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Zusammenfassung

Es werden sowohl instationére als auch stationére transsonische Strémungsvorgan-
ge bei grofsen Reynolds Zahlen in Kanélen betrachtet, die derart schlank sind,
dass es zu einem Versagen der klassischen hierarchischen Grenzschicht-Theorie
kommt. Folglich lassen sich die Eigenschaften der reibungsfreien Kernregion und
der viskositatsbestimmten Grenzschichtsregionen an den Kanalwinden nicht mehr
in aufeinander folgenden Schritten berechnen, sondern miissen vielmehr gleichzeitig
bestimmt werden. Das resultierende lokale Wechselwirkungsproblem fiir laminare
Stromungen idealer und realer Gase (BZT Fluide) wird mithilfe der Methode der
angepassten asymptotischen Entwicklungen formuliert unter der Voraussetzung,
dass der Kanal zudem noch so schlank ist, dass die Stromung in der Kernregion
als eindimensional betrachtet werden kann. Dies fithrt auf ein triple deck Problem,
bei dem die wechselwirkende Kernregion durch ein einziges upper deck reprisen-
tiert wird, welches von den beiden wechselwirkenden Grenzschichten ober- und
unterhalb geteilt wird. Im ersten Anwendungsfall wird der Wechselwirkungsvor-
gang durch einen stationdren schwachen geraden Stofs in einem schlanken Kanal
konstantem Querschnitts hervorgerufen. Der regularisierende Einfluss wechselwir-
kender Grenzschichten wird diskutiert und anhand ausgewahlter Lésungen fiir die
innere Struktur von Verdiinnungsstéfien, sonischen und dopplet-sonischen Stéfen,
welche von der rein reibungsfreien Theorie fiir BZT Fluide vorhergesagt werden,
demonstriert. Im zweiten Anwendungsfall wird der Wechselwirkungsvorgang durch
eine kleine Laval Diise hervorgerufen, die sich in einem schlanken Kanal von an-
sonstem konstanten Querschnitts befinden soll. Das stationdre Stromungsbild in
solchen Diisen unterschiedlicher minimaler Querschnitte aber von ansonsten glei-
cher Gestalt wird in Hinblick auf die eindimensionale reibungsfreie Theorie von
Laval Diisen diskutiert. Eine zeitabhdngige numerische Simulation und eine lineare
Stabilitdtsuntersuchung wenden sich dem Phinomen der selbst-erhaltenden Oszil-
lationen eines Stofses in Gegenwart von Grenzschichtablésung zu, welche in einer
nahezu “gechokten” Stromung im divergierenden Teil solcher Diisen auftreten kann.
Asymptotische Methoden erweisen sich dabei als geeignete Mittel, um die wesentli-
chen Effekte (hier die Wechselwirkung zwischen Stoft und Grenzschicht) ausgehend

von first principles in ein mathematisches Modell zu isolieren.
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Abstract

Unsteady and steady internal transonic flows at high Reynolds numbers through
channels so narrow that the classical boundary layer approach fails are considered.
As a consequence, the properties of the inviscid core and the viscosity dominated
boundary layer regions adjacent to the channel walls can no longer be determined
in subsequent steps but have to be calculated simultaneously in the framework of
a local viscous inviscid interaction strategy. Under the requirement that the chan-
nel is sufficiently narrow so that the flow outside the viscous wall layers becomes
one-dimensional to the leading order the resulting interaction problem for laminar
flows is formulated for both perfect gases and dense gases with mixed nonlinearity
(BZT fluids) by means of matched asymptotic expansions. As an outcome of the
asymptotic analysis the interaction problem is consistently described by a triple
deck problem. The interacting core region hereby is represented by a single upper
deck which is shared by the two interacting boundary layers at the lower and upper
channel walls.

In the first application to be considered the interaction process is triggered by
the formation of a stationary weak normal shock in a slender channel of constant
cross section. The regularizing properties of the mechanism of viscous inviscid
interactions are discussed and representative solutions for the internal structure of
weak rarefaction shocks, sonic and double sonic shocks and split shocks which are
predicted by inviscid theory in case of BZT fluids are presented.

In the second application the interaction process is triggered by a small Laval
nozzle located in a channel of otherwise constant cross section. The steady flow field
through nozzles of different minimum cross sections but of otherwise similar shape
is discussed highlighting the differences and similarities to classical one-dimensional
Laval nozzle theory. Unsteady calculations and a linear stability analysis address
the problem of self-sustained shock wave oscillations in the presence of flow sepa-
ration taking place in a nearly choked flow regime in the diverging duct of a nozzle
of the mentioned kind. Asymptotic methods hereby proof to be a means to isolate
the essential physical effects, here the shock/boundary layer interaction, and to

derive simplified model equations in a consistent manner based on first principles.
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Chapter 1
Introduction

Steady as well as unsteady viscous inviscid interactions taking place in in-
ternal, transonic, single phase and two-dimensional flows at high Reynolds
numbers through narrow channels shall be considered. Near the channel inlet
viscous effects at high Reynolds numbers are limited to thin laminar bound-
ary layers which develop in the vicinity of the channel walls and Prandtl’s
classical boundary layer theory can be applied with good accuracy, in gen-
eral, [32]. However, rapid changes in the streamwise flow field, such as the
formation of a weak normal shock or the presence of a weak local reduction
of the cross section of the channel or both eventually in connection with
boundary-layer separation, cf. figure 1.1, are found to lead to a local break-
down of the classical boundary layer approach, cf. [80] or [37] amongst others.
As a direct consequence, the properties of the inviscid core and the viscosity
dominated boundary layer regions can no longer be determined in subsequent
steps but have to be calculated simultaneously in the small interaction re-
gions depicted by the green regions in figure 1.1. To be specific, the channel
shall be sufficiently slender so that the originally two interaction regions for
the boundary layer in the upper and lower half of the channel condense to
one single interaction region as is sketched in figure 1.1. Under the addi-
tional requirement that the channel is sufficiently narrow so that the flow
outside the viscous wall layers becomes one-dimensional to the leading order

the resulting interaction problem shall be formulated by means of matched
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Figure 1.1: Sketch of the flow configuration under consideration. The viscous
inviscid interaction is triggered by a shock (red line, upper part) or by a
reduction of the flow cross section (lower part). The channel is so slender
that the two interaction regions for the boundary layer in the upper and
lower half of the channel (left hand side) collapse to one single interaction
region (right hand side). Region (1): inviscid core region flow; region (2):
viscosity dominated boundary layers; region (3): viscous inviscid interaction
region.

asymptotic expansions exploiting the largeness of the Reynolds number. The
requirement of one-dimensionality of the flow through the interacting channel
core region simplifies the numerical treatment of the transonic flow regime
in the interaction region significantly while preserving the characteristics as-
sociated with transonic flow at the same time, cf. [41].

The current work, which has been funded by the Austrian Science Fund
in the framework of the WK Differential Fquations, originates from previous
work done in this context by Kluwick, [39], Kluwick & Gittler, [43], and
Kluwick & Braun & Gittler, [41], who studied the steady transonic interacting
flow of a perfect gas in a slender channel. The extension to their work
covers, in particular, unsteady effects which are to be included properly in
the formulation of the interaction problem. In addition, real gas effects are
introduced with the focus on dense gases, i.e. BZT fluids. The derivation
of the appropriate distinguished limit capable to describe the interaction
problem is generalized thereby loosening some restrictions on the geometry
scalings of the flow configuration.

The treatise pursues the following aims.
e The formulation of the problem is presented in chapter 2.

e The regularizing effect of viscous inviscid interaction on the various

shock-forms which are possible, at least theoretically, in dense gases,



i.e. BZT fluids, cf. [35], such as rarefaction shocks, sonic and dou-
ble sonic shocks and split shocks, shall be investigated in chapter 3.
The mechanism of viscous inviscid shock regularization to be discussed
is fundamentally different to the well known shock regularization by
thermo-viscous effects, cf. eg. [18|, [35]. BZT fluids and their proper-

ties are shortly characterized in section 1.1.

e A theoretical approach to study the transonic flow through small noz-
zles at high Reynolds numbers in the framework of interacting bound-
ary layer theory shall be presented in section 4.2 highlighting the differ-
ences and similarities to classical one-dimensional Laval nozzle theory.
The nozzle of small length scale shall be located in a slender channel of
constant cross section, cf. lower part of figure 1.1. A literature survey
reveals that no such theory exists at present which addresses the flow
in general and the conversion of subsonic flow to supersonic flow in
particular in flow devices of small scale for the high Reynolds number
regime. Small scale, here, means channel cross sections and streamwise

extend of the nozzle of about 10mm, say, so well above micro-scale.

e First steps towards a rational approach to study the phenomenon of
self-sustained shock wave oscillations in the presence of flow separation
taking place in the diverging duct of a nozzle of the mentioned kind
shall be given in section 4.3. Such unsteady flow behavior in transonic
diffusers is a feature frequently encountered in engineering practice,
cf. e.g. [54]. However, the theoretical or numerical approaches to deal
with the problem of self-sustained shock oscillations so far center either
on models for inviscid flow and considering the shock boundary layer
interaction in an ad-hoc manner at most, [7], [27], or rely on numerical
simulations of the full problem introducing models, e.g., for turbulence
and wall functions amongst others, [54], [93]. Asymptotic methods
hereby proof to be a means to isolate the essential physical effects, here
the shock/boundary layer interaction, and to derive simplified model

equations in a consistent manner based on first principles.

Related works on viscous inviscid interactions in internal purely super-
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sonic flows can be found in [73] and [40], works on viscous inviscid interactions
in internal purely subsonic flows in e.g. [77] amongst others. Investigations on
viscous compressible flow in slender channels at moderate Reynolds numbers
or in micro channels are to be found, e.g., in [32], [65], [28], [94], experimental
and/or numerical studies on shock boundary layer interaction in transonic
diffusers, e.g., [7], [27], [54], [55], [66], [60], [93].

1.1 Dense Gases - The Fundamental Derivative

The discussion throughout the thesis will be restricted to the single phase
gaseous thermodynamic region, so the thermodynamic state of the fluid is
not supposed to enter the thermodynamic region of liquid-vapor coexistence,
see figure 1.1. p, p and s denote the pressure, the density and the entropy,
respectively. Quantities evaluated at the critical point of thermodynamics
are denoted by the subscript c, tilde indicates dimensional quantities.

For most gaseous fluids the speed of sound, ¢, varies monotonously under
isentropic expansion, i.e. g—§|§ > 0. Still, there seems to exist -at least
theoretically- a limited class of fluids, known as dense gases or BZT (Bethe-
Zel’dovich-Thompson) fluids, for which the variation of the speed of sound
is non monotonous leading to various interesting consequences for the flow
behavior amongst others the possibility of rarefaction shocks, cf. e.g. [85].

An useful quantity characterizing the mentioned behavior of a fluid is the
so-called fundamental derivative

.- 1969 (1.1)
¢ 0p ls

In the following we will refer to fluids for which I' > 1 in the flow region of
interest as regular fluids, fluids for which I' < 1 as dense gases and fluids
for which I' < 0 as BZT fluids, cf. also figure 1.1. Rarefaction shocks,
sonic or double sonic shocks and split shocks are only possible in the BZT
region I' < 0, e.g. [34]. The thermodynamic region of non monotonous flow
behavior is restricted to a small region in the dense vapor phase near the

thermodynamical critical point as shown in figure 1.1.
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L "
1.4 0 > 1 1 phase (gas)

P’|‘Bx

Figure 1.2: Pressure vs. density diagram for a BZT fluid. Region of ' > 1:
regular, classical behavior. Region of 0 < I' < 1: dense gases region with reg-
ular behavior. Region of ' < 0: dense gas region with non regular behavior,
BZT region. The subscript ¢ indicates thermodynamic quantities evaluated
at the critical point of thermodynamics, TCP denotes the thermodynamical
critical point.






Chapter 2

Model

The transonic flow of perfect/dense gases through a slender channel of height
H, is considered, see figure 2.1. The fluid is moving from left to right and
the Reynolds number is supposed to be large leading to the formation of a
noninteracting viscous boundary layer at the channel walls, region 2 in figure
2.1. At the position Ly rapid changes in the flow field shall trigger a process
of viscous inviscid interaction in a region of small lateral extent, region 3.
These rapid changes can be caused by the formation of a weak shock in the
inviscid core region flow eventually leading to flow separation in the boundary
layer, as is shown in the upper half of figure 2.1, or by a surface mounted
obstacle of short length scale, potentially in combination with a shock shown
in the lower half of figure 2.1. The channel shall be sufficiently slender so that
the originally two interaction regions for the boundary layer in the upper and
lower half of the channel condense to one single interaction region as is shown
in figure 2.1. Therefore, a special distinguished limit is sought after, where
the actual channel height is not known a priori but is part of the interaction
problem itself.

The interaction process in region 3 shall be described by means of matched
asymptotic expansions. To this end the basic set of equations in non-dimen-
sional form is provided first, then, subsequent to the introduction of the
equations, the magnitude of the various dimensional groups entering the

formulation of the problem will be discussed.
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Figure 2.1: Schematic sketch of the problem setup. Region 1: inviscid core,
region 2: viscous noninteracting boundary layers (L. Prandtl), region 3: vis-
cous inviscid interaction. The red line symbolizes a shock.

Introduce the non-dimensional quantities, tilde denotes dimensional quan-

tities,
x = (%,7) = Lo x, Hy= LoH,, @Z%OV, §=(7,%)=Los,
= (a,0)=du, t=%1t  p=/op P = poid p,
9:90 07 @:1}3 ha gzép,osa ﬂ:ﬂoﬂa
b = flo [, k= ko k, c=¢pc

Here X denotes the position vector with the horizontal and vertical compo-
nents (,7), V the nabla operator acting on the spacial coordinates only, s
the position vector describing the contour of a surface mounted hump with
the horizontal and vertical coordinates (Z, $3), @ the velocity vector with the
horizontal and vertical components (@, ), ¢ the time, 5 the density,  the
pressure, 6 the temperature, i the specific enthalpy, s the specific entropy,
¢p the specific heat capacity at constant pressure, ji the dynamic viscosity,
iy the bulk viscosity, k the thermal conductivity and ¢ the speed of sound.
The subscript 0 indicates a reference state. As an adequate reference state
for the problem the flow quantities evaluated in the undisturbed core region
flow immediately upstreams of the interaction region at position L, have

been chosen. Then the Navier Stokes equations for 2D compressible flows



neglecting gravitational forces can be written in the following form

dp

E -+ V ( ) 0 (2.1&)

,0(—+ (u-V) ) —Vp+—V T, (2.1b)
Dh Dp

Dt Dt~ Re Vu- PrReEc Ve (2.1¢)

with p(x,t), p(x,t), h(x,t) € R, u(x,t),q(x,t) € R? and 7 = (r;) €
M(2,R). q denotes the vector of the heat flux and 7 the viscous stress tensor.

The non-dimensional parameters are the Reynolds number, Re := WZL—%EO, the
Eckert number, Fc := —=, , = ko
¢p,0to [0Cp,0
The centerline of the nozzle y = % is a line of symmetry; consequently

in the following the boundary conditions are specified for one wall only. The

boundary conditions at the (adiabatic) wall are

ds(z, t)

5 0 A= 0 ax = s(z,t) = (z, so(x, 1), 2 >0, (2.2)

u =
with ng(x,t) the surface normal to the walls, and at the inflow x = 0
=(1,0)", p=1,p=po, =1, h=hy @x=(0,0<y< Hy)", (2.3)

with the constraint on the geometry of the nozzle entry ensuring compatibil-
ity with the inflow conditions
882
—(x=0,t)=0 vt > 0. 2.4
2 =0,1) (2.4
This constraint is trivially satisfied in the channel part in figure 2.1 outside
the interaction region, where sy = 0. In case of unsteady flow suitable initial
conditions for ¢ = 0 have to be provided.
Finally equations (2.1a) to (2.1c) have to be closed by the following con-

stitutive relations:
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e Newtonian fluid
T=uw(V-u)I+p(Vut+Vu' —2(V-u)I), (2.5)
e Fourier’s law
q=—k Vb, (2.6)
e and a caloric and a thermal EOS for single component gases
h=h(p,s), p=pp,0). (2.7)
In general the material parameters u, 1, and k themselves are dependent on

the thermodynamic state, i.e. given by the pair (p, ).

Alternatively, equation (2.1c) can be written in the following form

V-q (2.8)

making use of Gibbs’ fundamental equation, [47], [75],

Ds Dh  1Dp
0— =Fc | — — —— 2.
‘ (Dt th) (2:9)

relating the change of the specific thermodynamic entropy s to the dissipative
agencies acting in the flow, i.e. the dissipation due to viscosity and the
dissipation due to thermal conductivity in the fluid. Furthermore, it will
proof useful to introduce changes of the temperature # and pressure p in

the flow field into the energy equation (2.1¢) by means of the expression

Dh— L ¢ Db %péoﬁg D2 see (B.19). The energy equation in new form
then reads
0 ~~ Dp FEc 1
— = FEcfpbp0— + —T1:V —V. 2.10
pepy = B T R T VO R Ve (210

where 3 = % is the coefficient of thermal expansion, see (B.3).
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To sum up, the non-dimensional groups entering the governing equations

are
GotioL
Re := 20000, (2.11a)
Ho
My = =2, (2.11D)
Co
a2
Ec:= —% (2.11c)
ép,OQO’
ki
Pri=— (2.11d)
HoCp,0
- ~19p
Bobo = “%ga—g " (2.11e)

the Reynolds number, the Mach number, the Eckert number, the Prandtl
number, and the coefficient of thermal expansion at reference state times the
reference temperature, respectively.

In the following, it will be assumed that Re > 1 and My ~ 1. The first
condition contributes to the formation of at least two mathematically differ-
ent regions, regions 1 & 2 in figure 2.1, a region of inviscid flow and a viscous
boundary layer at the walls. The equations for this case of noninteracting
flow are collected in the section 2.1 as it presents the starting point for the
analysis of the viscous inviscid interaction process taking place in region 3
in figure 2.1. The mathematical description of the interacting flow regime is
presented in section 2.2. Special emphasis will be given to the flow properties
of perfect and dense gases and their implications on the boundary layer flow.

The second condition, assumption of transonic flow M, =~ 1, allows
to study weak shocks leading to a transition from supersonic to subsonic
flow conditions in the core region of the channel in the framework of an
asymptotic theory and to study their interaction with the boundary layer
flow at the walls. Chapter 3 will discuss the regularizing properties of the
shock/boundary layer interaction.

The magnitude of the Fc¢ number depends on the fluid under consid-
eration. For a perfect gas with constant specific heats the relation Fc =

(y — 1)MZ holds. Since the ratio of the specific heats ~y is of order one
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regular fluid | dense gas
Re > 1 > 1
M, ~1 ~1
Ec O(1) <1
Pr O(1) O(1)
Bobo O(1) O1)

Table 2.1: Assumptions on the order of magnitude for various dimensionless
groups.

Ec = O(Mg), see |36]. Conversely the situation of dense gases for which the
following estimate Ec = O(MZ§) has been given by Kluwick in [36]. Since in
case of dense gases the ratio J of the specific gas constant Rg and the specific
heat at constant volume ¢, is small due to the relative large values of the
specific heats in compounds of higher complexity, cf. [36] or [11] for instance,
0<d= ?—j < 1, this suggests Ec — 0 in the limit of § — 0.

Interestingly enough, in both cases the Prandtl number is of order one,
Pr = O(1). Whereas this is a well-known and validated fact for a perfect
gas it is, in the case of dense gases, only founded on empirical correlations
since measurements in the dense gas regime are extremely difficult, [36].
These have been supported by numerical calculations performed by Zieher
in [97] who used used the method of Chung, Ajlan, Lee and Starling, [9], to
calculate the corresponding transport quantities for PP11, Ci4F54. However,
the approximations implicitly used in the method, as has been noted in [36],
have to be taken with caution when it comes to the application to dense
gases.

Furthermore, it will be required that Gyf, = O(1) for both cases in the
thermodynamic region of interest. Consequently, the very close vicinity of
the thermodynamical critical point, where (3 exhibits unbounded growth, has
to be excluded from the discussion, see [39].

Table 2.1 summarizes the assumptions on the orders of magnitude of the
various dimensionless numbers for both regular, that is perfect gas like, fluids

and dense gases.
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2.1 Noninteracting Flow Regime

2.1.1 Inviscid Flow in the Core Region of a Channel

It has already been pointed out that the order of magnitude of the actual
channel height is not known a priori but is an outcome of the formulation
of the interaction problem to be discussed in section 2.2. Therefore, nothing
more can be said at present about the magnitude of the vertical coordinate y
in the core region of the channel, i.e. region 1 in figure 2.1, than that it will be
small, i.e. y = O(Re™?) with some ¢ > 0, whereas the horizontal coordinate
x in the noninteracting part of the channel flow, region 1 & 2, clearly is O(1).
It will be assumed throughout this section that the flow in the core region is
inviscid in the limit Re — oo even for y = O(Re~?). However, this so far is
only an assumption which has to be verified in the end when the value of ¢ in
the scaling of y has been established. This verification will be done in 2.2.3
where the consistency of the proposed distinguished limit for the interaction
region with the assumed noninteracting oncoming core region flow will be
shown.

In the limit Re — oo with Ec = O(1) and Pr = O(1) in case of a perfect
gas or Fc — 0 and Pr = O(1) in case of dense gases, see discussion of
equations (2.11) or table 2.1, the steady versions of the governing equations
(2.1a), (2.1b), (2.8) read

Ds

V-(pu) =0, p(u-V)u=—Vp, i = 0. (2.12)

Equations (2.12) are the steady Euler equations which no longer satisfy all of
the boundary conditions (2.2) since the terms with the highest derivatives,
that is the viscous terms and the terms of thermal conductivity, have been
lost in the non dissipative limit (singularly perturbed problem). How the
full set of boundary conditions can be satisfied is part of the boundary layer
theory, summarized in 2.1.2, at this point - inviscid flow in the core region

of the channel /nozzle - only the condition

u-ng=0 Qx=s(z)=(z,8)", >0 (2.13)
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is needed, again s, = 0 for the channel part under consideration. As a
consequence of Croccos’ theorem, [86], [90], stating that an isentropic, steady,

isoenergetic and two-dimensional flow field is irrotational and vice versa,
V xu=0. (2.14)

Finally, equation (2.10) suggests that changes in the temperature are of
O(Ec) in the limit Re — oo

A =0—-1=0(Ec), Re — oo, (2.15)

and consequently are small for dense gases, Fc — 0, representing the fact
that for fluids with large specific heats, 6 — 0, isentropic changes of the
thermodynamic state only lead to small changes of the temperature, [39].
Then equation (2.1¢) can be written in the inviscid limit for both perfect

and dense gases as

Dh 1 Dp

. 2.16
Dt p Dt ( )

taking into account V- q = O(Ec) as suggested by using the relation (2.15)
in equation (2.6).

The solution of the problem of inviscid flow through a channel of constant
height is the trivial solution of plain parallel constant flow given in definition
2.1.1.

Definition 2.1.1. The noninteracting flow in in the core region of the chan-

nel in figure 2.1 is a plane parallel constant flow.
u=1l, v=0,c=1, p=1, p=py, 0=1. (2.17)

The solution for the unperturbed flow in the core region of a channel, re-
gion 1 in figure 2.1, upstream of the interaction region, region 3, is completely
known at this point and one could immediately proceed to the formulation
of the noninteracting boundary layers at the channel walls, region 2 in figure

2.1. Never the less, in the following part of this section the equations for a
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slowly varying nozzle, s, < 1, shall be derived. By a slowly varying nozzle it
is meant that the flow shall be considered as one-dimensional to the leading
order, i.e. variations from plain parallel constant channel flow shall be small.
The resulting set of equations will come in useful later on when the interac-
tion problem in region 3 will be formulated, since the proposed distinguished
limit for the representation of the former inviscid core region flow in the in-
teraction region, i.e. the upper deck, cf. section 2.2.2, is guided by the idea
of one-dimensional inviscid transonic nozzle flow, with the difference that in
case of an interacting flow the effect of a varying throat area will generically
be generated by a displacement effect induced by the interacting boundary
layers at the walls. Therefore, most of the equations obtained will be used
in slightly modified form in the course of the formulation of the interaction
problem in section 2.2.2 highlighting the differences between noninteracting
and interacting flow.

Moreover, in section 2.2.3 the compatibility of the proposed distinguished
limits for the interaction problem with region 1 flow types other than plane
channel flow will be addressed. There the flow through a slowly varying
nozzle will be analyzed as it is the next obvious generalization of simple flow
through a channel of constant height.

Finally, the equations for one-dimensional transonic nozzle flow will be
used as an inviscid counterpart throughout the discussion of the results of

shock /boundary layer interaction presented in chapter 3.

Remark 2.1.1. An alternative derivation of the equations can be found in [35]

using a slightly different definition of the reference state.

One-Dimensional Inviscid Transonic Flow through a Nozzle

The configuration of a nozzle with slowly varying throat area per unit depth,
A = LA, sketched in figure 2.2, is considered. Deviations from plane parallel
constant flow in a channel of height H, definition 2.1.1, are supposed to be

small

u=14+Au, v=A2Av, c=14+Ac, p=1+2QAp, p=po+ Ap (2.18)
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u N

so(x)

Figure 2.2: Sketch of geometry of a slowly varying nozzle.

with |Aul, |Av|, |Ac|, |Ap|, |Ap| < 1, and the flow shall be transonic

justifying the following ansatz for the Mach number at reference state
M? =1—- KAK, (2.19)

with AKy < 1.

