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ZusammenfassungEs werden sowohl instationäre als au
h stationäre transsonis
he Strömungsvorgän-ge bei groÿen Reynolds Zahlen in Kanälen betra
htet, die derart s
hlank sind,dass es zu einem Versagen der klassis
hen hierar
his
hen Grenzs
hi
ht-Theoriekommt. Folgli
h lassen si
h die Eigens
haften der reibungsfreien Kernregion undder viskositätsbestimmten Grenzs
hi
htsregionen an den Kanalwänden ni
ht mehrin aufeinander folgenden S
hritten bere
hnen, sondern müssen vielmehr glei
hzeitigbestimmt werden. Das resultierende lokale We
hselwirkungsproblem für laminareStrömungen idealer und realer Gase (BZT Fluide) wird mithilfe der Methode derangepassten asymptotis
hen Entwi
klungen formuliert unter der Voraussetzung,dass der Kanal zudem no
h so s
hlank ist, dass die Strömung in der Kernregionals eindimensional betra
htet werden kann. Dies führt auf ein triple de
k Problem,bei dem die we
hselwirkende Kernregion dur
h ein einziges upper de
k repräsen-tiert wird, wel
hes von den beiden we
hselwirkenden Grenzs
hi
hten ober- undunterhalb geteilt wird. Im ersten Anwendungsfall wird der We
hselwirkungsvor-gang dur
h einen stationären s
hwa
hen geraden Stoÿ in einem s
hlanken Kanalkonstantem Quers
hnitts hervorgerufen. Der regularisierende Ein�uss we
hselwir-kender Grenzs
hi
hten wird diskutiert und anhand ausgewählter Lösungen für dieinnere Struktur von Verdünnungsstöÿen, sonis
hen und dopplet-sonis
hen Stöÿen,wel
he von der rein reibungsfreien Theorie für BZT Fluide vorhergesagt werden,demonstriert. Im zweiten Anwendungsfall wird der We
hselwirkungsvorgang dur
heine kleine Laval Düse hervorgerufen, die si
h in einem s
hlanken Kanal von an-sonstem konstanten Quers
hnitts be�nden soll. Das stationäre Strömungsbild insol
hen Düsen unters
hiedli
her minimaler Quers
hnitte aber von ansonsten glei-
her Gestalt wird in Hinbli
k auf die eindimensionale reibungsfreie Theorie vonLaval Düsen diskutiert. Eine zeitabhängige numeris
he Simulation und eine lineareStabilitätsuntersu
hung wenden si
h dem Phänomen der selbst-erhaltenden Oszil-lationen eines Stoÿes in Gegenwart von Grenzs
hi
htablösung zu, wel
he in einernahezu �ge
hokten� Strömung im divergierenden Teil sol
her Düsen auftreten kann.Asymptotis
he Methoden erweisen si
h dabei als geeignete Mittel, um die wesentli-
hen E�ekte (hier die We
hselwirkung zwis
hen Stoÿ und Grenzs
hi
ht) ausgehendvon �rst prin
iples in ein mathematis
hes Modell zu isolieren.
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Abstra
tUnsteady and steady internal transoni
 �ows at high Reynolds numbers through
hannels so narrow that the 
lassi
al boundary layer approa
h fails are 
onsidered.As a 
onsequen
e, the properties of the invis
id 
ore and the vis
osity dominatedboundary layer regions adja
ent to the 
hannel walls 
an no longer be determinedin subsequent steps but have to be 
al
ulated simultaneously in the framework ofa lo
al vis
ous invis
id intera
tion strategy. Under the requirement that the 
han-nel is su�
iently narrow so that the �ow outside the vis
ous wall layers be
omesone-dimensional to the leading order the resulting intera
tion problem for laminar�ows is formulated for both perfe
t gases and dense gases with mixed nonlinearity(BZT �uids) by means of mat
hed asymptoti
 expansions. As an out
ome of theasymptoti
 analysis the intera
tion problem is 
onsistently des
ribed by a triplede
k problem. The intera
ting 
ore region hereby is represented by a single upperde
k whi
h is shared by the two intera
ting boundary layers at the lower and upper
hannel walls.In the �rst appli
ation to be 
onsidered the intera
tion pro
ess is triggered bythe formation of a stationary weak normal sho
k in a slender 
hannel of 
onstant
ross se
tion. The regularizing properties of the me
hanism of vis
ous invis
idintera
tions are dis
ussed and representative solutions for the internal stru
ture ofweak rarefa
tion sho
ks, soni
 and double soni
 sho
ks and split sho
ks whi
h arepredi
ted by invis
id theory in 
ase of BZT �uids are presented.In the se
ond appli
ation the intera
tion pro
ess is triggered by a small Lavalnozzle lo
ated in a 
hannel of otherwise 
onstant 
ross se
tion. The steady �ow �eldthrough nozzles of di�erent minimum 
ross se
tions but of otherwise similar shapeis dis
ussed highlighting the di�eren
es and similarities to 
lassi
al one-dimensionalLaval nozzle theory. Unsteady 
al
ulations and a linear stability analysis addressthe problem of self-sustained sho
k wave os
illations in the presen
e of �ow sepa-ration taking pla
e in a nearly 
hoked �ow regime in the diverging du
t of a nozzleof the mentioned kind. Asymptoti
 methods hereby proof to be a means to isolatethe essential physi
al e�e
ts, here the sho
k/boundary layer intera
tion, and toderive simpli�ed model equations in a 
onsistent manner based on �rst prin
iples.
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Chapter 1Introdu
tionSteady as well as unsteady vis
ous invis
id intera
tions taking pla
e in in-ternal, transoni
, single phase and two-dimensional �ows at high Reynoldsnumbers through narrow 
hannels shall be 
onsidered. Near the 
hannel inletvis
ous e�e
ts at high Reynolds numbers are limited to thin laminar bound-ary layers whi
h develop in the vi
inity of the 
hannel walls and Prandtl's
lassi
al boundary layer theory 
an be applied with good a

ura
y, in gen-eral, [32℄. However, rapid 
hanges in the streamwise �ow �eld, su
h as theformation of a weak normal sho
k or the presen
e of a weak lo
al redu
tionof the 
ross se
tion of the 
hannel or both eventually in 
onne
tion withboundary-layer separation, 
f. �gure 1.1, are found to lead to a lo
al break-down of the 
lassi
al boundary layer approa
h, 
f. [80℄ or [37℄ amongst others.As a dire
t 
onsequen
e, the properties of the invis
id 
ore and the vis
ositydominated boundary layer regions 
an no longer be determined in subsequentsteps but have to be 
al
ulated simultaneously in the small intera
tion re-gions depi
ted by the green regions in �gure 1.1. To be spe
i�
, the 
hannelshall be su�
iently slender so that the originally two intera
tion regions forthe boundary layer in the upper and lower half of the 
hannel 
ondense toone single intera
tion region as is sket
hed in �gure 1.1. Under the addi-tional requirement that the 
hannel is su�
iently narrow so that the �owoutside the vis
ous wall layers be
omes one-dimensional to the leading orderthe resulting intera
tion problem shall be formulated by means of mat
hed1
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Figure 1.1: Sket
h of the �ow 
on�guration under 
onsideration. The vis
ousinvis
id intera
tion is triggered by a sho
k (red line, upper part) or by aredu
tion of the �ow 
ross se
tion (lower part). The 
hannel is so slenderthat the two intera
tion regions for the boundary layer in the upper andlower half of the 
hannel (left hand side) 
ollapse to one single intera
tionregion (right hand side). Region (1): invis
id 
ore region �ow; region (2):vis
osity dominated boundary layers; region (3): vis
ous invis
id intera
tionregion.asymptoti
 expansions exploiting the largeness of the Reynolds number. Therequirement of one-dimensionality of the �ow through the intera
ting 
hannel
ore region simpli�es the numeri
al treatment of the transoni
 �ow regimein the intera
tion region signi�
antly while preserving the 
hara
teristi
s as-so
iated with transoni
 �ow at the same time, 
f. [41℄.The 
urrent work, whi
h has been funded by the Austrian S
ien
e Fundin the framework of the WK Di�erential Equations, originates from previouswork done in this 
ontext by Kluwi
k, [39℄, Kluwi
k & Gittler, [43℄, andKluwi
k & Braun & Gittler, [41℄, who studied the steady transoni
 intera
ting�ow of a perfe
t gas in a slender 
hannel. The extension to their work
overs, in parti
ular, unsteady e�e
ts whi
h are to be in
luded properly inthe formulation of the intera
tion problem. In addition, real gas e�e
ts areintrodu
ed with the fo
us on dense gases, i.e. BZT �uids. The derivationof the appropriate distinguished limit 
apable to des
ribe the intera
tionproblem is generalized thereby loosening some restri
tions on the geometrys
alings of the �ow 
on�guration.The treatise pursues the following aims.� The formulation of the problem is presented in 
hapter 2.� The regularizing e�e
t of vis
ous invis
id intera
tion on the varioussho
k-forms whi
h are possible, at least theoreti
ally, in dense gases,



3i.e. BZT �uids, 
f. [35℄, su
h as rarefa
tion sho
ks, soni
 and dou-ble soni
 sho
ks and split sho
ks, shall be investigated in 
hapter 3.The me
hanism of vis
ous invis
id sho
k regularization to be dis
ussedis fundamentally di�erent to the well known sho
k regularization bythermo-vis
ous e�e
ts, 
f. eg. [18℄, [35℄. BZT �uids and their proper-ties are shortly 
hara
terized in se
tion 1.1.� A theoreti
al approa
h to study the transoni
 �ow through small noz-zles at high Reynolds numbers in the framework of intera
ting bound-ary layer theory shall be presented in se
tion 4.2 highlighting the di�er-en
es and similarities to 
lassi
al one-dimensional Laval nozzle theory.The nozzle of small length s
ale shall be lo
ated in a slender 
hannel of
onstant 
ross se
tion, 
f. lower part of �gure 1.1. A literature surveyreveals that no su
h theory exists at present whi
h addresses the �owin general and the 
onversion of subsoni
 �ow to supersoni
 �ow inparti
ular in �ow devi
es of small s
ale for the high Reynolds numberregime. Small s
ale, here, means 
hannel 
ross se
tions and streamwiseextend of the nozzle of about 10mm, say, so well above mi
ro-s
ale.� First steps towards a rational approa
h to study the phenomenon ofself-sustained sho
k wave os
illations in the presen
e of �ow separationtaking pla
e in the diverging du
t of a nozzle of the mentioned kindshall be given in se
tion 4.3. Su
h unsteady �ow behavior in transoni
di�users is a feature frequently en
ountered in engineering pra
ti
e,
f. e.g. [54℄. However, the theoreti
al or numeri
al approa
hes to dealwith the problem of self-sustained sho
k os
illations so far 
enter eitheron models for invis
id �ow and 
onsidering the sho
k boundary layerintera
tion in an ad-ho
 manner at most, [7℄, [27℄, or rely on numeri
alsimulations of the full problem introdu
ing models, e.g., for turbulen
eand wall fun
tions amongst others, [54℄, [93℄. Asymptoti
 methodshereby proof to be a means to isolate the essential physi
al e�e
ts, herethe sho
k/boundary layer intera
tion, and to derive simpli�ed modelequations in a 
onsistent manner based on �rst prin
iples.Related works on vis
ous invis
id intera
tions in internal purely super-



4 CHAPTER 1. INTRODUCTIONsoni
 �ows 
an be found in [73℄ and [40℄, works on vis
ous invis
id intera
tionsin internal purely subsoni
 �ows in e.g. [77℄ amongst others. Investigations onvis
ous 
ompressible �ow in slender 
hannels at moderate Reynolds numbersor in mi
ro 
hannels are to be found, e.g., in [32℄, [65℄, [28℄, [94℄, experimentaland/or numeri
al studies on sho
k boundary layer intera
tion in transoni
di�users, e.g., [7℄, [27℄, [54℄, [55℄, [66℄, [60℄, [93℄.1.1 Dense Gases - The Fundamental DerivativeThe dis
ussion throughout the thesis will be restri
ted to the single phasegaseous thermodynami
 region, so the thermodynami
 state of the �uid isnot supposed to enter the thermodynami
 region of liquid-vapor 
oexisten
e,see �gure 1.1. p, ρ and s denote the pressure, the density and the entropy,respe
tively. Quantities evaluated at the 
riti
al point of thermodynami
sare denoted by the subs
ript 
, tilde indi
ates dimensional quantities.For most gaseous �uids the speed of sound, c, varies monotonously underisentropi
 expansion, i.e. ∂c̃
∂ρ̃
|s̃ > 0. Still, there seems to exist -at leasttheoreti
ally- a limited 
lass of �uids, known as dense gases or BZT (Bethe-Zel'dovi
h-Thompson) �uids, for whi
h the variation of the speed of soundis non monotonous leading to various interesting 
onsequen
es for the �owbehavior amongst others the possibility of rarefa
tion sho
ks, 
f. e.g. [85℄.An useful quantity 
hara
terizing the mentioned behavior of a �uid is theso-
alled fundamental derivative
Γ :=

1

c̃

∂(ρ̃c̃)

∂ρ̃

∣
∣
∣
s̃
. (1.1)In the following we will refer to �uids for whi
h Γ > 1 in the �ow region ofinterest as regular �uids, �uids for whi
h Γ < 1 as dense gases and �uidsfor whi
h Γ < 0 as BZT �uids, 
f. also �gure 1.1. Rarefa
tion sho
ks,soni
 or double soni
 sho
ks and split sho
ks are only possible in the BZTregion Γ < 0, e.g. [34℄. The thermodynami
 region of non monotonous �owbehavior is restri
ted to a small region in the dense vapor phase near thethermodynami
al 
riti
al point as shown in �gure 1.1.
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Chapter 2ModelThe transoni
 �ow of perfe
t/dense gases through a slender 
hannel of height
H̃0 is 
onsidered, see �gure 2.1. The �uid is moving from left to right andthe Reynolds number is supposed to be large leading to the formation of anonintera
ting vis
ous boundary layer at the 
hannel walls, region 2 in �gure2.1. At the position L̃0 rapid 
hanges in the �ow �eld shall trigger a pro
essof vis
ous invis
id intera
tion in a region of small lateral extent, region 3.These rapid 
hanges 
an be 
aused by the formation of a weak sho
k in theinvis
id 
ore region �ow eventually leading to �ow separation in the boundarylayer, as is shown in the upper half of �gure 2.1, or by a surfa
e mountedobsta
le of short length s
ale, potentially in 
ombination with a sho
k shownin the lower half of �gure 2.1. The 
hannel shall be su�
iently slender so thatthe originally two intera
tion regions for the boundary layer in the upper andlower half of the 
hannel 
ondense to one single intera
tion region as is shownin �gure 2.1. Therefore, a spe
ial distinguished limit is sought after, wherethe a
tual 
hannel height is not known a priori but is part of the intera
tionproblem itself.The intera
tion pro
ess in region 3 shall be des
ribed by means of mat
hedasymptoti
 expansions. To this end the basi
 set of equations in non-dimen-sional form is provided �rst, then, subsequent to the introdu
tion of theequations, the magnitude of the various dimensional groups entering theformulation of the problem will be dis
ussed.7
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Figure 2.1: S
hemati
 sket
h of the problem setup. Region 1: invis
id 
ore,region 2: vis
ous nonintera
ting boundary layers (L. Prandtl), region 3: vis-
ous invis
id intera
tion. The red line symbolizes a sho
k.Introdu
e the non-dimensional quantities, tilde denotes dimensional quan-tities,
x̃ = (x̃, ỹ) = L̃0 x, H̃0 = L̃0H0, ∇̃ = 1

L̃0
∇, s̃ = (x̃, s̃2) = L̃0 s,

ũ = (ũ, ṽ) = ũ0 u, t̃ = L̃0

ũ0
t, ρ̃ = ρ̃0 ρ, p̃ = ρ̃0ũ

2
0 p,

θ̃ = θ̃0 θ, h̃ = ũ2
0 h, s̃ = c̃p,0s, µ̃ = µ̃0 µ,

µ̃b = µ̃0 µb, k̃ = k̃0 k, c̃ = c̃0 c.Here x̃ denotes the position ve
tor with the horizontal and verti
al 
ompo-nents (x̃, ỹ), ∇̃ the nabla operator a
ting on the spa
ial 
oordinates only, s̃the position ve
tor des
ribing the 
ontour of a surfa
e mounted hump withthe horizontal and verti
al 
oordinates (x̃, s̃2), ũ the velo
ity ve
tor with thehorizontal and verti
al 
omponents (ũ, ṽ), t̃ the time, ρ̃ the density, p̃ thepressure, θ̃ the temperature, h̃ the spe
i�
 enthalpy, s̃ the spe
i�
 entropy,
c̃p the spe
i�
 heat 
apa
ity at 
onstant pressure, µ̃ the dynami
 vis
osity,
µ̃b the bulk vis
osity, k̃ the thermal 
ondu
tivity and c̃ the speed of sound.The subs
ript 0 indi
ates a referen
e state. As an adequate referen
e statefor the problem the �ow quantities evaluated in the undisturbed 
ore region�ow immediately upstreams of the intera
tion region at position L̃0 havebeen 
hosen. Then the Navier Stokes equations for 2D 
ompressible �ows



9negle
ting gravitational for
es 
an be written in the following form
∂ρ

∂t
+ ∇ · (ρ u) = 0, (2.1a)

ρ

(
∂u

∂t
+ (u · ∇)u

)

= −∇p +
1

Re
∇ · τττ , (2.1b)

ρ
Dh

Dt
− Dp

Dt
=

1

Re
τττ : ∇u − 1

PrReEc
∇ · q, (2.1
)with ρ(x, t), p(x, t), h(x, t) ∈ R, u(x, t),q(x, t) ∈ R2 and τττ = (τij) ∈

M(2, R). q denotes the ve
tor of the heat �ux and τττ the vis
ous stress tensor.The non-dimensional parameters are the Reynolds number, Re := ρ̃0ũ0L̃0

µ̃0
, theE
kert number, Ec :=

ũ2
0

c̃p,0θ̃0
, and the Prandtl number, Pr := k̃0

µ̃0c̃p,0
.The 
enterline of the nozzle y = H0

2
is a line of symmetry; 
onsequentlyin the following the boundary 
onditions are spe
i�ed for one wall only. Theboundary 
onditions at the (adiabati
) wall are

u =
∂s(x, t)

∂t
, q · ns = 0 @x = s(x, t) = (x, s2(x, t))T , x > 0, (2.2)with ns(x, t) the surfa
e normal to the walls, and at the in�ow x = 0

u = (1, 0)T , ρ = 1, p = p0, θ = 1, h = h0 @x = (0, 0 < y < H0)
T , (2.3)with the 
onstraint on the geometry of the nozzle entry ensuring 
ompatibil-ity with the in�ow 
onditions

∂s2

∂x
(x = 0, t) = 0 ∀t > 0. (2.4)This 
onstraint is trivially satis�ed in the 
hannel part in �gure 2.1 outsidethe intera
tion region, where s2 ≡ 0. In 
ase of unsteady �ow suitable initial
onditions for t = 0 have to be provided.Finally equations (2.1a) to (2.1
) have to be 
losed by the following 
on-stitutive relations:



10 CHAPTER 2. MODEL� Newtonian �uid
τττ = µb(∇ · u) I + µ

(
∇u + ∇uT − 2

3
(∇ · u) I

)
, (2.5)� Fourier's law

q = −k ∇θ, (2.6)� and a 
alori
 and a thermal EOS for single 
omponent gases
h = h(p, s), p = p(ρ, θ). (2.7)In general the material parameters µ, µb and k themselves are dependent onthe thermodynami
 state, i.e. given by the pair (p, θ).Alternatively, equation (2.1
) 
an be written in the following form

ρθ
Ds

Dt
=

Ec

Re
τττ : ∇u− 1

PrRe
∇ · q (2.8)making use of Gibbs' fundamental equation, [47℄, [75℄,

θ
Ds

Dt
= Ec

(
Dh

Dt
− 1

ρ

Dp

Dt

) (2.9)relating the 
hange of the spe
i�
 thermodynami
 entropy s to the dissipativeagen
ies a
ting in the �ow, i.e. the dissipation due to vis
osity and thedissipation due to thermal 
ondu
tivity in the �uid. Furthermore, it willproof useful to introdu
e 
hanges of the temperature θ and pressure p inthe �ow �eld into the energy equation (2.1
) by means of the expression
Dh
Dt

= 1
Ec

cp
Dθ
Dt

+ 1−β̃0θ̃0βθ
ρ

Dp
Dt
, see (B.19). The energy equation in new formthen reads

ρcp
Dθ

Dt
= Ecβ̃0θ̃0βθ

Dp

Dt
+

Ec

Re
τττ : ∇u +

1

PrRe
∇ · q, (2.10)where β = β̃

β̃0
is the 
oe�
ient of thermal expansion, see (B.3).



11To sum up, the non-dimensional groups entering the governing equationsare
Re :=

ρ̃0ũ0L̃0

µ̃0
, (2.11a)

M0 :=
ũ0

c̃0

, (2.11b)
Ec :=

ũ2
0

c̃p,0θ̃0

, (2.11
)
Pr :=

k̃0

µ̃0c̃p,0
, (2.11d)

β̃0θ̃0 := −θ̃0
1

ρ̃0

∂ρ̃

∂θ̃

∣
∣
∣
p̃,0

, (2.11e)the Reynolds number, the Ma
h number, the E
kert number, the Prandtlnumber, and the 
oe�
ient of thermal expansion at referen
e state times thereferen
e temperature, respe
tively.In the following, it will be assumed that Re ≫ 1 and M0 ≈ 1. The �rst
ondition 
ontributes to the formation of at least two mathemati
ally di�er-ent regions, regions 1 & 2 in �gure 2.1, a region of invis
id �ow and a vis
ousboundary layer at the walls. The equations for this 
ase of nonintera
ting�ow are 
olle
ted in the se
tion 2.1 as it presents the starting point for theanalysis of the vis
ous invis
id intera
tion pro
ess taking pla
e in region 3in �gure 2.1. The mathemati
al des
ription of the intera
ting �ow regime ispresented in se
tion 2.2. Spe
ial emphasis will be given to the �ow propertiesof perfe
t and dense gases and their impli
ations on the boundary layer �ow.The se
ond 
ondition, assumption of transoni
 �ow M0 ≈ 1, allowsto study weak sho
ks leading to a transition from supersoni
 to subsoni
�ow 
onditions in the 
ore region of the 
hannel in the framework of anasymptoti
 theory and to study their intera
tion with the boundary layer�ow at the walls. Chapter 3 will dis
uss the regularizing properties of thesho
k/boundary layer intera
tion.The magnitude of the Ec number depends on the �uid under 
onsid-eration. For a perfe
t gas with 
onstant spe
i�
 heats the relation Ec =

(γ − 1)M2
0 holds. Sin
e the ratio of the spe
i�
 heats γ is of order one



12 CHAPTER 2. MODELregular �uid dense gas
Re ≫ 1 ≫ 1
M0 ≈ 1 ≈ 1
Ec O(1) ≪ 1
Pr O(1) O(1)

β̃0θ̃0 O(1) O(1)Table 2.1: Assumptions on the order of magnitude for various dimensionlessgroups.
Ec = O(M2

0 ), see [36℄. Conversely the situation of dense gases for whi
h thefollowing estimate Ec = O(M2
0 δ) has been given by Kluwi
k in [36℄. Sin
e in
ase of dense gases the ratio δ of the spe
i�
 gas 
onstant R̃g and the spe
i�
heat at 
onstant volume c̃v is small due to the relative large values of thespe
i�
 heats in 
ompounds of higher 
omplexity, 
f. [36℄ or [11℄ for instan
e,

0 < δ = R̃g

c̃v
≪ 1, this suggests Ec → 0 in the limit of δ → 0.Interestingly enough, in both 
ases the Prandtl number is of order one,

Pr = O(1). Whereas this is a well-known and validated fa
t for a perfe
tgas it is, in the 
ase of dense gases, only founded on empiri
al 
orrelationssin
e measurements in the dense gas regime are extremely di�
ult, [36℄.These have been supported by numeri
al 
al
ulations performed by Zieherin [97℄ who used used the method of Chung, Ajlan, Lee and Starling, [9℄, to
al
ulate the 
orresponding transport quantities for PP11, C14F24. However,the approximations impli
itly used in the method, as has been noted in [36℄,have to be taken with 
aution when it 
omes to the appli
ation to densegases.Furthermore, it will be required that β̃0θ̃0 = O(1) for both 
ases in thethermodynami
 region of interest. Consequently, the very 
lose vi
inity ofthe thermodynami
al 
riti
al point, where β exhibits unbounded growth, hasto be ex
luded from the dis
ussion, see [39℄.Table 2.1 summarizes the assumptions on the orders of magnitude of thevarious dimensionless numbers for both regular, that is perfe
t gas like, �uidsand dense gases.



2.1. NONINTERACTING FLOW REGIME 132.1 Nonintera
ting Flow Regime2.1.1 Invis
id Flow in the Core Region of a ChannelIt has already been pointed out that the order of magnitude of the a
tual
hannel height is not known a priori but is an out
ome of the formulationof the intera
tion problem to be dis
ussed in se
tion 2.2. Therefore, nothingmore 
an be said at present about the magnitude of the verti
al 
oordinate yin the 
ore region of the 
hannel, i.e. region 1 in �gure 2.1, than that it will besmall, i.e. y = O(Re−q) with some q > 0, whereas the horizontal 
oordinate
x in the nonintera
ting part of the 
hannel �ow, region 1 & 2, 
learly is O(1).It will be assumed throughout this se
tion that the �ow in the 
ore region isinvis
id in the limit Re → ∞ even for y = O(Re−q). However, this so far isonly an assumption whi
h has to be veri�ed in the end when the value of q inthe s
aling of y has been established. This veri�
ation will be done in 2.2.3where the 
onsisten
y of the proposed distinguished limit for the intera
tionregion with the assumed nonintera
ting on
oming 
ore region �ow will beshown.In the limit Re → ∞ with Ec = O(1) and Pr = O(1) in 
ase of a perfe
tgas or Ec → 0 and Pr = O(1) in 
ase of dense gases, see dis
ussion ofequations (2.11) or table 2.1, the steady versions of the governing equations(2.1a), (2.1b), (2.8) read

∇ · (ρu) = 0, ρ (u · ∇)u = −∇p,
Ds

Dt
= 0. (2.12)Equations (2.12) are the steady Euler equations whi
h no longer satisfy all ofthe boundary 
onditions (2.2) sin
e the terms with the highest derivatives,that is the vis
ous terms and the terms of thermal 
ondu
tivity, have beenlost in the non dissipative limit (singularly perturbed problem). How thefull set of boundary 
onditions 
an be satis�ed is part of the boundary layertheory, summarized in 2.1.2, at this point - invis
id �ow in the 
ore regionof the 
hannel/nozzle - only the 
ondition

u · ns = 0 @x = s(x) = (x, s2(x))T , x > 0 (2.13)



14 CHAPTER 2. MODELis needed, again s2 ≡ 0 for the 
hannel part under 
onsideration. As a
onsequen
e of Cro

os' theorem, [86℄, [90℄, stating that an isentropi
, steady,isoenergeti
 and two-dimensional �ow �eld is irrotational and vi
e versa,
∇× u = 0. (2.14)Finally, equation (2.10) suggests that 
hanges in the temperature are of

O(Ec) in the limit Re → ∞

∆θ = θ − 1 = O(Ec), Re → ∞, (2.15)and 
onsequently are small for dense gases, Ec → 0, representing the fa
tthat for �uids with large spe
i�
 heats, δ → 0, isentropi
 
hanges of thethermodynami
 state only lead to small 
hanges of the temperature, [39℄.Then equation (2.1
) 
an be written in the invis
id limit for both perfe
tand dense gases as
Dh

Dt
=

1

ρ

Dp

Dt
(2.16)taking into a

ount ∇ · q = O(Ec) as suggested by using the relation (2.15)in equation (2.6).The solution of the problem of invis
id �ow through a 
hannel of 
onstantheight is the trivial solution of plain parallel 
onstant �ow given in de�nition2.1.1.De�nition 2.1.1. The nonintera
ting �ow in in the 
ore region of the 
han-nel in �gure 2.1 is a plane parallel 
onstant �ow.

u ≡ 1, v ≡ 0, c ≡ 1, ρ ≡ 1, p ≡ p0, θ ≡ 1. (2.17)The solution for the unperturbed �ow in the 
ore region of a 
hannel, re-gion 1 in �gure 2.1, upstream of the intera
tion region, region 3, is 
ompletelyknown at this point and one 
ould immediately pro
eed to the formulationof the nonintera
ting boundary layers at the 
hannel walls, region 2 in �gure2.1. Never the less, in the following part of this se
tion the equations for a



2.1. NONINTERACTING FLOW REGIME 15slowly varying nozzle, s′2 ≪ 1, shall be derived. By a slowly varying nozzle itis meant that the �ow shall be 
onsidered as one-dimensional to the leadingorder, i.e. variations from plain parallel 
onstant 
hannel �ow shall be small.The resulting set of equations will 
ome in useful later on when the intera
-tion problem in region 3 will be formulated, sin
e the proposed distinguishedlimit for the representation of the former invis
id 
ore region �ow in the in-tera
tion region, i.e. the upper de
k, 
f. se
tion 2.2.2, is guided by the ideaof one-dimensional invis
id transoni
 nozzle �ow, with the di�eren
e that in
ase of an intera
ting �ow the e�e
t of a varying throat area will generi
allybe generated by a displa
ement e�e
t indu
ed by the intera
ting boundarylayers at the walls. Therefore, most of the equations obtained will be usedin slightly modi�ed form in the 
ourse of the formulation of the intera
tionproblem in se
tion 2.2.2 highlighting the di�eren
es between nonintera
tingand intera
ting �ow.Moreover, in se
tion 2.2.3 the 
ompatibility of the proposed distinguishedlimits for the intera
tion problem with region 1 �ow types other than plane
hannel �ow will be addressed. There the �ow through a slowly varyingnozzle will be analyzed as it is the next obvious generalization of simple �owthrough a 
hannel of 
onstant height.Finally, the equations for one-dimensional transoni
 nozzle �ow will beused as an invis
id 
ounterpart throughout the dis
ussion of the results ofsho
k/boundary layer intera
tion presented in 
hapter 3.Remark 2.1.1. An alternative derivation of the equations 
an be found in [35℄using a slightly di�erent de�nition of the referen
e state.One-Dimensional Invis
id Transoni
 Flow through a NozzleThe 
on�guration of a nozzle with slowly varying throat area per unit depth,
Ã = L̃0A, sket
hed in �gure 2.2, is 
onsidered. Deviations from plane parallel
onstant �ow in a 
hannel of height H0, de�nition 2.1.1, are supposed to besmall

u = 1 + ∆u, v = ∆v, c = 1 + ∆c, ρ = 1 + ∆ρ, p = p0 + ∆p (2.18)
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Figure 2.2: Sket
h of geometry of a slowly varying nozzle.with |∆u|, |∆v|, |∆c|, |∆ρ|, |∆p| ≪ 1, and the �ow shall be transoni
justifying the following ansatz for the Ma
h number at referen
e state
M2

0 = 1 − K∆K0 (2.19)with ∆K0 ≪ 1.Remark 2.1.2. K is a transoni
 similarity parameter, [62℄, in anti
ipation ofthe results of the following analysis.Inserting into the �rst two equations of (2.12) and equation (2.16) sug-gests
∂

∂x
(∆u + ∆ρ + ∆ρ∆u) = O(∆v), (2.20)

∂

∂x
(∆u + ∆p) = O(∆u∆v + ∆u2 + ∆p∆ρ), (2.21)

∂

∂y
∆p = O(∆v), (2.22)

∂

∂x
(∆h − ∆p) = O(∆u(∆h + ∆p) + ∆v(∆h + ∆p)), (2.23)and thus, requiring the �ow to be
ome one-dimensional to the leading order,implying ∆v ≪ ∆u, and additionally 
onsidering the in�ow 
ondition (2.3),leads to the following assumptions on the order of magnitudes of the �ow



2.1. NONINTERACTING FLOW REGIME 17quantities
∆ρ ∼ −∆u − ∆ρ∆u, (2.24)
∆u ∼ −∆p, (2.25)
∆h ∼ ∆p. (2.26)Remark 2.1.3. In equations (2.20) and (2.24) the higher order term ∆ρ∆uhas been kept for later use.At this point the question how small ∆v has to be 
annot be answered.To this end equations (2.12) are rewritten as
∇ · u + u · 1

ρ
∇ρ = 0, (2.27a)

(u · ∇)u = − c2

M2
0

1

ρ
∇ρ (2.27b)using the relation ∇p = ∂p

∂ρ
|s ∇ρ with ∂p

∂ρ
|s = c2

M2
0
, see (B.2). Proje
ting(2.27b) onto streamlines leads to

u ·
(

(u · ∇)u
)

= (u ⊗ u) : ∇u = − c2

M2
0

u · 1

ρ
∇ρ, (2.28)and inserting (2.27a) �nally leads to the fundamental equation of gas dy-nami
s, [62℄,

(

u⊗ u− c2

M2
0

I

)

: ∇u = 0, (2.29)where u·(u · ∇)u = uiuj∂jui = (u⊗ u) : ∇u has been used. Again, insertingthe ansatz for the �ow quantities (2.18) into (2.29) suggests
(

u2 − 1

M2
0

c2

)
∂

∂x
∆u =

∂

∂y
∆v + O(∆v∆u + ∆v∆K + ∆v2). (2.30)Provided ansatz (2.18) leads to a signi�
ant degeneration indeed the term onthe left hand side of (2.30) whi
h is of O ((u2 − 1

M2
0
c2) ∆u

) has to balan
e



18 CHAPTER 2. MODELwith the right hand side whi
h is of O (∆v), thus providing the estimate
(u2 − 1

M2
0
c2) ∆u ∼ ∆v (2.31)on ∆v. However, the magnitude of ∆v also depends on the variation of thethroat area of the nozzle A(x) imposed by the boundary 
ondition (2.13), so(2.31) is in fa
t a 
ondition how weakly the throat area of the nozzle is allowedto be varied along the 
enter line of the nozzle to justify the assumption ofan one-dimensional �ow in the 
ore region of the nozzle. The magnitude of

(u2 − 1
M2

0
c2), on the other hand, depends on how 
lose the in�ow 
onditionsare to soni
 �ow 
onditions and on the thermodynami
 properties of the �uid.Finally, this will lead to an estimate for ∆K0 in equation (2.19) whi
h hasnot been addressed so far in the dis
ussion.Magnitude of variation of throat area ∆A. As the deviations of the�ow quantities are supposed to be small the variation of the throat area shallbe small as well, i.e.

