Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Declarative Adaptive Interface
Monitoring

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Logic and Computation
eingereicht von

Stefan Brocanelli
Matrikelnummer 11728331

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Prof. Thomas Eiter
Mitwirkung: Patrik Schneider

Wien, 7. Mai 2020

Stefan Brocanelli Thomas Eiter

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Declarative Adaptive Interface
Monitoring

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Logic and Computation
by

Stefan Brocanelli
Registration Number 11728331

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Thomas Eiter
Assistance: Patrik Schneider

Vienna, 7" May, 2020

Stefan Brocanelli Thomas Eiter

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Erklarung zur Verfassung der
Arbeit

Stefan Brocanelli

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 7. Mai 2020

Stefan Brocanelli

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

Danksagung

Ich mo6chte mich herzlich bei meinem Supervisor Professor Thomas Eiter und meinem
Tutor Patrik Schneider bedanken, die mir in den letzten Monaten immer erfreut dabei
geholfen haben meine Abschlussarbeit optimal zu gestalten.

Ein grofles Dankeschon ergeht auch meiner Familie, die mich immer bei all meinen
Entscheidungen unterstiitzt hat.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Acknowledgements

I would like to greatly thank my supervisor Professor Thomas Eiter and my Tutor Patrik
Schneider who were of great help during this endeavor and showed no hesitation when I
needed feedback or advice.

A big thank you also to my family that has always supported me in any and all decisions
allowing me to choose my own path.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Kurzfassung

Mit Industry 4.0 werden enorme Datenstrome generiert, welche den Weg ebnen fiir
dynamische Optimierung. Wir bauen auf das Konzept von Dynacon, eine dynamisch
konfigurierbare Architektur, auf und fithren eine Schnittstellenbeschreibung ein, welche
mit deklarativen Aktualisierungsbefehlen umgeédndert werden kann. Dadurch, bringen
wir die oft starren und schwer adaptierbaren Konfigurierungssysteme des jetzigen Stands
der Technik auf ein neues Niveau, welches Anderungen in Echtzeit, basierend auf In-
formationen des Stream Reasoners, ermdglicht. Derzeitige Versuche, Stream Reasoner
neu zu konfigurieren, haben oft keine Komponente, welche sich darum kiimmert, ein-
kommende Datenstrome zu analysieren und dann anhand dieser zu entscheiden, ob eine
Neukonfiguration iiberhaupt notwendig ist. Zuséatzlich nutzen viele dynamische Systeme
keine Schnittstelle um die einzelnen Komponenten zu konfigurieren und sind auch nicht
kompatibel mit Regelbasierten Stream Reasoner. Daher fithren wir zwei neue Kompo-
nenten ein: Der Communication Manger sorgt sich um Daten, die vom Stream Reasoner
iibergeben werden und passt die Kommunikation anhand der Schnittstelle an, bevor
die Nachrichten zum Operator weitergesendet werden. Der Update Manager hingegen
empfiangt Befehle vom Operator und fiihrte diese auf der Schnittstelle und dem Stream
Reasoner aus. In der von uns entwickelten Timed-LUPS Sprache erstellen wir Regeln mit
Bedingungen und Zeitdauer welche es ermdglichen anhand des Datenstroms Befehle zu
aktivieren. Die Einfiihrung von einer Zeitdauer sorgt dafiir, dass der Update Manager
jegliche Befehle nach einer gewissen Zeit wieder riickgédngig machen kann. Zuletzt haben
wir ein Java Prototyp gebaut, der Hand in Hand mit einem HexLite Stream Reasoner
arbeitet um unsere Konzepte zu implementieren. Mit mehreren Experimenten beweisen
wir dann die Realisierbarkeit einiger unserer Funktionalitdten, wie das wechseln von
Kommunikationseinstellung ohne Neustart des Stream Reasoners und das Uméndern von
Regeln mit Neustarts in Bruchteilen einer Sekunde.

X1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Abstract

With Industry 4.0 enormous streams of sensor data are generated and open the doors to
dynamic optimization. We build on the concept of DynaCon, a dynamic configuration
system, and introduce an interface description that can be altered with declarative update
commands. By doing so, we elevated the often static and slow to adapt state of the art
configuration systems to a new level that allows performing changes in real-time based on
information extracted by a stream reasoner. State of the art efforts to reconfigure stream
reasoners always lacked a layer of reasoning that would analyze incoming data to decide
when a reconfiguration is necessary. Besides, many dynamic systems do not make use of
an interface to configure its components and they are not compatible with rule-based
reasoners that play a key role in unlocking reconfiguration. We introduce two new
modules: the Communication Manager deals with incoming stream reasoner messages
and relays them to the Operator based on settings stored in the interface and the Update
Manager executes update commands sent by the Operator. Through Timed-LUPS we
create a reasoning layer through policies that regulate conditions and duration for the
update commands. By defining the duration of a command, the Update Manager can
retract the changes and revert the interface or stream reasoner to its previous state after
the duration has expired. Lastly, we built a Java prototype working hand in hand with a
HexLite Stream Reasoner to implement our concepts. With several experiments, we then
prove the feasibility of many of the outlined features like changing the communication
while the stream reasoner is running and performing rule changes with a fraction of a
second restarts.

Xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

Kurzfassung

Abstract

Contents

1

Introduction

1.1 Stream Reasoners.
1.2 Industrial digitization oo oL
1.3 Cyber-Physical Systems (CPS)
1.4 Thesis structure

State of the Art

2.1 DynaCon e
2.2 Logic programming Lo e
2.3 Updating rule sets of logic programs
2.4 LUPS and LUPS*- A language for updating logic programs

Abstract Architecture and Components

3.1 Stream Reasoners.
3.2 Communication Manager
3.3 The Communication Channels
3.4 Update Manager
3.5 The Interface Description Language

Command Languages
4.1 Interface command language L.
4.2 TLUPS as a policy language and stream reasoner commands

Dynamic Configuration System Prototype

5.1 Overview e
5.2 Stream Reasoner
5.3 Communication Manager
5.4 Operator

xi

xiii

0 T O

©o ©

22
22

31
32
32
35
37
40

47
47
52

61
62
64
66
70

XV

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

5.5 The Update Manager

6 Use Cases and Functionality Showcase
6.1 Experiment 1: Change in communication behavior
6.2 Experiment 2: Changes to stream reasoner’s KB

7 Conclusion
7.1 Future Work s

A Full EBNF grammar
B Implementation code
C Experiment replication

Bibliography

72

75
76
83

93
93

97

99

101

103

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Introduction

With the continuous advancement of modern industrial production and manufacturing
techniques, approaches like Industry 4.0' gain more and more traction [Roj17]. Industry
4.0 describes the combined usage of Cyber-Physical Systems (CPS), Internet of Things
(IoT) and Big Data. These type of systems allow for optimization and adaptive behavior
due to the sheer amount of data that is gathered through sensors and monitors. This
continuous flow of sensor data creates a stream that is fed into so called reasoners. The
reasoners then attempt to evaluate the current state through temporal logic and belief
revision.

However, nowadays still static configuration systems are widespread and the data streams
are characterized by rapidly changing information. Static configurations work in a way
where an initial configuration is established through calculations and then deployed. Such
a configuration can for example be a set of rules that triggers certain events depending
on sensor information (e.g., sensor measuring temperature below 4 °C triggers a snow
warning). These configurations will remain fixed for the most part and will only be
changed in case of architectural changes, often requiring lengthy maintenance phases or
reboots. This type of static model does not allow for making dynamic changes aimed
at improving performance or optimizing use case specific metrics. In addition, simple
reasoners struggle to deal with rapidly changing data streams and thus create a bottleneck
for the rest of the system that relies on real time information to make changes aimed at
optimizing the system.

These issues can be solved through the combination of Stream Reasoners [CHVF09] and
declarative adaptive interface monitoring, where the interface stands at the center of the
architecture allowing to dynamically change the stream reasoner and the interface itself.
Such changes are made possible through update policies and update commands that can
be issued in a responsive manner by the configuration component acting upon the feed

"http://smart-industries.ch/industry-4-0/

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

1.

INTRODUCTION

of data collected by sensors and processed through the stream reasoner. This process
creates a configuration cycle as illustrated in Figure 1.1.

