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Abstract

The goal is to create forecasts of network performance maps based on collected

measurements from different data sources. Even though we focus on Reference

Signal Receive Power (RSRP) as the measurement metric, the underlying model must

be extendable to other parameters, such as data-rate or service quality. Additionally,

we aim to exploit the underlying spatial properties of the data. We employ a Gaussian

Process Regression (GPR). The superiority of the GPR against other regression

models is its ability to provide a distribution of the prediction value rather than

just a single value. This uncertainty can be exploited to determine the optimal

location for the next measurement, such that the prediction error of the entire map

is minimized. The task of collecting measurements can be outsourced to end-user

devices, thus saving the network operators valuable time. We employ the clustering

of the data, which offers a possibility of computational time reduction for the GPR

prediction and the measurement noise averaging effect. We design three different

measurement distribution scenarios and analyze the MSE degradation over different

measurement point densities when clustering is applied. We investigate different

cluster identification methods, applicable in the real-data measurements, where the

nature of clusters is unknown in advance. By comparing their influence on the MSE

of the GPR prediction, we conclude that the K-Means method is best suited for

our purposes. Finally, we apply the K-Means cluster identification method in two

experiments, using measurements collected by the XY-positioning table and a drone.

We show that we can considerably reduce the number of GPR training points by

clustering measurements, without significant loss of the prediction quality. The

experimental results also confirm our simulation results on the number of required

clusters for an accurate GPR prediction.
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1. Introduction

A rising number of smartphone subscriptions worldwide, as well as an increase in

average data volumes, push the mobile traffic growth forward day by day. According

to CISCO, the annual run rate of mobile data traffic will grow almost 7-fold between

2017 and 2022. Additionally, the number of smart devices will grow 2-fold in the

same time range, reaching 9 billion in number [1]. User experience is a critical factor

in establishing and securing an advantage in the highly competitive telecom industry.

This growing demand requires constant improvement of network performance while

pressuring mobile broadband operators to enhance the quality of their services

continuously.

Evaluation of network performance is based on the fusion of measurements from

different data sources, and forecasting of performance metrics at locations with no

measurements at hand. To reduce cost- and time-consuming conventional drive test

measurements, the 3rd Generation Partnership Project (3GPP) defined a solution in

their Release 10 specification under the name Minimization of Drive Tests (MDT).

The solution employs the user User Equipment (UE) to collect cell-related metrics

as well as position information and report them back to the central system [2].

With the number of smartphones growing, this concept of outsourcing performance

measurements towards the end-user devices gains substantial importance in network

performance development.

For data collection from end-users in Austria, a system called RTR-Nettest is de-

ployed, operated by the Austrian Regulatory Authority for Broadcasting and Telecom-

munications (RTR) [3]. RTR-NetTest utilizes the transmissions from the smartphone

to the RTR server to determine the quality parameters of users’ Internet access. Ad-

ditionally, to containing performance results of each user test, it also provides further

meta information, such as signal strength of the UE throughout the measurement.

Even though the RTR collected data is publicly available, we could not use it for

this thesis purposes, as there are no areas yet with measurement point densities high

1
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1. Introduction

enough to exploit clustering. Instead, for collecting data in our experiments, we first

focus on the XY-positioning table, with a receiving mobile shielded in a box and

connected to an external antenna for measuring the strength of the received LTE

signal [4]. Secondly, we employ the measurements of the signal strength in LTE,

collected using four UEs mounted on the drone [5].

We create forecasts of network performance maps based on collected measurements

from different data sources. Even though we focus on Reference Signal Receive

Power (RSRP)1 as the measurement metric, the underlying model must be extendable

to other parameters, such as data-rate or service quality. Additionally, we aim to

exploit the underlying spatial properties of the data. As a solution to both previous

matters, we employ the Gaussian Process Regression (GPR). The superiority of

the GPR against other regression models is its ability to provide a distribution

of the prediction value rather than just a single value. Thus providing a level of

certainty of its predicted mean. We can exploit this uncertainty to determine the

optimal location for the next measurement, such that the prediction error of the

entire map is minimized. On the other hand, GPR does not scale well with large

measurement sets since its computational complexity grows cubically with the

number of measurements.

We are also faced with a problem of location accuracy, since the Global Positioning

System (GPS), with moderately high inaccuracy, is used for UE positioning. GPR,

however, requires exact locations of the measurement data to be known and has

no parameter that could account for such inaccuracy. To solve this, we propose

clustering of the measurement data, intending to locate the clusters, and find a single

representative point for each group, that is then used as an input to the GPR. Such

an approach has the advantage of reducing the GPR complexity on the one hand

and embracing the presence of the location uncertainty on the other. We also answer

the research question of which density of the measurements allows a sufficiently

accurate reconstruction of network performance maps.

1Reference signal received power (RSRP), is defined as the linear average over the power

contributions (in [W]) of the resource elements that carry cell-specific reference signals within the

considered measurement frequency bandwidth [6].
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1.1. Thesis Overview

1.1. Thesis Overview

In Chapter 2, we give an overview of the state of the art methods for GPR complexity

reduction as well as a theoretical introduction to the GPR method. Intending to

identify which density of points is necessary to achieve a specific MSE goal of

the reconstructed map, we study how various types of data clustering impact the

performance of map reconstruction. As the data collected in real-world scenarios is

unknown, we first rely on data generated within simulations in Chapter 3, and based

on these results, we strive to recover real-data performance maps in Chapter 4. The

empirical analysis in Chapter 3, using regular and non-regular cluster distribution,

as well as clusters created using statistical geometry, is extended to a real-world

scenario by including the process of cluster identification. We investigate the impact

of deriving clusters from the data on the prediction MSE and benchmark the perfor-

mance of different clustering methods. In Chapter 3, we conclude on the optimal

DD as well as the required density of measurement points. Chapter 4 applies the

results from Chapter 3 in several experiments on real-data that include measurements

collected using the XY-positioning table and a drone. Finally, we discuss the results

and offer concluding remarks in Chapter 5.
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2. Gaussian Process Regression

2.1. Motivation

It is in network-operators interest to be aware of network performance at all locations,

so they would know how and where the performance of their network can be im-

proved. Therefore, there is a need to be able to precisely know network performance

measures even at those locations where no measurements are at hand. Since we

are distributing the measurements towards the end-user devices, the uncertainties in

location and possibly the measurement noise level are going to be higher compared

to traditional operator employed drive-test-measurements. While there are no regres-

sion models that could account for uncertainty in measurement location, one for

accounting for the measurement noise does exist- the Gaussian Process Regression

model.

A Gaussian Process (GP) model is a Bayesian probabilistic model for non-linear

regression. As such, it can directly capture the model uncertainty by providing a

distribution of the prediction value, rather than just one value as the prediction. An

example of predicting a function f (x) = xcos(x) from a fixed number of observations

x is shown in Figure 2.1. The left plot depicts prediction from observations without

measurement noise, while the right plot depicts the prediction from a noisy but a

larger set of observations. Notice how in the noiseless case, the prediction goes

exactly through the observations, while with the measurement noise, an uncertainty

level in observations is allowed. Furthermore, with observations closer nearby one

another, the 95% confidence interval between subsequent measurement decreases,

making the prediction more accurate. This uncertainty is not directly captured in

neural networks nor linear regression models.
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2. Gaussian Process Regression

Figure 2.1.: GPR example: A noise-free case (left), a noisy case with known noise-level per

datapoint (right) [7]

By selecting various covariance functions or kernels, that characterize correlations

between different points in the process, Gaussian Process Regression (GPR) can

add prior knowledge about the shape and spatial correlation of the underlying non-

linear model. Under the assumption of a specific parametrized covariance structure

underlying the data and given a sufficient density distribution of the training points,

we can estimate the covariance function parameters based on the locations at which

we have observed data, and use the inferred structure to make predictions at new

locations. Because of the GPs’ probabilistic structure, we can estimate variances at

unsampled locations and use this information for the design of targeted sampling

strategies - thus achieving the desired outcome for the network operator.[8]

2.2. State of the Art

Regression is a statistical method utilized for learning input-output mappings from

empirical data (the training dataset) for continuous outputs. There is a vast choice

between various forms of regressions, depending on the scenario and the purpose

one aspires to accomplish.

The simplest and most extensively used type of regression is the linear regression,

utilized for benchmarking of more complex regression forms. Unfortunately, its
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2.2. State of the Art

simplicity results in an inadequacy of dealing with complex non-linear functions we

want to infer. A simple approach to model such non-linear relationships is polynomial

regression, based on merely adding different polynomial terms.

Polynomial regression only captures a certain amount of curvature in a non-linear

relationship. But adding too many polynomial terms forces a polynomial curve to

become overly flexible and take on some bizarre shapes for polynomial orders higher

than 3 or 4. An alternative, and often superior, approach for modeling of non-linear

relationships is to use splines [9].

Spline regression involves dividing the dataset into K distinct regions. Within each

region, a polynomial function is fit to the data. However, these polynomials are

constrained so that they join smoothly at the regions’ boundaries or knots. Provided

that the interval is divided into enough regions, this can produce an extremely flexible

fit [10]. So instead of fitting a high-degree polynomial for the entire dataset, splines or

piecewise polynomial regression with lower degree polynomials can be fit in separate

dataset regions. But even splines are unable to account for various measurement

noise levels, nor infer the underlying structure of the data since they always depend

on the specified segment.

GPR models are typically the ones in use when exploiting the underlying structure

and correlation of the data. In addition to the predictive mean, the GP treatment

also yields a precise estimate of the noise level and predictive error bars [11].

While they can be rather powerful predictors with confidence intervals as important

side information, they do require high accuracy in the training locations, and their

computational complexity becomes hard to grasp with growing training data sets.

With high-accuracy of 5G New Radio (5gnr) technology, the continuous localization

and user tracking are achievable. Di Taranto et al.[12] present in their publication

how this accurate localization, together with signal strength, can be used to reduce

signaling overhead in mobile communications. Furthermore, they propose the uti-

lization of a spatial regression method, e.g., GPR, for generating signal strength

maps from the collected measurements. Liao et al.[13] combine a non-zero mean

autoregressive process with a zero-mean multivariate Gaussian process, therefore

exploiting both spatial and temporal correlation for prediction of average channel

gain.

The main limitation of GPR is the lack of online update possibility, since with

each new training point GPR goes back to square one and recomputes the resource
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2. Gaussian Process Regression

exhausting NxN 1 matrix inverse. Since its computational time depends on the size

of the training data set, many authors propose various state of the art solutions,

that tackle the problem of GPR scalability from multiple angles. Liu et al.[14]

summarize in their publication various proposed frameworks for GPR computational

improvement. They categorize it into two main classes: a) global approximations that

achieve sparsity of the full kernel (i) using a subset of the training data (subset-of-

data); (ii) removing the entries of the covariance matrix with low correlations (sparse

kernels); or (iii) employing a low-rank representation (sparse approximations) and b)

local approximations exploiting (i) naive-local-experts which directly employs the

pure local experts for prediction; (ii) mixture-of-experts and (iii) product-of-experts

both boosting the predictions through model averaging.

Since we focus our measurements on the 4G networks, we still have to take GPS

location uncertainty [15] into account. Muppirisetty, Svensson, and Wymeersch

propose a framework for a GPR that can account for location uncertainty during

learning/training and prediction/testing. Nevertheless, after the first tests, this method

did not provide us with sufficiently accurate performance. Therefore we concentrate

on different clustering methods of the training data set, intending to embrace existent

location uncertainty while simultaneously reducing the GPR computational time.

2.3. GPR Overview

GPR is a broadly applied tool thoroughly explained in various books and publications

[11] [17]. In this section, we summarize the GPR framework and assumptions under

which we deploy it.

