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Abstract

Productivity at large scale raises the demand for highly automatic and dynamic
activity scheduling mechanisms. No matter if the task conforms to modelling
the manufacturing process of a car or the offering of an electronic service
querying multiple web services on a certain user request. Central questions
such as “Which activity fits best for this task?” determine the composition of
workflows before and during runtime.

This work investigates a simplified abstract workflow model whose mathematical
representation corresponds to a binary integer linear program. The evaluation
criteria of activities is based on a single benefit and cost value. Selecting those
activities with maximum overall benefits and total costs lower than a predefined
limit leads to an optimised concrete workflow.

A heuristic based on the revised simplex method takes advantage of rounding
the non-integral solution. The algorithm together with an on-the-fly read-in pro-
cedure was implemented as C library. Furthermore, an OO-Wrapper steers
execution for C# applications. The test project comprises random tests for
verifying functionality and facilitating runtime experiments.

The algorithm solves large problem instances involving about 100.000 vari-
ables in 1.3 seconds on a 2.0 GHz Dual-Core processor. The relative error
is guaranteed not to exceed the reciprocal of the number of nodes per route.
Configurable use of memory resources renders the application also attractive
for devices with limited storage capabilities. Concerning these performance
features, an integration into a workflow framework sounds very promising.
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Zusammenfassung

Produktivität in Geschäftsprozessen erfordert hoch automatisierte und dyna-
mische Mechanismen zur zeitlichen Einteilung von Aktivitäten. Dabei spielt es
keine Rolle, ob die zu erledigende Aufgabe der Modellierung eines Herstellungs-
prozesses von Autos oder der Beschreibung eines elektronischen Services, wel-
ches Anfragen an unzählige weitere Web Services weiterleitet, entspricht. Zen-
trale Fragen, wie „Welche Aktivität ist für diese Aufgabe am besten geeignet?“
bestimmen die Zusammenstellung von Workflows vor und während der Lauf-
zeit.

Diese Arbeit untersucht ein vereinfachtes Modell eines abstrakten Workflows,
welches den Sachverhalt als ganzzahliges 0/1-Programm formuliert. Das Be-
wertungskriterium von Aktivitäten fußt auf der Zuordnung eines Kosten- und
Nutzenwertes. Die Auswahl jener Aktivitäten mit maximalem Gesamtnutzenwert
bei Gesamtkosten, die einen vorgegebenen Grenzwert nicht übersteigen, führt
zu einem optimalen konkreten Workflow.

Eine Heuristik, die auf dem revidierten Simplex-Verfahren basiert, macht sich
das Runden der im Allgemeinen nicht ganzzahligen Lösung zu Nutze. Der Al-
gorithmus wurde zusammen mit einem „On-The-Fly-Einlesevorgang“ als C Biblio-
thek implementiert. Weiters steuert für C# Applikationen ein objektorientierter
Wrapper den Zugriff auf die Bibliotheksfunktionen. Das Test-Projekt umfasst Zu-
fallstests für die Verifizierung der Funktionalität und ermöglicht darüber hinaus
Experimente zur Laufzeitbestimmung.

Der Algorithmus löst große Probleminstanzen mit ca.100.000 Variablen auf
einem 2.0 GHz Dual-Core Prozessor in 1,3 Sekunden. Dabei übersteigt der
relative Fehler jedoch nicht den Reziprokwert der Knotenzahl pro Route. Der
konfigurierbare Speicherverbrauch macht die Applikation auch für Geräte mit
begrenztem Speicher interessant. Diesen Leistungsmerkmalen zufolge klingt ei-
ne Einbindung in ein Workflow Framework äußerst vielversprechend.
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1 INTRODUCTION

1 Introduction

Optimising workflows is always desirable if a surplus of possible constituents
exists. The elements of a business process are commonly named activities or
services carried out by humans or computer applications. Generally, they differ
in the quality of service (QoS) criteria such as availability, reliability and execution
time. This quantifiable measure characterises not only a single service but also
an arbitrary aggregation of activities. A comparison quickly points out an optimal
configuration – the process of finding the best composition may take very long
by contrast.

1.1 Motivation

Workflows often involve a high number of activities. This results from the fact
that operating processes tend to be large and can be splitted into many parts in
addition. If for instance, the software engineering process has to be modelled
as workflow then the size depends on the chosen granularity i.e. the level of
detail the activities stand for. Repetitive operations on business processes also
contribute to a high net-length. In particular, the services within a loop will have
to be multiplied by the number of iterations.

Eventually, a group of activities may have the same functionality necessary to
accomplish a task. In that case, a representative suiting best according to
its QoS criteria can be chosen. If the selection happens to be independent
from previous ones, the problem will reduce to a local decision on the actually
best fitting candidate. However, most often the composition takes place under
global constraints. It is e.g. convenient to fix at least an upper bound for a
workflow’s total execution time while maximising the other properties. Likewise,
lower limits for the overall availability and reliability to which a solution of a
minimal execution time has to adhere, can be set. Global constraints of that
kind usually render the problem computationally difficult, especially in case of
functionally equivalent service providers.
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1 INTRODUCTION 1.2 Challenge

The demand for dynamic updates constitute a third characteristic inherent to
mainly large business processes: QoS criteria may change during their execu-
tion, new activities can get inserted while others are maybe deleted. Besides
static optimisation, an evaluation at runtime also needs to be facilitated by the
responsible software component.

1.2 Challenge

Addressing combinatorial aspects and dynamic issues for potentially large work-
flows, represents the main goal of their automatic composition. Assigning the
selection process to the lowest architectural tier enables a transformation of
the original workflow. The latter e.g. serves for sequentialising loops (to get the
net-number of activities) and determining an execution order (for synchronised
services). Moreover, an appropriate abstraction of an activity in the original
workflow has to be found as well. It should provide only the data, the evaluation
is performed on.

Every graphical representation corresponds to a mathematical formulation and
vice versa. The optimisation problem can be modelled in different ways as
outlined in chapter 2. The quality of the solution and the time for its detection
will often emerge as opponents. The latter plays an important role, especially
if a dynamic update is inevitable: Depending on the position where execution
has stopped, a subgraph of arbitrary size should be re-evaluated as fast as
possible.

1.3 Overview

The remainder of this work is organised as follows: In chapter “Related Work”,
the state of the art of workflow optimisation is highlighted. The main part fo-
cuses on the analysis and comparison of approaches similar to the one taken
in chapter 3. The latter introduces an abstract workflow model with a binary

2



1 INTRODUCTION 1.3 Overview

linear program as mathematical formulation. For the solution finding process,
a simplex based heuristic is suggested with a glimpse at exact methods. The
next chapter displays the realisation of preceding concepts. Furthermore, sec-
tion “Usage” shows relevant setup information and useful hints at a glance for
the busy reader. In “Evaluation”, the library is examined under three aspects:
exactness, memory and runtime. Based thereon, two different customisation
scenarios are presented. The last chapter “Conclusion” contains some final
remarks, lists some open points for a future release and finally provides a sum-
mary of the work.

3



2 RELATED WORK

2 Related Work

In literature, the term “workflow optimisation” goes hand in hand with a QoS
based optimal composition of web or grid services. The mathematical formu-
lations as optimisation problems vary greatly in the number of resources and
constraints. With respect to the approach taken in this work, the focus lies
in analysing and comparing multiple choice knapsack models used by several
authors.

2.1 State Of The Art

The QoS evaluation of web services and the thereon based optimal selection
have grown in interest over the last few years. Different algorithms have been
developed which can be roughly divided into exact, approximative and heuristic
ones. Recently, it has been shown by Yu et al. [YZL07] that an optimal solution
to the integer linear program can not be found in reasonable time for very large
instances. Theoretically, this is explained as a consequence of the NP-hardness
inherent to these problems. Heuristics, on the other hand, usually perform
better (at the disadvantage of accuracy though) as demonstrated e.g. by Yang
et al. [YTX+07].

2.2 Literature

Yu et al. [YZL07] designed a broker-based architecture for service detection,
planning, selection and adaptation. The first describes the lookup of available
services in consideration of QoS aspects. A process plan determines compo-
nent functions and their dependencies. The binary multidimensional multiple
choice knapsack model represents the combinatorial model taken in step 3.
Hence, the objective is to maximise a certain utility function subject to QoS
constraints such as response time, cost and availability. For that purpose,
they compared a branch-and-bound algorithm based on linear programming

4



2 RELATED WORK 2.2 Literature

relaxations with a heuristic algorithm that finds a statistically good solution in
polynomial time. The adaptation of a service denotes an update of its actual
QoS values.

Yang et al. [YTX+07] investigate service composition under

1. no global constraint,
2. a single global constraint and
3. multiple global constraints.

The first problem reduces to a local decision on a best matching candidate that
requires only linear time. The second and third assignment have been identified
as multiple choice binary knapsacks (differing in dimension). A heuristic which
determines the convex-hull in O (nlog(n)) has been used in both cases. Besides,
the excellent scaling behaviour (as expected due to the low complexity), the
experiments confirmed a satisfying quality in average.

Menascé et al. [MCD08] formulate a non-linear optimisation problem where
a solution minimises the average execution time of a business process. The
latter together with the total costs of execution have to be computed from
the workflow representation (i.e. BPEL in this case) first. The developed exact
algorithm is suited well for small or moderate instances. The larger ones are
preferably solved with the additionally provided heuristic whose experimental
results are close to 6% of the optimum.

A mixed-integer linear programming formulation is explored by Anselmi et al.
[AAC07] within their QoS broker based framework for web services in autonomic
grid environments. Combining several requests for a simultaneous evaluation
renders the task to a multiple instance web service composition problem. A
greedy heuristic is applied to its solution. Experiments classified the quality of
the output as “good” and the reduction of the computation overhead compared
to existing techniques as significant.

Canfora et al. [CDPEV05] propose a generic algorithm for the QoS based
(web) service selection. More specific, a decision procedure decides on a
set of concrete services to be bound at runtime to abstract ones, taking into

5



2 RELATED WORK 2.2 Literature

account various constraints and QoS attributes. According to the authors, this
approach is slower than using linear integer programming but more appropri-
ate for generic QoS criteria. Furthermore, the aggregation functions can be
non-linear, as well.

6



3 APPROACH

3 Approach

In this chapter a new approach which meets the given requirements is pre-
sented. However, this model is applied to the composition and evaluation of
workflows at the lowest architectural tier. Therefore, some general assump-
tions according to its application are necessary.

First, workflow patterns as described in Jaeger et al. [JRGM04] need to be
primarily handled by an upper layer. Figure 1 shows the decreasing levels
of abstraction for an example business process. The model itself is a graph
where loops have been sequentialised and an execution order for parallel splits
and synchronisation has already been determined.

Figure 1: Representations of an example workflow. The abstract workflow model corresponds
to the lowest architectural tier.

Second, an activity itself is simplified as much as possible. It constitutes an
abstract representation of a real world service (e.g. a web service or human
interaction). Criteria for activity selection are usually based upon characteristics
such as execution time (te[s]), reliability (r) and availability (a) combined to a
single benefit (b) and cost value (c) by the calling application. In common, the

7



3 APPROACH 3.1 Abstract Workflow Model

mapping takes the form:

b : R→{b | bmin ≤ b ≤ 2bmin, b,bmin ∈ N0} 3.1

c : R→{c | c ≤ Cmax , c,Cmax ∈ N0} 3.2

Additionally, R and N0 have to be replaced by the appropriate number range.
As the four byte “int” has been chosen as variable type for b and c, N0 is
substituted by the interval [0,231−1]. A further constraint concerning the
codomains of b and c results from the fact that the sums of benefits and costs
have also to be within [0,231−1]: For example, 107 nodes suggest bmin = 100
and an average maximum cost value of 200 in order to prevent an internal
overflow.

As already indicated, ignoring any of these restrictions may lead to invalid or
unintended results. Regarding the latter, trying to assign b < bmin or b > 2bmin

corresponds to b = bmin or b = 2bmin respectively. By the way, the reason for
narrowing b to [bmin,2bmin] lies in the provable upper bound of the relative
error due to this restriction (shown in section 5.1). The following functions for
instance provide a simple and correct mapping:

b(a ,r) = b100(1+ar) +0.5c 3.3

c(te) = b100te/texp +0.5c 3.4

The variable texp refers to the time (in seconds) a task is expected to need. The
values for a, r, te and texp have to be measured or estimated in advance. If they
change during runtime, the library can be invoked with the remaining subtree
of altered activities. Generally, it’s the low execution time that enables dynamic
updates.

3.1 Abstract Workflow Model

An abstract workflow comprises all execution routes between initialisation and
termination. The graph is acyclic and a node may have more than one pre-
decessor (as opposed to a tree). Anyway, the in-order processing works too,

8



3 APPROACH 3.1 Abstract Workflow Model

although the read-in might get inefficient if all successors of such kind of node
have to be inserted again.

As illustrated in figure 1 a task conforms to a node in this model. It complies
with a single or pool activity. Pools with fewer than two candidates are accepted
as well. However, this usage is discouraged because they unnecessarily slow
down execution and also come in limited quantities.

As indicated above, each activity holds a benefit/cost value pair. Based on these
evaluation criteria, the composition of a concrete workflow through an efficient
and optimal selection process (i.e. maximising the sum of benefits subject to
constraints) constitutes the main challenge. Concerning mathematical side
conditions, the total costs of a business process instance must not exceed the
predefined limit Cmax (e.g. a mapping of the overall processing time) and exactly
one candidate activity of each pool has to be chosen. The binary linear program
for each route takes the following mathematical form:

max ~bT~x

s.t .




1···1 0···0
... ... ...

0···0 1···1
~cT


~x =




1
...
1

Cmax−∆c




~x ∈ {0,1}N

3.5

This equation system describes a multiple choice knapsack. Moreover, ~b and ~c
denote the column vector of benefits and costs. N represents the number of
all candidates on a path. If each pool holds a constant amount of candidates
c, then N = cp. In this case, a total enumeration yields cp possibilities. Hence,
some better strategy has to be found – a first consideration decides on the type
of algorithm for finding a solution to this problem.

Regarding their output, optimisation procedures can be divided into three cat-
egories: namely in exact, approximative and heuristic ones. While the former
specifies a method to locate the global optimum if it exists, an approximation
algorithm provides provable quality and/or runtime bounds as opposed to an
ordinary heuristic quickly detecting a good solution. The approximative heuristic
presented in this work emerges from the programming relaxation of the linear

9



3 APPROACH 3.2 Simplex Algorithm

integer program and has a proven accuracy with an empirical determined sta-
tistical dispersion of the mean execution time (chapter 5).

3.2 Simplex Algorithm

The method proposed in this section can be seen as a reasonable tradeoff
between exactness and efficiency. As already discussed in chapter 2, the worst
case time complexity for solving 3.5 can be pushed to O (Nlog(N)) by calculating
the convex hull (Yang et al. [YTX+07]). However, no provable lower quality limit
is indicated by the authors although the experiments have revealed good results
for relatively small problems.

On the other hand, searching for the optimum theoretically causes exponential
runtime. A practical approach depends heavily on the implementation and spe-
cific instance to solve. Branch-and-Bound using linear programming relaxations
and cutting plane methods (both together subsumed under the term branch-
and-cut) have turned out to be most promising as it has been the case for
solving large Travelling Salesman Problems (Applegate et al. [ABCC98]).

Sharing linear programming relaxations as core concept between an approxima-
tive and an exact algorithm would be a good design criterion of the library from
a software architectural point of view. Furthermore, this enhancement would
allow switching of procedures e.g. if the optimal solution isn’t found in a given
time a rollback to the best relaxation as input for the heuristic would be possi-
ble. An exact method hasn’t been implemented yet, important considerations
are treated in section 3.3.

Neglecting the integrity constraint in 3.5, the optimum of this relaxation can be
determined in polynomial time. Unfortunately, the simplex algorithm has been
verified to be of exponential worst case complexity. Contrariwise, ellipsoid and
interior point methods are bounded by a polynomial and the latter are even con-
sidered competitive with the simplex in most applications (Overton [Ove97]).

10



3 APPROACH 3.2 Simplex Algorithm

Concerning the implementation, the simplex algorithm has been chosen not only
because of a possible extension to a branch-and-bound approach but also as a
consequence of the problem’s special structure. It will be shown in the following
sections that each iteration’s output is a vector with p +1 entries. Thus, on the
termination every pool has to be represented by at least one candidate (exactly
one pool eventually by two). So it becomes evident that not less than p−1
components will be integer at the end.

3.2.1 General Functionality

This subsection covers the basic principles of linear programming necessary
for a transition and constructive discussion on the standard and revised simplex
method – two concrete applications. A more comprehensive introduction can
be found in Chvátal [Chv83] and Vanderbei [Van01].

