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Kurzfassung

In dieser Arbeit wird erst der Gentzensche Beweis der Konsistenz der Peano-
arithmetik vorgestellt, dann wird die Methode auf eine Klasse induktiver Be-
weise erweitert. Da die Schnittregel in der Peanoarithmetik nicht redundant
ist (siehe zB [2]), ist Schnittelimination nur fiir Teilklassen moglich; hier wird
die Teilklasse aller induktiven Beweise von Sétzen ohne starke Quantoren
untersucht. Es wird gezeigt, dass bei dieser Klasse alle essentiellen Schnitte
eliminiert werden koénnen.
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Abstract

After presenting Gentzen’s cut elimination theorem and the proof of the
consistency of Peano arithmetic, we extend the cut elimination procedure
to a certain class of inductive proofs. Cut elimination is possible only on
subclasses of all inductive proofs. (see for example [2]). We will investigate
the subclass of inductive proofs of theorems without strong quantifiers. We
will show that all inductions can be removed following Gentzen’s proof of
the consistency of Peano arithmetic and therefore, that essential cuts are
redundant.
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Chapter 1

Introduction

Proof theory is a part of mathematical logic, which deals with proofs as
mathematical objects. One of the most prominent proof transformations is
cut elimination. A formal proof is built up from the theorem to prove and
an inference rule leading to this theorem, which may assume the provability
of some other statements. The statements, which are assumed in the cut
inference rule, are unique because they might include formulas, which do not
appear in the conclusion of the rule. Therefore, when the cut rule is known
to be required in a proof, the process of building the proof cannot rely on the
formulas appearing in the theorem to be proved only. The cut elimination
theorem implies that the cut rule is redundant in a system. Systems, which
have the cut elimination theorem, are easily proved to be consistent. Other
important applications of cut-free proofs include Herbrand’s theorem and
decidability, interpolation and definability.

One system, which does not have the cut elimination theorem, is first or-
der Peano arithmetic. Peano arithmetic is the axiomatization of arithmetic,
which uses the successor function and inductions. In the second part, we will
discuss why Peano arithmetic does not have the cut elimination theorem.
Although Peano arithmetic does not have the cut elimination theorem, it
can be proved to be consistent. The second part will also contain Getzen’s
proof of the consistency of Peano arithmetic and a discussion on the mean-
ing of the chosen ordinals used in the proof.

The call for proving Peano arithmetic to be consistent was raised by
David Hilbert. Hilbert has proposed, in what is known as Hilbert’s pro-
gram, to formalize all mathematics within a finite consistent set of axioms.
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Hilbert has suggested that the consistency of a complicated system can be
proved in terms of a simpler system. In 1931 the program was proved to be
impossible by the introduction of Godel’s second incompleteness theorem.
This has shown that any consistent extension of basic arithmetic cannot
prove its own consistency and therefore, it cannot prove the consistency of
stronger systems. The question remained is whether it is possible to prove
the consistency of Peano arithmetics using only finitistic reasoning. In 1936
Gerhard Gentzen has proved the consistency of PA using elementary math-
ematics and transfinite induction up to the ordinal €¢y. It can be shown that
all decreasing sequences of ordinals smaller than ¢y are finite. Therefore,
this proof can be considered as elementary, despite involving ordinals bigger
than w.

Besides the important theoretical implications of cut elimination, the
constructive nature of some proofs of cut elimination may also give some
interesting results. Cuts may be regarded as lemmas, which appear in the
proof. As such, they may involve language and axioms other than those
of the theorem proved. Firstenberg’s proof of the infinitude of primes, for
example, is a proof of a number theory statement obtained by topological
means [7]. Constructive methods for cut elimination may produce a proof
formalized in the language of the proved theorem. As, for example, the
result of applying CERes ( a method of cut elimination by resolution) to
Fiirstenberg’s proof in order to obtain Euclid’s original proof [8]. The proof
is inductive and emphasize the importance of cut elimination in inductive
proofs.

The third and last part of the thesis will be devoted to the presentation
of a variant of the cut elimination theorem. The subclass investigated here
is the set of all inductive proofs. However, the theorems proved by these
inductive proofs will be limited to theorems without strong quantifiers. We
will give an algorithm, which is capable of eliminating all cuts, despite the
presence of inductions. This will mainly be achieved by the elimination of
most of the inductions, by a procedure taken from the consistency proof
of Gentzen presented in the second part. Our proof of the cut elimination
theorem requires the modification of the ordinals assignment as presented
in the consistency proof in the second part. A method for the elimination of
cuts in proofs of theorems without strong quantifiers is hinted as an exercise
in [1], which requires the theorem to be in prenex normal form. We present
another method for the elimination of cuts, which does not require the the-
orem to be in prenex normal form and which tries to give a more direct



approach to the problem, which is not based completely on the consistency
proof.

In the first part, we will present all the technical terms, which are used in
the rest of the thesis. We will conclude the first part with the presentation
of the cut elimination theorem for classical logic.
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Chapter 2

Classical Logic

Gentzen has proved his results about cut elimination and the consistency
of Peano arithmetic by using his first order sequent calculi LK and PA. PA
is an extension of LK (but with a limited language), which includes the
induction inference rule and some additional axioms. In this section we will
formalize LK using sequent notation.

2.1 Sequent Calculus

We will first formalize the language of our logic.

2.1.1 Basic notations

Definition 2.1.1 (The language). Our language will consist of the following
symbols:

1. Constants:

(a) Individual constants: k; for ¢ € N.
(b) Function constants with i argument-places f]’: for i,5 € N.

(c) Predicate constants with i argument-places R; for i,5 € N.
2. Variables:

(a) Free variables: a; for i € N.

(b) Bound variables x; for i € N.

3. Logical symbols: —,V and V.
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4. Auxiliary symbols: ’(’,’)’,’[’,’]” and ;.
e Remarks

1. Although the distinction between bound and free variables is not
essential, it simplifies the arguments taken in this thesis.

2. For convenience we might sometimes omit superscripts and sub-
scripts of functions and predicates, or denote them by a single
quote instead of natural numbers.

An expression is any finite sequence of symbols from the language defined
above. The next definition is about terms and is given inductively. All
inductive definitions will implicitly mean that the objects, which are defined,
are only those given by the definition.

Definition 2.1.2 (Terms and semi-terms). Semi-terms are defined induc-
tively as follows:

1. Every individual constant is a semi-term.
2. Bound and free variable are semi-terms.

3. If fiis a function constant with i argument-places and ¢1,..,t; are semi-
terms, then f*(¢y,..,¢;) is a semi-term.

Semi-terms which do not contain bound variables are called terms.

e Remark -’a’ is called fully indicated in P(a) if for some expression 'b’,
P(b) is obtained by replacing all occurrences of 'a’ by 'b’.

Definition 2.1.3 (Formulas and semi-formulas). If R’ is a predicate con-
stant with i argument-places and t1,..,t; are terms, then R'(t1,..,t;) is an
atomic formula. Formulas and their outermost logical symbols are defined
as follows:

1. Every atomic formula is a formula.

2. If A and B are formulas, then —=A and AV B are formulas with = and
V as their outermost logical symbol.

3. If A(a) is a formula with a free variable ’a’ being not necessarily fully
indicated in A, then VzA(z) is a formula with 'x’ a bound variable
replacing each occurrence of 'a’ in A. The outermost logical symbol is
V.
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Semi-formulas differ from formulas in containing semi-terms, which are not
bound by a quantifier.

e Remarks

1. A formula or a term without free variables will be called ’closed’.
A closed formula is also called a sentence.

2. A(z) in the above definition is called the scope of the formula
VrA(x).

3. For convenience we might sometimes omit parentheses while hav-
ing — and V take precedence over V.

Replacement on positions play a central role in proof transformations.
We first introduce the concept of positions for terms.

Definition 2.1.4 (Positions). Positions within semi-terms are defined in-
ductively:

e If ¢t is a variable or a constant symbol then 0 is a position in ¢ and
t.0=1t.

o Let t = f(t1,....tn) then 0 is a position in t and ¢.0 = ¢. Let pu :
(0,k1,..., ki) be a position in a t; (for 1 < j < n) and tj.u = s, then
v: (0,7, k1,...,k) is a position in ¢ and t.v = s.

A sub-semi-term s of t is a semi-term t.v = s for some position v in t.
Positions will be denoted by [, |, i.e. ¢[r], denotes the term t after replacing
t.v with r.

e Remarks

1. Sub-formulas are defined in a similar way to sub-terms. However,
they are defined up to replacing previously bound variables.

2. We will use P(a) to represent a term, formula, sequence of formu-
las or a whole proof where the variable or term « is fully indicated.
Pla]y, where X can be a single position or a set of positions, will
represent the case where «a is indicated only at position(s) A.

Example 2.1.5 (Sub-semi-formula). The following are sub-semi-formulas
of the formula Yz A(x) V B: YrA(x), A(t), A(x), etc.
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Definition 2.1.6 (Substitutions). A substitution is a mapping ¢ from the
set of free and bound variables to the set of semi-terms such that o(v) # v
for only a finite number of variables.

Definition 2.1.7 (Logical complexity of formulas). If F is a formula then
the complexity comp(F) is the number of logical symbols occurring in F.
Later in the thesis we will identify this definition with the definition of
grades of formulas.

Let sequences of formulas be represented by the greek letters: T', A, II
and A with possible superscripts and subscripts.

2.1.2 Sequent calculus for classical logic (LK)

Definition 2.1.8 (Sequents). For arbitrary I' and A, I' F A is called a
sequent with F called the sequent symbol. I" and A are called the antecedent
and the succedent of the sequent. Each formula in I' and A is called a
sequent-formula. A sequent will be denoted by the letter 'S’ with or without
subscripts, i.e. A+ B.

Definition 2.1.9 (Semantics of sequents). Semantically a sequent

Ay, .., A, F° By, ..., Bm,
stands for formula F(S):

Niz1 Ai — Vi, B;.
In particular, we define M to be the interpretation of S if it is the inter-
pretation of F'(S). If n = 0 (i.e. the antecedent is empty), we assign T to
Nz Ai. If m = 0 (i.e. the succedent is empty), we assign L (falsum) to
\/;7”‘:1 Bj. The empty sequent - is represented by T — L which is equivalent
to L. S is true in M if F(S) is true in M and S is valid if F(S) is valid.

Definition 2.1.10 (Atomic sequents). A sequent Aq,..., A, = By, ..., By, is
called atomic if for all 1 <¢ <mn and 1 < j <m, A; and B; are atomic.

Definition 2.1.11 (Axiom set). A (possibly infinite) set A of sequents is
called an axiom set if it is closed under substitution. I.e. for every S € A
and a substitution o we have o(S) € A. If A consists only of atomic sequents
it is called an atomic axioms set.

Definition 2.1.12 (Standard axiom set). The standard axiom set is the
smallest axiom set containing all sequents of the form A - A for arbitrary
formula A.

Definition 2.1.13 (Inference). An inference is an expression of the form:
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S or Si S

S S

where S1, S5 and S are sequents. S7 and S5 are called the upper sequents
and S is called the lower sequent of this inference.

e Remark - for simplicity we are using Gentzen calculus with the fol-
lowing operators only: A,V,—. The remaining operators A, — and 3
can be obtained from the other three operators as follows: AA B =
—(mAV-B), A— B=-AV B and JzA(x) = ~Vz—A(z).

Definition 2.1.14 (Standard LK). The standard (multiplicative) sequent
calculus LK contains the standard axioms set and the following rules of
inference. Each inference may have auxiliary formulas marked by 4+ and
principal formulas marked by *.

1. Structural rules:
(a) Weakenings:
TEA THA
D*TFA
(b) Contractions:

D+¥,DF.TFA “ T'+A, D+, Dt
C:
D*TFA T A, D

(c) Exchanges:

LCHDEIEA TFA,CH DA
T,D",C*TIFA TFA, DO A

(ewr)

These three rules will be called weak inferences while the others
will be called strong inferences.

(d) Cuts:

T'-A,DY D+ IIFA
T,IIF A, A

D is also called the cut formula of the inference.

(cut:D)

2. Logical rules:

(a) —-introduction:
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LEADE DY ILEA
“D*TFA TFA,-D"

(b) V-introduction:

CrTEA  DRIEA
(CVD)*,T,IF AA
react o I'+A,DF
I'FA (CvDy T'F A, (CV D)

(V:ira)

The — and V are called propositional inferences.

(c) V-introduction:

F()" TEA PEAF@*
(VzF(z))TFA TFA, (VaF(2)

Where ’t’ is an arbitrary term and ’a’ does not occur in the lower
sequent. The ’a’ in V : r is called the eigenvariable of the infer-
ence. The condition that ’a’ does not occur in the lower sequent
is called the eigenvariable condition of the inference. We will also
say that the quantifiers in the lower sequents eliminate the eigen-
variable or the term in the upper sequents. The V : r rule is called
a strong quantifier rule while the V : [ is called a weak quantifier
rule.

2.1.3 Derivations and proofs

Definition 2.1.15 (Inference’s instances). Suppose

S Sa
S

is a binary inference rule of LK. Let S/, S and S}, be instantiations of the
schema variables S, S; and S, then

©)

S1 5
S/
is called an instance of &, also denoted by £(S7,55,5"). We will refer to

both inference rules and their instances as inference rules. The instance of
an unary rule is defined analogously.

©)
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Definition 2.1.16 (LK-derivations). An LK-derivation is defined as a di-
rected labelled tree where the nodes are labelled by sequents (via the func-
tion seq) and the edges by inference rules. The label of the root is called
the end-sequent. Sequents occurring at the leaves are called initial sequents
or axioms. The formal definition is:

e Let v be a node and seq(v) = S for an arbitrary sequent S. Then v is
an LK-derivation and v is the root node.

e Let ¢ be a derivation tree and v be a leaf in 1. Let £(S1,S2,S) be
an instance of the binary rule £&. We extend 1 to 1’ by appending
the edges e1 : (v,u1) and e : (v, pu2) to v such that seq(u1) = S,
seq(p2) = Sz and the label of (e, e2) is €. ¢ is an LK-derivation with
the same root as iy but with v no longer a leaf. v in ¥ is called a
&-node and pq and po are leaves.

e The extension by an unary rule is done analogously.

Definition 2.1.17 (LK-sub-derivations). let ¢ be an LK-derivation. An
LK-sub-derivation of v is any sub-tree of .

Definition 2.1.18 (Formal proof). A proof P in LK is an LK-derivation
where the leaves are mapped to initial sequents:

The following terminology and conventions will be used all along this
thesis:

o If there exists a proof with S being its end-sequent, then S is said to
be provable in LK.

e A proof without the cut rule is called cut-free.

e Remark - Due to the difficulty of representing a proof tree graphically.
We will use the following notation:

in order to denote a specific branch in the proof tree of Ss. It will also
be used to denote a full derivation ending with Sy where one of the
leaves is mapped to S7.
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Definition 2.1.19 (Threads). A sequence of nodes in a proof P is called a
thread of P if the following conditions are satisfied:

1. The sequence begins with an initial sequent and ends with an end-
sequent.

2. Every sequent in the sequence except the last is an upper sequent of
an inference and it is immediately followed by the lower sequent of this
inference.

Now we can speak about the order of sequents in the proof:
Let S1, So and S3 be sequents in a proof P.

e We say 57 is above Sy or Ss is below S7 if there is a thread of P
containing both S; and S5 in which S; appears before Sy. If S is
above Sy and S; is above S3, we say that Ss is between S; and Ss.

e An inference in P is said to be below a sequent S if its lower sequent
is below S.

Definition 2.1.20 (Subproofs). Let ¥ be a proof. a subproof of ¢ is a
sub-derivation of ¢ which is also a proof.

2.2 LK_ and the Cut Elimination Theorem

We can extend the current system by increasing the number of valid axioms.
Definition 2.2.1 (Axiom systems). For the basic system LK:

1. A finite or infinite set A of sequents is called an axiom system and
each of its sequents is called an axiom of A.

2. A finite (possibly empty) sequence of formulas consisting only of ax-
ioms of A is called an axiom system of A.

3. If there exists an axiom sequence I'g of A such that I'yg,I' F A is
LK-provable, then I' = A is said to be provable from A in LK.

4. A is inconsistent if the empty sequent F is provable from A.
5. If A is not inconsistent, then it is said to be consistent.

6. LK 4 is the system obtained from LK by adding - A as initial sequent
for all A in A.



2.2. LK_- AND THE CUT ELIMINATION THEOREM 13

7. LK 4 is said to be inconsistent if F is LK 4-provable, otherwise it is
consistent.

Now we can extend LK to include equality. We will first add the equality
symbol to the language (as a fixed binary predicate constant, written in infix
notation).

Definition 2.2.2 (Equality axioms). The following axiom set I'= axioma-
tizes equality:

1. Fs=s.

2. 81 =t1,.ySn = tn F f(s1,...,8n) = f(t1,...,t,) for every n-argument
function constant f (for all natural numbers n).

3. 81 = t1,.ey Sy = tn, R(S1,...,8n) F R(t1,...,t,) for every n-argument
predicate constant R (for all natural numbers n).