Let us suppose an exact training set is given, meaning the exact locations are known,

and for each of those locations, a noisy observation has been measured. Each location

is specified with N -dimensional real vector x ∈ R
N (e.g., coordinates in space),

and a collection of those train point vectors is summarized in matrix X. The noisy

measurements are denoted by real values yi , and consist of scalar real valued function

f (xi ) and observation error ni :

yi = f (xi )+ni (2.1)

1N is the size of the training data set
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2.3. GPR Overview

where xi , i = 1, . . . , I , denotes different locations in the training data set. We model

f (x) as a Gaussian process, fully parametrized by a mean function

m(x) := E{ f (x)} (2.2)

and a covariance function

k(x,x′) := cov{ f (x), f (x′)} (2.3)

= E
{(

f (x)−m(x)
)(

f (x′)−m(x′)
)}

.

Therefore any set of I random variables f (xi ), i = 1, . . . , I are jointly Gaussian.

Combining them into a random vector f :=
(

f (x1) · · · f (xI )
)T

, we can write their joint

probability density function as:

p(f) = p
(

f (x1), . . . , f (xI )
)

=
1

√

(2π)I det(K)
exp

(

−
1

2
(f−m)TK−1(f−m)

)

, (2.4)

where

m := E{f} =
(

m(x1) · · ·m(xI )
)T

(2.5)

and

K(X,X), cov{f} =











k(x1,x1) k(x1,x2) · · · k(x1,xI )

k(x2,x1) k(x2,x2) · · · k(x2,xI )
...

...
. . .

...

k(xI ,x1) k(xI ,x2) · · · k(xI ,xI )











. (2.6)

Assuming we write the function f as a very long vector, our goal is to be able to

predict function value f (x∗) (e.g. RSRP) at any given test location x∗, or learn the

function behind the model. We would like to consider every possible function that

matches our data, independent of the number of function parameters involved. GPR

is often referred to as a non-parametric method as if there are no parameters in our

function. However, there are theoretically infinitely many, as we do not need to

specify them upfront.

Covariance function carries our assumptions about the function we wish to infer, and

as such, represents the central component of the GP predictor. In supervised learning,
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2. Gaussian Process Regression

the concept of similarity between data points is a crucial ingredient. It reflects that

points with data inputs x in close vicinity are inclined to have similar target function

values f(x). Therefore training points that are near to the test point are likely to be

more informative regarding prediction at that point, compared to those training points

further away from it. In the Gaussian process framework, the covariance function

defines this notion of data points similarity, and is interchangeably used with the

term kernel.

A kernel is a general name of a function mapping a pair of inputs x and x’ into the

set of real numbers. A real kernel is symmetric if k(x,x′) = k(x′,x), therefore the

covariance function is symmetric per definition. Valid covariance function is also

always positive semi-definite, meaning all the eigenvalues of covariance matrix K in

2.6 are non-negative.

covariance function expression

constant σ2
0

linear
∑D

d=1
σ2

d
xd x ′

d

polynomial
(

x ·x′+σ2
0

)p

squared exponential exp
(

− r 2

2ℓ2

)

Matérn 1
2ν−1Γ(ν)

(p
2ν
ℓ

r
)ν

Kν

(p
2ν
ℓ

r
)

exponential exp
(

− r
ℓ

)

γ -exponential exp
(

−
(

r
ℓ

)γ)

rational quadratic
(

1+ r 2

2αℓ2

)−α

neural network sin−1

(

2x̃⊤Σx̃′p
(1+2x̃⊤Σx̃)(1+2x̃′⊤Σx̃′)

)

Table 2.1.: Summary of several commonly-used covariance functions. The covariances are

written either as a function of x and x’, or as a function of r = ‖x −x ′‖ [11]

Assuming prior knowledge about the underlying function f, in terms of smooth-

ness, symmetry, periodicity, etc., we can utilize it by choosing a one of in literature

commonly-used kernels, summarized in Table 2.1, or create a new kernel via multi-

plication and/or addition of the existing ones.

Samples from a GP with the linear kernel are straight lines. Considering that a

product of valid kernels is a valid kernel, the product of two linear kernels is a

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.3. GPR Overview

quadratic kernel, giving rise to quadratic functions. This drift is further generalized

to the polynomial kernel of order p.

The gamma-exponential family of covariance functions includes both the exponential

and squared exponential kernels. While the squared exponential function is smooth,

the exponential kernel is only continuous and not differentiable. Since the function

approximations produced by kernel methods inherit the smoothness of the kernel, a

smooth kernel, like the squared exponential, is suitable for fitting smooth functions.

In contrast, a non-differentiable kernel, like the absolute exponential, is a better

alternative for fitting non-differentiable functions.

The SE kernel is widely most used with GP. The reason for this is that functions

drawn from a GP with a SE kernel are infinitely differentiable, which on the other

hand, makes these functions very smooth. The class of Matern kernels proposed

by Stein is a generalization of the squared exponential kernel and the absolute

exponential kernel parameterized by an additional parameter ν2. Since it is using

the absolute exponential kernel, the Matern kernel is better suited to capture less

smooth physical processes due to its finite differentiability compared to using SE

kernel alone.

Though some recent publications [19] tackle the problem of selecting the appropriate

kernel from the data, there is yet no established way of deciding which covariance

function is the best fit for a particular application, and people mostly rely on trial

and errors of different ones.

For the purpose of this thesis, we are using the squared exponential covariance

function multiplied with a constant kernel.

k(x,x′) =σ2
f exp

(

−
1

2l 2
‖x−x′‖2

)

(2.7)

The hyper-parameter l > 0 of the SE kernel is the characteristic length scale, encap-

sulating the distance at which function values do not correlate any more, or in other

words, how far can we reliably extrapolate from the training data. Small lengthscale

value indicates that function changes quickly, while large values portray functions

that change slowly. The σ2
f
≥ 0 of the constant kernel accounts for the signal variance

that scales the SE kernel.

2For ν= inf the Matern coincides with SE kernel.
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2. Gaussian Process Regression

Going back to equation (2.1), we model the observation error ni as statistically

independent of f (xi ), statistically independent of f (x) for all other x ∈ R
D , and

Gaussian with zero mean and variance σ2
n . In general, the measurement error does

scale with the function value f (x) (signal strength). However, since we assume

shadow fading alone, without path loss component, this dependency is rather small

and can be neglected for calculation simplicity. Furthermore, the ni are assumed

statistically independent, so that

cov{ni ,n j } =σ2
nδi , j =

{

σ2
n , i = j

0, i 6= j .
(2.8)

Therefore, defining n := (n1 · · · nI )T, we have n ∼N (0,σ2
n II ), where II denotes the

I × I identity matrix. Furthermore, since the observation noise is assumed zero mean,

we have

E{yi } = E{ f (xi )} = m(xi ) (2.9)

cov{yi , y j } = cov{ f (xi ), f (x j )}+cov{ni ,n j }

= k(xi ,x j )+σ2
nδi , j (2.10)

Using vector notation f :=
(

f (x1) · · · f (xI )
)T

and y := (y1 · · · yI )T, we can rewrite (2.1)

as y= f+n with

m, E{y}, (2.11)

Σ, cov{y} =K+σ2
n II (2.12)

In other words equations 2.11 and 2.12 define the prior distribution y∼N (m,Σ).

By incorporating the knowledge that the training data provides about the function,

we are able to derive the posterior distribution from which we can sample. We first

write the joint prior distribution of the training outputs, y , and the test outputs f∗:

[

y

f∗

]

∼N

(

0,

[

K+σ2
nI K∗

K∗T K∗∗

])

(2.13)

With K = K(X,X), K∗ = K(X,X∗), K∗∗ = K(X∗,X∗), where X and X∗ represent the

collections of training and test points. By conditioning the joint Gaussian prior distri-
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2.3. GPR Overview

bution on the observations, the posterior distribution is derived, and characterized by

following mean and covariance functions:

f∗|y;X,X∗ ∼N
(

m∗,cov
(

f∗
))

,

m∗ , E
[

f∗|y;X,X∗]

= K∗T
[K+σ2

nI]−1y

Σ
∗ , cov

(

f∗
)

= K∗∗−K∗T
[K+σ2

nI]−1K∗ (2.14)

Therefore, using this posterior distribution, we can sample points for any given

test location x∗, and not only can we get the expected value of the function at that

location, but also its level of uncertainty.

In the case we do not know the hyperparameters of the covariance function in

advance, we can learn them by maximizing the log marginal function [11].

So the GPR consists of 2 stages, parameter learning from the noisy training dataset

and prediction at known test locations. As discussed, the relevant hyperparameters

are signal variance σ2
f
, decorrelation distance (DD) l and noise variance σ2

n .

In Chapter 3, we assume these hyperparameters are precisely known, and investigate

the influence of different training locations distributions on the GPR prediction of

network parameters, e.g., Reference Signal Receive Power (RSRP).
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3. Clustering Data for Efficient

Performance Map

Reconstruction

Using GPR and a sufficient number of crowdsourced measurements in the area of

interest, we can recreate the performance map of that area. Additionally, the distri-

bution of those measurements strongly influences performance quality. Assuming

equally distributed measurements over the entire area of interest will bring the best

performance while drawing them together reduces our knowledge of the underlying

map. In reality, the distribution of mobile users differs across rural and urban areas.

In rural areas, we experience a low density of crowdsourced measurement points,

whereas, in urban areas, we perceive much higher density. Since people tend to

gather in specific locations more than others, we still face a problem of heteroge-

neous distribution of measurement points. Therefore it is expected to have large

densities of crowdsourced measurements at train stations, stadiums, etc. Since people

move in "clusters", it makes sense to model measurement points using a random

cluster process, rather than equidistant sampling. Furthermore, we can use this natu-

rally given clusters to our advantage, by finding a representative measurement point

for each group and feeding it as a single GPR input. In addition to reducing the

GPR complexity, we can even lessen the GPS induced location errors for each of

those cluster points. In the following, we will start by explaining how we obtain

exact performance map values at both test and train locations using sampling from

multivariate Gaussian distribution in 3.1. We will proceed with the introduction of

different cluster types we generate and use as train points (see Figure 3.1):

• Scenario 1 (S1): evenly spaced cluster centers with evenly spaced cluster

points in 3.2,

• Scenario 2 (S2): evenly spaced cluster centers with randomly spaced cluster

points in 3.3,
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3. Clustering Data for Efficient Performance Map Reconstruction

• Scenario 3 (S3): non-uniform clusters generated using Thomas Cluster Process

in 3.4.

Under the assumption of known GPR hyper-parameters, we average over cluster val-

ues and cluster locations to get a single representative training point for each cluster.

Finally, we perform GPR prediction using equation (2.14) and representative cluster

points as predictor input and discuss the influence of different cluster parameters

on predictions. To analyze and compare predictions using different cluster types

with varying cluster parameters as training dataset, we introduce distance metric

Mean Squared Error (MSE), that measures the average of the squares of the errors

according to:

MSE =
1

N

N
∑

i=1

(

yi − ŷi

)2
(3.1)

where yi is the exact value at test location i , ŷi is the predicted value at test location

i and N is the number of test locations.

Nevertheless, the comparison of previously mentioned scenarios is not straightfor-

ward. For this purpose, we define the density of points as the number of measurement

points in the area of interest that are available for training. For a fair comparison, we

need to keep the density of points constant in all 3 cases, while working with random

distribution in S3. Therefore, a few cluster centers may lie on the edge of the area

of interest while their cluster points remain outside of it discarded as training data

(see Figure 3.1 (c)). A solution to this problem is discussed in Section 3.5, where

we first create the random clusters in Scenario 3, and then based on their density of

points, we specify the clusters in Scenarios 2 and 1. The definition of point density

is needed for real-world scenarios as well, as it makes different measurement layouts

such as crowdsourcing and drive-tests comparable.