First of all, the linear programming relaxation emerging from 3.5 is specified
below. In this so called “augmented form” the artificial slack variable xN+1 is
an additional element of ~x represented as an extra column in the coefficient
matrix. Therefore it causes the costs (∆c) and an extra 0-entry in ~b. The fact
that every variable except xN+1 must not exceed 1 can be seen as ramification
to the first p equations and the non-negativity constraint.

max ~bT~x

s.t .




1···1 0···0 0
... ... ...

...
0···0 1···1 0

~cT 1


~x =




1
...
1

Cmax




~x ∈ (R+∪{0})N+1

3.6

The first task aims at the determination of a feasible start solution, provided
that there exists one at all. For some programs, an auxiliary problem needs to
be solved typically with the simplex itself (phase one of the two-phase simplex
method). In this case, it reduces to storing those activities with minimal costs
during the read-in. If the sum of minimal costs is already above a supposed
value, the evaluation is aborted due to infeasibility. Other possibilities for a
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shortcut are outlined in chapter 4.

Once an initial solution has been determined for 3.6, the value of the objective
function ~bT~x is incremented within each iteration until the maximum has been
reached or unboundedness has resulted. Geometrically, the solution space
to the linear system of equations has the shape of a convex N-dimensional
polyhedron. The optimum complies with the intersection of the hyperplane ~bT~x
(displaced as much as possible along its normal vector ~b) and the polytope. For
an arbitrary linear program this situation is shown in figure 2.

Figure 2: The geometrical approach of solving max {~bT~x | CCC~x =~a ,~x ≥ ~0}. The way the simplex
might take from the start solution (leftmost) to the optimum (red) is marked green.

In case of no unboundedness, the intersecting set is either empty (infeasibility)
or corresponds to a ν -dimensional geometrical figure (0≤ ν ≤N−1). So if ν = 0,
only one single solution exists otherwise there are infinite many. Regarding
the simplex algorithm it is important, that for every value of ν at least one
optimum has to reside at a vertex. The latter is defined as an intersection of
all neighbouring facets, or in other words, p +1 variables are necessary for its
representation being referred to as “basic”. If any of them happens to be 0, the
basic solution is said to be degenerated. As a consequence, the objective value
may not change during an iteration and the simplex may even start to cycle. A
strategy to prevent cycling is presented at the end of this subsection.

The start solution determined as stated above, corresponds to a vertex. Within
each iteration, a non-basic variable (that would increase the overall benefits) is

12



3 APPROACH 3.2 Simplex Algorithm

selected for entering the basis (xe), while a suitable basic one is made to leave it
(xl ). To render this more precisely, the linear program relaxation in augmented
form can be separated into basic (set B) and non-basic (set N) variables:

max {~bT~x | CCC~x =~a ,~x ≥~0} 3.7

max {~bT
B~xB +~bT

N~xN | CBCBCB~xB +CNCNCN~xN =~a ,~x ≥~0} 3.8

max {B∗ +~bT
N~xN | CBCBCB~xB =~a−CNCNCN~xN ,~x ≥~0} 3.9

max {B∗ +~bT
N~xN | ~xB = CBCBCB

−1~a−CBCBCB
−1CNCNCN~xN ,~x ≥~0} 3.10

max {B∗ +~bT
N~xN | ~xB =~x∗B−CBCBCB

−1CNCNCN~xN ,~xB ≥~0,~xN =~0} 3.11

Especially the last equation can be interpreted as a snapshot of a current it-
eration (confirmed by B∗ and ~x∗B indicating the actual sum of benefits and the
intermediate values of ~xB).

Possible candidates for xe are formally characterised by {xi | bi > 0, i ∈ N}. If
this set happens to be empty, then the optimum has been detected and the
execution stops. Otherwise, xe takes the highest value permitted, while a basic
variable gets 0. To decide which one, the expression for ~xB in 3.11 should be
considered:

~x∗B−CBCBCB
−1CNCNCN~xN ≥~0 3.12

~x∗B− xe
~d ≥~0 ~d :=

(
CBCBCB

−1CNCNCN

)
e

= CBCBCB
−1~ce 3.13

xe = min{x
∗
Bi
di

, i ∈ B} 3.14

Formula 3.13 uses the fact that ~xN contains the value of xe as the only hopefully
positive entry. Hence, ~d is defined by the vector of the entering column ~ce =(
CNCNCN

)
e. Due to ~xB ≥~0, maximising xe means setting it to the minimum quotient.

The subscript that fulfils the latter therefore determines the leaving variable xl

as a candidate of {xi | xe = min x∗Bi
di

, i ∈ B}.

As opposed to the set for xe, the one for xl cannot be empty. However, two

13



3 APPROACH 3.2 Simplex Algorithm

kinds of anomalies may result from the term mini∈B
x∗Bi
di

:

xe =





0 degeneracy

∞ unboundedness
3.15

If xe can be chosen arbitrarily large (and so also the objective value) then the
linear program at hand is unbounded and the simplex algorithm terminates
signalling an error state. Degeneracy poses a bigger problem: It slows down
execution if the benefits aren’t increased and may even lead to the occurrence
of cycles. To prevent cycling, Bland’s smallest-subscript rule as described and
proved in Chvátal [Chv83] can be applied:

“The simplex method terminates as long as the entering and leaving variables
are selected by the smallest-subscript rule in each iteration.”

This yields the following formulas for unambiguously selecting xe and xl out of
the above identified sets:

xe : e = min{i | bi > 0, i ∈N} 3.16

xl : l = min{i | xe = min
x∗Bi
di

, i ∈ B} 3.17

In the following subsection pivoting, the mathematical equivalent for traversing
along an edge, is visualised by using a tableau. This procedure, known as
standard simplex method, reflects the geometrical concept of an iteration in a
straight-forward way (Sedgewick [Sed83]). The inherent disadvantages of an
implementation for large instances are outlined thereafter.

3.2.2 Standard Simplex Method

The pivot operation consists of finding a certain pivot element and a subsequent
update process. The former is the intersection of the pivot column (entering
variable) and the pivot row (leaving variable). Similar to pivoting in Gaussian
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3 APPROACH 3.2 Simplex Algorithm

elimination, the pivot row is divided by the pivot number and an appropriate
multiple is added to every other row, so that the pivot column equals the unit
vector of the entering variable afterwards.

To clarify things, the first iteration of the standard simplex method (moving from
the start vertex to a neighbouring) is presented below with concrete numbers
for max {~bT~x | CCC~x = ~a ,~x ≥ ~0}. The example contains the case that a basic
solution gets degenerated and the final output has to be integer (i.e. x6 and
x12, the candidates with maximum benefits in the pools).

~a =
(

1 1 100
)T

~bT =
(

133 135 133 142 142 161 133 146 125 144 136 197 0
)

CCC =
(

1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0
0 50 92 42 66 38 96 62 5 86 47 14 1

) 3.18

At the beginning ~x∗B =
(

1 1 95
)T because x1, x9 and x13 (the slack variable) are

in the basis. The overall benefits B∗ amount to 258. Several representations
of the tableau are possible (e.g. as in Sedgewick [Sed83]), a modified one for
an arbitrary start solution looks as follows:

−258 0 2 0 9 9 28 8 21 0 19 11 72 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 1 1 1 1 1 0

95 0 50 92 42 66 38 91 57 0 81 42 9 1

3.19

The first row in 3.19 results from subtracting 133 from all benefit values in the
first pool, 125 from each of the other and the sum (258) from 0. This does
not affect the slack variable which is therefore left at 0. The second and third
row comply with the coefficients in the equation system. In the last one, the
candidates’ costs have been diminished by those of the selected ones and the
difference to Cmax computes to 100−5 = 95. All basic variables correspond
to unit vectors in the tableau. The pivot element in the box initiates the first
update.

The single steps of an iteration are outlined below. The first two represent the
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3 APPROACH 3.2 Simplex Algorithm

selection of a vertex to head for while the last one defines the transition along
this specified edge:

1. choosing the pivot column (entering variable e.g. according to 3.16)
2. selecting the pivot row (leaving variable e.g. compliant with 3.17)
3. transforming the column vector of the new basic variable into a unit vector

(same operation as in Gaussian elimination)

Applying Bland’s rule, the determination of the pivot number tle yields 1 for
e = 2 and l = 1. So row 1 remains as before, its multiples −2 and −50 have to
be added to the first and last row respectively. The second tableau takes the
following form. The example is completed in appendix A.

−260 −2 0 −2 7 7 26 8 21 0 19 11 72 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 1 1 1 1 1 0

45 −50 0 42 −8 16 −12 91 57 0 81 42 9 1

3.20

At first sight, it might seem sufficient to store and update only the first and
last row. However, things change when the slack variable leaves the basis.
Thus, memory requirements increase and runtime declines with the tableau’s
size. Contrariwise, large programs deserve efficient computer implementations
using as little storage as possible and additionally providing numerical stability
when the entries get fractional.

3.2.3 Revised Simplex Method

The revised simplex method addresses these demands by uncoupling the sim-
plex algorithm from a tableau. From the latter, only the basic variables are used.
An extensive description of this application can be found in Chvátal [Chv83].

The separation into basic and non-basic variables leads to equation 3.11. Sub-
stituting CBCBCB

−1~a −CBCBCB
−1CNCNCN~xN for ~xB shows the linear programming relaxation
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(augmented form) in a slightly different way:

max ~bT
BCBCBCB

−1~a +
(
~bT

N −~bT
BCBCBCB

−1CNCNCN

)
~xN

s.t . ~xB = CBCBCB
−1~a−CBCBCB

−1CNCNCN~xN

~xB ≥~0,~xN =~0

3.21

Compared to 3.11, ~bT
BCBCBCB

−1~a = B∗ and CBCBCB
−1~a =~x∗B. Moreover, ~d has been intro-

duced in equation 3.13 as CBCBCB
−1~ce with ~ce denoting the vector of the entering

column. Defining ~yT as ~bT
BCBCBCB

−1 in addition, the new formulation of the problem
is:

max B∗ +
(
~bT

N −~yTCNCNCN

)
~xN

s.t . ~xB =~x∗B− xe
~d

~xB ≥~0,~xN =~0

3.22

With the same geometric interpretation as above, an iteration is determined by
identifying a variable to enter the basis (which in turn decides on another one
to leave it) and its subsequent update:

1. calculating ~yT in ~yTCBCBCB =~bT
B to get the first component of the vector

~bT
N −~yTCNCNCN greater than 0 (entering variable with Bland’s rule)

2. solving CBCBCB
~d =~ce for ~d needed in 3.17 (leaving variable)

3. replacing ~xB with ~x∗B− xe
~d and the newly emerging 0-entry with xe

In general, solving the two equation systems ~yTCBCBCB = ~bT
B and CBCBCB

~d = ~ce from
scratch compares to a computational bottleneck. Chvátal [Chv83] explains the
eta factorisation of CBCBCB with different devices – the simplest among them is
a variation of the well-known “product form of the inverse”. Since the basis
matrix in iteration k differs from a preceding in just one column (m), the plain
relationship between them looks as follows:

CBk
CBk
CBk

= CBk−1
CBk−1
CBk−1

EkEkEk 3.23

EkEkEk constitutes the identity matrix whose mth column has been replaced by ~d.
As CBk

CBk
CBk

= CB0
CB0
CB0

E1E1E1 · · ·EkEkEk , ~yTCBk
CBk
CBk

=~bT
B and CBk

CBk
CBk

~d =~ce can be evaluated iteratively with
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each bracket term taking only little time:
(((

~yTCB0
CB0
CB0

)
E1E1E1

)
· · ·

)
EkEkEk =~bT

B 3.24

CB0
CB0
CB0

(
E1E1E1

(
· · ·

(
EkEkEk

~d
)))

=~ce 3.25

Further refinements and the occasional refactorisation process of the basis to
shorten the number of eta matrices are described in Chvátal [Chv83]. For-
tunately, ~yT and ~d can always be determined directly for 3.6 because each
CBCBCB represents the identity matrix except for at most two rows. Hence, no
more than two unknowns have to be computed for these vectors. Implementa-
tion details are revealed in chapter 4, the first iteration of the revised simplex
method for the same example 3.18 is demonstrated at once. It is finished in
appendix A.

~x∗B =




1

1

95


 , CB0

CB0
CB0

=




1 0 0

0 1 0

0 5 1


 3.26

Iteration 1:

1. ~yTCB0
CB0
CB0

=~bT
B0

~yT =
(
133 125 0

)

b2−~yT~c2 = 2, ⇒ x2 enters the basis

2. CB0
CB0
CB0

~d =~c2

~d =
(
1 0 50

)T

~x∗B− xe
~d ≥~0

xe = 1, ⇒ x1 leaves the basis

3. ~x∗B =




1

1

45


 , CB1

CB1
CB1

=




1 0 0

0 1 0

50 5 1




3.27
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3.2.4 Numeric Stability

Numeric accuracy plays an important role in floating-point arithmetic. Rounding
errors which are inherent to the use of data types like “float” or “double” and
their propagation have to be prevented as far as possible. An overview of this
topic is provided in Goldberg [Gol91].

In the context of linear equation systems, Chvátal [Chv83] points out that round-
ing errors may not only accumulate in long chain calculations to useless results
but also for the instance given below:

0.0001z1 + z2 = 1

0.5z1 + 0.5z2 = 1
3.28

Pivoting (i.e. dividing the first row by 0.0001 and adding a suitable multiple
of it to the second one such that z1 is eliminated therein) and rounding to
three decimal places leads to z2 = 1 and z1 = 0, although z1 = z2 = 1 would be
correct.

The reason for this behaviour lies in the small pivot element (relative to the other
coefficients). Therefore ε2, a positive number close to 0, excludes a division if
the divisor is below that limit. A second one used in the library, ε1, prevents
a variable from entering the basis if it happens to be indistinguishable from 0.
Murtagh [Mur81] specifies ε1 = 10−5 and ε2 = 10−8 suitable with the precision
of the “double” data type.

To control error propagation, the “double” values of the basis matrix need to be
refactored periodically. The length of the period depends on the nature of the
data and may start as soon as the slack variable is out of the basis, because
two candidates appear in ~x∗B for one pool then. The adjustment essentially
consists of comparing its actual and expected costs. The formula together with
the code of method “refactor” are part of section 4.1 in the next chapter.

Rounding errors could be completely avoided by computing exclusively with inte-
ger data types. This is arranged e.g. by storing nominator and denominator for
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a fraction number separately or by transforming to an “int” or “long” (multiplica-
tion with the reciprocal for the suitable accuracy). However, these techniques
cause an extra overhead of memory and runtime. Thus their preference to
floating point operations (which on the other hand take longer than their corre-
sponding counterparts) remains to be justified.

3.3 Exact Methods

In the last section of this chapter, an approach to the exact solution finding
process is sketched. The latter would be an architecturally facilitated enhance-
ment of the library due to the usage of linear programming relaxations in the
enumeration tree. Exact methods may not only serve for bridging the accuracy
gap encountered for a small number of nodes (5.1), but also provide the user
with the best configuration on demand. If a time constraint (e.g. realised as
a predefined limit of calls to method “simplex”) is exceeded, a fallback to the
actually best integer solution remains.

Several approaches exist for the realisation, among all of them, the branch-
and-bound method with a good branching scheme as explained in Nemhauser
et al. [NW88] seems to be most useful. The generalised branching is illustrated
in figure 3. Splitting the index set Pi in two halves Pi1 and Pi2 with (almost) equal
cardinality guarantees more progress than singling out a variable. Furthermore,
it can be verified easily that the number of paths complies with all possible valid
solutions.

The rounded relaxation determined by the heuristic constitutes a first lower
limit. Before starting the enumeration it can be improved in different ways.
First, the candidate that has been chosen in the pool with the two fractional
variables can probably be replaced by a better suited one. Second, a cost limit
can be figured out logarithmically for which the approximation algorithm yields
an improved lower bound. For that purpose, the costs can be narrowed to
[cmin,2cmin] resulting into ld(cmin) simplex-calls at most.
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Figure 3: A generalised branching rule for enumeration. The subsets of Pi are preferably of
(almost) equal size.

These techniques help to keep the branch-and-bound tree statically short. Dur-
ing the enumeration process, cutting-planes may contribute to the speed. But
only those should be considered that tighten the bounds of a single variable’s
codomain to preserve the structure of the coefficient matrix. A good combina-
tion of these aspects shall be part of a future release.
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4 Implementation

The implementation of the algorithm and the processing of an abstract work-
flow in common, together with important means of exporting and testing the
library’s functionality shall be the topic of this chapter. First of all, some general
information is given in advance. The three parts of the software are analysed
afterwards. Finally, necessary instructions for its usage are presented.

