

Tool Support for
Semantic-Model-Driven
Systems Integration

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

ausgeführt von

Christian Astl
Matrikelnummer 0226577

am:
Institut für Softwaretechnik und Interaktive Systeme [E188]

Betreuung:
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Mag.rer.soc.oec. Stefan Biffl
Mitwirkung: Univ.Ass. Mag. Thomas Moser

Wien, 18.12.2008 ______________________ ______________________
 (Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43/(0)1/58801-0 ▪ http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

 ii

Eidesstattliche Erklärung

Christian Astl

7540 Moschendorf 62

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die

verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen

der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder

dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter

Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 18.12.2008 _________________________

 iii

Danksagung

In erster Linie möchte ich mich bei meinen Eltern bedanken, die es mir überhaupt erst

möglich gemacht haben ein Studium zu absolvieren und die mich über die gesamte Zeit

des Studiums unterstützten – Danke.

Ganz besonders bedanke ich mich bei allen Personen, die mir bei der Erstellung

meiner Diplomarbeit zur Seite standen, allen voran Ao.Univ.Prof. Dipl.-Ing. Dr. Mag. Stefan

Biffl, der mir die Möglichkeit gegeben hat, diese Diplomarbeit zu schreiben.

Mein besonderer Dank geht auch an das gesamte SWIS Team, durch die es mir

überhaupt ermöglicht wurde diese Diplomarbeit zu verfassen, vor allem bei Univ.Ass. Mag.

Thomas Moser sowie Univ.Ass. Dipl.-Ing. Mag. Richard Mordinyi möchte ich mich

bedanken, die mich über die gesamte Zeit unterstützt und zahlreiche Hilfestellungen

geboten haben.

 iv

Abstract

Integration aims at creating added value from quickly combining existing business

applications into a new larger system of systems. A precondition for integration is the ability

of these business applications to exchange data and to coordinate the overall system.

However, most business applications were designed independently and were not designed

for integration with other business applications. Thus, the integration of complex systems

bears a number of challenges, e.g. different system architectures, different message

protocols.

A promising approach to integrate a large number of heterogeneous systems is System

Wide Information Sharing (SWIS), developed in a scientific project at the Vienna University

of Technology in cooperation with Frequentis AG. SWIS uses a message-based approach

and helps designing a network for safety-critical data exchange between data provider and

data consumer services between several organizations and with heterogeneous

requirements and/or capabilities. In SWIS, ontologies are information mapping enablers

and therefore contain all relevant data and information (e.g., message type, communication

mode: push or request/reply, external services, needed converters, etc.) about the

applications and systems to integrate. Ontologies are a main part of the semantic web

technology and are used for knowledge representation of the real world; in this project for

the explicit representation of requirements and for quality assurance of the transformation

models in the network design process. The SWIS approach transforms all relevant

requirements of the involved systems into a correct and performing solution model (i.e., a

configuration for a distributed system used for the integration).

The practical part of the thesis is the creation of tool support for the SWIS approach,

more precisely a user interface for the Model Transformation Algorithm (MTA) process. The

visualization concept of the SWIS approach communicates emergent properties of the

integrated system. The visualization should facilitate a) product improvement by the visual

feedback and b) process improvement by providing better tool support and quality

assurance. The main focus of the practical work lies on building an easy-to-handle user

interface both for experts and non-experts. The user interface provides some process-steps

to choose all specific requirements for the calculation of the SWIS solution model. A major

criterion for a good user interface is the more effective and efficient enactment of process

steps compared to manual enactment.

 v

Zusammenfassung

Systemintegration versucht durch schnelles Zusammenfügen von vorhandenen

Unternehmensapplikationen in ein neues großes aus Systemen bestehendes System,

einen Mehrwert zu erzielen. Eine Voraussetzung für die Systemintegration ist die Fähigkeit

der Unternehmensapplikationen, Daten auszutauschen und das Gesamtsystem zu

koordinieren. Jedoch sind die meisten Applikationen unabhängig voneinander konstruiert

und daher nicht für die gegenseitige Integration geeignet. Daher beinhaltet die Integration

von komplexen Systemen zahlreiche Herausforderungen, wie z.B. unterschiedliche

Systemarchitekturen oder unterschiedliche Nachrichtenprotokolle.

Ein erfolgversprechender Ansatz um eine große Anzahl heterogener Systeme zu

integrieren, ist der System Wide Information Sharing (SWIS) Ansatz, der im Rahmen eines

wissenschaftlichen Projekts an der Technischen Universität Wien in Kooperation mit

Frequentis AG entwickelt wurde. SWIS verwendet einen auf Nachrichten basierenden

Ansatz und unterstützt beim Aufbau eines Netzwerks für einen sicherheitskritischen

Datenaustausch zwischen Datenanbieter und Datenverbraucher in mehreren

Organisationen und mit unterschiedlichen Anforderungen und Fähigkeiten. In SWIS werden

Ontologien für die Informationsabbildung verwendet; diese enthalten alle relevanten Daten

und Informationen (z.B. Nachrichtentyp, Kommunikationsmodus: Push oder

Request/Reply, externe Services, benötigte Konverter, usw.) über die zu integrierenden

Applikationen und Systeme. Ontologien sind Hauptbestandteil des Semantic Webs und

werden für die Wissensrepräsentation der realen Welt verwendet. Im Rahmen dieses

Projekts werden Ontologien für die detaillierte Repräsentation der Anforderungen und für

die Qualitätssicherung der Transformationsmodelle im Netzwerkaufbau-Prozess

verwendet. Der SWIS Ansatz transformiert alle relevanten Anforderungen der involvierten

Systeme in ein korrektes und funktionierendes Lösungsmodell (d.h. eine Konfiguration

eines verteilten Systems, das für die Integration verwendet wird).

Der praktische Teil dieser Diplomarbeit ist die Realisierung eines Tools zur

Unterstützung des beschriebenen SWIS Ansatzes, genauer gesagt eine

Benutzerschnittstelle für den Modell Transformations Algorithmus (MTA). Das

Visualisierungskonzept für den SWIS Ansatz zeigt die entstehenden Eigenschaften des

Integrationssystems. Die Visualisierung sollte folgende Erleichterungen bringen: a)

Produktverbesserung durch die visuelle Rückmeldung und b) Prozessverbesserung durch

verbesserte Tool-Unterstützung und Qualitätssicherung. Der Hauptfokus der praktischen

Arbeit liegt in der Erstellung einer sowohl für Experten als auch für Nichtexperten leicht zu

handhabenden Benutzeroberfläche. Die Benutzeroberfläche stellt einige Prozessschritte

zum Auswählen bestimmter Anforderungen für die Berechnung des SWIS Lösungsmodells

bereit. Ein Hauptkriterium für eine gute Benutzeroberfläche, liegt in der effektiveren und

effizienteren Abarbeitung der Prozessschritte im Vergleich zur manuellen Abarbeitung.

 vi

Contents

1 INTRODUCTION .. 1

2 RELATED WORK .. 6

2.1 System integration ... 6

2.1.1 Integration challenges .. 7

2.1.1.1 Technical integration challenges ... 8

2.1.1.2 Organizational integration challenges ... 9

2.1.2 Types of integration ... 10

2.1.2.1 Data integration ... 10

2.1.2.2 Functional integration .. 14

2.1.2.3 Comparison of the different integration types 18

2.1.3 Integration architectures .. 19

2.1.3.1 Point-to-Point architecture... 19

2.1.3.2 Hub/Broker architecture .. 20

2.1.3.3 Bus architecture .. 22

2.2 Model Driven Architecture (MDA) ... 25

2.2.1 Models and Metamodels .. 26

2.2.2 MDA Layered Architecture... 27

2.2.3 MDA benefits ... 29

2.2.3.1 Productivity .. 29

2.2.3.2 Portability ... 30

2.2.3.3 Interoperability ... 31

2.2.3.4 Maintenance and Documentation ... 31

2.3 Ontologies .. 32

2.3.1 Ontology languages ... 33

2.3.2 Designing Ontologies ... 35

2.3.3 Protégé ... 36

2.4 Integration Patterns ... 37

3 RESEARCH QUESTIONS ... 47

3.1 Evaluation of integration architectures .. 48

3.1.1 Initial planning efforts ... 48

3.1.2 Initial development efforts .. 48

 vii

3.1.3 Technical adaptations .. 49

3.1.4 Non-invasive legacy/host integration ... 49

3.1.5 Maintainability .. 49

3.1.6 Customizability ... 49

3.2 Case Study .. 50

3.3 Comparison of SWIS with traditional MDA.. 50

3.4 SWIS Integration Patterns ... 51

4 PRACTICAL WORK ... 53

4.1 System Wide Information Sharing (SWIS) .. 53

4.1.1 SWIS architecture .. 55

4.1.1.1 Design time ... 56

4.1.1.2 Run time .. 57

4.1.2 SWIS ontologies .. 58

4.1.2.1 Abstract Ontology .. 62

4.1.2.2 Domain Ontology... 65

4.1.2.3 Customer Ontology ... 67

4.2 The Model Transformation Algorithm (MTA) process 69

4.2.1 Step 1: Preparation of Semantic Data ... 70

4.2.2 Step 2: Calculation of Routes .. 71

4.2.3 Step 3: Calculation of Backup Routes ... 72

4.2.4 Step 4: Creation of Solution Model .. 72

4.3 Tool support for the MTA process ... 73

4.3.1 JSP and Servlets ... 73

4.3.2 Tool support process steps.. 74

4.4 Case Study for tool support ... 79

5 RESULTS ... 83

5.1 Evaluation of the SWIS approach ... 83

5.1.1 Initial planning efforts ... 83

5.1.2 Initial development efforts .. 83

5.1.3 Technical adaptations .. 84

5.1.4 Non-invasive legacy/host integration ... 84

5.1.5 Maintainability .. 85

5.1.6 Customizability ... 85

5.1.7 Evaluation comparison .. 86

5.2 Results of Case Study ... 86

6 DISCUSSION.. 92

6.1 Comparison of SWIS with traditional MDA.. 92

 viii

6.2 SWIS Integration Patterns ... 93

6.2.1 Message Translator ... 93

6.2.2 Publish-Subscribe Channel ... 94

6.2.3 Command Message ... 95

6.2.4 Request-Reply ... 96

6.2.5 Return Address .. 97

6.2.6 Correlation Identifier .. 98

6.2.7 Dynamic Router ... 99

6.2.8 Recipient List ... 100

6.2.9 Splitter .. 101

6.2.10 Aggregator ... 102

6.2.11 Message Broker ... 103

6.2.12 Envelope Wrapper ... 104

6.2.13 Content Enricher .. 105

6.2.14 Content Filter ... 106

6.2.15 Normalizer .. 107

7 SUMMARY AND FURTHER WORK ... 110

 ix

List of Figures

Figure 2.1: Shared Database [1] .. 11

Figure 2.2: Data replication [2] ... 13

Figure 2.3: File transfer [1] ... 14

Figure 2.4: Distributed Object Integration [1] ... 15

Figure 2.5: Message-Oriented Middleware Integration [1] ... 17

Figure 2.6: Service-Oriented Integration [2] ... 17

Figure 2.7: Comparison of the different system connections ... 18

Figure 2.8: Point-to-Point integration architecture ... 20

Figure 2.9: Hub integration architecture ... 20

Figure 2.10: Broker pattern refinement [2] ... 21

Figure 2.11: Bus integration architecture ... 22

Figure 2.12: A simple object-base publish/subscribe system [5] 23

Figure 2.13: The MDA four-layer architecture [8] ... 28

Figure 2.14: MDA-layered Architecture Example ... 29

Figure 2.15: Traditional Software Development Life-Cycle [17] 30

Figure 2.16: Web-based ontology languages [39] ... 33

Figure 2.17: User Interface of Protégé 3.3.1 .. 37

Figure 2.18: Loosely coupled integration solution .. 45

Figure 4.1: Air Traffic Management Network Structure .. 54

Figure 4.2: SWIS architecture .. 55

Figure 4.3: The three different types of ontologies used in SWIS 58

Figure 4.4: Excerpt of the Classes used in the SWIS ontology 61

Figure 4.5: MTA process steps... 69

Figure 4.6: Pareto optimality of different solutions ... 72

Figure 4.7: Selection of collaborations ... 76

Figure 4.8: Visualization of the SWIS network with the tool support 77

Figure 4.9: Correlation of tool support and MTA .. 78

Figure 4.10: Network architecture of the case study example 80

Figure 5.1: Resulting network architecture of the case study example 87

Figure 5.2: Routing example of the case study .. 87

Figure 5.3: Result of the case study ... 90

 x

Figure 6.1: Comparison of generic MDA and SWIS .. 92

Figure 6.2: Message Translator Integration Pattern [1] ... 93

Figure 6.3: Publish-Subscribe Channel Integration Pattern [1] 94

Figure 6.4: Realization of the Publish-Subscribe Channel pattern in SWIS 95

Figure 6.5: Command Message Integration Pattern [1] ... 96

Figure 6.6: Request-Reply Integration Pattern [1].. 96

Figure 6.7: Realization of the Request-Reply pattern in SWIS 97

Figure 6.8: Return Address Integration Pattern [1] .. 97

Figure 6.9: Realization of the Return Address pattern in SWIS 98

Figure 6.10: Correlation Identifier Integration Pattern [1] ... 98

Figure 6.11: Realization of the Correlation Identifier pattern in SWIS 99

Figure 6.12: Dynamic Router Integration Pattern [1] ... 99

Figure 6.13: Recipient List Integration Pattern [1] .. 100

Figure 6.14: Realization of a Sender Group in SWIS .. 100

Figure 6.15: Splitter Integration Pattern [1] .. 101

Figure 6.16: Realization of the Splitter pattern in SWIS ... 102

Figure 6.17: Aggregator Integration Pattern [1].. 102

Figure 6.18: Message Broker Integration Pattern [1] ... 103

Figure 6.19: Envelope Wrapper Integration Pattern [1] ... 104

Figure 6.20: Content Enricher Integration Pattern [1] .. 105

Figure 6.21: Content Filter Integration Pattern [1] .. 107

Figure 6.22: Normalizer Integration Pattern [1] .. 108

List of Tables

Table 2.1: System Connection Patterns [2] .. 19

Table 4.1: List of nodes and links for the case study example 79

Table 4.2: List of services for the case study example .. 80

Table 5.1: Evaluation of integration architectures [7] ... 86

Table 5.2: Collaboration example of the case study .. 87

Table 5.3: Possible collaborations of the case study example 88

Table 5.4: Possible scenarios of the case study example ... 89

 xi

List of Code-Listings

Listing 2.1: Syntax of the Resource Description Framework (RDF) 34

Listing 2.2: Syntax of the Web Ontology Language (OWL) ... 35

Listing 4.1: Abstract Ontology: Class definition .. 64

Listing 4.2: Abstract Ontology: ObjectProperty definition ... 64

Listing 4.3: Abstract Ontology: DatatypeProperty definition .. 65

Listing 4.4: Domain Ontology: relation to the abstract ontology 66

Listing 4.5: Domain Ontology: instance of class "Node" .. 66

Listing 4.6: Domain Ontology: instance of class "Link" .. 66

Listing 4.7: Domain Ontology: instance of class "Protocol" ... 67

Listing 4.8: Domain Ontology: instance of class "Attribute" ... 67

Listing 4.9: Domain Ontology: instance of class "NetworkAddress" 67

Listing 4.10: Domain Ontology: instance of class "Network" ... 67

Listing 4.11: Customer Ontology: relation to the domain ontology 68

Listing 4.12: Customer Ontology: instance of class "Message" 68

Listing 4.13: Customer Ontology: instance of class "ProviderService" 69

Listing 4.14: Customer Ontology: instance of class "ConsumerService" 69

Listing 6.1: Implementation of the Message Translator pattern 94

Listing 6.2: Implementation of the Publish-Subscribe Integration Pattern 95

Listing 6.3: Implementation of a T-Map for the Aggregator pattern 103

Listing 6.4: Implementation of an Envelope Wrapper pattern 105

Listing 6.5: Implementation of a Content Enricher pattern ... 106

Listing 6.6: Implementation of a T-Map for the Content Filter pattern 107

Chapter 1

INTRODUCTION

 1

1 Introduction

Nowadays, most business applications are built to run fully isolated from other business

applications, but in many cases, more and more of the isolated applications are combined

in order to exchange their data and communicate together. Organizations have the aim to

build a large integrated system of their business applications in different locations, so it is

possible that each isolated application can communicate with all other applications. In order

to realize such integration, a specific system like a middleware is needed. A middleware

offers the ability of data transformation and delivery of the messages of the different

integrated business applications to the appropriate target applications.

Generally, system integration aims at creating added value from quickly combining

existing business applications into a new larger system of systems. A precondition for the

integration is the ability of these business applications to exchange data and to coordinate

the overall system. However, most business applications were designed independently and

were not designed for integration with other varying business applications. Thus, the

integration of complex systems bears a number of challenges, like systems with different

architectures or systems using different message protocols or systems are running on

different platforms.

An Enterprise Service Bus (ESB) provides a possible software architecture construct for

system integration which is used in business integration software like OpenESB
1
 developed

by Sun Microsystems or Sonic ESB
2
 developed by Progress Software. In that solutions the

appropriate applications communicate via the bus with each other. The bus translates a

message from the specific protocol of the sender application to a message using the

specific protocol of the receiver application. However, the Enterprise Service Bus is only

one solution out of a lot of existing solutions; there exist much more different integration

architectures. Some of these integration architectures are described in this thesis in

Chapter 2.1.3, like Point-to-Point, Hub/Broker and Bus architecture. But this thesis focuses

on an integration approach, which was developed during a scientific project, the so-called

System Wide Information Sharing (SWIS) approach.

The SWIS approach was developed during a research project at the Vienna University

of Technology in cooperation with Frequentis AG
3
 and depicts a promising approach to

integrate a large number of heterogeneous systems. This solution realizes an integration of

numerous heterogeneous systems by using a message-based approach and helps

designing a network for safety-critical data exchange between data provider and data

consumer services belonging to different organizations and possessing varying

requirements and/or capabilities. In SWIS, ontologies are used as information mapping

enablers and therefore contain all relevant data and information about the applications and

systems to integrate, like message type, communication mode: push or request/reply,

1
 https://open-esb.dev.java.net
2
 http://www.sonicsoftware.com/products/sonic_esb/index.ssp
3
 http://www.frequentis.com

 INTRODUCTION

 2

needed external services, used converters, etc. Ontologies are a main part of the semantic

web technology and are used like a knowledge representation of the real world or only part

of it. Ontologies are formal models of a specific application domain, and primarily used to

facilitate the exchange and partitioning of knowledge. More precisely, an ontology is a data

model that represents a set of concepts within a domain and their relationships.

Building an integration solution is not an easy way, because of the diversity of each

domain. Therefore a lot of integration patterns exist, which provide a reliable and approved

way to realize a precise function. An integration pattern is defined by capturing the

knowledge of various experts who are familiar in a field the pattern stands for. Therefore,

predefined integration patterns can be used to build an individual integration solution for

specific requirements and capabilities. The SWIS integration approach also uses such

integration patterns.

The practical part of the thesis is the creation of tool support for the SWIS-project, more

precisely a graphical user interface for the Model Transformation Algorithm (MTA) process.

The MTA is a core part of the SWIS integration approach and is used to calculate a solution

model out of the defined semantic input models. The solution model acts as a configuration

model for the integration solution. The visualization concept of the tool support provides

predictable emergent properties of the integrated system. On the one hand, the

visualization should lead to product improvement by the visual feedback, and on the other

hand it should lead to process improvement by providing better tool support and quality

assurance. The developed tool for the SWIS approach should help the system integration

engineers to find a specific integration solution for a scenario. Furthermore, the user

interface should help the integration project manager because less time is needed to

model, create and verify the integration solution compared to traditional solutions.

The main goal of the SWIS approach is to integrate different systems in order to

enhance inter-operation. This is achieved by transforming all relevant requirements of the

involved systems into a correct and performing solution model (i.e., a configuration for a

distributed system used for the integration). It is a crucial task that the created solution

model by the transformation is a valid solution compared to the original requirements.

Another challenge is the creation of the user interface for the tool support, because building

a user interface is always critical. Many existing user interfaces cannot be handled by the

user because they are very complex and not clearly arranged. So the main focus of the

practical work lies on building an easy to handle user interface, which can be used by

experts and non-experts similarly. The user interface provides some process-steps to

choose all specific requirements for the calculation of the solution model. A major criterion

for a good user interface is the more effective and efficient enactment of process-steps

compared to manual enactment. The visualization of the solution model as one step in the

user interface offers different views (network layer, physical layer, protocol layer) and

shows detailed information about the existing network infrastructure (nodes and their links).

To evaluate the benefits of the tool support for the MTA process, a case study was

performed. The participants had to process a very simple integration example with manual

calculation and afterwards automatically by means of the tool support.

The remainder of this thesis is structured as follows: generally, the thesis is divided into

related work, research questions, practical work, results, discussion, and summary and

further work. In Chapter 2, the related work of this thesis is described. The related work

 INTRODUCTION

 3

encompasses an overlook about following four topics: system integration, Model Driven

Architecture (MDA), ontologies and integration patterns. First, in the system integration

chapter (Chapter 2.1) numerous integration challenges are defined which must be handled

to build an integration solution out of many heterogeneous systems. The integration

challenges are described in Chapter 2.1.1 and beside some generic problems, like scale,

dynamic configuration and the difficulty for finding the relevant data for an integration

solution, also technical as well as organizational integration challenges are described. Also

in Chapter 2 the different types of integration approaches are specified (see Chapter 2.1.2):

business process integration, portal integration, entity aggregation, data integration,

functional integration and presentation integration. Business Process integration is an

orchestration of interactions between multiple systems by defining a business process

model outside of the applications. Portal integration represents an overall user interface of

multiple applications so that the user gets a comprehensive view of all the underlying

applications. Entity aggregation extends the portal integration so that not only users but

also applications can deal with the integration by providing a unified data view. Data

integration is an approach to make the high amount of data, containing in different data

sources, accessible so that all other systems can use all the data. By means of functional

integration the participating systems are combined together using special interfaces. Via

this interfaces the systems can access each other to use the underlying data source. With

presentation integration all participating applications interacts with the host application via

the user interface. Applications can access the functionality of another application through

a presentation byte stream by simulating users input and get the required information back

by reading the output from the display. In the next chapter (Chapter 2.1.3) the different

integration architectures are highlighted, like Point-to-Point, Hub/Broker and Bus

architecture. A Point-to-Point communication is the simplest technique to connect all

participating systems among each other. Each system has respectively a direct connection

to all other participating systems of the integration solution. In the Hub/Broker architecture

all involved systems are connected via a central point, the hub. The hub controls the whole

communication between the participating systems. At last the Bus communication which

provides a special network component (the bus) to connect the single systems. In Chapter

2.2 an introduction to the Model Driven Architecture (short MDA) is given. The basic

concepts like models and meta-models as well as the characteristics a model must conform

to a certain degree are defined. After the description of the layered architecture of the MDA,

the benefits of using a MDA process compared to a traditional software development

process are defined. Afterwards in Chapter 2.3 ontologies, which keep the required data

and information for the developed SWIS integration approach, are pictured. The different

ontology languages are listed, whereas the developed SWIS approach uses the Web

Ontology Language (OWL) to define the ontologies. Also designing guidelines for the

construction of ontologies, according to clarity, coherence, extendibility, minimal encoding

bias and minimal ontological commitment, are specified. Finally, in the ontology chapter,

the tool Protégé which is a free, open-source editor for the development of ontologies, is

introduced. In Chapter 2.4 some enterprise integration patterns are described.

Afterwards, Chapter 3 identifies the research questions of the thesis, containing the

need for an evaluation of the developed SWIS approach by comparing it with traditional

integration architectures, like individual interfaces, hub & spoke or service-oriented

architecture (SOA). Therefore some evaluation criteria are used: initial planning efforts,

initial development efforts, technical adaptations, non-invasive legacy/host integration,

 INTRODUCTION

 4

maintainability and customizability. Also the need for an appropriate case study to obtain

the benefits of the developed tool support is described within the research questions.

Furthermore, also a comparison of the developed SWIS approach with traditional MDA is

part of the research questions. And the fourth research question deals with the realization

and the use of the defined integration patterns (Chapter 2.4) in the SWIS approach.

Chapter 4 contains the practical part of the thesis. Thereby, a closer look into the

developed SWIS integration approach (Chapter 4.1) is done. The whole SWIS process can

be subdivided into two main parts the design time and the run time. The design time

contains the definition of the semantic models, the Model Transformation Algorithm (MTA)

to transform the semantic models into a solution model, and the simulation of the MTA-

generated solution model. The run time contains the deployment of the generated and

simulated solution model, additional lab testing as well as regular monitoring and auditing

of the deployed integration solution. Afterwards the used SWIS ontologies (abstract,

domain and customer ontology) and the needed ontology components (e.g. nodes, links,

protocols, services, etc.) are explained. Chapter 4.2 contains the Model Transformation

Algorithm (MTA), whereas the four main steps of the MTA are described: Step 1:

Preparation of semantic data comprised in the input models. Step 2: Calculation of routes

between provider and consumer services. Step 3: Calculation of backup routes for each

SWIS node. Step 4: Creation of the SWIS solution model. Afterwards, Chapter 4.3 deals

with the tool support for the MTA process. The tool support should provide some facilitation

in finding a specific integration solution, both for system integration engineers and

integration project manager. The tool support provides nine major steps to guide through

the MTA process and to get a solution model for the integration solution. And finally in

Chapter 4.4, the instructions to the performed case study for the tool support are given.

In Chapter 5, first the evaluation results from the detailed comparison of the developed

SWIS integration approach with other existing integration architectures like individual

interfaces, hub & spoke and service-oriented architecture (SOA) according to the defined

evaluation criteria are highlighted in Chapter 5.1. And second the results of the performed

case study for the tool support are presented in Chapter 5.2.

Chapter 6, contains the comparison of the developed SWIS approach with traditional

MDA processes (Chapter 6.1) and a detailed description, how the integration patterns,

which are defined in the related work, are realized in the SWIS approach (Chapter 6.2).

At last, Chapter 7 concludes the thesis and gives a short outlook for further works.

Chapter 2

RELATED WORK

 6

2 Related Work

This chapter presents an overview about the high potential term system integration.

