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Kurzfassung

Bei Diffusionsmodellen geht es darum wie sich eine bestimmte Innovation,
Idee oder ein Produkt sich unter den Mitgliedern einer Gesellschaft über die
Zeit verbreitet (vgl. Rogers, 2003). Ein zentraler Punkt hierbei ist die In-
teraktion zwischen potentiellen und tatsächlichen Nutzern einer Sache, denn
oft entscheiden Erfahrungen und Eindrücke dieser beider Gruppen über den
Erfolg eines Produktes.

In dieser Dissertation wird ein Diffusionsmodell betrachtet, das aus zwei
Zustandsvariablen, der Anzahl potentieller bzw. tatsächlicher Nutzer eines
Produktes besteht. Mit Hilfe der optimalen Steuerungstheorie wird basierend
auf der Dynamik dieser Zustände ein Maximierungsproblem im Anwendungs-
bereich Marketing behandelt. In diesem hat ein Entscheidungsträger die
Möglichkeit das Ergebnis mittels Preisreduktionen, die das Produkt attrak-
tiver machen, sich allerdings negativ auf den Profit auswirken, zu beein-
flussen. Ohne Verwendung konkreter empirischer Daten wird gezeigt dass
die optimale Lösung sowohl vom Startpunkt wie auch von den Parame-
tern abhängt und komplexeres Verhalten wie DNSS-Kurven und Grenzzyklen
auftreten kann.

Dieses Marketing Problem wird in weiterer Folge durch eine zweite Stufe
erweitert, in der sich der einstige Monopolist plötzlich mit perfektem Wet-
tbewerb konfrontiert sieht. Es wird gezeigt, dass wenn Konkurrenz nur
negative Auswirkungen für den Entscheidungsträger bringt, würde er ver-
suchen diesen Status so lange wie möglich zu erhalten. Allerdings wird
auch gezeigt, dass der Umschaltzeitpunkt unter bestimmten Vorraussetzun-
gen optimal bestimmt werden kann, insbesondere wenn besonders aggressiv
gehandelt werden kann um möglichen Mitbewerben den Markteintritt zu ver-
wehren.

Weiters wird ein Minimierungsproblem im Anwendungsbereich Drogen-
politik behandelt, im dem ein Entscheidungsträger mittels entsprechender
Maßnahmen die Möglichkeit hat das durch Drogenkonsum entstehende Leid
zu reduzieren. Solche Maßnahmen haben allerdings die Auswirkung, dass
Drogenkonsum für potentielle Nutzer attraktiver wird, und sich so das durch
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Drogen entstehende Leid wieder vergrößert. Wieder wird gezeigt, dass die op-
timale Strategie vom verwendeten Startpunkt und den Parametern abhängt
und Grenzzyklen und schwache DNSS Kurven auftreten können.



Abstract

A diffusion process considers how and why a certain good, idea or innovation
spreads over time among the members of a society (cp. Rogers, 2003). Crucial
in this process is the interaction between potential and actual users of a good,
because often the experiences and impressions of the members of these groups
decide whether a product becomes successful or not.

In thesis a diffusion model is introduced, which consists of two states
describing the number of actual and potential users of a good respectively.
Applying tools from optimal control theory, a maximization problem in the
field of marketing is considered. It is discussed how a decision maker can
influence the development of the two states by giving price reductions, which
make the product more attractive to potential customers, however, lead to
smaller profits per user. Without usage of concrete empirical data, it will be
shown, that the optimal solution depends on the initial values of the state
variables as well as on the used parameters and that rather complex behavior
such as limit cycles and DNSS curves can occur.

The marketing problem then is extended by including a second stage, in
which the former monopolist suddenly has to face perfect competition. It
is shown that if competition only has negative consequences for a decision
maker, he would try to remain monopolist as long as possible. Under certain
circumstances, one can determine the switching point between the stages
optimally, i.e. when the decision maker can act particularly aggressive to
deter market entry of possible competitors.

Further, a minimization problem in the field of drug policy is discussed,
where a decision maker can reduce harm caused by drug usage through cer-
tain measures. However, such measures make the drug more attractive for
potential consumers and more harm arises through a larger number of users.
Again it will be shown that the optimal solution depends on the initial values
of the two states and the used parameters and that limit cycles and (weak)
DNSS curves can be found.
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Preface

The aim of this thesis is to give some insights on how to optimally control a
model describing the influence of the number of potential and actual adopters
on the spreading of a certain good over time. While there are certainly more
applications for the proposed dynamical system, this work focuses on mar-
keting and drug policy. Without the use of concrete data, it is investigated
which outcomes are possible under certain conditions in order to see what
might be explained with the help of such a model.

This work mainly consists of two parts, which can be basically read inde-
pendently of each other: In the first part a maximization problem in the field
of marketing is presented, the second part deals with a minimization prob-
lem, considering the impact of harm reduction measures. The results of this
thesis are found with the help of optimal control theory; a short overview of
the used terminology can be found in the appendix of this work. The neces-
sary numerical calculations are done with the help of the MATLAB toolbox
OCMat, which was developed to adequately deal with optimal control prob-
lems; some remarks on the ideas, on which these calculations are based, are
briefly described in this thesis together with the according results. The main
capabilities of the toolbox are presented in the appendix.

The first chapter of this thesis will provide a basic introduction including
a description of the underlying dynamics of the model and give two short,
introductory examples of how a result of such an optimal control may look
like. In the second chapter a marketing model will be presented and analyzed,
where the decision maker can influence his profits by giving price reductions;
in the third chapter this model will be extended to consist of two stages.
In the first stage the provider of the good is a monopolist, and has to face
perfect competition in the second.

As the spreading of a product is not the only application that can be de-
scribed with the help of the used dynamical system, a minimization problem
concerning the spreading of a good will be analyzed in the fourth chapter,
where the control instruments are harm reducing measures and a particular
focus will be put on the role of the used objective function.
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In the appendix the reader can find more detailed information about
how the results of the work were derived, providing a short introduction on
optimal control theory. It also contains a short description of how one can
use the OCMat toolbox to find the numerically calculated results and how
this toolbox actually works.
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Chapter 1

Introduction

1.1 A Two-State Diffusion Model

In a diffusion process an idea, practice or object is communicated ”through
certain channels over time among the members of a social system” (cp.
Rogers, 2003). Diffusion can be considered as a special type of communi-
cation distinguished by spreading a new1 idea, good, etc. which can have an
impact on a social level, sometimes smaller, sometimes larger in significance.

The fact that information exchange among people can be crucial for the
success or failure of a certain good, idea or technology and has to be taken
into account when trying to influence its spreading, has lead to a large number
of diffusion models in many areas such as marketing, technology adoption,
drug and crime policy, fashion and cultural development.

Since people are often influenced in their decision on whether to purchase
a product or not by other people, who already use it, there is a big interest in
marketing to gain more insights into diffusion processes in order to be able to
better understand the development of sales and the ways to influence them
in a reasonable way (cp. Mahajan et al., 1990).

In order to influence the spreading of a product and to maximize the
profit, a decision maker has various instruments (e.g. advertisement, price),
yet the question arises how to optimally use them. Due to the dynamic
character of such problems some answers can be provided with the application
of optimal control theory. Good introductions into this field are provided,
e.g., by Grass et al. (2008); Feichtinger & Hartl (1986); Léonard & Long
(1992).

1New does not mean in this context that this idea or good has had to be recently
developed or introduced, it rather concerns the consideration of the adoption decision (cp.
Rogers, 2003).
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2 CHAPTER 1. INTRODUCTION

As sometimes key aspects concerning the problem might change abrupt-
ley, such as the underlying parameters, one aim of this thesis is to analyze
how this affects the optimal solution. Therefore, the model will be extended
to consist of two stages, one where it is assumed that the decision maker has
a monopoly and in a second one faces competition.

Another field considered in this thesis in which diffusion plays an inter-
esting role is drug policy. The harm caused by the usage of illicit drugs is
not only present to people directly affected, but impacts society itself on a
social and economic level. There is again a diffusion process; a drug might
or might not spread among the members of a certain social system and one
of the main reasons why people start taking drugs is, because they want to
imitate some existing users, e.g., due to some social pressure.

It must be a policy maker’s objective to minimize the harm caused by
drug users. Usually this is done by trying to keep the number of drug users
as small as possible. Another plausible, but quite controversial approach
toward this problem, which will be considered in this thesis, is to reduce the
harm caused by drug usage itself, e.g., by measures such as needle exchange
or drug substitution programs (cp. MacCoun et al., 1996; Lenton & Single,
1998). Yet harm reduction might make people believe, to a certain extend at
least, that it is safer to take drugs and therefore they might be more easily
or more frequently willing to do so (cf. MacCoun, 1998). This, for example,
has been shown to be true for cigarettes.

The underlying dynamic, autonomous system used in this thesis has al-
ready been considered in a marketing/fashion context in Seidl (2005) and
drug diffusion context in Caulkins (2004), but without any control variable
to optimally influence the outcome. There are two states: the potential con-
sumers, the so-called susceptibles, and the consumers of a certain good. In
marketing models a distinction between these groups of people is certainly
not new, however in many models (e.g., Gould, 1970; Muller, 1983) popula-
tion (or market) size is assumed to be fixed at a certain level. Therefore they
do not include the susceptibles as separate state variable and consider the
potential clientel as those who have not adopted the product yet. A model
where this was not the case was introduced by Feichtinger (1992), however,
the slightly different dynamical system was not optimally controlled. The ap-
proach to include susceptibles in drug policy models is relatively new, Wallner
(2008) showed that it makes sense to do so using data from Australia and
the U.S. concerning cocaine to validate a closely related model.

The social interaction between potential and actual adopters of a good
is crucial for the development of their sizes, because, although there might
be a number of susceptibles, which decides independently of others to use
a certain good, people are often encouraged to imitate others due to some
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information exchange. Based on an earlier edition of Rogers (2003) such
a distinction was made in a mathematical diffusion model in Bass (1969),
one of the most important articles in marketing literature, a model that has
found many applications and extensions (cp. Bass, 2004).

In this thesis one control variable is considered, by which a decision maker
has some influence on the number of users (and therefore also on the number
of susceptibles) and their effect on his or her objective. In the marketing
model, where it is the decision maker’s objective to maximize the profit, he
can influence the spreading of the product by advertisement and giving price
reductions. In the harm reduction model, in which the goal is to minimize
costs arising from drug usage, he can decide about the percentage reduction
of the arising harm. In order to be able to provide a plausible economical
interpretation, it is necessary to include control constraints meaning that the
control always has to be non-negative and must not exceed one.

Since the use of the control does not only have positive effects on the
outcome (costs can arise that might outweigh the utility of the application of
the control), the objectives of this work are to look at the optimal application
of the control, its effect on the diffusion process, at the shapes of these optimal
solutions and on possible choices that a decision maker might or might not
have. The question then arise on whether does an optimal solution still have
the same shape if different premises are considered in terms of looking at
what happens if some parameters (e.g., the strength of the influence of the
users on susceptibles) or functions (e.g., the objective function) change.

Applying Pontryagin’s Maximum Principle, the optimal system, its steady
states and their stability properties will be derived analytically as far as pos-
sible, but mainly the results of this models will be calculated numerically
with some existing and newly developed programs in the MATLAB envi-
ronment (OCMat, see App. B, and MATCONT, see Dhooge et al., 2003).
The parameters used are not based on concrete data, but are chosen in a
way that some general economic interpretations can be made in order to
gain some insights about optimal application of the control under different
premises.

It will be shown that the shape of the optimal solution depends on the
initial number of susceptibles and users and that it is necessary for a decision
maker to adapt the use of the control over time depending on the current
number of potential and already existing users, but also that he might some-
times have more than one option when considering the optimal strategy. For
example he might have the option to decide to do little, save costs and have
little consumers of a good or decide to spent much and have many users. For
some functions a cycle can occur for certain parameters: in some phases it is
then optimal to spend much in others to spend little on advertising or harm
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reduction (because there are sometimes many users, sometimes only a few).
We will see that because of the magnitude parameters, it might sometimes
be best to apply a strategy that is possibly a bit controversial, e.g. accepting
many drug users or not promoting a product, because it would lead to no
profit anyway.

It will be an issue of this thesis to show and compare different optimal
solutions due to different parameters and functions, which might in some
cases only differ in the magnitude of the control and the number of suscep-
tibles and users, but in other cases have completely different shapes. It will
be shown that the change of some parameters has a larger impact to the
optimal solution than the change of others. The economic interpretation in
the fields of marketing and drug policy / harm reduction of such aspects of
the models will always play a central role.

1.2 Model Description

With the help of a diffusion model, one can try to follow the adoption of a
certain good among members of a social system and explore why it spreads
in a certain way or why it fails to do so.

The model described in this thesis consists of two states: the susceptibles
(potential consumers) S and the adopters (consumers/customers/users) A of
a certain good. We will see in this thesis that these dynamics makes sense
both in the fields of marketing as well as in drug research. The incentive
behind considering the consumers of a good is pretty obvious: it is them who
create the profits of a product by purchasing it, but it is also them who cause
the harm through drug usage.

The inclusion of susceptibles into the consideration allows to single out a
more homogeneous group of people from a heterogeneous total population.
The common attribute among this kind of people in this framework is that
it is them, who are attracted to the purchase and/or usage of the good.
Reasons why some are more inclined to the usage of a certain product can be
found in age, income, education, religion, social commitment, peer pressure,
location and many more, often reflecting that information exchange happens
most effective among people who share the same background and/or interests
(cmp. Rogers, 2003, Chap. 8). However, such a homophily among people
might also prevent the spreading of a certain good, particularly if people only
start using a product if others do so too. Therefore, one can gain valuable
insights by including such people and their development into consideration.

It is also possible in this model to consider a distinction between differ-
ent kinds of adopters (without introducing a third state). Defined by Bass
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(1969), a central work in the field of diffusion models in marketing literature,
one can differentiate between innovators and imitators among those who de-
cide to adopt a product. Innovators are individuals who make their decision
to adopt/purchase/use a certain good independently of other members of the
considered social system; imitators, however, are influenced in their adoption
decision (and in its timing) by already existing users of this product. It cer-
tainly might be a hard task to identify members of both groups, however
there are certain characteristics correlated to innovativeness such as educa-
tion, income, etc. (see Lilien & Kotler, 1983; Rogers, 2003), which increase
or decrease the likelihood of being an innovator. The influence that imitators
are exposed to, which makes the product more attractive to them, can get
across people by direct communication - people share their experience about
the product via word-of-mouth and/or might even introduce others to the us-
age of the product by letting them try it - or by observability, i.e. people can
see the benefits of using the product, may it be the capabilities or only the
status associated with the good. Other product characteristics might also
play a big role when it comes to its diffusion, such as compatibility (with
society or with other goods - particularly when considering network goods,
i.e., products of which the utility increases with the number of people using
it), availability, complexity or other benefits (see Lilien & Kotler, 1983).

As described in Rogers (2003) there are incentives of different types to
spread a good: Not only an adopter might have reasons to start using the
product, because of the expected advantages of usage, the users also can have
incentives to persuade susceptibles, e.g., it might increase their own utility
of the good, particularly when network effects play a role or they might even
receive a premium (such particular incentives are, however, not included in
the models here). Advantages from product adoption might not only arise
for the adopters themselves but also for a (social) system / company they
use this good for and the advantages might not occur immediately but only
after some time.

The state dynamics used in this thesis has already been considered by
Seidl (2005) in a marketing relevant context, trying to explain the develop-
ment of fashion goods and in Caulkins (2004) considering a very basic model
regarding the spreading of a drug (cocaine in the US). However, these models
were not optimally controlled, which changes in this thesis, which aims at ex-
ploring how and why the optimal application of different control instruments
influences development of the two states in a certain way.

The state equations used in this thesis are as follows:

Ṡ = k − δS − f(A)Sg(v) (1.1)

Ȧ = f(A)Sg(v) − µA (1.2)
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The parameter k describes the inflow to the susceptibles per time unit.
The number is constant and describes the number of people of a coun-
try/city/ethnic group etc. who start to fulfill certain criteria, due to which
they might be attracted to use the described good (e.g. reaching a certain
age, becoming exposed to a certain social surrounding, etc.). The percentage
of susceptibles quitting the system without ever using the product is given
by parameter δ, reasons for this might be reaching a certain age, dying or
maybe also simply leaving the surrounding.

The function f(A) is crucial regarding the flow between the two states,
since it reflects the interaction between users and susceptibles. Also called
initiation function, it gives the percentage of susceptibles which start to use
a certain good per time unit. As previously described, people are often intro-
duced by other people to the usage of a good. In this work, it is assumed that
fA > 0 meaning that on the one hand it reflects that the overall perception
of using the good is positive and potential consumers are attracted to the
product because of existing users. On the other hand if the number of users is
big, the consumers exercise a larger influence or pressure on the susceptibles
to imitate their behavior as if there would only be a few of them. The shape
of this function is always assumed to be f(A) = a + bAα with α > 1 in this
work. This convexity is supposed to reflect that a person is more likely to
start becoming consumer of a certain good if there are many people already
using it and that it even becomes very hard to escape a certain pressure
of adopt a certain product if everyone else uses it. Note, however, that for
some goods initiation might be more appropriately described by a concave
function, for example if attractivity of a product is not so big when everyone
else has it (e.g. certain fashions in clothing) or if the need to also own such
a good is not so large anymore if a closely related person already got it.

This function does (at least in most of the cases described in this work)
not only include the percentage of susceptibles willing to imitate the behavior
of users (bAα) - previously described as imitators -, but also the percentage of
people who start using the product for individual reasons (given by parameter
a) - the innovators.

The application of the control instrument influences the number of users
(and therefore also the number of susceptibles) in a direct and an indirect
way: The function g(v) describes in both applications the influence of the
control on the initiation, or more precisely it reflects the percentage change
of the flow from susceptibles to users due to the application of the control.
It is assumed that g(0) = 1, meaning doing nothing neither leads to an
increase nor decrease of initiation. It is also valid for both marketing and
harm reduction that gv > 0 since it is assumed that any increase of marketing
activities makes a product more attractive on the one hand, and on the other
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hand less severe consequences of drug use would also lead to a higher incentive
to become a drug user.

But there is also an indirect effect leading to an increase of users due to the
application of the control. As the flow from susceptibles to users increases,
the number of consumers grows as described by using the control instrument.
Since this means that the influence of existing consumers on susceptibles
becomes larger too, initiation and the number of users will further increase.

Finally, parameter µ describes the quitting rate of the consumers, e.g.
due to the reach of a certain age, death or a loss of the appeal of the good
for other reasons.

S A
k f(A)

g(v)

δ µ

Figure 1.1: Flow diagram

This work will analyze a range of different problems where it makes sense
to use this particular dynamical system to describe the development of po-
tential consumers and adopters of the according good. The aim of taking
this particular dynamics for the application in very different fields, i.e. in
marketing, where the decision maker seeks to maximize his profits and in
harm reduction where the decision maker wants to minimize the costs aris-
ing by drug usage, is to see how the inclusion of this state describing the
development of susceptibles can affect the optimal strategy and in a way to
show the potential of such an approach.

However, the parameters used in this work are mostly not based on real
data. While this means that the actual outcomes will hardly fit for a certain
concrete situation, but it still allows some general observations and economic
interpretation about the reasons why a system behaves the way it does and
why a decision maker should apply a certain strategy.



8 CHAPTER 1. INTRODUCTION

1.3 Two Motivating Examples

This section now will provide two motivating examples how a decision maker
can optimally influence his outcome, taken from the two fields considered in
this thesis, namely harm reduction and marketing.
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Figure 1.2: Phase portrait for the harm reduction case, showing the number
of susceptibles S and users A for different optimal solutions. Depending on the
starting point, there are two possibilities of where an optimal solution can end: in
a steady state (illustrated by a •) with many or in a steady state with no users,
seperated by a threshold emerging from a non-optimal steady state ◦.

1.3.1 Harm Reduction in Illicit Drug Consumption

Some politicians / decision makers are confronted with the problem whether
it makes sense to consider harm reduction measures such as needle exchange
programs or legalization in order to avoid harm to drug users and, conse-
quentially, society arising through certain drugs. While supporters of harm
reduction emphasize the advantages of a lower harm caused by drug usage,
such as, e.g., lower health risks, people opposing to such efforts say that such
programs might lead to higher incentives for some people to start taking
drugs or increase the amount of drugs taken.
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In Chap. 4 we will see that the optimal application of harm reduction
instruments depends on the existing drug situation, particularly how many
users and susceptibles are there in the beginning (i.e. the initial value of
the states), and on the attractivity of the drug to potential consumers, the
influence of existing users, etc. (i.e. the parameters).

Let us now consider an example how and when a decision maker should
or should not try to influence the development of the drug situation with
harm reduction measures.

In this drug policy model the objective is to minimize the total arising
harm caused by users as well as the arising costs caused by the control in-
strument, i.e. any harm reduction programs. There are two ways in which
the users negatively influence the outcome: On the one hand there is the
direct harm, caused by their usage of the drug and on the other hand there
is some kind of indirect harm: In the model here it is assumed that the drug
users exert some kind of influence on non-users (e.g. peer pressure, a promise
of image change) to follow their example to take drugs. Of course, if there
are more users, this influence becomes larger and larger. There are certainly
also users, who try drugs independently of others, but for some drugs their
number might be neglectible (see, e.g., Wallner, 2008).

Fig. 1.2 shows a phase portrait of the case where there are no innovators.
Then there are two possible final outcomes, depending on the starting point.
If the number of users and susceptibles is initially small, they do not have the
means to cause much harm neither directly nor indirectly. Then the number
of users cannot grow and will even start to decline due to the small inflow.
However, if their number exceeds a certain threshold, which is more closely
shown in Fig. 1.3, drug use will escalate and lead to a final outcome with
many drug users. This threshold is a weak DNSS curve (see Appendix A).

It can also be seen (particularly in Fig. 1.3), that also the number of
susceptibles plays a certain role whether a drug finds many users or not. If
the initial number of potential consumers is large, then, as they reach more
people, less users are necessary in order to convince the same amount of
people compared with the case when there are only a few or no susceptibles.
As such, if starting close to the weak DNSS curve the initial number of
susceptibles can make a difference regarding whether the problem escalates
or not.

The optimal control strategy takes regard of the actual number of users
and susceptibles. In the case where the influence of users is not strong enough
to make the drug situation escalate, it does not make sense to do any harm
reduction. On the one hand, the harm of the users is not large enough to be of
real concern for the decision maker; the costs of harm reduction would exceed
the utility of it, respectively. On the other hand as already described any
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Figure 1.3: Zooming (in different scale) of the threshold of the harm reduction
model of Fig. 1.2.

effort in harm reduction would not only decrease the harm, but also motivate
some additional susceptibles to become users. Especially if the number of
users and susceptibles is close to the weak DNSS curve it would be fatal to
do anything.

However, if the initial states are such that their number exceeds this
threshold depicted in Fig. 1.3, a decision maker also has to adapt his strategy
according to how many users and susceptibles there are at each instant of
time: If the number of users is small, a decision maker should do nothing for
the same reasons as described before, but if the number of users becomes so
big that the harm caused by them cannot be neglected anymore, the decision
maker should start with harm reducing measures: Even though it leads to an
additional increase of drug consumers, it has such an important impact on
the harm directly caused by the users, that this additional inflow simply has
to be tolerated. If the number of users becomes larger it is required to spend
more and more for harm reduction until the maximum possible amount is
reached. As the inflow to susceptibles is constant, i.e. when the population
grows at a constant rate,the flow to users will be limited in growth after some
time and may even decrease if there are not enough susceptibles to support
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initiation anymore, until their steady state value is reached. As such the
steady state is not always directly approached.

It is not optimally possible in this case to use the control instrument
in a way to give a decsion maker the choice between having finally to deal
with many or no users at all. Note, however, that a decision maker could,
if he knows that such a weak DNSS curve exists, try to evaluate whether
there are any possibilities (e.g. by using more traditional drug policies, such
as prevention, treatment or law enforcement) that are not captured by the
model, by which he could manipulate the initial number of users and/or
susceptibles so that he can reach the more convenient outcome.

This is not the only possible outcome for the harm reduction model. It
will be shown in Chapter 4, that for different parameter values the number
of steady states and their stability properties can change, i.e. there might
be only one steady state, where optimal solutions can end in a limit cycle
can occur, or there might be a case with one steady state and a limit cycle
separated by a weak DNSS (threshold) curve.

1.3.2 An Example from Marketing - Taking Price Re-

duction Measures

When trying to sell a product it often proves to be of concern how a price
should be adapted in order to make a product more interesting for potential
consumers. A company can give price reductions in order to promote the
sales, but since a smaller price means less profit, the question arises when
should a decision maker reduce the price how much in order to maximize
his profits. In Chapter 2 we shall see that the optimal solution depends
on the parameters and the initial values of the states. Similar to the harm
reduction case, it can occur that for some starting points nothing can be done;
a steady state with no users will always be reached. If, however, the number
of existing users is large enough, then the influence of these consumers is
so big, that (also with the provision of additional incentives to purchase the
product through price reductions) the number of users can grow until there
are not enough susceptibles to allow a further increase. In the price reduction
case a decision maker might even have the choice between letting the product
fail or, with high efforts, making it successful. However, unlike in the harm
reduction model, control application would be large if the initial number of
users is small in order to built up a consumer base, who then can influence
further people in their purchase decision.