A(x) = Ã
L̃0

= H0 + ∆A(x) (2.32)with |∆A| ≪ 1. Inserting (2.18) and (2.32) into the boundary 
onditions(2.13) gives
∆v = −(1 + ∆u)

ddx ∆A

2
= − ddx

∆A

2
+ O(∆A∆u) @x = s(x) = (x, s2(x))T(2.33)using the relation for the non-normalized surfa
e normal ns =

(
d
dx

∆A
2

, 1
)T 1.Magnitude of u2 − 1

M2
0
c2 - Condition for transoni
 �ow of perfe
tand dense gases. In order to give an order of magnitude estimate for theexpression u2− 1

M2
0
c2 it is ne
essary to 
onsider the isentropi
 variation of thespeed of sound c under the variation of the thermodynami
 state, i.e. under1

s(x) = (x, s2(x))T = (x, H0−A(x)
2 )T  ts(x) = (1,−A

′(x)
2 )T , ns(x) = (A

′(x)
2 , 1)T



2.1. NONINTERACTING FLOW REGIME 19the variation of the density ρ. To this end the following expression for c2 isused as a starting point
c2 = M2

0

∂p

∂ρ

∣
∣
∣
s
= M2

0 ρ
∂h

∂ρ

∣
∣
∣
s
. (2.34)The last step in equation (2.34) is a dire
t 
onsequen
e of Gibbs' fundamentalequation (2.9). Now the expression ∂h

∂ρ

∣
∣
∣
s
is Taylor expanded in terms of ∆ρ

∂h

∂ρ
(1 + ∆ρ, s)

∣
∣
∣
s
=

∂h

∂ρ

∣
∣
∣
s,0

+
∂2h

∂ρ2

∣
∣
∣
s,0

∆ρ +
1

2

∂3h

∂ρ3

∣
∣
∣
s,0

∆ρ2+

+
1

6

∂4h

∂ρ4

∣
∣
∣
s,0

∆ρ3 + O
(
∆ρ4

)
,

(2.35)where the subs
ript 0 has the meaning as before, i.e. evaluated at referen
estate.The partial derivatives of the enthalpy h have to satisfy the following relations
∂h

∂ρ

∣
∣
∣
s,0

=
1

M2
0

, (2.36a)
∂2h

∂ρ2

∣
∣
∣
s,0

=
1

M2
0

(2Γ0 − 3) , (2.36b)
∂3h

∂ρ3

∣
∣
∣
s,0

=
1

M2
0

(
4Γ2

0 − 14Γ0 + 2Λ0 + 12
)
, (2.36
)

∂4h

∂ρ4

∣
∣
∣
s,0

=
1

M2
0

(
8Γ3

0 − 48Γ2
0 + 12Γ0Λ0 + 94Γ0 − 24Λ0 + 2N0 − 60

)
, (2.36d)with Λ and N being de�ned as

Λ :=
∂Γ

∂ρ

∣
∣
∣
s
, (2.37a)

N :=
∂2Γ

∂ρ2

∣
∣
∣
s
. (2.37b)A detailed derivation of the expressions (2.36) 
an be found in B.2.With the relations (2.35) and (2.36) the expression (2.34) for the speed of
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an be written as
c(1 + ∆ρ, s0)

2 = M2
0 (1 + ∆ρ)

∂h

∂ρ
(1 + ∆ρ, s)

∣
∣
∣
s,0

=

= 1 + 2 (Γ0 − 1)∆ρ +
(
2Γ2

0 − 5Γ0 + Λ0 + 3
)
∆ρ2+

+
1

3

(
4Γ3

0 − 18Γ2
0 + 6Γ0Λ0 + 26Γ0 − 6Λ0 + N0 − 4

)
∆ρ3 + O(∆ρ4).

(2.38)
Colle
ting the previous results, the following expansion for u2 − 1

M2
0
c2 is ob-tained

u2 − 1

M2
0

c2 = −K∆K0 − 2Γ0∆ρ −
(
2Γ2

0 − 5Γ0 + Λ0

)
∆ρ2−

− 1

3

(
4Γ3

0 − 18Γ2
0 + 6Γ0Λ0 + 26Γ0 − 6Λ0 + N0

)
∆ρ3+

+ 2 (∆u + ∆ρ) + ∆u2 − 3∆ρ2 + 4∆ρ3+

+ O(∆ρ4 + ∆ρ∆K0),

(2.39)
where

u2 = (1 + ∆u)2 = 1 + 2∆u + ∆u2, (2.40)
1

M2
0

=
1

1 − K∆K0
= 1 + K∆K0 + O(∆K2

0 ) (2.41)has been used. Equation (2.39) 
an be redu
ed even further using the sub-sequent relations
∆ρ = −∆u − ∆ρ∆u + O(∆v), (2.42)
∆u2 = ∆ρ2 + 2∆ρ∆u + O(∆ρ∆v), (2.43)
∆ρ2 = ∆ρ (−∆u − ∆ρ∆u) + O(∆ρ∆u) (2.44)whi
h are a dire
t 
onsequen
e of equation (2.24). With that in mind oneinfers that the expression 2 (∆ρ + ∆u)+∆u2−3∆ρ2 +4∆ρ3 in (2.39) results



2.1. NONINTERACTING FLOW REGIME 21in terms of higher order as shown by the subsequent 
al
ulations
2 (∆ρ + ∆u) + ∆u2 − 3∆ρ2 + 4∆ρ3 = |eq. (2.43)| =

2 (∆ρ + ∆u) − 2∆ρ2 + 2∆ρ2∆u + 4∆ρ3 + O(∆ρ∆v) = |eq. (2.44)| =

2 (∆ρ + ∆u + ∆ρ∆u) + 4
(
∆ρ2∆u + ∆ρ3

)
+ O(∆ρ∆v) = |eq. (2.42)| =

4∆ρ
(
∆ρ∆u + ∆ρ2

)
+ O(∆v) = |eq. (2.44)| =

− 4∆u∆ρ3 + O(∆v) = O(∆u∆ρ3 + ∆v),so that equation (2.39) �nally 
an be simpli�ed to
u2 − 1

M2
0

c2 = −K∆K0 − 2Γ0∆ρ −
(
2Γ2

0 − 5Γ0 + Λ0

)
∆ρ2−

− 1

3

(
4Γ3

0 − 18Γ2
0 + 6Γ0Λ0 + 26Γ0 − 6Λ0 + N0

)
∆ρ3+

+ O(∆ρ4 + ∆ρ3∆u + ∆v + ∆ρ∆K0).

(2.45)
The �rst 
on
lusion that 
an be drawn out of (2.45) is

∆K0 = O(Γ0∆ρ). (2.46)Referring to �gure 2.1.1 three di�erent 
ases 
on
erning the orders of mag-nitude for the variation of Γ0, Λ0 and N0 under the variation of the referen
estate in the limit M0 → 1 have to be distinguished.
ase 1 (n=2): Γ0 = O(1), Λ0 = O(1), N0 = O(1), (2.47a)
ase 2 (n=3): Γ0 = O(∆ρ), Λ0 = O(1), N0 = O(1), (2.47b)
ase 3 (n=4): Γ0 = O(∆ρ2), Λ0 = O(∆ρ), N0 = O(1), (2.47
)whi
h �nally gives 
ase 1 (n=2): ∆K0 = O(∆ρ), (2.48a)
ase 2 (n=3): ∆K0 = O(∆ρ2), (2.48b)
ase 3 (n=4): ∆K0 = O(∆ρ3), (2.48
)



22 CHAPTER 2. MODEL

 0.8

 0.9

 1

 1.2  1.6  2  2.4

PSfrag repla
ements
p
pc

ρc

ρ

Γ ∼ 1, Γ < 0 Γ ∼ 1, Γ > 0

|Γ| ≪ 1, ∂ρΓ|s ∼ 1

|Γ| ≪ 1, |∂ρΓ|s| ≪ 1, ∂2
ρΓ|s ∼ 1

Figure 2.3: Asymptoti
 regions in the pressure vs. density diagram based onthe magnitude of the fundamental derivative Γ and its derivatives for a BZT�uid. The subs
ript c indi
ates thermodynami
 quantities evaluated at the
riti
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al 
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alpoint. See also �gure 1.1 for a larger part of the p vs. ρ diagram.or in short form
∆K0 = O(∆ρn−1). (2.49)Magnitude of ∆v. The magnitude of ∆v, as mentioned before, has tobe su
h that the left-hand side and the right-hand side in equation (2.30)balan
e. Using equations (2.24) and (2.49) this implies

∆v = O(∆ρn) = O(∆un). (2.50)Formal asymptoti
 expansions. The order of magnitude relations de-rived so far suggest the following ansatz for formal asymptoti
 representationsof the various quantities
u = 1 +ǫ1u

(1)
i (x) + · · ·+ ǫn−1

1 u
(n−1)
i (x)+ǫn1u

(n)
i (x, y) +O(ǫn+1

1 ), (2.51)
v = ǫn1v

(1)
i (x, y) +O(ǫn+1

1 ), (2.52)
c = 1 +ǫ1c

(1)
i (x) + · · · + ǫn−1

1 c
(n−1)
i (x)+ǫn1 c

(n)
i (x, y) +O(ǫn+1

1 ), (2.53)
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ρ = 1 +ǫ1ρ

(1)
i (x) + · · ·+ ǫn−1

1 ρ
(n−1)
i (x)+ǫn1ρ

(n)
i (x, y) +O(ǫn+1

1 ), (2.54)
p = p0 +ǫ1p

(1)
i (x) + · · · + ǫn−1

1 p
(n−1)
i (x)+ǫn1p

(n)
i (x, y) +O(ǫn+1

1 ), (2.55)
h = h0 +ǫ1h

(1)
i (x) + · · · + ǫn−1

1 h
(n−1)
i (x)+ǫn1h

(n)
i (x, y) +O(ǫn+1

1 ), (2.56)
A = H0 +ǫn1A

(1)
i (x) +O(ǫn+1

1 ), (2.57)and for the 
ondition of transoni
 �ow, see (2.19),
M2

0 = 1 + ǫn−1
1 K, (2.58)introdu
ing a small perturbation parameter 0 < ǫ1 ≪ 1 as a measure for theexpe
ted density 
hanges in the �ow. The index i in the expansions shallemphasize that these are expansions for the solution of the (i)nvis
id Eulerequations.As has been de�ned by (2.47) n ∈ 2, 3, 4 depending on the 
hosen �uid andthe 
hosen referen
e state
ase 1 (n=2): Γ0 = Γ̄, Λ0 = Λ̄, N0 = N̄ , (2.59a)
ase 2 (n=3): Γ0 = ǫ1Γ̄, Λ0 = Λ̄, N0 = N̄ , (2.59b)
ase 3 (n=4): Γ0 = ǫ2

1Γ̄, Λ0 = ǫ1Λ̄, N0 = N̄ . (2.59
)Remark 2.1.4. The dependen
e of the individual 
oe�
ients in the asymp-toti
 expansions on the arguments (x, y) is a result of the following analysis.Inserting the expansions (2.57) to (2.57) into the 
ontinuity equation andthe momentum equation in x-dire
tion of the Euler equations (2.12) and into(2.16) gives to the leading order
∂

∂x

(

u
(1)
i (x) + ρ

(1)
i (x)

)

= 0, (2.60)
∂

∂x

(

u
(1)
i (x) + p

(1)
i (x)

)

= 0, (2.61)
∂

∂x

(

h
(1)
i (x) − p

(1)
i (x)

)

= 0, (2.62)



24 CHAPTER 2. MODELwhereas the momentum equation in y-dire
tion results in
∂

∂y
p

(k)
i = 0 k = 1, . . . , n − 1, (2.63)showing that the �ow �eld is one-dimensional for the �rst n−1 orders. Takinginto a

ount the in�ow 
onditions (2.3), these equations 
an be integratedwith respe
t to x leading to

u
(1)
i (x) = −ρ

(1)
i (x) = −p

(1)
i (x) = −h

(1)
i (x). (2.64)The 
ondition of an irrotational �ow �eld (2.14) gives

∂

∂y
u

(k)
i = 0 k = 1, . . . , n − 1, (2.65)

∂

∂y
u

(k)
i − ∂

∂x
v

(k−n+1)
i = 0 k ≥ n. (2.66)And, �nally inserting into the fundamental equation of gas dynami
s (2.30)taking into a

ount (2.45) and (2.64) yields

−J ′
[n]

(

p
(1)
i (x); K, Γ̄, Λ̄, N̄

) ∂p
(1)
i (x)

∂x
=

∂v
(1)
i (x, y)

∂y
. (2.67)with J ′

[n] (p) =
dJ[n](p)dp . J[n] is a polynomial of order n in p

(1)
i , see the followingde�nition 2.1.2, and has the physi
al meaning of a mass �ux density for whi
ha heuristi
 argument will be given at the end of this se
tion, see remark 2.1.6.De�nition 2.1.2. J[n] (p ; K, Γ, Λ, N) is the leading order term of the pertur-bation of the mass �ux density for an one-dimensional, isentropi
, invis
idand transoni
 �ow through a nozzle.

J[n](p ; K, Γ̄, Λ̄, N̄) =







−Kp − Γ̄p2 n = 2

−Kp − Γ̄p2 − 1
3
Λ̄p3 n = 3

−Kp − Γ̄p2 − 1
3
Λ̄p3 − 1

12
N̄p4 n = 4.

(2.68)
J[n]

(
p; K, Γ̄, Λ̄, N̄

) has the following properties.
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al Ma
h number M = ũ
c̃
follows from

M − 1 = ǫn−1
1

1

2

dJ[n]dp . (2.69)� The lo
al value of the fundamental derivative and its �rst derivative isgiven by
Γ = −ǫn−2

1

1

2

d2J[n]dp2
, Λ = −ǫn−3

1

1

2

d3J[n]dp3
. (2.70)In order to obtain equation (2.69) the expression u2− 1

M2
0
c2 is manipulatedin the following way

(

u2 − 1

M2
0

c2

)

=

(

u − 1

M0
c

)(

u +
1

M0
c

)

=

=
c

M0
(M − 1)

(

u +
1

M0
c

) (2.71)and 
onsequently
M − 1 =

M0

c

1

u + 1
M0

c

(

u2 − 1

M2
0

c2

)

. (2.72)Taking into a

ount (2.45) for the treatment of expression u2− 1
M2

0
c2, insertionof the asymptoti
 expansion (2.51) and 
olle
ting the terms of highest orderyields the sought after relation for the lo
al Ma
h number M .The importan
e of equation (2.67) stems from the fa
t that it 
onne
tsthe variation of the leading order terms of p, ρ, u and h along the 
enterlineof the nozzle with the small verti
al velo
ity 
omponent v whi
h itself isgenerated by a small variation of the throat area of the nozzle A(x). To thisend, (2.67) is integrated with respe
t to y 
onsidering the fa
t that the term

∂
∂y

v
(1)
i (x, y) =

∂v
(1)
i

∂y
(x) is a fun
tion of x only, as 
an be seen by the inspe
tion



26 CHAPTER 2. MODELof the left-hand side of (2.67),
v

(1)
i (x, y) =

∫ v
(1)
i

0

dv(1)
i =

∫ y

H0
2

∂v
(1)
i

∂y
(x)dy =

∂v
(1)
i

∂y
(x)

∫ y

H0
2

dy =

= −
(

y − H0

2

) ddxJ[n]

(

p
(1)
i (x); K, Γ̄, Λ̄, N̄

)

.

(2.73)Here the symmetry 
ondition v
(1)
i

(
x, y = H0

2

)
= 0 has been exploited in theintegration limit. Evaluating (2.73) at the wall, ys = ǫn1A

(1)
i (x) + O(ǫn+1

1 ),and 
omparing with the boundary 
ondition (2.33), v
(1)
i (x, ys) = −1

2

dA(1)
idx ,leads after some straightforward manipulations toddx (J[n]

(

p
(1)
i (x); K, Γ̄, Λ̄, N̄

)

+
A

(1)
i (x)

H0

)

= 0, (2.74)whi
h 
an be integrated to
J[n]

(

p
(1)
i (x); K, Γ̄, Λ̄, N̄

)

+
A

(1)
i (x)

H0
= const. (2.75)Remark 2.1.5. The fundamental equation of gas dynami
s (2.67) 
an be in-terpreted as a solvability 
ondition whi
h has to be imposed in order to avoidse
ular terms entering the problem at higher order in the asymptoti
 expan-sions of equations (2.12) and (2.16). This will be shown in more detail inse
tion 2.2.2.Remark 2.1.6. In de�nition 2.1.2 J[n] has been des
ribed as the leading orderterm of the perturbation of a mass �ux density. First of all it re�e
ts theinterpretation of the fundamental equation of gas dynami
s (2.29) as a ver-sion of the 
ontinuity equation, [62℄. A heuristi
 explanation is given below.Consider the behavior of the mass �ux density ρu 
lose to soni
 �ow 
ondi-tions, u = c∗ with c∗ as the 
riti
al speed of sound, sket
hed in �gure 2.4.Writing the �rst terms of a Taylor expansion for the mass �ux density,

ρu = 1 +
dρudu ∣∣∣0 (∆u) +

1

2

d2ρudu2

∣
∣
∣
0
(∆u)2 + O(∆u)3), (2.76)



2.1. NONINTERACTING FLOW REGIME 27and inserting the expressions for the slope and the 
urvature of the fun
tionof the mass �ux 
lose to u = c∗, see �gure 2.4,
1

ρ

dρudu ∣∣∣0 = 1 − M2
0 ,

u

ρ

d2ρudu2

∣
∣
∣
0

= −2Γ0 + O(Γ0∆u), (2.77)leads to
ρu = 1 + (1 − M2

0 )∆u − Γ0∆u2 + O(∆u3). (2.78)On the other hand the 
ontinuity equation for one-dimensional �ow has tohold,
ρu − 1 =

H0

A
− 1 = −∆A

H0
+ O(∆A2). (2.79)Comparing the two expressions for ρu with ∆u ∼ −∆p suggests

ρu − 1 ∼ −∆A

H0

∼ (M2
0 − 1)∆p − Γ0∆p2, (2.80)whi
h yields the �rst two terms of J[n] after having inserted the asymptoti
expansions (2.51) and (2.58). To be more general, this results in the formalasymptoti
 representation

ρu ∼ 1 + ǫn1J[n]

(

p
(1)
i (x); K, Γ̄, Λ̄, N̄

) (2.81)of the mass �ux density. From the 
ontinuity equation for one-dimensional�ow then follows
ρuA = const ∼

{

1 + ǫn1J[n]

(

p
(1)
i (x); K, Γ̄, Λ̄, N̄

)}(

H0 + ǫn1A
(1)
i

)

=

= H0

{

1 + ǫn1

(

J[n]

(

p
(1)
i (x); K, Γ̄, Λ̄, N̄

)

+
A

(1)
i

H0

)}

.
(2.82)Hen
e equation (2.75) expresses the 
ontinuity of the mass �ux.



28 CHAPTER 2. MODEL

0.0

0.2

0.4

0.6

0.8

1.0

0.0 05 1.0 1.5 2.0 2.5

PSfrag repla
ements
uc∗

ρu

Figure 2.4: One-dimensional mass �ux density vs. velo
ity (qualitatively).2.1.2 Boundary LayerThe Euler equations (2.12) obtained in the invis
id limit Re → ∞ 
an-not satisfy the no-slip 
ondition (2.2) pres
ribed at the 
hannel walls as thelimiting pro
edure mathemati
ally results in a degeneration of the originalproblem des
ribed by the Navier Stokes equations (2.1). The o

urren
e ofthis singular perturbed problem is indi
ated by loosing the terms of highestorder derivatives, that is the dissipative terms, in the redu
ed problem (2.12),
f. [22℄, [30℄, [74℄, [91℄.This shortage is over
ome by introdu
ing a se
ond asymptoti
ally thin re-gion 
lose to the walls - a boundary layer -, indi
ated by region 2 in �gure 2.1,where the equations have to be res
aled keeping some of the dissipative termsin the resulting distinguished limit. The method of mat
hed asymptoti
 ex-pansions �nally leads to an uniformly valid asymptoti
 representation of thesolution for the two di�erent regions for Re → ∞, 
f. [22℄, [30℄, [74℄, [91℄.The 
lassi
al 
on
ept of nonintera
ting boundary layer theory initiatedby L. Prandtl in 1904 
an be found in many textbooks, see e.g. [26℄, [33℄[72℄, [74℄, [78℄, [91℄, and therefore the results of the asymptoti
 analysis areintrodu
ed whilst skipping most of their derivations. A few short 
ommentson the spe
ial features resulting from the usage of �uids with equation ofstates of higher 
omplexity, i.e. dense gases, and their impa
t on the solutionof the 
ompressible boundary layer equations will be given. Only laminar,
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onsidered.Introdu
e a small perturbation parameter ǫ2 de�ned as
ǫ2 = Re−

1
2 . (2.83)The asymptoti
 expansions of the various �ow quantities in the outer,
ore region of a 
hannel of 
onstant height, region 1 in �gure 2.1, to whi
hthe following length s
ale applies

x = x1 = O(1), (2.84)are given by
u = 1 + O(ǫ2), v = O(ǫ2), (2.85)
p = p0 + O(ǫ2), ρ = 1 + O(ǫ2),

θ = 1 + O(ǫ2), h = h0 + O(ǫ2),
f. (2.17).For the des
ription of the boundary layer �ow the length s
ales
x = X2 = O(1), y = ǫ2Y2 = O(ǫ2 = Re−

1
2 ). (2.86)are introdu
ed. The leading order terms of the expansions for the variousquantities then are given by

u = U
(0)
2 (X2, Y2) + O(ǫ2), v = ǫ2V

(0)
2 (X2, Y2) + O(ǫ2

2), (2.87)
p = P

(0)
2 (X2) + O(ǫ2), ρ = R

(0)
2 (X2, Y2) + O(ǫ2),

θ = Θ
(0)
2 (X2, Y2) + O(ǫ2).For the enthalpy h, using some appropriate equation of state h = h(θ, p), itis found that

h = H
(0)
2 (Θ

(0)
2 , P

(0)
2 ) + O(ǫ2). (2.88)



30 CHAPTER 2. MODELFurthermore, it will be assumed that the expressions for the material param-eters satisfy
µ = µ

(0)
2 (Θ

(0)
2 , P

(0)
2 ) + O(ǫ2), µb = µ

(0)
b,2(Θ

(0)
2 , P

(0)
2 ) + O(ǫ2), (2.89)

k = k
(0)
2 (Θ

(0)
2 , P

(0)
2 ) + O(ǫ2), β = β

(0)
2 (Θ

(0)
2 , P

(0)
2 ) + O(ǫ2), (2.90)

cp = c
(0)
p,2(Θ

(0)
2 , P

(0)
2 ) + O(ǫ2). (2.91)Then the 
ompressible, steady, laminar boundary layer equations are givenby

∂R
(0)
2 U

(0)
2

∂X2
+

∂R
(0)
2 V

(0)
2

∂Y2
= 0, (2.92)

R
(0)
2

(

U
(0)
2

∂U
(0)
2

∂X2
+ V

(0)
2

∂U
(0)
2

∂Y2

)

= −dP
(0)
2dX2

+
∂

∂Y2

(

µ
(0)
2

∂U
(0)
2

∂Y2

)

, (2.93)
1

PrEc

∂

∂Y2

(

k
(0)
2

∂Θ
(0)
2

∂Y2

)

=

= R
(0)
2

(

U
(0)
2

∂H
(0)
2

∂X2

+ V
(0)
2

∂H
(0)
2

∂Y2

)

− U
(0)
2

dP (0)
2dX2

− µ
(0)
2

(

∂U
(0)
2

∂Y2

)2

,

(2.94)
or instead of (2.94)

R
(0)
2 c

(0)
p,2

(

U
(0)
2

∂Θ
(0)
2

∂X2
+ V

(0)
2

∂Θ
(0)
2

∂Y2

)

=
1

Pr

∂

∂Y2

(

k
(0)
2

∂Θ
(0)
2

∂Y2

)

+

+ Ec






β̃0θ̃0β

(0)θ
(0)
2 U

(0)
2

dP (0)
2dX2

+ µ
(0)
2

(

∂U
(0)
2

∂Y2

)2





.

(2.95)
The boundary 
onditions for an adiabati
 wall of the 
hannel are

U
(0)
2 = V

(0)
2 = 0,

∂Θ
(0)
2

∂Y2
= 0 @X2 = (X2, Y2 = 0)T . (2.96)Mat
hing with the outer �ow leads to

lim
Y2→∞

U
(0)
2 (x, Y2) = 1, lim

Y2→∞
Θ

(0)
2 (x, Y2) = 1, (2.97)
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P

(0)
2 (x) = p0. (2.98)The boundary layer equations in 
ompressible form, equations (2.92) to(2.98), are 
oupled. In order to 
omplete the des
ription relations governingthe dependen
e of the material parameters µ, µb, k, β and cp on the thermo-dynami
 state have to be provided, see [72℄ and [78℄ for the 
ase of perfe
tgases, where Ec = O(M2

0 ). In 
ase of dense gases, where Ec = O(M2
0 δ) and

0 < δ ≪ 1, see dis
ussion of equation (2.11), the 
ompressible boundary layerequations 
an be simpli�ed for plane parallel outer �ow, de�nition 2.1.1, ashas been noted by Kluwi
k in [36℄, [39℄.Compressible Boundary Layer Flow of Dense GasesAs has been mentioned in the dis
ussion of equation (2.11) the estimate
Ec = O(M2

0 δ) for the E
kert number holds in 
ase of dense gases withrelatively large heat 
apa
ities, 0 < δ ≪ 1. As a result, 
hanges of thetemperature a
ross the boundary layer are small as suggested by equation(2.94),
∂

∂Y2

(

k
(0)
2

∂Θ
(0)
2

∂Y2

)

= O(Ec). (2.99)Consequently, the temperature �eld in the boundary layer at an adiabati
wall 
an be approximated as
Θ

(0)
2 (x, Y2) = 1 + O(Ec), (2.100)
onsidering the mat
hing 
ondition (2.97). Sin
e the outer �ow is a planeparallel 
onstant 
hannel �ow (see de�nition 2.1.1) implying dp(0)1dx = 0, thedensity in the whole boundary layer is 
onstant to leading order as well. Withthat in mind the equations for 
ompressible boundary layer �ow simplify to
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ompressible form
∂U

(0)
2

∂X2

+
∂V

(0)
2

∂Y2

= 0, (2.101)
U

(0)
2

∂U
(0)
2

∂X2
+ V

(0)
2

∂U
(0)
2

∂Y2
=

∂2U
(0)
2

∂Y 2
2

, (2.102)for whi
h a solution in 
lassi
al self-similar form
U

(0)
2 = f ′(η), V

(0)
2 =

1

2
√

x
(ηf ′(η) − f(η)) , η =

Y2√
x

(2.103)exists. The fun
tion f(η) has to satisfy the well-known Blasius' equation
f ′′′ +

1

2
ff ′ = 0, (2.104)with the boundary 
onditions

f(0) = f ′(0) = 0, lim
η→∞

f(η) = 1. (2.105)Remark 2.1.7. Numeri
al results for boundary layers in a dense gas regimeforming on a �at plate with zero pressure gradient performed by Zieher in [97℄showed a good agreement between the velo
ity pro�le predi
ted by the Bla-sius solution and the pro�les 
al
ulated using the full in
ompressible formu-lation of the boundary layer equations, [97℄, [39℄.2.2 Intera
ting Flow RegimeThe �ow in the intera
tion region, i.e. region 3 of the 
hannel, 
f. �gure 2.1,
an be 
onsistently des
ribed by means of the triple de
k theory formulated�rst by Stewartson, Messiter and Neiland, 
f. [79℄, [57℄, [59℄. The triple de
kstru
ture of the intera
tion region is sket
hed in �gure 2.5. The on
omingboundary layer subdivides into a thin vis
ous lower de
k where vis
osity playsa signi�
ant role and a passive main de
k. The role of the main de
k is totransfer the displa
ement e�e
t of the lower de
k to the upper de
k and to