System integration becomes more and more to an important topic. The integration of

almost all heterogeneous systems used in an organization can lead to an advantage in

competition compared to other organizations without much effort in integration of their

different systems. Furthermore this chapter provides an insight into the technique of Model

Driven Architecture (short MDA). MDA is an approach for modern software development,

by using a layered architecture for software system specifications and development [15].

This technique can help developing a well structured and easy to reuse system integration

framework by separating the requirement specifications from the system functionality.

Afterwards on introduction to ontologies is given. Ontologies are used in the semantic web

technology for knowledge representation. Corresponding to the term of system integration

an ontology holds the requirements and capabilities. At last some important integration

patterns used to build an integration system are described. Hohpe and Woolf [1] defined a

lot of possible integration patterns for building an overall application out of different

heterogeneous systems. Some of these defined patterns are listed and explained.

2.1 System integration

Nowadays, in companies a large amount of different business applications is running.

These applications are often built to work in a single isolated environment. Applications

often run on a certain platform and are developed with different technologies that it is not

possible to easily merge these applications to communicate together or share their data

among each other. Today the computing technology changes from single systems to a

coordinated set of systems in which multiple distributed resources are involved [12].

Building a big homogeneous system which covers all the business processes and systems

of the entire enterprise is often not feasible as a result of high financial costs and high risks

for adoption. Therefore companies are interested in finding a way to integrate all their

existing systems. System integration is a naive way to combine all these legacy

applications to build one big coherent system where all involved business applications can

work together.

But why is system integration actually required? Why do organizations make no efforts

to build one cohesive system for their business applications from the outset so that system

integration is no task for them? Of course, it is not as easy as it sounds. Even the smallest

company does not have a single coherent system in use. They are using numerous

different software applications which handle the different needs of the individual business

units. There are many reasons for this, like [1]:

• The organizations have software products developed by different vendors.

 RELATED WORK

 7

• The different systems are not built at the same time, one system is older - another

system is fresh off the shelf. It is obviously that these different systems are built

using different technologies.

• The development of a software system depends on the developer person. Each

developer has different experiences and capabilities and this leads to different

approaches on how to build a software application.

This chapter provides an introduction to system integration. First the challenges for

integrating heterogeneous systems are described. These challenges show to what kind of

changes or efforts system integration can lead to. Then the section describing different

types of system integration gives a short overlook about the different techniques for system

integration solutions. And in the last section the different integration architectures (e.g.

Point-to-Point, Hub, Bus) are figured out.

2.1.1 Integration challenges

The integration of heterogeneous systems is not an easy task. There are a lot of

challenges which must be handled to reach the aim of a functioning coherent integrated

system (e.g. applications are running on different platforms and are located on different

places). Current system integration technologies partially provide great techniques for

dealing integration tasks, but implicate also numerous limitations. Gorton et al. [29] defined

some challenges for system integration regarding the integration of different applications,

which must be solved. These challenges can occur as a result of ever-changing

technologies applications are developed with and focuses on the requirements pretended

for the realization of an integration solution.

Scale

Due to the high amount of digital data sources and the increasing number of modern

applications depending on rapid access to multiple data sources, scalability of integration

solutions to handle numerous different data sources is a crucial task. Integration solutions

should be able to rapidly merge different data from disparate data formats to provide a

transparent access to this data from different applications. Therefore modern integration

solutions must have a look to scalability to handle numerous data source and have to

provide a flexible transformation mechanism to convert data from one format to another.

Dynamic configuration

Integration techniques often must handle different heterogeneous data sources by

means of adapters. An adapter converts data from one specific format to another specific

data format. But often no appropriate adapter for a data source is available and so a new

adapter must be created to achieve the needed tasks. Furthermore the development of an

adapter is not as easy as it sounds. It could lead to high costs for development and it is

important to consider the time an adapter needs to convert the relevant data of a data

source. If there are many requests for accessing the data source, the adapter must be built

with main focus on performance. For system integration purposes modern integration

 RELATED WORK

 8

technologies have to minimize cost and time factors for the integration of data sources. At

best an integration technology automatically creates suitable adapters for the integrated

data sources to establish access to the data from participating applications.

Finding Relevant Data

Finding relevant data out of a mass of data for a specific application is becoming a real

problem due to the increasing amount of integration solutions with big infrastructures and

enormous existing data. Most traditional data sources do not possess with semantic search

functions where data of interest can be indicated and easy located Modern integration

techniques should be able to automatically find the relevant data from the data sources by

extracting semantics of the data sources and linking the appropriate data to the

participating applications.

Hohpe and Woolf [1] and Trowbridge et. al [2] also defined numerous challenges for the

integration of different business applications. The challenges are divided into the following

technical and organizational challenges.

2.1.1.1 Technical integration challenges

Technical integration challenges highlight the problems of system integration according

to the hardware (e.g. networks) and regarding to the integration solution (e.g. how an

integration solution must be built).

Networks are unreliable

Within the integration of heterogeneous applications and in order to exchange

information among each other, data must be transported from one system to another

system across the network. Unlike different processes on a single system where no

network hardware is needed, the communication over networks has a large amount of

possible problems. Data between two systems must be sent within a given time and the

reliability of the network is fundamental for the communication. In order that the data has to

pass through a lot of different network elements (e.g. phone lines, routers, switches, etc.)

the amount of possible error sources is very high.

Networks are slow

A distributed integration solution must have a special focus on performance measures.

Consider that the exchange of data in a network is multiple times slower than the

communication on one single system. Therefore the integration solution must be designed

to fulfill the needed performance measurements.

Each application is different

No application equals another application. Each application is actually unique.

Applications differ between the programming languages they are written in, the operating

platforms they are running on, or the used data formats, in short each application has their

 RELATED WORK

 9

own construction type and look. So it is a great challenge to build integration solutions

which can deal with these different technologies.

Changes in applications are inevitable

No application can be in use forever. Technology changes over time and so also

applications start to get out of date. An integration solution has to consider this fact and so

the single applications must be virtually decoupled from each other. Otherwise if one

application changes it has an effect on all other participating applications. This separation

of the dependencies is called loose coupling.

2.1.1.2 Organizational integration challenges

The organizational integration challenges focus the problems that can have an

implication to the organizational structure of a company or the company itself. A bad und

imperfect integration can cause high loss of money and can lead to some worse effects.

Changes in business policy are sometimes required

An existing business application always covers just a certain functional field (e.g.

accounting, finance, customer relationship management, sales, etc.). In some cases

system integration can cause changes in actual business policy of a company because not

only the communication between multiple computer systems but also the communication

between business units needs to be established.

Integration can become crucial for the company

Integration has a strong implication to the company. After integration of the most

essential business functions to a corporate integration solution, the correct and faultless

functioning is assumed. A worse integration solution can lead to an enormous high loss of

money if the business processes of the company aren’t implemented optimal. Late changes

in the integration solution are difficult to achieve and often not applicable. Therefore

building an integration solution needs much information about the participating systems, the

company’s policy, the internal business functions, and so on. Integration aims for a level of

sophistication to get an efficient and well-formed solution.

Limited control over the applications

Sufficient amount of control over the attended applications represents another

integration challenge. In most cases a company uses many different legacy applications.

There is no chance for the integration developers to alter such applications because these

applications cannot be accessed for altering due to restriction of control. This means

additional effort to the integrators to establish integration of such applications.

The next chapter describes different types of integration. They show how applications

can be merged together and which integration techniques can be used to get an

appropriate integration solution.

 RELATED WORK

 10

2.1.2 Types of integration

System integration techniques focus on different levels to combine participating

heterogeneous system. There are multiple types of system integration techniques which

differ at the level where the integration is done. Basically two groups of integration types

exist. The first group of integration techniques focuses on the design of an integration layer.

This group contains the following types:

• Business Process integration: Process integration is an orchestration of

interactions between multiple systems by defining a business process model

outside of the applications.

• Portal integration: Portal integration represents an overall user interface of

multiple applications so that the user gets a comprehensive view of all the

underlying applications.

• Entity aggregation: Entity aggregation extends the portal integration so that not

only users but also applications can deal with the integration by providing a unified

data view.

The second group of integration techniques focuses on the mechanism how the

systems are connected together. This group consists of the following types:

• Data integration: Data integration is an approach to make the high amount of data,

containing in different data sources, accessible so that all other systems can use all

the data.

• Functional integration: By means of functional integration the participating

systems are combined together by providing special interfaces. Via this interfaces

the systems can access among each other to use the underlying data source.

• Presentation integration: With presentation integration all participating

applications interacts with the host application via the user interface. Applications

can access the functionality of another application through a presentation byte

stream by simulating users input and get the required information back by reading

the output from the display.

In the following chapters two integration types from the second group are described in

detail, the data integration and the functional integration. Afterwards a comparison of all

three types of the second group is done.

2.1.2.1 Data integration

The data integration mechanism integrates systems at the logical data layer. The idea

is to provide an overall interface for accessing different data sources of multiple

applications. In an enterprise many applications exist which keep large amounts of

information in data stores like flat files or databases. Other applications which want to use

 RELATED WORK

 11

the information connect directly to these data stores. An advantage of data integration is

that the applications which held the data sources must not be changed to provide an

interface on where the other applications get access to the underlying data. Another

advantage is that a user, who needs some data from different data sources, must not care

about the location of the wanted data. The user does not need to know which application

stores the specific data. The data integration approach gives users the ability to specify

what data they want, instead of determining how to obtain the data [9]. But the integration

solution within data integration uses a strong binding to the data structure of the underlying

applications. This means that in case of changing one data model of any application, also

the integration solution has to be changed to meet the modified specifications and to

access the data source furthermore. In general data integration is easy to develop,

because no application logic of the integrated applications is used.

Organizations have to care about the possibilities to share the data between the

different heterogeneous applications. There are some techniques for such integration. Data

integration can be realized by means of shared databases, maintain data copies, and file

transfer. Each of these techniques gives an answer to the question, on how to integrate

multiple applications that are not designed to work in correlation and are not constructed to

change information among each other.

Shared databases

In a shared database all participating applications store their data to share it with all

other applications. Each application can access the shared data in the database when it is

needed. An advantage of a shared database is that the containing data is always up to

date. Because all applications use the same database and changes of data takes place

centralized and the other applications always get the actual data. But shared databases

have to struggle with some disadvantages. The common use of the same database

involves problems in semantic discrepancy. This problem is very difficult to solve but it

cannot be left regardless because it leads to dozens of incompatible data. For the design of

shared databases it is a very difficult task to build a suitable database which can handle the

requirements of multiple applications.

Figure 2.1: Shared Database [1]

 RELATED WORK

 12

Fowler in Hohpe and Woolf [1] explains that a resulting schema which meets the needs

for the different applications is often difficult to use for application programmers. Beside the

technical difficulties there are also multiple political troubles in designing the appropriate

schema. Another downside for shared databases occurs by using packaged applications.

Vendors use their own schema for storing the data and this schema won’t work with the

schema designed for the integration solution. By using just one shared database for

multiple applications it can come to huge database performance problems if the

applications frequently read and update the stored data. In the worst case the applications

can run into deadlocks, where the applications lock each other out of the data. Figure 2.1

presents the structure of a shared database.

Data copies

 The technique of maintaining data copies is an extension of the shared database

approach. Instead of only one shared database for all participating applications, there

exists one database for each application and all databases have exact the equal data

stored in it. For synchronizing purposes the data of the individual databases are replicated

to each other. This means, the changed data from one database is copied to all other

databases. There exist several techniques to achieve this. Teale et al. [10] describes

different patterns for maintaining data copies:

• Move Copy of Data: This pattern defines a fundamental construct which is used for

all other types of asynchronous data copies. It presents the data movement building

block consisting of data source, data movement set, data movement link and the

data target.

• Data Replication: Data replication provides a special form of data movement. It

presents an easy way to acquire and manipulate the data. But the fact that both –

the data source and the data target – must be updated tends to a high complexity of

this pattern. Figure 2.2 shows the structure of the data replication pattern.

• Master-Master Replication: This data movement pattern describes a bidirectional

data replication between data source and data target. Including conflict detection

and resolution for handling simultaneous updates of the same data to different data

copies during one transmission interval.

• Master-Slave Replication: The master-slave replication is an alternative to the

master-master replication. It uses a unidirectional data replication to store the data

from the data source to the data target. The data of the target will be overwritten at

the transmission.

• Master-Master Row-Level Synchronization: This pattern provides a special type

of the master-master replication. It uses the same functionality with the only

difference that the conflict detection and resolution happens at the row level.

• Master-Slave Snapshot Replication: The specific characteristic of the master-

slave snapshot replication pattern is the transmission of a complete replication set.

The transmitted replication set comes from the data source, may be updated and

 RELATED WORK

 13

stored in the data target. This technique is suitable to equalize the data source and

data target after that a master-master replication takes place.

• Capture Transaction Details: Provides a design to manually capture transactional

information which is necessary for incremental replication when no database

management system transaction log is available for some reasons.

• Master-Slave Transactional Incremental Replication: This pattern provides a

specific form of the master-slave replication. Only the changed data is transmitted

from the data source to the data target with help of transmitting transactional

information.

• Master-Slave Cascading Replication: The master-slave cascading replication

pattern shows how to design a deployment for master-slave replication from one

data source to multiple data targets. Thereby a concatenation of replication links

with databases, which sits between and act as data source and data target, takes

place. The targets can subscribe to a replication set which will be replicated.

Figure 2.2: Data replication [2]

File transfer

By using file transfer to change data between multiple applications, an application

stores its information in a file and another application reads the needed information from

this file. A crucial task with the usage of files is the decision what format should be used.

The output from one application fulfills only in the rarest cases the requirements for another

application. So the output must be transformed in a neutral format so that other applications

can deal with it. In the past different file formats were used, but in the last time the XML-

format has established as the current to use method. An advantage of the file transfer

method is that no knowledge about the internal logic of the applications is needed to build

an integration solution. As you can see on Figure 2.3 a separate logic – the so-called

exporter – does the transformation from the applications internal format to the neutral

format to store the data in a file. On the other way a separate logic – the importer –

converts the data from the neutral format to the applications internal format to read the

stored data. By using such separate logics the participating applications are completely

decoupled from each other. Changes in application are acceptable as long as they produce

the data in the same format. The file transfer method to exchange data between

 RELATED WORK

 14

applications sounds very simple and straightforward, but there are also some issues to

manage. One problem of storing data in files and read data out of the files arises when files

are processed too frequently. For storing and reading files a certain amount of effort is

needed. It is necessary to limit the processing of the files to just a few times (e.g. daily,

weekly, etc.). But this leads to another big disadvantage. Due to low frequently processing

of the data the particular applications can run out of synchronization. A short example: a

change of a customer’s address is made in the customer relationship management system.

The data will be processed once a day at midnight. If the billing system sends a new bill to

this customer on the same day the change of the address is made, it will be sent to the

customer’s old address because the information between the CRM and the billing system

are not synchronized yet.

Figure 2.3: File transfer [1]

2.1.2.2 Functional integration

 Functional integration is also known as application integration and integrates systems

at the logical business layer. This means that the business logic of an application which

keeps data in data stores is shared, so that other applications can use the data store

across the application without direct access to it. The individual applications will be

connected via interfaces and specifications allocated by the integrated application. But

often some of the participating legacy applications don’t provide any interfaces or

specifications and an integration of such applications is hard or rather not possible.

To realize an integration of multiple applications by means of functional integration, two

preconditions are needed. First: availability of the business function which is used for the

integration in the business logic of the source application. If this condition is not given the

source application must be modified to implement the needed business functionality.

Second: remote access to the source applications API is needed. If an application only

supports local API calls and middleware must be created which receives remote API calls

and transforms them into local calls, accepted by the application.

The Implementation of a functional integration solution is realized by means of

distributed objects, message-oriented middleware or service-oriented architectures.

Distributed Object Integration (Remote Procedure Invocation)

With Remote Procedure Invocation (also called Remote Procedure Call, RPC) an

integrated application is designed as a large-scale object which has the data encapsulated

inside and is used for encapsulated integration of different applications. Each application

 RELATED WORK

 15

must provide an interface so that other applications can communicate and interact with the

application. An application gets the data from the participating application by asking the

application directly. To modify the data of another application, the initiating application

makes a call to the other application. It appears that the objects inside the remote

applications communicate with each other in such a way as they would communicate via a

local connection.

Figure 2.4 shows a schematically picture of a remote procedure invocation.

Figure 2.4: Distributed Object Integration [1]

Two specific techniques used by Distributed Object Integration are stub and skeleton.

The stub has the task to create and issue a client request to send it to the receiver. And the

skeleton has the task to receive an incoming client request and to deliver this request to the

object implementation [19]. Examples for Remote Procedure Invocation techniques are

CORBA, DCOM, .NET Remoting and Java RMI.

• CORBA (Common Object Request Broker Architecture): This technique

provides a specification for distributed systems founded by the Object Management

Group (OMG):

“CORBA is a mature, standard middleware that combines the interoperability,

deterministic execution, and absolute dependability required by distributed

embedded systems.” [20]

With CORBA the semantic of method-calls between the participating distributed

systems are standardized. The interfaces of the allocated objects and services are

specified by means of the Interface Definition Language (IDL). IDL is comparable

with other interface definition languages, because also an exact syntax to formulate

methods and their parameters is provided. An interface consists of many methods

and the objects specify which interfaces they implement.

• DCOM (Distributed Component Object Model): The Component Object Model

(COM) was developed by Microsoft and builds a fundamental technique in

Microsoft’s operating systems beginning with Windows 95. COM is a specification

for building language and location independent objects that offer particular

interfaces to access each other [21]. The Distributed Component Object Model is

an enlargement of the COM technology to establish a network-based

communication between objects located on different systems. To invoke an object

 RELATED WORK

 16

on a target system from a calling application running on a source system the DCOM

technique is responsible to coordinate the communication between source and

target system. At first DCOM gets the location of the target system out of

configuration information stored in the registry. Then a client proxy on the source

system and a server proxy (stub) on the target system are created and finally the

communication between the two proxies is conducted directly via point-to-point

connection [2]. See Chapter 2.1.3.1 for more information about point-to-point

integration architecture.

• .NET Remoting: The .NET Remoting technique is also developed by Microsoft and

is an enhancement of the Distributed Component Object Model (DCOM) using the

Microsoft .NET Framework.

“.NET remoting enables client applications to use objects in other processes on the

same computer or on any other computer available on its network.” [22]

This technique is similar to the before described DCOM technique. Remoting also

uses object references for communication between client and server. The only

difference to DCOM is that .NET Remoting doesn’t get the reference to the target

system out of configuration information stored in the registry. The client retrieves

the needed reference by means of the remoting infrastructure rather gets the

reference passed as parameter by the Activator.GetObject() method [23].

• Java RMI: Java Remote Method Invocation (short RMI) was introduced by Sun

Microsystems as a mechanism where two distributed Java-based applications can

communicate together. One application can invoke methods of remote Java objects

from other applications running on different systems in a network. A remote method

call with RMI occurs within four steps. First the server registers a so-called remote

object in a specific RMI registry where the object must have a unique name.

Second the client offers an interface the remote object has to implement. The client

looks for the appropriate object in the RMI registry and creates a reference to this

object. Third the client invokes a method of the remote object on the server.

Required parameters are transferred over the network. Fourth the server sends

back the return value of the invoked method or alternatively an error exception to

the calling client.

Message-Oriented Middleware Integration (Messaging)

Message-Oriented Middleware (MOM) becomes more and more important due to the

raising amount of developing loosely coupled applications distributed over a large scale

network. MOM is defined as following:

“MOM provides an infrastructure that transmits messages and events to the widely

spread components of a service, gluing them together through logical coupling.” [24]

With Message-oriented middleware integration the participating systems are connected

together by using asynchronous message queues. To achieve such integration

standardization to a proprietary message-oriented middleware is required (see Figure 2.5).

The Figure shows that the particular applications are connected by means of a Message

 RELATED WORK

 17

Bus and they communicate together through messages with a little data in it. Consider that

an asynchronous and durable communication bears the risk of losing messages during

transportation due to network failures or system errors.

Figure 2.5: Message-Oriented Middleware Integration [1]

Service-Oriented Integration

The technique of service-oriented integration uses web services to connect different

systems together. Participating systems must be built for sending and receiving XML web

service messages. The W3C consortium describes a web service as following:

 “A Web service is a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-processable

format (specifically WSDL). Other systems interact with the Web service in a manner

prescribed by its description using SOAP messages, typically conveyed using HTTP with

an XML serialization in conjunction with other Web-related standards.” [11]

The service-oriented integration approach uses a web service description language

(WSDL) for the description of the application interfaces. Each application has a separate

WSDL file, providing the contract how other applications can establish a communication to

this application. In Figure 2.6 the basic structure of a service-oriented integration is

displayed. Main parts are the service provider application and the service consumer. The

offering service is implemented in the service provider application and can be used by other

applications. To achieve this, the service provider has to specify a service interface

containing the contract to fulfill for consuming the implemented service. The service

gateway containing in the service consumer encapsulates the logic for consuming the

requested service.

Figure 2.6: Service-Oriented Integration [2]

 RELATED WORK

 18

2.1.2.3 Comparison of the different integration types

Figure 2.7 shows a comparison of the different integration solutions depending on the

layer on which the systems are connected together. The left picture represents the data

integration technique. It is obviously that the integration system is connected at the data

layer. The centric picture shows the functional integration where the integration solution is

connected to the business logic. And the right picture displays presentation integration with

its connection to the presentation layer.

Figure 2.7: Comparison of the different system connections

In Table 2.1 a summarized overview about the different patterns for system connection

integration is given. The table also describes the respective problem of each pattern and

their specified solution.

Pattern or pattlet Problem Solution

Data Integration How do you integrate information

systems that were not designed

to work together?

Integrate applications at the

logical data layer. Use a Shared

Database, File Transfer, or

Maintain Data Copies

Shared Databases

[Hohpe04]

How can multiple applications

work together and exchange

information?

Have multiple applications store

data in a single database. Define

a schema that handles the needs

of all relevant applications.

Maintain Data Copies

[Teale03]

How can multiple applications

work together and exchange

information?

Have multiple applications access

multiple copies of the same data.

Maintain state integrity between

copies.

File Transfer

[Hohpe04]

How can multiple applications

work together and exchange

information?

At regular intervals, have each

application produce files that

contain the information that the

other applications must consume.

After you create it, do not

maintain the file.

 RELATED WORK

 19

Functional Integration How do you integrate information

systems that were not designed

to work together?

Integrate applications at the

logical business layer. Use

Distributed Object Integration,

(proprietary) Message-Oriented

Middleware Integration, or

Service-Oriented Integration.

Distributed Object

Integration (see also

Remote Procedure

Invocation [Hohpe04])

How do you integrate applications

at the logical business layer?

Develop systems that have object

interfaces that can be consumed

remotely by other systems.

Message-Oriented

Middleware Integration

(see also Messaging

[Hohpe04])

How do you integrate applications

at the logical business layer?

Use proprietary message-

oriented middleware to send

messages asynchronously.

Service-Oriented

Integration

How do you integrate applications

at the logical business layer?

Use Web services to expose

interfaces that can be consumed

remotely by other systems.

Presentation Integration How do you integrate information

systems that were not designed

to work together?

Access the application’s

functionality through the user

interface by simulating a user’s

input and reading data from the

screen display.

Table 2.1: System Connection Patterns [2]

2.1.3 Integration architectures

For the integration of different systems there exist several ways how these systems

could be connected together to build one big corporate system. Generally there exist three

main possible integration architectures to establish the integration of systems. The

difference between these architectures is the way how senders and receivers are

connected together. In the following section the three various architectures are described,

starting with the basic Point-to-Point connection, following by the more complex Hub

connection and finally the Bus connection.

2.1.3.1 Point-to-Point architecture

The Point-to-Point communication is the simplest way of connecting participating

systems among each other. Each system has respectively a direct connection to all other

systems. A Point-to-Point communication infrastructure is shown in Figure 2.8. To establish

the communication some precondition has to be given. The first requirement to send a

message from sender to receiver is that the sending system must know where the receiving

system is located because a sender could be connected to more than one system.

Furthermore each involved system can only deal with specific message formats and so the

sender must transform a message from one format into another format that could be

handled by the receiver. That is a big disadvantage of such integration architecture. Each

system needs a separate integration solution to all other involved systems. Generally each

 RELATED WORK

 20

system in a Point-to-Point integration has a direct connection to all other systems and

requires a specific message transformation for any connection. If systems supported

message format changes, the message transformer of all associated systems that

communicate with the changed entity must be updated.

Figure 2.8: Point-to-Point integration architecture

Finally a Point-to-Point integration is easy to handle if just a few systems are connected

together, but for more and more systems the effort to maintain such integration increases

very fast. With n participating systems � ·
���

�
 different integration solutions exist. So it is

obviously that a Point-to-Point integration is quite reasonable for small organizations with

few systems.

2.1.3.2 Hub/Broker architecture

This kind of integration architecture connects all involved systems via a central point,

namely the hub. Figure 2.9 shows the basic design of the hub integration architecture.

Figure 2.9: Hub integration architecture

 RELATED WORK

 21

The hub controls the whole communication between senders and receivers. All

participating systems do not have to care about the location of the receiver and do not have

to know the message format supported by the receiver. A sender forwards his message to

the hub and the hub takes the message, transforms the message and sends the

transformed message to the correct receiver. This technique is often called the “hub &

spoke” integration architecture.

The hub architecture follows a broker pattern. The task of a broker is to decouple

sender systems from the receiver systems by coordinating the communication between

them. Systems are loosely coupled if only few common variables are used by the systems

or if the common variables are less addicted to other influencing factors [13]. By using hub

architectures, the single systems are separated from each other and so a loose coupling

takes place. The decoupling of the participating systems is achieved by three main tasks

[2]:

• Routing: Routing is the task of determining the location of the receiving system of a

message and performing the routing via direct or indirect communication.

• Endpoint registration: Endpoint registration is used by the involved systems to

register themselves with the broker. After registration the system is public and can

be found by other systems.

• Transformation: Each participating application uses its own specific data format.

To make it possible that applications can communicate with each other, the

messages must be converted to the right format. The transformation is the

mechanism to convert a message from one format to another format.

Generally the basic broker pattern can be classified into three other types of brokers:

Direct Broker, Indirect Broker and Message Broker. Figure 2.10 pictures the Broker pattern

and their three subtypes.

Figure 2.10: Broker pattern refinement [2]

The three subtypes of the Broker pattern are described following.