Another example of a possible outcome is that of a limit cycle (see Fig.
1.4). Then the number of susceptibles and users is not fixed in a steady state
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Figure 1.4: Limit cycle in the marketing/price reduction case. ◦ again depicts a
steady state which is not a candidate for an optimal solution to end in.

at the end of the solution path, but will periodically increase and decrease.
Moving now to the field of marketing, a reason for such a behavior of the
system can be found , e.g., in a low consumer loyalty or a high quitting rate of
the users, respectively. Unlike before the fraction of innovators among people
who start to use a certain product is not zero anymore, however, it is possible
to find limit cycles without people whose adoption decision is not based on
others as we shall see later. The optimal strategy then has to be adapted
according to which phase (compare Fig. 1.5) of the cycle one currently is: If
there are only a few users, but many susceptibles (phase I), the number of
consumers can grow, simply because the peer audience of this product is so
big that it is quite easy to find people willing to purchase such a product.
It makes sense then to support initiation and increase the attractivity of the
product to potential consumers by certain marketing activities, such as giving
price discounts. As the flow from susceptibles to users increases, so does their
influence of the users and it becomes less and less necessary to do anything to
promote the product (II). After a while the number of potential consumers
decreases (phase II) as their growth is limited by a constant inflow, and an
increasing outflow, due to the the growing strength of the influence of the
consumers, i.e. the attractivity of buying a certain product increases. But
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Figure 1.5: Timepath of the limit cycle depicted in Fig. 1.4

this decrease and later lack of people who could potentially become attracted
to use the product, leads to a slow down and later on a stop of the growth
of users (III), because on the one hand there are too few people who can
be recruited, on the other hand the decision maker has to pay tribute to the
high quitting rate, due to which the outflow from users starts to exceed the
initiation flow due to the constant inflow limited initiation. As the number of
users and their influence with it decreases, the number of potential users can
“recover” (IV ) until the market for this good becomes again large enough,
so that it is easy to find new people willing to purchase the product. Note
that one can, similarly to Feichtinger (1992), name the four different parts
of the limit cycle prosperity, saturation, declining and recovery phase.

These are not the only possible outcomes regarding system behavior and
optimal control strategy. Depending on the problem and on the used param-
eters one can find very valuable insights about how a decision maker should
apply his available control instruments for an optimal outcome, may it be
the maximization of profits in marketing or the minimization of costs in the
harm reduction case.



14 CHAPTER 1. INTRODUCTION



Part I

Marketing

15





17

Diffusion processes play an important role in marketing, since any decision
maker certainly wants to have deeper insights into the product adoption
process in order to be able to adequately influence it. There is a large number
of diffusion models in marketing literature, the most important probably
being Bass (1969); some other models are Gould (1970); Muller (1983) and
Hartl & Kort (2005). For a short overview of marketing diffusion models
using methods of optimal control theory see Feichtinger & Hartl (1986); see
also Mahajan et al. (1990).

The interaction between users and non-users is often crucial for the suc-
cess of a certain good for different reasons. The utility of network goods, for
instance, depends on the number of people using it, and it might be very
difficult to influence anyone buying such a product if no one else has it (e.g.
a telephone). Cultural acceptance can also play a role when it comes to the
spreading of a certain good (see, e.g., Rogers, 2003), particularly if people
try to avoid the risks that come along with trying out a new product. The
positive example of other people using such a product is then absolutely
necessary then for the success of a good.

When people use a certain product, they not only gain experience, which
they might share with others, but usage might also have some symbolic char-
acter and express one’s status, personality, taste,etc. (cp. Hoyer & MacInnis,
2004). Often even attitudes and emotions are associated to the usage of a
product such as joy, love, hope, excitement, etc. Non-users might be at-
tracted by what usage and as such being a user of such a good represents.
Another example where the existing users of a product have a large impact
on potential adopters is fashion. If many people own a certain product, it
might create a certain urge among non-users to get such a product too. But
there are not only people who start to use a product because of the example
other people serve as (imitators), but also people who start the product inde-
pendently of others (innovators). It will be seen that the size of the fraction
of innovators and imitators can contribute to the success of a product.

There are many marketing instruments by which a decision maker can
try to influence the number of sales of his product (see, e.g., Kotler & Arm-
strong, 2008), such as advertisement, various pricing strategies and product
quality. In the following model we take a closer look at how promotional
price reductions can influence the development of the number of adopters
of a certain good. The purpose of promotional price changes is to create
some excitement and urgency toward the potential customers. The price of
a product has the property that it is the only element that leads to revenues
for a company, therefore any reduction of the price reduces the profit. Even
though, according to Lilien & Kotler (1983); Ofir & Winer (2002), (potential)
customers might not always react to changes in the price in a straightforward
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way2, it is assumed that a smaller price leads to an increase of purchases. For
this, however, the consumers’ knowledge about the price is also relevant (cp.
Ofir & Winer, 2002), i.e. they must have some judgment about the amount
of money a product costs and how much it is actually worth. A potential
customer might also react differently to a temporary price reduction as to
permanent change of the basic price, particularly if he is aware of the nature
of the change and it is a part of the purchase decision whether the product is
still affordable when no temporary price reduction is given. Price reductions
do not only have a direct, short-term effect, i.e. an increased number of newly
entering customers, but also an indirect, long-term effect, since existing users
influence other people mostly positively in their product adoption decision.

While in marketing it often might not be too difficult finding out who
the actual customers are (e.g. by customer loyalty programs), determining
who the potential consumers are for a certain product, can be quite hard
sometimes, particularly if the number of actual customers is quite low and
reference data are rare(cmp. Kotler, 1999). Yet, it can be very crucial for
the success of a certain product, because addressing the wrong audience
means missing the really relevant group of people and their awareness of the
product despite a possibly high effort, and in the worst case influence the
real potential customers negatively in their purchase decision. (Although
certainly the saying “There is no such thing as bad press” is often valid,
e.g., reducing the price for a good basically attracting to a clientel with
very exclusive needs might not be the best thing to do). The efficiency of
different marketing measures also depends crucially on the knowledge, who
the people deciding about a purchase are and by whom they are influenced
(e.g., employees might not always have direct input about which equipment
they have to work with). Therefore it makes sense to identify and include
the dynamics of a group, who a company can address in order to find new
adopters of a product.

According to Hartl & Kort (2005) one can distinguish between two differ-
ent kinds of marketing models, one focusing on how to gain new customers,
the other one trying to explain how to keep them. The models in this work
focus on the optimal way of finding new customers, particularly examining
the role that the potential customers of the product play.

There are plenty of models considering the potential customers, many
of them, however, assume that the total population size to is fixed at a
certain level, see, e.g., Bass (1969) and expressed the number of susceptibles

2A price reduction might not always contribute in a positive way to potential con-
sumers’ adoption decision, particularly since the price is according to Ofir & Winer (2002)
also some kind of communication device, signaling potential customers for example high
quality or trendiness.
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as being the proportion of the population who is not already a customer. A
different approach was followed by Mahajan & Peterson (1978), who did not
assume the number of the potential adopters to be fixed, but as a function
of relevant factors. However, they did not include a seperate state equation
for the susceptibles. Muller (1983), who assumed the total population size to
be constant, considered two different kinds of people who might be potential
buyers of the good. He distinguished between people among the susceptibles
who are and people who are not aware of the product. He included state
dynamics for both of these groups. However, under the assumption that total
population size was fixed, he expressed the number of potential customers
aware of the product as a function of the other two states. Feichtinger (1992)
introduced a model consisting of potential and actual customers, which was
dealt with in more detail in Feichtinger et al. (1995). While it was shown that
limit cycles might occur, the model was not optimally controlled and some
assumptions made in the dynamics were different, such as that there was no
outflow from the potential customers out of the system, but a backflow from
users to susceptibles.

The model used in this work, however, includes one state variable de-
scribing the development of susceptibles and no explicit assumptions are
made about the size of the total population. No distinction is made between
people who are aware of a certain product and those who are not. Some
reasons for the spreading of a good, i.e. being influenced by the example of
existing users and the application of the control instrument, however, cer-
tainly contribute both to an increased awareness of the product among the
susceptibles. The model analysed in the next chapter, considers a trade-off
between making a product more attractive by giving price reductions and
lower profits, and will take a particular focus on the adoption process.
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Chapter 2

One-Stage Marketing Models

The next chapter describes and analyzes a one-stage marketing model, focus-
ing on the impact that a price reduction can have on the number of users and
potential consumers of a product as well as their interaction. The results will
be calculated analytically and numerically. They will give some idea about
why a the number of (potential) customers of a product evolves the way it
does and how one should optimally apply the control instrument, i.e. price
reductions. The model used here will be extended into a multistage version
in Chapt. 3.

2.1 A Price Reduction Model

In the following model a decision maker, who is the only provider of the good,
wants to maximize his profits. Knowing that more people are likely to be
attracted towards the product if on the one hand the price is low and if on
the other hand there are many people, who serve as some kind of example, a
decision maker can reduce the price to increase the number of people newly
adopting the product. This, however, has some negative impact on the profits
since it is the price which creates the revenues for a company.

It is assumed that each user of the product contributes each time unit
to the profits of the company, either by a frequent purchase of the non-
durable good, by having to pay for the usage of the product (e.g., telephone
or internet fees) or by buying a complementary goods also provided by the
company (e.g., add-ons of a certain software). The objective function is then
given by

max
0≤v≤vmax

∫ ∞

0

e−rt(πA(1 − v))dt, (2.1)

Parameter π denotes the average profit per consumer per time that a com-

21
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pany makes when the price is not reduced in a promotional effort. It consists
of the difference between total sales and total costs per user. As such, π
displays the profits if the product is sold at the standard price. Assuming
that consumers are aware that a price reduction is only a promotional effort
to gain more users, π, the profit per user, serves as some kind of reference
regarding the attractiveness of a temporary price reduction. Therefore, initi-
ation depends on how big the percentage reduction of the average profit per
user caused by a price reductions is.

The discount rate is given by r, A denotes the number of users, and the
control instrument v is the percentage reduction of the profit caused by price
reductions1. For obvious reasons, it is assumed that smaller price reductions
do not have a big impact on the profits, while large price reduction take away
much of the profit. It makes sense to introduce constraints for this control,
i.e.

v ≥ 0 and v ≤ vmax ≤ 1, (2.2)

signifying that a decision maker can choose somewhere between giving no
discount, leading no cuts of the profit and giving a price reduction at a
maximum possible level vmax, which is exogenously determined, and reflects
e.g. possible corporal specifications of not going below a certain price level.
It is not allowed in this model to charge a price that would cause the average
profit per user to be negative, i.e. lead to losses. As such vmax has to be
assumed to be smaller or equal to one.

The state equations are given by

Ṡ = k − δS − f(A)Sg(v) (2.3)

Ȧ = f(A)Sg(v) − µA. (2.4)

s.t. S (0) = S0 and A(0) = A0 (2.5)

As described in Chap. 1 S denotes the number of potential consumers /
susceptibles, k the inflow rate, which is assumed to be constant, δ the quitting
rate of the susceptibles, f(A) the initiation function, g(v) the influence of a
price reduction on initiation and µ the quitting rate of the users, reflecting
also the consumer loyalty.

Condition (2.5) states that an optimal solution has to start at a certain
exogenously given starting point (A0, S0). It is not necessary to assume even
when the product is newly launched at a certain market, that the initial

1Basically, it would also be possible to interpret it as some other marketing measure,
that, by its application, reduces the profits, but leads to an increased attractiveness of the
product, so that more people are willing to buy it.
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number of consumers is equal to zero. This can occur when the initial demand
for this product is so big that immediately a consumer base arises. Reasons
for such a large initial demand can be that either the product is really needed
or that previous marketing measures that are not captured by this model lead
to some customer excitement and urgency to immediately buy the product
(e.g, the newest movie, computer game, mp3-player, etc.) (cmp. Kotler,
1999).

The number of people starting to use a product can be separated into two
different groups: the innovators and the imitators. The initiation function
f(A) therefore consists of two parts, with parameter a denoting the percent-
age of susceptibles, who decide for their very own reasons to start using a
product and bAα describes the percentage of susceptibles who is influenced
by the number of existing users (A) in their purchase decision. Parameters
b and α serve to weight the strength of the influence of the consumers. The
initiation function therefore has the following shape:

f(A) = a + bAα. (2.6)

It is assumed that fA ≥ 0, meaning that each additional user makes the prod-
uct more attractive to others by providing a higher degree of information and
an increasing awareness of the potential customers regarding this product.
In this work α is greater than one, reflecting that the pressure, incentive
or urge to purchase a product becomes stronger the greater the number of
existing users is. This can be potential consumers might want (when it is
particularly trendy to use have a good, e.g. toys, technical gadgets, certain
fashions) or might even have (when interaction and compatibility play a big
role, e.g. certain soft- or hardware products, or when it is needed by the
customer to remain capable for competing) to fit in. The specific parame-
ters for a and b have to be greater than zero, so that the initiation function
fulfills the condition f(A) ≥ 0 for all A, meaning that a flow from A to S is
not allowed within the initiation function, which only serves to describe the
product adoption process.

Then the question arises how does the application of the control influence
initiation? According to Kotler & Armstrong (2008) consumers can react
very different to any change of price depending on the nature of the product
and the image of the corresponding company. Here it is assumed that higher
price reduction makes the product more attractive, i.e. gv ≥ 0 and that for
no control application g(0) = 1. Because of the Legendre-Clebsch condition
it is to be assumed that function g is concave (gvv ≤ 0, see Appendix C).

A function fulfilling these conditions is

g(v) = 1 + βvω with 0 ≤ ω ≤ 1 (2.7)
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Regarding economic interpretation, this assumption means that increasing
the application of the control is most efficient in terms of the percentage
increase of the flow from the first to the second state when the control is
small. This means that if a company gives a large price reduction, and faces
therefore lower profits per user, it is not much important for the customers if
the company increases or decreases the price a little bit – the reduced price is
still perceived as good. If a company would give only small price reductions,
and then even further decrease them, far less people would be attracted to
the good, simply because it would not really pay off for most of those who
can be reached by the control measures to take advantage of the temporal
price reduction.

Note that using this specified function g(v), f(A)S describes the number
of people who start to use the product if the product is sold at the standard
price.

Application of Pontryagin’s Maximum Principle

The Hamilton function then can be formulated as

H = πA(1 − v) + λ1(k − δS − f(A)Sg(v)) + λ2(f(A)Sg(v)− µA) (2.8)

where λ1 and λ2 represent the costates corresponding to the first (S) and the
second state variable (A), respectively. They are required, because control
application does not only affect the profits, i.e. the objective function directly,
but also by influencing the development of the users and susceptibles, i.e. the
state equations. The Hamiltonian function therefore has to include all these
functions and the costate variables serve in some sense to weight the impact of
the state equations. The economic interpretation of the costates is that they
represent a shadow price. It measures the impact of an additional susceptible
(λ1) or user (λ2), respectively on the objective function. As such it represents
the maximum amount a decision maker is hypothetically willing to pay for
an additional unit of the corresponding state (see, e.g., Grass et al., 2008).

Applying now Pontryagin’s Maximum Principle to the Lagrange function2

which is given by L = H + ν1v + ν2(vmax − v) we find that

Lv = −πA + (λ2 − λ1)f(A)Sgv + ν1 − ν2 = 0 (2.9)

Lvv = (λ2 − λ1)f(A)Sgvv ≤ 0 (2.10)

2The first Lagrange multiplier ν1 corresponds to the control constraint v ≥ 0 and the
second one ν2 to the constraint that v ≤ vmax.
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Appendix C.1 shows why (2.10) is always fullfilled for gvv ≤ 0 if no control
constraints are active. Note that in this work only the necessary and not the
sufficient conditions are fulfilled and therefore the found solutions are basi-
cally only extremals, but are assumed because of the economic interpretation
to be optimal. The complementary slackness conditions

ν1v = 0 and ν2(vmax − v) = 0 (2.11)

with ν1, ν2 ≥ 0 have to be fulfilled. Note that both constraints cannot be vio-
lated at the same time, meaning that at least one of the Lagrange multipliers
always has to be zero.

From (2.7) we find that gv = ωβvω−1; by inserting this into (2.9), the
optimal control can be expressed as

v∗ = (
(λ2 − λ1)ωβf(A)S

πA − ν1 + ν2

)
1

1−ω . (2.12)

It can be seen that if an additional user would be particularly valuable
(reflected by a large costate λ2), it would be optimal to give larger price
reductions, while if more susceptibles are desired (reflected by a larger costate
λ1) a decision maker should do less in order to avoid the additional flow
caused by control application. If initiation, i.e. f(A)S, is high or control
application has higher impact (represented by the parameters β and ω), more
efforts should be put into control measures, simply because they are more
efficient then. If the profits made by all customers are large, a decision maker
should consider to do less in order not to cut his profits. Apparently, the
relation between initiation and profits plays a large role when determining
the optimal value of the control, which is not surprising considering that
while price reductions are good for initiation, they are bad for the profits.

The costate equations are derived as required by Pontryagin’s Maximum
principle as

λ̇1 = (r + δ)λ1 + (λ1 − λ2)f(A)g(v) (2.13)

λ̇2 = (r + µ)λ2 − π(1 − v) + (λ1 − λ2)fASg(v) (2.14)

Remark on the Numerical Calculations The first step to do numerical
calculations of an optimal control problem is to state the first order neces-
sary optimality conditions obtained by the application of Pontryagin’s Max-
imum Priciple. This includes the statement of the canonical system, the
optimal control value by the Hamiltonian maximizing condition, etc. With
given information about the state equations, objective function and control
constraints, the OCMat-Toolbox is able to handle this by first deriving these
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conditions analytically using Matlab’s Symbolic Math Toolbox and then gen-
erating the necessary files needed for further computations automatically. See
Appendix B for more details.

Equilibria

Since the system is too complex to find all of the steady states analytically, it
is necessary to compute them numerically as will be done in the subsequent
sections. However, some properties of some of the steady states can be found
analytically.

By setting the state equations (2.3) and (2.4) to zero, we find that in a
steady state

Â =
k − δŜ

µ
. (2.15)

This means the number of users will be large in a steady state if the inflow to
the system is large and the quitting rate of susceptibles is low, both indicating
that it is advantageous to have many potential first time consumers available.
If the quitting rate of users is high, sometimes reflecting a not particularly
attractive product, the number of consumers will be lower compared to a
case where this rate was small.

From (2.13) we find that

λ̂1 = λ̂2

f(Â)g(v̂)

r + δ + f(Â)g(v̂)
(2.16)

confirming that in the steady state the second costate, i.e. λ2, has to
be larger than λ1, since due to the assumed positivity of the parameters the
numerator in (2.16) is smaller than the denominator. Since the interpretation
of the costates is that of a shadow price, describing the highest price a rational
decision maker would pay for an additional unit of the state variable, this
basically says, that an (additional) user is more valuable than an (additional)
susceptible. While it certainly would be good to have additional potential
consumers among which one can recruit new users, it is better to have more
users since they directly lead to revenues for the company by paying for the
good, but also exert some influence on susceptibles by causing imitational
behavior of susceptibles.

The optimal control applied in the equilibrium depends on the number of
users and susceptibles in the steady state: If there are many users it is better
to do nothing and exploit the high profit as well as the fact that existing
users widely influence potential ones. If the number of susceptibles is big,
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Table 2.1: Steady state values for a = 0

Ŝ Â λ̂1 λ̂2 v̂∗ ν̂1 ν̂2

k

δ
0 0

π

r + µ
0 0 0

one would spent more on marketing efforts compared to a case with a small
number of susceptibles, since more can be gained then except in the following
case:

Taking now a closer look at the initiation function f(A) = a + bAα, if
parameter a is zero, then at least the following equilibrium can be found,
displayed in Tab. 2.1. The eigenvalues of this state state ξ1 = −µ, ξ2 = −δ,
ξ3 = r + µ, ξ4 = r + δ confirm that this steady state is indeed a saddle point
and the Legendre-Clebsch condition is trivially satisfied with Lvv = 0 at this
steady state.

In later sections we will see that this steady state is not the only one
for a = 0, i.e. there will be another one with a large number of users.
This analytically found steady state represents the case where the number of
existing users is so small that hardly anyone ever owns this product - leading
to no imitation - and no one is really interested for reasons independent of
other people of doing so. Something like this can happen if (a) the product is
useless if no one else owns it (e.g. network goods, such as telephones, instant
messaging software, etc.), or people are particularly afraid (b) that due to
the lack of users the company will soon cancel all support services, (c) that
the product is faulty or not trustworthy or (d) that it simply has not found
acceptance in the dominating culture.

As there is no flow from susceptibles to users, the number of susceptibles
will remain at a relatively high level. The only other positive steady state
value is that of the second costate. While nothing could be gained by an
additional susceptible, an additional user would very well be welcomed, how-
ever, due to the lack of existence of users who serve as examples to potential
users, this is not possible and any control effort would be useless leading to
an optimal control equal to zero.

Remark on the Numerical Calculations Matlab provides functions for
equation solving, which are used by OCMat to numerically calculate the steady
states. OCMat also automatically computes the Jacobian matrix, where its
eigenvalues determine the stability properties of the steady state. All the
information of the steady state, needed for subsequent computations, are re-
turned in an Matlab object.
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Table 2.2: Parameter values for the single steady state case

r π k δ µ a b β ω α

0.04 1 1 0.05 0.12 0.02 0.025 1 0.75 1.75

Table 2.3: Admissible steady state values for the parameters described in Tab.
2.2

Ŝ Â λ̂1 λ̂2 v̂∗ ν̂1 ν̂2

0.99 7.92 6.42 7.02 1−5 ∗ 0.88 0 0

2.2 One Long Run Steady State

For many parameter constellations, such as seen, e.g., in Tab. 2.2, only one
admissible steady state, serving as candidate where an optimal solution can
end, can be found3. The equilbrium values of the state, costate and control
variable can be found in Tab. 2.3, revealing that the number of users is unlike
the number of potential adopters rather large in this steady state, and that
due to this not much control efforts are required, because (a) the influence
of the users of the product on the adoption decision of potential customers is
rather strong and working in favor of the decision maker and (b) the number
of people who could be recruited to start using the product is so small that
any control effort would not very effective.

Fig. 2.1 shows a phase portrait revealing the shapes of five different
optimal trajectories, which differ in their starting point. Considering the
trajectories in clockwise direction, in the first one it is assumed that there
are initially no customers and no susceptibles, in the second case the number
of initial susceptibles is high, however the number of users is still low, in the
third and fourth case the number of users is assumed to be high, the number
of susceptibles to be high and low, respectively. The gray line shows the
points of the stable manifold where a control constraint becomes inactive: If
the number of users is smaller than the corresponding point with the same

3Other non-admissible steady states can be found, where the Lagrange multiplier is
negative or the control outside the admissible control region. However, since they are for
the most part not relevant for economic interpretation, they are not described more closely
in this work.
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Figure 2.1: Phase portrait of the single steady state case of the marketing model;
the black lines show optimal solutions starting at different initial points (A0, S0)
ending in the equilbrium. On the left side of the gray curve it is optimal to apply
the maximum possible control. On the right side the constraint is not active
anymore.

number of susceptibles one would have to give price reductions as large as
possible. (A higher number of users would mean one could determine the
control optimally within the admissible control region.) The fifth trajectory
shows the last optimal solution, where no constraint is active; there are
initially no susceptibles, but some consumers of the product. Starting only
with a little bit less users, one would would first give the maximum amount
of control efforts, and then reduce them and exploit the high number of users.
At this trajectory the maximum admissible price reduction is only required
at one single point, i.e. where it touches the curve, where one switches from
active to inactive control constraint.

In the first and second case one would give initially price reductions as
large as possible in order to ensure the growth of the paying customers. While
in both case the flow from susceptibles to users would in the beginning still
be so small that despite the increased efforts to make those people buy such
a product the number of potential users can still grow. Particularly in the
second case one would soon reach such a high number of users that the num-
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ber of susceptibles would decrease after a while due to the user’s stronger
influence and the incentives provided by the company in terms of price re-
ductions. This means the outflow from susceptibles both out of the system
and to the other state soon would exceed the constant inflow of people to
this state. The number of customers then would grow, as would their impact
on the potential users; since their inflow is restricted by a constant inflow,
their number would soon be so low that no further increase of customers is
possible and a steady state is reached. As the number of users grows it is not
required anymore to give large price reductions; the influence of the users
works very much in the favor of the affected company. Note that the steady
state is not always approached directly: If really many people start adopting
a product, the number of users overshoots its steady state value, but after
some times not enough susceptibles are left to permit further growth. The
constant inflow to this state is too slow to even avoid that the number of
actual users decreases for some time.

If the number of initial susceptibles is high (unlike the number of users)
then it makes sense to give price reductions, simply because, when reaching
a large audience, they are most effective. However, if the number of users
is really big too, such measures are not required, at least not in a similar
magnitude. While one would certainly exploit the large market potential,
the large number of existing customers has enough influence that no further
measures are necessary, and the number of paying customers will still grow,
at least for a while. However, starting at such a point, the number of suscep-
tibles and also then the number of users would fall after a while due to the
constant inflow to S. The same is valid if the initial number of susceptibles
is low, but the number of users high.

Remark on the Numerical Calculations The optimal solution paths (tra-
jectories) solving the system of ODEs (ordinary differential equations) can
be gained by inserting (2.12) into (2.3)-(2.4) and (2.13)-(2.14). These can
be found by either solving boundary value problem (BVP) or an initial value
problem (IVP). Provided that the optimal solution is controlled into a steady
state (Â,Ŝ), the necessary boundary conditions for given initial states (A0,S0)
become A(0) = A0, S(0) = S0 and ends up in a steady state of the canonical
system with A(∞) = Â, S(∞) = Ŝ. For the numeric calculation the lat-
ter condition has to be replaced by so called asymptotic boundary conditions
(i.e. the trajectory has to end at the linearization of the stable manifold of
the steady state; see Grass et al., 2008). OCMat provides functions for the
automatic formulation and solution of such problems(initocmat and occont

- see Appendix), using by default Matlab’s bvp4c-solver.
When one of the control constraints gets violated, OCMat adds further
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Figure 2.2: Value of the objective function for different initial values of users and
susceptibles (a) S0 = 2 and (b) S0 = 10. .

conditions to the boundary value problem in order to be able to proceed with
the calculations. These conditions are as follows: the optimal solution has to
consist of two parts, one where the constraint is active and one where it is
not, and that these two parts have to end/start at the same point (states and
costates have to be continuous), i.e. the point where the control constraint
becomes (in)active. And a further condition determining the time point of the
switching between the two regimes, given by the continuity of the Hamiltonian.

A (potential) optimal solution can also be found by solving an initial value
problem, knowing that the trajectory has to end in the specified steady state,
or equivalently formulated lying in the stable manifold of the steady state.
Then starting from this equilibrium (more exact near the steady state on the
linearized stable manifold) one can calculate backwards in time using e.g.
OCMat’s odesolve-function, which uses by default Matlab’s ode45-solver.

