST and LAST, which results in a
query like this:

SELECT FIRST(t.aj1), . . . , FIRST(t.ajh
)

FROM (
SELECT o.aj1 , . . . , o.ajh

FROM rel AS o WHERE (condition{r ← o}) AND NOT EXISTS
(SELECT * FROM rel AS i WHERE (condition{r ← i})
AND i.a1 <= o.a1 AND . . . AND i.ak <= o.ak -- "MIN" as good

[. . .] (same as in (2.17))
) AS t
GROUP BY t.aj1 , . . . , t.ajh

(2.23)

In PostgreSQL subselects which return at most one value can be used as expressions, by
means of that duplicates can be eliminated in a way we just like to sketch5:

3Of course we can also express to pick the second, the third and so forth, but all we know is that within
a group we have at least one tuple.

4On some RDBMS special pseudo-columns for such purposes do exist.
5We thank Chris Roschger. He came up with this idea.
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SELECT
(SELECT aj1 FROM rel WHERE a1 = o.a1 AND ...AND am = o.am LIMIT 1),
(SELECT aj2 FROM rel WHERE a1 = o.a1 AND ...AND am = o.am LIMIT 1),
...

FROM
(SELECT DISTINCT a1, . . . , am FROM rel WHERE NOT EXISTS

[. . .] condition for skyline query
) as o (2.24)

This returns the correct result only if all the subselects will return their attributes from
the same tuple, which can be expected as the same filter condition on the same relation is
used, then almost for sure the same access path will be used. The LIMIT-clause is used,
which is not part of the SQL 2003 standard [Melton, 2003]. We conjecture that such a query
cannot be expressed with standard SQL.

For the corner case of one dimensional skyline queries, i.e. m = 1, other methods do
exist, we show them in section 4.8.2 and 4.8.3.

2.6 Classification of Skyline Algorithms

Kossmann et al. [2002] suggested a set of criteria for evaluating skyline algorithms that we
like to cite here:

1. Progressiveness: the first results should be reported to the user almost instantly and
the output size should gradually increase.

2. Absence of false misses: given enough time, the algorithm should generate the entire
skyline.

3. Absence of false hits: the algorithm should not discover temporary skyline points that
will be later replaced.

4. Fairness: the algorithm should not favor points that are particularly good in one
dimension.

5. Incorporation of preferences: the users should be able to determine the order according
to which skyline points are reported.

6. Universality : the algorithm should be applicable to any dataset distribution and di-
mensionality, using some standard index structure.

2.7 How our implementation extends the mathematical
model

Our implementation of the SKYLINE OF clause is actually a bit more flexible than the math-
ematical definition given above. With our implementation the skyline operator is not re-
stricted to attributes with a numerical domain, it can be applied to any attribute, as long
as a sort function is defined for the domain in question, i.e. any expression valid in a SQL
ORDER BY clause is valid as an expression in a SKYLINE OF clause.

This gives the opportunity to include expressions of almost any data type in a skyline
query, even user-defined ones, since it is possible for the user to define full-fledged data
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types in PostgreSQL. For more information on user-defined data types see PostgreSQL
documentation on User-Defined Types6 and Operator Classes and Operator Families7

Although viable, it is questionable whether it is of practical use to include a e.g. VARCHAR
column in a skyline query. Nevertheless this might be a good use case for a user-defined
ordering operator.

Furthermore our implementation allows arbitrary expressions instead of a single at-
tribute, e.g.

SELECT * FROM nba.players
SKYLINE OF (h feet * 12 + h inches) MAX NULLS LAST,
weight MAX NULLS LAST (2.25)

2.8 Related Problems

Related to computing the skyline of a dataset are the following problems: convex hull, top-K
queries, and (especially in the context of spacial skylines like e.g. “give me the next good
restaurant”).

In particular, as noted in [Papadias et al., 2005], the convex hull contains the subset of
skyline points that may be optimal only for linear preference functions (as opposed to any
monotone function).

6http://www.postgresql.org/docs/8.3/static/xtypes.html
7http://www.postgresql.org/docs/8.3/static/xindex.html#XINDEX-OPFAMILY
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Chapter 3

Existing Skyline Algorithms and
Related Works

Since the introduction of the skyline operator [Börzsönyi et al., 2001], a number of secondary-
memory algorithms have been developed for efficient skyline computation. These algorithms
can be classified into two categories. The first one involves solutions that do not require
any preprocessing on the underlying dataset. Algorithms such as Block Nested Loops (BNL)
[Börzsönyi et al., 2001], Divide and Conquer (D&C) [Börzsönyi et al., 2001], Sort First
Skyline (SFS) [Chomicki et al., 2003], and Linear Elimination Sort for Skyline (LESS)
[Godfrey et al., 2005] belong to this category. The algorithms in the second category utilize
different index structures such as sorted lists and R-trees to reduce the query costs. Well-
known algorithms in this category include Bitmap [Tan et al., 2001], Index [Tan et al., 2001],
Nearest Neighbor (NN) [Kossmann et al., 2002], and Branch and Bound (BBS) [Papadias
et al., 2003, 2005].

The advantage of index-based algorithms is that they need to access only a portion of the
dataset to compute the skyline, while non-index-based algorithms have to visit the whole
dataset at least once. However, index-based algorithms have to incur additional time and
space costs for building and maintaining the indexes. Comparisons of these methods are
presented in several works [Tan et al., 2001; Kossmann et al., 2002; Chomicki et al., 2003].

Furthermore from a relational algebraic point of view, index-based skyline algorithms
can only be placed at the leaves of an algebraic expression, whereas the non-index-based
skyline algorithms are first order citizens and can be placed anywhere in the relational
algebra expression.

There is a whole class of other skyline algorithms, referred to as continuous skyline
computation. The task here is to initially compute the skyline and then update the skyline
when tuples are added or removed from the dataset, e.g. in a streaming scenario. Such
algorithms are presented in [Lin et al., 2005; Tao and Papadias, 2006]. In this work we will
not consider this scenario further.

The skyline algorithms we have implemented are: BNL, SFS, BNL+EF and SFS+EF. EF
stands for Elimination Filter, which was introduced in [Godfrey et al., 2005] as an essential
routine for the LESS algorithm. We give a brief description of them in the following sections.
Furthermore we derive properties of BNL and SFS concerning the (non)-preservation of
relative tuple order. We prove that BNL as described in the original paper is non-terminating
under certain conditions and we show how to fix this.
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3.1 Block Nested Loops (BNL)

BNL [Börzsönyi et al., 2001] works as follows. A tuple window is maintained in the main
memory for storing the potential skyline tuples. Once the window becomes full, an overflow
file (temp file) has to be generated. At the end of the original input BNL switches to the
temp file for reading to process these tuples in a second pass. If the window becomes full
again, further overflow files are generated and BNL will make another pass. The tuples in
the tuple window get a timestamp to be able to decide which tuples in the window have been
compared against all other tuples and therefore can be written to the output and removed
from the tuple window. See Listing 3.1 for details, Table 3.1 summarizes the symbols used
in the pseudo-code.

Symbol Description
I input for skyline computation (type: set of d-dimensional points)
O output of skyline computation (type: set of d-dimensional points)
T temporary file (type: set of d-dimensional points)
W tuple window in main memory (type: set of d-dimensional points

with a timestamp value for each point and if the window policies
entropy or random are used, then each point has an associated
rank)

p B q point p dominates point q

Table 3.1: Symbols used throughout the pseudo-code

3.1.1 Non-termination of Block-Nested-Loops (BNL) Algorithm

During the implementation of BNL into PostgreSQL we discovered a flaw in the algorithm
from the original paper [Börzsönyi et al., 2001]. We are using a little bit different notation
to present to algorithm. In our pseudo code (see Listing 3.1) we only add a tuple to the
tuple window if there is enough space. In the original version a tuple is added in any case
and later removed again if space was exhausted. Besides from that the original and our
version in Listing 3.1 coincide.

Our finding is that under certain conditions the code from Listing 3.1 does not terminate.
To show this property, we construct a dataset as follows:

I = {a1, . . . , an, b1, . . . , bm, c1, . . . , cn} (3.1)

where n is the number of tuples that fit into the tuple window W and m ≥ 1, with the
following dominance structure:

∀i ∈ {1, . . . , n} : ci B ai (3.2)
∀i, j ∈ {1, . . . , n} : i 6= j ⇒ ai ‖ aj ∧ ci ‖ cj ∧ ai ‖ cj (3.3)

∀i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} : ai ‖ bj ∧ ci ‖ bj . (3.4)

In terms of a binary relation the dominance can be expressed as:

B = {(ci, ai)|i ∈ {1, . . . , n}} ⊂ I × I, (3.5)

In essence this means every ai is dominated by ci and all other tuples are incomparable. To
construct such a dataset, generate a1, . . . , an, b1, . . . bm anti-correlated and let the ci’s just
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Listing 3.1: Original Block-Nested-Loops (BNL) Algorithm, which does not terminate in all cases

1 function SkylineBNL(I)
2 // initialization

3 O ← ∅; T ← ∅; W← ∅; timestampIn← 0; timestampOut← 0;
4

5 while ¬EOF(I)
6 // propagate points that have been compared to all

7 foreach q ∈W
8 if qtimestamp=timestampIn
9 append(O, q);

10 release(W, q);
11

12 // fetch the next point

13 p← next(I);
14 ptimestamp ← timestampOut;
15 timestampIn← timestampIn + 1;
16 isCandidate← true;
17

18 // compare p to all points in the tuple window W
19 foreach q ∈W
20 if q B p
21 free(p);
22 isCandidate← false;
23 break;

24 else if p B q
25 release(W, q);
26

27 if isCandidate
28 if hasfreespace(W)

29 // add p to the tuple window W
30 add(W, p);
31 else

32 // write p to the tempfile T
33 append(T , p);
34 free(p);
35 timestampOut← timestampOut + 1;
36

37 // continue with next pass if necessary

38 if EOF(I)
39 // switch to tempfile T
40 I ← T ; T ← ∅;
41 timestampIn← 0; timestampOut← 0;
42

43 // flushing the tuple window

44 foreach q ∈W
45 append(O, q);
46 release(W, q);
47

48 return (O);
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Listing 3.2: Fixed Block-Nested-Loops (BNL) Algorithm

1 function SkylineBNL(I)
2 // initialization

3 O ← ∅; T ← ∅; W← ∅; timestampIn← 0; timestampOut← 0;
4

5 forever

6 // propagate points that have been compared to all

7 foreach q ∈W
8 if qtimestamp=timestampIn
9 append(O, q);

10 release(W, q);
11

12 // continue with next pass if necessary

13 if EOF(I)
14 if EOF(T )
15 break; // we are done

16

17 // switch to tempfile T
18 I ← T ; T ← ∅;
19 timestampIn← 0; timestampOut← 0;
20 continue;

21

22 // fetch the next point

23 p← next(I);
24 ptimestamp ← timestampOut;
25 timestampIn← timestampIn + 1;
26 isCandidate← true;
27

28 // compare p to all points in the tuple window W
29 foreach q ∈W
30 if q B p
31 free(p);
32 isCandidate← false;
33 break;

34 else if p B q
35 release(W, q);
36

37 if isCandidate
38 if hasfreespace(W)

39 // add p to the tuple window W
40 add(W, p);
41 else

42 // write p to the tempfile T
43 append(T , p);
44 free(p);
45 timestampOut← timestampOut + 1;
46

47 // flushing the tuple window

48 foreach q ∈W
49 append(O, q);
50 release(W, q);
51

52 return (O);
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be a little better in each dimension than the ai’s. It is easy to see that following identities
hold:

skylineB({a1, . . . , an, b1, . . . , bm}) = {a1, . . . , an, b1, . . . , bm} (3.6)
skylineB({a1, . . . , an, c1, . . . , cn}) = {c1, . . . , cn} (3.7)

skylineB(I) = skylineB({b1, . . . , bm, c1, . . . , bn}) (3.8)
= {b1, . . . , bm, c1, . . . , cn} (3.9)

In the following we outline the cause of non-termination of the original BNL for the
dataset I and dominance relation B. Note that a relation or a set does not have the concept
of nextness, but we treat it here like a physical table, where the tuples do have a sequence.

1. the tuples {a1, . . . , an} are processed, this entirely fills up the tuple window of size n
slots with these tuples as they are all incomparable

2. the tuples {b1, . . . , bm} are processed, as they are all incomparable to the ai’s they all
end up in the temp file T ; at this point timestampOut = m.

3. the tuples {c1, . . . , cn} are processed, as each ci dominates ai, all ai are removed from
the tuple window and replaced by the ci; the timestamp for the ci’s is m and the tuple
window is completely filled with the ci’s tuples

4. end of input I is reached, so switch to temp file T containing {b1, . . . , bm}, timestampIn
is reset to 0

5. the tuples {b1, . . . , bm} are processed, they will all end up in the temp file again, as
they are all incomparable to the ci’s; at this point timestampIn = m but at the same
time the end of input is reached, resulting in a switch to the temp file and resetting
timestampIn and timestampOut to zero. No tuple ci from the tuple window will be
propagated to the output as they have a timestamp of m but the propagate code will
not be reached with timestampIn = m; the result is that this last step will be repeated
over and over again

The simplest case to reconstruct this non-termination behavior is with n = m = 1. A
possible fix is to duplicate the lines 7–10 between 38 and 39 in Listing 3.1, so the propagation
is done once EOF is reached. Nevertheless we fixed it with a slight modification in the control
flow, see Listing 3.2. And of course, our implementation in PostgreSQL is based on our fixed
version.

3.1.2 Non-preservation of relative Tuple Order

It is not completely obvious that BNL does not preserve the relative order of tuples from
the input in the output, even when the tuple window policy append is used. To exemplify
this property we use a dataset as in the previous section with n = m = 1, i.e.

I = {a1, b1, c1}, with a1 ‖ b1, b1 ‖ c1, c1 B a1.

After the first pass the tuple window contains c1 and b1 is in the temp file, a1 was elimi-
nated by c1. In the next pass b1 and c1 are compared against each other, but as they are
incomparable b1 ends up in the temp file again, but this time c1 can be propagated to the
output as it was compared against all other tuples. In the final pass b1 is propagated to the
output. Hence the output is

O = {c1, b1},
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where b1 and c1 have changed their relative order. It is easy to imagine that this can
happen in other configurations as well and therefore BNL does not preserve the relative
order of tuples. This physical property of BNL is important during the query planning,
as the relative order of tuples is an important aspect here. Very offen, a prior operator
in the query plan needs to establish a certain order or preserve such an order to save an
explicit sorting operation, in order to execute further physical operators such as aggregation
or natural join.

3.2 Sort First Skyline (SFS)

SFS [Chomicki et al., 2003] differs from BNL in that the data is topologically sorted at start-
up time. It is shown in the original paper that this condition is sufficient for the following
property. In SFS once a tuple is incomparable to all tuples in the tuple window it is known
to be a skyline tuple as well, and it can be written to the output directly. Furthermore no
timestamps have to be maintained and at the end of each pass the tuple window can be
completely purged. The pseudo-code is given in Listing 3.3.

3.2.1 Preservation of relative Tuple Order

Please note that in the output of SFS the relative order of tuples from Ipresorted is preserved.
SFS has this physical property regardless of the tuple window placement policies used. This
is because if a tuple survives the dominance check it is appended to the output.

3.3 Linear Elimination Sort for Skyline (LESS)

Godfrey et al. [2005] proposed the LESS algorithm, an improvement over SFS [Chomicki
et al., 2003]. LESS is generally considered as the fastest known non-index-based skyline
algorithm in literature. The essential differences between SFS and LESS are:

1. it uses a so called elimination filter in pass zero of the external sort routine to eliminate
tuples early, hence less tuples left to sort; and

2. the skyline-filter is interweaved in the final pass of the external sort routine.

In the following we describe the elimination filter (EF) as the second difference is merely
an implementation detail.

3.3.1 Elimination Filter (EF)

The concept of the elimination filter (EF) is simple but effective. It tries to eliminate as
many non-skyline tuples at an early stage. To do so it compares every incoming tuple p
against a tuple window W, if p is dominated by any tuple in the tuple window, then p is
dropped and the next tuple is read, otherwise p is piped out and the next tuple is read. Of
course the elimination filter does not guarantee to filter out all non-skyline tuples, but a
skyline candidate is guaranteed to survive the elimination filter. Another notable difference
to BNL and SFS is that EF does not produce any temporary files once the tuple window
gets full. This makes EF suffer in the same way as BNL from a bad distribution of tuples
in the input, e.g. the tuple window gets filled up by skyline tuples with a low dominance
factor.