2.2. INTERACTING FLOW REGIME 33transfer the resulting pressure response of the upper de
k ba
k to the lowerde
k.A

ording to the premises made for the sought after distinguished limitfor the des
ription of the intera
ting �ow regime in the introdu
tory remarksto 
hapter 2 the 
hannel shall be su�
iently slender, so that the upper de
k isrepresented by one single region intera
ting with the lower/main de
ks at theupper and lower 
hannel walls, as is shown in �gure 2.5. Furthermore, it willbe imposed that the �ow in the upper de
k region shall be one-dimensional tothe leading order at least. For a dis
ussion of the signi�
an
e of the desiredlimit in a broader physi
al 
ontext refer to the introdu
tion.The desired properties of the distinguished limit 
an only be obtainedby a suitable 
hoi
e of the order of magnitude of the 
hannel height, whi
hhas been left unde�ned up to now. In the formulation of the on
omingnonintera
ting �ow in the 
ore region it therefore had to be assumed thatthe �ow 
an be des
ribed by the invis
id Euler equations to the leadingorders even when a properly s
aled verti
al 
oordinate has been introdu
ed,
f. se
tion 2.1.1. This assumption will be veri�ed in se
tion 2.2.3 after theproperties of the intera
tion region have been established. It will be shownthat the nonintera
ting �ow through a 
hannel of 
onstant height is -notvery surprisingly- a meaningful nonintera
ting on
oming �ow regime indeedfor the found distinguished limit. Furthermore, the question, whether moregeneral �ow types, i.e. one-dimensional nozzle �ow, are 
ompatible with theestablished distinguished limit, will be addressed there too.2.2.1 Orders of Magnitude - Inspe
tion AnalysisUnder the assumption that the region of vis
ous invis
id intera
tion, region 3in �gure 2.1 or in �gure 2.5, exhibits a triple de
k stru
ture relations for therelative orders of magnitude for the various �ow quantities in the individualde
ks shall be derived mainly by inspe
ting the governing equations andbalan
ing the terms whi
h from a physi
al point of view have to be kept inthe distinguished limits for Re → ∞.
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Figure 2.5: Triple de
k stru
ture of intera
tion region. (3u) upper de
k, (3m)main de
k, (3l) lower de
k.Lower De
k� Thin lower de
k

(u)3l ∼
∂U

(0)
2 (1, 0)

∂Y2

Re
1
2 δ3l ∼ ∆(u)3l. (2.106)Here the no-slip 
ondition U

(0)
2 (X2, 0) = 0 and the boundary layers
aling (y)2 = Re−

1
2 Y2 have been used.� Balan
e of inertia and pressure term in x-momentum equation (2.1b)

∆(u)2
3l ∼ ∆(p)3l. (2.107)� Balan
e of inertia and vis
ous term in x-momentum equation (2.1b)

∆(u)3l
∆(u)3l

∆x3
∼ 1

Re

∆(u)3l

δ2
3l

. (2.108)� Pressure disturban
e in thin lower de
k imposed by outer �ow
∆(p)3l ∼ ∆(p)3u. (2.109)
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ontinuity equation
∆(u)3l

∆x3

∼ ∆(v)3l

δ3l

. (2.110)Main De
k� Balan
e with the lower de
k shift of the velo
ity pro�le
∆(u)3m ∼ ∆(u)3l. (2.111)� Exerted displa
ement on the upper de
k
∆(v)3m ∼ ∆(v)3u. (2.112)� Non-degenerate 
ontinuity equation
∆(u)3m

∆x3
∼ ∆(v)3u

δ3m
. (2.113)� Pressure disturban
e in thin main de
k imposed by outer �ow similarto lower de
k �ow

∆(p)3m ∼ ∆(p)3u. (2.114)Upper De
kThe upper de
k distinguished limit is guided by the idea of one-dimensionalinvis
id nozzle �ow presented in se
tion 2.1.1.� One-dimensional weakly disturbed plane parallel �ow
∆(ρ)3u ∼ ∆(p)3u ∼ ∆(u)3u. (2.115)� Displa
ement e�e
t exerted by main de
k shall lead to a �ow response



36 CHAPTER 2. MODELat leading order, see (2.30),
(

(u)2
3u −

1

M2
0

(c)2
3u

)
∆(u)3u

∆x3
∼ ∆(v)3u

H3u
(2.116)with

(

(u)2
3u −

1

M2
0

(c)2
3u

)

∼ ∆(ρ)n−1
3u , (2.117)analogous to (2.45). The parameter n governing the nonlinearity hasbeen already de�ned in (2.47) for the 
ase of invis
id nozzle �ow.� Transoni
 �ow, see (2.46),

1 − M2
0 = K∆K0 ∼ ∆(ρ)n−1

3u . (2.118)� Irrotational �ow
(

∂u

∂y

)

3u

∼ ∆(v)3u

∆x3
. (2.119)Remark 2.2.1. The main di�eren
e in the formulation of the small dis-turban
e equation (2.67) in se
tion 2.1.1 and the pro
edure presentedhere is the freedom of 
hoi
e of a suitable s
aling for the normal di-re
tion H3u whi
h 
an be used to 
ontrol the degree of degeneration ofequation ∇× u = 0. By a proper 
hoi
e of the order of magnitude ofthe 
hannel height the �ow �eld be
omes one-dimensional to the lead-ing order only and two-dimensionality enters at the next lower order inequation ∇× u = 0.� Time s
aling shall preserve the slowest times
ales governing the longtermbehavior of the system

∆t3 ∼
∆x3

∆ρn−1
. (2.120)Remark 2.2.2. Classi
al theory of 
ompressible one-dimensional invis-
id unsteady �ow through a 
hannel predi
ts that disturban
es are



2.2. INTERACTING FLOW REGIME 37propagating along left- and right running 
hara
teristi
 
urves, η =

const and ζ = const, in the (x, t)-spa
e with the two 
hara
teris-ti
 speeds λη = λ̃η

c̃0
= M0(u)3u − (c)3u and λζ = M0(u)3u + (c)3u,see [56℄, [49℄. Obviously the faster time s
ale λζ = O(1), whereasthe slower times
ale

λη = M0(u)3u − (c)3u ∼
(

M0(u)3u − (c)3u

)(

M0(u)3u + (c)3u

)

=

= M2
0

(

(u)2
3u −

1

M2
0

(c)2
3u

)

∼ ∆(ρ)n−1
3u .In the last step expression (2.117) has been used. So �nally the estimate(2.120) 
an be motivated by λη ∼ ∆x3

∆t3
∼ ∆ρn−1.Cal
ulation of the Orders of Magnitude of the Flow QuantitiesIntrodu
e a small expansion parameter 0 < ǫ3 ≪ 0 as a measure for thevariation of the main velo
ity in the lower de
k ∆(u)3l and make the follow-ing ansatz for the orders of magnitude of the 
hanges of the relevant �owquantities

∆(u)3l ∼ ǫ3, ∆(v)3l ∼ ǫlv3 ,

∆(u)3u ∼ ǫnu
3 , ∆(v)3u ∼ ǫnv

3 , ∆(ρ)3u ∼ ǫ
nρ

3 ,

∆(u)3m ∼ ǫmu
3 , ∆(v)3m ∼ ǫmv

3 ,

∆(p)3 ∼ ∆(p)3u ∼ ∆(p)3m ∼ ∆(p)3l ∼ ǫ
np

3 ,

∆x3 ∼ ǫkx
3 , δ3m ∼ Re−

1
2 ∼ ǫ

kδ,m

3 , δ3l ∼ ǫ
kδ,l

3 , H3u ∼ ǫkH
3introdu
ing the 11 unknowns ki, li, mi, ni ∈ Q. Insertion into the equations(2.106) to (2.115) yields the following 10 relations

ǫ
kδ,l−kδ,m

3 ∼ ǫ3, ǫ2
3 ∼ ǫ

np

3 , ǫ2−kx
3 ∼ ǫ

1−2kδ,l

3 ,

ǫ1−kx
3 ∼ ǫ

lv−kδ,l

3 , ǫ3 ∼ ǫmu
3 , ǫmv

3 ∼ ǫnv
3 ,

ǫmu−kx
3 ∼ ǫ

mv−kδ,m

3 , ǫ
(n−1)nρ+nu−kx

3 ∼ ǫnv−kH
3 , ǫ

nρ

3 ∼ ǫnu
3 ,

ǫnu
3 ∼ ǫ

np

3 .



38 CHAPTER 2. MODELAs has been pointed out in remark 2.2.1 the �ow in the upper de
k shallbe one-dimensional to the leading order and two-dimensionality shall enterat the next higher order. However, this is not a natural 
ondition, whi
hthe upper de
k �ow has to satisfy, but one that is enfor
ed by the a suf-�
iently small 
hannel height of length s
ale H3u, as has been pointed outin the introdu
tion to this 
hapter 2.2 or also in remark 2.2.1. Therefore,as generalization one equally well 
an ask for a 
ondition that the �ow �eldin the upper de
k is one-dimensional to the �rst N1D orders. This suggeststhe following ansatz for the horizontal velo
ity 
omponent u, suppressing thetime dependen
y of the quantities in the following relations,
(u)3u = 1 +

N1D∑

i=1

ǫnu+i−1
3 u

(i)
3u

(

(x)3

)

+ ǫnu+N1D
3 u

(N1D+1)
3u

(

(x)3, (y)3u

)

+ · · ·and 
onsequently
(

∂u

∂y

)

3u

∼ ǫnu+N1D
3

∂

∂(y)3u
u

(N1D+1)
3u

(

(x)3, (y)3u

)d(y)3udy .Keeping that in mind the expression for irrotational �ow in the upper de
k(2.119) 
an be used to make the following estimate
ǫnu+N1D−kH
3 ∼ ǫnv−kx

3 .Comparison of the exponents of ǫ3 in the expressions yields the following 11linear equations for 11 unknowns
kδ,l − kδ,m = 1, np = 2,

2kδ,l − kx = 1, kδ,l − kx − lv = −1,

mu = 1, mv − nv = 0,

kδ,m − kx + mu − mv = 0, kH − kx + nu − nv + (n − 1)nρ = 0,

− nu + nρ = 0, nu − np = 0,

− kH + kx + nu − nv = −N1D,
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h have the solutions
kδ,l = 4 + n +

N1D

2
, kδ,m = 3 + n +

N1D

2
, kH = 4 − n +

N1D

2
, kx = 3,

lv = 2 + n +
N1D

2
, mu = 1, mv = 1 + n +

N1D

2
, nu = 2,

nv = 1 + n +
N1D

2
, np = 2, nρ = 2.From δ3m ∼ Re−

1
2 it then follows for the small perturbation parameter

ǫ3 = Re
− 1

6+2n+N1D . (2.121)And �nally exploiting equation (2.120) yields for the time s
aling
∆t3 ∼ ǫ5−2n

3 . (2.122)For the 
hoi
e of N1D there are two meaningful options.1. N1D is kept �xed. Then the ratio
(x)3

(y)3u
= O

(

ǫ
n−1−

N1D
2

3

)

,whi
h is a measure for the slope of streamlines in the upper de
k, isdependent on the 
hosen nonlinearity n.2. The ratio
(x)3

(y)3u

= constis kept �xed. Then the �rst N1D = 2(n− 1) orders of the �ow �eld areone-dimensional, dependent on the 
hosen nonlinearity n.2.2.2 Formal Asymptoti
 ExpansionsWith the inspe
tion analysis performed in the previous se
tion it is possibleto write down formal asymptoti
 expansions for the various �ow quantities
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Figure 2.6: Triple de
k stru
ture of intera
tion region. (3u) upper de
k, (3m)main de
k, (3l) lower de
k.in the di�erent subregions of the intera
tion region 
hara
terized by di�erentlength s
ales in verti
al dire
tion, see �gure 2.6. Inserting into the governingequations and 
olle
ting the terms of highest order yields the distinguishedlimits for ea
h de
k, an uniformly valid solution 
an be found via the mat
h-ing of the di�erent solutions of the neighboring asymptoti
 regions. Sin
e forthe lower de
k and for the main de
k this does not result in many deviationsfrom the standard triple de
k theory, see i.e. [37℄, [80℄, these equations willbe introdu
ed without mu
h further explanations, however more details willbe given for the derivation of the equations of the upper de
k problem.Inspe
tion analysis in se
tion 2.2.1 suggests for the spa
ial s
aling of thex-
oordinate

(x)3 = 1 + ǫ3
3X3, (2.123)whi
h is the same in all de
ks, and for the time s
aling

t = ǫ5−2n
3 T3. (2.124)
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kInspe
tion analysis in se
tion 2.2.1 suggests for the spa
ial s
alings in y-dire
tion
(y)3l = ǫ

4+n+
N1D

2
3 Y3l, (2.125)and the subsequent formal asymptoti
 expansions for the relevant quantities

(u)3l = ǫ3U
(1)
3l (X3, Y3l, T3) + O(ǫ2

3), (2.126)
(v)3l = ǫ

2+n+
N1D

2
3 V

(1)
3l (X3, Y3l, T3) + O(ǫ

3+n+
N1D

2
3 ), (2.127)

(ρ)3l = Rw + ǫ3R
(2)
3l (X3, Y3l, T3) + O(ǫ2

3), (2.128)
(p)3l = p0 + ǫ2

3P
(1)
3l (X3, T3) + O(ǫ3

3) (2.129)and
(µ)3l = µw + O(ǫ3), (µb)3l = µb,w + O(ǫ3). (2.130)The subs
ript w has the meaning �evaluated at the wall�. In 
ase of an adia-bati
 wall Rw 
an be 
onsidered 
onstant over the horizontal length s
ale ofthe intera
tion region of O(ǫ3

3).Inserting the asymptoti
 expansions (2.126) to (2.129) into the governingequations yields to the leading order the following set of equations, the 
on-tinuity equation
∂U

(1)
3l

∂X3
+

∂V
(1)
3l

∂Y3l
= 0, (2.131)and the x-momentum equation

Rw

(

U
(1)
3l

∂U
(1)
3l

∂X3

+ V
(1)
3l

∂U
(1)
3l

∂Y3l

)

= −∂P
(1)
3l

∂X3

+ µw
∂2U

(1)
3l

∂Y 2
3l

. (2.132)



42 CHAPTER 2. MODELEvaluating the no-slip 
ondition at the wall (2.2) leads to the followingboundary 
onditions
U

(1)
3l = V

(1)
3l = 0 @X3l = (X3, Y3l = S3l(X3, T3))

T (2.133)with the s
aled hight (s2)3l = ǫ
9+2n

2
3 S3l(X3, T3) of a surfa
e mounted obsta
le,see �gure 2.1. Equations (2.131) to (2.133) so far are identi
al to Prandtl'sboundary layer equations in in
ompressible form derived for the noninter-a
ting 
ase, refer to se
tion 2.1.2. However, new 
onditions arise out of themat
hing of the asymptoti
 expressions for the various �ow quantities in thelower de
k with those in the undisturbed boundary layer upstream of theintera
tion region and with those in the main de
k. The mat
hing pro
edurewith the undisturbed boundary layer results in

lim
X3→−∞

P
(1)
3l (X3, T3) = 0, (2.134)

lim
X3→−∞

U
(1)
3l (X3, Y3l, T3) =

∂U
(0)
2 (1, 0)

∂Y2
Y3l, (2.135)

lim
X3→−∞

V
(1)
3l (X3, Y3l, T3) = 0. (2.136)And the mat
hing pro
edure with the main de
k -using the results for thegoverning equations of the main de
k obtained in the following se
tion- resultsin

P
(1)
3l (X3, T3) = P

(1)
3m(X3, T3), (2.137)

lim
Y3l→∞

{

U
(1)
3l (X3, Y3l, T3) −

∂U
(0)
2 (1, 0)

∂Y2

(

Y3l + A3m(X3, T3)
)
}

= 0. (2.138)
A3m is part of the solution of the main de
k and represents the negativedisturban
e of the displa
ement thi
kness.Remark 2.2.3. Subje
ted to the proposed time-s
aling the whole lower de
kproblem -and in fa
t the whole main de
k problem too- behaves quasi-steadyto the leading order meaning that the �ow �eld in the boundary layers of the
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tion region immediately adapts to transient 
hanges in the outer �ow�eld or to 
hanges of the 
ontour of the surfa
e mounted hump.Main De
kInspe
tion analysis in se
tion 2.2.1 suggests for the spa
ial s
alings in y-dire
tion
(y)3m = ǫ

3+n+
N1D

2
3 Y3m = Re−

1
2 Y3m. (2.139)The s
aling of the verti
al 
oordinate in the main de
k is the same as for thenonintera
ting boundary layer upstream of the intera
tion region (2.86) indi-
ating that the main de
k 
omprises the main part of the on
oming boundarylayer. The subsequent formal asymptoti
 expansions for the �ow quantitiesare superimposed onto the undisturbed boundary layer pro�le, U

(0)
2 (x, Y3m),

R
(0)
2 (x, Y3m) and Θ

(0)
2 (x, Y3m), evaluated at the beginning of the intera
tionregion x0 = 1. Introdu
ing the de�nitions

U
(0)
20 (Y3m) := U

(0)
2 (1, Y3m), R

(0)
20 (Y3m) := R

(0)
2 (1, Y3m),

θ
(0)
20 (Y3m) := θ

(0)
2 (1, Y3m)

(2.140)the asymptoti
 expansions 
an be written as
(u)3m = U

(0)
20 (Y3m) + ǫ3U

(1)
3m(X3, Y3m, T3) + O(ǫ2

3), (2.141)
(v)3m = ǫ

1+n+
N1D

2
3 V

(1)
3m (X3, Y3m, T3) + O(ǫ

2+n+
N1D

2
3 ), (2.142)

(ρ)3m = R
(0)
20 (Y3m) + ǫ3R

(1)
3m(X3, Y3m, T3) + O(ǫ2

3), (2.143)
(p)3m = p0 + ǫ2

3P
(2)
3m(X3, T3) + O(ǫ3

3), (2.144)
(θ)3m = Θ

(0)
20 (Y3m) + ǫ3Θ

(1)
3m(X3, Y3m, T3) + O(ǫ2

3), (2.145)and
(µ)3m = O(1), (µb)3m = O(1), (k)3m = O(1). (2.146)



44 CHAPTER 2. MODELBefore the leading order approximation for the main de
k equations is writtendown, a 
loser look has to be taken at the energy equation (2.8) 
onsideringa general relation for the spe
i�
 enthalpy h. The aim is to study dense gase�e
ts where the thermodynami
 relations for ideal gas are inadmissibly. Dh
Dtin the energy equation (2.1
) 
an be expressed in terms of variations of thedensity and the entropy in the following way

Dh

Dt
=

∂h

∂ρ

∣
∣
∣
s

Dρ

Dt
+

∂h

∂s

∣
∣
∣
ρ

Ds

Dt
=

c2

M2
0 ρ

Dρ

Dt
+ (1 + G)

θ

Ec

Ds

Dtusing the relation (2.34) and relation (B.20) in appendix B and introdu
ingthe Grüneisen 
oe�
ient, see i.e. [56℄, [47℄,
G := G0Ḡ =

ρ

θ

∂θ

∂ρ

∣
∣
∣
s
. (2.147)Making use of equation (2.8) for the term Ds

Dt
, the energy equation 
an bewritten after some rearranging of terms as

c2

M2
0

Dρ

Dt
︸ ︷︷ ︸

O(ǫ−2
3 )

− Dp

Dt
︸︷︷︸

O(ǫ−1
3 )

= −G0Ḡ

(

1

Re
τττ : ∇u − 1

PrEcRe
∇ · q

︸ ︷︷ ︸

O(ǫ3)

) (2.148)where the order of the asymptoti
ally largest 
ontribution of ea
h term in theequation is indi
ated by the values below the bra
kets . Here again the argu-ment has been used that 
hanges of the temperature are of O(Ec). Thereforethe term 1
PrEcRe

∇ ·q = O(ǫ3), even in 
ase of dense gases, where Ec → 0 for
δ → 0, see table 2.1. Formally this 
an be dedu
ed by inserting the asymp-toti
 expansions for the main de
k quantities into the energy equation in theform (2.8) and 
olle
ting the highest order terms resulting in

(
Dθ

Dt

)(1)

3m

:= U
(0)
2

∂Θ
(1)
3m

∂X3
+ V

(1)
3m

dΘ(0)
20dY3m

= O(ǫ3
3Ec), (2.149)indi
ating that the leading order approximation of the substantial derivativeof the temperature in the main de
k is small for perfe
t gas and for dense



2.2. INTERACTING FLOW REGIME 45gas as well. The important point now is that the relative order of ea
h termin (2.148) is depending on the magnitude of the Grüneisen 
oe�
ient G0.Whereas G0 
learly is an order one quantity for a perfe
t gas this is not soeasy to see for dense gases. In short the Grüneisen 
oe�
ient 
an be writtenas
G0 =

β̃0c̃
2
0

c̃v,0

K̃s,0

K̃θ,0

= β̃0θ̃0
c̃2
0

R̃g θ̃0

K̃s,0

K̃θ,0

R̃g

c̃v,0
. (2.150)

Kθ and KS are the isothermal and the isentropi
 
ompressibility, see ap-pendix B.1.1. The a
tual 
al
ulations justifying the following reasoning 
anbe found there as well. So taking a 
loser look at the quantities enter-ing equation (2.150) reveals that c̃20
R̃g θ̃0

, K̃s,0

K̃θ,0
are order one and R̃g

c̃v,0
= O(δ)even, however β̃0θ̃0 exhibits unbounded growth in the very 
lose vi
inity ofthe thermodynami
al 
riti
al point, whi
h is the working regime for densegases. The dis
ussion in B.1.1 shows that the region of interest here, theregion of negative nonlinearity, even though in the dense gas regime, still isfar enough from the thermodynami
al 
riti
al point, so that the argumentof unbounded growth does not apply to the situation 
onsidered here andtherefore β̃0θ̃0 = O(1) for dense gases also. So in 
on
lusion, the Grüneisen
oe�
ient G0 = O(1) or even G0 = O(δ) for the 
ases 
onsidered in thistreatise and the leading order term of the energy equation

(
Dρ

Dt

)(1)

3m

:= U
(0)
2

∂R
(1)
3m

∂X3

+ V
(1)
3m

dR(0)
2dY3m

= 0,takes on the usual form found in the literature for perfe
t gases, [37℄, [80℄,but, as has been argued, applies to the 
ase of dense gases also, if the veryvi
inity of the thermodynami
al 
riti
al point is ex
luded form the dis
ussion.The leading order approximation for the 
ontinuity equation and the mo-mentum equations for dense gases 
an be obtained without any new argu-ments by straightforward insertion of the asymptoti
 expansions for the �owquantities. Finally 
olle
ting the results, the main de
k equations are given



46 CHAPTER 2. MODELby
(

Dρ

Dt

)(1)

3m

:= U
(0)
20

∂R
(1)
3m

∂X3
+ V

(1)
3m

dR(0)
20dY3m

= −R
(0)
20

(

∂U
(1)
3m

∂X3
+

∂V
(1)
3m

∂Y3m

)

, (2.151)
(

Du

Dt

)(1)

3m

:= U
(0)
2

∂U
(1)
3m

∂X3

+ V
(1)
3m

dU (0)
20dY3m

= 0, (2.152)
(

Dρ

Dt

)(1)

3m

:= U
(0)
20

∂R
(1)
3m

∂X3
+ V

(1)
3m

dR(0)
20dY3m

= 0, (2.153)the leading order representation of the 
ontinuity equation, the x-momentumequation and the energy equation, respe
tively. The fa
t that no dissipativeterms and no pressure gradient enters the governing main de
k equationshighlights the passive nature of the main de
k, whi
h likewise 
an be observedfrom the general solution
U

(1)
3m = A3m(X3, T3)

dU (1)
20 (Y3m)dY3m

, (2.154)
V

(1)
3m = −∂A3m(X3, T3)

∂X3

U
(0)
20 (Y3m), (2.155)

R
(1)
3m = A3m(X3, T3)

dU (0)
20 (Y3m)dY3m

(2.156)introdu
ing the fun
tionA3m(X3, T3) whi
h 
an be interpreted as the negativedisturban
e of the displa
ement thi
kness of the undisturbed boundary layer.Mat
hing of the main de
k solutions with the lower de
k solutions resultsin equations 2.137 and 2.138 introdu
ed earlier. And the mat
hing of themain de
k solutions with the upper de
k solutions yields
P

(1)
3m(X3, T3) = p

(1)
3u (X3, T3), (2.157)

lim
Y3m→∞

U
(1)
3m(X3, Y3m, T3) = lim

Y3m→∞
R

(1)
3m(X3, Y3m, T3) = 0, (2.158)

lim
Y3m→∞

V
(1)
3m (X3, Y3m, T3) = −∂A3m(X3, T3)

∂X3

= v
(1)
3u (X3, 0, T3) (2.159)using limY3m→∞ U

(0)
20 (Y3m) = 1 and limY3m→∞

dU (0)
20 (Y3m)dY3m

= 0. Mat
hing with



2.2. INTERACTING FLOW REGIME 47the undisturbed boundary layer in region 2 results in
lim

X3→−∞
P

(1)
3m = 0, lim

X3→−∞
U

(1)
3m = 0, lim

X3→−∞
V

(1)
3m = 0. (2.160)Upper De
kInspe
tion analysis 
arried out in se
tion 2.2.1 suggests for the spa
ial s
alingsin y-dire
tion and the s
aled height of the 
hannel H03

(y)3u = ǫ
4−n+

N1D
2

3 y3u, (H0)3u = ǫ
4−n+

N1D
2

3 H03, (2.161)and the subsequent formal asymptoti
 expansions for the �ow quantities
(u)3u = 1 + ǫ2

3u
(1)
3u (X3, T3) + O(ǫ3

3), (2.162)
(v)3u = ǫ

1+n+
N1D

2
3 v

(1)
3u (X3, y3u, T3) + O(ǫ

2+n+
N1D

2
3 ), (2.163)

(ρ)3u = 1 + ǫ2
3ρ

(1)
3u (X3, T3) + O(ǫ3

3), (2.164)
(p)3u = p0 + ǫ2

3p
(1)
3u (X3, T3) + O(ǫ3

3), (2.165)
(c)3u = 1 + ǫ2

3c
(1)
3u (X3, T3) + O(ǫ3

3), (2.166)
(h)3u = h0 + ǫ2

3h
(1)
3u (X3, T3) + O(ǫ3

3), (2.167)
(θ)3u = 1 + ǫ2

3θ
(1)
3u (X3, T3) + O(ǫ3

3), (2.168)for the 
ondition of transoni
 �ow, introdu
ing the transoni
 similarity pa-rameter K,
(
1 − M2

0

)

3u
= Kǫ2n−2

3 (2.169)and 
ase n=2: Γ0 = Γ̄, Λ0 = Λ̄, N0 = N̄, (2.170a)
ase n=3: Γ0 = ǫ2
3Γ̄, Λ0 = Λ̄, N0 = N̄, (2.170b)
ase n=4: Γ0 = ǫ4
3Γ̄, Λ0 = ǫ2

3Λ̄, N0 = N̄. (2.170
)
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(µ)3u = O(1), (µb)3u = O(1), (k)3u = O(1). (2.171)In the following more time will be spent on the motivation of the governingequations for the upper de
k problem than in the previous se
tions for thelower and main de
k problem.Continuity equation. The starting point for the formulation of the upperde
k problem is the 
ontinuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0.Insertion of the asymptoti
 expansions yields, using the upper de
k s
alingand the appropriate time s
aling,

ǫ−3
3

∂

∂X3
(∆(ρ)3u + ∆(u)3u + ∆(ρ)3u∆(u)3u) =

= O
(

ǫ2n−3
3

∂∆(v)3u

∂y3u
, ǫ2n−5

3

∂∆(ρ)3u

∂T3

) (2.172)with the notation
∆(ρ)3u :=

2n−1∑

k=2

ǫk3ρ
(k−1)
3u + O(ǫ2n

3 ), (2.173)
∆(u)3u :=

2n−1∑

k=2

ǫk3u
(k−1)
3u + O(ǫ2n

3 ), (2.174)
∆(v)3u := ǫ

1+n+
N1D

2
3 v

(1)
3u + O(ǫ

2+n+
N1D

2
3 ), (2.175)

∆(ρ)3u∆(u)3u =
2n−1∑

k=4

ǫk3
∑

i+j=k
i,j≥2

ρ
(i−1)
3u u

(j−1)
3u + O(ǫ2n

3 ). (2.176)Equation (2.172) then leads to
∆(ρ)3u + ∆(u)3u + ∆(ρ)3u∆(u)3u = O

(
ǫ2n
3

)
, (2.177)



2.2. INTERACTING FLOW REGIME 49similar to the derivation of the essential equations for one-dimensional invis-
id transoni
 �ow through a nozzle presented in 
hapter 2.1.1, see equation(2.20) and (2.42). Colle
ting the terms of same order in equation (2.177)results in
ρ

(k−1)
3u + u

(k−1)
3u +

∑

i+j=k
i,j≥2

ρ
(i−1)
3u u

(j−1)
3u = 0 k = 2, · · · , 2n − 1. (2.178)For the integration of (2.172) with respe
t to X3 the 
ondition of mat
hingwith plane parallel 
onstant nozzle �ow upstream, (2.17),

lim
X3→−∞

ρ
(k−1)
3u = 0, lim

X3→−∞
u

(k−1)
3u = 0 k = 2, · · · , 2n − 1, (2.179)has been used. The integration 
onstant entering (2.177) or (2.178) then isfound to be zero.Momentum equation. In the following only the leading order represen-tation of the momentum equation in x-dire
tion

∂u
(1)
3u

∂X3
= −∂p

(1)
3u

∂X3
(2.180)is needed, whi
h 
an be integrated with respe
t to X3

u
(1)
3u = −p

(1)
3u . (2.181)The integration 
onstant again is found to be zero by making use of themat
hing 
onditions (2.179) and

lim
X3→−∞

p
(1)
3u = 0. (2.182)The leading order term of the momentum equation in y-dire
tion redu
es to

∂p
(1)
3u

∂y3u
= 0 (2.183)



50 CHAPTER 2. MODELfor all 
ases of n = 2, 3, 4 and N1D ∈ N+ 
onsidered here.Energy equation. For the further dis
ussion it is 
onvenient to rewritethe energy equation in the form
ρ
Dh

Dt
− Dp

Dt
=

1

Re
τττ : ∇u− 1

PrReEc
∇ · qin the way already introdu
ed for the treatment of the energy equation inthe main de
k, (2.148),

c2

M2
0

Dρ

Dt
− Dp

Dt
= −G0Ḡ

(
1

Re
τττ : ∇u− 1

PrEcRe
∇ · q

)

.Making use of the momentum equation (2.1b) the substantial derivative ofthe pressure 
an be written as
Dp

Dt
=

∂p

∂t
+ u · ∇p =

=
∂p

∂t
+ u ·

(

−ρ
∂u

∂t
− ρ (u · ∇)u− 1

Re
∇ · τττ

)

=

=
∂p

∂t
− ρu · ∂u

∂t
− ρ (u⊗ u) : ∇u − 1

Re
u · (∇ · τττ) ,where u · (u · ∇)u = uiuj∂jui = (u⊗ u) : ∇u has been used in the last step.On the other hand, the substantial derivative of the density is written as

Dρ

Dt
=

∂ρ

∂t
+ u · ∇ρ =

∂ρ

∂t
+ ∇ · (ρu) − ρ∇ · u =

∂ρ

∂t
+ ∇ · (ρu) − ρI : ∇u.Insertion into the energy equation yields the �nal result

− c2

M2
0

(
∂ρ

∂t
+ ∇ · (ρu)

)

=

= −∂p

∂t
+ ρu · ∂u

∂t
+ ρ

(

u⊗ u− c2

M2
0

I

)

: ∇u +

+
1

Re

{

u · (∇ · τττ ) + G0Ḡ

(

τττ : ∇u− 1

PrEc
∇ · q

)}

.