Fig. 2.2 reveals the value which the objective function takes for different
initial values of the users while the number of susceptbiles is assumed to be
fixed at (a) S0 = 2 and (b) S0 = 10. It can be seen that the higher the number
of initial customers is, the higher will be the value of the objective function:
When there are many consumers of a good, they do not only contribute
directly to the profits of the company by paying for the good, their high
number also leads to a higher initiation and therefore, an easier customer
acquisition since then profit diminishing price reductions are not necessary.
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Figure 2.3: Number of susceptibles starting to use a certain product on different
point of times on the trajectory starting with hardly any users and susceptibles
motivated or not by incentives provided by a lower promotional price

If the initial number of susceptibles is high, Fig. 2.2 shows that this is better
for a decision maker compared to a scenario where their initial size was low.
The reason of course is that if the market (potential) is larger it is possible
to convince more people to become paying customers of a product over time.

Remark on the Numerical Calculations For showing how the value of
the objective function depends on the initial values of the states, one has to
find the optimal solution starting at the specified points. Then one can calcu-
late the value of the objective function by using the value of the Hamlitonian
and dividing it by the discount rate (see Appendix A).

Taking a Closer Look at the Initiation

When trying to optimally influence one’s profits, it is certainly of interest to
see which people are attracted to the product at which instant of time. The
qestion arises how many people are affected by the application of the control
instrument or whether product appeals more to innovators or to imitators.

Looking now on the trajectory depicted in Fig. 2.1 where the initial of
susceptibles and users both are very, very small, Fig. 2.3 reveals the impact of
giving price reduction on the initiation: When there are very little customers
they cannot contribute much to the potential customers purchase decision
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Figure 2.4: Number of susceptibles starting to use a certain product on different
point of times on the trajectory starting with hardly any users and susceptibles
differentiating between the fraction of innovators and imitators

and many people decide to adopt the product because of the incentives pro-
vided by the company. As the number of potential and actual users grows,
the control application becomes more and more efficient, leading to a higher
initiation. With an increasing customer base, the impact of users serving
as example becomes larger and larger, and at a certain point (reflected by
the peak of the lower curve), it is possible to reduce the control efforts and
exploit the higher profits and the larger size and impact of existing users.
It can be seen that the flow from the first to the second state grows, but
that after a while, when the pool of susceptibles is exhausted, the flow starts
to decline again. At later parts of the optimal solution it is not the price
reductions anymore, that are crucial for the spreading of a good, but mainly
the propagation of the product’s advantages by people who already use it.

Fig. 2.4 tells us more about the role of innovators and imitators on
this particular optimal solution. It can be seen that when the number of
users and susceptibles is small in the beginning it is only the innovators
who start adopting a product, since there is always a certain percentage of
potential customers willing to try out the product. The number of innovators
grows as the number of suscepitbles does and is positively influenced by the
application of marketing measures. It reaches its peak, therefore, at the point
where one would stop giving the maximum amount of price reduction, since
at this point one still would have the benefits of a lower price but also a high
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number of potential customers willing to purchase the product independent of
others. However as less control efforts are optimal - due to the high number
of users and their influence and a decreasing number of susceptibles - the
number of innovators falls. In order that there are people who start to use a
product because of existing users, serving as example to them, there has to
be someone owning and using the product. If the number of users grow, so
does their influence on others and if the market potential increases with the
susceptible group, there are more people prone to be influenced by others.
Price reductions do also have positive effects on the imitators, however, the
decrease of the size of this group after some time, relates more to the lowering
number of susceptibles than to the smaller price discounts.

Remark on the Numerical Calculations The last two figures showed the
number of people who decide to start using a product at time t, which formally
would be given by f(A)Sg(v), or, using the previously specified functions, is
(a + bAα)S(1 + βvω). Then the number of innovators, who decide to start a
product independently of others is given by aS(1 + βvω) and the number of
imitators by bAαS(1+βvω). Similarly the number of people who start adopt-
ing a product because of the price reduction is given by (a+ bAα)Sβvω. Then
one can insert the calculated trajectory into these expressions to calculate the
corresponding figures.

The Influence of Parameters on the Steady State

As there is only one steady state, it is particularly interesting to see how it
depends on the given parameters, because it gives some insight about why
the optimal solutions looks the way it does. The following gives some idea
about the impact of some of the parameters:

a: A large proportion of innovators means that steady state number of
users becomes larger, because of the larger outflow from the susceptibles
in the initiation function. If the proportion of innovators is zero or
very small, a second steady state can emerge with no or hardly any
users, being candidate for an optimal solution. Then the impact of the
existing customers might be so small that a large spreading of the good
is not possible.

b: Fig. 2.5 shows the impact of parameter b. When the influence of the
users is very small, there will not be many other users in the steady state
(particularly if the number of innovators is small too), and it is very
well possible that the long-term number of potential customer exceeds
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Figure 2.5: Influence of parameter b on the steady state, where the solid line
represents the number of users and the dashed line the number of susceptibles

the number of actual customers. When parameters do not work in favor
of the decision maker, i.e. they are responsible for why the product is
not as successful as it could be, he should give larger price discounts in
the steady state to compensate the lower flow. It would then definitely
make sense for the company then to investigate why this product is not
attractive to potential customers and if possible eliminate the problem.
How this should look like, however is not captured by the model.

µ: When the outflow rate from users, reflecting the consumer loyalty, is
high then one would try to compensate the higher outflow by giving
larger price discounts, yet, the number of users would still be smaller in
such an equilbirium as if the consumer loyalty was big. Since then the
influence of the users is low, the number of potential customers would
be rather big. In such a case it would also make sense for the decision
maker to try finding ways to attach the customers more to the brand
of the product.

2.3 DNSS case

Recalling now Fig. 2.4, it could be seen that if the initial number of customers
is very small, it is only the innovators who start adopting the product in the
beginning, since the influence of the very few existing users is too small to
have any real impact. But then, what happens if there are no innovators and
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Table 2.4: Parameter values for the DNSS case

r π k δ µ a b β ω α

0.04 1 1 0.05 0.12 0.00 0.025 1 0.75 1.75

Table 2.5: Admissible steady state values for the parameters shown in Tab. 2.4

Ŝ Â λ̂1 λ̂2 v̂∗ ν̂1 ν̂2

20 0 0 6.25 0 0 0

1.01 7.91 6.44 7.07 0.98 ∗ 1−5 0 0

susceptibles are only attracted to a certain product when other people own it
too? For instance, certain products are only useful if there is a certain number
of other people using it (e.g., network goods, such as a telephone, or peer-to-
peer sofware) or if people are very risk averse regarding the introduction of
some new innovation. In terms of the model, this would mean that parameter
a is very small or zero.

Unlike before it is now possible to find more than one steady state (see
Tab. 2.5 and Fig. 2.6): One, similarly to the one shown in Sect. 2.1, consists
of comparably many customers, but only a few susceptibles, and there is
another one with many susceptibles, but no or only a very few consumers,
due to the lack of innovators. These steady states are separated by a DNSS
curve (also known as Skiba curve, see Appendix A), on which a decision
maker can optimally decide between a solution with finally many users (and
high control efforts) or no customers. Fig. 2.6 shows the phase portrait,
where one can see these equilibria and also the DNSS curve, which is depicted
even more closely in Fig. 2.7.

Intuitively, one might think that it always better to choose a solution
leading to the steady state with many paying customers, this, however, is
not the case. One reason is that it is not always possible to find a solution
for every initial value leading to the “better” steady state, i.e. when the
number of exisiting users is too small they are not able to exercise enough
impact to convince any susceptible to use the product. On the other hand if
the number of users is large enough in the beginning it is not possible to reach
the steady state with no users, since the positive influence on other people’s
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Figure 2.6: Phase portrait of the DNSS case depicting the two steady states and
the DNSS curve as well as several trajectories leading to the steady states.

adoption decision of the exisisting users is so strong that their number cannot
fall beyond a certain level.

This is reflected in Fig. 2.8, depicting the value of the objective function
depending on the initial states; this figure also reveals that for some initial
values of S and A a decision maker really has the choice whether he wants
to finally have many or no customers. The reason for this can be found
in the shape of the stable manifold of the second steady state. As already
mentioned, it is not possible to find a candidate for an optimal solution for
every initial point ending in the steady state with the many users, particularly
if the number of existing users is small. The number of initial users for which
this steady state can be reached is only very, very little lower than their
number on the DNSS curve that can be seen in Fig. 2.7. Starting on a point
on or very close to the DNSS curve, it can be shown that the time needed
to reach the higher steady state, as well as the parts of the optimal solution
where the number of users is, despite high control efforts, small, are rather
large. The closer one is to the minimum number of users needed to be able
to reach the steady state with many customers, the longer is the time needed
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Figure 2.7: Zooming (in different scale) of the threshold shown in Fig. 2.6.

to reach it as well as the required control efforts, and resultingly, the smaller
are the profits. At some point, then, it might be better to give little or no
price reductions and accept that this product will ultimately fail, than to
reduce the price so that no profits are made for the considered prefered time
period.

Starting near the DNSS curve depicted in Fig. 2.7 one would choose
following pricing strategies: If the number of users would be so small initially
that the product is bound to fail, then one would give some rather small price
discounts as long as the number of users is not too small. The purpose of this
strategy is to use the little, but still existing influence of these customers to
find a few additional customers contributing to the small profits a company
can make under such conditions. If the number of users is large enough,
that the second equilibrium can be reached, one would give price discounts
as big as possible as long as the number of customers and their impact on
others to imitate them is small in order to provide additional incentives for
potential customers to start adopting the product. However, as the number
of users and their impact on others is large enough, one would not need to



2.3. DNSS CASE 39

0

100

200

0 1 2 3

V ∗

A0

(a) S0 = 2

(b) S0 = 10

(A)

0

1

2

3

4

5

0 0.1 0.2

V ∗

A0

(b) (a)

?
?

(B)

Figure 2.8: Value of the objective function for different initial values of users and
susceptibles (a) S0 = 2 and (b) S0 = 10. Panel (B) is a magnification of panel (A)
showing the DNSS points, denoted by a ?.

give large price reductions anymore and could exploit the growing influence
of the customers on others until the steady state is reached. The optimal
control spendings also depends on the number of susceptibles. If there are
many of them one would give larger incentives to them to adopt the product,
because any control efforts would be more efficient then.

Note that on trajectories ending at the steady state with many users the
value of both costates are very big on points close to the DNSS curve. This
reflects that with little more users and susceptibles the overall outcome would
be much better since it would be easier and faster to gain additional users
then. Of course the costate corresponding to the number of users is much
larger than the one corresponding to the susceptibles, which shows again that
additional user is better for a decision maker, because he directly contributes
to the profits of a company.

Remark on the Numerical Calculations A DNSS point can be found by
solving the following problem: Find two points with the same state values ly-
ing on the stable manifolds of two different steady states, where the values of
the Hamiltonians (and therefore also of the objective functions) are equal. In
order to find such a point numerically, one can calculate the solution paths for
different initial state values lying on a line connecting the two steady states.
For each initial point there might exisit two candidates for an optimal solu-
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tion, each leading to a different steady state. Which one is optimal depends
on where the value of the Hamiltonian is larger. Then, at some point, one
might find a DNSS point where the value of the Hamiltonian of both solutions
are equal. Once having found such a DNSS point, one can use it as initial
solution for the search of the other points of the DNSS curve.

Fig. 2.8 reveals not only that the value of the objective function becomes
greater the bigger the number of existing users is, but also that the profits
of a company are higher if the initial number of potential customers, i.e. the
market for a certain product, is larger. The reason for the first is that on
the one hand the profits increase if there are more paying customers, on the
other hand less control efforts are required for positively influcencing people
in their product adoption decision. A higher number of susceptibles means
that more people can be convinced starting a certain product over time. The
DNSS point also depends not only on the number of existing users. If there
are many susceptibles, it is “easier” for existing customers to exercise any
influence on anyone, therefore less initial users are required to make a product
successful if the number of consumers is larger. Although the profits made
on the DNSS point with many susceptibles are smaller than on the other
DNSS point, one would still make more profit for the same initial number of
users if there were little susceptibles for the previously described reasons.

When ending in a steady state with no users, profits are obviously lower
than if there are finally many users. Note that unlike in the case where only
one steady state served as candidate for an optimal solution, now, if there
are initially now users, there will be absolutely no profit. This is because the
number of users will never increase.

The shape and the location of the DNSS curve also depends on the pa-
rameters used, e.g. if the fraction of innovators is larger, then less users are
required to make a product successful. Similar is valid for the impact of
existing users b. However, if a becomes too large, the steady state with no
users will disappear and if b becomes too small (and a is not too big) the
steady state with many users vanishes. On the other hand if the outflow rate
of users µ becomes larger, then it becomes harder to reach the steady state
with many users, as they have due to their smaller size less influence on the
susceptibles.

2.4 Limit Cycle

Unlike in the previous cases, an optimal solution does not necessarily always
have to end in a fixed point, but can also converge towards a limit cycle if
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Table 2.6: Parameter values for the limit cycle

r π k δ µ a b β ω α

0.04 1 1 0.05 0.5 0.02 0.0268 1 0.75 1.75

the dynamical system and the used parameters allow this. It is rather easy
to find cycles if the quitting rate of users µ is high, because then basically
the outflow of customers can not sufficiently compensated by the inflow to
users to ensure ending in a steady state.

Remark on the Numerical Calculations Limit cycles can be found, e.g.,
with the help of the Matcont toolbox; cmp. Dhooge et al. (2003) and Dhooge
et al. (2006). The usual technique is to find a Hopf bifurcation of a steady
state, i.e., where the real parts of the eigenvalues of the Jacobian become zero
for a certain parameter. Having located one cycle, this can be continued by
changing a parameter. Note that a limit cycle has to fullfill the boundary
condition, that a trajectory must reach its starting point again after the time
period Θ, and some phase condition to pin down a specific representation
of the limit cycle since each trajectory starting at a point of the limit cycle
represents the same geometrical object.

For the calculation of the monodromy matrix, which determines the sta-
bility properties of the cycle, I refer the reader to, e.g., Grass et al. (2008).

The cycle depicted in panel (A) of Fig. 2.9 has already served as some
introductory example in Chapt. 1. This section here will provide some more
detailed information. The parameters of this cycle can be found in Tab. 2.6.
Parameter b was chosen so that the cycle is the largest found (in terms of the
distance between the maximum and minimum values of the state variables),
if the other parameters remain the same. The value of the states of the
steady state found for these parameters are shown in Tab. 2.7, this steady
state however does not serve as a candidate where an optimal solution can
end, it is unstable. The eigenvalues of the monodromy matrix of the cycle
are ξ1 = 142.067, ξ2 = 2.9537, ξ3 = 0.0208, and ξ4 = 1, since one eigenvalue
of the monodromy matrix is smaller than one and one has the value one, the
cycle has a two-dimensional stable manifold. Any solution lying on it leads
to the cycle. The period of such a cycle is Θ = 27.0763.

One can differentiate between four phases of a cycle, in the first one, de-
noted as (I) in the phase portrait and the corresponding time paths (Fig.
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Table 2.7: Steady state values for the cycle

Ŝ Â λ̂1 λ̂2 v̂∗ ν̂1 ν̂2

8.4522 1.1548 1.6077 3.7258 0.1609 0 0
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Figure 2.9: Cyle in the price reduction model. Panel (a) shows a cycle occuring
for the parameters listed in Tab. 2.6 with parameter b = 0.0268, in (b) parameter b
was set to 0.05. ◦ are steady states which are not candidates for where an optimal
solution can end, they are however relevant for the limit cycle.

2.10), both the number of actual and potential customer rises. As the in-
fluence of existing users is not particularly strong it is initially a waste of
resources to give any price reductions then as can bee seen in Fig. 2.10. This
changes, however, as the number of susceptibles and therefore the potential
future paying customers rises as well as the number of existing customers due
to the rising number of innovators. A company has then a larger incentive to
promote its product with the help of a price reduction. After some time, in
the second phase (II), because of the larger flow from the susceptible to the
user state due to the stronger impact of the control instrument and the exist-
ing users and because of its constant inflow, the number of susceptibles can
not grow anymore and even starts to decrease. Those lost susceptibles be-
come new customers adding to the profits of a company by spending money
on the product and by serving as example to others, leading to a further
increase of users. In this phase it first makes sense to spend much for efforts
making the product more attractive to potential customers, but as their in-
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Figure 2.10: Timepath of the cycles of Fig. 2.9, where (a) b = 0.0268 and (b)
b = 0.05.

fluence grows stronger and stronger it simply is not neccessary any more.
However, after a while the pool of susceptibles gets so low that the number
of users also starts to fall. The reason for this is that there are simply not
enough susceptibles left who could, by deciding to adopt the product, com-
pensate the fast decrease of consumers due to the particularly large number
of users quitting the system in phase (III). Due to the lack of people who can
be convinced to become users it also does not make sense to give large price
reductions, because it simply would not be effective. As the number of users
decreases and the flow from one state to the other along with it, the number
of potential can slowly recover (phase IV).

The reason why the cycling now occurs is that the number of users de-
creases so fast in phase III and IV of the cycle, that, while the impact of
control spendings would be too small to change much, the number of suscep-
tibles can not recover sufficiently fast to compensate the higher outflow and
stabilize it at some fixed level. On the other hand when the number of users
grows that happens too fast to allow ending with a fixed number of users
and susceptibles.

Figs. 2.9 and 2.10 also reveal the impact of parameter b on the shape
of the optimal solution: In the first case (panel (A)) b is assumed to be
0.0268 in the second case to be 0.05. Interestingly, the number of users and
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Figure 2.11: Number of susceptibles starting to use a certain product at different
times of the limit cycle

susceptibles can grow larger if this parameter is small4, and the time period of
the cycle is larger in the first case with Θ = 27.0763, compared to the second
case with Θ = 21.934. If the fraction of imitators bis small, initiation has
to be at least partially supported by giving higher price discounts, making
the product more attractive. Yet it takes longer to build up some consumer
base and if the number of users is low, the number of susceptibles can better
recover. If, however, one would lower parameter b even further, the control
spendings would become less effective and because of the lower initiation less
people would become users over time.

Fig. 2.11 shows how the flow from susceptibles to users develops over
time on the cycle shown in Fig. 2.9 (A), distinguishing between the share of
innovators and imitators of this flow. It can be seen that if the number of
users is small in phase I of the cycle, but the number of susceptibles is rela-
tively large, the share of innovators becoming users is larger than the share of
imitators. The reason for this is, obviously, that the existing number of users
is so small that they do not have much influence on the product adoption
decision of others. This means, that in this phase the product is a good,
that is mainly used by people who are attracted to it independent of others.
However, after a while the pool of potential customers becomes so large that

4However, if this parameter would be smaller the cycle would be so too due to the less
efficient customer acquisition.
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Figure 2.12: Number of susceptibles starting to use a certain product at different
times of the limit cycle (not) under direct influence of the control

it makes sense to give larger price reductions in order to exploit the larger
market size. As the control effort rises in the second phase, the number of
imitators grows, as well as the number of innovators. Yet, the growth of
imitators is larger, since the growing number of users means that they now
have a stronger impact. Here the product becomes popular, however, as the
number of potential consumers is exhausted, there are not enough people to
sustain the high level of product usage, and the flow from susceptibles to
users declines. The number of innovators decreases simultaneously with the
decreasing application of the control (but also due to the smaller number of
susceptibles). Because of the still existing influence of the users, the decrease
of imitators takes longer to start. This decline of imitators in the initiation
lasts from the second phase to the fourth, however, the number of innova-
tors can increase again in the fourth phase due to an increasing number of
susceptibles.

Fig. 2.12 shows which share of the flow from susceptibles to users starts
using the product because of the incentives caused by control application,
i.e. a lower price. We can see that the rise and decline of the proportion
of people starting to use a product because of the control efforts happens
always earlier than if they start adopting the product for other reasons.
This reflects that the control efforts are mainly required to make the product
rather popular and build some kind of consumer base, who can exercise some
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Table 2.8: Parameter values for the DNSS & limit cycle case

r π k δ µ a b β ω α

0.04 1 1 0.05 0.3 0.00 0.03 0.25 0.75 1.75

further influence on potential adopters so that when their number is large
enough, no further convincing is needed. It can also be seen that if the
number of users as well as the number of susceptibles is small it is rather
useless to give any price reductions, since it would not lead to the sufficient
creation of additional users to compensate the lower profits. The fraction
of people convinced by marketing measures should be rather small in such
phases.

2.5 DNSS Curve & Limit Cycle

For the parameters given in Tab. 2.8, it is possible to find a situation where,
depending on the initial number of potential and actual customers, the de-
cision maker might have the choice of either letting the product fail or to
choose a solution path leading to a limit cycle, meaning that the number of
susceptibles and users will always oscillate. There are again no innovators,
i.e. parameter a is zero. Note that like in the previous section parameter µ,
i.e. the quitting rate from the consumers is rather large and that parameter
β was only decreased5 in order to avoid the violation of control contstraints
on the limit cycle, which would complicate the numerical computations, how-
ever, it would also be possible to find such a case with a larger β.

Table 2.9 shows again that there are two relevant steady states can be
found, the first is a candidate for an optimal solution, with no users and
many susceptibles, the second is not because of its instability. Close to this
first steady state again it does not make any sense to give price reductions,
because it would hardly motivate anyone to start using the product. People
then are only attracted to the product if other people use it and this is not
the case here.

Fig. 2.13 now shows the occuring DNSS curve and the limit cycle. If one

5Parameter β weights the impact of the control on the initiation. If it becomes smaller
that would mean that the application of the control becomes less effective. As such, the
higher number of users attracted by the lower price, which are won under higher efforts,
cannot compensate the lower profits caused by the lower price.
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Table 2.9: Steady state values for the parameters shown in Tab. 2.8

Ŝ Â λ̂1 λ̂2 v̂∗ ν̂1 ν̂2

20 0 0 2.9412 0 0 0

5.0342 2.4943 4.3841 7.0385 0.4954 ∗ 10−3 0 0
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Figure 2.13: Phase portrait for parameters where a limit cycle and a steady state
are seperated by a DNSS curve.

would start on the left side of this DNSS curve, it would be optimal to let the
product fail, because on the one hand close to the DNSS curve the influence
of the exisiting users on the potential customers would be too small to have
any real impact, i.e. no one would serve as a positive example demonstrating
the capabilities of the product, or if it is a network good, there would be not
much utility of the product if the number of people owning it would be too
small. A decision maker would not give large price reductions particularly if
the number of initial users was very small, since these efforts would essentially
only take away the profits. He would give some price reductions, however,
if there were at least some users of the product in the beginning in order
to strengthen their impact and win at least some additional customers who
contribute to the profits of the company.

If starting on the right side of the DNSS curve the optimal solution would
be cyclical. Fig. 2.14 depicts the timepath of a trajectory lying on the limit
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Figure 2.14: Timepath of the cycle in the DNSS & limit cycle case

cycle: Then, if the initial number of users is rather small or the number of
susceptibles particularly high, one would give large price discounts in order to
give additional incentives to people to start buying the product. After some
time, however, the flow from the first to the second state becomes so large
that the number of potential customers starts to decrease due to its constant
inflow. One can reduce the control efforts then due to the large impact of the
customers. As in the previous section, after a while the people starting to
adopt the product becomes so small, that the low customer loyality cannot
be compensated anymore and the number of users decreases. Then, however,
the number of susceptibles can recover again, so that there are again enough
people that can be influenced by the customers. One can give some additional
incentive by reducing the price, that the number of users can rise again.

Starting exactly on the DNSS curve a decision maker would have the
choice between these two solution possibilities, because again the time needed
to build up a larger customer base would be so long and the price reductions
so large, that it would be equally good for the company to do nothing or at
least not much, exploit the profits caused by the few existing users and let
the product fail.

Fig. 2.15 shows how the value of the optimized objective function depends
on the initial number of potential and actual customers of a certain good.
Again it can be seen that it is better to have many actual and/or potential
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Figure 2.15: Value of the objective function for different initial values of users
and susceptibles in the case where the DNSS curve seperates a steady state with
no users and a limit cycle where (a) S0 = 2 and (b) S0 = 10. Panel (B) is a
magnification of panel (A) showing the DNSS points, denoted by a ?.

users in the beginning - having a large customer base means after all that
the product has some attractiveness because many other people use it and
on the other hand a large market potential is good, because there are many
people who can be reached with such marketing measures, leading over time
to a larger number of customers. It can be seen that if the initial number of
users is small and the product is bound to fail, the profits of the company
are not particularly high.

This changes, however, rapidly when the number of initial users reaches
a certain level; then, if the time needed to create a profitable customer base
is not too long and control efforts are not too high, one could make larger
profits. The stars in Fig. 2.15 again show the DNSS points for different
initial values of the potential customers. It can be seen that the objective
value is always larger if there are many of them as well as that if their number
is large one needs less initial users to be able to gain a cyclical development
of the products, because the users have a larger audience to which they make
the product seem attractive.
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Chapter 3

A Two-Stage Marketing Model

Approach

In the previous model it was always assumed that the system evolves accord-
ing to the given system and the same parameters. However, this might not
always be very realistic. Sometimes, shocks might occur to the system, e.g.,
caused by the market entrance of a competitor, that can alter the system be-
havior significantly. A decision maker might or might not have under certain
conditions influence on the occurrence and impact of such a shock to a certain
degree. In order to find out how a change of the system and/or parameters
influences the optimal solutions one can use the methods of multi-stage mod-
eling, a short description of them can be found at the end of Appendix A.
In the following sections the previously described marketing model will be
extended by introducting two stages, which differ in the parameter values
used.

3.1 Market Entrance of Competitors in the

Price Reduction Model

The basic idea behind the price reduction model is that a decision maker,
who wants to influence the sales/distribution of a certain product, can give
price discounts in order to make this product more attractive to potential
customers. Of course, any reduction of the price/profits has negative conse-
quences on the revenues caused by each customer, but since this lower price
gives some additional incentive to buy the product, who might considerably
strengthen the influence of the consumers on potential buyers, the negative
effect might be compensated. The decision maker’s control instrument in
this model is the percentage reduction of the average profit per user (e.g.

51
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achieved by a certain price reduction).

