
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Virtualization of Internet of Things
Devices

MASTERARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Matthias Leitner, BSc

Matrikelnummer 01327110

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dr.-Ing. Stefan Schulte

Mitwirkung: Associate Prof. Matthew Caesar, Ph.D.

Wien, 23. April 2020

Matthias Leitner Stefan Schulte

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Virtualization of Internet of Things
Devices

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering & Internet Computing

by

Matthias Leitner, BSc

Registration Number 01327110

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dr.-Ing. Stefan Schulte

Assistance: Associate Prof. Matthew Caesar, Ph.D.

Vienna, 23rd April, 2020

Matthias Leitner Stefan Schulte

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der

Arbeit

Matthias Leitner, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 23. April 2020

Matthias Leitner

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgements

I would first like to thank my thesis advisor Associate Professor Stefan Schulte at the TU
Wien for the useful comments, remarks, and engagement through the learning process
of this master thesis. Also, his assistance with administrative tasks for my research
internship at the University of Illinois at Urbana-Champaign (UIUC) was highly valuable
and saved me lots of time. Further, I would like to thank Professor Reinhard Pichler and
the Dean’s office at TU Wien for their letter of recommendation and for supporting my
stay in the US.

I would also like to thank Associate Professor Matthew Caesar at the UIUC, who offered
me an exciting topic for my master thesis and provided me the opportunity to visit the
UIUC for another semester. The door to his office was always open when I had a question
about my research or needed some advice. Also, many thanks to Andrew Li, a member of
the research team at the UIUC, for his valuable feedback and the interesting discussions.

Last but not least, I would like to express my gratitude to my family, friends, and
colleagues who supported me throughout my studies and always encouraged me in
challenging times.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

Das Internet der Dinge (engl. Internet of Things, IoT) beschreibt die Vernetzung intelli-
genter Geräte die mit ihrer Umwelt interagieren. Durch die Vielzahl an Anwendungsmög-
lichkeiten beeinflusst das IoT weite Bereiche der Industrie sowie des alltäglichen Lebens.
Die Integration neuer Technologien und die stärker werdende Vernetzung führen zu einer
erhöhten Komplexität solcher Systeme.

Die Heterogenität und die Größenordnung von IoT-Netzwerken stellen Forscher und
Entwickler vor neue Herausforderungen. Die im traditionellen Software Engineering
verwendeten Methoden bieten nicht genügend Möglichkeiten, umfangreiche Tests während
des Entwicklungsprozesses von IoT-Systemen durchzuführen. Aus diesem Grund werden
neue Lösungen benötigt, welche die Funktionalität der entwickelten Systeme gewährleistet,
bevor diese in der realen Welt eingesetzt werden. Eine Möglichkeit, um der Komplexität
von IoT-Systemen entgegenzuwirken, bietet der Einsatz von Simulatoren.

Aus diesem Grund befasst sich die vorliegende Arbeit mit der Entwicklung eines neuarti-
gen Simulationsansatzes für IoT-Systeme. Basierend auf dem Entwicklungsprozess von
IoT-Systemen werden aktuell verwendete Methodiken analysiert und simulationsbasierte
Lösungen mit Alternativen verglichen. Diese Ergebnisse fließen in eine Anforderungs-
analyse ein und werden zusätzlich um Erkenntnisse der aktuellen Forschung sowie eines
beispielhaften Anwendungsszenarios ergänzt.

Das daraus resultierende Architektur-Framework ermöglicht gemeinsam mit dem ent-
wickelten Netzwerksimulator eine gesamtheitliche Simulation von IoT-Systemen. Das
Architektur-Framework repräsentiert eine generische Software-Integrationsschicht, die
mittels Virtualisierungstechnologien und Hardware-Emulation virtuelle IoT Geräte in
die Simulation einbindet. Der Netzwerksimulator verbindet die virtuellen IoT Geräte
und simuliert realitätsnahe Kommunikationskanäle, welche flexibel konfiguriert werden
können.

Abschließend wird mittels eines Use-Case-Szenarios die Verwendung der entwickelten
Systeme veranschaulicht sowie die Qualität der Simulationsergebnisse analysiert. Dazu
wird der Raft Algorithmus implementiert und dessen Performance in einem IoT-Netzwerk
evaluiert.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

The Internet of Things (IoT) influences a wide range of domains and already impacts our
day-to-day lives. IoT systems represent networks of interconnected, smart devices that
interact with their environment. With emerging technologies entering the market, IoT
systems become more sophisticated. Whether it is reducing costs and increasing efficiency
in production lines, driving automation and autonomy, or continuously monitoring
people’s health—the IoT affects consumer-oriented applications as well as safety-critical
infrastructure.

The heterogeneity of these networks and their scale impose new challenges on researchers
and developers. Tools used in traditional software engineering do not provide sufficient
capabilities to evaluate these systems extensively during the development process. Hence,
novel approaches and tools are needed that assist researchers in testing and verifying
their proposed IoT solutions before deploying them in the real world. Simulating IoT
systems upfront in a controlled environment is one possibility to address the increased
complexity.

Therefore, this thesis proposes a novel end-to-end simulation approach for the development
of IoT systems. We analyze existing tools currently used in IoT research projects and
compare simulation-based methods to alternative solutions. Further, we define essential
requirements and characteristics for IoT simulation systems according to state-of-the-art
research, and an exemplary use-case scenario.

Based on these findings, we propose an architecture framework and a network simulator.
The architecture framework is a generic software integration layer that utilizes existing
device emulators and simulators and supports hardware emulation. The network simulator
imitates real-world networks and connects virtual devices in the simulation.

The work concludes with a comprehensive evaluation. For this, we implement the Raft
algorithm and demonstrate the validity of the simulation results as well as the capabilities
of the proposed solutions by evaluating the performance of Raft in a simulated IoT
network.

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

1.1 Simulation for the IoT . 2
1.2 Problem Statement . 3
1.3 Aim of the Work . 3
1.4 Methodology and Approach . 5
1.5 Structure of the Thesis . 6

2 Background Information 7

2.1 The Internet of Things . 7
2.2 Connectivity and Communication . 10
2.3 Device Virtualization . 13
2.4 Technologies & Frameworks . 17

3 Related Work 25

3.1 IoT Simulation & Research . 25
3.2 Consensus in the IoT . 33

4 Software Engineering Process 37

4.1 Architecture Framework . 38
4.2 Network Simulator . 56
4.3 Simulation Workflow . 59
4.4 Raft . 61

5 Implementation & Infrastructure Setup 69

5.1 Infrastructure Setup . 69
5.2 Virtualized Device Integration . 70
5.3 Network Layer . 72

xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6 Evaluation 77
6.1 Architecture Framework & Network Simulator 77
6.2 Raft . 88

7 Conclusion & Future Work 101
7.1 Key Contributions . 102
7.2 Future Work . 103

A VIoTD API Description 105

B Network Simulator API Description 109

C Network Topology JSON Examples 115
C.1 Switch Example . 115
C.2 Router and WiFi AP Example . 117
C.3 Mesh Example . 119

D Raspberry Pi Emulator 121
D.1 Binfmt Registration Script . 121
D.2 Raspberry Pi Docker Image . 124

E Evaluation Scripts 125
E.1 Simulated Sensor . 125
E.2 Controller Program . 127
E.3 Server Program . 129
E.4 Network Topology JSON . 130

List of Figures 133

List of Tables 135

List of Listings 137

Bibliography 139

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

The term “Internet of Things” (IoT) describes a network where numerous different objects
are connected to the Internet, and provide data storage and data processing capabilities.
These things can be sensors, vehicles, cameras, or medical instruments and are already
part of our daily lives [1, 2].

Building solutions for the IoT comes with new challenges [3]. The variety of components
in IoT systems and the dynamic changes of IoT devices increases the complexity of
application development [4]. In addition, a significant amount of IoT devices have very
limited resources like CPU, RAM, storage, etc. [1]. Although some of these challenges are
not necessarily new in distributed systems [4], the IoT raises new issues for developing
and testing applications [3, 5]. To name a few, these are the number of different protocols
used in the IoT [6], the support of different variants of a device [3], and the massive
number of devices (thousands to millions) which are part of an IoT system [7].

Nonetheless, researchers and developers have to develop, test, and verify their IoT
applications. One possible way is to acquire the required hardware and deploy the devices
in the real world. This may lead to high costs, and especially small and medium-sized
enterprises, researchers as well as the open-source community often do not possess the
according funds to set up extensive testbeds [5]. The alternative approach is to lease
IoT testbeds. Although this allows testing on physical hardware without the need to
maintain the hardware infrastructure, this approach comes with some drawbacks. Most
importantly, these testbeds are still expensive, and they are difficult to maintain and
complex to use. As new IoT devices are developed continuously, the hardware of testbeds
is often outdated, and the heterogeneity of these systems is lower compared to IoT
systems in the real world [5].

Therefore, a more cost-effective solution with increased flexibility is needed. One way
to achieve this is the utilization of an IoT simulation platform. This allows researchers
and developers to set up their IoT systems with little effort and facilitates exploring, as

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

changes can be made quickly. A simulation platform can be used to test the application
code of IoT devices, to evaluate the system architecture of IoT setups and to run real-
world scenarios in a controlled environment [8]. Although a simulation platform has
its drawbacks, e.g., real devices are different compared to simulations and writing an
emulator that mimics every existing IoT device is very hard to achieve [5], simulation
platforms provide several advantages compared to the previously mentioned solutions. A
simulation platform is accessible from nearly anywhere and is much more cost-effective
compared to, e.g., real-world testbeds. Besides, simulation platforms allow running tests
with different system architectures and devices without the need to buy or change devices
in the real world [9].

1.1 Simulation for the IoT

The IoT includes a wide range of applications and covers many different areas [1, 10].
Hence, this diversity has implications on the development and testing process of IoT
systems. In the following use-cases, simulations are either beneficial during development
or are safety-critical and required before the system can be tested in the real world. In
addition, testing these systems in the real world can be a difficult task.

• Smart Territories Recently, research started on expanding the concept of smart
cities into non-metropolitan areas [11]. This requires IoT services to cover wide
areas while being cost-effective. Such large-scale applications highly benefit from
simulations, but they impose new challenges on simulation software due to their
scale [12].

• Unmanned Aerial Vehicles Due to the reduced costs of unmanned aerial vehicles
(UAV), UAV swarms gain popularity [13]. Although UAVs are not necessarily
autonomous, inter-vehicle communication is essential to control these systems
and to allow swarms to coordinate themselves in case of communication limits.
Simulations are useful to test algorithms and scenarios before deploying them on
physical UAVs in the real world [13].

• Smart Grids The utilization of IoT devices transforms traditional power systems
into so-called smart grids. This leads to the integration of IoT applications in
critical infrastructure. Besides testing the correctness of applications and devices,
the simulation of errors is important for smart grids, to assess failure propagation
in the system [14].

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.2. Problem Statement

1.2 Problem Statement

Despite the advantages of IoT simulators [8], they introduce qualitative and quantitative
issues [12]. The heterogeneity of IoT systems imposes a challenge on simulators. Similar
to testbeds, simulation tools must be able to handle the variety of hardware components
and keep up with the velocity of new devices entering the market [5, 10, 12].

In addition, IoT simulation introduces its own challenges. IoT systems in the real world
involve a vast number of sensors, actuators, and other computing devices, requiring
scalable simulators to support distributed or parallel operation modes [10, 12]. Further,
current simulators do not support end-to-end simulations of IoT systems, i.e., to simulate
a complete system, multiple simulators are needed. This increases the complexity as the
number of available simulators and contradicting recommendations require additional
effort [15]. The heterogeneity of IoT creates the need for extendable simulators and to
facilitate customization [10]. Thus, providing more flexibility to the users.

Although these requirements are important characteristics for a simulation system, the
applicability of such a system highly relies on the quality of the simulation result. The
quality of a simulation result depends on the simulation or emulation of IoT devices and
the correctness of the simulated network [5, 10].

To the best of our knowledge, this area is actively researched [5, 15, 16, 17, 18], but a
solution, which solves all of the issues mentioned above, has not been found yet.

1.3 Aim of the Work

Prof. Matthew Caesar is working on an IoT simulation platform at the University of
Illinois at Urbana-Champaign (UIUC). The thesis is part of the research to develop a
flexible end-to-end simulation platform for the IoT. The research focus of this thesis is
on the virtualization of IoT devices and to provide solutions to the challenges discussed
in Section 1.2. The results contribute to future developments of the simulation platform.

The research focus of the thesis consists of three different parts. The following paragraphs
define the objectives for each part and provide additional information about their scope.

1.3.1 Part 1: Architecture Framework

The architecture framework addresses the issues with the heterogeneity of IoT devices,
their variety, and the need for customization and extensibility.

The architecture framework can be seen as a toolset, which allows the integration of
existing IoT device simulators and emulators. The idea is to focus on customization and
extensibility, allowing users to integrate their virtual IoT devices and using them on the
simulation platform. Hence, users can contribute virtual IoT devices to a community
around the platform.

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

The objective of the framework is to provide a simple integration process without
imposing changes on virtual IoT devices. This approach increases the compatibility with
existing IoT device simulators and emulators, and by keeping the integration process
simple, virtual IoT devices are more likely to get added to the platform. Hence, these
characteristics should facilitate community building and further solve the challenges with
heterogeneity and variety of IoT devices.

The simulation of real-world IoT scenarios requires a scalable simulation platform [10].
Hence, it must be possible to use the framework in distributed simulations.

Due to the variety of IoT devices, it would go beyond the scope of a Master thesis
to consider every possible type of IoT device. Hence, this Master thesis will focus on
particular categories of IoT devices. A possible categorization of such devices is based on
their functionality in an IoT network. More specifically, the scope of this thesis is limited
to IoT devices which can be grouped into the following categories [6]:

1. Sensing (Smart devices): These devices are typically deployed in the environment
and measure it or interact with it, for example, a smart sensor. These devices have
very limited resources, and besides simple data preprocessing tasks, they forward
data to an IoT cloud, a gateway, or other parts of the system [19].

2. Computation (Controllers): In this thesis, devices within this category will be
referenced as controllers or edge devices. These are devices with enough resources
to run IoT gateways and are the basis for simple edge nodes [6].

1.3.2 Part 2: Network Simulator

One of the objectives for the simulation platform at the UIUC is to enable end-to-end
simulations. While Part 1 focuses on IoT devices, the second part of the thesis addresses
the simulation of the network layer.

The simulation platform provides a web-based user interface to set up simulations. To
support this flexibility, it requires the network simulator to create and simulate network
topologies at runtime.

The network simulator developed in this thesis is based on ns-3 to simulate communication
channels. The network simulator has to extend ns-3 to provide the required flexibility for
network topologies and needs to simplify the setup and deployment process of ns-3.

Both the architecture framework and the network simulator, are independent components
and need to communicate through well-defined interfaces. This is important, as the
research team at the UIUC considers implementing a new network simulator in the future.

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.4. Methodology and Approach

1.3.3 Part 3: Use-Case Simulation

With the architecture framework and the network simulator, it is already possible to run
end-to-end IoT simulations. Hence, the third part of the thesis uses the functionality of
both components by simulating an IoT scenario. This scenario evaluates the Raft [20]
consensus algorithm running on a wireless IoT setup.

Although the importance of consensus in datacenter and cloud environments is well-
known [21], it is important in IoT systems as well. Considering the use-cases provided in
Section 1.1, consensus algorithms have applications in every scenario. Smart territories are
wide area networks connecting vast amounts of IoT devices [12]. Developing applications
for these networks may require consensus algorithms, as they are important for building
reliable large-scale software systems [20]. Further, UAV swarms use consensus algorithms
to reliably exchange information to facilitate swarm behavior coordination [13]. In the
third use-case, smart grids become more distributed in the future, and the existing
centralized control structure is not sufficient for operating highly distributed systems.
Hence, the research examines consensus algorithms in smart grid applications [22].

Following the relevance of consensus algorithms in the IoT, Poirot et al. researched the
Paxos algorithm in wireless networks [23]. Raft’s relation to Paxos and the relevance of
consensus algorithms in the IoT makes Raft a good candidate for the simulation scenario.

The simulation scenario consists of the following steps. First, a simple Raspberry
Pi1 emulator gets developed. The Raspberry Pi is a small yet powerful single-board
computer (SBC). Current research shows that SBCs like the Raspberry Pi gain popularity
in the IoT and are also used in SBC clusters as edge nodes [24]. Thus, the emulator
represents an edge node in the IoT simulation. The architecture framework then integrates
the emulator and demonstrates the framework’s capabilities. This provides an IoT device
for the simulation. In the next step, the network simulator creates a Mesh topology to
connect the simulated IoT devices. The scenario concludes with the implementation of
Raft, its deployment on every edge node and the evaluation of the algorithm.

1.4 Methodology and Approach

The methodological approach for this thesis follows the objectives in Section 1.3. It
follows the following order:

1. Literature Research: Due to the interest in simulation for the IoT, this area
is actively researched. In the first part of the thesis, state-of-the-art and past
approaches are reviewed.

2. Architecture Framework: Based on the obtained knowledge during the literature
research, the architecture framework is built. The result of this step is a solution

1https://www.raspberrypi.org/, last access at 2020-03-15

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

for virtualizing IoT devices. The result definition of the architecture framework is
general at this point, as a requirements analysis is part of this step.

3. Network Simulator: To build the network simulator, it is necessary to explore the
real-time capabilities of ns-3, executing tests, and defining protocols and modules
supported by the network simulator. Further, additional research is required to
support the creation of network topologies dynamically.

4. Simulation Evaluation: Before continuing with the use-case implementation, it is
necessary to evaluate the simulation capabilities of the architecture framework and
the network simulator. The framework gets evaluated based on the requirements
analysis from step 2. Further, an end-to-end simulation setup, including the
architecture framework and the network simulator, tests scenarios where both
components have to collaborate.

5. Use-Case Simulation: The Raspberry Pi emulator requires additional research
in cross-platform virtualization. After evaluating possible solutions and developing
the emulator, the Raft algorithm gets implemented.

6. Evaluation: The final step summarizes the simulation capabilities of the developed
system and analyzes its characteristics. It concludes with the evaluation of the
Raft algorithm running on a simulated, wireless, mesh network.

1.5 Structure of the Thesis

The architecture framework, the network simulator, as well as the use-case scenario,
utilize existing tools and technologies to enhance their functionality and interoperabil-
ity. Chapter 2 provides background information about the most important concepts,
technologies, software tools, and frameworks used in this thesis. The goal of this thesis
is to propose viable solutions to current research challenges by utilizing existing work
to improve its results. Hence, Chapter 3 covers related work and summarizes current
research. Based on this knowledge, Chapter 4 proposes the design of the architecture
framework, the network simulator, and the use-case implementation. Following the design
of the system, Chapter 5 provides information about implementation details and explains
how the system can be used to execute IoT simulations. In the last part of the thesis,
Chapter 6 evaluates the architecture framework and the use-case scenario, discusses the
benefits and limitations of the proposed system, and provides an outlook and possible
future developments in Chapter 7.

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Background Information

The following chapter covers essential concepts and relevant information for this thesis.
Section 2.1 introduces the IoT and summarizes its characteristics and potential appli-
cations. Further, Section 2.2 and Section 2.3 discuss communication in the IoT and
virtualization in more detail, respectively, as both areas are relevant to the proposed
solution. The chapter concludes with Section 2.4 describing important tools, technologies,
and frameworks used by the designed system.

2.1 The Internet of Things

Over the last few years, the IoT became increasingly popular in academia and the
industry [25]. Besides universities actively researching this area, major companies like
Microsoft, IBM, Google, Samsung, and many more, cooperate to drive innovation in the
IoT [26]. Although outlooks from companies like Gartner Inc., RnRMarketResearch, or
Cisco vary, all of them predict significant growth of the IoT market and its applications [25,
26].

The term “Internet of Things“ has its origins in the field of supply-chain management [26].
Kevin Ashton, the executive director at MIT’s Auto-ID Center at that time, used this
term during a presentation at Proctor & Gamble in 1999. He linked radio-frequency
identification (RFID) in the supply chain to the Internet and believed in the potential of
this new concept [25, 26]. The International Telecommunication Union (ITU) introduced
the IoT formally in their Internet Report in 2005 [25].

Since then, the IoT evolved, and many definitions have been presented [26]. Chernyshev
et al. describe the vision of the IoT “to build a smart environment by utilizing smart
things/objects/devices that have sensory and communication capability to autonomously
generate data and transmit it via the Internet for decision making“ [15]. Similarly,
Khodadadi et al. emphasizes the context awareness of the “Things“ and describes

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background Information

ubiquitous connectivity as a central component [26]. Firouzi et al. examined current
definitions and derived the following characteristics [27]:

• Things or Devices These are objects with processing capabilities, sensing and
actuating features, connectivity, and can be uniquely identified [26, 27].

• Connectivity Network connectivity is an important factor to make things “smart“ [5].
Small sensors as well as resourceful backend servers have to support a variety of
communication protocols and standards [26].

• Data IoT devices create a vast amount of data that needs to be collected and
analyzed [25]. It further allows service improvements and is the key to extract
knowledge for decision making [25, 27].

• Intelligence Artificial intelligence, machine learning, and data analytics utilize
IoT data to gain insights into the system or its environment and to provide valuable
services [26, 27]

• Action Intelligent systems allow automated interactions with the environment or
themselves, but also includes humans [25, 27].

• Ecosystem The IoT forms an ecosystem consisting of devices, protocols, platforms,
data, and communities [26, 27].

• Heterogeneity IoT systems typically consist of a variety of different devices. They
utilize different protocols to exchange data and integrate with various platforms [5,
12, 27].

• Dynamic Changes In IoT networks, devices are constantly joining and leaving,
data transmission varies and also the environment may change dynamically [4, 27].

• Enormous Scale IoT environments like smart cities consist of large numbers of
devices [12], increasing the amount of generated data and connected devices [27].

• Security and Privacy As the IoT becomes part of our daily lives, it will affect
sensitive areas like healthcare. This requires secure systems to protect individuals.
In addition, data sovereignty becomes more important as more personal data will
be available online [25, 26, 27, 28].

The IoT developed rapidly since its first mention in 1999 and spread into many different
areas [26]. Although there is no general agreement on IoT verticals [25], the Alliance for
Internet of Things Innovation1 (AIOTI) provides an overview of the IoT landscape. AIOTI
collected information about the main IoT Standards Developing Organisations (SDO),
Alliances, and Open Source Softwares (OSS), and categorized them into IoT verticals [29].

1https://aioti.eu, last access at 2020-03-22

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.1. The Internet of Things

Further, the European Telecommunications Standards Institute2 (ETSI) analyzed the
degree of industry and market fragmentation based on these IoT verticals and provides
a more detailed description [30]. We use these vertical industry domains to present an
overview of IoT applications and how they affect their domain.

• Home/Building In this domain, home or building refers to any house, including
private and commercial ones [31, 32]. Smart buildings enable remote access to the
systems of the house. This allows owners and other stakeholders to monitor and
control house functionalities like security or lighting from distance [31]. Despite
user-related features, technology for smart building enables energy management and
environmental monitoring. Smart buildings optimize energy consumption within
the house with regards to electricity, natural gas (if applicable), renewable energy,
and other types of energy sources [32].

• Manufacturing/Industry Automation Besides cloud computing, service-oriented
computing, artificial intelligence, and data science, the IoT is one of the key enablers
for smart manufacturing [33]. Also known as Industry 4.0 [33], it describes the
concept of utilizing IoT technologies like sensors and communication networks
to collect data, automate processes, and improve the production process [33, 34].
Smart manufacturing goes beyond single manufacturing plants, and it is rather
a comprehensive approach that integrates logistics, supply chains, and various
additional factors in production processes [34].

• Vehicular/Transportation Introducing IoT technology into the vehicular and
transportation domain leads to smart mobility [30]. Besides vehicles, smart mobility
includes infrastructure as well and utilizes vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) technologies to create intelligent traffic systems [35]. These
innovations should improve driving safety, decrease traffic congestion, and increase
its sustainability, among others [36].

• Healthcare Smart healthcare covers a wide range of health-related applications.
To name a few, it includes monitoring services with Body Area Networks (BANs)
and wearable devices, pervasive access to healthcare information with smartphones
and handhelds, and improves human activity recognition for rehabilitation [37].
Solutions like assisted ambient living or remote health monitoring reduce the
pressure on healthcare systems without neglecting patients. These services often
rely on small, low-powered devices and wireless communication. Hence, smart
healthcare expands known IoT concepts like object monitoring and data collection
into the traditional healthcare domain [38].

• Energy The term “smart energy“ is not just a synonym for smart grids. It rather
describes technologies for building sustainable energy systems in the future [39].
Besides smart grids and electricity, it covers sectors like heating and cooling and
includes energy-related solutions for industry, buildings, and transportation [39].

2https://www.etsi.org, last access at 2020-03-22

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background Information

• Cities The IoT and advanced information and communication technology (ICT)
are key elements in building smart cities. Sensor networks deployed all over the
city provide insights into city operations in real-time [40]. In general, technology
in smart cities has a passive role. It collects and analyzes data, optimizes and
automates infrastructure, and integrates city services [41]. Smart cities heavily rely
on ICT [41] to improve quality of living for its citizen [40].

• Wearables Smart wearables are small, compact, body-worn devices with limited
computing power [42]. They are typically aware of the users’ environment and
involve many different domains like healthcare and vehicles [43]. According to the
ETSI report, smart wearables include technologies like nano-electronics, organic
electronics, sensing, communication, and many more [30].

• Farming/Agrifood The continuing growth of the world population requires new
solutions to increase food production. Using IoT technologies in farming and agricul-
ture improves productivity and efficiency [44]. Similar to other IoT domains, smart
farming covers a wide range of technologies and use-cases. It utilizes environmental
data collected by sensor networks to monitor the farm, compute forecasts, and
to create personalized recommendations [44]. Further, UAVs, especially drones,
enable efficient health state inspecting of farms. Hence, farmers make more pro-
found decisions before intervening on the feeding of soil or taking countermeasures
against insects/fungi [45]. Embedding IoT systems in farms lead to connected
farms, enabling more intelligent agricultural services by facilitating shared expert
knowledge [46].

The examples of IoT applications given in the previous paragraphs are only a short
excerpt on what is possible. In addition, these domains represent not an exhaustive
list, and the IoT may influence other areas in the future as well. Nevertheless, these
applications show the potential of the IoT to change existing domains fundamentally.

The IoT is often referred to as an ecosystem due to the variety of applications and the
impact it has on a wide range of different domains. Firouzi et al. introduce an IoT
ecosystem that consists of four different components, namely, things, data, people, and
processes [27]. Independently, companies like Cisco identify similar components as key
elements for the IoT [25]. Although many definitions and representations of the IoT
exist, all of them consider the “thing“ as an essential component [47]. Therefore, the
following sections discuss important elements of the “thing“ and link them to the focus
of this thesis, the virtualization of IoT devices with respect to simulation platforms.

2.2 Connectivity and Communication

Independent of the domain and the IoT application, connectivity is one of the key
elements of the IoT [25, 26, 27, 47]. Hence, IoT devices require a communication module
to exchange messages with other devices and to participate in IoT networks [27]. The IoT

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Connectivity and Communication

Application
Layer

Network
Layer

Encapsulation

Routing

Datalink Layer

MQTT, SMQTT, AMQP,
CoAP, RESTful HTTP

6LoWPAN, 6TiSCH

WiFi, Bluetooth Low Energy,
ZigBee, 802.15.4e,
LoRaWAN

RPL, CORPL

Figure 2.1: Overview of important IoT protocols. Selection based on [48].

is an aggregation of different networks and includes a variety of protocols [26]. Devices
range from small, low-powered sensors to powerful servers and, therefore, provide different
network capabilities [26]. Additionally, the variety of domains and IoT applications have
different requirements concerning connectivity, and the heterogeneity of the IoT increases
the diversity of protocols [27]. Figure 2.1 shows important network protocols in the
IoT and connects them to their corresponding OSI-layer. Due to the vast number of
existing protocols, the list in Figure 2.1 is not extensive and protocols were selected based
on [26, 48, 49, 50]. In addition, the following paragraphs summarize the protocols shown
in Figure 2.1.

• MQTT MQTT is a lightweight publish/subscribe messaging transport protocol.
It focuses on machine-to-machine (M2M) communication and works on constrained
networks with high latency [50]. In addition, there exist extensions like Secure
MQTT (SMQTT), that uses a lightweight encryption mechanism for secure message
transmission [48].

• AMQP The Advanced Message Queuing Protocol (AMQP) transmits data as
byte streams and is a wire-oriented protocol [51]. It uses TCP in the Transport
Layer and, therefore, supports characteristics like reliable transmission, flow control,
etc [51].

• CoAP The Constrained Application Protocol (CoAP) is a document transfer
protocol similar to HTTP [51]. It was designed for constrained devices, i.e.,
devices with low resources [26]. It uses UDP in the Transport Layer and supports
multicasting [51].

• RESTful HTTP Representational State Transfer (REST) is a web API design
model for distributed systems and applicable for IoT applications as well [50].

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background Information

• 6LoWPAN 6LoWPAN is an acronym for IPv6 over Low-Power Wireless Personal
Area Networks. It is an adaption layer that allows the transmission of IPv6 packets
within small link-layer frames, i.e., using IEEE 802.15.4 [52]. It is compatible with
other IP networks and does not require translation gateways or proxies [49]. Due
to its efficiency, 6LoWPAN is one of the most commonly used standards in IoT
communication [48, 49].

• 6TiSCH The 6TiSCH protocol enables the transmission of IPv6 packets through
the Time-Slotted Channel Hopping (TSCH) mode of the IEEE 802.15.4e stan-
dard [48, 53]. It focuses on wireless IP-enabled industrial networks with constrained
devices [53].

• RPL The Routing Protocol for Low-Power and Lossy Networks (RPL) creates a
Destination Oriented Directed Acyclic Graph (DODAG) with exactly one route
between leaf nodes and the root node. It is a distance-vector protocol and supports
different datalink protocols [48]. An extension of RPL is the cognitive RPL (CORPL)
protocol. It uses an opportunistic forwarding approach by selecting a forwarder set,
i.e., selecting multiple next-hop neighbors, and ensures that only the best receiver
forwards a packet [54].

• WiFi The WiFi technology allows wireless data exchange and includes high-
speed connections. It is defined by the WiFi Alliance as “Wireless Local Area
Network (WLAN) devices that are based on the IEEE 802.11 standards“ [50].

• Bluetooth Low Energy The Bluetooth Low Energy (BLE) technology focuses
on short-range connectivity. Its design for single-hop connections creates a trade-off
between energy consumption, latency, piconet size, and throughput [55]. Its energy
consumption can be ten times less than traditional Bluetooth but comes with the
cost of higher latency [48].

• ZigBee The ZigBee protocol is based on the low-power wireless IEEE 802.15.4
standard and is a competitor to 6LoWPAN [49]. It supports different network
topologies like mesh or star, and its design facilitates low data rate, long battery
life, and secure networking [49, 51].

• 802.15.4e This MAC layer protocol transmits frames through IEEE 802.15.4 chan-
nels [56]. It supports two operation modes, namely, the beacon-mode and the
non-beacon-mode. In the former, CSMA-CA and superframes enable synchroniza-
tion and deliver a dedicated bandwidth with low-power consumption. The latter is
a traditional multiple access system based on CSMA-CA [51].