WorkflowCompositionLibrary is written in Visual C, an adaptation to the ANSI C
standard is planned in a forthcoming release. The motivation of preferring C
over a popular object-oriented programming language like C# or Java is mainly
justified by the flexible memory management. It permits an adjustable reserva-
tion of storage and frees it instantly on demand (no garbage collection). Sec-
ondly, pointer arithmetic (i.e. the advantage of modifying pointers instead of
moving data) identifies speed issues as a third reason for choosing C.

WorkflowCompositionWrapper implemented in C#, controls the access to the
library’s “export” functions instead of invoking the specified methods directly. Its
main purpose lies in wrapping the unmanaged code in WorkflowCompositionLi-
brary which cannot be referenced as resource by projects containing managed
code (Keserovic et al. [KMN03]). Furthermore, it adds object-oriented be-
haviour by encapsulating the functionality into an operator object whose single
instance permits its utilisation (exception handling inclusive) to one application
at the same time. Thus it enables an easy use of the library and keeps the
caller’s code clean.

WorkflowCompositionTest contains NUnit test methods to be performed on the
operator. Their task is to correctly process small, medium, large and invalid
instances. A high test coverage is achieved not only with selected predefined
tests but also by generating randomly routes and whole graphs. The latter
allow close runtime studies in addition. Moreover, the test cases together
with a simulated call from another application storing its data in a simplified
activity graph, demonstrate how to work with the library through an operator
instance.
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4.1 WorkflowCompositionLibrary

WorkflowCompositionLibrary comprises the read-in procedure and the evaluation
part. The former describes how to initialise and refresh variables and fields be-
fore any activity is actually inserted. The latter can be one of three types,
namely single, pool or candidate which correspond to “insertsa”, “insertpa” and
“insertca” respectively. After this route has been completely read into the li-
brary, a certain amount of “back statements” (“insertbs”) enables the insertion
of a new activity at the right place on the new path. Before that happens, the
algorithm is run on the old one. Once the processing of the last route has been
initiated by a call to “result”, the resources may be freed with “clean” or the
variables can be reinitialised for a subsequent use (eventually for an update).

4.1.1 Read-in

The functions for export, i.e. the ones being publicly available and therefore
identified as “extern”, are declared in “export.h”. Their complete method signa-
tures are shown in listing 1.

extern DLLEXPORT void init(const int _num_activities, const int _num_pools, const int

_num_candidates, const int _max_cost, const int _min_benefit, void (*_exception)(

const char *message), const unsigned char _print);

extern DLLEXPORT void refresh(const int _max_cost, const int _min_benefit, const

unsigned char _print);

extern DLLEXPORT void insertsa(const int id, int benefit, int cost);

extern DLLEXPORT void insertpa();

extern DLLEXPORT void insertca(const int id, int benefit, int cost);

extern DLLEXPORT void insertbs(const int steps);

extern DLLEXPORT int *result();

extern DLLEXPORT void clean();

Listing 1: Declaration of export functions
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The initialisation asks for a specification of the number of single activities (S ),
num_pools (P ) and num_candidates (C ). The former is implicitly available through
S = A−CP where A stands for the total number of activities on a path. If any
of these user-defined values turns out to be in an inappropriate range, it is ad-
justed accordingly as can be seen in listing 2. The constants MAX_ACTIVITIES,
MAX_POOLS and MAX_CANDIDATES are predefined in the common header file
(appendix B). Their selected magnitudes make the memory resources being
covered by 256MB RAM. Adapted use of storage through “malloc” in “init” is
explained in section 5.2.

34 num_activities = (_num_activities > 0 && _num_activities < MAX_ACTIVITIES) ?

_num_activities : MAX_ACTIVITIES;

35 num_candidates = (_num_candidates > 0 && _num_candidates < MAX_CANDIDATES) ?

_num_candidates : MAX_CANDIDATES;

36 num_pools = num_activities / num_candidates;

37 if (_num_pools > 0 && _num_pools < MAX_POOLS)

38 {

39 if (num_pools > _num_pools)

40 {

41 num_pools = _num_pools;

42 }

43 }

44 else

45 {

46 if (num_pools > MAX_POOLS)

47 {

48 num_pools = MAX_POOLS;

49 }

50 }

Listing 2: Setting the number of activity types

At the end of “init”, method “refresh” is implicitly invoked (which has to be done
explicitly by the user later on). The parameters _max_cost, _min_benefit and
_print specifying Cmax , bmin and the print option, are passed to this method as
arguments. The function pointer void (*exception)(const char *message), also
initialised in “init” is declared in “export.h” together with function “leave”. In the
latter, it causes an exception in the wrapper where it constitutes a delegate.

Having set the values for internal variables in “refresh”, three different types
of activities can be inserted. For singles and candidates, this means to store
their parameter values in an array element of type activity which is a 12 byte
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structure. Trying to read in a candidate without a pool, results into an error –
the 16 byte pool needs to be assigned to an entry of pools. The struct pool and
struct activity are defined in “common.h” and listed together with the code of
“insertsa”, “insertpa” and “insertca” in appendix B.

The output can be retrieved by calling “result”. It is assumed that the last route
has been read into the library. The execution of “insertpa” steers the processing
of the last path by setting “deltah”, the height difference to one less than the
number of nodes. Specifying the steps to go back for starting another branch at
the designated position is usually done with “insertbs”. The condition deltah != 0
is checked in “insertsa” and “insertpa”. If this expression evaluates to “true”, the
optimisation procedure is launched, where necessary and printing gets started
before the array indices (not the elements themselves) are resetted (in “reset”).
Finally, “clean” frees all memory allocated in “init”.

4.1.2 Algorithm

Function “trigger” represents the entry point to the algorithm. Inside, “lbenefit”
and “lcost”, the lower bound of benefits and costs are calculated. An invocation
of “shortcut” verifies, if a solution can be obtained without the use of “simplex”.
In case that a new global optimum has been found, “lbenefit” and “lcost” are
updated and the ids are stored into the “rids” array in “fillr”. The signatures of
the private methods of “algorithm.c” are shown below (listing 3) and explained
subsequently. The source code of “trigger” is given in appendix B.

int shortcut();

void fillr();

int simplex();

void step0();

int step234(int *_k, int *_l, int *_j, int _c1, int _c2, double *_t, const double yL);

void refactor();

int eval();

void opt();

Listing 3: Members of algorithm.c

The purpose of “shortcut” lies in quickly examining the problem if it’s
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1. infeasible: no solution exists
2. already below a predetermined bound: a previously completed route’s out-

come remains preeminent
3. easily derivable: consistency with the selection of all candidates having

maximal benefits or minimal costs

The implementation of the revised simplex method forms the central part. The
return type of “simplex” is “int” because the linear programming relaxation may
be unbounded theoretically. At the beginning, “step0” is executed for initialising
“basis” (a two-dimensional array storing pairs of pool index and offset), “sB” (an
array to get the correct index of “basis” for a certain index of a non-empty pool)
and “xB” (the array with the values of the basis variables) with the start solution
of minimal costs (appendix B).

The algorithm comprises three parts as outlined in 3.2.3. In the code, they
have been flattened to five steps, each corresponding to an essential operation
to be performed. First, ~yT needs to be figured out from ~yTCBCBCB =~bT

B . Depending
whether the slack variable is in the basis or not, CBCBCB consists either of p or
p−1 row unit vectors. In the first case, the equation system for ~yT can be
solved directly while in the other, two equations with two unknowns have to be
computed in advance (listing 4). The formula for the entry y [j ] and y [bidx ], with
j being the index of the pool (represented with two candidates in CBCBCB) and bidx
indicating the last row, can be deduced as follows:

y [j ] +c1y [bidx ] = b1 4.1

y [j ] +c2y [bidx ] = b2 4.2

y [bidx ] =
b1−b2
c1−c2

4.3

y [j ] =
c1b2−b1c2

c1−c2
4.4

Here, b1, c1 and b2, c2 mark the benefits and costs of the two candidates be-
longing to the same pool. A necessary condition for the use of these formulas
is c1 6= c2. If c1 = c2, then CBCBCB would be singular. The impossibility of this situation
is proved in Chvátal [Chv83]. Once 4.3 and 4.4 have been applied, the other
entries y [k] are given by bk − y [bidx ]ck where bk and ck constitute the benefit
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and cost value of the k th pool’s candidate in the basis.

250 /* pool j appears twice among basis variables */

251

252 /* basis[0][idx1] == basis[0][idx2] */

253 j = basis[0][idx1];

254

255 b1 = (activities + (pools + j)->idx + basis[1][idx1])->benefit;

256 b2 = (activities + (pools + j)->idx + basis[1][idx2])->benefit;

257 c1 = (activities + (pools + j)->idx + basis[1][idx1])->cost;

258 c2 = (activities + (pools + j)->idx + basis[1][idx2])->cost;

259

260 /* c1 != c2, otherwise the basis matrix would be singular which is not possible

(proof can be found in Chvátal: Linear Programming) */

261 yL = ((double)(b2 - b1)) / (c2 - c1);

262 y[bidx] = yL;

263 y[j] = ((double)(b1 * c2 - c1 * b2)) / (c2 - c1);

264

265 for (i = 0; i <= bidx; i++)

266 {

267 k = basis[0][i];

268 if (k != j)

269 {

270 y[k] = (activities + (pools + k)->idx + basis[1][i])->benefit -

271 yL * (activities + (pools + k)->idx + basis[1][i])->cost;

272 }

273 }

Listing 4: Solution to ~yTCBCBCB =~bT
B (slack variable has left the basis)

Step 2 in “step234” makes a decision on a suitable variable for entering the
basis. The current version implements Bland’s rule (introduced in 3.2.1) which
avoids cycling. However, the number of iterations could grow very large, espe-
cially if the candidates are sorted ascending by b/c. Therefore, a better pricing
strategy would lead to a considerable reduction of runtime. A good suggestion
that does not involve intensive computations (as opposed to “steepest edge”)
would be a descendent ordering by b/c as preprocessing for the simplex.

The determination of ~d in CBCBCB
~d =~ce takes place in step 3. If the slack variable

resides in the basis then d[sB[k]] is set to either 1 (k equals the actual pool
index) or 0, when iterating over k. The expression sB[k] evaluates to the right
column index for the non-empty pool k. The entry at position idx1 (= idx2) can be
fixed at ce−cl , the difference between the entering and leaving variable’s costs.
Similar to ~yT , ~d requires to solve two equations if CBCBCB has only p−1 row unit

27



4 IMPLEMENTATION 4.1 WorkflowCompositionLibrary

vectors (listing 5). The corresponding p−1 elements are 1 or 0 as above and
substituted in the last row. However, three cases have to be differentiated:

1. the entering variable belongs to the same pool as the fractionals
2. the slack variable is going to enter the basis
3. the entering variable is a member of a pool with just one candidate in the

basis

481 /* one pool appears twice among basis variables */

482

483 for (i = 0; i <= pidx; i++)

484 {

485 if (sB[i] != -1 && i != basis[0][idx1])

486 {

487 d[sB[i]] = (i == l) ? 1 : 0;

488 }

489 }

490

491 /* c1 != c2, otherwise the basis matrix would be singular which is not possible

(proof can be found in Chvátal: Linear Programming) */

492 if (basis[0][idx1] == l)

493 {

494 d[idx1] = ((double)(activities + p->idx + j)->cost - c2) / (c1 - c2);

495 d[idx2] = (c1 - (double)(activities + p->idx + j)->cost) / (c1 - c2);

496 }

497 else if (l == pidx + 1)

498 {

499 d[idx1] = 1.0 / (c1 - c2);

500 d[idx2] = 1.0 / (c2 - c1);

501 }

502 else

503 {

504 c = (activities + p->idx + basis[1][sB[l]])->cost;

505 d[idx1] = ((double)(activities + p->idx + j)->cost - c) / (c1 - c2);

506 d[idx2] = (c - (double)(activities + p->idx + j)->cost) / (c1 - c2);

507 }

Listing 5: Solution to CBCBCB
~d =~ce (slack variable is not in the basis)

The formulas for the remaining entries d[idx1] and d[idx2] (with idx1 and idx2
being the indices of the two fractional variables) are declared below. They can
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be verified with the example in appendix A (e.g. iteration 5, 8 and 9).

1. d[idx1] =
ce−c2
c1−c2

d[idx2] =
c1−ce

c1−c2
4.5

2. d[idx1] =
1

c1−c2
d[idx2] =−d[idx1] 4.6

3. d[idx1] =
ce−cl

c1−c2
d[idx2] =−d[idx1] 4.7

Step 4 deals with searching for the leaving and to settle a value for the entering
variable as a consequence. If none can be found, the problem is unbounded
which has not been experienced in the test runs though. Finally, “basis”, “sB”
and “xB” are updated. The first two merely represent programming facilities,
the new entries of “xB” follow from the algorithm of the revised simplex method
(step 5).

To prevent the propagation of rounding errors as discussed in 3.2.4, the con-
tent of “xB” needs to be adjusted periodically. This is accomplished by in-
voking function “refactor” whenever the iteration counter equals a multiple of
REF_PERIOD, a constant defined in the common header file. The refactorisation
is organised in two parts: First, all elements except the possible fractionals are
rounded to the nearest integer and their costs are added up. If the slack vari-
able is not in the basis, the correct summand ϕ to actualise the fractional
variables with, is calculated thereafter (listing 6). Supposing that xB[idx1]′

and xB[idx2]′ denote their actual values, then their pool causes the costs
c′P = c1xB[idx1]′ + c2xB[idx2]′ contrary to the true data xB[idx1] and xB[idx2]
with cP = c1xB[idx1]+c2xB[idx2]:

c′P −cP = c1(xB[idx1]′− xB[idx1])+c2(xB[idx2]′− xB[idx2]) 4.8

c′P −cP = c1ϕ−c2ϕ 4.9

ϕ =
c′P −cP

c1−c2
4.10

Equation 4.9 results from the fact that both variables always add up to 1. The
entries xB[idx1] and xB[idx2] are therefore set to xB[idx1]′−ϕ and xB[idx2]′+ϕ
respectively.
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574 /* refactor fractional pool */

575

576 cP = acostl - cP; /* cP is the correct cost value of the fractional pool */

577 c1 = (activities + (pools + basis[0][idx1])->idx + basis[1][idx1])->cost;

578 c2 = (activities + (pools + basis[0][idx2])->idx + basis[1][idx2])->cost;

579 f = (xB[idx1] * c1 + xB[idx2] * c2 - cP) / (c1 - c2);

580 xB[idx1] -= f;

581 xB[idx2] += f;

Listing 6: Refactorisation of the fractional variables

The main purpose of “eval” lies in the computation of the lower benefit and
cost limit (“lbenefit” and “lcost”). As the solution tends to be non-integer in
most cases, it has to be rounded as indicated below. Furthermore, the ids of
the selected candidates are stored. This procedure is either part of “eval” or
outsourced to “opt” for an already optimal linear programming relaxation.

xB[idx1] =





0 c1 < c2

1 else
4.11

4.2 WorkflowCompositionWrapper

An instance of “Operator” embodies the wrapper’s functionality at runtime. To
facilitate its usage for other applications, the code is discussed in detail and
printed in appendix B.2.

An operator can be retrieved from the factory method “CreateInstance” with
the expected number of total activities, pools and candidates as arguments.
Moreover, Cmax , bmin and if printing should be turned on, need to be specified.
The Singleton Pattern assures only one active instance at a time to handle
an application’s request. This prevents a modification of the data by another
caller. The private constructor in turn invokes “init” with the user’s input and a
previously added callback function (for raising an appropriate exception) to the
delegate.

The principle of the wrapper methods is first to assign a correct exception type if
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any of it can be thrown at all, secondly to access the library and at least to reset
“exceptionType” to 0. “ReturnResult” shows the “IntPtr” object as counterpart
to the int-pointer in C. The latter is needed for “Marshal.ReadInt32” to get the
output array’s elements iteratively. Its length is stored in the first position, the
second one contains the non-empty solution’s overall benefit value. Therefore,
“intArr” is either null (if no activities have been inserted) or it holds the latter at
index 0 and the ids in sequence.

4.3 WorkflowCompositionTest

Once the preconditions in 4.4 are met, the test project launches the graphical
user interface of NUnit on start. The “Main” method can be found in “Pro-
gram.cs” and is listed below. The test classes have been added to a test suite
in “AllTests.cs” which comprises 91 single test cases altogether. So, executing
all of them will take some time depending on the current settings.