 RELATED WORK

 22

Direct Broker

The only task of a direct broker is to build up the communication between the sender

and the receiver system. The sender asks the broker about the location of the target

system and the direct broker only sends back the location information. After the initialization

the sender communicates directly with the receiver without intervention from the broker.

Indirect Broker

An indirect broker does not only establish the communication between two endpoints

but also manages the whole communication after the initialization. The broker acts like a

middleman allowing central control of the traffic. A sender system transfers the message to

the indirect broker and the broker forwards it to the appropriate receiver system.

Message Broker

A message broker has the same properties as an indirect broker, but provides a

specialized form. This broker especially uses messages for the communications. He

receives a message from the sender system, transforms the message to the correct

message format of the receiving system and finally forwards the transformed message to

the receiving system. A message broker is often found in a so-called “hub & spoke”

architecture [1].

Examples for the Broker pattern technique are Microsoft’s Distributed Common Object

Model (DCOM), Microsoft’s .NET Remoting, the Common Object Request Broker

Architecture (CORBA) developed by the Object Management Group (OMG), the Universal

Description Discovery and Integration (UDDI) standard and Microsoft’s BizTalk Server.

2.1.3.3 Bus architecture

In this architecture, all participating systems are connected via a special component the

so-called bus (see Figure 2.11). The easiest communication mode of a bus is the broadcast

communication. A system sends its message to the bus and the bus forwards the message

to all other connected systems. Therefore the systems themselves must decide if a

message is addressed to them or not.

Figure 2.11: Bus integration architecture

 RELATED WORK

 23

Generally, an integration bus provides a common communication mechanism to

connect heterogeneous systems. To achieve the integration, the involved systems must

follow some agreements. Trowbridge et al. [2] defined three criteria for the participating

systems to be able for a connection to the bus:

• Message schema: All connected systems must support the correct structure of the

messages.

• Command message: Command messages are used for reliable invocation of a

procedure provided by another application. A command message is a normal

message with a command in it.

• Shared Infrastructure: To build a bus architecture a predefined infrastructure is

needed for sending messages from sender to receiver, e.g. message router,

publish/subscribe mechanism. These different types of shared infrastructures are

described below.

The bus architecture provides different ways to manage the flow of the messages. One

possible way is to use a message router for the administration of the messages. Another

way is the publish/subscribe mechanism. Both are common ways for the shared

infrastructure of a bus system.

A message router “… consumes a message from one message channel and

republishes it to a different message channel, depending on a set of conditions”. [1]

The publish/subscribe system uses a mechanism, in which subscribers (subjects who

wants to get a specific messages) can express their interest in a message or a sort of

messages. If the publisher (subject who publishes messages) creates a message which

matches the interest registered by the subscriber, the subscriber will be notified of the

message [5].

Figure 2.12: A simple object-base publish/subscribe system [5]

Figure 2.12 shows a simple publish/subscribe mechanism. In that case the sender of a

message publishes the information to the message bus and the consumers have the

 RELATED WORK

 24

possibility to subscribe to certain information they want to receive. If the message bus gets

a message from a publisher it checks who has subscribed for such a message type and

then forwards the message to all subscribers by notifying them. The message bus is the

core element and provides three operations: Subscribe(), Unsubscribe() and Notify(). All

subscribers register their interests in certain messages by calling the Subscribe() operation

of the message bus and so they don’t have to know the exact publisher of such messages.

The message bus stores and manages these subscriptions. A publisher don’t need the

subscription-information stored in the message bus, he just sends their message to the

Notify() operation of the message bus. By calling the Unsubscribe() operation a subscriber

quits an existing subscription.

Generally some differences in the design of the publish/subscribe mechanism lead to

three main distinctions: topic-based, content-based and type-based publish/subscribe

mechanisms. The different mechanisms will be described in the next sections, but first a

short introduction into a message router takes place.

Message router

Messages are sent via a message channel from one system to another system. The

sending system writes the message into the channel and the receiving system reads the

message from the same channel. The two communicating systems don’t know about each

other. If a sending system is connected to more than one receiving system, it uses one

message channel per receiver. The problem is that the sender doesn’t know which receiver

wants to get a certain message. This problem will be solved by using a message router. A

router is placed between sender and receiver and is connected via separate message

channels to the participating systems (similar to a hub, see Chapter 2.1.3.2). The message

router takes the message from the sender’s message channel and republishes it to the

receiver’s message channel. Thereby the router doesn’t modify the message; it just

handles the routing between sender and desired receiver. Using a message router, the

rules defining to which receiver a certain message from a sender should be forwarded can

be established in a single central location.

Topic-based publish/subscribe

This approach represents the functionality for early publish/subscribe systems and is

based on grouping systems together by means of defined topics. The functionality can be

described in one sentence: A subscriber joins a certain group and all assigned messages

are sent to the subscribers via broadcast. The topic-based publish/subscribe mechanism

can be divided into two refinements [2]: the broadcast-based and the list-based

publish/subscribe.

• Broadcast-based publish/subscribe: The broadcast-based publish/subscribe

mechanism uses a very simple and unmanaged way to notify the required

recipients of a message. The publisher creates a message and sends it to all other

connected systems via broadcast. Each system has the task to analyze the

incoming message if the message comes from the publisher that it is subscribed to.

If the message was meant for the particular system, the system accepts the

incoming message, but if not the incoming message will be ignored from the

receiving system. In fact that each message is sent to all participating systems and

 RELATED WORK

 25

each receiving system is responsible to check if the message is assigned for them,

this pattern is often called the publish/subscribe channel from Hohpe [1]. A more

better and sophisticated way of topic-based publish/subscribe that requires fewer

network traffic is the list-based publish/subscribe pattern.

• List-based publish/subscribe: The list-based publish/subscribe mechanism is one

way to control the data traffic unlike a sender broadcasts his message to all other

systems. This approach uses a list which contains all subscribers for a particular

subject. In other words when a specific sender transmits a message, the bus

forwards the message by means of the list to those receivers who are interested on

it. This mechanism is also described as observer pattern. The observer pattern is

defined as following:

“Define a one-to-many dependency between objects so that when one object

changes state, all its dependents are notified and updated automatically.” [4]

With the observer pattern the relations between sender and receivers are defined.

The sender is the subject and a receiver is an observer. One subject can have one

or more observers. The registered observers will be notified if the associated

subject has changed.

Content-based publish/subscribe

In a content-based publish/subscribe system the participating systems subscribe to

subjects depending on certain conditions. The subscribers will be notified if a published

message conforms to those conditions. Unlike topic-based publish/subscribe systems, a

content-based publish/subscribe system can be used more flexible because the

subscriptions are coupled to the message-content addicted to certain conditions and are

not only coupled to an overlook of the message (the topic). In generally, the content-based

publish/subscribe mechanism has its strengths in information propagation from publisher to

subscriber, especially in a large-scale distributed network [6].

Type-based publish/subscribe

Eugster [14] describes the type-based publish/subscribe mechanism as a high level

variant of the publish/subscribe paradigm which provides type safety and encapsulation

without disruption of the routing mechanism. The type-based approach presents

advantages to exchange messages in many-to-many publish/subscribe communication

environments and so it is well suited to use in P2P applications.

2.2 Model Driven Architecture (MDA)

Model Driven Architecture (MDA) developed by the Object Management Group (OMG)

is an approach for modern software development, by using a layered architecture for

software system specifications and development [15]. The defined system specifications

describe the software system at different abstraction levels. Each level provides a special

view of the system. MDA is used for separating business and application logic from the

 RELATED WORK

 26

underlying platform technologies [25]. In other words, MDA is the separation of the

specification of system functionality from the actual implementation of the specified

functionalities [16]. All defined specifications are expressed as models.

This chapter gives an overview to the Model Driven Architecture technique. To

understand this comprehensive topic, the first section presents some elementary

explanations about models and metamodels (What is a model? Which properties does a

model have? etc.). Then the layered architecture of MDA is figured and last the benefits of

using the MDA technique compared to a traditional software development process are

listed.

2.2.1 Models and Metamodels

This chapter describes two fundamental parts used in Model Driven Architecture,

models and metamodels.

“A model is a coherent set of formal elements describing something (for example, a

system, bank, phone, or train) built for some purpose that is amenable to a particular form

of analysis.” [31]

Another definition for a model comes from Stachowiak [26]. He specifies that a model is

essentially a scale, detailedness and/or functionality shortened and accordingly abstract

representation of the original system. In short, a model is a replication of the real world. It

must be noted, that a model is just a representation of an original system and not a copy.

For example if someone builds a true to detail object according to an original one so that

the replication equals the original in every little detail, the replication is a copy and not a

model. It is obviously that a model has to concentrate and represent just some particular

details of the original. Models are a basic part in Model Driven Architecture.

Selic [18] has appointed five key characteristics an engineering model must conform to

a certain degree:

Abstraction

Abstraction is the most important characteristic of a model. A model is always a

shortened representation of a system that it specifies. Abstraction means that the model is

not a one to one replication of a system, but reflects only the relevant properties of a

regarding system. This means that irrelevant details are unattended in the model.

Therefore abstraction is almost the only method to deal with the complexity of an always

increasing sophisticated functionality of software systems.

Understandability

Understandability is also an important characteristic for a model. If a model is

suppressed in a language which needs much intellectual knowledge to understand it, a

model will provide no benefit. A model must present their information in a form (e.g. a

notation) that it could be understood without significant intellectual effort. Therefore the

 RELATED WORK

 27

language must directly lean on our intuition. Understandability and expressiveness are in a

direct relationship together. Expressiveness presents the degree of ability to illustrate a

sophisticated process with less information. For that reason a model is a good model when

not much intellectual effort is needed to understand the content provided by the model.

Accuracy

Useful models must be accuracy. This means that a model must provide the modeled

system in such a way that it offers a concise representation of the system’s features the

model is interested in.

Predictiveness

With models it should be possible to exactly predict the interests the modeled system

focuses on without non suggesting properties, by experimentations or formal analysis.

Predictiveness relies on the accuracy characteristic of a model and the modeling form.

Inexpensiveness

The last characteristic a model should possess is inexpensiveness. The construction

and analysis of a model should be essentially cheaper than the construction and analysis of

the system itself. It would be very inefficient and uneconomical for building models if the

modeling of a system costs more than the creation of the actually system.

Metamodels are another basic part appearing in correlation with Model Driven

Architecture. They define language concepts and grammar to specify models. Rather a

metamodel is a specification of a model and describes how other models are constructed.

They define what is acceptable in building a model of an original system. Seidewitz [32]

defines that a metamodel characterizes the possibilities about what can be expressed in

the valid models of a certain modeling language.

There are some more concepts which occur in relation to the MDA approach, Platform-

Independent Models (PIM) and Platform-Specific Models (PSM). A PIM represents a formal

specification of systems structure and characteristic, without including technical details. The

Platform-Independent Models are constructed for an implementation on different platforms.

A PSM specifies how to realize the defined functions of a PIM on a specific platform. It

represents enough details and information (e.g. software architecture) to generate a

complete coded application [34]. But it is still defined as a model. Out of a Platform-Specific

Model the code for the whole implementation of a software system can be created.

2.2.2 MDA Layered Architecture

The Model Driven Architecture approach is based on a layered architecture. Generally,

the MDA architecture consists of four layers: the M3-layer which represents a meta-

metamodel, the M2-layer, representing a metamodel, the M1-layer, depicting a concrete

model and the M0-layer which illustrates the reality. In Figure 2.13 these four layers of the

MDA architecture are displayed.

 RELATED WORK

 28

Figure 2.13: The MDA four-layer architecture [8]

The meta-metamodel layer (M3-layer) is the topmost level of the MDA architecture. This

layer is represented by the Meta Object Facility (MOF). MOF builds an industry standard

environment to export models from one application and import it to another application,

transferred over a network and transformed into different formats [27]. MOF represents a

basis to define other modeling languages, like UML (Unified Modeling Language), IDL

(Interface Definition Language) used in CORBA or CWM (Common Warehouse

Metamodel). Even MOF is described in MOF and can be subdivided into EMOF (Essential

MOF) and CMOF (Complete MOF). EMOF is a simple language for defining metamodels

and is useful for metamodelers. CMOF is an extension for EMOF with support and

management of metadata. In generally the M3-layer provides a specification of modeling

languages and is primarily used to express metamodels of the M2-layer [32].

The metamodel layer (M2-layer) contains the actual metamodels (model of model)

defined by the MOF. This layer represents an instance of the M3-layer. UML is one of

numerous metamodeling languages. The Unified Modeling Language technique is used to

help system architects, software engineers and software developers by providing tools for

better analysis, design and implementation of software-based systems or miscellaneous

modeling challenges [33].

The model layer (M1-layer) contains representations of the real world in terms of

models. Such a model is an instance of metamodels defined in the M2-layer (e.g. UML

model of a software system).

 RELATED WORK

 29

The reality layer (M0-layer) represents an instance of the models defined in the M1-

layer. This layer contains actual objects of the real world, like persons, buildings, etc. The

following example in Figure 2.14 pictures the relations between the four MDA-layers.

Figure 2.14: MDA-layered Architecture Example

2.2.3 MDA benefits

Developing software by means of the Model Driven Architecture approach provides

some improvements of the software development process. Kleppe et al. [17] has

researched the benefits of MDA and categorized them into four classifications: Productivity,

Portability, Interoperability, and Maintenance and Documentation. These benefits are

explained in relation to a traditional software development life cycle with their containing

problems. Figure 2.15 displays a schematically representation, a so-called waterfall model

of a traditional software development process.

2.2.3.1 Productivity

As you can see in Figure 2.15, specifications between the requirement, analysis, design

and implementation phase are represented in terms of text and diagrams. This means that

phase 1 through 3 produce many text documents and diagrams for the later software

implementation. Multiple pictures and several UML (Unified Modeling Language) diagrams

such as use case diagrams, class diagrams, activity diagrams, entity relationship diagrams,

etc. are generated. Sometimes it is unimaginable which high amount of documents and

diagrams are produced especially for one software development process. But these

masses on written paper are created in the early phases and then rapidly lose their

relevance after the implementation begins. During the implementation phase a code is

produced and tested before deployment. The implementation mostly differs from afore

 RELATED WORK

 30

generated documents and diagrams. The written specifications are lacking maintained and

so they present no exact mapping of the created implementation. This becomes a serious

problem due to permanent changes at the code level. Introducing the changes to the

documents and diagrams is very time-consuming and therefore hard to maintain.

Figure 2.15: Traditional Software Development Life-Cycle [17]

Model Driven Architecture attempts to solve the problem of creating mass of documents

and diagrams by using a Platform-Independent Model (PIM). By means of a PIM the

determined requirements and capabilities for a software product are represented in the

form of a model. This primarily created PIM will be later on transformed into a Platform-

Specific Model (PSM) which comprehends specific information about the underlying

platform. A PSM conforming to another platform can be easily generated out of the defined

PIM. But the extensive creation of the PIM is the only disadvantage of using MDA for

reaching a higher productivity. It looks very easy, but much effort is needed to produce a

correct PIM for further processing. Often only a high skilled specialist can achieve the

creation of the abstract PIM. But once the PIM was created, the productivity benefits to

generate PSMs for different platforms are very high if tools to automatically transform the

specified PIM into a PSM are used.

2.2.3.2 Portability

Portability describes the possibility to use the same program or model on different

platforms without modification. In a Model Driven Architecture portability can be obtained by

using Platform-Independent Models (PIMs). A PIM is defined in a platform independent

manner and therefore can be used on different platforms without any modifications. If a PIM

should be used on a specific platform, first of all it must be transformed into a Platform-

 RELATED WORK

 31

Specfic Model (PSM) containing platform specific details and are only able for the use on a

specific platform. Out of the underlying PIM, any PSM can be generated. Therefore all

information specified in a PIM is portable. The benefit for portability can be increased by

using automated transformations by means of various tools. A key benefit of portability in

MDA with a PIM is, that independent of new developed platform technologies the created

PIM can be used furthermore. With a specific transformation tool, according to the new

platform technology, the PIM is transformed into a functioning PSM without altering the

original PIM.

2.2.3.3 Interoperability

Interoperability deals with the problem that a specific system should be able to interact

with other existing systems developed in another technology. It is crucial that the different

systems support a common working to gain a result. The multiple generated PSMs for

different platforms out of one common PIM may have particular similarities and therefore

some correlations, so-called bridges in MDA. The different PSMs are not able to directly

communicate among each other, but by means of the bridges a communication can be

established. A bridge transforms the concepts according to one platform into the concepts

according to the other participating platform. Within MDA, interoperability is achieved by

additionally generating the required bridges between the generated PSMs.

Due to the generation of PSMs for different platforms from one PIM, all needed

information to create a bridge to establish the communication between the different PSMs

is available. For each item in a generated PSM the appropriate item in the PIM is known

and therefore the corresponding item in another generated PSM can be determined. Out of

the gained information it is possible to deduce the relation between the items in the

different PSMs. Extended with the technical details of the different platforms, which are

already known for the transformation from the PIM to a PSM, a bridge can be created.

In MDA, bridges can be automatically generated by means of special tools. Therefore

MDA supports interoperability for all underlying PSMs.

2.2.3.4 Maintenance and Documentation

In a traditional software development process the numerous created documents are

often very hard to maintain. After creation of the source code out of the requirements the

documents are neglected. If changes in the source code are made, the documents are

often not updated to meet the altered requirements. Therefore in a traditional software

development process changes must be updated multiple times on different places. Within

MDA, changes are only updated on a single place in the PIM. Out of the PIM the different

PSMs are generated and out of a PSM the source code is generated. Therefore each

source code is an exact representation of the PIM and no inconsistencies between source

code and specifications can occur. Generally a PIM illustrates a form of a high-level

documentation used by any underlying software system.

 RELATED WORK

 32

2.3 Ontologies

In this chapter the term ontology will be explained. An overlook about the basic

concepts of ontologies is given. Furthermore the main operational areas of ontologies are

described. Primarily a definition of an ontology is presented.

 “An ontology is a formal, explicit specification of a shared conceptualization. A

‘conceptualization’ refers to an abstract model of some phenomenon in the world by having

identified the relevant concepts of that phenomenon. ‘Explicit’ means that the type of

concepts used, and the constraints on their use are explicitly defined. ‘Formal’ refers to the

fact that the ontology should be machine readable, which excludes natural language.

‘Shared’ reflects the notion that an ontology captures consensual knowledge, that is, it is

not private to some individual, but accepted by a group.” [30]

In general, ontologies are a main part of the semantic web technology and are used like

a knowledge representation of the real world or only part of it. Ontologies are formal models

of a specific application domain, and primarily used to facilitate the exchange and

partitioning of knowledge. More precisely, an ontology is a data model that represents a set

of concepts within a domain and their relationships. The word ontology has its origin from

the Greek words ontos (=being) and logos (=word). From a philosophical point of view an

ontology refers to the subject of existence, that is the study of being as such [8]. Gruber

[35] defines an ontology as an explicit specification of a conceptualization. Where a

conceptualization illustrates an abstract, simplified picture of the world used for

representation and designation. Each knowledge representation follows a certain degree of

conceptualization, either explicitly or implicitly. Moreover ontologies can effectively support

software development processes, primarily by providing a continuous data model [36].

According to Powers [37] ontologies consist of four main components: classes, relations

between classes, properties of classes, and constraints on relationships between the

classes and properties of the classes. But additionally an ontology also consists of

individuals which represents instances of concrete types. A class represents concepts of a

domain, for example the concept “vehicle” with his specifications: car, motorcycle, bus, etc.

(a set of objects with common properties). A relation represents an association between

class concepts of the domain. A property represents an attribute to describe objects in the

ontology. And the last component, a constraint defines statements for a relation between

classes or properties that cannot be formally expressed by the other main components.

Following the main components of an ontology (individuals, classes, attributes and

relations) are described in detail:

• Individuals (instances): The individuals build the basic components of an ontology

and are similar to object instances in the object oriented programming. Individuals

represent concrete types like house or car, and additionally more discrete types like

numbers or words.

• Classes (concepts): The classes represent abstract groups, sets, or collections of

objects and are similar to abstract objects in the object oriented programming.

Classes can contain other classes or individuals or a combination of classes and

 RELATED WORK

 33

individuals. The single ontologies can vary among each other on the conditions they

support. They distinguish whether classes can contain other classes, or whether a

class can belong to itself and so on. Also restrictions can be made to prevent that

an ontology can have an invalid state, like whether an individual inherits from two

disjunctive classes.

• Attributes: Attributes represent properties, features and characteristics of an object

in an ontology. An attribute consists of at least a name and a value, whereas the

value can be a normal value type and also a complex data type.

• Relations: Relations specifies how the various objects are related together. A

relation between objects in the ontology is described by means of attributes.

Together, all the specified relations characterize the semantic of an ontology.

Generally different types of relations exist: the subsumption relation (is-subtype-of,

is superclass-of, whereas the objects are members of a common group of objects),

the is-a relation (tree structure with child and parent objects, whereas each object is

a child of a parent) and the meronymy relation (part-of relation).

2.3.1 Ontology languages

Ontologies can be expressed in different languages. Gómez-Pérez et al. [39] divide the

logical ontology languages into traditional ontology languages and web-based ontology

languages. Whereas traditional languages are developed in the early 1990s for artificial

intelligence purposes, the web-based ontology languages are developed at the beginning

of the web-age to use the characteristics of the internet. In this chapter we focus on the

web-based languages shown in Figure 2.16.

Figure 2.16: Web-based ontology languages [39]

The syntax of the web-based ontology languages is based on common web markup

languages like HTML or XML. In the following enumeration the web-based ontology

languages shown in the diagram are described shortly:

• SHOE: The Simple HTML Ontology Extension language uses frames and rules and

was developed as an extension to the HTML markup language. With SHOE it is

possible to describe a webpage in a semantic manner.

 RELATED WORK

 34

• XOL: The XML-based Ontology Language was developed to include primitives

based on the OKBC (Open Knowledge Base Connectivity) protocol. OKBC is a

protocol to access knowledge bases stored in different knowledge systems.

• RDF: The Resource Description Framework language is used for defining web-

resources in a semantically way. RDF was developed by the World Wide Web

Consortium (W3C). Listing 2.1 shows an easy example of the syntax of the RDF

language.

 <?xml version="1.0"?>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <rdf:Description rdf:about=" http://www.tuwien.ac.at">
 <dc:title> TU Wien Home</dc:title>
 <dc:creator> Vienna University of Technology </dc:creator>
 </rdf:Description>
 </rdf:RDF>

Listing 2.1: Syntax of the Resource Description Framework (RDF)

• RDF/S: The RDF Schema extends the Resource Description Framework and

represents an easy language to specify domain-ontologies. With RDF/S the

declarations defined in RDF can be structured hierarchically into classes and

instances. Furthermore it is possible to precisely specify the relations between the

particular properties. RDF/S builds a basis for the next three described ontology

languages: OIL, DAML+OIL and OWL.

• OIL: The Ontology Inference Layer adds a frame-based knowledge representation

to the underlying RDF/S and supports formal semantics provided by Description

Logics [40].

• DAML+OIL: The DARPA Agent Markup Language is a communication language for

software agents [41] and builds in combination with OIL the basis for OWL.

DAML+OIL uses an object oriented approach and therefore it is designed to specify

the structure of a specific domain in terms of classes and properties [42].

• OWL: The Web Ontology Language is a semantic markup language used to create

ontologies constructed in a formal representation language. Unlike of just providing

information to humans, ontologies written in OWL can be used by applications to

process the content of information [43]. OWL is best suitable for the description of

relations between classes, properties and other individuals [8]. There exist three

different types of OWL which differ in the capability of expression, OWL Full, OWL

DL and OWL Lite. OWL Full provides all OWL language constructs and additionally

offers the use of RDF constructs. OWL DL is a subtype of the OWL language

constructs with some restrictions (e.g. a class must not be an instance of another

class) and without support for RDF constructs. OWL Lite represents a minimal

subset of the OWL language construct with several restrictions and was developed

as easy to implement language. In Listing 2.2 an example to the syntax of the OWL

language is given.

 RELATED WORK

 35

<?xml version="1.0"?>
<rdf:RDF
 xmlns="http://www.tuwien.ac.at/ontology.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:p1="http://www.owl-ontologies.com/assert.owl#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xml:base="http://www.tuwien.ac.at/ontology.owl">

 <owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="Car">
 <rdfs:subClassOf rdf:resource="#Vehicles" />
 </owl:Class>

</rdf:RDF>

Listing 2.2: Syntax of the Web Ontology Language (OWL)

2.3.2 Designing Ontologies

In this chapter some design criteria for the development of ontologies are described.

Such criteria become very crucial, because if we represent something of the real world in

the form of an ontology, it is essential to make the suitable design decisions. For the

development of well designed ontologies a set of objective criteria is needed, which

corresponds to the scope of the resulting items. Therefore Gruber [38] appointed five main

criteria and principles that have to be considered for the creation of ontologies. They are

significant for ontologies used for knowledge sharing and interoperation between

applications in a shared manner. These criteria serve as guiding principles and help to

evaluate the developed ontology design.

Clarity

In general, an ontology has to clearly represent the intended sense of the environment

it is used for. The ontology must be specified in an objective manner and should not

depend on social or computational impacts. Furthermore an ontology must be completely

defined. Not only the essential capabilities but also additional sufficient capabilities are

preferred to get a complete definition and not just a partial definition about the environment.

These definitions contained in an ontology should be described with formal languages.

Coherence

It is crucial to develop an ontology in a way that it is coherent. Coherence means, that

ontologies should support various implications which conform to the definitions. Therefore it

is necessary that the specified conventions are logically conforming to each other. But the

term coherence is not only limited to inferences which should satisfy the definitions, it

should also relate to any concepts that are described in an informally way. Such informal

described concepts are documents and samples specified within a formal language. If a

derived concept out of the specified conventions does not conform to the definitions, the

ontology is not coherent.

 RELATED WORK

 36

Extendibility

This criterion focuses on the possibility of further development and enhancement of an

ontology. An ontology must be designed for arbitrary expandability, and therefore should

provide a conceptual basis for later appending of anticipating tasks. It is crucial that the

implementation of an ontology is designed for featuring a monotonically extension.

Generally, within an existing ontology new items should be added by using the available

vocabulary of the ontology without altering the previous containing definitions. If it is not

possible that a new item is specified in the same scheme as the underlying ontology, the

ontology must be able to deal items written in another format. But the original scheme

should not be modified.