3.1. Sampling from Multivariate Gaussian

Distribution

To understand how the sampling from multivariate Gaussian distribution works, we

first must understand the sampling from the normal distribution N (0,1) (Figure 3.2).
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3.1. Sampling from Multivariate Gaussian Distribution

c) Non-uniform clus-
ters generated using

Thomas Cluster Process

b) Evenly spaced clus-
ter centers with randomly

spaced cluster points

a) Evenly spaced clus-
ter centers with evenly
spaced cluster points
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Cluster points
Cluster centers
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Figure 3.1.: Different cluster types, with parent cluster points as cluster centers in red, and

cluster daughter points in blue.
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3. Clustering Data for Efficient Performance Map Reconstruction

We can simply draw a random sample from a uniform distribution U(0,1), project

it onto the CDF1 of the normal distribution, and when it meets the curve, project

back onto the PDF2 of the normal distribution. The cross-section with the x-axis is a

sample from the given normal distribution.

−2 0 2

0

0.5

1

C
D
F
(x
)

−0.500.511.5

0

0.5

1

U(0, 1)

x

−2 0 2
0

0.2

0.4

x

P
D
F
(x
)

Figure 3.2.: Sampling from normal distribution N (0,1) by the projection of a sample from

the uniform distribution U (0,1) over the cumulative density function of N (0,1).

Furthermore, if we want to now to sample from a Gaussian distribution, that has

arbitrary mean and variance, N (µ,σ2), all we need to do is sample again from a

normal distribution, and then apply the transformation:

xi ∼µ+σN (0,1) (3.2)

Thereby multiplying the sample from the normal distribution with the square root of

variance, and shifting it according to the distribution mean.

In the multivariate case we can sample with the help of uniform distribution. Let

us assume the random vector f =
(

f (x1), . . . , f (xI )
)T

has a multivariate normal (or

1Cumulative Density Function
2Probability Density Function
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3.1. Sampling from Multivariate Gaussian Distribution

Gaussian) distribution. That implies that every linear combination

I
∑

k=0

ak f (xk ), ai ∈R

is normally distributed with probability density function 2.4. From this I -dimensional

Gaussian distribution N (m,K), we wish to sample.

Sampling steps in the multivariate case:

1. Given set of locations I at which we want to sample, we compute the covari-

ance matrix as 2.7, with free choice of kernel parameters σ f and l

2. Perform Cholesky decomposition of covariance matrix K = LLT , with lower

triangular matrix L

3. From normal distribution N (0,1) generate a vector u =
(

u1, . . . ,uI

)T
of inde-

pendent standard normal random variables.

4. Compute f = m+Lu

By verifying the expectation value of f

E{f} = E{m+Lu} = E{m}+E{Lu} = m

and covariance as mean of squares minus the square of means

E{f−m)(f−m)T} = E{ffT}−E{f}T = E{m+Lu)(mT +uTLT)}−‖m‖2

= E{mmT}+E{muTLT}+E{LumT}+E{LuuTLT}−‖m‖2

= ‖m‖2 +LLT −‖m‖2 = K

the multivariate normal distribution of f is proven. One of the problems when

generating the simulated map on a regular grid is that random training locations

rarely coincide with this grid, and therefore interpolation between the original points

is necessary to get the values at exact training locations (see Fig 3.3). Using a method

of sampling from multivariate Gaussian distribution makes it possible to get the

exact values at both train and test locations of the simulated map simultaneously,

so that interpolation error can be avoided. In the following subsections we show

how different types of clusters can be generated and their values sampled using this

method.
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3. Clustering Data for Efficient Performance Map Reconstruction

x

y

Test Locations
Train Locations

Figure 3.3.: Test locations (blue circles) coincide with a regular grid, train locations (red

diamonds) arbitrarily scattered around the grid.

3.2. Evenly Spaced Cluster Centers with Evenly

Spaced Cluster Points (S1)

In an ideal world, we would have equally spaced clusters, with cluster points spread

out throughout the whole region, within we want to predict the network performance.

However, since we do not live in an ideal world, we can simulate regularly spaced

clusters and use them as a benchmark for the comparison with our "reality" - non-

uniform clusters.

Let us assume we want to create accurate enough prediction of the network perfor-

mance at each location of the equally spaced regular grid of test points, as shown

in Figure 3.3 (blue circles). To do so, we assume our measurement locations form

evenly spaced clusters with evenly spaced cluster points.

When generating this training dataset, there are two parameters to be considered:

• Distance between cluster centers denoted by d and

• Cluster radius denoted by r
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3.2. Evenly Spaced Cluster Centers with Evenly Spaced Cluster Points (S1)

Since there is no need to specify a unit of length upfront, we define a general length

unit and call it a pixel. Each pixel can represent an arbitrary length segment of the

map dimension, or in other words, 1 pixel can be equal 1m, 5m, 10m, and so on.

0 10 20 30 40 50
0

10

20

30

40

50

d

d

x

y

d=14, r=2

Cluster Points

Cluster Centers

0 10 20 30 40 50

d

d

x

d=22, r=2

Figure 3.4.: With higher d, the number of clusters inside the area of interest decreases.

For cluster demonstration purposes, we use 50 ×50 pixel grid (Figure 3.4), while for

actual predictions further on a 100 ×100 pixel grid is used with a test point at each

pixel (Figure 3.5). We chose a 100 ×100 map dimension, as it provides sufficient

space to generate the number of clusters sufficient for performance assessment while

keeping the out of memory problem at bay.

Figure 3.4 depicts how the cluster appearance in the area of interest changes with

different distance between cluster centers. Assuming underlying hyper-parameters

needed for the GPR prediction are known, and attaining the representative cluster

centers by averaging across cluster values in each cluster, we can see the influence

parameter d has on GPR prediction quality in Figure 3.5.
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3. Clustering Data for Efficient Performance Map Reconstruction
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Figure 3.5.: True performance map(left), predicted performance map with d = 14 and r = 3

(middle), predicted performance map with d = 22 and r = 3 (right)

Distance between cluster centers (distance between GPR training locations)) deter-

mines how well we can capture the underlying structure of the performance map

defined by the decorrelation distance. The original map depicted in the left plot of

Figure 3.5, can be sufficiently well reconstructed if the neighboring GPR training

points are at a maximum distance below DD of the underlying map. In the modeled

scenario of 100 ×100 pixel map we assumed DD of 15pixels (pixels represent units

of length, for example 1pixel = 1m, or 1pixel = 1cm). This implies that distance

between neighboring training point locations must be below 15 pixels for optimal

reconstruction. Therefore, when comparing two predicted maps from Figure 3.5, the

degradation in prediction performance is obvious.

This trend is also observed in MSE comparison (Figure 3.6). Using different cluster

distances shows the significant jump in performance degradation as soon as the

cluster distance d exceeds the DD or characteristic length scale of the underlying

map. Therefore, to be able to reproduce the original underlying map sufficiently

well, we need clusters at distances smaller than the characteristic length scale.

Important to note here is that the number of clusters in the area of interest reduces

with higher cluster distance d . At a constant cluster radius r , a different number of

clusters (different d) corresponds to distinct point densities. Therefore to compare the

performance between diverse scenarios, we must keep the point density constant3.

3or approximately constant, as in S3, we work with a random process

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3.2. Evenly Spaced Cluster Centers with Evenly Spaced Cluster Points (S1)
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Figure 3.6.: MSE with errorbars, derived from 100 different performance map realizations.

The map dimension is 100 ×100 pixels, DD = 15, σ f = 1, cluster radius r = 3.

Cluster radius r determines the number of data points per cluster. For instance r = 2

generates N = 13 1
cluster

, while r = 3 produces N = 29 1
cluster

(see Figure 3.7). Since

we do not feed all of those as training points to the GPR, but single representative

averaged data point per cluster, in both cases, we will have the same number of

training points that are fed as the GPR input.

In the case of very low measurement noise, both predictions will perform equally

well. In contrast, if measurement noise variance is high, the larger number of points

per cluster makes it easier to average the present noise out so that the prediction

will be better when the noise level is unknown (see Figure 3.9). However, for low

measurement noise, an error floor is hit. This fact indicates that adding additional

measurements to existing clusters produces no additional gain. Therefore even if the

cluster size increases, the distance between averaged cluster centers stays the same,

and the function variation between those centers remains equally unexplored (see

Figure 3.8).
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3. Clustering Data for Efficient Performance Map Reconstruction
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Figure 3.7.: Cluster radius r determines the number of points inside each cluster.
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Figure 3.8.: True performance map (left), predicted performance map with d = 22 and r = 2

(middle), predicted performance map with d = 22 and r = 3 (right)
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3.2. Evenly Spaced Cluster Centers with Evenly Spaced Cluster Points (S1)

10−2 10−1 100

0.00

0.05

0.10

0.15

d > DD

d < DD

σn

M
S
E

d = 12

d = 14

d = 16

d = 18

d = 20

d = 22

d = 12

d = 14

d = 16

d = 18

d = 20

d = 22

Figure 3.9.: MSE with errorbars, derived from 100 different performance map realizations,

map dimension is 100 ×100 pixels, DD = 15, σ f = 1, cluster radius r = 2(dashed),

r = 3 (solid).

When averaging over the cluster values, the standard deviation of the cluster repre-

sentative point is going to drop accordingly, σ′
n = σn

N
, where N is the number of data

points inside each cluster. This formula is characteristic of repeated measurements

and can be looked up in [17]. We use it as an approximation since these are not

measurements repeated at the same location, but rather in close vicinity one from

another. Therefore, the inputs to the GPR prediction are averaged cluster centers as

training dataset and the known hyper-parameter tuple [σ f , l ,σ′
n].

We have seen that averaging over a higher number of cluster points brings advantage

when higher noise is present even though in both cases, the same amount of training

points is used. This raises the question of how this method compares with merely

using the cluster center point while discarding all other cluster points. Another

possibility is to perform GPR locally at each cluster to find the GPR predicted cluster

center point and then use these predicted central points as the input for the GPR

prediction of the entire area of interest. While we reduce the GPR computational

time by finding a representative training point per cluster, we do have losses in

prediction accuracy compared to using all cluster points. Therefore, we compared the

performance of previous methods with a GPR that uses all cluster points as training
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3. Clustering Data for Efficient Performance Map Reconstruction

dataset. And lastly, the best performance of GPR is expected when the training points

are randomly scattered across the area of interest.

These methods were compared using 100 ×100 pixel grid as a testing dataset. The

MSE is calculated using Equation 3.1 and plotted over different measurement noise

levels (Figure 3.10). Values in plots are averaged over 100 different performance map

realizations with equal hyper-parameters, and the errorbars represent the standard

deviation of the MSE value.

We distinguish the following cases:

ref all Randomly scattered points across an area of interest, while keeping the

same density of training points as is available in the clustered version.

We use this setup as a reference for all others.

cluster all All measurement points in clusters are used as the training dataset.

averaged Averaging over location and value in each cluster, and using averaged

cluster centers as a training dataset.

block-wise Local GPR inside each cluster to predict the cluster center point,

subsequently using these predicted centers as training dataset for the

GPR prediction of the entire area of interest.

center Only cluster center point is used, while the rest of the cluster points is

discarded.

As expected, we notice in Figure 3.10 that two cases where all available data is

used for training outperform those where the training set is reduced by a factor of

N (whether by averaging, using local GPR or dumping). Averaging over clusters

method performs equally well as the block-wise GPR, with less computational time.

As for using the center cluster point while dumping the rest, we see the prediction

deterioration with higher measurement noise. A likely scenario considering that the

measurement noise of that single point grows accordingly and is not reduced by

averaging.
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3.3. Evenly Spaced Cluster Centers with Randomly Spaced Cluster Points

(S2)
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Figure 3.10.: MSE with errorbars, derived from 100 different performance map realizations,

map dimension is 100 ×100 pixels, DD = 15, σ f = 1, cluster radius r = 3. Note

that the averaged and block-wise case overlap in the figure.