11 [STAThread]

12 static void Main(string[] args)

13 {

14 NUnit.Gui.AppEntry.Main(new string[] { System.Reflection.Assembly.

GetExecutingAssembly().Location });

15 }

Listing 7: Entry point of test project

Small, medium, large and invalid test instances (abbreviated “si”, “mi”, “li” and
“ii”) have been designed to verify the program’s functionality. The approach
consists of inserting activities first and to invoke the “ReturnResult” function
of the operator thereafter. The latter is performed in the corresponding “Re-
turnResult” test classes. As the methods in “InsertActivityIITest.cs” provoke an
exception, no “ReturnResultIITest.cs” for analysing the final outcome exists. The
following assumptions of erroneous user inputs have been made:

• Insertion of activities at wrong positions
• Entering a candidate without a pool
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• Read-in of too many activities, pools, candidates

A test is passed, if an exception of a specific type (thrown by the operator)
occurs. As an example, listing 8 demonstrates a check on the program’s
correct behaviour in case of exceeding the maximum number of activities by
one:

75 [Test]

76 [ExpectedException(typeof(InsertActivityException))]

77 public void Test04()

78 {

79 int i;

80 op.RefreshOperator(0, ACTIVITIES / 2, false);

81

82 for (i = 0; i <= ACTIVITIES; i++)

83 {

84 op.InsertSingleActivity(i, i + 1, i);

85 }

86 }

Listing 8: Overflow of activities

The common organisation of the test classes becomes evident when regarding
the one for insertion first. All of them start with “Init” where an operator is
retrieved. This instance remains usable until it is released and set to “null” in
function “Clean”. Within the single test cases, “RefreshOperator” has to be
called before any activities will be read in. If they fail, an exception must have
happened somewhere in the code and the error message is specified as ar-
gument to “AssertFail”. Inherent to these classes is also a getter-method for
the operator. This allows the overlaying tests for “ReturnResult” to access the
same instance already used for the buildup of the workflow. A reference to
the appropriate “InsertActivity” test class is obtained via the constructor at the
beginning. After that, the test fixture setup reduces to the invocation of “Init”
by the reference. Within a test method, the associated one is called first to
query for the output thereafter. The test fixture tear down works analogue to
“Init” in the “ReturnResult” test classes. Two example test files (“InsertActivi-
tySITest.cs” and “ReturnResultSITest.cs”) listed in appendix B.3 represent this
relationship.
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The difference between the tests for small, medium and large instances lies in
their complexity. The former e.g. check simple scenarios like the insertion of:

• no activity
• a single activity
• a pool activity with 0, 1, 5 candidate(s)
• a single/pool activity with 2 children

The last test functions cover branching, i.e. the read-in of a graph consisting
of more than one path and some special cases like all activities are equal or
bmin = 0. Therefore, it is possible to control each element of the result array
in “ReturnResultSITest.cs”. As opposed to these static tests, dynamically con-
structing graphs renders a verification of each entry in the outcome inconve-
nient (automatic tests) if not impossible (random tests), because the heuristic
only finds an approximate solution. Instead, the relative error is confirmed to
be less than the reciprocal number of nodes, a direct consequence of choosing
the benefit value from the interval [bmin,2bmin] (section 5.1).

“InsertActivityMITest.cs” simulates how the operator is used efficiently in an
overlaying application where the data has been stored into “ActivityGraph”. Sim-
ilar to the representation in the library, an instance of “Activity” is either single,
pool or candidate. Additionally, a list for the parents and one for children can
be specified. A flag is set if a pool is constructed. A reference to the actual
activity is assigned the field “candidate” of a previous one in case that a candi-
date has been read in. To sum up, “ActivityGraph” constitutes a doubly linked
and the candidates within a pool a singly linked list. The graphical illustration
and textual output for “Test02” are shown in figure 4. Each single or candidate
activity corresponds to a circle or number triple (id, benefit and cost). The sin-
gle paths differ from the five route-files of the library only by their indentation.
The reason is that the thereto needed spaces would grow quadratically with the
nodes. Thus, a further improvement would be a proper encoding of activities
when writing them to a file. Although this greatly reduces a file’s size and pro-
cessing time, such an operation always causes a non-neglectable overhead and
should be avoided whenever possible. This can be demonstrated by turning the
printing option on/off and comparing the runtime difference.
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(0, 101, 0)

(1, 102, 1) (2, 103, 2) (3, 104, 3) (4, 105, 4) (5, 106, 5)

(6, 107, 6) (7, 108, 7) (8, 109, 8) (9, 110, 9) (10, 111, 10)

(11, 112, 11) (12, 113, 12) (13, 114, 13) (14, 115, 14) (15, 116, 15)

(16, 117, 16)

(11, 112, 11) (12, 113, 12) (13, 114, 13) (14, 115, 14) (15, 116, 15)

(17, 118, 17)

(16, 117, 16)

(11, 112, 11) (12, 113, 12) (13, 114, 13) (14, 115, 14) (15, 116, 15)

(18, 119, 18) (19, 120, 19) (20, 121, 20) (21, 122, 21) (22, 123, 22)

(23, 124, 23) (24, 125, 24) (25, 126, 25) (26, 127, 26) (27, 128, 27)

(28, 129, 28) (29, 130, 29) (30, 131, 30) (31, 132, 31) (32, 133, 32)

(33, 134, 33)

(34, 135, 34)

Figure 4: Graphical and textual representation of an activity graph. Assuming Cmax = 35, the
optimal path is marked red.

The inorder traversal of the graph for reading its content into the library
(method “BuildTestGraph”) is discussed in section 4.4. In contrast to typing
each insertion statement manually, “Test05” provides a mean for an automatic
construction as visible in listing 9. Altering the upper node limit in the for-loop
enables a variable output. This however renders a detailed check on every ele-
ment of the array impossible.

312 [Test]

313 public void Test05()

314 {

315 try

316 {

317 op.RefreshOperator(70, 100, true);

318

319

320 ActivityGraph graph = new ActivityGraph();

321

322 for (int i = 1; i <= 25; i++)

323 {

324 if ((i + 1) % 6 == 0)

325 {

326 graph.GoBack((2 * i) % 10);

327 }

328 else if (i % 3 == 0)

329 {

330 graph.AddNext(new Activity(100 * i));

331 for (int j = 1; j <= i % 5; j++)

332 {

333 graph.AddCandidate(new Activity(100 * i + j, 100 + i + j + (i

* j) % (i + j), (i * j) % (i + j)));

334 }

335 }

336 else
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337 {

338 // <j> = 2

339 graph.AddNext(new Activity(i, 100 + i + 2 + (i * 2) % (i + 2), (i

* 2) % (i + 2)));

340 }

341 }

342

343

344 graph.PrintGraph("mi05graph.txt");

345

346 BuildTestGraph(graph.Start);

347 }

348 catch (Exception e)

349 {

350 Assert.Fail(e.Message);

351 }

352 }

Listing 9: Constructing an activity graph automatically

True dynamic test instances are a consequence of using random numbers (al-
though they don’t have to be truly random but different for each run). “Test06”
and “Test07” produce a path and a whole tree of activities varying in their
kind and number. They are refined by “Test01” and “Test02” of “InsertActiv-
ityLITest.cs” to manage larger inputs and to make trees also change in their
structure in addition. The latter is accomplished in “Test02” by filling an array
“values” of n (nodes per route) entries with the results of the formula below.
Therefore, the probability of branching increases with the actual length of the
path (h) because a random number < n2 is compared with values[h]. “Test02”
also affirms that a best known path exists and that it is not fixed at a certain
place in the graph.

values[h] =




−1 h = 0

b2h + h4

(n−1)2
c 0 < h < n

4.12

The functionality can be verified by looking for a contradiction concerning the as-
sured quality of a solution. For that purpose, the relative error to the optimum,
whose constituents with fixed benefit and cost values have been spread onto
an arbitrary route, is considered. The latter has an overall benefit of 150n and
total costs of 50n, because a variable initialised with −1 (if n is even) or 50 (if
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n is odd) initiates two successive activities (except the first and second if n is
odd) on that best path to always sum up to b1 +b2 = 300 and c1 +c2 = 100.

Furthermore, the tests of category “li” do not only contribute to a high test cov-
erage but also serve for determining the runtime function (5.34). The codomains
for singles, pools and candidates are configurable in “ReturnResultLITest.cs”
as displayed in listing 10. For “Test01”, their lower/upper bound and incre-
ment can be specified appropriately with 5.34 so that the thereby resulting
number of test instances terminate in a reasonable time. NODES_LOWER,
NODES_UPPER, NODESPR_LOWER and NODESPR_UPPER constitute additional
guidelines for the graph composition in “Test02”. The remaining constants be-
long to “Test03” whose task is to execute several (defined by RUNS) tests with
a static amount of single, pool and candidate activities.

18 public const int SINGLES_LOWER = 0;//9900000

19

20 public const int SINGLES_UPPER = 20;//9900000

21

22 // value (> 0) for incrementing number of singles

23 public const int SINGLES_INC = 1;//9900

24

25 public const int SINGLES_MAX = 9900000;

26

27 public const int POOLS_LOWER = 0;//1000

28

29 public const int POOLS_UPPER = 20;//1000

30

31 // value (> 0) for incrementing number of pools

32 public const int POOLS_INC = 1;

33

34 public const int POOLS_MAX = 1000;

35

36 public const int CANDIDATES_LOWER = 0;//100

37

38 public const int CANDIDATES_UPPER = 20;//100

39

40 // value (> 0) for incrementing number of candidates

41 public const int CANDIDATES_INC = 1;

42

43 public const int CANDIDATES_MAX = 100;

44

45 public const int NODES_LOWER = 40;

46

47 public const int NODES_UPPER = 50;

48

49 public const int NODESPR_LOWER = 0;
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50

51 public const int NODESPR_UPPER = 10;

52

53 public const int RUNS = 100;

Listing 10: Example settings for random tests

Moreover, “Test03” is suited best for performance tests. If an average runtime
is to be determined for the maximum load configuration, the values actually
commented out should be used. Secondly, printing has to be turned off. As for
“Test01” and “Test02”, the output is written to the corresponding excel file.

4.4 Usage

This final section describes how the library’s functionality can be harnessed by
other applications. The API-functions (i.e. the wrapper) have been introduced
previously, here the focus lies in the inorder insertion of activities for their
subsequent evaluation (on-the-fly). Furthermore, an activity diagram will show
the life cycle of an operator instance. Finally, important things to note when
using the wrapper are outlined.

To get the tests work, the setup of the test project shall be discussed first.
All of the software was developed in Microsoft Visual Studio 2005. Within
WorkflowCompositionLibrary the following dependencies have to be selected:

1. Microsoft Excel 12.0 Object Library
2. nunit.framework
3. nunit-gui-runner
4. WorkflowCompositionWrapper

The first import implicates that version 2007 of Microsoft Excel is installed.
NUnit 2.4.3 which is freely available provides nunit.framework.dll and nunit-gui-
runner.dll. The last reference together with the unmanaged WorkflowComposi-
tionLibrary.dll (which is instead copied into “bin/Debug”) has to be present in any
application that makes use of the program. Once these resources have been
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added and a refresh has eventually been performed, the folder “References” in
the “Solution Explorer” should be in accordance with the one in figure 5. Invok-
ing “Clean Solution”, “Build Solution” and “Start Debugging” or “Start Without
Debugging” in sequence will launch the graphical interface of NUnit where the
tests that should be run, can be specified.

Figure 5: References of WorkflowCompositionTest

After WorkflowCompositionLibrary.dll and WorkflowCompositionWrapper.dll have
been included and referenced in a project, an inorder-insertion algorithm needs
to be applied for efficiency reason. Method “BuildTestGraph” in “InsertActivi-
tyMITest.cs” listed below places one at the user’s disposal. Simply “Activity” and
“ActivityGraph” have to be replaced with the appropriate types in the particular
application.

1267 private void BuildTestGraph(Activity activity)

1268 {

1269 int i;

1270 if (activity != null)

1271 {

1272 if (activity.Pool)

1273 {

1274 op.InsertPoolActivity();

1275 if ((tmp = activity.Candidate) != null)

1276 {
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1277 // iterate over the candidates

1278 while (tmp != null)

1279 {

1280 op.InsertCandidateActivity(tmp.Id, tmp.Benefit, tmp.Cost);

1281 tmp = tmp.Candidate;

1282 }

1283 }

1284 }

1285 else

1286 {

1287 op.InsertSingleActivity(activity.Id, activity.Benefit, activity.Cost);

1288 }

1289

1290 if (activity.Next != null)

1291 {

1292 // iterate over the children

1293 for (i = 0; i < activity.Next.Count; i++)

1294 {

1295 BuildTestGraph((Activity)activity.Next[i]);

1296 }

1297 }

1298 }

1299 op.InsertBackStatement(1); // one step back

1300 }

Listing 11: Inorder insertion of activities

Once an optimal workflow has been successfully composed, the operator can
either be destroyed or preserved for a later update. Since an update constitutes
a re-evaluation of a subgraph altered at runtime (structure and/or benefit/cost
values of activities) it is also possible to get a new (or preserved) instance from
a dispatcher component in an upper architectural tier. Figure 6 clarifies this
circumstance with the life cycle of an operator instance.

At the end of this chapter, some useful hints for a correct and efficient use of
the software are given.

• An activity’s id can be negative but it has to be unique. Otherwise, the
result might be ambiguous.

• All benefit (b) and cost values (c) have to be chosen from their specified
codomains. Internal overflows caused when the sum of benefits and/or
costs exceeds the four byte “int” number range have to be avoided.

• Ordering candidates ascending by b/c increases the number of iterations
(high runtime per route).
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Figure 6: Common use of an operator instance

• Sorting candidates descending by b/c reduces the number of iterations
(low runtime per route).

• Evaluating two workflows as one is possible by inserting a common root
(dummy activity e.g. an empty pool).

• Routes, that likely contain the optimal selection (e.g. longest paths) should
be read in first to skip simplex-calls for subsequent ones (low runtime per
workflow).

• The result array is either null or it holds at least two elements. The first
entry matches the overall benefit value of the solution found while the
others form the ids in the sequence of insertion.
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5 Evaluation

This chapter focuses on three aspects characterising the library: Exactness,
memory and runtime. The first section quantifies the correctness of a found
solution by setting an upper limit on the relative error. Secondly, the program’s
use of memory resources is discussed. A simple function shows the depen-
dency between user defined input variables and occupied storage. The next to
last section is dedicated to close examinations of the implemented algorithm’s
runtime behaviour. Finally, using the three main equations for the library’s con-
figuration is demonstrated with an example.

Appendix C contains statistical data associated exclusively with this chapter.
Table 1 presents important characteristics about the computer, the tests were
performed on. All values have been rounded to three decimal places for the
given magnitude (in square brackets).