Remark 2.1.2. K is a transonic similarity parameter, [62], in anticipation of

the results of the following analysis.

Inserting into the first two equations of (2.12) and equation (2.16) sug-

gests
0
o (Au+ Ap + ApAu) = O(Av), (2.20)
a% (Au+ Ap) = O(Aulv + Au? + ApAp), (2.21)
%Ap = O(Av), (2.22)
8% (Ah — Ap) = O(Au(Ah + Ap) + Av(Ah + Ap)), (2.23)

and thus, requiring the flow to become one-dimensional to the leading order,
implying Av < Aw, and additionally considering the inflow condition (2.3),

leads to the following assumptions on the order of magnitudes of the flow
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quantities
Ap ~ —Au — ApAu, (2.24)
Au ~ —Ap, (2.25)
Ah ~ Ap. (2.26)

Remark 2.1.3. In equations (2.20) and (2.24) the higher order term ApAu

has been kept for later use.

At this point the question how small Av has to be cannot be answered.

To this end equations (2.12) are rewritten as

V-u+u~%Vp: : (2.27a)
A1
(u-V)u= —ﬁg;Vp (2.27Db)
using the relation Vp = g—ﬁ\s Vp with g_i‘s = A‘}—Qg, see (B.2). Projecting
(2.27b) onto streamlines leads to
? 1
u-((u-V)u) :(u®u):Vu:—ﬁg u-;Vp, (2.28)

and inserting (2.27a) finally leads to the fundamental equation of gas dy-

namics, (62,

2
(u®u—j\c/j—021) . Vu =0, (2.29)

where u-(u - V) u = w;u;0;ju; = (u® u) : Vu has been used. Again, inserting

the ansatz for the flow quantities (2.18) into (2.29) suggests

(u2 — MLgCQ) %Au = %Av + O(AvAu + AvAK + Av?). (2.30)

Provided ansatz (2.18) leads to a significant degeneration indeed the term on
the left hand side of (2.30) which is of O ((u2 — 2% Au) has to balance
0
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with the right hand side which is of O (Av), thus providing the estimate
(u* — Migc2) Au ~ Av (2.31)

on Av. However, the magnitude of Av also depends on the variation of the
throat area of the nozzle A(x) imposed by the boundary condition (2.13), so
(2.31) is in fact a condition how weakly the throat area of the nozzle is allowed
to be varied along the center line of the nozzle to justify the assumption of
an one-dimensional flow in the core region of the nozzle. The magnitude of
(u? — M%?CQ), on the other hand, depends on how close the inflow conditions
are to sonic flow conditions and on the thermodynamic properties of the fluid.
Finally, this will lead to an estimate for AKj in equation (2.19) which has

not been addressed so far in the discussion.

Magnitude of variation of throat area AA. As the deviations of the
flow quantities are supposed to be small the variation of the throat area shall

be small as well, i.e.

S

A(z) = & = Hy + AA(x) (2.32)

[l

0

with |[AA| < 1. Inserting (2.18) and (2.32) into the boundary conditions
(2.13) gives

d AA d AA
(2.33)

: . i T
using the relation for the non-normalized surface normal ng = (%%, 1) L

ﬁgc
and dense gases. In order to give an order of magnitude estimate for the

Magnitude of u? — 2 - Condition for transonic flow of perfect

expression u? — #cz it is necessary to consider the isentropic variation of the
0

speed of sound ¢ under the variation of the thermodynamic state, i.e. under

's(z) = (2, 82(x))T = (2, PENT ot (2) = (1, - 2LNT ny(a) = (X2, 1)7
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the variation of the density p. To this end the following expression for ¢? is

used as a starting point

Op

oh
2= M2
dp 0

2 — M2 -
¢ 0 s p@p

(2.34)

s

The last step in equation (2.34) is a direct consequence of Gibbs’ fundamental

equation (2.9). Now the expression ‘3—’; is Taylor expanded in terms of Ap
oh oh O*h 10%h
—(1+ Ap,s) :—‘ +——| Ap+=——| Ap*+
dp s Oplso  0p?ls0 20p3 150 (2.35)
10%h '
——— AP+ 0O (Ap
* 6 dp*ls,0 PO (87,

where the subscript 0 has the meaning as before, i.e. evaluated at reference
state.

The partial derivatives of the enthalpy A have to satisfy the following relations

oh 1
a_p .0 = ﬁg’ (2363)
0%h 1
S, 0
Oh 1
84h 3 2
pre by (8T5 — 4815 + 12TgAg + 9419 — 24Ag + 2Ny — 60) , (2.36d)
P~ 1s0 0

with A and N being defined as

A= g—z , (2.37a)
2
r

A detailed derivation of the expressions (2.36) can be found in B.2.
With the relations (2.35) and (2.36) the expression (2.34) for the speed of
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sound can be written as

oh
c(1+Ap,s0)® = Mg (1+ Ap) 8_/)(1 +4Ap,s)|

=1+2(Tg—1)Ap+ (2T — 5T + Ag + 3) Ap*+ (2.38)

1
+3 (4T3 — 18T5 + 6L'gAg + 26Tg — 6Ag + Ny — 4) Ap® + O(ApY).

Collecting the previous results, the following expansion for u? — M%?CQ is ob-

tained
1
u® — WGZ = —KAK, — 2TyAp — (2T5 — 500 + Ag) Ap*—
0
1
— 5 (4T3 — 18T + 6T9 Ao + 26T — 640 + Vo) Ap’+ (9 5
+2(Au+ Ap) + Au? — 3Ap* + 4ApP+
+ O(Ap* + ApAKy),
where
u? = (1+ Au)® = 14 2Au+ Au?, (2.40)
1 1
_ =1+ KAK, + O(AKY) (2.41)

M2~ 1- KAK,

has been used. Equation (2.39) can be reduced even further using the sub-

sequent relations

Ap = —Au — ApAu + O(Av), (2.42)
Au? = Ap® + 20pAu + O(ApAv), (2.43)
Ap® = Ap (—Au — ApAu) + O(ApAu) (2.44)

which are a direct consequence of equation (2.24). With that in mind one
infers that the expression 2 (Ap + Au) + Au? —3Ap* +4Ap3 in (2.39) results
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in terms of higher order as shown by the subsequent calculations

2 (Ap + Au) + Au® — 3Ap* + 4Ap* = |eq. (2.43)] =

2 (Ap + Au) — 2007 + 2Ap% Au + 4Ap* + O(ApAv) = |eq. (2.44)] =
2(Ap + Au+ ApAu) + 4 (Ap*Au+ Ap®) + O(ApAv) = eq. (2.42)] =
40p (ApAu+ Ap®) + O(Av) = leq. (2.44)] =

— 4AuAp® + O(Av) = O(Aulp® + Av),

so that equation (2.39) finally can be simplified to

1
2
‘T —Mg

@ = —KAKy — 2T0Ap — (2 — 5L + Ag) Ap°—
1
— 5 (4T — 18T + 6ToAg + 26T — 6Ag + No) Ap'+ (2.45)
+ O(Ap* + Ap* Au + Av + ApAKy).
The first conclusion that can be drawn out of (2.45) is

AKy = O(ToAp). (2.46)

Referring to figure 2.1.1 three different cases concerning the orders of mag-
nitude for the variation of I'y, Ay and Ny under the variation of the reference

state in the limit My — 1 have to be distinguished.

case 1 (n=2): To=0(1), Ao =0(1), No=0(1), (2.47a)
case 2 (n=3): To=0(Ap), NAo=0(1), No=0(1), (2.47b)
case 3 (n=4): Ty =0(Ap?), Ao=0O(Ap), No=0O(1), (2.47c)

which finally gives

case 1 (n=2): AKy= O(Ap), (2.48a)
7), (2.48b)
case 3 (n—4): AKy,= O(Ap?), (2.48¢)
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Figure 2.3: Asymptotic regions in the pressure vs. density diagram based on
the magnitude of the fundamental derivative I' and its derivatives for a BZT
fluid. The subscript ¢ indicates thermodynamic quantities evaluated at the
critical point of thermodynamics, TCP denotes the thermodynamical critical
point. See also figure 1.1 for a larger part of the p vs. p diagram.

or in short form
AKy= O(Ap™ ). (2.49)

Magnitude of Av. The magnitude of Av, as mentioned before, has to
be such that the left-hand side and the right-hand side in equation (2.30)
balance. Using equations (2.24) and (2.49) this implies

Av = O(Ap") = O(Au™). (2.50)

Formal asymptotic expansions. The order of magnitude relations de-
rived so far suggest the following ansatz for formal asymptotic representations

of the various quantities

u=1  +au @)+ -+ " V@) rqu (@y) +O(GT), (251)
v= vt (z,y) +O(), (252)
c=1  tad’ @)+ -+ " @)+ (z,y) +O(ET), (2.53)
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p=1  Fap’ @)+ -+ (@) e (z,y) +O
p=po  Feap’ @)+ e (@) e
h=hy +ehiD(@)+ -+ h" @)+l (z,y) +O(ET,

A=Ho +er Al (@) +O(ET),

2.54
2.55
2.56
2.57

~—~~
~— N N

and for the condition of transonic flow, see (2.19),
M =1+€7'K, (2.58)

introducing a small perturbation parameter 0 < ¢; < 1 as a measure for the
expected density changes in the flow. The index ¢ in the expansions shall
emphasize that these are expansions for the solution of the (i)nviscid Euler
equations.

As has been defined by (2.47) n € 2, 3,4 depending on the chosen fluid and

the chosen reference state

case 1 (n=2): Ih=T, Ag = A, No=N, (2.59a)
case 2 (n=3): [y =6l Ag = A, No=N, (2.59Db)
case 3 (n—=4): [y=erl, Ao = e\, No=N. (2.59¢)

Remark 2.1.4. The dependence of the individual coefficients in the asymp-

totic expansions on the arguments (z,y) is a result of the following analysis.

Inserting the expansions (2.57) to (2.57) into the continuity equation and
the momentum equation in x-direction of the Euler equations (2.12) and into

(2.16) gives to the leading order

(@) + @) =0 (2.60)
2 () +20(w) =0, @2.61)
O (1)~ (@) =0, (2.62)
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whereas the momentum equation in y-direction results in

(k) _
_61, =0 k=1,... 1 2.63
ay KA ? 7n ) ( )

showing that the flow field is one-dimensional for the first n—1 orders. Taking
into account the inflow conditions (2.3), these equations can be integrated

with respect to = leading to

ul’(z) = —pi" () = —p{"(2) = =" (2). (2.64)

7

The condition of an irrotational flow field (2.14) gives

9

_3yui =0 k=1,...,n—1, (2.65)
O w) O (k-nt1)

T B 2 —0 k> n. 2.66
0yul aIL‘,UZ >n ( )

And, finally inserting into the fundamental equation of gas dynamics (2.30)
taking into account (2.45) and (2.64) yields

SN (@) o (z,y)

—J ( D(): K, T, A, N) = : 2.67
[n] \ Di (z) O By ( )
. / - dJ[n](p) . . . (1) .
with Jj, (p) = 4 Jm 1s a polynomial of order n in p; 7, see the following

definition 2.1.2, and has the physical meaning of a mass flux density for which

a heuristic argument will be given at the end of this section, see remark 2.1.6.

Definition 2.1.2. J,; (p ; K,I', A, N) is the leading order term of the pertur-
bation of the mass flux density for an one-dimensional, isentropic, inviscid

and transonic flow through a nozzle.

,A,N)I —Kp—f‘p2—%[_\p3 n=3 (268)
—Kp—f’pQ—%f\p?’—%Npﬂ‘ n =4.

=

JIin) (p; K,T,A, ) has the following properties.
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e The local Mach number M =

o

follows from

1dJ;,
M -1 :E?_la dl[)}

(2.69)

o The local value of the fundamental derivative and its first derivative is

given by

S X Iy X [
Lo dp? Voo dpd

(2.70)

In order to obtain equation (2.69) the expression u?— #02 is manipulated
0

in the following way

(2.71)
c
- (M -1 .
e ( ) (u+ Moc)
and consequently
M, 1 1
M-1=="2 : (u2 - —202) . (2.72)
¢ U+ gpc M;

Taking into account (2.45) for the treatment of expression u?— Migca insertion
of the asymptotic expansion (2.51) and collecting the terms of highest order
yields the sought after relation for the local Mach number M.

The importance of equation (2.67) stems from the fact that it connects
the variation of the leading order terms of p, p, u and h along the centerline
of the nozzle with the small vertical velocity component v which itself is
generated by a small variation of the throat area of the nozzle A(x). To this
end, (2.67) is int(e)grated with respect to y considering the fact that the term
a1 vy

35V (€.y) = —5—(x) is a function of x only, as can be seen by the inspection
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of the left-hand side of (2.67),

€]

v; v 9y 1) y
W= [ al = [Ty =T [y
0

s 8y B (2.73)
_ Hy\ d Wy . -
— (y 5 ) de[n] <pl- (x); K,T, A, N),

M)
integration limit. Evaluating (2.73) at the wall, y, = ? A" () + O(et1),

(1)
and comparing with the boundary condition (2.33), v\ (z,y,) = —%d’;‘; ,

Here the symmetry condition v (x, Yy = %) = 0 has been exploited in the

leads after some straightforward manipulations to

d P, A @)
— M -KFAN) GO 5 74
dl‘ (J[n] ( 7 (x)v y Loy 4y + HO 5 ( 7 )
which can be integrated to
N AW
Jin) ( (@) KT A, N) + A _ ot (2.75)
0

Remark 2.1.5. The fundamental equation of gas dynamics (2.67) can be in-
terpreted as a solvability condition which has to be imposed in order to avoid
secular terms entering the problem at higher order in the asymptotic expan-
sions of equations (2.12) and (2.16). This will be shown in more detail in

section 2.2.2.

Remark 2.1.6. In definition 2.1.2 Jj,; has been described as the leading order
term of the perturbation of a mass flux density. First of all it reflects the
interpretation of the fundamental equation of gas dynamics (2.29) as a ver-
sion of the continuity equation, [62]. A heuristic explanation is given below.
Consider the behavior of the mass flux density pu close to sonic flow condi-
tions, u = ¢* with ¢* as the critical speed of sound, sketched in figure 2.4.

Writing the first terms of a Taylor expansion for the mass flux density,

d 1d°
puzl—l—ﬂ (Au) + ra

du lo 2 duZ lo (Au)* + O(Au)?), (2.76)
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and inserting the expressions for the slope and the curvature of the function

of the mass flux close to u = ¢*, see figure 2.4,

1dpu ud?pu
———| =1-M, — = —2T VAN 2.
o du lo 0 LA | o + O(TAu), (2.77)
leads to
pu=1+ (1 — M)Au —ToAu® + O(Au?). (2.78)

On the other hand the continuity equation for one-dimensional flow has to
hold,

H, AA
pu—1= IO —l=—p O(AA?). (2.79)

Comparing the two expressions for pu with Au ~ —Ap suggests

AA
pu— 1~ “H " (Mg —1)Ap — ToAp?, (2.80)

which yields the first two terms of Jj, after having inserted the asymptotic
expansions (2.51) and (2.58). To be more general, this results in the formal

asymptotic representation

pu~ 14 €]y (pgl)(:p); K,T A, N) (2.81)

of the mass flux density. From the continuity equation for one-dimensional

flow then follows

puA = const ~ {1 + € T (pl(-l)(a:);K,f,]\, N)} (HO + 5?A§1)> =

- AW (2.82)
= Ho {1 e (J[n] (" (@): K, T8 N ) + 70) } .

Hence equation (2.75) expresses the continuity of the mass flux.
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Figure 2.4: One-dimensional mass flux density vs. velocity (qualitatively).

2.1.2 Boundary Layer

The Euler equations (2.12) obtained in the inviscid limit Re — oo can-
not satisfy the no-slip condition (2.2) prescribed at the channel walls as the
limiting procedure mathematically results in a degeneration of the original
problem described by the Navier Stokes equations (2.1). The occurrence of
this singular perturbed problem is indicated by loosing the terms of highest
order derivatives, that is the dissipative terms, in the reduced problem (2.12),
cf. [22], [30], [74], [91].

This shortage is overcome by introducing a second asymptotically thin re-
gion close to the walls - a boundary layer -, indicated by region 2 in figure 2.1,
where the equations have to be rescaled keeping some of the dissipative terms
in the resulting distinguished limit. The method of matched asymptotic ex-
pansions finally leads to an uniformly valid asymptotic representation of the
solution for the two different regions for Re — oo, cf. [22], [30], [74], [91].

The classical concept of noninteracting boundary layer theory initiated
by L. Prandtl in 1904 can be found in many textbooks, see e.g. [26], [33]
[72], [74], [78], [91], and therefore the results of the asymptotic analysis are
introduced whilst skipping most of their derivations. A few short comments
on the special features resulting from the usage of fluids with equation of
states of higher complexity, i.e. dense gases, and their impact on the solution

of the compressible boundary layer equations will be given. Only laminar,
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steady boundary layers shall be considered.

Introduce a small perturbation parameter €5 defined as
€y = Re 3. (2.83)

The asymptotic expansions of the various flow quantities in the outer,
core region of a channel of constant height, region 1 in figure 2.1, to which

the following length scale applies

r=mx = 0(1), (2.84)
are given by
u=1-+ O(Eg), v = (9(52)’ (285)
p=po+ Ole2), p=1+0(e),
0 =14 O(ey), h = ho + O(e2),

cf. (2.17).
For the description of the boundary layer flow the length scales

=Xo=0(1), y=eYs=0(es =Re 2). (2.86)

are introduced. The leading order terms of the expansions for the various

quantities then are given by

u=U"(Xs,Ys) + O(e2), v=eV " (X, Ys)+O(e), (2.87)
p = PV (Xy) + O(ey), p =RV (X,,Yy) + Oley),
0 =0V (Xy,Ys) 4+ Oley).

For the enthalpy h, using some appropriate equation of state h = h(f, p), it
is found that

h=H"OP, PO) 1+ O(e). (2.88)
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Furthermore, it will be assumed that the expressions for the material param-

eters satisfy

p=ps" (0, ")+ O(es), = u§,2<@<°’ P +0(e),  (289)
k=kD 0, P) + 0(er), =00, P”) + Oe), (2.90)
cp = (O PV + O(er). (2.91)

Then the compressible, steady, laminar boundary layer equations are given
by

oRY U ORYV,”

— 2.92
0X, Y, 0, (2.92)
(0) (0) (0) (0)
(0) (0) 8U2 (0) 8U2 dP2 8 (0) 8U2
_— —_— = — 2.
1 i 30 8650) _
PrEcdY, \ "% 0Y,
(0) (0) 0\ 2 (2.94)
_ o (008" py@2 ) podh o (90
2 20X, 2 0Y, 2 dX, 2 oY, |

or instead of (2.94)

(0) (0) 1 0
RO <U§° 1998 1099k ) 0 (k(0)8@2 )+

0X, Y5 Pr oY,

dP J_—_ 9 (2.95)
Eed 5.0.30 (0) (0) 2
R R e e
The boundary conditions for an adiabatic wall of the channel are
900
Ul = v =, S =0 OXe= (X0, ¥, =0)". (2.96)
2

Matching with the outer flow leads to

lim U (2,7,) =1, lim 0 (z,v3) =1, (2.97)

YQ*)OO Y2 — 00
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where 1 = X5 = x, and
PO@) = . (2.98)

The boundary layer equations in compressible form, equations (2.92) to
(2.98), are coupled. In order to complete the description relations governing
the dependence of the material parameters p, 1, k, 5 and ¢, on the thermo-
dynamic state have to be provided, see [72] and [78] for the case of perfect
gases, where Ec = O(M2). In case of dense gases, where Fc = O(MZ§) and
0 < § < 1, see discussion of equation (2.11), the compressible boundary layer
equations can be simplified for plane parallel outer flow, definition 2.1.1, as
has been noted by Kluwick in [36], [39].

Compressible Boundary Layer Flow of Dense Gases

As has been mentioned in the discussion of equation (2.11) the estimate
FEc = O(M25) for the Eckert number holds in case of dense gases with
relatively large heat capacities, 0 < 6 < 1. As a result, changes of the
temperature across the boundary layer are small as suggested by equation
(2.94),

0 EIR
Y <k;0> 8532 ) = O(Ec). (2.99)

Consequently, the temperature field in the boundary layer at an adiabatic

wall can be approximated as
0 (z,Y3) = 1+ O(Ec), (2.100)

considering the matching condition (2.97). Since the outer flow is a plane
()

parallel constant channel flow (see definition 2.1.1) implying dg—; = 0, the

density in the whole boundary layer is constant to leading order as well. With

that in mind the equations for compressible boundary layer flow simplify to
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the boundary layer equations in incompressible form

ouy ov”

=0 2.101
0X, Y, ' ( )
aU(O) aU(O) a2U(0)
PR B e 2.102
2 8X2 + 2 ava ayv22 ) ( )
for which a solution in classical self-similar form
) _ o (0) 1 , Y
Uy’ = f'(n), Vy (mf'm—rfm), n= (2.103)

PNz NG

exists. The function f(n) has to satisfy the well-known Blasius’ equation
" 1 /
f +§ff =0, (2.104)
with the boundary conditions

F(0) = f'(0) =0, lim f(n) = 1. (2.105)

n—00

Remark 2.1.7. Numerical results for boundary layers in a dense gas regime
forming on a flat plate with zero pressure gradient performed by Zieher in [97]
showed a good agreement between the velocity profile predicted by the Bla-
sius solution and the profiles calculated using the full incompressible formu-

lation of the boundary layer equations, [97], [39].

2.2 Interacting Flow Regime

The flow in the interaction region, i.e. region 3 of the channel, cf. figure 2.1,
can be consistently described by means of the triple deck theory formulated
first by Stewartson, Messiter and Neiland, cf. [79], [57], [59]. The triple deck
structure of the interaction region is sketched in figure 2.5. The oncoming
boundary layer subdivides into a thin viscous lower deck where viscosity plays
a significant role and a passive main deck. The role of the main deck is to

transfer the displacement effect of the lower deck to the upper deck and to
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transfer the resulting pressure response of the upper deck back to the lower
deck.

According to the premises made for the sought after distinguished limit
for the description of the interacting flow regime in the introductory remarks
to chapter 2 the channel shall be sufficiently slender, so that the upper deck is
represented by one single region interacting with the lower/main decks at the
upper and lower channel walls, as is shown in figure 2.5. Furthermore, it will
be imposed that the flow in the upper deck region shall be one-dimensional to
the leading order at least. For a discussion of the significance of the desired
limit in a broader physical context refer to the introduction.

The desired properties of the distinguished limit can only be obtained
by a suitable choice of the order of magnitude of the channel height, which
has been left undefined up to now. In the formulation of the oncoming
noninteracting flow in the core region it therefore had to be assumed that
the flow can be described by the inviscid Euler equations to the leading
orders even when a properly scaled vertical coordinate has been introduced,
cf. section 2.1.1. This assumption will be verified in section 2.2.3 after the
properties of the interaction region have been established. It will be shown
that the noninteracting flow through a channel of constant height is -not
very surprisingly- a meaningful noninteracting oncoming flow regime indeed
for the found distinguished limit. Furthermore, the question, whether more
general flow types, i.e. one-dimensional nozzle flow, are compatible with the

established distinguished limit, will be addressed there too.

2.2.1 Orders of Magnitude - Inspection Analysis

Under the assumption that the region of viscous inviscid interaction, region 3
in figure 2.1 or in figure 2.5, exhibits a triple deck structure relations for the
relative orders of magnitude for the various flow quantities in the individual
decks shall be derived mainly by inspecting the governing equations and
balancing the terms which from a physical point of view have to be kept in

the distinguished limits for Re — oo.
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HBu

—> 1 upper deck 3u 1 .

[ ] 2 main deck 3m 2 ,g’v%]

— lower deck 3l V

Al’g

Ly=1 >‘

Figure 2.5: Triple deck structure of interaction region. (3u) upper deck, (3m)
main deck, (31) lower deck.

Lower Deck

e Thin lower deck

oUL” (1,0)

o Re28y ~ A(u)s. (2.106)

(w)ar ~

Here the no-slip condition Uz(o) (X5,0) = 0 and the boundary layer
scaling (y), = Re~2Y5 have been used.

e Balance of inertia and pressure term in x-momentum equation (2.1b)

Alu)y ~ Alp)s- (2.107)

e Balance of inertia and viscous term in x-momentum equation (2.1b)

A(u)gl - LA(U)?)I
“"Ars  Re 0%

A(u) (2.108)

e Pressure disturbance in thin lower deck imposed by outer flow

A(p)s ~ A(p)zu.- (2.109)
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e Non-degenerate continuity equation

Alw)s  Av)s
A:L‘g 531 )

Main Deck

e Balance with the lower deck shift of the velocity profile
A(u)gm ~ A(u)gl.
e Exerted displacement on the upper deck

A(V)3m ~ A(V) 34

e Non-degenerate continuity equation

A(u)f%m - A(”)f%u
Axs O3m .