• LoRaWAN The Long-Range Wide Area Network (LoRaWAN) standard facil-
itates long-range connections with limited bandwidth and features low-power
operation [57]. LoRaWAN supports 2-5 km of coverage range in urban areas and
45 km in rural regions [58]. Its network architecture is a “star of stars“ where
end-devices communicate with gateways to exchange messages [57, 58].

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Device Virtualization

2.3 Device Virtualization

Besides the importance of connectivity for IoT devices, the variety of applications leads to
individual hardware requirements and involves various microcontroller architectures [19,
59]. Furthermore, IoT devices range from resource-constrained hardware with, e.g., little
memory and limited power supply, to high-end devices for performing compute-intensive
tasks [60]. This influences the choice of an appropriate OS for IoT devices [60] and
may impact device virtualization. Further, with respect to the simulation platform and
the focus of this thesis, it is important to understand the difference between simulation
and emulation. Therefore, Section 2.3.1 clarifies the difference between simulation and
emulation. Additionally, the virtualization of IoT devices has to consider the hardware
characteristics of real devices. Hence, Section 2.3.2 provides an overview of virtualization
technologies. In the last part, Section 2.3.3 summarizes relevant OSs for the IoT and
discusses important requirements and characteristics.

2.3.1 Simulation vs. Emulation

As has been mentioned in Section 1.3, the proposed work integrates with existing device
simulators and emulators. Before diving into device virtualization and its corresponding
technologies, it is necessary to define simulation and emulation in this context and to
identify the differences.

The term emulation can be defined as a computer system that imitates another computer
system. Hence, the imitating system produces the same results as the imitated system
when running the same computer program with the same inputs on both systems [61].
Further, an emulator can be a software that emulates different hardware, software, or
firmware systems and mimics the characteristics of the imitated systems [61].

In comparison, the term simulation refers to a computer program that represents certain
features, characteristics, parameters, or particular behavior of another system [61].
Therefore, a simulator describes a functional unit that imitates the behavior of a target
system [61].

Although both, emulation and simulation, aim at imitating a certain target system, they
have significant differences. Emulation focuses on reproducing original environments. It
maintains a close connection to the real object and, therefore, can be time-consuming
and difficult to achieve [62]. On the contrary, simulations provide a higher degree of
freedom that often leads to biased simulation setups and inaccuracies [63]. Nonetheless,
both concepts follow different objectives [64]. Simulations offer cost-effective and flexible
environments that facilitate experimentation and are especially useful for demonstration
purposes [64]. The development of an emulator may require more effort than building a
simulator, but provides a precise imitation of the target system [62, 64].

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background Information

2.3.2 Virtualization Technologies

The integration of IoT devices in the form of emulators and simulators requires proper
virtualization technologies. Viable virtualization technologies have to support different
target architectures to deal with the variety of microcontroller and processor architectures
in the IoT [19, 59]. Therefore, this section explains current virtualization approaches,
summarizes state-of-the-art virtualization mechanisms, and identifies relevant technologies
with respect to the thesis.

The term “virtualization“ can be defined as a software layer that abstracts computing
resources [65]. This software layer represents the Virtual Machine Monitor (VMM) or
hypervisor. The hypervisor has full control over the hardware resources and hides them
from the OS. Hence, it is possible to run multiple OSs in parallel; each referred to as
Virtual Machine (VM) [65].

Virtualization abstracts and isolates low-level functionalities and hardware and enables
portability [65]. This flexibility leads to the adoption of virtualization technologies in
areas like Cloud Computing, the IoT, and Network Function Virtualization (NFV) [66].
Thus, there exist many different virtualization types like Mobile, Data, Memory, Desktop,
Storage, Server, and Network virtualization [67]. Due to the wide range of different
virtualization types, describing each of them would go beyond the scope of this thesis.
Hence, the following paragraphs focus on virtualization types relevant to the virtualization
of IoT devices with respect to the simulation platform.

As has been previously mentioned, virtualization enables the emulation and simulation of
IoT devices and is a key technology for dealing with different microcontroller and processor
architectures. Based on [67], server virtualization provides the required functionalities.
It is also known as machine virtualization and cpu virtualization and has the capabilities
to run entire VMs with their own OSs on top of the host OS [67]. Server virtualization is
a wider term that covers the following virtualization approaches [67]:

Emulation

Using emulation as a virtualization technique imitates a complete hardware architecture
in software. Hence, it replicates a hardware processor and enables running OSs for
different target architectures. This provides a high degree of flexibility and operates with
unmodified guest OSs. Nonetheless, these advantages impact the performance as each
instruction on the guest OS gets translated to the host [67].

Binary Translation

With binary translation, the hypervisor masks the hardware from the guest OS and
mimics certain hardware capabilities. It is compatible with unmodified guest OSs and
emulates instruction sets through code translation [68]. Hence, the guest OS is unaware of
the virtualization. The hypervisor ensures safety and security and traps each instruction
to perform translation tasks [67]. Although these mechanisms enable multi-platform

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Device Virtualization

portability and provide flexibility, it comes at the cost of low performance and significant
design complexity [67, 68].

Hosted OS

In this approach, the hypervisor runs on top of an underlying OS, just like any other
application [67]. The guest system inherits hardware support and device compatibility
from the host. While the host OS desktop can be used continuously, the hypervisor layer
creates additional overhead that decreases the performance [67].

Hardware-assisted Virtualization (Full Virtualization)

Similar to hosted OS virtualization, the hypervisor runs as an application in the user
space [65]. Hardware-assisted virtualization utilizes processor virtualization extensions like
AMD-V or Intel VT-x to improve its overall performance. This virtualization approach
requires processors with virtualization support that allows virtualization without the
need for binary translation or para-virtualization [68].

Para-virtualization

In contrast to other server virtualization techniques, the guest OS is aware that it is
running in a virtualized environment [65]. Para-virtualization requires modifications to the
running guest OS that reduces instruction translations and improves the performance [65,
67]. Besides, it does not simulate any hardware resources and relies on physical device
drivers of the underlying host [67].

Native Virtualization (Hybrid Virtualization)

This hybrid approach combines full virtualization and para-virtualization. It uses in-
put/output (I/O) acceleration techniques that increase its performance, except in setups
where the translated instructions rely on emulated actions [67].

Container Virtualization

Container-based virtualization follows a very different approach compared to the previous
virtualization technologies and does not use a hypervisor. It is rather a lightweight
alternative that does not depend on hardware virtualization [66]. Containers run on top
of the host OS and share the same system kernel. They use process isolation at the OS
level and avoid hardware virtualization overhead [66]. Due to the shared kernel, the
guest OS needs to be compatible with the host OS [65]. This improves efficiency and
allows a higher density of virtualized instances [66, 67] but provides less isolation than
hypervisors [66].

Due to the differences between containers and VMs, research distinguishes between
container-based virtualization and hypervisor-based virtualization [26, 66, 69], and further
classifies hypervisors into two different types, i.e., type-1 and type-2 [67]. For modern

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background Information

Hardware

Host OS

Container Engine

App

Libs

Container

App

Libs

Container

App

Libs

Container

(a) Container virtualization.

Hardware

Hypervisor

Dep.

Guest OS

VM
App

Dep.

Guest OS

VM
App

Dep.

Guest OS

VM
App

(b) Hypervisor Type-1.

Hardware

Hypervisor

Dep.

Guest OS

VM
App

Dep.

Guest OS

VM
App

Dep.

Guest OS

VM
App

Host OS

(c) Hypervisor Type-2.

Figure 2.2: Hypervisor and container virtualization.

hypervisors, the distinction between them is not always clear as many hybrid versions
exist [66]. Figure 2.2 shows the difference between both hypervisor types and container
virtualization. Figure 2.2a illustrates the previous described characteristics for container
virtualization. A container instance encloses an application with its dependencies and
runs an isolated process in the user space of the host OS [66, 69]. Unlike hypervisors,
the container engine does not virtualize hardware and is rather an abstraction layer
that facilitates container management [69]. Type-1 hypervisors are native or bare-metal
hypervisors and operate directly on the host’s hardware [66] as shown in Figure 2.2b.
This approach produces less overhead compared to type-2 hypervisors and leads to higher
capacity and increased performance [70]. The type-2 hypervisors, or hosted hypervisors,
run on top of the host OS, as shown in Figure 2.2c. The host OS provides virtualization
services like I/O support and memory management [67]

2.3.3 OSs for the IoT

Another important component of IoT devices is the OS that runs on these devices. IoT
devices include low-end as well as high-end hardware that affect viable OS solutions. Es-
pecially low-end hardware with constrained resources requires new systems as traditional
OSs like Linux or BSD exceed the hardware capabilities [60]. While high-end devices
utilize traditional systems like Linux [19], many new OSs emerged that require little
resources and cope with IoT-specific characteristics [60]. Hence, the following paragraphs
focus on OSs specifically designed for the IoT. They can be categorized based on their
architectural concept into the following categories [60]:

• Event-Driven OS Programs on this type of OS are typically expressed as finite
state machines [71]. The kernel resembles an infinite loop and acts on external
events, i.e., interrupts. It is a resource-efficient approach with low complexity but
restricts flexibility for programmers [60]. Examples of event-driven OSs are Contiki
and TinyOS [60].

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.4. Technologies & Frameworks

• Multithreading OS This is the common approach for traditional OSs like Linux.
Each thread has its context and stack memory, and a scheduler performs context
switching between threads. Therefore, multithreading OSs typically create some
memory overhead [60]. Nevertheless, OSs like RIOT focus on IoT characteristics to
address these issues [72].

• Pure RTOS The objective of RTOS is to fulfill real-time requirements and is
mainly used in industrial and commercial contexts. Due to the importance of
formal verification and model checking, these systems offer less flexibility to pro-
grammers [60]. One widely-used RTOS is FreeRTOS [60].

The variety of OSs for the IoT introduces significant challenges for interoperability and
creates silos with incompatible solutions. Hence, reducing the number of different OSs
for the IoT and providing consistent APIs across different platforms would be beneficial
for the IoT ecosystem [60].

2.4 Technologies & Frameworks

The previous sections introduced the IoT, emphasized important characteristics, and
summarized related concepts. This section provides background information about the
tools, technologies, and frameworks used in this thesis.

2.4.1 libvirt

The libvirt project3 is a toolkit for managing virtualization platforms. The following
paragraphs are based on the libvirt documentation, the wiki, and the application de-
velopment guide [73, 74, 75]. Essential components of libvirt include an API library, a
daemon called libvirtd, and the command-line utility virsh. It is a collection of software
that enables VM management and additional virtualization-related functionality. The
following section defines the terminology used by libvirt and its objectives, provides a
high-level view on the architecture, summarizes the lifecycle management, and highlights
important features. Further, it explains how libvirt enables virtual network management
and outlines methods to utilize libvirt in projects.

Terminology and Objectives

The term “node“ describes a single physical machine. Further, the “hypervisor“ keeps its
meaning and describes a software layer allowing to virtualize a node. The last important
concept is the “domain“ and refers to an instance of an operating system.

libvirt has the objective of providing a common and stable layer to securely manage
domains on a node, including remote ones. It provides these characteristics by:

3https://libvirt.org, last access at 2020-03-22

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background Information

• Secure API access to remote nodes.

• Targeted APIs to specific virtualization environments.

• Exposing a comprehensive, flexible, and stable API to manage domains and allow
access to third-party software.

The main features of libvirt include VM management, remote machine support, stor-
age management, network interface management, and virtual NAT and route based
networking. Therefore, libvirt provides a foundation for higher level management tools
and applications. It supports a wide range of hypervisors including Qemu, VirtualBox,
VMware ESX, Xen, Microsoft Hyper-V, etc.

Basic Architecture

libvirt exposes an API for management applications, as shown in Figure 2.3. It uses
hypervisor-specific mechanisms for controlling hypervisors and executing API requests.
The architecture follows a modular approach to support extensibility. Further, libvirt
utilizes driver modules to communicate with hypervisors. These drivers implement
hypervisor-specific functionalities and provide a defined interface to the libvirt API.
Nevertheless, drivers do not necessarily support all API functions, as hypervisors may
not provide the required functionality.

Node (physical machine)

Host OS

Hypervisor Hypervisor

libvirt API

libvirt driver libvirt driver

Domain
(VM)

Domain
(VM)

Management
Application

Figure 2.3: High-level architecture of libvirt.

VM Lifecycle

libvirt domains, i.e., VMs, can either be transient or persistent. When a transient domain
is shutdown, or the host restarts, libvirt deletes it automatically. In contrast, persistent
domains exist until they get deleted manually. Independent of the domain type, libvirt
enables saving and restoring domain states.

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.4. Technologies & Frameworks

Undefined

Defined Paused

Running

Saved

define undefine
shutdown

shutdown

create

start

migrate

save

suspend

restore

resume

Figure 2.4: libvirt domain lifecycle.

Figure 2.4 shows the domain states and possible state transitions, indicated by rectangles
and arrows, respectively. The base state is Undefined, and libvirt does not know anything
about a domain in this state, as it has not been defined or created yet. Defined, or
Stopped refers to domains that have been defined but are not running. Hence, only
persistent domains can be in this state, as transient domains no longer exist after they
have been stopped. The Running state applies to started domains that are being executed
on the corresponding hypervisor. Further, Paused indicates that a domain has been
suspended and libvirt stores the domain state temporarily until it is resumed. Similarly,
Save suspends the domain but stores the state to a persistent storage where it can be
restored in the future.

Networking

libvirt provides the functionality to create and manage virtual networks and to connect
network interfaces of guest domains to them. The virtual networks can either remain
isolated or use the active network interface on the host, e.g., to provide Internet access to
guest domains. Similar to domains, virtual networks can be either transient or persistent.

The main components of libvirt networks are virtual network switches. In Linux systems, a
virtual network switch corresponds to a network bridge. The major network configuration
modes are NAT forwarding, bridged networking, and PCI passthrough. NAT forwarding
allows outgoing connections for domains, e.g., access to the Internet. It allows incoming
connections from the host, from other guests if they are in the same libvirt network, and
blocks everything else. While NAT forwarding is useful for fast and easy deployments,
bridged networking enables more advanced setups. In such a setup, the guest domain is
connected directly to the local area network (LAN), and configuration requires advanced
knowledge about networking and the underlying OS distribution of the host. The third
configuration mode is PCI passthrough. This configuration option allows PCI network
devices of the host to be directly assigned to guest domains.

Applications

The libvirt project offers a variety of applications to manage and maintain virtualization
environments based on the libvirt API. As has been previously mentioned, virsh is

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background Information

such a tool. It is an interactive shell and batch scriptable application that provides all
the functionality offered by libvirt. It is the only tool that is part of the libvirt core
distribution.

Further, there exist many third-party tools, applications, and plugins for other software.
For example, continuous integration tools like Jenkins and server monitoring software
like Nagios offer libvirt plugins. Also, widely-used Infrastructure as a Service (IaaS)
software like Nimubs and OpenStack rely on libvirt. In addition, libvirt offers libraries
for a variety of programming languages like C, C++, Java, Python, and many more.

2.4.2 Qemu

The heterogeneity of IoT devices, including hardware and software, increases the com-
plexity of device emulation [5, 19, 59, 60]. Dealing with different processor architectures
requires a hypervisor that supports hardware virtualization and emulation of different
target architectures. Qemu4 is a generic machine emulator and virtualizer that supports
guests with different target architectures. It is a type-2 hypervisor that runs in the user
space of the host OS [76]. Besides, it is compatible with the Kernel-based Virtual Ma-
chine (KVM) module from the Linux Kernel that enables virtualization with near-native
performance [77]. Qemu has two operating modes:

• User mode emulation This operating mode enables cross-compilation and cross-
debugging for programs with different processor architectures [77]. In addition, it
allows hosts to run programs compiled for different instruction sets [77, 78].

• Full system emulation Qemu also provides full system emulation, including
emulation of processors and peripherals, and allows launching different OSs [77] like
Linux, Solaris, Microsoft Windows, and so on. Further, it supports the virtualization
of RTOS systems in simulation environments [79].

Therefore, Qemu is a powerful emulation software that supports the emulation of a variety
of processor architectures, including 32 bit ARMv7, ARMv8, MIPS, x86, OpenRISC,
and many more [77, 78].

2.4.3 Docker

The term “Docker“ relates to three different things, namely (i) Docker Inc., the company,
(ii) the container runtime and orchestration technology, and (iii) the open-source project
that is now called Moby [80]. The following paragraph only focuses on the container
runtime and orchestration technology.

Docker is an open platform to develop and manage containers [81]. One of the main
components is the Docker Engine, a client-server application that consists of [81]:

4https://www.qemu.org, last access at 2020-03-22

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.4. Technologies & Frameworks

• The Docker daemon process dockerd that manages Docker objects like images,
containers, networks, etc.

• A REST API that enables the communication between external tools and the
Docker daemon.

• A command-line interface (CLI) to control and interact with the Docker daemon.

The Docker platform is a popular ecosystem for container virtualization and provides
many features to developers [80]. Hence, a comprehensive description would go beyond
the scope of this thesis, and many books already exist [80, 81]. Therefore, the following
focuses on the fundamental concepts of Docker containers.

The underlying technology utilizes several features of the Linux kernel to provide its
capabilities [80, 81]:

• Namespaces Namespaces provide a layer of isolation to containers. It is a concept
from the Linux kernel that wraps global resources in an abstraction that isolates
a process from the rest of the system [82]. The Docker engine uses namespaces
to isolate processes, network interfaces, inter-process communication, filesystem
mount points, and kernel and version identifiers [81].

• Control groups Control groups (cgroups) are responsible for limiting resources to
specific applications. This enables the Docker engine to share available hardware
resources while maintaining the possibility to enforce limits and constraints to a
specific container [81].

• Union file system The union file system (UnionFS) is a lightweight and fast file
system that is organized in layers [81].

• Container format The container format represents a wrapper that combines
namespaces, cgroups, and the UnionFS. Docker uses the libcontainer format, but
future support for other container formats is possible [81].

2.4.4 Linux Networking Capabilities

The following paragraphs summarize Linux networking capabilities that are important
for this thesis. Hence, it is not an exhaustive list.

Bridges

The Linux bridge provides functionality similar to network switches. It links different
network segments and forwards packets between interfaces that are connected to it. A
common use-case of bridges is to enable communication between VMs, containers, and
the host [83].

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background Information

Tun/Tap Devices

Tun and tap devices are virtual network kernel interfaces. They can be seen as simple
Ethernet devices that enable user space programs to retrieve and transmit packets. Hence,
the virtual Ethernet device receives packets from a user space program, instead of physical
media. Further, sending packets to the tun or tap device writes them to the user space
program instead of transmitting it via physical hardware [84]. Tun and tap devices
operate on different network layers. Therefore, tun devices read and write IP frames,
while tap devices operate on Ethernet frames [84].

Veth Pairs

The veth pair is a local Ethernet tunnel and consists of two virtual Ethernet devices that
are connected with each other. Veth pairs can be used as standalone network devices but
are especially useful for connecting different network namespaces, i.e., by placing one
Ethernet device of the veth pair into each namespace [85].

Network Namespaces

As has been previously mentioned, namespaces isolate system resources for processes.
Therefore, network namespaces provide isolation for network-related system resources.
This includes network devices, IPv4 and IPv6 protocol stacks, IP routing tables, firewall
rules, port numbers, and certain subdirectories in the /proc directory [86].

Iptables

Iptables and ip6tables set up, maintain, and inspect the rules for packet filtering in the
Linux kernel. These tables consist of lists of rules, i.e., chains, that define how the kernel
handles network packets if a rule matches [87].

2.4.5 ns-3

ns-35 is a discrete-event network simulator. It is an open-source software that focuses on
research and education. The ns-3 project provides a number of different documents that
cover the software architecture and the core of ns-3 [88], the protocol, and device model
libraries [89], and a general overview with practical examples [90]. Hence, the following
section is based on these official documents [88, 89, 90].

The ns-3 software follows a modular approach and distinguishes between modules and
models. ns-3 is organized into separate modules. These are individual software libraries
that are built separately. Thus, ns-3 programs only link libraries required for the
simulation. Models can be used in simulations to abstract real-world objects, protocols,
devices, etc. Hence, a single module consists of one or several models.

5https://www.nsnam.org, last access at 2020-03-22

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.4. Technologies & Frameworks

Figure 2.5: The basic ns-3 architecture [91]

Furthermore, ns-3 uses different levels of abstractions that facilitate flexibility to users.
Figure 2.5 shows the basic architecture of ns-3. The key concepts of ns-3 are:

• Nodes In ns-3, node refers to the basic computing device abstraction. It can be
compared to a computer in the real world.

• Applications In ns-3, the concept of OSs does not exist. Nevertheless, an applica-
tion in ns-3 is like a user program running on a computer. Hence, applications run
on nodes and generate activities during simulations.

• Channels The channel abstracts the communication link between nodes. It ranges
from simple models, e.g., a single wired connection, to complex abstractions of
Ethernet or wireless networks.

• Net Devices The net device in ns-3 refers to a Network Interface Card (NIC) in
the real-world. It represents a virtual NIC and its corresponding drivers and can
be installed on nodes. Net devices connect nodes to channels and enable nodes to
communicate with each other.

• Topology Helpers Topology helpers simplify the configuration process of nodes,
applications, channels, and net devices and reduce the effort to set up simulations.

Furthermore, ns-3 includes a real-time scheduler and provides net devices to interface with
external devices. Hence, it allows real-time simulations and enables external components,
e.g., VMs and containers, to participate.

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background Information

2.4.6 Remote Procedure Calls

In programming languages, ordinary procedure calls are special cases of communication,
with the invocation and the procedure residing within the same environment, e.g., on the
same physical machine [92]. In distributed systems, invocation statements and procedure
bodies are not necessarily on the same machine. Therefore, remote procedure calls (RPCs)
offer a syntax that is similar to ordinary procedure calls, while the user is unaware of the
location of the procedure body [92]. Hence, RPCs enable calls to remote procedures in
different address spaces, independent of the machines both programs are running on [93].

The RPC concept is a client-server model and supports synchronous and asynchronous
communication [92, 93]. In the last few years, RPC approaches got traction in high-
performance computing (HPC). Further, Google released gRPC in 2015, a flexible and
lightweight RPC framework that is widely used [93].

Apache Thrift

The Apache Thrift6 framework is a high-performance RPC framework [94]. It supports
a variety of programming languages and integrates a code generation engine. Thrift
follows a modular approach and supports different serializers. Hence, users can choose
serialization formats with respect to speed, size, and readability [94]. Further, it supports
different transport protocols, including raw TCP and HTTP [94].

2.4.7 Micronaut

Micronaut7 is a JVM-based framework for building modular microservices and serverless
applications. It provides a rich set of features, including Dependency Injection (DI)
and Inversion of Control (IoC), auto-configuration, service discovery, HTTP routing,
and HTTP clients with client-side load-balancing [95]. It is a competitor to well-known
frameworks like Spring8, SpringBoot9, and Grails10.

Compared to alternative frameworks like SpringBoot, Micronaut offers advantages like
fast startup time and a reduced memory footprint. It achieves this goal through the use
of Java’s annotation processors that precompile necessary metadata to perform tasks
like DI. Further, Micronaut has special support for GraalVM11 that allows Micronaut
applications to utilize the nativeimage tool from GraalVM [95].

6https://thrift.apache.org, last access at 2020-03-22
7https://micronaut.io, last access at 2020-03-22
8https://spring.io, last access at 2020-03-22
9https://spring.io/projects/spring-boot, last access at 2020-03-22

10https://grails.org, last access at 2020-03-22
11https://www.graalvm.org, last access at 2020-03-22

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
Related Work

The following chapter compares state-of-the-art developments in IoT simulations. It
shows the relevance of simulations in IoT development processes and discusses alternative
solutions with respect to their applicability. Further, it reviews current developments in
consensus algorithms and systems for the IoT.

3.1 IoT Simulation & Research

Simulation in the IoT introduces many obstacles, and the development of sophisticated
tools is a challenging task [5, 10, 12, 15]. Hence, this section follows a broader approach
and tries to answer the question, why simulation is even necessary in the first place. It
examines the research process of IoT systems and applications, discusses state-of-the-art
solutions for each development stage, and shows the relevance of IoT simulations.

3.1.1 IoT Research

Papadopoulos et al. analyzed the research process cycle for the IoT [96]. Figure 3.1
shows the ideal process that starts with analyzing a new idea and ends with a real-
world deployment after developing a successful prototype. In the first stage, researchers
perform theoretical analysis and use models to gain insights into the proposed idea [96].
While modeling of IoT systems is actively researched [97, 98, 99], they focus on specific
subjects like communication protocols [97], deployment of IoT systems [98], or particular
domains [99]. Although more general modeling approaches exist [100], some parameters
and environments cannot be modeled accurately [101]. Hence, modeling and simulations
intertwine in some use-cases [10, 100].

In the second stage, researchers use simulators to verify and refine their ideas [96].
Simulations are especially useful for prototyping and developing a proof of concept, as

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Related Work

Analysis

Virtual Real

Formula Simulation Proof of
Concept

Experimen-
tation Prototype

Model Simulator Testbed

Figure 3.1: IoT research process cycle based on [96].

real-world experimentations can be avoided [15, 96]. Hence, researchers can test their
ideas in virtual environments without setting up physical devices [96].

The third stage evaluates the proof of concept on real hardware [15]. As most simulators
abstract low-level functionalities of IoT devices, evaluation results lose realism and
complexity to some extent [96]. Therefore, using hardware devices allows researchers
to test their system in real-world environments that current simulators cannot fully
imitate [96].

Simulators are important in the IoT research process and close the gap between theoretical
analysis, models, and tests on physical hardware in real-world environments [15, 96]. Fur-
ther, researchers use models in combination with simulations for verifying and developing
their idea. Hence, the first development stage already uses simulators [10, 100]. Both,
evaluating models and running simulations, use virtual environments, and avoid expensive
real-world setups [96]. Compared to virtual environments, running hardware-based tests
is more expensive and work-intensive [5, 15, 96].

Therefore, the following paragraphs review hardware-based testing with its challenges and
benefits. Followed by current solutions and the latest developments in IoT simulations,
the section concludes with a discussion of both concepts and provides an outlook on
future research directions.

3.1.2 Testbeds

Hardware-based testing in real environments, i.e., testbeds, allows researchers and
developers to evaluate experiments in real-world like contexts [15, 102]. Testing IoT
systems in real-world deployments uncovers potential problems in pre-deployment tests
and enable performance analysis [103]. Formerly, researchers had to set up their own
testbeds [15]. Building testbeds is an expensive task that requires proper resources,
skills, and creates additional overhead [5, 15]. The emergence of open testbeds that
researchers have access to solved these issues and increased the relevance of testbeds in
IoT research [5, 15]. Initiatives like the CPS/IoT Ecosystem project, a cooperation of
Technische Universität Wien (TU Wien), Austrian Institute of Technology (AIT), and
Institute for Science and Technology (IST), advance research in the IoT by building
IoT infrastructures in the real world that serve as research platforms and educational

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. IoT Simulation & Research

tools [104]. The following paragraphs summarize the characteristics and capabilities of
popular open testbeds [15, 102, 103]. Nevertheless, the list is by far not extensive, as the
number of available testbeds is substantial [102].

FIT IoT-LAB

The FIT IoT-LAB consists of 2729 low-power wireless nodes and 117 mobile robots [105].
It allows large-scale wireless IoT experiments, including tests with low-level protocols
and advanced internet services [105]. The testbed uses nodes based on TI MSP430
and ARM hardware architectures and does not enforce specific operating systems [102].
It is a multi-site testbed and operates in six different but interconnected locations in
France [102, 105]. In contrast to other testbeds, FIT IoT-LAB includes robots and offers
controlled mobility [102].

Users manage experiments via a web-based frontend [102]. Also, FIT IoT-LAB provides
a RESTful API and a CLI tool that enables developers to interact with the system [105]
and allows them to build additional tools on top of it based on their individual needs [102].
Furthermore, it allows ssh access to the infrastructure to manage nodes [105].

SmartSantander

The SmartSantander testbed focuses on IoT applications in urban areas [106]. It is an
experimental test facility that enables research in large-scale IoT systems in a real-world
environment for smart cities. It consists of IoT devices deployed across Santander City,
e.g., sensors attached to lampposts and nodes buried under the asphalt [106]. Further,
mobile devices attached to public transports like buses and taxis generate valuable
mobility patterns for experimentation [106]. An important characteristic of the testbed
is its device heterogeneity [102]. SmartSantander includes indoor as well as outdoor
deployments and involves citizens [102, 106]. It offers a variety of IEEE 802.15.4 devices,
GPRS components, RFID and NFC tags, and QR codes [102, 103, 106].

The testbed provides a web interface and REST-based web services to manage experiments,
i.e., to schedule jobs, specify resources, set up nodes, and so forth [102, 106]. Further,
SmartSantander provides command-line scripts to automate and repeat experiments [102].

WISEBED

WISEBED is a large-scale system that federates existing testbeds [102, 107]. It provides
an infrastructure of interconnected testbeds and uniform access to users [103]. Therefore,
it consists of many heterogeneous devices and a variety of sensor types [102]. WISEBED
defines a set of standardized APIs that operators from different testbeds can implement
to participate in the federated testbed [107]. Besides, WISEBED supports virtual links
between nodes and enables dynamic experiment specifications, involving physical and
virtual nodes and links [102].

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Related Work

Therefore, users can access different testbeds with the same APIs, either directly or via the
federated testbed. This enables researchers to deploy the same experiment to a number
of different testbeds automatically [107]. Besides, WISEBED offers the functionality to
repeat experiments automatically [102].

Conclusion

Multiple large-scale testbeds have been deployed in recent years [5] and got increasingly
popular [15]. Open testbeds and research efforts to ease management and experimentation
tasks enable researchers to run experiments on already deployed hardware [15, 102].
Testbeds enable testing in a real-world context and require the system under test to
deal with unpredictable events and physical characteristics [102]. Further, open testbeds
facilitate reproducibility, i.e., allowing different researchers to verify experimentation
results [15].

Besides the advances in IoT testbeds, they have some considerable drawbacks. Deploying
and maintaining testbeds are expensive tasks [5]. While these systems support an
increasing number of different devices [102], they are still homogeneous compared to real
IoT systems and quickly run on outdated devices as new hardware enters the market
frequently [5]. Furthermore, researchers tune parameters and hardcode scenarios into the
firmware of existing testbeds. This makes reproducible results difficult to obtain [103].
Besides, in-depth profiling is missing for certain experiments [103] and only a few testbeds
support mobility [96]. Although testbeds consist of real-world deployments, there are
still differences to targeted environments and IoT systems in the real-world [5, 103].

3.1.3 IoT Simulaton

Besides testbeds, simulators are widely used and actively studied for IoT research [96, 108].
Chernyshev et al. classify simulators based on the scope and the coverage of architectural
layers, resulting in the following categories [15]:

• Full stack Simulators in this category enable researchers to represent entire IoT
applications. The simulations include spaces, devices, operations, events, and may
support sensors and actuators [15].