Godfrey et al. [2005] did not give pseudo-code for the elimination filter in their paper.
In Listing 3.4 we give a sketch for the code as we used it in our implementation. Note that
we give the algorithm in a form that fits into a pipelined architecture that is used in the
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Listing 3.3: Sort First Skyline (SFS) Algorithm

1 function SkylineSFS(I) begin

2 // presort input

3 Ipresorted ← sort(I);
4

5 // initialization

6 O ← ∅; T ← ∅; W← ∅;
7

8 while ¬EOF(Ipresorted)

9 // loop invariant: Ipresorted and T are sorted

10

11 // fetch the next point

12 p← next(Ipresorted);

13 isSkyline← true;
14

15 // compare p to all points in the tuple window W
16 foreach q ∈W
17 if q B p
18 free(p);
19 isSkyline← false;
20 break;

21 else if p B q
22 release(W, q);
23

24 if isSkyline
25 if hasfreespace(W)

26 // add p to the tuple window W
27 add(W, p);
28 else

29 // write p to the tempfile T
30 append(T , p);
31 free(p);
32

33 // add tuple to the output

34 append(O, p);
35

36 // continue with next pass if necessary

37 if EOF(Ipresorted)

38 // switch to tempfile T
39 Ipresorted ← T ; T ← ∅;
40

41 // clean tuple window

42 W← ∅;
43

44 return (O);
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PostgreSQL query execution engine. The function EliminationFilter has to be called for
each output tuple, until NULL is returned. While doing so EliminationFilter consumes
the entire input I. Please also note that the variable state has to be preserved over calls
to EliminationFilter as it keeps the internal state of the function, later we will call such
a function an iterator.

Tunable parameters for the elimination filter are the tuple window size and the tuple
window placement policy, in the same way as these parameters are tunable for BNL and
SFS.

In [Godfrey et al., 2005] the elimination filter is only used in conjunction with an SFS
style algorithm, in our implementation we demonstrate that this concept is also very effective
when used with a BNL style algorithm, we call it BNL+EF, cf. section 5.4

Furthermore it should be noted that the elimination filter preserves the relative order of
tuples from the input in the output, i.e. those tuples that do survive the elimination filter
are in the same relative order as in the input.

Listing 3.4: Elimination Filter (EF) (in iterator style)

1 function EliminationFilter(I, var state) begin

2 forever

3 switch state
4 case INIT:

5 W← ∅;
6 state← PROCESS;

7 break;

8

9 case PROCESS:

10 if EOF(I)
11 state← DONE;

12 break;

13

14 p← next(I);
15 isCandidate← true;
16

17 // compare p to all points in the tuple window W
18 foreach q ∈W
19 if q B p
20 free(p);
21 isCandidate← false;
22 break;

23 else if p B q
24 release(W, q);
25

26 if isCandidate
27 if hasfreespace(W)

28 // add p to the tuple window W
29 add(W, p);
30

31 return p;
32

33 break;

34

35 case DONE:

36 return NULL;
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3.4 Related Works

The closest related works to this thesis are [Chaudhuri et al., 2006] and [Goncalves and
Vidal, 2005a,b]. The authors of both papers did an implementation of the skyline operator
into an RDBMS as a full-blown relational operator.

Chaudhuri et al. [2006] at Microsoft Research extended a Beta Version of Microsoft
SQL Server 2005. To the best of our knowledge neither source nor binary versions of this
implementation are available. The skyline operator is fully integrated into the cost-based
optimizer. The syntax they are using is Preference SQL [Kießling and Köstler, 2002].

[Goncalves and Vidal, 2005a] extended PostgreSQL with a hybrid approach between top-
k and skyline operator called top-k-skyline. Skyline strata (see section 2.4.2) are computed
until at least k records are returned. With this approach all the second and higher order best
records do get a chance to end up in the result, nevertheless the selectivity of this approach
is even lower than skyline operator alone.
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Chapter 4

Implementation

4.1 SQL Extension

Börzsönyi et al. [2001] proposed the following extension to the SQL’s SELECT statement with
an optional SKYLINE OF-clause:

SELECT ... FROM ... WHERE ...
GROUP BY ... HAVING ...
SKYLINE OF [DISTINCT] a1 [MIN|MAX|DIFF], ..., am [MIN|MAX|DIFF]
ORDER BY ... (4.1)

In addition, we extended the standard syntax to specify:

• The treatment of NULL values (NULLS FIRST and NULLS LAST)

• The usage of order relations other than < and > (USING Op )

• Operational aspects of skyline computation, such as

– method (BNL, SFS, MNL, PRESORT (2 dim only))

– tuple window size in terms of memory and/or number of slots

– tuple window policy (append, prepend, ranked by entropy, ranked by a random
value)

– usage of indexes (NOINDEX)

– usage of elimination filter (EF), with the possibility to influence the EF window
in the same way as for the BNL or SFS node

In the following sections we describe in detail the extension to the SQL syntax we have
implemented.

4.1.1 Syntax (Railroad Diagrams)

To describe the formal grammar of the SKYLINE OF-clause extension to the SQL query
syntax we use syntax diagrams (or railroad diagrams). Railroad diagrams are a graphical
alternative to Backus-Naur form or EBNF and they have been made popular by books such
as the “Pascal User Manual” written by Niklaus Wirth. Nowadays railroad diagrams are
used in user manuals such as the “Oracle Database SQL Reference” (see [Oracle, 2005]).
We believe the general concept of railroad diagrams is easy to grasp and does not need a
further explanation at this point, so we can directly focus on our SKYLINE OF extension.

The following diagram depicts how the SKYLINE OF-clause (denoted by skyline clause
in the diagram) fits into an SQL select query. It is right between the optional GROUP
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BY/HAVING-clause and the optional ORDER BY-clause, denoted by group clause / having clause
and sort clause. We omit some details here but it should be clear from the context that
target list, into clause, from clause, where clause, group clause, having clause, sort clause,
and select limit have their usual meaning. We refer the readers to the corresponding SQL
standard and especially to the PostgreSQL documentation on SQL SELECT 1. For the non-
terminals that we omitted here we selected the same name as in the implementation (see
src/backend/parser/gram.y), in order to easily find the exact definition.

select clause

- SELECT
�
 �	�

�- DISTINCT
�
 �	

�

- target list �

�- into clause

�

- from clause �

�
��

�- where clause

�


�
�- group clause �

�- having clause

�


�


�

�
��

�- skyline clause

�


�
�- sort clause

�


�
�- select limit

�

- ;

�
�	-

The skyline clause itself is preluded by the keywords SKYLINE OF, followed by an optional
DISTINCT. The essential part is the comma separated list of skyline of expr, and it is closed
by the optional skyline options part. For the semantics of DISTINCT see section 2.5. For
the entire skyline clause we introduced just a single new reserved keyword (SKYLINE), see
section 4.1.2.

skyline clause

- SKYLINE OF
�
 �	�

�- DISTINCT
�
 �	

�

- skyline of expr�
� ,

�
�	�
�


�
�- skyline options

�

-

A skyline of expr specifies how to treat a single dimension of a skyline query. This
includes the specification of the column or even an expression (c expr) and the specification
of MIN, MAX, DIFF, and USING qualOp. We call the last specification skyline direction or just
direction for short, this is because a similar concept (ASC/DESC) in the ORDER BY-clause is
also called direction. Furthermore the treatment of null values can be specified using NULLS
FIRST and NULLS LAST. We have the same concept for the ORDER BY-clause. This special
treatment of null values was introduced in PostgreSQL 8.3.0 (see SQL SELECT/ORDER
BY 2). For the semantics of this see section 4.2.2.

The introduction of USING qualOp in skyline queries is our idea, but as for the treat-
ment of null values it was inspired by a PostgreSQL extension to the ORDER BY-clause. See
section 4.2.1 for more details.

1http://www.postgresql.org/docs/8.3/static/sql-select.html
2http://www.postgresql.org/docs/8.3/static/sql-select.html#SQL-ORDERBY
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In the target list of the select clause and in many other places a expr is used. This is
the concept of a general expression and the heart of the expression syntax. In certain places
b expr is used, which is a restricted subset to avoid shift/reduce conflicts.

c expr contains all the productions that are common to a expr and b expr. Hence c expr
is factored out to eliminate redundant coding, but in our case we use it directly to avoid
shift/reduce conflicts. Please note that ’(’ a expr ’)’ is a c expr, so an unrestricted
expression can always be used by surrounding it with parenthesis. Furthermore c expr
contains the most common case, a column reference (columnref ), anyway and also function
calls can be used without an extra pair of parenthesis.

skyline of expr

- c expr - MIN
�
 �	�

�- MAX
�
 �	�- DIFF
�
 �	�- USING
�
 �	- qual Op

�




�
�- NULLS FIRST

�
 �	�- NULLS LAST
�
 �	

�


-

The syntax we have described so far deals only with specifying the skyline query itself and
the ultimate goal of our work is building a skyline query optimizer to automatically generate
a good query plan w.r.t. I/O, time, and memory consumption and decide all operational
aspects of the query evaluation. It is well known that the cost estimation of the skyline
queries is a non-trivial task [Chaudhuri et al., 2006] since the performance of a skyline query
is sensitive to a number of parameters [Godfrey et al., 2007].

To be able to study different query plans, different physical operators, and various options
for the physical operators we introduced a set of options. This options list is preluded by
the keyword WITH.

Except for the order of the tuples in the output all of the following options do not have
an impact on the result of the skyline computation. Using either BNL or SFS will change the
order of tuples in the output, as SFS does a sort prior to skyline computation. Furthermore
the size of the tuple window and the tuple window policy have an impact on the order of
tuples. And even the elimination filter and its tuple window size have an (indirect) impact
on the output order, as a different amount of potential skyline tuples reaches the final skyline
computation node, although the elimination filter does not change the relative order. See
detailed discussion on relative tuple order preserving property in section 4.7.2. To enforce
a specific order, if desired, sort the query result by means of an appropriate ORDER BY-
clause. We did so in regression testing, we ordered on the unique ID column, no matter
what method and what options used, the results are the same. If not this indicates a flaw
in the implementation.

The options fall into three groups: elimination filter (EF), physical operator (BNL, SFS,
etc.), and access path selection (NOINDEX) and associated options if applicable.

When the skyline option EF is present the query planner will include an elimination filter
(EF) in the query plan. If the efwindowoptions are omitted, the query planner uses the
defaults and plans the elimination filter with an 8 KB tuple window and the tuple window
policy APPEND. The 8 KB tuple window size stems from PostgreSQL page size BLCKSZ, which
is 8 KB on most platforms.

The next group of options is used to specify the main algorithm used for skyline compu-
tation. Currently the work horses of our skyline operator implementation are the BNL and
the SFS algorithm. BNL is the default in the query optimizer. If a suitable index access
path (i.e. index) is available SFS is selected. This default procedure can be overruled by
specifying BNL or SFS as an option. Furthermore the size and the tuple placement policy for
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the tuple window used by BNL or SFS can be specified with the windowoptions, presented
below. In fact the options for the tuple window could be specified, while leaving the decision
which physical operator to take to the query optimizer, but nevertheless these windowop-
tions only have an effect on BNL and SFS. See section 4.7.3 for more details on how the
physical operator is selected.

The PRESORT method is more or less a special case of SFS, which only works in the two
dimensional case, it was proposed by Börzsönyi et al. [2001]. In the two dimensional case
once the data are ordered according to the two skyline expressions a single tuple is enough
to compute the skyline. See section 4.8.4.

MNL stands for materialized nested loop, which is our own näıve skyline computation
algorithm. Nevertheless it is fully generic, i.e. skylines of any dimensionality, distinct
and non-distinct with the same type of expressions and directions (MIN, MAX, . . .) can be
computed. The approach is very simple: materialize all tuples from the outer query plan
node in a tuple store3 and compare one tuple after the other against all other tuples in the
tuple store. It is obvious that this algorithm has O(n2) runtime complexity and very poor
I/O behavior. Nevertheless it was easy to implement and gave us something to play with
while implementing other parts of the system and of course for regression testing, because
this method was easy to get right and later on to use it to verify the results from other
algorithms. See section 4.8.5.

Two other special methods do exist, namely 1DIM and 1DIMDISTINCT, as the names
suggest they are only for the 1 dimensional non-distinct and distinct case. These methods
are directly selected by the query planner and no options can be set for them. The tuple
store used by the method 1DIM uses the default work mem setting. See section 4.8.2 and
section 4.8.3.

We modified the query planner/optimizer to decide in a cost based way to use an
IndexScan instead of a SeqScan, in case a suitable index is present. With the NOINDEX
option we force the query planner not to use an IndexScan, this is of interest especially
when profiling SFS, as SFS does a sort prior to skyline computation.

skyline options

- WITH
�
 �	�

�- EF
�
 �	�

�- efwindowoptions

�


�


�

�
��

� �
�- BNL

�
 �	�- SFS
�
 �	

�



�
�- windowoptions

�


�

�- MNL
�
 �	�- PRESORT
�
 �	

�




�


�
�- NOINDEX

�
 �	
�

-

3Tuple store is PostgreSQL concept for temporary files to store tuples.
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The options for the elimination filter (EF) tuple window efwindowoptions are modulo
renaming the same as for the tuple window use by BNL and SFS cf. windowoptions below.

efwindowoptions�
�- EFSLOTS

�
 �	- =
�
�	- slots

�


�
�

��
�- EFWINDOW

�
 �	�
�- EFWINDOWSIZE

�
 �	
�

- =

�
�	- windowsize

�


�

�
��

�- EFWINDOWPOLICY
�
 �	- =

�
�	- windowpolicy

�

-

BNL and SFS are using a tuple window to do their job. Our implementation allows to
specify the size and the tuple placement policy. The size can be defined in two different
terms, either in the number of slots or in the amount of RAM (in KB). When placing a
tuple into the tuple window it takes up exactly one slot and as much RAM as required for
the chunk of memory allocated with PostgreSQL’s palloc. If both are given, i.e. SLOTS
and WINDOWSIZE the tuple window is only limited by the number of available slots and the
RAM constraints are ignored. When the WINDOWSIZE option is used an according amount of
RAM is used for the tuple window. WINDOW is just an alias for WINDOWSIZE. If neither SLOTS
nor WINDOWSIZE are given the configuration variable work mem is used, which is 1 MB per
default. The other property which can be influenced is the order in which tuples are placed
in the tuple window, where the default is APPEND.

windowoptions�
�- SLOTS

�
 �	- =
�
�	- slots

�


�
�

��
�- WINDOW

�
 �	�
�- WINDOWSIZE

�
 �	
�

- =

�
�	- windowsize

�


�

�
��

�- WINDOWPOLICY
�
 �	- =

�
�	- windowpolicy

�

-
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As indicated above a tuple window is used by the elimination filter (EF) and the BNL
and SFS algorithms. For each of them the order in which tuples are placed into the window
is set by this option, where the default is APPEND. See section 4.8.6 for details.

windowpolicy

- APPEND
�
 �	�

�- PREPEND
�
 �	�- ENTROPY
�
 �	�- RANDOM
�
 �	

�




-

At this point we give a little example how the options can be used (we slightly reformatted
the output to make it fit onto this page):

db=# EXPLAIN ANALYZE see the query plan and execution statistics
db-# SELECT * FROM a15d1e5s0idx note: on relation ad1e50idx an index is defined
db-# SKYLINE OF d1 min, d2 min, d3 min we do a 3 dim skyline query
db-# WITH options for SKYLINE OF follow
db-# EF use an elimination filter (EF)
db-# EFWINDOWSIZE=16 use 16 KB RAM and policy ENTROPY for EF
db-# EFWINDOWPOLICY=ENTROPY

db-# SFS use SFS
db-# WINDOWSIZE=512 use 515 KB RAM and policy PREPEND for SFS
db-# WINDOWPOLICY=PREPEND

db-# NOINDEX; do not use an available index access path

QUERY PLAN

---------------------------------------------------------------------------------

Skyline (cost=25106.90..25107.06 rows=9 width=124) ←↩ estimated
→ (actual time=329.052..342.313 rows=196 loops=1) actual
Skyline Attr: d1, d2, d3

Skyline Method: sfs 3 dim 3 dim and SFS
Skyline Stats: passes=1 rows=1303 some stats on the SFS node
Skyline Window: size=512k policy=prepend as requested
Skyline Cmps: tuples=25953 fields=62229 # of comparisons
-> Sort (cost=25104.70..25104.86 rows=66 width=124) ←↩

→ (actual time=329.046..329.564 rows=1303 loops=1)

Sort Key: d1, d2, d3

Sort Method: quicksort Memory: 368kB

-> Elimination Filter (cost=24852.69..25102.69 rows=66 width=124) ←↩
→ (actual time=0.088..325.329 rows=1303 loops=1)

Elim Filter Attr: d1, d2, d3

Elim Filter Method: elimfilter 3 dim

Elim Filter Stats: passes=1 rows=

Elim Filter Window: size=16k policy=entropy as requested
Elim Filter Cmps: tuples=313895 fields=828555

-> Seq Scan on a15d1e5s0 (cost=0.00..2924.00 rows=100000 ←↩
→ width=124) (actual time=0.043..71.488 rows=100000 loops=1)

the effect of NOINDEX can be seen here as no IndexScan is used
Total runtime: 343.200 ms

(17 rows)

The alert reader might notice that the grammar for skyline options contains a rather big
amount of ε-productions and that this grammar would be easy to implement without any

43



shift/reduce conflicts using yacc/bison. In fact we defined the grammar for skyline options,
just as simple as that:

skyline options

- WITH
�
 �	�

�- name �
�- =

�
�	- value

�


�
�

�


�

-

While the definition given above describes exactly the intended semantics, this definition
gives us great flexibility during the development. Using the simple definition we were able
to introduce new options as we liked on the fly. The options are passed around from the
parser, through query planning to the execution engine as a simple name/value list. So
whenever we needed a new option we just had to query this list at the desired point in the
code. If the equal sign and the value are omitted, this has the semantics of assigning the
integer constant 1 to the name.