Minimal encoding bias

An ontology should be designed in a decoupled manner, in other words, the

conceptualization should not depend on a specific encoding format. The design of an

ontology should not match only one particular case of notation or implementation, if so, an

encoding bias exist. Because of the reuse of developed ontologies the encoding bias must

be as small as possible.

Minimal ontological commitment

To satisfy the purposed knowledge sharing tasks, an ontology needs to fulfill the

minimal ontological commitment. On the other side for a versatile usage of the ontology it is

crucial that the ontology requires as few assumptions about the underlying modeled world

as possible. Therefore a basic ontology, based on a minimal ontological commitment, can

be used from many different parties for many different models due to the individual

configuration and instantiation of such an ontology. It is always advisable to minimize the

ontological commitment of ontologies by defining only elementary conditions of the

represented knowledge to allow the most models using such a minimized ontology.

2.3.3 Protégé

Protégé is a free, open-source editor for the development of ontologies. It is based on

Java and is supported by a huge user community. The Protégé community provides a set

of tools for the creation of domain specific models and knowledge-based applications

represented as ontologies. An ontology created with Protégé can be exported into a

different set of ontology language formats like RDF(S), OWL and XML Schema. Protégé

consists of a complex software architecture [8], and is constructed for an easy extension by

a simple plug-in mechanism. By means of the provided plug-and-play environment, Protégé

builds a flexible base for the use of rapid prototyping and application development [44]. For

the development of ontologies the Protégé platform provides two core editors: the Protégé-

Frames editor and the Protégé-OWL editor. The first editor supports the creation of frame-

based ontologies conforming to the Open Knowledge Base Connectivity Protocol (OKBC).

OKBC provides a method to access the knowledge which is stored in special knowledge

representation systems. The second core editor of Protégé supports the creation of

 RELATED WORK

 37

ontologies developed in the Web Ontology Language (short OWL – already described in

Chapter 2.3.1) which are used for the semantic web.

Protégé can be downloaded at http://protege.stanford.edu and Figure 2.17 displays the

user interface of the Protégé version 3.3.1.

Figure 2.17: User Interface of Protégé 3.3.1

2.4 Integration Patterns

Integration patterns could be used as elementary parts for building a system wide

integrated application to combine different heterogeneous legacy applications. Patterns

represent a reliable way for capturing the knowledge of experts who are familiar in a field

the patterns stand for. They are used when no “straight-forward” solution exists because

each solution is unique depending on different requirements and environmental influences.

So a pattern provides just a part of the overall solution which can be individually combined

with other patterns to achieve the most suitable solution for a specific scenario. The

advantage of patterns is that they are continuously enhanced by integration solution

architects or other experts. Each pattern involves the experience of the integration

engineers by frequently using the patterns in different integration solutions and considers

possible failures of a pattern. Therefore a pattern will be enhanced by means of expert’s

knowledge. Hohpe and Woolf [1] identified numerous enterprise integration patterns. The

relevant patterns for the System Wide Information Sharing (SWIS) system are described

hereafter.

 RELATED WORK

 38

Message Translator

The Message Translator pattern gives an answer to the following question:

“How can systems using different data formats communicate with each other using

messaging? – Use a special filter, a Message Translator, between other filters or

applications to translate one data format into another.” [1]

In enterprise integration solutions messages are transmitted between heterogeneous

systems. Each of the participated systems only understand its own (often proprietary) data

format and often is not able to handle other messages presented by the other applications

and created in another data format. This proprietary data formats has to be translated from

the data format of the sender to the data format of the receiver. The various applications in

an integration solution often communicate via standardized data formats among each

other. This means that each application has a built in Message Translator which transforms

the message from the proprietary data format into a standardized data format. So it is

possible to send the message to another application. The other application gets the

message and transforms it with their built in Message Translator into an internally

processable proprietary data format. But often it is not possible to agree on the used

standardized data format and therefore other agreements must be taken. As preview,

SWIS does support the translation to and from individual data formats.

Publish-Subscribe Channel

The Publish-Subscribe Channel pattern gives an answer to the following question:

“How can the sender broadcast an event to all interested receivers? – Send the event

on a Publish-Subscribe Channel, which delivers a copy of a particular event to each

receiver.” [1]

Many mechanisms exist to broadcast a message (or event) from a sender (originator of

the message) to all receivers who are interested in this message. The observer pattern

(already described in Chapter 2.1.3.3) is the most common technique for building a

Publish-Subscribe Channel. The observers are completely decoupled from the originator of

an event. An originator provides the mechanism where all observers for a specific event

can express their interest in it and will be notified if an event is generated by the originator.

The originator does not care about how many observers want to get a notification.

The Publish-Subscribe Channel pattern has a simple mode of operation. The publisher

offers just one corporate input channel but splits into multiple output channels for the

subscribers. One output channel for one subscriber. For the announcement of an event the

publisher must send only one message into the Publish-Subscribe Channel. The channel

 RELATED WORK

 39

themselves duplicates the message and sends a copy of the primarily message to each of

the output channels.

Command Message

The Command Message pattern gives an answer to the following question:

“How can messaging be used to invoke a procedure in another application? – Use a

Command Message to reliably invoke a procedure in another application.” [1]

Basically a Command Message is comparable with a Remote Procedure Invocation.

Both provide the ability to access functions embedded in other distributed applications. A

Remote Procedure Invocation works in a synchronous way. This means that a call to a

remote application will be processed immediately and the caller is waiting until the end of

the processing. But this isn’t always as good as it sounds. Often an invocation of a remote

procedure cannot be done immediately. In case when the network is unavailable or the

remote application is not waiting for a remote invocation a call to the distributed application

is impossible. For such circumstances it is important that a call to a remote procedure is

done asynchronously. The Command Message pattern is the solution to achieve an

asynchronous call. A specific procedure invocation is packaged in a Command Message

and will be transmitted to the remote application as a message across a message channel.

The receiver gets the message and starts the packaged procedure invocation from the

caller locally. After invocation an answer is send to the caller as a callback. This means that

the caller specifies an operation which will be executed after the reply from the invocation

receiver arrives. Therefore the calling system must not wait for the response.

Request-Reply

The Request-Reply pattern gives an answer to the following question:

“When an application sends a message, how can it get a response from the receiver? –

Send a pair of Request-Reply messages, each on its own channel.” [1]

In a message oriented integration solution the communication between two applications

is limited to handle only a one-way communication. A sender transfers the message to the

receiver and does not retrieve an answer from the receiving system. The communication

just works in a single direction. However, in an integration solution with different

participating systems the caller of a distributed function, which is available on a remote

application, often expects an answer representing the return value of the called function.

Therefore a two-way communication is needed. But how could this be achieved? A two-

way communication via Messaging over a Message Channel is not possible because the

 RELATED WORK

 40

channel transfers the message only in one direction. For that reason the Request-Reply

pattern uses a second Message Channel for transferring the reply message back to the

sender. The first channel is used as request channel and transmits the request message

from the requester to the replier. The replier receives the message and sends a reply

message via the reply channel to the requestor.

Return Address

The Return Address pattern gives an answer to the following question:

“How does a replier know where to send the reply? – The request message should

contain a Return Address that indicates where to send the reply message.” [1]

Because of the totally decoupling of the participating systems of an integration solution,

a replier can get different messages from different requestors via the same request

channel. But instead of hard-coding the reply channel of each requestor in the replier,

which can make the solution very inflexible and hard to maintain, a Return Address pattern

is used. Each request message will be extended with information about the used reply

channel of the respective requestor. It is also possible that the requestor advertises not the

address to his own reply channel but the address to the reply channel used by another

system (e.g. the requestors’ callback processor). So each request-reply message can be

directed from the requestor, where they should be replied to. A Return Address is added to

the message header and interpreted by the replier.

Correlation Identifier

The Correlation Identifier pattern gives an answer to the following question:

“How does a requestor that has received a reply know which request this is the reply

for? – Each reply message should contain a Correlation Identifier, a unique identifier that

indicates which request message this reply is for.” [1]

If two systems are connected together over a network and one system wants to invoke

the other system via Remote Procedure Invocation (see Chapter 2.1.2.2) the call will be

processed in a synchronous way. This means that the invoking system waits for the result

sending by the invoked system. But in an integration solution with messages the calls are

often processed in an asynchronous way. The caller can send an invocation and it can

happen that the caller does not remember the call and is not able to deal with the incoming

result. Or he sends numerous calls and finally does not know which result belongs to which

call. This problem can be solved by using a Correlation Identifier. Each request including a

request message is marked with a unique identifier by the requestor. The replier achieves

the request and stores the request ID. After processing the request the replier adds the

 RELATED WORK

 41

stored identifier as correlation identifier to the completed reply. The requestor is then able

to assign the reply to the appropriate request by means of this correlation identifier.

Dynamic Router

The Dynamic Router pattern gives an answer to the following question:

“How can you avoid the dependency of the router on all possible destinations while

maintaining its efficiency? – Use a Dynamic Router, a router that can self-configure based

on special configuration messages from participating destinations.” [1]

A problem of a message-based integration solution lies in the correct routing of a

specific message to their recipients. Each receiver presented in an integration system is

interested only in particular messages which meet specific conditions. To achieve such

correct routing, a special mechanism is needed that knows the destination and the

individual interests of the particular receivers. A Message Router (see Chapter 2.1.3.3)

performs the technique of transferring a message to all receivers who are interested in it. A

Message Router has a built-in knowledge about the participating receivers and their

specific interests. But this is not very convenient if the rules of the receivers or rather the

receivers itself changes frequently. Therefore a Dynamic Router will be used. A Dynamic

Router equals a Message Router but has an additional channel where the receivers can

advertise their existence and their interest patterns for receiving messages. This additional

channel is called as control channel. The Dynamic Router stores the provided information

of the receivers in a rule base and therefore handles the correct routing of messages

without much maintaining effort.

Recipient List

The Recipient List pattern gives an answer to the following question:

“How do we route a message to a dynamic list of recipients? – Define a channel for

each recipient. Then use a Recipient List to inspect an incoming message, determine the

list of desired recipients, and forward the message to all channels associated with the

recipients in the list.” [1]

For delivering a published message to a set of recipients presented in an integration

solution a Publish-Subscribe Channel (already described above) is used. All receivers who

want to get a published message subscribe to the channel. The problem hereby is that the

subscriptions in a Publish-Subscribe Channel cannot be controlled by the messages itself.

A receiver gets either all messages from the channel (if he is subscribed to) or no

messages (if he is not subscribed to). It is eligible that a sender wants to determine the

 RELATED WORK

 42

particular recipients for each message. To achieve this, a specific mechanism is needed

that can handle the use of different lists of receivers for each message type (e.g. some

recipients wants to get all messages from a specific type, like flight plans). The Recipient

List pattern will be used for routing messages to a list of receivers which are different

depending on the sent message. A Recipient List gets a message with an embedded list of

recipients, removes the list from the message for performance reasons and to prevent that

other receivers can see the receiver list, and forwards the message to the respective

recipients.

Splitter

The Splitter pattern gives an answer to the following question:

“How can we process a message if it contains multiple elements, each of which may

have to be processed in a different way? – Use a Splitter to break out the composite

message into a series of individual messages, each containing data related to one item.” [1]

In an integration solution the limitation of traffic between the participating systems is

elementary. If a message contains multiple elements and each containing element should

be processed on a different system, sending the whole message to all required receivers is

not efficient. Therefore the entire message has to be split into many sub-messages, so that

each recipient gets an individual message containing the needed elements for processing.

The challenge of splitting one message into multiple messages is done by means of the

Splitter pattern. Beside of just generating a message for each containing element in the

origin message, the Splitter is able to place elements into several outgoing messages. For

example an order message contains an order number and the different order items. After

splitting the elements into particular messages, each order item is covered in a separate

message. A recipient of a message containing an order item cannot do anything with it

because he does not know where to assign the order item. So the recipient additionally has

to know the order number. Therefore a Splitter can duplicate particular elements and

places the order number into each order item message.

Aggregator

The Aggregator pattern gives an answer to the following question:

“How do we combine the results of individual but related messages so that they can be

processed as a whole? – Use a stateful filter, an Aggregator, to collect and store individual

messages until it receives a complete set of related messages. Then, the Aggregator

publishes a single message distilled from the individual messages.” [1]

 RELATED WORK

 43

A Splitter (described in the previous section) splits a message with multiple elements

into several particular messages. The Aggregator pattern has reverse ambitions. In an

integration solution a receiver gets a message and processes it. But often the receiving

system needs more information for processing as it gets out of a single message. So it is

appreciated that the receiver gets some collaborated information from one or from different

senders. An Aggregator receives messages and analyzes them to find correlated

messages. The Aggregator offers built in rules with defined conditions to recognize when a

complete set of messages are arrived and an aggregated message out of the collected

information of the particular messages can be generated. After that, the aggregated

message is transferred to the recipient for further processing.

Message Broker

The Message Broker pattern gives an answer to the following question:

“How can you decouple the destination of a message from the sender and maintain

central control over the flow of messages? – Use a central Message Broker that can

receive messages from multiple destinations, determine the correct destination, and route

the message to the correct channel. Implement the internals of the Message Broker using

other message routers.” [1]

A message-based integration solution has to deal with the routing of a message from

the sender to the right receiver. Otherwise an integration solution focuses on a completely

decoupling of the participating systems. So, how forwards a sender his message to the

required receiver if he does not know the exact destination of the receiver? In the simplest

case a sender and a receiver are connected via a simple Message Channel, where the

sender knows only the Message Channel and not the destination of the receiver connected

to the other end of the channel. But using one Message Channel for each connection can

result in a very complex solution if the number of participating systems increases.

Therefore another technique is used for connecting many systems to an overall integration

solution, the Message Broker pattern (already described in Chapter 2.1.3.2). A Message

Broker acts as a central mechanism to control the flow of messages between the different

participating systems.

Envelope Wrapper

The Envelope Wrapper pattern gives an answer to the following question:

“How can existing systems participate in a messaging exchange that places specific

requirements, such as message header fields or encryption, on the message format? – Us

 RELATED WORK

 44

an Envelope Wrapper to wrap application data inside an envelope that is compliant with the

messaging infrastructure. Unwrap the message when it arrives at the destination.” [1]

A message used in a message-based integration solution consists of two main parts, a

header and a body. Whereas the header contains information about the routing of the

message, the body contains the actual message content. But the information provided in

the message header is often insufficient. Miscellaneous routing instances in an integration

network often need specific information to route the message to the right destination, or

e.g. the message should be encrypted to prevent an unauthorized access to the message

data. Therefore an Envelope Wrapper is used to extend the original message with

application-specific information. The additional data is added to the message like an

envelope over the message. After sending the message to the desired destination, an

Envelope Un-Wrapper removes the additional envelope from the message and the original

message can be processed by the recipient.

Content Enricher

The Content Enricher pattern gives an answer to the following question:

“How do we communicate with another system if the message originator does not have

all the required data items available? – Use a specialized transformer, a Content Enricher,

to access an external data source in order to augment a message with missing

information.” [1]

In an integration solution the sending system sends a message to the receiving system

and the receiving system processes the information provided by the sender. It is assumed

that the sender bundles all data needed for processing by the receiver into the message.

But what happens if the sender does not hold all needed data? For example, the sender

creates a message with only a customer ID in it. But the receiver needs the exact name

and address of the customer for further processing. So a Content Enricher pattern is used

to fill up the missing data containing in another data source. The Content Enricher retrieves

the entire name and address of a customer using the customer ID (e.g. by querying a

database) and therefore the receiving system is able to process the request.

Content Filter

The Content Filter pattern gives an answer to the following question:

“How do you simplify dealing with a large message when you are interested only in a

few data items? – Use a Content Filter to remove unimportant data items from a message,

leaving only important items.” [1]

 RELATED WORK

 45

The Content Filter pattern is the opposite of the described Content Enricher. Whereas

the Content Enricher extends the information provided by the sender, the Content Filter

reduces the provided information. The reason to remove data elements from a message is

to protect the information from unauthorized usage. For security reasons a receiver should

only get as much data as he needs for processing. Another reason to use a Content Filter

is to minimize the message size and therefore to reduce the network traffic and the network

load.

Normalizer

The Normalizer pattern gives an answer to the following question:

“How do you process messages that are semantically equivalent but arrive in a different

format? – Use a Normalizer to route each message type through a custom Message

Translator so that the resulting messages match a common format.” [1]

A receiving system containing in an integration solution can have more than a single

sending system. Each sender transfers a particular message to the recipient in their own

specific message format. But the receiver does not understand all the different message

formats of all senders and the processing of the messages is not possible. A Normalizer

provides a mechanism to translate messages with different formats into messages provided

in a common format. Now the receiver is able to process the translated messages.

Loosely Coupled Integration Solution

Out of the above described integration patterns Hohpe and Woolf [1] demonstrate how

a loosely coupled integration solution can look like. Figure 2.18 shows the basic elements

needed to create a message-based integration.

Figure 2.18: Loosely coupled integration solution

Chapter 3

RESEARCH QUESTIONS

 47

3 Research Questions

In this chapter the research questions for this thesis, which will be discussed in the next

chapters, is described. To build an integration solution out of multiple heterogeneous

systems is often not easy to achieve. A developed integration framework has to handle

numerous tasks and has to meet some conditions for the creation of an overall integration

solution. Some of the conditions an integration framework has to achieve consist of:

• Loose coupling

• Easy installation and configuration

• Performance

In the following, the three listed conditions are described in detail in relation to their use

in an integration framework.

A framework for the integration of heterogeneous systems should be able to perform

the connection of the different legacy applications or systems of an organization in a

loosely coupled manner. Loose coupling denotes the ability to change or remove a single

system used in the integration solution without affecting the other participating systems.

Therefore all other systems still continue working even though a specific system is not

available anymore.

Another criterion an integration solution has to fulfill is an easy installation and

configuration of the generated solution for the participating systems. For the integrated

systems of the different customers it must be possible to easily and correctly prepare their

systems to be used in the integration solution. Most suitable would be a self-configuring

solution which can be deployed without the need of an expert. But for the developed SWIS

approach a self-configuring solution without human decision is not possible, because of the

safety-critical domain the SWIS system is used. Therefore the final decision to use and

deploy the integration solution is done by a human.

Another important task for the development of an integration solution deals with the

performance of the created solution. For a company it can be very crucial to get a high

performance integration of their participating systems, in case if some of the containing

applications or systems need real-time data for example in a client-server environment.

Therefore the integration framework must pay special attention to this criterion.

 RESEARCH QUESTION

 48

3.1 Evaluation of integration architectures

Nowadays many different integration frameworks exist, which are developed in a variety

of integration architectures. Generally, it cannot be said which architecture should be used

for all areas by default, or which of the numerous existing integration technique presents

the best of all. The finally used integration framework or architecture depends on the

concrete scenario respectively the domain and is different from case to case. For a

qualified comparison of the different integration architectures a set of predefined evaluation

criteria is needed to get an appropriate result.

Aier, S., and Schönherr, M. [7] did a research on evaluating different integration

architectures and specified numerous criteria for the comparison. These include initial

planning efforts, initial development efforts, technical adaptations, non-invasive legacy/host

integration, maintainability, and customizability. The single criteria are described in the next

chapters. Later on in chapter 5.1, the developed SWIS approach (described in Chapter 4.1)

for the integration of various systems is compared with other integration solution according

to the six defined criteria. Therefore it will be determined:

According to the following defined evaluation criteria, in which of them is the developed

SWIS integration approach better, worse or equal than other integration architectures, like

individual interfaces, hub & spoke or service-oriented architecture (SOA)?

3.1.1 Initial planning efforts

This criterion focuses on the efforts needed for designing, implementing and processing

the integration solution. Therefore the dimension on which the integration solution supports

the internal staff and business policies are taken into account. Additional costs for

authorizing external professionals to support the internal mandatory to realize an

integration solution are attended by this criterion. External support is needed if the required

arrangements cannot be handled internally for some cases. The initial planning efforts

focus on the initial phase of an integration solution development.

3.1.2 Initial development efforts

While the previous described criterion focused on the planning efforts during the initial

phase, this criterion focuses on the efforts for developing the integration technology,

whereas also the initial development efforts during the initial phase are considered. The

initial development efforts for developing an integration architecture depends on the use of

already available software products. The more standardized software products are used,

the lesser is the effort for the initial development. If it is decided to develop the integration

architecture from the scratch, the efforts will be accordingly high. As a result to gain an

individual integration, a high effort for the initial development must be accepted. By this

criterion the overall costs to realize an integration project are evaluated, without differing

between the amount of software coding or customizing.

 RESEARCH QUESTION

 49

3.1.3 Technical adaptations

If the requirements for an integration are altered, but the technical requirements are

already realized in the developed integration architecture, the modifications of the

requirements have an effect on the integration technology architecture too. An integration

technology should allow the modification of the used requirements without much effort on

changing the realized integration architecture to fulfill the new requirements. This criterion

focuses on the development efforts needed to correct the available integration technology

architecture after changing the requirements.

3.1.4 Non-invasive legacy/host integration

In companies a respectable amount of different legacy applications is running. These

monolithic applications are intended to collaborate together. But the integration of legacy

applications into an overall integration solution is often a real problem. Because of the

limited control of legacy applications, the attended systems cannot be arbitrary customized

to fulfill the needed conditions for the use in an overall integration. There is practically no

chance for the integration developers to alter such enclosed applications. Furthermore, the

most legacy applications provide no sufficient interface or no standardized interface

description for the connection with other applications. Numerous companies using such

legacy applications are not willing to replace these applications due to the risks which can

come with the replacement, like complexity of the new systems, or less experience to the

stability of them. This criterion focuses on the ability of an integration architecture to

support the integration of unchangeable legacy applications.

3.1.5 Maintainability

A developed integration architecture should be maintained regularly to keep the

generated integration solution up-to-date. Therefore the integration architecture has to

provide the ability for maintenance without much effort. This criterion focuses on possibly

available administration tools or monitoring facilities to maintain the integration architecture

and additionally focuses on the efforts needed to arrange qualified maintenance.

3.1.6 Customizability

The customization of an integration architecture is associated with the previous

described technical adaptations criterion. Whereas the technical adaptation focuses on the

changes of integration technology if the requirements are modified, the customizability

focuses on requirement modifications which do not affect the technical structure of the

integration architecture. Such changes of the requirements should be updated by only

customizing the existing integration solution, without deep restructuring of the elementary

 RESEARCH QUESTION

 50

integration technology architecture. This criterion addresses the degree of customization for

the integration architecture.

3.2 Case Study

The Model Transformation Algorithm (MTA – see Chapter 4.2) is a core part of the

developed SWIS approach and takes the task to create a solution model by using the

requirement models. The solution model acts as a configuration set for the finally

integration solution. So the MTA process should get special attention and the single MTA

process steps should be supported by a tool to offer the possibility of human control during

the creation of the solution model. Therefore a graphical user interface for the MTA process

(see Chapter 4.3) was developed to guide the creation of the solution model step by step.

To determine the benefits of the developed tool support compared to manual

enactment, a case study was performed. The instructions to the case study are specified in

Chapter 4.4. The detailed execution and the obtained results of the performed case study

are described in Chapter 5.2. Therefore by means of the case study it will be determined:

Which benefits have the automatic steps of the tool support for the MTA process, in

relation to manual enactment, for gaining a consistent and correct solution model out of the

input requirement models?

3.3 Comparison of SWIS with traditional MDA

The SWIS approach uses semantic models which contain all relevant data and needed

information (e.g. message type, communication mode: push or request/reply, needed

external services, converters, etc.) about the integrated applications and systems. The

semantic models are expressed by means of ontologies and are defined in a layered

manner. Furthermore, within the SWIS approach the semantic models are transformed into

intermediate models for further processing. Thereafter, the intermediate models are

transformed again into an applicable solution model. In contrast, a traditional MDA process

(as described in Chapter 2.2) also uses a layered architecture, consisting of different

models varying in their granularity and abstraction level. According to the layered structure

of the two approaches, similarities between SWIS and MDA exist.

To find similarities between the developed SWIS approach and traditional MDA

processes, a comparison of the basic design of the two approaches should be done.

Therefore the following research question is asked:

Which similarities has the developed SWIS approach compared to traditional MDA

processes, according to the underlying structure and the various used models?

 RESEARCH QUESTION

 51

3.4 SWIS Integration Patterns

An integration pattern provides a reliable and approved technique to realize a specific

function by capturing the knowledge of experts who are familiar in a field the pattern stands

for. Numerous integration patterns are defined and they are used if no simple “straight-

forward” solution for a specific problem exists, due to the diversity of each domain.

Some of the numerous available integration patterns or rather enterprise integration

patterns, defined by Hohpe and Woolf [1], are already described in Chapter 2.4. These

integration patterns are also used for the development of the SWIS approach and therefore

it is interesting to analyze:

How are the different integration patterns, like Message Translator, Publish-Subscribe

Channel, Command Message, Request-Reply, Return Address, Correlation Identifier,

Dynamic Router, Recipient List, Splitter, Aggregator, Message Broker, Envelope Wrapper,

Content Enricher, Content Filter and Normalizer, realized in the developed SWIS

approach?

Chapter 4

PRACTICAL WORK

 53

4 Practical Work

This chapter describes the developed System Wide Information Sharing (SWIS)

approach for the integration of numerous heterogeneous systems by using ontologies as

information store. Also the SWIS architecture and the single ontologies used in SWIS are

described. After the introduction to the SWIS approach, the Model Transformation

Algorithm (MTA) is explained. The MTA is a core part in SWIS and accomplishes the task

of processing the given information of the ontologies into a consistent and correct

configuration set to use for the integration solution. For the description of the SWIS

approach and their capabilities, some internal documents of the scientific project were

used, like [47], [48] and [49]. Later, an introduction to the performed practical work more

precisely the graphical tool support for the MTA is given. The tool supports the underlying

MTA process by providing a consistent user interface to control and execute the single

MTA process steps. Furthermore it will be described how the tool is operated by a human.

At last an instruction to the performed case study to elicit the benefits of the tool support for

the MTA process is given.

4.1 System Wide Information Sharing (SWIS)

In this chapter an introduction to the SWIS approach takes place. SWIS stands for

System Wide Information Sharing and provides a promising approach to integrate a large

number of heterogeneous systems. SWIS was developed in a scientific research project in

the air traffic management domain in cooperation with the Austrian company Frequentis

AG. SWIS helps designing a network for safety-critical data exchange between data

provider and data consumer services between several organizations having heterogeneous

requirements and/or capabilities.