3.3. Evenly Spaced Cluster Centers with

Randomly Spaced Cluster Points (S2)

Imagine we want to predict a network parameter in a modern city, with an orthogonal

grid of streets, such as Barcelona or New York. In such a scenario, our assumption of

evenly spaced cluster centers corresponds to the street crossings. However, the users

on those crossings are not standing in organized formations, but somewhat randomly

scattered across the sidewalk and street crossing. To account for this randomness, we

need to relax our assumption from S1 and assume users scattered around the cluster

center or, in this case, the crossing center.

In the previous section, we have seen how the clusters with training data that coincide

with the testing grid behave. Now we discuss clusters that have parent points (cluster
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3. Clustering Data for Efficient Performance Map Reconstruction

centers) that match with the testing grid, and cluster daughter points randomly scat-

tered around parent points (Figure 3.11). Since they are generated using a Gaussian

distribution in x- and y-direction, we now have the number of points per cluster as a

parameter that is independent of the cluster radius. Therefore instead of two, we now

consider three different cluster parameters:

• Distance between cluster centers denoted by d

• Standard deviation σ of Gaussian distribution (with a mean at the cluster

center) that determines the cluster spread or cluster diameter.

• The number of points per cluster N . This parameter is now independent of the

cluster radius, as the training cluster points do not coincide with the testing

grid, comparing to Section 3.2.

0 10 20 30 40 50
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50

x

y
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Cluster Points Cluster Centers
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x
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Figure 3.11.: Influence of Gaussian distribution standard deviation σ on the cluster spread.

Fixed parameter values are:

– Number of points per cluster N = 15

– Distance between cluster centers d = 22

For the following analysis, we used a 200 ×200 pixel map, with DD=20. Figure

3.12 shows the influence of d (distance between cluster centers) on the MSE under

different σ. The number of points per cluster for this case was fixed, N = 30, but even

for smaller or larger N , we observed the same trend. There are only slight variations

in MSE when using different σ . On the other hand, increasing distance between

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3.3. Evenly Spaced Cluster Centers with Randomly Spaced Cluster Points

(S2)

cluster centers (d) has the strongest influence on MSE deterioration, independent

of how large the measurement noise variance (σ2
n) is. We notice a significant jump

after d = 20, where the distance between training points exceeds the decorrelation

distance. In these cases, the GPR framework cannot predict the function variations

between the points at a distance larger than the characteristic length scale.

10 15 20 25
0.00

0.05

0.10

0.15

0.20

0.25

0.30

d

M
S
E

σ2

n = 0.1

σ = 1
σ = 3
σ = 5

10 15 20 25

d

σ2

n = 0.5

10 15 20 25

d

σ2

n = 1

Figure 3.12.: MSE averaged over 100 different performance map realizations. Fixed number

of cluster points is N = 30.

Without measurement noise, the MSE almost does not change with increasing N .

A similar trend is observed for the low measurement noise level (Figure 3.13 left).

When comparing three plots in Figure 3.13, we notice that the higher the N is, the

MSE is smaller, or in other words, the higher the noise level is, the larger N is

required for better performance improvement. Additionally, with decreasing d , we

obtain more clusters in the same area of interest, therefore more training points

altogether, which again improves the overall MSE.
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3. Clustering Data for Efficient Performance Map Reconstruction
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Figure 3.13.: MSE means over 100 different realizations, for different combinations of N ,

d , σ2
n and σ.

Table 3.1 shows the MSE values for N = 100 for various combinations of parameters

σn , σ and d . Bold values representing the minimum MSEs are then used as asymp-

totic approximations in Figure 3.13 (dashed lines in red represent the asymptotes

for d ∈ {10,13,16,19,22,25}, and have been calculated for N = 100 and σ= 1). As

for the remaining σ (3 and 5) values, MSEs are slightly higher at N = 100, but will

approach the same asymptote for higher N .
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3.3. Evenly Spaced Cluster Centers with Randomly Spaced Cluster Points

(S2)

σ2
n = 0.1 σ2

n = 0.5 σ2
n = 1

σ= 1 σ= 3 σ= 5 σ= 1 σ= 3 σ= 5 σ= 1 σ= 3 σ= 5

d = 10 : 0.0122 0.0143 0.0127 0.0124 0.0152 0.0150 0.0172 0.0182 0.0259

d = 13 : 0.0243 0.0244 0.0277 0.0336 0.0292 0.0325 0.0255 0.0267 0.0408

d = 16 : 0.0477 0.0506 0.0593 0.0503 0.0537 0.0625 0.0538 0.0575 0.0667

d = 19 : 0.1042 0.1070 0.1153 0.1070 0.1093 0.1192 0.1115 0.1134 0.1225

d = 22 : 0.1810 0.1811 0.1886 0.1820 0.1840 0.1913 0.1863 0.1859 0.1937

d = 25 : 0.2568 0.2559 0.2608 0.2598 0.2588 0.2630 0.2626 0.2605 0.2648

Table 3.1.: MSE for N = 100, used as asymptotic approximation. Bolded values are repre-

sented by red dashed lines in Figure 3.13

Since the values plotted in Figure 3.13 are the means over 100 realizations, it is also

interesting to see how are the values spread around this mean. For this, we calculated

the 5 and 95 percentile4 values for all parameter combinations. Figure 3.14 shows

the difference between 95 and 5 percentiles, or in other words, where 90% of the

realizations lie.

We notice that for smaller cluster distances, the mean and 90 percentile do not differ

much, as for larger d the difference between them increases. This is easily seen when

comparing Figure 3.13 and Figure 3.14. Reason is the greater number of outliers for

larger cluster distances.

4Percentile is the value below which a given percentage of observations in a group of observations

falls
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3. Clustering Data for Efficient Performance Map Reconstruction
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Figure 3.14.: MSE 95%-5% (percentile) over 100 different realizations, for different combi-

nations of N , d , σ2
n and σ.

Formerly we examined how the different parameters influence the MSE indepen-

dently of each other. Now we wonder whether an optimal balance between the

different number of points per cluster (N ) and distances of the clustered centers

(d) can be found. For this, we examine how the MSE varies across different point

densities N
d 2 for various distances between neighboring cluster centers. Assuming a

specific point density in a designated area, we would like to know if rearranging of

the measurement locations by switching to another d , would improve the prediction

performance. For this purpose, a map of dimension 200 ×200 pixels was created,

with DD = 20. We considered three values of σ ( 1, 3 and 5), but the achieved
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3.3. Evenly Spaced Cluster Centers with Randomly Spaced Cluster Points

(S2)

MSEs do not differ as much between these three cases, so only one is shown in

the figure, for easier readability. We used thirty values of linearly spaced density in

the range [0.05, 0.5], and then by multiplying with different d 2, we obtained the

number of points per cluster N . Clustered points were placed randomly in clusters

around the given grid (200 ×200), and then using interpolation, the values of RSRP

at those points were acquired. These calculated points are further accepted as known

cluster points. By adding random noise on top, with σ2
n = 1, the training points with

measurement noise were produced. These cluster points are then averaged in value

and location to get the averaged single training point per cluster. Lastly, these cluster

centers represent the training dataset for the GPR. Figure 3.15 shows the MSEs and

its 90-percentiles for 200 ×200 pixel map, averaged over 250 realizations.

0.1 0.2 0.3 0.4 0.5
0.00

0.02

0.04

0.06

0.08

0.10

N/d2

MSE mean

0.1 0.2 0.3 0.4 0.5

N/d2

MSE uncertainty

d = 25

d = 24

d = 23

d = 22

d = 21

d = 20

d = 19

d = 18

d = 16

Figure 3.15.: Mean MSE (left) and 95%-5% percentile MSE (right) over 100 realizations,

σ= 1, σ2
n = 1, DD = 20, σ f = 1.

What we can see from these plots is that there is no switch point to be found since the

lines never intersect. The conclusion is rather that at a constant density, it is always

better to choose more spread out measurements, suggesting smaller cluster distance

d . Additionally, we also notice a jump in MSE after d = 20, since it gets harder to

predict the map if we have cluster distances larger than map decorrelation distance

(here DD = 20) as previously mentioned.
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3. Clustering Data for Efficient Performance Map Reconstruction

3.4. Non-Uniform Clusters generated using

Thomas Cluster Process (S3)

In previous chapters, we discussed scenarios that are not applicable in most circum-

stances in reality. They are idealized versions of user clusters, and we use them for

the performance comparison with natural user clusters, which can be rather messy

and random. Stochastic geometry models are employed to attain a tractable analysis

of wireless network nodes and capture their spatial randomness.

To create authentic natural clusters for our study, we need to think of the regions

where we gather the measurements since the user distribution is different in rural

and urban areas. We can assume that in the rural areas, we encounter zones with

barely any users, while in urban areas, users are nearly omnipresent in all regions.

Additionally, in those areas with users, we can have various user densities. To account

for the randomness of the accessible areas and randomness of the number of users in

them, it makes sense to use two separate point processes. For this reason, a family of

cluster point processes, known as Neyman-Scott point processes, is widely used in

spatial statistics for telecommunications.

The parameters of the Neyman-Scott point process are:

• λparent - The intensity of the Poisson point process, which forms the cluster

centers.

• λdaughter - The mean number of points per cluster.

• σ - The size of the clusters.

• p(·,σ) is a probability density function parameterized by σ, which determines

the spread of daughter points around the cluster center.

If p(·,σ) is Gaussian distribution around the cluster center at the origin, then the

process is called Thomas cluster point process [20].
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3.4. Non-Uniform Clusters generated using Thomas Cluster Process (S3)

Construction of user clusters using Thomas cluster point process shown in Figure

3.16 can be described in the following steps:

1. Since we are simulating a part of "reality" in a chosen simulation window, it is

expected that some of the daughter points in the simulation window originate

from parents that lie outside of it. To overcome these edge effects, we simulate

the parent points in an extended simulation window.

2. Poisson point process with intensity λparent is then used to generate number of

parent points in the extended area (Nparent).

3. Both x and y coordinates of those Nparent points are then drawn from a uniform

distribution over the extended area.

4. Poisson point process with intensity λdaughter is used to generate number points

for each cluster or the number of points that will be distributed around each of

the parent locations.

5. Daughter locations are then drawn from the normal distribution N (0,σ), with

a standard deviation that determines the spread of the clusters.

6. Shift of daughter points to their corresponding parent location.

7. Simulation window is cut to its original size.
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3. Clustering Data for Efficient Performance Map Reconstruction

c) Step 7.

b) Steps 4,5 and 6.

a) Steps 1,2 and 3.

Parameters
λparent 0.0025
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σ 3
ext.par. 6σ
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Figure 3.16.: Thomas Cluster Process for cluster generation in S3.
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3.5. Comparison of S1, S2 and S3

3.5. Comparison of S1, S2 and S3

We have discussed three different scenarios of user cluster generation in previous

chapters. In order to adequately compare them, we keep the user density in the area

of interest constant in all three situations. For demonstration simplicity, we first make

a comparison between scenarios S1 and S2 and afterward, between S2 and S3.

3.5.1. Evenly Spaced clusters with Evenly Spaced Cluster

Points (S1) vs Randomly Spaced Cluster Points (S2)

To compare GPR prediction from evenly spaced cluster centers with evenly spaced

cluster points in S1 and evenly spaced cluster centers with randomly spaced cluster

points in S2 we used the setup shown in Figure 3.17.

0 20 40 60 80 100
0

20

40

60

80

100

x

y

Cluster Points

Cluster Centers

0 20 40 60 80 100

x

Figure 3.17.: Training points in clusters in S1 (left) and S2 (right), distance between clusters

d = 20, r = 3 and σ= 2 is chosen for demonstration purposes.