• Big data processing Tools within this category focus on the data processing
capabilities of IoT systems. Therefore, these systems focus on cloud computing,
big data processing, and reproducing data center mechanisms [15].

• Network Network-based simulators provide the majority of currently used sys-
tems [15]. This is mostly due to the similarity between IoT and wireless sensor
networks (WSN), allowing researchers to re-use network simulators developed for
WSNs [5, 8].

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. IoT Simulation & Research

3.1.4 IoT Simulaton Tools and Frameworks

Due to the variety of IoT simulators, the following paragraphs summarize popular
simulation tools currently used in research [12, 15, 109].

OMNeT++

OMNeT++ is a discrete event simulation environment [110]. It supports the simulation
of communication networks, multiprocessors, and distributed systems [110]. Its general
design [110] facilitates extensibility and allows the integration of use-case specific modules,
e.g. urban mobility provisioning [15]. Therefore, OMNeT++ is rather a collection of
frameworks and tools for building simulation scenarios than a simulator [109].

In addition, OMNeT++ focuses on WSN and network simulations [109] and does not
support relevant IoT models out-of-the-box [15]. Nevertheless, researchers can integrate
them manually [15], and several models are available to support researchers [110].

ns-3

ns-3 is a popular open-source network simulator that allows the simulation of large-scale
networks [109]. It is the successor of ns-2 but is not an extension of it [109]. ns-3 is a new
discrete-event simulator with a modern software core, and a design focused on scalability,
modularity, and code quality [109, 111]. Its attention to realism provides components
similar to their counterparts in the real world, e.g., network devices, nodes with multiple
interfaces, and so forth [111]. Further, ns-3 offers a sophisticated framework for tracing
and gathering statistics [111].

The simulator follows a modular approach and provides many built-in models [89],
including relevant IoT protocols like 6LoWPAN and IEEE 802.15.4 [109]. Furthermore,
it supports real-time simulations [88] and enables the integration of real hardware, e.g.,
testbeds, and virtualized systems [111].

Cooja

While simulators often miss important characteristics of real hardware due to abstractions,
Cooja’s design tries to close the gap between simulation and experimentation [96]. It
simulates low-level functionality, i.e., sensor node hardware, and high-level behavior [112].
Cooja is a simulator designed for the Contiki OS [112], a popular OS for IoT sensors [15].
Hence, Cooja nodes can access standards and protocols of the Contiki OS during the
simulation, providing more realistic scenarios [15]. Due to these characteristics, Cooja
enables the development and simulation of low-level software [112], i.e., the firmware
on virtual nodes can be deployed on real hardware with only minor modifications
necessary [15].

Besides, Cooja supports a variety of network protocols relevant to the IoT, including
MQTT, CoAP, 6LoWPAN, and 802.15.4 [15].

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Related Work

IOTSim

Based on the simulator categories discussed at the beginning of the section, IOTSim is
part of the big data processing category [15]. IoT systems create massive amounts of
data and, therefore, utilize cloud infrastructure for storage and computing tasks [113].
Developing and researching big data applications for the IoT is challenging, as setting up
big data processing systems in the cloud is a complex task and can hinder progress due to
time or budget constraints [113]. The IOTSim simulator addresses these issues by enabling
simulations of big data processing models and cloud computing environments [15, 113].

It focuses on reproducing data center components, e.g., VM configurations, rather than
sensor simulation [15]. Also, IOTSim includes a storage layer and models different storage
types like Amazon S3, Azure Blob Storage, and HDFS [113]. For data processing, IOTSim
supports batch processing with MapReduce simulations [15] and will implement stream
computing models in the future [113].

iFogSim

The full-stack simulator iFogSim provides an environment that supports simulations of
fog nodes, sensors, actuators, and application processing components [114, 115]. It allows
large-scale simulations with customized fog environments and IoT devices [115]. iFogSim
focuses on fog computing [114] and simulates fog devices as physical components [115].
Further, it provides sensors and actuators in the form of data sources and sinks, respec-
tively. Both, data sources and sinks, can be customized to represent any data-emitting
or information receiving IoT device [114].

3.1.5 Current Research in IoT Simulation

While the previous section looked into popular tools and frameworks for simulating
IoT systems, the following paragraphs summarize current research and discuss novel
approaches for IoT simulators. Nevertheless, the following list provides a small excerpt
of currently researched IoT simulators and is by far not complete.

Dockemu

Dockemu focuses on simplifying the setup process of a simulation environment [116]. It
utilizes Docker containers and emulates the network layer through Linux bridges and
ns-3 [116]. The containers provide the user space of current OSs for applications to run.
Further, ns-3 enables network emulation of wired and wireless layer two connections [116].
Since the first version of Dockemu in 2015 [116], more recent publications followed [117,
118].

Dockemu intends to enable the simulation of complex IoT scenarios, including client-server
applications and network protocols relevant to the IoT [117]. Therefore, Portabales and
Nores [117] propose a network setup that enables the emulation of LTE and 6LoWPAN

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. IoT Simulation & Research

networks in combination with applications running in Docker containers [117]. Unfortu-
nately, the current version of ns-3 does not fully support IPv6 for external devices [119],
and therefore, reduces the functionality of Dockemu.

VIoLET

VIoLET is a simulator for deploying large-scale IoT setups in virtual environments,
i.e., within cloud VMs [120]. Users submit deployment documents that describe the
simulation in JSON format. VIoLET represents virtual devices as Docker containers and
automatically provisions VMs in the cloud. Further, it provides synthetic sensors for
data generation [120]. The simulator uses an overlay-network to connect containers and
allows distinct public and private networks in virtual environments [120].

The framework enables users to restrict computing resources of containers via the built-in
functionality of Docker [81, 120]. Furthermore, the network topology configuration allows
defining public and private networks, setting the visibility of devices in the network,
and limiting bandwidth and latency between pairs of devices [120]. The framework
enforces bandwidth and latency requirements with the Linux iproute2 package, and
Traffic Control (TC) rules [120].

ELIoT

ELIoT is an emulation platform for the IoT and allows the simulation of large-scale IoT
scenarios [17]. It uses Docker containers as a virtualization technology and aims at porta-
bility, i.e., facilitating a convenient and flexible setup process of test environments [17].
ELIoT does not emulate low-level network protocols like 802.15.4 or 6LoWPAN and
focuses rather on the application layer. Its nodes implement a full CoAP network stack
and provide LWM2M/IPSO objects to simulate IoT entities and their corresponding
interactions [17].

Although ELIoT refers to its virtual devices as “emulated“, it does not emulate any
hardware characteristics and abstracts networking within Docker containers [17]. It
instead emulates the behavior and communication pattern of real devices [17]. Virtual
devices, i.e., containers, use a minimal Node.js base image built on top of Alpine Linux.
The image already includes a CoAP/LWM2M module and provides scripts for simulating
the behavior of different sensors [17].

Hybrid Virtualization Platform

Recently, Lai et al. published their work on a hybrid virtualization approach for simu-
lating IoT systems in virtual environments [121]. While network emulators and other
simulation platforms utilize x86-based VMs and Docker containers to virtualize nodes
within simulations, the proposed platform focuses on the emulation of devices with
different target architectures [121]. They utilize multiple virtualization technologies, i.e.,
KVM, Qemu, and Docker, to emulate heterogeneous IoT systems [121].

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Related Work

Further, Lai et al. utilize the cloud to improve the scalability of their proposed platform.
Similar to VIoLET, network emulation is based on modifications of the link between a
pair of nodes [121].

Multi-level Simulation

Building general IoT environments to simulate heterogeneous IoT systems is a difficult
task. Therefore, D’Angelo et al. proposed a multi-level simulation system to cope with
these challenges [122]. These systems consist of a simulation coordinator that orchestrates
multiple, task-specific simulation models [122]. In addition, models can operate on
different levels of detail and enable researchers to target their systems precisely [122].
Further, it provides the flexibility to decide whether granular simulations are necessary
for certain parts of the system. Utilizing higher-level simulations improves performance
and requires fewer resources. Therefore, running low-level simulations only on critical
parts of the system increases the overall performance of the simulation [12, 123].

Due to the integration of multiple simulators, the multi-level simulation has to deal with
interoperability among simulators and facilitating inter-model interactions, i.e., models
may have to synchronize or need to exchange state information [12].

Conclusion

Established simulators as shown in Section 3.1.4 miss important requirements for IoT
simulations, i.e., a single simulator is not sufficient for end-to-end simulations [15]. The
issues with these tools include the lack of support for IoT-specific protocols, missing
application layer capabilities, dealing with device heterogeneity, imitating the dynamic
behavior of IoT systems, and missing support for real-time requirements [15, 124].

Current research tries to address these issues and defines essential characteristics and
requirements for IoT simulations, including the deployment of heterogeneous technologies,
extensibility, scalability, reproducibility, cost-effectiveness, support for IoT standards and
protocols, and overall practicality, i.e., quality of experience (QoE) [15, 118, 120, 121, 124].

Dockemu, VIoLET, ELIoT, as well as the hybrid virtualization platform proposed by Lai
et al. address scalability as a core requirement [17, 117, 120, 121]. Further, Dockemu uses
ns-3 for network simulation and, therefore, covers layer two and three network protocols
relevant for the IoT [109, 117]. While Dockemu focuses on a simple setup process, it
does not support heterogeneous devices, e.g., different target architectures, and changing
network topologies and modifying applications on devices introduces overhead [117].

Besides low-level devices like sensors and actuators, IoT deployments include fog, edge,
and cloud computing as well [10, 120]. Therefore, VIoLET provides a virtual environ-
ment that specifically targets these systems [120]. It enables a cost-effective, scalable
simulation tool with convenient features for users, for example, pre-configuration and
data generation. Nevertheless, VIoLET does not provide network and device emulation
and omits mobility [120].

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Consensus in the IoT

Similarly, ELIoT neglects network emulation and focuses on simulating the behavior
of devices rather than hardware emulation [17]. It emphasizes the simulation of the
application layer, provides reasonable scalability, and improves QoE with ready-to-use
devices [17].

The platform proposed by Lai et al. focuses on the heterogeneity of the IoT and enables
emulated devices with a different target architecture compared to the host [121]. In
addition, it allows the network topology to change dynamically but does not emulate
low-level protocols [121]. Furthermore, the proposed work does not provide enough
information to reason about usability-related tasks, e.g., setting up nodes and running
developed IoT applications, repeating experiments and reproducibility, or obtaining
results via profiling, tracing, and monitoring [121].

3.1.6 Open Challenges

Although progress has been made in testbeds and IoT simulation, current solutions
still lack important features [10, 15, 102, 103]. These include sophisticated monitoring
mechanisms, detailed profiling, and support for cybersecurity research [15, 103].

Furthermore, the heterogeneity of IoT systems imposes a challenge on both, testbeds
and simulators [10, 102]. This includes extensibility as well, as new IoT devices enter the
market frequently [5, 10].

Compared to IoT simulators, testbeds offer more reliable results and do not miss impor-
tant device characteristics due to abstractions or virtualizations [5, 15]. Nevertheless,
simulators provide more flexibility, enable advanced mobility scenarios, and are more
cost-effective, as setting up and maintaining testbeds are expensive tasks [15, 102].

3.2 Consensus in the IoT

Finding consensus in a distributed system is a well-known problem in computer science.
It is often associated with the work of Fischer, Lynch, and Paterson [125] several decades
ago on distributed consensus [126]. Consensus describes the process of reaching an
agreement about a certain state or value between entities [126, 127]. Furthermore, it
enables consistent behavior within a group of entities, even in the case of failure [20].

In contrast to solutions for consensus in synchronous systems, Fischer, Lynch, and
Paterson [125] have shown that fully asynchronous settings may never reach consensus
due to the possibility of nontermination [23]. Therefore, many approaches have been
proposed since then, including popular algorithms like Paxos [23].

Although the consensus problem has been studied extensively [21], it is still actively
researched due to its importance in cloud computing, task coordination, and data storage
systems like databases [20, 21, 23]. In recent years, further use-cases for consensus
algorithms have been developed due to the emergence of the IoT, i.e., large-scale, highly
distributed systems [20, 128, 129].

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Related Work

Many established consensus algorithms and specific implementations operate in data cen-
ters and cloud computing environments [21, 130]. Hence, their design does not necessarily
facilitate IoT systems and introduces further challenges to consensus algorithms [128]:

• Devices have limited power supply and constrained resources [26]. Therefore,
efficiency is an essential characteristic [128].

• Networks involve unreliable, wireless connections and introduce noise, latency, and
changing topologies [128].

• Devices are easily compromised and, therefore, pose a security threat [128].

Due to these requirements, novel consensus algorithms have been proposed for the
IoT. Li et al. [129] introduced a decision making procedure for service-oriented IoT
deployments based on distributed consensus. At, for example, edge nodes, services may
have insufficient information for making coherent decisions. The proposed algorithm
divides the system into clusters, calculates local decisions, and uses this information to
reach global consensus [129].

Further, the work of Zhao et al. [131] focuses on cyber-physical systems (CPSs) in
the IoT. The proposed algorithm emphasizes event detection for industrial process
monitoring, automatic alert systems, prediction of potentially dangerous events, and
attack detection [131]. Its design uses a jointly connected graph model that supports
dynamic topologies and improves reliability [131].

Colistra et al. [132] developed a consensus approach for task allocation in IoT systems.
It enables IoT devices to cooperate and share the effort on certain tasks. Thus, IoT
devices make their resources available and execute applications assigned to the whole
network [132]. The proposed optimization protocol allocates available resources within
the network to reach the common goal most effectively [132].

Li et al. [133] proposed a distributed, robust control mechanism for uncertain multi-agent
systems. Applications relying on these methods include satellite formations, vehicle
platoons like unmanned ground vehicles, networked sensings, and so forth [133]. Multi-
agent networks consider node dynamics, models of interacted topologies, formation
geometry, and the distributed robust controller [133]. It uses a virtual leader approach
to control formations, and information is shared among surrounding neighbors or the
virtual leader to achieve global consensus [133].

Furthermore, the IoT imposes significant challenges on privacy and security solutions [134].
Systems with a centralized authority imply a single point-of-failure and provide insufficient
scalability [134]. These issues can be solved with decentralized consensus systems that
utilize trustless and immutable public ledgers. Thus, introducing blockchain technology to
the IoT [134]. Yeow et al. [134] review state-of-the-art consensus systems and provide an
overview of blockchain-based consensus algorithms that can be utilized in the IoT [134].

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Consensus in the IoT

Although these approaches differ in their application areas and utilize various mechanisms,
algorithms, and technologies, the evaluations to demonstrate the performance and the
effectiveness of the proposed solutions rely on simulations [129, 131, 132, 133]. This
underlines the importance of sophisticated simulation tools during the IoT research cycle,
as shown in [96]. Furthermore, Colistra et al. [132] use real hardware to validate the
simulation results of their proposed algorithm successfully.

Besides novel approaches for consensus algorithms in the IoT, Méndez et al. [135] evaluate
the well-known bully algorithm for leader election on low-performance IoT devices. The
paper demonstrates that concepts of traditional consensus algorithms might be applicable
in IoT scenarios without device limitations affecting their suitability [135]. Furthermore,
Poirot, Nahas, and Landsiedel [23] propose Wireless Paxos, a consensus algorithm
based on Paxos for low-power wireless networks. The evaluation of Wireless Paxos on
two different testbeds demonstrates reasonable performance and shows correctness [23].
Hence, supporting the conclusion from Méndez et al. [135]. Therefore, assessing the Raft
algorithm on a wireless IoT system provides an adequate use-case for the evaluation of
the proposed simulation platform.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
Software Engineering Process

The scope of this thesis can be structured into three parts. Following the categories
previously defined in Chapter 1, these are the architecture framework, the network
simulator, and Raft. For every part, this chapter provides a detailed description followed
by the requirements and explains essential design decisions. First, Section 4.1 defines
the architecture framework and introduces its design. Then, Section 4.2 addresses the
need for simulated communication channels and defines the capabilities of the network
simulator. Further, Section 4.3 demonstrates the interactions between a simulated IoT
device and the network simulator, which already enables the simulation of IoT systems.
Last, Section 4.4 provides information about the implementation of the Raft algorithm.

The thesis uses a novel terminology to distinguish between components. This nomencla-
ture is not universally recognized, but rather introduced in this work to allow a more
precise naming. As previously stated, the architecture framework can be seen as a toolset
to integrate IoT simulators and emulators. Further, the integration layer specifies an
instance of the architecture framework, i.e., a process integrating a single and unique
instance of a simulator or emulator. For simplicity, IoT simulators and emulators are
further referred to as virtualized devices. Last, the term virtualized IoT device (VIoTD)
describes the combination of a virtualized device and its integration layer, i.e., an IoT
device in the simulation.

Figure 4.1 provides an overview of how the architecture framework and the network sim-
ulator integrate into the simulation platform at UIUC. While Section 4.1 and Section 4.2
focus on the capabilities of a simulated device and the network simulation, respectively,
the backend of the simulation platform is responsible for managing devices, allowing
users to interact with and execute different scenarios. For example, users can upload
files and access them during a simulation. Figure 4.1 provides a simplified view on the
simulation platform. The platform itself consists of different components with much
higher complexity. These details are omitted at this point, as they are not relevant for
this thesis.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Engineering Process

VIoTD

Virtualized
Device

Integration
Layer

VIoTD

Virtualized
Device

Integration
Layer

VIoTD

Virtualized
Device

Integration
Layer

VIoTD

Virtualized
Device

Integration
LayerNetwork Simulator

Simulation Platform

Figure 4.1: Integration of the architecture framework and the network simulator into the
simulation platform.

4.1 Architecture Framework

The main objectives of the architecture framework are abstracting virtualized devices
and providing a uniform interface to the simulation platform while adding as little
computational overhead as possible. Based on [10], the architecture framework supports
VMs and containers as virtualized devices. Further, the framework supports processes as
virtualized devices as well due to specific requirements of the simulation platform at the
UIUC and to improve flexibility.

To decide whether the framework is responsible for a certain functionality, the following
definition can be used:

Definition 1 The framework includes only functionality needed by an individual instance
of a virtualized device.

In certain cases, features, which seem useful in the first place, are not included by intent,
as they do not fulfill Definition 1. An example is the hypervisor setup for a VM. If a
VIoTD requires a specific hypervisor, the architecture framework is not responsible for
its installation. Any instance of the virtualized device requires this hypervisor, not only
an individual one. Once the installation process is done, this functionality is dispensable.

4.1.1 Requirements Analysis

The concept of a VIoTD is abstract and requires a specific definition of its functionalities
and capabilities. Hence, a requirements analysis is necessary. As the design and the
functionality of the architecture framework affect different stakeholders, providing a clear
definition for each stakeholder improves the process for creating user stories. Hence, the
architecture framework has the following stakeholders:

• User: Someone who uses the simulation platform to simulate IoT scenarios, i.e.,
the end-user.

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Architecture Framework

• Developer: Someone who developed an emulator or simulator and wants to
integrate and use it in the simulation platform.

• Platform Administrator (Admin): Platform administrator, developer, or main-
tainer. Owner of the platform.

To create a design for the architecture framework that considers all stakeholders equally,
each role has its own user stories. Therefore, Table 4.1 shows all stories for the User
role, Table 4.2 defines the requirements for Developer and Table 4.3 specifies important
functionalities for the Admin.

Furthermore, the user stories comprehend essential characteristics of IoT simulation
platforms discussed in Section 3.1. Convenient integration of virtualized devices improves
extensibility and addresses the heterogeneity of the IoT [10]. In addition, they cover
relevant network protocols and include monitoring and logging, so users are able to
analyze the simulation results [15, 117]. Further, they consider QoE for users as well as
maintainers of the simulation platform [117, 121].

Table 4.1: User stories for User.

No. User Story

1 As a user, I want to simulate systems with more than one virtual IoT device.

2 As a user, I want to build systems where virtual IoT devices communicate with
each other.

3 As a user, I want that a virtual IoT device has the same hardware resources as the
real device.

4 As a user, I want to connect a sensor to a virtual IoT device with USB/GPIO/other
interfaces.

5 As a user, I want to create a virtual smart sensor that measures the environment
(e.g., by calling an API in the environment).

6 As a user, I want to create a virtual smart sensor that gets input data (e.g., by
providing an API) from the environment.

7 As a user, I want to create a virtual smart sensor that sends pre-defined values as
sensor data.

8 As a user, I want to create a smart actuator which interacts with the environment.

9 As a user, I want to create a smart actuator that gets feedback from the environment,
e.g., whether the actuator executed its job successfully.

10 As a user, if I choose an emulated SBC as VIoTD, I want to specify which libraries
need to be installed on the emulated SBC.

11 As a user, I want to know which IP address a VIoTD has during the simulation.

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Engineering Process

Table 4.1: User stories for User.

No. User Story

12 As a user, I want to specify how my device is connected to the IoT infrastructure
(wired vs. wireless).

13 As a user, I want to specify the protocol of the communication channel (Ethernet,
WiFi, etc.).

14 As a user, I want to specify coordinates for a wireless VIoTD.

15 As a user, I want to run multiple simulations with the same set of devices.

16 As a user, I want to specify to which devices a VIoTD is connected to in a wired
setup.

17 As a user, I want to know when a VIoTD is ready, so I can upload code to it or
start the simulation.

18 As a user, I want to submit my code to the VIoTD.

19 As a user, I want to remove all uploaded code from a VIoTD.

20 As a user, I want to access the uploaded code on a VIoTD.

21 As a user, I want to specify arguments that are passed to my application when it
gets started.

22 As a user, I want that my program can access any port of the VIoTD during
runtime.

23 As a user, I want to specify tasks that should get executed between the start of the
VIoTD and the execution of my code.

24 As a user, I want to run a VIoTD in a simulation for a pre-defined time (e.g., 10
minutes)

25 As a user, I want to start a simulation.

26 As a user, I want to stop a simulation.

27 As a user, I want to terminate a simulation.

28 As a user, I want to see when a device in my simulation crashed.

29 As a user, I want to know when the simulation has finished.

30 As a user, I want to see the log output of my executed code.

31 As a user, I want to see which device did not work properly if my simulation fails.

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Architecture Framework

Table 4.2: User stories for Developer.

No. User Story

32 As a developer, I want to configure how my virtualized device gets started.

33 As a developer, I want to specify what hardware resources (CPU, RAM, storage,
Networking) my virtualized device has in the real world.

34 As a developer, I want to enable a health check for my virtualized device.

35 As a developer, I want to integrate my virtualized device without making major
changes to it.

36 As a developer, I want to provide a short description for my virtualized device.

37 As a developer, I want that users can run custom code on my virtualized device.

38 As a developer, I want to specify how the simulated environment can interact with
my virtualized device (if applicable).

Table 4.3: User stories for Admin.

No. User Story

39 As an admin, I want to specify where the platform can obtain the logs of any
virtualized device.

40 As an admin, I want to specify where the platform can obtain the application logs
(if applicable) of any virtualized device.

41 As an admin, I want that simulations can run in parallel, i.e., different users run
simulations simultaneously.

42 As an admin, I want to see when a VIoTD crashed (only if the device crashed but
not if the code from the user failed).

43 As an admin, I want to get the log output of crashed devices.

44 As an admin, I want the VIoTD to be resource efficient. (architecture framework
must not add considerable overhead).

45 As an admin, I want to specify the logging infrastructure which should be used by
the VIoTD for its application logs.

The user stories in Table 4.1, 4.2, and 4.3 do not present an exhaustive list of value-
adding functionalities. It is rather a foundation providing important features to run IoT
simulations. It can be seen as a proof of concept where features will be specified and
added based on future feedback.

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Engineering Process

Besides the features for User, Developer, and Admin, there are additional requirements
for the architecture framework. IoT devices have constrained resources, and therefore,
they use operating systems (OS) specifically designed for the IoT or particular use-
cases. Lightweight OS and Real-Time Operating Systems (RTOS) are commonly used
in IoT applications [6]. Despite the variety of OS running on IoT devices, these devices
differ on the hardware level from traditional microcontrollers as well [19]. For example,
microcontrollers with ARM architecture are frequently used in IoT devices [59]. Hence,
the architecture framework must be compatible with OS used in IoT and has to enable
different hardware architectures for virtualized devices.

The architecture framework is based on these requirements, and the following sections
describe its design and implementation.

4.1.2 Design

The design of the architecture framework is modular to facilitate extendability and to
reduce the cost of changes. As it is part of an early-stage research project, future changes
are likely to happen, and more sophisticated use-cases require additional features. The
design of the architecture framework can be seen in Figure 4.2. The following sections
provide a detailed description of the framework design and the capabilities of each module.

Monitoring & Logging
Module

Reporting
Module Virtualized Device

VM
Device

Container
Device

Process
Device

Abstract Device

Controller Module

VM
Network

Container
Network

Process
Network

Abstract Network

Network Module

VIoTD API

VM Container Process

Figure 4.2: Module design of the architecture framework.

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Architecture Framework

Controller Module

The controller module interacts directly with the virtualized device and is responsible for
managing its lifecycle. Further, it abstracts any interactions with the virtualized device for
other modules, i.e., it hides virtualized device specific characteristics behind well-defined
interfaces. Therefore, other modules do not have to be aware of the virtualized device
and its virtualization technology.

Based on the requirements analysis, the VIoTD can be in the states and run actions
shown in Figure 4.3. The controller module is triggering state transitions, i.e., executing
actions, and brings the VIoTD and the virtualized device into the correct state. Further,
it performs only actions if they are allowed in the current state and reports an error
otherwise. If the execution of an action fails, it puts the integration layer into the VIoTD
error state and waits for the user to intervene.

start
device

device
started

start
simulation

shutdown
device

VIoTD placed

shutdown
device

VIoTD starting

shutdown
device

VIoTD running

VIoTD removed

terminate
preparation

task

preparation task
running

simulation
finished

terminate
simulation

stop
simulation

simulation running

force
run

VIoTD error

preparation
task

finished

Action triggered by
user

Action triggered
automatically

run
preparation

task

Figure 4.3: Possible states and actions of the VIoTD.

In the VIoTD placed state, only the integration layer is running, but not the virtualized
device. The simulation platform is responsible for starting a new integration layer process.
The integration layer reads the VIoTD and platform configuration files and exposes an
API for further interaction.

The device is in the VIoTD running state when it has started successfully, and neither a
simulation nor a preparation task is running, meaning the device is idle. Only in this
state, the controller module accepts actions other than shutdown or terminate.

The preparation task running and the simulation running states are very similar. When
the VIoTD transitions into each state, both read their corresponding input file. As
previously mentioned, users can upload files, i.e., custom commands and source code,
which can then be executed in the respective state. The controller oversees the execution

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Engineering Process

of the preparation task and the simulation and changes into the VIoTD running state as
soon as the tasks have finished. The simulation can be stopped by the user as well. This
puts the VIoTD into the running state, and further preparation tasks and simulations
can be executed. In case the user terminates the running commands, the controller moves
the VIoTD into the VIoTD removed state.

The remaining states, namely VIoTD starting and VIoTD removed, highly depend
on the virtualization technology used by the virtualized device. The controller module
supports virtualized devices, which are either VMs, containers, or processes. The following
paragraphs explain each supported virtualization technology in more detail and discuss
state-specific characteristics.

VM The controller module uses libvirt1 to manage and interact with VMs. Therefore,
the architecture framework supports any hypervisor, which is supported by libvirt. The
integration of a VM with the architecture framework does not require any significant
changes to the VM. The only requirement is that the VM allows serial connections
automatically, e.g., for a Debian Linux2 system, a proper solution is to start getty3

automatically during boot.

In the VIoTD starting state, the controller provisions a new VM, starts it, and establishes
a connection. If login data is provided in the VIoTD configurations, the controller
executes the login automatically after the VM has finished booting and transitions into
the running state, where it expects further actions from the user.

In the VIoTD removed state, the controller tries to gracefully shutdown the VM. If this
is not possible within a certain time, the shutdown is enforced. The VIoTD configuration
specifies how long the controller should wait before shutting down a VM forcefully.
In the following cleanup task, the previously provisioned VM image gets removed so
that any image changes during the simulation do not affect future runs. Further, the
controller triggers the network module to remove previously created interfaces and stops
the integration layer.

Container The controller module supports Docker4 containers, which is a widely used
platform for running containers. The architecture framework is compatible with every
Docker image and does not require any changes.

In the VIoTD starting state, the controller module uses the image specified in the VIoTD
configuration to create a container. The current implementation uses a limited number
of configuration options provided by the Docker SDK5 to create the container. These
options are memory limit, volumes, sysctls for adding IPv6 support and options needed

1https://libvirt.org, last access at 2020-01-16
2https://www.debian.org, last access at 2020-01-16
3https://wiki.debian.org/getty, last access at 2020-01-16
4https://www.docker.com, last access at 2020-01-16
5https://docker-py.readthedocs.io/en/stable, last access at 2020-01-16

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Architecture Framework

by the controller module like tty or remove6. These options are sufficient for the current
platform but can be easily extended in the future if needed.

The controller module mounts a directory into the container, which is only available to
this specific VIoTD. The user can upload source code or custom files to this directory via
the simulation platform. During the execution of the simulation or preparation task, the
VIoTD has access to these directories and can read or execute the previously uploaded
files.

When the controller receives a shutdown or terminate command, it simply stops the
container. Due to the remove configuration option, the container is deleted automatically.

Process The process is the most lightweight option to run a virtualized device. The
controller module supports any runtime environment and interpreted language, as long
as it is installed on the host machine. The architecture framework does not enforce any
implementation details upon the process, which keeps the integration procedure simple.
As previously mentioned, the architecture framework is not responsible for setting up the
host machine or installing necessary dependencies. Therefore, the VIoTD starting and
the preparation task running states cannot be used to set up the host machine. Further,
the preparation task running state does not affect the VIoTD.

When the controller module receives the command to run the simulation, it executes the
process according to the options specified in the VIoTD configuration. Program arguments
can be passed to the process via the simulation file, which users can upload via the
simulation platform. If any program argument needs to reference any previously uploaded
files, any path in the argument should be replaced with the placeholder <working-dir>.
The process executor replaces this placeholder before the process gets started and allows
access to any previously uploaded data.

When the simulation has finished, is stopped by the user, or a termination signal is
received by the controller module, the process gets terminated.

Monitoring & Logging Module

The module is responsible for providing state and health information about the virtualized
device and the integration process itself. Its functionalities can be grouped into

• VIoTD logging

• State monitoring

• Device monitoring

VIoTD logging includes the configuration of the logging framework used by the integration
layer. This configuration can be set in the platform configuration file. Currently, logs of

6https://docker-py.readthedocs.io/en/stable, last access at 2020-01-16

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Engineering Process

the integration process can be either printed to stdout or stored in a file. Due to this
point, there are no additional requirements for providing VIoTD logs, and therefore,
console output and file are the only two options currently available. However, the modular
implementation allows developers to add additional methods in the future without making
significant changes to the code base.

In addition to logging, the monitoring module exposes an API method with which the
platform can obtain the state and health of the virtualized device. During the integration
of the virtualized device into the platform, the developer of the virtualized device has to
specify how health information can be obtained. This configuration option is specified in
the VIoTD configuration file.