In safety-critical environments like in the air traffic management domain (see Figure

4.1), it is a crucial task to get data from reliable and failure safe information systems which

are processed by decision makers. SWIS was developed to replace the traditional point-to-

point data integration solutions which are very reliable but also very time-consuming and

cost-intensive when regular changes in the integration system occur (see Chapter 2.1.3.1

for explanations of point-to-point integration). The SWIS approach should compensate such

disadvantages by providing a flexible integration framework where changes in the

integration system are easy to handle and new system parts can be implemented without

much effort.

In SWIS the different stakeholders act as data consumers or data providers, where

some of the consumers can be seen as decision makers. For example an air traffic flow

manager has the task to plan air traffic sequencing, re-routing and collision prevention. It is

obvious that these decisions need correct data which must be available in real-time.

 PRACTICAL WORK

 54

Another fundamental point is the integration of new data sources with the used legacy

applications in the network. In such a safety critical domain the addition of new data

sources leads to a verification of the resulting system in order to check the quality of the

new integrated system.

Figure 4.1: Air Traffic Management Network Structure

Figure 4.1 shows a basic scenario of an air traffic management and is used to explain

the main tasks a decision maker has to do using the integration solution. The left side

covers some data providers (e.g. Airport Surveillance Radar, Weather Station, Radar

Station, various Sensors, etc.) and the right side contains data consumers (e.g. Radar

Operator, Collision Detection Program, Air Traffic Controller (ATC) in the tower, etc.). The

data providers and consumers are combined by an information sharing network which has

several nodes and links. Nodes can have different properties: while the grey nodes in

Figure 4.1 provide a secure connection, the white nodes do not provide any security

features.

The developed integration system has to fulfill some essential requirements:

• First, due to a time- and safety-critical domain, it is very crucial that the network

must work in a controllable and deterministic manner. Every decision made in the

integration system (e.g. routing between two nodes) has to be evaluated and

verified before deployment for error prevention. If possible errors in the system are

not discovered before deployment a fault can lead to an unexpected behavior

during run time and can implicate unthinkable consequences.

• Second the configuration of the network should allow that all requirements of the

participating communication partners are take into account while deriving the

possible integration partner candidates (e.g. specific time constraints for data which

must not be exceeded by the routing of two communication partners). Furthermore

the network configuration should be configurable from a wide-ranging perspective

instead of a local perspective for optimizing the underlying network infrastructure

and message routing.

 PRACTICAL WORK

 55

• Third the integration system has to provide logical communication links to abstract

the internal generated communication flow (e.g. middleware technologies) for a

sufficient flexibility to enhancements.

• And fourth, the system has to offer a semantically routing between providers and

consumers. More precisely, to determine all providers for a specific consumer they

satisfy the requirements of the consumer (e.g. the right message type and context).

All these requirements expected from an integration system can be fulfilled by the SWIS

approach. SWIS offers a modern platform to efficiently and correctly integrate dozens of

different legacy applications. In SWIS the entire information about the underlying network

and the participating systems with their specifications are described in explicit data models.

Out of the defined data models a system configuration plan (solution model) is generated

which covers the integration solution for satisfying the stakeholder quality requirements.

The next chapters cover some technical details about the developed SWIS approach

like the used architecture and the data models in terms of ontologies.

4.1.1 SWIS architecture

Figure 4.2 displays the architecture used in the SWIS approach. The SWIS approach is

divided into two main categories: the design time and the run time. The design time

involves all efforts to specify the data models (ontology) as input for the integration solution,

the actual Model Transformation Algorithm (MTA) for transforming the specified data

models into expressive intermediate models (solution model) for later realization of the

integration solution, and the simulation of the MTA-generated solution model to verify the

correct behavior regarding to the original specifications. The run time involves the

deployment of the generated and simulated solution model from the design time, lab testing

and regular monitoring and auditing of the deployed integration solution.

Figure 4.2: SWIS architecture

 PRACTICAL WORK

 56

4.1.1.1 Design time

The design time contains the efforts to specify the requirements and capabilities. It

primarily consists of the Model Transformation Algorithm (MTA) where the defined

requirements are transformed to a valid solution model for the integration system.

Additionally the design time contains a simulation process where the evolved solution

model can be simulated and verified.

Explicit Semantic Models

The first task in the SWIS approach is the definition of the stakeholder requirements

and capabilities. These requirements and capabilities are expressed via explicit models in a

semantic manner and describe the underlying network infrastructure, the business policies,

the failover contracts and all presented participating legacy applications (referred to as

collaboration contracts). The infrastructure model contains the definitions of the existing

nodes on the network, including their technical capabilities (e.g. supported network

protocol, delay time, costs) and their connection to other nodes on the network. The

contract model describes the semantic specifications of the available messages like

message type and the contained message segments. It also defines the communication

conditions between two collaborated services and specifies the collaboration capabilities

(e.g. timeout of the collaboration, routing characteristics of a message). In general a

message can be either a produced or a consumed message. With the policy model,

numerous conditions for the generated integration solution are defined (e.g. restrictions to

introduce by the route calculation). And at last the failover model contains all agreements

for providing an adequate error handling (e.g. maximum number of calculated backup

routes for the collaboration between two nodes).

With these created models the entire network used for the integration solution and their

communication among each other as well as all possible collaborations between particular

nodes are characterized.

Model Transformation Algorithm (MTA)

Generally the Model Transformation Algorithm builds the core part of the SWIS

approach. The MTA receives the explicit semantic models as input and generates an

intermediate model (the SWIS solution model) for the integration solution. Therefore the

MTA has to find a route between a provider and a consumer service considering the

matching of their group properties and fulfilling all collaboration specific demands of the

both services. Furthermore the MTA determines backup routes for the defined

collaborations to provide rerouting of messages if a part of the SWIS network used for

communication drops out. The MTA offers the possibility to specify some conditions all

calculated routes must fulfill like maximum cost or delay time. More detailed information

about the functionalities and benefits of the Model Transformation Algorithm will be

described later in Chapter 4.2.

Simulation

After the generation of the solution model by the MTA, a simulation can be started to

test the generated solution model. During the simulation phase, the solution model will be

 PRACTICAL WORK

 57

tested and it will be checked whether the calculated solution correctly describes the defined

functionalities and capabilities of the requirements before the solution can be deployed to a

real-world environment. If the solution model does not correctly conform to the

requirements, the process goes back to the first step of the SWIS approach. The explicit

semantic models are reviewed and necessarily modified. After the revision of the semantic

requirement models a new solution model is calculated with the MTA and will be tested

again in the simulation phase.

4.1.1.2 Run time

The run time contains all steps to adopt the SWIS solution model from the design time

in the real environment. This involves deployment and testing of the integration solution

and continuous monitoring and auditing of the running production system.

Deployment

The deployment of the generated solution model means, to distribute the solution to all

participating SWIS nodes within the SWIS network. Therefore, the functionalities of each

node will be configured for normal operation as well as for malfunction operation in case of

node failures. A new SWIS solution model will be generated and again deployed to all

SWIS nodes if the semantic models are significantly modified. Such modifications

encompass adding new nodes, links or services into the explicit semantic models.

Lab Testing

The deployed SWIS solution model can be tested in a lab environment before the

solution will be deployed to the real production system. Without testing, potential variations

of the solution model towards the requirement descriptions can lead to a malfunction of the

production system. Therefore the generated solution model will be systematically tested in

a lab environment to find possible deviations.

Production System

The production system represents the real world environment of the SWIS network. As

last step, the generated, deployed and tested SWIS solution model is used in the

production system to achieve an overall integration system.

Monitoring/Auditing

The developed integration solution created with the Model Transformation Algorithm

must be continuously monitored and audited after deploying the solution in a real world

environment. Monitoring and Auditing delivers important information about the integration

solution generated with the SWIS approach. With monitoring it is feasible to get feedback to

the current system states in terms of measurement data which can be used for comparison

with predefined values. The gained feedback from monitoring helps to improve the quality

of the whole SWIS approach, by measuring actual technical performance and capacity

data.

 PRACTICAL WORK

 58

4.1.2 SWIS ontologies

SWIS uses ontologies as information mapping enablers and therefore the ontologies

contain all relevant data and information (e.g., message type, communication mode: push

or request/reply, external services, converters) about the applications and systems to

integrate (ontologies are already described in Chapter 2.3).

The SWIS ontologies provide the requirements and capabilities for the calculation of the

integration solution model. The ontology input models uses a subdivided architecture of

three different types of ontologies, to separate the knowledge into various granularity

levels. The different ontologies in the SWIS approach are the abstract ontology, the domain

ontology and the customer ontology. Whereas the customer ontology extends the domain

ontology and the domain ontology extends the abstract ontology (see Figure 4.3). In SWIS

the ontologies are written in OWL (Web Ontology Language) because of its advantage of

handling relations between classes, properties and individuals compared to other

languages. The three used ontologies are described in the next chapter.

Figure 4.3: The three different types of ontologies used in SWIS

In the SWIS approach, a network consisting of numerous nodes and links presents the

major component. Each node has a specified network address and is connected to another

node. A link connects two nodes together and is used as transport medium to send

messages between the nodes. A node supports different data transfer protocols and can –

but must not – run one or more services on it. Services are classified as consumer service

(only receives messages), provider service (only sends messages) or request/reply service

(receives and sends messages). Afterwards the different parts used in a SWIS network

(Node, Link, Protocol, etc.) are described.

Node

A node illustrates a physical component (e.g. server or host) in a network. But a SWIS

node does not represent exactly one server or host. This means that for example one host

can hold numerous SWIS nodes which are running on it. Furthermore each SWIS node has

to support one or more network protocols (e.g. TCP/IP, SMTP, HTTP, etc.). If a node does

not support any protocol, the node is not ready for a connection using the network. A SWIS

 PRACTICAL WORK

 59

node also has the ability to work in multiple physical networks. Therefore the node needs a

separate network address for each network. Additional a node can have individual

attributes (e.g. delay-time, capacity, security, etc.) defined as class “Attribute” which is

described later.

A unique functionality in the SWIS approach is the use of Shadow Nodes for supporting

redundancy of SWIS nodes. For each node numerous Shadow Nodes can be defined. A

Shadow Node has the same properties and attributes as the node they represent, but has

different network addresses. If a node drops out a redundant Shadow Node is used to

maintain the further communication in the SWIS network.

Link

A link illustrates a physical network connection (e.g. wired network connection or

wireless network connection) between two SWIS nodes. Two connected nodes can only

communicate together if both nodes understand at least one common network protocol.

Two nodes are only associated with a SWIS link if they are able to communicate together

even though they are connected via a physical connection. Otherwise two nodes can have

more than one SWIS link if they support multiple common protocols. Out of all possible

common communication protocols of two nodes, the most applicable protocol for a given

scenario is used.

Each defined link is described with a start node and an end node. But the definition of

start and end node does not represent a direction for the connection. A SWIS network is

not constructed in a direction-oriented manner. So it has no effect to the network if the start

and end node are swapped. To provide additional attributes for a link, like delay time of the

link or security concerns, the Attributes concept will be used (Attributes are described later

in this chapter).

Network

A SWIS network consists of numerous SWIS nodes and SWIS links. Each node holds a

network address which is usually equal for all nodes in a common network. A network is

defined by a unique network name. In case that a particular node is part of more than one

network, this node is called a gateway node. If a link connects a node from one network

with a node existing in another network, the link is called gateway link.

Protocol

Each SWIS node supports one or more protocols. A protocol is comparable with a

language the node is speaking. If two different nodes support at least one common protocol

they are able to communicate together. For each common protocol supported by two

connected SWIS nodes one separate SWIS link exists. Therefore a protocol controls or

rather enables the connection and communication between a start and end node pair.

Furthermore a protocol also is responsible for the data transfer from one node to the other

node. If a SWIS node does not support at least one protocol, a communication with this

node is not possible. A protocol is defined with a unique name which is similar for all nodes

supporting this protocol. Furthermore a protocol can have additional attributes, like security

conditions or delay-time specifications.

 PRACTICAL WORK

 60

Network Address

Numerous SWIS nodes are bundled within a SWIS network. To allocate these nodes to

a common network a network address is used. Such a network address (among other

things an IP address) is assigned to each node and is unique for each node in one

common SWIS network. Within one network it is not possible that two nodes with the same

network address exist. Usually a node has just one network address, but if a node acts as a

gateway node it can have multiple network addresses. Each network address is defined by

two attributes: the actual network address represented as a string (e.g. “192.168.0.1”) and

the network the address is containing.

Service

Services represent communication devices available on legacy applications. A service

is running either as provider or as consumer service and provides or consumes messages.

In a SWIS network any service is connected to exactly one node, whereas a node can hold

numerous different services. A message transferring inside the SWIS network has a clear

specified format, the so-called message type (e.g. OrderMessage, InfoMessage). Each

service supports exactly one message type.

Message

As already described in the previous section, a message can either be provided or

consumed by a service. A message has a segmented design, and must have at least one

segment. Each message contains a message header, where the conditions to successfully

transport the message over the network are specified. Such conditions encompass for

example the needed protocol for transportation, delay-time conditions or security terms,

and are represented separately via a segment. Each segment is defined as a particular

envelope of the message. This means that for each segment the original message is

extended with the segment envelope.

Attribute

By means of an attribute, to each specific requirement or capability a precise value is

defined. This can be a requirement of a contract (e.g. delay-time), or a capability of a node,

protocol or link (e.g. security term).

Shadow Node

As already described in the Node section, a Shadow Node is a complete duplication of

the Node it belongs to. A Shadow Node provides the same properties and attributes of the

original Node. The only difference is that the Shadow Node uses another network address.

If the primary Node drops out, the Shadow Node takes over the further communication by

maintaining the dataflow instead of the original Node. The change from the primary Node to

the underlying Shadow Node is fully transparent to the other network devices.

Legacy Application

In computer science, a legacy application is an isolated application or system, which

acts as a single item which provides almost no public interface for the integration with other

 PRACTICAL WORK

 61

applications. These applications communicate in a various way with other devices and do

not underlie the scope of the SWIS application. But legacy applications should also be

integrated into the SWIS integration solution. Therefore the legacy applications are added

as independent devices with a unique name and providing at least one service.

Logical Group

Numerous legacy applications can be summarized into single logical groups to

represent common physical or logical relations of the containing legacy applications. Each

logical group in SWIS offers a unique name to exactly identify the group, and consists of at

least one legacy application. Otherwise, without a legacy application, a logical group is not

able to exist.

Figure 4.4: Excerpt of the Classes used in the SWIS ontology

 PRACTICAL WORK

 62

T-Map

A transformation-map (short T-Map) has some different tasks to achieve within the

SWIS approach. A T-Map is primarily used to transform the segments of a message from

the source format into the needed target format. Therefore a T-Map can use specific

converters or actually can call external services, e.g. to get some additional data from

various data sources.

Converter

With a converter a message segment can be converted from one basic data type into

another data type. Converters are used by the before described T-Maps for the

transformation of a source message format into a target message format.

Figure 4.4 shows the structure of the SWIS ontology used for the arranged case study

(see Chapter 4.4 for more information to the case study). The figure shows all previous

described parts of a SWIS network, but represents only an excerpt of the entire developed

SWIS ontology.

In the next chapters the three different ontologies (abstract, domain and customer

ontology) used for the SWIS approach as information source, are described.

4.1.2.1 Abstract Ontology

The abstract ontology encompasses the basic concepts for a SWIS-based scenario.

For the SWIS approach this ontology holds the concepts for the integration of different

legacy applications in an Air Traffic Management Area. The abstract ontology also includes

the concepts for modeling the infrastructure of the application domain. Because of its

domain independent representation the abstract ontology can be used across different

domains. The dissociation of domain characteristics by means of domain independent

ontologies presents a powerful mechanism for a flexible and easy to adopt basis to use

them in different information sharing scenarios, completely decoupled of the underlying

domain. To use the abstract ontology within another domain, only the domain ontology

needs to be replaced. All concepts containing in the abstract ontology are defined in a

conceptual way to achieve a simple and straightforward usage of the abstract ontology in

different domains. For example an instance of the node class can either be a discrete

network node or an intersection of two links.

In an abstract ontology numerous concepts are defined and therefore they are grouped

into functional segments. These functional segments can be classified into infrastructure

concepts (node, link, network, protocol, network address), service and message concepts

(service, message), policy and contract concepts (attribute), and message transformation

and conversion concepts (T-Map, converter). Each concept, described by the abstract

ontology, consists of a unique ID used to exactly access and query the wanted component.

This unique identifier is expressed textually to make it human-readable and therefore offers

better and easier human maintenance.

 PRACTICAL WORK

 63

The abstract ontology was created with Protégé and an explanation of the generated

code is shown below. The listings only show the fundamental structure of the ontology

code. A complete listing of the abstract ontology is covered in the appendix. In general the

ontology contains three different types: Classes, ObjectProperties, DatatypeProperties.

These three types of the abstract ontology are described following in terms of code listings.

Class

A class represents a precise concept and contains all defined properties of the concept

(e.g. Service, Node, Link, etc.). Listing 4.1 shows the definition of a class in SWIS written in

the Web Ontology Language (OWL).

 <owl:Class rdf:ID="ClassName">
 <owl:equivalentClass>
 <owl:Class>
 <!-- collection of the different properties in a class -->
 <owl:intersectionOf rdf:parseTyp="Collection">
 <!-- defines a ObjectProperty -->
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="ObjectPropertyName"/>
 </owl:onProperty>
 <!-- defines a min. cardinality of the ObjectProperty (min 0) -->
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >0</owl:minCardinality>
 </owl:Restriction>
 <!-- defines a DatatypeProperty -->
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:ID="DatatypePropertyName"/>
 </owl:onProperty>
 <!-- defines a cardinality of the DatatypeProperty (exactly 1) -->
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

Example:

 <owl:Class rdf:ID="Service">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseTyp="Collection">
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasMessage"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:ID="hasName"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isConnectedBy"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>

 PRACTICAL WORK

 64

 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

Listing 4.1: Abstract Ontology: Class definition

ObjectProperty

ObjectProperties have another class as type, e.g. ObjectProperty hasAttribute where

class Attribute represents the type of the property, or hasNetwork with type Network. The

ObjectProperty is comparable with a relation of two classes in a traditional relational

database system. In Listing 4.2 an example to highlight the structure of an ObjectProperty

definition is shown.

 <owl:ObjectProperty rdf:ID="ObjectPropertyName">
 <!-- the class which contains the ObjectProperty -->
 <rdfs:domain rdf:resource="#SourceClassName"/>
 <!-- the class which represents the type of the ObjectProperty -->
 <rdfs:range rdf:resource="#TargetClassName"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="ObjectPropertyName">
 <!-- all classes which contains the ObjectProperty -->
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#SourceClassName1"/>
 <owl:Class rdf:about="#SourceClassName2"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <!-- the class which represents the type of the ObjectProperty -->
 <rdfs:range rdf:resource="#TargetClassName"/>
 </owl:ObjectProperty>

Example:

 <owl:ObjectProperty rdf:ID="hasAttribute">
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Node"/>
 <owl:Class rdf:about="#Link"/>
 <owl:Class rdf:about="#Protocol"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:range rdf:resource="#Attribute"/>
 </owl:ObjectProperty>

Listing 4.2: Abstract Ontology: ObjectProperty definition

DatatypeProperty

DatatypeProperties have a simple data type as type, e.g. DatatypeProperty hasName

with datatype string. The DatatypeProperty is comparable with an attribute in a traditional

relational database system. See Listing 4.3 for an example to define a DatatypeProperty.

 PRACTICAL WORK

 65

 <owl:DatatypeProperty rdf:ID="DatatypePropertyName">
 <!-- the class which contains the DatatypeProperty -->
 <rdfs:domain rdf:resource="#SourceClassName"/>
 <!-- the datatype of the DatatypeProperty -->
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="DatatypePropertyName">
 <!-- all classes which contains the DatatypeProperty -->
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#SourceClassName1"/>
 <owl:Class rdf:about="#SourceClassName2"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <!-- the datatype of the DatatypeProperty -->
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </owl:DatatypeProperty>

Example:

 <owl:DatatypeProperty rdf:ID="hasName">
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Service"/>
 <owl:Class rdf:about="#Attribute"/>
 <owl:Class rdf:about="#Message"/>
 <owl:Class rdf:about="#Protocol"/>
 <owl:Class rdf:about="#Network"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </owl:DatatypeProperty>

Listing 4.3: Abstract Ontology: DatatypeProperty definition

4.1.2.2 Domain Ontology

The domain ontology is an extension of the before described abstract ontology (see

Figure 4.3) and precisely specifies the SWIS network. This is achieved by adding

individuals to define the elements which represent the infrastructure of the underlying SWIS

network. An individual is a concrete instance of the concepts defined in the abstract

ontology. In addition the domain ontology also provides the concepts and therefore the

classification for domain-specific knowledge.

The domain ontology contains the main information of the stakeholders for the

particular domains and is used for modeling standardized domain-specific information. To

achieve interoperability between different systems, the various customers relate their

customer-specific information (defined in the customer ontology – described in the next

chapter) to the standardized information of the domain ontology. Therefore, the single

customer systems are able to interoperate with other systems. The domain ontology also

contains all relevant information required to build a SWIS-based integration solution. With

the information defined in the domain ontology, it is possible to find semantically equivalent

information which is either provided or consumed by the different systems. Semantically

 PRACTICAL WORK

 66

equivalent data must not obligatory have the same format, but it depends on the data

content to have the same meaning. If two services in SWIS support a semantically

equivalent provider/consumer message pair, the two services are combined to a common

collaboration. The domain ontology can easily be used in other SWIS-based integration

solutions, in case if the integration solution is in the same domain. Therefore all new

applications of a single domain benefit from the available domain ontology.

The domain ontology normally is created by the domain expert, supported by the

network administrators of the networks which should be integrated, whereas the network

administrators are responsible for the description of the network infrastructure. In addition

the domain expert has to maintain and refine the ontology. The various Subject Matter

Experts (SMEs) of the participating organizations or legacy applications are responsible to

identify the provided or consumed data. First the domain concepts are described and then

the network infrastructure consisting of nodes, links, protocols, networks and network

addresses is described.

Relation to the abstract ontology

 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://www.tuwien.ac.at/abstract.owl"/>
 </owl:Ontology>

Listing 4.4: Domain Ontology: relation to the abstract ontology

Instance of class “Node”

 <swis:Node rdf:ID="NodeName">
 <swis:hasAttribute rdf:resource="#AttributeName"/>
 <swis:hasNetworkAddress rdf:resource="#NetworkAddressName"/>
 <swis:supportsProtocol rdf:resource="#ProtocolName"/>
 </swis:Node>

Listing 4.5: Domain Ontology: instance of class "Node"

Instance of class “Link”

 <swis:Link rdf:ID="LinkName">
 <swis:hasAttribute rdf:resource="#AttributeName"/>
 <swis:hasEndNode rdf:resource="#TargetNodeName"/>
 <swis:hasStartNode rdf:resource="#SourceNodeName"/>
 </swis:Link>

Listing 4.6: Domain Ontology: instance of class "Link"

Instance of class “Protocol”

 <swis:Protocol rdf:ID="ProtocolName">
 <swis:hasAttribute rdf:resource="#AttributeName"/>
 <swis:hasName rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >TCP</swis:hasName>

 PRACTICAL WORK

 67

 </swis:Protocol>

Listing 4.7: Domain Ontology: instance of class "Protocol"

Instance of class “Attribute”

 <swis:Attribute rdf:ID="AttributeName">
 <swis:hasName rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >secure</swis:hasName>
 <swis:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >false</swis:hasValue>
 </swis:Attribute>

Listing 4.8: Domain Ontology: instance of class "Attribute"

Instance of class “NetworkAddress”

 <swis:NetworkAddress rdf:ID="NetworkAddressName">
 <swis:hasAddress rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >10.0.0.1</swis:hasAddress>
 <swis:hasNetwork rdf:resource="#NetworkName"/>
 </swis:NetworkAddress>

Listing 4.9: Domain Ontology: instance of class "NetworkAddress"

Instance of class “Network”

 <swis:Network rdf:ID="NetworkName">
 <swis:hasName rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >WAN</swis:hasName>
 </swis:Network>

Listing 4.10: Domain Ontology: instance of class "Network"

4.1.2.3 Customer Ontology

Finally the customer ontology specifies customer-specific information about the

underlying network used for the integration solution. The customer ontology defines all

legacy applications and the used message structures for the SWIS scenario. Furthermore,

the business policies, i.e. the conditions for the connection of the various participating

applications, are specified. This ontology is the most refined ontology and extends the

domain ontology by including the information on how the single nodes exchange their data

with other nodes. In the customer ontology all necessary information of the legacy

applications or the participating organizations, with their existing and respectively used

services and messages, is available. Therefore, the customer ontology contains essential

information about the data exchange and the cooperation of the single legacy applications.

For example, it contains the specification of the used messages if they are provided or

 PRACTICAL WORK

 68

consumed by the legacy applications. Furthermore the semantic context as well as the

format of each message segment is defined.

The subject matter expert (SME) creates the customer ontology and is responsible for

the specification of the legacy applications. A SME gets help from the domain expert during

the creation of the ontology and after creation the domain expert checks the completed

ontology for correctness and completeness. In order to create the customer ontology, the

SME has to specify the following information:

• The different services regarding to the participating legacy applications.

• The requirements and/or the capabilities of the specified services, also noted as

service contracts.

• The physical mapping of the specified services to a specific network node, which is

described in the domain ontology.

• The frequency to send or receive messages, for each defined service.

At next, the single messages used for the communication between different legacy

applications are defined precisely. Furthermore all message segments of the data formats

contained in the domain ontology, have to be described in detail. Also the detailed

specifications for the physical network components (e.g. nodes and links - defined in the

domain ontology) more precisely the mapping between services and nodes to establish the

transmission of messages is defined in the customer ontology. So, all needed information

for the SWIS integration solution exists.

At last it is mentionable to say that the two ontologies (domain and customer) are

closely associated together. The border between them is not fixed and depends on the

particular scenario and the user roles. It is possible to transfer some parts defined in the

domain ontology into the customer ontology and vice versa.