35

(2.110)

(2.111)

(2.112)

(2.113)

e Pressure disturbance in thin main deck imposed by outer flow similar

to lower deck flow
A(p)Bm ~ A<p)3u-

Upper Deck

(2.114)

The upper deck distinguished limit is guided by the idea of one-dimensional

inviscid nozzle flow presented in section 2.1.1.

e One-dimensional weakly disturbed plane parallel flow

A(p)zu ~ A(p)zu ~ A(u)3u-

(2.115)

e Displacement effect exerted by main deck shall lead to a flow response
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at leading order, see (2.30),

(03 - g ) S~ S0 g
with
((u)iu - Mi<>) ~ A, (2.117)

analogous to (2.45). The parameter n governing the nonlinearity has

been already defined in (2.47) for the case of inviscid nozzle flow.

Transonic flow, see (2.46),

1 — M2 = KAKy ~ A(p)it. (2.118)

Irrotational flow

ou A(v)3y
(8y)3uN A (2.119)

Remark 2.2.1. The main difference in the formulation of the small dis-
turbance equation (2.67) in section 2.1.1 and the procedure presented
here is the freedom of choice of a suitable scaling for the normal di-
rection Hs, which can be used to control the degree of degeneration of
equation V x u = 0. By a proper choice of the order of magnitude of
the channel height the flow field becomes one-dimensional to the lead-
ing order only and two-dimensionality enters at the next lower order in

equation V x u = 0.

Time scaling shall preserve the slowest timescales governing the longterm

behavior of the system

Al‘g

Aty ~ :
3 Apr—1

(2.120)

Remark 2.2.2. Classical theory of compressible one-dimensional invis-

cid unsteady flow through a channel predicts that disturbances are
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propagating along left- and right running characteristic curves, n =
const and ( = const, in the (x,t)-space with the two characteris-
tic speeds A, = c—g = My(u)sy — (¢)sy and A = Mo(u)zy + (€)3u,
see [56], [49]. Obviously the faster time scale \c = O(1), whereas

the slower timescale

Ap = Mo(u)sy — (¢)3u ~ (MO(U)SU - (C)gu) (Mo(u)gu + (C)3u> —

= 043 (2 - (0 ) ~ Al

In the last step expression (2.117) has been used. So finally the estimate
(2.120) can be motivated by A, ~ 3% ~ Ap"~!.

Calculation of the Orders of Magnitude of the Flow Quantities

Introduce a small expansion parameter 0 < e3 < 0 as a measure for the
variation of the main velocity in the lower deck A(u)s and make the follow-
ing ansatz for the orders of magnitude of the changes of the relevant flow

quantities

A(u)s ~ €3, A(v)g ~ eé“,
A(u)?»u ~ €3ua A( )3u ~ Egva A(p)f%u ~ Egpa
A(t)zm ~ €5 A(V)zm ~ €37,

)

Ap)s ~ A(p)su ~ Alp ) ~ A(p)a ~ 63’3

_1 ks ko
Axg ~ elg””, 03m ~ Re 2~ €57 O3y ~ 63 ' Hs, ~ e

introducing the 11 unknowns k;, [;, m;, n; € Q. Insertion into the equations
(2.106) to (2.115) yields the following 10 relations

ksi1—ks n 2— 1-2ks
€7 O™ ~ e, €~ ey”, €5 ko €5
_ lo—ks
e h e €3 ~ €5, €5~ €y,
—k my—ks, n—1)n,+n,—k —k n
€?u z 63 v m’ 65} ) 4 u T GSLU H’ ESP ~ 63”7
Ny Np
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As has been pointed out in remark 2.2.1 the flow in the upper deck shall
be one-dimensional to the leading order and two-dimensionality shall enter
at the next higher order. However, this is not a natural condition, which
the upper deck flow has to satisfy, but one that is enforced by the a suf-
ficiently small channel height of length scale Hs,, as has been pointed out
in the introduction to this chapter 2.2 or also in remark 2.2.1. Therefore,
as generalization one equally well can ask for a condition that the flow field
in the upper deck is one-dimensional to the first 91;p orders. This suggests
the following ansatz for the horizontal velocity component u, suppressing the

time dependency of the quantities in the following relations,

Mp
(W =1+ > &) (@)s) + e Moul2 D (@), () ) + -+
i=1

and consequently

% ny+Mp 9 (Mup+1) d(y)?;u
(8?/)3“ €3 8(y)3u Ugy, ((x)?n (y)3u) dy .

Keeping that in mind the expression for irrotational flow in the upper deck

(2.119) can be used to make the following estimate

nutMip—kg ny—kg
63 g 63 .

Comparison of the exponents of €5 in the expressions yields the following 11

linear equations for 11 unknowns

ksg — ksm =1, n, = 2,

2ks; — ky =1, ksg —ky — 1, = —1,

m, = 1, m, —n, =0,

ksm — ks +my —my, =0, kg —ky +ny —ny + (n—1)n, =0,
— Ny +n, =0, Ny — Ny = 0,

_kH+kx+nu_nv:_mlD7
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which have the solutions

N N N

ks =440+ 57, ki =340+ 7 kp=4-n+ 7 k=3,
N N

lv:2—|—n+TlD, my, =1, my,=1+n+ 21D, Ny = 2,
N

Ny =14+n-+ 21D, ny, = 2, n, = 2.

From 03, ~ Re~2 it then follows for the small perturbation parameter
€3 = Re ¥ mip (2.121)
And finally exploiting equation (2.120) yields for the time scaling
Aty ~ 572", (2.122)

For the choice of 91;p there are two meaningful options.

1. yp is kept fixed. Then the ratio

ool

which is a measure for the slope of streamlines in the upper deck, is

dependent on the chosen nonlinearity n.

2. The ratio

= const

is kept fixed. Then the first 9t;p = 2(n — 1) orders of the flow field are

one-dimensional, dependent on the chosen nonlinearity n.

2.2.2 Formal Asymptotic Expansions

With the inspection analysis performed in the previous section it is possible

to write down formal asymptotic expansions for the various flow quantities
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— 1 upper deck 3u

main deck 3m

= lower deck 31

3
€3

Ly=1 >‘

Figure 2.6: Triple deck structure of interaction region. (3u) upper deck, (3m)
main deck, (31) lower deck.

in the different subregions of the interaction region characterized by different
length scales in vertical direction, see figure 2.6. Inserting into the governing
equations and collecting the terms of highest order yields the distinguished
limits for each deck, an uniformly valid solution can be found via the match-
ing of the different solutions of the neighboring asymptotic regions. Since for
the lower deck and for the main deck this does not result in many deviations
from the standard triple deck theory, see i.e. [37], [80], these equations will
be introduced without much further explanations, however more details will
be given for the derivation of the equations of the upper deck problem.
Inspection analysis in section 2.2.1 suggests for the spacial scaling of the

x-coordinate
(z)3 =1+ 3 X3, (2.123)
which is the same in all decks, and for the time scaling

t = ey ;. (2.124)
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Lower Deck

Inspection analysis in section 2.2.1 suggests for the spacial scalings in y-

direction

n
Wa=€  ° Y, (2.125)

and the subsequent formal asymptotic expansions for the relevant quantities

(W) = Uy (X, Yo, Ty) + O(€3), (2.126)
LS| nt TiD
Wa =6 V(X Yo Ty) + 06 ), (2.127)
(P)s1 = Ru + RS (X, Yar, Ts) + O(E3), (2.128)
(P31 = po + &Py (X3, Ts) + O(€l) (2.129)
and
()31 = prw + O(e3), (tp)31 = o + O(e3). (2.130)

The subscript w has the meaning “evaluated at the wall”. In case of an adia-
batic wall R,, can be considered constant over the horizontal length scale of
the interaction region of O(e3).

Inserting the asymptotic expansions (2.126) to (2.129) into the governing
equations yields to the leading order the following set of equations, the con-

tinuity equation

Uy’ | vy
0X; | Oy

=0, (2.131)

and the x-momentum equation

aU(l) 8U(1) ap(l) 82U(1)
R, (U?fll) vV | = 8 o, (2.132)

0X; Yy, 0X; ov2
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Evaluating the no-slip condition at the wall (2.2) leads to the following

boundary conditions

UP =vV =0 @Xg = (X3, Yy = Sy( X3, T5))" (2.133)
9+2n

with the scaled hight (s2)3 = €3 > S3(X3,T3) of a surface mounted obstacle,
see figure 2.1. Equations (2.131) to (2.133) so far are identical to Prandtl’s
boundary layer equations in incompressible form derived for the noninter-
acting case, refer to section 2.1.2. However, new conditions arise out of the
matching of the asymptotic expressions for the various flow quantities in the
lower deck with those in the undisturbed boundary layer upstream of the
interaction region and with those in the main deck. The matching procedure

with the undisturbed boundary layer results in

lim Py (X3, Ty) = 0, (2.134)

X3~>foo

. 1
Jim U (X3, Yy, Ty) = TY‘”’ (2.135)
Jim ViV (X3, Yay, Ts) = 0. (2.136)
3——00

And the matching procedure with the main deck -using the results for the

governing equations of the main deck obtained in the following section- results

n
PY(X, Ty) = PY (X, T 2.137
3l( 39 3) 3m( 35 3)7 ( )
Ui (1,0
lim U?f})(Xg,igl,Tg)—M@gﬁflgm(xg,n)) =0. (2.138)
Y3l*>00 a}/é

As,, is part of the solution of the main deck and represents the negative

disturbance of the displacement thickness.

Remark 2.2.3. Subjected to the proposed time-scaling the whole lower deck
problem -and in fact the whole main deck problem too- behaves quasi-steady

to the leading order meaning that the flow field in the boundary layers of the



2.2. INTERACTING FLOW REGIME 43

interaction region immediately adapts to transient changes in the outer flow
field or to changes of the contour of the surface mounted hump.
Main Deck

Inspection analysis in section 2.2.1 suggests for the spacial scalings in y-

direction

nt 1D
W)sm =65 " ? Yan = Re Y. (2.139)

The scaling of the vertical coordinate in the main deck is the same as for the
noninteracting boundary layer upstream of the interaction region (2.86) indi-
cating that the main deck comprises the main part of the oncoming boundary
layer. The subsequent formal asymptotic expansions for the flow quantities
are superimposed onto the undisturbed boundary layer profile, UQ(O) (x,Ysn),
Réo)(x, Y3m) and @go) (x,Y3,), evaluated at the beginning of the interaction

region xo = 1. Introducing the definitions

U (Vi) = U (1, Yam), RS (Yam) = RO(L, Yan),

(2.140)
05 (YVam) := 05 (1, V)

the asymptotic expansions can be written as

(u) (2.141)
R ) 2+n+ 71D

(0)am = €5 Vi (X, Yaum, Ts) + Oles ), (2.142)

(0)am = RY) (Yam) + e R (X3, Yam, Ts) + O(e2), (2.143)

(P)am = po + P (X5, Ts) + O(e3), ( )

0) (2.145)

and

(:u)?»m = O(l)’ (Mb)fﬂm = 0(1)7 (k:)Sm = 0(1) (2'146)
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Before the leading order approximation for the main deck equations is written
down, a closer look has to be taken at the energy equation (2.8) considering
a general relation for the specific enthalpy h. The aim is to study dense gas
effects where the thermodynamic relations for ideal gas are inadmissibly. %’t‘
in the energy equation (2.1c) can be expressed in terms of variations of the

density and the entropy in the following way

Dh _ Oh

Dh _ 0h| Dp 8h)D3_ 2 Dp 0 Ds
Dt 9p

e e e IS B il
Dot T asl,or Tz pe T O

using the relation (2.34) and relation (B.20) in appendix B and introducing

the Griineisen coefficient, see i.e. [56], [47],

- poo
G:=GG=>—|. 2.147
T gopls (2.147)
Making use of equation (2.8) for the term %j, the energy equation can be
written after some rearranging of terms as
¢ Dp  Dp (1 1
——— — =-GG|—=—T17:Vu——"—V" 2.148
MZDt Dt NRe " " PrEcRe WY (2.148)
052 9lg) O(es)

where the order of the asymptotically largest contribution of each term in the
equation is indicated by the values below the brackets . Here again the argu-

ment has been used that changes of the temperature are of O(Ec¢). Therefore

1
PrEcRe

0 — 0, see table 2.1. Formally this can be deduced by inserting the asymp-

the term V-q = O(e3), even in case of dense gases, where Ec — 0 for

totic expansions for the main deck quantities into the energy equation in the

form (2.8) and collecting the highest order terms resulting in

Do\ () 005 1yd6%) 3
) = g0 sm 0 _ o(3E 2.14
(Dt)gm Uy, TV, OlezEe), (2.149)

indicating that the leading order approximation of the substantial derivative

of the temperature in the main deck is small for perfect gas and for dense



2.2. INTERACTING FLOW REGIME 45

gas as well. The important point now is that the relative order of each term

in (2.148) is depending on the magnitude of the Griineisen coefficient Go.

Whereas G clearly is an order one quantity for a perfect gas this is not so

easy to see for dense gases. In short the Griineisen coefficient can be written

as

= ﬁo—cgﬂ = Bobo ~53~ ﬂﬁ (2.150)
Co0 Ky R0y Ky o Co0

Go

Ky and Kg are the isothermal and the isentropic compressibility, see ap-
pendix B.1.1. The actual calculations justifying the following reasoning can

be found there as well. So taking a closer look at the quantities enter-
..2 r =

ing equation (2.150) reveals that RC%O’ [I;O are order one and ER—gO = O(0)
g ,0 v,

even, however Boéo exhibits unbounded growth in the very close vicinity of

the thermodynamical critical point, which is the working regime for dense
gases. The discussion in B.1.1 shows that the region of interest here, the
region of negative nonlinearity, even though in the dense gas regime, still is
far enough from the thermodynamical critical point, so that the argument
of unbounded growth does not apply to the situation considered here and
therefore 3,6, = O(1) for dense gases also. So in conclusion, the Griineisen
coefficient Gy = O(1) or even Gy = O(0) for the cases considered in this

treatise and the leading order term of the energy equation

Do\ _ 008 LwdRY
Dt T 09X, 3 Yam, ’

3m

takes on the usual form found in the literature for perfect gases, [37], [80],
but, as has been argued, applies to the case of dense gases also, if the very
vicinity of the thermodynamical critical point is excluded form the discussion.

The leading order approximation for the continuity equation and the mo-
mentum equations for dense gases can be obtained without any new argu-
ments by straightforward insertion of the asymptotic expansions for the flow

quantities. Finally collecting the results, the main deck equations are given
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by
(@)(l) — 0 sm ORY,) Ly ARy _ _po (Wgﬁ i avé,}}) (2.151)
Dt )., oXy o dng T\ 0Xs O )
(%y UQO)8£§ +%¥31;3m _9, (2.153)

the leading order representation of the continuity equation, the x-momentum
equation and the energy equation, respectively. The fact that no dissipative
terms and no pressure gradient enters the governing main deck equations
highlights the passive nature of the main deck, which likewise can be observed

from the general solution

AUSY (Yo
Uz, = Asim (X5, T3) 2 (3 ), (2.154)
dYs,
Az (X3, T
Vi = —%X:?’) Uso) (Yam), (2.155)
AU (v-
RY = Ay (X5, Ts) Uz (Yom) (2.156)

introducing the function As,, (X3, T3) which can be interpreted as the negative
disturbance of the displacement thickness of the undisturbed boundary layer.

Matching of the main deck solutions with the lower deck solutions results
in equations 2.137 and 2.138 introduced earlier. And the matching of the

main deck solutions with the upper deck solutions yields

Py (X3, Ts) = ply) (X3, T3), (2.157)
lim U (Xs, Yam, T3) = lim R (X3, Yam, T3) = 0, (2.158)
3m — 00 Y3, — 00

D As (X, T,
lim  Vih (X, Yap, Ts) = _Aan(Xa Ty) _ o(X5,0,Ty)  (2.159)

Y3m—00 8X3

dUSY (Yam)
dYsm

using limy, | o0 Uz(g)(ng) = 1 and limy,,, oo = 0. Matching with
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the undisturbed boundary layer in region 2 results in

lim PV =0, lim UL =0, lim Vi)=o. (2.160)
X3——00 X3g——00 X3g——00
Upper Deck

Inspection analysis carried out in section 2.2.1 suggests for the spacial scalings

in y-direction and the scaled height of the channel Hgys

N
—n+ 1D

2" Hys, (2.161)

and the subsequent formal asymptotic expansions for the flow quantities

(W)su = 1 + Guly) (X3, T3) + O(e3), (2.162)
(V)30 = €§+n+‘“;D oS X5, 30, Ts) + O(e?"*m%), (2.163)
(P)sw = 1+ €34 (Xs, T) + O(e}), (2.164)
(D)3 = Po + €295, (X3, T3) + O(€3), (2.165)
(3w = 1+ 2 (X5, T) 4+ O(€D), (2.166)
(h)su = ho + €3h5,) (X3, T3) + O(e3), (2.167)
(0)30 = 1+ €205) (X5, Ty) + O(€3), (2.168)

for the condition of transonic flow, introducing the transonic similarity pa-

rameter K,
(1—-Mg),, = Ke™? (2.169)
and
case n—2: I'y=T, Ay = A, Ny = N, (2.170a)
case n—3: Iy=erl, Ay = A, Ny = N, (2.170b)
case n—4: Iy =esl, Ao = A, No=N (2.170c)



48 CHAPTER 2. MODEL

Furthermore,

(1)su = O1), (up)su = O(1), (K)zu = O(1). (2.171)

In the following more time will be spent on the motivation of the governing
equations for the upper deck problem than in the previous sections for the

lower and main deck problem.

Continuity equation. The starting point for the formulation of the upper
deck problem is the continuity equation
dp

§+V( pu) = 0.

Insertion of the asymptotic expansions yields, using the upper deck scaling

and the appropriate time scaling,

g, (A0 Aw)au+ Al)Aw)s) =
2.172
-0 2n 38A< )u 6271—5% ( )
8 Y3 ’ -3 8T3
with the notation
2n—1
2n—1
Z 63u3u 2 )’ (2174)
mn N
A(v)gu . ;_’_n_’_#D (1 +O( 2+n+ ID)’ (2175)
2n—1
APdnAWa= D6 3 oo us, 0. (2.176)
k=4 zji—g>2k
07>

Equation (2.172) then leads to

Ap)su + Au)as + Alp)aA (), = O (). (2.177)
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similar to the derivation of the essential equations for one-dimensional invis-
cid transonic flow through a nozzle presented in chapter 2.1.1, see equation
(2.20) and (2.42). Collecting the terms of same order in equation (2.177)

results in

P dl ) e 3 Y =0 k=2 20— 1. (2.178)

i+j=k
0,j>2

For the integration of (2.172) with respect to X3 the condition of matching

with plane parallel constant nozzle flow upstream, (2.17),

im p$ V=0 lm uffV=0 k=2 2n-1,  (2.179)

X3——00 X3——00
has been used. The integration constant entering (2.177) or (2.178) then is

found to be zero.

Momentum equation. In the following only the leading order represen-

tation of the momentum equation in x-direction

Ous) _ Opy)

= 2.180
0X3 0X3 ( )

is needed, which can be integrated with respect to X3
uf) = —pf,. (2.181)

The integration constant again is found to be zero by making use of the

matching conditions (2.179) and

lim pY) = 0. (2.182)

X3——00
The leading order term of the momentum equation in y-direction reduces to

1
aps)

=0 2.183
8y3u ( )
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for all cases of n = 2,3,4 and DM;p € NT considered here.

Energy equation. For the further discussion it is convenient to rewrite
the energy equation in the form
Dh  Dp 1 1

pﬁ B E Re FVu - PrReEc V-a

in the way already introduced for the treatment of the energy equation in
the main deck, (2.148),

_ 1 1
MZDt i oC (@T-V“‘ipmme V'q)-

Making use of the momentum equation (2.1b) the substantial derivative of

the pressure can be written as

Dp  0p B
D o TP
_ o ou _
_8t+ <_p6t —p(u- V)u—ReV 7-)_
6p Ou ' 1
=g TP g (u®u).Vu—Eu-(V~T),

where u- (u- V)u = w;u;0;u; = (u® u) : Vu has been used in the last step.
On the other hand, the substantial derivative of the density is written as
dp

Dp  9dp B dp .
Dt =g TWVe=or £V (pu) = pV U—at+V( pu) — pl: Vu.

Insertion into the energy equation yields the final result

_i<g§+v (p )):

op ou 2 .
= at+pu 815 (u®u——1) :Vu + (2.184)

1 1
+§{ (V- T)+G0G<'r Vu—@v-q)}.
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Several important conclusions can be drawn form equation (2.184).

e The expression with the factor é in front can be estimated as being
of O(e" + &"217D) by inserting the asymptotic expansions for the
various field quantities in the upper deck scaling. As has been pointed
out in the discussion of equation (2.150) in the previous section, the
Griineisen coefficient Gy = O(1) for perfect gas and G, = O(0) for
dense gases. And once again the argument is used that in case of dense
gases, where Fc — 0 for § — 0, also the changes of the temperature

are of O(Fc) at most.

]\04—22 I) : Vu would be equal to zero, then
0

one would have obtained the fundamental equation of gas dynamics

e If the expression (u ®u —

(2.29) encountered in the section dealing with the inviscid, steady flow

in the core region, see 2.1.1.

e The derivation of equation (2.184) has spawned the continuity equation.
This is interesting in so far, as for a consistent asymptotic formulation of
the upper deck the right hand side being equal to zero has to be imposed
as a solvability condition. This refers to the corresponding remark 2.1.5
made about the fundamental equation of gas dynamics. If it would
be not the case, then insertion of the asymptotic representations into
the energy equation finally would result in a contradiction leading to
dp+V - (pu) #0.

By exploitation of relation (2.181) the leading order approximation of equa-

tion (2.184), i.e. the leading order approximation of the solvability condition,

(1) (1)
—2%1’;; — ang . (pgjf;K,f,[\, N) - % (2.185)
is obtained. The relevant steps of the analysis already have been performed
in section 2.1.1 and they immediately carry over to the derivation of (2.185).
Here the “delta notation”, (2.173), of the continuity equation (2.177) intro-
duced above proofs very beneficial once again. The perturbation of the mass
flux density Jj,) has been defined in definition 2.1.2.
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Remark 2.2.4. As a consequence of the suitable time scaling the time depen-
dence of the problem enters the equations here for the first time. The other

equations so far have not exhibited an explicit dependency on the time.

The left hand side of equation (2.184) does not depend on ys3,, so it can be
explicitly integrated in the same way as in (2.73) resulting in the expression
(2.73) for v{!). The main difference is that the velocity has to be matched to
the main deck solution instead to be fitted to the gradient of the throat area
of the nozzle expressed by the boundary condition of tangential flow at the

wall. So applying the matching condition (2.159) gives the final result

-2

aps. 0 ( A, N) 2 Qs

T (P KT, A N) = . 2.186
8T3 8X3 [ Pous 255 H03 an ( )

Equation (2.186) is the final piece that closes the formulation of the whole
triple deck problem, since it relates the displacement effect exerted by the
main deck to an immediate response of the pressure in the upper deck at
leading order. The displacement of the interacting boundary layer in itself
is a result of the de- or acceleration of the lower deck flow due to changes of
pressure imposed by the upper deck flow. Equation (2.186) therefore governs
the viscous inviscid interaction and is consequently referred to as interaction

law.

2.2.3 Admissible Region 1 Flow Types

As an outcome of the inspection analysis in section 2.2.1 the vertical length
4fn+m+D)

scale in the upper deck is of O(e, Since the upper deck region
comprises the whole former core region in the interaction region, the vertical

coordinate in the core region, region 1, has to be of the same order, suggesting

T =1, Y =€ 2 . (2.187)
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A look at the continuity equation shows that the vertical velocity v also has

to scale as

- Nip
(W =e "2

o1, (2.188)

whereas the other flow quantities stay order one quantities.
Insertion into the governing equations introduced at the beginning of
section 2, and shown here for the basic Navier Stokes equations (2.1a) to

(2.1¢) equation only, leads to

8p1

E +V- (pl ul) = 0’ (2189&)
8u1 In—2
P1 W + (u1 . Vl) u | =—-Vip1 + O<E3 ), (2.189b)
Dih D
i Dlil = O(en?). (2.189c)

Here Re~' = e5t"*7UP 4 consequence of the definition of e; (2.121), and
the fact, that the contributions of highest order in the dissipative terms of
the momentum and energy equation are resulting from g—; ~ €3 8+2n=9D hag
been used. Now, taking the limit Re — oo, implying €5 — 0, indeed gives the
Euler equations, which justifies the previous assumption made for the formu-
lation of the noninteracting core region flow in section 2.1.1. Noninteracting
channel flow truly is an admissible leading order representation of the flow
regime upstream of the interacting region. Therefore, the distinguished limit
for the interacting flow regime proves to be consistent with all the premises
made during its derivation.