Using clusters at varying distances d, we predicted the map of 100 ×100 pixels. The
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3. Clustering Data for Efficient Performance Map Reconstruction

number of points per cluster, as well as the total number of clusters in both scenarios,

are equal, which makes two cases comparable by having the same number of training

points. To keep the cluster radii similar, we choose r = 3 for S1 and σ= 2 for S2.

The MSE of the GPR predictions with varying measurement noise levels is shown in

Figure 3.18. We see a slight difference between S1 and S2 when using all available

cluster points (red lines). The reason is that random cluster points in S2 manage to

gather more information about the areas without measurements, compared to more

compact clusters in S1. On the other hand, when averaging over clusters in both

scenarios (blue lines), the performance difference between them disappears. Since

the number of cluster points is even, averaging over clusters reduces the noise level

in both cases equally, while keeping the number of training points identical.

10−2 10−1 100
10−5

10−4

10−3

10−2

10−1

S1 all

S2 all

S1 averaged

S2 averaged

d = 12
d = 14
d = 16
d = 22

σn

M
S
E

S1 all, d = 12 S1 all, d = 14 S1 all, d = 16 S1 all, d = 22

S1 avg, d = 12 S1 avg, d = 14 S1 avg, d = 16 S1 avg, d = 22

S2 all, d = 12 S2 all, d = 14 S2 all, d = 16 S2 all, d = 22

S2 avg, d = 12 S2 avg, d = 14 S2 avg, d = 16 S2 avg, d = 22

Figure 3.18.: Comparison of S1 and S2: Prediction MSE of 100 ×100 pixel map with

DD = 15 and σ f = 1, over various noise levels and different distances between

cluster centers.
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3.5. Comparison of S1, S2 and S3

3.5.2. Evenly Spaced Clusters (S2) vs Non-Uniform

Clusters (S3)

To compare GPR prediction from evenly spaced cluster centers with randomly

spaced cluster points in S2 with non-uniform clusters in S3, we used the setup

shown in Figure 3.19. Since we are working with random point processes for cluster

generation, we first generate the no-uniform clusters in S3 and, consequently, the

evenly spaced clusters in S2. In order to keep the point density constant5, certain

adapting of clusters in S3 is also required after their generation. The procedure of

calculating the cluster parameters in S2 based on clusters from S3 is summarized in

the following steps:

1. Family tree generation: Generate non-uniform clusters using Thomas Cluster

Process.

2. Counting parents: Find the number of parent points NS3 that have daughters

inside the area of interest6.

3. Parents adjustment: Calculate the number of clusters (parent points) in S2

NS2 = i nt (
p

NS3).

4. Parents pruning: Randomly remove m = NS3 −NS2 clusters from S3, so that

NS2 = NS3.

5. Parents spreading: Based on the number of clusters NS2 find the distance

between cluster centers d in S2 such that the clusters are evenly spread out

across the area of interest.

6. Offspring custody: To keep the densities approximately equal, determine the

number of points per cluster in S2 by dividing the total number of points in S3

with the number of clusters in S2.

7. Offspring distribution: Use the same σ to create the point distribution inside

clusters in S2 as you used in S3.

5or approximately the same in S1 in S2
6It is likely to have daughters in the area of interest that originate from parents outside of it.
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3. Clustering Data for Efficient Performance Map Reconstruction
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Cluster Points

Cluster Centers

0 20 40 60 80 100

x

Figure 3.19.: Training points in clusters in S3 (left) and S2 (right), with equal point densities

over the area of interest. Gray areas represent the black holes.

Prediction results from such cluster generation in S3 and S2 are shown in Figure

3.20. The MSE is averaged over 100 various map realizations. Since with each

non-uniform cluster setup, the MSE is quite different, the errorbars are relatively

high and therefore left out from the plots. We show the results for four different

parent point counts, with an average of 30 daughters per each cluster. Solid lines

represent predictions from exactly known hyper-parameters, while dashed lines are

the predictions from hyper-parameters learned using the same training set as for the

prediction.

The MSE drops down with higher parent point count, e.g., cluster count, as expected.

We notice the cluster averaging loss is smaller in S3 than in S2. Due to the cluster

randomness in S3, some clusters may be generated close together or even overlapping,

leaving the areas of the map empty of training points. We call these empty areas

the black holes (see Figure 3.19). In the case of evenly spread out clusters as in

S2, we keep the black holes at a minimum, and therefore achieve better prediction

performance.
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3.5. Comparison of S1, S2 and S3
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all S2 learned avg S2 learned all S3 learned avg S3 learned
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Figure 3.20.: Comparison of S2 and S3: Prediction MSE of 100 ×100 pixel map with

DD = 15 and σ f = 1, over various noise levels, averaged over 100 realizations.

For each plot different cluster count was used.

Scenario: all S2 all S3 avg S2 avg S3

GPR train point count: 758 758 32 32

Table 3.2.: Training points for different scenarios with λparent = 0.003.
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3. Clustering Data for Efficient Performance Map Reconstruction

Table 3.2, provides the number of training points used as GPR input in each of the

cases, for λparent = 0.003. The reduction of computational complexity is straightfor-

ward, as the complexity scales cubically O(n3) with the number of GPR training

points n.

Zooming in on the averaged scenarios in Figure 3.20 we notice a constant offset

between two averaged cases (black line arrows in Figure 3.21). that increases with

higher parent point count. An increase in offset can be explained by a faster improve-

ment in S2 compared to S3, as the new clusters we introduce are equally spaced.

The introduction of new random clusters in S3 may or may not bring improvement

dependent on the placement of those additional clusters.

10−2 10−1 100

10−1

100

λparent

0.0015
0.0020
0.0025
0.0030

λparent

σn

M
S
E

avg S2 exact

avg S3 exact

Figure 3.21.: Comparison of averaged S2 and averaged S3: Prediction MSE of 100 ×100

pixel map with DD = 15 and σ f = 1, over various noise levels, averaged over

100 realizations, for four various number of parent points. Black lines represent

the gap between S2 and S3 for equal cluster counts.

The offset between averaged S2 and S3 cases cannot be compensated by introducing

new points inside existing clusters since the number of training points in GPR will

stay the same. A possibility to reduce that difference is to introduce new clusters in

black hole areas with the highest GPR prediction uncertainty. This way, we can add

new information into the GPR instead of accumulating additional cluster points at

areas about which we already know enough.
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3.5. Comparison of S1, S2 and S3

Notice the offset between prediction using the exact versus learned hyper-parameters

(solid vs dashed lines) in Figure 3.20. A closer inspection into parameter learning

under four previously mentioned cases with various parent count, reveals why this

offset is the highest in the case of using averaged cluster centers in S2.

10−2 10−1 100
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all S2 avg S2
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D
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Figure 3.22.: Learning of hyper-parameter length-scale (DD = 15), using various parent

counts.

Parent count has the most substantial influence on the learning of the length-scale

(DD) hyper-parameter. Figure 3.22 shows that learning it is problematic when the
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3. Clustering Data for Efficient Performance Map Reconstruction

parent count is too low, and parents are equidistantly spaced. As parents are at a

distance greater than the DD of the map, they can no longer accurately capture and

infer the underlying structure of the performance map. On the contrary, equally low

parent count achieves better performance when parents are randomly placed, e.g.,

S3. As here some parents might be in close vicinity from each other, the length-scale

can be estimated with higher accuracy on average.

We have seen the performance comparison of S1, S2, and S3. Notice that the switch-

ing from S1 to S2 brings no MSE degradation when the averaging in both cases

is applied. On the other hand, under no measurement noise present utilizing all

available points, can boost the performance by two to four orders of magnitude

(depending on the number of clusters). (see Figure 3.18). A shift from averaged S2

to averaged S3 introduces a half order of magnitude MSE degradation, independent

of the level of measurement noise. While the boost when using all available points in

S3 amounts between one and two orders of magnitude (see Figure 3.20).

For previous predictions, we used known random clusters that we generated. Natural

clusters, in reality, will have a similar appearance, but we will not have information

on which point is belonging to which cluster. Therefore to find the natural clusters,

we employ one of the various clustering algorithms. We provide their overview and

performance evaluation in section 3.6.

3.6. Identifying Clusters

Mobile user distribution is random in nature and a priori unknown to the experimenter.

Since people tend to gather at specific locations more than others, user clusters

naturally arise. Along with them, the black holes with no user measurements can also

be a rather frequent occurrence. Therefore the closest emulation of such a scenario is

non-uniform clusters, e.g., S3. Such clusters, we now consider as unknown and need

to identify using various clustering algorithms.

Impact on the resulting MSE of the GPR prediction in the case when cluster centers

are unknown is analyzed in this section. We first discuss various clustering algorithms

widely used and described in the literature and apply them in S3. Lastly, we compare

the GPR prediction error from averaged values of extracted clusters and discuss their

performance compared to the exact clusters used in the previous chapter.
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3.6. Identifying Clusters

3.6.1. Different Clustering Methods in Python

The quality of the clustering method is hard to define since it is very application-

specific. In the following, we introduce four categories following the notation of

[21]:

• Partitioning algorithms,

• Hierarchical algorithms,

• Model-based algorithms,

• Density-based algorithms.

Many variations of these four algorithms are presented in the literature. For our pur-

poses, we will discuss and apply one from each previously mentioned categories.

Partitional clustering consists of the construction of various data groups and their

iterative improvement based on a specific partitioning criterion. One of the funda-

mental and widely implemented clustering algorithms proposed in the literature

of data clustering is K-Means algorithm. It begins with choosing K representative

points from the data as the initial cluster centroids. Next, each point is assigned to the

closest centroid based on a proximity measure7 selected, and thus clusters arise. The

new cluster centroid is recomputed in each iteration by averaging the location of data

points assigned to it. Lastly, all data points are reassigned to the new centroids. These

two steps are iteratively computed until a convergence criterion is met. In practice,

it follows the rule that the iterative procedure must be continued until only 1% of

the points change their cluster memberships. The convergence speed of K-Means

strongly depends on the choice of the initial centroids. To improve its speed, instead

of selecting random initial centroids, the K-Means++ algorithm is utilized. Here

only the first centroid is selected at random, while all others are chosen such that

they are farthest from all previously selected centroids. After finding initial centroids,

regular K-Means is employed. Nevertheless, a substantial downside of K-Means

algorithm is the necessary knowledge of the number of clusters in advance. It is also

having trouble with data with outliers since all data points end up allocated to one of

the clusters.

Hierarchical clustering uses a distance matrix as the clustering criteria. This method

has the advantage of not requiring the number of clusters as the input but needs

a termination condition. Hierarchical methods are categorized into agglomerative

7Euclidean distance metric is the most popular choice.
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3. Clustering Data for Efficient Performance Map Reconstruction

and divisive clustering methods. Agglomerative clustering regards each data point

as a singleton cluster at the bottom level and then merges the clusters bottom-

up. The algorithm computes the dissimilarity matrix at each level, based on the

chosen criteria8. The closest sets of clusters are merged, and the dissimilarity matrix

updated correspondingly for the next level. This process continues until the final

maximal cluster (that contains all the data objects in a single cluster) is obtained.

The cluster hierarchy is interpreted using the standard binary tree terminology called

a dendrogram. The tree root represents all data objects to be clustered (singleton

points), and this is referred to as level 0 in the hierarchy. At each level, the data

objects which are subsets of the entire dataset correspond to the clusters. The clusters

entries are determined by traversing the tree from the current cluster node to the

base singleton data points. The primary advantage of having a hierarchical clustering

method is that it allows for cutting the hierarchy at any given level and obtaining the

clusters correspondingly. Divisive methods, on the contrary, start at the top, regarding

all data objects as a macro-cluster and splitting them continuously into two groups,

hence generating a top-down hierarchy of clusters.