Relation to the domain ontology:

 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://www.tuwien.ac.at/domain.owl"/>
 </owl:Ontology>

Listing 4.11: Customer Ontology: relation to the domain ontology

Instance of class “Message”

 <swis:Message rdf:ID="MessageName">
 <swis:hasName rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >InfoMessage</swis:hasName>
 </swis:Message>

Listing 4.12: Customer Ontology: instance of class "Message"

 PRACTICAL WORK

 69

Instance of class “ProviderService”

 <swis:ProviderService rdf:ID="ProviderServiceName">
 <swis:hasMessage rdf:resource="#MessageName"/>
 <swis:hasName rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >SendInfoMessage</swis:hasName>
 <swis:isConnectedBy rdf:resource="http://www.tuwien.ac.at/domain.owl#NodeName"/>
 </swis:ProviderService>

Listing 4.13: Customer Ontology: instance of class "ProviderService"

Instance of class “ConsumerService”

 <swis:ConsumerService rdf:ID="ConsumerServiceName">
 <swis:hasMessage rdf:resource="#MessageName"/>
 <swis:hasName rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >ReceiveInfoMessage</swis:hasName>
 <swis:isConnectedBy rdf:resource="http://www.tuwien.ac.at/domain.owl#NodeName"/>
 </swis:ConsumerService>

Listing 4.14: Customer Ontology: instance of class "ConsumerService"

4.2 The Model Transformation Algorithm (MTA) process

The Model Transformation Algorithm (MTA) builds a core part of the SWIS integration

approach (see Figure 4.2). The MTA uses the defined semantic models to calculate

possible routes and to create a SWIS Solution Model which represents a configuration set

for the integration of all containing devices (e.g. nodes, links, legacy applications, services,

etc.) in an SWIS network. The MTA is divided into the following fundamental steps:

• Step 1: Preparation of semantic data comprised in the input models

• Step 2: Calculation of routes between provider and consumer services

• Step 3: Calculation of backup routes for each SWIS node

• Step 4: Creation of the SWIS solution model

Figure 4.5: MTA process steps

 PRACTICAL WORK

 70

The four steps of the MTA process are pictured in Figure 4.5. The figure also shows the

input and output data of the single process steps. These data can be distinguished into

data represented in files and data represented as internal data structures existent during

the MTA process. Data represented in external files are the semantic description in terms

of ontology models and the resulting solution model as XML file. Internal data structures

are the prepared collaboration data which will be resolved as nodes, links, collaborations,

services, and so on for the later calculation steps, the “optimal” route for each collaboration

containing the routing information for a provider to a consumer service, and the backup

routes for each node if the next node defined in a route is currently not available.

In the following sections the single steps of the MTA process are explained to get an

overlook about the Model Transformation Algorithm technique.

4.2.1 Step 1: Preparation of Semantic Data

In this section the first step of the MTA process is described. It explains how the

semantic data described in explicit semantic models will be prepared for the use in the

SWIS integration approach. The semantic data represents the whole information of the

underlying SWIS network containing all declarations for nodes, links, legacy applications,

services, etc. (see Chapter 4.1.2 for more concepts declared within the explicit semantic

models).

The main task for the preparation of the semantic data is to read all information

provided in the ontology models (abstract, domain and customer ontology) and generate

semantic data for processing in further steps. After this step a set of semantic

collaborations out of the semantic models are created. A semantic collaboration describes

the combination of at least one provider service with a consumer service. Whereas the

provider service is able to exchange messages with the consumer service according to

predefined conditions (e.g. maximum costs, maximum delay-time, common protocol, etc.).

By means of the MTA it is possible to either automatically calculate all possible

collaborations for a certain scenario out of the defined semantic models, or a user can

select a subset of collaborations (as it will be used in the tool support, see Chapter 4.3.2)

for further processing.

A collaboration used as major communication data in the SWIS integration approach

encompasses numerous information data about

• provider and consumer services,

• message data transformations (so-called transformation maps or short T-Maps,

described in Chapter 4.1.2) needed to establish the message exchange,

• used network nodes to connect the participating services,

• predefined conditions which must be satisfied to establish a connection of the

involved services (so-called service contracts), and

 PRACTICAL WORK

 71

• communication mode used for the connection (push or request/reply collaboration).

During the preparation of semantic data the semantic collaborations of the input models

are collected and analyzed. After collection of the collaborations additional information is

appended to the collaborations if necessary. The additional information will be derived from

the semantic requirements and is needed to call external services for optional data

transformations, to establish a communication inside a sender group or for multicasting of

messages to a defined receiver group. This additional information is also represented in

terms of collaborations. Also the correlation data of a request/reply collaboration needs to

be stored to handle the flow of request message and reply message.

After the first step of the MTA process a set of enriched and refined collaborations

(either all collaborations out of the semantic models or a subset of user-selected

collaborations) which are extended with additional generated collaborations is available.

This data serves as input for the next MTA process step whereas a route for each of the

defined collaborations will be calculated.

4.2.2 Step 2: Calculation of Routes

In this section the second step of the MTA process is described. It explains how the

primary routes for a SWIS-based scenario are calculated. This step uses as input a set of

enriched and refined collaborations generated in the previous step of the MTA process.

For all collaborations a set of routes for further processing will be calculated. Therefore

all possible routes through the network which fulfill the collaboration conditions (e.g. special

network constraints, cost and delay-time conditions) are calculated. After the calculation of

the routes, a mass of SWIS scenarios will be created. In a scenario the calculated routes

are combined together whereas only a single route for each collaboration is used. The

defined scenario represents a solution for the SWIS integration approach. For each

possible constellation of combining the calculated routes of the different collaborations one

separate scenario is defined. These scenarios are then filtered using a pareto optimization.

Out of the mass of produced scenarios only those are stored which satisfy the pareto

optimality.

Pareto optimality is “… an economics term for describing a solution for multiple

objectives. No part of a Pareto optimal solution can be improved without making some

other part worse.” [46]

Figure 4.6 shows an example with different solutions regarding to their pareto

optimality. As you can see in the picture out of all solutions only the blue solutions conform

to be pareto efficient. These solutions are placed on the pareto curve, whereas on the one

side the solution with the least costs and the highest delay is placed and on the other side

the solution with the highest costs and the least delay is placed. So, no solution is the best

and it must be decided which solution should be taken. If a solution with lesser delay is

taken, higher costs must be accepted and if a solution with lesser costs is taken, higher

delay must be accepted. All other solutions (the grey ones) illustrate a pareto inefficient

state.

 PRACTICAL WORK

 72

Figure 4.6: Pareto optimality of different solutions

After this process step a set of pareto optimal scenarios are generated whereas each of

them containing the major routes of the defined input collaborations.

4.2.3 Step 3: Calculation of Backup Routes

In this section the third step of the MTA process is described. It explains how the

backup routes for a SWIS-based scenario are calculated. As input for this step the

generated data of the first two steps are used. This encompasses a set of enriched and

refined collaborations and a set of pareto optimal major routes for these collaborations.

For each major route several possible backup routes are calculated. The use of backup

routes represents an important technique to build a fault-tolerant and robust communication

network. So it is possible to switch to an alternative route if a device (e.g. node or link)

containing in the used main route fails. If a node wants to send a message to the next node

which is defined by the used route but due to a failure the destination node is not available,

the sending node switches to a backup route to finish the transmission of the message.

Therefore the sender transfers the message not to the primary node (which is actually not

available) but to another node according to the backup route. For each node in a SWIS

network which is a member of the main route, several backup routes have to be calculated.

This MTA process step extends the output of the previous process steps by adding

backup routes. Therefore the output after the first three MTA process steps contains pareto

optimal scenarios for the defined collaborations enhanced with backup route information.

4.2.4 Step 4: Creation of Solution Model

In this section the fourth step – the last step – of the MTA process is described. It

explains how the solution model for a SWIS-based scenario is created. The pareto optimal

 PRACTICAL WORK

 73

scenarios for the defined collaborations enhanced with backup route information generated

in the previous steps are used as input for this step. Out of the input data this MTA process

step creates the SWIS solution model.

The finally created SWIS solution model encompasses numerous information data

containing the following items:

• routing table for each SWIS node,

• naming service to establish abstract middleware-based message transmission,

• mapping instructions of the exchanged messages, and

• description of the transformation maps (short T-Maps)

The output of the last step in the MTA process is the SWIS solution model. This is a

XML configuration file which will be deployed to each SWIS node containing in the SWIS

network. In generally the solution model is a human readable representation of the

generated integration solution used to configure the network to conform the selected

scenario.

4.3 Tool support for the MTA process

This chapter describes the developed tool support for the MTA process. It provides a

graphical user interface which helps the system integration engineer to find an optimized

integration solution for a specific scenario. The tool provides an easy to handle step by step

appliance from the ontology selection till the completed configuration to build the integration

solution. The tool support represents a web application with JSP and Servlets and therefore

the next chapter gives an overlook about the used web development technique. To set up

the required environment to run the tool support, in Appendix A an installation guide is

presented.

4.3.1 JSP and Servlets

Java Server Pages (JSP) and Java Servlets are a common way for building ambitious

web applications. They allow designers and developers to rapidly embed dynamic content

into web pages by using Java and a set of elementary markup tags.

• Java Server Pages (JSP): Java Server Pages provides a Java-based technology

for developing dynamic web sites in a simplified manner [28].

• Servlets [3]: Servlets run in special parts of web applications the so-called web

container. After deploying the web application into a web container, all instances of

the java servlet class are loaded to the Java Virtual Machine (JVM) by the web

 PRACTICAL WORK

 74

container. Afterwards the requests for the servlet can be handled. To build a java

servlet class a java class must extend javax.servlet.http.HttpServlet.

4.3.2 Tool support process steps

In this section tool support for the Model Transformation Algorithm (MTA) is introduced.

The GUI supports the selection process, i.e. to automatically derive if one or multiple

producers match one or multiple receivers or vice versa. In addition, a java web application

that renders a graphical representation of the desired Network Infrastructure Model can be

started. The tool support for the MTA contains a user interface which provides predictable

emergent properties of the integrated system. On the one hand, the visualization should

lead to product improvement by the visual feedback, and on the other hand it should lead to

process improvement by providing better tool support and quality assurance. The

developed tool for the MTA has the task to help the system integration engineers to find a

specific integration solution for a scenario. Furthermore the user interface should help the

integration project manager because less time is needed to model, create and verify the

integration solution. The tool is developed as a web application to make it possible to

access the tool over the Internet, and is written in JSP (Java Server Pages).

The whole MTA process regarding the user interface is divided into nine major steps.

These nine steps are described in detail in the following sections.

Step 1: Start

The first step is to create a new project or to open an existing simulation project. The

user interface for step 1 provides only these two options to choose one of them to offer an

easy to handle and straightforward workflow for the tool support.

Step 2: Create / Open

If it is decided to create a new project in step 1 a list with all available ontologies is

shown. One ontology set has to be selected for usage in the new project. An ontology set

consists of one abstract ontology, one domain ontology and one or more customer

ontologies.

If chosen to open an existing project in step 1 a list with all former saved project files is

shown. After the selection of a project file and one is taken directly to step 7 where all

possible scenarios of the SWIS Solution Model are listed.

Step 3: Services

Step 3 gives an overview of the selected ontology. The following properties are

displayed:

o path to the ontology file

o number of nodes

o number of links

 PRACTICAL WORK

 75

o all push services (if existing) – subdivided into provider and Consumer Services

o all request reply services (if existing) – for each request reply service the ID and the

name of the containing provider and Consumer Service are displayed

Step 4: Connections (see Figure 4.7)

In this step it is possible to select all collaborations which are used to calculate the

SWIS Solution Model. A collaboration represents the selection of a consumer service and

one possible provider service. If for a consumer service more than one provider services

are selected, each pair of consumer and provider represents a collaboration. For example:

for one consumer service three possible provider services exist. If all three providers are

selected for the one consumer service, this will result in three collaborations. The screen is

subdivided into push and request reply services. So it is possible to select the

collaborations separately for the two main types of services.

• Push service features: The first text area shows all available Consumer Services.

By clicking on one of them, the appropriate Provider Services are shown in the

second text area. Now, one can choose a specific Provider Service by clicking on it.

The selected collaboration is automatically saved to be used for the calculation of

the SWIS Solution Model. After clicking on a Provider Service the properties of the

collaboration are shown in the third text area:

o name and ID of the selected Consumer Service

o name and ID of the selected Provider Services

o consumer T-Map and provider T-Map of each selected collaboration (if

existing)

o ID of the converter or external service for the selected collaboration (if existing)

To select more than one Provider Service for a specific Consumer Service one has

to press the „Ctrl“-button and click on the different Provider Services. One has to

click on „no Provider“, if no Provider Service should be used for the selected

Consumer Service.

The color of a Consumer Service in the first text area is green if there is a selected

Provider Service for them. So the entry is colored, if at least one collaboration for

this Consumer Service is selected.

One can search for Consumer Services by typing a search word in the search text

field and click the „search“-button. Only the Consumer Services containing the

search word will be displayed in the first text area. Click on the „reset“-button to

clear the search and to see all Consumer Services.

With the „select all“-button under the text area with the Consumer Services one can

choose all collaborations for all Consumer Services. Unlike with the „deselect all“-

button, one can clear all currently selected collaborations.

With the „select all“-button under the text area with the Provider Services all

Provider Services for the current selected Consumer Service will be selected.

 PRACTICAL WORK

 76

Unlike, one can delete all currently selected Provider Services for the selected

Consumer Service by clicking the „deselect all“-button.

Figure 4.7: Selection of collaborations

• Request/Reply service features: The features for the request reply services are

the same like the features for the push services. Only difference: the first text area

shows the request receivers and the second text area shows the request senders.

Step 5: Collaborations

In this step all selected push and request/reply collaborations of the ontology from step

4 are listed.

Step 6: Save

Now it is possible to save the new created simulation project. One needs to specify a

name for the simulation project without the path and without a file extension. One has to

type in a name for the simulation project and click the „save“-button. Saving the project file

is optional.

Step 7: Scenarios

From step 6 to step 7 the SWIS Solution Model with all selected collaborations is

calculated. Now all possible scenarios from the calculation are listed in the first text area. If

one clicks on one of them one can see the route description of the selected scenario in the

second text area. One has to choose a scenario and then go to the next step.

 PRACTICAL WORK

 77

Step 8: Visualization

In this step one is able to start the visualization of the selected scenario in step 7. The

visualization gives a graphical view of the calculated scenario with all containing nodes and

links. Figure 4.8 shows the visualization of the calculated scenario.

Figure 4.8: Visualization of the SWIS network with the tool support

Step 9: Export

At last it is possible to save the SWIS Solution Model into a XML-file. One needs to type

in the path and the name of the file and click the „save“-button to export the SWIS Solution

Model. The SWIS Solution Model is a XML configuration file, which contains all necessary

settings to be made to finally build the integration solution encompasses all participating

heterogeneous systems.

Correlation of tool support and MTA

Figure 4.9 shows the correlation of the tool support and the MTA. The figure also

explicitly represents the human interactions during the tool support process steps. It is

obvious that a human must only intervene a few times. As shown in the figure a human

must come into action in step 1 (choose to create a new project or open an existing

project), step 2 (choose an ontology or a project), step 4 (choose the collaborations) and in

step 7 (choose one scenario out of the calculated scenarios from the MTA). During the

whole process steps the exclusion of human faults are intended to finally get a correct and

functioning SWIS solution model.

 PRACTICAL WORK

 78

Figure 4.9: Correlation of tool support and MTA

 PRACTICAL WORK

 79

4.4 Case Study for tool support

In this chapter the case study to evaluate the benefits of the tool support for the MTA

process is introduced. The case study was performed in order by using a very simple

example. Out of the wide range of different concepts defined in the SWIS ontologies, just a

few were taken. The used ontologies contained only the essential information to create an

integration solution model. No different protocols were used and all defined nodes and links

supported one and the same protocol. Therefore the test persons had no additional effort to

connect only those nodes and links that supports the same protocol. It could be assumed

that all specified nodes and links defined in the instruction can directly talk together. Further

no special splitting or aggregation of the various message segments containing in a

message were used. Also no external services or type converters had to be used by the

test persons. All in all the test persons had to fulfill a low-level scenario with no complex

processing.

Generally, the test persons needed no special preconditions to participate in the case

study. This made it easy to find an appropriate amount of suitable persons. The test

persons got a list with all network devices (see Table 4.1) and they had the task to make an

evaluation of the given network. The whole case study was divided into two major steps – a

manual and an automated step.

Nodes

Link Node - Node Cost Delay

AC

10 50

BC

10 50

BD

1 500

CD

1 500

CF

20 500

CE

1 50

DF

20 500

DE

20 500

FG

1 50

EG

1 50

EI

1 500

GH

1 50

GI

10 50

Table 4.1: List of nodes and links for the case study example

 PRACTICAL WORK

 80

Some explanations are necessary to understand the exercises to do in the case study.

A network in SWIS consists of numerous nodes and links. Each link connects exactly two

nodes, for example: link AC connects node A with node C. For all links some properties are

specified, in our case the cost and delay-time. The cost property defines how expansive the

use of the respective connection will be. And the delay-time specifies how long it takes to

route from one node to the other node by using this link. Some nodes in the SWIS network

represent endpoints and on each endpoint one or more services are running. A service is

either a provider or a consumer service and can send or receive a specific message

according to his message type.

Service Node MessageType

Provider Service

Order Message

Provider Service

Order Message

Provider Service

Info Message

Consumer Service

Order Message

Consumer Service

Info Message

Table 4.2: List of services for the case study example

First, in the manual step, the candidates had to draw a picture of the network

architecture out of the given network devices. Figure 4.10 shows the network architecture

of the case study example with all nodes and links defined in Table 4.1. The participants

had to calculate possible routes from each given provider service to all possible consumer

services which are able to talk together. This means that one provider and one consumer

only establish a communication if both understand the same message type. After finding all

possible routes of the network from provider to consumer services, the total costs and

delay-time of the individual routes must be calculated. Afterwards the participants had to

find an entire scenario solution with minimum costs by adding the routes with the lowest

costs. Then a solution with the lowest delay-time must be specified, by adding the particular

routes with the lowest delay-time.

Figure 4.10: Network architecture of the case study example

 PRACTICAL WORK

 81

Second, in the automated step, the test persons had to run the same test case with

help of the tool support. Therefore the tool support was installed on a web server and the

participants executed the tool support on a client machine.

Now, the single steps of the tool support which are processed by the participants are

described. Look at Chapter 4.3.2 for further details on the single tool support process steps.

First the test persons had to create a new project in step1. Then, in step2, the ontology for

the case study must be chosen. After that, in step3, the participants got an overview about

the number of nodes and number of links containing in the ontology. Also the provider and

consumer services are listed. At next, in step4, the participants had to choose the wanted

connections. Since in the case study was defined to find a solution were all consumer

services are connected to all possible provider services, for each consumer service all

available providers are selected. Either by pushing the “select all” button under the

consumer service list, or by manual select of all providers for the individual consumers.

Now step5 and step6 are jumped over and finally at step7 all possible optimal scenarios for

routing the consumers with their providers are displayed. The participants had to check if

their manual calculated scenario is containing in the list of the automatic calculated

scenarios. If one’s scenario is in the list, he did his job well done.

During the case study the time was measured to identify the time difference between

the time needed for the execution of the manual steps of the case study and the time

consumed for the execution of the same example with the automatic steps by means of the

developed tool support for the MTA. The results of this performed case study are discussed

in Chapter 5.2.

Chapter 5

RESULTS

 83

5 Results

In this chapter an answer to two of the four defined research questions is given.

Chapter 5.1 describes the results of the evaluation of the developed SWIS integration

approach compared to other traditional integration approaches according to the research

question defined in Chapter 3.1. Afterwards, in Chapter 5.2, the results of the performed

case study of the tool support are described and give an answer to the research question

defined in Chapter 3.2.

5.1 Evaluation of the SWIS approach

This evaluation encompasses a detailed comparison of the developed SWIS integration

approach with other existing integration architectures like individual interfaces, hub & spoke

and service-oriented architecture (SOA). Therefore some criteria defined by Aier and

Schönherr [7] are used to compare the different integration approaches. The covered

integration criteria include initial planning efforts, initial development efforts, technical

adaptations, non-invasive legacy/host integration, maintainability, and customizability.

5.1.1 Initial planning efforts

This criterion encompasses the efforts needed to design and implement the integration

solution during the starting phase of the integration project. Thereby also the amount of

support the human staff needs to be able to design and implement a correct and

functioning integration solution is covered. Compared to other traditional integration

architectures, the developed SWIS approach does not differ mentionable. The only

difference is that the human integrators need knowledge about semantic modeling.

5.1.2 Initial development efforts

The initial development efforts encompass the efforts needed for the development of

the integration technology during the initial phase. In traditional UML-based integration

approaches the models created in different modeling languages are depending among

each other. Due to the dependencies of the single models, an integration system can only

be modeled in an incremental way and hence longer development duration is needed.

Furthermore, all needed models must be created first before they are able to be verified.

Therefore, possible modeling failures are detected only very late, more precisely, at the end

of the development of the models. The correction of these failures implies an increase of

 RESULTS

 84

the development costs. Another shortcoming of UML-based integration approaches is the

high complexity of the developed models due to the prevailing dependencies of the single

models. Therefore, only a few designers are capable to entirely understand and enhance

the different models.

In contrast, the developed SWIS approach provides concurrent modeling of the different

requirements and capabilities for the participating systems. This is achieved by means of

the three ontology layers (abstract, domain and customer ontology) which are used to

describe the single systems. The three ontologies are already described in Chapter 4.1.2.

Due to the layered ontologies, the SWIS approach offers a way that model designers can

create just a comparatively small partial model for a particular system and therefore do not

need to have exact knowledge about the entire system. Furthermore, the single partial

models can be verified immediately without having all models of the entire system.

Continuous verification of the partial models ensures proper models throughout the entire

integration process.

5.1.3 Technical adaptations

The technical adaptations focuses on the development efforts needed to correct

existing integration architectures to meet new requirements or to offer new capabilities after

modification of them. In order to add new or to modify existing requirements or capabilities

the existing models must be changed or possibly new models must be created. In

traditional approaches, altering existing models can become a serious problem, because of

the dependencies between the single models. Therefore, a violation of the given

dependencies must be avoided by manual checking. A possibly dependency violation will

be reported at the end of the development process. Otherwise, in the developed SWIS

approach no manual checks are done. In SWIS, automatic consistency checks of the

semantic models are performed and therefore only verified and validated models are

allowed. So, possible errors will be reported immediately and appropriate measures can be

taken in time.

5.1.4 Non-invasive legacy/host integration

In many organizations numerous of different legacy applications are running. Often the

applications are not going to change for adaptability improvement because of the high risk

and increasing complexity the change brings with it. Each of the different integration

architectures has their own technique to integrate legacy systems within an overall

integration solution. The non-invasive legacy/host integration criterion describes the ability

of integration architectures to support the integration of unchangeable legacy applications.

Traditional integration architectures need a common data model to achieve the

interoperability of different legacy applications. Therefore the messages of the single legacy

systems must be transformed from the varying data formats into a uniform internal data

format and vice versa. But the agreement on which common data model to be used for the

different participating systems of a small integration project is already not easy obtainable.

 RESULTS

 85

Even in larger integration projects the decision on a common data model becomes harder

and is almost impossible to achieve.

The developed SWIS integration approach offers a layered structure of the required

semantic models to accomplish the need for a common data model. The layered semantic

models contain the proprietary information about the participating systems and this

information is mapped to more overall domain knowledge. Therefore the developed

integration approach with the underlying layered semantic models allows:

• deduction of possible communication partners according to their requirements and

capabilities as well as their semantic meaning of the available messages, and

• directly and automatically transformation of the exchanged messages between the

participating legacy systems, from the source message presented in a proprietary

message format into the target message presented in a different proprietary

message format, without using a common data model.

5.1.5 Maintainability

The maintainability criterion focuses on possibly available administration tools or

monitoring facilities to maintain the integration architecture and additionally focuses on the

efforts needed to arrange qualified maintenance. General administration or monitoring tools

to maintain an integration architecture are not to neglect in case to easily maintain the

integration solution. In traditional integration approaches, the efforts needed to integrate

numerous heterogeneous systems starting from the scratch are already high. But the

needed efforts are still higher and more complex for later integration of additional systems

into an existing integration solution, because of the permanently verification of the already

created UML models after a new system was added. Furthermore, additional adaptations of

the existing system in the presented integration solution may be required. Also the

integration architectures developed by using the SWIS integration approach need special

tools for general administration or monitoring. But the SWIS approach uses a more flexible

way to describe new to add systems compared to traditional integration approaches. It is

possible to immediate verify the semantic models by means of integrated checks. The

semantic models of the new systems are added to the existing integration solution and no

additional adaptations of the already integrated systems are needed. This is achieved by

an automatic generation of the necessary transformation instructions of the proprietary

message formats used by the newly added systems.

5.1.6 Customizability

The customizability criterion identifies the degree of customization for the integration

architecture to meet changing requirements. In traditional UML based integration solutions,

the UML models are not suitable to deal with changes or extensions of the existing

requirements without adequate redesign of them. So changing or adding new requirements

to the existing requirements implies a redesign of all current created models to get an

 RESULTS

 86

appropriate design to meet the altered requirements. Otherwise, the developed SWIS

integration approach uses ontologies as underlying semantic data models. Ontologies not

only have a limited view to their environment they are used in but also follow an “open-

world” approach. This allows adding new concepts into existing ontologies in a more

flexible manner. Therefore the SWIS approach is able to easily deal with changing existing

or adding new requirements. Integration architectures created with the SWIS integration

approach offer a pluggable mechanism to add new algorithms to be able to handle the new

requirements provided in the semantic models.

5.1.7 Evaluation comparison

In this chapter the results of the evaluation of the developed SWIS integration approach

with some traditional integration architectures are listed. Table 5.1 shows the comparison

according to the six evaluation criteria described in the previous sections.

Criteria
Individual
interfaces

Hub &
spoke

SOA SWIS

Initial planning efforts + − − − −

Initial development efforts − + − +

Technical adaptations + ο + +

Non-invasive legacy/host integration − − + ο +

Maintainability − − + + − ++

Customizability − − + + − +

Table 5.1: Evaluation of integration architectures [7]

Compared to other traditional integration approaches the developed SWIS approach

presents a good and easy to handle mechanism to integrate numerous heterogeneous

systems. Foremost the flexible nature to respond to changing requirements by using

layered semantic models and ontologies as data models offers a big advantage of the

SWIS approach. Therefore, no extensive processing steps are needed to meet the altered

requirements. Also the easy and flexible integration of different legacy applications without

the need for a common data model is a big strength of the SWIS integration approach.