In the following the question wether more general noninteracting flow
types are admissible for this special interaction problem shall be addressed
shortly . To this end consider the results of one-dimensional inviscid nozzle
flow presented in section 2.1.1. The asymptotic representations of the flow

quantities (2.51) have to be modified as follows

(u); =1+ elugli)(ajl) +..., (2.190a)
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(v); = eé‘“m%D ol (1) + .. (2.190Db)
(1 =1+eadV @) +.. ., (2.190c)
(M1 =1+epP(x) + ..., (2.190d)
(P)1 = po + ey (1) + . ., (2.190¢)
(h)1 = ho + BV (21) + ..., (2.190f)
(A)y = Hyg+ ™ P ana0y 4 (2.190g)

which leaves the outcome of the derivations performed in section 2.1.1 un-
changed, see equation (2.74), if the symbols for the quantities used in 2.51
are substituted by the ones used in 2.190a, u; by wuy,, say.

Remark 2.2.5. The nozzle geometry (A); obviously is dependent on €3 and

therefore dependent on Re.

The important point now is that (v); has to be matched with (v)s,. If
such a matching is possible, then one-dimensional inviscid nozzle flow will
be an admissible leading order representation of the flow regime upstream
of the interacting region too. Matching, taking into account y; = ys3, and
equations (2.160) and (2.159), formarly results to the leading order in
24240 (2)

lim V3., (X37y1,T3). (2191)

X3——

dont TR, (1)

€3 €1y (1,y1) = €3

Therefore the perturbation parameter ¢;, formerly introduced as a measure
for the variation of the density in section 2.1.1, has to be dependent on Re

too, which suggests
€ = 63( " (2.192)

Considering the relations (2.32) and (2.33) implies that not only the order of
magnitude of the throat area A in the noninteracting flow regime, but also

the order of magnitude of the variation of the nozzle AA has to depend on
Re.



2.2. INTERACTING FLOW REGIME %)

2.2.4 Fundamental Canonical Problem

Collecting the results derived in the previous section, the problem of viscous
inviscid interaction can be fully described by the equations of the lower deck
supplemented by the interaction law (2.186). Due to the passive nature of the
main deck it is not explicitly needed in the formulation of the fundamental
problem.

The fundamental lower deck problem in non canonical form writes

0 0
aTU?Ell)(X&YE%l’Tg) + 67%(11)()(3’}/;%’7?5) =0, (2'193)
3 3l
ou,) ou,, ) o*Us)
Rw U(l) 3l V(l) 3l — _ P(l) X.. T w 3l 2.194
( 3l an + 3l 8}/3[ 8X3 3 ( 39 3)_'_/’6 a}ng ( )

supplemented by the no slip condition at the wall
UP =V =0 @Xg = (Xs, Yy = Su(X5,T3))" (2.195)

the conditions of matching with the undisturbed noninteracting boundary

layer upstream

lim P =0, (2.196)
X3——00

aui?(1,0)
lim UY) =22 2y, 2.197
Jm Uy oy, (2.197)
lim V" =0 (2.198)
Xgﬂfoo

and the conditions of matching with the main deck flow

(0) (0)
m (- % (L0, 9, (1,0)
Yillinoo <U3l 8}/2 Yél = 6Y2 Agm(Xg, Tg) (2199)

The quasi steady lower deck problem is closed by the unsteady interaction

law governing the mutual reaction of lower and upper deck flow

2 DAy,
Hys 0X3

0P 0

- Jn<P(1)7K71:‘7/_\aN>:
ar; — 0x; “M\T?

(2.200)
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Interestingly enough, the perturbations of the pressure in each deck affected
by the interaction process, which are depending only on X3 and T3, are the
same in all three regions as suggested by the matching conditions (2.137) and
(2.157). Thus Pél)(Xg,Tg) = Pg(ll) P(l) P3i) has been used in the final
fundamental formulation of the interaction problem. .Jj,, is the perturbation
of the mass flux density in the upper deck region and defined in an analogous
manner to the definition 2.1.2.

The fundamental lower deck problem depends on several parameters, as

(0
8U2 (1 O o Hys. These can be conveniently eliminated

there are e.g. R, fiw,

by introducing the affine transformatlon given below

X* = 1w Ra UL (0)2C% X, (2.201a)
YV* = REUL(0)C3 Ya, (2.201D)
T = Jw R UL (0)2|T|CH T, (2.201¢)
U* = RECH Uy, (2.201d)
V= W REUL (0)7 0 3V, (2.201e)
P = C Py, (2.201f)
A* = REUL(0)C% Agy, (2.201g)
S* = REUL,(0)C'% Sy (2.201h)
with € = 2] and U (0) := 22200

Remark 2.2.6. Obviously C' has to be defined meaning such that K # 0 and
[ # 0. If one of these two conditions is not satisfied, then the above affine
transformation has to be modified appropriately. E.g. consider K # 0 and
[ =0, but A # 0, say, then A instead of I' can be used in the definition of
C.

Insertion into the interaction law (2.186) shows that the material parame-

ters entering the flux function Jj,) cannot be eliminated as these are essential

parameters of the problem resulting in

r.=r0™, (2.202)
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Aw=ACH|T T, (2.203)
N_w=NC2|D| ™, (2.204)
Q=27 Ry Ulo(0) " [T] " He'CF. (2.205)

Parameter () > 0 measures the intensity of the coupling between lower and
upper deck, as follows immediately from the definition of the fundamental

canonical problem summarized below.

Definition 2.2.1 (Fundamental canonical problem). After application of
Prandtl’s transposition theorem, [64],

X
P(X,T) = P*(X*,T"), AX,T) = A*(X*,Y*,T*)+ S(X,T)  (2.206d

T=T X=X* S(X,T)=S"(X*T), Y =Y*— S(X,T), (2.206a)
UX,Y,T) = U*(X*Y*, T, (2.206b)
V(X,Y,T) = VX" Y5 T - U 9 s (2.206¢)

)

the fundamental lower deck problem for plane parallel oncoming channel flow,

see definition 2.1.2, in canonical form is given by

0 0
—UX,)Y,T)+ —=V(X,Y.T) = 2.2
SSUCY,T) + V(XY T) =0, (2.207)

ou ou 0 0*U

— —=———PX, 1)+ — 2.2
Uax TVay = —ax T T 5 (2.208)

supplemented by the no slip condition at the wall
U=V=0 aX=(X,Y=0)", (2.209)

the conditions of matching with the undisturbed noninteracting boundary layer

upstream
lim P =0, (2.210)
X——00
lim U =Y, (2.211)
X——00
lim V=0 (2.212)

X——00
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and the conditions of matching with the main deck flow

Ylim (U-Y)=AX,T). (2.213)
The quasi steady lower deck problem s closed by the unsteady interaction law

governing the mutual reaction of lower and upper deck flow

o°P 0

0
_6—T+8—X G[n] (P7 erfoanfomeoo) _Qﬁ—X (A_S) (2214)

The parameter Q > 0, defined in equation (2.205), measures the intensity of
the coupling between lower and upper deck. The material parameters I'_,
Ao, N_ are defined in equations (2.202) to (2.204). G, is the leading
order negative disturbance of the mass flux density of the upper deck flow in

canonical form given by

sign(K)P + $sign(I') P? n=2
Gpy(P; K,I', A, N) = q sign(K)P + sign(T') P? + ;AP? n=3
sign(K)P + 3sign(T')P? + ¢t AP? + - NP* n=4.

(2.215)

G'n) has the following properties.

e The local Mach number M =

o

follows from

dG [n]

M—1=—-&"Vo1T .
63 | | dP

(2.216)

e The local value of the fundamental derivative and its first derivative is

given by

d2G[n}
dpz’

d3G[n]
dp3 -’

I =" 2|0 A= (2.217)



Chapter 3

Shock Regularization by Viscous

Inviscid Interactions

3.1 Shock Formation and the Fundamental De-

rivative

After an area of vivid interest in BZT fluids starting with the works of Bethe,
[4], Zel’dovich, [96], and Thompson, [85], and lasting to the middle of the
90s, [88], [5], [15], [87], [16], [34], [18], [17], [8], [35], [36], [44], [58], there
exists a renewed interest in fluids exhibiting negative or mixed nonlinearity
as can be observed by the number of more recent publications dealing with
the experimental prediction and detection of anomalous shocks inherent to
these kind of fluids, [38], [19], [13], [39], [25], [11], [12], [95]. Given the possible
technical applications in turbomachinery, see e.g. [10], [12], these fluids also
are of theoretical value on their own. The feature of Gamma changing sign in
the flow field has severe consequences for the theory of compressible inviscid
flows giving rise to a richer variety of anomalous shock forms not known in the
common case of Gamma being strictly positive, i.e. rarefaction shocks, sonic
shocks, double sonic shocks and split shocks, see e.g. [56] for a discussion of
Riemann problems in general or [14], [8], [35] for a discussion of steady and
unsteady weak shocks.

Most important of all, the classical criteria, as the requirement [s] > 0

99
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following from second law of thermodynamics or the more mathematical
condition for the stability of the resulting wave pattern expressed by Lax’s
characteristic criterion, [56], or by the more general Oleinik condition, [61],
[45], are too weak to rule out inadmissible shocks in case of fluids exhibiting
mixed nonlinearity. A shock is considered inadmissible in this context if
there exists no internal shock profile connecting the flow conditions before
and after the shock when physical effects that have been neglected so far but
which become significant in the vicinity of the shock front are considered and
thus regularize the problem. It is commonly known that the consideration
of small effects of viscosity and heat conduction in a small region around the
shock front leads to the formation of such smooth internal shock profiles. A
thoroughly discussion of these profiles for fluids exhibiting mixed nonlinearity
resulting from a regularization by thermo-viscous effects can be found in [14],
[35] or [18]. In the following a quite different mechanism for the regularization
of weak shocks is proposed by making use of the theory of transonic viscous
inviscid interactions in narrow channels introduced in chapter 2. Consider
the situation of a stationary weak normal shock in a channel. The flow
field in the boundary layers at the walls is subjected to a discontinuous
pressure distribution, i.e. a rapid change of the flow field, and a region of
shock boundary layer interaction emerges around the position of the former
shock. Tt can be expected that the shock/boundary layer interaction leads
to a smoothed transition from super- to subsonic core region flow similar to
the phenomenon of a pseudo-shock encountered in internal gas flows, [54].
Furthermore, if the internal flow can be described by the distinguished limit
for the interaction problem presented in chapter 2, then the inviscid flow in
the core region of the channel conveniently can be described by the equations
for one-dimensional inviscid transonic flow of dense gases, see section 2.1.1

or [35]. This chapter will address the following issues.

e First of all, a definition of what has to be understood by an inter-
nal shock profile generated by viscous inviscid interactions is given in

section 3.3.

e Furthermore, it is mandatory to show that such an internal shock profile
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truly connects the undisturbed flow state in the core region of the chan-
nel before and after the interaction region. To this end, the asymptotic
behavior of the solution of the interaction problem far up- and down-
stream, X — 400, will be investigated . The undisturbed flow states
have to be in accordance with the theory for inviscid flow, a summary
of which is given in the following section together with the formulation

of appropriate shock admissibility criteria.

e And finally, selected numerical results for various forms of shocks pre-
sented in section 3.3 will be discussed. Above all, these allow to identify
the physical mechanism being at the basis of the regularizing properties

of the interaction problem.

Besides the theoretical value of the discussion to be presented in this
chapter, a direct application of the scaling laws proposed in the derivation
of the distinguished limit shall be given for the example fluid PP10 which is
expected to exhibit a region of negative I'. A calculation of the characteristic
length scale imminent to the problem shows that the phenomena described
in this chapter are expected to be encountered for flows of dense gases in

technical applications under realistic conditions.

3.1.1 Inviscid Theory of Weak Normal Shocks

A shock forming in a flow regime described by the Euler equations for invis-
cid flow has to satisfy certain jump conditions, i.e. the Rankine Hugoniot
conditions, governing the overall jump of the flow quantities. In the following
a bracket [a] := a® — a® denotes a jump of some quantity a. The superscripts
a and b refer to conditions before and after the shock.

Most, important of all, the values of the pressure before and after a shock
have to be points on the so called Rayleigh line which can be defined as

follows

Cr:={(p",J) : T = Ju(p;"; K, T, A, N)} (3.1)
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for the case of stationary weak normal shocks in steady transonic nozzle
flow, see section 2.1.1 or [35]. The Rayleigh line in the form of (3.1) ex-
presses the continuity of the mass flux density across a shock front for

a given pressure jump pgl) — pl(-l)b. Graphically, the actual pressure jump

[pgl)] has to result from an intersection of the Rayleigh line and the graph
c; ={pM, ) J = J[n](pl(-l)), P e PP pM} in the pressure pi” vs.

mass flux density .Jj,) diagram, see the example in figure 3.1. The jump

conditions are supplemented by the entropy condition
[s] >0 (3.2)

expressing the fact that the thermodynamic entropy has to increase over an
admissible shock. Kluwick showed in [35] that the entropy condition (3.2)
together with the Rankine Hugoniot conditions can be used to formulate the
following inequality

(5] ~ — 5ot IP[M) — g€ i N[ > 0 (3.3)
which has to hold in case of weak normal shocks described by the one-

dimensional theory of the transonic flow of dense gases in slowly varying

nozzles in section 2.1.1. From that follows the inequality
[M] <0 (3.4)

which in case of a stationary weak normal shock is equal to stating that an
admissible shock has to lead to a transition from super- to subsonic flow, in
general. Interestingly enough, shocks may have sonic upstream conditions
M?® =1 or sonic downstream conditions A/ = 1 or both. It is in the latter
case that the equality sign in equation (3.4) holds.

In case of a strictly convex or concave flux function Jp,), i.e. case of
positive or negative nonlinearity, the conditions mentioned above are enough
to rule out inadmissible shocks. This, however, is not always true in case of
mixed nonlinearity which is demonstrated for the example in figure 3.1. The

shock connecting the points A and B and the shock connecting the points A
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pg) A/
Cy D/
\/1 M <1

\ M>1

M<1

>

Cr <
A\ M>1 .

—Jn)

Figure 3.1: Plot of the negative perturbation of the mass flux density —.J,
vs. the pressure pgl), denoted by C;, and a example of a Rayleigh line Cg.

and D both result in a transition from super- to subsonic and hence satisfy
the shock admissibility criteria stated so far. However, it turns out that only
the shock AB is consistent with a thermo-viscous internal shock profile, cf.
e.g. [35]. Therefore, the shock admissibility criteria have been generalized
in [35] in order to cover all the possible weak shock forms occurring in steady
flows of dense gases governed by a mass flux density Jj,; with a nonlinearity

of up to forth order in the pressure.

Shock Admissibility Criteria, [35]

Theorem 3.1.1 (Shock admissibility criterion). A shock forming in the sin-
gle phase dense gas regime, which is governed by the density of the perturba-
tion mass flux Jy,), see definition 2.1.2, for one dimensional nozzle flow, is

admissible if and only if the following conditions are met:

1. The Rayleigh line connecting the states before and after the shock does
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Po = po + Apo 1 --------- B

Figure 3.2: Schematic sketch for introducing small variations of the channel
height, Asyg = e§+"+m1D/QS,OO, and of the inflow conditions, Apy = 2P _.
If the variations satisfy the relation Gp,) (P-co;...) = —@QS_o, then the
interaction region is located at the fixed position Ly = 1.

not cut intervening branches of the graph
1 1 1 Db (1a
Cr= A", 1) = ("), p” € ", 5

2. The flow conditions before and after a shock have to satisfy
MP>1> M.

3. In case of a double sonic shock, M* =1 = M?, the shock has to be an

expansion shock.

Remark 3.1.1. Obviously, the results of the above theorem equally apply to
the situation where Jp,) is substituted by G|, equation (2.215) in definition
1)

2.2.1, and where p; ’ is substituted by P since G|, is a scaled version of —.Jj,).

3.2 Varying the Inflow Conditions

The fundamental problem for steady interacting flow is extended to allow
small variations of the inflow conditions at the channel entry, represented by
Apy, and of the channel height, represented by Ass, see figure 3.2. These
small variations shall affect the flow in the interaction region, which shall
be located at the fixed position Lo, leaving the reference state unchanged

independently of the new configuration. Therefore, the scaling of the ma-



3.2. VARYING THE INFLOW CONDITIONS 65

terial parameters, (2.201), entering the interaction law in canonical form,
(2.215), which are dependent on the reference state, do not change either.
This is convenient, because it allows to vary the inflow conditions under an
unchanged representation of the flux function GJ,. Taking into account the
affine transformation (2.201) Apy is defined by

Apy = e07'P_, (3.5)
which implies
lim P=P_ (3.6)
X——00

for the upstream value of the pressure in the triple deck. Asy( has to be of

the same vertical length scale as the lower deck and thus

_1 1
Asyg = s 0P R 200 (0)1CT25 . (3.7)
As a result the no slip conditions have to be prescribed at the shifted wall
U =V*=0 @X*'=(X*Y*"=5_)". (3.8)

Note that x denotes quantities before the application of Prandtl’s transposi-
tion theorem, (2.206), used in the definition of the fundamental problem in
canonical form. Prandtl’s transposition theorem for S(X) = S_., simplifies

to
Y=Y*-S., A=A+5_. (3.9)
Inspection of equations (2.210) and (2.213) reveals

lim A(X) = 0. (3.10)

X——00
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Integration of the interaction law (2.214) for steady flows with respect to X

gives
G (P) = Q (A= S-n) = Gp(P") = QA" = ¢4 (3.11)

where the dependence of G, on the parameters has been suppressed. Taking
note of remark 2.1.6 on equation (2.75), which is the inviscid complement of
the above expression, equation (3.11) expresses the continuity of the mass flux
of the one-dimensional upper deck flow passing cross sections of the channel
which are reduced by the displacement effect A* caused by the interacting
boundary layers at the wall. Consulting Prandtl’s transposition theorem A*
results from a geometric variation of the channel height expressed by S_
and from a viscous part A generated by the lower deck reaction to pressure
variations in the upper deck. Obviously ¢; then quantifies the change of the
mass flux which has been effected by the variation of the inflow conditions,
i.e. P_,, and the variation of the channel height S since ¢; = 0 for
the initial configuration, i.e. P_ = S_o = 0. Therefore, in order to be
consistent ¢; in equation has to be ¢; = 0 and consequently S_., and P_.,

have to satisfy the compatibility relation
G[n} (P_OO;K, P_OO,A_OO,N_OO) = —QS_OO. (3.12)

Finally, the changes introduced in this section are summarized in the follow-

ing definition of the fundamental problem for varying inflow conditions.

Definition 3.2.1 (Fundamental canonical problem (steady interacting flow,
varying inflow conditions)). The fundamental lower deck problem for an on-

coming plane parallel channel flow, see definition 2.1.2, in canonical form is

given by
iU(X Y) + iV(X Y)=0 (3.13)
ox oy T '
2
v v 4 pxy 7Y (3.14)

0X oY dx oY?
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supplemented by the no slip condition at the wall
U=V=0 aX=(X,Yy=0)", (3.15)

the conditions of matching with the undisturbed noninteracting boundary layer

upstream

——00

lim P=P_ o, lim U=Y, lim V=0 (3.16)
X——00 X X——00
and the conditions of matching with the main deck flow

Ylim (U-Y)=A(X). (3.17)
Y and A defined by Prandtl’s transposition theorem, (3.9). The interaction

law for steady flow in the interaction region is given by
G (P K, T, Ao, Nooo) = Q (A= S_) . (3.18)

Parameter Q > 0 has been defined in equation (2.205), and the material
parameters I' _o, A_o, N_o in equations (2.202) to (2.204). G, is given
by (2.215).

3.3 Eigensolutions & Internal Shock Profiles

An interesting property of nontrivial eigensolutions to the steady interaction
problem formulated in definition 3.2.1 is that these correspond to the internal
structures of weak normal shocks. As has been mentioned before the internal
shock profile resulting from shock boundary layer interaction has to connect
the undisturbed flow states before and after the shock which can be expressed

by the relations

lim P=P'=P ., lim A=0, lim U=Y;

X——c0 X——0 X——c0

lim P = P%, im A=0, im U =Y.

| |
X—o0 X—o0 X—o0
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The values of P before and after the shock, P’ (= P_,) and P% have to
satisfy the jump condition [Gj,)] = G (P*) — Gjy(P?) = 0 expressing the
continuity of the mass flux across a shock front which is a result of the
underlying inviscid theory, see theorem 3.1.1 or [35]. The Rayleigh line for a
given undisturbed flow state upstream, P?, is defined by

Cr={(P,G):G =GP K,T o, A s, N_-ow) = —QS_o.}.

Hence, by varying S_., the Rayleigh line is moved in the G, vs. P diagram
which is equal to varying P’ and P?, i.e. the shock strength [P].
It is important to note, that besides a nontrivial eigensolution there al-

ways exists a trivial eigensolution to the problem

In the following, general properties of eigensolutions shall be discussed
and instructive numerical results of internal shock profiles corresponding to

weak normal shocks will be given.

3.3.1 Asymptotic Properties Upstream (X — —o0)

The upstream behavior of the interacting flow for X — —oo shall be in-
vestigated. Therefore, the analysis of Lighthill, [52], and Stewartson &
Williams, [81], dealing with freely interacting boundary layers in external
supersonic flows has to be extended to incorporate the algebraic interaction

law, (3.18), and the new matching conditions upstream (3.16). The ansatz
U=Y —a " fi(Y), V=aire™ f{(Y), P=P_o +ae™~,  (3.19)

with exp(kX) — 0 for X — —o0, leads to the following expression for f;

FlY) = /0 YAi(/{%s)ds, AY) = /0 i /0 ZAi(/{%s)dsdz. (3.20)
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From that follows the well known result for the displacement function

a’l 1 rX -/
AX) = ——= A 3.21
where Ai denotes the Airy function, [1]. Substitution of the expressions for
P and A into the algebraic interaction law (3.18) and collecting terms of

O(exp(mrkX)) with m € N yields to leading order
Gl (P KT Ao, Nooo) = —QS_oe, (3.22)

which is immediately satisfied because of the compatibility assumptions made
for the variation of the inflow condition (3.12). The next higher order is found
to be

C(Pooe; KT oo, Ao, No) = 3 3.23
[n] ( i) ) 3Ai,(0) K3 ( )
yielding a relation for x
, 3A1(0)°
R = G[n] (P—OOaKa P_OO,A_OO,N_OO) Q . (324)

A nontrivial eigensolution to the fundamental problem (definition 3.2.1) can
only exist, if it decays for X — —oo. Therefore, considering the sign
of Ai'(0) < 0, see [1], and @ > 0, see definition 3.2.1, this can only be
the case, if G (P-,...) < 0. Taking into account relation (2.216) this,
however, implies that the oncoming channel flow has to be supersonic, i.e.
Gl (P-os,...) < 0, or sonic in the limiting case G|, (P-o,...) — 0—. An
interpretation of internal shock profiles to sonic shocks will be given in the
discussion of the numerical results, cf. section 3.3.7 and 3.3.8.

Therefore, one concludes that nontrivial eigensolutions, or in other words
admissible internal shock profiles, can only exist if and only if the oncoming
flow -that is the flow before the regularized shock- is supersonic or sonic.
Moreover, this result is in accordance with the shock admissibility criteria

formulated for inviscid nozzle flow.
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Linear Spatial Stability of Undisturbed Flow States

The generalized ansatz of Lighthill used before, (3.19), can be extended even
further in order to study the linear spatial stability of an arbitrary undis-
turbed flow state represented by P_., and S_,, which always is a trivial

solution of the interaction problem. To this end we write

U=R{U} =Y — R{a; e T f,(V)},
V = R{V} = R{are"™ T f(V)}, (3.25)
P _ %{P} _ P—oo + %{alenX—in}

with w € R some given harmonic frequency and x € C the corresponding
unknown complex wave number. Furthermore, X, Y, P_ € R, a; € C and
fi:R—C.

By plugging (3.25) into the equation for the quasi steady lower deck flow
(3.13) to (3.16) one recovers the already obtained result for fi, equation
(3.20),

) = / CAildsds,  A(Y) = / i / " Ai(rhs)dsdz

with the main difference that now x € C. Taking a look at the asymptotic
properties of the Airy function Ai(z) for z € C and |z| — oo, see appendix C,
the integrals only exist properly for Y — oo if k € {z € C: |Arg(z)| < 7/3}.
Evaluating the matching condition (3.17) then leads to

UL 1/3grX—iuTYy (3.26)

A= R{A) = R 3A1(0)

and after insertion into the linearized interaction law for unsteady flow one
finally obtains a relation between the harmonic frequency and the complex

wave number

. Q 4/3
~ 3A7(0)"

iw+ Gy (Pooo) (3.27)

where the dependence of G, on the parameters K, I'_, A_,, N_, has been
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suppressed. Provided G, (P-o) # 0 (3.27) can be written in the following

way
iw 4 & = sign (AY'(0)G}, (P-oo)) E*/? (3.28)

introducing a modified definition of the harmonic frequency and of the wave

number, @ and &,

w
o=C———¢cR 2
w CG/[n](P—oo) €eR, (3.29)
k=CreC (3.30)
with
3
Q

C:

> 0. (3.31)

BAT ()6, (P-)

It is important to note that the new definition & for the wave number is only a
rescaling of k, i.e. Arg(k) = Arg(k). Interestingly enough, for the discussion
of (3.28) only two cases have to be considered, ie. G{,; < 0 and G}, > 0.
That is, one simply has to distinguish between supersonic and subsonic flow.