Processor

name Intel Core Duo T2500 / 2 GHz

multi-core technology Dual-Core

data bus speed 667 MHz

RAM
technology DDR II SDRAM - 533 MHz

quantity 1 GB

Cache
type L2

quantity 2 MB

Table 1: Performance features of the test system

5.1 Exactness

Within this section, the degree of precision concerning the algorithm’s pro-
posed solution is discussed. For that purpose, the relative error f is taken as
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quantifiable measure:

f =
Bopt −Bl

Bl
5.1

Bl constitutes the benefit value of the chosen route, i.e. all benefits of the
activities added up to form the solution. The latter corresponds to the linear
programming relaxation rounded down. Rounding is necessary in the heuristic,
if two candidates j1 and j2 have been selected for pool i, otherwise an exact
solution has already been found (f = 0). It is accomplished by choosing the
candidate with the smaller cost value because the other one would make the
route’s costs exceed the predefined limit. Assuming j1 causes a valid result
then Bl is equivalent to:

Bl = bij1 +
n

∑
k=1,k 6=i

bk 5.2

Variable k iterates over the selected activities to get representatives for all
nodes n (number of single and pool activities) of this route. Just as Bopt de-
notes the sum of benefits in the optimal solution, so does Bs for the linear
programming relaxation and Bu for the latter rounded up:

Bs = bij1xij1 +bij2xij2 +
n

∑
k=1,k 6=i

bk = bij1 +∆bijxij2 +
n

∑
k=1,k 6=i

bk = ∆bijxij2 +Bl 5.3

Bu = bij2 +
n

∑
k=1,k 6=i

bk = ∆bij +Bl 5.4

Here, the relation xij2 = 1− xij1 has been used. If f 6= 0, the following inequalities
are valid:

Bl < Bopt ≤ Bs < Bu 5.5

Bopt = Bs indicates that an integer solution of which the sum of benefits is Bs

too, does exist. Subtracting Bl from every term allows a proper estimation of
Bopt −Bl . Since the difference between any two benefit values does not exceed
a specified limit (bmin), Bopt −Bl < bmin holds for every solution of the heuristic
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(due to xij2 < 1). The relative error therefore approaches 0 asymptotically for
an increasing number of nodes:

f <
bmin

bij1 +∑n
k=1,k 6=i bk

≤ bmin

nbmin
=

1
n

5.6

The more nodes a route has, the higher the relative closeness (to be de-
fined as 1− f ) gets. It’s already above 90% when evaluating a path with ten
nodes. However, the worst case concerning exactness occurs if there are only
two pools. In the smallest problem instance, each of them holds two candi-
dates. Choosing Bl = b12 +b21 and Bu = b12 +b22 then Bs = b12 +b21x21 +b22x22

and Bopt = b11 +b22. Equation 5.5 comprises all constraints when maximising
Bopt −Bl and minimising Bl for f :

b12 +b21 < b11 +b22 ≤ b12 +b21x21 +b22x22 < b12 +b22 5.7

0 < b11 +b22−b12−b21 ≤ (b22−b21)x22 < b22−b21 5.8

Bopt−Bl is highest for b22 = 2bmin, b21 = bmin and x22 = 1−ε0 (i.e. close to 1). Bl

would be lowest when setting b12 to bmin but to the contradiction of Bopt < Bu.
So b11 = bmin and b12 = bmin +δ0 with δ0 ∈N as small as possible. The maximum
relative error can now be written as:

fmax =
bmin−δ0
2bmin +δ0

5.9

What is the smallest value possible for δ0? Considering the total costs of
the linear programming relaxation which coincide with the predefined cost limit
Cmax , ε0 equals the following expression:

ε0 =
c12 +c22−Cmax

c22−c21
5.10

The formula for ε0 yields a lower bound of 1/Cmax . An upper bound results
from 5.8. The variables δ0 and ε0 are therefore related as below:

1
Cmax

≤ ε0 ≤
δ0

bmin
5.11
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Setting δ0 and ε0 to the smallest values possible (i.e. dbmin/Cmaxe and 1/Cmax )
leads to c11 = 0, c12 = 1, c21 = 0 and c22 = Cmax . Furthermore, fmax is deter-
mined by:

fmax =
bmin−dbmin/Cmaxe
2bmin + dbmin/Cmaxe 5.12

As a concrete problem instance with typical test values bmin = 100 and
Cmax = 100, the worst case situation concerning exactness has the mathemat-
ical form:

max 100x11 + 101x12 + 100x21 + 200x22

s.t . x12 + + 100x22 ≤ 100

x11 + x12 = 1

x21 + x22 = 1

x11 , x12 , x21 , x22 ∈ {0,1}

5.13

With ε0 = 0.01 the optimal solution found by the simplex algorithm amounts to
x11 = 0, x12 = 1, x21 = 0.01 and x22 = 0.99 so that Bs = 300. The heuristic in
turn sets x21 = 1 and x22 = 0 to propose a valid solution. The divergence is
highest because another optimal solution x11 = 1, x12 = 0, x21=0, x22 = 1 with
Bopt = Bs = 300 exists: fmax ≈ 0.49.

The prevention of low correctness ought to be paid attention to in a future
release. As the relative error has an impact only on workflows with short
routes, solving a small program exactly e.g. with branch-and-bound seems to
be suited best. But if the number of candidate activities happens to exceed the
nodes by several orders of magnitude another approximation scheme will have
to be applied.

5.2 Memory

Memory allocation occurs only once at the beginning in method “init” of “export.c”.
This can be seen as a consequence of the experienced performance loss in
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case of dynamically allocating storage. The disadvantage of statically using re-
sources is leveraged by giving the calling application the opportunity to decide
on the maximum amount of MB for processing a route. The latter turns out to
be important when figuring out the number of single, pool and candidate activ-
ities so that everything fits into main memory or does not exceed the storage
capabilities of the device itself.

Hence, a relation between the specified number of activities and their associ-
ated need of storage, expressed by fS (S ,P ,C ) is needed. S , P and C do not
necessarily coincide with MAX_ACTIVITIES −MAX_POOLS ∗MAX_CANDIDATES
(the maximum number of singles), MAX_POOLS and MAX_CANDIDATES. The
latter are typically adapted only once for the computer hosting the library while
the former represents a client’s actual request (i.e. the current mode of oper-
ation) in a web service-like scenario.

As previously mentioned, the malloc-statements are concentrated in the initial-
isation process. An exception is thrown if only a single call to “malloc” fails.
This all-or-nothing strategy relieves other methods being called more frequently
from this costly process. The code snippet for memory allocation is printed in
listing 12.

52 if ((activities = malloc(num_activities * ACTIVITY_SIZE)) == NULL ||

53 (rids = malloc((2 + num_activities) * sizeof(rids[0]))) == NULL ||

54 (pools = malloc(num_pools * POOL_SIZE)) == NULL ||

55 (basis = malloc(2 * sizeof(basis[0]))) == NULL ||

56 (basis[0] = malloc(2 * (1 + num_pools) * sizeof(basis[0][0]))) == NULL ||

57 (xB = malloc((1 + num_pools) * sizeof(xB[0]))) == NULL ||

58 (y = malloc((1 + num_pools) * sizeof(y[0]))) == NULL ||

59 (d = malloc((1 + num_pools) * sizeof(d[0]))) == NULL ||

60 (sB = malloc((1 + num_pools) * sizeof(sB[0]))) == NULL ||

61 (best = malloc(num_pools * sizeof(best[0]))) == NULL ||

62 (fname = malloc(LENGTH * sizeof(fname[0]))) == NULL ||

63 (routetos = malloc((1 + NUM_DIGITS) * sizeof(routetos[0]))) == NULL)

64 {

65 leave(ERR_MEMORY);

66 }

Listing 12: Memory allocation

The size of all common fields and structures can be found in appendix B. Adding

45



5 EVALUATION 5.3 Runtime

up all parts leads to the function given below:

fS (S ,P ,C ) = 16S +56P +16CP +83 5.14

This equation states the total amount of allocated bytes depending on the de-
fined number of activities. It enables the configuration of the library regarding
storage issues. Section 5.4 shows an example for a detailed customisation
of WorkflowCompositionLibrary for additional information about execution time
and nodes per route.

5.3 Runtime

The following sections deal with theoretical and experimental runtime deter-
mination. “Test01” in “ReturnResultLiTest.cs” happens to be most suitable to
accomplish this for a single route. The first configuration helps in assigning con-
crete values to all coefficients in the route’s runtime function. Their correctness
and possible improvements are examined thereafter. Finally, the algorithm’s
runtime behaviour in a real abstract workflow with completely different paths is
discussed.

5.3.1 Runtime Equation of a Route

Runtime generally depends upon three variables: the number of single activities
(s), the amount of pool activities (p) and the candidate activities (c). It can be
savely assumed that c is constant for every pool on a certain path.

Such as the library’s functionality is basically made up of read-in process and
optimisation procedure, so the runtime is. If printing is turned off, the overhead
of the former is caused by the methods “insertsa”, “insertpa”, “insertca” and
“reset”. Table 2 shows the function’s runtime contribution when processing the
input.
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Method Complexity

insertsa Θ (s)

insertpa Θ (p)

insertca Θ (cp)

reset Θ (s +p)

Table 2: Input processing methods and their complexity per route

The extra invocation of “insertpa” initiates the execution of the algorithm. The
latter is composed of several parts contributing to the overhead. Table 3 shows
the situation at a glance for the steering function “trigger”.

trigger Ω (p),O (s +p +p2log(cp) +cp2log(cp))

shortcut Ω (p),O (c +p)

simplex Ω (p +cp),O (p +p2log(cp) +cp2log(cp))

step0 Θ (p)

step234 Θ (p +cp)

refactor Θ (p)

eval Θ (p)

fillr Θ (s +p)

Table 3: Algorithmic break down of complexity

The estimation is straight-forward for most of the functions listed. However,
“simplex” deserves a bit more attention. As stated in the previous chapter,
the simplex algorithm consists of five steps that are continuously repeated.
An additional method “step0” exclusively serves for initialisation purposes. The
decisive question “How many iterations can be expected for the while-loop at
the beginning?” cannot be settled easily on a theoretical basis. According
to studies conducted in this area (Chvátal [Chv83]), the number of iterations
increases proportionally to the number of constraints (p +1) and the logarithm
of the number of real variables (cp).

This circumstance turns out to be true for most problems and therefore con-
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stitutes the simplex method’s wide spread. Unfortunately, examples do exist
where the number of iterations is of an exponential size (Klee et al. [KM72]).
However, this worst case scenario seems to be very rare, otherwise the above
mentioned studies would have shown diverging results. Therefore, plog(cp)
has been chosen as upper bound function for the total amount of iterations in
“simplex”.

If the start solution is already close to the optimum, only a constant number of
iterations is necessary. Because of such cases, its lower bound has been set
on Ω (1). In general, reducing the number of iterations is not only possible by
finding a good start solution but also when judging candidates for entering the
basis (step 2) by some good strategy. Chvátal [Chv83] mentions in this context
the “Devex” and “steepest edge” criterion with a possible overhead reduction of
more than 50%.

The time an iteration takes can be derived from each single step of the algorithm
and “refactor”. The latter is linear to p although in practice the period for
refactoring can be chosen arbitrarily large (to the disadvantage of accuracy
though). Accounting all relevant parts, the complexity per iteration can be
estimated as Θ (p +cp). Lower and upper bound functions of the latter explain
Ω - and O -expression for describing the simplex’s overhead. Function “trigger”
requires a minimum of resources if the start solution is infeasible or below a
predetermined bound. If the input allows no shortcut, then “simplex” together
with “fillr” contributes to its running time.

The reason for not merging unequal terms in Ω -, Θ - and O -notation as it would
have been possible for e.g. O (p +p2log(cp) +cp2log(cp)) = O (cp2log(cp)) in “sim-
plex” becomes evident when setting up a more accurate runtime-equation for a
route:

fR (s,p,c) = αs +βp + γcp +δp2ln(cp) + εcp2ln(cp) +ζ 5.15

Here, the number of candidates and pools is assumed to be positive. To con-
sider also 0-values, the expression could be replaced with ln(1+ ιcp). However,
the additional coefficient constitutes a numerical problem. To get rid of it, the
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term is replaced by 0 for p,c = 0 and ln(cp) otherwise with ln(ι) being subsumed
by ζ .

ln(1+ ιcp)
cp À 1≈ ln(ιcp) = ln(cp) + ln(ι) 5.16

5.3.2 Coefficient Determination

A first series of tests aims at the assignment of good estimations to all coeffi-
cients of the function. The arithmetic mean is then chosen as good approxima-
tion though the true values remain unknown for a finite number of tests.

If multiple measurements are performed keeping s, p and c constant then the
output data r will follow a normal distribution. This can be seen as a conse-
quence of stochastic independence among r (true randomness), described by
the central limit theorem (Viertl [Vie03]). Systematic errors have been avoided.
The equation below represents the Gaussian distribution of r.

p(r) =
1√

2πσ2
e−

(r−fR (s0,p0,c0))2

2σ2 5.17

The probability of getting fR (si ,pi ,ci ) out of m triples (si ,pi ,ci ) by m independent
measurements (Demtroeder [Dem03]) can be written as:

P (r1, . . .,rm) =
m

∏
i=1

p(ri ) 5.18

P (r1, . . .,rm) =
(

1
2πσ2

)m
2

e−
∑m

i=1(ri−fR (si ,pi ,ci ))
2

2σ2 5.19

Its largest value indicates that the best coefficients have been found for the input
test data. As expected, the method of least squares is a direct consequence
of maximising P (r1, . . .,rm):

m

∑
i=1

(ri − fR (si ,pi ,ci ))
2 →min 5.20
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To keep the syntax short, fR (s,p,c) is put into vector notation:

fR (s,p,c) =~xT~θ ~xT :=
(

s p cp p2ln(cp) cp2ln(cp) 1
)
, ~θ :=




α
β
γ
δ
ε
ζ


 5.21

Calculating the minimum means setting all partial derivatives to 0. By using the
nabla operator ∇, this condition is focused in the following equation:

∇

(
m

∑
i=1

(ri −~xT
i
~θ )2

)
=~0 ∇ =




∂
∂α
∂

∂β
∂
∂γ
∂

∂δ
∂

∂ε
∂

∂ζ




5.22

m

∑
i=1

∇(ri −~xT
i
~θ )2 =~0 5.23

m

∑
i=1

2(ri −~xT
i
~θ )(−∇(~xT

i
~θ )) =~0 5.24

m

∑
i=1

(ri −~xT
i
~θ )~xi =~0 5.25

m

∑
i=1

(~xT
i
~θ )~xi =

m

∑
i=1

ri~xi 5.26

To extract the parameter vector ~θ out of (~xT
i
~θ )~xi the subsequent equivalence is

used.

(~xT
i
~θ )~xi =




si~xT
i

pi~xT
i

cipi~xT
i

p2
i ln(cipi )~xT

i
cip2

i ln(cipi )~xT
i

~xT
i




~θ 5.27

The linear system of equations to solve for ~θ is conform to AAA~θ =~b with symmetric
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matrix AAA and ~b as follows.

AAA :=




∑m
i=1 s2

i ∑m
i=1 sipi ∑m

i=1 sicipi ∑m
i=1 sip2

i ln(cipi ) ∑m
i=1 sicip2

i ln(cipi ) ∑m
i=1 si

a12 ∑m
i=1 p2

i ∑m
i=1 cip2

i ∑m
i=1 p3

i ln(cipi ) ∑m
i=1 cip3

i ln(cipi ) ∑m
i=1 pi

a13 a23 ∑m
i=1 c2

i p2
i ∑m

i=1 cip3
i ln(cipi ) ∑m

i=1 c2
i p3

i ln(cipi ) ∑m
i=1 cipi

a14 a24 a34 ∑m
i=1 p4

i ln2(cipi ) ∑m
i=1 cip4

i ln2(cipi ) ∑m
i=1 p2

i ln(cipi )
a15 a25 a35 a45 ∑m

i=1 c2
i p4

i ln2(cipi ) ∑m
i=1 cip2

i ln(cipi )
a16 a26 a36 a46 a56 m




5.28

~b :=




∑m
i=1 risi

∑m
i=1 ripi

∑m
i=1 ricipi

∑m
i=1 rip2

i ln(cipi )

∑m
i=1 ricip2

i ln(cipi )
∑m

i=1 ri




5.29

The general function 5.15 includes a linear dependency of s. If p = 0 and there-
fore also c = 0, a linear regression model to obtain formulas for α and ζ is
taken into consideration. However, this job is also done by calculating AAA~θ =~b for
that special case.


∑m

i=1 s2
i ∑m

i=1 si

∑m
i=1 si m


 ·


α

ζ


 =


∑m

i=1 risi

∑m
i=1 ri


 5.30

Solving this system leads to equations for α and ζ . Comparing them with
Bronstein et al. [BS85] for instance, shows accordance.

α =
m∑m

i=1 risi −∑m
i=1 ri ∑m

i=1 si

m∑m
i=1 s2

i −
(
∑m

i=1 si
)2

5.31

ζ =
∑m

i=1 ri ∑m
i=1 s2

i −∑m
i=1 risi ∑m

i=1 si

m∑m
i=1 s2

i −
(
∑m

i=1 si
)2

5.32

Unfortunately, finding formulas for all variables in the general case is hardly
manageable. Hence, solving this system of linear equations numerically remains
an alternative. Modern spreadsheets offer the possibility of keeping the solution
finding process reusable.

Characteristic data about the test environment can be found in appendix C. As
computers may differ heavily, the question about meaningfulness concerning
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coefficient determination on a specific machine arises. Anyway, repeating one
of the test suites in this appendix and comparing the average values, leads to
the right proportionality constant to multiply the runtime function with.

To summarise, ten tests have been run to get significant values for each pa-
rameter. The codomain of s, p and c has been fixed as follows to get good
representatives out of all possible varible-value combinations. Table 4 shows
the calculated parameters for the tests performed. The abbreviation l[i]u de-
notes lower and upper bound with the increment in square brackets. Due to
these settings, the number of measurements amounts to 330.

Concluding this section, the execution time (in 10−7seconds) per route is ex-
pressed by:

fR (s,p,c) = 2.42s +18p +8.8cp +0.019p2ln(cp) +0.010cp2ln(cp) +96000
5.33

In practice, most of the data are dispersed around this function value in the av-
erage confidence interval [-0.05s, +0.05s]. Fortunately δ and ε, the parameters
of the terms most decisive for the overall runtime, are small compared to the
others. That circumstance could be explained by the little influence of ln(cp).

5.3.3 Adjusting Parameters

This section describes case studies with respect to parameter tuning tech-
niques. They do not only lead to more precise values but also allow a verification
of equation 5.33.