5.2 Results of Case Study

In this chapter the results of the performed case study regarding the tool support (see

Chapter 4.4) are highlighted. First of all the execution steps respectively the working issues

to be achieved during the case study are shown. Figure 5.1 illustrates the entire network

architecture of the case study. The figure includes all nodes and links as well as the

message types of the existing consumer and provider services. The consumer services are

 RESULTS

 87

running on node H and I, and the provider services are running on node A and B, whereas

node B holds two provider services.

Figure 5.1: Resulting network architecture of the case study example

After the participants of the case study had drawn the network architecture, they had to

find all possible routes (collaborations) from each consumer service to all appropriate

provider services, which support the same message type. Figure 5.2 shows one routing

example of the case study network, where the provider service running on node A is routed

with the consumer service running on node H. Both connected services support the

message type “Order Message”.

Figure 5.2: Routing example of the case study

After finding all possible collaborations, the participants had to calculate the total cost

and delay-time for any collaboration. In Table 5.2 the calculation of the before described

collaboration from node A to H (defined in Table 5.3 as collaboration “AH_1”) is shown. To

get the result, the particular costs and delay-times of the used links are summed-up.

Link Node - Node Cost Delay

AC

10 50

CF

20 500

FG

1 50

GH

1 50

 Total: 32 650

Table 5.2: Collaboration example of the case study

 RESULTS

 88

In this example the “Order Message” is routed from the provider service on node A to

the consumer service sitting on node H, which supports the same message type. The

routing goes from node A to node C, thereafter to node F and after node G the target node,

node H is reached.

All possible collaborations of the case study network are listed in Table 5.3. For any

collaboration the total cost and delay-time are specified. The table with the collaborations is

divided into the various routes where each consumer service is connected with an

appropriate provider service. Therefore all different routes to connect a consumer service

with the needed provider service (both supporting the same message type) are covered. In

our case node A can send the “Order Message” to node H, and also node B can send such

a message to node H, node B can additionally send the “Info Message” to node I.

Collaboration Cost Delay Route

AH_1 32 650

AH_2 13 200

BH_1 32 650

BH_2 13 200

BH_3 5 1150

BI_1 12 600

BI_2 22 200

BI_3 4 1550

Table 5.3: Possible collaborations of the case study example

Out of all possible collaborations, an overall scenario which contains at least one

collaboration per provider/consumer pair has to be defined. The cost and delay-time of the

selected collaborations are summed-up to get the total costs and total delay-time for the

specified scenario. For example, if the collaboration AH_1, BH_1 and BI_1 of Table 5.3 are

used for the resulting scenario (scenario number 1 in Table 5.4), the current costs and

delay-times are added together. The total costs of the resulting scenario are calculated by

adding the costs for the collaborations AH_1 (32), BH_1 (32) and BI_1 (12):

32 + 32 + 12 = 76

And the total delay-time of the scenario is calculated by adding the single delay-times

for the collaborations AH_1 (650), BH_1 (650) and BI_1 (600):

650 + 650 + 600 = 1900

 RESULTS

 89

In Table 5.4 all possible combinations of the single collaborations in Table 5.3 are

listed. Out of all possible combinations, the test persons had to find one scenario with

minimal costs and one scenario with minimal delay-time.

Scenario Cost Delay

1 AH_1 + BH_1 + BI_1 76 1900

2 AH_1 + BH_1 + BI_2 86 1500

3 AH_1 + BH_1 + BI_3 68 2850

4 AH_1 + BH_2 + BI_1 57 1450

5 AH_1 + BH_2 + BI_2 67 1050

6 AH_1 + BH_2 + BI_3 49 2400

7 AH_1 + BH_3 + BI_1 49 2400

8 AH_1 + BH_3 + BI_2 59 2000

9 AH_1 + BH_3 + BI_3 41 3350

10 AH_2 + BH_1 + BI_1 57 1450

11 AH_2 + BH_1 + BI_2 67 1050

12 AH_2 + BH_1 + BI_3 49 2400

13 AH_2 + BH_2 + BI_1 38 1000

14 AH_2 + BH_2 + BI_2 48 600

15 AH_2 + BH_2 + BI_3 30 1950

16 AH_2 + BH_3 + BI_1 30 1950

17 AH_2 + BH_3 + BI_2 40 1550

18 AH_2 + BH_3 + BI_3 22 2900

Table 5.4: Possible scenarios of the case study example

In Table 5.4 the two minimal scenarios are obviously. Scenario number 18 (blue

highlighted) is the scenario with minimal costs. Only 22 units are needed to perform this

scenario. And the scenario with minimal delay-time is scenario number 14 (red highlighted).

This scenario takes only 600 units for the execution.

As a result not all participating test persons had at last a correct result of the scenarios.

Some of the test persons had miscalculated the total costs or total delay-time of the single

collaborations. In turn, other persons did not find either the minimal costs scenario or the

minimal delay-time scenario. Figure 5.3 pictures the result of the case study. A total of 28

test persons performed the case study. Out of all test persons, more than a half of them,

more precisely 64.3 percent, found the correct solution with the two appropriate scenarios.

Furthermore 25.0 percent of the test persons had miscalculated the cost and delay-time

values. And the rest of the test persons, exactly 10.7 percent, had problems to find the

correct solution of the two minimal scenarios. This could have different causes, for example

not all collaborations between linked provider and consumer ser

therefore a minimal scenario containing the missing collaboration could not be found.

Altogether, 64.3 percent (

and a total of 35.7 percent (

solution.

Although the case study was performed with a very simple example without using

different protocols, no splitting or aggreg

without using external services or special converters, a high amount of errors occurred

the manual steps.

During the case study the time a test person needed for the execution was measured.

The time was separated into the time needed for the manual steps and the time needed for

the automatic steps. For the manual steps an average time of 20 to 25 minutes were

consumed, whereas for the automatic steps only 3 to 4 minutes were needed. Therefore

the manual steps required up to six times more than the automatic steps. If we note that

only a simple example was performed

complex example, because the time needed for the automatic steps will be almost

unchanged, but the time a human need for the manual steps will increase rapidly. Probably

a human would not be able to

a complex example.

10.7 %

25.0 %

90

not all collaborations between linked provider and consumer services were found and

therefore a minimal scenario containing the missing collaboration could not be found.

percent (almost two-thirds of the test persons) found the correct solution

percent (almost one-thirds of the test persons) did not find the correct

Figure 5.3: Result of the case study

Although the case study was performed with a very simple example without using

different protocols, no splitting or aggregation of message segments in a message, and

without using external services or special converters, a high amount of errors occurred

During the case study the time a test person needed for the execution was measured.

separated into the time needed for the manual steps and the time needed for

the automatic steps. For the manual steps an average time of 20 to 25 minutes were

consumed, whereas for the automatic steps only 3 to 4 minutes were needed. Therefore

teps required up to six times more than the automatic steps. If we note that

only a simple example was performed, the economy of time will be enormous

complex example, because the time needed for the automatic steps will be almost

the time a human need for the manual steps will increase rapidly. Probably

a human would not be able to manually find a correct and functioning integration solution of

64.3 %10.7 %

25.0 %

optimal solution

(18 test persons)

not the optimal solution

(3 test persons)

calculation error

(7 test persons)

RESULTS

vices were found and

therefore a minimal scenario containing the missing collaboration could not be found.

thirds of the test persons) found the correct solution

t persons) did not find the correct

Although the case study was performed with a very simple example without using

ation of message segments in a message, and

without using external services or special converters, a high amount of errors occurred by

During the case study the time a test person needed for the execution was measured.

separated into the time needed for the manual steps and the time needed for

the automatic steps. For the manual steps an average time of 20 to 25 minutes were

consumed, whereas for the automatic steps only 3 to 4 minutes were needed. Therefore

teps required up to six times more than the automatic steps. If we note that

the economy of time will be enormous by using a

complex example, because the time needed for the automatic steps will be almost

the time a human need for the manual steps will increase rapidly. Probably

find a correct and functioning integration solution of

optimal solution

(18 test persons)

not the optimal solution

(3 test persons)

calculation error

(7 test persons)

Chapter 6

DISCUSSION

 92

6 Discussion

In this chapter, the developed SWIS approach will be discussed with reference to some

of the aspects described in the related work (see Chapter 2). At first the structure of the

SWIS approach is compared with the structure of a traditional MDA. Furthermore the

realization of the integration patterns (see Chapter 2.4) in SWIS is described.

6.1 Comparison of SWIS with traditional MDA

In this chapter SWIS is compared with a traditional MDA process. In Figure 6.1 the

comparison of the two approaches is displayed. On the left hand side a traditional MDA

process is shown and on the right hand side the developed SWIS approach is pictured.

Figure 6.1: Comparison of generic MDA and SWIS

As shown in the figure, the generic MDA process and the SWIS approach have some

similarities. First of all the stakeholder requirements are defined in specific models. In MDA

a Computation-Independent Model (CIM) is used to specify the system requirements and

behavior, whereas in SWIS the requirements and capabilities are also defined in models in

terms of ontologies. In the next level, the system wide view, in the MDA a Platform-

Independent Model (PIM – described in Chapter 2.2.1) is created manually, whereas in

SWIS the logical solution model, which holds the abstract information about the underlying

integration network containing a set of collaborations, is derived automatically based of the

 DISCUSSION

 93

information provided in the requirement and capability models. The third level consists of

system specific information. On the one side, the MDA transforms the PIM into a Platform-

Specific Model (PSM) which is used for a specific platform they are generated for, and on

the other side, the SWIS approach transforms the logical solution model into a technical

solution model which builds the configuration set for the integration solution and splits it up

resulting in configurations for every single integration node.

6.2 SWIS Integration Patterns

This chapter focuses on the Integration Patterns defined by Hohpe and Woolf [1] in

relation to their adoption in the SWIS integration approach. As first step, a schematic

implementation is pictured for each Integration Pattern described in Chapter 2.4. Then the

realization in the SWIS approach for each of the explained integration patterns is shown.

As far as possible a precise example of the implementation is given.

6.2.1 Message Translator

This chapter explains the use of the Message Translator Integration Pattern in SWIS.

First in Figure 6.2 a schematic representation of this pattern is shown to get an overview

about the basic mechanism of the pattern.

Figure 6.2: Message Translator Integration Pattern [1]

The message translator pattern is represented in the SWIS approach by means of the

transformation maps (short T-Maps). A T-Map takes the task to transform the message

segment of a sender (the source) into the message segment of a receiver (the target). The

T-Map accomplishes the transformation either by calling an external service or by using a

specific data converter. Therefore a T-Map definition contains the description how the

transformation of the input message segment into the output message segment is done.

The following example shows such a translation defined in a T-Map.

 <?xml version="1.0"?>
 <tmap version="1.0" name="Node_TMap">
 <inputMessage id="InputMessage" typeURI="IFPL">
 <segment domainConcept="ID" format="Character5" name="OID"/>
 <segment domainConcept="StartTime" format="Time_UTC" name="STA"/>
 <segment domainConcept="Duration" format="Integer" name="DUR"/>
 </inputMessage>

 DISCUSSION

 94

 <outputMessage name="OutputMessage" typeURI="GFPL">
 <segment domainConcept="ID" format="Character5" name="OrderID"/>
 <segment domainConcept="StartTime" format="Time_UTC" name="Start"/>
 <segment domainConcept="EndTime" format="Time_UTC" name="End"
 selectSegmentWithID="Duration"/>
 </outputMessage>

 <transformation>
 <converters>
 <converter id="calcEndTime" className="CalcEndTime"
 inputFormat="Integer" outputFormat="Time_UTC" losless="true"/>
 </converters>
 <externalServiceCalls/>
 </transformation>
 </tmap>

Listing 6.1: Implementation of the Message Translator pattern

In this example the input message consisting of an ID, a start time and a given duration

time is translated into the output message consisting of an ID, a start time and an end time.

Whereas the wanted end time is calculated by adding the duration to the start time. In the

transformation section of Listing 6.1 the needed converters or external service calls are

defined. In this specific example a converter is used to calculate the end time out of the

given duration.

6.2.2 Publish-Subscribe Channel

In this section the implementation of the Publish-Subscribe Channel in the SWIS

approach will be described. Figure 6.3 shows a traditional realization of the Integration

Pattern.

Figure 6.3: Publish-Subscribe Channel Integration Pattern [1]

The Publish-Subscribe Channel pattern is implemented by using so-called Receiver

Groups in SWIS. With Receiver Groups it is possible to multicast a message from a

provider service (publisher) to a defined group of numerous consumer services

(subscribers). A Receiver Group is not a real physical group in a SWIS network it is only

 DISCUSSION

 95

described in a semantic manner. The Model Transformation Algorithm (see Chapter 4.2)

creates a single connection for each specified subscriber with the publisher. Therefore

each connection is defined by a unique DataflowID.

 <sendmapping>
 <map>
 <input>
 <properties>
 <property name="publisher" value="publisher1" />
 </properties>
 </input>
 <output>
 <dataflow ID="publisher1-subscriber1" />
 <dataflow ID="publisher1-subscriber2" />
 <dataflow ID="publisher1-subscriber3" />
 </output>
 </map>
 </sendmapping>

Listing 6.2: Implementation of the Publish-Subscribe Integration Pattern

In this example a message from the defined publisher “publisher1” is transmitted to

three subscribers specified by three different data-flows. Thereby the message will be send

to “subscriber1”, “subscriber2” and “subscriber3”. In Figure 6.4 the implementation of the

Publish-Subscribe Channel pattern with the transformation of each subscriber (containing

in a receiver group) to a separate collaboration with the publisher is shown.

Figure 6.4: Realization of the Publish-Subscribe Channel pattern in SWIS

 After the transformation a publisher sends a message to all interested subscribers

whereas each collaboration uses a unique DataflowID.

6.2.3 Command Message

In this section the realization of the Command Message pattern in the SWIS approach

will be described. Figure 6.5 shows the basic use of a Command Message. By means of a

 DISCUSSION

 96

Command Message a sender is able to invoke a procedure or method provided by a

receiver. This is achieved by sending a Command Message whereby the receiver needs to

deal with them. So a sender can inform the receiver to do something.

Figure 6.5: Command Message Integration Pattern [1]

In SWIS a Command Message is used to inform each participating nodes in a SWIS

network that a new solution model is available. Therefore after deployment of the solution

model each node receives a Command Message and reads the deployed configuration to

set up their mode of operation. After reading the solution model a node is ready to work in

the SWIS network. In SWIS also other Command Messages are used. One Command

Message for start working of a SWIS node, one Command Message for stop working of a

SWIS node and one Command Message to get special debug information of a SWIS node.

6.2.4 Request-Reply

This section describes how the Request-Reply pattern is implemented in the SWIS

approach. Figure 6.6 shows a basic representation of this pattern by using a request and a

reply channel to transmit the messages.

Figure 6.6: Request-Reply Integration Pattern [1]

In SWIS the request-reply communication mode is realized analogue to the pattern

shown in Figure 6.6. The input semantic model defines such a communication with a single

semantic collaboration containing an advice that a request-reply communication mode is

used. Out of the defined collaboration two independent collaborations are created. One as

request collaboration between request provider and request consumer service, and one as

reply collaboration between the reply provider and the reply consumer service. To correlate

the two generated collaborations together the same DataflowID of the request collaboration

 DISCUSSION

 97

will be set to the reply collaboration. So the correlation between request and reply

collaboration is specified. Figure 6.7 shows the transformation from the single common

semantic collaboration using a request-reply communication mode, into two separated

collaborations (one for the request and one for the reply). Both single connections have the

same DataflowID to define the correlation between them.

Figure 6.7: Realization of the Request-Reply pattern in SWIS

Within the SWIS approach the request consumer service and the reply provider service

are containing on the same SWIS node. Otherwise it would be not possible that the reply

provider can use the DataflowID from the request message.

6.2.5 Return Address

In this chapter the implementation of the Return Address pattern will be described. The

integration pattern according to Hohpe and Woolf [1] is pictured in Figure 6.8.

Figure 6.8: Return Address Integration Pattern [1]

This pattern is implemented just like the Request-Reply pattern. SWIS uses a unique

DataflowID to define a collaboration between a provider service and a consumer service. In

the Request-Reply pattern, a request-reply channel is split into two single collaborations,

 DISCUSSION

 98

one between request sender and reply receiver and one between reply sender and request

receiver. Both collaborations have the same DataflowID. For the Return Address

integration pattern the used mechanism is the same like the request-reply mechanism.

Therefore the DataflowID demonstrates the return address.

Figure 6.9: Realization of the Return Address pattern in SWIS

Figure 6.9 illustrates how the Return Address pattern is realized in SWIS. If several

requestors want to send a request message to a common replier the SWIS approach

transforms the connections to one separate request-reply connection for each requestor to

the replier. Furthermore, each of the request-reply connections is splitted into two

collaborations both containing the same DataflowID depicting the return address.

6.2.6 Correlation Identifier

This chapter shows how the Correlation Identifier integration pattern is implemented in

the SWIS approach. In Figure 6.10 the traditional implementation of this integration pattern

is pictured.

Figure 6.10: Correlation Identifier Integration Pattern [1]

 DISCUSSION

 99

In SWIS this integration pattern is implemented as shown in each requestor uses an

own message counter. Each time a message is send by the requestor, the actual number

of the message counter is added to the message as MessageID and then the counter is

increased by one. Therefore the requestor is able to allocate the incoming reply messages

to the appropriate request.

Figure 6.11: Realization of the Correlation Identifier pattern in SWIS

Figure 6.11 pictures how the SWIS approach implements the Correlation Identifier

pattern by using a message counter to generate the MessageID for each sending

message. The added MessageID is a unique number because the counter is incremented

permanently after a message was send.

6.2.7 Dynamic Router

In this section an overlook about the Dynamic Router integration pattern according to

their implementation in the SWIS integration approach is given. Figure 6.12 shows the

basic design of this pattern.

Figure 6.12: Dynamic Router Integration Pattern [1]

In SWIS the Dynamic Router is represented by the SWIS solution model. The model

contains all necessary information to establish a SWIS network and therefore enables the

 DISCUSSION

 100

correct routing of a message from the source to the destination. Each node offers such a

generated solution model. If a node which is currently used for the routing fails, the

previous node automatically sends the message to an alternative node in order to keep up

the message flow. The used alternative node is specified by a Backup Route defined in the

solution model for each single SWIS node.

6.2.8 Recipient List

This chapter describes the Recipient List integration pattern (displayed in Figure 6.13)

and their representation in the SWIS approach.

Figure 6.13: Recipient List Integration Pattern [1]

In SWIS the Recipient List is realized by using special Receiver Groups (already

described in Chapter 6.2.2 for the Publish-Subscribe Channel integration pattern) or in the

other case Sender Groups. By using the Receiver Group pattern it is possible that one

provider service can send a message to numerous consumer services containing in a

Receiver Group.

Figure 6.14: Realization of a Sender Group in SWIS

 DISCUSSION

 101

The Recipient List pattern is realized by means of a Receiver Group whereas the

containing consumers are split into single collaborations with the provider. The Sender

Group pattern is the opposite of the Receiver Group. In a Sender Group all containing

provider services are able to send to a specific consumer service by producing the needed

message type. But it is eligible that just one provider sends to the consumer. Therefore the

SWIS approach supports the possibility to suspend transmitting messages for the different

providers. In SWIS only one provider of a Sender Group sends a message whereas the

single provider services are prioritized within the Sender Group. Figure 6.14 shows the

implementation of a Sender Group in the SWIS approach.

As displayed in the figure the connection between a Sender Group and a consumer

service is split into a single collaboration for each provider service (analogue to the

Receiver Group implementation). Additionally the provider services combined in a Sender

Group are connected to each other for inner communication (see red arrows). This is

needed to determine the right provider service for sending a message to the consumer

according to some conditions like prioritization and availability. If a sending system fails, the

next sender containing in the Sender Group takes the task of sending the message to the

required consumer. All providers in the Sender Group have exactly the same structure.

6.2.9 Splitter

This section describes the Splitter integration pattern. A Splitter is used to separate a

single message consisting of several message segments into several messages containing

one message segment. Figure 6.15 pictures a schematic representation of this integration

pattern.

Figure 6.15: Splitter Integration Pattern [1]

The Splitter integration pattern is realized in SWIS with so-called T-Maps. T-Maps are

already used in the Message Translator pattern (see Chapter 6.2.1) and are basically used

to transform an input message provided in a specific format into a predefined output

message provided in another format. Thereby the T-Map additionally can use external

services or special data converters. In this case, a T-Map is actually a Content Filter (see

Chapter 6.2.14). To achieve the implementation of the Splitter pattern several such T-Maps

are needed. One T-Map is required for one generated output message. If an input message

consisting of several message segments should be split into several single output

messages containing only one message segment, as many different T-Maps are needed as

message segments exists in the input message. Thereto each T-Map processes the same

 DISCUSSION

 102

input message. In a SWIS network, each participating node can encompass more than just

one T-Map.

Figure 6.16: Realization of the Splitter pattern in SWIS

Therefore to split the input message completely into three single output messages,

three T-Maps are needed (see Figure 6.16). In generally for the implementation of the

Splitter pattern one input message and several T-Maps are working together.

6.2.10 Aggregator

In this chapter the Aggregator integration pattern is defined. An Aggregator merges

several input messages into one combined output message. Figure 6.17 pictures the basic

functionality of this pattern.

Figure 6.17: Aggregator Integration Pattern [1]

Just like the before described Translator and Splitter pattern, an Aggregator is also

realized by means of T-Maps in the SWIS approach. In contrary to the Splitter realization,

where one input message and several T-Maps are used, for the implementation of the

Aggregator pattern several input messages and just one T-Map are working together. The

T-Map which acts as Aggregator receives the different input messages which are send to

the node the T-Map belongs to. After all needed input messages are arrived, the T-Map

transforms the message segments from the single input messages into an output message

containing all the different message segments.

 DISCUSSION

 103

 <?xml version="1.0"?>
 <tmap version="1.0" name="Node_TMap">

 <inputMessages>
 <inputMessage id="InputMessage1" typeURI="IFPL1">
 <segment domainConcept="ID" format="Character5" name="OID"/>
 </inputMessage>

 <inputMessage id="InputMessage2" typeURI="IFPL2">
 <segment domainConcept="StartTime" format="Time_UTC" name="STA"/>
 </inputMessage>

 <inputMessage id="InputMessage3" typeURI="IFPL3">
 <segment domainConcept="Duration" format="Integer" name="DUR"/>
 </inputMessage>
 </inputMessages>

 <outputMessage name="OutputMessage" typeURI="GFPL">
 <segment domainConcept="ID" format="Character5" name="OrderID"/>
 <segment domainConcept="StartTime" format="Time_UTC" name="Start"/>
 <segment domainConcept="Duration" format="Integer" name="Duration"/>
 </outputMessage>

 </tmap>

Listing 6.3: Implementation of a T-Map for the Aggregator pattern

Listing 6.3 shows an example of an Aggregator T-Map to transform three input

messages each with one message segment into an output message containing the three

single message segments.

6.2.11 Message Broker

In this section another integration pattern from Hohpe and Woolf [1] the Message

Broker pattern is pictured. Figure 6.18 shows a schematic representation of this pattern. A

Message Broker enables the communication between the participating systems by

controlling the flow of the messages in a decoupled manner.

Figure 6.18: Message Broker Integration Pattern [1]

SWIS uses the underlying physical network for the basic communication and message

transport. To achieve that a SWIS device works with the underlying physical network, and

to establish the routing or transport of a message in the physical network some conditions

 DISCUSSION

 104

must be fulfilled. For each existing SWIS link in the SWIS network a form of a middleware

is specified which connects the link into the overall integrated system. A specified

middleware can be used by multiple links and otherwise multiple middleware technologies

can be used in a SWIS solution. Therefore the specified middleware technologies of the

SWIS network to establish the communication between SWIS devices and the

transportation of messages can be defined as a Message Broker.

6.2.12 Envelope Wrapper

The Envelope Wrapper integration pattern surrounds a transmitted message with

additional information to enable the communication between sender and receiver. This

section describes the Envelope Wrapper integration pattern and in Figure 6.19 the

operation of this pattern is represented.

Figure 6.19: Envelope Wrapper Integration Pattern [1]

To enable the communication in a SWIS network a DataflowID is needed. A DataflowID

specifies a connection exactly between two SWIS nodes or more precisely between two

services running on legacy applications. Therefore a DataflowID is unique within a SWIS

network and must be added to a message for a successful routing of the message. Each

SWIS node offers a routing table containing the information to which node or service an

incoming message with a specific DataflowID must be forwarded.

 <dataflow ID="DataflowID1">

 <previous>
 <singlenode>
 <properties>
 <property name="linkID" value="Node1-Node2" />
 <property name="protocolID" value="TCP" />
 </properties>
 </singlenode>
 </previous>

 <forwarding>
 <priority value="1">
 <singlenode>
 <properties>
 <property name="linkID" value="Node2-Node3" />
 <property name="protocolID" value="TCP" />
 </properties>
 </singlenode>
 </priority>

 DISCUSSION

 105

 <priority value="2">
 <service ID="ServiceID" />
 </priority>
 </forwarding>

 </dataflow>

Listing 6.4: Implementation of an Envelope Wrapper pattern

The dataflow definition contains two partitions. The first part defines the nodes or

services the incoming message should be forwarded to, and the second part specifies the

previous node the message should be returned to if the forwarding devices fail. In the

forwarding classification more than one devices can be defined. To handle the routing with

more than one forwarding device defined in the routing table, the devices are prioritized.

Therefore the node tries to forward an incoming message to the node or service defined

with the highest priority. If this device is not available the node forwards the message to the

next device defined in the priority list and so on.

To enable the transmission of messages the DataflowID must be added to each

message. In the SWIS approach the Model Transformation Algorithm (short MTA – see

Chapter 4.2) calculates the DataflowIDs and surrounds the messages with the additional

information.

6.2.13 Content Enricher

This chapter gives an overview about the Content Enricher integration pattern. The

basic functionality of the pattern is displayed in Figure 6.20.