(2.184)



2.2. INTERACTING FLOW REGIME 51Several important 
on
lusions 
an be drawn form equation (2.184).� The expression with the fa
tor 1
Re

in front 
an be estimated as beingof O(ǫ4n
3 + ǫ2n+2+N1D

3 ) by inserting the asymptoti
 expansions for thevarious �eld quantities in the upper de
k s
aling. As has been pointedout in the dis
ussion of equation (2.150) in the previous se
tion, theGrüneisen 
oe�
ient G0 = O(1) for perfe
t gas and G0 = O(δ) fordense gases. And on
e again the argument is used that in 
ase of densegases, where Ec → 0 for δ → 0, also the 
hanges of the temperatureare of O(Ec) at most.� If the expression (u⊗ u− c2

M2
0

I
)

: ∇u would be equal to zero, thenone would have obtained the fundamental equation of gas dynami
s(2.29) en
ountered in the se
tion dealing with the invis
id, steady �owin the 
ore region, see 2.1.1.� The derivation of equation (2.184) has spawned the 
ontinuity equation.This is interesting in so far, as for a 
onsistent asymptoti
 formulation ofthe upper de
k the right hand side being equal to zero has to be imposedas a solvability 
ondition. This refers to the 
orresponding remark 2.1.5made about the fundamental equation of gas dynami
s. If it wouldbe not the 
ase, then insertion of the asymptoti
 representations intothe energy equation �nally would result in a 
ontradi
tion leading to
∂tρ + ∇ · (ρu) 6= 0.By exploitation of relation (2.181) the leading order approximation of equa-tion (2.184), i.e. the leading order approximation of the solvability 
ondition,

−2
∂p

(1)
3u

∂T3

− ∂

∂X3

J[n]

(

p
(1)
3u ; K, Γ̄, Λ̄, N̄

)

=
∂v

(1)
3u

∂y3u

(2.185)is obtained. The relevant steps of the analysis already have been performedin se
tion 2.1.1 and they immediately 
arry over to the derivation of (2.185).Here the �delta notation�, (2.173), of the 
ontinuity equation (2.177) intro-du
ed above proofs very bene�
ial on
e again. The perturbation of the mass�ux density J[n] has been de�ned in de�nition 2.1.2.



52 CHAPTER 2. MODELRemark 2.2.4. As a 
onsequen
e of the suitable time s
aling the time depen-den
e of the problem enters the equations here for the �rst time. The otherequations so far have not exhibited an expli
it dependen
y on the time.The left hand side of equation (2.184) does not depend on y3u, so it 
an beexpli
itly integrated in the same way as in (2.73) resulting in the expression(2.73) for v
(1)
3u . The main di�eren
e is that the velo
ity has to be mat
hed tothe main de
k solution instead to be �tted to the gradient of the throat areaof the nozzle expressed by the boundary 
ondition of tangential �ow at thewall. So applying the mat
hing 
ondition (2.159) gives the �nal result

−2
∂p

(1)
3u

∂T3

− ∂

∂X3

J[n]

(

p
(1)
3u ; K, Γ̄, Λ̄, N̄

)

=
2

H03

∂A3m

∂X3

. (2.186)Equation (2.186) is the �nal pie
e that 
loses the formulation of the wholetriple de
k problem, sin
e it relates the displa
ement e�e
t exerted by themain de
k to an immediate response of the pressure in the upper de
k atleading order. The displa
ement of the intera
ting boundary layer in itselfis a result of the de- or a

eleration of the lower de
k �ow due to 
hanges ofpressure imposed by the upper de
k �ow. Equation (2.186) therefore governsthe vis
ous invis
id intera
tion and is 
onsequently referred to as intera
tionlaw.2.2.3 Admissible Region 1 Flow TypesAs an out
ome of the inspe
tion analysis in se
tion 2.2.1 the verti
al lengths
ale in the upper de
k is of O(ǫ
4−n+

N1D
2

3 ). Sin
e the upper de
k region
omprises the whole former 
ore region in the intera
tion region, the verti
al
oordinate in the 
ore region, region 1, has to be of the same order, suggesting
x = x1, y = ǫ

4−n+
N1D

2
3 y1. (2.187)



2.2. INTERACTING FLOW REGIME 53A look at the 
ontinuity equation shows that the verti
al velo
ity v also hasto s
ale as
(v)1 = ǫ

4−n+
N1D

2
3 v1, (2.188)whereas the other �ow quantities stay order one quantities.Insertion into the governing equations introdu
ed at the beginning ofse
tion 2, and shown here for the basi
 Navier Stokes equations (2.1a) to(2.1
) equation only, leads to

∂ρ1

∂t
+ ∇ · (ρ1 u1) = 0, (2.189a)

ρ1

(
∂u1

∂t
+ (u1 · ∇1)u1

)

= −∇1p1 + O(ǫ4n−2
3 ), (2.189b)

ρ
D1h1

D1t
− D1p1

D1t
= O(ǫ4n−2

3 ). (2.189
)Here Re−1 = ǫ6+2n+N1D
3 , a 
onsequen
e of the de�nition of ǫ3 (2.121), andthe fa
t, that the 
ontributions of highest order in the dissipative terms ofthe momentum and energy equation are resulting from ∂2

∂y2
∼ ǫ−8+2n−N1D

3 , hasbeen used. Now, taking the limit Re → ∞, implying ǫ3 → 0, indeed gives theEuler equations, whi
h justi�es the previous assumption made for the formu-lation of the nonintera
ting 
ore region �ow in se
tion 2.1.1. Nonintera
ting
hannel �ow truly is an admissible leading order representation of the �owregime upstream of the intera
ting region. Therefore, the distinguished limitfor the intera
ting �ow regime proves to be 
onsistent with all the premisesmade during its derivation.In the following the question wether more general nonintera
ting �owtypes are admissible for this spe
ial intera
tion problem shall be addressedshortly . To this end 
onsider the results of one-dimensional invis
id nozzle�ow presented in se
tion 2.1.1. The asymptoti
 representations of the �owquantities (2.51) have to be modi�ed as follows
(u)1 = 1 + ǫ1u

(1)
1i (x1) + . . . , (2.190a)
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(v)1 = ǫ

4−n+
N1D

2
3 ǫn1v

(1)
1i (x1, y1) + . . . , (2.190b)

(c)1 = 1 + ǫ1c
(1)
1i (x1) + . . . , (2.190
)

(ρ)1 = 1 + ǫ1ρ
(1)
1i (x1) + . . . , (2.190d)

(p)1 = p0 + ǫ1p
(1)
1i (x1) + . . . , (2.190e)

(h)1 = h0 + ǫ1h
(1)
1i (x1) + . . . , (2.190f)

(A)1 = H10 + ǫ
4−n+

N1D
2

3 ǫn1A
(1)
1i (x1) + . . . , (2.190g)whi
h leaves the out
ome of the derivations performed in se
tion 2.1.1 un-
hanged, see equation (2.74), if the symbols for the quantities used in 2.51are substituted by the ones used in 2.190a, ui by u1i, say.Remark 2.2.5. The nozzle geometry (A)1 obviously is dependent on ǫ3 andtherefore dependent on Re.The important point now is that (v)1 has to be mat
hed with (v)3u. Ifsu
h a mat
hing is possible, then one-dimensional invis
id nozzle �ow willbe an admissible leading order representation of the �ow regime upstreamof the intera
ting region too. Mat
hing, taking into a

ount y1 = y3u andequations (2.160) and (2.159), formarly results to the leading order in

ǫ
4−n+

N1D
2

3 ǫn1v
(1)
1i (1, y1) = ǫ

2+n+
N1D

2
3 lim

X3→−∞
v

(2)
3u (X3, y1, T3). (2.191)Therefore the perturbation parameter ǫ1, formerly introdu
ed as a measurefor the variation of the density in se
tion 2.1.1, has to be dependent on Retoo, whi
h suggests

ǫ1 = ǫ
2(1− 1

n)
3 . (2.192)Considering the relations (2.32) and (2.33) implies that not only the order ofmagnitude of the throat area A in the nonintera
ting �ow regime, but alsothe order of magnitude of the variation of the nozzle ∆A has to depend on

Re.



2.2. INTERACTING FLOW REGIME 552.2.4 Fundamental Canoni
al ProblemColle
ting the results derived in the previous se
tion, the problem of vis
ousinvis
id intera
tion 
an be fully des
ribed by the equations of the lower de
ksupplemented by the intera
tion law (2.186). Due to the passive nature of themain de
k it is not expli
itly needed in the formulation of the fundamentalproblem.The fundamental lower de
k problem in non 
anoni
al form writes
∂

∂X3

U
(1)
3l (X3, Y3l, T3) +

∂

∂Y3l

V
(1)
3l (X3, Y3l, T3) = 0, (2.193)

Rw

(

U
(1)
3l

∂U
(1)
3l

∂X3

+ V
(1)
3l

∂U
(1)
3l

∂Y3l

)

= − ∂

∂X3

P
(1)
3 (X3, T3) + µw

∂2U
(1)
3l

∂Y 2
3l

(2.194)supplemented by the no slip 
ondition at the wall
U

(1)
3l = V

(1)
3l = 0 @X3l = (X3, Y3l = S3l(X3, T3))

T , (2.195)the 
onditions of mat
hing with the undisturbed nonintera
ting boundarylayer upstream
lim

X3→−∞
P

(1)
3 = 0, (2.196)

lim
X3→−∞

U
(1)
3l =

∂U
(0)
2 (1, 0)

∂Y2

Y3l, (2.197)
lim

X3→−∞
V

(1)
3l = 0 (2.198)and the 
onditions of mat
hing with the main de
k �ow

lim
Y3l→∞

(

U
(1)
3l − ∂U

(0)
2 (1, 0)

∂Y2
Y3l

)

=
∂U

(0)
2 (1, 0)

∂Y2
A3m(X3, T3). (2.199)The quasi steady lower de
k problem is 
losed by the unsteady intera
tionlaw governing the mutual rea
tion of lower and upper de
k �ow

−2
∂P

(1)
3

∂T3
− ∂

∂X3
J[n]

(

P
(1)
3 ; K, Γ̄, Λ̄, N̄

)

=
2

H03

∂A3m

∂X3
. (2.200)



56 CHAPTER 2. MODELInterestingly enough, the perturbations of the pressure in ea
h de
k a�e
tedby the intera
tion pro
ess, whi
h are depending only on X3 and T3, are thesame in all three regions as suggested by the mat
hing 
onditions (2.137) and(2.157). Thus P
(1)
3 (X3, T3) := P

(1)
3l = P

(1)
3m = P

(1)
3u has been used in the �nalfundamental formulation of the intera
tion problem. J[n] is the perturbationof the mass �ux density in the upper de
k region and de�ned in an analogousmanner to the de�nition 2.1.2.The fundamental lower de
k problem depends on several parameters, asthere are e.g. Rw, µw, ∂U (0)

2 (1,0)

∂Y2
or H03. These 
an be 
onveniently eliminatedby introdu
ing the a�ne transformation given below

X⋆ = µwR
1
2
wU ′

20(0)2C
3
2 X3, (2.201a)

Y ⋆ = R
1
2
wU ′

20(0)C
1
2 Y3l, (2.201b)

T ⋆ = µwR
1
2
wU ′

20(0)2|Γ̄|C 1
2 T3, (2.201
)

U⋆ = R
1
2
wC

1
2 U3l, (2.201d)

V ⋆ = µ−1
w R

1
2
wU ′

20(0)−1C− 1
2 V3l, (2.201e)

P ⋆ = C P3, (2.201f)
A⋆ = R

1
2
wU ′

20(0)C
1
2 A3m, (2.201g)

S⋆ = R
1
2
wU ′

20(0)C
1
2 S3l (2.201h)with C :=

∣
∣
∣
2Γ̄
K

∣
∣
∣ and U ′

20(0) :=
∂U

(0)
2 (1,0)

∂Y2
.Remark 2.2.6. Obviously C has to be de�ned meaning su
h that K 6= 0 and

Γ̄ 6= 0. If one of these two 
onditions is not satis�ed, then the above a�netransformation has to be modi�ed appropriately. E.g. 
onsider K 6= 0 and
Γ̄ = 0, but Λ̄ 6= 0, say, then Λ̄ instead of Γ̄ 
an be used in the de�nition of
C. Insertion into the intera
tion law (2.186) shows that the material parame-ters entering the �ux fun
tion J[n] 
annot be eliminated as these are essentialparameters of the problem resulting in

Γ−∞ = Γ̄
∣
∣Γ̄
∣
∣−1

, (2.202)
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Λ−∞ = Λ̄C−1

∣
∣Γ̄
∣
∣
−1

, (2.203)
N−∞ = N̄C−2

∣
∣Γ̄
∣
∣−1

, (2.204)
Q = 2−1R

− 1
2

w U ′
20(0)−1

∣
∣Γ̄
∣
∣
−1

H−1
03 C

3
2 . (2.205)Parameter Q > 0 measures the intensity of the 
oupling between lower andupper de
k, as follows immediately from the de�nition of the fundamental
anoni
al problem summarized below.De�nition 2.2.1 (Fundamental 
anoni
al problem). After appli
ation ofPrandtl's transposition theorem, [64℄,

T = T ⋆, X = X⋆, S(X, T ) = S⋆(X⋆, T ⋆), Y = Y ⋆ − S(X, T ), (2.206a)
U(X, Y, T ) = U⋆(X⋆, Y ⋆, T ⋆), (2.206b)
V (X, Y, T ) = V ⋆(X⋆, Y ⋆, T ⋆) − U

∂

∂X
S, (2.206
)

P (X, T ) = P ⋆(X⋆, T ⋆), A(X, T ) = A⋆(X⋆, Y ⋆, T ⋆) + S(X, T ) (2.206d)the fundamental lower de
k problem for plane parallel on
oming 
hannel �ow,see de�nition 2.1.2, in 
anoni
al form is given by
∂

∂X
U(X, Y, T ) +

∂

∂Y
V (X, Y, T ) = 0, (2.207)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂

∂X
P (X, T ) +

∂2U

∂Y 2
(2.208)supplemented by the no slip 
ondition at the wall

U = V = 0 @X = (X, Y = 0)T , (2.209)the 
onditions of mat
hing with the undisturbed nonintera
ting boundary layerupstream
lim

X→−∞
P = 0, (2.210)

lim
X→−∞

U = Y, (2.211)
lim

X→−∞
V = 0 (2.212)
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onditions of mat
hing with the main de
k �ow
lim
Y→∞

(U − Y ) = A(X, T ). (2.213)The quasi steady lower de
k problem is 
losed by the unsteady intera
tion lawgoverning the mutual rea
tion of lower and upper de
k �ow
−∂P

∂T
+

∂

∂X
G[n] (P ; K, Γ−∞, Λ−∞, N−∞) = Q

∂

∂X
(A − S) . (2.214)The parameter Q > 0, de�ned in equation (2.205), measures the intensity ofthe 
oupling between lower and upper de
k. The material parameters Γ−∞,

Λ−∞, N−∞ are de�ned in equations (2.202) to (2.204). G[n] is the leadingorder negative disturban
e of the mass �ux density of the upper de
k �ow in
anoni
al form given by
G[n](P ; K, Γ, Λ, N) =







sign(K)P + 1
2
sign(Γ)P 2 n = 2sign(K)P + 1

2
sign(Γ)P 2 + 1

6
ΛP 3 n = 3sign(K)P + 1

2
sign(Γ)P 2 + 1

6
ΛP 3 + 1

24
NP 4 n = 4.(2.215)

G[n] has the following properties.� The lo
al Ma
h number M = ũ
c̃
follows from

M − 1 = −ǫ
2(n−1)
3 C−1|Γ̄|dG[n]dP . (2.216)� The lo
al value of the fundamental derivative and its �rst derivative isgiven by

Γ = ǫ
2(n−2)
3 |Γ̄|d2G[n]dP 2

, Λ = ǫ
2(n−3)
3 C|Γ̄|d3G[n]dP 3

. (2.217)



Chapter 3Sho
k Regularization by Vis
ousInvis
id Intera
tions
3.1 Sho
k Formation and the Fundamental De-rivativeAfter an area of vivid interest in BZT �uids starting with the works of Bethe,[4℄, Zel'dovi
h, [96℄, and Thompson, [85℄, and lasting to the middle of the90s, [88℄, [5℄, [15℄, [87℄, [16℄, [34℄, [18℄, [17℄, [8℄, [35℄, [36℄, [44℄, [58℄, thereexists a renewed interest in �uids exhibiting negative or mixed nonlinearityas 
an be observed by the number of more re
ent publi
ations dealing withthe experimental predi
tion and dete
tion of anomalous sho
ks inherent tothese kind of �uids, [38℄, [19℄, [13℄, [39℄, [25℄, [11℄, [12℄, [95℄. Given the possiblete
hni
al appli
ations in turboma
hinery, see e.g. [10℄, [12℄, these �uids alsoare of theoreti
al value on their own. The feature of Gamma 
hanging sign inthe �ow �eld has severe 
onsequen
es for the theory of 
ompressible invis
id�ows giving rise to a ri
her variety of anomalous sho
k forms not known in the
ommon 
ase of Gamma being stri
tly positive, i.e. rarefa
tion sho
ks, soni
sho
ks, double soni
 sho
ks and split sho
ks, see e.g. [56℄ for a dis
ussion ofRiemann problems in general or [14℄, [8℄, [35℄ for a dis
ussion of steady andunsteady weak sho
ks.Most important of all, the 
lassi
al 
riteria, as the requirement [s] ≥ 059



60 CHAPTER 3. SHOCK REGULARIZATIONfollowing from se
ond law of thermodynami
s or the more mathemati
al
ondition for the stability of the resulting wave pattern expressed by Lax's
hara
teristi
 
riterion, [56℄, or by the more general Oleinik 
ondition, [61℄,[45℄, are too weak to rule out inadmissible sho
ks in 
ase of �uids exhibitingmixed nonlinearity. A sho
k is 
onsidered inadmissible in this 
ontext ifthere exists no internal sho
k pro�le 
onne
ting the �ow 
onditions beforeand after the sho
k when physi
al e�e
ts that have been negle
ted so far butwhi
h be
ome signi�
ant in the vi
inity of the sho
k front are 
onsidered andthus regularize the problem. It is 
ommonly known that the 
onsiderationof small e�e
ts of vis
osity and heat 
ondu
tion in a small region around thesho
k front leads to the formation of su
h smooth internal sho
k pro�les. Athoroughly dis
ussion of these pro�les for �uids exhibiting mixed nonlinearityresulting from a regularization by thermo-vis
ous e�e
ts 
an be found in [14℄,[35℄ or [18℄. In the following a quite di�erent me
hanism for the regularizationof weak sho
ks is proposed by making use of the theory of transoni
 vis
ousinvis
id intera
tions in narrow 
hannels introdu
ed in 
hapter 2. Considerthe situation of a stationary weak normal sho
k in a 
hannel. The �ow�eld in the boundary layers at the walls is subje
ted to a dis
ontinuouspressure distribution, i.e. a rapid 
hange of the �ow �eld, and a region ofsho
k boundary layer intera
tion emerges around the position of the formersho
k. It 
an be expe
ted that the sho
k/boundary layer intera
tion leadsto a smoothed transition from super- to subsoni
 
ore region �ow similar tothe phenomenon of a pseudo-sho
k en
ountered in internal gas �ows, [54℄.Furthermore, if the internal �ow 
an be des
ribed by the distinguished limitfor the intera
tion problem presented in 
hapter 2, then the invis
id �ow inthe 
ore region of the 
hannel 
onveniently 
an be des
ribed by the equationsfor one-dimensional invis
id transoni
 �ow of dense gases, see se
tion 2.1.1or [35℄. This 
hapter will address the following issues.� First of all, a de�nition of what has to be understood by an inter-nal sho
k pro�le generated by vis
ous invis
id intera
tions is given inse
tion 3.3.� Furthermore, it is mandatory to show that su
h an internal sho
k pro�le
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onne
ts the undisturbed �ow state in the 
ore region of the 
han-nel before and after the intera
tion region. To this end, the asymptoti
behavior of the solution of the intera
tion problem far up- and down-stream, X → ±∞, will be investigated . The undisturbed �ow stateshave to be in a

ordan
e with the theory for invis
id �ow, a summaryof whi
h is given in the following se
tion together with the formulationof appropriate sho
k admissibility 
riteria.� And �nally, sele
ted numeri
al results for various forms of sho
ks pre-sented in se
tion 3.3 will be dis
ussed. Above all, these allow to identifythe physi
al me
hanism being at the basis of the regularizing propertiesof the intera
tion problem.Besides the theoreti
al value of the dis
ussion to be presented in this
hapter, a dire
t appli
ation of the s
aling laws proposed in the derivationof the distinguished limit shall be given for the example �uid PP10 whi
h isexpe
ted to exhibit a region of negative Γ. A 
al
ulation of the 
hara
teristi
length s
ale imminent to the problem shows that the phenomena des
ribedin this 
hapter are expe
ted to be en
ountered for �ows of dense gases inte
hni
al appli
ations under realisti
 
onditions.3.1.1 Invis
id Theory of Weak Normal Sho
ksA sho
k forming in a �ow regime des
ribed by the Euler equations for invis-
id �ow has to satisfy 
ertain jump 
onditions, i.e. the Rankine Hugoniot
onditions, governing the overall jump of the �ow quantities. In the followinga bra
ket [a] := aa− ab denotes a jump of some quantity a. The supers
ripts
a and b refer to 
onditions before and after the sho
k.Most important of all, the values of the pressure before and after a sho
khave to be points on the so 
alled Rayleigh line whi
h 
an be de�ned asfollows

CR := {(p(1)
i , J) : J = J[n](p

(1)b
i ; K, Γ̄, Λ̄, N̄)} (3.1)



62 CHAPTER 3. SHOCK REGULARIZATIONfor the 
ase of stationary weak normal sho
ks in steady transoni
 nozzle�ow, see se
tion 2.1.1 or [35℄. The Rayleigh line in the form of (3.1) ex-presses the 
ontinuity of the mass �ux density a
ross a sho
k front fora given pressure jump p
(1)
i − p

(1)b
i . Graphi
ally, the a
tual pressure jump

[p
(1)
i ] has to result from an interse
tion of the Rayleigh line and the graph

CJ = {(p(1)
i , J) : J = J[n](p

(1)
i ), p

(1)
i ∈ [p

(1)b
i , p

(1)a
i ]} in the pressure p

(1)
i vs.mass �ux density J[n] diagram, see the example in �gure 3.1. The jump
onditions are supplemented by the entropy 
ondition

[s] ≥ 0 (3.2)expressing the fa
t that the thermodynami
 entropy has to in
rease over anadmissible sho
k. Kluwi
k showed in [35℄ that the entropy 
ondition (3.2)together with the Rankine Hugoniot 
onditions 
an be used to formulate thefollowing inequality
[s] ∼ −1

6
ǫ2
1[ρ

(1)
i ]2[M ] − 1

360
ǫ5
1N̄ [ρ

(1)
i ]5 ≥ 0 (3.3)whi
h has to hold in 
ase of weak normal sho
ks des
ribed by the one-dimensional theory of the transoni
 �ow of dense gases in slowly varyingnozzles in se
tion 2.1.1. From that follows the inequality

[M ] ≤ 0 (3.4)whi
h in 
ase of a stationary weak normal sho
k is equal to stating that anadmissible sho
k has to lead to a transition from super- to subsoni
 �ow, ingeneral. Interestingly enough, sho
ks may have soni
 upstream 
onditions
M b = 1 or soni
 downstream 
onditions Ma = 1 or both. It is in the latter
ase that the equality sign in equation (3.4) holds.In 
ase of a stri
tly 
onvex or 
on
ave �ux fun
tion J[n], i.e. 
ase ofpositive or negative nonlinearity, the 
onditions mentioned above are enoughto rule out inadmissible sho
ks. This, however, is not always true in 
ase ofmixed nonlinearity whi
h is demonstrated for the example in �gure 3.1. Thesho
k 
onne
ting the points A and B and the sho
k 
onne
ting the points A
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Figure 3.1: Plot of the negative perturbation of the mass �ux density −J[n]vs. the pressure p
(1)
i , denoted by CJ , and a example of a Rayleigh line CR.and D both result in a transition from super- to subsoni
 and hen
e satisfythe sho
k admissibility 
riteria stated so far. However, it turns out that onlythe sho
k AB is 
onsistent with a thermo-vis
ous internal sho
k pro�le, 
f.e.g. [35℄. Therefore, the sho
k admissibility 
riteria have been generalizedin [35℄ in order to 
over all the possible weak sho
k forms o

urring in steady�ows of dense gases governed by a mass �ux density J[n] with a nonlinearityof up to forth order in the pressure.Sho
k Admissibility Criteria, [35℄Theorem 3.1.1 (Sho
k admissibility 
riterion). A sho
k forming in the sin-gle phase dense gas regime, whi
h is governed by the density of the perturba-tion mass �ux J[n], see de�nition 2.1.2, for one dimensional nozzle �ow, isadmissible if and only if the following 
onditions are met:1. The Rayleigh line 
onne
ting the states before and after the sho
k does
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Figure 3.2: S
hemati
 sket
h for introdu
ing small variations of the 
hannelheight, ∆s2,0 = ǫ
4+n+N1D/2
3 S−∞, and of the in�ow 
onditions, ∆p0 = ǫ2

3P−∞.If the variations satisfy the relation G[n] (P−∞; . . . ) = −QS−∞, then theintera
tion region is lo
ated at the �xed position L0 = 1.not 
ut intervening bran
hes of the graph
CJ = {(p(1)

i , J) : J = J[n](p
(1)
i ), p

(1)
i ∈ [p

(1)b
i , p

(1)a
i ]}.2. The �ow 
onditions before and after a sho
k have to satisfy

M b ≥ 1 ≥ Ma.3. In 
ase of a double soni
 sho
k, Ma = 1 = M b, the sho
k has to be anexpansion sho
k.Remark 3.1.1. Obviously, the results of the above theorem equally apply tothe situation where J[n] is substituted by G[n], equation (2.215) in de�nition2.2.1, and where p
(1)
i is substituted by P sin
e G[n] is a s
aled version of −J[n].3.2 Varying the In�ow ConditionsThe fundamental problem for steady intera
ting �ow is extended to allowsmall variations of the in�ow 
onditions at the 
hannel entry, represented by

∆p0, and of the 
hannel height, represented by ∆s2,0, see �gure 3.2. Thesesmall variations shall a�e
t the �ow in the intera
tion region, whi
h shallbe lo
ated at the �xed position L̃0, leaving the referen
e state un
hangedindependently of the new 
on�guration. Therefore, the s
aling of the ma-



3.2. VARYING THE INFLOW CONDITIONS 65terial parameters, (2.201), entering the intera
tion law in 
anoni
al form,(2.215), whi
h are dependent on the referen
e state, do not 
hange either.This is 
onvenient, be
ause it allows to vary the in�ow 
onditions under anun
hanged representation of the �ux fun
tion G[n]. Taking into a

ount thea�ne transformation (2.201) ∆p0 is de�ned by
∆p0 = ǫ3

3C
−1P−∞, (3.5)whi
h implies

lim
X→−∞

P = P−∞ (3.6)for the upstream value of the pressure in the triple de
k. ∆s2,0 has to be ofthe same verti
al length s
ale as the lower de
k and thus
∆s2,0 = ǫ

4+n+N1D/2
3 R

−
1
2

w U ′
20(0)−1C−

1
2S−∞. (3.7)As a result the no slip 
onditions have to be pres
ribed at the shifted wall

U⋆ = V ⋆ = 0 @X⋆ = (X⋆, Y ⋆ = S−∞)T . (3.8)Note that ⋆ denotes quantities before the appli
ation of Prandtl's transposi-tion theorem, (2.206), used in the de�nition of the fundamental problem in
anoni
al form. Prandtl's transposition theorem for S(X) ≡ S−∞ simpli�esto
Y = Y ⋆ − S−∞, A = A⋆ + S−∞. (3.9)Inspe
tion of equations (2.210) and (2.213) reveals

lim
X→−∞

A(X) = 0. (3.10)



66 CHAPTER 3. SHOCK REGULARIZATIONIntegration of the intera
tion law (2.214) for steady �ows with respe
t to Xgives
G[n](P ) − Q (A − S−∞) = G[n](P

⋆) − QA⋆ = c1 (3.11)where the dependen
e of G[n] on the parameters has been suppressed. Takingnote of remark 2.1.6 on equation (2.75), whi
h is the invis
id 
omplement ofthe above expression, equation (3.11) expresses the 
ontinuity of the mass �uxof the one-dimensional upper de
k �ow passing 
ross se
tions of the 
hannelwhi
h are redu
ed by the displa
ement e�e
t A⋆ 
aused by the intera
tingboundary layers at the wall. Consulting Prandtl's transposition theorem A⋆results from a geometri
 variation of the 
hannel height expressed by S−∞and from a vis
ous part A generated by the lower de
k rea
tion to pressurevariations in the upper de
k. Obviously c1 then quanti�es the 
hange of themass �ux whi
h has been e�e
ted by the variation of the in�ow 
onditions,i.e. P−∞, and the variation of the 
hannel height S−∞ sin
e c1 = 0 forthe initial 
on�guration, i.e. P−∞ = S−∞ = 0. Therefore, in order to be
onsistent c1 in equation has to be c1 = 0 and 
onsequently S−∞ and P−∞have to satisfy the 
ompatibility relation
G[n] (P−∞; K, Γ−∞, Λ−∞, N−∞) = −QS−∞. (3.12)Finally, the 
hanges introdu
ed in this se
tion are summarized in the follow-ing de�nition of the fundamental problem for varying in�ow 
onditions.De�nition 3.2.1 (Fundamental 
anoni
al problem (steady intera
ting �ow,varying in�ow 
onditions)). The fundamental lower de
k problem for an on-
oming plane parallel 
hannel �ow, see de�nition 2.1.2, in 
anoni
al form isgiven by

∂

∂X
U(X, Y ) +

∂

∂Y
V (X, Y ) = 0, (3.13)

U
∂U

∂X
+ V

∂U

∂Y
= − ddX

P (X) +
∂2U

∂Y 2
(3.14)
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ondition at the wall
U = V = 0 @X = (X, Y = 0)T , (3.15)the 
onditions of mat
hing with the undisturbed nonintera
ting boundary layerupstream

lim
X→−∞

P = P−∞, lim
X→−∞

U = Y, lim
X→−∞

V = 0 (3.16)and the 
onditions of mat
hing with the main de
k �ow
lim
Y→∞

(U − Y ) = A(X). (3.17)
Y and A de�ned by Prandtl's transposition theorem, (3.9). The intera
tionlaw for steady �ow in the intera
tion region is given by

G[n] (P ; K, Γ−∞, Λ−∞, N−∞) = Q (A − S−∞) . (3.18)Parameter Q > 0 has been de�ned in equation (2.205), and the materialparameters Γ−∞, Λ−∞, N−∞ in equations (2.202) to (2.204). G[n] is givenby (2.215).3.3 Eigensolutions & Internal Sho
k Pro�lesAn interesting property of nontrivial eigensolutions to the steady intera
tionproblem formulated in de�nition 3.2.1 is that these 
orrespond to the internalstru
tures of weak normal sho
ks. As has been mentioned before the internalsho
k pro�le resulting from sho
k boundary layer intera
tion has to 
onne
tthe undisturbed �ow states before and after the sho
k whi
h 
an be expressedby the relations
lim

X→−∞
P = P b = P−∞, lim

X→−∞
A = 0, lim

X→−∞
U = Y ;

lim
X→∞

P = P a, lim
X→∞

A = 0, lim
X→∞

U = Y.