Data generation

Data communication

Re-configuration

Update commands

Figure 1.1: Configuration cycle

Example 1. Take traffic lights at an intersection as an example. These traffic lights will
initially be configured with a fixed timing respecting all constraints given by crossing
roads, pedestrians, bicycle lanes and trams. Once a schedule is determined, it will remain
unchanged unless new elements are introduced to the intersection, such as additional
lanes. However, this system does not take into account the amount of traffic at specific
hours of the day, accidents or other unpredictable events that might profit from a different
configuration. In the case of traffic congestion, the configuration could be optimized and
made more efficient through the interface by giving longer green phases to certain car
lanes.

We can thus summarize the problems with the current state of the art:

1. Lack of dynamic stream reasoners. Even though reconfigurable stream reasoners
do exist and have been researched in other projects like the DyKnow framework
[dH16], they merely issue reconfigurations but do not reason on the incoming data
streams to determine whether a reconfiguration is necessary. Ideally, we would
want a configuration system that can react to the data delivered by the stream
reasoner, and then decide based on that data whether a reconfiguration is necessary
and how to best optimize it.

2. The reconfiguration process itself presents many challenges. Many knowledge
based reconfiguration approaches are not compatible with dynamic systems such
as Cyber-Physical Systems (CPS), especially when faced with logic based stream
reasoners [VCBT09]. Preferably, one could make use of commands that aim to
perform specific changes in the configuration like adding or removing rules from
the logic based rule system in the stream reasoner.

3. Lack of clear architectural structure. Even reconfiguration methods that do involve
CPS often do not make use of a logic based framework and thus makes it hard to
apply changes to the rule set. Additionally, the architectures are often not described

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

in detail, omitting crucial information about the connection points between stream
reasoners and the other components making up the reconfiguration cycle [SWD*14].
Ideally, a dynamic architecture should be in place, defining exchangeable modules
that allow the execution of crucial functions like communication and adaptation of
configurations.

4. As a result of the previous problems, we also do not have well documented interface
descriptions. While some of the previously quoted systems do use interfaces, they
once again are badly documented and do not present an interface description
detailing all the connections to the other parts of the architecture.

The intent behind this thesis is to research previous efforts done in the field of Cyber-
Physical Systems, Update Languages and dynamic configurations and to combine them in
a new system that can make use of all the advantages displayed by the single components.
Most important is the addition of an interface that acts as a bridge between what we would
conventionally call the configurator, responsible for elaborating new configurations for
the stream reasoner and the data production part. This dynamically adaptable interface
builds the core of the architecture and allows to eliminate many of the disadvantages of
current state of the art technologies. We will thus extend the works done by Eiter et al.
in the DynaCon [EFTW18] project by elaborating on many of its principles and creating
a language to define the interface. Hand in hand comes the task of creating a concept for
a declarative command language that will be the conduit to making dynamic changes to
the interface and the rule set that defines what information is collected in the stream
reasoner. To showcase the concept of declarative adaptive interface monitoring a small
prototype including all the crucial parts of the architecture and most importantly the
previously conceptualized command language will be created. This Java programmed
prototype will operate on a simulated data output that is fed to our configuration system
through a stream reasoner.

We thus address the problems and challenges given by the current state of the art and
summarise the contributions of this thesis as follows:

1. We introduce the element of adaptability by creating a language for the interface
description that shows how the interface will look like as a file and what components
around it allow the system to be dynamically adaptable. Hand in hand comes
a detailed outline of the architecture and the exchangeable modules employed
by our systems, namely the Communication Manager and the Update Manager,
respectively responsible for communicating the data from the stream reasoner to
the configuration module and applying update commands.

2. We create TLUPS - Timed LUPS as an elaborate concept for a declarative command
language based on LUPS - A Language for Updating Logic Programs [APPP02]
with the addition of timed commands. The goal of the command language is to
act as a tool to change the rule set of the stream reasoner and the configurations
stored in the interface.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.

INTRODUCTION

3. Apply the developed concepts and languages by creating a prototype of the whole
configuration system that makes use of an interface, a declarative command language
and all components necessary to close the configuration cycle in Figure 1.1. With
the prototype we will display some of the functionalities of our dynamic system on
a selected traffic use case.

1.1 Stream Reasoners

Stream reasoners in their most basic form take a data stream together with a large
background knowledge base as input and try to extract non-trivial knowledge to be
further utilized in the system. Ideally, a stream reasoner should be able to deal with big
volumes of data delivered on a high frequency. New grand scale projects often require
the use of thousands of sensors that each supply information multiple times each second.
For example a water diversion project in southern China? employs 100,000 sensors along
the waterway in order to scan for structural weaknesses, water quality, flow rates and
many more. In addition, they should be able to deal with different data formats and
incomplete data caused by interruptions or noise over networks. At the same time, the
stream reasoner should provide answers in a timely fashion in order to allow any type
of listeners on the other side to act upon the feed of data quickly. These properties
highlighted in cursive writing create the requirements for an ideal Stream Reasoner.

Using the summary given by [DVvVHB17], encompassing the advances of stream reasoning,
we take a look at the evolution of this research area between 2007 and 2017. In 2007 many
efforts were made to find a solution satisfying all the requirements named above, starting
with data-stream management systems (DSMS), able to deal with rapidly changing data
on the fly [CHVF09]. However, DSMS could not deal with differing data types and
lacked the ability to perform complex reasoning tasks on big data instances. In the
years following, other attempts were made through Knowledge Representation (KR) and
Semantic Web (SW). These solutions could deal with different data types and allowed
for fine-grained access to identify the exact source of a piece information, like the exact
location of a flow sensor located on the previously mentioned example of the water
diversion project. Even though KR and SW improved on data-stream management
systems, they were still dealing with static data and were unable to give answers in a
timely fashion.

DSMS, KR and SW created the ingredients for the ideal solution that would satisfy all
the requirements given above: Stream Reasoning. The best results have been achieved by
solutions extending SPARQL [PAG09] and extended SPARQL (eSPARQL), described as
a query language for Resource Description Frameworks (RDF). We talk of ideal solutions
because no implementation is yet able to satisfy all the requirements to a good level. The
problems of volume, incompleteness and noise still require a lot of attention. [DVvHB17]

https://internetofbusiness.com/100000-iot-sensors-line-chinas-ambitious-water-diversion-project/

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.2. Industrial digitization

1.2 Industrial digitization

CPS have been combined with the Internet of Things (IoT), the Internet of Service (IoS)
and smart factory to initiate Industry 4.0 [KWH13, Roj17], which in recent years and
combined with smart manufacturing has been hyped up as the 4th industrial revolution
following the computer and general automation [YZL*19).

1.2.1 IoT and IoS

The IoT is concerned with tangible objects like machines and sensors and aims at
incorporating them to the internet. It is rendered possible by assigning to each unique
object a virtual representation. IoT aims to construct an environment where all current
smart embedded devices like smartphones, sensors, etc. can be supported by a connecting
environment using radio-frequency identification (RFID), ipv6, barcodes, QR codes, NFC,
GPS and more [AS13]. Even though IoT will not play a big role in this thesis, we can find
it on the data generation side in the form of sensors that supply the data to the stream
reasoner. Meanwhile, IoS focuses on the two concepts of Web 2.0 and Service-Oriented
Architecture (SOA) [RG18]. In particular we are interested in the following two properties
that partly characterize Web 2.0 and are applicable to our project:

e Interactivity: XML allows for dynamic manipulation of configuration data between
the client (web browser) and the server. In this thesis, it will be used as the
description format for the interface.

e Web services: Exposing services for other software to use and not only for human
clients. In our project, we can find this behavior in the Update Manager. It exposes
some functions (like adding/removing rules in the stream reasoner) to the Operator
that can make use of these methods without implementing them himself.

1.3 Cyber-Physical Systems (CPS)

The term Cyber-Physical Systems surfaced and gained traction at the NSF Workshop on
Cyber-Physical Systems in Austin, Texas in 2006. The core idea of a CPS is to combine
the physical and software components in an even stronger way than with ordinary
embedded systems. The goal is to deeply intertwine the components to allow them to
affect each other with feedback loops and to change their behavior based on the given
context [Lee08]. CPS are more reliable and efficient compared to conventional embedded
systems and allow to model real world scenarios better due to the ability to handle
situations with incomplete or unpredictable information [Lee08, Lee06]. The applications
go from small implementations in medical monitoring (pace makers) to bigger scale
projects like robotic systems, automated piloting and smart grid [KM14].

Even nowadays CPS are still a very relevant research field. In 2015 the 1st Furopean
Ezxperts’s Workshop on CPS (CyPhERS) took place in Munich to identify short, medium

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

1.