Coefficient α can be determined more accurately. However, the performance
data in table 4 narrows its value to 2.42E-7±0.01 thus leaving only the hun-
dredth of a second undetermined (for s = 107). To verify this estimation, a
fine-grained test has been carried out by setting p,c = 0 – with the function to
analyse evaluating to fR (s,0,0) = αs +B. Generally, B 6= ζ as there are fewer
terms contributing to the runtime in this case. The number of single activities
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has been kept variable in the same interval but being incremented by 9900
in each run. So m = 1001 and α is calculated directly by formula 5.31. As a
result, the value has been computed to 2.420E-7 which almost coincides with
the mean value. Figure 7 represents this test graphically.

Figure 7: Estimation of α with fR (s,0,0)

Parameter tuning for β , γ, δ and ε would be desirable for accurate runtime
predictions. Unfortunately, the values in table 4 are quite diverging. This could
be a consequence of how candidate activities are selected from a pool (step 2
of the algorithm). To receive more stable values, the mean of another ten
tests shall be considered. Setting s = 0 for instance, would help to focus on
the influence of p and c in the simplex method. As in the first test suite, the
values for the number of candidates and pools have been chosen uniformly from
their complete codomains. An in-depth analysis is achieved by lowering the loop
increment e.g. on 10 for both variables. According to these settings, 1111
measurements are necessary for fR (0,p,c) = βp + γcp + δp2ln(cp) + εcp2ln(cp) +
B, with B 6= ζ again.

As a representative, the function of test01 is plotted (figure 8). The single
measurements have been omitted for clarity reasons. Interestingly, the function
values drop below zero for small values of p and c. This turns out to be
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a consequence of 0 < ι < 1 (in the incorrect approximation 5.16 for cp 6À 1)
because ln(ι) is negative in this interval leading to a negative B.

Figure 8: Estimation of β , γ, δ and ε with fR (0,p,c)

Table 5 demonstrates the results of the tests launched. Fortunately, the values
are more stable this time, but unexpectedly higher (especially β ). Therefore,
another series of tests keeps s varying among the tests (i.e. generates cuts of
the runtime function) although no dependency on the number of single activities
exists. This can be seen in table 6.

Fixing s, p and c allows for a closer determination of ζ . “Test03” assigns
random values to these variables (within their appropriate codomains). As far
as the number of measurements is concerned, 100 has been chosen. The
other parameters have been adapted to the previous results. The outcome can
be viewed in table 7.
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Unfortunately, ζ varies heavily over two orders of magnitude. However, weight-
ing ζ to the mean execution time 〈r〉 shortens this interval to 0.04. Moreover,
ζ/〈r〉 appears to be independent of s, p and c. Substituting fR (s,p,c) for 〈r〉
and dissolving the reflective relationship leads to a ζ -free runtime equation. So
every term is multiplied by 1/(1−κ) with κ being the average of ζ/〈r〉. With
κ = 0.03 and the improved parameter values (table 7) equation 5.33 is updated
as follows:

fR (s,p,c) = 2.49s +38p +9.5cp +0.026p2ln(cp) +0.010cp2ln(cp) 5.34

Testing this function for the maximum load preconfigured – i.e. 100.000 vari-
ables (p = 1000, c = 100) for the simplex and 9900.000 single activities – yields
3.745[s]. Applying these settings on “Test03” produces the average 3.754[s]
– a neglectable difference.

5.3.4 Runtime Estimation for a Workflow

An abstract workflow’s execution time depends on the arrangement of its single
routes. Candidate activities sorted in ascending order by their benefit values
lead to an unnecessary delay. The same applies to paths at a higher level of
granularity. The calling application can speed up processing of a workflow when
passing probable candidate routes first.

However, the decision which path to bring forward cannot be made easily if they
don’t differ noticeably in length or in their activities’ characteristics. In such
cases it’s best to rely on the built-in shortcut criteria. The general overhead of
a workflow can be written as:

fW (s,p,c)act = ηfW (s,p,c)exp 0 < η ≤ 1 5.35

fW (s,p,c)act = η
N

∑
i=1

fR (s,p,c)i 5.36

The factor η describes the relationship between the workflow’s actual and ex-
pected processing time. It is lowest if a shortcut is possible for every route
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and highest in case of evaluating every route. Thus η serves as an indicator for
synergy originating from a path’s dependency on its predecessors.

5.4 Customisation

The preset maximum number of single, pool and candidate activities occupies
about 153MB. Hence, a main storage of 256MB RAM at least is a necessary
precondition for the tests and advisable when using the library in common. But
how to adjust the library so that it uses only 10MB at a maximum? Another
configurational aspect is execution time. Using the program in a web service
environment for instance, might impose an upper bound for the net processing
time per route of 1 second. Finally, the calling application itself has to cope with
routes of a certain length and passes the constraint (not more than 500.000
nodes) to WorkflowCompositionLibrary.

This challenge can be met by recalling the functions for storage and runtime
together with the formula for the number of nodes per route:

S + P = 500000

16S + 56P + 16CP + 83 = 10485760

2.49S + 38P + 9.5CP + (0.01C +0.026)P2ln(CP ) = 10000000

5.37

Substituting S and P in the last equation which is then to be solved numerically
results into MAX_POOLS = 392 and MAX_CANDIDATES = 393.

Customising WorkflowCompositionLibrary that way could be problematic, be-
cause a solution to the equation system 5.37 does not necessarily exist for all
feasible settings. Another strategy consists in fixing the maximal number of
single and candidate activities and calculating MAX_POOLS from the runtime
equation for a given upper time limit.

There are several reasons, why single activities should not be read into the

56



5 EVALUATION 5.4 Customisation

library. Firstly, they do not participate in the evaluation process. For a calling
application, the interesting thing is just to get the right candidates out of the
pools. Secondly, they occupy most of the storage and contribute remarkably to
the processing time – a dynamic update slows down needlessly.

Besides setting S = 0, C = 50 can be expected in the context of web services.
It’s smaller of course, if the activities represent tasks to be fulfiled by per-
sons. If the evaluation of a route should not last more than a second, then
MAX_POOLS = 1267. This configuration needs only 1MB of memory.
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6 Conclusion

Concluding this thesis, some final remarks on the model, its mathematical
formulation and the implementation are given. The separation to what should
be covered in a next version is discussed afterwards. At the end, the content
of this work and the main features of the algorithm are summarised.

6.1 Final Remarks

The approach presented in this work addresses the problematic characteristics
of long workflows: combinatorial issues and dynamic aspects. The underlying
abstract workflow model keeps the mathematical formulation of the optimisation
problem simple as opposed to other proposals reviewed in chapter 2. This is
achieved by mapping QoS criteria such as availability, reliability and execution
time for each activity to a single benefit and cost value. Mapping functions
have been proposed ad hoc, but they may be adjusted to specific needs in
consideration of the appropriate codomains. So they provide a flexible mean
of adaptation to a variation in the quality of service, instead of modifying the
solution finding process.

Moreover, this simple formulation leads to an eased implementation of the re-
vised simplex method. Particularly, the linear equation systems of step 1 and
2 (section 3.2.3) can be solved directly without the need of a factorisation.
Additionally, rounding of the relaxation is facilitated, i.e. it’s a consequence of at
most two fractional variables in just one pool. This is again due to the special
form of the coefficient matrix. Finally, even the upper bound on the relative
error (the reason for denoting the heuristic as approximative) turns out to be
on behalf of the mapping for benefit values.

Although a few points deserve a closer study (section 6.2), the approximation
algorithm constitutes a reasonable tradeoff between accuracy and speed for
big instances. It remains to explore, if exact methods are similar efficient for
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justifiable constraints on the user input.

6.2 Future Work

First of all, the quality limit needs to be lifted for routes with e.g. fewer than ten
nodes. An exact method would serve best for a low number of candidates per
pool. Otherwise, a further heuristic or approximative algorithm would sound
promising. A convex hull determination as done by Yang et al. [YTX+07] may be
applied. The proposition of finding the optimal solution with branch-and-bound
and linear programming relaxations is discussed in section 3.3. However, its
suitability for a high amount of pools (and/or candidates therein) has to be
examined. Including the user into the decision on the degree of efficiency can
be arranged by providing a specifiable time constraint or an explicit query on
the type of algorithm to use.

In the next version, the present implementation itself ought to be ameliorated
concerning execution time and accuracy. The former can be reduced by de-
creasing the number of iterations in the simplex method. More precisely, this
could be accomplished by sorting the candidates in a pool descending by b/c
or changing the existing pivoting strategy for the entering variable. Accuracy
can be improved by augmenting the lower bound set by the heuristic: First, the
pool with two variables in the basis can be iterated over for the best match-
ing candidate. Second, enforcing a restriction on the cost value of an activity
(i.e. cmin ≤ c ≤ 2cmin) likewise on its benefit, narrows the deviation from the
total costs of the optimal solution to less than cmin. It would then be possi-
ble to check for a better limit by varying the predefined costs (Cmax ) at most
ld(cmin) times. After those changes will have been applied, measurements for
the statistic distribution of accuracy will be of a great interest. Minimising the
costs for a given solution might increase the lower bound as well. Besides, a
secondary cost optimisation, which is currently only implemented in “shortcut”
would be attractive for the user as well.

Finally, the software should be adapted technically for an integration into a
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workflow framework or middleware. To serve any specification, the support
for different programming languages has priority. It is achieved by additionally
placing wrappers for other object-oriented languages like C++ and Java at the
disposal. Platform independence requires to replace Visual C constructs (such
as “fopen_s”) with those corresponding to the ANSI C standard in general. As
for the necessary data exchange, developing an encoding scheme for activities
may get appealing with respect to transfer time and size of the data.

6.3 Summary

Beginning with a survey on existing approaches of service composition, a new
model of an abstract workflow has been introduced. It provides a simplified view
on the structure of the graph and its constituents. Each activity at this lowest
architectural tier is assigned a benefit and a cost value. Both parameters are
the result of a function, taking high level QoS criteria as input. A formulation
of the problem as binary linear program has led to the simplex algorithm for
solving its relaxation in the general case. Rounding of the output to a valid
solution is facilitated by at most two fractional variables. Furthermore, exact
methods have been proposed as a suitable extension. Implementation details
of the revised simplex method have been presented thereafter, together with
appropriate code excerpts for library, wrapper and test project. Section “Usage”
constitutes the setup in other projects and important things to note. In the last
part, a thorough evaluation regarding exactness, memory and runtime has
been conducted.

The algorithm performs best for paths containing many nodes (n). The rel-
ative error is bounded by 1/n and the runtime goes almost quadratically to
the number of pools for a constant amount of candidates therein. The latter
allows dynamic updates where the actual subgraph can be read in on-the-fly.
Preferably, the routes which likely comprise the optimal solution should be in-
serted first. Tuning is foremost possible by ordering the candidates in a pool
descending by the ratio b/c. Generally, the library can be customised for a
more lightweight use in e.g. mobile phones or web services environments. For
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that purpose, the import of single activities may be skipped and the maximum
of candidates may be fixed to some reasonable value before considering the
runtime and memory equation.
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A Applications

Example: max {~bT~x | CCC~x =~a ,~x ≥~0}
~a =

(
1 1 100

)T

~bT =
(

133 135 133 142 142 161 133 146 125 144 136 197 0
)

CCC =
(

1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0
0 50 92 42 66 38 96 62 5 86 47 14 1

)

A.1 Standard Simplex Method

−258 0 2 0 9 9 28 8 21 0 19 11 72 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 1 1 1 1 1 0

95 0 50 92 42 66 38 91 57 0 81 42 9 1

−260 −2 0 −2 7 7 26 8 21 0 19 11 72 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 1 1 1 1 1 0

45 −50 0 42 −8 16 −12 91 57 0 81 42 9 1

−267 −9 −7 −9 0 0 19 8 21 0 19 11 72 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 1 1 1 1 1 0

53 −42 8 50 0 24 −4 91 57 0 81 42 9 1

−286 −28 −26 −28 −19 −19 0 8 21 0 19 11 72 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 1 1 1 1 1 0

57 −38 12 54 4 28 0 91 57 0 81 42 9 1

−291 1
91 −2460

91 −27 5
91 −3268

91 −1932
91 −21 6

13 0 0 1590
91 0 1180

91 7 4
13 7119

91 − 8
91

1 1 1 1 1 1 1 0 0 0 0 0 0 0
34
91

38
91 −12

91 −54
91 − 4

91 − 4
13 0 0 34

91 1 10
91

7
13

82
91 − 1

91

57
91 −38

91
12
91

54
91

4
91

4
13 0 1 57

91 0 81
91

6
13

9
91

1
91
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−307 −42 9
17 −21 7

17 −7 6
17 −17 8

17 −8 5
17 0 0 0 −4227

34 7 3
17 −1525

34 3211
17

13
34

1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 2
17 − 6

17 −110
17 − 2

17 −14
17 0 0 1 223

34
5
17 115

34 2 7
17 − 1

34

0 −1 38
323

6
17 110

17
2
17

14
17 0 1 0 −123

34
12
17 −15

34 −1 7
17

1
34

−307 −311
6 −25 −231

2 −182
3 −162

3 0 −101
6 0 −253

4 0 −111
4 47 1

12

1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 7
12 −1

2 −21
4 −1

6 −11
6 0 − 5

12 1 33
8 0 15

8 3 − 1
24

0 −1 7
12

1
2 21

4
1
6 11

6 0 1 5
12 0 −23

8 1 −5
8 −2 1

24

−3222
3 −5535

36 −171
6 113

4 −16 1
18 111

18 0 −323
36 −152

3 −785
8 0 −3617

24 0 53
72

1 1 1 1 1 1 1 0 0 0 0 0 0 0
1
3

19
36 −1

6 −3
4 − 1

18 − 7
18 0 − 5

36
1
3 11

8 0 13
24 1 − 1

72
2
3 −19

36
1
6

3
4

1
18

7
18 0 1 5

36
2
3 −1

8 1 11
24 0 1

72

−3331
9 −4719

27 −197
9 0 −1625

27 −413
27 0 −2113

27 −261
9 −762

3 −152
3 −438

9 0 14
27

1
9 119

27
7
9 0 25

27
13
27 1 −114

27 −8
9

1
6 −11

3 −11
18 0 − 1

54

1 0 0 0 0 0 0 1 1 1 1 1 1 0
8
9 −19

27
2
9 1 2

27
14
27 0 114

27
8
9 −1

6 11
3

11
18 0 1

54

−358 −28 −26 −28 −19 −19 0 −64 −51 −72 −53 −61 0 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 1 1 1 1 1 0

48 −38 12 54 4 28 0 82 48 −9 72 33 0 1

A.2 Revised Simplex Method

~x∗B =




1

1

95


 , CB0

CB0
CB0

=




1 0 0

0 1 0

0 5 1




Iteration 1:
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1. ~yTCB0
CB0
CB0