Here we want to consider a two-stage version of the model, which is based
on Caulkins (2007). In the first stage the decision maker is a monopolist,
meaning not only that he is the only one providing such a good, but also
that there are no alternatives on the market that a consumer could use in-
stead. He does not face competition, because it is assumed that he either is
protected by a patent or governmental regulation, which serve to protect the
interests of either the the producer of the good or the consumer of the good.
The purpose behind such measures is that by enforcing some kind of regu-
lation a government becomes able to exert some influence on the price, on
the supply of the good, on the provided infrastructure, etc. Patents allow its
owner exclusive rights regarding production, distribution, sale, import and
use of this inventive, new good or technology and are provided to companies
in order to protect a newly developed product (in order to reward research
work) for a certain time period, which varies according the country and/or
agency by which it is granted. As a consequence the company faces no pres-
sure regarding the price by competition, and the (exogenously determined)
constant market price can be rather high leading to a larger average profit
per user π.

It is assumed that after a certain time ts the monopoly breaks up and
suddenly the former monopolist is confronted with perfect competition, which
can occur when the barriers to market entry are low, meaning that it is rather
easy for competitors to produce and/or sell a similar good. Reasons why
someone has to give up a monopoly would either be patent expiration or an
opening of the market due to some governmental organisation.

Stage 2 reflects the impact of competitors on the system. In this sim-
ple case the two stages only differ in their parameters, particularly in the
price/profit, initiation parameters (the share of innovators and imitators)
and the quitting rate. It depends on the nature of the product and the mar-
ket how the parameters change. Usually a company would loose, due to the
alternative products of the competitors, consumers, attractiveness and direct
revenues because of a potentially lower market price. However, competitors
do not only have to be associated with negative impacts, Kotler & Armstrong
(2008) mention that competition can also have several advantages, such as
an increased total demand, shared costs for product development, a help
for legitimizing a new technology, a higher product differentiation, a lower
risk of getting trouble with antitrust authorities, improve bargaining power
against labor unions and regulators etc. A monopolist might then at some
point have some incentive to give up monopoly. It is assumed that no costs
are attached to switching between stages.
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3.1.1 The Model

The company faces following optimization problem with the stages i, where
i = 1, 2. Note that now the parameters of the different stages are empha-
sized by different subindices i or the number of the corresponding stage,
respectively.

max
v

∫ ts

0

e−rt(π1A(1 − v))dt +

∫ ∞

ts

e−rt(π2A(1 − v))dt

s.t. Ṡ = k − δS − fi(A)Sg(v) (3.1)

Ȧ = fi(A)Sg(v) − µiA (3.2)

0 ≤ v ≤ vmax ≤ 1

It must be the decision maker’s objective to maximize his profits now over
both stages, where the application of the control variable leads to decreased
profits per user, but also to an increased flow from susceptibles to users and,
resultingly, to an increase of paying customers.

The functions describing initiation for stage i are now fi(A) = ai + biA
α.

It is assumed for simplicity that the efficiency of application of the control
does not change, and function g(v) = 1+βvω, where ω < 1 in order to fulfill
the Legendre-Clebsch condition if no constraints are active (see App. C).

The Hamiltonian function of each stage is given by

Hi = πiA(1−v)+λ1(k−δS−fi(A)g(v)S)+λ2(fi(A)g(v)S−µA), i = 1, 2.
(3.3)

and the Lagrangian function by Li = Hi + ν1v + ν2(vmax − v).
The optimal control for stage i can be derived with the help of

Lv = −πiA + (λ2 − λ1)ωβvω−1
i fi(A)S + ν1 − ν2 = 0 (3.4)

and the Legendre-Clebsch condition is fulfilled if no control constraints are
violated in stage i only if

Lvv = (λ2 − λ1)ω(ω − 1)βvω−2
i fi(A)S ≤ 0. (3.5)

Again the complementary slackness conditions have to be fullfilled which
are

ν1v = 0, ν2(vmax − v) = 0, and ν1, ν2 ≥ 0

for both stages.
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We know from the matching conditions that it is optimal to switch from
the first to the second stage if the value of the Hamiltonian1 function of both
stages are equal, i.e. H1 = H2. If one Hamiltonian is larger than the other
one would optimally always choose being in the stage with the higher value,
however, if this is not possible, e.g. when a patent expires one has no other
choice but to accept the lower value.

Finally, the costate equations of the two stages have following shape in
stage i:

λ̇1 = (r + δ)λ1 + (λ1 − λ2)fi(A)g(v)

λ̇2 = (r + µi)λ2 + (λ1 − λ2)fiASg(v) − πi(1 − v)

Remark on the Numerical Calculations While the OCMat toolbox al-
ready provides the possibility to initialize and find the needed analytical re-
sults, most of the existing functions do not yet include the possibility of deal-
ing with more than one stage. However, by creating and initializing two
models, each describing one stage of the problem, one can already use the
toolbox for dealing with such problems.

3.1.2 Changes of the System Behavior Due to Entering

Another Stage

In the following section we shall see how the change of which parameters
affects the system and the optimal solution when switching between the
two stages. This is done by analyzing which parts of the state equations
are affected by a parameter change, by trying to analytically find out what
happens to the optimal control at the switching point and by looking at the
value of the Hamiltonians of the different stages.

The State Equations

A decrease of the initiation parameters means that the flow from susceptibles
to users will become smaller if this decrease is not sufficiently compensated by
additional application of the control instrument. By a decreasing consumer
loyalty, reflected by a larger quitting rate µ of the consumers, the actual
number of users becomes smaller or at least grows slower, not only directly

1Therefore also of the Lagrangian function, since the values of both functions are
equal due to the complementary slackness conditions, which also have to be fulfilled in
both stages.
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due to this higher outflow, but also indirectly through the lower initiation
caused by a smaller number of users.

The Optimal Control

The state equations and therefore the development of the states is not only
directly affected by the change of the parameters occurring in the state (and
costate) equations, the change of the optimal control must also be considered.
Therefore, let us take a look at the optimal control at the switching point
when no control constraint is active, i.e. 0 < v < 1 and ν1 = ν2 = 0. By
solving (3.4) it can be found that

v∗
i = (

(λ2 − λ1)fi(A)Sβω

πiA
)

1

1−ω , i = 1, 2. (3.6)

It can be seen that, unlike the other changing parameters, the quitting
rate of the users µ does not directly influence the optimal control. Assuming
now that the parameters of the initiation function a and b change to 100χf

percent of its original value, then we find that

f2(A) = χff1(A).

Now, the average profit per user decreases to 100χπ percent of the original
value, meaning

π2 = χππ1.

Inserting this into Equ. (3.6) in order to express the optimal control of stage
2 v∗

2 as a function of the optimal control of stage 1 v∗
1, we find that

v∗
2 =

(

χf

χπ

)
1

1−ω

v∗
1,

where due to 0 ≤ ω ≤ 1, the exponent 1
1−ω

is always larger than one. It
can be seen that the relation between χf and χπ determines the change of
the control at the switching point in the following way under the assumption
that both the price and initiation decrease in the second stage, e.g., due to
the market entrance of a competitor:

• χf > χπ: The control will jump to a higher level at the switching
point if the decrease of initiation is smaller than the decrease of the
profits. This means that a decision maker has to do more in order to
compensate the lower profits of the second stage. The same also applies
if initiation increases and the profits fall in the second stage or if the
increase of initiation exceeds the increase of the profits. Note that a
higher initiation also means that control efforts become more efficient.
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Figure 3.1: Jump of the optimal control at the switching point where the relation
of the change of initiation and average profit is in case (a) χf < χπ in (b) χf = χπ

and in (c) χf > χπ. A dotted part of the optimal solution is located in the first
and the solid part in the second stage.

• χf < χπ: Here the control will also jump, but into the opposite di-
rection as before: the initiation decreases percentage-wise more than
the price. This would mean the application of the control becomes less
effective and any other strategy than lowering the control would lead
to a loss of profits that could not be compensated by the increased
initiation.

• χf = χπ: The control does not change at the switching point - i.e.
it evolves continuously. Since neither the the impact of the change
of profits nor of the change of initiation exceeds the other, it is not
necessary to adapt the control in case of a switch from the first to the
second stage.

Fig. 3.1 illustrates how a the parameter change affects the control: Here
it is assumed that stage 2 has always the same parameters as illustrated
in Tab. 3.1 and in stage 1 f2(A) = 0.5f1(A). However, three different
prices are considered in the first stage. We will see, that a decision maker
would basically choose similar strategies, i.e. give large price reductions if
the number of users is small and do less and less as their number decreases.

The starting points of the three trajectories are rather close, yet not
completely similar as the initial values of the state variables are chosen in
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Table 3.1: Parameter values of stage 2 for the comparison of the jump of the
control; parameters different in stage 1 are a1 = 0.02, b1 = 0.05, µ1 = 0.0976 and
(a) π1 = 1.8, (b) π1 = 2 and (c) π1 = 2.25 and χf = 0.5

r π2 k δ µ2 a2 b2 β ω

0.04 1 1 0.05 0.12 0.01 0.025 1 0.75

a way that part of the trajectories are exactly the same in the second stage
regarding state and costate values as well as optimal control application.

Remark on the Numerical Calculations Since the numerical calculations
are done backwards in time starting at the steady state of stage 2, this is done
to ensure to have the same switching point for all three cases to have some
comparability.

The initial points are such that there are little users and some susceptibles,
therefore similar optimal control strategies have to be chosen in all three
cases, i.e. give initial large price reductions as large as possible in order
to attract potential customers and then reduce efforts to exploit the higher
profits. However, the timing of when starting to do this differs before it is
optimal to switch between the stages and will be explained in the following:

(a) π1 = 1.8 (or χπ = 0.56) In this first case the percentage reduction of the
initiation is larger than the percentage reduction of price. That means
at the switching point the control will jump down: A decision maker
will put more control efforts into the first stage. The reason for this
is while the initiation is the same in all three cases the profits are the
lowest here. That means that one would have to do more to gain users
who contribute to the profits. Then, when switching to the second
stage, profits suddenly become larger in relation to the initiation - in
order to exploit these bigger profits one would not have to do as much
as before.

(b) π1 = 2 (or χπ = 0.5) Here the price of the first stage is twice as big
as in the second stage. Then, as initiation and price decrease for the
same percentage, the optimal control can evolve continuously at the
switching point.

(c) π1 = 2.25 (or χπ = 0.44) Thirdly, the percentage decrease of the price
is larger than of the initiation, resulting in an upwards jump of the
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control at the switching point: Because of the highest price in the first
stage, a decision maker would try to take advantage of it then and
would not give as much price reductions as in the other cases. Then, in
the second stage, the application of the control becomes more efficient
compared to exploiting the profits.

What is particularly interesting is that it can be seen that the relation of
the change of the two components of the model on which control has a impact,
namely initiation and the profits, determines how the optimal strategy has
to be adapted when switching between the stages.

The Hamiltonian

When switching optimally from the first stage to the second, the values of the
Hamiltonians of both stages have to be equal, cp. Makris (2001), Grass et al.
(2008). This does not have to be the case if the switching time is exogenously
given. By using (3.3), the difference between the two Hamiltonians of the
two stages can be written as

X = H1 −H2 = (3.7)

= (π1 − π2)A(1 − v) + (f1(A) − f2(A))(λ2 − λ1)Sg(v) + (µ2 − µ1)A

It is optimal to switch from the first stage to the second when X = 0, optimal
to be in stage 1 if X > 0 and in stage 2 if X < 0. Using (3.7) we find that
X = 0 if

π1 − π2

f1(A) − f2(A)
= −

(λ2 − λ1)Sg(v) + (µ2 − µ1)A

A(1 − v)
(3.8)

is fulfilled. Expressing now again the second stage parameters and initiation
function as function of the first stage parameters, i.e. f2(A) = χff1(A),
π2 = χππ1 and µ2 = χµµ1, (3.8) can be rewritten as

(1 − χπ)π1

(1 − χf)f1(A)
= −

(λ2 − λ1)Sg(v) + (χµ − 1)µ1A

A(1 − v)
(3.9)

The assumption that the initiation function and changed parameters have
to be greater than zero means that also χf , χπ, χµ ≥ 0.

Let us now consider the following cases that will be described later in
more detail:

(-) Initiation and the profits decrease in the second stage (e.g. by market
entrance of a competitor), i.e. 0 ≤ χf , χπ ≤ 1. In this case (3.9)
cannot be fullfilled if in this second stage the quitting rate of existing
users increases or remains the same (χµ ≥ 1), as the fraction on left
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side is always positive (or zero) and the fraction on the left side due to
the sign before it is always negative since S, A, π1, f1(A), µ1, g(v), (1 −
v), (λ2 − λ1) ≥ 0. The economic interpretation why it does not make
sense to switch from the first stage to the second is pretty obvious: A
decision maker would simply not have any advantages from the change
caused by the switching between the stages and looking again at (3.7)
we find that in this case indeed X ≥ 0.

If, however, the quitting rate gets smaller in the second stage for what-
ever reason, it is possible that this decrease, if it is large enough, makes
the second stage again so attractive that (3.9) can be fulfilled, mean-
ing the lower initiation and profits can get compensated by a higher
number of users caused by this lower quitting rate. Then it might be
possible to optimally switch from one stage to the other.

(-) Vice versa, initiation and profits increase in the second stage (e.g. when
competitors leave the market). Since now the fraction on the left hand
side of (3.9) is again always positive, it is only possible that the right
hand side is positive if the quitting rate of the second stage is high
enough with χµ < 1. If that was not the case, i.e. there is no advantage
of ever being in the first stage, (3.7) reveals that in this case X < 0 and
it would be always better to immediately switch to the second stage.

(-) Initiation decreases and profits increase in the second stage (e.g. due
to network effects, different pricing strategy, etc.), or vice versa. Then
the fraction on the left side is always negative, meaning that unless
the quitting rate of users becomes so much better (i.e. smaller) that it
would be always optimal to be in stage 2, there might be some point
at which switching from one stage to the other is optimal: While one
stage provides advantages by a higher initiation, the other one stands
out due to a higher price. Which one is effectively better depends on
the value of the states, costates and optimal control as well as on the
parameters describing profits, initiation and customer loyalty and how
they change as we will see later.

3.2 Case 1: Patent Expiration: Dealing with

an Exogenously Given Switching Point

In the following section it will be seen how an exogenously given switching
point can affect the optimal solution.
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3.2.1 Model Assumptions

In the first stage the decision maker is the only provider of a certain good,
in the second stage he cannot maintain his monopoly and has to switch to
perfect competition.

It is assumed that a decision maker does not have any advantage from
giving up his status as monopolist, i.e. the admittance of competition leads
to a lower market price, meaning the former monopolist would have to cut
his profits to remain fit for competition. Another reason for lower profits is,
that since the good is non-durable and the consumer has to frequently spent
money to be able to use/consume it, this user of the good has an alternative
product which he might purchase every now and then, leading to smaller
numbers of sales per customer and therefore lowering the average profit per
user per time. Competition might also have negative effects on initiation,
since some of the susceptibles might find the other product more attractive
and would start to use this instead. Although a lower price would make
the product more attractive, this additional attractiveness is assumed not
to be able to exceed the lower motivation to buy such a product because of
the availability of alternatives. There might also be more consumers who
completely stop using the former monopolist’s product and only use the
other good, meaning that competition leads to a lower consumer loyalty and
therefore a higher quitting rate of users. It is assumed that users of the
competitors product are still potential consumers of the former monopolist’s
product and, as already stated, that it is possible to use both products more
or less at the same time.

Although without any advantages, the monopolist might be forced to
enter competition due to expiration of a patent at a switching time which is
exogenously given. Of course he also has the option of giving up the patent
earlier if this appears to be advantageous.

The parameters change in the following way:

π1 > π2, µ1 ≤ µ2, a1 ≥ a2, b1 ≥ b2 with fi(A) = ai + biA
α, i = 1, 2

Due to the described change in parameters (the price and initiation be-
come smaller and the outflow from users becomes larger) the value of the
Hamiltonian in the second stage is always smaller than in the first. Not
surprisingly, this means that a decision maker would never, if having the
choice, give up his monopoly and enter competition as he would only have
disadvantages by the competitors, who would take away parts of the clientel
and lower the price due to the higher supply.

But what would be his strategy if he is forced to give up monopoly? If
there are initially only a few users it is optimal to give price reductions as
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Figure 3.2: Phase portrait of case 1 of the price reduction multi-stage model.
The black lines depict trajectories - the dotted parts show the part of the optimal
solution lying in stage 1, he solid parts are in stage 2. Trajectory (a) remains
always in stage 1, (c) switches immediately to stage 2 and (b) switches after a
certain time period (ts = 1). The gray parts of the trajectories show that on this
part of it, the control constraint is active and v∗ = vmax = 1.

large as possible in stage one, so that when competition takes place, he has
due to imitation effects the advantage of offering the more established and
therefore more attractive product to the customers. However, if competition
would not take place the decision maker would take a similar approach in
order to build a customer base and then take advantage of it. Of course,
the optimal solution would differ a bit regarding the magnitude of the states
and the control. It can be seen that (in the patent expiration case with only
one steady state) the number of customers is, due to the smaller initiation
and the higher quitting rate, smaller in the steady state compared to the
steady state if one would always remain monopolist, yet one would try to
compensate this higher outflow by giving slightly higher price discounts.
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Figure 3.3: Time path of the optimal control corresponding to the trajectories
of Fig. 3.2.

3.2.2 Comparison of Monopoly and Competition

One long-run steady state

Now assume that initially there are many susceptibles and only a few users.
The optimal strategy of the decision maker is always to try to gain these
susceptibles as users and therefore he would initially give price reductions as
large as possible as can be seen in Fig. 3.3. As the number of users becomes
larger, so does their influence on potential consumers and the decision maker
can exploit this and can reduce his price reducing efforts. The number of
susceptibles then decreases and the number of users increases until either
the steady state is reached. Another possibiliy is that the pool of potential
consumers is so much exhausted that due to the smaller initiation (since
there are not enough susceptibles who could become users and the constant
inflow is not enough to supply as much susceptibles as necessary to allow
further growth of the users) and the relatively large outflow of users (due
to the percentage outflow rate and the large number of users) the number
of users starts to decrease and the susceptibles can grow again until their
number gets to its steady state value.

However, if having the choice, the question would arise whether it is better
to remain monopolist forever, to remain monopolist until one is forced to
enter competition at an exogenously given time ts or to enter competition as
soon as possible.

Obviously the best option would always be to remain monopolist and to
deny market entrance to any possible competitor. Then, profits would not
suffer under a lower market price and consumers would not have the choice of
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Table 3.2: Parameter values of the two stages of the price reduction model in the
patent expiration case with one steady state

r πi k δ µi ai bi β ω

i = 1 0.04 2 1 0.05 0.0976 0.02 0.05 1 0.75

i = 2 0.04 1 1 0.05 0.12 0.01 0.025 1 0.75

Table 3.3: Steady state values if (a) one would never leave stage 1 (i.e. ts = ∞

and (b) if one would change at some point to the second stage.

Ŝ Â λ̂1 λ̂2 v̂∗ ν̂1 ν̂2

Case (a) 1.01 7.91 12.87 14.09 0 0 0

Case (b) 1.01 7.91 9.65 10.57 0 0 0

using another company’s product, leading consequentially to a higher number
of users in the steady state due to the higher initiation. However, this might
not always be possible, e.g., when a patent expires and/or barriers to market
entry get lower for some other reasons.

Fig. 3.2 shows three different trajectories, depicting the case (a) where
one would always be monopolist, i.e. ts = ∞, (b) where one would be
monopolist until one is forced at ts = 1 to enter competition and (c) where
one would immediately switch to competition (ts = 0). Since on trajectory
(a) one would never enter the second stage, it leads to a different equilibrium
than the other two trajectories. Comparing these two steady states (see Tab.
3.3) we see that if one would never switch between the stages one would end
in a steady state with a higher number of users and less susceptibles. In both
cases not much control spending is required in the steady state.

Comparing the values of the objective functions (which are in the calcu-
lated case (a) 182.26, (b) 175.11 and (c) 170.26), it can be seen that of course
it would be optimal to remain monopolist forever, but if having the choice
between exploiting the better parameters of stage 1 for time ts = 1 and im-
mediately switching to the second stage, it better to remain monopolist as
long as possible.

Comparing the three different optimal control strategies by looking at Fig.
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Figure 3.4: Value of the objective function depending on the initial number of
users for different exogenously given switching times.

(3.3), we see that the highest control efforts are required in the case where the
company always has to face competition. Interestingly, the decision maker
can stop giving the maximum price discounts sooner in the case where one
switches from the first to the second stage at ts = 1 compared to the case
where one is always monopolist. The reason for this might be that in the
second stage application of the control is less effective than in the first stage
due to the worse initiation parameters, so one would be able to start earlier
to exploit the impact of the existing users. One would, however, decrease the
amount of the control slower in this case than in the monopolist case, since
it would be still necessary to compensate this lower initiation flow and the
higher quitting rate of users despite the decreased efficiency.

Fig. 3.4 shows how the value of the objective function depends on the
initial number of users (S0 is assumed to be fixed at 2) and on the switching
time between the stages. It can be seen that it would be the best solution by
far if the company could remain monopolist forever under the given parame-
ters. Also not surprisingly, it is better if there are initially many users, which
not only means higher revenues caused by higher sales but also that there
are more people who can exert some influence on the potential consumers
and less price reductions are required.

Comparing now the case without competition to the ones where the com-
pany cannot remain monopolist forever, it can be seen in Fig. 3.4, that one
is alway better off the longer the time is that one can stay without any com-
petitor. Interestingly, the smaller ts gets, the less steep is the line describing
the objective value of different initial user numbers. Of course, also for the
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previously given reasons, it is always better to start with many users even
in an always-competition case, but the less steep line reflects the worse pa-
rameters / price / profits in the competition situation, meaning due to the
lower initiation less people can become consumers and they do not lead to
an equal profit as in the monopoly case.

Remark on the Numerical Calculations In order to calculate the value
of objective function for different numbers of initial consumers and a fixed
number of susceptibles one has to find the trajectories fulfilling the conditions
of the following boundary value problem: (1) The number of susceptibles
(and to a certain degree the number of users) has to have a certain value, (2)
starting at the point one has to remain for the time period ts in the first stage
after which one has to switch to the second one and (3) the optimal solution
consisting of parts in each stage has to end in the equilibrium in the second
stage. Having found these points one can calculate the value of the objective
function (see Appendix A).

DNSS curve

In Chap. 2 we saw that the system can behave differently for different param-
eters and it is possible that more than one steady state becomes a candidate
for an optimal solution. This can also happen in the multistage case.

Let us now assume again that the fraction of innovators among the people
who decide to adopt a certain product is zero2 in both stages (i.e. ai = 0 for
i = 1, 2). This means that no one would ever buy such a product if there is
no other person who already owns it, indicating either that the product is
worthless if there are no other users (e.g., a network good such as a telephone)
or that it only makes sense to own such a good if it is trendy enough (e.g.,
fashion good) or if people rely very much on previous experience when it
comes to product adoption (e.g. when it is uncertain that the new product
is advantageous for them.)

In the one-stage version of this model in Chap. 2 it was shown that
depending on the initial number of susceptibles and users the optimal solution
would either end in a steady state with many or with no users. The question
then arises again what impact does the entrance of a competitor have, if
competition means a lower initiation, a lower market price and a higher
quitting rate of users.

Tab. 3.4 shows a set of parameters for which a DNSS curve can occur in
the multistage case. The corresponding equilibria can be found in Tab. 3.5.

2The following behavior of the system can also occur if this parameter is very small.
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Table 3.4: Parameter values of the two stages of the price reduction model in the
patent expiration case - one steady state

r πi k δ µi ai bi β ω

i = 1 0.04 2 1 0.05 0.0976 0.00 0.05 1 0.75

i = 2 0.04 1 1 0.05 0.12 0.00 0.025 1 0.75

Table 3.5: Steady state values if (a) one would never leave stage 1 (i.e. ts = ∞

and (b) if one would change at some point to the second stage in the DNSS
case.

Ŝ Â λ̂1 λ̂2 v̂∗ ν̂1 ν̂2

Case (a) 20 0 0 14.09 14.53 0 0

Case (a) 0.35 10.07 14.65 15.11 0.83 ∗ 1−7 0 0

Case (b) 20 0 0 6.25 0 0 0

Case (b) 1.01 7.91 6.44 7.07 0.98 ∗ 1−5 0 0

It can be seen that no matter whether one would remain in the first stage
or switch at some time to the second stage, a steady state with no users a
certain number of susceptibles, which does not vary for the different stages
might be reached. The reason for this is that the number of susceptibles
depends only on the parameters k and δ (describing the inflow and quitting
rate of the susceptibles) which are assumed not to be changed by the market
entrance of the competitor. However, the value of the costate corresponding
to the number of users changes, showing that an additional user would be of
higher value in the first stage, i.e. when he causes more profits, influences
more people and remains a loyal customer for a longer period of time. Since
there is no chance of ever winning any users, it does not make sense to do
anything. Of course, there are due to the more favorable parameters again
more users in the steady state where one always remains in the first stage.

Fig. 3.5 shows that the value of the objective function depends on the
number of initial users as well as on the switching time. The number of initial
susceptibles is assumed to be fixed at S0 = 2. It can be seen that if the initial
number of users is very small, their influence is not large enough to convince



3.2. PATENT EXPIRATION 67

0

100

200

300

400

0 1 2 3

V ∗

A0

(a) ts = 0

(b) ts = 1

(c) ts = ∞ (A)

0

1

2

3

4

5

0 0.1 0.2

(c)V ∗

A0

(b) (a)

?
??

(B)

Figure 3.5: Value of the objective function for different initial values of users and
different switching times (a) ts = 0, (b) ts = 1 and (c) ts = ∞. Panel (B) is a
magnification of panel (A) showing the DNSS points, denoted by a ?.

many potential consumers to imitate them in their purchase decision and
one will always end in a steady state with no users. At a certain point the
decision maker suddenly has the decision whether he wants to let the product
fail or finally end near a steady state with many users. Usually one would
assume, that if having the choice, between no or many users in the end, one
would always prefer the solution with many paying consumers, however, as
shown in Chapt. 2 starting at the DNSS point, the time needed to gain a
large consumer base is too long and the control efforts too high to be really
attractive for the decision maker.