Figure 6.20: Content Enricher Integration Pattern [1]

In SWIS a Content Enricher is implemented by supporting external services calls

defined for a T-Map. External services are needed if the transformation of a message

segment cannot be handled from the T-Map and the included data converters. An external

service call is defined in a T-Map. During the transformation of an input message into an

output message, a message is sent by the T-Map to an external service by using a

request/reply communication. This message contains the information which will be

 DISCUSSION

 106

converted by the external service and will then send back to the caller. Listing 6.5 shows

the implementation of an external service call in a T-Map to be used as Content Enricher.

 <?xml version="1.0"?>
 <tmap version="1.0" name="Node_TMap">
 <inputMessage/>
 <outputMessage/>
 <transformation>
 <converters/>

 <externalServiceCalls>
 <externalServiceCall serviceID="ExternalService">

 <inputMessage id="InputMessage" typeURI="CustomerDB">
 <segment domainConcept="CustomerID" format="Integer" name="CID"/>
 </inputMessage>

 <outputMessage name="OutputMessage" typeURI="CustomerDB">
 <segment domainConcept="ForeName" format="Character20" name="Forename"/>
 <segment domainConcept="SurName" format="Character20" name="Surname" />
 <segment domainConcept="Address" format="Character50" name="Address" />
 <segment domainConcept="ZIPCode" format="Integer" name="ZIPCode" />
 </outputMessage>

 </externalServiceCall>
 </externalServiceCalls>

 </transformation>
 </tmap>

Listing 6.5: Implementation of a Content Enricher pattern

The Listing pictures an example where the input message for the T-Map contains a

customerID and the output message should contain the forename, surname, address and

ZIP code of the specified customerID. In that case the T-Map is not able to transform the

message segments herself or by using special converters, because additional information

is needed. So the T-Map has defined an external service call. An external service mostly

use other information sources (e.g. a customer database) to get additional information. The

defined external service in the example requires as input segment only the customerID and

returns an output message containing the forename, surname, address and ZIP code. Now

the T-Map can fill the output message segments with the returned data from the external

service.

6.2.14 Content Filter

In this section another essential integration pattern, the Content Filter, is described. The

following figure (Figure 6.21) pictures the basic functionality of a Content Filter for filtering

several message segments containing in the input message to get an output message with

fewer message segment in it.

In the SWIS approach the Content Filter pattern is realized by means of a T-Map. The

T-Map specifies how an output message should be designed and is able to transform an

incoming input message into an output message according the specifications. Thereto the

 DISCUSSION

 107

T-Map gets the message segments of the input message and inserts only specific message

segments into the output message.

Figure 6.21: Content Filter Integration Pattern [1]

Listing 6.6 shows an example of a T-Map to transform an input message consisting of

three message segments into an output message consisting of one message segment.

 <?xml version="1.0"?>
 <tmap version="1.0" name="Node_TMap">

 <inputMessage id="InputMessage" typeURI="IFPL">
 <segment domainConcept="ID" format="Character5" name="OID"/>
 <segment domainConcept="StartTime" format="Time_UTC" name="STA"/>
 <segment domainConcept="Duration" format="Integer" name="DUR"/>
 </inputMessage>

 <outputMessage name="OutputMessage" typeURI="GFPL">
 <segment domainConcept="ID" format="Character5" name="OrderID"/>
 </outputMessage>

 </tmap>

Listing 6.6: Implementation of a T-Map for the Content Filter pattern

Such a Content Filter is also used for the Splitter pattern (see Chapter 6.2.9). Multiple

Content Filters depicts one Splitter (one single Content Filter for each message segment).

6.2.15 Normalizer

This chapter describes the Normalizer integration pattern for the translation of

messages existing of different formats into messages existing of common formats. Figure

6.22 shows a schematic representation of the Normalizer pattern, whereas for each

different message format a special translator is used to transform the message into a

common message format.

In SWIS the Normalizer pattern is implemented by a combination of T-Maps and

converters. The T-Map acts as a router to specify which converter has to be used for

translating a specific input message format into a common output message format. The

converters itself have the task to translate the single message segments from one format to

another. For example, if the input message segment has the data type integer and the

output segment data type should be double, the T-Map selects a converter that is able to

 DISCUSSION

 108

transform an integer number into a decimal number. In the SWIS network all needed

converters for the transformation have to exist on the integration node connecting the

sending service. Therefore the message segments of a message are first separately

transformed and then again combined into a single message before transmission. So the

receiver gets the message in the right format and can process it without further

transformation.

Figure 6.22: Normalizer Integration Pattern [1]

The SWIS approach also provides the possibility to define lossless converters. Such

converters translate the messages without any loss of information. For example, if a

decimal number is transformed into an integer number, the transformation is not lossless

because the positions after the decimal point will be removed. Otherwise the transformation

of an integer number into a decimal number is lossless because no parts of the origin

number will be removed. If transmitted data should be converted lossless, but the

collaboration between two services in a SWIS network has no appropriate converter to

transform a message in a lossless way, no collaboration between the two SWIS services is

possible.

Chapter 7

SUMMARY AND FURTHER WORK

 110

7 Summary and Further Work

The integration of numerous heterogeneous systems, i.e., to build one big system out of

different independent systems, gains increasing importance for organizations. Because of

the probably high amount of different business applications running in a company, the

integration of these systems to exchange data and information or to operate as one big

system without having many single applications processed in various ways. But building an

integration solution poses miscellaneous challenges. The applications are often designed

to run independently from other systems and therefore cannot be easily integrated with

other applications to an overall integration solution. Such legacy applications provide

almost no interface for the connection with other systems and therefore the integration

approach has to deal with this restriction. Furthermore, the applications differ between the

programming languages they are written in, the operating platforms they are running on, or

the used data formats; in short, each application has their own construction type and look.

The integration approach should be able to handle such limitations and to build an overall

integration solution with various legacy applications.

The System Wide Information Sharing (SWIS) approach, a promising approach to

integrate a large number of heterogeneous systems, was introduced in the thesis. SWIS

was developed as scientific project at the Vienna University of Technology for the air traffic

management domain in cooperation with the Austrian company Frequentis AG. SWIS-style

integration is based on messages and uses a layered approach of the semantic models.

The semantic models are described by means of ontologies and are written in the Web

Ontology Language (OWL). A total of three different layered ontologies are used: abstract,

domain and customer ontology. The abstract ontology encompasses the basic concepts for

a SWIS-based integration scenario, more precisely the concepts for the integration of

different legacy applications in an air traffic management area. The domain ontology is an

extension of the abstract ontology and precisely specifies the SWIS network by adding

individuals to define the elements which represent the infrastructure of the underlying SWIS

network. And finally, the customer ontology extends the domain ontology and specifies

customer-specific information about the underlying SWIS network.

As described in Chapter 5.1, the developed SWIS approach offers some advantages

compared to other traditional integration approaches. SWIS presents a good and easy to

handle mechanism for the integration of numerous heterogeneous applications or systems.

Because of the flexible nature by using layered semantic models and ontologies as data

models, SWIS is able to easily respond to changing requirements. Only the affected

models have to be changed and due to the automated validation and verification of the

changed models no redesign of the already existing models is required. This is one of the

big advantages of the SWIS approach. Therefore, no extensive processing steps are

needed to meet the altered requirements. In contrary, in most traditional approaches

changing an existing model can become a serious problem because of the dependencies

between the single models. Traditional approaches often have to avoid such violations by

 SUMMARY

 111

manual checking and if a possible violation is not noticed, the dependency violation is only

recognized at the end of the development process. In contrary, in the SWIS approach no

manual checks are needed, due to automated consistency checks of the semantic models.

This allows only verified and validated models to be used and therefore possible violations

are recognized immediately.

Another advantage of the layered semantic model structure is the way the models are

created. A model designer is able to create just a comparatively small partial model for a

particular system. So the model designers do not need to have the overall knowledge about

the entire integration system. Furthermore, it is possible to permanently verify the single

partial models without the need to have knowledge about all other models of the entire

system, ensuring that only correct partial models are used throughout the entire integration

process.

Furthermore, SWIS supports the easy and flexible integration of different legacy

applications without the need for a common data model. The agreement on a common data

model to be used for all containing heterogeneous system is very hard to or often even

cannot be achieved. Already in small integration projects the agreement on a common data

model can become an unsolvable problem, not to mention in case of larger integration

projects. In SWIS, the different data models are mapped and the various message formats

are transformed from the source message format to the target message format by using the

Transformation-Maps (T-Maps). The T-Maps receives the message from a source (sending

service) as input message and sends the message to the target (receiving service) as

output message. In a T-Map, it is defined how the input and the output message have to be

structured. To transform an input message into an appropriate output message external

services or special converters can be used by the T-Map. Therefore, the non-use of a

common data model offers a big strength of the SWIS integration approach.

The SWIS network not only supports the use of IP addresses, rather all possible kinds

of address types can be used. Only address types which can be represented using a string

are supported. Other address types the SWIS approach supports can be as different as

radio communication or Morse code. The gateway node in a SWIS network acts as

interface for two various address type and has the task to connect nodes with different

address types. Therefore a node which only supports an IP address can communicate with

a node only supporting Morse code.

SWIS also supports the use of backup nodes and therefore provides a more stable

network with redundant nodes. This gives the SWIS network higher fault tolerance in case

some of the network nodes fail. A backup node is a complete duplication of the primary

node it belongs to with the same properties and attributes of the original node. Only the

network address varies. In case if the primary node fails, the backup node takes over the

further communication. The change from the primary node to the underlying backup node

happens fully transparent to all other network devices.

Unfortunately, the SWIS approach needs human interaction for the final deployment of

the generated integration solution. Because of its use in a safety-critical domain, the final

decision to deploy the generated solution into the real productive environment is done by

an authorized person. A human can better decide if the generated integration solution is

 SUMMARY

 112

ready for deployment or not. If any errors are contained in the solution they should be found

by the integration developer before the deployment during the simulation phase.

In summary, the SWIS approach offers following characteristics:

• Flexible handling of changing requirements or models by the use of layered

semantic models with permanently validation and verification of the models.

• Model designers do not need to have knowledge about the entire integration

system, but are able to create partial models representing a particular system.

• SWIS supports the integration of different legacy applications without the need for a

common data model.

• Not only IP addresses are supported, rather all possible kinds of address types can

be used if they are represented in a string format.

• SWIS supports the use of backup nodes and therefore increases the stability and

reliability of the SWIS network.

• But, SWIS needs a final decision by a human to deploy the generated solution

model into the real environment, due to its use in a safety-critical domain.

The developed tool support is a graphical user interface for the SWIS approach, more

precisely the Model Transformation Algorithm (MTA). It offers facilitation for system

integration engineers and integration project managers by visualizing emergent properties

of the integrated system. The tool support helps the system integration engineers to find a

specific integration solution for a specific scenario and the integration project managers to

model, create and verify the integration solution with lower effort. The user interface

provides a number of process-steps to choose all specific requirements for the calculation

of the integration solution model. In addition, a graphical representation of the desired

Network Infrastructure Model is presented to the user. By providing an easy to handle user

interface for experts as well as for non-experts, the tool support leads to product

improvement by the visual feedback, and to process improvement by providing better tool

support and quality assurance.

A performed case study determined the benefits of the automated steps provided by the

tool support to calculate an integration solution in comparison to manual calculation. The

participants had to calculate and find an optimal integration solution for a very simple

integration example. The case study was divided into two steps, a manual and an

automated step. In the manual step, the candidates had to draw a picture of the network

architecture out of the given information of the integration scenario. Then the participants

had to manually determine all possible routes for the connection of the containing systems

and to manually calculate the overall costs and delay time for the single routes, and specify

an optimal solution to connect the single systems. In the automated step, the participants

had to run the same test case with help of the tool support. Although a very simple

integration example was used for the case study, several participants (one-third of all

participants) made mistakes in the manual calculation of the integration solution, like

calculation errors or not identifying the optimal solution. Only two-thirds of the candidates

 SUMMARY

 113

calculated a correct solution for the given example. Considering that a very simple example

without the need for complex processing was used for the case study, a comparative high

part of the participants had problems in the manual execution. During the case study the

time needed for the manual execution and the automatic execution was measured. As a

result, the manual steps required up to six times more than the automatic steps. If noted

that only a simple example was performed, the economy of time by using the tool support

will be enormous if a complex example is used. The time needed for the automatic steps

will be almost unchanged, but the time a human need for the manual steps will increase

rapidly. Probably a human would not be able to manually find a correct, functioning and

optimal integration solution for a complex integration example.

The developed SWIS approach has some similarities with a generic Model Driven

Architecture (MDA) process. In both approaches, the stakeholder requirements are defined

in specific models. A total of three main views about the requirements and models are

used: stakeholder requirements, systemwide view and specific view. For the stakeholder

requirements a generic MDA uses a Computation-Independent Model which specifies the

system requirements and behavior. The SWIS approach uses Requirement and Capability

Models to define the stakeholder requirements. For the systemwide view the MDA defines

a Platform Independent Model, whereas SWIS is using a Logical Solution Model containing

a set of collaborations which is transformed out of the stakeholder requirements. At last, for

the specific view, a generic MDA uses a Platform Specific Model which is transformed from

the Platform Independent Model in the systemwide view. In contrary, for the specific view

SWIS uses a Technical Solution Model containing the specific integration configuration and

is transformed from the Logical Solution Model.

The SWIS approach uses numerous predefined integration patterns. Integration

patterns represent a reliable way for capturing the knowledge of experts who are familiar in

a field the patterns stand for. They are used when no “straight-forward” solution exists

because each solution is unique depending on different requirements and environmental

influences. So a pattern provides just a part of the overall solution which can be individually

combined with other patterns to achieve the most suitable solution for a specific scenario.

In SWIS following integration patterns are used: Message Translator, Publish-Subscribe

Channel, Command Message, Request-Reply, Return Address, Correlation Identifier,

Dynamic Router, Recipient List, Splitter, Aggregator, Message Broker, Envelope Wrapper,

Content Enricher, Content Filter and Normalizer.

References

 115

References

[1] Hohpe, G., and Woolf, B., Enterprise Integration Patterns. Designing, Building, and

Deploying Messaging Solutions, Addison-Wesley, 2007, ISBN: 0-321-20068-3

[2] Trowbridge, D., Roxburgh, U., Hohpe, G., Manolescu, D., and Nadhan, E.G.,

Integration Patterns, Microsoft, 2004, ISBN: 0-7356-1850-X

[3] Perry, B. W., Java Servlet & JSP Cookbook, O’Reilly, 2004, ISBN: 0-596-00572-5

[4] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns – Elements of

Reusable Object-Oriented Software, Addison-Wesley, 1998, ISBN: 0-201-63361-2

[5] Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A. “The many faces of

publish/subscribe” ACM Comput. Surv. 35, 2, Jun. 2003, pp 114-131

[6] Zhu, Y., and Hu, Y., “Ferry: an architecture for content-based publish/subscribe

services on P2P networks”, Parallel Processing ICPP, 2005, pp 427 – 434

[7] Aier, S., and Schönherr, M., “Evaluating Integration Architectures – A Scenario-

Based Evaluation of Integration Technologies”, Trends in Enterprise Application

Architecture, Springer, 2006, pp. 2-14.

[8] Gašević, D., Djurić, D., and Devedžić, V., Model Driven Architecture and Ontology

Development, Springer, 2006, ISBN: 3-540-32180-2

[9] Levy, A. Y. “Logic-based techniques in data integration”. Logic-Based Artificial

intelligence, J. Minker, Ed. Kluwer International Series In Engineering And Computer

Science, vol. 597, 2000, pp 575-595.

[10] Teale, P., Etz, C., Kiel, and M., Zeitz, C., Data Patterns, Microsoft, 2003,

ISBN: 0-7356-2200-0

[11] W3C Consortium, http://www.w3.org/TR/ws-arch/, 23.06.2008.

[12] Hao, G., Ma, S., Lv, J., and Sui, Y., “A Service-Oriented Data Integration Architecture

and the Integrating Tree”, In Proceedings of the Fifth international Conference on

Grid and Cooperative Computing (GCC'06), IEEE Computer Society, 2006, pp 526-

530

[13] Pinelle, D., “Designing CSCW Applications to Support Loose Coupling in

Organizations and Groups“, 2004.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.87.1870

 REFERENCES

 116

[14] Eugster, P., “Type-based publish/subscribe: Concepts and experiences”, ACM

Transactions on Programming Languages and Systems (TOPLAS), Volume 29,

Article No. 6, Jan. 2007

[15] Malveau, R., and Mowbray, T. J., Software Architect Bootcamp, Prentice Hall, 2003,

ISBN: 0-1314-1227-2

[16] Miller, J., and Mukerji, J., “Model Driven Architecture (MDA)”, Architecture Board

ORMSC, 2001, http://www.omg.org/docs/ormsc/01-07-01.pdf

[17] Kleppe, A. G., Warmer, J., and Bast, W., MDA Explained: the Model Driven

Architecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc.,

2003, ISBN: 0-3211-9442-X

[18] Selic, B., “The Pragmatics of Model-Driven Development”, IEEE Software, Volume

20, Issue 5, Sep. 2003, pp 19-25.

DOI= http://dx.doi.org/10.1109/MS.2003.1231146

[19] Adam, N. R., Atluri, V., and Adiwijaya, I., “SI in digital libraries”, Communications of

the ACM, Volume 43, Issue 6, Jun. 2000, pp 64-72.

DOI= http://doi.acm.org/10.1145/336460.336476

[20] Object Management Group OMG, http://www.omg.org/corba-e/index.htm, 16.07.2008

[21] Botton, D. “Interfacing Ada 95 to Microsoft COM and DCOM technologies”, Ada

Letters, Volume XIX, Issue 3, Sep. 1999, pp 9-14.

DOI= http://doi.acm.org/10.1145/319295.319297

[22] Microsoft MSDN, http://msdn.microsoft.com/en-us/library/72x4h507.aspx, 21.07.2008

[23] Trowbridge, D., Mancini, D., Quick, D., Hohpe, G., Newkirk, J., and Lavigne, D.,

Enterprise Solution Patterns Using Microsoft .NET, Microsoft, 2003,

ISBN: 0-7356-1839-9

[24] Laumay, P., Bruneton, E., Palma, N. D., and Krakowiak, S., “Preserving Causality in

a Scalable Message-Oriented Middleware”, In Proceedings of the IFIP/ACM

international Conference on Distributed Systems Platforms Heidelberg, Nov. 2001,

Lecture Notes In Computer Science, Vol. 2218. Springer-Verlag, London, pp 311-

328.

[25] Object Management Group OMG, http://www.omg.org/mda/, 29.07.2008

[26] Stachowiak, H., Allgemeine Modelltheorie, Springer, 1973, ISBN: 3-2118-1106-0

[27] Object Management Group OMG, http://www.omg.org/mof/, 29.07.2008

[28] Fields, D. K., Kolb, M. A., and Bayern, S., Web Development with JavaServer Pages,

2nd Edition, Manning Publications Co., 2001, ISBN: 1-8847-7799-6

 REFERENCES

 117

[29] Gorton, I., Thurman, D., and Thomson, J., “Next Generation Application Integration:

Challenges and New Approaches”, In Proceedings of the 27th Annual international

Conference on Computer Software and Applications, Nov. 2003, COMPSAC. IEEE

Computer Society, Washington DC, p 576.

[30] Studer, R., Benjamins, V. R., and Fensel, D., “Knowledge Engineering: Principles

and Methods”, IEEE Transactions on Knowledge and Data Engineering, 1998

[31] Mellor, S. J., Clark, A. N., and Futagami, T., “Guest Editors' Introduction: Model-

Driven Development”, IEEE Software, Volume 20, Issue 5, Sep. 2003, pp 14-18.

DOI= http://dx.doi.org/10.1109/MS.2003.1231145

[32] Seidewitz, E., “What Models Mean”, IEEE Software, Volume 20, Issue 5, Sep. 2003,

pp 26-32.

DOI= http://dx.doi.org/10.1109/MS.2003.1231147

[33] Object Management Group OMG, http://www.omg.org/docs/formal/07-11-04.pdf,

29.09.2008

[34] Mellor, S. J., Balcer, M. J., Executable UML: A Foundation for Model-Driven

Architecture, Addison Wesley Professional, May 2002, ISBN: 0-2017-4804-5

[35] Gruber, T. R., “A translation approach to portable ontology specifications”,

Knowledge Acquisition, Volume 5, Issue 2, Jun. 1993, pp 199-220.

DOI= http://dx.doi.org/10.1006/knac.1993.1008

[36] Calero, C., Ruiz, F., and Piattini, M., Ontologies for Software Engineering and

Technology, Springer, 2007, ISBN: 3-540-34517-5

[37] Powers, S., Practical RDF, O’Reilly, July 2003, ISBN: 0-596-00263-7

[38] Gruber, T. R., “Toward principles for the design of ontologies used for knowledge

sharing”, International Journal of Human-Computer Studies, Volume 43, Issue 5-6,

Dec. 1995, pp 907-928.

DOI= http://dx.doi.org/10.1006/ijhc.1995.1081

[39] Gómez-Pérez, A., Fernandez-Lopez, M., Corcho, O., Ontological Engineering,

Springer, 2004, ISBN: 978-1-85233-551-9

[40] Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D. L., and Patel-Schneider,

P. F., “OIL: An Ontology Infrastructure for the Semantic Web”, IEEE Intelligent

Systems, Volume 16, Issue 2, Mar. 2001, pp 38-45.

DOI= http://dx.doi.org/10.1109/5254.920598

[41] Rebstock, M., Janina, F., Paulheim, H., Ontologies-Based Business Integration,

Springer, 2008, ISBN: 978-3-540-75229-5

[42] Horrocks, I., “DAML+OIL: A description logic for the semantic web”, IEEE Data

Engineering Bulletin, Volume 25, 2002, pp 4-9

 REFERENCES

 118

[43] W3C Consortium, http://www.w3.org/TR/owl-features, 27.10.2008

[44] Protégé, http://protege.stanford.edu/, 04.11.2008

[45] Open Knowledge Base Connectivity OKBC, http://www.ai.sri.com/~okbc/, 04.11.2008

[46] Petrie, C. J., Webster, T. A., and Cutkosky, M. R., “Using Pareto optimality to

coordinate distributed agents”, Arti Intelligence for Engineering Design, Analysis and

Manufacturing (AI/EDAM), Volume 9, 1995, pp 269-281

[47] FISN Architecture (internal document)

[48] FISN Model Transformation Algorithm (internal document)

[49] FISN Semantic Architecture (internal document)

119

Appendix

 120

A. Installation Guide

This chapter explains how to install and configure a software environment to run Java

Servlets and Java Server Pages (JSP). It is necessary to follow these steps to get a correct

and functioning development environment. This environment is needed to start running of

the developed tool support. The tool is developed as web application in JSP for the

graphical user interface and uses Servlets for processing between the single steps.

Java Software Development Kit (J2SDK)

To build a java web application it is recommended to download and install the Java

Platform on the computer. The Java Platform is offered in different packages, e.g. Java

Standard Edition (Java SE) or Java Enterprise Edition (Java EE). But which Java version

do we need to set up a right and correct environment? For this purposes it is sufficient to

install the Standard Edition because we don’t need Java EE features like Enterprise

JavaBeans (EJB) or Java Messaging Service (JMS). I have downloaded the Java SE

Development Kit (JDK) version 5.0 which includes the Java Runtime Environment (JRE)

directly from the SUN website: http://java.sun.com/javase/downloads/index_jdk5.jsp.

After the installation the PATH environment variable must be set. PATH should refer to

the directory that contains java.exe and javac.exe, which are typically in

java_install_directory/bin. In my case the PATH variable must be set to the directory

C:\Programme\Java\jdk1.5.0_10.

Apache Tomcat Web-Applicationserver

Apache Tomcat is a web application server which allows adding dynamic content

generation written in Java. Tomcat is developed at the Apache Software Foundation and

generates pure HTML out of the Java sources and so it is possible to view the existing Java

web content with all common web browsers (e.g. Microsoft Internet Explorer, Mozilla

Firefox, etc.). The Apache Tomcat Server can be downloaded from the apache tomcat

website: http://tomcat.apache.org/.

But different Apache Tomcat versions must be used for different versions of Java

Servlet and JSP specifications. Table A.1 shows the mapping between the different

versions.

 APPENDIX: A. Installation Guide

121

Servlet/JSP Specification Apache Tomcat
version

2.5/2.1 6.0.x

2.4/2.0 5.5.x

2.3/1.2 4.1.x

2.2/1.1 3.3.x

Table A.1: Servlet/JSP specification vs. Apache Tomcat version

I used the Tomcat version 6.0.14 from http://archive.apache.org/dist/tomcat/tomcat-

6/v6.0.14/. After accomplishment of the installation, according to the previous described

steps, the setup of the environment is finished and the tool support is ready for processing.

 122

B. Case Study

Manual Steps

A network consists of numerous nodes and links. Each link connects two nodes. Some
nodes are endpoints and on each endpoint one or more services are running. A service is
either a provider or a consumer service and can send or receive a specific message. Your
task is to calculate possible routes from each provider service to a consumer service.
Provider and Consumer must understand the same message type. The next figure shows a
possible network structure:

1. Draw the network architecture with the given tables. The network consists of nine nodes
and thirteen links and has three provider services and two consumer services.

Nodes:

A B C D E F G H I

Links:

Link Node - Node Cost Delay

AC A – C 10 50

BC B – C 10 50

BD B – D 1 500

CD C – D 1 500

CF C – F 20 500

CE C – E 1 50

DF D – F 20 500

DE D – E 20 500

FG F – G 1 50

EG E – G 1 50

EI E – I 1 500

GH G – H 1 50

GI G – I 10 50

 APPENDIX: B. Case Study

123

Services:

Service Node MessageType

Provider Service A Order Message

Provider Service B Order Message

Provider Service B Info Message

Consumer Service K Order Message

Consumer Service L Info Message

2. For each provider service find an optimized route to a consumer service. Note that both

services (provider and consumer) must understand the same message type.

Route Cost Delay

 APPENDIX: B. Case Study

124

3. For the three provider services choose respectively one scenario of step2 with minimal

costs and one scenario with minimal delay-time. At last sum-up the total costs and
delay-time of the three routes.

Solution with minimal costs:

Route min. Cost Delay

 Total:

Solution with minimal delay-time:

Route Cost min. Delay

 Total:

Automated Steps

Run the same test case using the tool support. Compare the automatic calculated
solution with your manual calculated solution.

URL: http://127.0.0.1:8080/at.swis.mta.gui