INTRODUCTION

[Information Space
CYBER A 4 A -
DOMAIN Multi-Sensor Data Control Action
PHYSICAL Interpretation & Fusion Actuation

R S S ¢
) S, S =

Physical System

Figure 1.2: Technical model of a CPS [Ray13]

and long term evolution goals for CPS. This later resulted in the publishing of the Cyber-
Physical European Roadmap € Strategy® document outlining future scenarios, challenges
and recommended actions. The document also served as base to define the four generic
CPS characteristic [TABT17]:

o Technical emphasis: The aim of CPS is to integrate physical and embedded systems
together with communication and software systems. With technical emphasis,
we both decide how to design physical and embedded systems and how to use
communication in order to achieve the most optimal performances.

e Cross-cutting aspects: Here we mean system properties (responsible for safety and
security), jurisdiction (legislation) and governance (responsibility distribution).
These points need to be taken into consideration when applications start to span
across multiple domains and involve interconnectivity and dynamic reconfiguration.

o Level of automation: Defines what aspects are automated and to what degree. For
example with autonomous driving there can be different levels of automation, where
we only want automated parking or automated lane centering or maybe a fully
automated vehicle that is independent from human input.

o Life-cycle integration: The degree to which a CPS is integrated in the management
of existing products and services. The better the integration, the larger the benefits
but also the larger the costs, creating a trade-off that needs to be considered.

The DynaCon example that we will later analyze and our improved version both strongly
focus on the technical aspects of a CPS system.

1.3.1 DynaCon

Taking the CPS concept as a blueprint, we look to take the configuration cycle in Figure
1.1 and instantiate the abstract building blocks to effective components as they are
described in DynaCon [ESS19]. What we defined as data generation is accomplished

3https: //ec.europa.eu/digital-single-market /en/news/cyber-physical-european-roadmap-strategy

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

1.4. Thesis structure

by data Producers like sensors. The data is then filtered by observers that can exist in
the form of stream reasoners with optional communication managers. The brain behind
the re-configuration aspect is a multitude of modules summarised as the Operator. The
Operator can both request new data when necessary and design new configurations in
form of update commands to optimize the systems. Actuators, or as they will be later
referred to, update managers are responsible to perform the changes decided by the
Operator.

In Chapter 2 we will pick these concepts up and take a better look into the nuances of
reconfiguration and stream reasoners in addition to giving a detailed description of the
DynaCon architecture and the issues we are attempting to address with this thesis.

1.4 Thesis structure

The remainder of this thesis is structured as follows. In Chapter 2 we dive deeper
into cyber-physical systems by focusing particularly on Dynacon [EDTF*19] and later
introduce the concept of logic programming and our second big stepping stone: LUPS
[APPPO02]. In Chapter 3 we describe the functionality of our interface and how it interacts
with the other components of the dynamic system. Chapter 4 shows a redesign of the
LUPS* [Lei01] command language into the TLUPS policy language and also shows our
own interface and stream reasoner update commands. In Chapter 5 we introduce our
Java prototype that includes core parts such as the Interface, Communication and Update
Manager and the Operator. Chapter 6 gives some examples focused on the C-ITS use
case to showcase the functionalities of our prototype. Lastly, in Chapter 7, we give a
summary of the main results and give some insight to future work related to this thesis.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

State of the Art

2.1 DynaCon

As discussed, one of the core functions of a CPS is its ability to adapt to a changing
environment through the information that it gathers. This process of reconfiguration
has been explored for other systems: Plastik [BJCO05] for example is a meta-framework
that aims to facilitate reconfigurations by ensuring integrity in component-framework-
based software systems. DyKnow [dH16] looks to extend the robot operating system
(ROS) by allowing run-time reconfigurations to its components. These knowledge based
reconfiguration methods have been successful in reducing development and maintenance
costs, while remaining flexible and maintaining soundness and completeness properties.
However, these types of systems are not compatible with dynamic systems such as CPS
due to their adaptive nature and large problem instances.

Reconfiguration methods involving CPS have also been researched [SWD™'14]. However,
these systems often do not make use of a logic based framework to define the system
configuration, which also renders it harder to apply changes to the rule sets. In addition,
the architectures are often not described in detail and omit the crucial connection points
between monitors, stream reasoners and the appropriate interfaces to interact with the
decision and reconfiguration modules.

As a prime example for a dynamic configuration system we will take a closer look at the
DynaCon architecture proposed by Eiter et al. [EDTF119]. At its base lie the concepts
of Cyber-physical sytems (CPS), stream reasoners (SR) and (re)-configuration. The
idea is to collect sensor information through a stream of data from the CPS. The data
is then filtered by the stream reasoner, which sends the condensed information to the
(re)-configuration module responsible for issuing new configurations through configuration
commands.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.

STATE OF THE ART

10

2.1.1 The architecture

We will briefly go over the architecture that inspired our design visible in Chapter 3. Let

Legend: Use Case Specilc
Domair Model
D Generic H
Vocabulary

Vocabulary

Optional

ffffffffff ai ®
= Stream Reasoner A el i H > (i)
SBtreaming Data Event Channel ag;ﬁf;
Fog Request — —-—Dv

® <
Channel Process Jnld:rmanon

------------ Chanriel IF Memory }_—
Fog Environment
Stream Reasoner B
Streaming Data Bridge B F| e——
@ | Information Request Controller

Chatinel Module
: (0

Fog Request S it — :
@ Channel B > Re-

Comr‘éaand
i JMesragion: o Ghayne]
:

JConfigurator

User

Configuration
Channel

Fog Environment Cloud Environment

Figure 2.1: Original DynaCon architecture [EDTF*19, ESFT19]

Eiter et al., 2019, Stream Reasoning and Multi-Context Systems. Stream Reasoning Workshop
2019, Linkdoping, Sweden

us look at the architecture shown in Figure 2.1 in the scope of a use case. Imagine a
traffic control situation where the goal is to change the traffic light signal plan in order
to deal with the changing traffic situation. We will now separately analyze the two sides
of the architecture divided by the interface.

The Fog Environment

On the left side of the figure lies the Fog Environment, which takes care of the collection,
filtering and transmission of data. In the traffic control use case, the producers (P) are
either vehicles or traffic lights that communicate through V2X communication messages
and thus producing a data stream. We would then have the so called roadside units (RSU)
located at intersections acting as monitors (M) by observing and collecting the V2X
messages in order to detect events (accidents, traffic jams ecc.) or to aggregate data such
as the number of cars in a lane. The collected data would then be transmitted through
the communication channels to the configurator (C), which in the traffic control case is a
traffic control centre (TCS). Here a new reconfiguration can be evaluated through the

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.1. DynaCon

decision module. The RSU also assumes the role of an actuator (A)that lastly updates
the signal plan for the traffic lights based on the new configuration.

The Cloud Environment

On the right side of the architecture lies the Cloud Environment containing all modules
pertaining to configuration.

e The Controller Module: The specific tasks of this module depends on the use

case. Mainly, it is responsible for capturing the information transmitted through
the interface in order to manage, set-up and trigger the reconfigurator. It is also
in control of preparing different ASP programs needed for the problem encoding
necessary for the reconfiguration. In those use cases where a decision module is
necessary, the controller module is also in charge of keeping an up-to-date state
of the fog-side objects. This can either happen through the information that is
received automatically from the fog-side, or through pull requests made by the
controller to obtain any missing information. This information is stored in the
memory module.

Reconfigurator Module: When the controller module requests a reconfiguration,
this module directly communicates with a reasoning engine (an ASP solver) by
preparing the input for the solver. The re-configuration problem can be approached
in a divide and conquer manner, where the main problem instance is divided up in
smaller configuration problems. Once all of them are solved they can be combined
to obtain the full reconfiguration.

It is important to note that the reconfiguration is based on previous configurations
and the differences between them, possibly trying to make use of previous conflicts
and search decisions. One could also decide to use a normal configurator that would
treat every reconfiguration attempt as a fresh one, thus being independent from
previous configurations.

Decision Module: In the DynaCon architecture the decision module is the brain
to the muscle (the reconfigurator). It is the decision module’s job to start off new
reconfigurations, communicate information of the new configuration to the other
modules in the architecture through the controller module and finally reconfigure
specific stream reasoners. Its responsibility is basically to provide the specifications
for the reconfiguration extracted from the information received from the controller,
while the reconfiguration module then actually does the computations. These two
tasks are separated in different components to encourage modularization, which
facilitates component replacement.