In Fig. 3.5 it can be seen that the number of users in a DNSS point
depends on the switching time: If one would never enter the second stage,
the number of users required to make a product successful does not have to
be as large as in the other cases, the number of initial users on the DNSS
point is the smallest. This low number of existing customers leads to a
smaller profit compared to the other DNSS points, however, the profits for
this particular initial number of users is still larger than in any other case. If
one is forced to enter the second stage after a certain period (here assumed
to be ts = 1) the profits of the company suffer, but, also due to the lower
initiation of the second stage, the DNSS curve moves to the right, i.e. more
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initial users are required to end in the steady state with many users. As
before the worst scenario is if having to switch immediately to competition.
In this case the value of the objective function at the DNSS points is worse
than in the previous case (DNSS point for ts = 1), even though there are
more initial users. The additional profits caused by the larger number of
consumers is not as large as the higher gains caused by the higher market
price of the first stage in the case of an exogenously given switching point.

Remark on the Numerical Calculations Similarly to before, one has to
find initial points where one of the states is fixed at a certain value, fur-
thermore they have to lie on the stable manifold of a steady state and the
emerging trajectories have to be for certain periods of time in either stage.
Now, depending on the switching time, one has to consider four different
steady states, which are candidates for optimal solutions. It now has to be
considered, when doing the numerical calculations, that it is not always pos-
sible to find points for every initial states leading to every steady states due
to the shapes of the stable manifolds.

3.3 Case 2: An Aggressively Acting Monopo-

list: When Switching Points Can Be Op-

timally Determined

The question arises what happens if monopoly is not protected by a patent
and barriers to market entry are still low? While the previous section sug-
gested that in such a case the monopolist would always have to deal with the
bad parameters of competition, what happens if the decision maker wants
to keep out any possible competitor even if this is associated with additional
costs in order to win more customers.

As such let us now consider a case in which the average profit per user
increases and initiation decreases in the second stage. There might be several
possible reasons for such a change:

(I) Etro (2007) reports that a monopolist sometimes might have a greater
incentive to act more competitive in order to maintain its monopoly
compared to markets with no obvious dominant market leader, par-
ticularly when the barriers to market entry are low. If they would be
high, the monopolist would less likely be challenged by a competitor
and, thus could act less actively.
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There are different ways by which a monopolist might keep competi-
tors out of the market, one would be by providing a product so attrac-
tive that no one else could compete. An example here would be that
this is achieved by innovation regarding product improvements or fur-
ther adaptions of the product to the customers’ needs, or by offering a
paricularly high-quality product- related and customer-friendly service.
When a company spends much for such measures, it becomes harder
for possible competitors to threaten the monopolist, particularly if the
taken measure, e.g., frequent product improvements by innovation, is a
key aspect in the product adoption decision and competitors could not
offer a similar price when trying to achieve a sufficient product develop-
ment in order to be taken seriously by the consumers as an alternative
provider of the good. However, large spendings for innovation would
lead to higher costs and therefore to smaller profits per user and a com-
pany might have the incentive at some point to give up this strategy
due to these costs. Then, while profits might increase in a second stage,
initiation might suffer due to alternative products of competitors, who
now might risk to enter the market, as well as due to lower product
attractiveness because of the slower product advancements.

(II) An similar approach, which might be a bit more problematic (because
of possible conflicts with anti-trust laws) is that a monopolist could try
keeping prices low in order to either signal possible competitors that it
would not be profitable to enter the market or to make it impossible for
anyone to compete. However, according to Motta (2004) it is not always
clear whether such low prices are simply competitive and therefore
advantageous for the consumer or exclusionary behavior. The problem
for authorities with such a strategy is that although consumers might
have a short-time advantage, they would be worse off in the long run,
suffering from a higher price due to the lack of competition.

In our model it is assumed that in first stage the monopolist keeps
the price very low to keep out any competitor and exploit the fact
that he is the only provider of the good, leading to a high initiation
and customer loyalty. In a second stage he does not care about this
anymore and charge a higher normal price leading to higher profits
per user. This would negatively influence initiation and the quitting
rate of users not only because of possible alternative products for the
customer, but a higher price would also reduce the attractiveness of
the product (and might make the market even more attractive to other
competitors).
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(III) As previously described a price reduction might not always be seen
as something positive nor does a price increase be always received as
something negative. Leaving now aside monopoly and competition,
one could use another economic interpretation of a two-stage model
with such a parameter change. Assume a company wants to basically
redefine its image and, e.g., tries to appeal only to a wealthier clientel
or faces the economic need to increase the profits / price. While the
company before only had the possibility to reduce temporarily the basic
price allowing price discounts, it might also be interested in seeing
what happens if the price and therefore the average profit per user is
(exogenously) increased.

It is assumed that a permanent change of the basic price has a different
effect on the dynamics of the (potential) consumers than this frequent
adaption of the price by giving discounts. As before, the consumers
see the basic price as some kind of reference price and price reductions
only as promotional incentives to make the product more attractive.
However, a second reference price gets a larger role, namely the price a
product is supposed to cost, based on personal reasoning. Because of
this, a smaller fraction of the susceptibles are able or willing to pay the
suggested basic price if no price reductions are given meaning that ini-
tiation would fall and even if the company would give temporary price
reductions to reach the previous price level that would not necessarily
mean that the number of people starting to use a product would be as
big as before. An increase in the quitting rate of users makes also sense
in such a case since the users of the good are regularly contributing to
the profits of the company, i.e. they buy it frequently or have to make
use of some service (e.g. maintenance) and might not be willing or able
to afford doing this as long as before anymore.

Therefore, we differentiate now between two stages: In the first the price
is low, but initiation and customer loyalty (reflected by the quitting rate
of users) is high; in the second stage the price is higher, but initiation and
customer loyalty is lower.

Then the parameters change in the following way

π1 < π2, µ1 ≤ µ2, a1 ≥ a2, b1 ≥ b2 with fi(A) = ai + biA
α, i = 1, 2

Looking at the control variable at the switching points we can see that
in this case the optimal control will always jump to a lower value in the
second stage: A decision maker would give larger discounts in the stage with
the lower price and higher initiation, on the one hand because giving price
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Table 3.6: Parameter values of the two stages of the price reduction model in the
aggressively acting monopolist case

r πi k δ µi a bi β ω

i = 1 0.04 1 1 0.05 0.0976 0.02 0.025 1 0.75

i = 2 0.04 2 1 0.05 0.12 0.01 0.025 1 0.75

reductions is more effective in this stage since more people can be convinced
to start using the product. On the other hand a decision maker simply might
want to exploit the higher profits of the second stage.

Fig. 3.6 shows a phase portrait of such a case with the parameter values
shown in Tab. 3.6. The black lines with the arrows show two trajectories.
If these line is dotted that means it is optimal at this part of the optimal
solution to be in stage 1 with the lower price but higher initiation, if it is
solid the higher price but lower initiation, i.e. stage 2, is preferable. The
gray line shows where it is optimal to switch between the stages - being on
the left side of this curve, i.e. there are not many users of the product, would
mean that a company should accept a lower basic price in order to build up a
consumer base. This can serve, when crossing the gray line and switching to
the other stage, as example for potential consumers, compensating the lower
initiation. If the initial value of the states would be on the right side of the
curve one would immediately switch to the second stage. The lower of the
two drawn trajectories represents some kind of threshold, its initial value is
chosen in a way that one would switch at the beginning to the second stage.
If, however, there were only very, very little less users in the beginning, the
strategy of the decision maker would be to remain in the first stage for a
while, give price reductions and, when the number of users and susceptibles
is large enough, switch to the other stage.

The interpretation in the monopoly-competition case would be as follows:
Unlike before the switching time from monopoly to perfect competition can
be determined optimally: If the number of users is small it is better to accept
the smaller profits per user, but exploit the position as monopolist and keep
the competitors out - since there is no competition, all of the susceptibles
who decide to purchase such a product add to the consumer stock of the
company. Then if there are enough users and the market position is strong
enough, it becomes optimal to switch to competition and exploit the higher
price together with the good position in the market, which compensates the
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Figure 3.6: Phase portrait of case 2 of the price reduction multi-stage model.
The black lines depict trajectories - the dotted parts mean that at that points it
is optimal to remain in stage 1, on the solid parts it is optimal to be in stage 2.
The gray line shows where it is optimal to switch between the stages.

lower initiation. The optimal strategy would again be to give large price
reductions if the number of users is low, but only very small or none at all if
their number is large. It is optimal to give larger reductions in the first stage,
because it helps to win consumers - then in the second stage the company
can exploit the profits and give less profits, the optimal value of the control
in the switching point will jump down.

Such a strategy might be certainly advantageous for the decision maker,
exploiting the higher initiation when the customer base is low and the higher
profits if there are many users of the product. At at some point ts ≥ 0 a
decision maker would always enter the second stage with the higher profits.
This would mean for the customers, who might have only become attached
to the product due to the lower price of the first stage, that they have to
pay more for the product at some point. While they might have a higher
utility of the product in the second stage due to the higher number of users,
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they might be worse off of than in a case where the monopolist would not
act as aggressively in the first stage. Then a monopolist could not keep out
competition as long and prices might get lower than they are in the second
stage at some point, because a monopolist might not be able to gain such a
strong market position that he could charge this higher price.

Similarly, when considering the consequences of an increase of the basic
price of a monopolist, would only adapt the basic price, i.e. switch to the
second stage, if the market position is strong enough that sufficient people
would accept the price increase and the influence of these people is strong
enough to motivate others to start adopting the product.

Remark on the Numerical Calculations One can find the optimal switch-
ing points in this particular case by solving following problem: Find a point
on the stable manifold of a second stage equilibrium, where the value of the
Hamiltonian of the second stage is equal to the value of the Hamiltonian of
the first stage. To find an optimal solution starting at a certain point, one
has to include the following degenerated cases, where the switching time is
either zero or infinity: If the value of the Hamiltonian function of the second
stage is, for all points on the trajectory emerging from this starting point,
always greater than the corresponding value of the first stage, the trajectory
must always follow the dynamics and parameters of the second stage. If this
is not the case, the second part of the optimal trajectory has to be in the
second stage starting at an optimal switching point, any part of this solution
with a lower time value has to be located in the first stage.

The Influence of the Parameters on the Optimal Switching Points

By determining the curve consisting of the optimal switching points, one can
find information when and how a decision maker has to change into the other
stage. However, the question arises what happens if the parameters change
in a different way between the stages. Let us assume that in a second case the
average profits per user reflecting the market price changes less than before
(π2 = 1.5 instead of π2 = 2).

Table 3.7 shows how the steady state changes if parameter π2 is changed:
While it does not alter the values of the states, it has an effect on the costates,
which become smaller if the price is lower, meaning that an additional unit
of either a susceptible or user is less worth if the profits made through them
are lower.

Which role such a different parameter plays for the optimal switching
points, can be seen in Fig. 3.7. The upper gray line shows the previous
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Table 3.7: Steady state values for different average profit per users in stage 2

Ŝ Â λ̂1 λ̂2 v̂∗ ν̂1 ν̂2

Case π2 = 2 1.01 7.91 12.87 14.09 0 0 0

Case π2 = 1.5 1.01 7.91 9.65 10.57 0 0 0

switching curve while the lower one shows the switching curve for the new,
smaller average profits per user. The black line show the last trajectory
where one would always prefer the second stage - starting with a little less
users one would remain for a while in the first stage until the number of
susceptibles and users is large enough that it becomes optimal to exploit the
higher basic price and accept the lower initiation.

Comparing the two switching curves, it can be seen that, if the price
increase is not so big in the second stage, the switching curve moves to the
right and becomes less steep, meaning that at the optimal switching curve
either have to be

(a) more users and/or

(b) less susceptibles.

The reason for (a) is that because of the lower profits the incentive to accept
the lower initiation for the higher profit is not as large as before. In a way
the decision maker would compensate the lower profit in this parameter case
by trying to find a larger pool of customers before changing to the other
stage. Closely related to this is the reason why there are less susceptibles:
Switching at a later point in time, the larger number of users has to come from
somewhere, and the only possible source are the susceptibles, who become
smaller by this later change.

For similar reasons the last trajectory where one would always remain in
the second stage shifts to the right: The incentive to be in the first stage
and exploit the better parameters is now greater than before and only if the
number of users and susceptibles is large enough, one should start exploiting
the higher price.

Other changes of the parameter values also have some effect on the switch-
ing points: If a parameter is more advantageous to the decision maker in one
stage (and in the other one remains the same or does not change so much
into this favorable direction), it is optimal to remain longer in this stage and
the switching curve shifts.
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Figure 3.7: Phase portrait comparing the optimal switching points between the
two stages for different average profits per user.

Concluding it can be said that a decision maker has to adapt his optimal
strategy according to how the parameters change as well as the values of the
state and costate variables at the switching point, both in a case where it
is exogeneously given as well as when the switching point can be optimally
determined.

Let us now move to another field, where one can use diffusion models
to gain more knowledge about the development of the number of potential
and actual consumers of a certain good, namely drug policy. Unlike before,
a minimization problem will be considered where a decision maker seeks to
keep total harm arising from drug usage as small as possible.



76 CHAPTER 3. A TWO-STAGE MARKETING MODEL



Part II

Harm Reduction

77





79

The harm caused by the usage of illicit drugs is not only present to people
directly affected, but impacts society itself on a social and economic level.
Costs, affecting not only the drug users, arise for instance by necessary ad-
ditional health care, through the loss of productivity, by the transmission of
diseases like HIV or hepatitis, by additionally required safety measures, etc.
(see ONDP, 2004; MacCoun et al., 1996). This does not mean the damage
arising to the users themselves is neglectible: It is them firsthand who get
infected or who might loose their job and/or family, it is them who face legal
prosecution and it is them who might get into acquaintance with criminal
networks (cf. MacCoun et al., 1996).
Since the number of people using various drugs is not neglectible in many
countries (cp. UNODC, 2006) it must be a policy maker’s objective to reduce
the harm caused by them. The classical approach, in terms of drug policy
goals, towards this problem is to say that it is best to reduce the number
of users, so that no harm can arise through them. (cf. Caulkins & Reuter,
1997, MacCoun, 1998, but also ONDP, 2006 ). Typical drug policies are
prevention, law enforcement and treatment, how to apply these (optimally)
has already been the topic of many works (e.g. Behrens et al., 2000, Winkler
et al., 2004, Everingham & Rydell, 1994, to name just a few).
Yet it is impossible to completely eliminate the whole drug problem (Caulkins
& Reuter, 1997) and even worse: these policy excaberate also some drug re-
lated harms , for example concerning the involvement in illegal activities, e.g.
higher law enforcement leads to more arrests and punishments, and increases
the price of the drugs, which in consequence might lead in some cases to a
higher rate of drug related crimes. Therefore it might make sense to explic-
itly consider another desirable drug strategy goal: to reduce the harm caused
by drug usage itself. This can be done in many ways: There are for example
needle exchange programs, trying to decrease the infection rate of HIV or
hepatitis among drug users, legalization programs for certain drugs in order
to avoid to make users of these drugs criminals and even to decriminalize
them, to authorize certain vendors to sell the drug, in order to be able to
control the quality and the price of the drugs. (cf. MacCoun et al., 1996;
Lenton & Single, 1998; MacCoun, 1998).
Although creating such programs certainly makes sense, the harm reduction
approach to the drug problem is far more controversial than other drug poli-
cies, ranging from people claiming that drug users should have to face the
consequences of their behavior to the argument that the “wrong message is
sent” (MacCoun, 1998). It is definitely not the goal of harm reduction to
justify or even encourage drug use, but to lessen the harm arising from it,
which is, despite some prejudices against it, not only for the good of the
users, but also for society. Yet it is plausible harm reduction might indeed
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make people believe to a certain extend, that it is safer to take drugs (which
is of course in the interest of drug users) and therefore are more easily willing
to do so. (cf. MacCoun, 1998; Caulkins, 2005).
The harm reduction model investigated in this work is based on a model
introduced in Caulkins (2005). Due to the dynamic character of drug prob-
lems (Caulkins, 2001; Reuter, 2001) it is the aim of the model to see how the
optimal use of harm reduction varies over time and how the number of users
and susceptibles change.
As mentioned two groups of people will be considered in this model: of course
the drug users, but also people susceptible to drug use. The reason for this
is that not all people are equally susceptible to the use of certain drugs,
because of their age, their religion, their social environment, etc. Similar
to the number of users, the number of potential users is subject to certain
dynamics. The inclusion of susceptibles can lead to a better understanding
of why the number of drug users evolve the way it does (cf. Caulkins, 2004).
Similar inclusions of susceptibles have already been done in various models,
e.g. Rossi (2001), Caulkins (2004) or Wallner (2008), yet this approach is
rather new.
Another issue, that will be considered in the analysed model here, is the
question how the susceptibles are influenced by the users in their decision on
whether to take drugs. Such social interactions have been addressed e.g. in
Glaeser et al. (2002), Kleiman (1993) and Himmelstein (1983).
In the next section an optimal control model considering harm reduction will
be described and analysed and different parameters will be considered to
gain knowledge about the general system behavior. The model was first in-
troduced by Caulkins (2005) extending Caulkins (2004), has been analyzed
in a one-state version in Wallner (2005) and numerically validated with a
slightly different objective function and function describing the impact of
the control on the initiation in Wallner (2008).



Chapter 4

Harm Reduction Models

Another application for which the underlying dynamical system is useful lies
in the field of drug policy. Existing users of a drug often provide incentives
for non-users to start taking a certain drug, e.g., by serving as bad example
or by exercising a certain pressure, may it be done consciously or not. In
such a case it also makes sense to distinguish between potential and actual
consumers of a certain drug, since not all members of a society might be
equally attracted to drug usage, maybe because of age, education, religion,
etc. The social interaction between these two groups, leading to the diffusion
of a certain drug or not, is a crucial reason for why people start taking drugs.
Like in the marketing model, it makes sense to distinguish between innova-
tors and imitators. Again it is possible for a decision maker to influence the
development of these two states by the application of some control instru-
ment, which is harm reduction. Yet, unlike the marketing model a decision
maker does not seek to optimize the profit arising for a certain company, but
to find the best possible way basically for society to influence the existing
drug situation.

As previously mentioned the control instrument is now harm reduction,
which is applied to lessen the arising harm caused by people who consume a
certain drug. While applying such a control measure leads to a smaller total
harm to society, if it safer to use a certain drug it might lead to an increased
attractiveness to potential consumers and therefore an increased flow from
susceptibles to users.

4.1 The Objective Functions

In the following sections, two different versions of the model will be consid-
ered, each differs in its objective function. While the first and the second
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case differ in the assumption whether harm reduction measures influence the
existing users’ drug usage.

4.1.1 Base Case

While before it has been optimal to maximize the profit of a company, it must
be now the decision maker’s objective to minimize the total harm arising by
drug usage. Defining total harm as harm per users times the number of
users, as suggested in MacCoun (1998), total harm is either rather small if
the number of users is low or if the harm per user is not too large. The
objective function is now given by

min
0≤v≤vmax

∫ ∞

0

e−rt(A(1 − v) + cv2)dt, (4.1)

where parameter r is again the discount rate and A the number of users.
The control variable v now describes the percentage reduction of harm, as
such it has to be larger than zero and smaller as a certain value vmax ≤

1 which describes the maximum percentage of harm that can be reduced.
Parameter c describes the costs of the application of the control. It is assumed
that, since a decision maker would use the more cost efficient measures first,
the total costs of such interventions are quadratic.

The dynamical system is given by

Ṡ = k − δS − f(A)Sg(v) (4.2)

Ȧ = f(A)Sg(v)− µA. (4.3)

S denotes again the number of susceptibles, k is the number of persons
who join this group of people per time unit, δ is the outflow rate of the
potential consumers, µ the quitting rate of drug users.

The influence of the control on the initiation of users is given by the func-
tion g(v). As previously described, if a policy maker decides to implement
harm reduction measures, it means that drug users are less exposed to the
accompanying dangers of illicit substance abuse. Due to this more people
might be tempted to start taking drugs. It therefore might make sense to
use

g(v) = 1 + βv (4.4)

This particular form of the function was introduced in Wallner (2005) as
an alteration of a function suggested in Caulkins (2005). It means that
there is a flow from susceptibles to users, which is not directly influenced
by the impact of the harm reducing measures, but this flow gets increased
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by β times v percent, due to the previously described effect, that less harm
increases the attractiveness of taking drugs. Parameter β weights the impact
of the control. Note that, unlike in the marketing model, this function now
depends linearly on the control variable.

When considering such a model, especially when including the suscepti-
bles, is important to address the question why do people start taking drugs?
In many cases the motivation for taking drugs or any other illegal behavior
can be found in social interactions (cf. Caulkins, 2004; Glaeser et al., 2002;
Himmelstein, 1983; Kleiman, 1993). These motivation can be caused for
example by wanting to impress or imitate certain people or word-of-mouth
advertisement done by the existing drug users. Therefore if the number of
users is large, many susceptibles will find themselves in contact with users
and might feel a stronger pressure or at least influence regarding their deci-
sion on whether to take drugs.
It therefore makes sense to use the initiation function f(A) = a + bAα as
suggested in Caulkins (2004) and Caulkins (2005), with a describing the per-
centage of susceptibles who decides to take drugs without being influenced by
anyone else (e.g. for self-medication), this fraction of people are the so-called
innovators. bAα gives the influence of the users on the susceptibles (the so-
called imitators), with the parameters b and α describing the strength of the
impact of the number of users on the number of susceptibles. α is assumed
to be greater than one meaning that the more people take a certain drug the
stronger becomes the pressure of the susceptibles to fit in and imitate this
behavior.

Application of Pontryagin’s Maximum Principle

The Hamiltonian function than can be written as

H = A(1− v) + cv2 + λ1(k − δS − f(A)Sg(v)) + λ2(f(A)Sg(v)− µA) (4.5)

Since we are dealing again an optimal control problem with control con-
straints (see, e.g., Grass et al., 2008; Feichtinger & Hartl, 1986; Léonard &
Long, 1992), we have to consider the Lagrangian function, which is given by
L = H + ν1v + ν2(vmax − v)

Applying now Pontryagin’s Maximum Principle, we find that

Lv = −A + 2cv + (λ2 − λ1)f(A)Sgv + ν1 − ν2 = 0. (4.6)

Due to (4.4) we find that gv = β, which can be inserted into (4.6) in order
to express the optimal control as
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v∗ =
A + β(λ1 − λ2)f(A)S − ν1 + ν2

2c
. (4.7)

We can see here that if the number of users is large it is optimal to do
much in order to fight the harm caused by them. As we will see later, the
second costate is greater than the first one, which means that an additional
user is worse than an additional susceptible. Then, if initiation or the im-
pact of the control on it is big or it is very undesirable at this point to have
additional users, expressed by a large λ2, one should not do much harm re-
duction measures in order to avoid this additional flow caused by control
application. Also, if the costs are large, one should not do too much, be-
cause the lower harm would not justify these costs. Since dealing with a
minimization problem now, the Legendre-Clebsch condition is fulfilled if

Lvv = 2c + (λ2 − λ1)f(A)Sgvv ≥ 0. (4.8)

Using (4.4), the second derivation of the function g(v) with respect to
the control is zero, meaning that the previously given condition is always
fulfilled since c ≥ 0. Again, only the necessary conditions for optimality
are fulfilled and only extremals are found, however, they can be assumed to
be optimal because of the economic interpretation of the candidates for an
optimal solution.

The Lagrange-multipliers ν1, ν2 are due to the complementary slackness
conditions such that

ν1v = 0 ν2(vmax − v) = 0

ν1, ν2 ≤ 0.

The costate equations are then given as

λ̇1 = (r + δ)λ1 + (λ1 − λ2)f(A)g(v) (4.9)

λ̇2 = (r + µ)λ2 − (1 − v) + (λ1 − λ2)fASg(v) (4.10)

Like before the sign of the costates is positive, however now it denotes the
maximum amount that a decision maker would be willing to pay for one unit
less of these states, because unlike the marketing model, a decision maker
neither wants to have people, who cause harm to society by drug usage,
nor people who are attracted to this behavior. Note that the first costate
equation describing the development of the shadow price of the susceptibles
depends in the same way on the same parameters and functions1 as the first

1Their specific shapes are of course different.
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costate equation denoting the shadow price of the potential customers in the
marketing model. This is because the objective function does not depend on
the number of susceptibles in both cases and the state equations are basically
the same (except the specific form of the used functions). In the numerical
calculations of the subsequent sections, the second costate will be again larger
than the first one, this time because it is obviously better to have potential
than actual consumers of a certain drug. With the help of (4.9) it can be
seen that in a steady state λ2 > λ1 because of the non-negativity of r, δ,
f(A) and g(v).

Steady States

Crucial to the behavior of the system are the occurring steady states and
their stability properties. They can be found by setting the state and costate
equations (4.2)-(4.3) and (4.9)-(4.10) to zero. As a consequence, when start-
ing in these points, the values of the states, costates and consequentially of
the optimal control and Lagrange multipliers will never change.

By setting Ṡ = 0 and Ȧ = 0 we find with the help of Ṡ + Ȧ = k−δS−µA

Ŝ =
k − µÂ

δ
(4.11)

This holds for all steady states. We can see here that in an equilibrium
with many users, there won’t be many susceptibles and vice versa. If the
inflow to the susceptibles k is high there will be more susceptibles in the
steady state than if these parameters would be low. If many susceptibles
chose to leave the system without ever becoming a user, or in other words if
δ is high, or if the quitting rate µ of the users is big, the number of susceptibles
will be smaller in the equilibrium that if their quitting rate was be low.
By setting (4.9) to zero we find that

λ̂2 = λ̂1

r + δ + f(A)g(v)

f(A)g(v)
,

and since the discount rate r and the quitting rate of susceptibles δ are
both larger than zero, this means that in a steady state the second costate
is always larger than the first one, representing that it is worse to have an
additional drug user than a potential consumer.