Note that the grammar for select clause is defined a little bit differently4 but only in the
aspect of the associativity of the entire SKYLINE OF clause, this is because the SQL:1992
Standard [ISO/ANSI, 1991] requires the following statement:

SELECT foo UNION SELECT bar ORDER BY baz (4.2)

to be parsed as

(SELECT foo UNION SELECT bar) ORDER BY baz (4.3)

and not as

SELECT foo UNION (SELECT bar ORDER BY baz) (4.4)

For the SKYLINE OF clause we decided that the it should be left associative, i.e.

SELECT * FROM foo UNION SELECT * FROM bar SKYLINE OF baz (4.5)

will be parsed as

SELECT * FROM foo UNION (SELECT * FROM bar SKYLINE OF baz) (4.6)

We did so, because we believe the SKYLINE OF clause is closer related to the GROUP BY clause
than to the ORDER BY clause, therefore we parse it in the same way.

4.1.2 Reserved Keywords

On the lexical level we introduced one new reserved keyword : “SKYLINE”5. Introducing a
reserved keyword has the usual consequences: it cannot be used as normal identifier, like
illustrated in the following example:

db=# CREATE DATABASE SKYLINE;

ERROR: syntax error at or near "SKYLINE"

LINE 1: CREATE DATABASE SKYLINE;

^

4see src/backend/parser/gram.y for details
5see src/backend/parser/keywords.c
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Nevertheless the solution is easy and the same for every reserved word, just quote it:
db=# CREATE DATABASE "SKYLINE";

We did not define MIN, MAX, and DIFF as reserved keywords, because the SQL aggregate
functions MIN and MAX are implemented as functions and are looked up at runtime and not
directly hardcoded into the grammar. Defining these keywords as reserved keywords would
mess up the implementation of SQL aggregate functions.

4.2 Semantics

In this section we describe only these aspects of the skyline operator semantics which are not
clear through the basic definition. The semantics of the options for the SKYLINE OF-clause
is either already given in the description of the syntax in section 4.1.1 or in the appropriate
subsection of section 4.8. The semantics of SKYLINE OF DISTINCT vs. non-SKYLINE OF
DISTINCT is described in section 2.5.

4.2.1 USING qualOp

PostgreSQL has the feature of applying user-defined ordering operators for the ORDER BY-
clause, where ASC is equivalent to USING < and DESC is equivalent to USING >, but the creator
of a user-defined ordering operator can give it any name, see PostgreSQL documentation on
ORDER BY-clause6. We borrowed this concept and integrated it into the SQL extension
for the SKYLINE OF-clause, where MIN is equivalent to USING < and MAX is equivalent to
USING >, e.g.

SELECT * FROM a15d1e5s0 SKYLINE OF d1 USING <, d2 USING >; (4.7)

4.2.2 Skyline in the presence of NULL values

The issue of dealing with null values is usually not treated in the literature, but a real
implementation in a database system of course must be able to cope with null values. Fur-
thermore we have a syntax to specify how to treat null values when ordering values. Once
again this is a feature inspired by a feature of PostgreSQL’s ORDER BY-clause, where the
keywords NULLS FIRST and NULLS LAST allows the user the specify how to treat null values.
If sorting ascending (ORDER BY expr ASC), then the default is to sort null values after non-
null values. The default for ORDER BY expr DESC, i.e. sort descending, is to sort null values
before non-null values. For more details see the PostgreSQL documentation on ORDER
BY-clause.

If NULLS FIRST or NULLS LAST is omitted, the default is to sort null values after all the
non-null values for SKYLINE OF MIN and for SKYLINE OF MAX to have the null values before
the non-null values. Specifying NULLS FIRST/LAST overrides this default. The question may
arise if NULLS LAST should be the default for SKYLINE OF MAX, but as this is not the case
for the ORDER BY DESC we stick with NULLS FIRST in order to be consistent.

4.2.3 SKYLINE OF and GROUP BY

It is well known that there are some dependencies between what one can specify in the
target list of a SELECT-clause and the relvars7 specified in the from clause. A violation of
this rule is reported as an error, e.g.:

6http://www.postgresql.org/docs/8.3/static/sql-select.html#SQL-ORDERBY
7The term relvar was coined by C. J. Date as an abbreviation for “relation variable”. This usually refers

to a table, but could also be a sub-select or such.
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db=# SELECT foo FROM a15d1e5s0;

ERROR: column "foo" does not exist

LINE 1: select foo from a15d1e5s0;

^

Clearly such limitations also apply to the expressions in the SKYLINE OF-clause. In the
presence of a GROUP BY-clause more limitations apply, which immediately becomes clear
when we look at the operator tree (cf. Figure 4.1). Only those columns or expressions
that appear in the GROUP BY-clause or are part of an aggregate function can be used as a
SKYLINE OF expression. The same applies to the ORDER BY-clause.

Skyline

Group By

Scan

Figure 4.1: Query plan for query with aggregation and skyline operator

Again a violation of this limitation is reported with an appropriate error message, e.g.:

db=# SELECT id, COUNT(*) FROM a15d1e5s0 GROUP BY id SKYLINE OF d1 MIN;

ERROR: column "a15d1e5s0.d1" must appear in the GROUP BY clause or be used

in an aggregate function

4.3 PostgreSQL Architecture and Concepts

Before we go into the details we would like to give a brief overview of the PostgreSQL ar-
chitecture. According to [Conway and Sherry, 2006] PostgreSQL has five main components:

1. parser / analyzer: parse the query string

2. rewriter: apply rewrite rules. SQL views work by means of this mechanism.

3. optimizer: determine an efficient query plan

4. executor: execute a query plan

5. utility processor: process DDL statements like CREATE TABLE

How these components work together to execute a query is illustrated in Figure 4.2.
In the following subsections we describe some concepts of PostgreSQL which are essential

to understand our implementation.

4.3.1 Pathkeys

In a sole set oriented algebra there is no concept of nextness or order of tuples, but in an
RDBMS the relative order of tuples is an important physical property of a tuple stream. The
knowledge about this is encoded in PostgreSQL by means of so called pathkeys, they arise
naturally in conjunction with an access path, e.g. when scanning a tuple via a clustered
index or using an index scan. Pathkeys are essentially a list of which each member is a
pathkey, which encodes the sort order on a single column. Actually this can be an arbitrary
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PostgreSQL backend
PostgresMain()

PARSE:
Parse query string
pg_parse_query()

ANALYZE:
Semantic analysis of query, tranform to Query node

parse_analyze()

REWRITE:
Apply rewrite rules
pg_rewrite_query()

UTILITY PROCESSOR:
Execute DDL

PortalRun() -> ProcessUtility()

PLAN:
Produce a query plan

pg_plan_queries()

EXECUTOR:
Execute DML

PortalRun() -> ExecutePlan()

Figure 4.2: Architecture Diagram. Light blue background indicates the components we modified to
support skyline queries.
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expression and a pathkey contains a reference to the according target list entry, the sort
operator, and a flag on how to treat NULL values (cf. NULLS FIRST/NULLS LAST). The
information if the sort order is ascending (ASC) or descending (DESC) is encoded in the sort
operator used, as sort operators always appear in pairs, an operator and its commutator, i.e.
the same order just reversed. This information provided by pathkeys plays an important
role throughout the query plan. A node within the query plan might create, can make
use of, or destroy certain pathkeys. If created or preserved the nodes higher up in the
query plan can make use of it as well. This information is considered by the query planner
when deciding among different physical operators, e.g. stream aggregate operator vs. hash
aggregate operator, or different forms of the join operator, for duplicate elimination and so
forth. Selection, projection and their like typically preserve pathkeys, i.e. the relative tuple
order remains the same. Others like index scan and sort operator establish a certain relative
order.

4.3.2 Pipelined execution

PostgreSQL’s query execution engine has a top down driven pipelined architecture, i.e.
each node consumes the tuples from its children and produces tuples and in general no in-
termediate results are materialized, see src/backend/executor/README. A simple suitable
interface for this iterator would just expose these methods: open(), tuple next() and
close(). Nevertheless PostgreSQL’s iterator interface is a bit richer, the dispatch func-
tions are in src/backend/executor/execProcnode.c. In order to specialize just add an
appropriate case in the these dispatch functions and call your own code:

ExecCountSlotsNode -- count tuple slots needed by plan tree

ExecInitNode -- initialize a plan node and its subplans

ExecProcNode -- get a tuple by executing the plan node

ExecEndNode -- shut down a plan node and its subplans

Dispatch functions for less frequently used methods are in src/backend/executor/exexAmi.c:

ExecReScan -- Reset a plan state node so that its

-- output can be re-scanned

ExecMarkPos -- Marks the current scan position

ExecRestrPos -- restores the scan position previously

-- saved with ExecMarkPos

ExecSupportsBackwardScan -- does a plan type support backwards

-- scanning?

Each execution node is coded in the fashion of a state machine. Do something in each state
and then if necessary proceed to another state. The whole state is stored in the node’s
execution state information and is preserved across calls.

4.3.3 Simple Object System: Nodes

As described in [Conway and Sherry, 2006, Page 12-14] PostgreSQL has a very simple object
system with support for single inheritance. The C structure Node is the root of the class
hierarchy.

Listing 4.1: PostgreSQL’s simple object system

1 typedef struct

2 {

3 NodeTag type;

4 } Node;

5
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6 typedef struct

7 {

8 NodeTag type;

9 int baseclass_field;

10 } Baseclass;

11

12 typedef struct

13 {

14 Baseclass baseclass;

15 int subclass_field;

16 } Subclass;

Since the memory layout for Baseclass and the first member of Subclass (baseclass)
is the same, a pointer Subclass * can be treated like Baseclass *. The first field of any
class in this simple object system is NodeTag, which is used to determine a Node’s specific
type at runtime.

There are a couple of support functions to work with the object system: makeNode
(create a new Node), IsA (runtime type testing), equal (deep equality test), copyObject
(deep object copy), nodeToString/stringToNode (serialize/deserialize to/from text).
When introducing new classes make sure to update these files:
src/backend/nodes/{equalfuncs,copyfuncs,outfuncs}.c.

4.4 Parsing the SKYLINE OF-clause

In the parser component the textual representation of a query, namely SQL, is parsed into
a data structure. This is done as described in the PostgreSQL documentation for the parser
stage8. The data structure uses the PostgreSQL simple object system, as described in the
previous section. We extended this stage to handle the SKYLINE OF-clause as defined in
section 4.1, see src/backend/parser/gram.y for the definition of skyline clause. The
result of this stage is called parse tree.

4.5 Query Analyzing

In this phase, which is also described in the PostgreSQL documentation on the parser stage9,
the parse tree from the previous stage is semantically analyzed, the outcome is called query
tree. Look-ups into the system catalog are done in this stage to resolve references to tables,
columns, functions, and operators, see transformSkylineClause10.

4.6 Query Rewriting

For our implementation it was not necessary to modify the query rewriting stage. For details
see documentation on the PostgreSQL Rule System11.

4.7 Query Planning/Optimizing

The query tree from the previous stage is transformed into a plan tree during this stage.
Usually there are different possible plans for a given query. The goal is to create an optimal

8http://www.postgresql.org/docs/8.3/static/parser-stage.html
9http://www.postgresql.org/docs/8.3/static/parser-stage.html

10in src/backend/parser/parse clause.c
11http://www.postgresql.org/docs/8.3/static/rule-system.html
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plan. Although it is computational feasible to examine each possible plan and selecting the
best, often this exhaustive enumeration is too expensive. Various trade-offs are made, for
more details see PostgreSQL documentation on Planner/Optimizer12.

In the following subsections we describe how we modified the query planner/optimizer:

4.7.1 Selecting Indexes

It is a well known fact that the skyline operator is insensitive to the order of attributes, i.e.
the queries

SELECT * FROM a15d1e4s0 SKYLINE OF d1 MIN, d2 MIN;

and

SELECT * FROM a15d1e4s0 SKYLINE OF d2 MIN, d1 MIN;

produce the same result. Clearly the same is not true in general for

SELECT * FROM a15d1e4s0 ORDER BY d1, d2;

and

SELECT * FROM a15d1e4s0 ORDER BY d2, d1;

Yet from this example alone one gets the intuition that the SKYLINE OF-clause can benefit
from a richer set of indexes (access paths) than the ORDER BY-clause. To be precise we must
speak of pathkeys, i.e. both of the above skyline queries can make use of the following index,
but only the first query with a ORDER BY-clause:

CREATE INDEX ix_a15d1e4s0_d1 ON a15d1e4s0 (d1, d2);

A proof for this property is given in section 2.3.2. We modified the query planner
accordingly, c.f. function query planner13 and grouping planner14. The matching of the
pathkeys is done in skyline pathkeys contained in 15.

This modification has an impact on how the join trees are formed and which access paths
are considered.

Pull up subqueries

If a subquery contains a SKYLINE OF-clause the query must not be flattened out, i.e. do not
pull up the subquery. The function is simple subquery16 is modified accordingly.

4.7.2 Preserving relative tuple order

The relative order of tuples is an important physical property of a tuple stream, knowledge
about this is encoded by means of pathkeys as described in section 4.3.1. As the skyline
operator is a full-blown operator we have to provide this information for it as well. In
section 3.1.2, 3.2.1, and 3.3.1 respectively, we bring forward arguments why BNL does not
preserve the relative tuple order, independent from the tuple window policy used, and that
SFS and EF do preserve the relative tuple order. As the two dimensional algorithm with
presort is a special case of SFS it shares the same properties. For the one dimensional case
and for our näıve algorithms it is easy to see that they preserve the relative tuple order. The
properties are summarized in Table 4.1. Note that for the established pathkeys property we
cheat a bit here, as the order is actually established by an extra planned sort node and this

12http://www.postgresql.org/docs/8.3/static/planner-optimizer.html
13in src/backend/optimizer/plan/planmain.c
14in src/backend/optimizer/plan/planner.c
15in src/backend/optimizer/path/pathkeys.c
16in src/backend/optimizer/prep/prepjointree.c
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is only done when the required order is not established beforehand, for instance by an index
scan.

This knowledge is encoded in the function skyline method preserves tuple order17

and grouping planner18.

Physical Operator Preserves Pathkeys Establishes Pathkeys
1DIM yes no
1DIM DISTINCT yes no
MNL yes no
2DIM PRESORT yes yes
BNL no no
SFS yes yes
EF yes no

Table 4.1: Tuple Order (Pathkeys) preserving / establishing Property

4.7.3 Physical operator selection

The physical operator selection is rather straightforward. We call the physical operators als
methods. If a method is specified in the skyline options, this method is taken, only some
sanity checks are performed.

In the one dimensional case either 1DIM or 1DIM DISTINCT is selected depending on
the usage of SKYLINE OF DISTINCT. This happens also if a suitable access path is present,
as we do not make use of such an access path yet. We justify this limitation as we believe
one dimensional skyline is of limited use anyway (see section 6.3.2).

In the presence of a suitable access path, for two dimensions 2DIM PRESORT and for
higher dimensions SFS is selected.

BNL is the catch all default. The physical operator selection is implemented in the
function skyline choose method19. We acknowledge that this behavior is hardcoded and
it should be more based on cardinality and cost estimation, here space for improvements is
left, see section 4.7.5.

4.7.4 Using relation statistics

When using the tuple window placement policy entropy a so called entropy value for each
tuple is computed, see section 4.8.6. In (4.16) it is assumed that the domain for each
attribute is [0, 1]. For a real world implementation this is too restrictive. To adhere to this
restriction we normalize the range (domain) of each attribute to [0, 1]. We use PostgreSQL
statistics on the base relations to get the information about the range of each attribute. If
at least one of them is missing, we fall back to the placement policy append. In future work
we might engage sampling here, see section 6.2.3.