LK_ is obtained from LK by adding the equality axioms as initial se-
quents.

Proposition 2.2.3. The followings are provable in LK_:
1. Transitivity of =.
2. Symmetry of =.

3. 81 =11,y Sp = tn, A(S1, ..., Sn) — A(t1, ..., t,) for all terms s;, t; and
formulas A(aq, ..., an).

Definition 2.2.4 (Essential cuts). If the cut formula of a cut in LK_ is
an atomic formula, then the cut is called inessential. Otherwise, it is called
essential.

Proof

e The proof is similar to the proof of cut elimination in LK. The only
difference is the addition of the new axioms. In this case the cuts are
inessential as they must be over atomic formulas. It should be noted
that there is a transformation transforming any proof which contains
axioms with logical symbols into a proof with axioms containing only
atomic formulas.

Theorem 2.2.5 (Cut Elimination for LK_). If a sequent of LK_ is LK_-
provable, then it is LK _-provable without an essential cut.
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Definition 2.2.6 (Sub-formula property). A proof is said to have the sub-
formula property if all the formulas, which appear in the proof, are sub-
formulas of the formulas, which appear in the end-sequent.

e Proofs without cuts have the sub-formula property. Therefore one
consequence of the cut elimination theorem is that there is no proof
of the empty sequent -, implying the consistency of LK.

e Proofs without essential cuts may contain only atomic formulas in
addition to the symbols appearing in the end-sequent.

Theorem 2.2.7 (Consistency of LK). LK is consistent.



Chapter 3

Peano Arithmetic

In the previous section we have seen that the cut elimination theorem holds
for LK and also implies its consistency. In this section we will extend LK to
the system PA (Peano arithmetic). We will continue by discussing why the
cut elimination theorem does not hold for PA and we will finish by proving
its consistency.

3.1 Peano Arithmetic (PA)

3.1.1 Formalization

Peano arithmetic can be derived from the equality, natural numbers axioms
and the axioms of induction. We will limit our language from the previous
section (of LK) to the following constants: The individual constant '0’, the
binary predicate constant =" and a constant f for every primitive recursive
function f, including the binary function constants '+’ and ’-” and the unary
function constant ’(the successor function).

Definition 3.1.1 (Natural numbers axioms). The natural numbers axiom
system is:

1 VaVy(a/ =y — = = ).
2. Va(=(z = 0)).

3. Va(z + 0 = 0).

4. Vavy(z +y' = (z +y)').
5. Va(z -0 = 0).

15
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6. VaVy(z -y = (- y) + x).

Definition 3.1.2 (Axioms of induction). The axioms of induction are all
sentences for all (n+1)-arguments predicate symbols F":

V1.2,V (F(0, 21, .oy 2n) A (Vy(F(y, 21, ., 2n) — F (Y, 21, ., 2n)) —
F(x,z1,..,2n))

We can formulate Peano arithmetic by adding the basic axioms for nat-
ural numbers and a new inference rule for induction to the system LK_.
However, as we deal with numerals only and we dont need to define equality
for arbitrary predicate symbols (only for =), it will be simpler to define PA
with an infinite number of axioms. These axioms will then represent the
equalities and inequalities between all possible terms.

Definition 3.1.3 (PA). The system PA is obtained from LK (with a limited
language) by the addition of extra initial sequents (called mathematical
initial sequents) and of a new rule of inference called ’ind’.

e Mathematical initial sequents, which are the defining equations for all
primitive recursive functions plus all sequents of the form F s = ¢
where s and t are closed terms of the language denoting the same
number and s =t F for terms denoting different numbers.

e ind:

F(a)",T A, F(a)*t
F(0)*,TF A, F(s)*

(ind)

where a is not in F(0), I or A and s is an arbitrary term which may
contain a. F(a) is an arbitrary formula of the language. F(a) is called
the induction formula and a is called the eigenvariable of the inference.
s is called the induction term.

e Remarks

— In PA there are two kinds of initial sequents: the mathematical
sequents defined above and the logical (A - A) sequents defined
in the previous section.

— From the definitions above it can be seen that the three groups
of axiom systems (for equality, natural numbers and induction)
are consistent if and only if F is not provable in PA.
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— From now on, whenever we will say provable we will mean prov-

able in PA.

We can now also redefine essential cuts as containing atomic equalities
only (s =t for arbitrary terms s and ) and not arbitrary atomic formulas.
This is because, in the way we have defined PA, all mathematical axioms
are of this form.

Theorem 3.1.4 (Cut Elimination for PA). If a sequent is PA-provable
without an induction, then it is P A-provable without an induction and es-
sential cuts.

Proof

e The same proof as for LK_ as the new axioms contain only atomic
equalities.

An important lemma, which will be required in order to transform in-
ductions into finite number of cuts, will be given next. It states that for
every closed term s of the language of arithmetic, there is a numeral 7 such
that - s = 7 is provable in PA.

Lemma 3.1.5. The following holds for arbitrary closed terms s and t:

1. for an arbitrary closed term s there exists a unique numeral 7 such
that s = m is provable without an essential cut and without ind.

2. Either - s =t or s =t |- is provable without an essential cut or ind.

3. If - s = t is provable without an essential cut or ind then for ¢[a]) and
rlalg, q[s]x = r[s]o F ¢[t]x = 7[t]p is provable without an essential cut
or ind.

4. For an arbitrary formula F(a), if - s = ¢ is provable without an essen-
tial cut or ind, so is F'(s) F F(t).

Proof - by induction on the complexity of s.

The following three lemmas, dealing with the replacement of fully indi-
cated free variables in proofs, will be used later in this chapter and in the
next one.
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Lemma 3.1.6. Let I'(a) — A(a) be a provable sequent in which a is fully
indicated and let P(a) be a proof ending with I'(a) — A(a). Let b be a free
variable not occurring in P(a) Then P(b) (the result of replacing all a’s in
P(a) by b) is a proof whose end-sequent is I'(b) — A(b).

Proof - by induction on the length n of P(a).

Lemma 3.1.7. Let ¢t be an arbitrary term. Let I'(a) — A(a) be a provable
sequent in which a is fully indicated and let P(a) be a proof ending with
I'(a) — A(a) in which every eigenvariable is different from a and not con-
tained in ¢. Then P(t) (the result of replacing all a’s in P(a) by t) is a proof
whose end-sequent is I'(t) — A(t).

Proof - by induction on the length n of P(a).

Lemma 3.1.8. Let ¢ be an arbitrary term. Let I'(a) — A(a) be a provable
sequent in which a is fully indicated and let P(a) be a proof ending with
I'(a) — A(a). Let P'(a) be a proof obtained from P(a) in which every
eigenvariable is different from a and not contained in ¢t. Then P’(t) (the
result of replacing all a’s in P’(a) by t) is a proof whose end-sequent is

T(t) — A(t).

Proof - by induction on the number of eigenvariables occurring in P(a)
which are either a or contained in ¢, using lemmas 3.1.6 and 3.1.7.

3.1.2 Cut elimination in PA

The addition of the new rule of inference (the induction rule) adds a new
complexity to our proofs. First, the rule is semantically infinite as it infers
the truth value of a formula for all possible terms from the truth value of
a certain instance. However, we are already dealing with semantically in-
finite rules in the form of the quantifier rules. The main difference is that
unlike the quantifiers, which range over a domain, the induction ranges over
domains of interpretations, which are isomorphic to the standard interpre-
tation (of the natural numbers) only. Therefore, while the quantifier rules
remain sound under all possible interpretations, the induction rule will no
longer be sound under some interpretations. For example interpretations,
which contain more elements in their domain than those that can be build
by ’0’ and the successor function. The addition of the induction rule is
also problematic on the syntactic side. Structural rules manipulate only the
quantity and order of formulas. Logical rules affect the logical complexity
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of formulas. The induction rule, although it may change formulas (accord-
ing to the semantics of Peano arithmetic), does not always affect the logical
complexity of formulas (for example, when the induction term is a variable).
Therefore, we cannot use the complexity of formulas in order to show the
termination of cut elimination in PA.

Our cut elimination proof in the third section will try to solve this by
focusing on proofs, where the induction rule infers formulas with finite nu-
merical terms. Such an induction is defined as grounded and can be replaced
by a finite number of cuts. We will prove that all inductions in proofs of
end-sequents without strong quantifiers have this property. The main as-
pect of the proof, which is replacing inductions by a finite number of cuts
(when it is possible), is taken from Gentzen’s proof of the consistency of
Peano arithmetic. In the next two sections we will give Gentzen’s proof as
presented in [1] and discuss the meaning of the ordinals used.

3.2 The Consistency Proof

3.2.1 Ordinal numbers and the length of derivations

In his proof of the consistency of PA, given in the next section, Gentzen
uses the fact, that the length of all derivations in PA is bounded by ordinals
smaller than ¢g. It will be showed that there can be no infinite decreasing
sequence of such ordinals. Gentzen uses this in order to show that proofs of
the empty sequent do have an infinite decreasing sequences of these ordinals
and therefore, such proofs do not exist. This is showed by transforming any
proof of the empty sequent into a proof with a smaller ordinal. The first
part of the proof deals with assigning these ordinals to proofs, according to
their inference rules.

Before we will assign these ordinals to proofs and discuss their relation to
the length of the proofs, we will define the ordinals and prove that the set of
all ordinals smaller than €y does not contain infinitely decreasing sequences.

The ordinals defined here and assigned to proofs later will be used in
order to enable us to prove the consistency of PA by a transfinite induction
up to €g, which means an induction over all ordinals up to €.

From now on we will use the name ordinal to refer to those ordinals
which are less than ;. When saying decreasing sequences of ordinals we
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implicitly mean strictly decreasing.

Ordinals are supposed to represent counting into the transfinite. Being
countable, there must be some order among them. Frequently the set €-
relation is being used. Ordinals are viewed as sets such that the ordinal p
contains all the ordinals smaller than itself.

Definition 3.2.1 (Types of ordinals). There are three types of ordinals:
1. The ordinal 0.
2. Successor ordinals, i.e. of the form pU {p}.
3. Limit ordinals, where the least such ordinal is denoted by w.
One property of ordinals is their normal-form.

Definition 3.2.2 (Cantor normal-form). For every ordinal p other than 0
there are uniquely determined ordinals p1, .., p, such that p = wf* +.. +wf?
and p1 > .. > p.

€o is defined to be the minimal ordinal which is equal to its limit, i.e.
eo = min{p | w? = p}. This, together with the normal-form of ordinals,
means that all ordinals smaller than €y can be built up from the symbols
0,+ and w only.

Definition 3.2.3 (Relations and operations on ordinals). The following is
an inductive definition of =, <, + and -.

1. < is a linear ordering with O as its least element.
2. w! < w?if and only if p < v.

3. For ordinals p = w** + ..+ w* and v = W' + ..+ WY, p+ov =
Wt + 4wt w4+ WY, If poand v are given in normal form,
then their natural sum p#v = w + .. + w™+ where {1, .., Aoy} =
{1y ks V1, -0} and Ap > o0 > Ay

4. Let p = wht + .. +wh + whitt + 4+ whk such that p; < pjpq1 and let
i/ be the ordinal obtained from p by deleting wti then pu = pu'.

5. Let g = wh 4+ ..+ wh* and v = W 4 ..+ w" be in normal form. p <wv
if and only if wH < wY for some i and w"* = w% for all j < 7. Or,
k <l and wt = wY for all 1 < k.
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6. Let u have the normal form wH!+..4+w”* and v > 0 then p-w? = w17,
7. Let p = wt 4. 4wt and v = w" +..+w" then p-v = p-wW” +..4p-w".

8. (wt)™ is defined as w” - .. - wH n times where n is a natural number.
Le. (w*)" = wh™.

We can carry on the consistency proof of PA by a transfinite induction
on the ordinals up to €y as €q is accessible.

Definition 3.2.4 (Accessibility of ordinals). An ordinal p is said to be ac-
cessible if it has been demonstrated that every (strictly) decreasing sequence
of ordinals starting with p is finite.

The proof that € is accessible will follow closely the proof given in [1].
Lemma 3.2.5. ¢ is accessible

Proof

1. Every decreasing sequence, which starts with a natural number n, is
finite. This is because there cannot be a decreasing sequence of size
>n+ 1.

2. A decreasing sequence of ordinals smaller than w 4 w is finite because
the first term can be either a natural number or of the form w + n
where n is a natural number. Therefore, either the first term is finite
and we can use the previous argument, or there can be at most n + 1
ordinals bigger than w before we reach a natural number and can use
the previous argument again.

3. If ordinals ¢ and v are accessible, then so is p+v. Let p+wv be the first
element of a decreasing sequence and assuming p > v. Every element
can be either smaller than u or of the form w#! + vy where w*! is the
biggest monomial of u and vy is some ordinal smaller or equal to p.
Those there can be at most vy elements bigger than p before we reach
an element smaller than u.

4. If p is accessible, then so is u - w. Because - w = w*+! (where wtt
is the largest monomial in u), any element in a decreasing sequence
starting with wHtt! (except w’tt1) must be either smaller than u or
of the form w"' + vg where vg is smaller than p so there can be only
a finite number of elements bigger than p in the sequence.
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We will define now the notion of n-accessiblity and continue with the
proof.

Definition 3.2.6 (n-accessibility of ordinals). is defined by induction
on n:

e 1 is said to be 1l-accessible if p is accessible.

e 1 is said to be (n+1)-accessible if for every v which is n-accessible,
v - w* is n-accessible.

If p is n-accessible and v < u, then v is n-accessible. The proof is
by induction on n. It is clear that if p is 1-accessible then v is also
1-accessible. Assuming that for every two ordinals p and pg such that
o < 1, if p1 is n-accessible then also ps is n-accessible and assuming
o is (n+1)-accessible, then for every = which is n-accessible, x - w* is
n-accessible. But as x - w¥ < x - w”, by the induction hypothesis x - w?
is also n-accessible. Therefore v is (n+1)-accessible.

Suppose that {u,,} is an increasing sequence of ordinals with limit .
If each p,, is n-accessible then so is pu. This is true because either
p € {pm} or = w®*! and therefore we need to prove that for every
(n-1)-accessible z, z - w*""" is (n-1)-accessible. As there is pg € {fm}
such that pg = w’ +vp and as it is n-accessible we know that x-w o
is (n-1)-accessible. Therefore also x - w®" T00 . "+ = g e o
is (n-1)-accessible, but it is bigger than x - w*"" and according to (6)
2w is (n-1)-accessible as well.

If v is (n+1)-accessible, then so is v - w. Here we must show that for
U@ is n-accessible. Due to (7), it is enough
to show that for every m, x - w¥"™ is n-accessible. But z - "™ =
x- (W)™ =z w’.w’ Aswvis (n+1)-accessible, we know that z - w’
is n-accessible and therefore also x - w” - w" is n-accessible. Using this
step m times we have that x - (w”)™ is n-accessible.

every n-accessible x, - w

1 is (n+1)-accessible. Because let some p be n-accessible, then from
(8) p1-w = p-w! is n-accessible and therefore 1 is (n+1)-accessible.

Given that wg = 1 and wp4+1 = w*" then wy is (n-k)-accessible for
all n > k. This is proved by induction on k. If £k = 0 then wy, = 1
and it is n-accessible for all n according to (9). Now suppose wy is
(n-k)-accessible, then, as 1 is (n-(k+1))-accessible, we have 1 - w** is
(n -(k+1))-accessible, i.e. wgiq is (n - (k+1))-accessible.
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As a special case of (10) we have that wy, is accessible for every k.

For every decreasing sequence smaller than ¢y, there is an ordinal wy
such that it is bigger than all elements in the sequence. Therefore, we
can conclude that ¢g is accessible.

Now we can give Gentzen assignment of ordinals to proofs.

Definition 3.2.7 (Grade and height of formulas and sequents). The grades
of formulas and inferences and the height of sequents are defined as follows:

1.

The grade of a formula is the number of logical symbols that this
formula contains. The grade of a cut is the grade of the cut formula.
The grade of an ind is the grade of the induction formula.

. The height of a sequent S in a proof P denoted by h(S, P) or h(S)

is the maximum of the grades of the cuts and inds, which occur in P
below S.

Let wg(z) be defined inductively as follows:

o wy(x) =u.

o wi1(x) = wk@),

Definition 3.2.8 (Gentzen’s assignment of ordinals). The ordinal assigned
to a proof P of a sequent S, denoted by o(S, P) or o(S) is defined as follows:

1.
2.

An initial sequent is assigned the ordinal 1.

If S is the lower sequent of a weak inference (structural other than a
cut), then o(S) is the same as the ordinal of its upper sequent.

. If S is the lower sequent of V : 7, = :r, =~ :[,V:r, V: [ and the upper

sequent has ordinal p, then o(S) = u + 1.

. If S is the lower sequent of V : [ and the upper sequents have ordinals

w and v then o(S) = u#wv.

. If S is the lower sequent of a cut and its upper sequents have the

ordinals p and v then o(S) = wy_;(u#v), where k and [ are the heights
of the upper sequents and of S, respectively.