A candidate for a solution to (3.28) for a given @ can be obtained by

finding a root of the polynomial
sign (Ai'(0)Gl,(Poso)) &' — & = 3iwR? + 30°k + ir® = 0 (3.32)

which has been obtained by taking the left and right hand side of (3.28) to
the power of three. The roots plotted in figure 3.3 have been checked against
(3.28). It has been found that all four roots of the polynomial (3.32) are a
solution of (3.28) as well.

Out of the four possible wave numbers & for a given harmonic frequency
of some disturbance w only those that lie in the set Q, = {z € C : |Arg(z)| <
7/3}, depicted by the shaded region in figure 3.3, lead to a nontrivial solution
of the lower deck as has been noted before. On the other hand, for the linear

spatial stability of the trivial solution of the interaction problem the real
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part of & has to be negative, R{x} < 0, i.e. some disturbance generated at a
purely harmonic frequency @ is dying out downstream. In case of R{~x} > 0
the disturbances are growing exponentially downstream until nonlinearity
takes over.

Keeping that in mind, figure 3.3 allows for the following interpretation.
Taking a look at 3.3.1(a), the case of a supersonic trivial solution of the
interaction problem, and setting w = 0, i.e. applying a steady disturbance,
one obtains the result for the first three wave numbers K;23 = 0, which
is the trivial solution again, and iy = 1 € R. K4 lies within the set €,
and therefore ansatz (3.25) leads to a nontrivial solution for %4 which is
growing downstream because of R{~<} > 0. Making use of (3.29) the result
(3.24) based on Lighthill’s ansatz (3.19) is retrieved. For w € [—&,, w.] there
exists only the one nontrivial solution on the branch 4 which is exponentially
growing downstream. For w > |w.| the second branch, number 3 in figure
3.3.1(a), enters the region ,. The situation in the case of a subsonic trivial
solution of the interaction problem is quite different, see figure 3.3.1(b). For
w = 0 no nontrivial growing mode can exist since Kj234 € C\ €,. This
situation does not change as long @ € [—w., W], however, as soon as w > |w,|
the branch 4 enters {2, and a growing mode exists besides the trivial flow
state.

Therefore, the supersonic trivial flow state, i.e.
P=P  , A=0,U=Y, G'n}(P,OO) <0,

is unconditional unstable according to the concept of linear spatial stability

and the subsonic trivial flow state, i.e.
P=P , A=0,U=Y, G’n}(P_OO) > 0,

is stable as long the harmonic frequency of the disturbance satisfies the con-

dition w € [—w,, w,|.
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R{7) (b)

Figure 3.3: Roots & of equation (3.28) under variation of @ for a) supersonic,
ie. G (P-x) <0, and b) subsonic, i.e. G, (P-x) > 0, undisturbed initial
flow.
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3.3.2 Asymptotic Properties Downstream (X — o0)

In order to justify the interpretation of nontrivial eigensolutions as internal
shock profiles it is mandatory to show that the flow in the interaction region
approaches an undisturbed flow state downstream of the interaction region
indeed. The investigation of the downstream behavior exactly follows the
analysis performed by Kluwick, Exner & Cox, [42|. They applied the re-
sults found by Gittler, [23|, for the asymptotic properties of steady triple
deck problems of a general kind in case of Y > 1 and X > 1 to a triple
deck problem with a local interaction law, closely resembling (2.214) and
describing the interaction process of weakly nonlinear bores in laminar high
Reynolds number flow. The significant and fundamental difference to the
interaction problem considered in this treatise is, besides the different un-
derlying physics involved, that their interaction law accounts only for terms
of quadratic nonlinearity in the pressure and that additionally a dispersive
term is present in their relation.
Their starting point has been the expansion of the stream function U(X,Y) :

U=0V/0Y, V=-0V/0X for Y — ¢

U(X,Y) ~ % (Y + A(X))* + P(X) + K, ;Y (InY)* + . .. (3.33)

with » < 2. This expression is valid for all X and contains free constants
K,s. Since the flow structure far upstream is given by (3.19) and (3.20),
the corresponding velocity disturbances U — Y, V decay exponentially with
Y — oo because of the asymptotic properties of the Airy function, see [1].
Consequently the algebraic terms in Y in (3.33) vanish, K,; = 0. There-
fore, if the assumption that the interacting flow approaches an undisturbed
state downstream is correct, then ¥ has to take on the following form far

downstream
1
U(X,Y)~ 5Y2 +AX)Y + P+ ... X — 00, Y — o0. (3.34)

This result has to be compared with the similarity form of the stream function
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far downstream, [23],

Y

1
U(X,Y) ~ oY+ aXOfoln) + CoX o)+,

If as in the present case no external agencies are affecting the flow under con-
sideration (no external surface mounted obstacle, say) then the parameter
a = 0 thereby eliminating the second term in (3.35). The third term repre-
sents a homogeneous eigensolution with the eigenvalue A and its asymptotic

behavior of h(n) for 7 — oo has been given by Gittler in [23]
h(n) ~ Kin+ Ko + Kge e 70 4 5= 0. (3.36)

The two constants K; and K3 are arbitrary while

T (g) 3-2)+1/3

K= a2 roT

(3.37)

with I'(-) denoting the Gamma function. Therefore, in the end a second
expression describing the properties of ¥ in the limit X — oo, ¥ — o0 is

obtained

1
W(XY) ~ DY 4 CEXOTY + GEGY ™ 4 (3.38)

X —00,Y — .

Comparison of the two expressions, (3.34) and (3.38), for W implies A = 0

and
AX) ~ CoK X713 X — oo (3.39)

Finally, substitution of (3.39) into the linearized interaction law for steady
flow, (3.18), yields the asymptotic behavior of the pressure downstream. Pro-
vided G, (P?) # 0 it assumes

QC2K1 -1/3

P(X)NP“—FWX s X—>OO (340)
[n]
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again suppressing the dependence of G, on the scaled parameters K, I'_,
A_o and N_.,. However, if the shock terminates in a sonic flow state far
downstream, i.e. G’En](P“) = 0, then the asymptotic behavior of the pressure

downstream is given by

200, K,

1/2
XU X 3.41
Ggmpa)) o e

P(X) ~ P* + sign (G"(P%)) (
indicating an even weaker algebraic decay of the pressure than that found in
case of G|, (P*) # 0. Interestingly enough, the expression 2QC> K /Gy, (P?)
in (3.41) is found to be always positive due to the fact that CoK; has the
same sign as A. Figure 3.4 gives a geometrical justification for this statement
for two typical variants of a sonic shock. The sign of A follows from QA =
Gp)(P) — (—QS_w) for P € [P’ P?]. In case of the shock connecting the
points A and C' the curvature of the flux function G&,’] < 0 at the sonic state
and A < 0 for P € [P, P?. Therefore, CoK, is negative. In the other case
of a shock connecting the points D and B ’[g] > ( at the sonic state and
A > 0 and consequently Cy K is positive. In both cases QQCQKI/G’[;)}(P“) is

a positive quantity.

M>10 M<l | M-l

Figure 3.4: Two examples for a shock terminating in a sonic state. At point
C: G’[g} > 0, and at point B: G’[g} < 0.
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Therefore, it is found that the flow in the interaction region, represented
by nontrivial eigensolutions of the triple deck problem, approaches an undis-
turbed flow state downstream of the interaction region at a pressure P*
predicted by inviscid theory. The flow before and after the shock is truly
connected by an internal shock profile and, since A(X) — 0 for X — +o0o,
the pressure jump across the shock is given by [Gp,)] = Gpy(P?) — Gy (PP)
in accordance with the jump/Rankine Hugoniot conditions for the inviscid
case, see section 3.1.1.

Moreover, the requirement that the Rayleigh line connecting the states
before and after the shock does not cut intervening branches of the graph
Ce ={(P,Gy(P)) | P € [P", P} formulated in the shock admissibility cri-
teria in theorem 3.1.1 can be motivated too. Since a nontrivial eigensolution
can only exist for supersonic flow conditions upstream, i.e. G'n](Pb) < 0 (see
discussion of the asymptotic behavior of nontrivial eigensolutions in section
3.3.1), the next undisturbed state, which a fluid particle passing through the
interaction region is approaching far downstream, is bound to be subsonic
or sonic, i.e. G, (P*) > 0. The results of section 3.3.1 also showed that the
subsonic undisturbed flow state is stable according to the concept of linear
spatial stability at least for disturbances with a harmonic frequency below
some bound w.. Consequently, without the action of external agencies like
a variation of the throat area of the channel the fluid particle is attracted
towards the undisturbed subsonic flow state and will not pass through it.
Hence the Rayleigh line does not cross the graph Cg.

So far the internal shock profiles which are resulting from a shock reg-
ularization due to viscous inviscid interactions are in accordance with the
prediction based on the the shock admissibility criteria formulated for the
noninteracting inviscid case, theorem 3.1.1. However, the last issue of theo-
rem 3.1.1 stating that a double sonic shock is bound to be a rarefaction shock
can only be seen by studying numerical results for the nontrivial eigensolu-
tions of the interaction problem. The case of a double sonic shock will be
addressed in section 3.3.8 after the discussion of the internal shock profiles for
a standard compression and rarefaction shock, section 3.3.5 and 3.3.6, where

the flux function G, exhibits a quadratic nonlinearity (case of positive or
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negative nonlinearity, i.e. n = 2) and for a nonstandard sonic shock (section
3.3.7, where G, is of third order in the pressure, i.e. n = 3), a case of mixed
nonlinearity. Finally, section 3.3.9 will deal with the case of a split shock, a
case of mixed nonlinearity where as in case of a double sonic shock as well

Gy is of forth order in the pressure, i.e. n = 4.

3.3.3 Numerical Results & Numerical Method

The fundamental problem, see definition 3.2.1, is integrated using a finite
difference scheme of second order and by applying a marching technique
downstream in X-direction, the main flow direction, starting from an initial
velocity profile which is given by the flow profile for a nontrivial eigensolution
far upstream, cf. section 3.3.1.

To this end, a new variable U := U — Y is introduced, whereas V in the
momentum equation (3.14) is expressed by means of the continuity equation
(3.13) via

YU oo

With the mapping of Y onto the computational domain n € [0, 1]

1 1
Y(n) =Y, (1 — )
— Qn 1+ agm

with the scaling parameters a; , Y the representation of the numerical grid

in the new coordinates (X, ) is introduced
(Xi,m) = (Xo +iAX;, jAy) i €N°, j=0,...N;

where the step size in X-direction AX; is adaptable and the step size in 7
direction Anp = 1/N; is fixed. X, represents some initial value which is no
loss of generality because of the translation invariance of the eigensolutions.
Specifically, values ay, = 0.75 , Yy, = 20.0 for the results for n = 2, 3 in
section 3.3.5, 3.3.6 and section 3.3.7 and Y; = 10.0 for the results for n = 4
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in section 3.3.8 and 3.3.9.

The derivatives in X-direction are resolved by means of a Cranck-Nicholson
discretization, making use of the known/old velocity profile evaluated up-
stream at X; ; and the unknown/new velocity profile downstream at the
next grid point at X;. For the derivatives in 7-direction central differences
evaluated at the grid point 7; are used.

The matching condition (3.17) is implemented as
A=U(X, Y = Y(1)).

This is justified because of the exponential decay of U for Y > 1 which
one infers from the asymptotic representation of the stream function ¥ for
Y > 1, VX, see the discussion following equation (3.33).

The results of the numerical calculations presented in the following sec-
tions 3.3.5, 3.3.6 and 3.3.7 have been obtained by choosing the values Y., =
68.57 and Y., = 34.29 in the sections 3.3.8 and 3.3.9. The number of grid
points in n-direction N; = 200.

In the rare cases, where separation occurs, the FLARE approximation,
Reyhner & Fliigge-Lotz, [67], has been applied which yields reasonable good

results as long as the region of separated flow remains small, |2].

3.3.4 Calculation of the Material Parameters for PP10

Due to the canonical form of the fundamental problem, its solutions are in-
dependent of specific physical values for the parameters governing the chan-
nel geometry and working medium. However, it is instructive to choose a
definitive physical setup for numerical experiments in order to verify that
the proposed scalings, which are at the bottom of the interaction problem
considered here, do lead to sensible numerical values for the scaled mate-
rial parameters, I'_, A_o, N_o and @, in case of realistic working media,
inflow conditions and geometric dimensions.

As an example medium for a possible candidate of a BZT fluid PP10,
C13F99, has been chosen. Guardone & Argrow, cf. [25|, commented on the

expected thermal stability of PP10 and presented more recent material prop-
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Commercial | Chemical M éc P, Ze éb Ev,o0 n w
name formula | (g/mol) (K) (atm) (K)
PP10 Ci3F29 574 630.2 16.2 0.2859 | 467 | 78.37 | 0.5255 | 0.4833

Table 3.1: Experimental data for PP10, [25]. M molecular weight, P, critical
pressure, 0. critical temperature, Z,. critical compressibility factor, 0y boiling
temperature at 1 atm, & _ specific heat for dilute states (p — 0) at 6., R
specific gas constant, n exponent in (3.43), w acentric factor

erties than those that can found in [16] or [17], see table 3.3.4. Another
promising class of media suitable for experimental usage are Siloxanes, [12].

The fundamental derivative is a secondary thermodynamic quantity, i.e.
it cannot be accessed by direct measurements or, in case of numerical cal-
culations, partial derivatives of the thermodynamic state variables p and p
have to be calculated for isentropic flow conditions; see the definition of I’
in equation (1.1). Therefore, a functional representation of the thermody-
namical equation of state (EOS) for PP10 has to be chosen. The selection
of an appropriate EOS, also in the light of the scarce and inaccurate data
accessible, is a vast field in itself, see [19], [25], [11], [12] or [95]. For the
presented numerical calculations the Martin-Hou EOS, [53|, has been cho-
sen, since the Martin-Hou EOS is reasonably realistic in predicting regions of
negative I' using a small number of experimental data and being applicably
with acceptable numerical efforts.

Since the Martin-Hou EOS is only a thermal EOS, i.e. an incomplete
form of an EOS in the sense that it provides a function for p = p(8, p)
only, the thermodynamic character of the fluid under consideration has to be

completed by providing a caloric EOS
_ 0 P Op ~ _
é@,~:ér+/évmrd7+/ <9—~0, — (0, )dl, 3.42
(6.7) e+ [ (05500 -50.0) 4(3). G2

[53], |25], where é denotes the specific inner energy, the subscript r denotes
some reference state and the subscript oo indicates that the quantity is eval-
uated for dilute states, i.e. p — 0. Following [88] the functional form of

Ev,w(é) in the neighborhood of the critical temperature is approximated by
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a power law

é n
() o

The numerical implementation of the EOS for the calculation of I' and its
higher derivatives A and N follows the procedure applied by Colonna in [13],
which moreover gives a very comprehensive selection of various thermody-
namic expressions applicable for the calculation of secondary thermodynamic
quantities.

The dynamic viscosity has been calculated using the method of Chung,
Ajlan, Lee & Starling, [9] for nonpolar fluids. The data used is listed in
table 3.3.4. The method itself as well as the used data have to be taken
with caution, [36], in case of dense gases, however, the main purpose here is
simply to provide realistic values for the transport quantity.

Finally, one has to make assumptions on the position of the interaction
region in the channel. For the numerical results presented in the following
sections it has been assumed that the interaction region is located at Ly = 1m
from the channel entry. Furthermore, 9;p = 1, see section 2.2.1, being the
most general situation.

The properties of the undisturbed boundary layer needed in the affine
transformation (2.201), i.e. R,, p, and Ul,, are obtained by considering
the compressible boundary layer equations in the limit of dense gases having
large relative specific heats. In section 2.1.2 it has been argued that in
case of a plane parallel constant flow in the core region of the channel the
temperature and the pressure are constant in the whole boundary layer.
Therefore, R, = 1 and p,, = 1. The boundary layer flow can be considered to
be incompressible and has a self-similar representation in the form of (2.103)
leading to Uj), = f'(0). f'(0) = 0.332 can be calculated by numerically
solving Blasius’ equation (2.104) or by referring to the literature.

Figure 3.5 shows the various pressure and density pairs at channel entry

used for the numerical calculations in the following sections.
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Figure 3.5: Reduced pressure vs. reduced density diagram for PP10 accord-
ing to the Martin-Hou EOS. Red symbols mark the pressure and density
at channel entry used in the numerical calculations. [J: example 1, section
3.3.5, +: example 2, section 3.3.6, ¢: example 3, section 3.3.7, () : example
4, section 3.3.8, A: example 5, section 3.3.9. n indicates the nonlinearity in
the pressure to be considered in the interaction law.
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3.3.5 Example 1: Compression Shock

As first example the internal profile of a compression shock is considered
here. The selected inflow conditions and scaled quantities are summed up in
table 3.2. The chosen inflow pressure and the inflow density are depicted in
the pressure vs. density diagram for PP10 shown by figure 3.5.

On the left hand side in figure 3.6 the negative perturbation of the mass
flux density G vs. the pressure P is shown. As stated in the shock admissi-
bility criteria theorem 3.1.1, the pressure before and after the shock in inviscid
flows, P’ and P?, are connected by the Rayleigh line. The arrow indicates the
transition from super- to subsonic as required by the admissibility criteria.
Sonic flow conditions are obtained at P = 1 where G| exhibits an extremum.
A shock discontinuity in the pressure is sketched to the right in figure 3.6
indicated by the dashed lines. Interestingly enough, the shock discontinuity
predicted by the theory of inviscid flows resolves into a smooth transition
from super- to subsonic the moment the interacting boundary layers at the
wall are considered in the model as is shown for the pressure, displacement
thickness and wall shear stress distribution in figure 3.6. Moreover, figure
3.6 immediately gives an interpretation for the physical mechanism of shock
regularization encountered. If the distribution of the displacement thickness
— A would be a given function of X, then the interaction law (3.18) would de-
scribe the inviscid core region flow of dense gases through a nozzle of variable
throat area, compare section 2.1.1 or equation (2.75). However, in contrast
to a nozzle of fixed geometry the flow in the boundary layers at the wall and
thus — A has the possibility to adapt to the local pressure acting in the inter-

action region. Since the pressure in a compressive pseudo-shock is increasing
dp
ax
ated throughout the interaction region, see (2.180). This is brought about by

monotonously, > 0, the flow passing through the upper deck is deceler-

a reduction of the effective throat area, i.e. by an increase of the disturbance
d(=4)
dx
the flow is supersonic. A smooth transition of the upper deck flow through

of the displacement thickness, > 0, in the part of the upper deck where

the sonic state characterized by P = 1 can only be effected if at the same

time the effective throat exhibits an extremum, i.e. % = 0, see figure 3.6.
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Po/Pe pe/po 0o /0. uo o K To Re
(m/s) (Pas)
1.0268 1.240 1.00490 28.1 3.67107° | <0 | 1.00 | 3.88 108
€3 Az 031 03m Hsy, '« Q1
0.166 | 0.00455 | 8.4210=6 | 5.08 10—° 0.0112 1.00 4.26

Table 3.2: Selected inflow conditions at channel entry and resulting scaled
parameters for the interaction problem. Q)1 = Q(Hzy = 1).
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Figure 3.6: To the left, plot of the mass flux density Gy for quadratic nonlin-
earity in the pressure and Rayleigh line connecting the pressure before and
after the shock, P’ and P To the right, plot of the perturbation of the
pressure, displacement thickness and wall shear for Q = 1, S_,, = 0.

After the sonic state has been transversed the upper deck flow is subsonic and

a further deceleration is achieved by a successive decrease of d((;XA) < 0. On
the other hand, the displacement effect characterized by — A originates from
the lower deck reacting to the acting pressure gradient. Because of the small
velocities close to the walls the flow in the lower deck behaves incompressible,

see section 2.2.2, and consequently, the reduction of the effective throat area

for the upper deck flow, corresponding to d(d_XA) > 0, is brought about by a
deceleration of the lower deck flow and the increase, i.e. % < 0, by an

acceleration. Finally the lower deck flow reaches an undisturbed flow profile
far downstream again. Summing up, one therefore concludes that the vis-
cous boundary layers are forming a “viscous” Laval nozzle that adapts to the
pressure, diminishing or expanding the effective throat area the upper deck
flow feels ensuring a smooth transition of the flow conditions from super- to
subsonic and thus regularizing a possible shock discontinuity in the inviscid
upper deck flow.

Furthermore, the internal shock profile truly connects the undisturbed

PCL
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Figure 3.7: Plot of the pressure P and the displacement thickness —A for
@ =1, 5_, =0 and comparison of the asymptotic behavior far downstream
X > 1 predicted by equation (3.39) and (3.40).

flow states up- and downstream of the interaction region represented by
P =0 and P® = 2. As this can be seen simply by inspection of the numeri-
cal results for the upstream part of the shock profile due to the exponential
behavior exhibited by the solution for X — —o0, see equation (3.19), the the-
ory predicts only a weak algebraic decay for the far downstream behavior, see
(3.40) and (3.39). Therefore, the theoretically expected downstream pressure
P? has to be confirmed by the comparison between the leading order terms
of the pressure and displacement thickness for X > 1 with numerical results,
shown in figure 3.7. In the first step, the function describing the asymptotic
far downstream behavior of A (3.39) is fitted to the numerical results de-
livering the numeric value for CoK; ~ —1.8 in (3.39). In the next step the
unknown coefficient in (3.40) can be calculated leading to P ~ 2 — 1.8X /3
taking into account P® = 2. Therefore, in the limit X — oo an undisturbed
flow state, P — P® and A — 0, is approached far downstream as well.
Figure 3.8 shows the influence of the parameter () entering the interaction
law on the distribution of the pressure, displacement thickness and wall shear
stress. As has been mentioned earlier, () is a measure for the intensity of the
coupling between the upper- and lower deck reactions to changes in the flow
field. Taking a look at the definition of @, (2.205), a variation of @ could
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be achieved, e.g., by varying the scaled height of the channel Hjy, (2.161).
By reducing @), i.e. reducing the strength of the regularizing effect of viscous
inviscid interaction, the pressure profile more and more seems to approach
the discontinuous solution of a shock, again depicted by the dashed lines in
figure 3.8. However, this forces an increasingly stronger reaction of the lower
deck flow as is revealed by inspecting the plot of the displacement thickness
in figure 3.8. Because of the destabilizing effect of the unfavorable pressure
gradient acting in a compressive shock profile, i.e. % > 0, on the boundary
layer flow the minimum of the wall shear stress decreases with increasing
steepness of the pressure profile. Finally, the flow starts to separate locally,

Tw < 0, the beginning of which is shown in 3.8 for a small region of separation.

3.3.6 Example 2: Rarefaction Shock

As second example the internal profile of a rarefaction shock has been calcu-
lated. The selected inflow conditions and scaled quantities are summed up
in table 3.3. The chosen inflow pressure and the inflow density are depicted
in the pressure vs. density diagram for PP10 shown by figure 3.5. As can be
observed the flow conditions lie in the thermodynamic region I' < 0, case of
negative nonlinearity.

On the left hand side in figure 3.9 the negative perturbation of the mass
flux density Gy vs. the pressure P is shown being strictly concave in the
case of negative nonlinearity. Application of the shock admissibility criteria
in theorem 3.1.1 indicates that a rarefaction shock is the admissible type of
shock for this flow configuration as it leads to a transition from super- to
subsonic flow conditions. As before the shock discontinuity in the pressure
is sketched to the right in figure 3.9 indicated by the dashed lines. Again,

Po/pPe | pe/po 00/0c o 10 K 1) Re
m/s Pas
0.949 | 1.710 0.997 35.5 3.00107° | <0 | —0.115 | 4.36 108
€3 Az 031 03m Hg, '« Q1
0.133 | 0.0235 | 2.014 10~° | 1.52 10~* 0.0645 —1.00 24.9

Table 3.3: Selected inflow conditions at channel entry and resulting scaled
parameters for the interaction problem. Q)1 = Q(Hzy = 1).
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Figure 3.9: To the left, plot of the mass flux density Gy for quadratic nonlin-
earity in the pressure and Rayleigh line connecting the pressure before and
after the shock, P’ and P To the right, plot of the perturbation of the
pressure, displacement thickness and wall shear for Q = 1, S_,, = 0.

the shock discontinuity resolves into a smooth internal shock profile if the
interacting boundary layers at the wall are taken into account; see the plot
of the pressure, displacement thickness and wall shear stress distribution in
figure 3.9.

As has been noted in the case of a compression shock, the internal shock
profile truly connects the undisturbed flow states up- and downstream of
the interaction region represented by P’ and P?% The internal profile is
characterized by exponential behavior far upstream, (3.19), and by weak
algebraic behavior far downstream, (3.40) and (3.39).

The influence of the parameter ) on the internal profile is depicted in
figure 3.8. Most important of all, it illustrates the stabilizing effect the
favorable pressure gradient in an expansive pseudoshock has on the boundary
layer flow at the wall. At the beginning, the lower deck flow passing the
interaction region is accelerated rather than decelerated as in the classical
compressive case treated in the previous section. This leads to a widening
of the effective throat area in the supersonic, or in other words to negative
values of the disturbance of the displacement thickness —A. After the sonic
state has been transversed in the upper deck flow regime the lower deck flow

decelerates again back to the undisturbed flow profile leading to an successive

P(l
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Figure 3.11: To the left, plot of the mass flux density G for cubic nonlin-
earity in the pressure and Rayleigh line connecting the pressure before and
after the shock, P’ and P?. To the right, plot of the perturbation of the
pressure, displacement thickness and wall shear for Q = 1, S_,, = 0.

ascent, of —A. Consequently, the maximum of the wall shear stress increases
with increasing steepness of the pressure profile. The wall shear stress itself

always is > 1 and thus flow separation is avoided in the entire flow field.