When using the previously specified functions g(v) = 1 + βv and f(A) =
a+bAα and assuming that parameter a, i.e. the fraction of innovators among
the susceptibles, is zero, it is possible to analytically find a steady state which
can be seen in Tab. 4.1 and to find the eigenvalues of the Jacobian matrix
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Table 4.1: Steady state values for a = 0

Ŝ Â λ̂1 λ̂2 v̂∗ ν̂1 ν̂2

k

δ
0 0

1

r + µ
0 0 0

as ξ1 = −δ, ξ2 = −µ, ξ3 = r + δ, ξ4 = r +µ. As such it is a saddle point with
a two-dimensional stable manifold and a candidate for an optimal solution.

The explanation of this steady states is as follows: There is no one among
the susceptibles willing to take drugs if there is no one there, who gives them
any reason to imitate them in their behavior. Therefore if there are no users
serving as examples, there will never be any. Since there are no users it is not
necessary to reduce the harm caused by the drugs, because simply no users
means no harm to society. A more detailed interpretation of this steady state
will be given later.

4.1.2 An Exponential Objective Function

Previously it has been assumed that the harm reduction measures lead to
a linear decrease of total harm per user until some maximum value vmax

is reached. Yet, this may not be entirely realistic. Let us now redefine
the optimal control instrument v as the percentage reduction of reducible
harm. (Before it was assumed that the maximum amount of reducible harm
is determined by vmax.) An argument, why the efficiency of harm reduction
measures might be convexly decreasing, is a negative impact on the handling
of drug usage by the consumers themselves: While it was previously assumed
that harm reduction measures make drug usage more attractive for non-users,
some drug users might also lower their concerns regarding the damages caused
by their bad habit, and they might be induced to use the drug more frequently
- leading again to a higher total harm of the drug. Of course, such a behavior
might not necessarily occur for all drugs and their users, because a heavily
addicted user would probably care little about how safe a more frequent drug
usage is even if no harm reduction is done at all. Also, if it is assumed that
possible harm reducing measures are not equally efficient, a decision maker
would primarily use the more efficient tools, i.e. those who do not lead to an
increased usage of the product.

Although v describes the percentage of reducible harm, it might still be
possible that the maximum admissible value of the control is smaller than 1,
particularly if the decision maker is restricted in his choice for harm reducing
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instruments, by arguments of political nature. E.g., some people might not be
particularly intrigued by the thought of handing out clean needles to heroin
users (although it would lower the risk of HIV or hepatitis C transmissions)
or by a significant reduction of legal actions against drug consumers. Still
that would be possible measures that would certainly decrease the harm and
costs arising for society.

The optimization problem then is given by

min
0≤v≤vmax

∫ ∞

0

e−rt(A(h + (1 − h)e−mv) + cv2)dt (4.12)

Parameter h describes the maximum possible harm left per user if the
control is fully applied, as such it has to be smaller or equal to one, and
parameter m serves to better weight the impact of harm reduction on the
objective function, c reflects again the costs of harm reduction measures.

The state equations including the initiation function as well as the func-
tion that describes the impact of the control on the flow from the susceptibles
to the users remain the same as in the base case model.

4.1.3 Comparing the Objective Functions

When analyzing an optimal control problem the question arises how does
the used assumption regarding the objective functions influence the optimal
solution. Therefore let us take a closer look at both of the used objective
functions, which describe the total harm caused by drug usage and the costs
arising by harm reduction measures. Taking a closer look at the functions
we see that for v = 0 and h = 0

A(1 − v) + cv2 and A(h + (1 − h)e−mv) + cv2

return the same value, i.e. A.
The Taylor approximation (of 2nd degree) at v = 0 of A(h+(1−h)e−mv)

is
A(1 − (1 − h)mv) + O(v2)

which is very similar to A(1 − v) of the prior objective function, espe-
cially for the parameter values h = 0 and m = 1. If one would look at the
objective functions for larger values of v this approximation would not de-
scribe the exponential function as good as before anymore. This implies that
if the control spendings are small, then it would not make a big difference
which objective function is used and therefore which assumptions are made
regarding the impact of the control on total harm arising to society. Also
if the number of existing consumers is rather small it does not make a big
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difference which objective function is used since the arising harm is so small
then that control measures do not influence many people in their decision
to start taking drugs anyway and the impact of control spendings would be
rather similar. However, it must be considered, when choosing the objective
function, that the number of users as well as the optimal control expenditures
might change over time, and while at some points in time it might appear
that both ways to describe the impact of the control on total harm are fitting
for a given problem, this does not have to be the case as time goes on.

In order to be able to compare the solutions of both problems, we want to
find parameter values to keep the objective functions as similar as possible.
Therefore we want to find the parameters m and h for which the difference
of h + (1 − h)e−mv to (1 − v) is as small as possible and therefore have

min
m,h

(1 − v − (h + (1 − h)e−mv))2

which gives

h = 0, m(v) = −
ln(1 − v)

v

The mean value of m(v) for 0 ≤ v ≤ 1 would then be determined by
∫ 1

0

m(v)dv = 1.6449,

a parameter value which will be used together with h = 0 in the subse-
quent sections.

Fig. 4.1 shows harm per user as assumed by the two objective functions
for A = 1 for the different admissible values of the control variable. There
it can be seen that, of course, total harm is linearly decreasing for the ba-
sic objective function. The exponential objective function captures that for
small application of the control instruments harm decreases stronger, which
occurs when a decision maker decides to use the more efficient measures first.
Fig. 4.1 also reflects that further control application becomes less and less
effective because on the one hand users might increase their usage of the
drug.

Application of Pontryagin’s Maximum Principle

The Hamiltonian function now is given by

H = A(h+(1−h)e−mv)+cv2+λ1(k−δS−f(A)Sg(v))+λ2(f(A)Sg(v)−µA),
(4.13)
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Figure 4.1: Harm per user using the base case objective function (black line) and
the exponential objective function (gray line)

but due to having to include the control constraints v ≥ 0 and v ≤ vmax

one has to consider the Lagrangian function which is given as L = H+ν1v +
ν2(vmax − v).

The necessary condition for optimality

Lv = −A(1 − h)me−mv + 2cv + (λ2 − λ1)βf(A)S + ν1 − ν2 = 0 (4.14)

has to be fulfilled, however, it is not as easy as before to express the optimal
control with the help of this condition. Yet, it is possible to express one of
the costates using this condition and later substituting it into the dynamical
system consisting of the two state equation, the costate equation of the other
adjoint variable and an equation describing the development of the optimal
control over time2.

Remark on the Numerical Calculations The OCMat toolbox is also able
to handle cases where it is not possible to express the optimal control explicitly
given by the previously derived condition. In that case a costate dynamics is
replaced by the control dynamics. All these transformations of the canonical
system into the state-control space are done automatically by the toolbox.

The Legendre-Clebsch condition also has to be fulfilled, which happens if

Lvv = A(1 − h)m2e−mv + 2c ≥ 0.

The parameters used in this condition are such that none of elements of
the expression can be smaller than zero, therefore this condition is always
fulfilled.

2See Appendix.
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Table 4.2: Parameter values for the single steady state case

r c k δ µ a b β α h m

0.04 8.247 1 0.05 0.0976 0.02 0.01 0.1732 1.75 0 1.6449

The costate equations now are given by

λ̇1 = (r + δ)λ1 + (λ1 − λ2)f(A)g(v) (4.15)

λ̇2 = (r + µ)λ2 − (h + (1 − h)e−mv) + (λ1 − λ2)fASg(v). (4.16)

Again we find that due to (4.15) in a steady state the first costate is
smaller than the second, again meaning that a consumer of a drug is less
desirable to have than a potential drug user. Note that the first costate
equation (4.15) is the same as in the base case. The reason for this is that S
does not occur in the different objective function, while the state equations
where it occurs are the same. If no innovators feel attracted to the drug, i.e.
parameter a is equal to zero, it is again possible to find one steady state with
no users analytically, the values of the states, costates, control and Lagrange
multipliers are the same as in the base case shown in Tab. 4.1.

4.2 One Long-Run Steady State

Like in the marketing for certain combinations of parameter values only one
steady state can be found as admissible candidate for an optimal solution.
One example for such parameters is shown in Tab. 4.2, the same parameters
are used for both of the objective functions. These parameters are not chosen
entirely randomly, they have been derived and applied to similar models
dealing with harm reduction in the cocaine problem of the U.S. in Caulkins
(2004) and Wallner (2005), however, in this combination they probably do
not fit well to any drug problem.

There is only one steady state, as well for the base case as for the exponen-
tial objective function. These steady states are shown in Tab. 4.3. In both
cases the number of users is rather large. Unlike in the marketing model,
where one would do as good as nothing and exploit the impact of the users,
one would now optimally apply the control measure in the steady state. The
large influence of existing drug consumers is something undesirable. Using
harm reducing measures would increase the flow from susceptibles to users,
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Table 4.3: Admissible steady state values for the parameters given in Tab. 4.2 if
the base case and the exponential objective functions are used

Ŝ Â λ̂1 λ̂2 v̂∗ ν̂1 ν̂2

Base Case 1.59 9.43 3.24 3.75 0.5674 0 0

Exponential Case 1.62 9.42 3.60 4.17 0.4459 0 0

application of the control would decrease the total harm arising. In such
a case harm reducing measures compensate the additional harm caused by
their application.

Remark on the Numerical Calculations Numerical calculations are done
again with the help of the OCMat toolbox. However, in order to receive cor-
rect results, one has to consider that when control constraints become active
the Lagrange multipliers have to be non-positive dealing now with a mini-
mization problem. In order to ensure correct switching to the system where
the control takes its maximum or minimum admissible value, OCMat needs
positive Lagrange multipliers for calculations. This is handled automatically
by specifying in the initialization file of the model that a minimization prob-
lem has to be dealt with. Another possibility is to formulate the minimization
as a maximization problem, i.e. multiply the objective function with -1 before
initialization of the model.

Due to the similar parameters the steady state values are close for both
objective functions, the biggest difference is the value of the second costate,
which is larger for the exponential objective function. The reason for this is
that λ2 describes the maximum price a decision maker would pay for a user
less. Since the assumption is made that application of the control does only
increase the flow from the first to the second state, but also increases usage of
existing user, the total harm of an additional user is worse for the exponential
objective function. Note, however, that starting on this point, the value of
the objective function would be a little bit smaller for the exponential case
due to the slightly smaller number of users and the resultingly lower control
application in the steady state.

Now the optimal strategy would look as follows: If the number of users is
initially small, any efforts in reducing the harm would only lead to costs and
a direct and indirect3 increase of initiation, which cannot be compensated

3Caused by the imitators following the example of the people who are attracted to the
drug due to the lower harm.
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Figure 4.2: Phase portrait of the single steady state case of the harm reduction
model for the base case (black line) and the exponential case (gray line) objective
function. The dashed and dotted lines show where control constraints become
(in)active in the base and the exponential case respectively: If the number of
users is small one should not apply any harm reduction measures, however if their
number is large, the maximum amount of control spendings is required. The curve
showing where the control variable reaches its maximum admissible value is not
shown (for lack of space).

by the reduction of the total harm in the objective function. Therefore, it
would be basically optimal to ignore what happens in such a situation, the
harm arising by drug users would not be worth consideration. However, due
to the influence of the existing users and the fraction of innovators among
the susceptibles, the number of users will rise after some time. Then, if their
number and their impact is large enough, the number of susceptibles will
decrease, because too many of them would decide to start using the drug.

If the number of susceptibles is initially large and the number of users
not too big, a decision maker has to be careful regarding his control efforts:
As the message that it is safer to use a certain drug reaches more potential
users, one would keep harm reduction measures as low as possible in order
to avoid a fast escalation of the problem.
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Figure 4.3: Timepath of the optimal control corresponding to the phase portrait
Fig. 4.2.

Fig. 4.2 shows how an optimal solution starting at an initial point (A0, S0)
with many susceptibles but little actual drug users might look like for the
two different objective functions. While the paths are rather similar when
the sizes of user and susceptible groups are rather small, this changes for
a larger number of users. Fig. 4.3 reveals the different optimal control
strategies: In the beginning it is optimal to do nothing (the according control
constraint becomes active). If the harm per user is described more adequately
by the base case objective function. In the other case, i.e. when using the
exponential objective function, one could do a little bit, simply because harm
reduction is more efficient then if applied only a little. In both cases the
number of users increases, while the number of susceptibles starts to fall.
The control spendings in the base case soon exceed the spendings in the
exponential case, because a decision maker would be rather hesitant to give
larger price reductions if this would mean a larger drug usage caused by the
existing users and therefore the measures become less and less efficient. This
is also the reason why after a certain time one would do the maximum amount
of harm reduction possible in the base case, but not in the exponential case.
Resultingly, due to the higher incentive to potential users, the number of
drug users increases slightly more in the base case. However, after some
time there are not enough potential users left who could follow the example
of existing users, and therefore the number of drug consumers starts to fall
until the steady state is reached. The initially fast increase of users because
of the many imitators and the following decrease of their number because
of growth limitations due to the only constant inflow to susceptibles is the
reason why there is an overshoot and the steady state is not approached
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Figure 4.4: Value of the objective function for different initial values of users and
susceptibles for the base case (black lines) and the exponential case (gray lines)
for the single steady state case.

directly. Note that the unfavorable impact of harm reduction on initiation
is not so strong that it can prevent the decrease of the drug users; if there
are hardly any susceptibles left who find motivation in such harm reducing
measures, the negative impact is too small to make much of a difference.
Because of the lower control spendings the steady state in the exponential
case consists of little less users and more susceptibles.

As their motivation to initiate drug usage does not depend on others, it
is primarily the innovators who become drug users if the number of existing
users is low. However, if the user group starts to grow due to these people, the
influence of people taking drugs on people who do not becomes larger and
larger and after some time the drug problem becomes rather large. Later
we will see what happens if there are no innovators, which is particularly
interesting if the number of existing users is rather small.

Fig. 4.4 shows the value of the objective function for different initial
values of users, where the number of initial susceptibles is fixed at S0 = 2 for
both objective functions. It can be seen that if there are little users initially
less harm arises in the exponential case. The reason for this is that for
the most part of the optimal solution control spendings are small, because
the arising harm, is because of the lower number of users, small too. As
we assume in the exponential case that the higher control efforts lead to
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additional harm caused by increased usage of drug use, small amounts of
harm reduction measures are more efficient. However, this changes if the
initial number of users is large: Then it was assumed in the base case that
all of the harm can be eliminated, but not in the exponential case. This
means that in the exponential case the harm caused by a large number of
users contributes to the size of the value of the objective function, while
this is not the case using the base case objective function. There the actual
harm by users is zero and only the costs for the control application arise on
parts of the solution where it is optimal to do the maximum amount of harm
reduction.

The Influence of Parameters on the Steady State

There is only one steady state for the given parameters. But what happens
if these parameters change? The question arises how any change of the
given parameters affect the steady state and therefore the optimal solution.
Depending on the parameters the system will change in the following way:

b If the impact of existing users increases, then there will be more users
in the steady state. There are two reasons for this: On the one hand
the increased flow directly leads to a larger number of users and, on the
other hand because of the higher number of users more control spend-
ings are required increasing the incentive of susceptibles to start taking
drugs. Of course then the number of susceptibles becomes smaller. A
decrease of the impact of existing users on the other hand leads to a
higher number of susceptibles and a lower number of users and less
control spendings in the steady state (and therefore would be desirable
for the decision maker, since there is less harm caused by users due to
the lower initiation and decreased costs due to the smaller spendings
on harm reduction). Note, however, that if b increases, the growth of
the number of users is limited by the number of available susceptibles
and their constant inflow rate. Also note that not only the steady state
is affected by the parameter change but also the optimal solution. For
example more control efforts are necessary if the number of suscepti-
bles is low (but not too low) and the number of users is high. If this
initiation parameter is big, more susceptibles will become drug users
and the shape of the optimal solution is slightly different: Due to the
larger initiation the number of users can still grow when for a lower
parameter b the number of users would already fall because there are
not enough susceptibles becoming users to support further growth.

a The fraction of innovators among the susceptibles, who start to adopt
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drug usage independent of others, also plays an important role for the
steady state value. A larger parameter a means that more people start
using the drug, which again has to a higher direct and indirect impact
on the number of users, because of the additional initiation and their
influence on potential consumers. However, if the number of existing
users is very small, it is almost only the innovators who become users.
Therefore if their fraction is very small or even zero, the system behav-
ior changes and a second steady state becomes relevant, which we will
consider more closely in the next section.

β If the impact of the control on initiation becomes stronger, i.e. users
are more inclined to take drugs because of harm reduction measures,
the number of users in the steady state will increase and the number of
susceptibles will fall. Because of the larger number of users one has to
increase control spendings in order to adequately deal with the arising
harm. This, however, would lead to an additional increase of the user
group.

c If the costs for harm reduction measures change, then the steady state
would change too since a decision maker has to rethink his optimal
strategy if it gets more or less expensive. If harm reduction becomes
cheaper one would spend more a little more for such measures in order
to reduce the harm. Yet, one would not do too much more because
of the corresponding increase of initiation. Therefore, if the costs sink
there would be more users and less susceptibles in the steady state. On
the other hand if the costs for harm reduction rise, one would do less
leading to a smaller number of users in the steady state. The impact
on the optimal solution is such that if costs are large one would do less
harm reduction.

µ A larger quitting rate of the users means that there due to a higher
outflow, there will be less users and more susceptibles in the steady
states. As such, less control efforts are required and the number of
users becomes even smaller. If, however, the quitting rate becomes
smaller, users stay true to their undesirable habit for a longer time,
meaning that there are more people causing harm by their behavior
and by their influence on others. Then more harm reduction is needed
leading to a further increase of users.
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Table 4.4: Parameter values for the weak DNSS case

r c k δ µ a b β α h m

0.04 8.247 1 0.05 0.0976 0.0 0.01 0.1732 1.75 0 1.6449

4.3 Weak DNSS Curve

If one sets the fraction of innovators in the initiation function to zero, there
are as in the marketing model two steady states serving as candidates for an
optimal solution. Their stable manifolds are now separated by a weak DNSS
curve, meaning that unlike in the marketing model a decision maker does
not have the choice between different optimal solutions, at least not for the
used parameters.

This case has already been described in Chapter 1.3.1 as an introduc-
tory example. There only the results of base case objective function were
described. However, as before results are pretty similar to the exponential
case. Particularly if the number of users is small, it does not make much of
a difference what function is used. If there are many consumers of a drug, a
decision maker would apply more harm reduction measures under the base
case assumption. This would lead to a higher initiation and therefore a larger
user group.

The optimal strategy would be as follows: On the left side of the weak
DNSS curve one would be careful not to give potential users additional in-
centives to start taking drugs, because that might unnecessarily lead to an
escalation of the problem. Also, if there are hardly any consumers it is not
required to do much, since the lower harm would not justify the costs. On
the right side of the weak DNSS curve, if the number of users is small one
should not apply any control measures, because there is not too much harm
arising and additional users would only lead to a faster escalation of the
current drug situation. Then, if the number of consumers increases, a deci-
sion maker should increase his control efforts in order to fight the harm. A
really big user group might make the maximum amount of harm reduction
measures necessary. As mentioned in the exponential case a decision maker
would be more careful with the applied measures, since it is assumed that
harm cannot be entirely erased and any effort would make drug usage more
attractive to existing users.

The reason why it makes sense that there is “only‘” a weak DNSS curve
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Table 4.5: Steady state values for the parameters shown in Tab. 4.4 if the base
case and the exponential objective functions are used. The third and the sixth
are no candidates for an optimal solution; they are relevant for the location of the
weak DNSS curve.

Ŝ Â λ̂1 λ̂2 v̂∗ ν̂1 ν̂2

Base Case 20 0.0 0.0 7.2674 0.0 0 0

Base Case 1.66 9.4 3.29 3.82 0.5651 0 0

Base Case 19.22 0.40 −0.73 −32.73 0.04 0 0

Exponential Case 20 0.0 0.0 7.2674 0.0 0 0

Exponential Case 1.69 9.38 3.64 4.25 0.4447 0 0

Exponential Case 19.21 0.40 −0.69 −31.34 0.05 0 0

here, is that no matter whether one starts closely on the left or the right side
of the curve, it would not make any sense to do any harm reduction. Closely
on the right side of the curve one would not take any harm reducing measures,
because the number of users is so small that the compensated harm would
not justify the costs created by the application of the control measures and
only lead to a faster escalation of the drug problem. On the left side of the
DNSS curve, the main reason, why it does not make sense to do any harm
reduction, are not so much the costs, but the mentioned increased flow from
susceptibles to users. The additional users would not only contribute directly
to the total harm arising but lead to a further increase of initiation and then
the steady state with no users could not be reached anymore for the same
initial level of users and susceptibles. The corresponding phase portrait has
already been shown in the introduction (see Figs. 1.2 and 1.3).

Looking at Fig. 4.5 we find that the value of the optimized objective
function depends on the initial values of the state variables. If the initial
number of drug users is big the arising harm is larger than in a case with
little initial users. Yet, if the drug problem reaches a certain size total harm
does not become much larger anymore by an additional initial drug user
in the base case. The reason for this is that one would apply the maximum
possible amount of harm reduction. The control instrument is the percentage
reduction of the harm per user and is limited to a maximum value, which is
assumed here for simplicity as vmax = 1, meaning one could reduce any harm
caused by users. The costs are assumed only to depend on the harm reduction
measures and not on the number of people to which they are applied. As such,
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Figure 4.5: Value of the objective function for different initial values of users and
susceptibles for the base case (black lines) and the objective function (gray lines)
when a weak DNSS curve (shown by the dotted line) occurs.

no harm would arise theoretically to society if one would take all possible
measures in the beginning for a large number of initial users, only the cost
would have an unfavorable impact on the objective function. Additional
users would only increase the harm by making the decision maker apply
the maximum control measures for a longer period of time. This is not as
“expensive” as if each additional user would increase the harm by his mere
presence as is the case when using the exponential objective function.

The value of the objective function depends on which side of the weak
DNSS curve one starts: Of course if one has the chance to let the drug
problem disappear it is smaller than if the drug problem escalates and leads
to the steady state with a high number of drug consumers. It can be seen
again on the right side of the weak DNSS curve total harm rapidly increases
if the number of initial users changes only slightly. Similar to the marketing
model, the reason for this is that the time needed for the problem to develop
such a size to be of a larger concern is very long close to the DNSS curve and
so not much harm arises over the relevant time period. As such the value
particularly of the second costate is very large closely to the weak DNSS
curve: An additional user is very disadvantageous then.

Comparing the values of the two objective functions, we see that if the
initial number of users is rather small the values of the objective functions
are rather similar. This changes, however, for a larger initial group of drug



100 CHAPTER 4. HARM REDUCTION MODELS

consumers. For a small number of users total harm is larger if using the
base case objective functions, the reason for this is that the initial amount
of measures taken is not considered as efficient in reducing the harm per
user and over the course of the solution path more people will become users.
However, if the number of drug users is rather large this changes: Since harm
per user is considered as being not totally erasable in the exponential case,
harm still increases proportionally to the number of users if the maximum
control is applied. Also costs for control application arise. In the base case
the assumption that one can eliminate any harm caused by users, if one
would do this there would only be the costs for the measures and no harm
as such which increase proportionally to the number of users.

Depending on which side of this weak DNSS curve one starts, the drug
problem either escalates or disappears. While a decision maker cannot con-
trol this outcome using harm reduction measures, in such a case he might
consider, if desired, the application of some other, maybe one-time measures
in order to manipulate the number of users and/or susceptibles to get to
the politically more convenient side of the weak DNSS curve. Note, however,
that such measures are not included in this model and if one did so one would
also have to consider that there might be costs attached.

Where this weak DNSS curve can be found depends again on the pa-
rameters. If the impact of existing users reflected by parameter b becomes
larger, then less users are needed for the problem to escalate. Because of this
the curve also becomes more steep, i.e. a low number of susceptibles cannot
prevent the escalation of the problem as much as before due to a smaller ini-
tiation. Parameter a, i.e. the fraction of innovators among the susceptibles,
has a similar impact on the weak DNSS curve. On the other hand if param-
eter µ increases the outflow from the user state becomes larger and due to
this the influence of existing users and therefore initiation becomes smaller.
Thus, more initial users are required that the problem escalates and the
DNSS curve becomes less steep, meaning that if the number of susceptibles
is not big enough the problem cannot become too big. If control application
becomes cheaper, i.e. the costs c decrease, then a decision maker has higher
incentives to use his control instrument. Then a decision maker would apply
harm reduction measures already for a lower number of users. If, however,
he has the possibilty to avoid the escalation of the problem, he would still
do nothing in order not to provide additional incentives for potential user to
start taking drugs. If the outflow rate of the susceptibles δ becomes larger,
there are more users necessary for an escalation of the problem because there
are less susceptibles who can be motivated to become users. Similar effects
on the DNSS curve has a decrease of the constant inflow k to susceptibles.
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Table 4.6: Parameter values for the limit cycle case

r c k δ µ a b β α h m

0.04 3 1 0.05 0.35 0.02 0.0272 0.1732 1.75 0 1.6449

Table 4.7: Steady state values in the limit cycle case if the base case and the
exponential objective functions are used.

Ŝ Â λ̂1 λ̂2 v̂∗ ν̂1 ν̂2

Base Case 5.9609 2.0056 2.3046 4.0660 0.3003 0 0

Exponential Case 5.9563 2.0062 1.9969 3.5214 0.3041 0 0

4.4 Limit Cycle

Another possible result is that of the limit cycle. Tab. 4.6 shows the param-
eters for which a limit cycle is the only admissible candidate for an optimal
solution for the base as well as the exponential case. Tab. 4.7 shows the
relevant steady state, however, as they are instable they are no candidates
for optimal solutions. The eigenvalues of the monodromy matrix of the cal-
culated limit cycles are both such that two of them are greater than one, one
is smaller and one is equal to one. This means the dimension of the stable
manifold of the limit cycles is two.