68 CHAPTER 3. SHOCK REGULARIZATIONThe values of P before and after the sho
k, P b (= P−∞) and P a, have tosatisfy the jump 
ondition [G[n]] = G[n](P
a) − G[n](P

b) = 0 expressing the
ontinuity of the mass �ux a
ross a sho
k front whi
h is a result of theunderlying invis
id theory, see theorem 3.1.1 or [35℄. The Rayleigh line for agiven undisturbed �ow state upstream, P b, is de�ned by
CR = {(P, G) : G = G[n](P

b; K, Γ−∞, Λ−∞, N−∞) = −QS−∞}.Hen
e, by varying S−∞ the Rayleigh line is moved in the G[n] vs. P diagramwhi
h is equal to varying P b and P a, i.e. the sho
k strength [P ].It is important to note, that besides a nontrivial eigensolution there al-ways exists a trivial eigensolution to the problem
P ≡ P−∞, A ≡ 0, U ≡ Y.In the following, general properties of eigensolutions shall be dis
ussedand instru
tive numeri
al results of internal sho
k pro�les 
orresponding toweak normal sho
ks will be given.3.3.1 Asymptoti
 Properties Upstream (X → −∞)The upstream behavior of the intera
ting �ow for X → −∞ shall be in-vestigated. Therefore, the analysis of Lighthill, [52℄, and Stewartson &Williams, [81℄, dealing with freely intera
ting boundary layers in externalsupersoni
 �ows has to be extended to in
orporate the algebrai
 intera
tionlaw, (3.18), and the new mat
hing 
onditions upstream (3.16). The ansatz

U = Y − a1eκXf1(Y ), V = a1κeκXf ′
1(Y ), P = P−∞ + a1eκX , (3.19)with exp(κX) → 0 for X → −∞, leads to the following expression for f1

f ′
1(Y ) =

∫ Y

0

Ai(κ 1
3 s)ds, f1(Y ) =

∫ Y

0

∫ z

0

Ai(κ 1
3 s)dsdz. (3.20)



3.3. EIGENSOLUTIONS & INTERNAL SHOCK PROFILES 69From that follows the well known result for the displa
ement fun
tion
A(X) =

a1

3Ai′(0)
κ

1
3 eκX , Ai′(0) < 0 (3.21)where Ai denotes the Airy fun
tion, [1℄. Substitution of the expressions for

P and A into the algebrai
 intera
tion law (3.18) and 
olle
ting terms of
O(exp(mκX)) with m ∈ N0 yields to leading order

G[n] (P−∞; K, Γ−∞, Λ−∞, N−∞) = −QS−∞, (3.22)whi
h is immediately satis�ed be
ause of the 
ompatibility assumptions madefor the variation of the in�ow 
ondition (3.12). The next higher order is foundto be
G′

[n] (P−∞; K, Γ−∞, Λ−∞, N−∞) =
Q

3Ai′(0)
κ

1
3 (3.23)yielding a relation for κ

κ =

(

G′
[n] (P−∞; K, Γ−∞, Λ−∞, N−∞)

3Ai′(0)

Q

)3

. (3.24)A nontrivial eigensolution to the fundamental problem (de�nition 3.2.1) 
anonly exist, if it de
ays for X → −∞. Therefore, 
onsidering the signof Ai′(0) < 0, see [1℄, and Q > 0, see de�nition 3.2.1, this 
an only bethe 
ase, if G′
[n](P−∞, . . . ) ≤ 0. Taking into a

ount relation (2.216) this,however, implies that the on
oming 
hannel �ow has to be supersoni
, i.e.

G′
[n](P−∞, . . . ) < 0, or soni
 in the limiting 
ase G′

[n](P−∞, . . . ) → 0−. Aninterpretation of internal sho
k pro�les to soni
 sho
ks will be given in thedis
ussion of the numeri
al results, 
f. se
tion 3.3.7 and 3.3.8.Therefore, one 
on
ludes that nontrivial eigensolutions, or in other wordsadmissible internal sho
k pro�les, 
an only exist if and only if the on
oming�ow -that is the �ow before the regularized sho
k- is supersoni
 or soni
.Moreover, this result is in a

ordan
e with the sho
k admissibility 
riteriaformulated for invis
id nozzle �ow.



70 CHAPTER 3. SHOCK REGULARIZATIONLinear Spatial Stability of Undisturbed Flow StatesThe generalized ansatz of Lighthill used before, (3.19), 
an be extended evenfurther in order to study the linear spatial stability of an arbitrary undis-turbed �ow state represented by P−∞ and S−∞ whi
h always is a trivialsolution of the intera
tion problem. To this end we write
U = ℜ{Û} = Y − ℜ{a1eκX−iωTf1(Y )},
V = ℜ{V̂ } = ℜ{a1κeκX−iωTf ′

1(Y )},
P = ℜ{P̂} = P−∞ + ℜ{a1eκX−iωT} (3.25)with ω ∈ R some given harmoni
 frequen
y and κ ∈ C the 
orrespondingunknown 
omplex wave number. Furthermore, X, Y, P−∞ ∈ R, a1 ∈ C and

f1 : R → C.By plugging (3.25) into the equation for the quasi steady lower de
k �ow(3.13) to (3.16) one re
overs the already obtained result for f1, equation(3.20),
f ′

1(Y ) =

∫ Y

0

Ai(κ 1
3 s)ds, f1(Y ) =

∫ Y

0

∫ z

0

Ai(κ 1
3 s)dsdzwith the main di�eren
e that now κ ∈ C. Taking a look at the asymptoti
properties of the Airy fun
tion Ai(z) for z ∈ C and |z| → ∞, see appendix C,the integrals only exist properly for Y → ∞ if κ ∈ {z ∈ C : |Arg(z)| ≤ π/3}.Evaluating the mat
hing 
ondition (3.17) then leads to

A = ℜ{Â} = ℜ{ a1

3Ai′(0)
κ1/3eκX−iωT} (3.26)and after insertion into the linearized intera
tion law for unsteady �ow one�nally obtains a relation between the harmoni
 frequen
y and the 
omplexwave number iω + G′

[n](P−∞)κ =
Q

3Ai′(0)
κ4/3 (3.27)where the dependen
e of G[n] on the parameters K, Γ−∞, Λ−∞, N−∞ has been
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[n](P−∞) 6= 0 (3.27) 
an be written in the followingway iω̄ + κ̄ = sign (Ai′(0)G′

[n](P−∞)
)
κ̄4/3 (3.28)introdu
ing a modi�ed de�nition of the harmoni
 frequen
y and of the wavenumber, ω̄ and κ̄,

ω̄ = C
ω

G′
[n](P−∞)

∈ R, (3.29)
κ̄ = Cκ ∈ C (3.30)with

C =

∣
∣
∣
∣
∣

Q

3Ai′(0)G′
[n](P−∞)

∣
∣
∣
∣
∣

3

> 0. (3.31)It is important to note that the new de�nition κ̄ for the wave number is only ares
aling of κ, i.e. Arg(κ) = Arg(κ̄). Interestingly enough, for the dis
ussionof (3.28) only two 
ases have to be 
onsidered, i.e. G′
[n] < 0 and G′

[n] > 0.That is, one simply has to distinguish between supersoni
 and subsoni
 �ow.A 
andidate for a solution to (3.28) for a given ω̄ 
an be obtained by�nding a root of the polynomialsign (Ai′(0)G′
[n](P−∞)

)
κ̄4 − κ̄3 − 3iω̄κ̄2 + 3ω̄2κ̄ + iκ̄3 = 0 (3.32)whi
h has been obtained by taking the left and right hand side of (3.28) tothe power of three. The roots plotted in �gure 3.3 have been 
he
ked against(3.28). It has been found that all four roots of the polynomial (3.32) are asolution of (3.28) as well.Out of the four possible wave numbers κ̄ for a given harmoni
 frequen
yof some disturban
e ω̄ only those that lie in the set Ωκ = {z ∈ C : |Arg(z)| ≤

π/3}, depi
ted by the shaded region in �gure 3.3, lead to a nontrivial solutionof the lower de
k as has been noted before. On the other hand, for the linearspatial stability of the trivial solution of the intera
tion problem the real



72 CHAPTER 3. SHOCK REGULARIZATIONpart of κ̄ has to be negative, ℜ{κ̄} < 0, i.e. some disturban
e generated at apurely harmoni
 frequen
y ω̄ is dying out downstream. In 
ase of ℜ{κ̄} > 0the disturban
es are growing exponentially downstream until nonlinearitytakes over.Keeping that in mind, �gure 3.3 allows for the following interpretation.Taking a look at 3.3.1(a), the 
ase of a supersoni
 trivial solution of theintera
tion problem, and setting ω̄ = 0, i.e. applying a steady disturban
e,one obtains the result for the �rst three wave numbers κ̄1,2,3 = 0, whi
his the trivial solution again, and κ̄4 = 1 ∈ R. κ̄4 lies within the set Ωκand therefore ansatz (3.25) leads to a nontrivial solution for κ̄4 whi
h isgrowing downstream be
ause of ℜ{κ̄} > 0. Making use of (3.29) the result(3.24) based on Lighthill's ansatz (3.19) is retrieved. For ω̄ ∈ [−ω̄c, ω̄c] thereexists only the one nontrivial solution on the bran
h 4 whi
h is exponentiallygrowing downstream. For ω̄ > |ω̄c| the se
ond bran
h, number 3 in �gure3.3.1(a), enters the region Ωκ. The situation in the 
ase of a subsoni
 trivialsolution of the intera
tion problem is quite di�erent, see �gure 3.3.1(b). For
ω̄ = 0 no nontrivial growing mode 
an exist sin
e κ̄1,2,3,4 ∈ C \ Ωκ. Thissituation does not 
hange as long ω̄ ∈ [−ω̄c, ω̄c], however, as soon as ω̄ > |ω̄c|the bran
h 4 enters Ωκ and a growing mode exists besides the trivial �owstate.Therefore, the supersoni
 trivial �ow state, i.e.

P = P−∞, A = 0, U = Y, G′
[n](P−∞) < 0,is un
onditional unstable a

ording to the 
on
ept of linear spatial stabilityand the subsoni
 trivial �ow state, i.e.

P = P−∞, A = 0, U = Y, G′
[n](P−∞) > 0,is stable as long the harmoni
 frequen
y of the disturban
e satis�es the 
on-dition ω̄ ∈ [−ω̄c, ω̄c].
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 Properties Downstream (X → ∞)In order to justify the interpretation of nontrivial eigensolutions as internalsho
k pro�les it is mandatory to show that the �ow in the intera
tion regionapproa
hes an undisturbed �ow state downstream of the intera
tion regionindeed. The investigation of the downstream behavior exa
tly follows theanalysis performed by Kluwi
k, Exner & Cox, [42℄. They applied the re-sults found by Gittler, [23℄, for the asymptoti
 properties of steady triplede
k problems of a general kind in 
ase of Y ≫ 1 and X ≫ 1 to a triplede
k problem with a lo
al intera
tion law, 
losely resembling (2.214) anddes
ribing the intera
tion pro
ess of weakly nonlinear bores in laminar highReynolds number �ow. The signi�
ant and fundamental di�eren
e to theintera
tion problem 
onsidered in this treatise is, besides the di�erent un-derlying physi
s involved, that their intera
tion law a

ounts only for termsof quadrati
 nonlinearity in the pressure and that additionally a dispersiveterm is present in their relation.Their starting point has been the expansion of the stream fun
tion Ψ(X, Y ) :

U = ∂Ψ/∂Y, V = −∂Ψ/∂X for Y → ∞

Ψ(X, Y ) ∼ 1

2
(Y + A(X))2 + P (X) + KrsY

r(lnY )s + . . . (3.33)with r < 2. This expression is valid for all X and 
ontains free 
onstants
Krs. Sin
e the �ow stru
ture far upstream is given by (3.19) and (3.20),the 
orresponding velo
ity disturban
es U − Y , V de
ay exponentially with
Y → ∞ be
ause of the asymptoti
 properties of the Airy fun
tion, see [1℄.Consequently the algebrai
 terms in Y in (3.33) vanish, Krs = 0. There-fore, if the assumption that the intera
ting �ow approa
hes an undisturbedstate downstream is 
orre
t, then Ψ has to take on the following form fardownstream

Ψ(X, Y ) ∼ 1

2
Y 2 + A(X)Y + P a + . . . X → ∞, Y → ∞. (3.34)This result has to be 
ompared with the similarity form of the stream fun
tion
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Ψ(X, Y ) ∼ 1

2
Y 2 + αXβf2(η) + C2X

λh2(η) + · · · , η =
Y

X1/3
. (3.35)If as in the present 
ase no external agen
ies are a�e
ting the �ow under 
on-sideration (no external surfa
e mounted obsta
le, say) then the parameter

α = 0 thereby eliminating the se
ond term in (3.35). The third term repre-sents a homogeneous eigensolution with the eigenvalue λ and its asymptoti
behavior of h(η) for η → ∞ has been given by Gittler in [23℄
h(η) ∼ K1η + K2η

3λ + K3e−3λ−4e−η2/9 + . . . η → ∞. (3.36)The two 
onstants K1 and K3 are arbitrary while
K2 =

Γ
(

2
3

)
3−2λ+1/3

(3λ − 1)Γ(λ + 1)
(3.37)with Γ(·) denoting the Gamma fun
tion. Therefore, in the end a se
ondexpression des
ribing the properties of Ψ in the limit X → ∞, Y → ∞ isobtained

Ψ(X, Y ) ∼ 1

2
Y 2 + C2K1X

λ−1/3Y + C2K2Y
3λ + . . . ,

X → ∞, Y → ∞.
(3.38)Comparison of the two expressions, (3.34) and (3.38), for Ψ implies λ = 0and

A(X) ∼ C2K1X
−1/3, X → ∞. (3.39)Finally, substitution of (3.39) into the linearized intera
tion law for steady�ow, (3.18), yields the asymptoti
 behavior of the pressure downstream. Pro-vided G′

[n](P
a) 6= 0 it assumes

P (X) ∼ P a +
QC2K1

G′
[n](P

a)
X−1/3, X → ∞ (3.40)



76 CHAPTER 3. SHOCK REGULARIZATIONagain suppressing the dependen
e of G[n] on the s
aled parameters K, Γ−∞,
Λ−∞ and N−∞. However, if the sho
k terminates in a soni
 �ow state fardownstream, i.e. G′

[n](P
a) = 0, then the asymptoti
 behavior of the pressuredownstream is given by

P (X) ∼ P a + sign (G′′(P a))

(

2QC2K1

G′′
[n](P

a)

)1/2

X−1/6, X → ∞ (3.41)indi
ating an even weaker algebrai
 de
ay of the pressure than that found in
ase of G′
[n](P

a) 6= 0. Interestingly enough, the expression 2QC2K1/G
′′
[n](P

a)in (3.41) is found to be always positive due to the fa
t that C2K1 has thesame sign as A. Figure 3.4 gives a geometri
al justi�
ation for this statementfor two typi
al variants of a soni
 sho
k. The sign of A follows from QA =

G[3](P ) − (−QS−∞) for P ∈ [P b, P a]. In 
ase of the sho
k 
onne
ting thepoints A and C the 
urvature of the �ux fun
tion G′′
[3] < 0 at the soni
 stateand A ≤ 0 for P ∈ [P b, P a]. Therefore, C2K1 is negative. In the other 
aseof a sho
k 
onne
ting the points D and B G′′

[3] > 0 at the soni
 state and
A ≥ 0 and 
onsequently C2K1 is positive. In both 
ases 2QC2K1/G

′′
[3](P

a) isa positive quantity.PSfrag repla
ements G[3]

P

A

B

C

D−QS−∞ < 0

−QS−∞ > 0

M>1 M>1M<1Figure 3.4: Two examples for a sho
k terminating in a soni
 state. At point
C: G′′

[3] > 0, and at point B: G′′
[3] < 0.



3.3. EIGENSOLUTIONS & INTERNAL SHOCK PROFILES 77Therefore, it is found that the �ow in the intera
tion region, representedby nontrivial eigensolutions of the triple de
k problem, approa
hes an undis-turbed �ow state downstream of the intera
tion region at a pressure P apredi
ted by invis
id theory. The �ow before and after the sho
k is truly
onne
ted by an internal sho
k pro�le and, sin
e A(X) → 0 for X → ±∞,the pressure jump a
ross the sho
k is given by [G[n]] = G[n](P
a) − G[n](P

b)in a

ordan
e with the jump/Rankine Hugoniot 
onditions for the invis
id
ase, see se
tion 3.1.1.Moreover, the requirement that the Rayleigh line 
onne
ting the statesbefore and after the sho
k does not 
ut intervening bran
hes of the graph
CG = {(P, G[n](P )) | P ∈ [P b, P a]} formulated in the sho
k admissibility 
ri-teria in theorem 3.1.1 
an be motivated too. Sin
e a nontrivial eigensolution
an only exist for supersoni
 �ow 
onditions upstream, i.e. G′

[n](P
b) < 0 (seedis
ussion of the asymptoti
 behavior of nontrivial eigensolutions in se
tion3.3.1), the next undisturbed state, whi
h a �uid parti
le passing through theintera
tion region is approa
hing far downstream, is bound to be subsoni
or soni
, i.e. G′

[n](P
a) > 0. The results of se
tion 3.3.1 also showed that thesubsoni
 undisturbed �ow state is stable a

ording to the 
on
ept of linearspatial stability at least for disturban
es with a harmoni
 frequen
y belowsome bound ω̄c. Consequently, without the a
tion of external agen
ies likea variation of the throat area of the 
hannel the �uid parti
le is attra
tedtowards the undisturbed subsoni
 �ow state and will not pass through it.Hen
e the Rayleigh line does not 
ross the graph CG.So far the internal sho
k pro�les whi
h are resulting from a sho
k reg-ularization due to vis
ous invis
id intera
tions are in a

ordan
e with thepredi
tion based on the the sho
k admissibility 
riteria formulated for thenonintera
ting invis
id 
ase, theorem 3.1.1. However, the last issue of theo-rem 3.1.1 stating that a double soni
 sho
k is bound to be a rarefa
tion sho
k
an only be seen by studying numeri
al results for the nontrivial eigensolu-tions of the intera
tion problem. The 
ase of a double soni
 sho
k will beaddressed in se
tion 3.3.8 after the dis
ussion of the internal sho
k pro�les fora standard 
ompression and rarefa
tion sho
k, se
tion 3.3.5 and 3.3.6, wherethe �ux fun
tion G[n] exhibits a quadrati
 nonlinearity (
ase of positive or



78 CHAPTER 3. SHOCK REGULARIZATIONnegative nonlinearity, i.e. n = 2) and for a nonstandard soni
 sho
k (se
tion3.3.7, where G[n] is of third order in the pressure, i.e. n = 3), a 
ase of mixednonlinearity. Finally, se
tion 3.3.9 will deal with the 
ase of a split sho
k, a
ase of mixed nonlinearity where as in 
ase of a double soni
 sho
k as well
G[n] is of forth order in the pressure, i.e. n = 4.3.3.3 Numeri
al Results & Numeri
al MethodThe fundamental problem, see de�nition 3.2.1, is integrated using a �nitedi�eren
e s
heme of se
ond order and by applying a mar
hing te
hniquedownstream in X-dire
tion, the main �ow dire
tion, starting from an initialvelo
ity pro�le whi
h is given by the �ow pro�le for a nontrivial eigensolutionfar upstream, 
f. se
tion 3.3.1.To this end, a new variable Ū := U − Y is introdu
ed, whereas V in themomentum equation (3.14) is expressed by means of the 
ontinuity equation(3.13) via

V (X, Y ) = −
∫ Y

0

∂Ū

∂X
(X, Ȳ )dȲ .With the mapping of Y onto the 
omputational domain η ∈ [0, 1]

Y (η) = Ys

(
1

1 − αsη
− 1

1 + αsη

)with the s
aling parameters αs , Ys the representation of the numeri
al gridin the new 
oordinates (X, η) is introdu
ed
(Xi, ηj) = (X0 + i∆Xi, j∆η) i ∈ N0, j = 0, . . .Njwhere the step size in X-dire
tion ∆Xi is adaptable and the step size in ηdire
tion ∆η = 1/Nj is �xed. X0 represents some initial value whi
h is noloss of generality be
ause of the translation invarian
e of the eigensolutions.Spe
i�
ally, values αs = 0.75 , Ys = 20.0 for the results for n = 2, 3 inse
tion 3.3.5, 3.3.6 and se
tion 3.3.7 and Ys = 10.0 for the results for n = 4
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tion 3.3.8 and 3.3.9.The derivatives inX-dire
tion are resolved by means of a Cran
k-Ni
holsondis
retization, making use of the known/old velo
ity pro�le evaluated up-stream at Xi−1 and the unknown/new velo
ity pro�le downstream at thenext grid point at Xi. For the derivatives in η-dire
tion 
entral di�eren
esevaluated at the grid point ηj are used.The mat
hing 
ondition (3.17) is implemented as
A = Ū(X, Ymax = Y (1)).This is justi�ed be
ause of the exponential de
ay of Ū for Y ≫ 1 whi
hone infers from the asymptoti
 representation of the stream fun
tion Ψ for

Y ≫ 1, ∀X, see the dis
ussion following equation (3.33).The results of the numeri
al 
al
ulations presented in the following se
-tions 3.3.5, 3.3.6 and 3.3.7 have been obtained by 
hoosing the values Ymax =

68.57 and Ymax = 34.29 in the se
tions 3.3.8 and 3.3.9. The number of gridpoints in η-dire
tion Nj = 200.In the rare 
ases, where separation o

urs, the FLARE approximation,Reyhner & Flügge-Lotz, [67℄, has been applied whi
h yields reasonable goodresults as long as the region of separated �ow remains small, [2℄.3.3.4 Cal
ulation of the Material Parameters for PP10Due to the 
anoni
al form of the fundamental problem, its solutions are in-dependent of spe
i�
 physi
al values for the parameters governing the 
han-nel geometry and working medium. However, it is instru
tive to 
hoose ade�nitive physi
al setup for numeri
al experiments in order to verify thatthe proposed s
alings, whi
h are at the bottom of the intera
tion problem
onsidered here, do lead to sensible numeri
al values for the s
aled mate-rial parameters, Γ−∞, Λ−∞, N−∞ and Q, in 
ase of realisti
 working media,in�ow 
onditions and geometri
 dimensions.As an example medium for a possible 
andidate of a BZT �uid PP10,C13F22, has been 
hosen. Guardone & Argrow, 
f. [25℄, 
ommented on theexpe
ted thermal stability of PP10 and presented more re
ent material prop-
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ial Chemi
al M̃ θ̃c P̃c Zc θ̃b
c̃c

v,∞

R̃
n ωname formula (g/mol) (K) (atm) (K)PP10 C13F22 574 630.2 16.2 0.2859 467 78.37 0.5255 0.4833Table 3.1: Experimental data for PP10, [25℄. M̃ mole
ular weight, P̃c 
riti
alpressure, θ̃c 
riti
al temperature, Zc 
riti
al 
ompressibility fa
tor, θ̃b boilingtemperature at 1 atm, c̃cv,∞ spe
i�
 heat for dilute states (ρ → 0) at θ̃c, R̃spe
i�
 gas 
onstant, n exponent in (3.43), ω a
entri
 fa
torerties than those that 
an found in [16℄ or [17℄, see table 3.3.4. Anotherpromising 
lass of media suitable for experimental usage are Siloxanes, [12℄.The fundamental derivative is a se
ondary thermodynami
 quantity, i.e.it 
annot be a

essed by dire
t measurements or, in 
ase of numeri
al 
al-
ulations, partial derivatives of the thermodynami
 state variables p̃ and ρ̃have to be 
al
ulated for isentropi
 �ow 
onditions; see the de�nition of Γin equation (1.1). Therefore, a fun
tional representation of the thermody-nami
al equation of state (EOS) for PP10 has to be 
hosen. The sele
tionof an appropriate EOS, also in the light of the s
ar
e and ina

urate dataa

essible, is a vast �eld in itself, see [19℄, [25℄, [11℄, [12℄ or [95℄. For thepresented numeri
al 
al
ulations the Martin-Hou EOS, [53℄, has been 
ho-sen, sin
e the Martin-Hou EOS is reasonably realisti
 in predi
ting regions ofnegative Γ using a small number of experimental data and being appli
ablywith a

eptable numeri
al e�orts.Sin
e the Martin-Hou EOS is only a thermal EOS, i.e. an in
ompleteform of an EOS in the sense that it provides a fun
tion for p̃ = p̃(θ̃, ρ̃)only, the thermodynami
 
hara
ter of the �uid under 
onsideration has to be
ompleted by providing a 
alori
 EOS

ẽ(θ̃, ρ̃) = ẽr +

∫ θ̃

θ̃r

c̃v,∞(τ)dτ +

∫ ρ̃

ρ̃r

(

θ̃
∂p̃

∂θ̃
(θ̃, ̺) − p̃(θ̃, ̺)

) d(1
̺

)

, (3.42)[53℄, [25℄, where ẽ denotes the spe
i�
 inner energy, the subs
ript r denotessome referen
e state and the subs
ript ∞ indi
ates that the quantity is eval-uated for dilute states, i.e. ρ̃ → 0. Following [88℄ the fun
tional form of
c̃v,∞(θ̃) in the neighborhood of the 
riti
al temperature is approximated by
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c̃v,∞ ≃ c̃cv,∞

(

θ̃

θ̃r

)n

. (3.43)The numeri
al implementation of the EOS for the 
al
ulation of Γ and itshigher derivatives Λ and N follows the pro
edure applied by Colonna in [13℄,whi
h moreover gives a very 
omprehensive sele
tion of various thermody-nami
 expressions appli
able for the 
al
ulation of se
ondary thermodynami
quantities.The dynami
 vis
osity has been 
al
ulated using the method of Chung,Ajlan, Lee & Starling, [9℄ for nonpolar �uids. The data used is listed intable 3.3.4. The method itself as well as the used data have to be takenwith 
aution, [36℄, in 
ase of dense gases, however, the main purpose here issimply to provide realisti
 values for the transport quantity.Finally, one has to make assumptions on the position of the intera
tionregion in the 
hannel. For the numeri
al results presented in the followingse
tions it has been assumed that the intera
tion region is lo
ated at L̃0 = 1mfrom the 
hannel entry. Furthermore, N1D = 1, see se
tion 2.2.1, being themost general situation.The properties of the undisturbed boundary layer needed in the a�netransformation (2.201), i.e. Rw, µw and U ′
20, are obtained by 
onsideringthe 
ompressible boundary layer equations in the limit of dense gases havinglarge relative spe
i�
 heats. In se
tion 2.1.2 it has been argued that in
ase of a plane parallel 
onstant �ow in the 
ore region of the 
hannel thetemperature and the pressure are 
onstant in the whole boundary layer.Therefore, Rw = 1 and µw = 1. The boundary layer �ow 
an be 
onsidered tobe in
ompressible and has a self-similar representation in the form of (2.103)leading to U ′

20 = f ′(0). f ′(0) = 0.332 
an be 
al
ulated by numeri
allysolving Blasius' equation (2.104) or by referring to the literature.Figure 3.5 shows the various pressure and density pairs at 
hannel entryused for the numeri
al 
al
ulations in the following se
tions.
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kAs �rst example the internal pro�le of a 
ompression sho
k is 
onsideredhere. The sele
ted in�ow 
onditions and s
aled quantities are summed up intable 3.2. The 
hosen in�ow pressure and the in�ow density are depi
ted inthe pressure vs. density diagram for PP10 shown by �gure 3.5.On the left hand side in �gure 3.6 the negative perturbation of the mass�ux density G[2] vs. the pressure P is shown. As stated in the sho
k admissi-bility 
riteria theorem 3.1.1, the pressure before and after the sho
k in invis
id�ows, P b and P a, are 
onne
ted by the Rayleigh line. The arrow indi
ates thetransition from super- to subsoni
 as required by the admissibility 
riteria.Soni
 �ow 
onditions are obtained at P = 1 where G[2] exhibits an extremum.A sho
k dis
ontinuity in the pressure is sket
hed to the right in �gure 3.6indi
ated by the dashed lines. Interestingly enough, the sho
k dis
ontinuitypredi
ted by the theory of invis
id �ows resolves into a smooth transitionfrom super- to subsoni
 the moment the intera
ting boundary layers at thewall are 
onsidered in the model as is shown for the pressure, displa
ementthi
kness and wall shear stress distribution in �gure 3.6. Moreover, �gure3.6 immediately gives an interpretation for the physi
al me
hanism of sho
kregularization en
ountered. If the distribution of the displa
ement thi
kness
−A would be a given fun
tion of X, then the intera
tion law (3.18) would de-s
ribe the invis
id 
ore region �ow of dense gases through a nozzle of variablethroat area, 
ompare se
tion 2.1.1 or equation (2.75). However, in 
ontrastto a nozzle of �xed geometry the �ow in the boundary layers at the wall andthus −A has the possibility to adapt to the lo
al pressure a
ting in the inter-a
tion region. Sin
e the pressure in a 
ompressive pseudo-sho
k is in
reasingmonotonously, dPdX ≥ 0, the �ow passing through the upper de
k is de
eler-ated throughout the intera
tion region, see (2.180). This is brought about bya redu
tion of the e�e
tive throat area, i.e. by an in
rease of the disturban
eof the displa
ement thi
kness, d(−A)dX > 0, in the part of the upper de
k wherethe �ow is supersoni
. A smooth transition of the upper de
k �ow throughthe soni
 state 
hara
terized by P = 1 
an only be e�e
ted if at the sametime the e�e
tive throat exhibits an extremum, i.e. d(−A)dX = 0, see �gure 3.6.
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p0/pc ρc/ρ0 θ0/θc ũ0 µ̃0 K Γ0 Re(m/s) (Pas)
1.0268 1.240 1.00490 28.1 3.67 10−5 < 0 1.00 3.88 108

ǫ3 ∆3 δ3l δ3m H3u Γ−∞ Q1

0.166 0.00455 8.42 10−6 5.08 10−5 0.0112 1.00 4.26Table 3.2: Sele
ted in�ow 
onditions at 
hannel entry and resulting s
aledparameters for the intera
tion problem. Q1 = Q(H30 = 1).
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 nonlin-earity in the pressure and Rayleigh line 
onne
ting the pressure before andafter the sho
k, P b and P a. To the right, plot of the perturbation of thepressure, displa
ement thi
kness and wall shear for Q = 1, S−∞ = 0.After the soni
 state has been transversed the upper de
k �ow is subsoni
 anda further de
eleration is a
hieved by a su

essive de
rease of d(−A)dX < 0. Onthe other hand, the displa
ement e�e
t 
hara
terized by −A originates fromthe lower de
k rea
ting to the a
ting pressure gradient. Be
ause of the smallvelo
ities 
lose to the walls the �ow in the lower de
k behaves in
ompressible,see se
tion 2.2.2, and 
onsequently, the redu
tion of the e�e
tive throat areafor the upper de
k �ow, 
orresponding to d(−A)dX > 0, is brought about by ade
eleration of the lower de
k �ow and the in
rease, i.e. d(−A)dX < 0, by ana

eleration. Finally the lower de
k �ow rea
hes an undisturbed �ow pro�lefar downstream again. Summing up, one therefore 
on
ludes that the vis-
ous boundary layers are forming a �vis
ous� Laval nozzle that adapts to thepressure, diminishing or expanding the e�e
tive throat area the upper de
k�ow feels ensuring a smooth transition of the �ow 
onditions from super- tosubsoni
 and thus regularizing a possible sho
k dis
ontinuity in the invis
idupper de
k �ow.Furthermore, the internal sho
k pro�le truly 
onne
ts the undisturbed
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Figure 3.7: Plot of the pressure P and the displa
ement thi
kness −A for
Q = 1, S−∞ = 0 and 
omparison of the asymptoti
 behavior far downstream
X ≫ 1 predi
ted by equation (3.39) and (3.40).�ow states up- and downstream of the intera
tion region represented by
P b = 0 and P a = 2. As this 
an be seen simply by inspe
tion of the numeri-
al results for the upstream part of the sho
k pro�le due to the exponentialbehavior exhibited by the solution for X → −∞, see equation (3.19), the the-ory predi
ts only a weak algebrai
 de
ay for the far downstream behavior, see(3.40) and (3.39). Therefore, the theoreti
ally expe
ted downstream pressure
P a has to be 
on�rmed by the 
omparison between the leading order termsof the pressure and displa
ement thi
kness for X ≫ 1 with numeri
al results,shown in �gure 3.7. In the �rst step, the fun
tion des
ribing the asymptoti
far downstream behavior of A (3.39) is �tted to the numeri
al results de-livering the numeri
 value for C2K1 ≈ −1.8 in (3.39). In the next step theunknown 
oe�
ient in (3.40) 
an be 
al
ulated leading to P ∼ 2− 1.8X−1/3taking into a

ount P a = 2. Therefore, in the limit X → ∞ an undisturbed�ow state, P → P a and A → 0, is approa
hed far downstream as well.Figure 3.8 shows the in�uen
e of the parameter Q entering the intera
tionlaw on the distribution of the pressure, displa
ement thi
kness and wall shearstress. As has been mentioned earlier, Q is a measure for the intensity of the
oupling between the upper- and lower de
k rea
tions to 
hanges in the �ow�eld. Taking a look at the de�nition of Q, (2.205), a variation of Q 
ould
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hieved, e.g., by varying the s
aled height of the 
hannel H30, (2.161).By redu
ing Q, i.e. redu
ing the strength of the regularizing e�e
t of vis
ousinvis
id intera
tion, the pressure pro�le more and more seems to approa
hthe dis
ontinuous solution of a sho
k, again depi
ted by the dashed lines in�gure 3.8. However, this for
es an in
reasingly stronger rea
tion of the lowerde
k �ow as is revealed by inspe
ting the plot of the displa
ement thi
knessin �gure 3.8. Be
ause of the destabilizing e�e
t of the unfavorable pressuregradient a
ting in a 
ompressive sho
k pro�le, i.e. dPdX ≥ 0, on the boundarylayer �ow the minimum of the wall shear stress de
reases with in
reasingsteepness of the pressure pro�le. Finally, the �ow starts to separate lo
ally,
τw ≤ 0, the beginning of whi
h is shown in 3.8 for a small region of separation.3.3.6 Example 2: Rarefa
tion Sho
kAs se
ond example the internal pro�le of a rarefa
tion sho
k has been 
al
u-lated. The sele
ted in�ow 
onditions and s
aled quantities are summed upin table 3.3. The 
hosen in�ow pressure and the in�ow density are depi
tedin the pressure vs. density diagram for PP10 shown by �gure 3.5. As 
an beobserved the �ow 
onditions lie in the thermodynami
 region Γ < 0, 
ase ofnegative nonlinearity.On the left hand side in �gure 3.9 the negative perturbation of the mass�ux density G[2] vs. the pressure P is shown being stri
tly 
on
ave in the
ase of negative nonlinearity. Appli
ation of the sho
k admissibility 
riteriain theorem 3.1.1 indi
ates that a rarefa
tion sho
k is the admissible type ofsho
k for this �ow 
on�guration as it leads to a transition from super- tosubsoni
 �ow 
onditions. As before the sho
k dis
ontinuity in the pressureis sket
hed to the right in �gure 3.9 indi
ated by the dashed lines. Again,

p0/pc ρc/ρ0 θ0/θc ũ0 µ̃0 K Γ0 Rem/s Pas
0.949 1.710 0.997 35.5 3.00 10−5 < 0 −0.115 4.36 108