= ~bT
B0

~yT =
(
133 125 0

)

b2−~yT~c2 = 2, ⇒ x2 enters the basis

2. CB0
CB0
CB0

~d = ~c2

~d =
(
1 0 50

)T

~x∗B− xe
~d ≥ ~0

xe = 1, ⇒ x1 leaves the basis

3. ~x∗B =




1

1

45


 , CB1

CB1
CB1

=




1 0 0

0 1 0

50 5 1




Iteration 2:
1. ~yTCB1

CB1
CB1

= ~bT
B1

~yT =
(
135 125 0

)

b1−~yT~c1 = −2 b3−~yT~c3 = −2

b4−~yT~c4 = 7, ⇒ x4 enters the basis

2. CB1
CB1
CB1

~d = ~c4

~d =
(
1 0 −8

)T

~x∗B− xe
~d ≥ ~0

xe = 1, ⇒ x2 leaves the basis

3. ~x∗B =




1

1

53


 , CB2

CB2
CB2

=




1 0 0

0 1 0

42 5 1



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Iteration 3:
1. ~yTCB2

CB2
CB2

= ~bT
B2

~yT =
(
142 125 0

)

b1−~yT~c1 = −9 b2−~yT~c2 = −7

b3−~yT~c3 = −9 b5−~yT~c5 = 0

b6−~yT~c6 = 19, ⇒ x6 enters the basis

2. CB2
CB2
CB2

~d = ~c6

~d =
(
1 0 −4

)T

~x∗B− xe
~d ≥ ~0

xe = 1, ⇒ x4 leaves the basis

3. ~x∗B =




1

1

57


 , CB3

CB3
CB3

=




1 0 0

0 1 0

38 5 1




Iteration 4:
1. ~yTCB3

CB3
CB3

= ~bT
B3

~yT =
(
161 125 0

)

b1−~yT~c1 = −28 b2−~yT~c2 = −26

b3−~yT~c3 = −28 b4−~yT~c4 = −19

b5−~yT~c5 = −19

b7−~yT~c7 = 8, ⇒ x7 enters the basis

2. CB3
CB3
CB3

~d = ~c7

~d =
(
0 1 91

)T

~x∗B− xe
~d ≥ ~0

xe = 57
91 , ⇒ x13 leaves the basis

3. ~x∗B =




1
34
91
57
91


 , CB4

CB4
CB4

=




1 0 0

0 1 1

38 5 96



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Iteration 5:
1. ~yTCB4

CB4
CB4

= ~bT
B4

~yT =
(
15760

91 12451
91

8
91

)

b1−~yT~c1 = −2460
91 b2−~yT~c2 = −27 5

91

b3−~yT~c3 = −3268
91 b4−~yT~c4 = −1932

91

b5−~yT~c5 = −21 6
13

b8−~yT~c8 = 1590
91 , ⇒ x8 enters the basis

2. CB4
CB4
CB4

~d = ~c8

~d =
(
0 34

91
57
91

)T

~x∗B− xe
~d ≥ ~0

xe = 1, ⇒ x9 leaves the basis

3. ~x∗B =




1

1

0


 , CB5

CB5
CB5

=




1 0 0

0 1 1

38 62 96




Iteration 6:
1. ~yTCB5

CB5
CB5

= ~bT
B5

~yT =
(
175 9

17 16912
17 −13

34

)

b1−~yT~c1 = −42 9
17 b2−~yT~c2 = −21 7

17

b3−~yT~c3 = −7 6
17 b4−~yT~c4 = −17 8

17

b5−~yT~c5 = −8 5
17 b9−~yT~c9 = −4227

34

b10−~yT~c10 = 7 3
17 , ⇒ x10 enters the basis

2. CB5
CB5
CB5

~d = ~c10

~d =
(
0 5

17
12
17

)T

~x∗B− xe
~d ≥ ~0

xe = 0, ⇒ x7 leaves the basis

3. ~x∗B =




1

1

0


 , CB6

CB6
CB6

=




1 0 0

0 1 1

38 62 86



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Iteration 7:
1. ~yTCB6

CB6
CB6

= ~bT
B6

~yT =
(
1641

6 1511
6 − 1

12

)

b1−~yT~c1 = −311
6 b2−~yT~c2 = −25

b3−~yT~c3 = −231
2 b4−~yT~c4 = −182

3

b5−~yT~c5 = −162
3 b7−~yT~c7 = −101

6

b9−~yT~c9 = −253
4 b11−~yT~c11 = −111

4

b12−~yT~c12 = 47, ⇒ x12 enters the basis

2. CB6
CB6
CB6

~d = ~c12

~d =
(
0 3 −2

)T

~x∗B− xe
~d ≥ ~0

xe = 1
3 , ⇒ x8 leaves the basis

3. ~x∗B =




1
1
3
2
3


 , CB7

CB7
CB7

=




1 0 0

0 1 1

38 14 86




Iteration 8:
1. ~yTCB7

CB7
CB7

= ~bT
B7

~yT =
(
18835

36 20711
36 −53

72

)

b1−~yT~c1 = −5535
36 b2−~yT~c2 = −171

6

b3−~yT~c3 = 113
4 , ⇒ x3 enters the basis

2. CB7
CB7
CB7

~d = ~c3

~d =
(
1 −3

4
3
4

)T

~x∗B− xe
~d ≥ ~0

xe = 8
9 , ⇒ x10 leaves the basis

3. ~x∗B =




1
9

1
8
9


 , CB8

CB8
CB8

=




1 0 1

0 1 0

38 14 92




67



A APPLICATIONS A.2 Revised Simplex Method

Iteration 9:
1. ~yTCB8

CB8
CB8

= ~bT
B8

~yT =
(
18019

27 204 7
27 −14

27

)

b1−~yT~c1 = −4719
27 b2−~yT~c2 = −197

9

b4−~yT~c4 = −1625
27 b5−~yT~c5 = −413

27

b7−~yT~c7 = −2113
27 b8−~yT~c8 = −261

9

b9−~yT~c9 = −762
3 b10−~yT~c10 = −152

3

b11−~yT~c11 = −438
9

b13−~yT~c13 = 14
27 , ⇒ x13 enters the basis

2. CB8
CB8
CB8

~d = ~c13

~d =
(
− 1

54 0 1
54

)T

~x∗B− xe
~d ≥ ~0

xe = 48, ⇒ x3 leaves the basis

3. ~x∗B =




1

1

48


 , CB9

CB9
CB9

=




1 0 0

0 1 0

38 14 1




Iteration 10:
1. ~yTCB9

CB9
CB9

= ~bT
B9

~yT =
(
161 197 0

)

b1−~yT~c1 = −28 b2−~yT~c2 = −26

b3−~yT~c3 = −28 b4−~yT~c4 = −19

b5−~yT~c5 = −19 b7−~yT~c7 = −64

b8−~yT~c8 = −51 b9−~yT~c9 = −72

b10−~yT~c10 = −53 b11−~yT~c11 = −61
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B Code

B.1 Library Excerpts

Listing 13: common.h
/**

* Common header file for use within this project.

**/

#pragma once

#include <stdio.h> /* input/output operations */

#include <stdlib.h> /* memory allocation */

#include <string.h> /* string operations */

/* formulas used within this project: a << b = a * 2^b, a >> b = a / 2^b */

#define DLLEXPORT __declspec(dllexport)

#define ACTIVITY_SIZE 12

#define POOL_SIZE 16

#define MAX_ACTIVITIES 10000000

#define MAX_POOLS 1000

#define MAX_CANDIDATES 100

#define NUM_DIGITS 10

#define LENGTH 20

#define EPS1 1.0e-5

#define EPS2 1.0e-8

#define REF_PERIOD 50

#define ERR_ACTIVITY "Activity index out of bounds"

#define ERR_CANDIDATE_OF "Number of candidates overflow"

#define ERR_CANDIDATE_NP "No pool defined for this candidate"

#define ERR_POOL "Number of pools overflow"

#define ERR_MEMORY "Requested memory could not be allocated"

#define ERR_FILE_OPEN "File could not be opened"

#define ERR_FILE_CLOSE "File could not be closed"

#define ERR_FILE_NAME "File name could not be constructed"

#define env(x, y) (x - y < EPS2 && y - x < EPS2) ? 1 : 0 /* determines if "x" is in EPS2

environment of integer number "y" */

typedef struct activity activity;

typedef struct pool pool;

struct activity

{

int id;

int benefit;

int cost;

};
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struct pool

{

int idx; /* "aidx" of first candidate */

int numc; /* number of candidates in this pool */

int bmax; /* offset to candidate activity with maximal benefit value */

int cmin; /* offset to candidate activity with minimal cost value */

};

activity *activities; /* array of activities on this route */

int *rids; /* array of result ids (first element is size, second is sum of

benefits) */

pool *pools; /* array of pools on this route */

int **basis; /* array of pool index / offset pairs */

double *xB; /* array holding the basis variables’ values */

double *y; /* array representing vector "y" */

double *d; /* array representing vector "d" */

int *sB; /* array containing indices of "basis" to avoid searching */

int *best; /* array of ids comprising the best solution */

int aidx, ridx, pidx; /* current maximal array indices of "activities", "rids" and

"pools" */

int abenefit, rbenefit; /* sum of actual/result benefit values */

int acostl, rcostl; /* actual/result cost level values (route cost level := route max

cost - route cost) */

Listing 14: insertsa
/**

* Inserts an activity of type "single".

*/

extern DLLEXPORT void insertsa(const int id, int benefit, int cost)

{

if (cost < 0)

{

cost = 0;

}

if (benefit < min_benefit)

{

benefit = min_benefit;

}

else if (benefit > min_benefit << 1)

{

benefit = min_benefit << 1;

}

if (deltah != 0)

{

if (acostl >= 0)

{

trigger();

}
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if (print)

{

printr();

}

reset();

}

aidx++;

if (aidx >= num_activities)

{

leave(ERR_ACTIVITY);

}

(activities + aidx)->id = id;

(activities + aidx)->benefit = benefit;

(activities + aidx)->cost = cost;

abenefit += benefit;

acostl -= cost;

cpool = NULL;

nodes++;

}

Listing 15: insertpa
/**

* Inserts an activity of type "pool".

*/

extern DLLEXPORT void insertpa()

{

if (deltah != 0)

{

if (acostl >= 0)

{

trigger();

}

if (print)

{

printr();

}

reset();

}

pidx++;

if (pidx >= num_pools)

{

leave(ERR_POOL);

}
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cpool = pools + pidx;

cpool->numc = 0;

nodes++;

}

Listing 16: insertca
/**

* Inserts an activity of type "candidate".

*/

extern DLLEXPORT void insertca(const int id, int benefit, int cost)

{

if (cost < 0)

{

cost = 0;

}

if (benefit < min_benefit)

{

benefit = min_benefit;

}

else if (benefit > min_benefit << 1)

{

benefit = min_benefit << 1;

}

aidx++;

if (aidx >= num_activities)

{

leave(ERR_ACTIVITY);

}

if (cpool == NULL)

{

leave(ERR_CANDIDATE_NP);

}

(activities + aidx)->id = id;

(activities + aidx)->benefit = benefit;

(activities + aidx)->cost = cost;

cpool->numc++;

if (cpool->numc == 1)

{

cpool->idx = aidx;

cpool->bmax = 0;

cpool->cmin = 0;

maxb = activities + aidx;

minc = activities + aidx;

}

else if (cpool->numc > 1 && cpool->numc <= num_candidates)

{

if (benefit > maxb->benefit || (benefit == maxb->benefit && cost < maxb->cost))

{
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cpool->bmax = aidx - cpool->idx;

maxb = activities + aidx;

}

if (cost < minc->cost || (cost == minc->cost && benefit > minc->benefit))

{

cpool->cmin = aidx - cpool->idx;

minc = activities + aidx;

}

}

else

{

leave(ERR_CANDIDATE_OF);

}

}

Listing 17: trigger
/**

* Triggers the processing of the actual route.

*/

void trigger()

{

int i;

lbenefit = rbenefit - abenefit;

lcost = acostl - rcostl;

/* is a shortcut possible? */

i = shortcut();

if (i == -2 || i == 1)

{

return;

}

else if (i == 0)

{

if (simplex() == 0)

{

(void)eval(); /* return type not needed here */

}

}

if (abenefit + lbenefit < rbenefit || abenefit + lbenefit == rbenefit && acostl - lcost

<= rcostl)

{

/* solution not a global optimum */

return;

}

rbenefit = abenefit + lbenefit;

rcostl = acostl - lcost;

fillr();

}
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Listing 18: step0
/**

* Fills "basis", "sB" and "xB".

*/

void step0()

{

pool *p;

int i;

bidx = 0;

for (i = 0; i <= pidx; i++)

{

if ((p = pools + i)->numc == 0)

{

sB[i] = -1;

continue;

}

basis[0][bidx] = i;

basis[1][bidx] = p->cmin;

sB[i] = bidx;

xB[bidx] = 1;

bidx++;

}

/* artificial slack variable */

basis[0][bidx] = bidx;

basis[1][bidx] = bidx;

sB[i] = bidx;

xB[bidx] = acostl - minc;

/* init indices of basis variables from the same pool with the index position of the

artificial slack variable */

idx1 = bidx;

idx2 = bidx;

}

B.2 Wrapper Excerpts

Listing 19: Operator.cs
using System;

using System.Collections.Generic;

using System.Text;

using System.Runtime.InteropServices; // DLL support

namespace WorkflowCompositionWrapper

{

public class Operator

{

private static Operator op;
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private delegate void Exception(string message);

private Exception exception;

private byte exceptionType;

[DllImport("WorkflowCompositionLibrary.dll")]

private static extern void init(int num_activities, int num_pools,

int num_candidates, int max_cost, int min_benefit, Exception exception,

byte print);

[DllImport("WorkflowCompositionLibrary.dll")]

private static extern void refresh(int max_cost, int min_benefit, byte print);

[DllImport("WorkflowCompositionLibrary.dll")]

private static extern void insertsa(int id, int benefit, int cost);

[DllImport("WorkflowCompositionLibrary.dll")]

private static extern void insertpa();

[DllImport("WorkflowCompositionLibrary.dll")]

private static extern void insertca(int id, int benefit, int cost);

[DllImport("WorkflowCompositionLibrary.dll")]

private static extern void insertbs(int steps);

[DllImport("WorkflowCompositionLibrary.dll")]

private static extern IntPtr result();

[DllImport("WorkflowCompositionLibrary.dll")]

private static extern void clean();

private Operator(int num_activities, int num_pools, int num_candidates, int max_cost,

int min_benefit, bool print)

{

exceptionType = 2;

exception += new Exception(ThrowException);

if (print)

{

init(num_activities, num_pools, num_candidates, max_cost, min_benefit,

exception, 1);

}

else

{

init(num_activities, num_pools, num_candidates, max_cost, min_benefit,

exception, 0);

}

exceptionType = 0;

}
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private void ThrowException(string message)

{

exception += new Exception(ThrowException);

switch (exceptionType)

{

case 0:

throw new InsertActivityException(message);

case 1:

exceptionType = 0;

throw new ReturnResultException(message);

default:

exceptionType = 0;

throw new System.Exception(message);

}

}

public static Operator CreateInstance(int num_activities, int num_pools,

int num_candidates, int max_cost, int min_benefit, bool print)

{

return (op == null) ? (op = new Operator(num_activities, num_pools,

num_candidates, max_cost, min_benefit, print)) : null;

}

public void RefreshOperator(int max_cost, int min_benefit, bool print)

{

exceptionType = 2;

if (print)

{

refresh(max_cost, min_benefit, 1);

}

else

{

refresh(max_cost, min_benefit, 0);

}

exceptionType = 0;

}

public void InsertSingleActivity(int id, int benefit, int cost)

{

insertsa(id, benefit, cost);

}

public void InsertPoolActivity()

{

insertpa();

}
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public void InsertCandidateActivity(int id, int benefit, int cost)

{

insertca(id, benefit, cost);

}

public void InsertBackStatement(int steps)

{

insertbs(steps);

}

public int[] ReturnResult()

{

exceptionType = 1;

int[] intArr = null;

IntPtr intPtr = result();

if (intPtr != null)

{

int length = Marshal.ReadInt32(intPtr);

if (length > 0)

{

intArr = new int[length];

for (int i = 0; i < length; i++)

{

intArr[i] = Marshal.ReadInt32(intPtr, (i + 1) * IntPtr.Size);

}

}

}

exceptionType = 0;

return intArr;

}

public void MakeClean()

{

exceptionType = 2;

clean();

exceptionType = 0;

exception -= new Exception(ThrowException);

op = null;

}

}

}
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B.3 Test Excerpts

Listing 20: InsertActivitySITest.cs
using System;

using System.Collections.Generic;

using System.Text;

using WorkflowCompositionWrapper;

using NUnit.Framework;

namespace WorkflowCompositionTest

{

/// <summary>

/// Class for testing "InsertActivity" methods with small instances.

/// </summary>

[TestFixture]

public class InsertActivitySITest

{

private Operator op;

[TestFixtureSetUp]

public void Init()

{

op = Operator.CreateInstance(35, 5, 5, 0, 0, true);

}

/// <summary>

/// No activity.

/// </summary>

[Test]

public void Test00()

{

try

{

op.RefreshOperator(50, 100, true);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

/// <summary>

/// Empty Pool activity.

/// </summary>

[Test]

public void Test01()

{

try

{

op.RefreshOperator(0, 0, true);
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op.InsertPoolActivity();

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

/// <summary>

/// Single activity.

/// </summary>

[Test]

public void Test02()

{

try

{

op.RefreshOperator(0, 1, true);

op.InsertSingleActivity(0, 1, 0);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

/// <summary>

/// Pool activity with one candidate activity.

/// </summary>

[Test]

public void Test03()

{

try

{

op.RefreshOperator(0, 1, true);

op.InsertPoolActivity();

op.InsertCandidateActivity(0, 1, 0);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

/// <summary>

/// Pool activity with five candidate activities.

/// </summary>

[Test]

public void Test04()

{
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try

{

op.RefreshOperator(0, 9, true);

op.InsertPoolActivity();

op.InsertCandidateActivity(int.MinValue, 0, 0);

op.InsertCandidateActivity(-1, 9, 4);

op.InsertCandidateActivity(0, 18, 56);

op.InsertCandidateActivity(1, 5000, 1234);

op.InsertCandidateActivity(int.MaxValue, int.MaxValue, int.MaxValue);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

/// <summary>

/// Empty pool activity and one single activity.

/// </summary>

[Test]

public void Test05()

{

try

{

op.RefreshOperator(0, 1, true);

op.InsertPoolActivity();

op.InsertSingleActivity(1, 1, 0);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

/// <summary>

/// Single activity and one empty pool activity.