On the downside we noticed that PostgreSQL 8.3.5 does not do a good job with statistics
and subqueries, i.e. PostgreSQL does not derive the statistics for the subselect in the query
below, even when omitting the LIMIT-clause:

SELECT *

FROM

(SELECT * FROM i15d1e6s0 LIMIT 1000) AS a

SKYLINE OF d1 MIN, d2 MIN WITH WINDOWPOLICY=ENTROPY;

17in src/backend/utils/skyline/skyline.c
18in src/backend/optimizer/plan/planner.c
19in src/backend/utils/skyline/skyline.c

51



4.7.5 Cardinality and Cost Estimation

For a full-blown relational operator it is important to compute or at least estimate the
cardinality of the result, i.e., answer the question how many tuples will be in the output,
based on the number of tuples in the input and possible other properties of the input. A
related question is what is the computational cost of computing the result. It is sufficient
to answer the last question relative to other operators.

Unfortunately neither question is easy to answer. This is especially true for the non-
trivial skyline algorithms like BNL and SFS. Of course the question about the cardinality is
independent from the algorithms selected.

The first bounds for the number of comparisons required have been derived by Kung et al.
[1975], where the number of comparisons for n vectors in d-dimensional space is denoted by
Cd(n). Clearly C1(n) = n− 1 and Cd(n) ≤ O(n2) for d ≥ 2. In their paper they showed:

Cd(n) ≤ O(n log n) for d = 2, 3, (4.8)
Cd(n) ≤ O(n(log n)d−2) for d ≥ 4, and (4.9)
Cd(n) ≥ dlog n!e for d ≥ 2 (4.10)

The first result for the cardinality was obtained by Bentley et al. [1978]. The result they
derived is for a set of n vectors in a d-dimensional space under the assumption that all (n!)d

relative orderings are equally probable, the average number of maxima is:

O((lnn)d−1) (4.11)

Buchta [1989] refined this result to:

Θ
(

(lnn)d−1

(d− 1)!

)
(4.12)

The work of Godfrey [2002] elaborates these results more in the context of skyline queries, but
still under strong assumptions, like uniform distribution and unique real-valued attributes.
The most recent work we are aware of about cardinality and cost estimation for the skyline
operator is the paper of Chaudhuri et al. [2006]. A theorem for estimating the cardinality of
a skyline dataset drawn from an arbitrary distribution is derived. This theorem is relaxed
to estimate categorical attributes as well. Cost estimation for BNL and SFS is addressed.

In our implementation we took the result from Buchta [1989] for cardinality estimation,
see estimate skyline cardinality20.

In PostgreSQL the costs are expressed as a linear combination of the following values:
seq page cost, random page cost, cpu tuple cost, cpu index tuple cost, and
cpu operator cost 21.

Our planner/optimizer is not yet cost-based, see section 6.2.1, therefore we took little
effort to estimate the costs for the different physical skyline operators, especially the results
from Chaudhuri et al. [2006] have not yet been integrated. Nevertheless a skeleton with
some flesh is there, see cost skyline22.

Tuple window size

One could be tempted to set the tuple window size accordingly to the outcome of the
cardinality estimation, but the assumption that at no time more than output tuples will be
in the window does not hold. To see this imagine the BNL algorithm running on a uniformly

20in src/backend/optimizer/plan/createplan.c
21see src/backend/optimizer/path/costsize.c
22in src/backend/optimizer/path/costsize.c

52



distributed dataset, which implies the expected result set size is Θ(log(n)d−1/(d− 1)!) but
the order of the tuple stream is such that before seeing the actual skyline tuples a lot of
anti-correlated tuples show up in the tuple stream. The tuple window will fill up with non
skyline tuples.

We would like also to point out, that larger window and and less passes do not always
mean better runtime, as with larger windows the number of comparisons per tuple could
increase and therefore more CPU time is required, so there is a break even point.

LIMIT / TOP k

The LIMIT/TOP k-clause is used to limit the number of tuples in the result. In the imple-
mentation no special measures had to be taken, as the LIMIT/TOP k-node will stop fetching
tuples as soon as enough tuples have been seen. If a LIMIT/TOP k is present we use this infor-
mation in the cost and cardinality estimation. Also see skyline method can use limit23.

4.8 Query Execution

The original System R prototype compiled query plans into machine code, whereas other
systems like INGRES, the grandfather of PostgreSQL, generated an interpretable query
plan. In the 1980s query interpretation was considered a “mistake” by the INGRES authors.
Because of the increasing CPU speed (Moore’s law) and enabling cross-platform portability,
every system now compiles queries into some kind of interpretable data structure; the only
difference across systems these days is the level of abstraction [Hellerstein and Stonebraker,
2005]. We stick to the representation as a tree, as it is used by PostgreSQL (see Figure 4.3).

Sort (AVG(e.Salary))

BNL (AVG(e.Salary) MAX, AVG(e.Revenue) MIN)

Group By (AVG)

Sort (d.DeptName)

Index Join

HeapScan on emp IndexScan on dept

(a) Query Plan

SELECT d.DeptName, AVG(e.Salary), AVG(e.Revenue)
FROM emp e JOIN dept d on (e.Dno = d.DeptId)
GROUP BY d.DeptName
SKYLINE OF AVG(e.Salary) MAX, AVG(e.Revenue) MIN
ORDER BY AVG(e.Salary) DESC

(b) Query

Figure 4.3: Example query plan for BNL

23in src/backend/utils/skyline/skyline.c
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BNL (price MIN, dist MIN)

EF (price MIN, dist MIN)

SeqScan on hotel

(a) BNL+EF

SFS (price MIN, dist MIN)

Sort (price ASC, dist ASC)

EF (price MIN, dist MIN)

SeqScan on hotel

(b) SFS+EF

SFS (price MIN, dist MIN)

IndexScan on ix_hotel_dist_price

(c) SFS w/ index

SFS (price MIN, dist MIN)

EF (price MIN, dist MIN)

IndexScan on ix_hotel_dist_price

(d) SFS+EF w/ index

Figure 4.4: Query plans for: SELECT * FROM hotel SKYLINE OF price MIN, dist MIN;

4.8.1 Comments on the Pseudo-code

All the pseudo code presented in the following subsections is in a form of state machines,
as required for the PostgreSQL query execution engine. One concept that we would like to
mention at this point is the tuple table. During query execution tuples are stored in a tuple
table when passed around between the nodes of the execution plan. A tuple table is made
up of a set of tuple table slots or slots for short. This concept is used throughout the code.

4.8.2 Special case: one dimensional

Although this case is of limited use, the general case algorithms like BNL and SFS can
handle this case. Moreover it is expressible in SQL in a very natural way, thus we have a
special implementation for this case. A skyline query of this type typically looks like:

SELECT * FROM a15d1e4s0 SKYLINE OF d1 MIN;

which rewrites to the following standard SQL query:

SELECT * FROM a15d1e4s0 WHERE d1 = (SELECT MIN(d1) FROM a15d1e4s0);

As can be seen from the query plan below the standard SQL query takes two passes over
the input, first finding the minimum by means of aggregation and then filtering the input
with the found minimum.

QUERY PLAN

---------------------------------------------------------------------------------

Seq Scan on a15d1e4s0 (cost=318.01..636.01 rows=1 width=124)

Filter: (d1 = $0)

InitPlan

-> Aggregate (cost=318.00..318.01 rows=1 width=8)

-> Seq Scan on a15d1e4s0 (cost=0.00..293.00 rows=10000 width=8)
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Another way to express this query in standard SQL is:

SELECT * FROM a15d1e4s0 o WHERE NOT EXISTS

(SELECT * FROM a15d1e4s0 i WHERE i.d1 < o.d1);

but this is even worse and has a runtime complexity of O(n2). This approach corresponds
to a näıve nested-loop, the query plan is accordingly:

QUERY PLAN

---------------------------------------------------------------------------------

Seq Scan on a15d1e4s0 o (cost=0.00..1247.10 rows=5000 width=4)

Filter: (NOT (subplan))

SubPlan

-> Seq Scan on a15d1e4s0 i (cost=0.00..318.00 rows=3333 width=124)

Filter: (d1 < $0)

We took a different approach, while scanning over the input we collect all minimal tuples
in a tuple store. For comparison we need to keep just one tuple. If a tuple is equal to this
one, i.e. another potential minimal/maximal tuple we add it to the tuple store. On the
other hand, if this tuple is dominated we clean the tuple store, and keep the dominating
tuple. After the initial scan over the input we pipe out the tuple store, cf. Listing 4.2. For
the sake of a clearer pseudo-code we gave ourselves the freedom to present the tuple store
interface (tuplestore *) a little differently to the actual implementation. A functionality
we added to the tuple store is to remove all tuples from the tuple store, which is cheaper
than recreating it. In the pseudo-code this function is called tuplestore clearall, while
in the real implementation its name is tuplestore catchup, which fits better as we are just
modifying read and write pointers.

Listing 4.2: Special case: 1 dimensional (in iterator style)

1 function ExecSkyline_1Dim(var state)
2 switch state.status
3 case INIT:

4 tuplestore_init(state.tuplestore);
5

6 resultSlot← ExecProcNode(outerPlanState(state));
7

8 if resultSlot 6= NULL

9 // input contains at least one tuple

10 slot← ExecProcNode(outerPlanState(state));
11

12 // while not end of input reached

13 while slot 6= NULL

14 if slot
B
= resultSlot

15 // we found another potential minimal tuple

16 tuplestore_put(state.tuplestore, slot);
17 else if slot B resultSlot
18 // we found a new lower bound

19 resultSlot← slot;
20 tuplestore_clearall(state.tuplestore);
21 tuplestore_put(state.tuplestore, slot);
22

23 slot← ExecProcNode(outerPlanState(state));
24

25 state.status← PIPEOUT;

26

27 // fall through

28

29 case PIPEOUT:
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30 if ¬tuplestore_eof(state.tuplestore)
31 return tuplestore_get(state.tuplestore);
32 else

33 tuplestore_done(state.tuplestore);
34 state.status← DONE;

35 return NULL;

36

37 case DONE:

38 return NULL;

4.8.3 Special case: one dimensional with distinct

Again, although this case is of limited use and all general skyline algorithms can deal with
it, we implemented a specialized algorithm for this case. It is even simpler than the non-
distinct case and it easy to see that a single scan over to input while keeping the current
minimal/maximal tuple suffices to compute the skyline in this case, one just has to take
care of border cases, such as no tuples in the input, see Listing 4.3. A skyline query of this
type looks like:

SELECT * FROM a15d1e4s0 SKYLINE OF DISTINCT d1 MIN;

and will return at most one tuple, if more than one minimal tuple exists our implementation
returns the first.

The SQL 2003 standard [Melton, 2003] does not provide a way to limit the size of a result
set. Nevertheless PostgreSQL and other RDBMS do provide syntax for this and consider
it during query planning. The query and the query plan for the above query without the
skyline operator would look like:

SELECT * FROM a15d1e4s0 WHERE d1 = (SELECT MIN(d1) FROM a15d1e4s0) LIMIT 1;

output omitted

EXPLAIN SELECT * FROM a15d1e4s0 WHERE d1 = [. . .]

QUERY PLAN

---------------------------------------------------------------------------------

Limit (cost=318.01..636.01 rows=1 width=124)

InitPlan

-> Aggregate (cost=318.00..318.01 rows=1 width=8)

-> Seq Scan on a15d1e4s0 (cost=0.00..293.00 rows=10000 width=8)

-> Seq Scan on a15d1e4s0 (cost=0.00..318.00 rows=1 width=124)

Filter: (d1 = $0)

Please note that again two scans over the input are done, although the second one might
stop earlier. For Microsoft SQL Server the same query looks like this:

SELECT TOP 1 * FROM a15d1e4s0 WHERE d1 = (SELECT MIN(d1) FROM a15d1e4s0);

An ad hoc experiment that we conducted showed that Microsoft SQL Server 2005 produces
a very similar execution plan.

In Oracle the pseudo-column ROWNUM can be used to limit the number of tuples returned
by a query.

If the relation in question contains a unique identifier with a total order, let us call it id,
then the following solution in standard SQL can be found:

SELECT * FROM a15d1e4s0 o WHERE NOT EXISTS

(SELECT * FROM a15d1e4s0 i WHERE i.d1 < o.d1 OR (i.d1 = o.d1 AND i.id < o.id));

56



Note that the condition i.d1 = o.d1 AND i.id < o.id is used to select the first one of
the minimal tuples, according to the order induced by id. The runtime complexity of this
query is also in O(n2).

Listing 4.3: Special case: 1 dimensional distinct (in iterator style)

1 function ExecSkyline_1DimDistinct(var state)
2 switch state.status
3 case INIT:

4 resultSlot← ExecProcNode(outerPlanState(state));
5

6 if resultSlot 6= NULL

7 slot← ExecProcNode(outerPlanState(state));
8

9 // while not end of input reached

10 while slot 6= NULL

11 if slot B resultSlot
12 resultSlot← slot;
13

14 slot← ExecProcNode(outerPlanState(state));
15

16 state.status← DONE;

17 return resultSlot;
18

19 case DONE:

20 return NULL;

4.8.4 Special case: two dimensional with presort

The two dimensional case of skyline computation is usually the smallest case considered
in literature and of course BNL and SFS can deal with it. Nevertheless as pointed out
in [Börzsönyi et al., 2001] skylines for the two dimensional case can be computed in a
simple way if the input relation is ordered according to the skyline criteria, then the skyline
can be computed with a single scan over the input, while keeping just the most recently
found skyline tuple, see Listing 4.4. Of course in the presence of a suitable access path the
input needs not to be sorted, performing an index scan suffices. This method is simple to
implement, and we believe the two dimensional case is already a quite useful one, from a
user’s perspective.

An interesting aspect of this algorithm is how it deals with the DISTINCT modifier for
the SKYLINE OF-clause. For the semantics of the DISTINCT-modifier see section 2.5.1. In the
pseudo-code in Listing 4.4 DISTINCT is a Boolean variable, which is true if the DISTINCT
modifier is present, and false otherwise. Let p be the current skyline tuple, then a tuple q
becomes the next skyline if the following condition holds:

q B p ∨ (q B= p ∧ DISTINCT). (4.13)

If DISTINCT is true, then (4.13) simplifies to:

q B p ∨ (q B= p ∧ >) = q B p ∨ q B= p

by (2.7)
= q D p (4.14)

Otherwise if DISTINCT is false:

q B p ∨ (q B= p ∧ ⊥) = q B p (4.15)
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Listing 4.4: Special case: 2 dimensional with presort (in iterator style)

1 function ExecSkyline_2DimPresort(var state)
2 switch state.status
3 case INIT:

4 resultSlot← ExecProcNode(outerPlanState(state));
5

6 if resultSlot = NULL

7 // input does not contain a single tuple

8 state.status← DONE;

9 return NULL;

10

11 state.status← PROCESS

12 // the first tuple is already a skyline tuple

13 return resultSlot;
14

15 case PROCESS:

16 forever

17 slot← ExecProcNode(outerPlanState(state));
18

19 if slot = NULL

20 // end of input reached

21 state.status← DONE;

22 return NULL;

23

24 if slot B returnSlot ∨ (slot
B
= returnSlot ∧ DISTINCT)

25 // found another skyline tuple

26 returnSlot← slot;
27 return returnSlot;
28

29 case DONE:

30 return NULL;

4.8.5 Näıve method: MNL: materialized nested loop

This method is the first general method which can deal with any dimensionality and treat
the DISTINCT modifier. It directly corresponds to the näıve O(n2) nested loop approach,
compare every tuple to all others as long as no witness is found, which dominates the current
tuple. Why is it called materialized nested loop? This materialized stems from the fact that
we materialize the tuples from the outer plan, to be able to read them over and over again,
this is because the skyline operator can sit at any non-leaf node in the query plan and not
only on top of a table or index scan. To handle the DISTINCT case, we just use the counters
state.pos and innerPos and favor the first tuple.