Model-based clustering techniques use a probabilistic approach to optimize the fit

between the given dataset and some mathematical model. They operate under the

assumption that a mixture of underlying probability distributions generated the data.

In effect, each cluster can be represented mathematically by a parametric probability

distribution, such as a Gaussian or a Poisson distribution. By modeling the entire

dataset as a mixture of K (number of clusters) component distributions, the clustering

problem is transformed into a parameter estimation problem. Data points that belong

most likely to the same distribution can then easily be defined as clusters. Since the

data is generated using Gaussian distributions around each cluster parent point in

S3, using a Gaussian Mixture (GM) model should provide the best results in cluster

identification. This method, however, has the same disadvantage as K-Means model,

as it requires the number of clusters to be known beforehand.

Density-based clustering makes no assumptions about the number of clusters or

their distribution and is therefore considered as a non-parametric method. Clusters

represent dense areas in the data space separated from each other by sparser areas.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) estimates

the density by counting the number of points in a fixed-radius neighborhood and

8Possible criteria: single link, complete link, group average, centroid similarity, Ward’s criterion.

In the following, we used the group average criterion.
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3.6. Identifying Clusters

considers two points as connected if they lie within each others neighborhood. A

point a is called core point if the neighborhood of radius Eps contains at least MinPts

points. A point b is directly density-reachable from a core point a if b is within the

Eps-neighborhood of a. Two points a and b are called density-connected if there

is a third point c from which both a and b are density-reachable. A set of density-

connected points which is maximal with respect to density-reachability is defined

as a cluster. Ordering Points To Identify the Clustering Structure (OPTICS), unlike

DBSCAN, keeps cluster hierarchy for a variable neighborhood radius Eps, and is

better suited for usage on large datasets. [21]

The incomplete knowledge of the underlying cluster structure in S3 will contribute to

a certain MSE increase of the GPR prediction. In the following, we look at these four

clustering algorithms for cluster extraction in S3 and their impact on the MSE.

3.6.2. Comparison of Clustering Methods based on the

GPR prediction

We now analyze how various methods for cluster extraction influence the GPR

prediction in S3. Clustering algorithms we used for this inquiry are:

• K-Means

• Gaussian Mixture (GM)

• Agglomerative Clustering (AC)

• Ordering Points To Identify the Clustering Structure (OPTICS)

Since both for K-Means and GM algorithms, the number of clusters must be specified

beforehand, we can either use the exact number of clusters generated in S3 or based

on the dimension of the map and the known decorrelation distance determine the

minimal number of clusters required for sufficiently accurate prediction. In case

we choose the exact cluster count, the prediction results almost do not differ from

prediction from exactly known clusters, as the number of training points remains

the same in all three cases (exact, K-means, GM). However, if we consider we

have a map of dimension 100 ×100 pixels and a DD = 15, we know from previous

discussions that the best-case scenario has training points equidistant spaced at least

one DD one from another. This allows for seven training points in a dimension of

100 pixels, giving a total of 72 = 49 clusters. By using DD, we can thus extract

the number of clusters required for optimal prediction. As we can see (3.23), the
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3. Clustering Data for Efficient Performance Map Reconstruction

prediction error can thus be significantly lowered compared to using exact clusters.

This method is of advantage, as in reality, the exact number of clusters is never

known, but the DD can be determined from the data.

AC, on the other hand, does not require a cluster count to be known, but rather a

termination condition. The termination condition defines the cluster distance above

which clusters are no longer merged together. Hence, for the smaller termination

distance, we obtain a larger number of identified clusters. The performance of the

GPT prediction from such clusters is strongly dependent on the chosen termination

distance. We surely do not want to merge clusters at distances greater than the DD,

but we can set the termination condition to be less or equal to DD. We chose four

different termination distances: DD/4, 3DD/4, DD/2, and DD.

As for the OPTICS algorithm, we only need to specify the minimum number of

points a cluster must contain. The average number of points per cluster is set to 30,

but we likely have cluster points at edges originating from parents outside of the area

of interest, making clusters with point count much lower than 30 probable. Therefore

we choose Mi nP t s = 5. This is the only algorithm than allows for the outliers not to

be included in the clusters. Therefore, we analyzed how the prediction, both with

and without outliers, influences the MSE.

Figure 3.23 shows how various clustering methods affect the GPR prediction, aver-

aged over 250 different realizations. In addition to utilizing four previously mentioned

clustering algorithms, we show how the prediction using exact clusters compares

to them. While keeping the point densities equal in S3 and S2, their comparison is

once again depicted. The number of extracted clusters is the most relevant parameter

influencing the GPR prediction error. Table 3.3 summarizes the average number of

clusters extracted using these various methods, as well as the number of outliers if

present. The total number of points used for GPR prediction represents the sum of

clusters and the outliers.

Algorithm: exact K-Means GM OPTICS AC (DD/4) AC (DD/2) AC (3DD/4) AC (DD)

Cluster count: 25 49 49 35 116 34 19 15

Outliers: 0 0 0 252 0 0 0 0

Used Train Points: 25 49 49 287 116 34 19 15

Table 3.3.: Cluster count for various clustering algorithms, averaged over 250 different

realizations. Brackets in the AC algorithm denote various termination distances.

The total number of measurements available on average is 622.
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3.6. Identifying Clusters

10−2 10−1 100

10−1.5

10−1

10−0.5

σn

M
S
E

10−2 10−1 100

10−4

10−3

10−2

10−1

S3 AC

S3 GM

S3 OPTICS

S3 K-Means

S2 all points/exact clusters

S3 all points/exact clusters

σn

S2 all S2 exact averaged S3 all S3 exact averaged

S3 optics with OL S3 optics without OL S3 kmeans S3 GM

S3 AC (DD/4) S3 AC (DD/2) S3 AC (3DD/4) S3 AC (DD)

Figure 3.23.: Comparison of S2 and S3, while using various clustering methods in S3.

Brackets in the AC algorithm denote various termination distances.

We notice that GM and K-Means algorithms have comparable performance since

they both have the same number of identified clusters.

The AC algorithm strongly depends on the choice of the termination condition.

Choosing a small termination distance (DD/4) results in much higher cluster count,

providing better GPR prediction, as the number of training points is higher. We

have to keep in mind that choosing termination distance too low reduces the com-

putational speed, as the number of training points approaches the total number of

measurements.

Optics algorithm results in larger cluster count compared to exact cluster count,

therefore increasing the training point count for the GPR and the overall prediction

performance. Including the outliers (OL), increases our training dataset up to three

times, resulting in more accurate prediction, at the price of longer computation

time.
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3. Clustering Data for Efficient Performance Map Reconstruction

Under the scope of wireless performance map reconstruction, where the decorrelation

distance order of magnitude is roughly known or can be estimated from measure-

ments, we conclude that the K-Means method is best suited for cluster identification.

Even though the AC method can provide better results for low termination conditions

than K-Means, the clusters it identifies can take various shapes and highly uneven

number of cluster points among them. Thus, resulting in rather high MSE errorbars,

depending on the form of the original clusters generated in S3.

3.6.3. Performance Comparison of the Complete,

Clustered and Identified Training Sets

In this section, we want to summarize Chapter 3, by comparing performance when

using different training sets we previously discussed. We started by working with

a complete measurement set as the training dataset. We moved on to clustering the

whole measurement set to known simulated clusters, which we then averaged to

find a single representative point for each measurement group, thereby reducing the

training set and the computational time significantly. Finally, we analyzed a more

realistic scenario where cluster identification is required before averaging, as the

real clusters are always unknown in advance. Additionally, the hyper-parameters of

the underlying performance map can vary depending on the channel conditions and

therefore require to be estimated as well.

Therefore as the final comparison, we provide the performance of the GPR learning

as well as GPR prediction plotted against the density of measurement points for the

following cases:

• All measurement points in S2,

• All measurement points in S3,

• Clustered and averaged points in S2,

• Clustered and averaged points in S3, using exact clusters,

• Clustered and averaged points in S3 - using K-Means method for cluster

identification.

For the overview we summarize this list in the Table 3.4 bellow with line styles

corresponding to Figure 3.24.
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3.6. Identifying Clusters

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

❳
❳

Scenario

Train Set
all points

average exact

cluster centers

average K-Means

identified cluster centers

S2

S3

Table 3.4.

Figure 3.24a shows how the learning of hyper-parameters decorrelation distance (ℓ),

signal standard deviation (σ f ), and noise standard deviation (σn) depends on the

number of available measurement points in the area of interest. Note that N denotes

the number of available measurement points in the area of interest and m2 =pixel2,

as our simulation works with pixel points that can be interpreted as various distance

units. As expected, learning using all available measurements as train points results

in the closest estimate of the actual parameters. While in clusters identified using

K-Means, learning from averaged cluster points has rather consistent performance

over point density, as the number of training points is kept constant.

Under the assumption that hyper-parameters are known or accurately estimated from

the measurements, we can compare the GPR prediction of previously mentioned

cases, in Figure 3.24b.

Point density represents the total number of measurements in the area of interest. The

increase in density in our simulation of TCP can either be achieved by introducing

new clusters (increasing λparent) or adding new offsprings to the existing clusters

(increasing λdaughter). Note that these two cases deliver a significant difference in

the GPR performance. When we increase offspring density, we gain very little new

information, as the areas where we add them already have measurements. While

when adding new clusters by increasing the parent density, we can learn additional

information about the black hole areas. This performance difference is also depicted

in Figure 3.24. Notice how the yellow line is very steady, independent of the density

we applied. As explained, the averaging over a higher number of points inside a

cluster does not gain much new information, other than reducing the noise, which

we here assumed to be known. On the contrary, if we increase the number of clusters,

we see a significant drop in the MSE for higher densities.

Notice that the ascending point density (for all lines but ) used here comes from

increasing the number of parents(clusters) in TCP, and smaller variations in offspring
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3. Clustering Data for Efficient Performance Map Reconstruction

0.03 0.06 0.09

15

20

25

N/m2

ℓ

0.03 0.06 0.09

0.6

0.8

1.0

N/m2

σf

0.03 0.06 0.09

0.01

0.1

0.2

N/m2

σn

(a)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N/m2

M
S
E
m
ea
n

all S2
all S3
avg exact S2
avg exact S3 - parents increase
avg exact S3 - offspring increase
avg kmeans S3

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.00

0.10

0.20

0.30

0.40 9 clusters

16 clusters

25 clusters
36 clusters

M
S
E
st
d

(b)

Figure 3.24.: (a) Learning of hyper-parameters. (b) Prediction using exact hyper-parameters

(lines are shifted to show errorbars).
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3.6. Identifying Clusters

densities.

We chose the decorrelation distance DD = 25, σ f = 1, σn = 0.01 for a map dimension

of 100 ×100 pixels. As decorrelation distance is 25, and we need at least one training

point per DDxDD area for sufficient prediction quality, this would mean at least 16

training points in area 100 ×100 are required. Therefore we observe rather high error

bars, for the case only 9 clusters are available - while for 16, 25, and 36 clusters, the

MSE errorbars significantly reduce.

Notice that the prediction MSE using exact averaged clusters, both in S2 and S3,

actively improves with higher densities when the cluster number increases. On the

other hand, it stays rather flat in the regions where cluster count is constant, but

offspring density increases. This implies that in order to improve prediction, we must

introduce new clusters in the black hole areas, rather than increasing the density

by adding new points in already existing clusters. On the other hand K-Means,

independently of the number of clusters generated by simulation, always groups

all available points to a minimum number of clusters required by map dimension

and DD - in this case, 16. Thus, keeping the MSE line rather flat over various point

densities.

The density of 0.03 indicates that, on average, we have 3 points in a 10m×10m area.