/// </summary>

[Test]

public void Test06()

{

try

{

op.RefreshOperator(0, 1, true);

op.InsertSingleActivity(0, 1, 0);

op.InsertPoolActivity();
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}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

/// <summary>

/// Single route (1).

/// </summary>

[Test]

public void Test07()

{

try

{

op.RefreshOperator(0, 7, true);

op.InsertPoolActivity();

op.InsertSingleActivity(0, 1, 0);

op.InsertPoolActivity();

op.InsertCandidateActivity(1, 7, 5);

op.InsertCandidateActivity(2, 14, 23);

op.InsertSingleActivity(0, 3, 1);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

/// <summary>

/// Single route (2).

/// </summary>

[Test]

public void Test08()

{

try

{

op.RefreshOperator(0, 84, true);

op.InsertPoolActivity();

op.InsertCandidateActivity(0, 0, 0);

op.InsertCandidateActivity(1, 123, 78);

op.InsertSingleActivity(2, 84, 44);

op.InsertPoolActivity();
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op.InsertPoolActivity();

op.InsertCandidateActivity(3, 3456, 567);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

/// <summary>

/// Pool activity with two children.

/// </summary>

[Test]

public void Test09()

{

try

{

op.RefreshOperator(0, 10, true);

op.InsertPoolActivity();

op.InsertCandidateActivity(0, 1, 0);

op.InsertPoolActivity();

op.InsertCandidateActivity(1, 15, 13);

op.InsertBackStatement(1);

op.InsertSingleActivity(2, 0, 4);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

/// <summary>

/// Single activity with two children.

/// </summary>

[Test]

public void Test10()

{

try

{

op.RefreshOperator(0, 350, true);

op.InsertSingleActivity(0, 1, 0);

op.InsertSingleActivity(1, 6, 2);

op.InsertBackStatement(1);

op.InsertPoolActivity();
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op.InsertCandidateActivity(2, 623, 391);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

/// <summary>

/// Branching on pool activity.

/// </summary>

[Test]

public void Test11()

{

try

{

op.RefreshOperator(200, 54, true);

op.InsertSingleActivity(0, 77, 49);

op.InsertPoolActivity();

op.InsertCandidateActivity(1, 54, 50);

op.InsertSingleActivity(2, 112, 89);

op.InsertSingleActivity(3, 85, 60);

op.InsertBackStatement(2);

op.InsertPoolActivity();

op.InsertCandidateActivity(4, 99, 91);

op.InsertSingleActivity(5, 1, 0);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

/// <summary>

/// Branching on single activity.

/// </summary>

[Test]

public void Test12()

{

try

{

op.RefreshOperator(1675, 204, true);

op.InsertPoolActivity();

op.InsertCandidateActivity(0, 403, 299);
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op.InsertCandidateActivity(1, 239, 187);

op.InsertSingleActivity(2, 367, 350);

op.InsertPoolActivity();

op.InsertCandidateActivity(3, 309, 268);

op.InsertSingleActivity(4, 356, 323);

op.InsertSingleActivity(5, 375, 341);

op.InsertSingleActivity(6, 234, 206);

op.InsertBackStatement(4);

op.InsertSingleActivity(7, 299, 272);

op.InsertSingleActivity(8, 263, 250);

op.InsertSingleActivity(9, 204, 234);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

/// <summary>

/// Branching on two nodespr.

/// </summary>

[Test]

public void Test13()

{

try

{

op.RefreshOperator(35, 6, true);

op.InsertSingleActivity(0, 1, 0);

op.InsertSingleActivity(1, 2, 1);

op.InsertSingleActivity(2, 3, 2);

op.InsertSingleActivity(3, 2, 3);

op.InsertPoolActivity();

op.InsertCandidateActivity(4, 11, 10);

op.InsertCandidateActivity(5, 12, 11);

op.InsertSingleActivity(6, 4, 5);

op.InsertSingleActivity(7, 5, 6);

op.InsertSingleActivity(8, 6, 7);

op.InsertBackStatement(3);

op.InsertPoolActivity();

op.InsertCandidateActivity(9, 111, 110);

op.InsertCandidateActivity(10, 112, 111);
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op.InsertSingleActivity(11, 8, 9);

op.InsertBackStatement(5);

op.InsertSingleActivity(12, 9, 10);

op.InsertSingleActivity(13, 10, 11);

op.InsertSingleActivity(14, 11, 12);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

/// <summary>

/// Equal activities.

/// </summary>

[Test]

public void Test14()

{

try

{

op.RefreshOperator(200, 100, true);

op.InsertSingleActivity(0, 100, 50);

op.InsertPoolActivity();

op.InsertCandidateActivity(1, 100, 50);

op.InsertCandidateActivity(2, 100, 50);

op.InsertSingleActivity(3, 100, 50);

op.InsertPoolActivity();

op.InsertCandidateActivity(4, 100, 50);

op.InsertCandidateActivity(5, 100, 50);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

/// <summary>

/// min_benefit = 0.

/// </summary>

[Test]

public void Test15()

{

try

{

op.RefreshOperator(200, 0, true);
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op.InsertPoolActivity();

op.InsertCandidateActivity(0, 13, 25);

op.InsertCandidateActivity(1, -3, 75);

op.InsertSingleActivity(2, 18, 50);

op.InsertPoolActivity();

op.InsertCandidateActivity(3, 56, 75);

op.InsertCandidateActivity(4, 21, 25);

op.InsertSingleActivity(5, 88, 50);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

/// <summary>

/// Debugged test instance (1).

/// </summary>

[Test]

public void TestD1()

{

try

{

op.RefreshOperator(35, 13, false);

op.InsertPoolActivity();

op.InsertCandidateActivity(0, 2, 0);

op.InsertCandidateActivity(1, 13, 12);

op.InsertCandidateActivity(2, 20, 17);

op.InsertPoolActivity();

op.InsertCandidateActivity(3, 19, 16);

op.InsertCandidateActivity(4, 0, 0);

op.InsertCandidateActivity(5, 25, 20);

op.InsertPoolActivity();

op.InsertCandidateActivity(6, 0, 1);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

/// <summary>

/// Worst case of accuracy for max_cost and min_benefit.

/// </summary>

[Test]

public void TestA1()
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{

try

{

op.RefreshOperator(100, 100, false);

op.InsertPoolActivity();

op.InsertCandidateActivity(0, 100, 0);

op.InsertCandidateActivity(1, 101, 1);

op.InsertPoolActivity();

op.InsertCandidateActivity(2, 100, 0);

op.InsertCandidateActivity(3, 200, 100);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

[TestFixtureTearDown]

public void Clean()

{

try

{

// wrapper instance is null now

op.MakeClean();

// this instance is null now

op = null;

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

/// <summary>

/// Gets the operator for use within other test files.

/// </summary>

public Operator Op

{

get { return op; }

}

}

}

Listing 21: ReturnResultSITest.cs
using System;

using System.Collections.Generic;

using System.Text;

using WorkflowCompositionWrapper;

using NUnit.Framework;
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namespace WorkflowCompositionTest

{

/// <summary>

/// Class for testing "ReturnResult()" with small instances.

/// </summary>

[TestFixture]

public class ReturnResultSITest

{

private InsertActivitySITest iasit;

public ReturnResultSITest()

{

iasit = new InsertActivitySITest();

}

[TestFixtureSetUp]

public void Init()

{

iasit.Init();

}

[Test]

public void Test00()

{

try

{

iasit.Test00();

int[] rids = iasit.Op.ReturnResult();

Program.CopyFiles("si", "00");

Assert.IsNull(rids);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

[Test]

public void Test01()

{

try

{

iasit.Test01();

int[] rids = iasit.Op.ReturnResult();

Program.CopyFiles("si", "01");

Assert.IsNull(rids);

}

catch (Exception e)

{
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Assert.Fail(e.Message);

}

}

[Test]

public void Test02()

{

try

{

iasit.Test02();

int[] rids = iasit.Op.ReturnResult();

Program.CopyFiles("si", "02");

Assert.AreEqual(2, rids.Length);

Assert.AreEqual(1, rids[0]);

Assert.AreEqual(0, rids[1]);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

[Test]

public void Test03()

{

try

{

iasit.Test03();

int[] rids = iasit.Op.ReturnResult();

Program.CopyFiles("si", "03");

Assert.AreEqual(2, rids.Length);

Assert.AreEqual(1, rids[0]);

Assert.AreEqual(0, rids[1]);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

[Test]

public void Test04()

{

try

{

iasit.Test04();

int[] rids = iasit.Op.ReturnResult();

Program.CopyFiles("si", "04");

Assert.AreEqual(2, rids.Length);

Assert.AreEqual(9, rids[0]);
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Assert.AreEqual(int.MinValue, rids[1]);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

[Test]

public void Test05()

{

try

{

iasit.Test05();

int[] rids = iasit.Op.ReturnResult();

Program.CopyFiles("si", "05");

Assert.AreEqual(2, rids.Length);

Assert.AreEqual(1, rids[0]);

Assert.AreEqual(1, rids[1]);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

[Test]

public void Test06()

{

try

{

iasit.Test06();

int[] rids = iasit.Op.ReturnResult();

Program.CopyFiles("si", "06");

Assert.AreEqual(2, rids.Length);

Assert.AreEqual(1, rids[0]);

Assert.AreEqual(0, rids[1]);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

[Test]

public void Test07()

{

try

{

iasit.Test07();

int[] rids = iasit.Op.ReturnResult();
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Program.CopyFiles("si", "07");

Assert.IsNull(rids);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

[Test]

public void Test08()

{

try

{

iasit.Test08();

int[] rids = iasit.Op.ReturnResult();

Program.CopyFiles("si", "08");

Assert.IsNull(rids);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

[Test]

public void Test09()

{

try

{

iasit.Test09();

int[] rids = iasit.Op.ReturnResult();

Program.CopyFiles("si", "09");

Assert.IsNull(rids);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

[Test]

public void Test10()

{

try

{

iasit.Test10();

int[] rids = iasit.Op.ReturnResult();

Program.CopyFiles("si", "10");
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Assert.IsNull(rids);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

[Test]

public void Test11()

{

try

{

iasit.Test11();

int[] rids = iasit.Op.ReturnResult();

Program.CopyFiles("si", "11");

Assert.AreEqual(5, rids.Length);

Assert.AreEqual(284, rids[0]);

Assert.AreEqual(0, rids[1]);

Assert.AreEqual(1, rids[2]);

Assert.AreEqual(4, rids[3]);

Assert.AreEqual(5, rids[4]);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

[Test]

public void Test12()

{

try

{

iasit.Test12();

int[] rids = iasit.Op.ReturnResult();

Program.CopyFiles("si", "12");

Assert.AreEqual(7, rids.Length);

Assert.AreEqual(1880, rids[0]);

Assert.AreEqual(1, rids[1]);

Assert.AreEqual(2, rids[2]);

Assert.AreEqual(3, rids[3]);

Assert.AreEqual(4, rids[4]);

Assert.AreEqual(5, rids[5]);

Assert.AreEqual(6, rids[6]);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}
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[Test]

public void Test13()

{

try

{

iasit.Test13();

int[] rids = iasit.Op.ReturnResult();

Program.CopyFiles("si", "13");

Assert.AreEqual(9, rids.Length);

Assert.AreEqual(54, rids[0]);

Assert.AreEqual(0, rids[1]);

Assert.AreEqual(1, rids[2]);

Assert.AreEqual(2, rids[3]);

Assert.AreEqual(3, rids[4]);

Assert.AreEqual(5, rids[5]);

Assert.AreEqual(6, rids[6]);

Assert.AreEqual(7, rids[7]);

Assert.AreEqual(8, rids[8]);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

[Test]

public void Test14()

{

try

{

iasit.Test14();

int[] rids = iasit.Op.ReturnResult();

Program.CopyFiles("si", "14");

Assert.AreEqual(5, rids.Length);

Assert.AreEqual(400, rids[0]);

Assert.AreEqual(0, rids[1]);

Assert.AreEqual(1, rids[2]);

Assert.AreEqual(3, rids[3]);

Assert.AreEqual(4, rids[4]);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

[Test]

public void Test15()

{

try
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{

iasit.Test15();

int[] rids = iasit.Op.ReturnResult();

Program.CopyFiles("si", "15");

Assert.AreEqual(5, rids.Length);

Assert.AreEqual(0, rids[0]);

Assert.AreEqual(0, rids[1]);

Assert.AreEqual(2, rids[2]);

Assert.AreEqual(4, rids[3]);

Assert.AreEqual(5, rids[4]);

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

[Test]

public void TestD1()

{

try

{

iasit.TestD1();

int[] rids = iasit.Op.ReturnResult();

Program.CopyFiles("si", "d1");

Assert.AreEqual(4, rids.Length);

Assert.IsTrue((52.0 - rids[0]) / rids[0] < 1.0 / (rids.Length - 1));

}

catch (Exception e)

{

Assert.Fail(e.Message);

}

}

[Test]

public void TestA1()

{

try

{

iasit.TestA1();

int[] rids = iasit.Op.ReturnResult();

Program.CopyFiles("si", "a1");

Assert.AreEqual(3, rids.Length);

Assert.AreEqual(201, rids[0]);

Assert.AreEqual(1, rids[1]);

Assert.AreEqual(2, rids[2]);

}

catch (Exception e)

{

Assert.Fail(e.Message);

94



B CODE B.3 Test Excerpts

}

}

[TestFixtureTearDown]

public void Clean()

{

iasit.Clean();

}

}

}
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C Measurements

ααα[E-7s] βββ [E-6s] γγγ[E-7s] δδδ [E-9s] εεε[E-9s] ζζζ [E-2s]

Test01 2.422 1.359 8.559 1.908 1.007 1.173

Test02 2.426 1.878 7.741 0.903 1.030 0.867

Test03 2.422 -0.476 8.226 1.870 1.013 1.218

Test04 2.425 3.277 9.704 2.282 0.984 0.717

Test05 2.431 1.734 9.963 3.126 0.971 0.569

Test06 2.419 2.230 9.298 1.003 1.013 0.985

Test07 2.417 -0.956 8.532 2.547 1.000 1.152

Test08 2.419 4.522 8.240 0.773 1.026 0.924

Test09 2.420 1.517 8.440 2.346 1.005 0.978

Test10 2.420 3.107 8.917 2.281 0.994 1.016

Average 2.422 1.819 8.762 1.904 1.004 0.960

Table 4: Coefficients of the runtime equation for s : 0[1.1E+6]9.9E+6, p : 0[100]1000 and
c : 0[50]100

βββ [E-6s] γγγ[E-6s] δδδ [E-9s] εεε[E-9s]

Test01 3.537 0.942 2.563 0.993

Test02 3.391 0.852 2.452 1.003

Test03 3.846 0.878 2.697 0.997

Test04 3.611 0.960 2.865 0.976

Test05 5.091 1.054 3.219 0.966

Test06 4.084 0.972 3.035 0.979

Test07 4.833 1.046 2.235 0.981

Test08 4.708 0.929 2.250 0.994

Test09 4.270 1.054 2.534 0.978

Test10 3.789 0.838 2.329 1.007

Average 4.116 0.952 2.618 0.987

Table 5: Improved values for β , γ, δ and ε with s : 0[1]0, p : 0[10]1000 and c : 0[10]100
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βββ [E-6s] γγγ[E-7s] δδδ [E-9s] εεε[E-9s]

Test01 4.411 9.630 2.761 0.984

Test02 0.376 9.680 2.741 0.983

Test03 2.629 8.945 2.658 0.993

Test04 3.110 9.303 2.785 0.990

Test05 5.236 7.481 1.831 1.025

Test06 4.374 8.954 2.497 1.000

Test07 5.701 9.935 2.684 0.980

Test08 1.798 9.206 2.802 0.995

Test09 4.715 9.147 2.270 0.995

Test10 4.534 9.017 2.399 1.000

Average 3.688 9.130 2.543 0.994

Table 6: Cuts of the runtime function for s = 495.000 * Test Number

s p c ζζζ [E-1s] ζ/〈r〉ζ/〈r〉ζ/〈r〉[E-2]

Test01 7671469 172 6 0.739 3.823

Test02 4186046 972 91 0.241 1.137

Test03 9730246 473 98 1.404 5.052

Test04 5710944 397 6 0.404 2.814

Test05 7373143 313 86 0.563 2.882

Test06 8972702 176 11 0.643 2.867

Test07 3884756 770 51 0.317 2.355

Test08 5290681 329 42 0.313 2.280

Test09 8496313 288 9 0.669 3.133

Test10 370513 317 13 0.060 5.303

Average 0.535 3.164

Table 7: Estimating ζ and ζ/〈r〉 for α = 2.42E-7s, β = 3.7E-6s, γ = 9.2E-7s, δ = 2.55E-9s and
ε = 9.94E-10s
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