Listing 4.5: Materialized Nested Loop (MNL) (in iterator style)

1 function ExecSkyline_MaterializedNestedLoop(var state)
2 switch state.status
3 case INIT:

4 ExecMarkPos(outerPlanState(state));
5 state.pos← 0;
6 state.status← PROCESS

7

8 // fall through

9

10 case PROCESS:
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11 forever

12 // get next current tuple

13 ExecRestrPos(outerPlanState(state));
14 slot← ExecProcNode(outerPlanState(state));
15 state.pos← state.pos + 1;
16 ExecMarkPos(outerPlanState(state));
17

18 if slot = NULL

19 // end of input reached

20 state.status← DONE;

21 return NULL;

22

23 // dominance check

24 ExecReScan(outerPlanState(state));
25

26 innerPos← 0;
27

28 forever

29 innerSlot← ExecProcNode(outerPlanState(state));
30 innerPos← innerPos + 1;
31

32 if innerSlot = NULL

33 // no witness found

34 return slot;
35

36 if innerSlot B slot
37 break;

38 else if innerSlot
B
= slot∧ DISTINCT

39 // favor the first

40 if innerPos < state.pos
41 break;

42 break;

43

44 case DONE:

45 return NULL;

4.8.6 Tuple Window

A tuple window is a data structure used by BNL, SFS and EF to store skyline (candidate)
points. As internal representation we used a double linked list with a sentinel (cf. [Cormen
et al., 2001, Page 204–209]). Using a sentinel simplifies the code to manipulate a double
linked list a lot.

The external interface is a simple iterator interface with a few more functions24:

• TupleWindowState *tuplewindow_begin(int maxKBytes, int maxSlots, ←↩
→ TupleWindowPolicy policy) creates a tuple window. The maximum size of the tuple
window is limited to maxKBytes KB or maxSlots slots. The number of slots is the
stronger limit. For policy see the next subsubsection. The returned value must be
used in all subsequent calls to the tuple window interface functions.

• void tuplewindow_end(TupleWindowState *state) destroys a tuple window and frees all
resources.

• void tuplewindow_clean(TupleWindowState *state) removes all tuples from the tuple
window.

24see src/include/utils/tuplewindow.h
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• bool tuplewindow_has_freespace(TupleWindowState *state) returns true if the tuple
window can hold at least one more tuple. Note that we ignore the fact that the tuple
that is going to be inserted might consume a little more space than is actually left, but
this eases the implementation and an existing PostgreSQL interface, the tuplestore

interface, is designed in the same way.

• void tuplewindow_setinsertrank(TupleWindowState *state, double rank) when policy
entropy or ranked is used, the rank of the new tuple has to be set with this function
before starting to scan over the tuple window, so ensure to call tuplewindow_rewind

prior to this call.

• void tuplewindow_puttupleslot(TupleWindowState *state, TupleTableSlot *slot, ←↩

→ int64 timestamp, bool forced) inserts the tuple in the tuple table slot slot into
the tuple window with the given timestamp. For a ranked window policy forced can be
set to true, i.e. if the new tuple has a higher rank than the lowest ranked tuple in the
window then this lowest ranked tuple is removed — if the space for the higher ranked
tuple is needed. We use this especially for the implementation of the elimination filter.
We speak of a forced insert. Currently the timestamp argument is only used by BNL
and in all other algorithms it is set to zero.

• void tuplewindow_rewind(TupleWindowState *state) sets the cursor to the first tuple.

• bool tuplewindow_ateof(TupleWindowState *state) returns true if the cursor is at the
end of the tuple window.

• void tuplewindow_movenext(TupleWindowState *state) moves the cursor to the next
tuple.

• void tuplewindow_removecurrent(TupleWindowState *state) removes the current tu-
ple. Note that this modifies the cursor. So when calling tuplewindow_removecurrent,
calling tuplewindow_movenext afterwards skips over a tuple.

• bool tuplewindow_gettupleslot(TupleWindowState *state, TupleTableSlot *slot, ←↩

→ bool removeit) gets the tuple at the current position of the cursor. When called
with removeit true, the returned tuple is removed from the tuple window. This is
not the same as calling tuplewindow_gettupleslot and tuplewindow_removecurrent, as
tuplewindow_removecurrent also frees the tuple itself and not only removes it from the
tuple window.

• int64 tuplewindow_timestampcurrent(TupleWindowState *state) returns the timestamp
of the tuple at cursor position. Currently only used by BNL.

Placement Policies

With tuple window placement policy we want to express how tuples are organized in the
window and in which order they are compared against each other [Godfrey et al., 2007].
The implementation supports four different placement policies:

1. append: a new tuple is always inserted at the end of the list

2. prepend: instead of the end, new tuples are inserted at the beginning of the list

3. entropy: tuples are kept in rank descending order. The insertion position is found
in O(n), this is done by computing the rank before starting to scan over the window
and the pointer is only incremented as long as the rank of the tuple to be inserted is
smaller or equal to the rank of the current tuple. We choose this approach because
the tuple window is scanned anyway. With this policy and a forced insert, in case the
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tuple window is full, the tuple with the lowest ranking is removed from the window to
make space for a higher ranked tuple.

Let r be a tuple and r1, . . . , rm the attributes the skyline is computed on with ∀i ∈
{1, . . . ,m} : ri ∈ [0, 1], then the entropy value E(r) for the tuple r is defined as (see
[Chomicki et al., 2003, 2005]):

E(t) =
m∑

i=1

ln(rm + 1) (4.16)

4. random: behaves like entropy but instead of a computed entropy value for a tuple a
random value is used.

4.8.7 BNL

The implementation of the BNL algorithm is based on our fixed version of [Börzsönyi et al.,
2001], see Listing 3.2. In the following we give a pseudo-code in terms of a state machine as
required by the PostgreSQL query execution engine, see Listing 4.6. This implementation is
fully general, it can deal with any dimension ≥ 1 and can treat the DISTINCT modifier. To
ensure BNL is used for query execution specify the BNL keyword as an option to the skyline
clause. All other options that can be specified effect the tuple window.

Listing 4.6: Block Nested Loop (BNL) (in iterator style)

1 function ExecSkyline_BlockNestedLoop(var state)
2 forever

3 switch state.status
4 case INIT:

5 state.source← OUTER;

6 tuplestore_init(state.tempOut);
7 tuplewindow_init(state.window);

8 state.tsIn← 0;
9 state.tsOut← 0;

10 state.status← PROCESS;

11 break;

12

13 case PROCESS:

14 if state.source = OUTER

15 slot← ExecProcNode(outerPlanState(state));
16 else

17 slot← tuplestore_get(state.tempIn);
18

19 if slot = NULL

20 if state.source = TEMP

21 tuplestore_done(state.tempIn);
22

23 if state.tsOut = 0
24 // nothing written to temp -> done

25 tuplestore_done(state.tempOut);
26 tuplewindow_rewind(state.window);

27 state.status← FINALPIPEOUT;

28 break;

29

30 state.source← TEMP;

31 state.tempIn← state.tempOut;
32 tuplestore_init(state.tempOut);
33 state.tsIn← 0;
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34 state.tsOut← 0;
35 tuplewindow_rewind(state.window);

36 state.status← PIPEOUT;

37 break;

38

39 state.tsIn← state.tsIn + 1;
40

41 tuplewindow_rewind(state.window);

42 if state.ranked
43 tuplewindow_setinsertrank(state.window, ←↩

→ ExecSkylineRank(state, slot);
44

45 forever

46 if tuplewindow_ateof(state.window)

47 if tuplewindow_hasfreespace(state.window)

48 tuplewindow_put(state.window, slot);
49 else

50 tuplestore_put(state.tempOut, slot);
51 state.tsOut← state.tsOut;
52

53 break;

54

55 innerSlot← tuplewindow_current(state.window);

56

57 if innerSlot B slot ∨ (innerSlot
B
= slot ∧ DISTINCT)

58 break;

59 else if slot B innerSlot
60 tuplewindow_removecurrent(state.window);

61 else

62 tuplewindow_movenext(state.window);

63

64 tuplewindow_rewind(state.window);

65 state.status← PIPEOUT;

66 break;

67

68 case PIPEOUT:

69 while ¬tuplewindow_ateof(state.window)

70 if tuplewindow_timestampcurrent(state.window) = ←↩
→ state.tsIn

71 return tuplewindow_get(state.window);

72

73 tuplewindow_movenext(state.window);

74

75 state.status← PROCESS;

76 break;

77

78 case FINALPIPEOUT:

79 if ¬tuplewindow_ateof(state.window)

80 return tuplewindow_get(state.window);

81

82 tuplewindow_done(state.window);

83 state.status← DONE;

84 return NULL;

85

86 case DONE:

87 return NULL;
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4.8.8 SFS

Listing 3.3 translates straightforward into a state machine, the way it fits into the query
execution engine, see Listing 4.7.

Listing 4.7: Sort First Skyline (SFS) (in iterator style)

1 function ExecSkyline_SortFilterSkyline(var state)
2 forever

3 switch state.status
4 case INIT:

5 state.source← OUTER;

6 tuplestore_init(state.tempOut);
7 tuplewindow_init(state.window);

8 state.neednextrun← false;
9 state.status← PROCESS;

10 break;

11

12 case PROCESS:

13 if state.source = OUTER

14 slot← ExecProcNode(outerPlanState(state));
15 else

16 slot← tuplestore_get(state.tempIn);
17

18 if slot = NULL

19 if state.source = TEMP

20 tuplestore_done(state.tempIn);
21

22 if ¬state.neednextrun
23 // nothing written to temp -> done

24 tuplestore_done(state.tempOut);
25 tuplewindow_rewind(state.window);

26 state.status← DONE;

27 return NULL;

28

29 state.source← TEMP;

30 state.tempIn← state.tempOut;
31 tuplestore_init(state.tempOut);
32 tuplewindow_clean(state.window);

33 state.neednextrun← false;
34 break;

35

36 tuplewindow_rewind(state.window);

37 if state.ranked
38 tuplewindow_setinsertrank(state.window, ←↩

→ ExecSkylineRank(state, slot);
39

40 forever

41 if tuplewindow_ateof(state.window)

42 if tuplewindow_hasfreespace(state.window)

43 tuplewindow_put(state.window, slot);
44 return slot;
45 else

46 tuplestore_put(state.tempOut, slot);
47 state.neednextrun← true;
48

49 break;

50

51 innerSlot← tuplewindow_current(state.window);
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52

53 if innerSlot B slot ∨ (innerSlot
B
= slot ∧ DISTINCT)

54 break;

55

56 tuplewindow_movenext(state.window);

57

58 break;

59

60 case DONE:

61 return NULL;

4.8.9 Elimination Filter (EF)

The pseudo-code is already given in section 3.3.1, cf. Listing 3.4. We have used the elimi-
nation filter with SFS and BNL, see the following sections.

4.8.10 SFS+EF (a LESS Variant)

In [Godfrey et al., 2005] Godfrey et al. proposed the LESS algorithm, which is an im-
provement of SFS due to the introduction of the concept of elimination filter (EF). With
the original LESS algorithm the elimination filtering is carried out in the pass zero of the
external sort routine to eliminate records quickly.

In our case, in order to integrate the elimination filter into the SFS algorithm, while
at the same time preserving the utilization of the physical sort operator, we implemented
the elimination filter before the sort routine. Speaking in terms of the iterator tree, the
EF node is a child of the sort node, which in turn is a child of the SFS node (see 4.4b).
Furthermore, we do not integrate the skyline computation into the final pass of the merge
sort phase, as described in [Godfrey et al., 2005]. Therefore, technically speaking, SFS+EF
is not an equivalent implementation of LESS. However, the elimination filter is preserved in
SFS+EF, which is essentially the gist of LESS.

The implementation of EF is similar to BNL. An elimination filter window is maintained
in the main memory. We use 8 KB as default window size. The difference between EF and
BNL is that EF does not write tuples to a temporary file if the tuple window is full, and
that the relative order of tuples going through the EF is preserved.

4.8.11 BNL+EF

Inspired from the idea of the elimination filter in LESS, we experimented with a new combi-
nation of BNL and EF. That is, the elimination filter is executed before the BNL algorithm.
Since our implementation of the elimination filter is independent from the external sort rou-
tine, the coding of this variant is straightforward. It turns out that the algorithm BNL+EF
is a substantial improvement to BNL.

4.9 Development

In this section we share some of the experiences we made during development.

4.9.1 Source Code and Version Control

We started out our implementation effort of the skyline operator, when CVS HEAD of the
PostgreSQL source repository was 8.3-devel, i.e. the version 8.3 of PostgreSQL was cur-
rently under development. PostgreSQL’s source is kept in a Concurrent Versions System
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(CVS) repository. We have used the very handy Tortoise CVS to checkout and update our
copy of the PostgreSQL source. We keep our source in a SubVersion (SVN) repository, and
use TortoiseSVN to interact with our repository.

For each CVS tag we are interested in, namely CVS HEAD and REL8 3 STABLE, we keep the
entire source tree as a branch in our SVN repository, including the CVS metadata directories
CVS. By means of that we continuously merged CVS HEAD into our main development branch,
called trunk in the SubVersion terminology. In order to have a more stable and reproducible
setting we decided to base this thesis on the branch REL8 3 STABLE, i.e. all experiments in
this thesis are based on Version 8.3.0 of PostgreSQL with our patch for the skyline operator
applied.

Having the entire CVS source tree in the SVN repository is handy, it was quite easy to
merge in the changes from CVS HEAD into trunk. To support this task we wrote two scripts,
as CVS detects changes based on the file modification date/time, where SVN really looks
at the file content.

• cvs-entries-normalize.sh: sorts the content of the CVS/Entries* files, to have a
normalized form, and minimizes the changes that are committed to the SVN repository.

• resetcvsts.pl: sets the file date/time according to the values in CVS/Entries, this
allows to easily move around the working copy across different machines.

Another benefit of using SVN was the smooth integration with an issue/bug-tracker
called Trac. Trac has a wiki, milestones, all kinds of reports and the like, and proved itself
as very handy for this size and type of project.

4.9.2 Debugging PostgreSQL

PostgreSQL creates one back-end process, which corresponds to an operating system process,
per client connect. This property makes debugging a bit unpleasant. Nevertheless there is
a good work around for this, just operate the PostgreSQL in single user mode. This gives
one a prompt, to enter queries directly and the query is evaluated in the same process. So
debugging or, with Microsoft Visual C++, even edit & continue25 was possible. For further
details see the PostgreSQL documentation on postgres26

4.9.3 Regression Testing

To facilitate regression testing we also integrated a test case in the PostgreSQL regres-
sion test suite. This test case tests just a few very basic scenarios, as a thorough test
would take quite some time, and this would not be appreciated as part of a checked
build. For the basic regression test see src/test/regress/sql/skyline base.sql and
src/test/regress/expected/skyline base.out.

For a more extensive test see the Perl script slregress.pl, here a larger set of test
cases is produced and the result is always checked against the query expressed in standard
SQL. Instead of a table the random dataset returning function as described in section 5.1.2
is used.

We ran both, the PostgreSQL regression test suite and our Perl script slregress.pl,
regularly during development to ensure that we did not break other parts of PostgreSQL
and an already implemented feature of the skyline operator, while we were integrating new
parts or optimizing and/or refactoring other parts.

25Edit & continue is the ability of modifying the source code while debugging, applying the changes and
continuing to debug. Kind of deluxe for a C compiler.

26http://www.postgresql.org/docs/8.3/static/app-postgres.html
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Chapter 5

Results

5.1 Experimental Setup

We ran our experiments on Dell OptiPlex 755 computers, with an Intel Pentium Dual-Core
CPU E2160 (1.80GHz, 1MB L2 cache), with 1 GB RAM, and with a Seagate Barracuda
160 GB HDD (7200 rpm, SATA 3.0Gb/s, 8 MB cache) with a single NTFS partition, running
Microsoft Windows XP (SP2). Our implementation was based on PostgreSQL 8.3.0 and was
compiled using Microsoft Visual Studio 2005 (SP1) using the RELEASE configuration with
assertions disabled. PostgreSQL was configured to use 200 MB of RAM for shared buffers,
with auto vacuuming disabled, and all other settings were left as default.

If not otherwise mentioned, a tuple window size of 1024 KB (equal to the PostgreSQL
work mem setting), and an EF tuple window size of 8 KB (equal to the PostgreSQL block
size) were used.

The tables for the test runs have been generated using the extended version [Eder, 2007]
of the dataset generator presented in [Börzsönyi et al., 2001], which allows to generate
tables with different initial seeds for the random generator. All experiments were carried
out on three different sets with varying initial seed, for each distribution type (independent,
correlated, and anti-correlated), and with 100, 500, 1k, 5k, 10k, 50k, 100k tuples.

Each tuple consists of a unique 4 byte integer id and 15 randomly generated 8 byte floats
d1, . . . , d15. With a 23 byte tuple header and the alignment it sums up to a tuple length of
152 bytes. The memory chunk used by the PostgreSQL memory allocation function (palloc)
was 264 bytes long.

For the experiments using an index, a duplicate of the same set of tables was used,
including six indexes, where index k is an index on d1, . . . , dk. This all sums up to 126 tables
and a database of approximately 1 GB. For most of our experiments we did not consider
tables with more than 100k tuples, as the runtime for a 15 dimensional skyline query on 100k
tuples went up to 30 minutes. Consult section 5.2.3 for the total computational workload
done in the experiments.