The module is marked as optional since in some cases it might be implemented
as a virtual component or omitted completely. For example in the traffic light
configuration scenario above, deciding whether one single traffic light should be
reconfigured might be decided by using simple thresholds.

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

STATE OF THE ART

12

Stream reasoner in the DynaCon framework

As previously stated in Section 1.1 describing the basic concept of stream reasoners, its
role is to act as a mediator between the data source and the target. Now that we see
the whole architecture we can go into detail regarding the stream reasoner’s role in the
context of this dynamically configurable system. It has four main tasks:

e First and foremost comes the collection of data from multiple sensors that send
information at irregular intervals and possibly in different formats. It is also
important that the capture of this information takes place in real time. This allows
for quicker reactions to the changing environment.

e Then, through logical rules, where intuitively the head of the rule is the event and
the body of the rule are the single or multiple conditions required for the event to
be triggered, the stream reasoner can filter out events from the data stream.

e Again using logical rules, information can be aggregated. For example if the sensors
in our hypothetical scenario where to check the number of cars in each lane of an
intersection, then the body of a rule could be composed of the measurements for
each lane and the head can then build the average.

e Finally, the information is transmitted to the reconfiguration module through the
communication channels.

2.1.2 Issues

While the DynaCon projects lays good foundations for a dynamic configuration system
that makes use of an interface, it does not go into detail on many parts of the architecture
and specifically does not specify details and a syntactic structure for an interface definition
language. The descriptions are also vague regarding the transfer of information between
the stream reasoner and the reconfiguration module through the bridge module, lacking
critical parts like communication mode (push/pull/buffered) and eventual delays.

In Chapter 3 we will show an alternate version of this architecture with detailed expla-
nations of the components. In that chapter we will later transition into a syntactical
definition of the interface definition language.

2.2 Logic programming

The execution of Java, Python, C# and other general-purpose programming languages
generally follows the pattern of imperative programming languages, where memory
locations are updated based on instructions following a sequential style of execution.
They precisely describe how a result is to be achieved by a series of statements that need
to be executed by the computer. The idea behind logic programming is to focus on the
relationship between components instead of step to step instructions. [Leel7b]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2. Logic programming

The first steps in logic programming were made in early 1970s, building on previous works
done in the fields of artificial intelligence and automated theorem proving. The basic
building blocks laid out by Herbrand in the 1930s proved useful for Putnam and others
in the 1960s who focused their research on theorem proving. Finally, in 1965, a landmark
paper introducing the resolution rule, authored by Robinson [Rob65], was published. In
short, resolution is an inference rule that, given two clauses, can derive a new clause
implied by the two. A simple example is two clauses containing complementary literals
that can be merged into one by omitting those literals and combining the clauses in
a disjunction. Resolution is core to logic programming because it is very fitting for
automated computation [Leel7a]. In 1972, Kowalski and Colmerauer [Kow74] introduced
a programming language that was later called Prolog. It was born from the idea of using
logic as a programming language and its execution makes use of the resolution method.

2.2.1 Answer set programming (ASP)

Answer set programming is a prime example of logic programming. It falls under
the paradigm of declarative programming and is mostly used to solve NP-hard search
problems. ASP is based on the Stable Model Semantics, a concept introduced by Gelfond
and Lifschnitz in 1988 [GLS88]. In contrast to the previously mentioned Prolog, where
the order of rules influences the outcome of execution, ASP is purely declarative and
as a consequence the order of rules is unimportant. In addition, as opposed to possibly
running into infinite loops like Prolog , many answer set solvers use DPLL style algorithms
[OC99] which, in principle, always terminates. Modern solvers also employ conflict driven
clause learning (CDCL), which in terms of efficiency greatly outmatches previous efforts
[MSLMO09].

Syntax

We define the Alphabet for ASP following the syntactic definitions given in [Bal09] as
follows:

Definition 1. (Alphabet)
The alphabet A consists of:

o variables V ={X,Y, Z...}

e function symbols F' = {f, g, h,...} with arity >0 (function symbols with arity 0 are
constants)

e predicate symbols P = {p, q,r,...} with arity >0 (predicate symbols with arity 0
are propositional variables)

e logical connectives of arity 0 (L, T), arity 1 (~), arity 2 (A, V,)

e quantifiers {V, 3}

e punctuation symbols {"(", ")", ","}

We can thus define the language L as:

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2. STATE OF THE ART
Definition 2. (Language)
A language L is a triple (F, P, arity) where F is a set of function symbols or constants,
P is a set of predicate symbols or propositional variables and arity is an arity function
FUP w— N (for example f(X) is of arity 1, p(X,Y) is of arity 2 etc.)
To reach the concept of a rule we need to first introduce the definitions for terms, atoms,
formulae and literals, which are the basic building blocks for rules and by extension, logic
programs.
Definition 3. (Term)
A term can be inductively defined in the following way:

e A variable is a term

e A constant is a term

e If f is a function symbol of arity n, and ¢, ... ¢, are terms, then f(¢,...,%,) is a

term as well.
Definition 4. (Atom)
An atom can be defined as follows:

e A propositional variable is an atom

e If p is a predicate symbol of arity n, and ¢1, ... ¢, are terms, then p(¢y,...,t,) is an

atom
Definition 5. (Formulae)
A Formula F can be inductively defined as follows:

e An atom is a formula

e | and T are formulae (arity 0)

o If F is a formula, so is ~F (arity 1)

e If F and G are formulae, so are F A G, F V G and F <+ G (arity 2)

o If X is a variable and F is a formula, then VXF and 3XF are formulae (quantifiers)
Regarding literals, we define a Default Literal as an atom preceded by the ~ symbol. A
Literal is then either an atom or a default literal. Keeping these definitions in mind we
define a Rule as:

Definition 6. (Rule)
A Rule is a formula of the form:
L1V ..VLp<¢ Lypii Ao ALy

where L;, 1 < i < n are literals. The formula L1 V...V L,, is called the head of the rule
and the formula Ly, 1 A ... A L, is called the body of the rule. A rule having m =n (no
rule body) and m = 1 (single disjunct in head) is called a fact. Instead, a rule with an
empty head is called a constraint.

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.2. Logic programming

We finally define logic programs as follows:

Definition 7. (Logic program)

A logic program is a set of rules. A positive logic program does not posses default
negation. A normal logic program is allowed to contain default negation, but only in
the body of the rule. Instead, a generalized logic program is allowed to contain negation
also in the rule head. If a logic program has a disjunction in its head, we speak of a
disjunctive logic program.

For example we could have the following:

terms : X, 0, s(X

o), 5(0),5((X), s(5(0),
e atoms : p(X), p(0), (X)), p(5(0))
. : . literals : p(X),~p(X),p(0),~p(0),
function symbol : s (arity 1) fact - p(0).
predicate symbol : p (arity 1) rule - p(s(s(X))) & p(X)

Semantics

For the semantics we will refer to [Eit16] for the following definitions and look at normal
logic programs P in the context of Herbrand interpretations, which are sets of ground
atoms that are true. Most logic programming languages like Prolog and ASP use the
following syntax for rules r:

a < by,...,by, not cq, ..., not c,

where the comma substitutes the logical conjunction symbol and not substitutes the
unary default negation ~.
In Herbrand interpretations we define the following:

e Models: are such interpretations where a is true whenever by, ..., b,, are true and
c1, ..., C, cannot be proven as true.

o grounding of P: is defined as grnd(P) = U,ep grnd(r) and grnd(r) resembles the
set of all ground instances of r (using ground substitution).

o Herbrand universe (HU): given a logic program P, HU(P) is the set of all terms
that can be formed from constants and function symbols. In our previous example,
the HU is 0, 5(0), s(s(0)), ...

e Herbrand base (HB): given a logic program P, HB(P) is the set of all ground
atoms that can be formed from predicate symbols and terms t € HU(P). In our
previously example, the HB is p(0), p(s(0)), p(s(s(0))),

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2. STATE OF THE ART
e Herbrand interpretation (I): Is a first order interpretation I = (D,-’) which has its
domain D = HU(P) and where each term t € HU(P) is interpreted by itself. A
Herbrand interpretation can thus be seen as a set denoting what ground atoms are
true in a given scenario.
Example 2. Take the logic program P:
p(X) not r(X), ¢(X).
q(2)
q(1)
where p, g, r are predicate symbols with arity 1. We identify:

e Constant symbols: 1, 2

e HU(P): {1,2} (since we have no function symbols)

e HB(P): {q(1),4(2),

p(1),p(2),
r(1),7(2)}

e Possible interpretations can be any subset of HB(P), including the empty set.
We are interested in finding out, which interpretations are a Model of P. Using the
Closed World Assumption (CWA) we can find the minimal model of a logic program
P. A minimal model I distinguishes itself from other models J because no J D I. In
general, we want the truth of an atom in I to be "founded" by a clause, which means it
should either be stated as a fact or be the conclusion to a clause. Through the CWA, all
other atoms are to be regarded as not true. For the program P the minimal model is:

M, = {Q(l)’p(l)aq(2)7P(2)}
In normal logic programs, negation can introduce multiple valid minimal models. For
example we can add the clause
r(X) <—not p(X), ¢(X).
to the logic program P. In this case we would be presented with four models, namely:
My ={q(1),q(2),p(1),p(2)}
M4 - {Q(l)a Q(2)7 7’(1), 7’(2)}
16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.2. Logic programming

Which one should we choose from? To deal with multiple valid Models we introduce the
notion of Answer Sets. They are based on Herbrand interpretations and are also referred
to as stable models using the CWA.