Reporting Module

The reporting module is responsible for obtaining log output and forwarding it to the
platform to provide feedback to the user. The difference to the monitoring module is
that the reporting module is responsible for delivering logs created by the applications or
commands running on the virtualized device. It defines an interface that accepts a file
descriptor where log data is expected. It obtains the log output from the file descriptor
and forwards it to the configured reporting appender. With this modular approach, the
reporting module follows the design of logging frameworks like log4j7.

The current version of this module provides two appenders

• File Appender Log output on the virtualized device is stored in a file. The
directory where the application logs are stored can be configured via the platform
configurations.

• Kafka Appender The module creates a Kafka producer that forwards log output
to a Kafka topic. The topic name, as well as the host and port of the Kafka service,
can be configured via the platform configurations.

These two appender types were chosen due to two reasons. First, the simulation platform
uses Kafka8 as a logging infrastructure, and therefore, the architecture framework has
to support it. Second, storing logs in a file provides additional flexibility and can be
used by the platform to store logs for a longer period. However, this module is easily
extendable. Every appender has to inherit from the abstract appender type class. After
implementing the required methods and defining the configuration option for the new
appender, it can be used by developers without any additional changes.

In order for the module to work correctly, it expects any custom code which runs on the
virtualized device to print logs to stdout.

7https://logging.apache.org/log4j/2.x, last access at 2020-01-16
8https://kafka.apache.org, last access at 2020-01-16

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Architecture Framework

Network Module

When VIoTDs communicate with each other on the simulation platform, the network
simulator described in Section 4.2 simulates the communication channels. The quality
of a simulation highly depends on the capability of the simulator to mimic real-world
characteristics [5, 10]. Hence, as communication and networking is a major factor in
the IoT [5], forcing users to make changes to their network and communication code or
requiring modifications to the network stack of virtualized devices would decrease the
quality of the simulation.

Therefore, the main goal of this module is compatibility. The network module abstracts
the connection to the network simulator. By doing so, any code running on the virtualized
device is unaware of the underlying network simulator, and virtualized devices can be
used without adjustments. This means that any data sent or received by a virtualized
device runs through the network simulator without further intervention. The advantage
of this abstraction layer is that any library, framework or tool with communication
capabilities running on the virtualized device can be used in the same way as it would be
on a real device.

The network module achieves this by using tap interfaces, bridges, and veth pairs. The
specific setup depends on the virtualization technology used by the virtualized device.
The network simulator assigns the IP addresses for containers and processes, and by
a libvirt network for VMs. The reason that VMs get their IP addresses from a libvirt
network and not from the network simulator improves the compatibility with the current
network simulator. The detailed description can be found in Chapter 5.3.

VIoTD API

The aforementioned modules and functionalities focus on the virtualized device. To
enable interaction between the simulation platform and a VIoTD, the VIoTD exposes a
REST API to control and manage the device. Appendix A provides the API description
of the VIoTD API and gives an overview on available endpoints.

4.1.3 Virtualized Device Configuration

The integration of a virtualized device is done via configuration files. Depending on
the virtualization technology of the virtualized device, some additional steps may be
necessary.

Independent of the virtualization technology, a VIoTD requires (i) a platform configura-
tion, (ii) a runtime configuration, and (iii) a VIoTD configuration. The following sections
describe each of these configurations in detail and with proper examples.

Platform Configuration

The platform configuration provides information about the simulation platform to the
VIoTD and is the only configuration that is independent of the virtualized device and

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Engineering Process

the virtualization technology. It depends on the infrastructure setup, and an example is
shown in Listing 4.1. This configuration is the same for every VIoTD and maintained
by the platform administrator. Hence, no changes are required during the integration
process.

Listing 4.1: Example platform configuration yaml file.

1 vm_storage_pool_path: /opt/simpool/devel

2 device_setup_file_name: preparation.txt

3 simulation_commands_file_name: simulation.txt

4 stop_simulation_commands_file_name: stop_simulation.txt

5 net_namespace_directory: /var/run/netns

6 program_executable_directory: /opt/

7 reporting:

8 type: file

9 log_directory: .

10 monitoring:

11 type: console

The configuration options from Listing 4.1 are explained in Table 4.4.

The reporting, as well as the monitoring & logging module, supports several configuration
options. The reporting module can be configured to redirect its output to a file, as shown
in Listing 4.1, or forward it to a Kafka topic. For the latter, Listing 4.2 shows the proper
configuration snippet.

Listing 4.2: Reporting module configuration to forward output to Kafka topic.

1 reporting:

2 type: kafka

3 host: 127.0.0.1

4 port: 9092

The monitoring & logging module supports an additional configuration option as well.
The configuration in Listing 4.1 uses console as type, which forwards any logging output
to stdout. Storing the output in a file instead of printing it to stdout is possible with the
configuration snippet in Listing 4.3.

Runtime Configuration

The runtime configuration is passed to the VIoTD by the simulation platform via
program arguments. The platform is responsible for passing valid values to the VIoTD,
and therefore, it is not necessary to specify any parameters during the integration of a

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Architecture Framework

Table 4.4: Explanation of the platform configuration options.

vm_storage_pool_path The path to the storage pool where VM im-
ages are stored. Images are stored temporar-
ily in this pool, i.e., they get created when
a VIoTD is started and get removed during
the shutdown process. The storage pool is
created during the infrastructure setup.

device_setup_file_name The name of the file which contains the de-
vice preparation commands. The content of
the file is uploaded by the user and executed
on the VIoTD during the preparation task
running state.

simulation_commands
_file_name

Similar to the device_setup_file_name, but
instead of the preparation commands, it con-
tains the commands for the simulation. The
user uploads the file content, and it gets
executed when the simulation is started.

stop_simulation_commands
_file_name

As the integration layer has no knowledge
about the simulation itself and how to stop
it, it relies on the user to provide the proper
command. If the simulation tasks run in
the foreground and interrupting it with
CTRL+C is possible, adding CTRL+C to
this file provides the desired effect.

net_namespace_directory The directory where the host stores the net-
work namespaces. This directory must exist;
the VIoTD does not create it.

program_executable_directory The directory where virtualized devices,
which run as a process, are stored on the
host.

reporting Configuration of the reporting module.

monitoring Configuration of the monitoring & logging
module.

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Engineering Process

Listing 4.3: Monitoring & logging module configuration to store output in a file.

1 reporting:

2 type: file

3 log_directory: /var/log/viotd

Table 4.6: Explanation of the runtime configuration options.

port required The port the REST API of the integration layer is
exposed on.

device-id required The unique device identifier for this instance.

directory required The working directory for the VIoTD.

viotd-config-path required The path to the VIoTD configuration file.

platform-config-path required The path to the platform configuration file.

ns-registration required The endpoint of the network simulator to register the
VIoTD.

verbose optional Flag parameter. Turns on verbose logging.

libvirt-network optional Only required if the virtualized device is a VM. It
specifies the libvirt network a VM uses to connect
during boot. The VM obtains an IP from this network
and gets access to the Internet through it.

kafka-log-topic optional If the platform is configured to use Kafka to send
application logs to the user, the name of the topic,
which the VIoTD should send logs to, needs to be
specified here.

virtualized device. The runtime configuration properties for the VIoTD are unique for an
individual instance, i.e., a running VIoTD in a specific simulation, and can be different in
every simulation setup. Most of the properties are independent of the virtualized device
and mainly affect the integration layer.

The list of runtime configuration properties and their explanations can be found in
Table 4.6.

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Architecture Framework

VIoTD Configuration

The VIoTD configuration consists of virtualized device specific properties. The general
properties in Listing 4.4 are independent of the virtualized device type, i.e., if it is
a process, container, or VM. The explanation of these general properties is given in
Table 4.8.

Listing 4.4: Example general VIoTD configuration.

1 framework_version: v0.1

2 device:

3 device_type: vm

4 device_info: >-

5 Several lines of text,

6 with some "quotes" of various 'types',

7 and also a blank line:

8

9 plus another line at the end.

Table 4.8: Explanation of the general VIoTD configuration options.

framework_version The version of the architecture framework the configuration was
created for.

device.device_type The type of the device. Can be either process, container or vm.

device.device_info General information about the device. Provided by the developer
of the virtualized device.

Besides that, most of the configuration depends on the device type of the virtualized
device. The following paragraphs provide an example for each type and further details
about device-specific configuration properties.

VM Configuration The VIoTD uses libvirt to manage VMs and, therefore, requires
a valid libvirt XML configuration. This XML configuration is part of the VIoTD
configuration. The example in Listing 4.5 shows a shortened libvirt XML configuration,
as it is VM specific, and recommended to generate it for each VM individually.

The description of the configuration properties in Listing 4.5 can be found in Table 4.10.

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Engineering Process

Listing 4.5: Example VM VIoTD configuration.

1 framework_version: v0.1

2 device:

3 device_type: vm

4 device_info: >-

5 Several lines of text,

6 with some "quotes" of various 'types',

7 and also a blank line:

8

9 plus another line at the end.

10 # VM specific config

11 template_vm_image_path: /opt/imgs/debian-7.qcow2

12 vm_force_stop_time: 60

13 hypervisor_uri: qemu:///system

14 boot_finished_msg: "debian login: "

15 vm_idle_msg: "root@debian:~# "

16 login:

17 username: root

18 password: root

19 xml_template_str: >

20 <domain type='qemu'>

21

22 </domain>

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Architecture Framework

Table 4.10: Explanation of the VM VIoTD configuration options.

template_vm_image_path The path to the template (original) VM image. The
path includes the image name.

vm_force_stop_time The time the integration layer should wait during the
shutdown process before the VM is shut down forcefully.

hypervisor_uri The URI of the hypervisor libvirt should connect to and
run the VM on.

vm_idle_msg The message shown by the VM on the serial console
when the VM is idle.

boot_finished_msg The message shown by the VM on the serial console
when the boot process has finished. If login is disabled
on the VM, the same message used for vm_idle_msg
should be used.

login.username Optional. If the VM is login protected, the integration
layer needs a user to login.

login.password Optional. If the VM is login protected, the integration
layer needs the password for the specified user.

xml_template_str The libvirt XML configuration the integration layer uses
to manage the VM.

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Engineering Process

Container Configuration The VIoTD configuration for the container is simple and
does not need extensive explanations. The example configuration in Listing 4.6 and the
description in Table 4.12 provide sufficient information.

Listing 4.6: Example container VIoTD configuration.

1 framework_version: v0.1 # current version of the framework

2 device:

3 device_type: container

4 device_info: >-

5 Several lines of text,

6 with some "quotes" of various 'types',

7 and also a blank line:

8

9 plus another line at the end.

10 # Container specific config

11 container_name: "ubuntu:18.04"

12 docker_uri: "unix://var/run/docker.sock"

13 max_memory: 256m

Table 4.12: Explanation of the container VIoTD configuration options.

container_name The name of the container image.

docker_uri The URI to the local Docker daemon.

max_memory The maximum memory a container is allowed to consume.

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Architecture Framework

Process Configuration Similar to the container, the process requires little configura-
tion. The example configuration in Listing 4.7 is described in Table 4.14.

Listing 4.7: Example process VIoTD configuration.

1 framework_version: v0.1

2 device:

3 device_type: process

4 device_info: >-

5 Several lines of text,

6 with some "quotes" of various 'types',

7 and also a blank line:

8

9 plus another line at the end.

10 # Process specific config

11 program_execution_file: "testprocess.py"

12 start_command: "python3"

Table 4.14: Explanation of the process VIoTD configuration options.

start_command The command used to start the program. This can be an
interpreter or a language-specific runtime. If the program is,
for example, a binary and does not require any command,
this option can be left empty.

program_execution_file The name of the file to execute. The host machine stores the
program in a known directory. Therefore, this parameter
requires the filename, not a path.

The VIoTD configuration file allows developers to integrate new virtualized devices into
the simulation platform without making changes to the virtualized device itself. Besides
the configuration file, additional steps may be necessary before using the VIoTD in a
simulation. Therefore, Section 5.2 provides additional information about the integration
process of virtualized devices

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Engineering Process

4.2 Network Simulator

The network simulator creates the network topology for a simulation. While the archi-
tecture framework’s responsibility is, among others, to provide a proper abstraction of
the network capabilities of a virtualized device, the network simulator uses this well-
defined interface to connect VIoTDs and to simulate different communication models
and protocols.

The network simulator consists of the network service and ns-39. The network service
exposes a REST API to control the network simulator, and ns-3 simulates communication
channels between VIoTDs to mimic real-world characteristics for data transmission. To
simplify the setup process of the network simulator, a Docker image was created and
published to Dockerhub10, which includes the network service and ns-3. Providing a
Docker image has several advantages, like running multiple simulations in parallel on a
single host and improving the scalability of the simulation platform in the future.

4.2.1 Network Simulation

When a VIoTD gets placed into a new simulation, it registers itself at the network
simulator. The registration request includes the name of the network interface the VIoTD
uses. This informs the network simulator that the VIoTD wants to participate in any
future simulation and allows the network simulator to include the network interface of
the VIoTD in the simulation. Besides the registration process, VIoTDs have to unregister
as well.

The network simulator creates network topologies at runtime. It uses a JSON format to
represent network nodes, links, and additional network-specific configuration options. To
provide this flexibility, a new ns-3 module was developed that interprets the submitted
JSON and builds the corresponding network topology dynamically. The description of
the JSON schema is provided in Section 4.2.2. The developed ns-3 module supports
CSMA links, point-to-point connections, WiFi access points (AP), WiFi Adhoc networks,
and mesh topologies according to the IEEE 802.11s standard11.

The ns-3 implementation of CSMA is similar to Ethernet in the real-world. Although
it operates rather with a collision avoidance than collision detection approach, it is the
recommended module to simulate Ethernet links11. The point-to-point link simulates
a full-duplex RS-232 or RS-422 link, which connects precisely two devices11. The
simulation of WiFi networks allows infrastructure and ad-hoc modes and uses a model
based on the IEEE 802.11 standard12. The official ns-3 documentation provides a detailed

9https://www.nsnam.org, last access at 2020-01-16
10https://hub.docker.com/repository/docker/mle110/ns, last access at 2020-01-17
11https://www.nsnam.org/docs/release/3.29/models/html, last access at 2020-01-17
12https://www.nsnam.org/docs/release/3.29/models/html/wifi-references.html,

last access at 2020-01-17

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Network Simulator

description of the characteristics and restrictions of the WiFi implementation13. The
mesh implementation of ns-3 extends the WiFi module and adds mesh networking
capabilities based on the IEEE 802.11s standard11. The ns-3 Mesh module implements
only a subset of 802.11s, which restricts its usability. The current model misses a mesh
AP and a mesh portal and has compatibility issues with other ns-3 modules. To simulate
network topologies which connect mesh networks with CSMA, peer-to-peer, or WiFi
nodes, modeling the mesh network in ad-hoc WiFi mode is an alternative solution and
supported by the network simulator.

4.2.2 Network Topology JSON

As previously mentioned, the network topologies for simulations are defined in a JSON
format. The following paragraphs specify the JSON format and describe possible
configuration options. Listing 4.8 shows the JSON schema and possible values for each
parameter.

Listing 4.8: JSON format for defining network topologies.

1 {

2 "devices": [{

3 "device_id": "string",

4 "type": "[vm|container|process] | switch | router | ap",

5 "tap_if_name": "string",

6 "xpos": float,

7 "ypos": float,

8 "zpos": float

9 }, { ...

10 }],

11 "network": [{

12 "network_type": "ADHOC | AP_STA | CSMA | P2P | MESH",

13 "general_config": {

14 "key": "value",

15 ...

16 },

17 "address": {

18 "ip": "string",

19 "netmask": "string"

20 },

21 "devices": ["<device_id>", ...]

22 }]

23 }

13https://www.nsnam.org/docs/release/3.29/models/html/wifi-design.html, last

access at 2020-01-17

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Engineering Process

The devices list contains every device participating in the simulation, and each JSON
object in the list corresponds to a single device. Table 4.16 explains this JSON object in
more detail.

Table 4.16: Explanation of the device JSON object.

device_id The device ID is mandatory and uniquely identifies a device in the
simulation.

type If the device is a VIoTD, the user does not have to submit this
field. The network service is aware of each VIoTD in the simulation
and enriches the JSON with the device type. On the contrary, the
values bridge, router, and ap refer to nodes created by ns-3 during
the simulation. If the topology requires one of these nodes in the
simulation, the type field is mandatory.

tap_if_name This field specifies the name of the network interface used by the
VIoTD. The user does not have to submit this field, as the network
service is aware of the network interface of the VIoTD and adds this
field automatically before submitting the JSON to the ns-3 module.

xpos, ypos, zpos These values refer to a position in a three dimensional coordinate
system. They are only required for nodes participating in a wireless
network.

The second field in the network topology JSON, called network, specifies the links and
connections between nodes. Each JSON object in the list corresponds to a single link or
network with the values specified in Table 4.18.

This modular approach allows the specification of complex network topologies. Ap-
pendix C provides example JSON representations for basic network structures.

4.2.3 Network Management

Besides simulated networks, the network service creates and manages networks used
by VM VIoTDs. In contrast to processes and containers, the integration layer cannot
manually set IP addresses or add routing rules to a VIoTD if the virtualized device is a
VM. Hence, it is necessary to connect VMs to libvirt networks with a properly configured
DHCP server. The networks created by the network service are in NAT mode to provide
Internet access to VMs. This requires additional management, as libvirt creates IP table
rules in NAT mode, which impacts a VIoTD during a simulation. The network simulator
manages the configuration of libvirt networks, their lifecycle, and updates IP table rules
to avoid any unexpected behavior during simulations.

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Simulation Workflow

Table 4.18: Explanation of the network JSON object.

network_type The network type refers to the ns-3 module used to simulate this link or
network. While CSMA, P2P (point-to-point), and MESH refer to the
previously explained ns-3 modules, the values ADHOC and AP_STA
refer to WiFi networks in ad-hoc and infrastructure mode, respectively.

general_config The general configuration contains key-value pairs specific to the net-
work type. For CSMA and P2P, supported options are the data rate
(“data_rate”) and the link delay (“delay”) of the connection. If the
network type is ADHOC or AP_STA, the WiFi SSID (“ssid”) needs
to be specified. Networks with type MESH do not expect any configu-
ration. The examples in Appendix C show possible values for these
configuration options.

address The address object specifies the IP subnet of the link or network. This
field is optional, as links between switches do not need an IP address.

devices This list specifies the devices which participate in the link or network.
Each list entry references a device from the previously defined devices
object.

4.2.4 API Description

The API of the network service provides REST endpoints to interact with the network
simulator. Appendix B offers a list of all available endpoints and their functionality.

4.3 Simulation Workflow

The previous chapters describe the concept of VIoTDs and characterize the network
simulator. Combining both components allows the simulation of IoT systems. The
following paragraph provides a system overview and demonstrates the interaction between
VIoTDs and the network simulator.

Figure 4.4 demonstrates a simple simulation setup, consisting of three VIoTDs and the
network simulator, and includes the communication flow between the components.

The communication flows and the API endpoints in Figure 4.4 are numbered, indicating
the order in which they appear. Besides steps 0 and 1, the order of steps 2 to 7 is not
strictly enforced and may change depending on the simulation setup. The following steps
description provides a detailed explanation.

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Engineering Process

run device
run preparation task
start simulation on device

shutdown device

health check

/registerVIoTD

/register

/deregister

VIoTD

/register VIoTD
Network Simulator

Network Service API
VIoTD API VIoTD API

VIoTD API

get device state

1

stop network simulator
run network simulator

0

0

0

2

34

5 6

8

8/deregister/deregister8

stop simulation on device
7

Figure 4.4: Example of an IoT simulation with VIoTDs and the network simulator.

Step 0 The VIoTD registers itself automatically when it is placed in the simulation,
and no user interaction is required.

Step 1 Placing a VIoTD in a simulation implies that the integration layer is running,
but not the virtualized device. To enable further interaction with the VIoTD, it is
necessary to run it first.

Step 2 The preparation task is optional. It allows the user to put the virtualized device
in a well-defined state before running the simulation code. It is possible to run another
preparation task after a simulation has finished.

Step 3 This is the first step to run a simulation. The network simulator starts ns-3
and creates the network channels for the VIoTDs. It is necessary to start the simulation
on the network simulator before calling the simulation endpoint on any VIoTD.

Step 4 After running the network simulator, it is possible to start the simulation on
the VIoTDs. This step executes previously uploaded code or commands, and reports log
output back to the user.

Step 5 The running simulation task on the VIoTD can be stopped by calling the stop
endpoint of the VIoTD API. Besides terminating the simulation program, it executes
additional cleanup tasks and prepares the VIoTD for further interactions, i.e., preparation
or simulation tasks.

Step 6 After stopping the simulation on VIoTD devices, it is necessary to stop the
simulation on the network simulator. Besides stopping ns-3, it restores the libvirt networks
and creates a clean setup for further simulations.

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Raft

Step 7 After the user does not want to execute further simulation tasks, the next step
is to shutdown the VIoTD. This action turns off the VIoTD and performs necessary
cleanup tasks.

Step 8 Similar to the registration step, the VIoTD deregisters itself automatically.
After shutting down the virtualized device, the VIoTD sends the deregistration request
to the network simulator and exits.

4.4 Raft

The simulation workflow shown in the previous chapter describes how the architecture
framework and the network simulator enable end-to-end IoT simulations. This simulation
infrastructure allows the evaluation and experimentation of real-world IoT scenarios.
This thesis evaluates the Raft consensus algorithm in a wireless IoT setup and utilizes the
architecture framework and the network simulator. Hence, the following chapter starts
with an introduction to the Raft consensus algorithm and summarizes its characteristics.
It then elaborates implementation-specific decisions and illustrates efforts to mimic
real-world characteristics for the IoT setup.

4.4.1 The Raft consensus algorithm

Raft is a consensus algorithm developed by Diego Ongaro and John Ousterhout [20]
at the University of Stanford. Their goal was to develop a consensus algorithm with
better properties than Paxos [136]. Paxos is a very popular protocol for finding consensus
in distributed systems, taught in many courses at universities, and is a starting point
for many consensus implementations. Besides its popularity, Paxos has considerable
drawbacks, as pointed out in [20]. Raft’s design facilitates understandability and tries to
address the shortcomings of Paxos by reducing the state space of nodes as well as by
decomposition, i.e., separating problems into mostly independent parts. In Raft, these
subproblems are leader election, log replication, safety, and membership changes [20].

This part of the thesis focuses on consensus in IoT setups. Raft addresses the consensus
problem by leader election, log replication, and safety. The following section summarizes
these subproblems and describes how Raft implements consensus. An extensive description
of Raft is provided by [20] and [130], and the official github page14 provides an interactive
visualization as well as additional sources for understanding Raft.

14https://raft.github.io, last access at 2020-01-17

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Engineering Process

General Concepts

At any given time, each server participating in a Raft cluster is either in the leader,
candidate, or follower state. Depending on this state, it has certain responsibilities and
executes state-specific tasks:

• Leader: In a Raft cluster, there is at most one leader. It handles all requests from
clients, replicates logs to other servers, and commits logs after replicating them to
a majority of servers (under certain restrictions, see Section 4.4.1).

• Candidate: Servers may change to the candidate state when a new leader election
starts. After a successful leader election, servers change to follower or leader.

• Follower: In the initial state of the Raft cluster, each server is in the follower state.
Followers are passive servers in the cluster. They wait for logs from the leader and
reply to leader requests only. Hence, followers do not initiate any communication.

Raft works in so-called terms, i.e., a logical clock that increases monotonically over time,
to be aware of more recent events, and to detect stale servers. A term has arbitrary
length and starts with a leader election. In a successful election, the term remains the
same until a new election gets initiated. If the election was not successful, a new term
with another election starts.

The servers in the Raft cluster communicate via RPCs. The consensus algorithm requires
only two different types of RPCs, namely RequestVote and AppendEntries. The leader
issues any RPC calls in parallel for performance reasons. Besides candidates during leader
election, the communication flow between Raft servers happens only in one direction, i.e.,
from the leader to the followers.

As previously mentioned, each term starts with a leader election. Hence, when the first
term starts, the Raft cluster elects a new leader. The following section describes this
process in more detail.

Leader election

The Raft algorithm enables consensus via a strong leader. The properties of the algorithm
ensure that leader election is possible as long as a majority of servers are functioning.

As previously mentioned, each server is initially in the follower state and waits for a
randomized period of time, the so-called election timeout. After the election timeout,
a server starts an election by incrementing its current term and transitioning into the
candidate state. It then votes for itself, sends RequestVote RPCs to the other servers in
the cluster, and waits for responses. If a server receives a RequestVote RPC, it issues
exactly one vote in one term on a first-come-first-serve basis.

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Raft

Candidates keep their state until one of the following events occur:

• The candidate wins the election. This happens when the candidate receives
a positive response from a majority of servers in the cluster. After winning the
election, the candidate transitions into the leader state and starts sending heartbeat
messages periodically to other servers. The heartbeat messages inform followers
about the active cluster leader and prevent another election.

• The candidate receives a heartbeat message. If the term in the heartbeat
message is equal or bigger than the candidates’ term, the candidate has lost the
election and changes its state to follower. If the heartbeat message includes an
outdated term, the candidate rejects the message and keeps its state.

• The election has no winner. If many servers become candidates simultaneously,
the election ends with a split vote, i.e., no candidate is able to obtain a majority of
votes. In this case, the election timeout elapses again, and another election starts.

In the worst case, an election results in a split vote. The randomized election timeout
helps in keeping split votes rare and resolving them quickly. Further, the servers’ term is
part of every message, including responses. This allows the cluster to detect stale leaders
and to prevent outdated candidates from being elected. If, for example, a leader or a
candidate receives a message with a higher term, they change their state to follower.
Hence, a candidate stops participating in the current election and when a leader steps
down, a new election starts automatically after the first server times out.

Log replication

Every server in the Raft cluster stores a sequence of log entries, i.e. commands. These logs
can then be fed into, for example, replicated state machines to maintain a consistent state
over all nodes participating in the cluster. The consensus algorithm enables consistent
distribution of such logs across the cluster and allows state machines to keep identical
copies.

The Raft algorithm uses a strong leader to facilitate consensus. Hence, only the leader
processes client requests. For every client request, the leader appends a new log entry
to its logs, where each log entry consists of the request data and the current term. It
then propagates the log entry in parallel to each server in the cluster via AppendEntries
RPCs. If the data transmission was unsuccessful, e.g. due to lost packets, the leader
retries indefinitely. In addition to the new log entry, an AppendEntries RPC contains
information about the previous log stored by the leader. When a follower receives a log
entry from the leader, it checks if the term of the leader is up-to-date and whether its
last log entry is consistent with the previous log of the leader. If so, the follower adds
the new log entry to its logs and issues a successful response to the leader. Otherwise,
the follower informs the leader about its outdated logs. If the leader becomes aware of a
follower with outdated logs, it starts sending older logs to the follower to find the first

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Engineering Process

mutual log entry, so that the leader can replicate its logs to the follower in the correct
order. If a log entry at the follower conflicts with the new log entry, the follower deletes
the conflicting log entry and all that follow it, and adds the new entry to its logs. Hence,
the leader forces followers to duplicate its logs.

Once a new log entry got replicated on a majority of servers, the leader considers it as
committed, i.e. it is save to apply the log to the state machine. The leader keeps track
of committed logs with a commit index. The commit index is part of the AppendEntries
RPC to maintain a consistent replicated state machine across the cluster.

Safety

The described characteristics for leader election and log replication are not sufficient to
ensure consistency in a Raft cluster under all circumstances. Hence, additional restrictions
are necessary. For leader election, Raft prevents a candidate from being elected if its log
does not contain all committed entries. While other consensus algorithms allow leaders
to update themselves after being elected, Raft enforces data flowing from leaders to
followers only to improve the understandability of the algorithm.

Another restriction deals with log replication. If a leader crashes before it is able to
replicate a log on a majority of servers, i.e., before it is able to commit a log, a future
leader may continue replicating the log. Nonetheless, leaders do not commit log entries
from previous terms. There exist several edge cases where this could lead to an issue,
as shown in [20, 130]. If the leader replicates new log entries, old logs get committed
automatically once the new entries got replicated on a majority of servers.

Formal proof of Raft is provided in [130].

4.4.2 IoT Simulation: Raft Implementation

For the use-case simulation, the previously described Raft algorithm gets implemented
and evaluated in a simulated IoT system. The IoT setup for the use-case simulation
consists of virtualized Raspberry Pis connected via a wireless mesh network. Therefore,
a simple Raspberry Pi emulator got developed and integrated with the architecture
framework. The following section starts with describing the developed Raspberry Pi
emulator and concludes with details and design decisions of the Raft implementation.

Raspberry Pi Emulator

The Raspberry Pi emulator runs on a 64-bit Raspbian15 ARM image. For the simulation
to be resource-efficient, the emulator facilitates lightweight virtualization by running
inside a Docker container. The virtual Raspberry Pi does not emulate any peripherals or
sensors, the goal of the emulator was rather to explore processor emulation, e.g., running
an ARM image on an x86 host machine, and how the architecture framework and the
end-to-end simulation setup integrates with it.

15https://www.raspberrypi.org/downloads/raspbian, last access at 2020-01-20

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Raft

To run the ARM image on a host with x86 architecture, the emulator utilizes Qemu16.
More specifically, it uses the user mode emulation binaries of Qemu. In this mode, Qemu
is able to launch Linux processes that were originally compiled for a CPU different from
the CPU of the host machine.

When the Docker container of the Raspberry Pi emulator starts, the image tries to run
its binaries on the host. In this step, the Linux kernel of the host OS must be aware of
the Qemu user-mode emulation. Otherwise, it cannot run ARM binaries. The binfmt17

feature of the Linux kernel allows the registration of user space programs in the OS kernel.
This tells the kernel which interpreter to invoke for which binaries. During the binfmt
registration process, it is necessary to provide a magic byte sequence for the interpreter or
user space program. When a binary gets executed on the host OS, binfmt recognizes the
binary-type by matching some bytes at the beginning of the binary with the registered
byte magic. The registration script for the Raspberry Pi emulator is in Appendix D.
This script registers the Qemu user mode emulator for 32 and 64-bit binaries and builds
upon existing solutions18.

Utilizing Qemu and binfmt allows running ARM Docker containers on an x86 host. The
last step for the Raspberry Pi emulator is to build the actual Docker image. Since
Raspbian is based on Debian Linux19, utilizing the debootstrap tool20 to bootstrap the
base image simplifies the process. To reduce the image size, unnecessary components
like manuals got removed before creating the Raspberry Pi emulator image with the
Docker import tool21. The script for creating the Raspberry Pi emulator is provided in
Appendix D as well.

Raft Implementation

The Raft algorithm for the use-case scenario is implemented in Java 11 and follows
exactly the description provided in [20]. As previously mentioned, the implementation
includes leader election and log replication while guaranteeing the safety argument.