ǫ3 ∆3 δ3l δ3m H3u Γ−∞ Q1

0.133 0.0235 2.014 10−5 1.52 10−4 0.0645 −1.00 24.9Table 3.3: Sele
ted in�ow 
onditions at 
hannel entry and resulting s
aledparameters for the intera
tion problem. Q1 = Q(H30 = 1).
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 nonlin-earity in the pressure and Rayleigh line 
onne
ting the pressure before andafter the sho
k, P b and P a. To the right, plot of the perturbation of thepressure, displa
ement thi
kness and wall shear for Q = 1, S−∞ = 0.the sho
k dis
ontinuity resolves into a smooth internal sho
k pro�le if theintera
ting boundary layers at the wall are taken into a

ount; see the plotof the pressure, displa
ement thi
kness and wall shear stress distribution in�gure 3.9.As has been noted in the 
ase of a 
ompression sho
k, the internal sho
kpro�le truly 
onne
ts the undisturbed �ow states up- and downstream ofthe intera
tion region represented by P b and P a. The internal pro�le is
hara
terized by exponential behavior far upstream, (3.19), and by weakalgebrai
 behavior far downstream, (3.40) and (3.39).The in�uen
e of the parameter Q on the internal pro�le is depi
ted in�gure 3.8. Most important of all, it illustrates the stabilizing e�e
t thefavorable pressure gradient in an expansive pseudosho
k has on the boundarylayer �ow at the wall. At the beginning, the lower de
k �ow passing theintera
tion region is a

elerated rather than de
elerated as in the 
lassi
al
ompressive 
ase treated in the previous se
tion. This leads to a wideningof the e�e
tive throat area in the supersoni
, or in other words to negativevalues of the disturban
e of the displa
ement thi
kness −A. After the soni
state has been transversed in the upper de
k �ow regime the lower de
k �owde
elerates again ba
k to the undisturbed �ow pro�le leading to an su

essive
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ubi
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onne
ting the pressure before andafter the sho
k, P b and P a. To the right, plot of the perturbation of thepressure, displa
ement thi
kness and wall shear for Q = 1, S−∞ = 0.as
ent of −A. Consequently, the maximum of the wall shear stress in
reaseswith in
reasing steepness of the pressure pro�le. The wall shear stress itselfalways is ≥ 1 and thus �ow separation is avoided in the entire �ow �eld.3.3.7 Example 3: Soni
 Sho
kAs third example the internal pro�le of a rarefying soni
 sho
k has been
al
ulated. The sele
ted in�ow 
onditions and s
aled quantities are summedup in table 3.4. The 
hosen in�ow pressure and in�ow density are depi
tedin the pressure vs. density diagram for PP10 in �gure 3.5.On the left hand side in �gure 3.11 the negative perturbation of the mass�ux density G[3] vs. the pressure P is shown. A soni
 sho
k is only possi-ble in the 
ase of mixed nonlinearity, if Γ 
hanges its sign in the 
onsidered

p0/pc ρc/ρ0 θ0/θc ũ0 µ̃0 K Γ0 Λ0 Re(m/s) (Pas)
0.914 1.917 0.994 40.2 2.80 10−5 < 0 −0.0512 −0.918 4.71 108

ǫ3 ∆3 δ3l δ3m H3u Γ−∞ Λ−∞ Q1

0.215 0.00997 9.93 10−6 4.61 10−5 0.0999 −1.00 −0.375 4.48Table 3.4: Sele
ted in�ow 
onditions at 
hannel entry and resulting s
aledparameters for the intera
tion problem. Q1 = Q(H30 = 1).
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Figure 3.12: Plot of the pressure P and the displa
ement thi
kness −A for
Q = 1, S−∞ = 0 and 
omparison of the asymptoti
 behavior far downstream
X ≫ 1 predi
ted by equation (3.39) and (3.41).�ow regime, resulting in a non-
onvex �ux fun
tion. The admissible rarefa
-tion sho
k in the situation under 
onsideration results in a transition froma supersoni
 �ow state to a soni
 state, i.e. M = 1. As before, the sho
kdis
ontinuity in the pressure is sket
hed on the right hand side in �gure 3.11indi
ated by the dashed lines. And again, the sho
k dis
ontinuity resolvesinto a smooth internal sho
k pro�le 
onne
ting the two states before and afterthe intera
tion region 
hara
terized by P b = 0 and P a = −4. The in�uen
eof the 
oupling parameter Q on the steepness of the internal sho
k pro�leshas already been dis
ussed in the previous se
tion and no new phenomenonsenter here. More interesting is the algebrai
 de
ay of the pressure in 
ase ofa sho
k terminating in a soni
 state, i.e. G′

[n](P
a) = 0, whi
h is even weakerthan in the 
ase of a sho
k terminating at a subsoni
 state, i.e. G′

[n](P
a) 6= 0.As in the latter 
ase, see �gure 3.7, �gure 3.12 shows a reasonable good agree-ment of the leading order term of the pressure distribution far downstreampredi
ted by theory for a sho
k ending in a soni
 state, equation (3.39) and(3.41), and the numeri
al results. This weaker algebrai
 de
ay results in anin
reased length of the sho
k pro�le as 
an be seen by 
omparing e.g. �gure3.7 and 3.12.Alternatively to a sho
k 
onne
ting supersoni
 �ow upstream with soni
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onsidered so far, a soni
 sho
k 
an equally well 
onne
tsoni
 �ow upstream with subsoni
 �ow downstream in a

ordan
e with thesho
k admissibility 
riteria theorem 3.1.1 sin
e the 
ondition [M ] < 0 issatis�ed in the latter 
ase just as well. Evaluation of the exponent (3.24)governing the exponential growth of the �ow quantities far upstream, (3.19),results in κ = 0 be
ause of G′
[3](P

b) = 0 meaning that the Ansatz of Lighthillyields the trivial eigensolution in this 
ase. On the other hand, there alwaysexists a nontrivial eigensolution for ea
h supersoni
 �ow state upstream nomatter how 
lose it is to the soni
 �ow state. Consequently, the internalsho
k pro�le of a soni
 sho
k originating in a soni
 �ow 
an be seen as thelimiting 
ase of internal sho
k pro�les originating in supersoni
 �ow when
M b → 1+. This will be used and shown in the next se
tion dealing with theinternal sho
k pro�le of a double soni
 sho
k.3.3.8 Example 4: Double Soni
 Sho
kAs fourth example the internal pro�le of a double soni
 sho
k has been 
al-
ulated. The sele
ted in�ow 
onditions and s
aled quantities are summed upin table 3.5. The 
hosen in�ow pressure and the in�ow density are depi
tedin the pressure vs. density diagram for PP10 in �gure 3.5.On the left hand side in �gure 3.3.8 the negative perturbation of themass �ux density G[4] vs. the pressure P is shown. Similar to the 
ase of asimple soni
 sho
k a double soni
 sho
k is only possible in the 
ase of mixednonlinearity, if Γ 
hanges its sign in the 
onsidered �ow regime, resulting ina non-
onvex �ux fun
tion. For the existen
e of a simple soni
 sho
k a single
hange of the sign of Γ in the �ow region is su�
ient. However, a doublesoni
 sho
k in prin
iple 
an only exist if Γ 
hanges sing twi
e resulting in
p0/pc ρc/ρ0 θ0/θc ũ0 µ̃0 K Γ0 Λ0 N0 Re(m/s) (Pas)
0.942 1.850 1.00023 40.1 2.87 10−5 < 0 0.0134 −0.455 6.48 4.75 108

ǫ3 ∆3 δ3l δ3m H3u Γ−∞ Λ−∞ N−∞ Q1

0.264 0.0184 1.21 10−5 4.59 10−5 0.514 −1.00 −0.434 0.0761 7.08Table 3.5: Sele
ted in�ow 
onditions at 
hannel entry and resulting s
aledparameters for the intera
tion problem. Q1 = Q(H30 = 1).
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hing the limiting 
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sho
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ement thi
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ase indi
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94 CHAPTER 3. SHOCK REGULARIZATIONa mass �ux density whi
h is represented by a polynomial of fourth orderin the pressure, i.e. n = 4. Consulting �gure 3.5, the double soni
 sho
koriginates in a thermodynami
 region in the pressure vs. density diagram
lose to the point where an insentrope tou
hes the transition line Γ = 0.Sin
e the se
ond derivative of Γ, i.e. N , has to be positive in the regionof interest, 
f. e.g. [35℄, the �ux fun
tion G[4] always takes a shape similarto the example depi
ted in �gure 3.3.8 in the sense that G[4](P ) → +∞for P → ±∞, see equation (2.2.2). As has been dis
ussed in the previousse
tion, an eigensolution representing the internal sho
k pro�le degeneratesto the trivial eigensolution if the sho
k originates at soni
 �ow 
onditions.Still, the internal sho
k pro�le is the limiting 
ase for the internal sho
kpro�les originating in supersoni
 �ow when M b → 1+ for whi
h nontrivialeigensolutions exist no matter how 
lose the �ow 
onditions upstream areto a soni
 �ow state. This fa
t has been used in �gure 3.3.8. Again, thedouble soni
 sho
k is sket
hed by the dashed lines in the plot of the pressuredistribution to the right. The �ow 
onditions upstream of the intera
tionregion are adjusted by varying the parameter QS−∞ in the intera
tion lawand thus shifting the Rayleigh lines from right to left by a distan
e −QS−∞from the origin, see left hand side of �gure 3.3.8. The limiting 
ase of adouble soni
 sho
k would be obtained for QS−∞ = QS−∞,max, see �gure3.3.8. Pres
ribing a value QS−∞ 6= 0 is identi
al to 
hanging the heightof the 
hannel and the in�ow 
onditions a

ording to the way des
ribed inse
tion 3.2; see �gure 3.2 in parti
ular.Considering the various Rayleigh lines in �gure 3.3.8 it is evident thatthe overall sho
k strength in
reases whilst approa
hing the limiting doublesoni
 sho
k. On the other hand, 
onsidering the plot of the internal pressurepro�les, the length of a sho
k pro�le, i.e. the region of signi�
ant variation ofthe pressure, is in
reasing a

ordingly. Taking a look at the formulas for theasymptoti
 behavior far up- and downstream immediately reveals that boththe exponent in (3.19) and the 
oe�
ient in (3.40) are be
oming su

essivelysmaller for M b → 1+, i.e. G′
[n] → 0− and thus explaining the in
reasinglength of the internal sho
k pro�les. This phenomenon of in
reasing sho
klength for in
reasing sho
k strength already has been reported in a di�erent
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ontext by Cramer & Cri
kenberger, [18℄, who studied internal sho
k pro�lesresulting from a 
lassi
al thermo-vis
ous regularization.Moreover, an admissible double soni
 sho
k is bound to be a rarefa
tionsho
k in a

ordan
e with the sho
k admissibility 
riteria for the invis
id 
ase,theorem 3.1.1. This 
an be 
on
luded from inspe
tion of �gure 3.3.8 and byadditionally 
onsidering the arguments about the possible shapes of a �uxfun
tion G[4] addressed in the beginning of this se
tion. A double soni
sho
k has to 
onne
t two separate extrema of of G[4] and, sin
e G[4] → ∞for P → ±∞ be
ause of N > 0, these two extrema have to be minima. Theremaining extremum of G[4] is a maximum and has to lie in-between. Let
P 1
min > P 2

min 
hara
terize the two separate minima and Pmax the maximum.Then G′
[4] < 0 for P ∈ {P 1

min, Pmax} and G′
[4] > 0 for P ∈ {Pmax, P 2

min}and, 
onsequently, the internal sho
k pro�les used to 
onstru
t the limitingsolution of a double soni
 sho
k 
an 
orrespond to rarefa
tion sho
ks onlyand thus a double soni
 sho
k likewise has to be a rarefa
tion sho
k.3.3.9 Example 5: Split Sho
kAs �fth and last example the internal pro�le of a split sho
k has been 
al
u-lated. The sele
ted in�ow 
onditions and s
aled quantities are summed upin table 3.6. The 
hosen in�ow pressure and the in�ow density density aredepi
ted in the pressure vs. density diagram for PP10 in �gure 3.5.On the left hand side in �gure 3.3.9 the negative perturbation of the mass�ux density G[4] vs. the pressure P is shown. similar to the 
ase of a doublesoni
 sho
k a split sho
k is possible only in the 
ase of mixed nonlinearitywhere Γ 
hanges its sign twi
e in the 
onsidered �ow regime, i.e. n = 4,resulting in a non-
onvex �ux fun
tion whi
h is represented by a polynomial
p0/pc ρc/ρ0 θ0/θc ũ0 µ̃0 K Γ0 Λ0 N0 Re(m/s) (Pas)
0.945 1.84 1.00042 39.8 2.88 10−5 < 0 0.0110 −0.407 6.90 4.72 108

ǫ3 ∆3 δ3l δ3m H3u Γ−∞ Λ−∞ N−∞ Q1

0.264 0.0184 1.21 10−5 4.59 10−5 0.514 −1.00 −0.563 0.141 6.44Table 3.6: Sele
ted in�ow 
onditions at 
hannel entry and resulting s
aledparameters for the intera
tion problem. Q1 = Q(H30 = 1).
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ated by the dashed Rayleigh line. To the right, plots of the perturbation of the pressure,displa
ement thi
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ase indi
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3.3. EIGENSOLUTIONS & INTERNAL SHOCK PROFILES 97of fourth order in the pressure. The Rayleigh line of the split sho
k is givenby the dashed line whi
h tou
hes the �ux fun
tion G[4] at a soni
 point atthe distan
e QS−∞,max from the origin. Again, the split sho
k 
an be inter-preted as the limiting 
ase for simple sho
ks for QS−∞ → QS−∞,max. The�ow in the upper de
k region has to pass through three soni
 sates, see �gure3.3.9, while the overall sho
k leads to a transition from super- to subsoni

onditions. The three soni
 states result in three extrema in the distribu-tion of the disturban
e of the displa
ement thi
kness −A. The lower de
k�ow generates a vis
ous Laval nozzle whi
h 
onsists of two throats and oneanti-throat in order to allow a smooth a

eleration of the upper de
k �owthrough the di�erent Ma
h number regimes. Taking a look at the 
al
ulatedpressure distribution of internal sho
k pro�les for various values of QS−∞on the right hand side in �gure 3.3.9 reveals that the sho
k splitting 
an al-ready be anti
ipated in the pressure pro�les for vales of QS−∞ < QS−∞,max.After the upper de
k �ow has passed through the �rst soni
 state resultingin a passage from super- to subsoni
 �ow, the pressure enters a plateau re-gion while passing the se
ond soni
 state as the the �ow is a

elerated fromsub- to supersoni
 again. Finally, the then supersoni
 �ow passes the thirdsoni
 state and the �ow be
omes subsoni
 again. The last transition fromsupersoni
 to subsoni
 
onditions results in a se
ond steepening of the sho
kpro�le. This phenomenon of impending sho
k splitting be
omes more andmore pronoun
ed su

essively separating the two regions of largest as
ent inthe pressure pro�le for QS−∞ → QS−∞,max. The existen
e of an internalsho
k pro�le infers that indeed two sho
ks forming a split sho
k may 
oexistnext to ea
h other in purely invis
id �ow throughout this limited thermody-nami
 region as predi
ted by the sho
k admissibility 
riteria . Interestinglyenough, similar to the 
ase of a double soni
 sho
k dis
ussed before, thisphenomenon of impending sho
k splitting has also been observed �rst byCramer & Cri
kenberger, [18℄, for internal sho
k pro�les resulting from athermo-vis
ous regularization.





Chapter 4Vis
ous Laval NozzleThe �ow �eld resulting form vis
ous invis
id intera
tions generated by thepresen
e of a small surfa
e mounted hump within the transoni
 �ow �eldin a slender 
hannel, 
f. �gure 4.1, will be dis
ussed. Considering the 
en-terline symmetry of the problem this surfa
e mounted hump in fa
t formsa small nozzle. The vis
ous invis
id intera
tions shall be des
ribed by theproblem previously formulated in de�nition 2.2.1, i.e. the dimensions of the
hannel and the surfa
e mounted hump shall be 
onsistent with the lengths
ales proposed in the formulation of the distinguished limit for this Re num-ber regime, 
f. se
tion 2.2, and the invis
id �ow in the upper de
k of theintera
tion region is one-dimensional to the leading order.Se
tion 4.2 will dis
uss the in�uen
e of the intera
tion between the steady�ow �eld developing in the 
ore region of su
h slender nozzles and the vis
ousboundary layers at the walls highlighting the similarities and di�eren
es topurely invis
id one-dimensional theory of Laval nozzles. In the major part ofthis 
hapter the working media will be 
onsidered to be perfe
t gas like, i.e.
Γ > 1. The 
onversion of subsoni
 �ow to supersoni
 �ow by means of Lavalnozzles is of importan
e in te
hni
al appli
ations and taking into a

ount thetrend towards miniaturization the presented solutions will give a qualitativedes
ription of phenomena expe
ted to be en
ountered in su
h �ow devi
eswhere the in�uen
e of the vis
ous boundary layers at the walls on the invis
id�ow in the 
ore region no longer 
an be 
onsidered to be an e�e
t of higher99
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Figure 4.1: Small surfa
e mounted hump of height λ̃ in a slender 
hannel.order as it would be the 
ase in 
lassi
al hierar
hi
al boundary layer theory.In
identally, an operating mode 
lose to 
hoking 
onditions, that is 
loseto �ow 
onditions for whi
h no stationary solutions exist, will be identi�edfor su
h slender nozzles 
onne
ted with the appearan
e of pseudo-normalsho
ks, 
f. e.g. [54℄, in the di�user part of the nozzle. These pseudo-normalsho
ks are representing regularized versions of weak normal sho
ks knownfrom purely invis
id Laval nozzle theory. If the strength of su
h a pseudo-sho
k is su�
iently large, then the boundary layer �ow at the walls is boundto separate. It is known from observations that su
h sho
k indu
ed �owseparation in transoni
 di�users frequently is 
onne
ted with the o

urren
eof self sustained sho
k os
illations, [7℄, [27℄, [54℄, [55℄, [66℄, [60℄, [93℄. Theproblem of vis
ous invis
id intera
tions in slender 
hannels stated in de�ni-tion 2.2.1 poses a simpli�ed model 
apable of des
ribing the essential featuresto be expe
ted at the basis of the o

urren
e of sho
k os
illations, namelythe intera
tion of the (pseudo-) sho
k and the separated �ow in the wall at-ta
hed boundary layer. The rea
tion of an initially steady intera
ting nearly
hoked �ow �eld in a slender nozzle to unsteady disturban
es will be in-vestigated in se
tion 4.3. Following [54℄ the transoni
 di�user �ow 
an be
lassi�ed into three types with respe
t to sho
k os
illations: no separation�ow, sho
k-indu
ed �ow (the separation being triggered at the sho
k root)and pressure-gradient-indu
ed separation �ow. The �rst 
ase will be dis-
ussed in se
tion 4.3.2 and the se
ond in se
tion 4.3.3. The third one willnot be 
overed in the s
ope of this treatise.



4.1. NUMERICAL METHOD 1014.1 Numeri
al Method4.1.1 Stationary ProblemThe fundamental lower de
k problem equations (2.207) to (2.213) and theintera
tion law (2.214) in de�nition 2.2.1 are dis
retized by means of �nitedi�eren
es of se
ond order. In the next step, the resulting system of d alge-brai
 equations
F(s) = 0 F, s ∈ Rd (4.1)with s the d-dimensional solution ve
tor is solved by a variant of the PowellHybrid algorithm, e.g. [63℄, whi
h has been adapted and used by R. Szeywerthfor the numeri
al treatment of other triple de
k problems, [84℄. The sparsityof the Ja
obian DsF of F is 
onveniently exploited by the implementation ofthe sparse solver routine PARDISO, [70℄, [68℄, [69℄. To this end, the physi
aldomain (X, Y ) ∈ R×R+ is mapped onto the bounded 
omputational domain

(ξ, η) ∈ [−1, 1] × [0, 1/αs] . The mapping ξ 7→ X(ξ) ∈ C1([−1, 1]) is soughtin the form
X(ξ) =







X−(ξ) − 1 ≤ ξ < ξ−s

Xm(ξ) ξ−s ≤ ξ ≤ ξ+
s

X+(ξ) ξ+
s < ξ ≤ 1introdu
ing three fun
tions X−, X+ and Xm

X−(ξ) = X−
s +

X+
s − X−

s

ξ+
s − ξ−s

1 + ξ−s
2m−






1

1 −
(
ξ−ξ−s
1+ξ−s

)m−
− 1

1 +
(
ξ+ξ−s
1+ξ−s

)m−




 ,

Xm(ξ) = X−
s +

X+
s − X−

s

ξ+
s − ξ−s

(ξ − ξ−s ),

X+(ξ) = X+
s +

X+
s − X−

s

ξ+
s − ξ−s

1 − ξ+
s

2m+






1

1 −
(
ξ−ξ+s
1−ξ+s

)m+ − 1

1 +
(
ξ+ξ+s
1−ξ+s

)m+




 .



102 CHAPTER 4. VISCOUS LAVAL NOZZLEThe parameters m+ and m− are 
hosen to a

ount for the far up- and down-stream behavior of the numeri
al solution. Most important of all, Xm is alinear mapping of an interior region [X−
s , X+

s ] of the physi
al domain onto aninterior region [ξ−s , ξ+
s ] of the 
omputational domain. The 
ompli
ated formof X− and X+ originates from the fa
t that X(ξ) ∈ C1([−1, 1]) whi
h resultsin the requirements X ′
−((ξ−s )−) = X ′

m((ξ−s )+) and X ′
m((ξ+

s )−) = X ′
+((ξ+

s )+).The map η 7→ Y (η) ∈ C1([0, 1/αs]) is sought in the form of
Y (η) = Ys

(
1

1 − αsη
− 1

1 + αsη

)

,where the parameters Ys and αs are 
hosen to properly a

ount for the be-havior of the solution in Y -dire
tion. The representation of the uniformnumeri
al grid in the new 
oordinates (ξ, η) is introdu
ed
(ξi, ηj) = (−1 + i∆ξ, j∆η) i = 0 . . . Ni, j = 0, . . .Nj − 1where the step size in ξ-dire
tion and in η dire
tion are given by ∆ξ = 2/Niand ∆η = 1/Nj respe
tively. For the numeri
al treatment of the fundamentalproblem the transformation Ū = U−Y is introdu
ed and V in the momentumequation (2.208) is expressed by means of the 
ontinuity equation (2.207)
V = −

∫ Y

0

∂Ū

∂X
(X, Ȳ )dȲ = −

∫ η

0

1

X ′(ξ)

∂Ū

∂ξ
(ξ, η̄)Y ′(η̄)dη̄. (4.2)The derivatives in ξ-dire
tion are resolved by means of a Cran
k-Ni
holsondis
retization, i.e. ∂ • /∂ξ ≈ (•i,j − •i−1,j)/∆ξ, if Ui,j = Yi,j + Ūi,j > 0,and by means of ba
kward �nite di�eren
es of se
ond order, i.e. ∂ • /∂ξ ≈

(3 •i,j −4 •i−1,j +•i−2,j)/2∆ξ in regions of separated �ow, i.e. Ui,j = Yi,j +

Ūi,j < 0. Numeri
al experiments showed that the dis
retization based on aCran
k-Ni
holson approa
h is superior to a dis
retization based on ba
kwarddi�eren
es in regions without �ow separation, also in the light of a redu
ed
omputational main memory 
onsumption. However, it has been found thatthe Cran
k-Ni
holson dis
retization is not always su�
ient in regions of larger�ow separation indi
ated by the o

urren
e of numeri
al os
illations. It shall



4.1. NUMERICAL METHOD 103be mentioned that the initial strategy of formulating the problem by means ofthe stream fun
tion has been abandoned in favor of the des
ribed pro
edurebe
ause of the observed numeri
al problems in regions of �ow separation. Forthe dis
retization of derivatives in η-dire
tion 
entral di�eren
es evaluated atthe grid point ηj are used and for the evaluation of the integral in (4.2) thetrapezium rule is applied. The mat
hing 
ondition (2.213) is implemented as
A = Ū(X, Ymax = Y (1)). This is justi�ed be
ause of the exponential de
ay of
Ū for Y ≫ 1 whi
h one infers by inspe
tion of the asymptoti
 representationof the stream fun
tion Ψ for Y ≫ 1, ∀X, see the dis
ussion following equation(3.33). The no slip 
ondition at the wall requires Ūi,0 = 0 for i = 0, . . . , Niand the mat
hing with the undisturbed boundary layer upstreams results inthe 
onditions Ū0,j = 0 for j = 0, . . . , Nj − 1.The dis
retization of the intera
tion law for steady upper de
k �ow, i.e.
∂P/∂T ≡ 0, relies on the formulation in di�erential form (2.214) and noton the integrated form (3.18), sin
e the formulation (2.214) will be used inthe numeri
al adaption of a linear stability analysis undertaken for sele
tedsolutions to the stationary problem in se
tion 4.3.3. Equation (2.214) isrewritten asddX (

G[n](P ) − Q(A − S)
)

=
1

X ′(ξ)

ddξ (G[n](P ) − Q(A − S)
)

= 0 (4.3)and afterwards approximated by Gi = 0 ∀i with
Gi :=







1
X′

i

(G[n](Pi+1)−Q(Ai+1−Si+1))−(G[n](Pi−1)−Q(Ai−1−Si−1))

2∆ξ
i = 1, . . . , Ni − 1

1
X′

i−1/2

(G[n](Pi)−Q(Ai−Si))−(G[n](Pi−1)−Q(Ai−1−Si−1))

∆ξ
i = Ni (4.4)where X ′

i−1/2 = X ′(−1 + (i − 1/2)∆ξ).For the numeri
al results presented in this 
hapter -unless otherwisestated- the number of grid points in ξ- and η-dire
tion are Ni = 1400 and
Nj = 100 respe
tively, ξ−s = 100/Ni, ξ+

s = 1100/Ni, m− = m+ = 1.3,
X−
s = −3, X+

s = 3, Ys = 0.2, αs = 0.98, Ymax ≈ 9.9.



104 CHAPTER 4. VISCOUS LAVAL NOZZLE4.1.2 Unsteady ProblemIt is important to note that the numeri
al s
heme for the intera
tion lawin unsteady form, (2.214), is developed having in mind a stri
tly 
onvex or
on
ave fun
tion G[n], i.e. n = 2. To this end, a method of line, [71℄, is usedfor the dis
retization of the partial di�erential equation. In the �rst step thedis
retization s
heme for the spatial 
oordinate whi
h has been des
ribed inthe previous se
tion, equations (4.3) and (4.4), and whi
h is of se
ond orderin spa
e is applied to the expression ∂
∂X

(
G[n](P ) − Q(A − S)

) in equation(2.214) yielding the following system
∂Pi
∂T

= Gi(T ) i = 1, . . . , Ni (4.5)of Ni ordinary equations. The time-integration from Tn = n∆T to Tn+1 =

(n + 1)∆T of the obtained system of ODEs with the known solution at Tnas initial 
ondition then is performed by means of the TR-BDF2 method,
f. [31℄, [50℄, an one-step two staged method being of se
ond order in time.The TR-BDF2 method is L-stable, 
f. [31℄, and has been developed for thetime integration of a numeri
ally sti� system of ODEs. That su
h a sti�time integration is ne
essary has been indi
ated by preliminary numeri
alexperiments performed with a numeri
al s
heme based on an impli
it Lax-Wendro� s
heme. The idea behind an impli
it Lax-Wendro� s
heme has beento think of the intera
tion law (2.214) as to be 
onsisting of a �hyperboli
part� or �kineti
 wave equation part�, i.e. −∂P
∂T

+ ∂
∂X

G[n](P ), and a �sour
eterm� ∂
∂X

Q (A − S). Using the Lax-Wendro� approa
h in order to derivethe numeri
al s
heme for equation (2.214), [50℄, one �nally obtains a s
hemeof se
ond order whi
h 
an be written in the form of the 
lassi
al impli
itLax-Wendro� s
heme for the �hyperboli
 part� extended by the numeri
alrepresentation of the �sour
e term�. The numeri
al results, however, indi
atethat disturban
es 
al
ulated by this method are traveling at wrong �nitespeeds despite the e�ort to use a 
onservative formulation for the hyperboli
part of the intera
tion law in the �rst pla
e, 
f. the dis
ussion of the linearizedproblem in se
tion 4.3.1 as well as 
f. �gure 4.8(a). This phenomenon iswell known in the literature dealing with 
onservative numeri
al s
hemes for
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 PDEs with sour
e terms, 
f. [48℄ and [50℄, hinting that the sour
eterm is sti� indeed.The �rst stage of the TR-BDF2 method 
onsists out of the trapezoidalstep
P n+τ
i − P n

i = 1
2
τ∆T

(
Gn
i + Gn+τ

i

)
i = 1, . . . , Ni (4.6)where the supers
ripts n and n + τ has the meaning evaluated at the time

n∆T and (n + τ)∆T , respe
tively. ∆T is the 
hosen time step whi
h is kept�xed throughout the 
al
ulations. In general τ ∈ (0, 1) but in order to obtainthe property of L-stability for the overall time-integration τ has to be 
hosen
τ = 2 −

√
2, 
f. [31℄. The governing equations, 
f. (2.207) to (2.213), forthe quasi-steady lower de
k problem for the time Tn+τ have to be solved asa side-
ondition

Rd−Ni ∋ FLD(sn+τ ) = 0 sn+τ ∈ Rd (4.7)for equations (4.6) where the system of algebrai
 equations given by FLD isobtained by straightforward appli
ation of the �nite-di�eren
e s
heme devel-oped for the steady lower de
k problem, see previous se
tion. Together withthe Ni algebrai
 equations from (4.6) this results in a system of d algebrai
equations for d unknowns. In the se
ond stage of the TR-BDF2 s
heme ba
k-ward di�eren
es of se
ond order are used for the time dis
retization of (4.5)making use of the �old� solutions at the time Tn and the intermediate time
Tn+τ yielding

τ(2 − τ)P n+1
i − P n+τ

i + (1 − τ)2P n
i = τ(1 − τ)∆TGn+1

i i = 1, . . . , Ni.(4.8)The system of equations (4.8) again is solved together with
Rd−Ni ∋ FLD(sn+1) = 0 sn+1 ∈ Rd (4.9)from whi
h the solution at the �new� time Tn+1 is obtained.