. If S is the lower sequent of an ind and its upper sequent has the

ordinal p then o(S) = wg—_;4+1(u1 + 1), where k and [ are the heights of
the upper sequent and of 5, respectively and p has the normal form
wht 4 4wk,
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7. The ordinal of a proof P is the ordinal of its end-sequent.

The ordinals given here can be seen as a bound on the length of proofs
of the specific sequents. For example, the use of an unary logical inference
increases the length by one, while weak inferences do not increase it at all.
The intuition is less clear when it comes to cuts and inductions. In order to
estimate the length of proofs, we will refer to the number of rules in a cut
and induction free proof. The cut elimination proof for classical logic given
by Tait [2] places a bound on the size of the cut-free proofs, according to
the most complex cut formula and the initial size of the proof.

Theorem 3.2.9 (Tait’s cut elimination for finitary predicate logic). Given
a proof P of sequent S with length d and cut complexity p, there is a cut-free
proof P’ of S with length < 2;‘5 where 2§ = ¢, 2¢, | = 2%.

We notice that the induction rule can be replaced by a transfinite deriva-
tion:

A(0) - A0)  A(0) F A(T)
1) A1) F A(2)
A(0) F A(2)

and so on.
By applying the cut rule with cut formula A(%), we can replace the in-
duction by a possibly infinite number of cuts < w.

Since all derivations in PA are finite and contains only finite cut formu-
las and since there are only a finite number of inductions in the proof, we
obtain a proof without inductions of length < w?. Therefore, any proof can
be transformed into a cut-free proof of length < 2‘,;’2 < ¢q for some k.

Now the bounds given by Gentzen can be better understood:

e Let p be the grade of a maximal-grade cut. Let p and v be the respec-
tive lengths of the sub-derivations of its upper sequents. Eliminating
this cut can amount, according to Tait, to length < 2Z < wy(pu#tv).

e Let p be the grade of an induction formula . Let p be the length of
the sub-derivation of the induction’s upper sequent. Eliminating this
induction increases the length to length < 2‘,:2 < wpp1(pm +1).

The specific bounds themselves were chosen according to the require-
ments of the proof given next.
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3.2.2 The consistency proof of PA

Gentzen’s proof of the consistency of PA starts by assuming there is a proof
in PA of the empty sequent and then showing that this proof can be reduced
to another proof of the empty sequent of smaller ordinal (bound on length).
As the ordinals are accessible, we can reduce proofs of the empty sequent
only a finite number of times, which leads to a contradiction.Therefore, we
conclude that there is no proof in PA of the empty sequent and that PA is
consistent.

Before we will carry on with this proof, which will follow closely the proof
given in [1] (based on Gentzen’s original proof [9]), we will give several more
definitions about proofs in PA.

Definition 3.2.10 (Bundles). When referring to the occurrence of a formula
in another formula, sequent or proof, we will refer to it as a formula in the
other formula, sequent or proof.

1. Successor - For a given formula E in the upper sequent of an inference
rule, its successor is defined as follows:

(a) If E is a cut formula, it has no successor.

(b) If E is an auxiliary formula of any inference rule other than a cut
or exchange, then the principal formula of the rule is the successor

of I.

(c¢) In the exchange rule given in definition 2.1.14, where the formulas
being exchanged are denoted by C and D, the successors for C'
and D in the upper sequent are C' and D (respectively) in the
lower sequent.

(d) Given T, II, A and A as in definition 2.1.14, if E is the kth formula
of I', II, A or A in the upper sequent, then its successor is the
kth formula of T', TI, A or A (respectively) in the lower sequent.

2. A sequent formula is called an initial formula or an end-formula if it
occurs, respectively, in an initial sequent or an end-sequent.

3. Bundle - a sequence of formulas in a proof with the following properties
is called a bundle:

(a) The sequence begins with an initial formula or a weakening for-
mula.

(b) The sequence ends with an end-formula or a cut-formula.
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(c) Every formula in the sequence except the last one is immediately
followed by its successor.

. Ancestor and descendant - let A and B be two formula. A is called

ancestor of B and B a descendent of A if A appears above B in the
same bundle.

Predecessor - If A is the successor of B then B is the predecessor of

A.

Definition 3.2.11 (Explicit and implicit bundles). The concept of explicit
and implicit bundles:

1.
2.

A bundle is called explicit if it ends with an end-formula.
It is called implicit if it ends with a cut-formula.

An occurrence of a formula in a proof is called implicit if it is contained
in an implicit bundle, it is called explicit otherwise.

. A sequent in a proof is called implicit if it contains a formula from an

implicit bundle. Otherwise, it is called explicit.

A logical inference in a proof is called explicit or implicit if its principal
formula is explicit or implicit (respectively).

Definition 3.2.12 (End-pieces and boundaries). The concept of end-pieces
and boundaries:

1.

2.

The end-piece of a proof is defined as follows:

(a) The end-sequent of the proof is contained in the end-piece.

(b) The upper sequent of an inference other than an implicit logical
inference is contained in the end-piece if and only if the lower
sequent is contained in the end-piece.

(¢) The upper sequent of an implicit logical inference is not contained
in the end-piece.

An inference in a proof is said to be in the end-piece if its lower sequent
is in the end-piece.

Boundary - Let J be an inference in the proof. J is said to belong to
the boundary of the proof if its lower sequent is in the end-piece and
its upper sequent is not. It should be noted that J must be an implicit
logical inference.
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4. Suitable cut - a cut in the end-piece is called a suitable cut if each
one of the two cut-formulas of this cut has an ancestor, which is the
principal formula of a boundary inference.

The proof carries on the reductions by transforming the proof into an-
other proof, such that the ordinal assigned to it (as defined in definition
3.2.8) is decreased. This is done by replacing first all inductions, which
appear in the end-piece. Each elimination will create a new bound for the
proof, which is strictly smaller than before. We will have to ensure that
there are no free variables in the induction term, before we will be able to
eliminate an induction. This way the induction is only over a finite number
of elements.

Definition 3.2.13 (Grounded induction). An induction is called a grounded
induction if the induction term does not contain any free variables. By
induction term we refer to s in the following instance of the rule:
P(a)
—~—
F(a),I'F A, F(d)
F(0), '+ A, F(s)

(induction)

Given a grounded induction, as the term can be evaluated into a numeral,
there is a procedure to eliminate it by replacing the induction with a finite
number of consecutive cuts.

Definition 3.2.14 (The elimination of grounded inductions). Replacing the
derivation
Pla)
——
F(a),T'F5 A, F(a)
F(0),T F5% A, F(s)

(induction)

P(0) P(0)
—— ——

F(0),T -5 A, F(T) F(I),I'+ A, F(
F(0),I' 92 A, F(2)

|
N

F(0),T }—";" A, F(m) F(n) F F(s)
F(0),I F% A, F(s)
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This procedure will be used in the consistency proof in order to reduce
the ordinal of the proof and also in the next section of the thesis, which
deals with more general proofs in PA.

The major part of the proof will deal with showing that proofs of the
empty sequent are special in a way that they must contain (once inductions
and other parts are removed) a suitable cut. This cut is then duplicated in
a way that will reduce the ordinal of the proof.

The first property of proofs of the empty sequent that we will show, is
that they cannot be ”simple”.

Definition 3.2.15 (Simple proofs). A proof in PA is simple if no free vari-
able occurs in it and it contains only mathematical initial sequents, weak
inferences and inessential cuts.

Lemma 3.2.16. There is no simple proof of F.

Proof

e As we have only inessential cuts in the proof and the end-sequent is
empty, all formulas in any simple proof of the empty sequent are of
the form s = t and are closed. We give a value T to all sequents, in
which at least one formula in the antecedent is false or at least one
formula in the succedent is true, otherwise it gets the value F. Clearly
all mathematical initial sequents get the value T and F is of value F.
Clearly exchanges, weakenings and contractions preserve the value as
they either change position, add a new formula or delete a duplicated
formula. Inessential cuts also preserve the value T as there must be
another formula in the context of one of the upper sequents which
render the sequent true and appears also in the lower sequent of the
cut.

The following lemma will enable us to replace a sub-derivation in a proof
by one of lower ordinal and have the whole proof be of lower ordinal.

Lemma 3.2.17. Let P be a proof containing a sequent S; and P; be a
sub-proof of P ending with Sy, such that there is no induction below 5.
Let P| be another proof of S; and P’ be the proof formed by replacing Py
by P|. If o(S1, P’) < o(Si, P) then o(P’) < o(P) (and the same for <).

Proof
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e We will prove by induction on the length of the derivation below .57,
that each sequent S below S; is assigned in P’ a smaller ordinal than
in P.

e This is true for S = 57 by assumption.

e Assuming it is true for derivations of length n, we prove it for deriva-
tions of length n+ 1. All inferences except induction are monotonic in
with regard to the ordinals assigned to their upper sequents and lower
sequent. Therefore, the inequality is preserved.

Before we prove the central lemma of the consistency proof, we remark
about the following property of end-pieces of proofs of the empty sequent.
All logical inferences must be implicit (as their bundles must end with a cut
formula due to the sub-formula property). Therefore, we can easily mark
the boundary between the end-piece and the rest of the proof by the first
logical inference we encounter when we go up from the end-sequent.

Another assumption is that eigenvariables in proofs are unique and do
not appear below the inference rules that have eliminated them.
Definition 3.2.18 (Regular proofs). A proof P is regular if:

1. The eigenvariables of any two distinct V : r or induction inference rules
are distinct from each other.

2. If a free variable occurs as an eigenvariable of a sequent S of proof P,
then it appears in P only in sequents above S.

Lemma 3.2.19. There exists a regular proof for any proof in PA. The
regular proof can be obtained by using only a finite process of replacing free
variables.

Proof

e By induction on the number [ of inference rules of the form V : r or
ind.

e If [ = 0 then there is no free variable which is used as an eigenvariable
and we are done.

e Otherwise, let us assume it holds for all proofs with at most [ such
inferences and we prove it for [ + 1 inferences. We label all lowermost
such inferences Ji, .., Jir in P. Looking on all sub-proofs of P, which
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end with J;, we can apply the induction hypothesis in order to obtain
a regular sub-proofs, which end with those rules. Making sure none
of the regular sub-proofs P/ contains eigenvariables from another sub-
proof by changing them if they do. The last step is to replace all free
variables, which are used as eigenvariables in one of the J; and occur
below the J; by new free variables.

The following lemma will be stated now and a more general version of

it will be proved in the next section (in lemma 4.1.22):

Lemma 3.2.20. Given

DI - A
R[D],,I1F A

where the bundle containing D and R[D]) does not contain principal

formulas of the contraction rule between the two formulas, we can obtain

WA
= A

with the possible addition of weak inferences only.

The following is the proof of the reduction step. The reduction is made

of a sequence of steps. Each step is performed a finite number of times and
only after the previous steps were exhausted. None of the steps increases
the ordinal and at least one step decreases it. At the end we obtain a proof
of a strictly lower ordinal.

Lemma 3.2.21. If P is a proof of -, then there is another proof P’ of
such that o(P’) < o(P).

Proof

1. The first step is to replace all free variables, which are not used as

eigenvariables in the end-piece by constants. According to lemma
3.1.7, for each such free variable we can obtain a proof of F where
the free variable was replaced by 0. Therefore we can obtain a proof
without free variables in the end-piece, which are not being used as
eigenvariables.
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. In case we have an induction in the end-piece, we take a lowermost

such induction I with upper sequent S and lower sequent Sy:

P(a)
——

F(a), T F5 A, F(d)
F(0),T F% A, F(s)

()

As we deal with the end-piece, there are no quantifiers below I and
therefore no free variables, which are used as eigenvariables. Because
we have eliminated all the remaining free variables as well, the term
s is a closed term and by lemma 3.1.5 we know that there exists a
numeral 7 such that - s = 7 and F(n) - F(s) are provable without
an essential cut or ind. Using the transformation that was given in
definition 3.2.14, we can replace the induction by a derivation of length
7 containing 7 cuts. Assuming o(S) = pu, the ordinal which was as-
signed to the lower sequent Sy of I was 0(Sy) = wj—g+1(u1 +1). We
notice that all the sequents in the new derivation according to 3.2.14
have the same height [, since all the formulas of the form F'(m) for
m = 0,..,n have the same grade. Therefore, for every m = 0,..,n
o(F(m),I' H A, F(m')) = p. Because @ has no essential cut or ind,
o(F(n) F F(s),P') = ¢ <w (where P’ is the proof after the transfor-
mation given in 3.1.5). Now we can see that each of the lower sequents
S; for ¢+ = 2,..,m of the new cuts that replaced the ind is of ordinal
0(S;) = puxi (where p*i = pu#t..#p i times). As p*xn+ ¢ < wirtl
we get 0(Sp, P') = wi—k(px+q) < wi—gt1(p1 +1) = o(Sp, P) and by
lemma 3.2.17 o(P’) < o(P). So as long there is an ind in the end-piece,
we can obtain a proof with a smaller ordinal, otherwise we can assume
there is no ind in the end-piece and continue to the next step.

. In case the end-piece contains an initial logical sequent D - D. Both

Ds must be cut somewhere above the empty sequent. Assuming the
D in the antecedent is cut first (from above), we have:

DFD
THA,D D,IIFA
LIS A A

}_

(cut)
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and as the D in the succedent is cut somewhere below S, we can
replace it by:

TEAD
weakenings and exchanges
OIS AA

l_

We have removed a cut and added weak inferences only, therefore
o(S", P") < o(S,P) and by lemma 3.2.17 o(P’) < o(P). So we can
assume, after applying this step a finite number of times, that there
are no logical initial sequents in the end-piece.

4. If there are weakenings in the end-piece. Taking a lowermost weaken-
ing W, as the end-sequent is empty, the weakening’s formula must be
cut below W. l.e. we have:

' A

—_—— (W
DA

I'F5 A R[D],  R[D]\TIF5 A
LIS A A

(cut)

‘We have two cases:

(a) There is no contraction in the bundle, which contains D and
R[D]y between W and the cut. Using lemma 3.2.20 we can ob-
tain:

I’ - A/
IS A

weakenings and exchanges
[ IIH% A A
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Given h(S, P) = k and h(Sp, P) = [ where [ < k, then h(Sp, P') =
h(S’, P") = l. Hence, the height of all sequents above Sy in P’
is at most the same as the corresponding sequent in P. l.e. for
every sequent S7 in P above Sy and the corresponding sequent
S} in P" we have h(S1,P) > h(S{,P’). By induction on the
length of the proof down to Sy (and also because the process
of lemma 3.2.20 never adds non-weak inferences), we can show
that for every sequent S7 and its corresponding S in P’, we have
0(S1, P) > o(S1, P’) and those o(S, P) > o(S’, P'). Therefore,
given that o(S;, P) = , o(S,P) = p and o(S’, P') = i then
o(So, P) = w—i(u#tp) > p = p' = o(S', P') = o(Sp, P') and by
lemma 3.2.17 o(P’) < o(P).

In case there is a contraction in the thread containing S, let C
be the uppermost contraction and we have:

I
D, I+ A
R[D], R[D]5,T" A"
R[D],I" 5 A"

(W)

(©)

P[R[D])]5,T F50 A
Using lemma 3.2.20 on the first part of the proof, we can obtain:
I'= A
R[D],,T" 5" A"

P[R[D],]5, T F% A

By the same argument of the previous case, we have o(S’, P') <
o(S, P) and by lemma 3.2.17 o(P’) < o(P).

Therefore, we can conclude that there are no weakenings in the end-

piece.

5. It remains to show that there must exist a suitable cut, such that
doubling it will reduce the ordinal of the proof. First we notice that
P cannot be its own end-piece as otherwise it would be simple and
by lemma 3.2.16 there is no simple proof of the empty sequent. The
proof would be simple because up to this step it will not contain free
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variables, non mathematical initial sequents or weakenings. Accord-
ing to the definition of an end-piece (in proofs of the end-sequent) it
cannot contain any logical inference, therefore (and because there are
no logical initial sequents) all cuts are inessential. So the proof is not
its own end-piece and therefore, as there is at least one implicit logical
inference in P (a boundary inference), there is an essential cut in the
end-piece, which is suitable. The following lemma states that such a
suitable cut exists:

Lemma 3.2.22. Let proof P satisfies the following requirements:

1.

2.

3.

P is not its own end-piece.

The end-piece of P does not include any logical inference, inductions
or weakenings.

The end-piece of P does not include any logical axiom.

Then there is a suitable cut in the end-piece of P.

It is apparent that all these requirements hold in our proof of .

Proof

e The proof is by induction on the number of essential cuts in the end-

piece.

e If there is only one essential cut C' (and there is at least one as discussed

above), then it is suitable. The cut formula of this cut contains a
predicate symbol other than = and there are no weakenings. This
is the only cut in the end-piece which has another cut-formula other
than an equation. In case the two cut-formulas are not descendant
of boundary inferences and because there is no other essential cut
in the end-piece, they must be descendant of logical axioms which
contain logical symbols. But this is in contradiction to requirement
(3). These inferences must be the lowest such inferences as there is
only one essential cut in the end-piece.