3.3.7 Example 3: Sonic Shock

As third example the internal profile of a rarefying sonic shock has been
calculated. The selected inflow conditions and scaled quantities are summed
up in table 3.4. The chosen inflow pressure and inflow density are depicted
in the pressure vs. density diagram for PP10 in figure 3.5.

On the left hand side in figure 3.11 the negative perturbation of the mass
flux density Gg vs. the pressure P is shown. A sonic shock is only possi-

ble in the case of mixed nonlinearity, if I' changes its sign in the considered

Po/Pe pe/po 00/0c uo o K Ty Ao | Re
(m/s) (Pas)
0.914 | 1.917 0.994 40.2 2.80107% | <0 | —0.0512 | —0.918 | 4.71 108
€3 As d31 03m Hsy I' Ao Q1
0.215 | 0.00997 | 9.93 1076 | 4.61 107> | 0.0999 —1.00 | —0.375 4.48

Table 3.4: Selected inflow conditions at channel entry and resulting scaled
parameters for the interaction problem. @1 = Q(Hz = 1).
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Figure 3.12: Plot of the pressure P and the displacement thickness —A for
@ =1, 5_, =0 and comparison of the asymptotic behavior far downstream
X > 1 predicted by equation (3.39) and (3.41).

flow regime, resulting in a non-convex flux function. The admissible rarefac-
tion shock in the situation under consideration results in a transition from
a supersonic flow state to a sonic state, i.e. M = 1. As before, the shock
discontinuity in the pressure is sketched on the right hand side in figure 3.11
indicated by the dashed lines. And again, the shock discontinuity resolves
into a smooth internal shock profile connecting the two states before and after
the interaction region characterized by P® = 0 and P® = —4. The influence
of the coupling parameter () on the steepness of the internal shock profiles
has already been discussed in the previous section and no new phenomenons
enter here. More interesting is the algebraic decay of the pressure in case of
a shock terminating in a sonic state, i.e. G|, (P*) = 0, which is even weaker
than in the case of a shock terminating at a subsonic state, i.e. G[,,(P?) # 0.
As in the latter case, see figure 3.7, figure 3.12 shows a reasonable good agree-
ment of the leading order term of the pressure distribution far downstream
predicted by theory for a shock ending in a sonic state, equation (3.39) and
(3.41), and the numerical results. This weaker algebraic decay results in an
increased length of the shock profile as can be seen by comparing e.g. figure
3.7 and 3.12.

Alternatively to a shock connecting supersonic flow upstream with sonic
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flow downstream considered so far, a sonic shock can equally well connect
sonic flow upstream with subsonic flow downstream in accordance with the
shock admissibility criteria theorem 3.1.1 since the condition [M] < 0 is
satisfied in the latter case just as well. Evaluation of the exponent (3.24)
governing the exponential growth of the flow quantities far upstream, (3.19),
results in k = 0 because of Gb](Pb) = 0 meaning that the Ansatz of Lighthill
yields the trivial eigensolution in this case. On the other hand, there always
exists a nontrivial eigensolution for each supersonic flow state upstream no
matter how close it is to the sonic flow state. Consequently, the internal
shock profile of a sonic shock originating in a sonic flow can be seen as the
limiting case of internal shock profiles originating in supersonic flow when
M?® — 1%, This will be used and shown in the next section dealing with the

internal shock profile of a double sonic shock.

3.3.8 Example 4: Double Sonic Shock

As fourth example the internal profile of a double sonic shock has been cal-
culated. The selected inflow conditions and scaled quantities are summed up
in table 3.5. The chosen inflow pressure and the inflow density are depicted
in the pressure vs. density diagram for PP10 in figure 3.5.

On the left hand side in figure 3.3.8 the negative perturbation of the
mass flux density Gy vs. the pressure P is shown. Similar to the case of a
simple sonic shock a double sonic shock is only possible in the case of mixed
nonlinearity, if I' changes its sign in the considered flow regime, resulting in
a non-convex flux function. For the existence of a simple sonic shock a single
change of the sign of I' in the flow region is sufficient. However, a double

sonic shock in principle can only exist if ' changes sing twice resulting in

po/pe | pe/po o /0c Uo Fo K To Ao | No | Re
(m/s) (Pas)
0.942 | 1.850 1.00023 40.1 2.87107° | <0 | 0.0134 | —0.455 | 6.48 | 4.75 10®
€3 Az Y 03m Hsy, | RNDSS Ao N_ Q1
0.264 | 0.0184 | 1.21 107° | 4.59 10~° 0.514 —1.00 | —0.434 | 0.0761 7.08

Table 3.5: Selected inflow conditions at channel entry and resulting scaled
parameters for the interaction problem. Q)1 = Q(Hzy = 1).
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Figure 3.13: To the left, plot of pressure P vs. the mass flux density G[4). The Rayleigh lines are
shifted from right to left by varying QQS_o successively approaching the limiting case of a double sonic
shock for QS_oc,mas indicated by the dashed Rayleigh line. To the right, plots of the perturbation of
the pressure, displacement thickness and wall shear stress for Q@ = 1, QS_oc = 0.15,0.20,...,0.55. In the
plot of the pressure a double sonic shock for the inviscid case indicated by the dashed lines is sketched for
illustration.
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a mass flux density which is represented by a polynomial of fourth order
in the pressure, i.e. n = 4. Consulting figure 3.5, the double sonic shock
originates in a thermodynamic region in the pressure vs. density diagram
close to the point where an insentrope touches the transition line I' = 0.
Since the second derivative of I', i.e. N, has to be positive in the region
of interest, cf. e.g. [35], the flux function Gy always takes a shape similar
to the example depicted in figure 3.3.8 in the sense that Gpy(P) — +oo
for P — 400, see equation (2.2.2). As has been discussed in the previous
section, an eigensolution representing the internal shock profile degenerates
to the trivial eigensolution if the shock originates at sonic flow conditions.
Still, the internal shock profile is the limiting case for the internal shock
profiles originating in supersonic flow when M® — 1% for which nontrivial
eigensolutions exist no matter how close the flow conditions upstream are
to a sonic flow state. This fact has been used in figure 3.3.8. Again, the
double sonic shock is sketched by the dashed lines in the plot of the pressure
distribution to the right. The flow conditions upstream of the interaction
region are adjusted by varying the parameter )S_,, in the interaction law
and thus shifting the Rayleigh lines from right to left by a distance —QS_
from the origin, see left hand side of figure 3.3.8. The limiting case of a
double sonic shock would be obtained for QS_ = QS_ maz, see figure
3.3.8. Prescribing a value QS_,, # 0 is identical to changing the height
of the channel and the inflow conditions according to the way described in
section 3.2; see figure 3.2 in particular.

Considering the various Rayleigh lines in figure 3.3.8 it is evident that
the overall shock strength increases whilst approaching the limiting double
sonic shock. On the other hand, considering the plot of the internal pressure
profiles, the length of a shock profile, i.e. the region of significant variation of
the pressure, is increasing accordingly. Taking a look at the formulas for the
asymptotic behavior far up- and downstream immediately reveals that both
the exponent in (3.19) and the coefficient in (3.40) are becoming successively
smaller for M® — 1%, i.e. an] — 07 and thus explaining the increasing
length of the internal shock profiles. This phenomenon of increasing shock

length for increasing shock strength already has been reported in a different
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context by Cramer & Crickenberger, [18], who studied internal shock profiles
resulting from a classical thermo-viscous regularization.

Moreover, an admissible double sonic shock is bound to be a rarefaction
shock in accordance with the shock admissibility criteria for the inviscid case,
theorem 3.1.1. This can be concluded from inspection of figure 3.3.8 and by
additionally considering the arguments about the possible shapes of a flux
function Gy addressed in the beginning of this section. A double sonic
shock has to connect two separate extrema of of Gy and, since Gy — oo
for P — +oo because of N > 0, these two extrema have to be minima. The
remaining extremum of Gy is a maximum and has to lie in-between. Let
Prin > Phin
Then Gy < 0 for P € {Py,, Pas} and Gy > 0 for P € {Ppas, Py}

and, consequently, the internal shock profiles used to construct the limiting

characterize the two separate minima and P,,,, the maximum.

solution of a double sonic shock can correspond to rarefaction shocks only

and thus a double sonic shock likewise has to be a rarefaction shock.

3.3.9 Example 5: Split Shock

As fifth and last example the internal profile of a split shock has been calcu-
lated. The selected inflow conditions and scaled quantities are summed up
in table 3.6. The chosen inflow pressure and the inflow density density are
depicted in the pressure vs. density diagram for PP10 in figure 3.5.

On the left hand side in figure 3.3.9 the negative perturbation of the mass
flux density Gy vs. the pressure P is shown. similar to the case of a double
sonic shock a split shock is possible only in the case of mixed nonlinearity
where I' changes its sign twice in the considered flow regime, i.e. n = 4,

resulting in a non-convex flux function which is represented by a polynomial

po/pe | pe/po 0o/0c tig fio K To Ao | No | Re
(m/s) (Pas)
0.945 | 1.84 1.00042 39.8 2.88107° | <0 | 0.0110 | —0.407 | 6.90 | 4.72 10%
€3 As 931 03m Hsy, | RNDSS Ao N_wo Q1
0.264 | 0.0184 | 1.21 1075 | 4.59 10~° 0.514 —-1.00 | —0.563 | 0.141 6.44

Table 3.6: Selected inflow conditions at channel entry and resulting scaled
parameters for the interaction problem. Q)1 = Q(Hzy = 1).
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Figure 3.14: To the left, plot of pressure P vs. the mass flux density Gp4. The Rayleigh lines are
shifted from right to left by varying QQS_o successively approaching the limiting case of a split shock for
QS o, maz indicated by the dashed Rayleigh line. To the right, plots of the perturbation of the pressure,
displacement thickness and wall shear stress for Q = 1, QS_~ = 0.00,0.05,...,0.40. In the plot of the
pressure a split shock for the inviscid case indicated by the dashed lines is sketched for illustration.
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of fourth order in the pressure. The Rayleigh line of the split shock is given
by the dashed line which touches the flux function G|y at a sonic point at
the distance QS_o mas from the origin. Again, the split shock can be inter-
preted as the limiting case for simple shocks for QS_o — QS_scmaz- The
flow in the upper deck region has to pass through three sonic sates, see figure
3.3.9, while the overall shock leads to a transition from super- to subsonic
conditions. The three sonic states result in three extrema in the distribu-
tion of the disturbance of the displacement thickness —A. The lower deck
flow generates a viscous Laval nozzle which consists of two throats and one
anti-throat in order to allow a smooth acceleration of the upper deck flow
through the different Mach number regimes. Taking a look at the calculated
pressure distribution of internal shock profiles for various values of (QS_.
on the right hand side in figure 3.3.9 reveals that the shock splitting can al-
ready be anticipated in the pressure profiles for vales of QS_. < QS_c maz-
After the upper deck flow has passed through the first sonic state resulting
in a passage from super- to subsonic flow, the pressure enters a plateau re-
gion while passing the second sonic state as the the flow is accelerated from
sub- to supersonic again. Finally, the then supersonic flow passes the third
sonic state and the flow becomes subsonic again. The last transition from
supersonic to subsonic conditions results in a second steepening of the shock
profile. This phenomenon of impending shock splitting becomes more and
more pronounced successively separating the two regions of largest ascent in
the pressure profile for QS_o — QS_o maz- The existence of an internal
shock profile infers that indeed two shocks forming a split shock may coexist
next to each other in purely inviscid flow throughout this limited thermody-
namic region as predicted by the shock admissibility criteria . Interestingly
enough, similar to the case of a double sonic shock discussed before, this
phenomenon of impending shock splitting has also been observed first by
Cramer & Crickenberger, [18], for internal shock profiles resulting from a

thermo-viscous regularization.






Chapter 4
Viscous Laval Nozzle

The flow field resulting form viscous inviscid interactions generated by the
presence of a small surface mounted hump within the transonic flow field
in a slender channel, cf. figure 4.1, will be discussed. Considering the cen-
terline symmetry of the problem this surface mounted hump in fact forms
a small nozzle. The viscous inviscid interactions shall be described by the
problem previously formulated in definition 2.2.1, i.e. the dimensions of the
channel and the surface mounted hump shall be consistent with the length
scales proposed in the formulation of the distinguished limit for this Re num-
ber regime, cf. section 2.2, and the inviscid flow in the upper deck of the
interaction region is one-dimensional to the leading order.

Section 4.2 will discuss the influence of the interaction between the steady
flow field developing in the core region of such slender nozzles and the viscous
boundary layers at the walls highlighting the similarities and differences to
purely inviscid one-dimensional theory of Laval nozzles. In the major part of
this chapter the working media will be considered to be perfect gas like, i.e.
[' > 1. The conversion of subsonic flow to supersonic flow by means of Laval
nozzles is of importance in technical applications and taking into account the
trend towards miniaturization the presented solutions will give a qualitative
description of phenomena expected to be encountered in such flow devices
where the influence of the viscous boundary layers at the walls on the inviscid

flow in the core region no longer can be considered to be an effect of higher
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Figure 4.1: Small surface mounted hump of height A in a slender channel.

order as it would be the case in classical hierarchical boundary layer theory.

Incidentally, an operating mode close to choking conditions, that is close
to flow conditions for which no stationary solutions exist, will be identified
for such slender nozzles connected with the appearance of pseudo-normal
shocks, cf. e.g. [54], in the diffuser part of the nozzle. These pseudo-normal
shocks are representing regularized versions of weak normal shocks known
from purely inviscid Laval nozzle theory. If the strength of such a pseudo-
shock is sufficiently large, then the boundary layer flow at the walls is bound
to separate. It is known from observations that such shock induced flow
separation in transonic diffusers frequently is connected with the occurrence
of self sustained shock oscillations, [7], [27], [54], [55], [66], [60], [93]. The
problem of viscous inviscid interactions in slender channels stated in defini-
tion 2.2.1 poses a simplified model capable of describing the essential features
to be expected at the basis of the occurrence of shock oscillations, namely
the interaction of the (pseudo-) shock and the separated flow in the wall at-
tached boundary layer. The reaction of an initially steady interacting nearly
choked flow field in a slender nozzle to unsteady disturbances will be in-
vestigated in section 4.3. Following [54| the transonic diffuser flow can be
classified into three types with respect to shock oscillations: no separation
flow, shock-induced flow (the separation being triggered at the shock root)
and pressure-gradient-induced separation flow. The first case will be dis-
cussed in section 4.3.2 and the second in section 4.3.3. The third one will

not be covered in the scope of this treatise.
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4.1 Numerical Method

4.1.1 Stationary Problem

The fundamental lower deck problem equations (2.207) to (2.213) and the
interaction law (2.214) in definition 2.2.1 are discretized by means of finite
differences of second order. In the next step, the resulting system of d alge-

braic equations
F(s)=0 F,secR? (4.1)

with s the d-dimensional solution vector is solved by a variant of the Powell
Hybrid algorithm, e.g. [63], which has been adapted and used by R. Szeywerth
for the numerical treatment of other triple deck problems, [84]|. The sparsity
of the Jacobian DgF of F is conveniently exploited by the implementation of
the sparse solver routine PARDISO, [70], [68], [69]. To this end, the physical
domain (X,Y) € RxR* is mapped onto the bounded computational domain
(&,m) € [-1,1] x [0,1/c,] . The mapping & — X (£) € C*([—1,1]) is sought

in the form

X_(§) —1<¢<é;
X)) =qXn(€) & <e<é&f
X4 (§) Er<e<1

introducing three functions X_, X, and X,

XFr—X-1+¢& 1 1
X =X Si Sj 2m£S e\ e\ |
s  Ss o —&s +&s
1 (H—ES_) 1+ (Hf;)
o X - XT ~
Xm(§) =X + 22— -&),
&F =&
XF—X-1-¢F 1 1
Xofg) = X7+ o — e 128 -

B S  Su A N <£;*)m+ 14 <£+5J>m+
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The parameters m™ and m™ are chosen to account for the far up- and down-
stream behavior of the numerical solution. Most important of all, X,, is a
linear mapping of an interior region [X,, X ] of the physical domain onto an
interior region [£,,£] of the computational domain. The complicated form
of X_ and X originates from the fact that X (¢) € C*([—1,1]) which results
in the requirements X' ((¢7)—) = X, ((§7)+) and X7, ((£5)—) = X ((€)+)-

The map n — Y (n) € C*([0,1/ay]) is sought in the form of

1 1
— Qgn 1+ agm

where the parameters Y, and a, are chosen to properly account for the be-

havior of the solution in Y-direction. The representation of the uniform

numerical grid in the new coordinates (£, 7) is introduced

where the step size in ¢-direction and in 7 direction are given by A¢ = 2/N;
and An = 1/Nj respectively. For the numerical treatment of the fundamental
problem the transformation U = U—Y is introduced and V in the momentum

equation (2.208) is expressed by means of the continuity equation (2.207)

1 oU, ., .
X/(6) 8—6(57 n)Y'(n)dn. (4.2)

You )
—_ [ Zx,v)ay = —
Ve[ ggex /0

The derivatives in ¢-direction are resolved by means of a Cranck-Nicholson
discretization, i.e. 0o /O ~ (o;; — ;1 ;)/AE, if Uy, = Yi; + Uij > 0,
and by means of backward finite differences of second order, i.e. 0o /I ~
(3o ; —4e_;;+e,_5;)/2A¢ in regions of separated flow, i.e. U;; =Y, +
Ui,j < 0. Numerical experiments showed that the discretization based on a
Cranck-Nicholson approach is superior to a discretization based on backward
differences in regions without flow separation, also in the light of a reduced
computational main memory consumption. However, it has been found that
the Cranck-Nicholson discretization is not always sufficient in regions of larger

flow separation indicated by the occurrence of numerical oscillations. It shall
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be mentioned that the initial strategy of formulating the problem by means of
the stream function has been abandoned in favor of the described procedure
because of the observed numerical problems in regions of flow separation. For
the discretization of derivatives in n-direction central differences evaluated at
the grid point 7); are used and for the evaluation of the integral in (4.2) the
trapezium rule is applied. The matching condition (2.213) is implemented as
A =U(X, Ymee = Y(1)). This is justified because of the exponential decay of
U for Y > 1 which one infers by inspection of the asymptotic representation
of the stream function ¥ for Y > 1, VX, see the discussion following equation
(3.33). The no slip condition at the wall requires U; o = 0 for i = 0,..., N;
and the matching with the undisturbed boundary layer upstreams results in
the conditions Uy ; = 0 for j =0,..., N; — 1.

The discretization of the interaction law for steady upper deck flow, i.e.
OP/OT = 0, relies on the formulation in differential form (2.214) and not
on the integrated form (3.18), since the formulation (2.214) will be used in
the numerical adaption of a linear stability analysis undertaken for selected
solutions to the stationary problem in section 4.3.3. Equation (2.214) is

rewritten as

diX (G(P) = Q(A=9)) = X}(Od% (Gm(P)—Q(A=15)) =0 (4.3)

and afterwards approximated by G; =0 Vi with

% (G[n](P¢+1)*Q(A¢+1*Si+1);;(£G[n] (Pi—1)—Q(A;—1—S;—1)) i=1,... N —1
Gi = 1 (G(P)—Q(A;i=8:))— (G (Pi—1)—Q(Ai—1—Si—1)) i—= N
Xi_1/2 Ag -

(4.4)

where X |, = X'(—=1+ (i — 1/2)AE).

For the numerical results presented in this chapter -unless otherwise
stated- the number of grid points in &- and n-direction are N; = 1400 and
N; = 100 respectively, £, = 100/N;, & = 1100/N;, m~ = m*™ = 1.3,

X:=-3,X5=3,Y, =02, a, = 0.98, V,pur ~ 9.9.
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4.1.2 Unsteady Problem

It is important to note that the numerical scheme for the interaction law
in unsteady form, (2.214), is developed having in mind a strictly convex or
concave function G, i.e. n = 2. To this end, a method of line, [71], is used
for the discretization of the partial differential equation. In the first step the
discretization scheme for the spatial coordinate which has been described in
the previous section, equations (4.3) and (4.4), and which is of second order
in space is applied to the expression ai (G[n}(P) —Q(A - S)) in equation
(2.214) yielding the following system

0P,
orT

=G/(T) i=1,...,N, (4.5)

of N; ordinary equations. The time-integration from 7,, = nAT to T, 11 =
(n + 1)AT of the obtained system of ODEs with the known solution at 7,
as initial condition then is performed by means of the TR-BDF2 method,
cf. [31], [50], an one-step two staged method being of second order in time.
The TR-BDF2 method is L-stable, cf. [31], and has been developed for the
time integration of a numerically stiff system of ODEs. That such a stiff
time integration is necessary has been indicated by preliminary numerical
experiments performed with a numerical scheme based on an implicit Lax-
Wendroff scheme. The idea behind an implicit Lax-Wendroff scheme has been
to think of the interaction law (2.214) as to be consisting of a “hyperbolic
part” or “kinetic wave equation part”, i.e. —g—? + Q%G[n}(P), and a “source
term” B%Q (A —S). Using the Lax-Wendroff approach in order to derive
the numerical scheme for equation (2.214), [50], one finally obtains a scheme
of second order which can be written in the form of the classical implicit
Lax-Wendroff scheme for the “hyperbolic part” extended by the numerical
representation of the “source term”. The numerical results, however, indicate
that disturbances calculated by this method are traveling at wrong finite
speeds despite the effort to use a conservative formulation for the hyperbolic
part of the interaction law in the first place, cf. the discussion of the linearized
problem in section 4.3.1 as well as cf. figure 4.8(a). This phenomenon is

well known in the literature dealing with conservative numerical schemes for
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hyperbolic PDEs with source terms, cf. [48] and [50], hinting that the source
term is stiff indeed.

The first stage of the TR-BDF2 method consists out of the trapezoidal
step

PMT - P =17AT (G} +GT) i=1,...,N; (4.6)

where the superscripts n and n + 7 has the meaning evaluated at the time
nAT and (n+ 7)AT, respectively. AT is the chosen time step which is kept
fixed throughout the calculations. In general 7 € (0, 1) but in order to obtain
the property of L-stability for the overall time-integration 7 has to be chosen
7 = 2 —+/2, cf. [31]. The governing equations, cf. (2.207) to (2.213), for
the quasi-steady lower deck problem for the time 7)., have to be solved as

a side-condition
RN 3 Fip(s™) =0 "7 e R? (4.7)

for equations (4.6) where the system of algebraic equations given by Fp is
obtained by straightforward application of the finite-difference scheme devel-
oped for the steady lower deck problem, see previous section. Together with
the IV; algebraic equations from (4.6) this results in a system of d algebraic
equations for d unknowns. In the second stage of the TR-BDF2 scheme back-
ward differences of second order are used for the time discretization of (4.5)
making use of the “old” solutions at the time 7;, and the intermediate time

T+, yielding

7(2—7)P" — P 4+ (1 —7)2P" = 7(1 — 7)ATGM! i=1,...,N
(4.8)

The system of equations (4.8) again is solved together with
RN 5 Fip(s™™) =0  s"T e R? (4.9)

from which the solution at the “new” time 7}, is obtained.
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Finally, it shall be noted that the TR-BDF2 scheme can be rewritten
in the form of a conservative finite-volume scheme despite the fact that it

originally has been derived by a method of lines and finite differences.

4.1.3 Numerical Homotopy Method

In general, the problem under consideration will depend on several parame-
ters. In the following only one of these shall be essential to the problem, i.e.
the height A\ of a surface mounted obstacle, while the others are kept fixed.
Consequently the numerical scheme and the resulting system of algebraic
equations (4.1) will depend on A as well, i.e. F(s; ) = 0. If the height of the
surface mounted obstacle is small, then the trivial solution of the interaction
problem U = V = 0 will be a good initial guess for the numerical equation
solver used and convergence is indeed obtained after several steps. For larger
A no convergence can be obtained, therefore a numerical homotopy strategy,
cf. e.g. [76], [82], is adopted. The sought after solution s, of F(s; \x) = 0
is considered to be part of a family of solutions s(\) of F(s; \) = 0. If the
solutions of two neighboring problems F(s; A\;_1) = 0 and F(s; \;) = 0 are
known an initial guess s;y1 (s for the solution of F(s;\;41) = 0 can be con-
structed by tangential updating, see figure 4.2(a). If the constructed initial
guess is good enough to obtain a new solution for \;,; the described updating
procedure can be used to obtain a solution for \;;5 and so forth until )\ is
reached. One shortcoming of this method is that it fails if a turning point
is encountered as has been depicted in figure 4.2(a) or if the solution is very
sensitive to variations of the parameter, i.e. even a small variation of A\ leads
to a large change in the solution. Therefore, the parameter \ is considered
to be a variable itself and thus part of the solution . The system of equations
F(s,\) = 0 has to be supplemented by an additional equation f(s,\) =0 in

order to close the problem. The new problem

RS F(3) = F((s,\)) = (4.10)
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can be solved in the manner previously described. The phase condition
f(s,A) = 0 is chosen as

f(8,A) =8 =si, A= X\)|| —AXN =0 (4.11)

meaning that the distance in the phase space A); between the new solution
S;1+1 and the old solution §; is prescribed, compare figure 4.2(b). AJ); is chosen
according to the method of Seydel

A)\z = A)\ifl min(2, iter0p>

iter

with iter and iter,, the number of the iterations used to obtain the previous

solution and some preset optimal number of iterations respectively.

s A S
||(S — Si, A — )\z)TH = A)\z
T
Si+1
53, est Sia1 53,est
S; S; /
Si—1 Si—1 —
Aic1 Ai g A (a) Aic1 Ai Ak A (b)

Figure 4.2: Schematic sketch of numerical homotopy method. (a) Homotopy
method with prescribed fixed new parameter value \; ;1. (b) Homotopy con-
tinuation method. New parameter value \;;; is part of the solution. s;.; cq
initial guess constructed by tangential updating, 7" turning point.