Definition 8. (Satisfaction)
Consider an interpretation M C HB(P): M satisfies:

e a ground atom a (resp. not a) if a € M (a ¢ M)

e a ground variable free rule r,
a1V ..Vag < by,...,by, not cq,...,not ¢,

if either

(i) M does not satisfy some literal b; or not ¢; in Body(r)
(ii) M satisfies some a; € Head(r)

e a ground program P, if M satisfies each r € P

a rule r (resp. program P), if M satisfies each v’ € grnd(r) (resp. grnd(P))

We can thus raise two conditions for a minimal model. An interpretation M C HB(P)
is a minimal model of P if:

(i) M satisfies P
(ii) no N C M satisfies P

We can finally define Answer Sets in the following way:

Definition 9. (Answer Set)
M is an answer set of a program P, if M is a minimal model of PM. AS(P) denotes the
set of all answer sets of program P.

Going back to Example 2 with the rule we added we can take the four models My, Mo,
Ms, My which then creates the set of all answer sets AS(P).

2.2.2 HEX and ActHEX

Hez programs, introduced by Eiter et al. in [EIST05], are an extension to answer set
programming allowing for higher-order atoms and external atoms. External atoms,
as the name suggests, allow to exchange knowledge with outside sources and thus
fostering software interoperability. For example a task can be delegated to an external
computational source as visible in the rule

reached(X) « &reach[edge, a](X)

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

STATE OF THE ART

18

where &reach|edge, a]' computes all nodes in a graph edge that are reachable from node
a. If as a result we derive reached(nl), it means the node n! is reachable by node a in
the graph edge. In 2013, Fink et al. extended Hex programs with the ActHex formalism
allowing to use action atoms in the rule head to change the state of an environment
outside of the logic program. The rule

#robot[goto, charger|{1} < &sensor{bat](low)

employs the action atom #robot to control the robot and the external atom &sensor
to access external sensor data. In this example, the parameter appended to the action
[goto,charger]{1} represents the priority given to the action.

2.2.3 HexLite

HexLite [Sch19] is a lightweight solver developed by Schiiller for the aforementioned
ActHex programs. It is written in the Python programming language, which is also the
language in which the external atoms will be evaluated in. We mention it here because
it will be our solver of choice for the prototype implementation presented in Chapters
5 and 6. For instance, it will allow us to read the contents of a database where traffic
sensor data is stored in real time. The rule

QwsConnect (X) :— not &wsConnected[X], server_adr (X). 2

for example creates a connection to the server address X if no web socket connection is
already present.

2.2.4 LARS

LARS [BDTE15] presented by Beck et al. is a logic-based framework for analyzing
reasoning over streams. This will be the main example for a stream reasoner that we
will come back to later when expanding on the architecture of an ideal dynamically
configurable system that makes use of an adaptable interface. LARS follows the trend of
data pushing and while a dynamically reconfigurable stream reasoner has been researched
in the DyKnow framework [dH16], it merely issues reconfigurations and does not reason
on the incoming data streams to determine whether a reconfiguration is necessary. LARS
instead offers a flexible mechanism to alter the view on streaming data through the
usage of windows. It can prepare the streamed data in a way that the Reconfiguration
Module can make decision based on the extracted events and discretized information. By
applying these window operators, LARS attempts to deal with the possibly infinite input
streams. We now give some definitions that will later be used to describe the stream
reasoning module:

Lin [EFI*15] the ampersand symbol substitutes the # symbol used in earlier versions
Zour implementation uses @ as a symbol for action atoms instead of #

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.2. Logic programming

Definition 10. (Stream)

A stream of data S denoted by S = (T, v) where T, the timeline, is a finite interval in
N consisting of time points t € T and v is an evaluation function v : N — 24, where
A = A% U AT denotes the full set of atoms, A the extensional atoms and AT the
intensional atoms.

Intuitively, v maps to each time point the atoms pertaining to that exact moment.
For example, let T' = [0,20] and let there be a power outage at time point 13. Then
v(13) — {outage} and v(t) — @ for all other ¢ € T. The window of observation can be
reduced in an effort to deal with big amounts of data. Assume that in our previous
example, any measurements taken more than x time points ago are to be regarded as
obsolete. We can then define a stream S’ = (77,v’) where S’ C S, i.e., T/ C T and
V(") Co(t) for all ¢’ € T'. We call S’ a substream of S.

Definition 11. (Window function)
Any (computable) function w that returns, given a stream S = (T, v) and a time point
t € T, a substream S’ of S is called a window function.

In Plain LARS [BDTE15] we distinguish time-based and tuple-based window functions.
These can be expressed through the window operator H. An expression Ha is to be
evaluated only in the interval delivered by the respective window function wg. The two
window functions are represented by the following operators:

e Time based H” restricts the snapshot to the last x time points.

e Tuple based B#? restricts the snapshot to the last x tuples, where a tuple consists
of a time point and an atom.

Additionally, we can have the following set of extended atoms defined by the grammar
a |Qua | BY Qua | BY Ca | BY Oa
where a € A and t € N a time point.

The symbols {@;, &, 0} give a time reference to the atom a. Take a stream of data
S = (T, v) then at time point ¢ € T" and given a power outage at t = 13 we have the
following:

e @ targets a certain point in time and is used to check whether an atom holds at a
specified time point. @ua thus holds, if # € T and a holds at time point ¢'.
Example: @Q3outage holds at any time point since v(13) — {outage}

e <O is a substitute to the existential quantifier 3 used in first order logic. $a thus
holds if a holds at any time point ¢’ € T.
Example: B°Coutage only holds in time points ¢t € [13,18] since the window
operator only looks back 5 time points.

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

STATE OF THE ART

20

e [instead is a substitute to the for all quantifier V used in first order logic. Oa
thus holds if a holds at all time points t' € T
Example: H*Ooutage holds only if we restrict the timeline T to only include
time points ¢’ such that v(t') — {outage}. So if in addition we also have v(14)
{outage}, then B'@Q; 0utage holds at all time points.

Multiple rules can then be collected to form a program P. We relay Figure 2.2 displaying
a LARS program that aims to recommend to a user waiting at stop M, to either take
the bus or the tram based on the current traffic situation and transport schedule.

busG tram B e:rpBusM

37.2 39.1 t 40.2

(r1) QriszmexpBusM < B*™QrbusG, on.

(r2) QrismerpTrM < B™QrtramB, on.

(r3) on — B Orequest.

(r4) takeBusM < BT OexpBusM , not take TrM
not B> Ojam.

(r5) takeTrM <« BT OerpTrM , not takeBusM.

Figure 2.2: The timeline of events with a request coming in at ¢ = 39.7 and a program P
to recommend public transport [BDTE15]

Beck et al., 2015, Answer Update for Rule-Based Stream Reasoning. Proceedings of the 24th
International Conference on Artificial Intelligence 2015, Buenos Aires, Argentina

The program makes use of the extended atoms introduced above and consists of five
rules: (r3) is triggered if a request for recommendation has been made in the last minute.
If a request was made, then on is derived and the recommendation system is unlocked.
(r1) says that, if in the last 3 minutes a bus arrived at stop G and on has been derived
through rs, then (following the public transport schedule and map) we know that the bus
is expected to arrive at stop M 3 minutes after it arrived at stop G. Similarly, (r2) says
that if a tram arrived at stop B in the last 5 minutes and on has been derived through
r3, then we can expect the tram to arrive at stop M 5 minutes afterwards. (r4) suggests
to take the bus from stop M if in the next 5 minutes we expect a bus to arrive at stop
M and taking the tram has not been suggested yet. In addition, there is also a condition
that checks for any traffic jams that might have occurred in the last 3 minutes as an
ulterior requirement to taking the bus. Finally, (5) follows the same logic as ry.