If there are more than one essential cut, take a lowermost one (C). If
it is a suitable cut then we are done, otherwise we have:
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Py P

— —_—~
TFAD DIFA
TIFAA

As C is not a suitable cut, at least one of the Ds is not a descendant
of the principal formula of a boundary inference. We assume that the
D in the succedent has this property. Next we prove that: (1) P;
must contain a boundary inference of P, (2) all boundary inferences
of P, which are contained in Py, are also boundary inferences of P;
and (3) the end-piece of P; is contained in the end-piece of P. Using
the induction hypothesis, as P} contains one less essential cut, we can
conclude that it contains a suitable cut. Because the boundaries in P;
are also the boundaries in P, it is also a suitable cut in P.

1. P} contains a boundary inference of P. This is true because
we know that there must be an implicit inference above I' F
A, D which is a boundary inference of P. Otherwise, due to
requirements (2) and (3), D is a descendant of a logical axiom
which occurs in the end-piece of P, which is a contradiction. The
inference formula cannot be an ancestor of any of the formulas
of ' H A, D. This is because we assume it is not of D and if it
was of any of the other formulas, there should have been another
essential cut below C, which contradicts the fact that it is a
lowermost essential cut. Therefore, there must be an essential
cut in P; and the boundary inference of P is also a boundary
inference of P;.

2. If an inference J in P; is a boundary inference of P, then it is
a boundary inference of P;. This is because C' is a lowermost
essential cut and it cuts D which is not a descendant of a prin-
cipal formula of a boundary inference. Therefore, all boundary
inferences in PP} must contain a principal formula that ends in an
essential cut which is also in P;.

3. P is not its own end-piece and the end-piece of P; is the intersec-
tion of P, and the end-piece of P. From requirement (1) we know
that P is not its own end-piece. Furthermore, from the previous
two results we know that as the boundary of P; is ”contained”
in the boundary of P, then the end-piece of P; is fully contained
in the end-piece of P.
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As mentioned before, we can use the induction hypothesis in order to
obtain a suitable cut, which is also a suitable cut in P.

Back to our proof. As our current proof of  satisfies all the requirements
of the lemma, we have a suitable cut in the end-piece and we define an
essential reduction of P as following. By taking a lowermost suitable cut
in the end-piece of P (called C'), we see that there must be logical rules in
both sub-derivations of C' with ancestors of the cut-formula of C' as principal
formulas. The idea of the essential reduction is to replace these logical rules
by an additional cut, which is below C' and which has a cut-formula of
smaller grade than the cut-formula of C. Then it can be shown, that the
ordinal of all sequents in the lower part of the proof is strictly smaller by
this change. This is true as the height of the original cut did not change and
we have made its ordinal smaller. Although there are new cuts, the ordinals
of all sequents must be smaller than in the original proof. We will prove by
cases according to the outermost logical symbol of the cut -formula of C.
We will examine here only V and V:

1. If the outermost symbol is Vv, then P is of the form:

I’ PA/,A AT A, B, A,
vra,avp T AVBI'F A vty
'St AAVB AV B,IIF% A ©

LIS AA
orvE

So is the uppermost sequent below C' whose height k is less than the
height [ of S7 and S5. S) exists as:

(a) If all cuts below C are lower than the grade of AV B, then Sy = S.

(b) If not the above, then take the highest cut below S and its lower
sequent is Sg.

(c) We know that either (a) or (b) must be true as the height of the
end-sequent is 0 and the height of S is bigger than 0.

(d) The lower sequent chosen in (a) or (b) may be the end-sequent
as well.
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So must be a cut as there are no inductions in the end-piece.

We will transform P into P’ in such a way that in P’ the two V
inferences will be removed and we will add a new cut below Sy:

AT F A

exchanges
' EALA A A
exchanges weakenings
I+ A A I, AR A
—_——— (wir) _— (wil)
I"+AA"AVB AV B, II,A+ A
S/ S// S// S/
r+51 A,A,AVB AV B, IIF52 A reSr A,AvV B AV B,II,AF52 A
n (J1) S (J2)
r,aFSL A A A I,I,AFSR A A
OFAE ©,AFE
exchanges exchanges
1 2
orsS E,4 A,0K%" =
. )
SH = =
©,0+F"0 =, =
contractions and exchanges
eFrE

The first thing we note is that h(S]) = h(S}) = h(Sh) = h(S§) =
h(S1) = h(S2) = [ as we have added only one new cut (J) and its grade
is smaller than that of J; and .J,. It is also clear than h(S() = h(Sp) =
k. Let h(S') = h(S?) = m. It is clear that m = max(k, grade(A)) < .

On the other hand, as we have eliminated one logical inference in each
sub-derivation, o(S]) < 0(S1) and 0o(S%) < 0(S2), while o(SY) = 0(S1)
and o(S5) = o(S2).

Now, given an arbitrary inference

Py I

in P’, such that h(F]) = h(F}) = k1 and h(F’) = ke. We will show by
induction on the length of the derivation, starting with S and ending
with Sp, that o(F’, P") < wi_k, (o(F, P)).
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e The idea of this induction is that although we have added a new
cut, the accumulated height of the cuts stays the same. This is
because the cut we have added is of smaller grade than some other
cuts above it. Although we have in the new proof two derivations,
they are above a cut whose ordinal is bigger than w. Therefore,
the cut’s ordinal cancels the fact that we have two sub derivations
instead of one in the original proof.

e We will also use the following two properties of ordinals:

Lemma 3.2.23. Let 4 and v be ordinals in normal form different from
0, the following is true:

(a) wn(wm(p)#Hwm(v)) < Wnpm(pffv).
(b) If w* > vy and w* > vy then wH > vi#wvs.

Proof

e < on ordinals given in normal form is defined such that (1)
w?® > w’ if and only if @ > b and (2) By the first monomial
that is not equal in the two ordinals. Therefore, in (a) we have
Wr (W (1) #wrm (V) < wnopm (pfv) if and only if wy, (1) #wm (v) <
wm (u##tv). They are clearly equal if m = 0 and if m > 0 then the
only monomial in w,,(u#wv) is clearly bigger than the monomials
of wp(1)#Hwm(v). (b) is true, because we have only one mono-
mial in the bigger ordinal and we know it is strictly bigger than
all monomials in the other ordinals. Therefore, it does not matter
how many smaller monomials we add to the smaller ordinal.

Back to our inductive proof.

e The base case is clear as o(S},P’) = wi_g,(0(S]))#0(5Y)) <
Wik, (0(S1)#0(52)) = Wik, (wWi—1(0(S1)#0(52)) = wi—k, (0(S, P)).
e We need to prove the step only for cuts, because the ordinals of
the rest of the inferences (we dont have inductions) do not in-
clude heights and clearly keep the inequality. First we note that
for all cuts in P in the specific derivation, except the last one, we
have o(F, P) = o(Fy, P)#o(Fy, P), because all cuts there have the
same height. The last cut has o(Sy) = wi—i(o(F1, P)#o(Fa, P)).
In P’ we have for all cuts o(F’, P') = wi1_k2(o(F1, P)#0(Fy, P)).
Now assuming we have o(F’, P") < w;_, (o(F, P)) for the previ-
ous inference. Because the height for the current upper sequents
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(in P?) is equal to the height of the lower sequent in the previous
cut, we have o(F’, P') =
Wiy —ky (0(FY, P)#o(F3, P')) <
Why—ky (Wi—k, (0(F1, P))#wi—p, (0(F2, P))) <3.2.23(:)
Wky —ko+1—k1 (O(Flv P)#O<F27 P)) =
Wi—k, (0(F1, P)#0(F2, P)) = wi—k, (o(F, P)) for all cuts except the
last.

e For the last cut in the derivation (with lower sequent Sy in P and
the corresponding S* and S2 in P’), we assume the following:
(a) That the ordinals for the upper sequents of Sy sums to O.
(b) That the ordinals for the upper sequents of S sums to O’.
(c) That the height of the upper sequent of S! is my.
(d) Using the fact that above Sy we have o(F’, P') < wj_, (o(F, P))
We have O(So, P) = Wl—k(o) = Wl—mo—i-mo—k(O) = wmo_k(wl_mo (O)) >
Wing—k(0") = Wimg—mam—k(0") = wm_k(0(S1, P")). Because o(Sp, P) =
wi_1(0), we also have that o(S!, P') < wj_,(0) and o(S?, P') <
wl—m(O)'

e The ordinal of 5 is therefore o(S), P') = wp—k(0(S*, P")#0(S%, P')) <3.2.23(ii)
Win—k(Wi—m(0)) = o(Sy, P) as | > m. Using lemma 3.2.17 o(P’) <
o(P).

2. If the outermost symbol is V then P is of the form:

I A F(a) F(s),IT - A
I+ A Vo F (z) Vo F (z),II' B A
'+ A VzF(x) VaF(x), IITF A

T.IFAA

OF

(1]

We define P’ as before, by deleting the V inferences and adding a cut
below the highest cut below I',IT - A, A:
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= A F(s) F(s),IT' - A

exchanges exchanges
I+ F(s), A’ ', F(s) - A
(w:r) (w
I’ + F(s),A,YazF(x) VaF(x), I, F(s) - A’
'k F(s),A,VzF(z) VzF(z), I+ A '+ A, VzF(x) VzF(z),II, F(s) - A
T, IIF F(s),AA I, F(s) F A A
Ok &, F(s) F(s),0FE
0,0F =2
contractions and exchanges
OF=

Because o(I" - A’ F(s)) = o(" + A’, F(a)), we can follow the proof
of case (a) and obtain that o(© F Z, P') < 0o(© F £, P) and by lemma
3.2.17 o(P’) < o(P).

We have showed that upon reaching the fifth step, there must be a suit-
able cut in P. The last step showed how to transform this proof into a proof
of a smaller ordinal. As none of the steps increases the ordinal and some
of them, including the last one, decrease it, we have effectively showed a
transformation of P with a smaller ordinal.

By using this lemma and the accessibility of ¢y, we prove:
Corollary 3.2.24. PA is consistent

Proof

e In the previous lemma we have showed that for any proof of the empty
sequent there is another proof of the empty sequent of a smaller or-
dinal. However, as the ordinals are all smaller than ¢y, there is no
infinite decreasing sequence of them. Therefore there is no proof of
the empty sequent in PA and it is consistent.

:1)



Chapter 4

Proofs of Weakly Quantified
Theorems

In this section we will give a cut elimination proof for inductive proofs of
theorems without strong quantifiers. First, we will analyze the structure of
such proofs and prove some auxiliary lemmas. Then we will prove one of
the main lemmas in this thesis, the projection lemma. The following part
will deal with a procedure which eliminates certain contractions so we can
use the projection lemma. In the last part we will prove the main theorem
of this thesis.

4.1 Analysis of the Proofs

4.1.1 Characteristics of inductive proofs of weakly quantified
theorems

In the previous section we have seen a procedure for eliminating inductions
when the induction term can be evaluated into a numeral. The assumption
that induction terms can be evaluated in such a way is not necessarily true.
Theorems containing strong quantifiers may have free variables in their end-
pieces which cannot be eliminated. Even if the end-sequent is without strong
quantifiers, we must look not only on the end-piece, but on the whole proof
in order to eliminate all inductions that interfere with cut elimination.

The problem in this case is that although there are no strong quantifiers in
the end-sequent, there might be strong quantifiers in implicit bundles, i.e.
bundles ending with a cut. These strong quantifiers may introduce eigen-
variables, which will appear in an induction term. This makes it impossible

41
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to evaluate the term to a natural number.

The fact that it may happen only in implicit bundles gives us also the solu-
tion to the problem. Namely, if this strong quantifier is being cut out, then
there must be a weak quantifier on the other branch above the cut. This
weak quantifier may introduce a term which might be a suitable replace-
ment for the eigenvariable of the strong quantifier. This is the idea of the
"Projection Lemma”.

Below we give a definition of a sub-bundle which contains such a weak quan-
tifier.

Definition 4.1.1 (Sub-bundles). - A sub-bundle is a sequence of occur-
rences of formulas in a proof with the following properties:

1. The sequence may begin with any formula.
2. The sequence may end with any formula.

3. Every formula in the sequence except the last is immediately followed
by its successor.

Definition 4.1.2 (Weak Quantifier Formula). - Is a quantifier formula
which is contained in a bundle that contains also the introduction of this
quantifier by a weak quantifier inference rule.

The notion of a PSB is central to the remaining part of the thesis

Definition 4.1.3 (Problematic quantifiers). A quantifier @) is called prob-
lematic for the induction I if @) eliminates a free variable (which is used as
an eigenvariable), which appears also in the induction term of 1.

Definition 4.1.4 (Problematic cuts). A problematic cut is a cut whose
cut-fomula contains a problematic quantifier. A cut-formula may contain
quantifiers which are problematic for several different inductions. The two
sub-derivations of the upper sequents of the cut are called strong and weak
with regard to an induction. The strong side is the side containing the
induction itself.

Definition 4.1.5 (Problematic Sub-bundles (PSBs)). A PSB is a sub-
bundle with the following properties:

1. All the formulas in the sub-bundle contain a weak quantifier Q). Q is
called the characteristic quantifier of the PSB.

2. @ is also a problematic quantifier for some induction and is contained
in a cut-formula.
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3. The sub-bundle starts with () as the principal formula of a weak quan-
tifier or weakening rule.

4. The sub-bundle ends with a cut formula.

Remark - A PSB is defined for a specific induction that has a problem-
atic quantifier which is the characteristic quantifier of the PSB.

Due to the tree form of the derivation, it is clear that if an induction has
more than one problematic quantifier, they must all be contained in the same
formula and are cut together. Therefore we can define the characteristic sub-
bundle of an induction.

Definition 4.1.6 (Characteristic sub-bundle). The sub-bundle which be-
gins with the right principal induction formula of I and ends with the cut
formula of the problematic cut of I is called the characteristic sub-bundle of
1. Only inductions with a problematic cut have a characteristic sub-bundle.

Example 4.1.7 (A PSB with a quantified inference rule). The following
example shows a problematic cut. The cut-formula contains the problematic
quantifier Ve A[Blg(x) for the induction. The induction is contained in the
strong side of the cut. On the weak side we see a PSB for the induction
which begins with a weak quantifier inference rule. The PSB starts with
Ve A[Blg(z) at the lower sequent of the ¥ : I inference rule and ends with
R[VxA[Blg(z)]x at the cut.

B(n), I+ A", B(n')

ind
BO).T"F A", Blb)
I AN ABlp(b) A[Blg(t), I - N .
I+ A" VzA[Blo(x) VrxA[Blg(x), I - A"
'+ A, RVzA[B RVzA[B I A
(Vo A[Blg(x)] (Vo A[Blg(x)] (out : RNV ALBlo(@)])

T,IIFAA

The procedure used in the Projection Lemma and in the elimination of
contractions is similar to the procedure taken by Gentzen in his Cut Elim-
ination proof, i.e. propagating the cuts upward in the proof tree. As our
proofs contain inductions, we might encounter the same problems we had
for cut elimination in PA, as discussed in section 3.1.2. Therefore we must
ensure that there are no inductions in the problematic places. Here we take
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advantage of the fact that the proof is in tree form. We define a well founded
order on the inductions, an order that ensures that there will be no other
induction in the problematic locations if we process each induction accord-
ing to it.

The first task is to define when an induction is located in a problematic
location in relation to some other induction.

Definition 4.1.8 (Interfering Sub-bundle). When a PSB contains an in-
duction formula, then it is called interfering sub-bundle. - An interfering
sub-bundle for some induction over some cut is a PSB for this induction
over the same cut which contains an induction formula of another induc-
tion.

Example 4.1.9 (Interfering Sub-bundle). The PSB in example 4.1.7 will
be an interfering sub-bundle if it contains an induction. i.e. we would have:

B(n), I = A”,B(n') A[Blo(t), T = A’

BT A Bo) TeABl @A Y
CEAABLG) o CNeABL@l @) 17 A ClaABl @l ()
I A VeABle(@) ) CNzABla()),(0),11" F A7, CeABla(@)](0)
' A, RVzA[Blo(x)]x R[VzA[Blo(z)x, IIF A (eut : RVoA[Blo(x)]3)

T,IFA,A

The relationship between the two inductions (I; and I in example 4.1.9)
is defined as follows:

Definition 4.1.10 (Interfering Induction). An induction I which resides
in a PSB of some other induction I; is an interfering induction for 7;. We
say also in this case that I interferes with 1.

In example 4.1.9 I, interferes I;.

Inductions may also be problematic to other inductions if they appear
below them in a thread in a proof. An induction which does not have
problematic inductions of this type is called a suitable induction. Here
we give a partial definition and we wait for our definition of the order on
inductions for the full definition of a suitable induction.

Definition 4.1.11 (Suitable induction I). An induction I; is called suitable
with regard to induction I if:
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1. Its induction term does not contain the free variable which is used as
an eigenvariable by Is.