We note from the results that for densities lower than 0.03 averaging is counter-

productive, as we are left with an insufficient number of training points after it is

applied. However, if a sufficient number of new clusters is introduced in the black

holes, as in the case of N/m2 = 0.06 (36 clusters), we see that averaging is beneficial

for the computation reduction, as the prediction performance approaches the case

where the complete measurement set is used for prediction (all S3). Assuming the

DD in Vienna is in the order of 25m, and signal variance is of the order ∼ 1 as in

our simulation, we can convert the problem statement from 10m2 area to Viennas’

1st district of 2.869km2, or even the entire Vienna of 414km2. These areas would

require 4590 clusters and 662400, respectively, to achieve an MSE of around 0.05.
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4. Experimenting on Real Data

In the real world, we do not have automatically clustered datasets. We had to find the

best way to reduce the GPR complexity without significant prediction performance

reduction. Using a simulation of the real-world scenario in the 3, we concluded that

the best method to achieve this is the K-Means algorithm. In this chapter, we focus

on testing the results from Chapter 3 in two different real-world scenarios. We first

look at a setup where a receiving cell phone is mounted on an XY positioning table

and connected to an external antenna for measuring the strength of the received LTE

signal [4]. Secondly, we exploit the measurements of the signal strength in LTE,

collected using a UE mounted to the drone. The employed setup for collecting a

dataset of the mobile cellular network’s KPIs is given in Platzgummer et al.[5].

4.1. XY-Table Measurements

In this scenario, we used the setup from the reference [4], where the receiving cell

phone is mounted on an XY-positioning table and connected to external antennas.

The table covers 81cm×81cm area, and the intervals at which it stops to take mea-

surements can be adjusted. We took measurements at an interval of 2cm both in X

and Y-direction. To get a map larger than 81cm×81cm, we moved the table across

four side-by-side tiles, denoted by red squares in Figures 4.1 and 4.2. Such setup

produced the measurement map of dimension 162cm×162cm. Notice that these

measurements were taken over the course of multiple days. We processed these raw

data, and filtered the measurements to LTE band 20 (800MHz frequency) and its

ARFCN 6400. We average the measurements taken at each position to get a more

accurate estimate of the signal strength. Each RSRP value is reduced by the mean of

the entire measurement map. This way, instead of predicting RSRP of the received

signal, we focus on the Small Scale Fading effect. Next, the hyper-parameters of the

underlying SSF map are estimated using the complete measurement area. Parameter
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4. Experimenting on Real Data

estimates are: DD = 6.69cm, σ f = 1.05, and σn = 0.844. These estimates are further

considered to be exact and are employed when predicting the map using reduced

datasets.

(a) (b)

Figure 4.1.: XY-positioning table measurement setup: (a) Measurement box moves across

the rails both in X and Y direction. (b) Red chalk with yellow tape marks the

four table positions next to each other, to measure a four times larger area.

1 40 80 120 160
1

40

80

120

160

x

y

1 40 80 120 160

x

−5.0
−4.0
−3.0
−2.0
−1.0
0.0
1.0
2.0
3.0
4.0

S
S
F
[d
B
m
]

Figure 4.2.: Original measurements on the left, predicted map on the right.

Figure 4.2 shows the measurements taken at distances of 2cm, on the left, and

predicted map using all measurement points on the right. This predicted map is then
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4.1. XY-Table Measurements

used as the ground truth reference for MSE increase calculation. The red squares

denote the position of the XY-Table to measure at four adjoining areas.

We randomly sample from the entire dataset and use the subset as the training dataset.

Next, the clustering using K-Means method is applied to reduce the computational

time of the GPR. We have seen in Chapter 3 that the required number of clus-

ters strongly depends on the dimension of the map and its decorrelation distance.

Thus, using the parameter DD = 6.69cm, we determine the amount of 625 required

clusters.

To affirm our conclusions from Chapter 3, using various point densities for the train-

ing dataset, we cluster them below and above the number of required clusters. Values

from 312 to 812 clusters, corresponding to 0.5 to 1.3 fraction of required clusters,

were implemented. We show the results in Figure 4.3, where an increase in MSE

is depicted for various point densities and a different number of identified clusters.

The hyper-parameters and the ground truth map are estimated using measurements

at all positions. For this reason, when we speak of the MSE increase, we refer to

the prediction performance degradation from using clustered values compared to the

prediction from the entire dataset.
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Figure 4.3.: MSE increase conditioned a various number of identified clusters and different

point densities of the training dataset.

On the left plot, we show the MSE increase as a function of the fraction of the
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4. Experimenting on Real Data

required number of K-Means identified clusters, while the colors of the lines represent

percentages of the used training dataset. These percentages can be translated to point

densities, where the range [50%...100%] corresponds to [1283...2566N/m2]. On the

right plot, the MSE decay as a function of the fraction of the training dataset is

depicted, while different colors represent a different number of K-Means identified

clusters Ncl. Notice the dashed line outlining the required number of clusters, and

the significant MSE increase if we use fewer clusters than needed. On the other

hand, employing more clusters than needed does not improve the performance

significantly.

Even though these two plots seem similar, notice that the lines with constant point

densities (left) drop much faster than the lines with a constant number of clusters

(right). We even see a saturation effect on the left plot, when the required number

of clusters is achieved. Going from 0.5 to 1 fraction of required clusters, the MSE

increase drops by half, while a further increase in the fraction of necessary clusters

gains small MSE improvement.

If we use all available measurements and apply the clustering instead of using

each measurement separately in the prediction step, we can reduce the size of the

inversion matrix more then tenfold, from 6724×6724 to 625×625, at the cost of

only 2% MSE increase. If we can afford a further 0.2% MSE increase, the size of

the inversion matrix can be further halved to 312×312. By reducing the training

dataset from 6725 to 625 we reduce the computation time of the GPR prediction 66

times. Therefore, the clustering strategy will be beneficial for reducing computational

efforts when working with large datasets of crowdsourced measurements, that have

10 000 samples or more.
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4.2. Drone Measurements
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Figure 4.4.: MSE increase conditioned a various number of identified clusters and different

point densities of the training dataset.

We can also subsample the measurements and take one measurement at each 4cm

length, instead of 2cm. This way, we come to a total of 6724/4 = 1681 measurement

points, which can again be clustered to 625 clusters. The MSE increase for this

case is shown in Figure 4.4. Note that 100% of measurements here denotes the

1681 measurements, comparing to 6724 measurements in Figure 4.3. Thus, by

subsampling the map this way and grouping all measurement points to 625 clusters,

we reach a 10% increase in MSE compared to the case where the measurements

were made at 2cm distances.

4.2. Drone Measurements

In this section, we employ the measurement setup from the reference [5]. Four UEs

were mounted on top of the drone that flew a line pattern shown in Figure 4.6,

over a field area in Klingenbach, Austria, shown in Figure 4.5. After several days

of experimentation, the raw data measurements collected using all four UEs were

filtered to LTE band 20 (800MHz frequency) with ARFCN 6300 [22], leaving a total

of 4725 measurement points.
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4. Experimenting on Real Data

Figure 4.5.: Snapshot of a field in Klingenbach, Austria [23], where the drone measurements

were taken.

(a) (b)

Figure 4.6.: (a) Drone with four UEs mounted on top. (b) Drone measurement pattern.

Next, the RSRP is reduced by its mean value, which accounts for the path loss of

the given cell, leaving a Shadow Fading (SF) map as a result. Entire measurement

set is then utilized to estimate the hyper-parameters DD = 4.42m, σ f = 1.41 and

σn = 1.57 of the underlying SF map. Finally, using the entire dataset, the ground

truth map is predicted and then used as a comparison to calculate the MSE increase

when clustering is applied.

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.2. Drone Measurements
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Figure 4.7.: Original measurements on the left, predicted map on the right.

Again as in the XY-Table scenario, we used point densities from 50% to 100% of the

complete measurement set. Additionally, the number of clustered identified using the

K-Means method was varied around the required number of clusters, Ncl = 140.
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Figure 4.8.

Figure 4.9.: MSE increase conditioned a various number of identified clusters and different

point densities of the training dataset.

We observe the same trend in Figure 4.8 as in the XY-Table scenario, with a slight

increase in the MSE. This increase happens due to the higher signal variance in the
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4. Experimenting on Real Data

shadow fading map compared to the small scale fading scenario, as well as the higher

measurement noise level. As for the number of identified clusters, we again notice

a jump in the MSE when the required number of clusters condition is not satisfied.

The complete dataset we used here has 4725 measurement points. If we agree to

accept an MSE increase of 10%, we can reduce the training dataset by 30%, thereby

reducing our measurement time in the same amount. In addition to that, exploiting

clustering allows us to shorten the time between the measurements. We now only

need to fly and measure at those 625 cluster locations instead of flying the entire

field in a line pattern.

4.3. Sampling Strategy

Based on the conclusion of Chapter 3 and the results we have shown in this chapter,

we can derive the following sampling strategy for future reference.

In the first step, we use all available samples to learn the underlying map hyper-

parameters. When working in an application-specific domain, where we can roughly

guess the parameters in advance, choosing narrower bounds for parameters DD,

σ f , and σn can significantly speed up the learning process. This step is most time-

consuming and does not need to be repeated often, as the hyper-parameters vary

insignificantly over time and location.

Secondly, we fill the prediction area with clusters spaced by one DD, learned in

step one. This way, optimal positioning of the training points is achieved, where we

reduce the number of locations we need to sample at to 625 clusters in XY-Table and

165 clusters in the drone measurement scenario.

Thirdly, we collect repeated samples at previously determined cluster locations

over which we can average. In the case of the drone, by measuring at one specific

location for a longer time, we can reduce the position error, which is sensitive to

drone velocity. This way, instead of extensively sampling the area in line pattern at a

constant speed, we can optimize and speed up the measurements by only collecting

data at the cluster locations.

Lastly, using the hyper-parameters and the cluster measurements we made, we can

average over the clusters, and using those averaged number of clusters as the training

dataset, calculate the underlying performance map.
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4.3. Sampling Strategy

Learn Hyper-Parameters
Measurement
Database

Calculate required number
of clusters and determine
their optimal locations

Map
Dimensions

Collect repeated measure-
ments around cluster centers

Predict Performance Map

DD

DD
σf , σn

Figure 4.10.: Flow chart of the sampling strategy.
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5. Summary and Future Work

5.1. Summary

We exploited the concept of clustering measurements with the goal of reducing mea-

surement noise, both in KPI value and GPS location. By introducing the Gaussian

Process Regression as a possible solution to the prediction of network KPI perfor-

mance maps, we were able to leave room for slight measurement noise uncertainties

in the data itself. As measurement noise is allowed in the training locations, we are

able not only to retrieve the prediction value at a given test location but also a level of

certainty that predicted value is the true one. The standard deviation in the test values

can then be utilized to find black hole areas, and discover at which locations the new

clusters of measurements should be introduced next. We investigated how different

distributions of training datasets influence the GPR prediction with and without

applying clustering of the training dataset. Going from clusters at regular distances

and uniform cluster points distribution (S1), we moved to those with random cluster

points distribution (S2), finally coming to a close real-world scenario, where both

cluster and cluster points locations are randomized (S3). By analyzing the MSE

degradation through these scenarios for various point densities, we concluded that

the density increase achieved by adding extra data points into existing clusters does

not bring much improvement. Instead, we must increase the number of clusters, and

not the offspring cluster points, to gain new information.

As the real-world data clusters are unknown in advance, we reviewed different types

of clustering algorithms that could be exploited for our purposes. We concluded that

the best option is the K-Means algorithm, with a downside of a need to fix the number

of clusters that the algorithm distinguishes. This downside, however, can be overcome

by first estimating the decorrelation distance of the underlying KPI performance

map. Based on the dimension of the test area and the estimated DD, we can easily

calculate the number of clusters that would suffice for an accurate prediction. We
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5. Summary and Future Work

compared the K-means cluster identification method with the scenarios where the

simulated clusters are precisely known, over varying point densities. We had seen

that injecting new clusters in our simulation brings improvement, even when the

number of K-Means identified clusters stays the same.