As defined in [20], Raft servers communicate via RPCs. Many RPC frameworks support
Java, and while frameworks like gRPC22 gained popularity in recent years, the Raft
implementation uses Apache Thrift23. The advantage of Thrift over, for example, gRPC,
is that Thrift operates from the transport layer downwards [137], while gRPC uses
HTTP/2 for communication24. Hence, Thrift packets do not include HTTP headers,

16https://www.qemu.org, last access at 2020-01-20
17https://www.kernel.org/doc/html/latest/admin-guide/binfmt-misc.html, last ac-

cess at 2020-01-20
18https://hub.docker.com/r/multiarch/qemu-user-static, last access at 2020-01-20
19https://www.debian.org, last access at 2020-01-20
20https://linux.die.net/man/8/debootstrap, last access at 2020-01-20
21https://docs.docker.com/engine/reference/commandline, last access at 2020-01-20
22https://grpc.io, last access at 2020-01-21
23https://thrift.apache.org, last access at 2020-01-21
24https://grpc.io/docs, last access at 2020-01-21

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Software Engineering Process

which reduces the overhead during data transmission. Considering IoT setups with
limited power supply, restricted bandwidth, and lossy wireless communication channels,
reducing data transmission is beneficial for the system.

In many use-cases, consensus algorithms assist in keeping a consistent state across servers
as, for example, in the context of replicated state machines [20]. Hence, a server receives
input from a client or the environment, and the consensus algorithm replicates the
input across the cluster. The use-case simulation in this thesis focuses on Raft, and
therefore, neither clients nor any environment gets simulated. To mock clients and
applications interacting with the Raft cluster, each server exposes a REST API to start
and stop the Raft process, to send inputs (logs) to the cluster, and to get a snapshot of
the current server state. The Raft implementation uses Micronaut25 to run an HTTP
server for exposing the REST API. Compared to the popular SpringBoot26 framework,
Micronaut provides similar functionality while requiring less resources27. This keeps the
Raft implementation more resource-efficient without having any negative impact on the
application itself.

Use-Case Simulation

After creating the Raspberry Pi emulator and implementing the Raft algorithm, it is
possible to simulate the use-case. The Raspberry Pi emulator gets integrated into the
simulation setup with the architecture framework. Listing 4.9 shows the corresponding
VIoTD configuration file that integrates the Raspberry Pi emulator into the simulation.
After registering the Qemu user-mode binaries as previously described, the emulator can
participate in the simulation.

Listing 4.9: VIoTD Configuration for the Raspberry Pi emulator.

1 framework_version: v0.1

2 device:

3 device_type: container

4 device_info: >-

5 Raspberry Pi emulator based on

6 Raspbian Buster.

7 container_name: "mle110/raspbian:buster"

8 docker_uri: "unix://var/run/docker.sock"

9 max_memory: 1024m

It is necessary to copy the Raft jar into the working directory created automatically
by the integration layer of the Raspberry Pi VIoTD to run the Raft algorithm on the

25https://micronaut.io, last access at 2020-01-21
26https://spring.io/projects/spring-boot, last access at 2020-01-21
27https://jaxlondon.com/blog/cloud-native-java-with-micronaut-an-

alternative-to-spring, last access at 2020-01-21

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Raft

emulated Raspberry Pi. Also, it is necessary to specify how the integration layer can
start and stop the simulation. Therefore, Listing 4.10 shows the content of the start
simulation file and Listing 4.11 provides the content of the stop simulation file.

Listing 4.10: Content of the start simulation file to start the Raft algorithm on the
Raspberry Pi emulator.

1 java -Draft.serverid=server1 -Draft.port=10000

-Dmicronaut.server.port=11000

-Draft.cluster-properties-path=/workdir/cluster.properties -jar

/workdir/viotd-raft-1.0-SNAPSHOT.jar

Listing 4.11: Content of the stop simulation file to stop the Raft algorithm on the
Raspberry Pi emulator.

1 CTRL+C

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Implementation & Infrastructure

Setup

The previous chapter focuses on the characteristics of the system and provides informa-
tion about design decisions and system behavior. This chapter explains the required
infrastructure setup, the integration of new virtualized devices, implementation details,
and technologies the system uses.

5.1 Infrastructure Setup

Infrastructure in this context refers to the VM or host machine where the IoT simulation
is running. Due to OS-specific components used by the architecture framework and the
network simulator, the simulation environment only runs on Linux systems.

Both the architecture framework and the network simulator have dependencies that
require infrastructure provisioning before running any simulation. Besides, VIoTDs may
require additional infrastructure setup that depends on the virtualized device, e.g., if the
device is implemented as a process that requires a specific runtime. Table 5.1 shows the
minimum set of dependencies needed by the architecture framework and the network
simulator.

Besides the dependencies in Table 5.1, the hypervisors used by VM VIoTDs need to be
installed as well. To enable running VM VIoTDs, it is necessary to create hypervisor-
specific storage pools where VM images can be stored.

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation & Infrastructure Setup

The following example uses the qemu hypervisor:

virsh -c qemu:///system pool-define-as devel dir

--target /opt/testpool/devel

virsh -c qemu:///system pool-autostart devel

virsh -c qemu:///system pool-start devel

These commands create a new pool devel in the /opt/testpool directory for the Qemu
hypervisor. After these steps, a new host is prepared to run VIoTDs with VMs.

Table 5.1: Required dependencies.

Dependency Min. Version Description

Docker 19.03 Container runtime required by the network simulator
and container VIoTDs.

libvirt-dev 5.10.0 Virtualization API for running VM VIoTDs.

iproute2 4.15.0 Tool which unifies network interface configuration.

python 3.6 Python runtime.

pip 19.3.1 Python package manager.

requirements.txt - Python dependencies of the architecture framework.
The requirements file is part of the repository and can
be installed via pip.

Besides the libvirt setup, it is necessary to create a directory where programs and source
code for processes get stored. This is a plain directory and does not require further
configuration.

After the installation of the components in Table 5.1 and considering setup specific
modifications, the infrastructure can be used to run simulations. The following section
describes the integration process of virtualized devices and provides additional insights
into possible implications for the infrastructure.

5.2 Virtualized Device Integration

Independent of whether the virtualized device is a process, a container, or a VM, creating
a VIoTD configuration file is mandatory. Section 4.1.3 provides the required information
to create a valid VIoTD configuration, and the following paragraphs explain additional
steps and important remarks.

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Virtualized Device Integration

Listing 5.1: Provision a VM image using virsh.

1 sudo virt-install --connect qemu:///system --name test0

--memory 512 --vcpus=1 --import --os-variant debian7 --disk

vol=devel/debian-7.qcow2,device=disk,format=qcow2

2 virsh dumpxml test0

5.2.1 VM Integration

During the integration process of a VM, it is necessary to interact with the libvirt daemon
on the host machine. The libvirt installation includes a command-line tool called virsh for
performing management tasks for libvirt and will be used throughout the VM integration
process.

The architecture framework requires the host machine to store the VM image in one of
the libvirt storage pools. To avoid undesirable changes, the VIoTD creates a copy of the
VM image before it uses it in any simulation. Therefore, the VM image integrated in
this step can be seen as a template. The following commands

sudo cp debian-7.qcow2 /opt/testpool/devel/

sudo virsh -c qemu:///system pool-refresh devel

copy the image “debian-7.qcow2“ into the “testpool“ storage pool. It is important, that
the storage pool already exists. The official virsh documentation1 and Section 5.1 provide
additional information on managing storage pools.

Next, the VIoTD configuration file requires a libvirt XML configuration of the VM
image. There are different approaches to create the XML configuration, and the official
documentation2 provides an in-depth explanation about possible options. Listing 5.1
shows one possible approach using virt-manager3. This command provisions the VM
image and creates a libvirt XML configuration with the name “test0“, using the Qemu
hypervisor, with 512MB memory, based on the debian7 image which is stored in the
“qcow2“ format in the pool from the previous step.

Before copying the XML configuration into the VIoTD configuration file, the lines shown
in Listing 5.2 need to be removed.

After removing these lines, the XML can be copied into the VIoTD configuration file,
and the VM integration process is done.

1https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/

html/virtualization_deployment_and_administration_guide/sect-managing_guest_

virtual_machines_with_virsh-storage_pool_commands, last access at 2020-01-23
2https://libvirt.org/formatdomain.html, last access at 2020-01-23
3https://virt-manager.org, last access at 2020-01-23

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation & Infrastructure Setup

Listing 5.2: Lines to be removed from libvirt XML configuration.

1 <name>test0</name>

2 <uuid>...</uuid>

5.2.2 Container Integration

The container integration requires the Docker daemon of the host to have access to the
Docker image. The recommended solution is to push the image to a container registry
where the Docker daemon has access to. The container name in the VIoTD configuration
must match the name and the version of the Docker image. Besides that, no further
actions are necessary.

5.2.3 Process Integration

During the Infrastructure Setup described in Section 5.1, a directory to store integrated
programs gets created. The VIoTD can only work with programs stored in this directory,
and therefore, the new program needs to reside in this directory as well. As the VIoTD
does not install any program dependencies, it is necessary to install them manually. After
creating the VIoTD configuration, the integration is done.

5.3 Network Layer

In a broader sense, the network module of the VIoTD and the network simulator represent
the network layer of the simulation. Individual design decisions in the network module and
the characteristics of ns-3 influence the implementation of the network layer. This section
summarizes the most important implications and their effect on the implementation.

Due to the importance of communication characteristics in IoT simulations [5], the
network module has to abstract the network stack of the virtualized device without
affecting it in any way. Hence, the virtualized device should be unaware of the underlying
network layer.

Furthermore, the design of ns-3 imposes additional restrictions on the network layer. ns-3
has the concept of a Tap NetDevice4, which allows ns-3 simulations to interface with
external systems like VMs or the host machine using tap interfaces. The Tap NetDevice
reads incoming traffic from the tap interface and forwards it to the simulated network.
In addition, it sends traffic arriving from the network simulation to the tap interface.

The operating mode of the Tap NetDevice affects the tap interface and its compatibility
with other ns-3 devices, which are required to simulate wired or wireless networks. The

4https://www.nsnam.org/docs/release/3.30/models/html/tap.html, last access at

2020-01-23

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Network Layer

following is a summary of the three operating modes supported by ns-3. The official ns-3
documentation for a Tap NetDevice4 provides the detailed description.

• ConfigureLocal Mode The ns-3 simulation creates the tap interface on the
Linux host and assigns IP and MAC addresses automatically. ns-3 permits the
configuration of the IP and MAC addresses of a tap interface in the source code of
the simulation. This mode is compatible with any other net devices, as ns-3 has
full control over the tap interface.

• UseLocal Mode This mode requires an existing tap interface. The user or a
third-party application is responsible for creating and configuring the tap interface.
ns-3 spoofs the MAC address of arriving packets. Therefore, only a single device is
allowed to use the tap interface to enable compatibility with other net devices.

• UseBridge Mode Similar to the UseLocal mode, ns-3 assumes an existing and
configured tap interface. In this mode, the tap interface is attached to a bridge on
the host and logically extends the bridge into ns-3. This mode is useful to integrate
virtual hosts configured by another system. The flexibility of this mode reduces its
compatibility. Hence, net devices must support the SendFrom() method of the ns-3
device interface to be compatible with the UseBridge mode.

Based on this information, the preferred operation mode of a ns-3 Tap NetDevice for
the network layer is the ConfigureLocal mode. It is compatible with any ns-3 net device
and reduces the complexity of the network layer, as the tap interface is configured
automatically without additional logic in the network layer.

Considering the desired behavior of the network module and the characteristics of the
ns-3 Tap NetDevice, the main objective of the network layer is to maximize its simulation
capability, i.e., to support as many protocols and ns-3 devices as possible. Due to these
reasons, each device type requires an individual network setup. The following paragraphs
summarize the implementation details for each device type.

5.3.1 VM Network

The VM network has several challenges. Although libvirt supports tap interfaces, once the
VM allocates the interface, ns-3 cannot use it and vice-versa. Hence, the ConfigureLocal
mode is not applicable. Based on the ns-3 documentation, the VM network uses the
UseBridge mode for the ns-3 simulation.

Using the UseBridge mode requires to (i) manually set up the network devices on the host
and (ii) to provide an IP address to the VM. To solve (i), in addition to the network setup
shown in the ns-3 documentation5, the VM network requires further network devices

5https://www.nsnam.org/docs/release/3.30/models/html/tap.html#tapbridge-

usebridge-mode, last access at 2020-01-23

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation & Infrastructure Setup

as ns-3 runs in a Docker container and therefore, uses a different network namespace.
To connect the VM to a ns-3 simulation, the network layer uses a combination of tap
interfaces, bridges, and veth pairs. The solution for (ii) requires a libvirt network. The
reason is that the network module should not impose changes to the VM. Hence, it is
not a viable solution to configure a static IP within the VM. In addition, libvirt does
not support static IPs for VMs, as some hypervisors do not provide this functionality.
Therefore, the VM receives its IP from a DHCP server running in the libvirt network.
The network module is responsible for the VM network, and Figure 5.1 shows the different
setups.

VM
VIoTD

Network Simulator

tap
interface

container namespace

tap
interface

veth pair

libvirt
network

(a) VM network after running the VIoTD.

VM
VIoTD

Network Simulator

tap
interface

container namespace

tap
interface

veth pair

libvirt
network

(b) VM network during the simulation.

Figure 5.1: The VM network setup.

The network setup in Figure 5.1a shows the VM network in its initial state. The VIoTD
API responsible for running the virtualized device creates both bridges, the veth pair,
and the tap interfaces.

Before executing the simulation code on the VM, the network module of the VIoTD
moves the tap interface from the libvirt network to the host bridge to connect the VM
to the simulated network. Figure 5.1b shows the network setup when the simulation is
running. During the simulation, ns-3 uses the tap interface in the container namespace.

5.3.2 Container Network

Container virtualization with Docker uses Linux namespaces6 to isolate programs run-
ning inside of containers. This characteristic allows the network layer to use ns-3 Net
TapDevices in ConfigureLocal mode.

When the simulation starts, the network module moves the tap interface from the network
simulator namespace to the network namespace of the container. As ns-3 sets the IP
address of the tap interface, the container is unaware of any IP subnets in the simulation
besides the one assigned to the tap interface. The integration layer configures static
routes in the network namespace of the container to solve this issue.

6https://docs.docker.com/engine/docker-overview, last access at 2020-01-23

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Network Layer

Any application running inside the container is able to use the tap interface as a network
interface to communicate with the simulated network. The tap interface can be treated
like any other network interface and does not make any difference to the application.

5.3.3 Process Network

The network setup for Process VIoTDs is similar to containers. The network module
creates a network namespace to isolate the process from the host network. This allows
the network layer to use ns-3 Tap NetDevices in ConfigureLocal mode as well. When the
simulation starts, the network module moves the tap interface from the network simulator
namespace to the network namespace of the process. In addition, the configuration of
static routes allows the process running within the network namespace to reach different
IP subnets in the simulation. This allows the process to communicate on the simulated
network.

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
Evaluation

The following chapter describes the evaluation process of the architecture framework, the
network simulator, and the use-case scenario, i.e., the Raft algorithm. The architecture
framework and the network simulator enable end-to-end IoT simulations. Therefore,
Section 6.1 assesses the functional capabilities of both components and discusses imple-
mentation decisions with their benefits and drawbacks. Further, Section 6.2 evaluates
the Raft algorithm and focuses on the non-functional characteristics of the system.

6.1 Architecture Framework & Network Simulator

The functional evaluation assesses the capabilities of the system with a simple use-case
scenario. Section 6.1.1 describes the use-case, defines the VIoTDs participating in the
simulation, and specifies the simulated network topology. Based on the user stories from
Section 4.1.1, Section 6.1.2 describes the simulation process, matches each step with its
corresponding user story and Section 6.1.3 discusses benefits and shortcomings of the
proposed solution.

6.1.1 Use-Case Setup

The use-case of the functional evaluation scenario could be part of a smart city application.
It consists of a smart temperature sensor that provides the current temperature at
the sensors’ position to a controller node, i.e., an edge node. The controller collects
temperature data, and if the temperature exceeds a certain threshold, it notifies an edge
server. The edge server can then react to the notification and execute further steps.
Environment monitoring is a common IoT application in smart cities and necessary for
weather monitoring and automation services [138].

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

The use-case scenario consists of the following components:

1. Sensor The virtual temperature sensor is a python script and virtualized as a
process in the simulation. Upon request, the sensor reads one line of an input data
file and replies with the corresponding value. The simulation uses openly available
IoT data from the Beach Weather Stations1 provided by the City of Chicago. This
collection consists of sensor data from many different stations. The sensor in the
evaluation scenario only uses data from the Oak Street Weather Station.

2. Controller The controller polls temperature data from the sensor and notifies
the server if the temperature exceeds a certain threshold. The threshold value is
provided via the program arguments. In the simulation, the code for the controller
runs in the Raspberry Pi emulator described in Section 4.4.2.

3. Server The server represents an edge server in the simulation and runs in an
Ubuntu VM. It exposes a REST endpoint to receive notifications and logs incoming
requests to stdout.

4. Network The network topology consists of a WiFi network that connects the
sensor, the controller, and a router, and an Ethernet network that connects the
router and the server.

Process
VIoTD

Container
VIoTD VM VIoTDEthernetRouter

Environment

Figure 6.1: Simple IoT setup.

In summary, Figure 6.1 shows the simulation setup. The use-case scenario uses the
architecture framework to integrate the sensor as a process, the controller as a container,
and the server as VM, and simulates wired and wireless networks with the network
simulator.

1https://data.world/cityofchicago/beach-weather-stations-automated-sensors,

last access at 2020-04-14

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Architecture Framework & Network Simulator

6.1.2 Use-Case Simulation

The simulation of the previously defined use-case requires the integration of the sensor,
the Raspberry Pi emulator, and the Ubuntu VM with the architecture framework and the
simulation of the network shown in Figure 6.1. The experimental setup is summarized in
Table 6.1. The following paragraphs describe the necessary steps for the simulation in
more detail and match the corresponding user stories defined in Section 4.1.1, indicated
by {USXX}.

Table 6.1: Experimental setup for the functional evaluation.

OS Arch Linux x86_64

Kernel 5.5.10

CPU Intel i7-8565U (1.8GHz, 4 cores)

Memory 16GB

Disk 512GB SSD with ext4 file system

Sensor

The simulated sensor is a python script that implements the previously defined function-
ality. Appendix E.1 shows the source code. The integration process follows the steps
described in Section 5.2.3. After installing python3 and the dependencies of the sensor
script on the host, it is necessary to copy the python script into the program directory of
the architecture framework. The VIoTD configuration file shown in Listing 6.1 finishes
the integration process for the sensor.

Listing 6.1: VIoTD configuration for the simulated sensor.

1 framework_version: v0.1

2 device:

3 device_type: process

4 device_info: >-

5 Process simulating a sensor.

6 Upon request, the sensor reads one line

7 of the provided sensor data file and

8 provides this value in the reply.

9 program_execution_file: "sensor.py"

10 start_command: "python3"

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

The VIoTD configuration in Listing 6.1 provides a short description about the virtualized
device {US36}. In addition, it defines the source file for the process and specifies the
required information to start the sensor {US32}. Besides that, the script requires program
arguments, i.e., the path to the dataset and the port the sensor should listen on. The
start simulation file allows users to specify program arguments that are then passed to
the process when the simulation starts {US21}. Listing 6.2 shows the content of this
file for the sensor. In this simulation, the sensor listens on port 10000 and, as shown in
Appendix E.1, binds its socket to the obtained IP address {US11}. As the process runs
in a separate network namespace, it can access any port without interfering with the
host or other VIoTDs {US22}. Further, it uses the shared folder where users can upload
arbitrary resources to {US19}. In this use-case, the folder contains data that mimics the
environment {US05, US06}. Besides reading data from the shared directory, virtualized
devices are allowed to write content to it as well, e.g., to simulate a sensor or actuator
interacting with the environment {US08}. Besides that, the start simulation files allow
users to forward a pre-defined set of values to the virtualized device {US07}.

Listing 6.2: Start simulation file for the sensor.

1 --data-path <working-dir>/temperature_data.txt --port 10000

The architecture framework requires the user to specify a command in the stop simulation
file to stop the sensor properly. Listing 6.3 shows the content of the corresponding file
for the sensor.

Listing 6.3: Stop simulation file for the sensor.

1 CTRL+C

Controller

In the simulation, the controller is an emulated Raspberry Pi running a python script
that implements the business logic {US37}. As the Raspberry Pi emulator is already part
of the platform, the controller re-uses an already existing VIoTD. Section 4.4.2 describes
the integration process and provides the corresponding VIoTD configuration. The
configuration file for the Raspberry Pi emulator specifies the hardware resources {US33}
of the emulator that are similar to a real Raspberry Pi {US03}. Also, it includes a short
description of the emulator {US36}.

The business logic for the controller in Appendix E.2 gets uploaded to the shared directory
and is available during the simulation {US18, US20}. The controller script requires
python and some additional libraries. Therefore, the preparation task installs required
dependencies on the virtualized device {US10, US23}. Listing 6.4 shows the content of

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Architecture Framework & Network Simulator

the preparation task file. Similar to the process, the user has full control over the shared
directory {US19}.

Listing 6.4: Preparation task file for the controller.

1 apt update && apt install -y python3 python3-pip;

2 pip3 install -r /workdir/requirements.txt

The VIoTD requires additional information to run the controller script during the
simulation. Therefore, Listing 6.5 and Listing 6.6 provide the commands for starting
and stopping the simulation on the VIoTD. The start script specifies additional program
arguments required by the business logic {US21}.

Listing 6.5: Start simulation command for the controller.

1 python3 /workdir/controller.py --sensor-host "10.1.1.2"

--sensor-port 10000 --server-host "10.1.2.41" --server-port

11000 --threshold 23

Listing 6.6: Stop simulation command for the controller.

1 CTRL+C

Server

The server represents a small edge server and runs in an Ubuntu VM. After following
the steps in Section 5.1 and Section 5.2.1, it is possible to integrate the VM into the
simulation. Similar to processes and containers, the architecture framework requires a
VIoTD configuration file. Listing 6.7 shows the configuration file for the Ubuntu VM.
The VIoTD configuration provides a short description of the virtualized device {US36},
but does not include the complete libvirt configuration due to its length.

Similar to containers, VMs allow users to run arbitrary code {US37}. The business logic
for the server is provided in Appendix E.3. Again, the server script requires python3 and
some additional libraries. In addition, the source code for the server is in a Git2 repository
hosted on Gitlab3. Therefore, it is necessary to set up the server by installing python3,
the required libraries, git, and to check out the repository from Gitlab {US18, US23}.
The preparation task provides the needed functionality and allows users to run custom

2https://git-scm.com/, last access at 2020-04-14
3https://gitlab.com/mLe110/viotdserver.git, last access at 2020-04-19

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

Listing 6.7: VIoTD configuration for the Ubuntu VM.

1 framework_version: v0.1

2 device:

3 device_type: vm

4 device_info: >-

5 Plain Ubuntu image. Can be used to

6 simulate servers.

7 template_vm_image_path:

/opt/testpool/devel/xenial-server-cloudimg-amd64.img

8 vm_force_stop_time: 60

9 hypervisor_uri: qemu:///system

10 boot_finished_msg: "ubuntu login: "

11 vm_idle_msg: "ubuntu@ubuntu:~ $ "

12 login:

13 username: ubuntu

14 password: asdfqwer

15 xml_template_str: >

16 <domain type='qemu'>

17 ...

18 </domain>

commands on the virtualized device {US19, US20}. Listing 6.8 shows the preparation
task file for the server.

Listing 6.8: Preparation task file for the server.

1 sudo apt update;

2 sudo apt install -y python3 python3-pip git;

3 git clone https://gitlab.com/mLe110/viotdserver.git;

4 pip3 install -r viotdserver/requirements.txt;

To start the server in the simulation, it is necessary to specify the proper command in the
start simulation file {US21, US22}. Listing 6.9 shows the content of the start simulation
file and Listing 6.10 shows the stop command.

Listing 6.9: Start simulation command for the server.

1 python3 viotdserver/server.py --port 11000

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Architecture Framework & Network Simulator

Listing 6.10: Stop simulation command for the server.

1 CTRL+C

The architecture framework enables the integration of the sensor, the Raspberry Pi
emulator as well as the Ubuntu VM without making any changes to the virtualized
devices {US35}. Besides, its implementation focuses on resource efficiency by keeping the
number of frameworks low and running only functionalities required by the virtualized
device {US44}. After executing these steps, the VIoTDs can participate in the simulation.

Network

Besides the device integration, the network setup is the second part of the simulation.
As the use-case involves a VM as a virtualized device, it is necessary to create a libvirt
network for the VM. The network simulator provides a REST endpoint to create such a
network. The API description of the Create libvirt network endpoint is in Appendix B.
Listing 6.11 shows the payload used in the simulation to set up the network.

Listing 6.11: JSON payload to create the libvirt network for the VM.

1 {

2 "network_name": "firstnet",

3 "gateway_ip": "10.1.2.1",

4 "netmask": "255.255.255.0",

5 "start_ip": "10.1.2.40",

6 "end_ip": "10.1.2.50"

7 }

Further, the network simulator requires a JSON as input that defines the network topology.
The network JSON for this use-case scenario is in Appendix E.4 and represents the topol-
ogy in Figure 6.1. The simulated network allows communication between VIoTDs {US02}.
It creates a wireless network to connect the sensor and the controller {US12, US13},
simulates a wired connection for the server {US16}, and connects both network segments
via a virtual router. In addition, it specifies the position of the nodes that participate in
the wireless network {US14}.

Simulation

Besides the integration of the VIoTDs and the network setup, the simulation requires a
platform configuration to provide details about the host configuration to the VIoTDs and
to define the logging infrastructure for the simulation. Listing 6.12 shows the platform
configuration for this use-case scenario.

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

Listing 6.12: Platform configuration for the use-case scenario.

1 vm_storage_pool_path: /opt/simpool/devel

2 device_setup_file_name: preparation.txt

3 simulation_commands_file_name: start_simulation.txt

4 stop_simulation_commands_file_name: stop_simulation.txt

5 net_namespace_directory: /var/run/netns

6 program_executable_directory: /opt/simulation

7 reporting:

8 type: file

9 log_directory: /var/viotd-evaluation/simulation/logs

10 monitoring:

11 type: console

The platform configuration defines the log appenders for the VIoTDs and the application
logs. Users have access to both log information. The VIoTD log provides information
about the integration layer and the virtualized device {US28}. In addition, the reporting
module forwards log output from the application that runs during the simulation {US30}.
VIoTDs provide their log output separately, which allows the user to identify the behavior
of each device in the simulation individually {US31}. The platform administrator is
responsible for the platform configuration and, therefore, is able to define and configure
the log appender for the reporting and the monitoring module {US39, US40, US45}.
The administrator has access to all logs and uses this information to identify crashed
devices {US42, US43}.

With all the configuration files in place, the simulation can be executed {US01} following
the workflow from Section 4.3. The APIs provided by the VIoTDs and the network simu-
lator can be used to manage the lifecycle of the simulation setup. They provide endpoints
to run the VIoTD, execute the preparation tasks, start and stop the simulation {US25,
US26}, as well as terminating a VIoTD {US27}, i.e., stopping the simulation and shutting
down the VIoTD. Additional endpoints provide information about the current device
state {US17, US29}, and enable health checks automatically {US34}. After stopping the
simulation, users can run another simulation with the same VIoTDs {US15}. Between
simulations, it is possible to perform additional preparation tasks or to make changes to
uploaded code.

The network simulator runs in a Docker container and isolates the simulated net-
work. Therefore, it is possible to run multiple simulations in parallel without inter-
ferences {US41}.

As previously mentioned, the system provides VIoTD and application logs. Therefore,
these logs can be used to analyze the simulation result. Listing 6.13, Listing 6.14, and
Listing 6.15 show a short example of the log files from the sensor, the controller, and

84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Architecture Framework & Network Simulator

the server, respectively. In this use-case scenario, the setup runs for 60 seconds before
the server stops automatically. This can be achieved with the duration parameter of the
start simulation API from the VIoTD. By specifying a duration, the VIoTD stops the
simulation on the virtualized device automatically after the specified time {US24}. We
use this functionality to show the behavior of the system when one node fails.

Listing 6.13: Log output of the sensor during the simulation.

1 2020-02-25 00:19:01,970 root INFO Measure temperature: 21.70

2 2020-02-25 00:19:02,973 root INFO Measure temperature: 24.00

3 2020-02-25 00:19:03,985 root INFO Measure temperature: 24.20

4 2020-02-25 00:19:04,987 root INFO Measure temperature: 21.50

Listing 6.14: Log output of the controller during the simulation.

1 2020-02-25 00:19:01,971 root INFO Poll sensor data: 21.7

2 2020-02-25 00:19:02,973 root INFO Poll sensor data: 24.0

3 2020-02-25 00:19:02,974 root INFO Threshold exceeded: 24.0.

Send notification to server.

4 2020-02-25 00:19:03,985 root INFO Poll sensor data: 24.2

5 2020-02-25 00:19:03,985 root INFO Threshold exceeded: 24.2.

Send notification to server.

6 2020-02-25 00:19:03,986 root ERROR Cannot send notification to

server

7 2020-02-25 00:19:04,987 root INFO Poll sensor data: 21.5

Listing 6.15: Log output of the server during the simulation.

1 2020-02-25 00:18:46,971 werkzeug INFO * Running on

http://0.0.0.0:11000/ (Press CTRL+C to quit)

2 2020-02-25 00:19:02,982 root INFO Notification received. Data:

{'threshold': 23.0, 'value': 24.0}

During the simulation, VIoTDs have access to their shared folder. They can use previously
uploaded resources or write device-specific output files into this directory. Hence, it
provides a basic environment functionality, especially to simulated sensors and actua-
tors {US05, US08, US09}. Additionally, the architecture framework is compatible with,
for example, sensor or actuator units connected via USB or GPIO to an SBC {US04}. The
current system treats both components as a single VIoTD, as only network connections
described in Section 4.2 get simulated.

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

6.1.3 Benefits & Shortcomings

The previous sections demonstrate the capabilities of the architecture framework and the
network simulator by executing a simple use-case scenario. This functional evaluation
shows how, and to what extent, the system meets the requirements defined in Section 4.1.1.
The following paragraphs discuss both components on a higher level and elaborate the
impact of certain design decisions on the system.

In the real world, IoT networks consist of a variety of different devices [4]. Additionally,
microcontroller architectures of IoT devices often differ from the x86 processor architecture
used in many cloud data-centers and on personal computers [19]. This is challenging
for the implementation of the architecture framework, as one of its goals is to integrate
accurate device emulators. Hence, the architecture framework has to support hardware
virtualization as well. Fortunately, Docker containers are compatible with Qemu, and
binfmt allows mappings between binary types and interpreters. Therefore, hardware
virtualization for processes and containers can be done with reasonable effort, as shown in
Section 4.4.2. The integration of guest VMs with a different target architecture requires
additional work. The architecture framework addresses this issue by integrating libvirt
to manage VMs. This framework supports a variety of hypervisors including Qemu,
Xen, Bhyve and many more4. Especially Qemu is of high interest due to its hardware
virtualization capabilities5, including target architectures like ARM that is widely used
in the IoT [139].

Another important characteristic of the architecture framework is its compatibility with
existing emulators and simulators. The functional evaluation shows the frameworks’
capability to integrate virtualized devices without enforcing any changes onto the devices.
In addition, it provides an abstraction layer to the network. Therefore, virtualized devices
use their original network stack during the simulation. This is beneficial to the quality of
the simulation, as the network layer is essential in IoT systems [140] and any changes
imposed by the framework could create a skew in the simulation behavior. Although these
are valuable characteristics, it is unlikely that the architecture framework is compatible
with any existing IoT emulator and simulator. There exist an unknown number of
virtualized devices, and therefore, it is important to acknowledge that incompatibilities
may happen. Besides that, the proposed framework is a first step into building a
generalized integration solution and is compatible with a reasonable number of different
virtualization technologies.