2. If it has a characteristic sub-bundle, it does not contain the induction
formula of induction Is.

4.1.2 The order of inductions

Next we would like to define an order between inductions according to these
two properties: interferences and suitability. Defining an order between
inductions according to induction-interference may not always hold, because
we apply transformations on the proof. In general, in case two inductions
appear one above the other in some thread, the lower one should be handled
first. This is because the lower one may introduce an eigenvariable which is
contained in the upper induction term. The lower induction can also occur
in a characteristic sub-bundle of the upper induction, This is another reason
to handle it first as our algorithm requires an induction free characteristic
sub-bundle. On the other hand, when duplicating inductions, an induction
which appears above some other induction I may interfere with another
induction labeled by I , as happens in the following example:

Example 4.1.12. Here we investigate the result of Gentzen’s transforma-
tion on a derivation containing three inductions, one above the other.

C V2 A[B](2)](c), I F A", CVz A[B](2)](¢
C[¥x A[B](x))(0), I = A™, C[¥x A[B](x)](ts)
B(0), Y, DICIVaA[B)(x)]], T - A B(Y)
B(0), I, DIC[¥z A[B](@)]J,T§ - A, B(ts,a)
[, DICIVaA[B)(x)]], T - A, A[B](a)
Ty, DICIvaA[B)(@)]], T3 F A, Yz A[B](z)
E[D[CzAB]@)]](d), T - A, EDICl AB]@)]](d)
ED[C[VzAB]()]))(0), T FA,E[D[C[VxA[B](:v)]]](t)

)

(1s)

(I2)

(1)

We see a quantifier which is problematic for induction Is and appears in
the induction formula of Iy. An I induction step will look like:
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C[VzA[B](z)](c), T = A" C[Vz A[B](x)](c) C[VzA[B](z)](c), T = A" C[Vz A[B](x)](c)

117 1’ (13) 17 1" (13)
CVz A[B](x)](0), """ = A", C[Vz A[B](»)](t3) C[VzA[B](2)](0), """ = A", C[Vz A[B](2)](t3)
B(b), Ty, DIC[V=A[B](2)]], Ty + A", B(b) (I») B(b), Ty, D[C[V=zA[B](2)]], Ty + A", B(b) (I»)
B(0),I'Y, D[C[VzA[B](x)]],T% + A", B(ta, a) 2 B(0),I'Y, D[C[VzA[B](x)]], T4 + A", B(ta, a) 2
Iy, D[C[VzA[B](2)]],I'y - A’, A[B](a) (i) Iy, D[C[VzA[B](2)]],I'y - A', A[B](a) (ir)
T, D[C[VzA[B](2)]],T) - A/, Yz A[B](z) ’ T, D[C[VzA[B](2)]],T) - A/, Yz A[B](z) ’
E[D[C[VzA[B](2)]]](0), T = A, E[D[C[Vz A[B](2)]]](1) E[D[C[VzA[B](2)]]](1), T - A, E[D[C[Vz A[B](2)]]](2) (cut)

E[D[C[V=A[B](«)]]](0),T,T F A, A, E[D[C[VzA[B](x)]]](2)

There is a new PSB for induction Iy which contains an induction formula

(of I3).

We would like to define an order using a property of inductions which is
mostly independent of the form of the proof. This way, transformations will
not have much impact on the order and we can easily prove that the order is
preserved under the transformations. We notice that a simple property will
allow us to define an order between inductions such that: An induction of the
biggest label will be a suitable induction for all other inductions. Moreover,
It will have no other induction in any of its PSBs and It will prevent the
problem stated above, because this property is independent from the form
of the derivation. We will order our inductions according to the grade of the
induction formula.

Definition 4.1.13 (Order on Inductions). The binary relation <; over the
set of inductions (in a proof) is defined by:

1. (I1,12) €<y iff the grade of the induction formula of induction Is is
bigger than the grade of the induction formula of induction I;.

2. In case two induction formulas have the same grade and their induc-
tions occur on the same thread, (I, I3) €<y iff I5 is below I in the
thread.

3. We extend < into a total order in an arbitrary way (for the rest of
the pair of inductions of equal formula’s grade).

It is clear <; is well founded.

Definition 4.1.14 (Labels of inductions). Given a proof, we will label all
its inductions according to the relation <j.

We will redefine suitable inductions with the use of the new order <.
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Definition 4.1.15 (Suitable induction). An induction [; is called suitable

if:

. Its induction term does not contain the free variable which is used as

an eigenvariable by an induction of smaller or equal label.

. If it has a characteristic sub-bundle, it does not contain induction

formulas of inductions of smaller or equal labels.

Definition 4.1.16 (Suitable proofs). If all the inductions in a proof:

1.

2.

Have no interfering inductions of equal or smaller label.

Are suitable.

the proof is called suitable.

Lemma 4.1.17. Given a proof P with all inductions labeled according to
<1, we have for all inductions of an arbitrary label I:

1.

2.

There is no interfering induction of equal or smaller label.

None of the inductions labeled by [ contains in its induction term free

variables which are used as eigenvariables by inductions of smaller
label.

. None of the inductions labeled by [ has an induction formula of another

induction of smaller label in its characteristic sub-bundle (if it has one).

Proof

1.

Let ind be an induction of label [. Assume there is an induction
formula F' of an induction of label smaller or equal to [ in a PSB of
ind. According to our order, the grade of F' is not bigger than the
grade of formulas labeled by I. According to the definition of a PSB,
the problematic quantified formula A of ind must be contained in all
formulas in the PSB. A is therefore a sub-formula of F'. The induction
formula of ind must be a strict sub-formula of A as it does not contain
the quantifier. Therefore, it must be a strict sub-formula of F', which
contradicts the assumption that the grade of F' is not bigger than the
grade of the induction formula of ind.
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2. Assume that induction ind; of label [ contains in its induction term a
free variable which is used as an eigenvariable in an induction indsy of
a smaller label. ind; occurs above inds on the same thread and there-
fore, as ind; is of bigger label than inds, the grade of indy induction
formula F> must be smaller than the grade of ind; induction formula
Fy (according to the second item in the definition of <;). Both F}
and Fy are contained in the same bundle and as F} is above F5 in this
bundle, Fj is a sub-formula of F5 which contradicts the fact that Fj
is of bigger grade.

3. This proof is similar to the proof of the previous property. The two
inductions occur on the same thread. Because they are of different
labels, the grades of their induction formulas cannot be equal. As the
two induction formulas are in the same bundle, the upper one must
be a sub-formula of the lower one. It must be a strict sub-formulas
as their grades cannot be equal. We get a contradiction as the upper
induction is of bigger label and therefore cannot have a smaller grade
on its induction formula.

We will have to make sure that the transformations performed in the
rest of this section will not make a suitable proof unsuitable. The next
lemma, will define the properties that must be kept in a transformation for
the suitability of a proof to be preserved.

Lemma 4.1.18. If we obtain a proof P’ from a suitable proof P by:

1. Adding only existing inductions and never adding an induction to a
thread containing another induction of the same label.

2. Eliminating inductions.

3. Adding or removing any number of other inferences other than induc-
tion.

then P’ is suitable as well.

Proof

e We can add only existing inductions and therefore the first property
of lemma 4.1.17 will always hold. This property is completely inde-
pendent of the form of the derivation, because it depends only on the
grade of formulas.
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e The next two properties are not independent of the form of the deriva-
tion as there might be inductions of the same label which are not cov-
ered by lemma 4.1.17. However, we are restricting our transformations
to never add inductions to threads containing other inductions of the
same label. Therefore all inductions added, as well as the existing
inductions, will remain suitable.

4.1.3 Manipulations on derivations

The next lemmas about bundles show that a derivation remains valid if we
remove sub-bundles from it.

Definition 4.1.19 (Bundles removal). Let 1) be a directed labeled tree (as
in the definition of an LK-derivation) and 3 a sub-bundle such that all the
occurrences of formulas in [ appear in 9. Then /f is the resulted tree
obtained from v by removing all the occurrences of formulas from (.

The first lemma is about a sub-bundle which starts and ends with the
same formula, for example:

Example 4.1.20. The derivation v containing the sub-bundle 3 starting
and ending with A.

M, AT b A
AT E A

Lemma 4.1.21. Given a derivation 1 containing a sub-bundle 3 that starts
and ends with the same formula A and that does not contain the principal
formula of a contraction or induction rule, ¢/ is also a derivation.

Proof

e First we examine the sub-bundle 3. As it starts and ends with A,
A cannot be the principal formula of a logical rule. Otherwise its
logical complexity must change. It cannot be the principal formula of
a weakening or a cut as each occurrence of A in [ (except the first)
is the successor of another occurrence of A in (3, according to the
definition of a sub-bundle. As A cannot be the principal formula of a
contraction or induction, we are left only with the possibility that A is
the principal formula of an exchange or A is not the principal formula
of any rule.
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By induction on the length n of the proof.
if n = 0 then as every sequent is also a derivation, it holds.

Assuming it holds for all derivations of length n and taking a derivation
of length n + 1.

If the lowermost inference rule is J with A not being the principal
formula. For example:

Iy, AT, - A
7, AT - A"
I, A, 1T, - A/

)

we can use the induction hypothesis in order to obtain a derivation of
7,115 = A” from II;,IIs A and then apply J.

If the lowermost rule is an exchange with A a principal formula. For
example:

I, AT F A
1T, B, A, T, - A’
I, A B, I, - A\

(exchange : 1)

we can use again the induction hypothesis in order to obtain a deriva-
tion of I}, B,II, + A’ from II;,II5 - A and we are done.

The second lemma is about sub-bundles in general.

Lemma 4.1.22. Given a derivation 1 containing a sub-bundle 3, which
does not contain the principal formula of a contraction or induction rule,
/[ is also a derivation.

Proof

By induction on the difference n between the logical complexity of the
last formula in 8 and the logical complexity of the first formula in 3.

n = 0 then it holds by lemma 4.1.21.
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e n > 0, then according to the outermost symbol:

— V and the inference rule is on the right, so for example we have:

I, ATl F A
' AN A

I'FAAVR

" + A{, A’V R, A}

(V:r)

according to the induction hypothesis we can obtain the deriva-
tion:

Iy, I, A
I F A
and according to lemma 4.1.21 we can obtain the derivation:
" =AY, AY

— V and the inference rule is on the left. For example:

M, ATl F A

AN RTEA
AVRIITEAN A
I}, 07, AV Ry, T = A, A

(v:1)

in the same way as before, we can use the induction hypothesis
and weakenings in order to obtain the derivation:

Iy, s - A

- A .
————————— (weakenings)
I THA A
and lemma 4.1.21 in order to obtain the derivation:
II',T A A

I, T7, I, T - A A
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— —, for example

I, ATl F A
AN
'E A=A

7 - A, = A, A

—ir)

again, we can obtain the required subproof by using the induction
hypothesis and lemma 4.1.21.

— The rest of the connectives are dealt with in the same way.

The last lemma in this section is a simple weakening lemma.

Lemma 4.1.23. Given ILII')A,A’,T", T, A, A’ such that no free variable
which is used as an eigenvariable and appears in II, II', A, A’ also appear in
[T, A, A’ and given the following derivation:

A
Y

we can obtain the derivation:

ILTFAA
I TFA AN
Proof

e By induction on the length of the derivation.

4.2 The Projection Lemma

The method applied by Gentzen for the elimination of inductions starts by
replacing all free variables which are not being used as eigenvariables by
some fixed terms. Free variables which are being used as eigenvariables can-
not appear below the inductions, because only the end-piece of the proof
is being considered. We are looking at the whole proof and therefore we
must deal with those free variables which are being used as eigenvariables
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as well. We consider only problematic quantifiers and not all strong quan-
tifiers. Because the end-sequent does not contain strong quantifiers, these
problematic quantifiers must be cut out. For every problematic quantifier
below an induction which is cut out, there must be a dual weak quantifier
which is the characteristic quantifier of a PSB of the induction. Because
we do not have quantifiers in our axioms, this quantifier must occur as a
principal formula either in a weakening rule or a weak quantifier rule. The
projection lemma deals with the case, where it occurs as a principal formula
of a weak quantifier rule.

Example 4.2.1. The following example describes a PSB for an induction
which begins with an introduction of a weak quantifier with t as the auziliary
formula’s term.

A(a),T F A, A(d)

A@0),TF A, A() (ind)
IF A PALG) PlAL(),TTFA
I+ A Vo P[A(2) (ver) Vo P[A]\(z), I A (v:0
I7F A" R[vzP[A(@)ly  RVaPlAl()]p, I -

7 T - A A (cut : RVzP[A]x(x)]p)
In order to relate the eigenvariable to the weak quantifier, we give the
following definition.

Definition 4.2.2 (Free variables and their dual terms). Given a problematic
quantifier @ and its set of corresponding characteristic quantifiers (there
may be more than one in case of a contraction in the PSB), we examine the
strong quantifier rule introducing ) on the strong side of the cut and the
weak quantifier rules introducing ) on the weak side. We call all the terms
which are eliminated by those weak quantifier rules the dual terms of the
eigenvariable eliminated by the strong quantifier rule.

In example 4.2.1 t is the dual term of the free variable b.

Because our proof of the projection lemma is based on propagating cuts
up over inferences, we must make sure that there are no inductions there.
Our order of eliminating inductions will ensure that. Another issue is that
if a formula containing the weak quantifier is being contracted, there might
be more than one dual term for the eigenvariable. Therefore there is no
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way for us to know which instance should be projected. So our second
assumption is that there are no contractions in the PSBs of the induction.
In order to simplify the proof, contractions appearing in the sub-bundle
below the induction will be removed as well. The next section will deal with
the elimination of these contractions if they occur.

Definition 4.2.3 (Types of quantifiers in a cut formula). Quantifiers in
a cut formula can be either weak or strong quantifiers, based on the type
of quantifier rule used to introduce them in the sub-derivation under the
induction.

We will also require that if there is more than one strong quantifier in a
specific cut formula, we will deal only with the outermost such quantifier.

Definition 4.2.4 (Critical quantifiers). critical formulas over a cut for a
problematic quantifier are all sub-formulas of the cut-formula, which contain
the problematic quantifier formula as a sub-formula.

In order to deal with all critical quantifiers in an uniform way, we will
prove that all of them have some sort of a "PSB”.

Lemma 4.2.5. If a strong quantifier formula is a critical formula, then there
is a sub-bundle which is contained in the PSB of the problematic quantifier
which contains a weak quantifier rule with the critical formula as a principal
formula.

Proof

e As the critical formula contains a problematic quantifier formula as a
sub-formula, it will also contain the characteristic quantifier of a PSB
as a sub-formula. Therefore they both must be on the same sub-bundle
and the critical formula must be introduced below the introduction of
the characteristic quantifier.

As a consequence of the lemma above, it can be assumed that if all PSBs
of this induction contain no contraction then all sub-bundles defined as above
for all critical quantifiers of this induction will contain no contraction as well.
For the rest of the thesis we will extend the definition of a PSB to include
those sub-bundles of critical quantifiers which are contained, as the lemma
above proved, in a PSB of a problematic quantifier of the same induction.
The dual quantifier formula of the critical quantifier formula will be called
the characteristic quantifier of the new PSB. The PSB will begin with the
introduction of the quantifier formula.



4.2. THE PROJECTION LEMMA 95

Definition 4.2.6 (Suitable quantifier). Let P be a suitable proof of sequent
S with a PSB p for induction I over a problematic cut C. @ is called suitable
if:

1. @ is the characteristic quantifier of p and it is the outermost critical
quantifier in the cut formula of C.

2. p contains no contraction or induction.
3. p begins with a weak quantifier rule.

4. There are no contractions in the sub-bundle containing the right prin-
cipal formula of the induction and the cut formula.

Lemma 4.2.7 (The Projection Lemma). Given a suitable proof P of se-
quent S containing a suitable quantifier () we can transform P into a suitable
proof P’ of S where in P’:

1. We remove the quantifier rules introducing @ (on both sides of the
cut).

2. We replace all occurrences of the eigenvariable of () by a term t.

As a result, all occurrences of () are eliminated from the proof.

e Remark - The term ¢ is obtained from the dual term of the eigen-
variable in the process of the transformation given in the proof of the
lemma.

The following example will demonstrate the application of the lemma.

Example 4.2.8. Given a derivation such as in example 4.2.1, which sat-
isfies all the requirements of the lemma (and deal with a critical quantifier
which is also a problematic quantifier), we can obtain the following deriva-
tion according to the Projection Lemma:

Aa).TF A A(@)
M)FFAAU) PIA|(F),TT+ A
)

'+ A, PA]L( P[A]\(¢), TT" + A"
F/ H/// l_ A/ A///
IV/ H/ A// A/

nd)

(cut : PIA]A(t'))
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Where t' is defined in the proof of the lemma.