In Chapter 4, we examined how the K-Means clustering method works in two differ-

ent real-world scenarios. First, by exploiting SSF measurements collected by four

XY-positioning tables provided with exact locations of the training dataset, we inves-

tigated how using different point densities with varying cluster count influences the

MSE. We remarked a significant jump in the MSE when the required number of clus-

ters for this specific map had not been satisfied. While on the other hand, increasing

this number did not bring much improvement compared to the computational time

that would be lost at its cost. Secondly, we analyzed the shadow fading measurements

collected by four UEs mounted on a drone. We noticed a similar trend as before,

with a slight change in the MSE level, present due to the different signal variance.

Finally, we derived a sampling strategy for the collection of measurements.

5.2. Possible Extensions

We can now understand the influence of the map decorrelation distance on the GPR,

and how to choose and place the clusters appropriately when possible. We also know

which clustering method is best suited in our scenario when the clusters are unknown.

This thesis provides the ground, and there are several things to be considered as

further applications. Exploiting the RTR crowdsourced measurements would be one

of them, conditioned that the available RTR database expands sufficiently. On the

one hand, the influence of the location uncertainty in the training data set is yet to

be examined. On the other, a cost function specifying the best location for the next

measurement in the black hole areas could be inquired.
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Appendix A.

Source Code Implementation

The source code implementation of the simulations and real data experiments dis-

cussed through this Thesis is available online at http://squid.nt.tuwien.ac.at/gitlab/stripkov/MasterThesis.

In this Appendix, we show only a few segments of the source code.

A.1. Sampling from Multivariate Gaussian

Distribution

1 import numpy as np

2 import scipy as sp

3

4 def sampling_fromGPR(xMin, yMin, xMax, yMax, TrainPoints, step, DD, sigma_f):

5 ’’’

6 Returns [TrainPoints, TrainValues], [TestPoints, TestValues]

7

8 Input Parameters:

9 xMin, yMin, xMax and yMax define the dimensions of the testing grid;

10 step defines how dense the grid is (if step=2 we have a grid 0,2,4...);

11 DD is decorrelation distance of the map we are sigma_f is signal standard variation

12 ’’’

13 # regular grid of TestPoints

14 x = np.arange(xMin, xMax+1, step,dtype=int)

15 y = np.arange(yMin, yMax+1, step,dtype=int)

16 xrr = np.repeat(x,y.size); yrr= np.tile(y,x.size)

17 TestPoints = np.stack((xrr,yrr),axis = 1)

18

19 # compute squared exponential kernel
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Appendix A. Source Code Implementation

20 AllPoints = np.append(TestPoints, TrainPoints,axis=0)

21 sq_dist = np.sum(AllPoints**2, 1).reshape(−1, 1) + np.sum(AllPoints**2, 1) − 2 * np.dot(

,→ AllPoints, AllPoints.T)

22 kernel = sigma_f**2 * np.exp(−0.5 / DD**2 * sq_dist)

23

24 # perform Cholesky decomposition

25 A = sp.linalg.cholesky(np.add(kernel,1e−10*np.eye(kernel.shape[0])), lower= True)

26

27 # generate vector of independent, standard normal variables

28 Z = np.random.normal(0.0, 1.0, AllPoints.shape[0])

29

30 # compute samples as X=AZ

31 X = A.dot(Z)

32

33 # separate train and test datasets

34 TestPoints_values = X[0:TestPoints.shape[0]]

35 TrainPoints_values = X[TestPoints.shape[0]:]

36

37 return np.concatenate((TestPoints,TestPoints_values.reshape(TestPoints_values.shape[0],1)),

,→ axis = 1), np.concatenate((TrainPoints,TrainPoints_values.reshape(TrainPoints_values

,→ .shape[0],1)),axis = 1) # return TestData, TrainData

A.2. Generating Clusters using TCP

Using TCP implementation from [24], we created a function that returns offspring

locations, together with information about specific clusters they belong to.

1 import numpy as np

2 import pandas as pd

3

4 def thomas_cluster_process(xMin,yMin,xMax,yMax,lambdaParent,lambdaDaughter,

,→ sigmaDaughter, extension_parameter=6):

5 """

6 Returns the set of points, cluster they belong to, cluster centers they belong to.

7

8 Input parameters:

9 xMin,yMin,xMax,yMax define the simulation area;

10 lambdaParent*sim_area gives the average number of parent points (number of clusters);

11 lamdaDaughter gives average number of points in clusters;

12 sigmaDaughter is the standard deviation defining the daugther spread around the parents;

13 extension_parameter defines the extended area around the simulation area − for edge effects;
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A.2. Generating Clusters using TCP

14 """

15

16 # Extended simulation windows parameters

17 rExt=extension_parameter*sigmaDaughter

18 xMinExt = xMin − rExt; xMaxExt = xMax + rExt

19 yMinExt = yMin − rExt; yMaxExt = yMax + rExt

20 # rectangle dimensions

21 xDeltaExt = xMaxExt − xMinExt; yDeltaExt = yMaxExt − yMinExt

22 # area of extended rectangle

23 areaTotalExt = xDeltaExt * yDeltaExt

24

25 # Poisson point process for the number of parents

26 nPointsParent = np.random.poisson(areaTotalExt*lambdaParent)

27 # x and y coordinates of Poisson points for the parents

28 xxParent=xMinExt+xDeltaExt*np.random.uniform(0,1,nPointsParent)

29 yyParent=yMinExt+yDeltaExt*np.random.uniform(0,1,nPointsParent)

30

31 # Poisson point process for the number of daughters in each cluster

32 nPointsDaughter = np.random.poisson(lambdaDaughter, nPointsParent)

33 numbPoints = sum(nPointsDaughter) # total number of points

34

35 # Generate the (relative) locations in Cartesian coordinates by

36 # simulating independent normal variables for relative coordinates

37 xx0 = np.random.normal(0, sigmaDaughter, numbPoints)

38 yy0 = np.random.normal(0, sigmaDaughter, numbPoints)

39

40 # replicate parent points (ie centres of disks/clusters)

41 xx = np.repeat(xxParent, nPointsDaughter)

42 yy = np.repeat(yyParent, nPointsDaughter)

43

44 # translate points (ie parents points are the centres of cluster disks)

45 xx = xx + xx0; yy = yy + yy0

46

47 # create df with all relevant information

48 groups = np.arange(nPointsDaughter.shape[0])

49 col3 = np.repeat(groups, nPointsDaughter, axis=0)

50 xParent = np.repeat(xxParent, nPointsDaughter, axis=0)

51 yParent = np.repeat(yyParent, nPointsDaughter, axis=0)

52 ALL = np.stack((xx,yy,col3,xParent,yParent),axis = 1)

53 df_all = pd.DataFrame(ALL)

54 df_all.columns = [’x’, ’y’, ’group’,’xParent’,’yParent’]

55

56 # retain points inside simulation window

57 indexNames = df_all[ np.logical_or(np.logical_or(df_all.x<xMin,df_all.x>xMax),np.
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Appendix A. Source Code Implementation

,→ logical_or(df_all.y<yMin,df_all.y>yMax))].index

58 df_all.drop(indexNames , inplace=True) # delete extended region

59

60 return df_all

A.3. Hyper-Parameter Learning and GPR

Prediction

Hyper-parameter learning can be omitted when the parameters are already known,

by simply setting

optimizer=None.

For implementation reference see [25] and [26].

1 import sklearn.gaussian_process as gp

2

3 # choosing smaller hyper−paramrter bounds reduces computational time

4 # RBF is the squared exponential kernel

5 # it is multiplied with a constant kernel accounting for signal variance

6 # white kernel is added on the diagonal, accounting for noise variance

7 kernel = gp.kernels.RBF(10,(1,50)) * gp.kernels.ConstantKernel(1,(1e−5,1e5)) + gp.kernels.

,→ WhiteKernel(noise_level=1, noise_level_bounds=(1e−5,1e5))

8 model= gp.GaussianProcessRegressor(kernel=kernel, alpha=1e−4, n_restarts_optimizer=100,

,→ normalize_y=True)

9 model.fit(TrainLocations, TrainValues) # fit the model to training dataset

10 PredictedValues= model.predict(TestLocations) # predict using learned model

A.4. Required Number of Clusters

1 # DD...learned decorrelation distance

2 # map dimensions

3 x_max = TestLocations[:,0].max()

4 y_max = TestLocations[:,1].max()

5 # requiered number of clusters

6 Ncl_required = np.arange(0,x_max,DD).shape[0]*np.arange(0,y_max,DD).shape[0]
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Appendix B.

Measurement Dataset

The measurement datasets utilized in this Thesis, collected using XY-positioning

table and the drone, can be found at

http://squid.nt.tuwien.ac.at/gitlab/stripkov/MasterThesis/data/experiments.

Matrix form of the XY-positioning table dataset we used:

XYdataset =

























x[cm] y[cm] RSRP[dBm]

1 1 −120.42

1 3 −120.73

1 5 −121.01
...

...
...

161 163 −120.96

161 165 −120.01

























For our purposes we substract the RSRP mean from the last column leaving the

SSF:

XYdataset =

























x[cm] y[cm] SSF[dBm]

1 1 6.72788962e −01

1 3 3.64455629e −01

1 5 8.11222958e −02
...

...
...

161 163 6.97788962e −01

161 165 1.37788962e −01
























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Appendix B. Measurement Dataset

Matrix form of the drone measurement dataset we used:

Dronedataset =

























x[m] y[m] RSRP[dBm]

45.09558954 4.42181968 −76.825

45.26660148 4.31748209 −76.95

45.88604408 3.85748815 −74.1
...

...
...

15.22734257 43.30085646 −73.075

15.70447844 42.67995257 −72.75

























For our purposes we substract the RSRP mean from the last column, leaving the

SF:

Dronedataset =

























x[m] y[m] SF[dBm]

45.09558954 4.42181968 −1.93238536

45.26660148 4.31748209 −2.05738536

45.88604408 3.85748815 0.79261464
...

...
...

15.22734257 43.30085646 1.81761464

15.70447844 42.67995257 2.14261464
























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Acronyms

3GPP 3rd Generation Partnership Project.

5gnr 5G New Radio.

ARFCN Absolute Radio-Frequency Channel Number.

DBSCAN Density-Based Spatial Clustering of Applications with Noise.

DD decorrelation distance.

GM Gaussian Mixture.

GP Gaussian Process.

GPR Gaussian Process Regression.

GPS Global Positioning System.

KPI Key Performance Indicator.

MDT Minimization of Drive Tests.

MSE Mean Squared Error.

OPTICS Ordering Points To Identify the Clustering Structure.

RSRP Reference Signal Receive Power.

RTR Austrian Regulatory Authority for Broadcasting and Telecommunications.

SE Squared Exponential.

SF Shadow Fading.

SSF Small Scale Fading.

UE User Equipment.
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Glossary

cluster A group of measurement data points around a cluster center, at a maximum

distance from cluster center defined by cluster radius r in S1, or by standard

deviation σ of normal distribution around the cluster center in S2 and S3.

cluster center A parent data point around which cluster of data points is formed.

In case of S1 location of cluster center coincides with averaged location of its

daughter cluster data locations.

crowdsource Obtain information by enlisting the services of a large number of

people, either paid or unpaid, typically via the Internet, rather than having

tasks done within a company by employees.

decorrelation distance Describes how far do you need to move (along a par-

ticular axis) in input space for the function values to become uncorrelated

[11].

S1 Scenario 1: evenly spaced cluster centers with evenly spaced cluster points.

S2 Scenario 2: evenly spaced cluster centers with randomly spaced cluster points.

S3 Scenario 3: non-uniform clusters generated using Thomas Cluster Process.
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