The architecture framework and the network simulator provide flexibility to users. Using
the preparation task functionality, users can customize VIoTDs before running their
IoT applications during the simulation. Also, the newly developed ns-3 module enables
users to create simulation networks dynamically. To the best of our knowledge, the
combination of virtualized IoT devices and simulated networks is a novel approach for
currently available IoT simulation platforms.

4https://libvirt.org/drivers.html, last access at 2020-04-14
5https://wiki.qemu.org/Documentation/Platforms, last access at 2020-04-14

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Architecture Framework & Network Simulator

Besides these benefits, the proposed solution has some notable shortcomings as well.
Table 6.3 provides a summary of missing or partially implemented requirements. Most
importantly, the architecture framework does not cover all of the user stories defined
in Section 4.1.1, and implements some of them scarcely. The missing user stories are
{US06} and {US38}. In addition, the framework provides a simplistic implementation
of any environment-related requirement. The reason for this deficiency is the currently
immature specification. Due to time constraints, the environment is still an abstract idea,
and a specific plan, how it could look like, does not exist yet. Similar to the architecture
framework, the environment has to provide an abstraction layer between virtualized
devices and their virtual surroundings. Hence, including this complexity in addition to
the proposed system would go beyond the scope of this thesis and is left out for future
research. The current solution provides a shared folder to include, e.g., input files for
sensors and allows virtualized devices to create output files.

Table 6.3: Missing or partially implemented requirements.

Affected
Requirement

Functionality Description

USB/GPIO
abstraction

Missing Further specifications required.

Environment Limited Due to time constraints and the design complexity of
the environment, the architecture framework provides
only limited functionalities.

6LoWPAN
and 802.15.4
support

Missing The current version of ns-3 has a bug that prevents
TapDevices from using 6LoWPAN and 802.15.4.

More importantly, the network simulator misses some important protocols and standards.
Due to resource-constrained devices, communication and network protocols in IoT systems
are more restricted than in traditional networks [141]. Therefore, many IoT systems use
protocols designed explicitly for the IoT. Especially the 6LoWPAN protocol and the
IEEE 802.15.4 standard are some of the most important protocols in this domain [142].
Although ns-3 provides 6LoWPAN and 802.15.4 modules, it seems that the ns-3 core
has issues with IPv6 addresses and TapBridges. More specifically, the TapBridge lacks
IPv6 support, as one of the reported ns-3 bugs indicates6. In addition, ns-3 terminates
when it routes IPv6 packets from external hosts due to serialization issues. We reported
this issue in the ns-3 google group7 and after a short discussion with a member of the
ns-3 community, concluded that this is a bug in ns-3. Unfortunately, only TapBridges

6https://www.nsnam.org/bugzilla/show_bug.cgi?id=1433, last access at 2020-04-14
7https://groups.google.com/forum/#!topic/ns-3-users/5F7cZtL2ibo, last access at

2020-04-14

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

allow external devices to participate in the network simulation. Therefore, the network
simulator cannot support 6LoWPAN and 802.15.4 until the bug gets fixed. Nonetheless,
the developed ns-3 module and the network JSON schema can be easily extended once
the bug is fixed. The structure of the network JSON supports new network types out-of-
the-box, and the ns-3 module has an extendable design, i.e., it is sufficient to add a new
method to the NetworkHelper8 class that handles the new link type.

Another improvement to the current solution relates to {US04}. The architecture
framework treats, for example, a virtual sensor connected to an SBC via USB as a single
virtualized device. Hence, it is not possible for users to reuse single components or to
control them individually. Separating these components requires further research to
determine if, and to what extent, it is possible to define a generic interface that allows
independently developed components to interact. Any design decisions to address this
task need to be well-thought to avoid restrictions on virtualized devices.

6.2 Raft

The evaluation continues with the simulation of the use-case scenario, i.e., the Raft
algorithm (see Section 4.4), and shows the applicability of the proposed solutions with a
real-world example. The objective of this evaluation is to determine the performance of
the Raft algorithm in an IoT setup. Therefore, the scenario measures the leader election
time of the algorithm running on emulated Raspberry Pis in an 802.11s mesh network.
The following sections describe the test setup, define the metrics used for the evaluation,
and demonstrate the validity of the obtained results.

6.2.1 Test Environment

The Raft algorithm sends multiple messages in parallel for heartbeat information and
elections. Depending on the heartbeat frequency and the election interval, this can lead
to substantial network traffic. The experimental setup described in Table 6.1 does not
provide sufficient computing power for the Raft evaluation, as ns-3 requires additional
processing capacity. Therefore, the evaluation uses a C2 instance on the Google Cloud
Platform (GCP) optimized for compute-intensive tasks9. Table 6.5 summarizes the
characteristics of the experimental setup for the use-case scenario.

The use-case simulation evaluates the performance of the Raft algorithm in a wireless
setup. Hence, in order to provide comparable results, the simulation scenarios follow the
metrics defined in [20]. Ousterhout and Ongaro [20] evaluate the performance of Raft by
measuring the leader election time, i.e., the time it takes the cluster to detect a crashed
leader and to elect a new one. The leader crashes randomly within its heartbeat interval.
Further, it broadcasts a heartbeat message before it crashes. This creates a worst-case
scenario, as each server in the cluster resets its election timeout at approximately the

8https://github.com/mLe110/network-simulator, last access at 2020-04-14
9https://cloud.google.com/compute/docs/machine-types, last access at 2020-04-15

88

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Raft

Table 6.5: Experimental cloud setup for the Raft evaluation.

Platform Google Cloud Platform

Instance Type c2-standard-8

OS Ubuntu 19.10 x86_64

Kernel 5.3.0

CPU Intel Xeon Scalable (3.1GHz, 8 cores)

Memory 32GB

Disk 128GB SSD with ext4 file system

same time when the leader crashes and, therefore, increases the election time and makes
split votes more likely. Furthermore, the heartbeat interval is half of the minimum
election timeout, and thus, the smallest possible downtime of the cluster is equal to the
heartbeat interval.

Ousterhout and Ongaro [20] suggest that the broadcast time should be an order of
magnitude less than the minimum election timeout. The broadcast time includes the
network round-trip-time, and the disk writes, i.e., the time it requires a server to send a
message to each participant in the cluster and receive a response.

Besides Raft-specific configurations and definitions, the test environment has additional
important characteristics. It automatically runs the emulated Raspberry Pi’s, executes the
network simulator, and starts the simulation. The VIoTDs use the Kafka appender and
stream the application logs back to the test environment. Further, the test environment
stops the simulation after 1000 trials, where each trial corresponds to a server crash
followed by a leader election. Equivalent to [20], each scenario consists of five server
nodes.

The scenarios running on the emulated mesh network use the ns-3 mesh module. Ap-
pendix C.3 provides an example network topology JSON. The network simulator uses
the default configuration of the YansWifiChannel module in the WiFi mesh to simulate
the wireless communication channels between servers in the network. The channel has a
propagation delay based on a constant speed model, i.e., the speed of light, and calculates
propagation loss with a log distance model10.

10https://www.nsnam.org/docs/models/html/wifi-user.html#

yanswifichannelhelper, last access at 2020-04-15

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

6.2.2 Raft Implementation Baseline

While Section 6.1 reviews the functionalities of the proposed components, it is still left
to show that the simulation results are valid. Hence, it is necessary to ensure that the
Raft implementation behaves similarly to the proposed implementation in [20].

The Raft implementation from Ousterhout and Ongaro is written in C++ and part
of RAMCloud, a novel storage system for datacenters developed at the University of
Stanford [20, 143]. Therefore, the performance results obtained in [20] are based on the
RAMCloud implementation.

The first scenario evaluates our Raft implementation and compares it to [20]. Based on the
previously described test setup, the Raft algorithm runs as a process and communicates
over the localhost network interface to avoid possible interferences from the network
simulator. The Linux Traffic Control11 utility was used to mimic the broadcast time of
about 15ms by introducing a delay on the localhost network interface.

100 1000 10000 1000001000000
Time without a leader in milliseconds

0%

20%

40%

60%

80%

100%

Su
cc

es
sf

ul
 e

le
ct

io
ns

 (C
um

ul
at

iv
e

pe
rc

en
ta

ge
) 150-150ms

150-151ms
150-155ms
150-175ms
150-200ms
150-300ms

Figure 6.2: Performance of the Raft implementation running on localhost and using
different election intervals.

0 200 400 600
Time without a leader in milliseconds

0%

20%

40%

60%

80%

100%

Su
cc
es
sf
ul
 e
le
ct
io
ns

 (C
um

ul
at
iv
e
pe
rc
en
ta
ge
) 12-24ms

25-50ms
50-100ms
100-200ms
150-300ms

Figure 6.3: Performance of the Raft implementation running on localhost and using
different minimum election timeouts.

11https://linux.die.net/man/8/tc, last access at 2020-04-15

90

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Raft

The evaluation results are shown in Figure 6.2 and Figure 6.3. The y-axis shows the
percentage of successful elections, and the x-axis refers to the duration the cluster requires
to elect a new leader after a server crash. Each line represents a specific election timeout
and illustrates the number of elections that finish within a certain time. For example,
the election timeout of 150-300ms in Figure 6.3 shows that about 80% of the elections
require at most 200ms. Further, we use this type of diagram throughout the section to
demonstrate the leader election time of the Raft algorithm.

Figure 6.2 shows the time the cluster is without a leader for different election intervals and
uses a logarithmic scale on the x-axis, as some intervals require significantly more time
to finish. Similar to [20], increasing the randomness in election intervals has a positive
impact on the leader election time. Furthermore, the election timeout of 150-150ms
diverges from [20]. Without randomness in the election interval, servers always start
elections simultaneously. Hence, candidates can only win elections due to varying runtime
delays on the servers. We conclude that the deviation for 150-150ms in Figure 6.2 is due
to differences in the experimental setup and the applied programming language for the
Raft implementation and therefore, does not falsify the correctness of our implementation.

Further, Figure 6.3 determines the performance of the algorithm for different minimum
election timeouts. The timing characteristics of Raft restrict timeouts below 12ms in
this scenario, as the broadcast time is around 15ms. For further comparisons, Figure 6.4
shows the number of won elections for each server, grouped by the same election intervals
as in Figure 6.3. The number of won elections for varying election intervals is comparable
to Figure 6.4, and therefore, not explicitly shown. In conclusion, the behavior of our Raft
implementation is similar to [20].

12-24ms 25-50ms 50-100ms 100-200ms 150-300ms
Leader election intervals

0

50

100

150

200

Le
ad

er
 e
le
ct
io
n
wi
ns

server1
server2
server3
server4
server5

Figure 6.4: Number of won elections for each server per election interval in the baseline
evaluation.

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

6.2.3 Simulation Baseline

After showing that our Raft implementation mirrors the behavior of the original imple-
mentation by Ousterhout [20], the second scenario integrates the network simulator into
the evaluation. The setup runs the Raft algorithm on emulated Raspberry Pi VIoTDs.
Further, the network simulator connects the VIoTDs via a simulated CSMA network
with similar characteristics as the network described in [20].

The objective of this scenario is to evaluate if the architecture framework and the
network simulator impact the simulation results, e.g., by introducing any skew into
the performance of the Raft algorithm. Hence, the simulated network restrains the
broadcast time to about 15ms, and the evaluation follows the methodology described in
Section 6.2.2.

Figure 6.5 shows the performance of the Raft algorithm in the simulated CSMA network.
Comparing Figure 6.5b to the baseline in Section 6.2.2 leads to the following observations.
While the graphs for 100-200ms and 150-300ms show similar characteristics, their behavior
diverges at election timeouts of 50-100ms and below. With an election timeout of 50-
100ms, Figure 6.3 shows that 90% of the elections require at most 100ms. The equivalent
line in Figure 6.5b shows that only 60% of the elections finish within 100ms. For election
timeouts of 12-24ms and 25-50ms, the deviation from the baseline in Figure 6.5b is more
significant. Furthermore, the leader election time seems to consolidate below a certain
threshold.

100 1000 10000 100000
Time without a leader in milliseconds

0%

20%

40%

60%

80%

100%

Su
cc

es
sf

ul
 e

le
ct

io
ns

 (C
um

ul
at

iv
e

pe
rc

en
ta

ge
)

150-155ms
150-175ms
150-200ms
150-300ms

(a) Different election intervals.

0 200 400 600
Time without a leader in milliseconds

0%

20%

40%

60%

80%

100%

Su
cc
es
sf
ul
 e
le
ct
io
ns

 (C
um

ul
at
iv
e
pe
rc
en
ta
ge
)

12-24ms
25-50ms
50-100ms
100-200ms
150-300ms

(b) Different minimum election timeouts.

Figure 6.5: Performance of the Raft implementation in the CSMA simulation. Each line
represents 1000 trials.

Besides reducing the minimum election timeout as demonstrated in Figure 6.5b, the
scenario evaluates the Raft algorithm on the simulated CSMA network with different
election timeouts as well. Figure 6.5a shows the evaluation results. Comparing the
election time of Raft on the simulated CSMA network with its baseline in Figure 6.2
shows consistent results for the 150-300ms election timeout. Similar to Figure 6.2,
Figure 6.5a uses a logarithmic scale on the x-axis. Further, the lines for 150-200ms

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Raft

match for around 70% of the leader elections, but slightly diverge afterward. For election
timeouts below, the CSMA network provides different results than the baseline evaluation.

For example, with an election timeout of 150-175ms, the longest trial in the baseline
simulation is about 900ms, but 1500ms in the CSMA network. With 150-155ms, less
than 20% of the elections match those in the baseline. For 150-151ms and 150-150ms,
the election time increases significantly, and the results are substantially different. Hence,
we stopped the evaluation at this point.

We presume that ns-3 introduces this skew as it slows down network traffic due to
its resource-intensive computations. This assumption is based on two observations.
First, Raft creates substantial amounts of messages simultaneously, especially for low
minimum election timeouts that entail small heartbeat intervals, and when split votes
occur. Further, low randomness, i.e., small election intervals, increase split votes [20].
Therefore, ns-3 has to process most of the messages within short time frames. Second,
the behavior can be verified by simulations with further election timeouts, and executing
the scenario on the experimental setup described in Table 6.1, i.e., on hardware with
less computing capacity, shows a similar skew and already impacts the results for larger
election timeouts like 150-300ms. In conclusion, the simulation on the experimental setup
described in Table 6.5 provides viable results for election timeouts above 50-100ms.

Nevertheless, Figure 6.6 shows that the number of won elections is independent of the
minimum election timeout and is uniformly distributed among the servers. Hence, it
provides similar results as in Section 6.2.2.

12-24ms 25-50ms 50-100ms 100-200ms 150-300ms
Leader election intervals

0

50

100

150

200

Le
ad

er
 e
le
ct
io
n
wi
ns

server1
server2
server3
server4
server5

Figure 6.6: Number of won elections in the CSMA simulation for each server per election
interval.

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

6.2.4 Mesh Base Scenario

After validating the performance of the Raft implementation and assessing the character-
istics of the simulation, the following scenario introduces the first IoT setup. Therefore,
the network simulator executes a wireless mesh network with approximately the same
distance between servers. Figure 6.7 illustrates the setup, where L refers to the distance
between servers. In this topology, the round-trip-time of messages is independent of
the source and the target. Hence, the result shows how wireless communication in the
mesh network influences the performance and the characteristics of the Raft algorithm
compared to its implementation in the datacenter. Therefore, this scenario simulates the
network topology shown in Figure 6.7 with two distinct distances.

L

L

L

x

y
z

server

Figure 6.7: Network topology for the mesh base scenario.

The first simulation evaluates a mesh network with a broadcast time of about 15ms.
As the wireless network is fluctuating, i.e., messages with the same source and target
have significantly different round-trip-times, the broadcast time in the mesh network
represents an average. Therefore, a server sends a message to every member in the
cluster simultaneously and measures the time until it receives the last response. The
server executes 1000 repetitions of the previous step and calculates the average that
represents the broadcast time. After assessing the broadcast time for multiple distances
L, a distance of 10m showed the desired time of 15ms.

The evaluation of the mesh network with a distance of 10m is shown in Figure 6.8. Due
to significant differences in the leader election time, Figure 6.8 uses a logarithmic scale on
the x-axis. In comparison to the performance of Raft in CSMA networks, i.e., Figure 6.3,
the average leader election time is higher in the wireless mesh network. In addition, some
elections result in many split votes, indicated by the election times above 1s. Another
noticeable characteristic is the slant between 40% and 60% that occurs in every simulated
election timeout. It emerges at around 100ms, 200ms, 300ms, and 600ms for the election
timeouts 50-100ms, 100-200ms, 150-300ms, and 300-600ms, respectively. Hence, about
40% to 60% of the elections are not successful in the first attempt and cause split votes.

In the second simulation, the distance L between servers is 100m. The broadcast time
in the simulated mesh network is about 250ms and represents the average over 1000

94

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Raft

100 1000 10000
Time without a leader in milliseconds

0%

20%

40%

60%

80%

100%

Su
cc
es
sf
ul
 e
le
ct
io
ns

 (C
um

ul
at
iv
e
pe
rc
en
ta
ge
) 50-100ms

100-200ms
150-300ms
300-600ms

Figure 6.8: Performance of Raft in a mesh network with varying minimum election
timeouts and 10m distance between servers.

measurements. Figure 6.9 shows the outcome of the evaluation and uses a logarithmic
scale on the x-axis. As proposed by [130], the election timeout of 2500-5000ms is
one magnitude larger than the broadcast time and represents the benchmark for this
evaluation. Further simulations reduced the election timeout subsequently without
violating the timing constraint of Raft [20].

100 1000 10000
Time without a leader in milliseconds

0%

20%

40%

60%

80%

100%

Su
cc
es
sf
ul
 e
le
ct
io
ns

 (C
um

ul
at
iv
e
pe
rc
en
ta
ge
) 300-600ms

625-1250ms
1250-2500ms
2500-5000ms

Figure 6.9: Performance of Raft in a mesh network with varying minimum election
timeouts and 100m distance between servers.

While the election timeouts of 1250-2500ms and 2500-5000ms show similar characteristics,
300-600ms and 625-1250ms lead to increased numbers of split votes and thus, finish
approximately at the same time as the simulation with an election timeout of 1250-2500ms.
In wireless networks, the distance between nodes influences the data transmission speed,
i.e., larger distances reduce the bandwidth and increase packet losses and delays [144, 145].
Based on the test setup description in Section 6.2.1, the Raft servers in the cluster reset
their election timeout when the leader crashes. Therefore, the probability of a split vote
depends on the randomness of the election timeout, i.e., the size of the election timeout
interval [130]. When the first server times out, it starts a leader election and sends a vote
request to the remaining cluster. In this scenario, the duration between sending the vote
request and other servers receiving it is longer compared to the CSMA network due to

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

the distance between servers and the characteristics of wireless networks. Hence, servers
are more likely to timeout before they receive the vote request.

The election timeouts of 1250-2500ms and 2500-5000ms offer more randomness compared
to 300-600ms and 625-1250ms due to their interval size. In addition, their minimum
election time tolerates higher delays and packet losses in the network, resulting in fewer
split votes, as shown in Figure 6.9.

6.2.5 Mesh Line Scenario

Ousterhout and Ongaro [20] recommend an election timeout that is an order of magnitude
greater than the broadcast time. In a wireless network, the distance between nodes impacts
the data transmission between them [144, 145] and therefore, affects the broadcast time.
Further, as Raft sends vote requests and heartbeat messages in parallel, its broadcast time
depends on the most distant servers. For this reason, the following scenario simulates
the network topology shown in Figure 6.10 that arranges servers on a single line. Hence,
while servers in the center have similar round-trip-times to their neighbors, the servers
on both ends define the longest distance in the network that may involves multiple hops.
Furthermore, L in Figure 6.10 refers to the distance between two consecutive nodes.
Similar to the previous scenario, the following section evaluates the line topology with
two distinct distances.

Lserver

Figure 6.10: Network topology for the mesh line scenario.

The first simulation defines an L of 10m, and thus, the total distance between the
outermost servers is 40m. The broadcast time in this network, i.e., the average over
1000 measurements, is about 20ms, and therefore, the election timeout of 200-400ms
establishes the reference for the remaining tests. Figure 6.11 shows the simulation results
for the line topology with four different election timeouts and a logarithmic scale on the
x-axis. As has been previously shown, ns-3 affects the performance of Raft for minimum
election timeouts below 50ms. Therefore, the lowest election timeout is 50-100ms, as
shown in Figure 6.11, although the broadcast time would allow timeouts below.

In the simulation with an election timeout of 200-400ms, about 60% of the leader elections
complete without split votes. For timeouts below, this is only the case for about 50%.
Hence, while smaller election timeouts require less time to detect a crashed leader and
elect a new one, split votes are more likely to happen. In contrast, the election timeout
of 400-800ms does not create split votes in about 75% of the elections, but the cluster
needs more time to recover, on average, after a leader crashes.

96

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Raft

100 1000 10000
Time without a leader in milliseconds

0%

20%

40%

60%

80%

100%

Su
cc
es
sf
ul
 e
le
ct
io
ns

 (C
um

ul
at
iv
e
pe

rc
en

ta
ge

) 50-100ms
100-200ms
200-400ms
400-800ms

Figure 6.11: Performance of Raft in a one dimensional mesh network with a distance of
10m between two consecutive nodes.

The second simulation uses a distance of 50m between two consecutive servers. The total
distance of 200m between both ends causes a broadcast time of about 160ms. Following
the same procedure as in the previous simulations, the broadcast time corresponds to the
average duration based on 1000 broadcasts. Thus, the election timeout of 1600-3200ms
determines the baseline for the remaining tests.

100 1000 10000
Time without a leader in milliseconds

0%

20%

40%

60%

80%

100%

Su
cc
es
sf
ul
 e
le
ct
io
ns

 (C
um

ul
at
iv
e
pe

rc
en

ta
ge

) 200-400ms
400-800ms
800-1600ms
1600-3200ms

Figure 6.12: Performance of Raft in a one dimensional mesh network with a distance of
50m between two consecutive nodes.

Figure 6.12 shows the simulation results for the line topology with an L of 50m. Similar
to before, the x-axis uses a logarithmic scale. The tendency of increased split votes
in wireless mesh networks can be observed in Figure 6.12 as well. Further, only 20%
of the elections for 200-400ms and 400-800ms finish successfully in the first attempt.
For 800-1600ms and 1600-3200ms, it is about 35% and 55%, respectively. Hence, this
behavior aligns with previous remarks in Section 6.2.4 on leader election in wireless
networks. The line topology with 50m between servers amplifies this effect, as routes
between servers involve multiple hops, which impacts the message transmission.

As the wireless mesh network influences the performance of the Raft algorithm, the
scenario further examines if the network impacts the electability of servers in the cluster.

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

Therefore, Figure 6.13 shows the won elections for each server in the line topology with
an L of 50m, grouped by the election timeout. The result shows similar characteristics
as the baseline evaluation in Section 6.2.2, and therefore, the wireless network seems not
to influence the probability that a server wins an election.

200-400ms 400-800ms 800-1600ms 1600-3200ms
Leader election intervals

0

50

100

150

200

Le
ad

er
 e
le
ct
io
n
wi
ns

server1
server2
server3
server4
server5

Figure 6.13: Number of won elections for each server per election interval in the line
topology simulation with 50m distance between servers.

6.2.6 Discussion

The stability of the Raft algorithm depends on timing constraints [130]. In a Raft cluster,
leaders must be able to broadcast heartbeat messages to followers before they start an
election. Hence, there is a trade-off between detecting a crashed leader early and avoiding
unnecessary leader changes, both impacting the cluster availability [20].

While the election timeout relates to the stability of the cluster, it also affects the
probability of split votes [130]. As shown in Section 6.2.4 and 6.2.5, lower election
timeouts and reduced randomness significantly increases split votes. Although this
characteristic applies to LAN networks in datacenters as well, it has a higher impact in
wireless mesh networks.

Furthermore, due to the larger broadcast time in wireless mesh networks, using an
election timeout that is a magnitude higher than the broadcast time leads to long leader
elections, and it takes the cluster more time to recover if the leader fails. For example,
the broadcast time in the line topology in Section 6.2.5 is about 160ms when the distance
between servers is 50m. Doubling the distance to 100m results in a broadcast time of
about 500ms. Hence, the corresponding minimum election timeout is 5000ms.

Nonetheless, Raft demonstrates reasonable performance in wireless mesh networks. The
Raft implementation in the previous scenarios strictly follows the description in [20, 130].
Hence, it does not make use of possible improvements that could benefit the performance in
wireless networks. Replacing the RPCs with a UDP-based communication method would
reduce the message overhead. Further, as wireless networks are broadcast oriented, UDP
would improve the efficiency of broadcasts for heartbeat messages and vote requests [23].

98

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Raft

Besides performance characteristics, Raft elects leaders uniformly, which is beneficial
for IoT networks. For example, assuming specific nodes in the network are less stable
than others, a biased leader election algorithm that accidentally favors an unstable node
would reduce the stability of the cluster.

In conclusion, Raft performs well in the evaluation scenarios on wireless mesh networks.
Although split votes and large election timeouts are not necessarily beneficial for its
applicability, its simplistic design, i.e., compared to other consensus algorithms like Paxos,
facilitates changes. Therefore, Raft shows potential for future developments [23, 130].

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 7
Conclusion & Future Work

The IoT paradigm describes context-aware systems that are embedded in the environment
and consist of smart devices with ubiquitous connectivity. Since its origins in 1999, the IoT
developed rapidly and, nowadays, impacts a wide range of domains. With the emergence
of new technologies and applications in safety-critical environments, IoT systems became
more sophisticated and impose new challenges on researchers and developers. Due to the
complexity of building IoT systems in the real world, advanced tools to test and verify
proposed solutions are needed.

Therefore, this thesis proposes a novel end-to-end simulation approach based on an
architecture framework and a network simulator to test and evaluate IoT systems and
applications. Further, to demonstrate their applicability, the Raft consensus algorithm
gets evaluated in a simulated IoT system.

The literature research in the thesis provides essential background information and
covers related work. It presents a comprehensive definition of the IoT and illustrates its
potential by summarizing state-of-the-art applications in various domains. As connectivity
and communication are fundamental characteristics of IoT systems [26], Chapter 2
reviews relevant network protocols. Further, a comprehensive analysis of virtualization
technologies and OSs used in the IoT provides important background information for
the proposed architecture framework. Then, Chapter 3 analyzes the IoT research
process, identifies the development stages, and discusses relevant tools and approaches. In
addition, it shows the importance of simulations and summarizes alternatives. The chapter
concludes with an extensive analysis of currently used simulation tools, state-of-the-art
research on simulators, and consensus algorithms in the IoT.

The proposed solution consists of an architecture framework and a network simulator. The
design process of both components described in Chapter 4 includes a requirements analysis
based on current research that identifies essential characteristics and functionalities for
end-to-end simulations. The heterogeneity of IoT devices and the high release frequency

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Conclusion & Future Work

of new devices pose a significant challenge on simulators [5, 10, 12]. The architecture
framework follows a different approach compared to state-of-the-art solutions. It can
be seen as a toolset that integrates with existing IoT device simulators and emulators
and provides a uniform control interface. Hence, it facilitates extensibility and focuses
on a simple integration process. As IoT devices use different processor architectures,
the architecture framework enables hardware emulation to increase the accuracy of the
simulation.

The network simulator utilizes ns-3 to simulate communication channels and provides a
management interface based on a REST API. Further, a new ns-3 module was developed,
which is able to create network topologies dynamically at runtime.

The thesis concludes with the evaluation of the architecture framework and the network
simulator. The first part demonstrates the functional capabilities of the proposed systems,
emphasizes essential design decisions, and discusses their benefits and limitations. The
second part focuses on the simulation of the use-case, i.e., the performance evaluation
of the Raft algorithm in wireless mesh networks. For this, the Raft algorithm has been
implemented according to [20]. The evaluation follows multiple scenarios that ensure
the correctness of the simulation. The first scenario assesses the implementation of the
algorithm to detect potential discrepancies. In the second scenario, the architecture
framework integrates Raspberry Pi emulators that represent edge nodes in the simulation
and uses the network simulator to mimic the network characteristics of the experimental
setup described in [20]. Hence, this scenario determines how the simulation affects the
performance of Raft. It shows that ns-3 cannot cope with short minimum election
timeouts and low randomness, as it is unable to process the number of concurrent
messages. Nevertheless, the results for election timeouts of 50-100ms or higher are not
affected. Further, the third and fourth scenarios evaluate the performance of the Raft
algorithm in two distinct wireless mesh networks and discuss the characteristics of Raft
in IoT systems.

7.1 Key Contributions

The architecture framework addresses the device heterogeneity of the IoT by utilizing
existing IoT device simulators and emulators and by providing a simple integration
process. Further, it supports hardware emulation that improves the simulation quality
and allows application code running on emulated devices to be transferred to real devices
with little modifications. Besides, its log appenders provide important monitoring and
logging output that helps users to understand the behavior of the system.

The network simulator imitates real-world networks and simulates low-level protocols.
With the developed network topology JSON schema, users are able to simulate networks
with little effort and can change topologies between simulations at runtime. Further, the
network simulator is a single Docker container and, therefore, facilitates a simple setup
process of the whole simulation system.

102

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.2. Future Work

The proposed system supports reproducibility. Simulations rely on configuration files,
e.g., the VIoTD configuration files and the network topology JSON, that can be shared
easily. Also, VIoTDs can access third-party infrastructure or applications during the
simulation. For example, they can exchange data with IoT cloud systems or communicate
with external middleware.

To the best of our knowledge, current solutions do not support an equivalent set of
different functionalities. ns-3 and OMNeT++ focus on network simulation, but omit
device emulation and simulation and provide less flexibility than our network simulator.
While Dockemu tries to address this issue by introducing Docker containers, it still misses
the flexible process to set up the network topology. IOTSim and iFogSim support a
limited set of simulated devices and neglect network simulation. Similarly, VIoLET and
ELIoT mainly focus on the application layer, but neither support network simulation
nor device emulation. Although Cooja addresses some of these issues by simulating the
network layer and running an IoT OS, it only supports Contiki OS.

Only the Hybrid Virtualization Platform proposed by Lai et al. supports device emulation,
but does not address the issue with managing devices in the simulation and provides
very limited network simulation capabilities.

In conclusion, the proposed systems enable end-to-end IoT simulations and demonstrate
reasonable results in the evaluation. Furthermore, the architecture framework introduces
a generic approach to utilize existing emulators and simulators without modifications.
While this addresses the heterogeneity of the IoT, the processor emulation and network
simulation capabilities enable a simulation environment that is closer to the real-world
compared to currently available solutions.

7.2 Future Work

This thesis contributes to a research project at the UIUC that develops an IoT simulation
platform (see Section 1.3). The proposed architecture framework and the network
simulator can be seen as a proof-of-concept for future developments. Although the
current solutions already enable end-to-end simulations, further improvements and
additional features are possible.