Proof

e By induction on the size n of the sub-bundle, which contains the prob-
lematic quantifier and is contained in the characteristic sub-bundle of
the induction. In example 4.2.1 this is the sub-bundle starting at
I+ A" VzP[A]\(z) and ending at I = A", RVzP[A]\(z)]g. We call
this sub-bundle ISB.

e In the proof we make an extensive use of lemma 4.1.22 which states
that we can remove a bundle from a derivation and still have a deriva-
tion.

e We also use lemma 4.1.23 which just states we can weaken the context
(under some limitations) of a derivation and still have a derivation.

e case n = 1 then we have (in case the critical quantifier is a problematic
quantifier as well):

A@),TF A, A(d)

ind
AOTFAAR) " PAM@IEA
/ / ’
' A PIADG) vzP[A], (@I A
' A VzP[A\(z) VaP[AJx(z), " - A"

(cut : Vo P[A]x(z))

F/,H// l_ A/’A//

and as the PSB does not contain contractions and satisfies all the
prerequisites of lemma 4.1.22 we can replace it by:

Aa),TF A, A(d)
A(0),TF A, A®D)

'+ A, P[A] (%) P[A] (), 1T - A’
I AN
(according to lemmas 4.1.22 and 4.1.23 and additional exchanges)

F/7 H// }_ A/7 A//

(ind)

(cut : P[A]x(¥))
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If the critical quantifier is not a problematic quantifier, then the only
change is that it will not affect the induction term.

e We assume that the lemma is true for all derivations with ISB of
size < n and prove it for size n 4+ 1. First we notice that according
to the lemma the PSB does not contain inductions, contractions and
weakenings (Although there might be such inference rules on other
formulas in the sequents containing the PSB formulas). We examine
the first rule J above the cut and show how to transform the derivation
into a derivation with an ISB of size < n.

— J is any inference rule, which does not have the cut formula as
the principal formula. In this case, J must be either a rule on
the left or an exchange. This is because the cut formula is the
rightmost formula and according to our calculus it must be the
principal formula of any right hand-side rule other than exchange.
So we have:

A(a), T+ A, A(a’)

————— (ind)
A0),T F A, A(b)

I’ = A, P[A]5(b) )
I’ A/, Yz P[A] () ' Pl IF A
VzP[A]x(z), 1+ A

(V:1)

" + A", RIVzP[A]x ()]s
T+ A", RIVzP[A]x (x)]g R[VzP[A]y (x)]g, IT" - A/
F/// H/ - A/H A/

(cut : R[VzP[A]x(x)]g)

and we can obtain the derivation:

A(a), T+ A, A(a’)

———— (ind)
A(0), ' A, A(b)

= A, P[A] (D) P[t])\;}l A

S 7 (V:r) _  (V:))
I’ - A/, VaP[A] (z) vz P[A]x(z), 11 - A
I = A", R[VaP[A] s ()]g R[VzP[A]) (2)]g, 11" - A

oA AN (cut : R[VzP[A])(z)]g)

with ISB of size n and we can apply the induction hypothesis in
order to obtain:

A(a), T+ A, A(a’)
—— (ind) _—
A(0),T F A, A(t)) P[t'],IIF A

I’ = A", R[P[A]A ()]g R[P[A]x(t)]g, I F A
F//,H/ [ A//7A/

(cut : R[P[A]x(t")]g)
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and we can apply J with possibly only additional exchanges in
order to obtain I, II' = A", A’. It should be noted that J can
also be a binary rule although it is not reflected in the example.

— J is an inference rule with the cut formula as a principal formula.
If J is an exchange (on the right) then we have:

A(a), T+ .A, A(a’)

—~ (ind)
A(0),T - A, A(b)

T/ - A, P[A]5(b)
I’ +51 A’ Vo P[A] (z)

(V:r)

" 50 A’ R[VzP[A]x(z)]g p[A]A(',{)"n - A

_— (V: )
VaP[A])(z),IIF A

' = A" R[VzP[A]x(z)]g, C
'+ A", O, RIVzP[A]x ()] R[VazP[A]x ()], ' + A/
F//l 1—[/ '_ A”/ C A/

(cut : RVzP[A](2)]g)

The sequent Sy is the lowermost sequent above J which has
R[VxP[A]\(z)]p as its right principal formula. Sp can also be
Si. Sp exists as the bundle containing R[VzP[A]x(z)]p contains
also VxP[A]x(x) and therefore R[VaxP[A]x(x)]p must be the right
principal formula of a logical rule or equal to VxP[A]\(z). As
we have chosen Sy to be the lowermost sequent which contains
R[VxP[A]x(x)]p at its rightmost position, the sub-bundle con-
taining R[VxP[A]x(x)]p, beginning with Sy and ending with J,

contains no contractions.
We replace it by the following derivation with ISB of size < n:

A(a), T+ A, A(a')

(ind)
A0), T F A, A(b)

'+ A, P[A]\ (b
- - (Al () (V:r) M(V:l)
I F A VaPlAL (2) Ve P[AL (@), T A
I 150 A", RVaP[A] (2)]g R[VaP[A]x (2)]p, T’ - A/

TR TR (cut : R[VzP[A]x(z)]g)
T A A

now the induction hypothesis can be applied in order to obtain
the following derivation (According also to lemmas 4.1.22 and

4.1.23):
A(a), T ;'A,A(a’) )
- (znd) & —
A(0), T+ A, A(t)) P[A]A (), TI - A
T =50 A, R[P[A]x(t)]g RI[P[A]5 ()], T - A

AT A (cut : RIPLAIx (¢))]p)

(According to lemmas 4.1.22 and 4.1.23 and additonal exchanges)
I E A" o, N
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— J cannot bew:rorc:r.
— If the rule is — : r, we have the derivation:

A(a),T F A, A(a’) (ind)
A(0), T F A A PlALA (), TIF A

—_— (¥ : )
VzP[A]y(z),IIF A

I’ = A/, P[A])(b) )
I’ - A/, VaP[A] (x) o I - A/, R[V=P[A]x ()]o
—R[VzP[A]y(x)]g, T - A’

(=:0)

R[VzP[A] 5 (2)]p, " F A" ( ) -
e o
T+ A", ~R[VzP[A] 5 (z)]g —R[VzP[A]y (x)]g, TT"" - A"
F// 1—[// [ A” A//

(cut : = R[VzP[A]x(x)]g)

we will obtain the following derivation with ISB of size n:

A(a),T - A, A(a’)

TAO TFA AL (ind)

_AO,TF A, A0)
_PEAbh®.IrA i PLAL®) (.
_VaPlA (@), TTF A L' b A, vaPlA] (@)

' = A/, R[V2 P[A]\ (2)]g R[VzP[A]x(2)]g, " F A"

(cut : =RV P[A]x(x)]p)

T, =AY A
and apply the induction hypothesis, noting also that the deriva-
tion between the two —R[VzP[A]x(z)]p on the right in the previ-
ous derivation satisfies all of lemma 4.1.22 prerequisites, to obtain
the following derivation:

A(a), T+ A, A(a')

P[Ab\(t'-), mEA A(0),T - A, A(t) (ind)

' = A’ R[P[A]A (t)]e R[P[A]A(t)]p, I = A"
T T E A A
(According to lemmas 4.1.22 and 4.1.23 and additonal exchanges)
T 0 - A A

(cut : =R[P[A](t]p)

— The rule cannot be a vV : r as we deal with the outermost critical
quantifier.

— The rule is V : [ so we have (notice we have changed the places of
the two branches):

A(a), T+ A, A(a')

—— X  (ind)
A(0),T = A, A(b)

P[A]x (t(e), ©), TI(c) F A(e)

(V:1)
Vz P[A](z, c),II(c) F A(c)

T = A", P[A]x(b) v

I’ + A, R[VzP[A])(z)]g(c)
' = A, VyR[Va P[A] (z)]g (v)

Vi '+ A ,YﬁP[A]A(z)

R[VzP[A]5(2)]g(s), T F A"
" = A", VyR[Vz P[A]\ ()] (v) VyR[Va P[A]x (2)]o(y), T F A"
HN, 1—‘//’ )_ A//, A//

(V:1)
(cut :)
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The above transformation is the transformation where the term

t may change as it may contain a free variable which is replaced

in this step. We know from lemma 3.1.8 that if there is a proof of

II' = A, R[Vx P[A]x(2)]o(c) there is a proof of IT' = A’, RVz P[A]x(z)]g(s),
as ¢ was a fully indicated new free variable. So we can replace

the derivation by the following derivation with ISB of size n:

A(a),T }-—”A, A(a’)

—— (ind)
A(0),T F A, A(b)

s s s s e A,;;’ Al (b
PALGE). ). M6 FAG) (- T EALPALNG
Vz P[A](z,s),II(s) - A(s) ' = A", Ve P[A] )\ (z)

' = A', RV P[A] ) (2)]g(s) R[VzP[A]x(2)]g(s), I F A"

1o NG (cut : R[VzP[A]x(x)]g(s))
', T, F A, A

now the induction hypothesis and lemmas 4.1.22 and 4.1.23 can
be used in order to obtain the derivation:

A(a), T ;'A»A(a’)
PIAIA(# (5), 5), TI(s) - A(s) A(0),T - A, A(t(5))

(ind)

I =AY, R[P[A] (' (s))]6 (5) R[P[A]5 (t'(s)]g(s), I = A"
1—[/ F// ’_ A/ A//

(According to lemmas 4.1.22 and 4.1.23 and additonal exchanges)
H// F// [ AN A”

(cut : RIP[A]x(t'(s)]a(s))

As was mentioned before, the term t(c) with ¢ being fully indi-
cated in ¢ is changed here into £(s).
— The rule is V : ry:

A(a),T + A, Aa”)
—_——— (ind) —_——
A(0), T+ A, A(b) PlA]»(t), T+ A

_— (V: )
VaP[Alx(z), L F A

T’ A, P[A]\ (D) -
r
I’ - A/, VaP[A]5 (z) R[VzP[A]x ()], T} F A} W, TI5 = A
R[VzP[A]x(z)]g V W, 17,115 = A7, AL

"+ A", R[VzP[A]x ()]s -
I+ A7 RVaP[Al(@)lg VW R[VaP[A]y(z)]g vV W, I + A"

(cut)
o F AN

and we obtain the following derivation with ISB of size = n:

Aa),T - A, A(a’)

- (ind)

_AO.TF A, A40)
m V:ir) @ (V:1)
Ik A’ VaP[A]; (2) _VePlAl (@), ITF A

'+ A", RIVaP[A] (2)]g R[Va P[A]x (2)]p, T} F A}

(cut : R[VzP[A])\(2)]g)

" ’ " /
T/ I - A A
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again, according to the induction hypothesis and lemmas 4.1.22
and 4.1.23 and additonal exchanges and weakenings we can obtain
the derivation:

A(a), T F A, A(a’)

—_——— (ind)
A(0), T+ A, A(t)

U EALPALGD
I’ - A/, P[A] () o PIA], (), I A

I = A" RIP[A]A(t)]g R[P[A]A(t")]g, 1] F A}
7,1 = A A

(cut : RIP[A]x(t)])

(weakenings)
" ’ ’ " ’ ’
7 I, 10, B AYS AT, Ay
emmas 4.1. an .1.23 and additonal exchanges
1 4.1.22 d 4.1.23 d addi 1 h
F,/ H// [ A// A//

e The rest of the inferences are dealt with in a similar way.

e P’ is suitable as we have satisfied all requirements of lemma 4.1.18.
We have not added or changed inductions.

4.3 Elimination of Contractions

4.3.1 Analyzing the method of the elimination of contrac-
tions

In the projection lemma we have assumed, that none of the sub-bundles
containing both the cut-formula and the quantifier has any contraction. We
will achieve this result by replacing contractions by cuts. The idea of the
transformation is that a sub-bundle which contains contractions branches
into two sub-bundles. We will show we can transform such a derivation
into a derivation where each sub-bundle is distinct from the other including
the cut-formula. Then we can double the cut in order to have the same
end-sequent.

Example 4.3.1 (Contraction over a dual term). The following example
shows the problem of having two different PSBs for the same quantifier.
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P[A]A(s), []@HWFM”(VU
VCCP[A} ( ) [ ]A(t) H//l/ FA//// :
A@.LEAAW@) PIAx (1), Ve P[A](2), 11" - A o
A(0).TF A, AQ) " Va PLA];(x), Ya P[A];(x), T F A
I'F A PALG) V2P Alx(2), Va P A (@), 1T F A
I'F A Ve P[A] (@) (i) VzP[A]y(z), 11" - A” (contraction)
7 F A7, RV PIA @) R[VzP[A]x(2)]g, I - A/

7 I - A7 A (cut : R[VxP[A]x(x)]o)

The transformation we are going to show is straightforward but imposes
several difficulties. First, we must ensure that the new proofs will be suit-
able, as this property is assumed in many lemmas in this thesis. Second,
we must show that the process terminates as we are adding many contrac-
tions in each step. We will deal with a contracted formula by pushing the
contraction downward the derivation until we can cut each of its instances
separately. The following example shows the general idea of the transfor-
mation:

Example 4.3.2 (Elimination of contractions). Here we have a sub-bundle
that branches into two different sub-bundles because of the contraction:

ﬁ( t 11 )
A (V:ir)

l_A—\/B(ﬂ:l)
-(AV B)F

We wish to remove the contraction by duplicating the end formula of this
sub-bundle:

HA A
HA AV B
FAVB,A
FAVB,AVB
-(AVB)FAVB
-(AV B),~(AV B)F

(Vir)
(exchange)
(V:iry)
(—:1)
(=:1)

Given that the cut formula was =AV B, we can do the same cut twice
and have no contraction.
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4.3.2 Handling contractions over eigenvariables

Another difficulty we may encounter in eliminating contractions is that a
contraction may also eliminate a free variable that is used as an eigenvari-
able and not only eliminate a formula. Consider for example the following
situation:

Example 4.3.3 (Contraction over an eigenvariable). Here one instance of
the free variable b is being eliminated by the contraction.

F A(b), A(b)
+ A(b)
FVzrA(z)

(contraction)

If we try to follow the same procedure as in example 4.3.2, we will violate
the eigenvariable condition. We will show that free variables which are used
as eigenvariables, can be replaced by other variables, even if they are not
fully indicated.

In order to give the definition of polarity-balanced formulas, we will add
to PA the logical symbols A and 3. After we have proved lemma 4.3.8, we
will revert to our original calculus.

Definition 4.3.4 (Negation normal form). The set of formulas in negation
normal form (nnf) is being defined inductively:

1. For an atomic formula A, A and —A are in nnf.
2. If A and B are in nnf, then so are AV B and A A B.
3. If A is in nnf, then so are Vx A and dz A.

Formulas which do not contain any logical symbol other than — will be called
negative atomic formulas.

Lemma 4.3.5. Every formula in LK extended by the symbols A and 3 is
equivalent to another formula in nnf.

Proof - by decomposing formulas according to De-Morgan rules and the
logical equivalence between —Vx A and dz—A.

Definition 4.3.6 (Polarity-balanced). Let A and B be two formulas and
Apny and By, s be their equivalent formulas in nnf. Let o and 3 be the sets
containing all the negative atomic sub-formulas of A,y and By, ;. Then:
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A and B are polarity-balanced if the intersection of o and 3 is empty.

Let S be a sequent containing A and B. Then A and B are polarity-
balanced with respect to S if:

— A and B are polarity-balanced and are each in the succedent and
antecedent of S.

— Both A and =B and —A and B are polarity-balanced and A and
B are both in the succedent or antecedent of S.

We will revert back to our original definition of PA.

Lemma 4.3.7. Let § be an arbitrary sub-bundle and A and B two formulas
occurring in all sequents of this sub-bundle. If A and B are polarity-balanced
with regard to a sequent S in (3, then any pair of a sub-formula of A and a
sub-formula of B will be polarity-balanced with regard to any ancestor of S
in # in which they are both contained.

Proof

The proof is by induction on the size n of 3.
If n = 0 then it is clear.

If n > 0 then we assume that it holds for sub-bundles of size up to n
and prove it for size n + 1 by cases according to the inference which
has the last sequent S of 3 as its lower sequent.

It is clear that none of the inference rules, except —, can change the
polarity-balance of formulas with respect to the sequent they occur
in. — also does not change the polarity-balance as one formula must
change sides in the sequent. Therefore, its negative atomic formulas
cannot be identical if they have not been identical before.

Therefore we can apply the induction hypothesis and prove the lemma.
Because the upper sequent contains the sub-formulas of A and B and
they are polarity-balanced with regard to the upper sequent, the induc-
tion hypothesis can be applied in order to prove that all sub-formulas
of A and B are polarity-balanced in all sequents of § in which they
occur.

Lemma 4.3.8. Let P be a proof of a sequent S containing two formulas
A(a) and B(a) which are polarity-balanced with regard to S and in which
a is fully indicated. We can obtain a proof P’ of S’ where in S’, B(a) is
replaced by B(b) for a free variable b, which does not occur in P.
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Proof

e Let 3 be the set of all threads in P containing sub-formulas of either
A(a) or B(a) which also contain the free variable a. Let « be the set
containing the sequence of sequents which is the union of all threads

in (.

e According to lemma 4.3.7 if A(a) and B(a) are polarity-balanced with
regard to .S, then their sub-formulas, which appear both in a sequent
S’ which is an ancestor of S, will be polarity-balanced with regard to
S’

e We prove it by induction on the length n of a.

e If n =1 and let Sy be the only sequent contained in . Let A’(a) and
B'(a) be the two sub-formulas of A(a) and B(a) contained in Sy, then
we may have one of the following:

— A'(a) (or B'(a)) is the principal formula of a weakening, we re-
place it by A’(b) where b is a new free variable not appearing in

P.