In [BDTE15], Beck et al. define the semantics as follows:

For a data stream S = (Ts,vg), any stream I = (T,v) 2O S that coincides with
S on A¢ is an interpretation stream for S. A tuple M = (T,v,W,B), where

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.2. Logic programming

W is a set of window functions and B is the background knowledge, is then an
interpretation for S. Throughout, we assume W and B are fixed and thus also
omit them.

Satisfaction by M at t € T is as follows: M,tF « for a € AT, if a holds in (T, v)
at time ¢; M, t F r for rule r, if M,t E (r) implies M, t E H(r), where M,t F 5(r),
if (i) M,tFE p; foralli e {1,...,5} and (ii) M,t ¥ p; foralli € {j +1,...,n};
and M,t E P for program P, i.e., M is a model of P (for S) at t, if M, ¢ F r for all
r € P. Moreover, M is minimal if in addition no model M’ = (T, v, W, B) # M
of P exists such that v/ C v.

Definition 12. (Answer Stream) An interpretation stream i is an answer
stream of program P for the data stream S C I at time ¢, if M = (T, v, W, B) is
a minimal model of the reduct PM* = {r € P|M,t F B(r)}. By AS(P,S,t) we
denote the set of all such answer streams 1.

To tie together the example in Figure 2.2 and the Answer Stream Definition, Beck
et al. give the following example.

Example 3. Let S” = (T, ') be the data stream which adds to the stream S from
Figure 2.2 the input 39.7 — {request}. We get two answer streams Iy = (T, v1)
and Iy = (T,v9) of P for S’ at t = 39.7m which both contain, in addition to
the mappings in v’, 40.2m +— {expBusM} and 44.1 — {expTrM}. Answer stream
I, additionally contains the recommendation ¢ +— {takeTrM} and I» suggests
t — {takeBusM}, since both vehicles are expected to arrive in the next 5 minutes.

Even though in our future examples we will be using plain LARS, it is important to
note that in [BDTEF15] Beck et al. enhance the window operator with the addition of a
stream choice and vectors for window parameters. For instance, a time-based window
function can be expressed with a parameter vector = (I, u,d) to specify how far in
the past (1), how far in the future (u) and with what step size (d) the window function
should operate. In addition, the stream choice ch can choose between the fixed input
stream S™* and the currently considered window S.

Furthermore, in [BDTE16] Beck et al. define a novel logic called Bi-LARS that captures
the FLP? [FLP04] based semantics of a large fragment of LARS programs.

This section is not meant to give exhaustive insight to the LARS Framework. For
further reading on how LARS extends Truth Maintenance Systems, the Answer Update
Algorithm, the Complexity of Reasoning in LARS and the full context behind Equivalent
Stream Reasoning Programs refer to the materials [BDTE15, BDTEF15, BDTE16] cited
in this section.

3A fully declarative, genuine generalization of the answer set semantics for disjunctive logic program-
ming (DLP)

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

STATE OF THE ART

22

2.3 Updating rule sets of logic programs

Before we analyze the state of the art and previous research regarding updates in logic
programs we need to define and analyze the difference between what it means to revise
and update a logic program. Initially the differences were not defined well until rationality
postulates were defined in [AGMS85] and then later revised in [KM91], which argues that
there is no one fit all measure that can encapsulate all applications. It is further stated
that both revision and update are two kinds of modifications to a knowledge base and
then describes the differences by defining the two terms as follows:

e Revision: Is used when the goal is to infer new knowledge from an unchanging,
static world (for example through binary resolution [Bunl13]).

e Update: Is used when the world described by the knowledge base changes and
consequently the knowledge base describing it is brought up to date.

We are interested in updating our knowledge base through the use of an interface
description and update commands and will thus look closer on what attempts have been
done towards this field of research.

The first attempts where made by Marek et al. in 1994 [MT94], Przymusinski et al. in
1997 [PT97] and Alferes and Pereira in 1996 [AP06] which were mainly concerned with
finding "interpretation updates” [KM91]. This approach focuses on applying an update
in the form of a knowledge base U to an existing monotonic knowledge base KB by
finding the set of updated models of KB.

However these approaches were not well suited for non-monotonic applications. As
[APPP02] points out, even though [AP06] managed to remove some of the drawbacks, it
still was not possible to update logic programs comprised of logic rules and not just facts.

2.4 LUPS and LUPS*- A language for updating logic
programs

A solution to the last drawback was finally proposed by Alferes et al. in the form of
LUPS [APPPO02] in 1999; a language for updating logic programs and its later improved
version LUPS* [Lei01] in 2001 by Leite. Because later in Section 4.2 we will extend
LUPS* in order to fit our purposes better, we now give an introduction to the LUPS
concept as well as its syntax and semantics.

2.4.1 LUPS

LUPS’s goal is not only to semantically describe how a logic program that is updated
through the usage of update commands looks like, it also aims to describe the state
transitions in between one state and the next of the KB. We can for example create

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.4. LUPS and LUPS*- A language for updating logic programs

update commands of the form "add rule r; only if condition x applies"that will only add
or remove a rule when certain conditions apply. It is also possible to define commands
that will persist through the next transition states and not only affect the next state.
These update commands are then treated as a logic program themselves, creating a
sequence of updates through logic commands defined as dynamic logic programming, a
paradigm presented in [ALPT00].

Definition 13. (Dynamic logic programming) A finite or infinite sequence of con-
secutive updates of a logic program by logic programs of the form Py ... P L. P...
with PO = {}

Since dynamic logic programming does not provide an apposite language that can describe
transitions in logic programs, the LUPS language was conceptualized. The following are
the update commands as they are defined in [APPP02]:

(1) assert L + Ly, ..., Ly when L1, ..., Ly,

(2) assert event L < Li,..., Ly when Lyi1,..., Ly,
(3) always L < Ly,..., Ly when Lyyq,...., Ly,

(4) always event L < Ly, ..., Ly when Ly,q,..., Ly,
(5) cancel L « Ly,..., Ly when Lyyq,..., L,

(6) retract L < Lq,..., Ly when Lyq,..., Ly,

(7) retract event L < Lq,...,L; when Ly1,..., L,

We briefly go over the semantics of the keywords, for this purpose let us assume that
we are currently in knowledge state KS; and that these update commands describe the
transition to the states after that:

e assert is a non persistent command that will only be executed once in the transition
from KS; to KS;11. It adds rule L < L, ..., Ly to KS;4+1 if condition Lgy1, ..., Ly,
applies in KS;. This rule will remain by inertia in the successive knowledge
states KSjy1, KSjt+o, ... until retracted.

e assert event is a combination using the event modifier, which will cause the rule
to only remain for the next knowledge state KS;yi. It will then be automatically
removed from KS;ys.

e always has the same result as the assert keyword, with one exception: while
a normal assert command will only be executed once, an always command is
persistent, which means it will be executed for every subsequent transition until the
command is canceled through the cancel command. This type of keyword can be
useful when we have a condition for which we are unsure when it is gonna change
its truth value. By having a persistent command, we can make sure that as soon
as the conditions are met in a knowledge state, the rule will be added in the next
one and, depending on whether we have a command like (3) or (4), respectively
remain by inertia or have the rule retracted in the following state.

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

STATE OF THE ART

24

It is important to note that if a when condition is present, it is evaluated in each
iteration to decide whether the command associated should be executed.

e always event again mirrors the behavior described for the assert event combi-
nation, except that the command will persist for future state transitions. This
means as soon as the conditions are satisfied in the current or a future knowledge
state, the rule will only be added for the subsequent knowledge state and then
automatically retracted again.

e cancel removes a persistent update command previously defined through the
always keyword.

e retract works the same way as assert, except the rule is removed from the
knowledge state instead of added. This change is also inertial, i.e., the rule is
removed from all future states.

e retract event acts like the assert event keyword, except that the rule is removed
instead of added. Because of the event keyword, the rule is only deleted in the
next knowledge state KS;11, the rule will then come back in KS;,s automatically.