A large outflow from users (e.g., caused by a large death rate or efficient
treatment), for instance, can be the crucial reason for the occurence of cyclical
behavior. Starting with some susceptibles and only a few users (phase I), the
number of susceptibles can rise due to the constant inflow to the susceptibles
and the relatively low flow to the users. The number of consumers can grow
due to the rising flow from susceptibles and relatively low number of users
quitting drug usage. If the number of users grows stronger and stronger,
the constant inflow to S is not sufficient anymore to allow a further increase
of this state. The number of susceptibles starts to fall, while the consumer
group grows (phase II). That means that in the state equation describing
the development of the susceptibles f(A)Sg(v) + δS, i.e. the components
describing the outflow from this state, exceed the inflow k. However, after
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Figure 4.6: Limit cycle for the two different objective functions, where (a) corre-
sponds to the base case and (b) to the exponential case. Steady states which are
no candidates for where an optimal solution can end in, but are relevant for the
cycles, are shown by ◦.

a while the number of potential drug users will become so small that there
are not many people left who could be convinced to start taking drugs and
due to the large outflow rate, the number of drug consumers starts to fall too
(phase III). This happens if in the state equation Ȧ the outflow µA becomes
greater than the inflow f(A)Sg(v). If there are not many people left who
influence others in their drug adoption decision, the number of susceptibles
will increase again due to the constant inflow, while the number of consumers
might still fall (phase IV).

Initially it is not optimal to do much, the lower harm caused by this mea-
sures cannot compensate the costs. To fight the harm caused by additional
users when the problem becomes larger, one would do much to decrease total
harm. Then one has to accept the larger number of drug users and the aris-
ing costs. With a falling number of users one can again reduce the control
efforts.

Fig. 4.6 depicts limit cycles for the parameters shown in Tab. 4.6. Fig.
4.7 shows the corresponding time paths of the state variables and the control.
Comparing these two cycles we find that, while their period is rather similar
with Θbase = 34.81 and Θexp = 34.64, using the base case objective function,
the oscillations will be larger. The reason for this is that initiation is slower in
the exponential case due to the lower number of susceptibles when the number
of users is small, and the smaller control spendings when the number of users
is large. This means that initiation is smaller and takes approximately the
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Figure 4.7: Timepath of the control corresponding to the phaseportrait Fig. 4.6.

same amount of time as in the base case with the larger oscillations.
In the exponential case, the reason why one would not change one’s opti-

mal control application much over the course of the cycle is that small harm
reduction measures are more efficient in terms of reducing more harm per
user. As such, one would be more willing to do more harm reduction if the
number of users is rather small and would not increase the control spendings
much even if the number of users rises. Since the additional flow, which
would be particular large if much harm reduction is made when the number
of users is large, is then quite small, the oscillations will be smaller. Fig.
4.6 shows the larger application of the control measures over the course of
the cycle in the base case. However, this additional flow from the potential
to the actual consumers of a drug as well as the higher number of suscepti-
bles increases initiation so much that more people would start taking drugs,
making again to higher control efforts necessary.

Remark on the Numerical Calculations Again the cycles were found with
the help of the OCMat and Matcont toolboxes. Note while for both objective
function limit cycles could be found for the same parameters this is not always
the case. This can be seen calculating the relevant steady states for different
values for a certain parameter and by looking at the parameter value where
the Hopf bifurcation occurs.

Now consider that the initial number of users is small and there are
a few susceptibles. In phase I both the number of users and susceptibles
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Figure 4.8: Number of people who decide to start drug users because of increased
attractiveness of the drug due to lower harm and people who are at most only indi-
rectly influenced by this for other reasons in the base case (a) and the exponential
case (b)

can grow. It can be seen that the initial number of users on the cycle is
smaller for the base case, while the number of susceptibles is much larger
there. Resultingly, the amount of harm reduction would be much larger
in the exponential case, because on the one hand one would reach more
users and on the other hand the danger of affecting too many susceptibles in
their adoption decision is rather small. Yet, one would also do some harm
reduction measures if the problem is most adequately captured by the basic
objective function to decrease the harm caused by the few existing users.
Due to the smaller number of existing users phase I lasts a little bit longer
in the base case.

As the number of users rises even further in the second phase it is neces-
sary in both cases to raise the control efforts. Since their growth is stronger if
using the basic objective function so must be the increase of harm reduction
measures. Then, in the third, but also in the fourth phase, the number of
users starts to fall because there are not enough susceptibles left to permit
further growth. Interestingly, in the base case one would decrease control
efforts before the number of drug users falls in order to prevent additional
initiation caused by a higher attractiveness of the drug, while in the expo-
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Figure 4.9: Number of innovators and imitiators among people who start drug
usage in the base case (a) and in the exponential case (b)

nential case one decreases control efforts basically at the same time as the
users’ number decreases. If one considers the base case, the number of users
as well as their oscillation is rather big on the cycle and one would have to
be particularly careful even then not to rise an additional flow that would
worsen the result. In the last phase the number of susceptibles can recover
due to the lower influence of the existing users.

Fig. 4.8 shows the fraction of people who decide to start taking drugs
because of lower risks due to harm reduction measures. It can be seen that
the oscillations are not particularly large in the exponential case, the reason
for this are the rather small changes of the control spendings over the course
of a cycle. In the base case the increase of the people motivated by the lower
risks is larger than in the other case, which of course results of the higher
control efforts due to the bigger group of users. In both cases the number
of people motivated by a lower harm are the largest when initiation reaches
its maximum. This is because one would put most efforts into fighting the
harm when the drug problem is big even though that would lead to higher
incentives for non-users to start taking drugs.

Similarly the change of the fraction of innovators is only very small in the
exponential case as can be seen in Fig. 4.9. This is not only because of the
little changes in users and susceptibles over the course of a cycle, but also
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Table 4.8: Parameter values for the weak DNSS with a limit cycle case

r c k δ µ a b β α

0.04 5 1 0.05 0.32 0.0 0.03968 0.1732 1.75

because when the number of susceptibles is rather large, control application
and therefore the additional initiation is pretty small. On the other hand,
when the additional flow caused by harm reduction measures is rather large,
the number of susceptibles is rather low and there are simply not many
people left who could decide to start taking drugs independently of others.
The fraction of imitators grows and falls with an increasing and decreasing
number of drug users. This also occurs in the base case. What can be rather
well seen in this case is that the fraction of innovators decreases and rises
together with the number of potential drug users. In both cases it can be
seen that the largest part of the people who decide to start taking drugs are
mostly imitators and the fraction of innovators is rather small. This depends,
of course, entirely on the used parameters.

4.5 Weak DNSS Curve with Limit Cycle

The next case is that both, a weak DNSS curve and a limit cycle occur. The
parameters needed to gain such a result are again such that the fraction of
innovators, who start taking drugs independently of others, is zero or very
small and the outflow from the user-state is rather large. Then starting
on the left side of the weak DNSS curve the impact of the existing users
would not be large enough to be of any concern and one would always end
in a steady state with no users. However, on the right side of the curve the
optimal solution would oscillate, i.e. never reach a point with a fixed number
of users and susceptibles.

The parameter used are shown in Tab. 4.8 and the corresponding phase
portrait can be seen in Fig. 4.10, which depicts the steady states, the cycle
and the weak DNSS curve. Tab. 4.9 shows on the one hand the steady state
with no users, which has saddle properties and is a candidate for an optimal
solution and the for the limit cycle relevant steady state, which is unstable.
The third steady state is also no candidate for an optimal solution, however,
it is relevant for the location of the weak DNSS curve.
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Table 4.9: Steady state values in the weak DNSS curve with limit cycle case for
the base case. The last two are not candidates for where an optimal solution can
end, but they still have some influence on the system behavior.

Ŝ Â λ̂1 λ̂2 v̂∗ ν̂1 ν̂2

20 0.0 0.0 2.7789 0 0 0

3.8743 2.5196 2.7943 4.0027 0.2358 0 0

17.795 0.3445 −0.375 −5.8269 0.0448 0 0

Remark on the Numerical Calculations This section only focuses on
the base case. In the exponential case a cycle was found for the used pa-
rameters, however control constraints were violated. Locating a limit cycle
with active control constraints is not possible with the current version of the
OCMat toolbox. However, theoretically this is possible by solving the follow-
ing boundary value problem: Find a trajectory starting and ending at the
same point, consisting of parts where the control constraints are active and
inactive. The only practical problem is to provide an initial solution.

The curve is again “only” a weak DNSS curve as closely to the curve the
optimal strategy would always be to do nothing. On the left side of the curve
harm reduction would do no good, because harm is low anyway. Any action
would only increase the incentive of the susceptibles to start taking drugs,
which might lead to an escalation of the problem. Due to the low harm it
also optimal on the right side close to the curve to do nothing, because the
costs and the impact on the potential consumers would not be justified by
the lower harm.

On the right side of the cycle a limit cycle occurs: If the number of users
is small, both their number and the number of susceptibles can grow due to
the constant inflow and the rather small flow from S to A due to the rather
low influence of existing drug users on potential consumers. After some time
the number of users and their impact on susceptibles becomes so large that
the potential user group starts to become smaller, while there is still growth
of the actual consumer group. Due to the larger outflow and the smaller
group of susceptibles their number starts to fall after some time too. When
the impact of existing users becomes smaller, the number of susceptibles can
grow again.

Fig. 4.11 shows the timepaths of the two trajectories that were depicted in
Fig. 4.10. One of these optimal solutions ends in a steady state with no users
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Figure 4.10: Phase portrait depicting the case where both a weak DNSS curve
and a limit cycle occur. The grey lines show some trajectories ending either at the
circle or at the steady state with no users.

and many susceptibles and the other one oscillates towards the limit cycle.
While it is not optimal to do anything in the first case, in the second case it
can be seen that the amount of optimal control spendings varies depending
on the actual number of users and susceptibles and even at certain points
maximum and minimum harm reduction are optimal to be applied: If the
number of users is low then it is optimal to do not much or even nothing.
If the harm arising through a large number of consumers becomes big, then
would start fighting the harm.

Remark on the Numerical Calculations In this specific case where con-
trol constraints become active and inactive, finding an optimal solution con-
verging to a limit cycle is very time consuming when solving the corresponding
boundary value. Therefore the solution paths ending at the limit cycle are cal-
culated by solving an initial value problem. The initial condition is given by
starting at a point on the linearized stable manifold of the limit cycle. Prac-
tically this is done by determining the stable eigenvectors of the monodromy
matrix. Then the ODE is solved backwards in time, analogous to the case of
a steady state.
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Note that again more total harm over time arises if the initial number of
users is large, due to the direct harm caused by them and due to the costs
arising through harm reduction measures. Also if the number of suscepti-
bles is large total harm is bigger as if their number was low because more
people are tempted to start taking drugs. If the initial number of users and
susceptibles is sufficiently small, however, and the steady state with no users
can be reached total harm is smaller, because there is no long-term menace
caused by the harm of drug usage.
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Figure 4.11: Time paths of the two trajectories depicted in Fig. 4.10, where
panel (a) shows the development of the number of users (b) of the susceptibles
and (c) of the optimal control.



Chapter 5

Conclusion

The aim of this thesis was to show that the used rather simple state dynamics
can be helpful in providing valuable insights about how one can optimally
influence the spreading of a certain good among the members of society for
different applications.

In the field of marketing a decision maker’s objective was to maximize
his profits, his tool to influence his outcome was giving promotional price
reductions, which has a negative impact on the company’s profits.

Not surprisingly, we saw, that the optimal strategy heavily depends on
the initial number of potential and actual customers of a product: If the
number of users of a certain good is rather small in the beginning, there
cannot be much of a for the decision maker advantageous interaction between
this group and the susceptibles. Therefore large price reductions should be
given then in order to make the product more attractive. If, due to the
lower price, the customer base grows, a decision maker can reduce his control
efforts, because the incentive to start using the product due to its popularity
increases accordingly. If, however, the market potential, i.e. the number of
susceptibles, is rather large, one should also give price reductions, because
such measures are very efficient then as a large audience can be reached.

Another thing that was seen is that rather complex behavior of the system
is possible, i.e. one might be able to find an optimal control strategy with an
oscillating number of potential and actual customers with this simple model.
Depending on the used parameters, there are several ways how an optimal
solution might look like, sometimes a decision maker would always reach a
high number of customers in the end, sometimes he would basically have no
other choice than to let the product fail, if acting optimally. Sometimes,
he even might have the choice between making the product successful under
high efforts and doing nothing, even though that means the product will find
hardly any buyers effectively. The most complex behavior found was that a
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decision maker might have the choice for certain parameters between letting
the product fail and an oscillating number of users and susceptibles.

As an extension of this basic marketing model, a two-stage version was
introduced in order to see how a sudden change of certain parameters, trig-
gered by some event, influences the optimal solution and the spreading of a
product. It was assumed that in the first stage the company was a monopo-
list, but has to face competition in the second.

Of course, it is necessary to adapt the optimal strategy according to the
parameters of the different stages. It was seen, that the optimal control might
jump at the switching point, the direction there depends on the relation of
the change of initiation and the average profit per user reflecting the market
price.

If all relevant parameters worsen in case of the market entry of com-
petitors, a decision maker would have no incentive to admit competition.
However, when he has no choice of doing so, e.g., when a patent expires, it
is always better for him to stay monopolist as long as possible. It is easer for
him then to gain and to hold customers, who can create even higher profits
due to a higher market price.

Each stage must have advantages if a decision maker considers to opti-
mally switch from one stage to the other. This can occur for instance if a
decision maker acts particularly aggressive in the first stage in order to keep
competitors out of the market. Such a strategy would mean for customers, if
their initial number was low, that they first would get attracted to a product
because of a low standard price (and possible price reductions). Then, if
the usage product becomes popular, they would have to pay a higher price
for their remaining time as users in order to be able to benefit from the
advantages of a higher user group.

The optimal switching point itself, however, depends on the parameters
used in the different stages and how much they change, respectively. If for
instance, initiation gets much worse in the second stage, one would remain
longer in the first stage for an initially small number of users.

The second field of application for this model is drug policy and, more
specifically, harm reduction. There, the optimal solution again depends on
the starting point. If the initial number of users is low it is always opti-
mal not to do much harm reduction: The cost of such measures and the
additional harm caused by people who start taking the drug because of the
lower risk would exceed the lower harm arising to society. If the potential
drug market, i.e. the number of susceptibles for a certain drug, is large, one
also has to be careful regarding harm reduction measures. The additional
attractiveness of the drug due to harm reduction can very easily lead to a
faster escalation of the drug problem. However, if the initial number of users
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is large, then a decision maker has to accept the costs of control application
and the additional initiation in order to be able to adequately respond to the
large harm arising.

For certain parameters, i.e. when the number of people who start taking
drugs independently of others is zero or very small, the drug problem might
disappear after some time if the initial group of drug users is rather small.
Then the influence of drug users is not big enough to make many people
imitate them and their number will decrease. In such a case one has to be
particularly careful about the amount of harm reduction measures taken,
because the additional number of users might lead to such an increase of the
number of customers, that due to their rising influence the problem might
escalate after some time.

The optimal solution depends on the objective function used. Comparing
the results, using two different objective functions it was seen, that if the
drug problem is small, it does not make much difference which one of the two
described is used: The strategy concerning the size of the applied measures
and the development of the number of susceptibles and users is not much
different then as not much harm arises anyway. However, this changes with
an increased number of users. Then one has to be more careful in choosing
an objective function fitting to one’s problem (which in this case differ by the
assumptions made regarding the impact of control application on the harm
per user).

It was also seen that optimal strategy and the behavior of the system
depend on the used parameters, oscillations of the number of susceptibles
and drug users might also occur for the harm reduction models. Then the
decision maker would have to face sometimes a larger, sometimes a smaller
drug problem. Another interesting outcome was that a weak DNSS curve
and a limit cycle can exist simultaneously: Then depending on the initial
value of the state one would either be able to erase the drug problem or
finally have an oscillating number of potential and actual consumers.

Of course there are many extensions possible for the models described
here, most important of all the next step would be to parameterize them and
see whether it is possible to explain and influence the spreading of real goods
with this simple model.

In the marketing case, for example, one could add a backflow from users to
susceptibles, i.e. a certain fraction of people who stop using a product might
be still interested in using the product, or include another state to adequately
deal with technological progress or consider the influence that users of a
different product might have on the initiation decision. Another possible
extension for the marketing model would be to consider a differential game,
where, e.g., one single competitor enters the market. For both, marketing
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and harm reduction it might make sense to consider the age distribution of
the susceptibles or split up the user group, e.g., into light and heavy users.

While these are just a few possible extensions, I think this thesis made
clear that it is possible to find some very interesting results using this par-
ticular dynamics describing the development of the number of potential and
actual adopters of a good and that it certainly would make sense to do further
investigations.
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Appendix A

A Short Guide to Optimal

Control Theory

In order to improve the readability of this work for people, who are not famil-
iar with optimal control theory, a short compendium of the used terminology
is given in the following. More detailed information can be found in optimal
control literature, such as Grass et al. (2008), Feichtinger & Hartl (1986),
Léonard & Long (1992), and many others.

Optimal control problem: Often a decision maker faces an optimiza-
tion problem that has a dynamic character, i.e. it evolves over time. There-
fore, when choosing his optimal strategy he has to include this development
over time and consider the underlying dynamical system. It is assumed that
the control problems here evolve continuously and are autonomous. An op-
timal control problem is called autonomous if its occurring functions do not
explicitly depend on time. Optimal control theory provides the tools to find
an optimal solution of an optimal control problem.

Objective function: A decision maker’s objective is to maximize or
minimize his profits or losses, respectively, over time. For this purpose, for the
models in this work, we have to consider an objective functional of the form
V =

∫ T

0
e−rtg(x(t), u(t))dt, where the discount rate rreflects the decision

maker’s time preference regarding whether he or she puts more emphasis on
the near or the remote future. T denotes the time horizon over which the
decision maker wants to maximize or minimize, and is assumed to be infinite
here. The function g(x(t), u(t)) describes the profits or losses at each instant
of time, x(t) denoting the state and u(t) the control variable.

State variable: At each instant of time, a dynamical system is in a cer-
tain state. The state variables x(t) ∈ R

n characterize the system behavior,
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meaning that they display the key aspects of the system, that a decision
maker might want to control. The size of a state cannot directly be manip-
ulated by a decision maker, only by virtue of the control. The development
of a state variable over time as well as how it is influenced by the current
state and control at time t is described by its state equation / dynamics
ẋ(t) = f(x(t), u(t)), where f : R

n × R
m → R

n and ẋ = dx/dt.

Control variable: The control variable u(t) ∈ Ω ⊆ R
m (with control

region Ω determined by control constraints c(u(t)) ≥ 0) serves as the decision
maker’s instrument to influence the system’s development over time. Control
constraints (c(u(t)) ≥ 0 with c : R

m → R
l) determine whether a control

value is admissible, meaning there can be restrictions among which values
of the control a decision maker is allowed to choose - here in this work it
is assumed that the control has to satisfy 0 ≤ u ≤ umax. The control can
be determined optimally with the help of Pontryagin’s Maximum Principle.
Particular difficulties can arise, if a control constraint is violated/becomes
active, then the control has to take its boundary (maximum or minimum)
value. If it is a linear control problem, a bang-bang solution occurs if the
control switches from one boundary to another.

Hamiltonian: In optimal control problems, the Hamiltonian function is
of particular importance. It is defined in its current-value notation as

H(x(t), u(t), λ(t)) = λ0g(x(t), u(t)) + λ(t)f(x(t), u(t)), (A.1)

where λ(t) ∈ R
n is called costate or adjoint variable (see later description).

For the here presented models it is assumed that the problem is normal, i.e.
λ0 = 1. The Hamiltonian reflects that the control influences the optimal
solution directly (via the objective function) and indirectly (as it affects the
states via the state equations), and the costate variable serves to weight these
two influential factors. If there are constraints (such as control constraints
c(u(t)) ≥ 0), it is necessary to consider the Lagrange function, which is
defined as

L(x(t), u(t), λ(t), ν(t)) = H(x(t), u(t), λ(t)) + ν(t)c(u(t)), (A.2)

where ν(t) is called Lagrangian multiplier.
With the help of the Hamiltonian (and therefore also of the Lagrangian)

one can determine the value of the objective function starting at a certain
point x(0) = x0, where

∫ ∞

0

e−rtg(x(t), u(t))dt =
1

r
H(x(0), u(0), λ(0)). (A.3)
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Pontryagin’s Maximum Principle: Pontryagin’s Maximum Princi-
ple1 says that if u∗(t) and x∗(t) is an optimal solution of an optimal control
problem, then there exists a continuous and piecewise continuously differen-
tiable function λ(·), with λ(t) ∈ R

n satisfying2 for all t ≥ 0, where u(·) is
continuous:

H(x∗(t), u∗(t), λ(t)) = max
u∈Ω

H(x∗(t), u, λ(t)) (A.4)

Lu(x
∗(t), u∗(t), λ(t), ν(t)) = 0 (A.5)

λ̇(t) = rλ(t) − Lx(x
∗(t), u∗(t), λ(t)), (A.6)

the complementary slackness conditions

ν(t) ≥ 0, ν(t)c(x∗(t), u∗(t)) = 0 (A.7)

and the transversality condition

lim
t→∞

e−rtH(x∗(t), u∗, λ(t)) = 0, (A.8)

where the asterisk denotes optimality.
Equ. (A.5) and (A.7) imply that for 0 < u < umax Hu(x

∗(t), u∗(t), λ(t)) =
0. Note also that (A.6) can be written as λ̇(t) = rλ(t)−Hx(x

∗(t), u∗(t), λ(t)),
with Lx = Hx since the constraints used in this work do not depend on the
state variables.

Legendre-Clebsch condition: A necessary condition for (A.4) in the
interior of Ω is that the second derivative of the Hamiltonian with respect to
the control must be in case of a maximization problem3 non-positive4, which
is called Legendre-Clebsch condition. In a linear optimal control problem
this condition is trivially satisfied with Huu = 0, then, however, one has to
consider the generalized Legendre-Clebsch condition5.

Costate variable: Due to Pontryagin’s Maximum Principle costate vari-
ables have to be included6. The economic interpretation of the costate vari-
able is that of a shadow price: it measures the highest price a rational de-
cision maker would be (hypothetically) willing to spent for an additional

1This “version” considers an autonomous control problem with control constraints and
infinite time horizon, which is assumed to be normal.

2Lu = ∂L/∂u and Hx = ∂H/∂x
3Any minimization problem can be transformed into a maximization problem by mul-

tiplying the objective function with −1, if this is not done, however, the second derivative
has to be non-negative.

4In case of more than one control the Hessian matrix Huu has to be negative semidef-
inite (in case of a maximization problem).

5See, e.g., Grass et al. (2008).
6These are analogous to the Lagrangean multipliers of static optimization problems.
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unit of the corresponding state variable at time t (see, e.g., Grass et al.,
2008). The development of the costate is described in the costate equation
which can be found with the help of Pontryagin’s Maximum Principle as
λ̇(t) = rλ(t) −Lx(x

∗(t), u∗(t), λ(t)).

Steady state: In a steady state (also called equilibrium or fixed point)
both the state and costate dynamics are zero, meaning that there is no change
in the states or costates as time evolves7. It can be shown that in optimal con-
trol problems with positive discount rate, steady states have to be repelling
or saddle points. Such stability properties can be determined with the help
of the eigenvalues of Jacobian matrix, which describes a linearization of the
system at this point.

Steady states are of particular relevance since they determine the system
behavior: A solution lying on the stable manifold of a saddle point, which is
the set of points, where a trajectory starting on one of them leads toward this
steady state, fulfills the transversality condition and therefore is a candidate
for an optimal solution.

Limit cycle: Another possibility where an optimal solution can finally
end in is a limit cycle: Then the values of state, costate and control variable
will never be fixed but develop in such a way that starting at any point of this
cycle, after some time period Θ, one will be again exactly on this point again.
The stability of a cycle can be determined with the help of the eigenvalues of
the monodromy matrix, and it can be shown that in an optimally controlled
system it can only be either repelling or of saddle-type.

Numerical solution: As it is not possible to find the optimal solutions
of this work analytically, intensive numerical computations have to be done.
In this thesis there are two approaches used to numerically find an optimal
solution: The first one is by solving an initial value problem (IVP), starting
on the stable manifold near the steady state or cycle and simply calculating
backwards in time with an ode solver. However, the drawback of this method
is that it can be rather time consuming to find a solution starting at a certain
point with sufficient precision. In order to avoid this problem, one can use
another approach to calculate the optimal solution, that is by defining a
boundary value problem (BVP). Within this approach the conditions at the
initial and end time are stated and a solution is computed starting with an
approximate guess.

7The equilibrium values of the states, costates and control will be highlighted with a
hat (e.g., x̂)
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However, one must not forget to include possible control constraints
within the calculations, in the initial value problem this can simply be done
by checking the value of the control or more elegantly of the Lagrange multi-
plier (which becomes zero if a constraint becomes inactive and greater than
zero if it becomes active) and switching at the appropriate time to the sys-
tem where the control either is optimally determined or takes constantly its
maximum or minimum admissible value. One can also use the information
concerning the Lagrange multiplier and a constraint becoming active or inac-
tive to as a condition for a boundary value problem. It is possible to formulate
a BVP in a way such that it includes boundary conditions regarding both,
certain starting points as well as control constraints (more information about
numerical calculations regarding optimal control problems can be found in
Grass et al., 2008, Chap.7).

One can use various programs such as MATLAB8, Mathematica9 and
Maple10. While the last two products are certainly very useful when it
comes to the formal analysis of optimal control problems, due to the bet-
ter programming environment (which includes not only the mathematically
required functions, but also allows to use an object oriented programming
style) a Matlab toolbox OCMat was implemented to allow such numerical
calculations as described. It can be found online at

http://www.eos.tuwien.ac.at/OR/OCMat/index.html

and will be described in more detail in Appendix B.

Bifurcation: When considering a dynamical system it is not only in-
teresting to see how it evolves, but also how a change of parameters affects
the outcome, particularly regarding the stability properties and the occur-
rence of steady states and limit cycles. A bifurcation is said to occur if a
“small” change of a parameter leads to a “big” change of the behavior of
a dynamical system. Since the optimal strategy of a decision maker often
depends heavily on the underlying parameters, which might sometimes be,
due to lack of accurate data, only roughly estimated, a bifurcation analysis
of a system should not be omitted in order to find out how robust any found
solution is against disturbances of parameter values. Looking at occurring
bifurcations is also very useful when trying to find out which outcomes are
possible under which premises in order to gain a more profound knowledge
and understanding of the underlying system.