— Sp cannot be a logical axiom, because in this case B’(a) is equal to
A’(a) and being polarity-balanced with regard to Sp, they cannot
appear each in the antecedent and succedent of Sy.

— Sp cannot be a mathematical axiom as none of the mathematical
axioms contains more than one formula.

— Sp is the lower sequent of an induction with A’(a) (or B(a)) as
the right principal formula. We replace A’(a) with A’(b) with b
being a new free variable not appearing in P.

e If n > 0, we assume the lemma is true for « of length n and prove it
for length n + 1. Let Sy be the last sequent contained in a. Let A’(a)
and B’'(a) be the two sub-formulas of A(a) and B(a) contained in S.

e We examine the inference J which has Sy as its lower sequent. Ac-
cording to lemma 4.3.7 all inference rules preserve the polarity-balance

property.

e Let Let A”(a) and B”(a) be the two sub-formulas of A’(a) and B’'(a)
contained in upper sequent of Sy.
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e By the induction hypothesis, we can replace A”(a) (or B”(a)) by A”(b)
in the upper sequent of J. Where b is a new free variable not appearing
in P.

e We can then apply J in order to obtain a proof P’ of S’.

We should remark that an elimination of a contraction in the procedure
(given in the previous examples) will double the number of contractions on
other bundles, which contain the formula at the end of the bundles. For
example:

Example 4.3.9 (Doubling contractions). The process shown in example
4.3.2 works in a straightforward way until we duplicate a binary inference
rule. In this case a whole proof and all its context must be duplicated. The
following derivation shows the result of eliminating a contraction, transform-
ing:

Q,Q,IIFA
PTHFA Q.IIF A

PVQ,IL,IFAA

(contraction)

v:l)

wnto:

PTFA Q,Q,11FA
PVQ.T,QIFAA
(exchanges)
PTHFA O, PVQ,T,IFA,A
PVO.T,PVQT,IFAAA

vV:1)

(v:1)

4.3.3 The elimination of contractions

If we assume that there were some contractions in sub-bundles containing
P, then all of them will be doubled in the process. But although we have
duplicated a whole derivation, it has been done for the newly created sub-
bundle only. The original sub-bundle stays the same (still branches only
once). The process can be seen as taking a stick with many leaves and side
branches, which branches also at the end into two branches. Then splitting
it in a way such that each part will contain all the branches and leaves of the
original stick. Therefore both individual sticks contain one less branching
although the number of sticks was doubled.
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We can see that the only formulas we get duplicated in the context
formulas in example 4.3.9 are formulas not belonging to any sub-bundle
containing PV (). Therefore, contracting these formulas will not add a new
contraction in the sub-bundles containing P V Q.

Definition 4.3.10 (Formula trees). A basic formula tree for a derivation 1
is the tree obtained from 1 when considering the occurrences of formulas as
nodes and their successor relation as branches. IL.e.

1. Any formula contained in a sequent of ¥ can be the root of the tree.

2. The basic formula tree contains an occurrence of a formula A if it
contains an occurrence of a formula A; and A; is the successor of A,

in 1.

3. Let A be an occurrence of a formula in the basic formula tree which
was a principal formula in 1. We label the edges ending with A in
the formula tree by the inferences in v having this occurrence of A as
principal formula.

A formula tree is obtained from a basic formula tree by removing all edges
which are labeled by an exchange or not labeled at all.

The set containing all formula occurrences in ¢, which appear in the formula
tree is called the projection of the formula tree in .

Example 4.3.11 (A formula tree). The following tree is a formula tree for
the second derivation given in example 4.5.9.

PvQ

N

P Q
The two edges are labeled by V : 1.

Definition 4.3.12 (Identity of formula trees). Two formula trees 7} and
T5 for a derivation v are identical if they are syntactically identical.

The two formula trees rooted at the two P V ) in example 4.3.9 are
identical according to this definition.

Definition 4.3.13 (Disjoint projections of formula trees). As the projec-
tions in 9 of two formula trees are sets, they are disjoint if the sets are
disjoint.

Lemma 4.3.14. Let ¢:
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Q,Q, 11+ A
QI F A

R,II' A
be a derivation where () and R are on the far ends of the same sub-
bundle, such that this sub-bundle does not contain a contraction (except
the one shown) or an induction. Let T be the formula tree for ) rooted at
R and ending below the contraction.
We can obtain the following derivation without this contraction and

without any new contraction on each of the sub-bundles starting with @
and ending with R:

(contraction)

Q,Q,IIFA
R, R A

The new derivation will have a newly created formula tree which is iden-
tical to T and its projection is disjoint to the projection of T

e Remarks

1. The lemma shows the case where the sub-bundle starts and ends
with formulas in the antecedent of the sequents. However, both
can be in the succedent or each in the antecedent and succedent.

2. The lemma takes one sub-bundle that branches at the end into
two sub-bundles via the contraction rule and creates two different
sub-bundles without this branching.

Proof

e If there are two identical formulas with the same free variable, which
is used as eigenvariable, we can use lemma 4.3.8 in order to obtain
a derivation with the two formulas containing two different eigenvari-
ables. The reason we can use the lemma is that two identical formulas
on the same side of a sequent are polarity-balanced with regard to the
sequent.

e By induction on the number n of inferences in the derivation below
the contraction.

e If n = 0 then we delete the contraction to obtain Q,Q,II - A. As
both formula trees are of one element only they are clearly identical
and their projections are disjoint.
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e if n > 0 then assume the lemma is correct for all derivations of size
< n and prove if for size n according to the last inference J:

— R is not the principal formula of .J, then we have:

Q,Q,ITFA
QI A

RIF A
RIIF N

(contraction)

()

By using the induction hypothesis we can obtain R, R, 11" + A”
without the contraction and with a new identical formula tree
with a disjoint projection. We need to apply J in order to obtain
R,R,II" - A’ (and maybe exchanges as well). As J does not
have a formula from one of the formula trees as principal formula
(except maybe exchanges), the two trees are identical and their
projections are disjoint.

R is the principal formula of J:

J is exchange then we have:

Q,Q,ITFA
QI A

(contraction)

R, H//'l._.Sl A

A, R,IT F50 A
R,AIF N

S is the lowermost sequent above Sy with R on the leftmost
position. S7 must exist as either R = @) or it must be the principal
formula of a logical rule and must be on the leftmost position.
We know from the induction hypothesis that we can obtain a
derivation of R, R,II” -+ A”. We know also (from lemma 4.1.22)
that we can obtain a derivation of R, R, A,II' = A’. This step may
add to the formula trees only exchanges so they are identical and
their projections are disjoint.

J cannot be a contraction.
J cannot be weakening as R is on the same bundle as Q.
J is a logical inference, for example:

J is V : r. We have the following derivation:
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I'E A, A(a), A(a)
'+ A Aa)
I A’ A(a)
"'+ A Ve A(x)

(cir)

(V:r)

As specified, we can use lemma 4.3.8 in order to obtain a deriva-
tion with end-seugent I' = A, A(a), A(b) and therefore we have:

I'F A, A(a), A(b)

I+ A’ Aa), A(D)
"'+ A Aa), Ve A(z)
I+ A VzA(z), Ve A(x)
— JisV:lie.

V:r)

(exchange and V : r)

Q,Q,IITFA
O, IF A

PTFA R,ITF N
PVRI,IIFA,N

(contraction)

(V:l)

By the induction hypothesis we can obtain a derivation of R, R, II' -
A’ without the contraction and with a new identical formula tree
rooted at R. We apply V : [ with P,I' F A twice to obtain
PVR,PVR,T,I',II' - A, A, A’. Now, as the sequences of formu-
las I' and A are context formulas for P and the two PV R, they
are not included in any sub-bundle containing any of the PV R
and they can be contracted:

Q,Q,ITF A
PTHFA R RIUFAN
PVRI.RIIFA,AN
(exchanges)
PTHFA R PVRI,IIFA,AN
PVRIT,PVRI,IIFA A N
(contractions and exchanges)

PVR,PVRT,IFA,N

(v:1)

(V:1)
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This step is the only step we contract formulas. However, none of
the formulas contracted occurs in a bundle containing any of the
PV R. We also duplicate the proof of P,I' - A. Therefore, the
bundles containing P may contain contractions as well, which will
be doubled. The two formula trees rooted at PV R are identical
and their projections are disjoint as we have added one V : [
to each (in addition some exchanges which are ignored). The
added contractions are, as we have mentioned, on formulas not
contained in these formula trees.

— JisV:rgie.

II-AQ,Q .
W (contraction)

- AR

7 7 (V : 7‘2)
I'=A,PVR

By the induction hypothesis we obtain II' = A’, R, R and by ap-
plying V : r twice and some exchanges we obtain II' = A’ P Vv
R, PV R. The two formula trees are identical and their projec-
tions are disjoint as we have added one V : r to each sub-bundle
and exchanges.

— Jis—:1

IEAQ,Q
A Q

Ir’-=A,R

-R,II" = A
As before, we use the induction hypothesis in order to obtain
I" = A, R, R and apply — : [ twice with an exchange. Because

we have added one — : [ to each sub-bundle and exchanges, the
formula trees are identical and their projections are disjoint.

(contraction)

(~:0)

The next lemmas prove that we can also eliminate all contractions in all
sub-bundles containing an occurrence of formula R (which is doubled after
the elimination of each contraction). As we know that each elimination of
a contraction can double the number of the other contractions, we will have
to label all contractions. The labeling will ensure that in each elimination
of a contraction we may double only contractions of a different label. This
is because each bundle contains only one contraction of each label. The
following corollary follows from lemma 4.3.14.
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Corollary 4.3.15. By assuming some labeling on all the contractions that
are on sub-bundles which contain the formula R, the process given in lemma
4.3.14 will result in two identical formula trees. Each formula tree will
contain exactly the original contractions except c.

Using this corollary, we now prove that we can eliminate all contractions
in all sub-bundles of a derivation in a similar manner. The proof will be
given by induction on the labels. Elimination of one labeled contraction may
increase the number of contractions with a different label only. Therefore,
if we process the contractions in an orderly manner, we are ensured this
process terminates.

Lemma 4.3.16. Suppose we have a derivation of R*,II A where the
number of contraction in the formula tree of each occurrence of R is exactly
m. Suppose also that all formula trees of occurrences of Rs are identical
and their projections are disjoint. We can obtain a proof of RZ"*¥) TI + A
with these contractions removed and with no new contraction in a formula
tree of some occurrence of R.

Proof

e Our first step will be to label the these contractions (in the formula
trees of the R¥). Because all the formula trees are identical, we can
execute such an uniform labeling. Given one formula tree, we label
each of its m contractions by an unique natural number such that
contractions which occur below other contractions are being labeled
first. The proof will eliminate in parallel one contraction in all formula
trees of occurrences of R.

e The proof is by induction on m.

e if m = 0, we have a contraction free derivation of R* II A, because
we do not have any contraction in the derivation.

e If m > 0 then we assume that the lemma is true for all proofs with m
contractions in all the Rs sub-bundles sets and we prove it for m + 1
contractions. Let n be the biggest contraction’s label.

e Each occurrence of R is contained in a sub-bundle which contains a
contraction labeled by n. As the projections of the formula trees are
disjoint we apply lemma 4.3.14 k times in order to obtain a proof of
RZ*%) T+ A. According to corollary 4.3.15, all the 2k formula trees
are identical and contain m — 1 contractions.Therefore, we can apply
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the induction hypothesis in order to obtain a proof of R(2m_1*2*k), I+
A = RE@™k) I A.

e We notice that although some occurrences of R are considered as con-
text formulas when applying lemma 4.3.14, there are no new contrac-
tions on them. This is so because we have added contractions only on
the context of formulas which are auxiliary in a sub-bundle of some
occurrence of R. All the Rs are on disjoint sub-bundles because their
projections of formula trees are disjoint.

Given this procedure of eliminating contractions, we can now prove the
contraction elimination lemma. The idea is that using lemma 4.3.16 we can
replace a proof of R,II = A with m contractions in sub-bundles containing R
by a proof of R?™,II - A without these contractions. We duplicate the cut
with R as cut formula 2™ times and obtain a proof of the same end-sequent.
The process eliminates certain contractions but add many others (both in
lemma 4.3.14 and in the following lemma). However, these contractions
do no occur in sub-bundles containing the cut-formula. The process also
duplicates existing derivations but nonetheless , we show that the algorithm
terminates.

In the projection lemma we assume that not only all PSBs are contrac-
tion free but the sub-bundle between the induction and the cut-formula is
contraction free as well. Given a proof P containing n inductions labeled
by I and m problematic cuts labeled by [, we examine the total number
of problematic contractions divided into two groups. All the contractions
which are on some sub-bundle below an induction and a problematic cut
(both labeled by [) are in one group. All contractions which are on some
PSB of an induction labeled by [ are in the second group. We will elimi-
nate all these contractions by working on a specific label of inductions. We
execute two algorithms, both iterating on all problematic cuts which are
critical (as will be defined next). The first algorithm will eliminate all con-
tractions of the first group, while increasing the number of contractions of
the second group. The second algorithm will eliminate all contractions of
the second group, while increasing the number of inductions and problem-
atic cuts. At the end of the process, we will have a proof which does not
have any contraction in the problematic places for all inductions of label I.

In the process of the contraction elimination lemma we are contracting
many formulas and duplicating many subproofs. We must ensure that all
these duplications and contractions will not render the proof unsuitable. We
must ensure aso that when executing each algorithm, the total number of
critical problematic cuts will decrease.
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We will give one proof for both algorithms:

Definition 4.3.17 (Critical cuts, sub-bundles and contractions). For a label
[ and all problematic cuts labeled by [, we define critical sub-bundles as one
of the following:

1. As strong critical sub-bundles we define all sub-bundles ending with a
problematic cut labeled by I and beginning with an induction labeled
by 1.

2. All PSBs of inductions of label | are defined as weak critical sub-
bundles.

We define as critical all contractions appearing in a critical sub-bundle. We
define as strongly (weakly) critical all problematic cuts labeled by [, whose
cut-formula ends a strong (weak) critical sub-bundle, which contains critical
contractions.

e Remarks

1. Please note that we might have critical sub-bundles without crit-
ical contractions. The problematic cuts below these sub-bundles
will not be defined as critical in this case.

2. A cut can be both strongly and weakly critical.

Lemma 4.3.18 (Contraction elimination lemma). Let P be a suitable proof
containing m critical cuts labeled by the biggest induction label . The cuts
are critical either according to the strong or to the weak definition, but not
both. We can obtain a suitable proof P’ of the same end-sequent as P and
without any critical cut (strong or weak) labeled by ! and with the number
of (weak or strong) critical cuts labeled by [ having the following property
Prop: If there were no (weak or strong) critical cuts in P then there will be
no (weak or strong) critical cuts in P’.

Proof

e The proof is by induction on m.

e m = 0. There are no critical cuts and we have obtained the required
proof with no further transformation.

e Assuming the lemma is true for m critical cuts, we prove it for m + 1
critical cuts.
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e There can be a dual case where the contracted formula is on the other
side of the sequents and this is dealt in a similar manner.

e Taking a lowermost critical cut below critical sub-bundles containing
m critical contractions. We know from lemma 4.3.16 that if there is a
proof of R, I+ A containing m contractions in sub-bundles containing
R, we can obtain a proof of R?",II F A without these m contractions
and with new contractions only on formulas which do not occur in any
sub-bundle containing R. The other requirement of the lemma (that
all formula trees are identical and their projections are disjoint) is also
true, because we deal here only with one formula and so with only one
formula tree. So given proof P:

(Proof containing some m contractions on sub-bundles containing R)
TFAR RIIF A
T,IF A A

(cut : R)

We can duplicate the cut and the subproof of I' H A, R 2™ times in
order to obtain the following proof P’(t), t < 2™, given inductively:

- P0) =
(Proof with no problematic contractions)
I'AR R?™ 11+ A
- (cut : R)
R¥"-1T I+ A A
- P =

P(t-1)
'-AR R¥MUT,IIFAA
Rt P DI+ A, A A

(contractions and exchanges)

R¥"=(t+D) DI+ AL A

(cut : R)

e We have duplicated the subproof ending with I' - A, R many times.
However, we can apply the induction hypothesis in order to obtain a
proof of I' = A, R with no (strong or weak) critical cuts and with Prop.
This is because this subproof contains only m critical cuts. Prop is
clearly maintained.
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e We have added many new cuts but none of them is critical (strong
or weak), because the transformation in lemma 4.3.16 does not add
contractions on sub-bundles ending with an R. If the original cut was
not a (weak or strong) critical cut, then none of the new cuts will be
(weak or strong), therefore Prop is maintained so far as well.

e The original cut is no longer critical (strong or weak). Therefore, we
can use the induction hypothesis in order to obtain a proof P’ with
no critical cuts at all, as we have one less critical cut. If the original
cut was also not (weak or strong) critical, it will also not be a (weak
or strong) critical after the transformation and the property Prop is
preserved in P’

e P’ is suitable as we have added inductions only on threads which did
not contain already inductions of the added induction label, as required
by lemma 4.1.18.