106 CHAPTER 4. VISCOUS LAVAL NOZZLEFinally, it shall be noted that the TR-BDF2 s
heme 
an be rewrittenin the form of a 
onservative �nite-volume s
heme despite the fa
t that itoriginally has been derived by a method of lines and �nite di�eren
es.4.1.3 Numeri
al Homotopy MethodIn general, the problem under 
onsideration will depend on several parame-ters. In the following only one of these shall be essential to the problem, i.e.the height λ of a surfa
e mounted obsta
le, while the others are kept �xed.Consequently the numeri
al s
heme and the resulting system of algebrai
equations (4.1) will depend on λ as well, i.e. F(s; λ) = 0. If the height of thesurfa
e mounted obsta
le is small, then the trivial solution of the intera
tionproblem Ū ≡ V ≡ 0 will be a good initial guess for the numeri
al equationsolver used and 
onvergen
e is indeed obtained after several steps. For larger
λ no 
onvergen
e 
an be obtained, therefore a numeri
al homotopy strategy,
f. e.g. [76℄, [82℄, is adopted. The sought after solution sk of F(s; λk) = 0is 
onsidered to be part of a family of solutions s(λ) of F(s; λ) = 0. If thesolutions of two neighboring problems F(s; λi−1) = 0 and F(s; λi) = 0 areknown an initial guess si+1,est for the solution of F(s; λi+1) = 0 
an be 
on-stru
ted by tangential updating, see �gure 4.2(a). If the 
onstru
ted initialguess is good enough to obtain a new solution for λi+1 the des
ribed updatingpro
edure 
an be used to obtain a solution for λi+2 and so forth until λk isrea
hed. One short
oming of this method is that it fails if a turning pointis en
ountered as has been depi
ted in �gure 4.2(a) or if the solution is verysensitive to variations of the parameter, i.e. even a small variation of λ leadsto a large 
hange in the solution. Therefore, the parameter λ is 
onsideredto be a variable itself and thus part of the solution . The system of equations
F(s, λ) = 0 has to be supplemented by an additional equation f(s, λ) = 0 inorder to 
lose the problem. The new problem

Rd+1 ∋ F̄ (̄s) = F̄ ((s, λ)T ) =







F(s, λ) = 0

f(s, λ) = 0
(4.10)
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an be solved in the manner previously des
ribed. The phase 
ondition
f(s, λ) = 0 is 
hosen as

f(s, λ) = ‖(s− si, λ − λi)‖ − ∆λi = 0 (4.11)meaning that the distan
e in the phase spa
e ∆λi between the new solution
s̄i+1 and the old solution s̄i is pres
ribed, 
ompare �gure 4.2(b). ∆λi is 
hosena

ording to the method of Seydel

∆λi = ∆λi−1 min(2, iterop

iter
)with iter and iterop the number of the iterations used to obtain the previoussolution and some preset optimal number of iterations respe
tively.PSfrag repla
ementss
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(b)Figure 4.2: S
hemati
 sket
h of numeri
al homotopy method. (a) Homotopymethod with pres
ribed �xed new parameter value λi+1. (b) Homotopy 
on-tinuation method. New parameter value λi+1 is part of the solution. si+1,estinitial guess 
onstru
ted by tangential updating, T turning point.4.2 Steady Flow in �Vis
ous� Laval NozzlesThe subsoni
 near 
riti
al �ow regime in a slender 
hannel is a�e
ted bymeans of a small surfa
e mounted hump given by the relation, already written
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k s
alings,
S(X) =







0 2 < |X|
λ
2
(1 + cos(πX/2)) |X| ≤ 2.

(4.12)The surfa
e mounted hump forms a small Laval nozzle 
onsisting of a 
on-verging, i.e. S ′(X) > 0 for X < 0, and a diverging part, i.e. S ′(X) < 0 for
X > 0, 
f. �gure 4.1. The �ow medium under 
onsideration shall be ideal gaslike, i.e. Γ > 1. The 
orresponding problem of vis
ous invis
id intera
tionstated in de�nition 2.2.1 for steady �ows is solved numeri
ally, 
f. se
tion4.1.1, for di�erent heights λ of the surfa
e mounted hump using the numeri
alhomotopy 
ontinuation method des
ribed in se
tion 4.1.3. The parameter ngoverning the nonlinearity of the �ux fun
tion G[n], (2.215), is taken to be
2, be
ause of the premise of Γ > 1, and K > 0 sin
e the on
oming �ow inthe 
ore region of the nozzle is subsoni
, and Q entering the intera
tion lawis taken to be 1. Consequently, supersoni
 upper de
k �ow is en
ounteredfor P < −1, 
f. (2.216). The �ow 
onditions far upstream are given by
P = A = Ū = 0 for X → −∞. Evaluation of expression (3.24) immediatelyreveals that for subsoni
 on
oming 
ore region �ow no nontrivial eigensolu-tions 
an exist besides the trivial solution. Hen
e the presen
e of the surfa
emounted hump is not felt upstream of the obstru
tion, i.e. for X < −2. Fur-thermore, there exist two possible undisturbed �ow sates downstream of theintera
tion region whi
h are 
onsistent with the asymptoti
 far downstreambehavior of the solution of the intera
tion problem predi
ted by (3.40) and(3.39). The one given by P = A = Ū = 0 whi
h is identi
al with the on
om-ing far upstream �ow 
onditions indi
ates subsoni
 and the other given by
P = −2 and A = Ū = 0 indi
ates supersoni
 �ow in the 
ore region of thenozzle downstream of the intera
tion region. Note that equations (3.40) and(3.39) derived for the asymptoti
 downstream properties of eigensolutionsof the intera
tion problem also apply to the 
onsidered situation sin
e thesurfa
e mounted hump vanishes for |X| ≫ 1, i.e. S(X) ≡ 0 for |X| > 2.The numeri
al results for the perturbation of the pressure P , the part ofthe negative displa
ement thi
kness evoked by the vis
ous lower de
k rea
tion
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110 CHAPTER 4. VISCOUS LAVAL NOZZLEonly −A = −A⋆ − S, see equation (2.206), and the wall shear stress τw areshown in �gure 4.3. For small heights of the surfa
e mounted hump, 
f. thedistribution of the pressure for λ1 and λ2 in �gure 4.3(a), the upper de
k �owremains subsoni
 in the whole intera
tion region very mu
h alike as in the
lassi
al 
ase of invis
id one-dimensional �ow of a perfe
t gas like medium ina Laval nozzle with a minimum throat area larger than the 
riti
al minimumthroat area, see e.g. [33℄. Initially the on
oming upper de
k �ow is a

eleratedin the 
onverging part of the nozzle. However, unlike to 
lassi
al theory wherethe �ow immediately de
elerates downstream of the minimum throat area theintera
ting �ow in the 
ore region of the nozzle is a

elerating still in the �rstpart of the diverging part of the nozzle before �nally de
elerating ba
k to theundisturbed subsoni
 �ow state P = A = Ū = 0. The reason, of 
ourse, isto �nd in the vis
ous invis
id intera
tion taking pla
e between the invis
id�ow in the upper de
k and the vis
ous boundary layers at the walls. Theintera
ting boundary layers are forming a �vis
ous� Laval nozzle meaningthat the e�e
tive �ow area felt by the upper de
k �ow does not 
onsist ofthe �geometri
� 
ontribution S alone but also of a vis
ous part −A, 
f. �gure4.3(b), resulting form the lower de
k rea
tion to pressure variations in theupper de
k. This is expressed by the relation −A⋆ = −A + S, 
f. (2.206),for the overall displa
ement thi
kness and also by the intera
tion law (2.214)for steady �ow
G′

[n](P ; K, Γ, Λ, N)
dPdX = Q

dA⋆dX = Q
ddX (A − S). (4.13)Figure 4.5(a) again shows the distribution of P for the 
ase of λ2, but nowtogether with S, −A and −A⋆. The �ow in the lower de
k is a

elerated aslong dP/dX < 0 and by 
ontinuity arguments this results in a thinning ofthe boundary layer, i.e. −A < 0, redu
ing the 
ontribution of the surfa
emounted hump on the displa
ement e�e
t and thus delaying the point ofde
eleration into the beginning of the diverging part of the geometri
 nozzle.The e�e
tive shape of the �vis
ous� nozzle is given by −A⋆. The lo
ation ofthe minimum of the e�e
tive throat area now 
orresponds with the minimumof the pressure distribution, as one would have guessed by appli
ation of
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id nonintera
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tgas).
lassi
al Laval nozzle theory to this �vis
ous� Laval nozzle and whi
h followsfrom (4.13) 
onsidering G′
[2](Pmin) 6= 0.If the height of the surfa
e mounted hump is su

essively in
reased to

λs the minimum in the pressure distribution eventually approa
hes Ps = −1meaning that at this point soni
 �ow 
onditions are obtained for the �rsttime. In 
lassi
al theory of Laval nozzles this is the limiting 
ase of a Lavalnozzle of 
riti
al minimum throat area and no steady solutions exist for a fur-ther redu
tion of the throat area, i.e. in
rease of the surfa
e mounted hump.Moreover, in 
lassi
al theory the soni
 state present at the lo
ation of theminimum throat area would 
orrespond to a bifur
ation point in the pres-sure distribution from whi
h two bran
hes of 
ontinuous solutions evolve, one
orresponding to a subsoni
 de
elerating and the other 
orresponding to a su-personi
 a

elerating �ow, 
f. bran
h 1 and bran
h 3 in 4.4 respe
tively. Thenumeri
al results for the pressure distribution in �gure 4.3(a) 
learly showthat the bifur
ation point for λs is eliminated by the presen
e of vis
ous in-vis
id intera
tion. From the former two bran
hes only the one 
orrespondingto the subsoni
 �ow remains. Furthermore, the height of the surfa
e mountedhump 
an be in
reased above λs, 
f. 
ase λ3 in �gure 4.3(a). The pressuredistribution for λ3 indi
ates that the upper de
k �ow is a

elerated �rst to
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 �ow, but afterwards smoothly de
elerated to subsoni
 �ow again.Su
h a solution has no 
ounter part in 
lassi
al Laval nozzle theory. Figure4.5(
) reveals that the intera
ting boundary layers are forming a �vis
ous�nozzle 
onsisting out of two throats and one anti-throat and that a lo
al su-personi
 �ow regime is 
on�ned in between the two �vis
ous� throats. Thetwo soni
 states are lo
ated at the minima of the two �vis
ous� throats andthe minimum of P is lo
ated at the maximum of the �vis
ous� anti-throat.This immediately follows from equation (4.13), sin
e in 
ase of an extremumof A⋆, i.e dA⋆/dX = 0, P takes an extremum, i.e. dP/dX = 0, if the �ow isnot soni
, i.e. G′
[2] 6= 0, or otherwise dP/dX 
an be 6= 0 at a soni
 state, i.e.

G′
[2] = 0.Furthermore, it is found that the height of the surfa
e mounted hump
annot be in
reased above a 
ertain 
riti
al value λc above whi
h no steadysolutions 
an be found. Very mu
h alike the 
ase of an ideal Laval nozzlein 
lassi
al theory, 
f. solution bran
h 3 in �gure 4.4, the solution for λcis just the solution whi
h leads to a transition from the subsoni
 to thesupersoni
 regime, i.e. P = −2 for X → ∞. To this end, the �vis
ous�nozzle, 
f. −A⋆ in �gure 4.5(d), is forming a nozzle 
onsisting of one throatand one anti-throat leading to a sho
k free a

eleration of the upper de
k �owfrom sub- to supersoni
 �ow 
onditions. Moreover, it is found that whilstapproa
hing λc from below, the region around the lo
ation of the minimumin the pressure distribution is almost forming a 
usp, 
f. �gure 4.3(a). Froma numeri
al point of view the numeri
al solution is indistinguishable to thema
hine pre
isionmp from the numeri
al solution for λc, i.e. 0 < λc−λ < mp,as long as the �ow in the nozzle is a

elerating, i.e. dP/dX < 0. Thenthe solution seems to split form the solution for λc leading to a relativelyrapid transition from super- to subsoni
. Interestingly enough, there existsa 
lassi
al 
ounterpart to su
h a solution whi
h is depi
ted in �gure 4.4, 
f.bran
h 2. A normal sho
k in the diverging part of the nozzle leads to thetransition form super- to subsoni
 �ow, the position of the sho
k dependson the out�ow 
ondition at the nozzle exit. However, due to the vis
ousinvis
id intera
tion su
h a weak normal sho
k is smoothed out or regularizedby the formation of a pseudo-sho
k, 
f. 
hapter 3. By means of the numeri
al
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ontinuation method adopted an in�nite number of alike solutions
an be found for 0 < λc − λ < mp, 
f. �gure 4.3. The position of thepseudo-sho
k is moved su

essively further downstream until it eventuallywould leave the physi
al domain downstream resulting in the limiting 
asefor λ = λc. The �ow in su
h a regime, in analogy to 
lassi
al Laval nozzletheory, 
an be 
onsidered to be nearly 
hoked. The strength of su
h a pseudo-sho
k forming in the 
hoked �ow regime eventually is large enough to for
ethe �ow in the lower de
k to separate, 
f. �gure 4.3(
). Su
h a phenomenonis 
ommonly en
ountered in te
hni
al transoni
 di�users, 
f. e.g. [54℄, also ino

urren
e with self-sustained sho
k os
illations, see for instan
e [54℄, [93℄.The unsteady rea
tion of su
h pseudo-sho
ks solutions will be dis
ussed inse
tion 4.3 to some extend.4.2.1 Inverse Design of a Laval NozzleFrom the viewpoint of the te
hni
al design of slender nozzles the issue ofthe right shape of su
h a devi
e in order to obtain a 
ertain desired pressuredistribution in the nozzle is more appropriate. The 
hanges in the numeri
als
heme are small, instead of S(X) now P (X) is pres
ribed and S(X) takesthe role of the unknown. The numeri
al results for the pressure distributiongiven by
P (X) = P∞(tanh(X) + 1)/2 (4.14)are plotted in �gure 4.6. It is evident that a nozzle 
ausing the desired pres-sure distribution has to have a slowly diverging part rea
hing far downstream.So far, only perfe
t gas like media has been 
onsidered. If, however,dense gases exhibiting mixed nonlinearity are to be 
onsidered as well, thenan a

eleration of the working media from subsoni
 to supersoni
 �ow 
annotbe a

omplished by means of a nozzle 
onsisting of a single throat even inthe 
lassi
al 
ase of one-dimensional nonintera
ting invis
id �ow, 
f. [35℄.Rather a 
ombination of throats and anti-throats has to be used. In su
h a
ase, the des
ribed inverse design of a Laval nozzle is most useful, sin
e thepro
edure of su

essively in
reasing the height of a nozzle of otherwise given
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ous� Laval Nozzles4.3.1 Linearized Problem and Validation of the Numer-i
al AlgorithmBefore the numeri
al s
heme for the unsteady intera
tion problem des
ribedin se
tion 4.1.2 is applied to pseudo-sho
k solutions forming in the nearly
hoked �ow regime in a slender Laval nozzle, 
f. dis
ussion in se
tion 4.2,the unsteady triple de
k problem shall be dis
ussed under the assumptionthat the problem 
an be represented by the linearized version of the govern-ing equations, i.e. in 
ase of small perturbations introdu
ed by a su�
ientlysmall surfa
e mounted hump. For the linearized equations of the intera
tionproblem in de�nition 2.2.1 a solution 
an be given in 
losed form for appro-priate surfa
e fun
tions S(X, T ) by means of Fourier transforms, 
f. e.g. [51℄or [21℄. This is 
onvenient in so far as the linearized problem poses a possibil-ity to validate the numeri
al s
heme developed for the fully nonlinear 
ase.On the other hand, the obtained numeri
al solutions allow a �rst glimpse onthe time-dependent behavior of the physi
al system.The problem is solved for the expression
S(X, T ) =







0 T ≤ 0

0.01 exp(−X2) T > 0
(4.15)des
ribing the shape of the surfa
e mounted hump and under the initial
onditions

P ≡ Ū ≡ 0 @T = 0. (4.16)The temporal evolution of the Fourier transform of the pressure distribution
P ∧ for the linearized problem under the for
ing of (4.15) is given by

P ∧(ω; T ) =
1√
2π

∫ ∞

−∞

P (X, T ) e−iωXdX =

=
Q√
2

iω
P(ω)

e−ω2/4
(
1 − e−P(ω)T

)
(4.17)
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 �ow regime, i.e. K > 0, and 
omparison of solutions by di�erentnumeri
al s
hemes: TR-BDF2, Lax-Wendro� (LW), linearized problem andFast-Fourier Transform (FFT). (b) Supersoni
 �ow, i.e. K < 0. Q = 0.5,
Γ−∞ = 1.with P(ω) = Q

3Ai′(0)(iω)4/3 + iω sign (K/Γ−∞). The relevant steps for thederivation of equation (4.17) 
an be found in [24℄. The transformation fromFourier spa
e (ω, T ) ba
k to the physi
al spa
e (X, T ) is a
hieved by meansof Fast-Fourier Transforms, 
f. e.g. [6℄, using the GSL library pa
kage. Theresults are shown in �gure 4.8 for (a) subsoni
 and (b) supersoni
 �ow. More-over, also numeri
al results obtained by the appli
ation of the TR-BDF2s
heme developed for the fully nonlinear problem, 
f. se
tion 4.1.2, and animpli
it Lax-Wendro� s
heme, 
f. se
tion 4.1.2, are depi
ted in �gure 4.8(a).The time step is 
hosen quite large, i.e. ∆T = 0.1. Inspe
tion of the numeri-
al solutions reveals that the agreement between the solution of the linearizedproblem and the solution 
al
ulated by means of the TR-BDF2 s
heme areex
ellent, whereas the disturban
es 
al
ulated by the Lax-Wendro� s
hemeobviously move at di�erent �nite speeds. This phenomenon, whi
h has alsobeen observed for the 
ase of an impli
it upwind s
heme plus a simple addingof the sour
e term not shown here, has already been mentioned and dis
ussedin se
tion 4.1.2. Considering the temporal development of the pressure dis-tribution itself, two di�erent time s
ales 
an be distinguished. Both in thesubsoni
 and in the supersoni
 
ase the presen
e of the surfa
e mountedhump immediately is felt downstream of the hump, whereas there is also animmediate upstream in�uen
e in 
ase of supersoni
 upper de
k �ow. On theother hand pressure disturban
es are seen to travel at �nite speeds in both
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ases as well. These are moving upstream in 
ase of subsoni
 �ow, 
f. �gure4.8(a), and downstream in the supersoni
 
ase, 
f. 4.8(b). This is in agree-ment with the reasoning performed for the 
hoi
e of an appropriate times
aling used in the derivation of the time-dependent upper de
k problem, 
f.remark 2.2.2. There it has been argued that the time s
aling shall preservethe transient behavior of the system whi
h is governed by the slowest times
ales in order to 
apture the longterm behavior of the system. The order ofmagnitude of the slowest time s
ales 
an be estimated by the 
hara
teristi
speed λη = M0u−c = c(M−1), 
f. remark 2.2.2. Consequently, disturban
esare expe
ted to be traveling upstream for M < 1 and downstream for M > 1.Conversely the faster time s
ales are estimated by λζ = c(M + 1) > 0. Sub-je
ted to a time s
aling based on the slower time s
ales this results in in�nitelarge positive 
hara
teristi
 speeds leading to the observed immediate up-or downstream in�uen
e. The upstream in�uen
e exhibited by an obsta
lein supersoni
 upper de
k region �ow in slender nozzles is typi
al for triplede
k problems in supersoni
 �ow in general, 
f. 
ompressive free intera
tion,e.g. [52℄.4.3.2 Nearly 
hoked Flow without Flow SeparationA pseudo-sho
k forming in the diverging part of a slender nozzle of shapegiven by relation (4.12) with su�
ient strength to bring the boundary layer�ow at the verge of separation is perturbed by a small os
illating surfa
emounted hump, Sosc, in the downstream part of the pseudo-sho
k, 
f. �gure4.9. A

ording to the insight gained into the behavior of the physi
al systemby studying the linearized 
ase the small hump is likely to evoke an imme-diate �ow response sin
e it perturbs the downstream region of in�uen
e ofthe nozzle. If the lo
ation of the os
illating hump is moved su�
iently fardownstream then the immediate �ow response 
an be expe
ted to be weak.On the other hand, perturbations will travel at �nite speeds upstream of theos
illating hump �nally starting to intera
t with the sensitive pseudo-sho
k.
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Figure 4.9: Initial 
onditions. The pseudo-sho
k in the diverging part of thenozzle given by S is perturbed by a small os
illating surfa
e mounted hump,
Sosc, downstream. The �ow in the lower de
k is 
lose to �ow separation.
Q = 1, K > 0, Γ−∞ = 1.The os
illating hump is given by the expression

Sosc(X, T ) =







0 |X − 3.55| > 0.2,

0.005 sin(2πSrT )
(
1 + cos(πX−3.55

0.2
)
)

|X − 3.55| ≤ 0.2,(4.18)it is lo
ated at X = 3.55, spans from X = 3.35 to X = 3.75 and os
illatesat a dimensionless frequen
y Sr, its maximum height is 0.01. The rea
-tion of the pseudo-sho
k of the initial �ow 
on�guration, 
f. �gure 4.9, tothe presen
e of the os
illating hump given by (4.18) shall be 
al
ulated for
Sr = 1/Tp = 1.0. Tp denotes the time period. The time step used in the
omputations is ∆T = 0.01. The pseudo-sho
k in �gure 4.9 by nature isnot lo
ated at a 
ertain position, however, 
onsidering the wall shear stressdistribution in �gure 4.9 the region of steepest des
ent spans from X ≈ 0.5to X ≈ 1.5. It 
an be expe
ted that it is this region whi
h is most sensitiveto perturbations of the �ow �eld. The results for the pressure disturban
e
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(a) First PartFigure 4.10: Pressure disturban
e ∆P = P (X, T ) − P (X, 0) evoked by anos
illating surfa
e mounted hump Sosc. Sr = 1, Tp = 1.0; ∆T = 0.01.
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(b) Se
ond PartFigure 4.10: Pressure disturban
e ∆P = P (X, T ) − P (X, 0) evoked by anos
illating hump Sosc. Sr = 1.0, Tp = 1.0; ∆T = 0.01.
∆P = P (X, T ) − P (X, 0) over the time span T = 0 to T = Tp is shown in�gure 4.10 together with Sosc. The disturban
es introdu
ed by the os
illatinghump are traveling upstream very mu
h alike the solutions to the linearizedproblem for subsoni
 �ow shown in the previous se
tion and no strong rea
-tion of the pseudo-sho
k 
an be observed at �rst. However, after some timea �ow response is building up whi
h is strongest in the region of X ≈ 0.5to X ≈ 1.0. This 
orresponds with the beginning of the pseudo-sho
k inthe initial �ow 
on�guration, 
f. �gure 4.9, and therefore is a result of theintera
tion of the pseudo-sho
k and the for
ing Sosc. Sin
e disturban
es ina supersoni
 upper de
k �ow regime are traveling downstream rather thanupstream as in the subsoni
 regime, no perturbations are generated upstreamof the pseudo-sho
k. The pseudo-sho
k os
illates at the same harmoni
 fre-quen
y of the for
ing as 
an be seen by inspe
tion of �gure 4.11. Further-more, it is found that the maximum amplitude of the pressure os
illationsand 
onsequently the maximum of the os
illation of the sho
k position as
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reasing with in
reasing Sr, 
f. �gure 4.12(a). This 
oin
ides verywell with the experimental �ndings reported in [7℄. There, it had been foundthat the in�uen
e of the sho
k/boundary layer intera
tion on the sho
k os-
illations generated by a harmoni
 �ow disturban
e downstream of the sho
kis negligible as long as there is no signi�
ant �ow separation generated bythe sho
k. The authors even used a purely invis
id model to explain thesho
k movements and the phenomenon of de
reasing amplitude of the sho
kos
illations. The numeri
al results presented in this se
tion suggest that thein�uen
e of the sho
k boundary layer intera
tion is weak indeed. The 
aseof separated nearly 
ho
ked �ow will be dis
ussed in the following 
hapter.4.3.3 Linear Stability of Steady StatesNumeri
al 
al
ulations of the unsteady �ow �eld under the in�uen
e of anos
illating hump, 
f. previous se
tion, results in 
onvergen
e problems ofthe numeri
al s
heme in presen
e of �ow separation. Despite the e�ort ofusing a sti� time integration the numeri
al s
hemes fails after few time stepseven for very small time steps. The results obtained in the early stages ofthe 
al
ulations indi
ate a strong tenden
y of the separation bubble towardsself-sustained dynami
s. In order to be able to better interpret the observedbehavior a linear stability analysis is performed for various solutions of thesteady Laval nozzle �ow thus eliminating the need of a time-integration ofthe full nonlinear problem.The AnalysisThe fundamental 
anoni
al problem, 
f. de�nition 2.2.1, is written as adynami
al system, 
f. [3℄, [89℄, [46℄,
C

∂

∂T

(
Ū , P

)T
= FTD

(
Ū , P ; λ

) in Ω & B(Ū , P ) = 0 on ∂Ω (4.19)
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ase 
onsidered here the singular �
apa
ity� matrix
C is de�ned as

C =

(

0 0

0 1

) (4.20)and the operator FTD is de�ned as
FTD

(
Ū , P ; λ

)
=

( (
Y + Ū

)
ŪX −

(
1 + ŪY

) ∫ Y

0
ŪXdȲ + PX − ŪY Y

G′
[2](P ; K, Γ−∞)PX + Q (SX(X, T ; λ) − AX)

)

.(4.21)The parameter λ again denotes the height of the surfa
e mounted hump inequation (4.12). The �boundary� 
onditions B(Ū , P ) = 0 are given by theequations (2.209) to (2.213), whi
h are already linear equations. The govern-ing equations are then linearized about a steady state (Ū0(X, Y ; λ), P0(X; λ))T

(Ū , P )T = (Ū0(X, Y ; λ), P0(X; λ))T + (Ū1(X, Y, T ), P1(X, T ))T (4.22)leading to
C

∂

∂T
(Ū1, P1)

T = L
(
Ū0, P0; λ

)
(Ū1, P1)

T & BL(Ū1, P1) = 0. (4.23)Inserting the ansatz
(Ū1, P1)

T = eµTy (4.24)leads to a generalized eigenvalue problem
(
Cµ − L

(
Ū0, P0; λ

))
y = 0 & BL(y) = 0. (4.25)An expli
it solution for the spe
trum µ(ω) ∈ C with ω ∈ R 
an be given forthe trivial �state� (Ū0, P0)

T = 0 only, whi
h reads as
µ(ω) =

Q

3Ai′(0)
sin(π

6
)|ω|4/3 + iω(sign(K) − Q

3Ai′(0)
cos(π

6
)|ω|1/3

)

. (4.26)



4.3. UNSTEADY FLOW IN �VISCOUS� LAVAL NOZZLES 125A detailed derivation of relation (4.26) is given in appendix D. For the
al
ulation of the eigenvalue spe
trum for nontrivial �states� one has to relyon numeri
al solutions. To this end, system (4.19) is represented by
C

ddT s = F(s; λ) s,F ∈ Rd. (4.27)
s denotes the solution ve
tor and F(s; λ) = 0 denotes the system of alge-brai
 equations resulting form the numeri
al dis
retization of the governingequations for the stationary problem and whi
h has been des
ribed in se
tion4.1.1 and 4.1.3 in detail. Equation (4.27) 
an be seen as the �rst step in amethod of lines leading to a system of ODEs. The singular 
apa
ity matrix
C now is a large, sparse d × d-matrix

M(d, R) ∋ C =






















0 . . . 0 0 . . . 0 . . . 0 0... . . . ... ... . . .
... . . . ... ...

0 . . . 0 0 . . . 0 . . . 0 0

0 . . . 0 1 . . . 0 . . . 0 0... ... ... ... . . . ... ... ... ...
0 . . . 0 0 . . . 0 . . . 0 0... . . . ... ... . . .

... . . . ... ...
0 . . . 0 0 . . . 0 . . . 0 0

0 . . . 0 0 . . . 0 . . . 0 1






















. (4.28)
Performing the same steps as in 
ase of the 
ontinuous in�nite dimensionalsystem leads to the �nite dimensional equivalent of equation (4.23)

C
ddT s1 = L s1. (4.29)The d × d-dimensional matrix L := DsF(s0; λ) is the Ja
obian of the nu-meri
al s
heme F(s; λ) evaluated for s0. The generalized eigenvalue problemfor the d dis
rete eigenvalues in the �nite dimensional numeri
al 
ase, 
f.e.g. [29℄, �nally reads

(Cµ − L)y = 0. (4.30)



126 CHAPTER 4. VISCOUS LAVAL NOZZLEMost important of all, the singular sparse matrixC has only d nonzero entriesin its diagonal. As a 
onsequen
e the 
hara
teristi
 polynomial det(A−µC)
an be of order d as a polynomial in µ at the most and there exists a number ofdis
rete �nite generalized eigenvalues equal to the order of the 
hara
teristi
polynomial, [29℄. The generalized eigenvalue problem is solved using the eigsfun
tion of the MATLAB suite, whi
h is an implementation of the iterativeArnoldi method, 
f. e.g. [82℄.The results for various values of the height λ of the surfa
e mounted humpare shown in �gure 4.13. A number of 1090 out of 1400 possible �nite gen-eral eigenvalues whi
h are nearest to the value 0 have been 
al
ulated. Figure4.13(a) shows good agreement between the dis
rete eigenvalue spe
trum ob-tained by the numeri
al method and the analyti
al eigenvalue spe
trum givenby the expression (4.26) whi
h has been performed in order to validate thenumeri
al pro
edure. The real values of the general eigenvalues ℜ{µ} ≤ 0,thus the trivial state, as the numeri
al results for the unsteady problem haveindi
ated so far, is linear stable. This statement remains valid for any initial�ow �eld in the nozzle as long as no �ow separation does o

ur, 
f. �gure4.13(b), 4.13(
) and 4.13(f). However, taking a look at �gure 4.13(d) and �g-ure 4.13(e) where part of the eigenvalue spe
trum has moved into the regionof positive real values, i.e. ℜ{µ} ≥ 0, it is evident that the o

urren
e of �owseparation is linked with the linear instability of the steady �ow. Moreover,the largest of the eigenvalues with positive real part are of quite large numer-i
al values. Assuming that these may be essential for the temporal evolutionof the �ow �eld a numeri
al s
heme would have to resolve to unfeasible smalltime steps. The author believes that these results obtained by the linearstability analysis give an explanation for the observed numeri
al problemsmentioned at the beginning of this se
tion. From a physi
al point of view,the eigenvalue spe
tra for various surfa
e heights in �gure 4.13 suggest thatthe o

urren
e of a region of separated �ow 
aused by a pseudo-sho
k form-ing in the di�user part of a nozzle leads to a loss of stability of the steady�ow �eld. Moreover, preliminary numeri
al results, 
f. se
tion 4.3.4, indi
atethat the loss of stability is initiated by a 
onjugate-
omplex eigenvalue pairwhi
h 
rosses the imaginary axis, that is a Hopf-bifur
ation or �utter insta-
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f. [89℄, [3℄. The steady state remains the unique equilibrium stateof the dynami
al system, however, at the bifur
ation point an ex
hange ofstability from a stable to an unstable equilibrium o

urs, [89℄. Consequently,the unsteady �ow �eld is likely to exhibit self-sustained dynami
s and takinginto a

ount the eigenvalue spe
trum for a relatively large separation region,�gure 4.13(e), these self-sustained dynami
s 
an be expe
ted to exhibit highfrequen
y tones whi
h would be in line with experimental observations, [54℄.However, it shall be pointed out that the statements 
on
erning the possiblenature of self-sustained os
illations given here so far are preliminary also inthe light that the in�uen
e of nonlinear e�e
ts are not a

ounted for in theframework of a linear stability analysis. Therefore, suggestions for furtherwork fo
using on the distinguished 
ase of the loss of stability, i.e. the situ-ation, where the 
riti
al eigenvalue pair have zero real parts, is given in thefollowing se
tion.4.3.4 Further WorkPreliminary numeri
al results (for Q = 0.5, Ni = 1200, Nj = 100, ξ−s =

100/Ni, ξ+
s = 1100/Ni, m− = m+ = 1.3, X−

s = −3, X+
s = 3, Ys = 0.2,

αs = 0.98, Ymax ≈ 9.9 and a slightly di�erent surfa
e mounted hump 1 ) pointin the dire
tion that the loss of stability is 
aused by a 
onjugate-
omplexeigenvalue pair that 
rosses the imaginary axis suggesting a Hopf-bifur
ation,
f. �gure 4.14. The following aspe
ts would be of interest for future work inthis 
ontext:� First, the physi
al relevan
e of the 
al
ulated eigenvalue pair has tobe 
he
ked. To this end, the 
al
ulation of the pseudospe
trum of theeigenvalue problem 
ould give further insight, 
f. e.g. [92℄. However,the numeri
al pro
edure outlined in [92℄ mainly deals with the standard1
S(X) =







0 X < −2.5
λ

2 (1 + cos(πX/2)) −2.5 ≤ X < 0

λexp(−2(X/2.5)2) 0 ≥ X.