8A product created by The Mathworks, Inc.
9Developed by Wolfram Research.

10A product of Maplesoft.
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A bifurcation of particular importance is the so-called Andronov-Hopf
bifurcation, which is associated with a pair of purely imaginary eigenvalues
of the Jacobian of a steady state, leading to a change of the stability of this
relevant steady state and a limit cycle bifurcating from it. The Andronov-
Hopf bifurcation is supercritical if the limit cycle is stable, subcritical if it is
unstable. It can be shown (see Grass et al., 2008, Chap. 7.5, p. 349) that
for an optimal control problem with a discount rate r > 0 the limit cycle can
only be unstable, i.e. repelling or of saddle-type.

A very useful tool for locating bifurcations is the Matlab toolbox MAT-
CONT (see Dhooge et al., 2003, 2006).

DNSS point: When only one steady state can be found, there is, under
the assumption that the optimal solution lies on the stable manifold of a
saddle point, only one possiblity where a solution can end. This changes,
however, with the occurrence of multiple equilibria (which might be found by
changing one or more parameter values and looking for bifurcations). Then, a
particular interesting phenomenon that can occur is that of a DNSS point (or
in this thesis, due to the two states, DNSS curve consisting of DNSS points).
A DNSS point (also known as Skiba point) is both an indifference point11 and
a threshold point12. This means that at such a point a decision maker can
choose between different solutions or strategies, respectively, leading often
to completely different outcomes. For instance, in the marketing models
described in this work a decision maker might, starting at such a curve be
indifferent between spending much and win many consumers, or save the
costs and do nothing, which would finally lead to a complete loss of customers.

Knowing that a DNSS point can only occur if there are two points found
on the stable manifolds of the two different steady states, which share the
same states and where the value of the Hamiltonian is equal (i.e. none of
the solutions is better than the other), one can formulate a boundary value
problem and solve it, which both can be automatically done by the OCMat
toolbox (see Appendix B).

These points are called DNSS points in recognition of works by Dechert,
Nishimura, Sethi and Skiba, who first studied the occurrence of such points
for economic problems, i.e. for an optimal growth problem with a nonconvex
production function (Dechert & Nishimura, 1983; Skiba, 1978) and for sin-
gular models with multiple optimal solutions (Sethi, 1977). Since then the

11A point is an indifference point, if there is more than one optimal solution path
starting from it, where the solution paths differ on one point at least.

12A point is called a threshold point if there are two points in the close neighborhood,
which are the starting points of two different solution paths leading to different long-run
optimal solutions, i.e. steady states.
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concept of DNSS points has found many applications in very different fields
of economics, such as marketing, the economics of crime, or demographic
problems - for more examples where DNSS points can be found see Grass
et al. (2008).

Closely related to such points are the so-called weak DNSS points13, which
serve as some kind of threshold between two different solutions - yet, a deci-
sion maker does not have any choice about which optimal strategy to apply.
Which optimal solution has to be chosen then is history dependent. This
means that the optimal strategy depends more than ever on the starting
point and it is not possible (at least not with the controls considered in the
models) to manipulate the outcome in a way that the other strategy can
be optimally applied. Such a curve might sometimes be inconvenient for a
decision maker - especially when finding the starting point on the “wrong”
side of the curve, e.g., in the drug context where, due to the influence of
users on potential consumers, starting on one side of the curve would mean
an optimal final outcome with no drug users, starting on the other side would
mean an escalation of the problem with many users in the end14. However,
one can find valuable insights about the reasons for the system behavior and
the optimal control strategy by taking a closer look at such curves.

Since some optimal solutions share common states, looking at the different
occurring steady states and the shape of their stable manifolds is a helpful
start when trying to find a weak DNSS curve for the given parameter set.

This thesis will provide some examples for (weak) DNSS curves both in
a marketing as well as a harm reduction context.

Multi-stage model: The assumption that the system always evolves
continuously over time might work well for some models providing inter-
esting insights into how an optimal solution might look like under certain
conditions. Sometimes, however, a decision maker has to face sudden events
(shocks) that might completely change the dynamical system or even his/her
objectives, as well as the effect of the control on both, e.g. when a monopolist
suddenly has to face competition. Of course, it becomes necessary to include
the occurrence of such a shock into consideration when deciding about the
optimal strategy and adapt the model accordingly. The regimes before and
after this shock, where due to the different situations the objective function,
the state (and therefore the costate) equations, the parameters can differ,
are called the different stages of a model and the point in the state space,
where the abrupt change from one stage to the other occurs, is referred to

13Weak DNSS points are threshold points, but not indifference points.
14Yet, a possible expansion of the model would be to include some instrument by which’s

(maybe one-time) application a decision maker could manipulate the starting point.
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as switching point. The optimal control problem for a problem consisting of
two stages (which are denoted by different subindices) then becomes

max
u

∫ ts

0
e−rt(g1(x(t), u(t))dt +

∫ ∞

ts
e−rt(g2(x(t), u(t))dt

s.t. ẋ =

{

f1(x(t), u(t)) for 0 ≤ t ≤ ts

f2(x(t), u(t)) for ts ≤ t < ∞
(A.9)

0 ≤ u ≤ umax ≤ 1

x(0) = x0

It is also possible to compare the values of the objective functions of an
optimal solution by

∫ ts

0

e−rtg1(x(t), u(t))dt +

∫ ∞

ts

e−rtg2(x(t), u(t))dt =

1

r
(H1(x(0), u(0), λ(0)) + e−rts(H2(x(ts), u(ts), λ(ts)) −

H1(x(ts), u(ts), λ(ts)))) (A.10)

This leads to following implications for the optimal solutions:

(a) The switching time is optimally determined with the matching condi-
tions. Then, since H1(ts) = H2(ts) the value of the objective function
is given by V = 1

r
H1(0).

(b) It is never optimal to switch from stage 1 to stage 2 in finite time, i.e.
ts → ∞ then limts→∞H1(ts) = H2(ts) = 0 and V = 1

r
H1(0).

(c) Another type of corner solution can occur where it is optimal to im-
mediately switch from stage 1 to stage 2. Since consequentially ts = 0,
that means e−rts = 1, H1(ts) = H1(0) and H2(ts) = H2(0); the value
of the objective function is then given by V = 1

r
H2(ts).

Switching time and matching conditions: When considering two
stage models it is not only interesting how one has to adapt the strategy for
this kind of problem, but also when it is optimal to switch between those
different regimes. In order to determine the optimal timing of the switch
between the stages, one has to consider certain switching conditions. Since
the dynamics of the models described here do not explicitly depend on the
switching time and there is no salvage value, the matching conditions, first
derived in Makris (2001) for infinite-horizon discounted two-stage optimal
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problems, are H1(ts) = H2(ts) and λ1(ts) = λ2(ts), meaning that on a switch-
ing point the value of the Hamiltonian has to be equal for both stages (if it
would differ, one would of course choose the stage with the higher value of
the Hamiltonian) and that the costate variable has to evolve continuously.

In some problems these conditions cannot be fulfilled. Then a decision
maker would optimally choose a corner solution and would either immedi-
ately or never switch to the other stage. Yet, a switching time might be
exogenously given; in that case a decision maker is forced to switch at a
certain predetermined time to the other stage. E.g., when a patent expires
a monopolist has to face competition.

One can calculate an optimal solution again either by formulating an ini-
tial value problem and calculate backwards in time. Yet, one has to consider
either the values of the Hamiltonians, in order to optimally switch between
the stages when the matching conditions are fulfilled, or the exogenously
given switching time. One can also use the matching conditions as a condi-
tion for a BVP, and combine these with other conditions, such as locating
a certain starting point or fulfilling certain constraints, in order to find an
optimal solution of the problem.

Some remarks on the notation: In this work the time argument is
omitted unless it is of particular importance. Optimality is highlighted by
a asterisk and steady state values by a hat. Different stages are marked
with different subindices. A letter as subindex denotes the derivation of the
function with respect to the state, control, etc., e.g., gu = ∂g/∂u, except
stated differently.
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Appendix B

OCMat - A Toolbox Allowing

the Computation of the

Previous Results

OCMat is a toolbox developed in and for the MATLAB environment to
provide an efficient tool to analyze optimal control problems. It is able to
automatically generate files necessary for the handling of optimal control
problems and provides functions to gain further knowledge about the corre-
sponding solutions. The core of this toolbox is the formulation and solution
of boundary value problems, allowing the computation of certain optimal
solutions and was developed by Dieter Grass relying on techniques presented
in Beyn et al. (2001); Pampel (2000); Steindl (1984) and Grass et al. (2008).

Participating in the development of this toolbox, in this thesis OCMat
is used to do the numerically calculation necessary to gain the previously
described results. The next sections will demonstrate, with the help of the
price reduction model introduced in Chap. 2, how one can numerically an-
alyze an optimal control model with the help of the toolbox by describing
which function have to be used and give a rough picture about how they
work.

B.1 Initialization of the Model

When wanting to analyze an optimal control problem with the OCMat tool-
box the first step is to create a (MATLAB) file containing the necessary pre-
determined information about the model such as the objective function, the
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state equations and the control constraints. The initialization file1 price.m2

consists of following elements:

statedynamics=sym(’[k-delta*x1-(a+b*x2^al)*x1*(1+beta*u1^0.75);

(a+b*x2^al)*x1*(1+beta*u1^0.75)-mu*x2]’);

In this statement the state dynamics is symbolically described, containing
the two state equations seperated by a semicolon, and therefore as a column
vector. The state variables have to be denoted as x1 (corresponding to the
number of susceptibles S in the model) and x2 (the number of users A)
and the control variable as u1, which is the percentage reduction of the
price v. The reason for this notation is that the toolbox must be able to
automatically distinguish between parameters and these variables in order
to allow the automatic generation of the files for as many models as possible.

objectivefunction=sym(’x2*p*(1-u1)’);

contains the symbolic expression for the (not yet discounted) objective func-
tion.

phasespace=[0 0];

With the help of phasespace one can determine in the current version of the
toolbox in which space (state-costate space or state-costate-control space)
one wants to calculate.

The reason why such an option is necessary is that it is not always pos-
sible to explicitly express the control by setting the first derivation of the
Hamiltonian to zero - then it makes sense to express one of the costates by
this equation, and calculate u̇ = −(Huxẋ + Huλλ̇)/Huu. This can be done
automatically by the toolbox. By setting, e.g., phasespace=[0 1], one would
replace the second costate by the first control variable.

The name of the variable / symbol representing the discount rate can be
set by

discountvariable=’r’;

The purpose of the discount rate is to weight the decision makers time pref-
erences, as such, the toolbox would then consider V =

∫ ∞

0
e−rtp(1 − u1)dt as

objective function.

controlconstraint=sym(’[u1-lb;ub-u1]’);

1It can be found as demo at http://www.eos.tuwien.ac.at/OR/OCMat/index.html
2The name of the file will be used as reference to the corresponding generated files

and therefore has to be chosen carefully.
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Here we can find the control constraints, in this case, the first (and only)
control u1 (corresponding to v) has to be greater or equal to lb and smaller
or equal to ub. The size of these and the other parameters is specified next
by:

r=0.04; p=1; k=1; delta=0.05; a=0.02;

b=0.01; al=1.75; beta=1; mu=0.0976;

Having written a file containing all these elements one can start initializ-
ing the model and create the necessary files by invoking

>>initocmat(’price’)

The toolbox then extracts the contained information of the initfile and uses
it to symbolically express the optimal control, the costate equations, the
Legendre-Clebsch condition, the Lagrange multipliers, etc. These informa-
tion get stored in the ocmat/data folder contained in a structure. By the
invocation of

>>files4model(’price’)

the toolbox automatically creates the files necessary for later numerical cal-
culation and moves them to the ocmat/model/ -folder when invoking

>>moveocmatfiles(’price’)

B.2 Numerical Calculations with OCMat

By

>>m=ocmodel(’price’)

one can get the data previously stored containing information about the
model and initiate an ocmodel-object. Input argument is the name of the
model as specified earlier, and an ocmodel-object is returned, which is inher-
iting from the optdyn-class. An object oriented programming approach was
used here in order to allow an efficient treatment of the problem attributes
and functions, and will considered more closely in App. B.3.

>>ep=calcep(m,[1;10;5;5])
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The function calcep serves to calculate steady states of the canonical sys-
tem. Input arguments are the ocmodel-object (containing all the required
necessary information) and an initial point, needed for the equation solver
provided by MATLAB. Since for many numerical algorithms it is not guaran-
teed that MATLAB can always find a solution nor that it returns all possible
outcomes - however, if the initial point is not too distant to the equilibrium
the algorithm converges and a solution is found. The output argument is a
dynprimitive (see B.3). The returned object contains the coordinates, an
attribute describing whether a constraint is active or not and various other
attributes inherited from the class octrajectory, as well as the Jacobian
matrix evaluated at this point and a period attribute3, which is zero. If de-
sired, one can now take a look at the eigenvectors and eigenvalues of this
point, which can be calculated by

>>[evec,eval]=eig(ep{1})

in order to find out more about the stability properties of the equilibrium.
However, finding out whether an equilibrium point or limit cycle has saddle
properties can simply be done by using the function

>>b=issaddle(ep{1})

returning 1 or 0 depending on whether the point/limit cycle has saddle prop-
erties or is totally unstable, respectively. One can then use the steady state to
initialize the necessary objects and structures needed to start the calculation
of a stable path by solving the corresponding boundary value problem.

Before that, however, one should make sure, that the options such as
the precision of the calculations or the used boundary value solver are set
as needed by the user. The OCMAT toolbox uses a structure containing
options for the various calculations, which are returned by

>>opt=defaultocoptions

One can display all of the options by using

>>showocoptions(opt)

However, this input argument is not necessary if one only wants to display
the default options. The option structures consists of different fields, each
containing options for different problems, solvers, etc. used in the toolbox.

3The purpose of the class dynprimitive is to contain points, to which the optimally
controlled trajectories converge, meaning not only steady states, but also limit cycles. The
period then reflects the period of the limit cycle.
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The option categories are OCMAT, ODE, BVP, OCCONT, and MATCONT,
containing options that can be used for the MATCONT toolbox. By entering
one of these categories as second input argument, the previously described
function displays the options occurring there. One can change specific options
by the use of the function

>>opt=setocoptions(opt,’BVP’,’AbsTol’,1e-08,’RelTol’,1e-08)

which would increase the precision of the BVP solver. Similarly it is possible
to extract specific options by

>>bvpsolver=getocoptions(opt,’OC’,’BVPSolver’)

which would return the name of the MATLAB function containing the BVP
solver which will be used later on.

>>initstruc=initocmat(’extremal’,m,’initpt’,[1:2],[10;0],ep{1},...

>>’ContinuationType’,’f’,’IntegrationTime’,1000)

With this function one collects the necessary information for starting the
calculation of the BVP. When invoking the function as given one wants to
find a solution of the ocmodel m starting at an initial point with the state
values [10;0] truncating the infinite time horizon by 1000 time units. Among
other information, it also contains the initial solution ep1, required by

>>[sol vio]=occont(m,initstruc,opt)

This function provides an algorithm for the calculation of the optimal
solution with the help of a boundary value solver. This algorithm is the core
of the toolbox as it allows efficient calculations. In the actual version it was
implemented by Dieter Grass using the default MATLAB BVP solver; see
(Grass et al., 2008, Chap. 7). The boundary value problem is such that a
solution has to start at a certain point (e.g., where the state variables have
certain values, or the objective function has a certain value), has to end at a
certain point (an equilibrium or limit cycle) and that it has to be a solution of
the corresponding canonical system. However, to start the numerical calcula-
tions it is necessary to provide an approximate guess for the solution. To find
such an approximate solution, occont takes an initial solution which starts
and ends in the steady state (provided by the input argument initstruc)
and then extends it into the direction of the initially specified starting point
step by step, being able to solve initially “smaller” boundary value problems
by using the previously calculated solution as approximate guess for the next
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solution, until the desired point is reached. This method and more sophis-
ticated versions are called continuation algorithms and constitute another
core part of the toolbox. A big advantage of this function is that it can
also handle constraints; when one is violated, calculations will be aborted
in order to allow the user to continue further calculations as desired by the
user. Then the variable vio, which would have been empty if the desired
starting point is reached without any violations, returns an ocasymptotic

object (which handle candidates for optimal solutions) with more detailed
information about the actual violation type occurred at this trajectory. By

>>initstruc1=initocmat(’extremal’,m,’initpt’,[1:2],[10;0],solv,...

>>’ContinuationType’,’f’,’IntegrationTime’,1000)

a multi-point boundary value is formulated connecting, e.g., arcs with
active and inactive control constraints.(i.e. the optimal solution where the
constraint is active has to start at a certain point and end where the con-
straint becomes inactive, which is the same point where the part of the solu-
tion with no active constraint starts, which has to end in the steady state).
This problem can be solved by the same invocation of occont.

>>[sol1 vio1]=occont(m,initstruc1,opt)

The function occont returns an ocasymptotic object containting the
solution, some information about it such as where constraints are active,
which solver was used, etc. and the steady state, where the solution ends.

One can store the found results, which are at this point also locally stored4

in a mat-file as a structure and assign them to the object which handles the
corresponding model by invoking

>>m=store(m)

When a control constraint becomes violated it is also interesting to see at
which other points of the stable manifold of a certain steady state such an
event takes place. One can then use the previously found trajectory with the
control violation an initial solution for solving the boundary problem where
one seeks to find trajectories ending in the steady state and starting at a
point where the control starts taking its boundary value. Such a boundary
value problem can be initiated by

4Mainly to ensure that not all results are lost when it becomes necessary to interrupt
or cancel the calculations.
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>>initStruct=initoccont(’boundary’,m,’initpoint’,[1],[0],solv,...

>>’ContinuationType’,’f’,’IntegrationTime’,1000)

and be solved by

>>solb=occont(m,initStruct,opt)

and save the results again by

>>m=store(m)

Still it can be interesting to find optimal solutions as an initial value
problem (IVP), e.g., when one wants to see the path leading to a certain
point without specifying any further conditions, with the function

>>ocTrj=odesolve(m,-10,octrajectory(sol.dynVar(1:4,1),2),...

>> opt)

It is not necessary here that the solution of the problem has to end in a
steady state, the input argument used here is the first point of the previously
found solution (the starting point of the trajectory). The function calculates
the trajectory over ten time units back in time and it can be seen how the
optimal solution develops before it reaches the previously found initial point.
The function returns an octrajectory object.

Having found such solutions, one can take a look at various aspects of
these solution, such at the optimal control values at the points of this solution
by

>>ct=control(m,sol1)

or at the value of the Hamiltonian by

>>ha=hamiltonian(m,sol1)

As it can be rather hard to interpret the results simply by looking at num-
bers, the OCMat toolbox also provides functions to easily plot the calculated
results. A phase portrait showing the previously calculated ocasymptotic

object can be plotted by

>>plotphase(m,sol1,’state’,2)

where by setting the plot option ’state’ to 2 means that the second state
variable will be plotted on the abscissa. Similarly it is possible to plot a
timepath showing the value of the optimal control of the trajectory by
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>>plottimepath(m,sol1,’control’)

or to extract the calculated information from the used ocmodel object and
plot a found solution and the curve describing where the control constraint
becomes inactive by

>>plotphaseocresult(m,’state’,2,[1],’only’,{’ExtremalSolution’,...

>> ’BoundaryCurve’})

B.3 Some Remarks on the Design and Imple-

mentation of OCMat

When implementing a toolbox, with the purpose that optimal control prob-
lems can be efficiently solved numerically, not only problems of mathematical
nature arise since a large amount of information has to be handled. It is par-
ticularly important to ensure that users are able to easily access what is on
the one hand relevant from a mathematician’s point of view, but on the other
hand also what is relevant for economic interpretation. Due to the large num-
ber of ways in which one might extend such a tool in further development one
must also not neglect while designing and implementing the toolbox, that the
design and the source code has to be readable and reusable for other people.
It is intended that the toolbox can be used by people without a large experi-
ence in optimal control theory. Therefore, the implementation must be such
that as much as possible has to be handled automatically without losing in-
formation desired by more sophisticated users. A certain traceability about
what is actually done by the toolbox is also very important to ensure that
the calculated results can be used for whatever purpose they are intented.

The OCMat toolbox was developed in and for the Matlab environment.
With the intention that the toolbox can be used for different fields of optimal
control theory, e.g., one-stage and multi-stage models, an object orientated
approach, as far as supported by Matlab, was used to design the classes5.
Since optimal control problems do have some common attributes and func-
tions, the concept of inheritance is particularly important for these classes.
Therefore, many functions can be efficiently (re)used for different types of
problems with common attributes. This is also intended to enhance the ex-
pandability of the toolbox. A simple example of a common attribute of an
object of a one-stage-model-class (ocmodel) and a multi-stage-model-class
(msmodel) are the model parameters (inherited from the class optdyn). A

5Note that the toolbox gets continuously improved and therefore some of the attributes
might be subject to change in future versions of OCMat.
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optdyn

ocInfos

ocInstant

ocProblem

ocResults

ocmodel msmodel

Figure B.1: Class diagram of the classes dealing with the used models, and their
attributes. The corresponding functions are omitted in this diagram.

user of the toolbox might want to access the parameters and change them,
no matter what kind of model one deals with. Yet, it is necessary to dis-
tinguish between the two mentioned classes, since there are some differences
arising through the different stages in the representation of the model and
the calculations of the results. Fig. B.1 shows a class diagram describing the
attributes and the relation between the classes handling the model informa-
tion.

The nature of the different numerical results also motivates using an
object-oriented approach there. A class diagram for classes that are intended
to handle results can be seen in Fig. B.2. At this stage of implementa-
tion there are trajectories (class octrajectory), i.e. candidates for solution
paths, their attributes contain the most important information about the
coordinates, the constraints active at these points, whether a constraint is
violated at some point, at which time these points are reached, and some
additional informations about and returned by the solver used to calculate
this trajectory.

The next relevant class is dynprimitive, the purpose of which is to handle
steady states and limit cycles. As such it inherits the properties of the class
octrajectory, defining both elements as trajectories that start and end
at the same points. However, in contrast to ordinary trajectories, when
considering steady states and limit cycles, two additional properties become
relevant: for a cycle, its period is needed (for an equilibrium it is set to
zero) and for both elements the linearization of its stable manifold, found by
the calculation of the Jacobian matrix of a steady state or the monodromy
matrix of a limit cycle.

Using the concepts of inheritance and aggregation, an object of the class
ocasymptotic contains a candidate for an optimal solution, i.e. a trajectory
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octrajectory

dynVar

time
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arcid

initialtime

transformid

solverinfos

violation

label

dynprimitive

period

linearization

ocasymptotic

limitset

occurve

dynVar

time

arcid

transformid

type

associatedsol

info

label

Figure B.2: Class diagram of the classes for handling different types of results,
and their attributes. The corresponding functions are again omitted due to the
required space.

lying on the stable manifold of a steady states, therefore it inherits its at-
tributes from the class octrajectory and has the steady state to which the
optimal solution converges (which is an object of the class dynprimitive)
as an attribute.

Points, which are not lying on the same trajectory, but are related because
they share some common characteristic, such as DNSS points or points where
constraints become active or inactive are dealt with in the class occurve.
An object of this class must, among other properties, contain the coordi-
nates of the points and also an exemplary solution, belonging to the class of
ocasymptotic, starting at this curve in order to ensure that one can easily
continue calculations6 with the previous results.

There are many ways in which one could still extend the toolbox from an
informatics point of view (e.g., adding a graphical user interface, the current
version is basically command-line orientated), but certainly even more from
a mathematician’s perspective – on the one hand one could for instance in-
clude optimal control problems with a linear control or differential games on
the other hand currently the toolbox relies heavily on the solution algorithms

6The reason for this is that the BVP solver requires an initial solution to be able to
find a solution fulfilling the boundary conditions.
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provided by Matlab which are not always completely suited to adequately
deal with the problem and one could try to implement more fitting algo-
rithms.
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Appendix C

Miscellaneous

C.1 Concavity of the Function Describing the

Influence of the Control on Initiation Due

to the Legendre-Clebsch Condition

In the marketing model it was assumed that the function describing the
influence of the control on initiation g(v) is concave with gvv ≤ 0. The
reason for this will be shown here, but let us first consider the Lagrangian
and its derivation with respect to the control again.

L = πA(1 − v) + λ1(k + δS − f(A)Sg(v)) + λ2(f(A)Sg(v)− µA) +

ν1v + ν2(vmax − v) (C.1)

Lv = −πA + (λ2 − λ1)f(A)Sgv + ν1 − ν2 = 0 (C.2)

Lvv = (λ2 − λ1)f(A)Sgvv ≤ 0 (C.3)

If no control constraints are active, the Legendre-Clebsch condition is
fulfilled if Lvv ≤ 0. Since the number of susceptibles S and the initiation
function f(A) are assumed to be always equal or greater than zero that means
either

(a) λ1 ≥ λ2 and gvv ≥ 0 or

(b) λ1 ≤ λ2 and gvv ≤ 0.

Due to Pontryagin’s Maximum Principle the condition Lv = 0 has to be
fulfilled. Assuming now that no control constraint is active (ν1 = ν2 = 0) we
find by transforming (C.2)
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gv =
A

(λ2 − λ1)f(A)S
(C.4)

Due to the assumption that gv ≥ 0, we can see that (C.4) can only be
fulfilled if λ2 ≥ λ1, consequentially meaning that, if no control constraint is
active, gvv has to be non-positive.

Because of the transversality condition, the considered candidates for an
optimal solution considered are found on the stable manifold of steady states.
This also implies that a solution can only be optimal if the Legendre-Clebsch
condition is fulfilled in the steady state (if no control constraint is active).

Looking at the costate equation concerning λ1

λ̇1 = (r + δ)λ1 + (λ1 − λ2)f(A)g(v), (C.5)

we find that in a steady state, i.e. λ̇1 = 0,

λ̂2 = λ̂1

r + δ + f(Â)g(v̂)

f(Â)g(v̂)
. (C.6)

Due to the assumption that the parameters r and δ, as well as the functions
f(A) and g(v) are positive (or zero), λ̂2 > λ̂1 since the numerator of the
fraction in (C.6) is always greater than the denominator.
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