4.2 Steady Flow in “Viscous” Laval Nozzles

The subsonic near critical flow regime in a slender channel is affected by

means of a small surface mounted hump given by the relation, already written
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in lower deck scalings,

2 < |X]|

S(X) =
(1 + cos(mX/2)) | X <2.

(4.12)

> O

The surface mounted hump forms a small Laval nozzle consisting of a con-
verging, i.e. S’(X) > 0 for X < 0, and a diverging part, i.e. S’(X) < 0 for
X >0, cf. figure 4.1. The flow medium under consideration shall be ideal gas
like, i.e. I' > 1. The corresponding problem of viscous inviscid interaction
stated in definition 2.2.1 for steady flows is solved numerically, cf. section
4.1.1, for different heights X\ of the surface mounted hump using the numerical
homotopy continuation method described in section 4.1.3. The parameter n
governing the nonlinearity of the flux function G, (2.215), is taken to be
2, because of the premise of I' > 1, and K > 0 since the oncoming flow in
the core region of the nozzle is subsonic, and () entering the interaction law
is taken to be 1. Consequently, supersonic upper deck flow is encountered
for P < —1, c¢f. (2.216). The flow conditions far upstream are given by
P=A=U=0for X — —oco. Evaluation of expression (3.24) immediately
reveals that for subsonic oncoming core region flow no nontrivial eigensolu-
tions can exist besides the trivial solution. Hence the presence of the surface
mounted hump is not felt upstream of the obstruction, i.e. for X < —2. Fur-
thermore, there exist two possible undisturbed flow sates downstream of the
interaction region which are consistent with the asymptotic far downstream
behavior of the solution of the interaction problem predicted by (3.40) and
(3.39). The one given by P = A = U = 0 which is identical with the oncom-
ing far upstream flow conditions indicates subsonic and the other given by
P = —2and A =U = 0 indicates supersonic flow in the core region of the
nozzle downstream of the interaction region. Note that equations (3.40) and
(3.39) derived for the asymptotic downstream properties of eigensolutions
of the interaction problem also apply to the considered situation since the
surface mounted hump vanishes for | X| > 1,1ie. S(X) =0 for | X| > 2.
The numerical results for the perturbation of the pressure P, the part of

the negative displacement thickness evoked by the viscous lower deck reaction
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Figure 4.3: Plot of (a) P-, (b) —A- and (c) 7,~distribution for various heights
A of the surface mounted hump . A\;=0.5, \y=1.0, A3=1.5. A sonic state,
indicated by ¢, is first encountered for Ay ~ 1.335. Transition from sub- to
supersonic flow for A\.—1.60624..., for A — \.— pseudo-shocks form leading
to a smooth transition from super- to subsonic flow, mp denotes machine
precision. For A > ), there exist no steady solutions. @) = 1.
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only —A = —A* — S, see equation (2.206), and the wall shear stress 7, are
shown in figure 4.3. For small heights of the surface mounted hump, cf. the
distribution of the pressure for A\; and A, in figure 4.3(a), the upper deck flow
remains subsonic in the whole interaction region very much alike as in the
classical case of inviscid one-dimensional flow of a perfect gas like medium in
a Laval nozzle with a minimum throat area larger than the critical minimum
throat area, see e.g. [33|. Initially the oncoming upper deck flow is accelerated
in the converging part of the nozzle. However, unlike to classical theory where
the flow immediately decelerates downstream of the minimum throat area the
interacting flow in the core region of the nozzle is accelerating still in the first
part of the diverging part of the nozzle before finally decelerating back to the
undisturbed subsonic flow state P = A = U = 0. The reason, of course, is
to find in the viscous inviscid interaction taking place between the inviscid
flow in the upper deck and the viscous boundary layers at the walls. The

¢

interacting boundary layers are forming a “viscous” Laval nozzle meaning
that the effective flow area felt by the upper deck flow does not consist of
the “geometric” contribution .S alone but also of a viscous part —A, cf. figure
4.3(b), resulting form the lower deck reaction to pressure variations in the
upper deck. This is expressed by the relation —A* = —A + S, cf. (2.206),
for the overall displacement thickness and also by the interaction law (2.214)

for steady flow

P dar
dX Cdx

G’[n](P; K,T',A,N) QdiX(A - 9). (4.13)
Figure 4.5(a) again shows the distribution of P for the case of Ay, but now
together with S, —A and —A*. The flow in the lower deck is accelerated as
long dP/dX < 0 and by continuity arguments this results in a thinning of
the boundary layer, i.e. —A < 0, reducing the contribution of the surface
mounted hump on the displacement effect and thus delaying the point of
deceleration into the beginning of the diverging part of the geometric nozzle.
The effective shape of the “viscous” nozzle is given by —A*. The location of
the minimum of the effective throat area now corresponds with the minimum

of the pressure distribution, as one would have guessed by application of
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M>1
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1]

Figure 4.4: Sketch of the pressure distribution in an ideal Laval nozzle accord-
ing to classical theory (inviscid noninteracting flow, one-dimensional, perfect

gas).

classical Laval nozzle theory to this “viscous” Laval nozzle and which follows
from (4.13) considering Gy (Pmin) # 0.

If the height of the surface mounted hump is successively increased to
As the minimum in the pressure distribution eventually approaches P, = —1
meaning that at this point sonic flow conditions are obtained for the first
time. In classical theory of Laval nozzles this is the limiting case of a Laval
nozzle of critical minimum throat area and no steady solutions exist for a fur-
ther reduction of the throat area, i.e. increase of the surface mounted hump.
Moreover, in classical theory the sonic state present at the location of the
minimum throat area would correspond to a bifurcation point in the pres-
sure distribution from which two branches of continuous solutions evolve, one
corresponding to a subsonic decelerating and the other corresponding to a su-
personic accelerating flow, cf. branch 1 and branch 3 in 4.4 respectively. The
numerical results for the pressure distribution in figure 4.3(a) clearly show
that the bifurcation point for A, is eliminated by the presence of viscous in-
viscid interaction. From the former two branches only the one corresponding
to the subsonic flow remains. Furthermore, the height of the surface mounted
hump can be increased above Ay, cf. case A3 in figure 4.3(a). The pressure

distribution for A3 indicates that the upper deck flow is accelerated first to
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supersonic flow, but afterwards smoothly decelerated to subsonic flow again.
Such a solution has no counter part in classical Laval nozzle theory. Figure
4.5(c) reveals that the interacting boundary layers are forming a “viscous”
nozzle consisting out of two throats and one anti-throat and that a local su-
personic flow regime is confined in between the two “viscous” throats. The
two sonic states are located at the minima of the two “viscous” throats and
the minimum of P is located at the maximum of the “viscous” anti-throat.
This immediately follows from equation (4.13), since in case of an extremum
of A, i.e dA*/dX = 0, P takes an extremum, i.e. dP/dX = 0, if the flow is
not sonic, i.e. G’[z} # 0, or otherwise dP/dX can be # 0 at a sonic state, i.e.
=0

Furthermore, it is found that the height of the surface mounted hump
cannot be increased above a certain critical value . above which no steady
solutions can be found. Very much alike the case of an ideal Laval nozzle
in classical theory, cf. solution branch 3 in figure 4.4, the solution for A.
is just the solution which leads to a transition from the subsonic to the
supersonic regime, i.e. P = —2 for X — oo. To this end, the “viscous”
nozzle, cf. —A* in figure 4.5(d), is forming a nozzle consisting of one throat
and one anti-throat leading to a shock free acceleration of the upper deck flow
from sub- to supersonic flow conditions. Moreover, it is found that whilst
approaching A. from below, the region around the location of the minimum
in the pressure distribution is almost forming a cusp, cf. figure 4.3(a). From
a numerical point of view the numerical solution is indistinguishable to the
machine precision mp from the numerical solution for A., i.e. 0 < A\.—\ < mp,
as long as the flow in the nozzle is accelerating, i.e. dP/dX < 0. Then
the solution seems to split form the solution for A. leading to a relatively
rapid transition from super- to subsonic. Interestingly enough, there exists
a classical counterpart to such a solution which is depicted in figure 4.4, cf.
branch 2. A normal shock in the diverging part of the nozzle leads to the
transition form super- to subsonic flow, the position of the shock depends
on the outflow condition at the nozzle exit. However, due to the viscous
inviscid interaction such a weak normal shock is smoothed out or regularized

by the formation of a pseudo-shock, cf. chapter 3. By means of the numerical
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Figure 4.5: Plot of P-, —A-, S- and —A* = —A + S-distribution for various
heights A of the surface mounted hump. (a) A2=1.0, (b) Ay =~ 1.335, (c)
A3=1.5, (d) A\—1.60624... . Q = 1.
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homotopy continuation method adopted an infinite number of alike solutions
can be found for 0 < A\, — A < mp, cf. figure 4.3. The position of the
pseudo-shock is moved successively further downstream until it eventually
would leave the physical domain downstream resulting in the limiting case
for A = A\.. The flow in such a regime, in analogy to classical Laval nozzle
theory, can be considered to be nearly choked. The strength of such a pseudo-
shock forming in the choked flow regime eventually is large enough to force
the flow in the lower deck to separate, cf. figure 4.3(c). Such a phenomenon
is commonly encountered in technical transonic diffusers, cf. e.g. [54], also in
occurrence with self-sustained shock oscillations, see for instance [54], [93].
The unsteady reaction of such pseudo-shocks solutions will be discussed in

section 4.3 to some extend.

4.2.1 Inverse Design of a Laval Nozzle

From the viewpoint of the technical design of slender nozzles the issue of
the right shape of such a device in order to obtain a certain desired pressure
distribution in the nozzle is more appropriate. The changes in the numerical
scheme are small, instead of S(X) now P(X) is prescribed and S(X) takes
the role of the unknown. The numerical results for the pressure distribution

given by
P(X) = Py(tanh(X) +1)/2 (4.14)

are plotted in figure 4.6. It is evident that a nozzle causing the desired pres-
sure distribution has to have a slowly diverging part reaching far downstream.

So far, only perfect gas like media has been considered. If, however,
dense gases exhibiting mixed nonlinearity are to be considered as well, then
an acceleration of the working media from subsonic to supersonic flow cannot
be accomplished by means of a nozzle consisting of a single throat even in
the classical case of one-dimensional noninteracting inviscid flow, cf. [35].
Rather a combination of throats and anti-throats has to be used. In such a
case, the described inverse design of a Laval nozzle is most useful, since the

procedure of successively increasing the height of a nozzle of otherwise given
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Figure 4.6: Inverse design of a nozzle for perfect gas like fluids (n = 2).

Q=1

shape until a critical value of the nozzle height is reached will, in general,
not result in a transition from sub- to supersonic flow conditions. Figure 4.7
shows numerical results for an example case of a dense gas.

For the numerical results presented in this section the number of grid
points in &- and n-direction are IN; = 1400 and N; = 100 respectively, £ =
300/N;, & = 1100/N;, m~ = m*t = 1.3, X; = -6, X =6, Y, = 0.2,
as = 0.98, Ya: = 9.9.

Figure 4.7: Inverse design of a Laval nozzle for dense gas (n = 4, K > 0,
I w>0,A =044, N_ =0.08); Q = 1.
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4.3 Unsteady Flow in “Viscous” Laval Nozzles

4.3.1 Linearized Problem and Validation of the Numer-
ical Algorithm

Before the numerical scheme for the unsteady interaction problem described
in section 4.1.2 is applied to pseudo-shock solutions forming in the nearly
choked flow regime in a slender Laval nozzle, cf. discussion in section 4.2,
the unsteady triple deck problem shall be discussed under the assumption
that the problem can be represented by the linearized version of the govern-
ing equations, i.e. in case of small perturbations introduced by a sufficiently
small surface mounted hump. For the linearized equations of the interaction
problem in definition 2.2.1 a solution can be given in closed form for appro-
priate surface functions S(X,T) by means of Fourier transforms, cf. e.g. [51]
or [21]. This is convenient in so far as the linearized problem poses a possibil-
ity to validate the numerical scheme developed for the fully nonlinear case.
On the other hand, the obtained numerical solutions allow a first glimpse on
the time-dependent behavior of the physical system.

The problem is solved for the expression

0 7<0
S(X,T) = (4.15)
0.01 exp(—X?) T7>0

describing the shape of the surface mounted hump and under the initial

conditions
P=U=0 QT =0. (4.16)

The temporal evolution of the Fourier transform of the pressure distribution

P” for the linearized problem under the forcing of (4.15) is given by

1 [ :
PA(w;T):\/—Q_W/ P(X,T) e “*dX =

Q iw efw2/4 (1 o f'P(w)T)

" V2PW) ‘

(4.17)




4.3. UNSTEADY FLOW IN “VISCOUS” LAVAL NOZZLES 117

0.003 T T T T T T T 001 ! ; T
T= 2.5, 2.1, 1.7, 1.3, 0.9, 0.5, 0.1: ‘ ‘ ‘
0.002------~ R e 0.008

0,001+ B S 0.006
P 0 0.004

-0.001 0.002

-0.002

-0.003 -0.002

-0.004 -0.004
-10

Figure 4.8: Evolution of the pressure distribution for the linearized problem.
(a) Subsonic flow regime, i.e. K > 0, and comparison of solutions by different
numerical schemes: TR-BDF2, Lax-Wendroff (LW), linearized problem and
Fast-Fourier Transform (FFT). (b) Supersonic flow, i.e. K < 0. @ = 0.5,
I =1

with P(w) = %iL,(O)(iw)‘l/?’ + iw sign (K/T_). The relevant steps for the
derivation of equation (4.17) can be found in [24]. The transformation from
Fourier space (w,T') back to the physical space (X,T) is achieved by means
of Fast-Fourier Transforms, cf. e.g. [6], using the GSL library package. The
results are shown in figure 4.8 for (a) subsonic and (b) supersonic flow. More-
over, also numerical results obtained by the application of the TR-BDF?2
scheme developed for the fully nonlinear problem, cf. section 4.1.2, and an
implicit Lax-Wendroff scheme, cf. section 4.1.2, are depicted in figure 4.8(a).
The time step is chosen quite large, i.e. AT = 0.1. Inspection of the numeri-
cal solutions reveals that the agreement between the solution of the linearized
problem and the solution calculated by means of the TR-BDF2 scheme are
excellent, whereas the disturbances calculated by the Lax-Wendroff scheme
obviously move at different finite speeds. This phenomenon, which has also
been observed for the case of an implicit upwind scheme plus a simple adding
of the source term not shown here, has already been mentioned and discussed
in section 4.1.2. Considering the temporal development of the pressure dis-
tribution itself, two different time scales can be distinguished. Both in the
subsonic and in the supersonic case the presence of the surface mounted
hump immediately is felt downstream of the hump, whereas there is also an
immediate upstream influence in case of supersonic upper deck flow. On the

other hand pressure disturbances are seen to travel at finite speeds in both
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cases as well. These are moving upstream in case of subsonic flow, cf. figure
4.8(a), and downstream in the supersonic case, cf. 4.8(b). This is in agree-
ment with the reasoning performed for the choice of an appropriate time
scaling used in the derivation of the time-dependent upper deck problem, cf.
remark 2.2.2. There it has been argued that the time scaling shall preserve
the transient behavior of the system which is governed by the slowest time
scales in order to capture the longterm behavior of the system. The order of
magnitude of the slowest time scales can be estimated by the characteristic
speed \, = Mou—c = ¢(M —1), cf. remark 2.2.2. Consequently, disturbances
are expected to be traveling upstream for M < 1 and downstream for M > 1.
Conversely the faster time scales are estimated by A\¢ = ¢(M + 1) > 0. Sub-
jected to a time scaling based on the slower time scales this results in infinite
large positive characteristic speeds leading to the observed immediate up-
or downstream influence. The upstream influence exhibited by an obstacle
in supersonic upper deck region flow in slender nozzles is typical for triple
deck problems in supersonic flow in general, cf. compressive free interaction,
e.g. [52].

4.3.2 Nearly choked Flow without Flow Separation

A pseudo-shock forming in the diverging part of a slender nozzle of shape
given by relation (4.12) with sufficient strength to bring the boundary layer
flow at the verge of separation is perturbed by a small oscillating surface
mounted hump, Sy, in the downstream part of the pseudo-shock, cf. figure
4.9. According to the insight gained into the behavior of the physical system
by studying the linearized case the small hump is likely to evoke an imme-
diate flow response since it perturbs the downstream region of influence of
the nozzle. If the location of the oscillating hump is moved sufficiently far
downstream then the immediate flow response can be expected to be weak.
On the other hand, perturbations will travel at finite speeds upstream of the

oscillating hump finally starting to interact with the sensitive pseudo-shock.
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Figure 4.9: Initial conditions. The pseudo-shock in the diverging part of the
nozzle given by S is perturbed by a small oscillating surface mounted hump,
Spse, downstream. The flow in the lower deck is close to flow separation.
Q=1,K>0,T_=1

The oscillating hump is given by the expression

| X —3.55| > 0.2,
Sose( X, T) = . X—3.55
0.005 sin(27SrT) (1 + cos(m25322)) | X —3.55| < 0.2,
(4.18)

it is located at X = 3.55, spans from X = 3.35 to X = 3.75 and oscillates
at a dimensionless frequency Sr, its maximum height is 0.01. The reac-
tion of the pseudo-shock of the initial low configuration, cf. figure 4.9, to
the presence of the oscillating hump given by (4.18) shall be calculated for
Sr = 1/T, = 1.0. T, denotes the time period. The time step used in the
computations is AT = 0.01. The pseudo-shock in figure 4.9 by nature is
not located at a certain position, however, considering the wall shear stress
distribution in figure 4.9 the region of steepest descent spans from X ~ 0.5
to X ~ 1.5. It can be expected that it is this region which is most sensitive

to perturbations of the flow field. The results for the pressure disturbance
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(a) First Part

Figure 4.10: Pressure disturbance AP = P(X,T) — P(X,0) evoked by an
oscillating surface mounted hump S,,.. Sr =1, T, = 1.0; AT = 0.01.
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(b) Second Part

Figure 4.10: Pressure disturbance AP = P(X,T) — P(X,0) evoked by an
oscillating hump Ss.. ST = 1.0, T, = 1.0; AT = 0.01.

AP = P(X,T) — P(X,0) over the time span 7" = 0 to 7' = T, is shown in
figure 4.10 together with S,s.. The disturbances introduced by the oscillating
hump are traveling upstream very much alike the solutions to the linearized
problem for subsonic flow shown in the previous section and no strong reac-
tion of the pseudo-shock can be observed at first. However, after some time
a flow response is building up which is strongest in the region of X ~ 0.5
to X ~ 1.0. This corresponds with the beginning of the pseudo-shock in
the initial flow configuration, cf. figure 4.9, and therefore is a result of the
interaction of the pseudo-shock and the forcing S,s.. Since disturbances in
a supersonic upper deck flow regime are traveling downstream rather than
upstream as in the subsonic regime, no perturbations are generated upstream
of the pseudo-shock. The pseudo-shock oscillates at the same harmonic fre-
quency of the forcing as can be seen by inspection of figure 4.11. Further-
more, it is found that the maximum amplitude of the pressure oscillations

and consequently the maximum of the oscillation of the shock position as
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Figure 4.11: Solution curves no. 1: T = T, 2Tp, ..., 207},; solution curves
no. 2: T = 1%Tp, QiTp, ce 19%Tp; solution curves no. 3: T = 1%Tp, Q%Tp,
ceey 19%Tp; solution curves no. 4: T = 1%Tp, Q%Tp, ceey 19%Tp. AP =

P(X,T) — P(X,0). Sr =10, T, = 1.0; AT = 0.01.
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Figure 4.12: (a) Maximal pressure disturbance obtained by the oscillating
pseudo-shock and (b) phase displacement between the pseudo-shock oscilla-
tion and the oscillating surface mounted hump for different values of Sr.
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well is decreasing with increasing Sr, cf. figure 4.12(a). This coincides very
well with the experimental findings reported in [7|. There, it had been found
that the influence of the shock/boundary layer interaction on the shock os-
cillations generated by a harmonic flow disturbance downstream of the shock
is negligible as long as there is no significant flow separation generated by
the shock. The authors even used a purely inviscid model to explain the
shock movements and the phenomenon of decreasing amplitude of the shock
oscillations. The numerical results presented in this section suggest that the
influence of the shock boundary layer interaction is weak indeed. The case

of separated nearly chocked flow will be discussed in the following chapter.

4.3.3 Linear Stability of Steady States

Numerical calculations of the unsteady flow field under the influence of an
oscillating hump, cf. previous section, results in convergence problems of
the numerical scheme in presence of flow separation. Despite the effort of
using a stiff time integration the numerical schemes fails after few time steps
even for very small time steps. The results obtained in the early stages of
the calculations indicate a strong tendency of the separation bubble towards
self-sustained dynamics. In order to be able to better interpret the observed
behavior a linear stability analysis is performed for various solutions of the
steady Laval nozzle flow thus eliminating the need of a time-integration of

the full nonlinear problem.

The Analysis

The fundamental canonical problem, cf. definition 2.2.1, is written as a
dynamical system, cf. [3], [89], [46],
0

Com (U,P)" = Frp (U,P;A) inQ & B(U,P)=0 ondQ (4.19)
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with 0 = R xR=°. In the case considered here the singular “capacity” matrix

C is defined as
0 0
G ( ) (4.20)
0 1

and the operator Frp is defined as

_ Y+0) Uy — (1+0y) [ UxdY + Py — U
Frp (0P ) = (I+U)UX (1+ Uy) [, UxdY + Py — Uyy .
[2}(P§K>F—oo)PX+Q(SX(X>T§)\) — Ax)
(4.21)

The parameter A\ again denotes the height of the surface mounted hump in
equation (4.12). The “boundary” conditions B(U, P) = 0 are given by the
equations (2.209) to (2.213), which are already linear equations. The govern-
ing equations are then linearized about a steady state (Uy(X,Y; \), Po(X;\))T

(U, P)T = (Ug(X,Y; N\), RB(X; )T + (U(X, Y, T), P(X,T))"  (4.22)

leading to

o _ _ _ _
Ca—T(Ul,Pl)T:L‘(UO,PO;A) (U, P & Bp(U,P)=0. (4.23)

Inserting the ansatz
(U, P)" = ey (4.24)
leads to a generalized eigenvalue problem
(Cu— L (Up, Pp;N))y=0 & Byy)=0. (4.25)

An explicit solution for the spectrum pu(w) € C with w € R can be given for
the trivial “state” (Up, Py)” = 0 only, which reads as

pu(w) = 3A1L’(O) sin(%)|w\4/3 + iw (sign(K) — ?)A;L'(O) cos(%)\w|1/3) . (4.26)
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A detailed derivation of relation (4.26) is given in appendix D. For the
calculation of the eigenvalue spectrum for nontrivial “states” one has to rely

on numerical solutions. To this end, system (4.19) is represented by

C%s =F(s; \) s,F € R% (4.27)
s denotes the solution vector and F(s;A\) = 0 denotes the system of alge-
braic equations resulting form the numerical discretization of the governing
equations for the stationary problem and which has been described in section
4.1.1 and 4.1.3 in detail. Equation (4.27) can be seen as the first step in a
method of lines leading to a system of ODEs. The singular capacity matrix

C now is a large, sparse d x d-matrix

0O ... 00 ... 0 ... 00

M(d,R)>C=] : P .-:.. : SR [ (4.28)

Performing the same steps as in case of the continuous infinite dimensional

system leads to the finite dimensional equivalent of equation (4.23)

d
Cﬁsl =L S1. (429)

The d x d-dimensional matrix L := DgF(sg; A) is the Jacobian of the nu-
merical scheme F(s; \) evaluated for sg. The generalized eigenvalue problem
for the d discrete eigenvalues in the finite dimensional numerical case, cf.

e.g. [29], finally reads

(Cu—L)y=0. (4.30)
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Most important of all, the singular sparse matrix C has only d nonzero entries
in its diagonal. As a consequence the characteristic polynomial det(A — pC)
can be of order d as a polynomial in 1 at the most and there exists a number of
discrete finite generalized eigenvalues equal to the order of the characteristic
polynomial, [29]. The generalized eigenvalue problem is solved using the eigs
function of the MATLARB suite, which is an implementation of the iterative
Arnoldi method, cf. e.g. [82].