At this point, the architecture framework and the network simulator provide only limited
capabilities to mock an environment. Besides simple interactions between the VIoTD
and a simulated environment, the idea is to model real-world scenarios in the future, i.e.,
VIoTDs can be placed into virtual worlds that influence the device connectivity, provide
feedback to VIoTDs, and allow controlled mobility models. The environment has already
been part of the requirements analysis in Chapter 4, but an advanced implementation
was omitted due to time constraints. Building a sophisticated environment requires
thorough planning and additional research. The communication between VIoTDs and the
environment should not impose changes on virtualized devices. In addition, interactions
with the network simulator need to be defined and implemented, as environment models

103

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Conclusion & Future Work

interfere with the simulated network. Also, the solution requires a proper configuration
interface for users that allows the definition of environment modules and mobility models.

Furthermore, additional tests and simulation scenarios are necessary to validate the
simulation results for different configurations, especially load and performance tests to
assess the limits of ns-3. As have been previously shown, ns-3 simulations are resource-
intensive and demonstrate limited real-time capabilities. This impacts the scalability
of the proposed system and requires additional research. While developing a scaling
approach for ns-3 may solve the problem, building a network simulator that focuses on
real-time simulations could be considered as well.

Besides, the integration of emulated network devices would add valuable features to the
proposed solutions. The current system uses synthetic routers and switches. These could
be replaced with device images from real network devices. As NFV becomes increasingly
popular, supporting real instead of synthetic images enables network-related research
and introduces a variety of new use-cases.

104

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

APPENDIX A
VIoTD API Description

Run VIoTD

This endpoint starts the virtualized device and puts the VIoTD into an idle state.

Resource URL

Method URL

GET /api/v1/run

Response

The endpoint responds with the HTTP status code 200 if the request was successful.
Otherwise, a proper error message is returned.

Run preparation task

This endpoint runs the preparation task on the virtualized device. After this task has
finished, the VIoTD returns into an idle state automatically.

Resource URL

Method URL

GET /api/v1/preparation

Response

The endpoint responds with the HTTP status code 200 if the request was successful.
Otherwise, a proper error message is returned.

105

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. VIoTD API Description

Start simulation

This endpoint runs the simulation commands on the virtualized device. After this task
has finished, the VIoTD returns into an idle state automatically. In addition, it is possible
to run the simulation on the VIoTD for a pre-defined time. Using the optional query
parameter duration, the VIoTD stops the simulation automatically after the specified
duration.

Resource URL

Method URL

GET /api/v1/simulation/start?duration=value

Query Parameter

Name Description Data
type

duration Optional. Run the simulation on the VIoTD for a
pre-defined time, specified in seconds.

Integer

Response

The endpoint responds with the HTTP status code 200 if the request was successful.
Otherwise, a proper error message is returned.

Stop simulation

This endpoint stops the simulation on the virtualized device. If the simulation is not
running, an error is returned. After this task has finished, the VIoTD returns into an
idle state automatically.

Resource URL

Method URL

GET /api/v1/simulation/stop

Response

The endpoint responds with the HTTP status code 200 if the request was successful.
Otherwise, a proper error message is returned.

106

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Shutdown VIoTD

This endpoint stops the VIoTD. It turns off the virtualized device, executes required
cleanup tasks and exits the VIoTD.

Resource URL

Method URL

GET /api/v1/shutdown

Response

The endpoint responds with the HTTP status code 200 if the request was successful.
Otherwise, a proper error message is returned.

Health Check

This endpoint runs a health check on the virtualized device and returns its result.

Resource URL

Method URL

GET /api/v1/health

Response

The endpoint responds with the health information of the virtualized device and HTTP
status code 200 if the request was successful. Otherwise, a proper error message is
returned.

Example Response

1 {

2 "device": "testDeviceId",

3 "health": "BUSY"

4 }

Get VIoTD state

This endpoint runs the state of the VIoTD.

Resource URL

Method URL

GET /api/v1/state

107

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. VIoTD API Description

Response

The endpoint responds with the current state of the VIoTD and HTTP status code 200
if the request was successful. Otherwise, a proper error message is returned.

Example Response

1 {

2 "state": "SIMULATION_RUNNING"

3 }

108

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

APPENDIX B
Network Simulator API

Description

Register VIoTD

This endpoint is for VIoTDs to register themselves at the network simulator.

Resource URL

Method URL

POST /api/v1/register

Payload

Name Description Data
type

device_id The unique device identifier of the VIoTD. String
device_type The type of the device. Possible values: vm, container,

process
Enum

tap_if_name The network interface of the VIoTD which should be
used in future simulations.

String

109

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

B. Network Simulator API Description

Example Request

1 {

2 "device_id": "testDeviceId",

3 "device_type": "vm",

4 "tap_if_name": "tap-testDeviceId"

5 }

Response

The name of the network namespace of the network simulator.

Unregister VIoTD

This endpoint is for VIoTDs to unregister themselves at the network simulator.

Resource URL

Method URL

DELETE /api/v1/deregister/<device-id>

URL Parameter

Name Description

device-id The unique device identifier of the VIoTD.

Response

The endpoint responds with the HTTP status code 200 if the request was successful.
Otherwise, a proper error message is returned.

Start network simulation

This endpoint starts ns-3. It creates the submitted network topology and establishes the
channels between VIoTDs.

Resource URL

Method URL

POST /api/v1/simulation/start

110

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Payload

The payload represents the network topology for the simulator in a JSON format. It
contains a list of devices with device-specific configuration options and a list of networks,
providing information about the connection between devices. Due to the variety of
parameters and values, Section 4.2.2 provides a detailed explanation about the JSON
structure, possible parameters, and allowed values. The following description is just a
brief summary.

Name Description Data
type

devices The list of devices participating in the simulation. String
network The list of networks connecting the devices during the

simulation.

Example Request

1 {

2 "devices": [{

3 "device_id": "container1"

4 }, {

5 "device_id": "container2"

6 }],

7 "network": [{

8 "network_type": "CSMA",

9 "general_config": {

10 "data_rate": "5000000",

11 "delay": "2"

12 },

13 "address": {

14 "ip": "10.1.1.0",

15 "netmask": "255.255.255.0"

16 },

17 "devices": ["container1", "container2"]

18 }]

19 }

Response

The endpoint responds with the HTTP status code 200 if the request was successful.
Otherwise, a proper error message is returned.

111

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

B. Network Simulator API Description

Stop network simulation

This endpoint stops the network simulation.

Resource URL

Method URL

GET /api/v1/simulation/stop

Response

The endpoint responds with the HTTP status code 200 if the request was successful.
Otherwise, a proper error message is returned.

Create libvirt network

This endpoint creates a new libvirt network for VM VIoTDs according to the configuration
provided in the payload.

Resource URL

Method URL

POST /api/v1/network/create

Payload

Name Description Data
type

network_name The name of the libvirt network. String
gateway_ip The IP address of the gateway. String
netmask The netmask specifying the IP subnet of the network. String
start_ip The lowest IP address the DHCP server should assign

to any device joining the network.
String

end_ip The highest IP address the DHCP server should assign
to any device joining the network.

String

112

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Example Request

1 {

2 "network_name": "testnet",

3 "gateway_ip": "10.1.1.1",

4 "netmask": "255.255.255.0",

5 "start_ip": "10.1.1.40",

6 "end_ip": "10.1.1.50"

7 }

Response

The endpoint responds with the HTTP status code 200 if the request was successful.
Otherwise, a proper error message is returned.

Remove libvirt network

This endpoint removes a previously created libvirt network. This endpoint does not
consider VIoTDs connected to the network. If the network is removed while VIoTDs are
still connected, these devices will lose their connectivity.

Resource URL

Method URL

DELETE /api/v1/network/remove/<network-name>

URL Parameter

Name Description

network-name The name of the libvirt network which should be removed.

Response

The endpoint responds with the HTTP status code 200 if the request was successful.
Otherwise, a proper error message is returned.

113

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

APPENDIX C
Network Topology JSON

Examples

C.1 Switch Example

The network topology in Figure C.1 shows two nodes connected via a switch, and
Listing C.1 shows the corresponding JSON representation. The data rate of each CSMA
link is set to 5Mbps with a delay of 2ms.

viotd1

viotd2

switch1

Figure C.1: Example of a network connecting two VIoTDs via a switch.

115

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

C. Network Topology JSON Examples

Listing C.1: JSON representation of a network connecting two VIoTDs via a switch.

1 {

2 "devices": [{

3 "device_id": "viotd1",

4 "type": "container",

5 "tap_if_name": "tap-viotd1"

6 }, {

7 "device_id": "viotd2",

8 "type": "vm",

9 "tap_if_name": "tap-viotd2"

10 }, {

11 "device_id": "switch1",

12 "type": "switch"

13 }],

14 "network": [{

15 "network_type": "CSMA",

16 "general_config": {

17 "data_rate": 5000000,

18 "delay": 2

19 },

20 "address": {

21 "ip": "10.1.1.0",

22 "netmask": "255.255.255.0"

23 },

24 "devices": ["viotd1", "switch1"]

25 }, {

26 "network_type": "CSMA",

27 "general_config": {

28 "data_rate": 5000000,

29 "delay": 2

30 },

31 "address": {

32 "ip": "10.1.1.0",

33 "netmask": "255.255.255.0"

34 },

35 "devices": ["viotd2", "switch1"]

36 }]

37 }

116

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

C.2. Router and WiFi AP Example

C.2 Router and WiFi AP Example

The network topology in Figure C.2 connects two VIoTDs using a WiFi AP and a
router. The corresponding JSON representation in Listing C.2 provides an example of a
point-to-point connection and a WiFi network in infrastructure mode.

viotd1 viotd2

ap1 router1

Figure C.2: Example of a network connecting VIoTDs, a router and a WiFi AP.

Listing C.2: JSON representation of a network connecting VIoTDs, a router and a WiFi
AP.

1 {

2 "devices": [{

3 "device_id": "viotd1",

4 "type": "container",

5 "tap_if_name": "tap-viotd1",

6 "xpos": 0.0,

7 "ypos": 0.0,

8 "zpos": 0.0

9 }, {

10 "device_id": "viotd2"

11 "type": "process",

12 "tap_if_name": "tap-viotd2",

13 }, {

14 "device_id": "ap1",

15 "type": "ap",

16 "xpos": 10.0,

17 "ypos": 0.0,

18 "zpos": 0.0

19 }, {

20 "device_id": "router1",

21 "type": "router"

22 }],

23 "network": [{

24 "network_type": "AP_STA",

25 "general_config": {

26 "ssid": "test-net"

27 },

117

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

C. Network Topology JSON Examples

28 "address": {

29 "ip": "10.1.1.0",

30 "netmask": "255.255.255.0"

31 },

32 "devices": ["viotd1", "ap1"]

33 }, {

34 "network_type": "P2P",

35 "general_config": {

36 "data_rate": "512kbps",

37 "delay": "10ms"

38 },

39 "address": {

40 "ip": "10.1.2.0",

41 "netmask": "255.255.255.0"

42 },

43 "devices": ["ap1", "router1"]

44 }, {

45 "network_type": "CSMA",

46 "general_config": {

47 "data_rate": 5000000,

48 "delay": 2

49 },

50 "address": {

51 "ip": "10.1.3.0",

52 "netmask": "255.255.255.0"

53 },

54 "devices": ["router1", "viotd2"]

55 }]

56 }

118

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

C.3. Mesh Example

C.3 Mesh Example

The network topology in Figure C.3 shows a mesh network consisting of three VIoTDs.
The JSON representation in Listing C.3 specifies the ns-3 mesh module via the network
type MESH.

viotd1

viotd2

viotd3

Figure C.3: Example of a mesh network.

Listing C.3: JSON representation of a mesh network using the ns-3 mesh module.

1 {

2 "devices": [{

3 "device_id": "viotd1",

4 "type": "container",

5 "tap_if_name": "tap-viotd1",

6 "xpos": 0.0,

7 "ypos": 10.0,

8 "zpos": 0.0

9 }, {

10 "device_id": "viotd2",

11 "type": "process",

12 "tap_if_name": "tap-viotd2",

13 "xpos": 10.0,

14 "ypos": 0.0,

15 "zpos": 0.0

16 }, {

17 "device_id": "viotd3",

18 "type": "vm",

19 "tap_if_name": "tap-viotd3",

20 "xpos": 10.0,

21 "ypos": 20.0,

22 "zpos": 0.0

23 }],

119

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

C. Network Topology JSON Examples

24 "network": [{

25 "network_type": "MESH",

26 "address": {

27 "ip": "10.1.1.0",

28 "netmask": "255.255.255.0"

29 },

30 "devices": ["viotd1", "viotd2", "viotd3"]

31 }]

32 }

120

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

APPENDIX D
Raspberry Pi Emulator

D.1 Binfmt Registration Script

The script in Listing D.1 registers the byte magic for 32 and 64-bit ARM images. After
executing the script, it is possible to run ARM Docker images on x86 hosts. Listing D.1
requires the static Qemu binaries1 on the host machine to work properly.

Listing D.1: Binfmt registration script for the Raspberry Pi emulator.

1 #!/bin/bash

2

3 # constants

4 QEMU_PATH=/usr/bin

5

6 qemu_target_list="arm arm_be aarch64 aarch64_be"

7 # define magic byte sequence for arm processors (for more

details, see: https://www.kernel.org/doc/html/latest/admin-

guide/binfmt-misc.html)

8 # little endian

9 # 32-bit

10 arm_magic='\x7fELF\x01\x01\x01\x00\x00\x00\x00\x00\x00\x00 \x00

\x00\x02\x00\x28\x00'

11 arm_mask='\xff\xff\xff\xff\xff\xff\xff\x00\xff\xff\xff\xff \xff

\xff\xff\xff\xfe\xff\xff\xff'

12 arm_family=arm

13 arm_flags='F'

1https://github.com/multiarch/qemu-user-static/blob/master/docs/

developers_guide.md, last access at 2020-01-20

121

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D. Raspberry Pi Emulator

14 # 64-bit

15 aarch64_magic='\x7fELF\x02\x01\x01\x00\x00\x00\x00\x00\x00 \x00

\x00\x00\x02\x00\xb7\x00'

16 aarch64_mask='\xff\xff\xff\xff\xff\xff\xff\x00\xff\xff\xff \xff

\xff\xff\xff\xff\xfe\xff\xff\xff'

17 aarch64_family=arm

18 aarch64_flags='F'

19

20 # big endian

21 # 32-bit

22 arm_be_magic='\x7fELF\x01\x02\x01\x00\x00\x00\x00\x00\x00 \x00\

x00\x00\x00\x02\x00\x28'

23 arm_be_mask='\xff\xff\xff\xff\xff\xff\xff\x00\xff\xff\xff \xff\

xff\xff\xff\xff\xff\xfe\xff\xff'

24 arm_be_family=armeb

25 arm_be_flags=''

26 #64-bit

27 aarch64_be_magic='\x7fELF\x02\x02\x01\x00\x00\x00\x00\x00 \x00\

x00\x00\x00\x00\x02\x00\xb7'

28 aarch64_be_mask='\xff\xff\xff\xff\xff\xff\xff\x00\xff\xff \xff\

xff\xff\xff\xff\xff\xff\xfe\xff\xff'

29 aarch64_be_family=armeb

30 aarch64_be_flags='F'

31

32 get_file_occurrences() {

33 return $(find /proc/sys/fs/binfmt_misc -type f -name "qemu-

$cpu" | wc -l);

34 }

35

36 binfmt_already_registered() {

37 for cpu in ${qemu_target_list} ; do

38 get_file_occurrences

39 if [! $? -gt 0]; then

40 return -1

41 fi

42 done

43 return 0

44 }

45

46 check_binfmt_misc() {

47 # load the binfmt_misc module

48 if [! -d /proc/sys/fs/binfmt_misc]; then

49 if ! /sbin/modprobe binfmt_misc ; then

122

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D.1. Binfmt Registration Script

50 exit 1

51 fi

52 fi

53 if [! -f /proc/sys/fs/binfmt_misc/register]; then

54 if ! mount binfmt_misc -t binfmt_misc /proc/sys/fs/

binfmt_misc ; then

55 exit 1

56 fi

57 fi

58

59 if [! -w /proc/sys/fs/binfmt_misc/register] ; then

60 echo "ERROR: cannot write to /proc/sys/fs/binfmt_misc/

register"

61 exit 1

62 fi

63 }

64

65 register_binfmt_type() {

66 echo ":qemu-$cpu:M::$magic:$mask:$qemu:$flags" > /proc/sys/fs

/binfmt_misc/register

67 }

68

69 set_binfmts() {

70 # probe cpu type

71 host_family=$(uname -m)

72

73 # register the interpreter for each cpu

74 for cpu in ${qemu_target_list} ; do

75 magic=$(eval echo \$${cpu}_magic)

76 mask=$(eval echo \$${cpu}_mask)

77 family=$(eval echo \$${cpu}_family)

78 flags=$(eval echo \$${cpu}_flags)

79

80 qemu="$QEMU_PATH/qemu-$cpu-static"

81

82 if ["$host_family" != "$family"] ; then

83 echo "Setting $qemu as binfmt interpreter for $cpu"

84 register_binfmt_type

85 fi

86 done

87 }

88

89

123

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D. Raspberry Pi Emulator

90 # register binary types

91 check_binfmt_misc

92

93 if ["${1}" = "--reset"]; then

94 shift

95 find /proc/sys/fs/binfmt_misc -type f -name 'qemu-*' -exec sh

-c 'echo -1 > {}' \;

96 fi

97

98 binfmt_already_registered

99 if [$? -ne 0]; then

100 set_binfmts

101 fi

D.2 Raspberry Pi Docker Image

The script in Listing D.2 creates the Docker image for the Raspberry Pi emulator. It
uses the Raspbian Buster2 OS as the base image.

Listing D.2: Script to create the Docker image for the Raspberry Pi emulator.

1 #!/bin/bash

2 # script based on https://hub.docker.com/r/raspbianos/stretch

3

4 debootstrap --variant=minbase --arch=armhf buster raspbian-

buster http://archive.raspbian.org/raspbian

5

6 chroot raspbian-buster apt install -y man-db

7 chroot raspbian-buster locale-gen en_US.UTF-8 && dpkg-

reconfigure locales && ls /usr/share/locale | grep -v en |

xargs rm -rf

8 chroot raspbian-buster rm -rf /usr/share/doc/* /usr/share/

common-licences/*
9 chroot raspbian-buster ls /usr/share/man | grep -v man | xargs

rm -rf

10 chroot raspbian-buster rm -f /var/cache/apt/archives/.deb /var/

cache/apt/archives/partial/.deb /var/cache/apt/*.bin

11

12 tar -C ./raspbian-buster -cf raspbian-buster.tar .

13 docker import --change "ENTRYPOINT [\"/bin/bash\"]" raspbian-

buster.tar mle110/raspbian:buster

2https://www.raspberrypi.org/downloads/raspbian, last access at 2020-01-20

124

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

APPENDIX E
Evaluation Scripts

E.1 Simulated Sensor

Listing E.1: Python script of a simulated sensor.

1 import argparse, socket, logging, sys

2 from time import sleep

3 from netifaces import interfaces, ifaddresses, AF_INET

4

5

6 logging.basicConfig(stream=sys.stdout, level=logging.DEBUG,

7 format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s')

8

9

10 def open_sensor_data_file(path):

11 return open(path, "r+")

12

13

14 def get_ip_address():

15 ifaces = interfaces()

16 ifaces.remove("lo")

17 # We know that a process only has one additional interface

18 # besides the loopback interface

19 ipv4_data = ifaddresses(ifaces[0])[AF_INET]

20 ipv4 = ipv4_data[0]['addr']

21 return ipv4

22

23

125

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

E. Evaluation Scripts

24 def run_sensor(data_file, port):

25 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

26 s.bind((get_ip_address(), port))

27 s.listen()

28 logging.info("Sensor started successfully. Listening on

port {}".format(port))

29 conn, addr = s.accept()

30

31 while conn.fileno() > -1:

32 try:

33 conn.recv(1024)

34 sensor_data = data_file.readline()

35 logging.info("Measure temperature: %s",

sensor_data)

36 conn.sendall(str.encode(sensor_data))

37 except BrokenPipeError:

38 logging.info("Shutting down sensor.")

39 conn.close()

40

41

42 if __name__ == "__main__":

43 parser = argparse.ArgumentParser(description='Sensor

process for the VIoTD evaluation.')

44 parser.add_argument('--data-path', dest='path', required=

True, help='The path to the sensor data file.')

45 parser.add_argument('--port', dest='port', required=True,

type=int, help='The port the sensor should listen on.')

46 args = parser.parse_args()

47

48 sensor_data_file = open_sensor_data_file(args.path)

49 run_sensor(sensor_data_file, args.port)

126

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

E.2. Controller Program

E.2 Controller Program

Listing E.2: Controller program for the evaluation use-case.

1 import argparse, socket, requests, logging, sys

2 from time import sleep

3

4

5 logging.basicConfig(stream=sys.stdout, level=logging.DEBUG,

6 format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s')

7

8

9 class ControllerData:

10 def __init__(self, sensor_host, sensor_port, server_host,

server_port, threshold):

11 self.sensor_host = sensor_host

12 self.sensor_port = sensor_port

13 self.server_host = server_host

14 self.server_port = server_port

15 self.threshold = threshold

16

17 def get_notification_url(self):

18 return "http://{}:{}/notification".format(self.

server_host, self.server_port)

19

20 @classmethod

21 def from_args(cls, args):

22 return cls(args.sensor_host, args.sensor_port, args.

server_host, args.server_port,

23 args.threshold)

24

25

26 def process_sensor_data(data, controller_data):

27 if (data > controller_data.threshold):

28 # send notification to server

29 logging.info("Threshold exceeded: {}. Send notification

to server.".format(data))

30 payload = {

31 "threshold": controller_data.threshold,

32 "value": data

33 }

34

35

127

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

E. Evaluation Scripts

36 try:

37 requests.post(url = controller_data.

get_notification_url(), json = payload)

38 except:

39 logging.error("Cannot send notification to server")

40

41

42 def request_sensor_data(sock):

43 sock.sendall(b'value')

44 return float(sock.recv(1024).decode())

45

46

47 def run_controller(controller_data):

48 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

49 s.connect((controller_data.sensor_host, controller_data

.sensor_port))

50 logging.info("Start polling for sensor values.")

51

52 while True:

53 sleep(1)

54 # poll sensor

55 sensor_data = request_sensor_data(s)

56 logging.info("Poll sensor data: {}".format(

sensor_data))

57 # check threshold and send notification

58 # if applicable

59 process_sensor_data(sensor_data, controller_data)

60

61

62 if __name__ == "__main__":

63 parser = argparse.ArgumentParser(description='Controller

for the VIoTD evaluation.')

64 parser.add_argument('--sensor-host', dest='sensor_host',

required=True, help='The host where the sensor is running.')

65 parser.add_argument('--sensor-port', dest='sensor_port',

required=True, type=int, help='The port where the sensor is

listening on.')

66 parser.add_argument('--server-host', dest='server_host',

required=True, help='The host where the server is running.')

67 parser.add_argument('--server-port', dest='server_port',

required=True, type=int, help='The port where the server is

listening on.')

128

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

E.3. Server Program

68 parser.add_argument('--threshold', dest='threshold',

required=True, type=float, help='The sensor data threshold.

Values higher than the threshold will be reported to the

server.')

69 args = parser.parse_args()

70

71 controller_data = ControllerData.from_args(args)

72 run_controller(controller_data)

E.3 Server Program

Listing E.3: Server program for the evaluation use-case.

1 import argparse, logging, sys

2 from flask import Flask, request

3

4

5 logging.basicConfig(stream=sys.stdout, level=logging.DEBUG,

6 format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s')

7 app = Flask(__name__)

8

9

10 @app.route("/notification", methods=["POST"])

11 def notification_received():

12 logging.info("Notification received. Data: {}".format(

request.get_json()))

13 return "OK"

14

15 if __name__ == "__main__":

16 parser = argparse.ArgumentParser(description="Server for

the VIoTD evaluation.")

17 parser.add_argument("--port", dest="port", required=True,

type=int, help="The port the sensor should listen on.")

18 args = parser.parse_args()

19

20 app.run(host = "0.0.0.0", port = args.port)

129

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

E. Evaluation Scripts

E.4 Network Topology JSON

Listing E.4: JSON representation of the network functional use-case evaluation.

1 {

2 "devices": [{

3 "device_id": "sensor",

4 "xpos": 0.0,

5 "ypos": 0.0,

6 "zpos": 0.0

7 }, {

8 "device_id": "controller",

9 "xpos": 10.0,

10 "ypos": 0.0,

11 "zpos": 0.0

12 }, {

13 "device_id": "server"

14 }, {

15 "device_id": "router1",

16 "type": "router",

17 "xpos": 25.0,

18 "ypos": 0.0,

19 "zpos": 0.0

20 }],

21 "network": [{

22 "network_type": "ADHOC",

23 "general_config": {

24 "ssid": "sensornet"

25 },

26 "address": {

27 "ip": "10.1.1.0",

28 "netmask": "255.255.255.0"

29 },

30 "devices": ["sensor", "controller", "router1"]

31 }, {

32 "network_type": "CSMA",

33 "general_config": {

34 "data_rate": "5000000",

35 "delay": "2"

36 },

37 "address": {

38 "ip": "10.1.2.0",

39 "netmask": "255.255.255.0"

130

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

E.4. Network Topology JSON

40 },

41 "devices": ["router1", "server"]

42 }]

43 }

131

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Figures

2.1 Overview of important IoT protocols. Selection based on [48]. 11
2.2 Hypervisor and container virtualization. 16
2.3 High-level architecture of libvirt. 18
2.4 libvirt domain lifecycle. 19
2.5 The basic ns-3 architecture [91] . 23

3.1 IoT research process cycle based on [96]. 26

4.1 Integration of the architecture framework and the network simulator into the
simulation platform. 38

4.2 Module design of the architecture framework. 42
4.3 Possible states and actions of the VIoTD. 43
4.4 Example of an IoT simulation with VIoTDs and the network simulator. . 60

5.1 The VM network setup. 74

6.1 Simple IoT setup. 78
6.2 Performance of the Raft implementation running on localhost and using

different election intervals. 90
6.3 Performance of the Raft implementation running on localhost and using

different minimum election timeouts. 90
6.4 Number of won elections for each server per election interval in the baseline

evaluation. 91
6.5 Performance of the Raft implementation in the CSMA simulation. Each line

represents 1000 trials. 92
6.6 Number of won elections in the CSMA simulation for each server per election

interval. 93
6.7 Network topology for the mesh base scenario. 94
6.8 Performance of Raft in a mesh network with varying minimum election

timeouts and 10m distance between servers. 95
6.9 Performance of Raft in a mesh network with varying minimum election

timeouts and 100m distance between servers. 95
6.10 Network topology for the mesh line scenario. 96

133

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.11 Performance of Raft in a one dimensional mesh network with a distance of
10m between two consecutive nodes. 97

6.12 Performance of Raft in a one dimensional mesh network with a distance of
50m between two consecutive nodes. 97

6.13 Number of won elections for each server per election interval in the line
topology simulation with 50m distance between servers. 98

C.1 Example of a network connecting two VIoTDs via a switch. 115
C.2 Example of a network connecting VIoTDs, a router and a WiFi AP. . . . 117
C.3 Example of a mesh network. 119

134

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Tables

4.1 User stories for User. 39
4.2 User stories for Developer. 41
4.3 User stories for Admin. 41
4.4 Explanation of the platform configuration options. 49
4.6 Explanation of the runtime configuration options. 50
4.8 Explanation of the general VIoTD configuration options. 51
4.10 Explanation of the VM VIoTD configuration options. 53
4.12 Explanation of the container VIoTD configuration options. 54
4.14 Explanation of the process VIoTD configuration options. 55
4.16 Explanation of the device JSON object. 58
4.18 Explanation of the network JSON object. 59

5.1 Required dependencies. 70

6.1 Experimental setup for the functional evaluation. 79
6.3 Missing or partially implemented requirements. 87
6.5 Experimental cloud setup for the Raft evaluation. 89

135

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Listings

4.1 Example platform configuration yaml file. 48
4.2 Reporting module configuration to forward output to Kafka topic. 48
4.3 Monitoring & logging module configuration to store output in a file. . . . 50
4.4 Example general VIoTD configuration. 51
4.5 Example VM VIoTD configuration. 52
4.6 Example container VIoTD configuration. 54
4.7 Example process VIoTD configuration. 55
4.8 JSON format for defining network topologies. 57
4.9 VIoTD Configuration for the Raspberry Pi emulator. 66
4.10 Content of the start simulation file to start the Raft algorithm on the Raspberry

Pi emulator. 67
4.11 Content of the stop simulation file to stop the Raft algorithm on the Raspberry

Pi emulator. 67

5.1 Provision a VM image using virsh. 71
5.2 Lines to be removed from libvirt XML configuration. 72

6.1 VIoTD configuration for the simulated sensor. 79
6.2 Start simulation file for the sensor. 80
6.3 Stop simulation file for the sensor. 80
6.4 Preparation task file for the controller. 81
6.5 Start simulation command for the controller. 81
6.6 Stop simulation command for the controller. 81
6.7 VIoTD configuration for the Ubuntu VM. 82
6.8 Preparation task file for the server. 82
6.9 Start simulation command for the server. 82
6.10 Stop simulation command for the server. 83
6.11 JSON payload to create the libvirt network for the VM. 83
6.12 Platform configuration for the use-case scenario. 84
6.13 Log output of the sensor during the simulation. 85
6.14 Log output of the controller during the simulation. 85
6.15 Log output of the server during the simulation. 85

C.1 JSON representation of a network connecting two VIoTDs via a switch. . 116

137

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

C.2 JSON representation of a network connecting VIoTDs, a router and a WiFi
AP. 117

C.3 JSON representation of a mesh network using the ns-3 mesh module. . . . 119

D.1 Binfmt registration script for the Raspberry Pi emulator. 121
D.2 Script to create the Docker image for the Raspberry Pi emulator. 124

E.1 Python script of a simulated sensor. 125
E.2 Controller program for the evaluation use-case. 127
E.3 Server program for the evaluation use-case. 129
E.4 JSON representation of the network functional use-case evaluation. 130

138

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[1] A. S. Abdul-Qawy, P. Pramod, E. Magesh, and T. Srinivasulu, “The Internet of
Things (IoT): An Overview,” International Journal of engineering Research and
Applications, vol. 1, no. 5, pp. 71–82, 2015.

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Computer
Networks, vol. 54, pp. 2787–2805, 2010.

[3] M. Bures, T. Cerny, and B. S. Ahmed, “Internet of Things: Current Challenges
in the Quality Assurance and Testing Methods,” in Information Science and
Applications, pp. 625–634, Springer, 2019.

[4] A. Taivalsaari and T. Mikkonen, “A Roadmap to the Programmable World: Soft-
ware Challenges in the IoT Era,” IEEE Software, vol. 34, no. 1, pp. 72–80, 2017.

[5] P. Rosenkranz, M. Wählisch, E. Baccelli, and L. Ortmann, “A Distributed Test
System Architecture for Open-source IoT Software,” in Workshop on IoT Challenges
in Mobile and Industrial Systems, pp. 43–48, ACM, 2015.