All experiments were carried out with a hot disk cache, i.e. due to appropriate queries
all pages were in the shared buffers. See section 5.2 for more details.

5.1.1 Lesson learned

A lesson we have painfully learned during our experiments is to minimize all possible in-
fluences on the runs to avoid skewed results. This especially includes: screen savers, power
saving or standby options and any form of automatic software update such as Microsoft
Windows Update or Google Pack software updater.
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5.1.2 Random Dataset Generator

For our experiments we used a modified version [Eder, 2007] of the popular dataset generator
from [Börzsönyi et al., 2001]. Our modified version can be used as command line utility or
as a PostgreSQL module. The PostgreSQL module provides a set returning function and
creates datasets on the fly. The details are described in the following sections. But first of
all we describe what types of datasets are generated by the dataset generator.

Independent, Correlated, and Anti-Correlated Datasets

The main parameters one can vary for a generated dataset are cardinality, i.e. number of
tuples, dimensionality and the distribution type and types are as of [Börzsönyi et al., 2001]:
independent, correlated, and anti-correlated.

Before we give a detailed description of these distribution types, we show some of the basic
building blocks used for generating them, as we believe the source code of the implementation
is the most precise way to describe it:

1 static double

2 random_equal(double min , double max)

3 {

4 double x = (double) rand() / RAND_MAX;

5 return x * (max - min) + min;

6 }

As expected random_equal() returns a random value x ∈ [min,max].

1 static double

2 random_peak(double min , double max , int dim)

3 {

4 int d;

5 double sum = 0.0;

6

7 for (d = 0; d < dim; d++)

8 sum += random_equal (0, 1);

9 sum /= dim;

10 return sum * (max - min) + min;

11 }

The function random_peak() returns a random value x ∈ [min,max] as sum of dim equally
distributed random values.

1 static double

2 random_normal(double med , double var)

3 {

4 return random_peak(med - var , med + var , 12);

5 }

The function random_normal() is our way to generate a normally distributed value x ∈
(med− var,med + var) with expected value E[x] = med. This implementation is motivated
through the central limit theorem and based on the observation that a 12-fold sum of [0, 1]
uniformly distributed random value yields a sufficient good normally distributed value. A
pre-requirement for this to work, is that the 12 uniformly distributed values are independent.
While this cannot be guaranteed for random_equal() we verified that data generated by
random_normal() are sufficiently normally distributed with the Shapiro-Wilk test.
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Now we focus on the different distribution types and how they are generated and we
show some of their properties:

• indep: for this type of dataset, all attribute values are generated independently using
a uniform distribution. Figure 5.1 shows a density plot and statistics of such an
independent dataset with 100k tuples and d = 2. The skyline tuples of this dataset
are the lower left corners of the red line, where the red line is the “skyline”. The density
of points within a specific subregion is indicated by grayscale values, the darker the
more points are in the subregion. Above and to the right of the grayscale density plot
is the border distribution for each dimension, in this plots the blue line indicates the
density of a normal distribution with the same mean and standard deviation as the
border distribution.

The implementation is as straightforward as expected:

1 int d;

2

3 for (d = 0; d < dim; d++)

4 x[d] = random_equal (0, 1);
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(b) Statistics

Figure 5.1: Independent dataset (100k tuples)

68



• corr : a correlated dataset represents an environment in which points which are good
in one dimension are also good in the other dimensions.

A vector x with the dimension dim is generated in the following way:

1 do

2 {

3 int d;

4 double v = random_peak (0, 1, dim);

5 double l = v <= 0.5 ? v : 1.0 - v;

6

7 for (d = 0; d < dim; d++)

8 x[d] = v;

9

10 for (d = 0; d < dim; d++)

11 {

12 double h = random_normal (0, l);

13 x[d] += h;

14 x[(d + 1) % dim] -= h;

15 }

16 } while (! is_vector_ok(dim , x));

Due to the way it is computed any x[d] could get out of the bound, is_vector_ok()

verifies that all coordinates of x are within the interval [0, 1].

Figure 5.2 shows a correlated dataset with 100k tuples for d = 2.
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Figure 5.2: Correlated dataset (100k tuples)
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• anti : an anti-correlated dataset represents an environment in which points which are
good in one dimension are bad in one or all of the other dimensions. The standard
example used in the skyline literature falls into this category: hotels are either cheap
and far away from the beach or expensive and close to the beach.

1 do

2 {

3 int d;

4 double v = random_normal (0.5, 0.25);

5 double l = v <= 0.5 ? v : 1.0 - v;

6

7 for (d = 0; d < dim; d++)

8 x[d] = v;

9

10 for (d = 0; d < dim; d++)

11 {

12 double h = random_equal(-l, l);

13 x[d] += h;

14 x[(d + 1) % dim] -= h;

15 }

16 } while (! is_vector_ok(dim , x));

Figure 5.3 shows an anti-correlated dataset with 100k tuples for d = 2.
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Figure 5.3: Anti-correlated dataset (100k tuples)

For the very details of the random dataset generator, please have a look at the imple-
mentation which is available from [Eder, 2007].

70



As command line utility

The most beneficial use case for the command line version of the random dataset generator
is to pipe its output directly into the database. The usage message explains how to use the
command line utility:

$ randdataset -?

Test Data Generator for Skyline Operator Evaluation

Usage: randdataset (-i|-c|-a) -d DIM -n COUNT [-s SEED] [-p] [-S] [-h|-?]

Options:

-i independent (dim >= 1)

-c correlated (dim >= 2)

-a anti-correlated (dim >= 2)

-d DIM dimensions >=1

-n COUNT number of vectors

-I unique id for every vector

-p PAD add a padding field, PAD characters long

-C generate SQL COPY statement

-R generate SQL CREATE TABLE statement

-T NAME use NAME instead of default table name

-s SEED set random generator seed to SEED

-S output stats to stderr

-h -? display this help message and exit

Examples:

randdataset -i -d 3 -n 10 -I -R

randdataset -a -d 2 -n 100 -S

An invocation of randdataset suitable to pipe it directly into psql, i.e. load it into
database, could look like this:

$ randdataset -i -d 3 -n 10 -I -R

DROP TABLE IF EXISTS "i3d10";

CREATE TABLE "i3d10" (id int, d1 float, d2 float, d3 float);

COPY "i3d10" (id, d1, d2, d3) FROM STDIN DELIMITERS ’,’ CSV QUOTE ’’’’;

1,0.000000000000000e+00,6.900010321708401e-01,5.054183972559023e-01

2,5.914905399975788e-01,5.547849133400177e-01,3.784288188342139e-01

[. . .] 7 rows omitted
10,8.585111004572880e-01,9.898449857671955e-02,8.770675234855467e-01

\.

PostgreSQL Random Dataset Generator Function

To be able to generate test datasets on the fly, i.e. without explicitly creating tables and
filling them up, we created a PostgreSQL module which implements the functionality of
randdataset as a set returning function. To create, backup and restore a test database with
an appropriate set of test tables can be very time consuming. Having such a function at hand
is useful in many situations, all it takes is to run PostgreSQL’s initdb and installing the set
returning function. We used it many times after merging the PostgreSQL 8.3-devel branch
into our branch, which often made it necessary to re-initdb the database. Especially for
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regression tests and during debugging this function was very handy. PostgreSQL’s concept
of set returning functions1 allows to issue queries as such:

db=# SELECT * FROM generate_series(2,4);

generate_series

-----------------

2

3

4

(3 rows)

This concept of set returning functions is quite flexible and allows also to return complex
data types such as records. To test drive this PostgreSQL ’contrib’ module (see (con-
trib/randdataset)), without installing it, even without installing PostgreSQL visit our web-
interface at http://skyline.dbai.tuwien.ac.at/. To install it onto your PostgreSQL
installation follow the instructions at contrib/randdataset/README.randdataset. Once
installed the function can be used as follows:

db=# SELECT rds.id, rds.d1, rds.d2 FROM columns are referred by name
db-# pg_rand_dataset(’indep’, 2, 10, 0) AS 2 dim independent dataset with 10 tuples
db-# rds(id int, d1 float, d2 float); define names and types
id | d1 | d2

----+--------------------+--------------------

1 | 0.170828036112165 | 0.749901980510867

2 | 0.0963716553972902 | 0.870465227342427

[. . .] 7 rows omitted
10 | 0.715538595204958 | 0.0830042460388524

(10 rows)

db=# SELECT rds.* FROM

db-# pg_rand_dataset(’corr’, 3, 10, 0) AS 3 dim, correlated, 10 tuples
db-# rds(id int, d1 float, d2 float, d3 float);

id | d1 | d2 | d3

----+-------------------+-------------------+-------------------

1 | 0.482522432069401 | 0.327330244422693 | 0.207248995528228

2 | 0.448836206689892 | 0.512027726159258 | 0.600054676092416

[. . .] 7 rows omitted
10 | 0.319189108559988 | 0.407713612758059 | 0.30165467053249

(10 rows)

db=# SELECT rds.* FROM

db-# pg_rand_dataset(’anti’, 3, 20, 1) AS 3 dim, anti-correlated, 20 tuples, seed 1
db-# rds(id int, d1 float, d2 float, d3 float);

output omitted, as it is similar to above, except another distribution, more tuples, and an-
other initial seed is used

The general signature for pg rand dataset is:
FUNCTION pg_rand_dataset(disttype text, dim int, rows int, seed int)

RETURNS setof record

Where the arguments have the following meaning:

• disttype specifies the distribution type (see section 5.1.2), allowed values are ’indep’,
’corr’, and ’anti’

• dim specifies the number of dimensions, allowed values are 1 up to 20

• rows specifies the number of tuples that should be returned, and
1http://www.postgresql.org/docs/8.3/static/functions-srf.html
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• seed is the seed for the random generator

We ensured that calling pg rand dataset with the same arguments will always return
the same result set. In the PostgreSQL terminology this property of a function is called
IMMUTABLE (see the PostgreSQL documentation on Function Volatility Categories2).

To make the usage more comfortable we defined a set of wrapper functions rdskd for
the dimensions k ∈ {1, . . . , 20}, they allowed us to issue the same queries as above in the
following way (see contrib/randdataset/randdataset.sql.in):

db=# SELECT rds.* FROM rds2d(’indep’, 10, 0) AS rds;

[. . .] output completely omitted, as it is the same as above

db=# SELECT rds.* FROM rds3d(’corr’, 10, 0) AS rds;

[. . .] same here

db=# SELECT rds.* FROM rds3d(’anti’, 20, 0) AS rds;

[. . .] same here

Buffer for Set returning function

In the PostgreSQL execution engine a function scan node is responsible for retrieving tuples
from a set returning function. The current implementation reads all the tuples from the
set returning function and stores them in a tuplestore before returning the first tuple to
the caller. A tuplestore maintains an in memory buffer; once it runs out of memory the
remaining tuples are written to a tempfile. The size of the in memory buffer is controlled
through the configuration variable work mem. The default value is 1024 KB. This configu-
ration variable is also used to determine the amount of RAM used for sort operations, for
merge joins, hash joins and many more. Hence the total amount of RAM used for a single
query can be multiple times the value of work mem. In our setting we use the configuration
variable work mem for the sort operation in SFS and as the default tuple window size for
skyline algorithms that require a tuple window. In the following query PostgreSQL calls
generate series a million times and will discard all tuples except one due to the LIMIT
1-clause.

db=# SELECT * FROM generate_series(1,1000000) LIMIT 1;

generate_series

-----------------

1

(1 row)

This behavior is not desirable, at least we want that the tuples do not get swapped out
to disk as tuplestore’s in memory buffer gets full, since for parts of our experiments we
were not willing to pay I/O penalty as we were studying just the CPU bounded behavior of
the skyline algorithms.

On the other hand we do not want to increase work mem, as this would, as mentioned
above, influence the sort operation and the size of the tuple window for the skyline algo-
rithms. Therefore we decided to introduce a new configuration variable
function scan work mem, solely for the tuplestore in the function scan node. The follow-
ing utility query sets this configuration variable to 100 MB;

db=# SET function_scan_work_mem = 102400;

A patch for this feature can be found at patches/function scan work mem.diff.
2http://www.postgresql.org/docs/8.3/static/xfunc-volatility.html
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5.2 Experimental Environment

We believe the systems environment in which we carried out our experiments is interesting
on its own and therefore we sketch it in this section. First of all we give some definitions of
terms we use to describe the experimental environment and how they relate to each other.
To distinguish these terms from the general terms with the same name we start them with
an upper case letter, i.e. Job vs. job.

Definition 13 (Query). A Query corresponds to a single SQL query with meta data em-
bedded in comments.

To embed meta data we are using the fact that “--” starts a single line comment in SQL,
by means of that we can safely pass any extra information through SQL processor psql to
the post processing steps. In our case to the programs that parse and analyze the log files.
We use only the following types of meta data (see Figure 5.4, 5.5 and 5.6):

• --<pid pid=pid/>; pid identifies the machine the Job ran on.

• --<comment> and --</comment>; a Setup Query, see next definition. Queries between
these tags are of course executed, but in a later stage just commented out.

• --<query runid=runid> and --</query>; A Run cf. definition below. Please note
that the corresponding Setup Queries are not nested within the Run, they just precede
the Run.

• --<queryplan> and --</queryplan>; is used in a later stage to preserve the query
plan in the comment, but it is not used otherwise.

In our experimental studies our focus is on the execution plan3 and the actual runtime
and not on the output of a query. The output of a query was of interest for us, when we did
regression testing to ensure our implementation is correct. To accomplish this we prefixed our
queries with EXPLAIN ANALYZE. EXPLAIN alone just shows the execution plan of a statement
without actually executing it. Whereas EXPLAIN ANALYZE carries out the command and
shows the actual runtime. See the PostgreSQL documentation on EXPLAIN 4 for more
details.

Definition 14 (Setup Query). A Setup Query is a query who’s sole purpose is to setup
things up for the query that is going to be profiled.

We issued these types of query to prim the cache. Setup queries typically look like this:

EXPLAIN ANALYZE SELECT * FROM a15d1e5s0;

or with an index

EXPLAIN ANALYZE SELECT * FROM a15d1e5s0idx ORDER BY d1, d2;

and given enough shared buffers the entire relation and the used index will be in the disk
cache afterwards. Since we set the shared buffer size way larger than our biggest relation
with the associated indexes this was always the case.

Definition 15 (Run). A Run comprises zero, one or more Setup Queries and the Query
that is going to be profiled.

Each Run is identified by its unique runid and besides this general definition in our case a
Run had zero or one Setup Query and we often grouped Runs in such a way, that two Runs
shared a single Setup Query (cf. Figure 5.4).

3We use execution plan and query plan interchangeable.
4http://www.postgresql.org/docs/8.3/static/sql-explain.html
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Definition 16 (Job). A Job comprises of one or more Runs batched together in a file.

A Job is the smallest unit subject to workload distribution (see section 5.2.2) and is stored
in a .sql file and typically looks like displayed in Figure 5.4.

--<comment> the setup query
explain analyze select * from a15d1e5s0;

--</comment>

--<query runid=bnl.ef.entropy.entropy.a15d1e5s0.5> first run
explain analyze select * from a15d1e5s0 ←↩
→ skyline of d1 min, d2 min, d3 min, d4 min, d5 min ←↩
→ with bnl windowpolicy=entropy ef efwindowpolicy=entropy;

--</query>

--<query runid=sfs.ef.entropy.entropy.a15d1e5s0.5> second run
explain analyze select * from a15d1e5s0 ←↩
→ skyline of d1 min, d2 min, d3 min, d4 min, d5 min ←↩
→ with sfs windowpolicy=entropy ef efwindowpolicy=entropy;

--</query>

Figure 5.4: A snipped from a Job file, containing a Setup Query and two Runs

5.2.1 Machine and Network Configuration

In our experimental environment we had one machine (SKY00) to control and monitor the
experiments and seven machines (SKY01, . . ., SKY07) to perform the experiments. This
“seven” is just because we did not have more. To have exactly the same configuration, we
cloned SKY02, . . ., SKY07 from SKY01 using a fine piece of free software namely PING
(Partimage Is Not Ghost)5. We also used Windows XP’s sysprep during the clone process.

For interprocess communication we used file sharing and we used file locking for synchro-
nization. The machine SKY00 shared a folder, which was mounted by SKY01, . . ., SKY07
with a directory layout as described in Table 5.1.