(4.31)
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X−
s = −3, X+

s = 3, Ys = 0.2, αs = 0.98, Ymax ≈ 9.9 and a slightly di�erentsurfa
e mounted hump). Di�erent 
olors in the plot 
orrespond to di�erentsolutions 
lose to the solution of a pseudo-sho
k just strong enough thatthe wall shear stress be
omes zero at one single point along the wall but noseparation region forms yet.eigenvalue problem, i.e. (Iµ − A)r = 0, say, and therefore would haveto be extended to the general eigenvalue problem (4.30).� If the 
riti
al eigenvalue pair proofs to be physi
ally meaningful, thena dimension redu
tion of the dynami
al system, 
f. 
enter manifoldredu
tion theory, e.g. [89℄, [3℄, [83℄ amongst others, would be indi
atedin order to obtain a redu
ed problem of similar dynami
al behavior asthe original one whi
h 
ould then be analyzed analyti
ally, i.e. non-linear stability analysis of the redu
ed system. A 
ru
ial point in this
ontext will be to de
ide whether su
h a dimension redu
tion is appli
a-ble or not, espe
ially whether the 
riti
al eigenvalue pair is su�
ientlyisolated from the rest of the eigenvalue spe
trum. As the numeri
alresults show part of the spe
trum happens to 
ross the imaginary linein 
ase of larger regions of �ow separation, so the ful�llment of the lastrequirement may be questionable.Another aspe
t of interest to the problem of sho
k os
illations 
ould beto study the situation of a pseudo-sho
k in the di�user part of the nozzle



4.3. UNSTEADY FLOW IN �VISCOUS� LAVAL NOZZLES 131in presen
e of a separation region whi
h is not dire
tly 
aused by the sho
kitself but rather 
aused by the adverse pressure-gradient in the subsoni
 �owregion following the pseudo-sho
k, i.e. pressure-gradient-indu
ed separated�ow, 
f. [54℄. Thus the lo
ation of the sho
k and the separation region 
ouldbe separated spatially and a

ording to [54℄ the unsteadiness of su
h a �owsituation is 
hara
terized by slower dynami
s. It would be interesting tosee whether the numeri
al s
heme developed for the time-integration of thefull nonlinear problem, 
f. se
tion 4.1.2, is 
apable to 
ope with the slowerdynami
s to be expe
ted.





Chapter 5Con
lusionsIt has been shown throughout this treatise that the problem of vis
ous in-vis
id intera
tions in internal, transoni
, single phase and two-dimensionalhigh Reynolds numbers �ows through 
hannels that are so narrow that theintera
ting 
ore region �ow be
omes one-dimensional to leading order 
an be
onsistently be des
ribed by a triple de
k problem. The intera
ting 
ore re-gion hereby is represented by a single upper de
k whi
h is shared by the twointera
ting boundary layers at the lower and upper 
hannel walls. In parti
-ular previous work, Kluwi
k, [39℄, Kluwi
k & Gittler, [43℄, and Kluwi
k &Braun & Gittler, [41℄, has been extended to in
lude more general on
oming�ow types than the previously assumed �ow through a 
hannel of 
onstant
ross se
tion, real gas e�e
ts and unsteady e�e
ts fo
using on the longtermbehavior of the system, i.e. on the slowest times
ales governing the fullproblem.The resulting model equations then have been applied to study two fun-damental �ow problems.In the �rst one the vis
ous invis
id intera
tion pro
ess is triggered bythe presen
e of a weak normal sho
k forming in a narrow 
hannel of 
on-stant 
ross se
tion. It has been demonstrated that a sho
k dis
ontinuity issmoothed out by the intera
tion pro
ess ultimately leading to the forma-tion of an internal sho
k pro�le. The me
hanism of vis
ous invis
id sho
kregularization has been identi�ed. The vis
osity dominated boundary layers133



134 CHAPTER 5. CONCLUSIONSform a �vis
ous� nozzle adapting to and at the same time intera
ting withthe invis
id 
hannel 
ore �ow and thus allow a smooth transition of the 
oreregion �ow through the intera
tion region. The mentioned properties of theintera
tion problem 
onsidered in this treatise have been used to study theinternal sho
k pro�les of various weak anomalous sho
ks forms possible in�uids of mixed nonlinearity (BZT �uids), i.e. rarefa
tion, soni
, double soni
and split sho
ks. It has been found that possible internal sho
k pro�les are
onsistent with sho
k admissibility 
riteria formulated for the invis
id 
ase.Moreover, the internal sho
k pro�les due to vis
ous invis
id intera
tions share
ommon features with those obtained by a 
lassi
al thermo-vis
ous regular-ization, e.g. impending sho
k splitting, although the regularizing me
hanismis governed by 
ompletely di�erent underlying physi
s. As a numeri
al ex-ample the intera
ting �ow of PP10 has been 
onsidered. The 
al
ulation ofthe 
hara
teristi
 length s
ales involved in the distinguished limit have shownthat su
h �ow phenomena as have been dis
ussed here should o

ur in �owsthrough slender 
hannels in engineering pra
ti
e for possible appli
ation ofBZT �uids in the near future, e.g. organi
 Rankine 
y
le pro
esses. Fur-thermore, the setup des
ribed here 
ould proof to be an alternative to sho
ktubes 
urrently in use to experimentally proof the existen
e of rarefa
tionsho
ks. The distinguishing advantages over a sho
k tube experiment wouldbe that the sho
k position is stationary and that no other wave phenomenawould have to be a

ounted for. A disadvantage, however, may be the needto guarantee laminar boundary layer �ow up to very high Reynolds numbers.It shall be pointed out that the presented theory has been obtained by meansof an asymptoti
 analysis and 
onsequently the quality of su
h an asymptoti
theory 
an only be validated by experiments or by CFD in the end.In the se
ond �ow problem 
onsidered here the vis
ous invis
id intera
-tion is triggered by a small Laval nozzle lo
ated in a 
hannel of otherwise
onstant 
ross se
tion. The dis
ussion of the steady �ow �eld through noz-zles of di�erent minimum 
ross se
tions but of otherwise similar shape hasrevealed that the o

urren
e of a single soni
 point in the invis
id 
ore region�ow no longer 
orresponds to a bifur
ation point as in 
lassi
al invis
id one-dimensional Laval nozzle theory. The numeri
al results have shown that the



135purely subsoni
 solution remains the only possible solution, that is no super-soni
 bran
h bifur
ates at the soni
 point. Moreover, the soni
 point has beenfound to move slightly downstream of the lo
ation of the minimum throatarea and the minimum throat area is larger still than the 
riti
al minimum
ross se
tion in 
ontrast to 
lassi
al Laval nozzle theory. The reason for thisagain is the possibility of the boundary layers to adapt to and intera
t withthe 
ore region �ow in the intera
tion region. A quite similar behavior hasbeen reported in CFD results for the simulation of transoni
 �ow through mi-
ro nozzles, 
f. [28℄, and for nozzle �ow at moderately high Reynolds numberswhere the vis
ous e�e
ts are important in the whole �ow �eld, 
f. [32℄, [65℄.In the 
lose vi
inity of the minimal 
ross se
tion that leads to a smoothtransition form subsoni
 to supersoni
 
onditions a pseudo-sho
k solution isforming in the di�user part of the nozzle. The pseudo-sho
k part has beenfound to move su

essively downstream when the minimum 
ross se
tion isapproa
hed. This �ow regime has been denoted as nearly 
ho
ked �ow inanalogy to 
lassi
al Laval nozzle theory. The rea
tion of su
h a pseudo-sho
ksolution to small disturban
es has been studied for two di�erent situations.First the pseudo-sho
k has not been strong enough to 
ause the boundarylayer �ow to separate. There it has been found that the sho
k/boundarylayer intera
tion plays only a minor role in a

ordan
e with experimentalobservations, [7℄. In the se
ond situation where the pseudo-sho
k has 
auseda distin
t separation region the numeri
al s
heme developed for the time-integration of the full nonlinear problem has turned out to be not 
apable toresolve the fast dynami
s exhibited by the separation bubble. A linear sta-bility analysis for steady solutions has shown that separation is linked to theloss of stability of the steady solution. Preliminary numeri
al results seemto indi
ate that the loss of stability is 
hara
terized by a Hopf-bifur
ation,however, further investigations outlined in se
tion 4.3.4 have to be performedto substantiate that statement.





Appendix AList of Symbols
important operators
ã dimensional form of quantity a

∇ nabla operator
∇a gradient of a

∇ · a divergen
e of a

∇a = (∇⊗ a)T

(∇ · A)i =
∑3

j=1 ∂xj
Aij

Da
Dt

= ∂a
∂t

+ u · ∇a substantial derivative(non-dimensional form)
(a ⊗ b)ij = aibj tensor produ
t
(A : B)ij =

∑3
k=1 AikBkj tensor 
ontra
tion

∂a
∂b
|c = ∂

∂c
a(b, c) partial derivative of thermodynami
 quantity aw.r.t. b for �xed c

(a)n quantity a evaluated inregion n in �gure 2.1
[a] = aa − ab jump 
onne
ting the two states aa and ab

ℜ{a} real part of a

ℑ{a} imaginary part of a

a∧ Fourier transform of a
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138 APPENDIX A. LIST OF SYMBOLSimportant variables
A lo
al throat area of a nozzle per unit depth (invis
id theory),negative perturbation of the displa
ement thi
kness(triple de
k theory)
β 
oe�
ient of thermal expansion
c speed of sound
cp spe
i�
 heat 
apa
ity at 
onstant pressure
cv spe
i�
 heat 
apa
ity at 
onstant volume
C =

∣
∣
∣
2Γ̄
K

∣
∣
∣ 
oe�
ient used in a�ne transformation (2.201)

δ = R̃g

c̃v
ratio of spe
i�
 gas 
onstant and spe
i�
 heat,
δ ≪ 1 for dense gases

δm thi
kness of subregion m = (3l, 3m) of boundary layer, seelisting of subs
ripts
ǫ1 perturbation parameter for one-dimensionalinvis
id nozzle �ow
ǫ2 = Re−

1
2 perturbation parameter for nonintera
ting boundarylayer �ow

ǫ3 perturbation parameter for intera
tion theory
e spe
i�
 inner energy
f self similar part of stream fun
tion, solution ofBlasius' equation (2.104)
γ adiabati
 exponent
Γ fundamental derivative of gas dynami
s
G Grüneisen 
oe�
ient
G[n] leading order term of negative perturbation of upperde
k mass �ux density
h, H spe
i�
 enthalpy 1
H3u thi
kness of upper de
k
I identity matrix
J[n] leading order term of perturbation of mass �ux density
k thermal 
ondu
tivity
K transoni
 similarity parameter
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Kθ isothermal 
ompressibility
Ks isentropi
 
ompressibility
κ exponential de
ay of eigensolutions of thetriple de
k problem for steady �ow
Λ �rst derivative of Γ with respe
t to ρ at 
onstant s

L0, H0 
hara
teristi
 length and height of the 
hannel
λ 
hara
teristi
 speed de�ned in theory of hyperboli
system of pdes or height of a surfa
e mounted hump
µ dynami
 vis
osity
µb bulk vis
osity
mp ma
hine pre
ision
n order of nonlinearity in G[n] or J[n]

N se
ond derivative of Γ with respe
t to ρ at 
onstant s

N1D number of orders of magnitude up to whi
h theupper de
k �ow 
an be 
onsidered one-dimensional
ns surfa
e normal on the surfa
e mounted hump
p, P pressure 1
Ψ stream fun
tion
q ve
tor of heat �ux density
Q 
oupling parameter in intera
tion law in 
anoni
alform (2.215)
ρ, R density 1
R̃g spe
i�
 gas 
onstant
s thermodynami
 entropy
s, S position ve
tor des
ribing the 
ontour of surfa
emounted hump 1
s2, S2 verti
al 
omponent of s 1
t, T time 1
θ, Θ temperature 1
τττ vis
ous stress tensor
Tp periodi
 time
U ′

20(0) slope of the horizontal velo
ity pro�le at the wallin front of intera
tion region ∂U
(0)
2 (1,0)

∂Y2



140 APPENDIX A. LIST OF SYMBOLS
uuu,U velo
ity ve
tor 1
u, U 
omponent of velo
ity ve
tor in horizontal, main streamdire
tion 1
v, V 
omponent of velo
ity ve
tor in verti
al dire
tion 1
x, X position ve
tor 1
x, X 
oordinate in horizontal, main stream dire
tion 1
y, Y 
oordinate in verti
al dire
tion 1dimensionless groups
Re Reynolds number
Ec E
kert number
M0 Ma
h number at referen
e state
Pr Prandtl number
β̃0θ̃0

G0 Grüneisen 
oe�
ient at referen
e state
Sr Strouhal number, dimensionless frequen
y1Capital letters stand for boundary layer s
aling, the exa
t region is indi
ated by thesubs
ript whi
h refers to the nomen
lature of �gure 2.1 and �gure 2.5.



141subs
ripts
0 referen
e state
1 quantity of invis
id nonintera
ting �ow regime, see �gure 2.1,in 
orresponding s
aling
2 quantity of nonintera
ting boundary layer, see �gure 2.1,in 
orresponding s
aling
3 quantity of intera
tion region, see �gure 2.1 or �gure 2.5,in 
orresponding s
aling eventually further spe
i�ed by l,m,u
c quantity at the 
riti
al thermodynami
 point
i solution of the (i)nvis
id Euler equations
l lower de
k
m main de
k
u upper de
k
w evaluated at the wall
−∞ evaluated at the beginning of the intera
tion region (X → −∞)
[n] order of nonlinearity in G[n] or J[n]supers
ripts
(k) order of 
oe�
ient in asymptoti
 expansions
∗ 
riti
al �ow quantities at M = 1

a undisturbed �ow quantity immediately after weak normal sho
k
b undisturbed �ow quantity immediately before weak normal sho
k
⋆ quantity of fundamental problem before Prandtl's transpositiontheorem is applied





Appendix BThermodynami
 Relations
B.1 Some Thermodynami
 QuantitiesSpeed of sound

c̃2 =
∂p̃

∂ρ̃

∣
∣
∣
s̃

(B.1)
c2 =

c̃2

c̃2
0

= M2
0

∂p

∂ρ

∣
∣
∣
s

(B.2)Coe�
ient of thermal expansion
β̃ = −1

ρ̃

∂ρ̃

∂θ̃

∣
∣
∣
p̃

(B.3)Spe
i�
 heat 
apa
ity at 
onstant volume
c̃v = θ̃

∂s̃

∂θ̃

∣
∣
∣
ρ̃

(B.4)Spe
i�
 heat 
apa
ity at 
onstant pressure
c̃p = θ̃

∂s̃

∂θ̃

∣
∣
∣
p̃

(B.5)
143



144 APPENDIX B. THERMODYNAMIC RELATIONSAdiabati
 exponent
γ =

ρ̃

p̃

∂p̃

∂ρ̃

∣
∣
∣
s̃

(B.6)Isothermal 
ompressibility
K̃θ =

1

ρ̃

∂ρ̃

∂p̃

∣
∣
∣
θ̃

(B.7)Isentropi
 
ompressibility
K̃s =

1

ρ̃

∂ρ̃

∂s̃

∣
∣
∣
θ̃

(B.8)Grüneisen 
oe�
ient
G =

ρ̃

θ̃

∂θ̃

∂ρ̃

∣
∣
∣
s̃

(B.9)B.1.1 Magnitude of Grüneisen Coe�
ientWe write
G0 =

β̃0c̃
2
0

c̃v,0

K̃s,0

K̃θ,0

= β̃0θ̃0
c̃2
0

R̃g θ̃0

K̃s,0

K̃θ,0

R̃g

c̃v,0
, (B.10)
f. e.g. [56℄, for the Grüneisen 
oe�
ient de�ned in (B.9) and evaluated atreferen
e state. For the order of magnitude estimate of G0 in the dense gasregime the van der Waals equation of state, 
f. e.g. [47℄, is applied whi
h 
anbe written as

(

π +
3

ν2

)

(3ν − 1) = 8τ (B.11)in the redu
ed variables
π =

p̃

p̃c
, ν =

ρ̃c
ρ̃

, τ =
θ̃

θ̃c
.



B.1. SOME THERMODYNAMIC QUANTITIES 145Expressing β̃ by means of the van der Waals equation of states one �nds
β̃0 =

1

θ̃c

1

ν0

∂ν

∂τ

∣
∣
∣
π,0

=
1

θ̃c

3ν0 − 1

3τ0ν0

1

1 − 1
4

(3ν0−1)2

τ0ν3
0

(B.12)using the expression
∂τ

∂ν

∣
∣
∣
π,0

=
3

8

(

π0 +
3

ν2
0

){

1 − 2(3ν0 − 1)

ν3
0(π0 + 3/ν2

0)

}

=
3τ0

3ν0 − 1

(

1 − 1

4

(3ν0 − 1)2

ν3
0τ0

)

.(B.13)The 
oe�
ient of thermal expansion is unde�ned at the 
riti
al point ofthermodynami
s, i.e. τ0 = 1, ν0 = 1, π0 = 1, however, taking a look at thedensity vs. pressure diagram for a BZT �uid, PP10, say, 
f. �gure 1.1, theregion of interest (region where Gamma 
hanges sign) lies between ν0 = 1.3and ν0 = 2, say. Evaluating the expression for β0 for ν0 = 1.3 and τ0 indi
atesthat β0 is �nite and thus β0θ0 = O(1) in the region of interest. Furthermore,
K̃s,0

K̃θ,0

= 1 − θ̃0β̃
2
0

ρ̃0c̃v,0K̃θ,0

, (B.14)
f. [56℄, and
K̃θ,0 = − 1

p̃c

1

ν0

∂ν

∂π

∣
∣
∣
τ,0

=
1

p̃c

1 − 3ν0

3
(

1 + 2−3ν0
ν3
0π0

) . (B.15)As a 
onsequen
e it is found
K̃s,0

K̃θ,0

= 1 + (β̃0θ̃0)
2 p̃0

ρ̃0θ̃0c̃v,0

3

1 − 3ν0

(

1 +
2 − 3ν0

ν3
0π0

)

= 1 + O
(

R̃g

c̃v,0

)

= 1 + O(δ).(B.16)For the expression c̃2
0/(R̃gθ̃0) one �nds in the same manner

c̃2
0

R̃gθ̃0

= 1 + O(δ). (B.17)



146 APPENDIX B. THERMODYNAMIC RELATIONSTherefore, one 
on
ludes
G0 = O(δ) (B.18)in the BZT region of a dense gas.B.2 Utilized RelationsExpression Dh

Dt
= 1

Ec
cp
Dθ
Dt

+ 1−β̃0θ̃0βθ
ρ

Dp
Dt
. Take h̃ = h̃(θ̃, p̃), then

∆h̃ =
∂h̃

∂θ̃

∣
∣
∣
p̃
∆θ̃ +

∂h̃

∂p̃

∣
∣
∣
θ̃
∆p̃.De�nition (B.5) gives for the �rst 
oe�
ient

c̃p =
∂h̃

∂θ̃

∣
∣
∣
p̃
.For the se
ond 
oe�
ient the free spe
i�
 enthalpy g̃ is used

g̃ = h̃ − θ̃s̃.Then, using the following Maxwell relations
∂g̃

∂p̃

∣
∣
∣
θ̃

=
1

ρ̃
,

∂s̃

∂p̃

∣
∣
∣
θ̃

= − 1

ρ̃2

∂ρ̃

∂θ̃

∣
∣
∣
p̃and the de�nition of the 
oe�
ient of thermodynami
 expansion (B.3)

β̃ = −1

ρ̃

∂ρ̃

∂θ̃

∣
∣
∣
p̃

= −ρ̃
∂s̃

∂p̃

∣
∣
∣
θ̃�nally leads to

∂h̃

∂p̃

∣
∣
∣
θ̃

=
1 − β̃θ̃

ρ̃
.



B.2. UTILIZED RELATIONS 147Introdu
ing non-dimensional quantities yields the sought-after expression
∆h =

1

Ec
cp∆θ +

1 − β̃0θ̃0βθ

ρ
∆p. (B.19)Expression ∂h

∂s

∣
∣
∣
ρ

= (1 + G) θ
Ec
. Take h̃ = h̃(s̃, p̃), then

∆h̃ = θ̃∆s̃ +
1

ρ̃
∆p̃.Then it follows

1

Ec

∂h

∂s

∣
∣
∣
ρ

=
∂h̃

∂s̃

∣
∣
∣
ρ̃

= θ̃ +
1

ρ̃

∂p̃

∂s̃

∣
∣
∣
ρ̃
.Making use of the Maxwell relation

∂p

∂s

∣
∣
∣
s̃
= ρ̃2 ∂θ

∂ρ

∣
∣
∣
∂s

= ρ̃θ̃G,
onsidering the de�nition of the Grüneisen 
oe�
ient (B.9) in the last step,�nally yields the sought-after relation
∂h

∂s

∣
∣
∣
ρ

= (1 + G)
θ

Ec
. (B.20)Terms in the Taylor expansion of h(1+∆ρ, s0). Take h̃ = h̃(s̃, p̃), then

∆h̃ = θ̃∆s̃ +
1

ρ̃
∆p̃.Take the de�nition of the fundamental derivative (1.1)

Γ =
1

c̃

∂(ρ̃c̃)

∂ρ̃

∣
∣
∣
s̃

=
ρ̃

c̃

(
c̃

ρ̃
+

∂c̃

∂ρ

∣
∣
∣
s̃

)

.From that follows for the �rst term of the expansion
∂h̃

∂ρ̃

∣
∣
∣
s̃,0

=
1

ρ̃

∂p̃

∂ρ

∣
∣
∣
s̃,0

=
c̃2
0

ρ̃0

,



148 APPENDIX B. THERMODYNAMIC RELATIONSusing the de�nition of the speed of sound in the last step. The next term ofthe Taylor expansion follows from
∂2h̃

∂ρ̃2

∣
∣
∣
s̃,0

=
∂

∂ρ

(
c̃2

ρ̃

) ∣
∣
∣
s̃,0

= − c̃2
0

ρ̃2
0

+ 2
c̃0

ρ̃0

∂c̃

∂ρ̃

∣
∣
∣
s̃,0

=
c̃2
0

ρ̃2
0

(2Γ0 − 3) .The other expressions then follow in a likewise manner by di�erentiating theexpression of the previous term in the Taylor expansion and re
ursively usingthe de�nition of the fundamental derivative of gas dynami
s Γ and its �rstand se
ond derivative, Λ, N . As an illustration the next higher derivative of
h̃ is given below.

∂3h̃

∂ρ̃3

∣
∣
∣
s̃,0

=
∂

∂ρ̃

(
c̃2

ρ̃2
(2Γ − 3)

) ∣
∣
∣
s̃,0

=

= −2
c̃2
0

ρ̃3
0

(2Γ0 − 3) + 2(2Γ0 − 3)
c̃0

ρ̃2
0

∂c̃

∂ρ̃

∣
∣
∣
s̃,0

+ 2
c̃2

ρ̃2

∂Γ

∂ρ̃

∣
∣
∣
s̃,0

=

=
c̃2
0

ρ̃2
0

(
4Γ2

0 − 14Γ0 + 12 + 2Λ0

)
.



Appendix CAsymptoti
 Properties of theAiry Fun
tionThe asymptoti
 representation of the Airy fun
tion Ai(z) with z ∈ C for
|z| ≫ 1 has been given in [1℄ byAi(z) ∼ 1

2
π−1/2z−1/4e−ζ

∞∑

0

(−1)kckζ
−k |arg(z)| < πwith ζ = 2

3
z3/2. The 
oe�
ients ck are de�ned as

c0 = 1, ck =
(2k + 1)(2k + 3) . . . (6k − 1)

216kk!
.Introdu
ing

z = Reiφ, ζ = 2
3
R3/2ei32φ, R > 0the asymptoti
 formula 
an be written asAi(R, φ) ∼ 1

2
π−1/2R−1/4e−iφ/4e−2

3
R3/2(cos(

3
2
φ)+i sin(

3
2
φ))·

·
∞∑

0

(−1)kck(
2
3
R)−

3
2
ke−i3

2
kφ |φ| < π.
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150 APPENDIX C. ASYMPTOTIC PROP. OF THE AIRY FUNCTIONThe sum is 
onverging absolutely a

ording to the 
omparison test for series,
f. e.g. [20℄,
∣
∣
∣
∣
(−1)kck(

2
3
R)−

3
2
ke−i3

2
kφ

∣
∣
∣
∣
≤ |ck|R−

3
2
k

∣
∣
∣
∣
e−i3

2
kφ

∣
∣
∣
∣
< |ck|R−k R ≥ 1with |ck|R−k < |c0|R−k = R−k. The dominated 
onvergen
e follows from the
onvergen
e of the geometri
 series, 
f. [20℄,

∞∑

0

(
1

R

)k

=
1

1 − 1
Rfor R ≥ 1. From that follows

|Ai(z)| ∼ R−1/4

∣
∣
∣
∣
e−iφ/4e−2

3
R3/2(cos(

3
2
φ)+i sin(

3
2
φ))

∣
∣
∣
∣
∼

∼ R−1/4

∣
∣
∣
∣
e−2

3
R3/2 cos(

3
2
φ)

∣
∣
∣
∣
.Hen
e, the Airy fun
tion is unbounded for |z| → ∞ if cos(3

2
φ) < 0 andAi(z) → 0 if cos(3

2
φ) > 0, i.e. arg(z) ∈ [−π/3, π/3].



Appendix DCal
ulation of the EigenvalueSpe
trum for the Trivial StateThe generalized eigenvalue problem, 
f. equation (4.25), for the trivial steadystate (Ū0, P0)
T = 0 is given by
µP10 = sign(K)

∂P10

∂X
− Q lim

Y→∞

∂Ū10

∂X
, (D.1)

0 =
dP10dX

+ Y
∂Ū10

∂X
−
∫ Y

0

∂Ū10

∂X
dȲ − ∂2Ū10

∂Y 2
(D.2)using y = (Ū10, P10)

T in ansatz (4.24). The linearized boundary 
onditionsare
lim

X→±∞
P10 = 0, lim

X→±∞
Ū10 = 0, (D.3)

Ū10(X, Y = 0) =
∂Ū10

∂X
(X, Y = 0) = 0. (D.4)Introdu
ing the Fourier Transform, 
f. e.g. [51℄ or [21℄, of P10(X) and

Ū10(X, Y )

P ∧
10(ω) =

1

2π

∫ ∞

−∞

P10(X)e−iωXdX, (D.5)
Ū∧

10(ω, Y ) =
1

2π

∫ ∞

−∞

Ū10(X, Y )e−iωXdX (D.6)151



152 APPENDIX D. EIGENVALUE SPECTRUM OF TRIVIAL STATEequations (D.1) and (D.2) are transformed to Fourier spa
e
µP ∧

10 = iωsign(K)P ∧
10 − iωQ lim

Y→∞
Ū∧

10, (D.7)
0 = iωP ∧

10 + iωY Ū∧
10 − iω ∫ Y

0

Ū∧
10dȲ − ∂2Ū∧

10

∂Y 2
. (D.8)The pressure in equation (D.8) 
an be eliminated by di�erentiating the equa-tion with respe
t to Y leading toiωY

∂Ū∧
10

∂Y
=

∂3Ū∧
10

∂Y 3
(D.9)whi
h 
an be transformed into Airy's di�erential equation, 
f. [1℄,

Z g(Z, ω) =
∂2

∂Z2
g(Z, ω) (D.10)using the transformations

Z = (iω)1/3Y, g(Z, ω) =
∂

∂Y
Ū∧

10(Y, ω). (D.11)The solution to (D.10) is
g(Z, ω) =

∂

∂Y
Ū∧

10(Y, ω) = a(ω)Ai ((iω)1/3Y
) (D.12)where a(ω) is a yet unde�ned integration �
onstant� depending on ω sin
e ωis entering equation (D.10) as a parameter only. Ai is the �rst Airy fun
tion,
f. [1℄, the other linear independent solution of Airy's di�erential equation, i.e.the se
ond Airy fun
tion Bi, 
f. [1℄, is unbounded for Y → ∞. Furthermore,

(iω)1/3Y ∈ {Z ∈ C : |Arg(Z)| ≤ π/3}, 
f. appendix C. From that follows
lim
Y→∞

Ū∧
10 = lim

Y→∞

∫ Y

0

a(ω)Ai ((iω)1/3Ȳ
) dȲ =

=
a(ω)

(iω)1/3
lim
Y→∞

∫ (iω)1/3Y

0

Ai(Z)dZ =
1

3

a(ω)

(iω)1/3

(D.13)



153exploiting the properties of the Airy fun
tion in the evaluation of the integral,
f. [1℄. Evaluating equation (D.8) for Y = 0 gives a relation for P ∧
10(ω), i.e.

P ∧
10 = a(ω)(iω)−2/3Ai′(0). (D.14)Note Ai′(0) < 0, 
f. [1℄. Inserting (D.13) and (D.14) into (D.7) �nally givesthe relation for the spe
trum of eigenvalues µ(ω)

µ(ω) =
Q

3Ai′(0)
sin(π

6
)|ω|4/3 + iω(sign(K) − Q

3Ai′(0)
cos(π

6
)|ω|1/3

)

. (D.15)In the 
al
ulations
(iω)1/3 =







|ω|1/3eiπ6 ω > 0

|ω|1/3e−iπ
6 ω < 0

(D.16)has been used whi
h follows form the requirement (iω)1/3Y ∈ {Z ∈ C :

|Arg(Z)| ≤ π/3}.
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