[6] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet
of Things: A Survey on Enabling Technologies, Protocols, and Applications,”
Communications Surveys & Tutorials, vol. 17, pp. 2347–2376, 2015.

[7] J. A. Stankovic, “Research Directions for the Internet of Things,” Internet of
Things Journal, vol. 1, pp. 3–9, 2014.

[8] E. Ojie and E. Pereira, “Simulation Tools in Internet of Things: A Review,” in
International Conference on Internet of Things and Machine Learning, pp. 1–7,
ACM, 2017.

[9] S. Sotiriadis, N. Bessis, E. Asimakopoulou, and N. Mustafee, “Towards Simulating
the Internet of Things,” in International Conference on Advanced Information
Networking and Applications Workshops, pp. 444–448, IEEE, 2014.

[10] G. Kecskemeti, G. Casale, D. N. Jha, J. Lyon, and R. Ranjan, “Modelling and
Simulation Challenges in Internet of Things,” IEEE Cloud Computing, vol. 4, no. 1,
pp. 62–69, 2017.

139

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[11] G. D’Angelo, S. Ferretti, and V. Ghini, “Smart multihoming in smart shires:
Mobility and communication management for smart services in countrysides,” in
Symposium on Computers and Communication, pp. 970–975, IEEE, 2016.

[12] G. D’Angelo, S. Ferretti, and V. Ghini, “Simulation of the Internet of Things,” in
International Conference on High Performance Computing Simulation, pp. 1–8,
IEEE, 2016.

[13] D. T. Davis, T. H. Chung, M. R. Clement, and M. A. Day, “Consensus-based
data sharing for large-scale aerial swarm coordination in lossy communications
environments,” in International Conference on Intelligent Robots and Systems,
pp. 3801–3808, IEEE, 2016.

[14] X. Li, Q. Huang, and D. Wu, “Distributed Large-Scale Co-Simulation for IoT-Aided
Smart Grid Control,” IEEE Access, vol. 5, pp. 19951–19960, 2017.

[15] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, “Internet of Things (IoT):
Research, Simulators, and Testbeds,” Internet of Things Journal, vol. 5, no. 3,
pp. 1637–1647, 2018.

[16] Y. Kuwabara, T. Yokotani, and H. Mukai, “Hardware emulation of IoT devices and
verification of application behavior,” in Asia-Pacific Conference on Communications,
pp. 1–6, IEEE, 2017.

[17] A. Mäkinen, J. Jiménez, and R. Morabito, “ELIoT: Design of an emulated IoT
platform,” in International Symposium on Personal, Indoor, and Mobile Radio
Communications, pp. 1–7, IEEE, 2017.

[18] A. Detti, G. Tropea, G. Rossi, J. A. Martinez, A. F. Skarmeta, and H. Nakazato,
“Virtual IoT Systems: Boosting IoT Innovation by Decoupling Things Providers
and Applications Developers,” in Global IoT Summit, pp. 1–6, IEEE, 2019.

[19] E. J. Marinissen, Y. Zorian, M. Konijnenburg, C.-T. Huang, P.-H. Hsieh, P. Cock-
burn, J. Delvaux, V. Rožić, B. Yang, D. Singelée, I. Verbauwhede, C. Mayor, R. van
Rijsinge, and C. Reyes, “IoT: Source of test challenges,” in IEEE European Test
Symposium, pp. 1–10, IEEE, 2016.

[20] D. Ongaro and J. Ousterhout, “In Search of an Understandable Consensus Algo-
rithm,” in USENIX Annual Technical Conference, pp. 305–319, USENIX Associa-
tion, 2014.

[21] A. Ailijiang, A. Charapko, and M. Demirbas, “Consensus in the Cloud: Paxos
Systems Demystified,” in International Conference on Computer Communication
and Networks, pp. 1–10, IEEE, 2016.

[22] S. Kar, G. Hug, J. Mohammadi, and J. M. Moura, “Distributed State Estimation
and Energy Management in Smart Grids: A Consensus+ Innovations Approach,”
Journal on Selected Topics in Signal Processing, vol. 8, no. 6, pp. 1022–1038, 2014.

140

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[23] V. Poirot, B. A. Nahas†, and O. Landsiedel, “Paxos Made Wireless: Consensus in
the Air,” in International Conference on Embedded Wireless Systems and Networks,
pp. 1–12, Junction Publishing, 2019.

[24] S. J. Johnston, P. J. Basford, C. S. Perkins, H. Herry, F. P. Tso, D. Pezaros, R. D.
Mullins, E. Yoneki, S. J. Cox, and J. Singer, “Commodity single board computer
clusters and their applications,” Future Generation Computer Systems, vol. 89,
pp. 201–212, 2018.

[25] A. Rayes and S. Salam, Internet of Things From Hype to Reality. Springer, 2 ed.,
2019.

[26] F. Khodadadi, A. Dastjerdi, and R. Buyya, Internet of Things: Principles and
Paradigms. Morgan Kaufmann, 2016.

[27] F. Firouzi, B. Farahani, M. Weinberger, G. DePace, and F. S. Aliee, Intelligent
Internet of Things: From Device to Fog and Cloud. Springer, 2020.

[28] F. Assaderaghi, G. Chindalore, B. Ibrahim, H. de Jong, M. Joye, S. Nassar,
W. Steinbauer, M. Wagner, and T. Wille, “Privacy and security: Key requirements
for sustainable IoT growth,” in Symposium on VLSI Technology, pp. 8–13, IEEE,
2017.

[29] Alliance for Internet of Things Innovation, “IoT LSP Standard Framework Concepts
(Release 2.9),” 2019. [Online]. Available: https://aioti.eu. [Accessed: Mar. 13, 2020].

[30] European Telecommunications Standards Institute, “IoT Standards landscape and
future evolutions,” 2016. [Online]. Available: http://www.etsi.org. [Accessed: Mar.
13, 2020].

[31] I. U. Sari and D. Karlikaya, “Evaluation of User Preference Criteria on Smart
Technologies for Smart Buildings,” in Intelligent and Fuzzy Techniques in Big Data
Analytics and Decision Making, pp. 713–721, Springer, 2020.

[32] D. Minoli, K. Sohraby, and B. Occhiogrosso, “IoT Considerations, Requirements,
and Architectures for Smart Buildings—Energy Optimization and Next-Generation
Building Management Systems,” Internet of Things Journal, vol. 4, no. 1, pp. 269–
283, 2017.

[33] A. Kusiak, “Smart manufacturing,” International Journal of Production Research,
vol. 56, no. 1-2, pp. 508–517, 2018.

[34] H. S. Kang, J. Y. Lee, S. Choi, H. Kim, J. H. Park, J. Y. Son, B. H. Kim, and
S. D. Noh, “Smart Manufacturing: Past Research, Present Findings, and Future
Directions,” International Journal of Precision Engineering and Manufacturing-
Green Technology, vol. 3, pp. 111–128, 2016.

141

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[35] P. Pype, G. Daalderop, E. Schulz-Kamm, E. Walters, G. Blom, and S. Westermann,
Automated Driving: Safer and More Efficient Future Driving. Springer, 2017.

[36] R. Faria, L. Brito, K. Baras, and J. Silva, “Smart mobility: A survey,” in Interna-
tional Conference on Internet of Things for the Global Community, pp. 1–8, IEEE,
2017.

[37] A. Abbas, S. U. Khan, and A. Y. Zomaya, Handbook of Large-Scale Distributed
Computing in Smart Healthcare. Springer, 2017.

[38] S. B. Baker, W. Xiang, and I. Atkinson, “Internet of Things for Smart Healthcare:
Technologies, Challenges, and Opportunities,” IEEE Access, vol. 5, pp. 26521–26544,
2017.

[39] H. Lund, P. A. Østergaard, D. Connolly, and B. V. Mathiesen, “Smart energy and
smart energy systems,” Energy, vol. 137, pp. 556 – 565, 2017.

[40] Q. Le-Dang and T. Le-Ngoc, Handbook of Smart Cities: Software Services and
Cyber Infrastructure. Springer, 2018.

[41] S. Dustdar, S. Nastić, and O. Šćekić, Smart Cities: The Internet of Things, People
and Systems. Springer, 2017.

[42] H. Yoon, S. H. Park, and K. T. Lee, “Lightful user interaction on smart wearables,”
Personal and Ubiquitous Computing, vol. 20, no. 6, pp. 973–984, 2016.

[43] W. Sun, J. Liu, and H. Zhang, “When Smart Wearables Meet Intelligent Vehicles:
Challenges and Future Directions,” Wireless Communications, vol. 24, no. 3, pp. 58–
65, 2017.

[44] P. Jayaraman, A. Yavari, D. Georgakopoulos, A. Morshed, and A. Zaslavsky,
“Internet of Things Platform for Smart Farming: Experiences and Lessons Learnt,”
Sensors, vol. 16, no. 11, p. 1884, 2016.

[45] P. Tripicchio, M. Satler, G. Dabisias, E. Ruffaldi, and C. A. Avizzano, “Towards
Smart Farming and Sustainable Agriculture with Drones,” in International Confer-
ence on Intelligent Environments, pp. 140–143, IEEE, 2015.

[46] M. Ryu, J. Yun, T. Miao, I. Ahn, S. Choi, and J. Kim, “Design and implementation
of a connected farm for smart farming system,” in Sensors, pp. 1–4, IEEE, 2015.

[47] M. Papert and A. Pflaum, “Development of an Ecosystem Model for the Realization
of Internet of Things (IoT) Services in Supply Chain Management,” Electronic
Markets, vol. 27, no. 2, pp. 175–189, 2017.

[48] T. Salman and R. Jain, “Networking Protocols and Standards for Internet of
Things,” Internet of Things and Data Analytics Handbook, vol. 2015, pp. 215–238,
2015.

142

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[49] S. Al-Sarawi, M. Anbar, K. Alieyan, and M. Alzubaidi, “Internet of Things (IoT)
communication protocols: Review,” in International Conference on Information
Technology, pp. 685–690, IEEE, 2017.

[50] “IoT Technology Guidebook,” 2020. [Online]. Available:
https://www.postscapes.com/internet-of-things-technologies/. [Accessed: Mar. 15,
2020].

[51] C. Sobin, “A Survey on Architecture, Protocols and Challenges in IoT,” Wireless
Personal Communications, pp. 1–47, 2020.

[52] J. Olsson, “6lowpan demystified,” 2014. [Online]. Available:
https://www.ti.com/lit/wp/swry013/swry013.pdf. [Accessed: Mar. 15, 2020].

[53] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6TiSCH: deterministic
IP-enabled industrial internet (of things),” Communications Magazine, vol. 52,
no. 12, pp. 36–41, 2014.

[54] A. Aijaz and A. H. Aghvami, “Cognitive Machine-to-Machine Communications
for Internet-of-Things: A Protocol Stack Perspective,” Internet of Things Journal,
vol. 2, no. 2, pp. 103–112, 2015.

[55] C. Gomez, J. Oller, and J. Paradells, “Overview and Evaluation of Bluetooth Low
Energy: An Emerging Low-Power Wireless Technology,” Sensors, vol. 12, no. 9,
pp. 11734–11753, 2012.

[56] D. De Guglielmo, S. Brienza, and G. Anastasi, “IEEE 802.15.4e: A survey,”
Computer Communications, vol. 88, pp. 1–24, 2016.

[57] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and
T. Watteyne, “Understanding the Limits of LoRaWAN,” Communications Magazine,
vol. 55, no. 9, pp. 34–40, 2017.

[58] J. de Carvalho Silva, J. J. P. C. Rodrigues, A. M. Alberti, P. Solic, and A. L. L.
Aquino, “LoRaWAN — A low power WAN protocol for Internet of Things: A review
and opportunities,” in International Multidisciplinary Conference on Computer
and Energy Science, pp. 1–6, IEEE, 2017.

[59] T. Adegbija, A. Rogacs, C. Patel, and A. Gordon-Ross, “Microprocessor Opti-
mizations for the Internet of Things: A Survey,” Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 37, pp. 7–20, 2018.

[60] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating Systems for Low-End
Devices in the Internet of Things: A Survey,” Internet of Things Journal, vol. 3,
no. 5, pp. 720–734, 2016.

[61] M. H. Weik, Computer Science and Communications Dictionary. Springer, 2001.

143

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[62] K. N. Patel and R. h. Jhaveri, “A Survey on Emulation Testbeds for Mobile Ad-hoc
Networks,” Procedia Computer Science, vol. 45, pp. 581–591, 2015.

[63] M. Kropff, T. Krop, M. Hollick, P. S. Mogre, and R. Steinmetz, “A survey on real
world and emulation testbeds for mobile ad hoc networks,” in International Con-
ference on Testbeds and Research Infrastructures for the Development of Networks
and Communities., pp. 448–453, IEEE, 2006.

[64] I. McGregor, “The relationship between simulation and emulation,” in Proceedings
of the Winter Simulation Conference, pp. 1683–1688, IEEE, 2002.

[65] J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: A Survey on Concepts, Tax-
onomy and Associated Security Issues,” in International Conference on Computer
and Network Technology, pp. 222–226, IEEE, 2010.

[66] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. Lightweight Virtu-
alization: A Performance Comparison,” in International Conference on Cloud
Engineering, pp. 386–393, IEEE, 2015.

[67] R. Y. Ameen and A. Y. Hamo, “Survey of Server Virtualization,” International
Journal of Computer Science and Information Security, vol. 11, no. 3, pp. 65–74,
2013.

[68] F. Rodríguez-Haro, F. Freitag, L. Navarro, E. Hernánchez-sánchez, N. Farías-
Mendoza, J. A. Guerrero-Ibáñez, and A. González-Potes, “A summary of virtual-
ization techniques,” Procedia Technology, vol. 3, pp. 267–272, 2012.

[69] R. Morabito, “Virtualization on Internet of Things Edge Devices With Container
Technologies: A Performance Evaluation,” IEEE Access, vol. 5, pp. 8835–8850,
2017.

[70] D. Rountree, Security for Microsoft Windows System Administrators. Syngress,
2011.

[71] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible operating
system for tiny networked sensors,” in International Conference on Local Computer
Networks, pp. 455–462, IEEE, 2004.

[72] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C. Schmidt, “RIOT OS:
Towards an OS for the Internet of Things,” in Conference on Computer Communi-
cations Workshops, pp. 79–80, IEEE, 2013.

[73] “libvirt Docs.” [Online]. Available: https://libvirt.org/docs.html. [Accessed: Mar.
18, 2020].

[74] “libvirt Wiki.” [Online]. Available: https://wiki.libvirt.org. [Accessed: Mar. 18,
2020].

144

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[75] W. D. Ashley, D. Berrange, C. Lalancette, L. Stump, D. Veillard, D. Coul-
son, D. Jorm, and S. Radvan, “libvirt Application Development Guide Us-
ing Python.” [Online]. Available: https://libvirt.org/docs/libvirt-appdev-guide-
python/en-US/html/. [Accessed: Mar. 18, 2020].

[76] S. Cheruvu, A. Kumar, N. Smith, and D. M. Wheeler, Demystifying Internet of
Things Security: Successful IoT Device/Edge and Platform Security Deployment.
Apress, 2020.

[77] “QEMU User Documentation.” [Online]. Available:
https://qemu.weilnetz.de/doc/qemu-doc.html. [Accessed: Mar. 18, 2020].

[78] J. Lai, J. Tian, D. Jiang, J. Sun, and K. Zhang, “A Hybrid Virtualization Approach
to Emulate Heterogeneous Network Nodes,” in Simulation Tools and Techniques,
pp. 228–237, Springer, 2019.

[79] M. Becker, H. Zabel, and W. Mueller, “A Mixed Level Simulation Environment
for Stepwise RTOS Software Refinement,” in Distributed, Parallel and Biologically
Inspired Systems, pp. 145–156, Springer, 2010.

[80] N. Poulton, Docker Deep Dive. Leanpub, 2018.

[81] “Docker Documentation.” [Online]. Available: https://docs.docker.com. [Accessed:
Mar. 18, 2020].

[82] “Linux Namespaces.” [Online]. Available: http://man7.org/linux/man-
pages/man7/namespaces.7.html. [Accessed: Mar. 18, 2020].

[83] “Linux Bridge.” [Online]. Available: https://wiki.linuxfoundation.org/networking/bridge.
[Accessed: Mar. 19, 2020].

[84] “Linux TUN/TAP device driver.” [Online]. Available:
https://www.kernel.org/doc/Documentation/networking/tuntap.txt. [Accessed:
Mar. 19, 2020].

[85] “Linux Veth.” [Online]. Available:http://man7.org/linux/man-
pages/man4/veth.4.html. [Accessed: Mar. 19, 2020].

[86] “Linux Network Namespaces.” [Online]. Available: http://man7.org/linux/man-
pages/man7/network_namespaces.7.html. [Accessed: Mar. 19, 2020].

[87] “Linux Iptables.” [Online]. Available: http://man7.org/linux/man-
pages/man8/iptables.8.html. [Accessed: Mar. 19, 2020].

[88] “ns-3 Manual.” [Online]. Available: https://www.nsnam.org/docs/release/3.30/manual/ns-
3-manual.pdf. [Accessed: Mar. 19, 2020].

[89] “ns-3 Models.” [Online]. Available: https://www.nsnam.org/docs/release/3.30/models/ns-
3-model-library.pdf. [Accessed: Mar. 19, 2020].

145

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[90] “ns-3 Tutorial.” [Online]. Available: https://www.nsnam.org/docs/release/3.30/tutorial/ns-
3-tutorial.pdf. [Accessed: Mar. 19, 2020].

[91] “ns-3 Training.” [Online]. Available: https://slideplayer.com/slide/12553294. [Ac-
cessed: Mar. 19, 2020].

[92] L. Czaja, Introduction to Distributed Computer Systems : Principles and Features.
Springer, 2018.

[93] H. Bagci and A. Kara, “A Lightweight and High Performance Remote Procedure
Call Framework for Cross Platform Communication.,” in International Conference
on Software Technologies, pp. 117–124, SciTePress, 2016.

[94] R. Abernethy, Programmer’s Guide to Apache Thrift. Manning Publications, 2019.

[95] “Micronaut.” [Online]. Available: https://docs.micronaut.io/latest/guide/index.html.
[Accessed: Mar. 19, 2020].

[96] G. Z. Papadopoulos, A. Gallais, G. Schreiner, E. Jou, and T. Noel, “Thorough IoT
testbed characterization: From proof-of-concept to repeatable experimentations,”
Computer Networks, vol. 119, pp. 86–101, 2017.

[97] V. Gupta, S. K. Devar, N. H. Kumar, and K. P. Bagadi, “Modelling of IoT Traffic
and Its Impact on LoRaWAN,” in Global Communications Conference, pp. 1–6,
IEEE, 2017.

[98] F. Al-Turjman, E. Ever, and H. Zahmatkesh, “Small Cells in the Forthcoming
5G/IoT: Traffic Modelling and Deployment Overview,” IEEE Communications
Surveys Tutorials, vol. 21, no. 1, pp. 28–65, 2019.

[99] A. Strielkina, D. Uzun, and V. Kharchenko, “Modelling of healthcare IoT using
the queueing theory,” in Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications, vol. 2, pp. 849–852, IEEE, 2017.

[100] R. Casadei, G. Fortino, D. Pianini, W. Russo, C. Savaglio, and M. Viroli, “Modelling
and simulation of Opportunistic IoT Services with Aggregate Computing,” Future
Generation Computer Systems, vol. 91, pp. 252–262, 2019.

[101] G. Z. Papadopoulos, J. Beaudaux, A. Gallais, T. Noël, and G. Schreiner, “Adding
value to WSN simulation using the IoT-LAB experimental platform,” in Wireless
and Mobile Computing, Networking and Communications, pp. 485–490, IEEE, 2013.

[102] A. Tonneau, N. Mitton, and J. Vandaele, “A Survey on (mobile) Wireless Sensor
Network Experimentation Testbeds,” in International Conference on Distributed
Computing in Sensor Systems, pp. 263–268, IEEE, 2014.

[103] J. Ma, J. Wang, and T. Zhang, “A Survey of Recent Achievements for Wireless Sen-
sor Networks Testbeds,” in International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC), pp. 378–381, IEEE, 2017.

146

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[104] H. Isakovic, D. Ratasich, C. Hirsch, M. Platzer, B. Wally, T. Rausch, D. Nickovic,
W. Krenn, G. Kappel, S. Dustdar, et al., “CPS/IoT Ecosystem: A Platform
for Research and Education,” in Cyber Physical Systems. Model-Based Design,
pp. 206–213, Springer, 2018.

[105] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. Pissard-Gibollet,
F. Saint-Marcel, G. Schreiner, J. Vandaele, and T. Watteyne, “FIT IoT-LAB: A
large scale open experimental IoT testbed,” in World Forum on Internet of Things,
pp. 459–464, IEEE, 2015.

[106] L. Sanchez, L. Muñoz, J. A. Galache, P. Sotres, J. R. Santana, V. Gutierrez,
R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis, and D. Pfisterer, “Smart-
Santander: IoT experimentation over a smart city testbed,” Computer Networks,
vol. 61, pp. 217–238, 2014.

[107] H. Hellbrück, M. Pagel, A. Köller, D. Bimschas, D. Pfisterer, and S. Fischer,
“Using and operating wireless sensor network testbeds with WISEBED,” in Annual
Mediterranean Ad Hoc Networking Workshop, pp. 171–178, IEEE, 2011.

[108] M. Sharif and A. Sadeghi-Niaraki, “Ubiquitous sensor network simulation and
emulation environments: A survey,” Journal of Network and Computer Applications,
vol. 93, pp. 150–181, 2017.

[109] A. Nayyar and R. Singh, “A Comprehensive Review of Simulation Tools for Wireless
Sensor Networks (WSNs),” Journal of Wireless Networking and Communications,
vol. 5, no. 1, pp. 19–47, 2015.

[110] A. Varga and R. Hornig, “An Overview of the OMNeT++ Simulation Environment,”
in International Conference on Simulation Tools and Techniques for Communi-
cations, Networks and Systems & Workshops, pp. 1–10, Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering, 2008.

[111] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena, “Network
Simulations with the ns-3 Simulator,” SIGCOMM demonstration, vol. 14, no. 14,
p. 527, 2008.

[112] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-Level Sensor
Network Simulation with COOJA,” in Proceedings. 2006 31st IEEE Conference on
Local Computer Networks, pp. 641–648, IEEE, 2006.

[113] X. Zeng, S. K. Garg, P. Strazdins, P. P. Jayaraman, D. Georgakopoulos, and
R. Ranjan, “IOTSim: A simulator for analysing IoT applications,” Journal of
Systems Architecture, vol. 72, pp. 93–107, 2017.

[114] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A toolkit
for modeling and simulation of resource management techniques in the Internet of
Things, Edge and Fog computing environments,” Software: Practice and Experience,
vol. 47, no. 9, pp. 1275–1296, 2017.

147

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[115] R. Buyya and S. N. Srirama, Fog and Edge Computing: Principles and Paradigms.
Wiley, 2019.

[116] M. A. To, M. Cano, and P. Biba, “DOCKEMU – A Network Emulation Tool,” in
International Conference on Advanced Information Networking and Applications
Workshops, pp. 593–598, IEEE, 2015.

[117] A. R. Portabales and M. L. e. Nores, “Dockemu: An IoT Simulation Framework
Based on Linux Containers and the ns-3 Network Simulator — Application to
CoAP IoT Scenarios,” in Simulation and Modeling Methodologies, Technologies
and Applications, pp. 54–82, Springer, 2018.

[118] E. Petersen, G. Cotto, and M. Antonio To, “Dockemu 2.0: Evolution of a Network
Emulation Tool,” in Central America and Panama Convention, pp. 1–6, IEEE,
2019.

[119] “ns-3 IPv6 Bug.” [Online]. Available: https://groups.google.com/forum/#!topic/ns-
3-users/5F7cZtL2ibo. [Accessed: Mar. 25, 2020].

[120] S. Badiger, S. Baheti, and Y. Simmhan, “VIoLET: A Large-Scale Virtual Envi-
ronment for Internet of Things,” in Parallel Processing, pp. 309–324, Springer,
2018.

[121] J. Lai, J. Tian, R. Liu, Z. Yang, and D. Jiang, “A Hybrid Virtualization Approach
to Emulate Network Nodes of Heterogeneous Architectures,” Mobile Networks and
Applications, pp. 1–13, 2020.

[122] G. D’Angelo, S. Ferretti, and V. Ghini, “Modeling the internet of things: a simula-
tion perspective,” in International Conference on High Performance Computing
Simulation, pp. 18–27, IEEE, 2017.

[123] G. D’Angelo, S. Ferretti, and V. Ghini, “Multi-level simulation of internet of things
on smart territories,” Simulation Modelling Practice and Theory, vol. 73, pp. 3–21,
2017.

[124] A. Čolaković and M. Hadžialić, “Internet of Things (IoT): A review of enabling
technologies, challenges, and open research issues,” Computer Networks, vol. 144,
pp. 17–39, 2018.

[125] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of Distributed
Consensus with One Faulty Process,” Journal of the ACM, vol. 32, no. 2, pp. 374–
382, 1985.

[126] D. Carvin, P. Owezarski, and P. Berthou, “A generalized distributed consensus algo-
rithm for monitoring and decision making in the IoT,” in International Conference
on Smart Communications in Network Technologies, pp. 1–6, IEEE, 2014.

148

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[127] J. Qin, Q. Ma, Y. Shi, and L. Wang, “Recent Advances in Consensus of Multi-Agent
Systems: A Brief Survey,” Transactions on Industrial Electronics, vol. 64, no. 6,
pp. 4972–4983, 2017.

[128] C. Chen, S. Zhu, X. Guan, and X. S. Shen, Wireless Sensor Networks: Distributed
Consensus Estimation. Springer, 2014.

[129] S. Li, G. Oikonomou, T. Tryfonas, T. M. Chen, and L. D. Xu, “A Distributed
Consensus Algorithm for Decision Making in Service-Oriented Internet of Things,”
Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1461–1468, 2014.

[130] D. Ongaro, Consensus: Bridging Theory and Practice. PhD thesis, Stanford
University, 2014.

[131] S. Li, S. Zhao, P. Yang, P. Andriotis, L. Xu, and Q. Sun, “Distributed Consensus
Algorithm for Events Detection in Cyber-Physical Systems,” Internet of Things
Journal, vol. 6, no. 2, pp. 2299–2308, 2019.

[132] G. Colistra, V. Pilloni, and L. Atzori, “Task allocation in group of nodes in the
IoT: A consensus approach,” in International Conference on Communications,
pp. 3848–3853, IEEE, 2014.

[133] K. Li, S. E. Li, F. Gao, Z. Lin, J. Li, and Q. Sun, “Robust Distributed Consensus
Control of Uncertain Multi-Agents Interacted by Eigenvalue-Bounded Topologies,”
Internet of Things Journal, pp. 1–1, 2020.

[134] K. Yeow, A. Gani, R. W. Ahmad, J. J. P. C. Rodrigues, and K. Ko, “Decentralized
Consensus for Edge-Centric Internet of Things: A Review, Taxonomy, and Research
Issues,” IEEE Access, vol. 6, pp. 1513–1524, 2018.

[135] M. Méndez, F. G. Tinetti, A. M. Duran, D. A. Obon, and N. G. Bartolome,
“Distributed Algorithms on IoT Devices: Bully Leader Election,” in International
Conference on Computational Science and Computational Intelligence, pp. 1351–
1355, IEEE, 2017.

[136] L. Lamport, “The Part-Time Parliament,” ACM Trans. Comput. Syst., vol. 16,
pp. 133–169, 1998.

[137] M. Slee, A. Agarwal, and M. Kwiatkowski, “Thrift: Scalable Cross-Language
Services Implementation,” Facebook White Paper, vol. 5, no. 8, 2007.

[138] J. Shah and B. Mishra, “IoT enabled environmental monitoring system for smart
cities,” in International Conference on Internet of Things and Applications, pp. 383–
388, IEEE, 2016.

[139] T. Adegbija, A. Rogacs, C. Patel, and A. Gordon-Ross, “Enabling Right-Provisioned
Microprocessor Architectures for the Internet of Things,” in International Mechan-
ical Engineering Congress and Exposition, vol. 14, American Society of Mechanical
Engineers, 2015.

149

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[140] S. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,” Information
Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015.

[141] A. Haroon, M. A. Shah, Y. Asim, W. Naeem, M. Kamran, and Q. Javaid, “Con-
straints in the IoT: The World in 2020 and Beyond,” International Journal of
Advanced Computer Science and Applications, vol. 7, no. 11, pp. 252–271, 2016.

[142] A. Triantafyllou, P. Sarigiannidis, and T. D. Lagkas, “Network Protocols, Schemes,
and Mechanisms for Internet of Things (IoT): Features, Open Challenges, and
Trends,” Wireless Communications and Mobile Computing, vol. 2018, pp. 1–24,
2018.

[143] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières,
S. Mitra, A. Narayanan, D. Ongaro, G. Parulkar, M. Rosenblum, S. M. Rumble,
E. Stratmann, and R. Stutsman, “The Case for RAMCloud,” Communications of
the ACM, vol. 54, no. 7, pp. 121–130, 2011.

[144] R. Lara-Cueva, D. Benítez, C. Fernández, and C. Morales, “Performance Analysis
of Wireless Network Modes in Conformance with IEEE 802.11b and WDS,” in
Asia-Pacific Conference on Computer Aided System Engineering, pp. 370–373,
IEEE, 2015.

[145] J. H. Lam, S.-G. Lee, and W. K. Tan, “Performance Evaluation of Multi-Channel
Wireless Mesh Networks with Embedded Systems,” Sensors, vol. 12, no. 1, pp. 500–
517, 2012.

[146] G. Shah, R. Valiente, N. Gupta, S. O. Gani, B. Toghi, Y. P. Fallah, and S. D.
Gupta, “Real-Time Hardware-In-the-Loop Emulation Framework for DSRC-based
Connected Vehicle Applications,” in Connected and Automated Vehicles Symposium,
pp. 1–6, IEEE, 2019.

150

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Simulation for the IoT
	Problem Statement
	Aim of the Work
	Methodology and Approach
	Structure of the Thesis

	Background Information
	The Internet of Things
	Connectivity and Communication
	Device Virtualization
	Technologies & Frameworks

	Related Work
	IoT Simulation & Research
	Consensus in the IoT

	Software Engineering Process
	Architecture Framework
	Network Simulator
	Simulation Workflow
	Raft

	Implementation & Infrastructure Setup
	Infrastructure Setup
	Virtualized Device Integration
	Network Layer

	Evaluation
	Architecture Framework & Network Simulator
	Raft

	Conclusion & Future Work
	Key Contributions
	Future Work

	VIoTD API Description
	Network Simulator API Description
	Network Topology JSON Examples
	Switch Example
	Router and WiFi AP Example
	Mesh Example

	Raspberry Pi Emulator
	Binfmt Registration Script
	Raspberry Pi Docker Image

	Evaluation Scripts
	Simulated Sensor
	Controller Program
	Server Program
	Network Topology JSON

	List of Figures
	List of Tables
	List of Listings
	Bibliography