The results for various values of the height A of the surface mounted hump
are shown in figure 4.13. A number of 1090 out of 1400 possible finite gen-
eral eigenvalues which are nearest to the value 0 have been calculated. Figure
4.13(a) shows good agreement between the discrete eigenvalue spectrum ob-
tained by the numerical method and the analytical eigenvalue spectrum given
by the expression (4.26) which has been performed in order to validate the
numerical procedure. The real values of the general eigenvalues R{u} < 0,
thus the trivial state, as the numerical results for the unsteady problem have
indicated so far, is linear stable. This statement remains valid for any initial
flow field in the nozzle as long as no flow separation does occur, cf. figure
4.13(b), 4.13(c) and 4.13(f). However, taking a look at figure 4.13(d) and fig-
ure 4.13(e) where part of the eigenvalue spectrum has moved into the region
of positive real values, i.e. ®{pu} > 0, it is evident that the occurrence of flow
separation is linked with the linear instability of the steady flow. Moreover,
the largest of the eigenvalues with positive real part are of quite large numer-
ical values. Assuming that these may be essential for the temporal evolution
of the flow field a numerical scheme would have to resolve to unfeasible small
time steps. The author believes that these results obtained by the linear
stability analysis give an explanation for the observed numerical problems
mentioned at the beginning of this section. From a physical point of view,
the eigenvalue spectra for various surface heights in figure 4.13 suggest that
the occurrence of a region of separated flow caused by a pseudo-shock form-
ing in the diffuser part of a nozzle leads to a loss of stability of the steady
flow field. Moreover, preliminary numerical results, cf. section 4.3.4, indicate
that the loss of stability is initiated by a conjugate-complex eigenvalue pair

which crosses the imaginary axis, that is a Hopf-bifurcation or flutter insta-



4.3. UNSTEADY FLOW IN “VISCOUS” LAVAL NOZZLES

3
2.51 N q
/ \w/'AC
2F /! \ 7
L5/ e
Tw
1 \\\
A=0
0.51 q
ob ]
0.5 | | | | | |
-2 -1 0 1 2 3 4 5
X
3
) A
P1s ) | 4

127

2000
1500
1000
500
S{.“'}0
-500

-1000

-1500

I I I I I I i
-600 -500 -400 -300 -200 -100 0 100

R{u}

-2000 .
-800 -700

(a)

2000
1500
1000
500
%{M}o
-500
-1000

-1500

-2000

-1200 -400

R{p}

-1000 -800 -600 -200 0 200

4000
3000
2000
1000
%{ﬂ}o
-1000
-2000

-3000

-4000
-2500

-1000
R{u}

-2000 -1500 -500 0 500

()

Figure 4.13: Wall shear stress distribution (left) and corresponding eigenvalue
spectrum (right) for various surface heights A. Solid line in the eigenvalue
spectra corresponds to the analytical solution for the trivial initial flow, i.e.

A=0.
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Figure 4.13: Wall shear stress distribution (left) and corresponding eigenvalue
spectrum (right) for various surface heights A. Solid line in the eigenvalue

spectra corresponds to the analytical solution for the trivial initial flow, i.e.
A=0.
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bility, cf. [89], [3]. The steady state remains the unique equilibrium state
of the dynamical system, however, at the bifurcation point an exchange of
stability from a stable to an unstable equilibrium occurs, [89]. Consequently,
the unsteady flow field is likely to exhibit self-sustained dynamics and taking
into account the eigenvalue spectrum for a relatively large separation region,
figure 4.13(e), these self-sustained dynamics can be expected to exhibit high
frequency tones which would be in line with experimental observations, [54].
However, it shall be pointed out that the statements concerning the possible
nature of self-sustained oscillations given here so far are preliminary also in
the light that the influence of nonlinear effects are not accounted for in the
framework of a linear stability analysis. Therefore, suggestions for further
work focusing on the distinguished case of the loss of stability, i.e. the situ-
ation, where the critical eigenvalue pair have zero real parts, is given in the

following section.

4.3.4 Further Work

Preliminary numerical results (for @ = 0.5, N; = 1200, N; = 100, &, =
100/N;, &F = 1100/N;, m™ = m*™ = 1.3, X; = =3, X} =3, Y, = 0.2,
as = 0.98, Ve ~ 9.9 and a slightly different surface mounted hump ' ) point
in the direction that the loss of stability is caused by a conjugate-complex
eigenvalue pair that crosses the imaginary axis suggesting a Hopf-bifurcation,
cf. figure 4.14. The following aspects would be of interest for future work in

this context:

e First, the physical relevance of the calculated eigenvalue pair has to
be checked. To this end, the calculation of the pseudospectrum of the
eigenvalue problem could give further insight, cf. e.g. [92]. However,

the numerical procedure outlined in [92] mainly deals with the standard

0 X <-25
S(X) =< 3(1+ cos(mX/2)) —-25<X <0 (4.31)
Aexp(—2(X/2.5)%) 0> X.



130 CHAPTER 4. VISCOUS LAVAL NOZZLE

2.5 ‘ 20000

10000 |

-10000 |

-20000 I I . . . . .
X -4000 -2000 0 2000 4000

R{un}

Figure 4.14: Preliminary results for the loss of stability scenario (for @ = 0.5,
N; = 1200, N; = 100, & = 100/N;, &F = 1100/N;, m~ = mt = 1.3,
X, =-3, X/ =3,Y,=02, ay = 0.98, Yo = 9.9 and a slightly different
surface mounted hump). Different colors in the plot correspond to different
solutions close to the solution of a pseudo-shock just strong enough that
the wall shear stress becomes zero at one single point along the wall but no
separation region forms yet.

eigenvalue problem, i.e. (Ig — A)r = 0, say, and therefore would have

to be extended to the general eigenvalue problem (4.30).

e If the critical eigenvalue pair proofs to be physically meaningful, then
a dimension reduction of the dynamical system, cf. center manifold
reduction theory, e.g. [89], [3], [83] amongst others, would be indicated
in order to obtain a reduced problem of similar dynamical behavior as
the original one which could then be analyzed analytically, i.e. non-
linear stability analysis of the reduced system. A crucial point in this
context will be to decide whether such a dimension reduction is applica-
ble or not, especially whether the critical eigenvalue pair is sufficiently
isolated from the rest of the eigenvalue spectrum. As the numerical
results show part of the spectrum happens to cross the imaginary line
in case of larger regions of flow separation, so the fulfillment of the last

requirement may be questionable.

Another aspect of interest to the problem of shock oscillations could be

to study the situation of a pseudo-shock in the diffuser part of the nozzle
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in presence of a separation region which is not directly caused by the shock
itself but rather caused by the adverse pressure-gradient in the subsonic flow
region following the pseudo-shock, i.e. pressure-gradient-induced separated
flow, cf. [54]. Thus the location of the shock and the separation region could
be separated spatially and according to [54] the unsteadiness of such a flow
situation is characterized by slower dynamics. It would be interesting to
see whether the numerical scheme developed for the time-integration of the
full nonlinear problem, cf. section 4.1.2, is capable to cope with the slower

dynamics to be expected.






Chapter 5
Conclusions

It has been shown throughout this treatise that the problem of viscous in-
viscid interactions in internal, transonic, single phase and two-dimensional
high Reynolds numbers flows through channels that are so narrow that the
interacting core region flow becomes one-dimensional to leading order can be
consistently be described by a triple deck problem. The interacting core re-
gion hereby is represented by a single upper deck which is shared by the two
interacting boundary layers at the lower and upper channel walls. In partic-
ular previous work, Kluwick, [39], Kluwick & Gittler, [43], and Kluwick &
Braun & Gittler, [41], has been extended to include more general oncoming
flow types than the previously assumed flow through a channel of constant
cross section, real gas effects and unsteady effects focusing on the longterm
behavior of the system, i.e. on the slowest timescales governing the full
problem.

The resulting model equations then have been applied to study two fun-
damental flow problems.

In the first one the viscous inviscid interaction process is triggered by
the presence of a weak normal shock forming in a narrow channel of con-
stant cross section. It has been demonstrated that a shock discontinuity is
smoothed out by the interaction process ultimately leading to the forma-
tion of an internal shock profile. The mechanism of viscous inviscid shock

regularization has been identified. The viscosity dominated boundary layers

133
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form a “viscous” nozzle adapting to and at the same time interacting with
the inviscid channel core flow and thus allow a smooth transition of the core
region flow through the interaction region. The mentioned properties of the
interaction problem considered in this treatise have been used to study the
internal shock profiles of various weak anomalous shocks forms possible in
fluids of mixed nonlinearity (BZT fluids), i.e. rarefaction, sonic, double sonic
and split shocks. It has been found that possible internal shock profiles are
consistent with shock admissibility criteria formulated for the inviscid case.
Moreover, the internal shock profiles due to viscous inviscid interactions share
common features with those obtained by a classical thermo-viscous regular-
ization, e.g. impending shock splitting, although the regularizing mechanism
is governed by completely different underlying physics. As a numerical ex-
ample the interacting flow of PP10 has been considered. The calculation of
the characteristic length scales involved in the distinguished limit have shown
that such flow phenomena as have been discussed here should occur in flows
through slender channels in engineering practice for possible application of
BZT fluids in the near future, e.g. organic Rankine cycle processes. Fur-
thermore, the setup described here could proof to be an alternative to shock
tubes currently in use to experimentally proof the existence of rarefaction
shocks. The distinguishing advantages over a shock tube experiment would
be that the shock position is stationary and that no other wave phenomena
would have to be accounted for. A disadvantage, however, may be the need
to guarantee laminar boundary layer flow up to very high Reynolds numbers.
It shall be pointed out that the presented theory has been obtained by means
of an asymptotic analysis and consequently the quality of such an asymptotic
theory can only be validated by experiments or by CFD in the end.

In the second flow problem considered here the viscous inviscid interac-
tion is triggered by a small Laval nozzle located in a channel of otherwise
constant cross section. The discussion of the steady flow field through noz-
zles of different minimum cross sections but of otherwise similar shape has
revealed that the occurrence of a single sonic point in the inviscid core region
flow no longer corresponds to a bifurcation point as in classical inviscid one-

dimensional Laval nozzle theory. The numerical results have shown that the
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purely subsonic solution remains the only possible solution, that is no super-
sonic branch bifurcates at the sonic point. Moreover, the sonic point has been
found to move slightly downstream of the location of the minimum throat
area and the minimum throat area is larger still than the critical minimum
cross section in contrast to classical Laval nozzle theory. The reason for this
again is the possibility of the boundary layers to adapt to and interact with
the core region flow in the interaction region. A quite similar behavior has
been reported in CFD results for the simulation of transonic flow through mi-
cro nozzles, cf. [28|, and for nozzle flow at moderately high Reynolds numbers
where the viscous effects are important in the whole flow field, cf. [32], [65].
In the close vicinity of the minimal cross section that leads to a smooth
transition form subsonic to supersonic conditions a pseudo-shock solution is
forming in the diffuser part of the nozzle. The pseudo-shock part has been
found to move successively downstream when the minimum cross section is
approached. This flow regime has been denoted as nearly chocked flow in
analogy to classical Laval nozzle theory. The reaction of such a pseudo-shock
solution to small disturbances has been studied for two different situations.
First the pseudo-shock has not been strong enough to cause the boundary
layer flow to separate. There it has been found that the shock/boundary
layer interaction plays only a minor role in accordance with experimental
observations, |7]. In the second situation where the pseudo-shock has caused
a distinct separation region the numerical scheme developed for the time-
integration of the full nonlinear problem has turned out to be not capable to
resolve the fast dynamics exhibited by the separation bubble. A linear sta-
bility analysis for steady solutions has shown that separation is linked to the
loss of stability of the steady solution. Preliminary numerical results seem
to indicate that the loss of stability is characterized by a Hopf-bifurcation,
however, further investigations outlined in section 4.3.4 have to be performed

to substantiate that statement.






Appendix A

List of Symbols

important operators

a dimensional form of quantity a

\Y nabla operator

Va gradient of a

V-a divergence of a

Va=(V®a)

(V- A)i - Z?:l aijij

% = % +u-Va substantial derivative
(non-dimensional form)

(a®b); = ab; tensor product

(A:B),; = S AwBy; tensor contraction

a—g|c = %a(b, c) partial derivative of thermodynamic quantity a
w.r.t. b for fixed ¢

(a)n, quantity a evaluated in

region n in figure 2.1

b

[a] = a* —a jump connecting the two states a® and a®

R{a} real part of a
${a} imaginary part of a
a’ Fourier transform of a
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important variables

A local throat area of a nozzle per unit depth (inviscid theory),
negative perturbation of the displacement thickness
(triple deck theory)

1G] coefficient of thermal expansion

c speed of sound

Cp specific heat capacity at constant pressure

Cy specific heat capacity at constant volume

C= ‘%) coefficient used in affine transformation (2.201)

0= 1;%_5 ratio of specific gas constant and specific heat,
0 < 1 for dense gases

Om thickness of subregion m = (3l, 3m) of boundary layer, see
listing of subscripts

€1 perturbation parameter for one-dimensional
inviscid nozzle flow

€ = Re 2 perturbation parameter for noninteracting boundary
layer flow

€3 perturbation parameter for interaction theory

e specific inner energy

f self similar part of stream function, solution of
Blasius’ equation (2.104)

~y adiabatic exponent

r fundamental derivative of gas dynamics

G Griineisen coefficient

G leading order term of negative perturbation of upper
deck mass flux density

h, H specific enthalpy !

Hs, thickness of upper deck

1 identity matrix

I leading order term of perturbation of mass flux density

k thermal conductivity

K transonic similarity parameter



$2, 52
LT
0, ©

Uz (0)

isothermal compressibility

isentropic compressibility

exponential decay of eigensolutions of the

triple deck problem for steady flow

first derivative of I" with respect to p at constant s
characteristic length and height of the channel
characteristic speed defined in theory of hyperbolic
system of pdes or height of a surface mounted hump
dynamic viscosity

bulk viscosity

machine precision

order of nonlinearity in G, or Jy,

second derivative of I' with respect to p at constant s
number of orders of magnitude up to which the
upper deck flow can be considered one-dimensional
surface normal on the surface mounted hump
pressure !

stream function

vector of heat flux density

coupling parameter in interaction law in canonical
form (2.215)

density !

specific gas constant

thermodynamic entropy

position vector describing the contour of surface
mounted hump !

vertical component of s !

time !

temperature !

viscous stress tensor

periodic time

slope of the horizontal velocity profile at the wall

aus” (1,0)

in front of interaction region
Yz
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u, U velocity vector !
u, U component of velocity vector in horizontal, main stream

direction '

v, V component of velocity vector in vertical direction '
, X position vector !

r, X coordinate in horizontal, main stream direction !

y, Y coordinate in vertical direction !

dimensionless groups

Re  Reynolds number

Ec  Eckert number

My  Mach number at reference state
Pr  Prandtl number

Gy  Griineisen coefficient at reference state

Sr  Strouhal number, dimensionless frequency

! Capital letters stand for boundary layer scaling, the exact region is indicated by the
subscript which refers to the nomenclature of figure 2.1 and figure 2.5.
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subscripts
0 reference state
1 quantity of inviscid noninteracting flow regime, see figure 2.1,
in corresponding scaling
2 quantity of noninteracting boundary layer, see figure 2.1,
in corresponding scaling
3 quantity of interaction region, see figure 2.1 or figure 2.5,
in corresponding scaling eventually further specified by I,m,u
c quantity at the critical thermodynamic point
i solution of the (i)nviscid Euler equations
[ lower deck
m main deck
U upper deck
w evaluated at the wall
—oo evaluated at the beginning of the interaction region (X — —o0)
[n]  order of nonlinearity in G, or Jy,
superscripts

(F)

*

X <o Q

order of coefficient in asymptotic expansions

critical flow quantities at M =1

undisturbed flow quantity immediately after weak normal shock
undisturbed flow quantity immediately before weak normal shock
quantity of fundamental problem before Prandtl’s transposition

theorem is applied






Appendix B

Thermodynamic Relations

B.1 Some Thermodynamic Quantities

Speed of sound

Specific heat capacity at constant volume

Gy = éa—‘f
o0

p
Specific heat capacity at constant pressure

5:éa—‘f

P00

P
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(B.4)

(B.5)
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Adiabatic exponent

p Op
Y= ZA7= ~ (B6)
popls
Isothermal compressibility
~ 10p
Ky=—-—— B.7
1= =52, (B.7)
Isentropic compressibility
- 10p
L=k (B.8)
p 0514
Griineisen coefficient
500
G=L% (B.9)
0 Opls
B.1.1 Magnitude of Griineisen Coefficient
We write
e i 2 RoF
Go = ﬁPCO S ’°~R—g, (B.10)
Cv,0 K970 Rg90 K970 Cv,0

cf. e.g. [56], for the Griineisen coefficient defined in (B.9) and evaluated at
reference state. For the order of magnitude estimate of GGy in the dense gas
regime the van der Waals equation of state, cf. e.g. [47], is applied which can

be written as
3
s (Bv—1) =287 (B.11)

in the reduced variables
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Expressing by means of the van der Waals equation of states one finds

~ 110v

B 3up — 1 1
O_écl/oaT N

1
70 6. 3Ty 1 — 1Bnw-D?
4 OV,

(B.12)

using the expression

3 3 2(3V0 — 1) 37'0 1 (31/0 — 1)2
= — | 7o —+ 3 1— 3 3 = 1-— T s3- |-
70 8 Ve Vi (mo + 3/15) 3y — 1 4 Vi

(B.13)

or
ov

The coefficient of thermal expansion is undefined at the critical point of
thermodynamics, i.e. 79 = 1, 1y = 1, m9 = 1, however, taking a look at the
density vs. pressure diagram for a BZT fluid, PP10, say, cf. figure 1.1, the
region of interest (region where Gamma changes sign) lies between vy = 1.3
and vy = 2, say. Evaluating the expression for (3, for vy = 1.3 and 7 indicates
that [ is finite and thus Fyfy = O(1) in the region of interest. Furthermore,

i W
~S70 == 1 - ML%’ (B14)
Ko PoCv,0K0,0
cf. [56], and
~ 110v 1 1 — 3y,
R NTY 4 Wil eararme s (B.15)
‘ o Py (1 Zpm)

As a consequence it is found

KS’0:1+(500~0)2 Po 5 <1+2_33”°):1+0<~Rg>:1+(9(5).

Ke,o p000Cpo L — 310 Voo Cv,0
(B.16)
For the expression &/(R,0) one finds in the same manner
62
=14 0(9). (B.17)

Rl



146 APPENDIX B. THERMODYNAMIC RELATIONS

Therefore, one concludes
Go = 0(0) (B.18)

in the BZT region of a dense gas.

B.2 Utilized Relations

Expression %’Z = ELC cp%f + w %f. Take h = ﬁ(é,ﬁ), then

AiL:—,,

~ Oh
AO + — | _Ap.
00 15 51?’6 b

Definition (B.5) gives for the first coefficient

_ Oh
Cp:£

P

For the second coefficient the free specific enthalpy g is used

Then, using the following Maxwell relations

0s

%) _1 __19
opla  p 0p

i 2ol

P

and the definition of the coefficient of thermodynamic expansion (B.3)

G Lo __~§)
" adls . “ople
finally leads to
@) 1— /6
opla  p
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Introducing non-dimensional quantities yields the sought-after expression

Ah = — ¢,A0 +

= (B.19)

! L Guot
p

Expression 2| = (1+G)Z. Take h = h(3,p), then
p

Aﬁ:§A§+iAﬁ
P

Then it follows

Lob)_ 8_71‘ 5y 100
Ecosl, 05l posls
Making use of the Maxwell relation

dp 5,00 o

—| =p"—| =piG,

0s 15 P dp los P

considering the definition of the Griineisen coefficient (B.9) in the last step,

finally yields the sought-after relation

o _qie L (B.20)

%p FEc

Terms in the Taylor expansion of h(1+Ap, so). Take h = h(8,p), then
e
Ah =0As5+ =Ap.
p

Take the definition of the fundamental derivative (1.1)

222,

19(70) o
s ¢c\p Op
From that follows for the first term of the expansion

I =
¢ 0p

-9
Co

oh

O _19p
p

50 Z@p

50 po
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using the definition of the speed of sound in the last step. The next term of

the Taylor expansion follows from

_o (2
0 Op\p

The other expressions then follow in a likewise manner by differentiating the

i
0

~2 a 2
S L Y
50 i Theoplso 7R

expression of the previous term in the Taylor expansion and recursively using
the definition of the fundamental derivative of gas dynamics I' and its first
and second derivative, A, N. As an illustration the next higher derivative of

h is given below.

0
= — (2 —
w0 07 <ﬁ 3)
0

250 (9T — 3) + 2(2T — 3) 2

o
0

5,0

¢ or

5,0 ﬁ2 0/3

Co OC
iR 0p

2
8 5,0
2

= —2 (4T3 — 14T + 12 + 2A,) .
0



Appendix C

Asymptotic Properties of the

Airy Function

The asymptotic representation of the Airy function Ai(z) with z € C for
|z| > 1 has been given in [1]| by

Ai(z) ~ %W’l/zzfl/‘le’cZ(—l)kckg’k larg(z)| <7
0

with ¢ = 22%2. The coefficients ¢, are defined as

(2k+1)(2k+3)...(6k—1)
216% k! '

Co = 17 Cr =
Introducing
. 3
z=Re',  (=2Re2? R>0

the asymptotic formula can be written as

Ai(R, ¢) ~ %ﬂ—1/2R—1/4e—i¢/4e—§R3/2(cos(%¢)+ism(%¢))_

> 3. .3
SODrGER) R g <
0
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The sum is converging absolutely according to the comparison test for series,
cf. e.g. [20],

3 .3
(1 eu(3R) 2R 2

3 .3
< |Ck‘R_§k e—1§k¢

< ‘Ck‘R_k

R>1

with |c| R7F < |co] R = R7*. The dominated convergence follows from the
convergence of the geometric series, cf. [20],

for R > 1. From that follows

|Ai(z)| ~ RV

o—i6/4 g TR 2 cos(30) sin(%@)’ N

2 3
~ R71/4 engS/Q cos(§¢>)

Hence, the Airy function is unbounded for |z| — oo if cos(

Ai(z) — 0 if cos(2¢) > 0, i.e. arg(z) € [-7/3,7/3].

5¢) < 0 and



Appendix D

Calculation of the Eigenvalue

Spectrum for the Trivial State

The generalized eigenvalue problem, cf. equation (4.25), for the trivial steady
state (Up, Py)T = 0 is given by

, aP 901

Pio = sign(K D.1

pPro = sign( ) Yﬁoo X’ (D.1)
_ dPy 8U1o YUy o 0*Us

= Voax ) o e (D-2)

using y = (Uyg, Pio)T in ansatz (4.24). The linearized boundary conditions

are

fJm Po=00 lim o =0, (D-3)
_ U
Uo(X,Y =0) = );0 (X, Y =0)=0. (D.4)

Introducing the Fourier Transform, cf. e.g. [51] or [21], of Po(X) and
UlO(Xa Y)

1 [~ :
Ply(w) = o / Pio(X)e ¥ dX, (D.5)

_ 1 > _ .
Uiafeo,¥) = 5 / Oio(X, YV )e #XdX (D.6)
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equations (D.1) and (D.2) are transformed to Fourier space

pPyy = iwsign(K) P}y — iw@Q Ylim Uh, (D.7)
NI VS ol 1)
0 =iwP)) +iwY Uy — iw UppdY — Sy (D.8)
0

The pressure in equation (D.8) can be eliminated by differentiating the equa-

tion with respect to Y leading to

oufy Uy

iwY 5 — oy (D.9)
which can be transformed into Airy’s differential equation, cf. [1],
2
using the transformations
L 1/3 9 =n
7 = (iw)?Y, 9(Z,w) = 8—yU10(Y,w). (D.11)
The solution to (D.10) is
9(Z,w) = %Uﬁ)(Y, w) = a(w)Ai ((iw)l/gY) (D.12)

where a(w) is a yet undefined integration “constant” depending on w since w
is entering equation (D.10) as a parameter only. Ai is the first Airy function,
cf. [1], the other linear independent solution of Airy’s differential equation, i.e.
the second Airy function Bi, cf. [1], is unbounded for Y — oo. Furthermore,
(iw)3Y € {Z € C: |Arg(Z)| < 7/3}, cf. appendix C. From that follows

Y
Yhm Uy = lim a(w)Ai ((iw)l/317) dy =
—00 —00 0
1 (D.13)
_aw) (WY 1 a(w)
(iw)1/3 Ylglgo 0 Al(2)dZ = 3 (iw)1/3
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exploiting the properties of the Airy function in the evaluation of the integral,

cf. [1]. Evaluating equation (D.8) for Y = 0 gives a relation for P[j(w), i.e.
Pl = a(w)(iw)"3Ai'(0). (D.14)

Note Ai'(0) < 0, cf. [1]. Inserting (D.13) and (D.14) into (D.7) finally gives

the relation for the spectrum of eigenvalues p(w)

p(w) = M;LI(O) sin(%)|u)|4/3 + iw (sign(K) -

Q T\l ,11/3
3A1(0) cos(§)|wl / ) . (D.15)

In the calculations

|w\1/3ei% w>0

(iw)/? = (D.16)

|w|1/3e_i% w<0

has been used which follows form the requirement (iw)'/?Y € {Z € C :
|Arg(Z)] < 7/3}.
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