5.2.2 Life Cycle of a Run

A new Job was born by a script called gj.pl (see section 5.2.2) in the prep/ directory.
We distributed the Jobs to several directories below prep/, namely to s0, s1, and s2 and
their sub-directories. Using xcopy /m made this task easy, as only files with set archive
bit were copied. On SKY00 a script called feed.pl was running, which moved the Jobs of
these directories to the jobs/ directory once this had no more Jobs. The Jobs in jobs/
where picked up by a script called js.pl which moved the next Job into a directory with
the same name as the machine which is running js.pl, SKY01 to SKY07 in our case. The
job was then executed and finally moved to the directory done/. See subsubsection Job
Scheduling below for more details. As a result of the Job being executed a raw log file (cf.
Figure 5.5) was generated in the (log/) directory. We parsed this raw log files to CSV format
with comment lines (cf. Figure 5.6) with a script called qp2log, see subsubsection To CSV
Format below. The last step before aggregating and analyzing the data (see section 5.2.2)
was to pivot and project the CSV files to a more compact representation (cf. Figure 5.7) by
script called pivot log, see subsubsection Pivoting the CSF File below.

Generating the Jobs

The creation of the Jobs is done by an ordinary Perl script called gj.pl. The only argument
to this script is the seed (s0, s1, . . .) for which the Jobs should be generated. The only but

5available at: http://ping.windowsdream.com/
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--<pid pid=SKY07/> the pid identifies the machine the job ran on
--<comment>

explain analyze select * from a15d1e5s0;

QUERY PLAN

---------------------------------------------------------------------------------

Seq Scan on a15d1e5s0 (cost=0.00..2924.00 rows=100000 width=124) ←↩
→ (actual time=0.010..48.112 rows=100000 loops=1)

Total runtime: 79.093 ms

(2 rows)

--</comment>

--<query runid=bnl.ef.entropy.entropy.a15d1e5s0.5>

explain analyze select * from a15d1e5s0 ←↩
→ skyline of d1 min, d2 min, d3 min, d4 min, d5 min

→ with bnl windowpolicy=entropy ef efwindowpolicy=entropy;

QUERY PLAN

---------------------------------------------------------------------------------

Skyline (cost=457884.24..457886.07 rows=79 width=124) ←↩
→ (actual time=10618.204..11076.301 rows=4550 loops=1)

... we skip this query plan here as the one below is more representative
--</query>

--<query runid=sfs.ef.entropy.entropy.a15d1e5s0.5>

explain analyze select * from a15d1e5s0 ←↩
→ skyline of d1 min, d2 min, d3 min, d4 min, d5 min ←↩
→ with sfs windowpolicy=entropy ef efwindowpolicy=entropy;

QUERY PLAN

---------------------------------------------------------------------------------

Skyline (cost=458169.07..458170.90 rows=79 width=124) ←↩
→ (actual time=672.662..5747.821 rows=4550 loops=1)

Skyline Attr: d1, d2, d3, d4, d5

Skyline Method: sfs 5 dim

Skyline Stats: passes=2 rows=27223, 1599

Skyline Window: size=1024k policy=entropy

Skyline Cmps: tuples=15109830 fields=37876691

-> Sort (cost=457807.96..457809.79 rows=732 width=124) ←↩
→ (actual time=672.653..712.584 rows=27223 loops=1)

Sort Key: d1, d2, d3, d4, d5

Sort Method: external merge Disk: 3816kB

-> Elimination Filter (cost=457523.13..457773.13 rows=732 width=124) ←↩
→ (actual time=0.014..597.068 rows=27223 loops=1)

Elim Filter Attr: d1, d2, d3, d4, d5

Elim Filter Method: elimfilter 5 dim

Elim Filter Stats: passes=1 rows=

Elim Filter Window: size=8k policy=entropy

Elim Filter Cmps: tuples=1263179 fields=3533862

-> Seq Scan on a15d1e5s0 (cost=0.00..2924.00 rows=100000 ←↩
→ width=124) (actual time=0.009..43.352 rows=100000 loops=1)

Total runtime: 5750.614 ms

(17 rows)

--</query>

Figure 5.5: An example for a raw log file
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All input is preserved as comment, where comment lines start with ‘‘#’’.

#--<pid pid=SKY07/> the pid identifies the machine the job ran on
#--<comment>

#explain analyze select * from a15d1e5s0;

# [. . .] the query plan is as in Figure 5.5
#--</comment>

#--<query runid=bnl.ef.entropy.entropy.a15d1e5s0.5>

For the query sections all relevant information from the query plan is parsed into CSV for-
mat with the columns runid, name and value. See Table 5.2 for a description of the name/-
value pairs.

"bnl.ef.entropy.entropy.a15d1e5s0.5","method","bnl.ef.entropy.entropy"

[. . .]
"bnl.ef.entropy.entropy.a15d1e5s0.5","skyline.rows","4550"

"bnl.ef.entropy.entropy.a15d1e5s0.5","skyline.passes","2"

"bnl.ef.entropy.entropy.a15d1e5s0.5","skyline.passes.rows","27223, 1396"

[. . .]

Please note that the query and query plan are preserved below the data in CSV format.

#<queryplan>

#explain analyze select * from a15d1e5s0 skyline of d1 min, d2 min, [. . .]
# QUERY PLAN

#--------------------------------------------------------------------------------

# Skyline (cost=457884.24..457886.07 rows=79 width=124)

# [. . .] the query plan is as in Figure 5.5
#</queryplan>

#--</query>

#--<query runid=sfs.ef.entropy.entropy.a15d1e5s0.5>

"sfs.ef.entropy.entropy.a15d1e5s0.5","method","sfs.ef.entropy.entropy"

"sfs.ef.entropy.entropy.a15d1e5s0.5","skyline.est.cost","458169.07..458170.90"

"sfs.ef.entropy.entropy.a15d1e5s0.5","skyline.est.cost.start","458169.07"

[. . .] similar for the second run
#<queryplan>

# [. . .] as above, original query plan is preserved as comment
#</queryplan>

#--</query>

Figure 5.6: A log file parsed with qp2log. For the name and description of the extracted fields see
Table 5.2.
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jobs/
js.pl job scheduler, see section 5.2.2
feed.pl batch feeder, moves prepared jobs into the jobs/ directory once this gets

empty, see section 5.2.2
js.lock lock file used by js.pl and feed.pl to synchronize access to the jobs/ di-

rectory
*.sql jobs waiting to be scheduled by js.pl
prep/
gj.pl job generator, see section 5.2.2
*.sql prepared jobs
s0/ To this and to the directories below we copied the prepared jobs. We split

the entire set of prepared jobs up into logical and smaller units of lets say a
few hundred files. The jobs from this directories where moved to jobs/ once
there were no jobs left here. This is done by feed.pl. The same is true for
the sibling directories s1/ and s2/.

ws/ This one for example holds the jobs, when we were analyzing the effect of
varying window size.

.../
s1/
s2/

SKY[xx]/ While processing a job it resides inside a directory with the same name as the
machine which is processing the job.

log/
*.log the raw log files

done/ Processed jobs end up here.
*.sql processed jobs

Table 5.1: Directory layout for the experiments

noteworthy trick used in this script is to skip the generation of a Job if the file already exists,
which gives an enormous speed up and the archive bit of existing files was not touched which
made it easier to operate with xcopy /m on that files.

Job Scheduling

The concept behind this is simple but very effective. We run a process called job scheduler,
realized in the Perl script js.pl, on each machine which is available to run some Jobs. The
script js.pl waits to get an exclusive file lock on js.lock, checks for *.sql files, i.e. Jobs
in the jobs/ directory, moves the first of these files, given one was found, to a directory
with the same name as the machine js.pl is running one, next releases the exclusive lock on
js.lock and finally starts to work in the dequeued job by piping it through PostgreSQL’s
interactive SQL processor psql. The output is redirected to a log file in the log/ directory.
These steps are performed in an endless loop.

A simple lesson learned here is not to use Perl’s glob function to read the contents of a
directory with thousands of *.sql files, when you actually just want to pick one of them.
Globbing a directory with thousands of files could take longer than running one of these
jobs and instead of running them in parallel, they are processed serially. Instead rely on
opendir, readdir and closedir.

The Perl script feed.pl is another simple script engaged with job scheduling. Its task
is to move batches of Jobs into the jobs directory once this got empty. The idea is to
have more control in which sequence the Jobs are processed, as we were a little bit more
interested in some results than in some others. The access to the jobs directory was once
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again synchronized via file locking js.lock. A typical invocation of feed.pl looked like
this:

$ feed.pl prep/s0/ws prep/s1/ws prep/s2/ws

Once the jobs directory did not contain any Jobs (*.sql-files), the Jobs from prep/s0/ws,
prep/s1/ws and prep/s2/ws were moved in turn to the jobs directory.

There is one more little thing to tell, js.pl and feed.pl pause their operation if a file
named js.pause exists in the jobs/ directory. This is very handy to reconfigure the system,
like temporarily remove some Jobs from the queue to schedule others first.

By means of this simple arrangement of files, directory and scripts we were able to add
and remove machines as we liked.

To CSV Format

We wrote a little Perl script qp2log which transforms the raw log files (cf. Figure 5.5 into
CSV format with the columns runid, name and value, and the content of the raw log file is
preserved as comment prefixed with “#” (cf. Figure 5.6). This makes it easy to use grep -v
"^#" as filter in the pipeline, while on the other hand being able to verify qp2log is working
correctly, which was helpful during the development of qp2log.

The script qp2log makes extensive use of Perl’s regular expressions to do its task. All the
fields that are extracted from the queries’ execution plans are listed in Table 5.2. We would
like to point out a feature of Perl’s regular expression (regex) support which was very handy
for us, it is the combination of “m//g” and “\G”. “\G” matches only at the end-of-match
position of the prior m//g. By means of that one can build a very lex/flex-like scanner.

Pivoting the CSV Files

Our tool pivot log transforms a parse log file (cf. Figure 5.6) into CSV format, where each
Run is represented by a single line and values for the selected names are the columns (cf.
Figure 5.7). For a list of fields with description see Table 5.2.

Aggregating and Analyzing in R

For further aggregation and analysis we imported the CSV files generated in the last step
into the statistics software R (http://www.r-project.org/). The results of this effort can
be seen in section 5.4

5.2.3 Total Computational Workload

In total we scheduled 301,196 runs batched up in 18,072 jobs consisting of 454,782 queries in
total with a total CPU time of 17,154,401,205.424ms ≈ 200days. These figures do not include
the work we had to repeat due to a bug we discovered in our code and the Runs that have
been skewed by automatic software update, screen savers and so forth (cf. section 5.1.1).
The workload was spread across seven computers (SKY01, . . ., SKY07), and these computers
have been busy for about six weeks.

5.3 Parameter Space

The parameter space that can be analyzed is quite large, the parameters and their ranges
are as follows:

• size of dataset (e.g. 100, 1000, 10000, 100000, 1000000)

• number of dimensions (e.g. 1-15)

79

http://www.r-project.org/


Field name Description
[ANYNODE].est.cost
[ANYNODE].est.cost.start
[ANYNODE].est.cost.total
[ANYNODE].est.rows
[ANYNODE].width
[ANYNODE].cost
[ANYNODE].cost.start
[ANYNODE].cost.total
[ANYNODE].rows
[ANYNODE].loops

For any node type in the execution plan we output these
quantities. The node names are mapped to skyline,
elimfilter, seqscan and idxscan. Although other node
types do exist in general, they have not been of interest in
our studies.
The fields with .est correspond to the estimated values,
while the other are actual values. The fields with .cost are
costs split up into startup costs .start, the time needed
to return the first tuple, and total costs .total, the time
needed to return all the tuples. Please note that the es-
timated costs are in an arbitrary unit and that the actual
costs are in milliseconds, see the PostgreSQL documenta-
tion on Using EXPLAIN a.
The estimated average width of a row .width is measured
in bytes.
The field .rows corresponds to the number of rows output
by this node.
It can happen that in certain query plans a node is executed
more than once, e.g. as part of a subplan, then this number
is reported by .loops.

ahttp://www.postgresql.org/docs/8.3/static/using-explain.

html

For a skyline node either “Skyline” or “Elimination Filter”
the following fields are reported:

[SKYLINENODE].method Currently one of 1dim, presort, mnl, bnl, sfs and
elimfilter. Note there are actually different methods for
1 dimensional distinct and non-distinct, but we distinguish
them only by the next field here.

[SKYLINENODE].distinct SKYLINE OF DISTINCT? 0/1
[SKYLINENODE].dim # of dimensions: 1, 2, . . .
[SKYLINENODE].attr The attributes the skyline is computed on.
[SKYLINENODE].passes # of passes for BNL and SFS
[SKYLINENODE].passes.rows # of rows in the input for each pass for BNL and SFS
[SKYLINENODE].windowsize tuple window size in KB
[SKYLINENODE].windowslots tuple window size in # of slots
[SKYLINENODE].windowpolicy tuple window policy, one of: append, prepend, entropy

and random
[SKYLINENODE].cmps.tuples # of comparisons between two tuples
[SKYLINENODE].cmps.fields # of comparisons between two fields
[SKYLINENODE].cmps.ratio = .cmps.fields / .cmps.tuples
seqscan{.ALIAS}.on Name of the base table, when an alias is used for the ta-

ble it is given as .ALIAS, e.g. when we express a skyline
query only with SQL, we have an inner .i and an outer .o
relation.

seqscan{.ALIAS}.tablesize Here we do a little hack and derive this value from the table
name (# rows).

sort.method typically quicksort or external merge
sort.key sort is performed on this expressions
idxscan.idx name of the index used
idxscan.table name of the table the index is on
total The total runtime of the query in milliseconds (ms).

Table 5.2: Fields/Values from the execution plan
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$ pivot_log --help

Usage: pivot_log [OPTIONS] [FILE] ...

Pivot each parsed log file FILE or standard input.

Options:

--c=NAME[=ALIAS]

--column=NAME[=ALIAS]

include the VALUE of field NAME, if ALIAS is given

use this as column name instead of NAME.

--[no]header output the CSV header. default is output it.

--help display this help message and exit

The columns are in the same order as specified by --c. Nevertheless the first

column is always RUNID.

$ unzip -p sql.zip | qp2log | ←↩
→ pivot_log --c=method --c=seqscan.o.on=table [. . .] --c=total

"runid","method","table","outrows","dim","inrows","skyline.method", [. . .]
"sql.a15d1e1s0.10","sql","a15d1e1s0","10","10","10","sql","","","", [. . .]
"sql.a15d5e1s0.10","sql","a15d5e1s0","50","10","50","sql","","","", [. . .]
"sql.a15d1e2s0.10","sql","a15d1e2s0","100","10","100","sql","","","", [. . .]
[. . .]

Figure 5.7: Typical tool chain for pivot log. Note that all the log files for “SQL-only” Runs are
kept inside sql.zip.

• data distribution (indep, corr, anti)

• data source (disk, set returning function)

in case the data are stored on disk:

– sequential scan vs. index scan SFS can benefit from index scan (omit sort phase),
BNL and SFS could benefit from a index scan if DIFF groups are used6.

– sequence of tuples in tuple stream (random, high entropy first/last) for BNL and
EF if a very good tuple is very early in the tuple stream it will eliminate a lot of
tuples in a very early stage

• methods = algorithms

– as SQL statement

– special case 1 dim distinct

– special case 1 dim

– special case 2 dim (needs sort presort or access path)

– MNL

– BNL

– SFS

– EF+SFS ≈ LESS

– EF+BNL
6not yet implemented, see section 6.3.4
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• window size in KB or # slots (e.g. 1 KB, 2 KB, 4 KB, 8 KB, . . . )

• window policy (prepend, append, entropy7, random) In case EF is used the window
policy for EF and BNL/SFS can be selected independently, resulting in 16 possible
combinations.

Exploring the entire parameter space is practically infeasible. The subset we selected
and the according results are presented in the following section.

5.4 Comparisons and Analysis

We measure the time performance with respect to three parameters: dimension, data car-
dinality, and data distribution. We tested on the following three data distributions: inde-
pendent (i), correlated (c), and anti-correlated (a). For the other two factors ”dimension”
and ”cardinality”, one has been fixed during each experiment. Thus all the plots are two
dimensional.

5.4.1 Time performance w.r.t. dimension

For this set of experiments we fix the number of tuples of the input data. Note that generally
the absolute time measurements are not proportional throughout the dimensions, we thus
deploy the relative values by setting one measurement as the reference. In Figure 5.9 we
illustrate the absolute time measurements which are corresponding to the relative values in
Figure 5.8. In the rest of the experiments, we only provide relative time measurements.

Special case: 1 dimensional skylines

We believe the one dimensional case either distinct or non-distinct is of so limited use, that
we decided not to perform any performance studies for this case. Furthermore the one
dimensional case is not even mentioned most of the time in literature.

Special case: 2 dimensional skylines

For the two dimensional case the specialized algorithms PRESORT is available. Nevertheless
we did exclude it from the performance study, because given that the tuple window size for
SFS is large enough the behavior of PRESORT is very much like SFS with tuple window
placement policy prepend.