Example 4. The example given by Alferes et al. in their LUPS paper [APPP02] is very
well suited to display the functionality of most of the above commands. It presents a
real life situation where an attempt is made to formulate legal reasoning through logic
programming. The example is based on the US political system and on the debate
between Republican and Democratic parties on the legality of abortion. The scenario is
constructed as follows:

o If the Republicans take the majority in both Congress and Presidency, then they
will adopt a law punishing abortion by jail.

o If the Democrats take the majority in both Congress and Presidency, then they
would remove said law.

e During any time where no faction holds both roles, no changes are made to this
law.

e Abortion as an action will be treated as non-inertial, i.e., abortion(mary) is true
only in the state where it is added as an update).

In LUPS, the scenario could be described with the following persistent update commands:
always jail(X) < abortion(X) when repC, repP
always not jail(X) < abortion(X) when not repC, not repP

These rules behave exactly as described in our scenario. When repC' and repP are
true, jail(X) < abortion(X) is asserted. Meanwhile, if both are false, not repC and
not repP become true and the complement is asserted. By the nature of dynamic logic
programming, the most recent assertion will take priority in case of conflicts (see Rejected
rules Definition 15).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.4. LUPS and LUPS*- A language for updating logic programs

Note: Even though there are no such rules in this example, we observe that any other
rule having jail(X) as its head would also be rejected as follows by the definition of
Rejected rules. Such a rule could be jail(X) < murder(X). This problem will later be
referenced with LUPS* in Section 2.4.2.

Assume the following timeline:

(1) Democratic Congress and Republican President

(2) Mary performs an abortion

(3) Republic Congress elected and Republican President stays
(4) Kate performs an abortion

(5) Republic Congress stays and Democratic President elected
(6) Ann performs an abortion

(7) Democratic Congress elected and Democratic President stays
(8) Susan performs an abortion

Alferes et al. model this timeline with the following LUPS commands:

U, : assert repP Us : assert not repP

assert not repC Us : assert event abortion(ann)
U, : assert event abortion(mary) U7 : assert not repC
Us : assert repC Us : assert event abortion(susan)

U, : assert event abortion(kate)

They summarise the rules asserted throughout the updates and the logic used to determine
when an abortion is punished by jail as follows:

e At first there is no rule that implies jail in case of an abortion and none are asserted
in U; either.

e In Uy, Mary decides to get an abortion, but will not be punished by jail since no
rule implies it.

e A Republican Congress is elected in Us, this then triggers our first persistent

command since both repC' and repP are true. We now have jail(X) < abortion(X).

e Now Kate’s abortion in Uy triggers jail(kate). We observe that even though Mary
opted for an abortion in Us, the fact abortion(mary) was retracted in Us (semantics
of event) causing her not to be punished by jail because of future changes.

e In Us, a Democratic President takes over. This will not result in the retraction of
the previously asserted rule since the Congress is still Republican.

e Since the same rule is in place, also Ann will be punished with jail when she opts
for an abortion in Us.

e Finally, in Uy, a Democratic Congress is elected as well and the second persistent
command triggers asserting not jail(X) < abortion(X).

e When Susan opts for an abortion the rule asserted in Uy takes precedence over the
rule asserted in Us because it is more recent and Susan faces no punishment.

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

STATE OF THE ART

26

The LUPS Semantics

We want to provide the set of commands seen above with a meaning. How are dynamic
logic programs evaluated? What happens with conflicting rules? To answer these
questions we translate the update program consisting of update commands to a dynamic
logic program, defined in Definition 13. Since we can view the construct of dynamic logic
programming as taking Py, then updating it with P;, then P, etc., we can observe it as
an evolving knowledge base of rules. Intuitively, we can thus append new rules to the
sequence without having to worry about conflicts with previous rules since the role of
dynamic programming is to maintain previous rules active only as long as they do not
conflict with a newer rule.

Before construction the Model M we give the following definition:

Definition 14. (Generalized logic program)* A generalized logic program P in the
language Lx is a (possibly infinite) set of propositional rules of the form

L+ Li,.,Ly

where Ly, ..., L, are literals and K is a set of propositional variables whose names do
not start with "not". By L we then mean the language with the set of propositional
variables {A : A € K} (called objective atoms) U{not A : A € K} (called default atoms).
We call a logic program P normal if none of the literals in the heads of the rules in P
are default ones, i.e., do not begin with the word not.

To construct the stable model M of the sequence up to Py, as a first step, given a
Model M of the most recent program F,,, remove all rules from previous programs in the
sequence, where its head appears as a complement in some later rule with a body that is
true in M.

Definition 15. (Rejected rules)* Let @ P; € S be a dynamic logic program, let s € S,
and let M be a model of P;. Then:

Reject (M) = {Lo + Body € P;|3 not Ly + Body € Pj,i < j < sAMF Body'}

As expected, not Ly is the complement of Lo and both Body and Body are conjunctions
of literals.

All rules that are not part of the rejected rules persist by inertia. To reach the stable
model of a single generalized program, we use the Closed World Assumption principle
and thus add facts notA for all the atoms A where no rules with a positive body exist.
We hereby create the set of Default rules.

4As defined in [APPP02]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.4. LUPS and LUPS*- A language for updating logic programs

Definition 16. (Default rules)* Let M be a model of a generalized logic program P.
Then:

Default(P,M) = {not A |} A<+ L1,...L, € P: M F Lq,...,L,}

We can then finally compute the stable model M of the P, sequence.

Definition 17. (Stable models of a DLP at state s) * Let @P = @{P, : i € S}
be a dynamic logic program, let s € S, and let U = {J,<; Fi. A model M of P is a stable
model of @ P at state s iff:

M = least ([U — Reject, (M)] U Default (U, M))

least defines the smallest model that contains all logical consequences of the two subsets.
The resulting model is then always a superset of the individual subsets.

Example 5. We now tie together Definitions 15 - 17. Consider the dynamic logic
program P} @ P», where P; and P» are:

P;:a<+. P :notb<+ a
b+ notc

Then the only stable model at P is M = {a, not b, not c¢}. The reasoning is the following:
Default(Py U Py, M) = {not ¢} since ¢ cannot be derived from any rule. We also have
Rejecty (M) = {b < not c} since the rule in P, has as its head the complement of b and
the body a is true in M. We then get M by:

M = {a, not b, not ¢} = least((Py U Py — {b < not c}) U {not c})

This concludes the semantics section after showing how we can reach a stable model from
a set of update commands.

2.4.2 LUPS*

The author of LUPS* [Lei01] discovered an issue with how the assert event command
added and retracted rules in the KB. Rules added through the command can not be
distinguished from previous rules present in the KB with the same syntax. The inability
to tell the rules apart then leads to both being retracted in the next state transition (due

to the semantics of event), thus eliminating knowledge that should have remained intact.

To combat this, in the author’s perspective wrong behavior, [Lei01] introduced a way
to uniquely identify rules through a pair of new propositional variables that solve the
aforementioned problem.

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2. STATE OF THE ART
Syntactic changes
In addition, due to other ambiguities and lack of functionality, some of the previous seven
commands were altered:
e LUPS commands (3) and (4) become always assert [event] to distinguish from
the new command always retract [event], where event is optional.
e LUPS command (5) becomes cancel assert to distinguish from the new command
cancel retract.
and some new commands were introduced:
(8-9) always retract [event] L < Li,..., Ly when Lyq,....,L,,
(10) cancel retract L < Lq,...,L; when Lj1,..., Ly,
The changes to the syntactical structure of the rules are summarised in Table 2.1.
LUPS LUPS*
assert | event | assert | event]
retract [event | retract [event |
always [event | | always assert | event]
non existing always retract [event |
cancel cancel assert
non existing cancel retract
Table 2.1: Commands added in LUPS*
Semantic changes
For the largest part the semantics remained unchanged. The translation into a dynamic
logic program follows the same procedure as for LUPS with the addition of a new
propositional variable "N(R)" for each rule R, allowing targeted retraction of rules
through the addition of the complement not N(R). In addition, to combat the problem
introduced by the retraction of rules asserted through the event keyword (non-inertial
rules), a further propositional variable "Ev(R, S)" was introduced for each rule R asserted
with an event keyword in state S. By doing so, in an arbitrary state S+ 1 all non inertial
rules asserted in state S can be retracted safely through the negation not Ev(R,S)
without affecting any other rules that might share the same head.
The full translation into a dynamic logic program has been adapted for our version
TLUPS and can be seen in Section 4.2.
The next example serves as a continuation to Example 4 and shows the issues described
before and how the new commands allow to solve them.
28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

2.4. LUPS and LUPS*- A language for updating logic programs

Example 6. Assume that we have the following two rules active:

jail(X) < abortion(X)
jail(X) < murder(X)
If we then use the command assert not jail(X) < abortion(X) to remove the rule

punishing abortion, as suggested in Example 4, it will automatically invalidate the rule
punishing murder as well. LUPS* commands (3-4) and (8-9) solve this issue:

always assert jail(X) < abortion(X) when repC, repP
always retract jail(X) < abortion(X) when not repC, not repP

The always retract statement will only remove the rule punishing abortion and will
leave other rules implying jail with a different rule body untouched.