Corollary 4.3.19. Let P be a suitable proof and let [ be the inductions’
biggest label. We can obtain a suitable proof P’ of the same end-sequent as
P which is without any critical cut, weak or strong, labeled by [ .

Proof

e Applying lemma 4.3.18 on strong critical cuts labeled by [ and then
applying it again on weak critical cuts labeled by [. The second ap-
plication is done where there are no longer strong critical cuts and at
the end we have no critical cut of any type labeled by I.

4.4 Cut Elimination

4.4.1 The elimination of inductions in proofs of weakly quan-
tified theorems

In this section we prove a cut elimination theorem for proofs of theorems
without strong quantifiers. We will give first two auxiliary lemmas. The
first deals with the elimination of one induction and the second deals with
the elimination of all inductions of the biggest induction’s label. We will
require that the inductions will not have critical contractions or other in-
ductions interfering with them. We can achieve these two requirements by
processing induction’s labels one at a time, eliminating all contractions in
all inductions of this label (using corollary 4.3.19) and then eliminating all
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inductions of this label.

Remark - In our cut elimination proof we are interested only in elimi-
nating inductions which prevent us from eliminating the cuts in Gentzen’s
procedure. l.e. the inductions which are above some cut in the proof. All
inductions which interfere with an induction, which is above a cut, will be
above a cut as well according to their definition.

Lemma 4.4.1. Let P be a labeled (inductions) suitable proof of an end-
sequent S such that S is without strong quantifiers and without free vari-
ables. If P contains an induction that is not interfered by any other induction
and does not have critical contractions of any kind, then we can obtain a
suitable proof of S, with this induction eliminated and new inductions of
smaller labels only.

e Remarks - the requirement, that the induction is not interfered by any
other induction, is equal to the requirement that this induction is of
the biggest label and that the proof is suitable.

Proof

e We know that as S does not contain strong quantifiers, any strong
quantifier in the proof must be in an implicit bundle and be cut out.

e The proof is by induction on the number of critical quantifiers of the
induction in the proof.

e If there are no critical quantifiers for the induction, its term must be
a ground term. By using the procedure of Gentzen in his proof of
the consistency of Peano Arithmetic (lemma 3.2.14), we replace the
induction by a finite number of cuts.

e The proof obtained from the application of Gentzen transformation
is a suitable proof. This is because the transformation never adds
inductions to threads which already contain inductions of these labels
and we can use lemma 4.1.18.

e According to the procedure, the derivation of the top sequent of the in-
duction is duplicated. According to our order, only smaller inductions
are added. Because we deal with the biggest label and two inductions
on the same thread must be of different labels.



78 CHAPTER 4. PROOFS OF WEAKLY QUANTIFIED THEOREMS

e By assuming that the lemma holds for all inductions with n critical
quantifiers, we consider inductions with n + 1 critical quantifiers.

o We take one quantifier @, which appears in the topmost cut below the
induction and which is the outermost such quantifier. We consider the
relevant PSB of the induction that contains this quantifier. We know
that this PSB does not contain inductions or contractions. As the
quantifier is the outermost critical quantifier, this PSB begins either
with a weakening that introduces the formula that contains (or is) @
or with a quantifier inference rule that introduces Q:

— The PSB begins with a weakening that introduce @) so we have:

ILEA (Weakening)
= (ind)

PlQ],, 1T A

L'EAR[PQl)]x  R[P[Q]ylII'F A
T F A, N

(cut : R[P[Q]n]x)
as the derivation on the right does not contain contractions or

inductions in the PSB, according to lemma 4.1.22 we can replace
it by the following derivation:

mEA

(according to lemma 4.1.22)
/ /
% (weakenings and exchanges)
) Y

We have eliminated this induction and no induction or cut was
added or moved, so we have obtained a suitable proof of S with
this induction eliminated.

— The PSB begins with a quantifier rule and contains no induction
or contraction. We apply the projection lemma (4.2.7) on the
outermost critical quantifier. We can use this lemma in order to
obtain a suitable proof with this quantifier eliminated. We can
now use the induction hypothesis, in order to obtain a suitable
proof of S with this induction eliminated.

The next lemma, which is based on the previous one, states that we can
eliminate all inductions of the same label.
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Lemma 4.4.2. Let P be a labeled (inductions) suitable proof of an end-
sequent S. We assume that S is without strong quantifiers and without free
variables. We assume further that all the inductions of the biggest label I do
not contain critical contractions of any kind. Then we can obtain a suitable
proof of S such that all its inductions are smaller than [.

Proof
e The proof is by induction on the number of inductions labeled by I.
e If there are no inductions of this label then we leave the proof as it is.

e By assuming the lemma is true for proofs where there are n inductions
labeled by the biggest label, we prove it for n 4+ 1 inductions.

e We take one induction labeled by [. Because the proof is suitable we
know that it is not being interfered by any other induction. As it has
no critical contractions, we can use lemma 4.4.1 in order to obtain a
suitable proof P’. P’ does not contain any induction of a label greater
than [ and contains only n inductions of label . Therefore we can apply
the induction hypothesis and obtain a suitable proof, which contains
only inductions of labels smaller than I.

4.4.2 The cut elimination theorem

In the last section we prove a cut elimination theorem for inductive proofs
of theorems without strong quantifiers. This proof is by induction on the
ordinal assigned to the proof. We will redefine the ordinal assignment of
Gentzen, which was given in definition 3.2.8:

Definition 4.4.3 (Assignment of ordinals). We will assign to proofs the
same ordinals as were assigned in Gentzen’s assignment (definition 3.2.8),
but with one exception regarding the ordinal assigned to the lower sequent of
an induction rule. Let hp be the maximal height in P. We define a function
tp inductively as following: tp(1) = hp + 2; tp(n) = S/ 'tp(i) + hp + 2.
Let I be an induction labeled by [ and let 51 and .S be the upper and lower
sequents of I, respectively. Then, o(S) = w;,;)(0(51))-

As will be shown, this assignment has the property that proofs will
always be assigned a smaller ordinal than proofs containing inductions of
bigger labels. The assignment is dependent on a specific proof because of
the usage of the function tp, but the next lemma shows that in the case of
the transformations we have defined in this chapters, the function’s range is
never increased.
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Lemma 4.4.4. Let P be a suitable proof and T be one of the transforma-
tions, which were presented in this chapter. Then , for every natural number
n, we have tp(py(n) < tp(n).

Proof

T'(P) is a suitable proof and all the new inductions in T'(P) can only be
duplications of inductions in P. Therefore, the labeling is preserved.
It should be noted that transformations may eliminate a label.

None of the transformations given in this chapter increases the height
of the proof.

Therefore, given that the labeling is identical, then we can prove by
induction on n that tp(py(n) = E?:_llt;p(p) (1) +hppy+2 < S tp (i) +
hp +2=tp(n).

The following definition and lemmas will explain the choice of the func-
tion tp.

Definition 4.4.5 (Degrees of proofs). We first assign degrees to sequents
in the proof. The degree of S, d(5):

1.

2.

If S is an initial sequent then d(S) = 1.

If S is the lower sequent of a binary rule other than a cut and the
upper sequents are S and So, then d(S) = max(d(S1),d(S2)).

If S is the lower sequent of an unary rule other than an induction and
the upper sequent is Sy, then d(S) = d(S7).

If S is the lower sequent of a cut, the upper sequents are S7 and So and
the heights of the upper and lower sequents are k and [, respectively,
then d(S) = wi_;(max(d(S1),d(S2))).

If S is the lower sequent of an induction of label [ and the upper
sequent is 51, then d(S) = w;, ;) (d(51))-

The degree of P is the degree of its end-sequent.

Using the notion of a degree, we want to show that a proof containing an
induction of the biggest label [, must be of a certain degree, which is much
bigger than the degree of proofs not containing inductions of this label. The
next three lemmas will define this relation.
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Lemma 4.4.6. Let P be a suitable proof, then o(P) < w*®)

Proof

e The proof is by induction on the length of P. Let .S be the end-sequent
of P.

e If S is an initial sequent, then o(P) =1 < w!' = w¥P),

e We assume the lemma is true for all suitable proofs of length < n and
we prove it for suitable proofs of length n.

e The proof is by cases according to the last inference J in P.

e For rules other than cuts and inductions, we will show only for V : [.
Let 51,52 and S be the upper and lower sequents of J and we assume
that 0(S1) < 0(S2) < w¥®2). Then, o(S) = 0o(S1)#0(S>) <3.2.23(b)
Wi(S2) < yman(d(S1).d(S2)) — ,d(S),

e Jis a cut and let S7 and Sy be the upper sequents and k and [ be the
heights of the upper and lower sequents, respectively. We assume that
o(S1) < 0(S2) < w2 Then o(S) = wi—i(0(S1)#0(S2)) <3.2.230)
wi—1(w52)) < wp g (maa (WS, WA52)) = AS),

e Jis an induction of label [ and 57 is the upper sequent. We assume that
0(S1) < w5, Then o(S) = W) (0(51)) < wtp(l)(wd(sl)) = wS),

Lemma 4.4.7. Let P be a suitable proof, hp be the maximal height of
sequents in P and L be the set containing all labels of inductions used in P.

Then d(P) < whp+zl€L(tp(l))(1)-
Proof

e Let 7 be a maximal thread in P, which is constructed as follows: For a
binary rule, take the upper sequent which is of the maximum degree.

e Let S be a sequent in 7. mg is defined as the difference between the
height of S'in P and hp. Lg is defined as the set of labels of inductions
above S in 7.

e Using an induction over the number of sequents above a sequent S in
the thread, we prove that d(S) < me"FEleLS(tP(l))(l)'

e If S is an axiom, then d(S) =1 < wp(1).
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e None of the rules, except inductions and cuts, affect the degree of the
proof, the height or the number of inductions above the rule. There-
fore, the inequality does not change.

e The last inference is a cut and let £ and [ be the heights of its up-
per and lower sequents. The upper sequent S; of the cut is in 7
only if d(S) = wi_i1(d(S1)), because d(S) = wi_i(maz(d(S1),d(S2))).
Therefore, we can use the induction hypothesis and obtain d(S) =
We-t(d(S1)) S W) tms, +3ier g (1p0) (1) = Cmsimier @p@)(1). Be-
cause Zlele (tp(l)) = ZZELS(tP(l)) and mg = mg, + (k‘ - l)

e The last inference is an induction of label [ and S is the upper se-

quent. As P is suitable, we know that there is no other induction
of label I above S in 7. Therefore, using the induction hypothe-

sis, we get that d(S) = wi,()(d(S1)) < Wip@tSicry, (tp@)+ms, (1) <
wZieLS(tp(i)Hms(l)' Because mg, < mg and Y;ecrq(tp(i)) =
TieLs, (tp(i)) +tp(l).

o Therefore, d(P) < wppis,c,tp) (1) < Whptsiepp@) (1)

Lemma 4.4.8. Let P be a suitable proof containing an induction of the
biggest label I, then o(P) > wy,(1).

Proof

e The proof is by induction on the number of sequents below an induc-
tion of label [ in P.

e If the induction is the last inference and the upper sequent of the
induction is Si, then o(P) = w;,1y(0(51)) > wy, ) (1)

e Assuming it holds for n sequents, it will also hold for n + 1 as all the
inferences are monotonic in both arguments.

Corollary 4.4.9. Let P be a suitable proof and P’ be a proof with in-

ductions labeled by the same labels except of the biggest label I. Then,
w®) < o(P).

Proof

e Let L be the set containing all labels in P. From lemma 4.4.6 we
know that w°) < wy(d(P')). According to lemma 4.4.7, we get
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that ws(d(P')) < ws,

k3

wzieL\{l}tP/(i)+hP/+2(1) S wzieL\{l}tp(i)+hP+2(1)' According to the def_
inition of the function tp, we have wgieL\{l}tP(i)JthH(l) = W, (1)

GL\{l}tP,(i)Jth,H(l). Lemma 4.4.4 tells us that

and the result is obtained by using lemma 4.4.8 as wy,)(1) < o(P).

We have shown that the elimination of all inductions of the biggest label

significantly decreases the ordinal of the proof. We will now claim that the
transformation of the elimination of contractions, although increasing the
ordinal of the proof, does so by a lesser degree. We will first prove the
following simple result and then prove the claim.

Lemma 4.4.10. Let P be a suitable proof. Then, o(P) > d(P).

Proof

Proof by induction on the derivation P of S.
If S is an initial sequent, then o(S) = d(S5) = 1.

S is the lower sequent of an unary rule, other than an induction and
Si is the upper sequent. We assume that o(S1) > d(S1). Then o(S) =
o(S1) +b>d(S1) =d(S) (be{0,1}).

S is the lower sequent of a binary rule. We can use the same argument
as the natural sum of ordinals is always bigger than their maximum.

The same also holds for inductions and cuts as it involves the same
argument as above, but as the argument of the function w, (wi—_; and

Wep(1))-

Lemma 4.4.11. Let P be a suitable proof. The resulted proof P’, obtained
by eliminating all critical contractions as shown in corollary 4.3.19, satisfies
o(P") < wo®P),

Proof sketch

e Our aim is to show that d(P) = d(P’). Lemma 4.4.6 tells us that

o(P") < W) = ,dP) Using lemma 4.4.10 we get that o(P') <
WwlP) < yo(P)

e [t can be shown, for each transformation involved in the proof of corol-

lary 4.3.19, that the degree of the proof does not change. This is true
because the transformations involve only:
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1. The addition of an arbitrary number of different rules, other than
cuts and inductions.

2. The duplication of existing inductions, but never on the same
thread. I.e. new threads are created with the duplicated induc-
tions.

3. The duplication of existing cuts.

e Therefore, the degrees are equal and as was claimed above, o(P’) <

wolP),

Theorem 4.4.12 (Cut Elimination in Inductive Proofs). Let S be a prov-
able sequent in PA without strong quantifiers or free variables. Then S is
provable without an essential cut.

Proof

The first step is to label all the original inductions by labels according
to their order. We notice that as there is only one induction in each
label-group and the inductions are being labeled according to <j, there
can be no two inductions of the same label on the same thread and
the proof is suitable. Inductions which are below all cuts are excluded
from the labeling, because there is no need to eliminate them in order
to use Gentzen’s cut elimination.

We assign an ordinal to the proof using the new ordinal assignment
(definition 4.4.5).

The proof is by a transfinite induction on o(P).

The first step is to eliminate all free variables which are not being used
as eigenvariables as is done in Gentzen proof of the consistency of PA
(using lemma 3.1.7).

If o(P) < w, then there are no inductions or essential cuts.

Otherwise, we assume that the lemma holds for all suitable proofs P’,
such that o(P’) < o(P) and we prove that for P.

If there is no induction above any of the cuts in the proof, then we
apply cut elimination (lemma 3.1.4) in order to get a proof P’ of S
without essential cuts.

Otherwise we consider all inductions labeled by I.
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— As the proof is suitable and [ is the biggest label, we know that
the PSBs of all inductions labeled by ! do not contain induc-
tions. Therefore we use corollary 4.3.19 in order to obtain a suit-
able proof P; without critical contractions. According to lemma

4.4.11, o(P;) < woP),

— Now we can use lemma 4.4.2 and obtain a suitable proof P», which
has only inductions of smaller labels. According to corrolary
4.4.9, wP2) < o(Py).

— Therefore, o(P2) < o(P) and by the induction hypothesis, P, can
be transformed into a proof without essential cuts.
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Chapter 5

Possible Extensions and
Improvements

In this thesis we have established an algorithm for the elimination of cuts
in a specific subclass of proofs in PA. Of course, it is not very interesting
to consider only inductive proofs of weakly quantified theorems. However,
it might be possible to study and describe general inductive proofs by us-
ing the algorithm for cut elimination of weakly quantified theorems. The
following extensions can be divided into computerizable ones and theoreti-
cal ones. The computerizable deals with programming the transformation.
The theoretical ones will attempt to use the method in order to study and
describe general inductive proofs.

e Among the computerizable improvements we can list:

1. Improve the efficiency of the contraction elimination procedure.
Although the procedure has an exponential complexity, it never
adds new information so the proof can be represented in a much
more compact and efficient way.

2. To program the algorithm.

3. In the proof we have assumed that the end-sequent contains no
strong quantifier. Therefore, all strong quantifiers must be cut
out. A more refined requirement should be given instead, because
it is possible that although there are strong quantifiers there will
be no free variables in the induction terms.

e Among the theoretical improvements we can list:

87
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1. It is possible to eliminate all cuts when using PA,,. lLe. LK
extended by the w-rule and some additional axioms, in order to
replace the induction and quantifier inference rules as is done in
[2]. It is clear that any proof in PA can be transformed into
a proof in PA.. But as the resulted proofs in PA,, may be
infinite derivations, it may not be possible to transform them into
a proof in PA. The infinite derivations themselves are sometimes
of little use. It might be possible, by using cut elimination for
weakly quantified theorems, to obtain cut free proofs for specific
instances of strongly quantified theorems. Moreover, we can try
to use them in order to study, describe or limit the infinite proofs
of strongly quantified theorems.

2. The proof was given for Peano arithmetic only but it should be
possible to extend it to Heyting arithmetic as well.
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