Big datasets

Figure 5.8 shows the time performance of the skyline algorithms vs. dimension with 100k
tuples. It shows clearly that the SFS+EF algorithm has the best time performance with all
the data distributions. This conforms with the results in [Godfrey et al., 2007], where it was
shown that LESS outperforms the SFS algorithm with 1M tuples.

We also note that SFS performs extremely poor as the dimension is less than six for
independent and anti-correlated data, and even worse for correlated data. This can be
justified that if the dimension is low, the skyline selectivity factor8 is low as well. Therefore,
EF operation is effective, i.e., a number of tuples could be removed at this stage. However,
this does not explain why SFS performs worse than BNL on datasets of low dimensions. This
can be clarified when considering the absolute time measurement in Figure 5.9. It is shown

7policy entropy needs table stats for scaling to [0, 1]
8selectivity factor = skyline tuples / input tuples. A low selectivity factor means high selectivity.
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(a) Independent dataset (100k tuples)
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(b) Correlated dataset (100k tuples)
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(c) Anti-correlated dataset (100k tuples)

Figure 5.8: Comparing runtime for different
methods (100k tuples)
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(a) Independent dataset (100k tuples)
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(b) Correlated dataset (100k tuples)

2 4 6 8 10 12 14

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

# Dimensions

T
im

e 
(s

ec
)

x

x

x

x

x
x

x x x x x x x x
x

 

bnl append
sql
sort
all methods

(c) Anti-correlated dataset (100k tuples)

Figure 5.9: Absolute timing for different physical
skyline operators (100k tuples)
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that the sorting routine of SFS has a nearly constant cost for all dimensions. Therefore, for
low dimensional datasets, the sorting cost is dominant.

BNL+EF performs consistently better than BNL, due to the low skyline selectivity factor
for datasets with 100k tuples (cf. Figure 5.16). As far as the window policy is concerned,
entropy has consistently better performance for all the algorithms.

Small datasets

Figure 5.11 depicts the time-dimensionality performance regarding to datasets with 1k num-
ber of tuples. One interesting observation is that the performance of SFS is surprisingly
better than others, except for the extremely low dimension values (three for independent,
anti-correlated, and six for correlated distributions). As illustrated by Figure 5.16, there
exists a causal relation with the skyline selectivity factors. It shows clearly that as the data
cardinality decreases, the skyline selectivity factor increases. Therefore, in general, the EF
operator is less effective with lower data cardinalities. To be more accurate, if the skyline se-
lectivity factor is higher than 0.1, the benefit gained from EF is marginal. This is confirmed
by the results shown in Figure 5.8 as well.

The result is somehow contradictory to the claim that SFS+EF should perform con-
sistently better than SFS, because at the EF stage there should always be some tuples
eliminated. However, one should not ignore the cost of the EF operation, where compar-
isons are executed. Moreover, if the entropy window policy is applied, the time consumption
is even higher. Hence, there exist data settings where EF does not pay off anymore.

5.4.2 Time performance w.r.t. cardinality

To better understand the time performance of the skyline algorithm with respect to the data
cardinality, we conducted experiments for each dimension k ∈ {2, . . . , 15} with the number
of tuples ranging from 100 to 100k. For each data distribution we have chosen four to five
representative dimension values. Figure 5.12, 5.13, and 5.14 illustrate the test results for
independent, correlated, and anti-correlated datasets, respectively.

Surprisingly, the rule of the selectivity factor is proven to be true in all the datasets.
That is, if the selectivity factor is higher than 0.1, the elimination filter does not have any
advantage.

Independent and anti-correlated datasets

Let us first consider the independent datasets (Figure 5.12). As the dimension is higher
than four, SFS is superior for all datasets, except for data cardinality of 50k and 100k,
where SFS+EF outperforms SFS. If we examine again the selectivity factor for independent
datasets in Figure 5.16, these datasets are in the category where the selectivity factor is
higher than 0.1. This result confirms our observation in section 5.4.1. Note that the same
observation holds for BNL+EF vs. BNL as well.

With dimension three there is an exception, where BNL performs best. This can be
justified as follows: the sorting cost remains constant w.r.t. dimensions, thus it becomes
dominant with low dimension (such as three).

The performance of anti-correlated datasets in Figure 5.14 behaves similarly to that of
independent datasets, thus the above analysis can be applied as well.

Correlated datasets

For correlated datasets in Figure 5.13, SFS+EF is superior with a few exceptions. This,
again, can be perfectly explained by the selectivity factors for correlated datasets (cf. 5.16b).
Except for the data cardinalities of 100 and 500, all the selectivity factors are remarkably
low (most of them are less than 0.1), thus the EF operation pays off.
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(a) Independent dataset
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(b) Correlated dataset
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(c) Anti-correlated dataset

Figure 5.10: Absolute timing for different phys-
ical skyline operators in the 2 dimensional case
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(a) Independent dataset (1k tuples)
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(b) Correlated dataset (1k tuples)
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(c) Anti-correlated dataset (1k tuples)

Figure 5.11: Comparing runtime for different
methods (1k tuples)
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(a) 3 dim (independent)
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(b) 4 dim (independent)
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(c) 6 dim (independent)
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(d) 9 dim (independent)
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Figure 5.12: Comparing runtime for independent datasets

86



1e+02 5e+02 5e+03 5e+04

0.
5

1.
0

1.
5

2.
0

# Tuples

T
im

e 
(r

el
at

iv
e) x x x

o o o

o

x x x x x x xo o o o o o
o

x
x

x

x
x

x
x

o
o

o

o
o

o o

x

x

x

x x

x
x

o

o
o

o
o

o o

x

o

x

o

x

o

x

o

bnl append
bnl prepend
bnl entropy
bnl random
bnl+ef append
bnl+ef prepend
bnl+ef entropy
bnl+ef random

sfs append
sfs prepend
sfs entropy
sfs random
sfs+ef append
sfs+ef prepend
sfs+ef entropy
sfs+ef random

(a) 3 dim (correlated)
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(b) 5 dim (correlated)
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(c) 8 dim (correlated)
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(d) 15 dim (correlated)

Figure 5.13: Comparing runtime for correlated datasets
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(a) 3 dim (anti-correlated)
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(b) 4 dim (anti-correlated)
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(c) 7 dim (anti-correlated)
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Figure 5.14: Comparing runtime for anti-correlated datasets
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Figure 5.15: Relative timing for SFS/SFS+EF
when using index access paths (100k tuples)
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(c) Anti-correlated dataset
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Figure 5.16: Skyline operator selectivity factor on our test datasets
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(a) 1k tuples
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(b) 10k tuples
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(c) 100k tuples

Figure 5.17: Effectiveness of elimination filter (EF) for varying dimensions
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5.4.3 SFS using indexes

The idea is to leverage the index structure for SFS in order to avoid an explicit sort. For
SFS+EF w/ index this is illustrated in 4.4d. It is up to the query optimizer to decide by
means of cost estimation whether to use an index or not. We analyzed the usage of indexes
for SFS in detail for 100k tuples (see Figure 5.15).

It turns out that SFS w/ index consistently outperforms SFS, independent from the
window policy used, with a single exception (cf. 5.15c when dim=6). This is clearly an
argument for using an index.

However, SFS+EF w/ index performs worse than SFS w/ index. This is somehow counter
intuitive, because for 100k tuples SFS+EF performs better than SFS, as we have discussed
in section 5.4.1 (cf. Figure 5.8). We argue that the effectiveness of EF deteriorates in the
presence of the index structure. The data is physically ordered according to one of the
indexed attributes, which is not guaranteed to be beneficial for the elimination filtering.
Therefore, one should be careful with applying EF in the presence of index, even on the
datasets with low selectivity factors. The only significant exception is for correlated data,
window policy append, and dim ≤ 3 (cf. 5.15b). We argue this is due to the general low
selectivity factor and high EF effectiveness in this case (cf. 5.16b and 5.17c).

In all aspects, SFS w/ index and SFS+EF w/ index are outperformed by SFS+EF using
window policy entropy or prepend. This can be explained with the same argument as above,
EF eliminates so many tuples prior to sorting that this becomes cheaper than using an index.

5.4.4 Window policy

All experimental results show that the entropy is the most efficient and effective window
policy. One might notice that on correlated datasets, the prepend window policy performs
the worst in the SFS algorithm. The explanation is obvious: if the correlated data is sorted,
the most effective skyline tuples (that is, the tuples dominate most of the other tuples) tend
to enter the widow earlier. However with the prepend policy, these tuples are successively
pushed to the end of the window, which results in high time costs for checking whether a
new tuple is dominated by the tuples in the window. Figure 5.17 shows that entropy is the
most effective EF window policy.
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Chapter 6

Future work

In this chapter we have collected various directions of future work. This chapter is organized
as the stages a query takes during execution.

6.1 Syntax

6.1.1 More General Syntax

The syntax for the skyline operator as proposed in [Börzsönyi et al., 2001] is not part of
any standard, hence our extended syntax is not part of a standard either. Other extensions
to SQL have been proposed, like Preference SQL [Kießling and Köstler, 2002]. A subset of
Preference SQL was used in [Chaudhuri et al., 2006]. Our current syntax is quite limited to
a special purpose, a more general syntax for preference queries is desirable.

6.1.2 Different Syntax for SKYLINE OF DIFF

We believe the syntax of SKYLINE OF DIFF is a bit cumbersome for the intended semantics
to partition the input relation, so that the skyline is computed within these partitions.
Instead of DIFF a construct like this could be used:

skyline clause

- SKYLINE OF
�
 �	- skyline of expr�

� ,
�
�	�

�


�
�

�- OVER
�
 �	- (

�
�	- PARTITION BY
�
 �	- expr�

� ,
�
�	�

�

- )

�
�	-
With the intended semantics to compute the skyline within the partitions as induced by the
PARTITION BY subclause. This syntax was inspired by Oracle’s analytic functions [Oracle,
2005, Page 5-10].

6.1.3 USING op for SKYLINE OF DIFF

While we do provide syntax to use user-defined ordering operators instead for SKYLINE OF
MIN/MAX, we do not do so yet for SKYLINE OF DIFF, which is used to partition the input into
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groups. For the moment only equality for the given data type is used, but in general any
equality relation could be used. E.g. a syntax like . . . SKYLINE OF d3 DIFF USING myOp
could be used but this is subject to future work.

6.2 Query Planner/Optimizer

6.2.1 Cost-based operator selection

To let the skyline operator be a full-blown relational operator one has to solve the associated
cost- and cardinality estimation problems. The results from Chaudhuri et al. [2006] could
be incorporated in our work. Nevertheless the query optimizer of PostgreSQL is not fully
generic nor only cost-based, so it would take quite some effort to build an optimizer that
is only controlled by rules when a specific transformation is applicable and the associated
costs. See also section 4.7.3 and 4.7.5.

6.2.2 Algebraic Optimizations

Chomicki [2003] and Kießling and Hafenrichter [2003] show in their papers algebraic opti-
mizations of the preference (skyline) operator, e.g. when and how to push a skyline operator
through a join, how to simplify multiple preference operators, and so forth, together with
sufficient conditions when the rules are applicable. It is future work to integrate such opti-
mizations into the query planner/optimizer.

6.2.3 Sampling

In the absence of statistics (histograms) for the relation in questions, sampling could be
engaged. Chaudhuri et al. [2006] did derive some results on this topic.

6.3 Physical Operators

6.3.1 Index-based Algorithms

In the future it would interesting to implement and evaluate index-based algorithms such as
Index [Tan et al., 2001], Nearest Neighbor (NN) [Kossmann et al., 2002], and Branch and
Bound (BBS) [Papadias et al., 2003, 2005].

6.3.2 Index Scan for one Dimensional Skylines

Since one dimensional skylines are a little bit of limited use anyway, we did not yet make an
attempt to make use of a suitable index for skyline computation in the one dimensional case.
The computation of distinct and non-distinct one dimensional skylines could be improved
by performing an index scan. In the distinct case we start at the minimum or maximum
respectively and read a single tuple. For the non-distinct case we start at the right end of
the index and read as long as the value does not change.

6.3.3 SFS

Index Scan and SFS

As for SFS algorithms using indexes, what remains open is to investigate the behavior in
case all skyline attributes and attributes in the select clause are part of the index, such that
it suffices to perform an index-scan. We believe this could yield good results.
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Project Tuples before inserting into SFS Tuple Window

SFS emits a tuple directly after it has survived the test against all tuples in the tuple
window and the dominance check is only performed on the skyline attributes. Because of
this property it is possible to project the tuples on the skyline attributes before inserting
into the tuple window to save space in the tuple window. But there is no free lunch, this
projection comes at some CPU cost as memory has to be copied and manipulated. Some cost
estimation or some heuristics could be developed to decide when to perform this projection.

6.3.4 Speedups for SKYLINE OF DIFF

One can use a separate tuple window for each SKYLINE OF DIFF group, so only the tuples
with the same values on the SKYLINE OF DIFF attributes have to be compared to each
other. This reduction of comparison would yield an overall speedup. In order to avoid an
unbounded number of tuple windows and instead of having a tuple window for each SKYLINE
OF DIFF group hashing could be engaged, i.e. allocate a fixed number of tuple windows and
hash each SKYLINE OF DIFF group into one tuple window.

For SFS differentiate between CMP INCOMPARABLE SAME GROUP and
CMP INCOMPARABLE DIFFERENT GROUP, because once we have a group change we can flush
the tuple window.

6.3.5 Speedups for low Cardinality Domains

A couple of algorithms for low cardinality domains, e.g. the “stars ranking of a hotel”, only
five discrete values (one to five stars), have been proposed [Preisinger et al., 2006; Preisinger
and Kießling, 2007; Morse et al., 2007]. Based on histograms for the base relations the query
optimizer could select such specialized algorithms.

6.3.6 Speedup Tuple Comparison

We believe the concept of elimination filter (EF) is very promising and we believe that it is
possible to further improve its efficiency and effectiveness, e.g. to integrate it as a filter in
the index scan code, or to use other data structures and policies for the EF window.

Order in which Columns are compared

Investigate the question, whether the number of comparisons and the related costs can be
reduced by choosing a specific order for the columns. Can histograms for the base relations
be used for this? On the other hand compare integer data, floating point and in turn floating
point before string data.
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Chapter 7

Conclusion

In this thesis we present the extension of PostgreSQL with the skyline operator and extensive
experiments, with the ultimate goal of building a skyline query optimizer. It is our strong
belief that with this effort the skyline operator is in the habitat it belongs to.

First, we give a general introduction and motivate why the name “skyline operator” is
a good choice. Secondly, we give a formal definition of the skyline operator and we treat
in detail how skyline queries can be rewritten into standard SQL. Thirdly, we deal with
existing non-index-based skyline algorithms. We describe them using pseudo-code and show
some of their properties, which are called “physical properties” in the database context. We
prove that the original version of BNL does not terminate in all cases and give a corrected
version. Furthermore we talk about related works.

In chapter 4 we describe the details of our implementation. The way the pseudo-code is
given fits into the pipelined architecture of the execution engine. The algorithms we have im-
plemented so far are two specialized algorithms for one dimensional skyline queries, a special
case for two dimensions (PRESORT), a näıve nested loop algorithm (MNL), BNL, SFS, and
a variant of LESS. We extend the basic syntax of the SKYLINE OF-clause [Börzsönyi et al.,
2001] to allow influence on the semantics (treatment of NULL values, etc.) and operational
aspects (physical operator, tuple window size/policy, and so forth).

A noteworthy result of our efforts is the site http://skyline.dbai.tuwien.ac.at/,
where it is possible to test-drive our implementation and get an intuition for the behavior
of the skyline operator. Furthermore we provide a series of patches, applicable against the
PostgreSQL 8.3 stable release. By means of that we hope to acquaint the skyline operator
to a larger audience and lay the ground for further research in the direction of integrating
preference query concepts into RDBMSs. We wish that at least one flavor of SQL preference
clauses will make it into a future SQL standard.

We have conducted extensive experiments with a total workload of more than 200 days
of CPU time on various datasets. The experimental environment we have designed and set
up for this task is noteworthy on its own. It is well known that the performance of skyline
queries is sensitive to a number of parameters. From our experimental results we were able
to expose several findings which are difficult to be verified theoretically. They are: (1) the
elimination filter is effective only if the selectivity factor of the skyline query is not more
than 0.1; (2) for datasets up to 500 tuples and of relatively small dimensions (e.g. up to five)
BNL performs the best in all aspects. Our findings are beneficial for developing heuristics
for the skyline query optimization, and in the meantime provide some insight for a deeper
understanding of the skyline query characteristics.

We have identified several directions of future work, see chapter 6.
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