However, LUPS* still does not reach a level of expressiveness that we deem as sufficient.

Furthermore, there are further problems with the cancel assert and cancel retract
commands, which do not allow to specify which command needs to be canceled in an
instance where two commands assert the same rule, but with different conditions. We
will elaborate on these two problems in Section 4.2.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

CHAPTER

Abstract Architecture and
Components

Event Event
Channel Channel
Communication In?c::)n?;?ison Process '
Manager
9 Channel Interface Information
Channel Reconfiguration
Information Information Module
Request Request
Channel Parameter| |, Channel Cﬁ?ega}or
Section vioaule
Stream Memaory
Producers Reasoner ry :
Decision :
Command Module :
Data _ _Channel :
Section = o
Command
Channel Command
Update Manager < Channel

Domain Expert

Figure 3.1: Dynamic Interface Architecture, readapted from DynaCon [EDTF*19]

As stated before, one of the goals of this thesis is to design an interface that can interact
with different types of stream reasoners. We will thus make the general assumption that
there will be some type of producer responsible for streaming unfiltered or prefiltered
data directly to the stream reasoner. Such producers might be simple sensors responsible
for measuring use case specific metrics or the output of other stream reasoners merging
together. As in the nature of streamed data, the rate at which it will be transmitted is

31

(]
lio
nowledge

b

i
r

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

ABSTRACT ARCHITECTURE AND COMPONENTS

32

variable and thus hard to predict. Furthermore, raw data is usually not well suited to
be fed directly into a reconfiguration module. The stream reasoner thus intercepts the
data stream and through the usage of a rule based language, groups low level data like
quantitative temperature measures to high level abstractions like hot, freezing, etc. Not
only should the stream reasoner be capable of detecting events through predefined rules
acting on "instant" data, it should also be able to aggregate continuous data into accumu-
lated process information that can be either sent regularly over the appropriate channel
or requested by the reconfiguration module through pull requests. The accumulation of
data is possible through certain logic based languages like LARS [BDTE15], C-SPARQL
[BBCG10], and DLP# [DFI+03].

3.1 Stream Reasoners

In the scope of this work, we aim to create a concept for the interface with the least
amount of assumptions possible about the stream reasoner. Each use case requires
and has different types of stream reasoners available. The latter can reach from simple
rudimentary rule system implementations, like a pure ASP rule system, to more advanced
reasoners that support updates to its rule system and implement functionalities such as
time-based and tuple-based window functions, e.g., Laser* [BBU17].

Towards this goal, some parts of the description of the interface will assume specific
capabilities on the stream reasoner side: ability to execute assert / retract statements,
ability to push messages, ability to answer queries. These capabilities can either be
native functionalities of the stream reasoner or additional modules, like a communication
or update manager that can be combined with more basic stream reasoners. Since
many stream reasoners have no built-in functions to send messages over communication
channels, the first optional module that comes into play is the Communication Manager.

3.2 Communication Manager

The Communication Manager acts as a proxy module between the stream reasoner and
the Operator. It is set in place to regulate the communication in order to only allow
relevant and desired information to reach the Operator instead of having an unfiltered
communication channel. The following tasks are managed by the Communication
Manager:

1. Event handling: when event messages are generated by the stream reasoner, they
are picked up by the Communication Manager. The interface description (covered
below) is then used to determine whether an event should be sent, and what
additional information (similar to process information) have to be added to the
event message.

2. Process information handling: accumulated process information can either be
obtained through pull requests sent by the Operator, or are sent automatically

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.2. Communication Manager

to the Operator by the Communication Manager through push based messages.
Different styles of communication involving buffering and delays are permitted
to fine-tune the communication between the Communication Manager and the
Operator module. Process information requests can either be dealt with by fetching
the data from an internal cache or by calling the stream reasoner to complete the
request.

3. Communication handling: as mentioned, the Communication Manager can employ
several communication strategies. For instance, two examples for types of delay
are: "buffer and burst" that buffers messages for later sending and "same message
delay", where subsequent messages that are equal to the previous one received are
discarded.

Event handler

In the default case, these messages fall under the category of push messages, since they
are automatically fired by the stream reasoner and received by the Communication
Manager. The Communication Manager then checks with the interface description to
determine its behavior regarding the specific event. This process involves checking for
the presence of the event in the interface and of any eventual exceptions associated to
it. The process is explained in Section 3.5.2 by an example. If during this process it is
decided that the event needs to be relayed to the Operator, then the Communication
Manager can package metadata of the event into a predetermined message format and
forward it to the Operator through the Event Channel.

Example 7. Event communication (Anticipating Example 12).

Taking as an example a stream reasoner placed on a roadside unit and monitoring traffic,
we observe the following behavior. A rule in the stream reasoner triggers, pushing the
event trafficJam("U1","Karsplatz") where Ul represents a road and "Karlsplatz" the
intersection where the traffic jam occurred. The Communication Manager receives this
event and consults the interface to determine the appropriate communication behavior.

1 Predicate:
name: trafficJam

Communication:
default:
mode: push
buffered: false
delay: O

Listing 3.1: excerpt of the interface defined in Section 3.5.2

©w N o otk W N

The Communication Manager sees that the message should be pushed to the Operator
without a delay. What if we need to define some exceptions to allow different types of

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

ABSTRACT ARCHITECTURE AND COMPONENTS

34

communication within the same predicate? Our interface allows for fine tuning through
boolean conditions. Exceptions allow us to change the communication behavior based on
the parameters of the predicate (in this case Ul and Karlsplatz). The syntax for these
exceptions and the continuation to this example can be found in the Interface Description
Section 3.5.2.

Process information handler

Taking an example based on LARS, a rule designed to accumulate information could
look like this: Let us assume that there is a stream that at irregular intervals transmits
information on the room temperature in the format Qp temp(roomlID,temperature),
where T is the timestamp of the measurement. Then, the following rule would capture
the average temperature of the measurements received during the last 2 minutes in its
rule head Qp avg_temp_in_room(roomlD,avgTemperature):

Qr avg_temp_in_room(X,(A+ B+ C)/3) <+ Qrtemp(X,A),
@Tfl temp(Xv B)7
@TfQ temp(X, C))

avg_temp_in_room_request(X)

(3.1)

This type of accumulated process information might both be useful to obtain in a pull
based fashion through operator requests and be relevant enough to be pushed in periodical
time intervals. To allow for different modes of communication and accommodate eventual
buffering of data paired with delays, different settings can be made for each predicate in
the Data section of the interface description. For example for pull requests, a flag at the
rule body can be added, in this case avg_temp_in_room_ request(X) will only become
true when the appropriate request has been received from the Operator module.

Delays in communication handling

As later described in Section 3.5.2, it is possible to define a delay for the messages of a
specific predicate. Since "delay" is an ambiguous term we will now analyze the two main
ways on how a delay can be implemented. The first is through a buffer & burst approach,
while the second places a delay between messages of the same type:

e buffer & burst: This more specific type of delay will find use cases mostly
depending on the environment instead of the specific predicate. It might be useful
in cases where keeping a communication line open permanently is not possible,
or where some degree of interception / recognition resistance is desired, as it is
often the case in military use cases [Oet80]. The implementation of such buffers
can be achieved by keeping track of a timer for each predicate using this type of

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.3. The Communication Channels

delay. While the timer is ticking down, all incoming data regarding that predicate
is stored in a buffer and once the timer runs out for that specific predicate, the
data is transmitted all at once. The buffer & burst setting in our interface can be
set in the following way:

1
Communication:
default:
mode: push
buffered: true
delay: 10

(>IN S I)

The Communication Manager consults the interface and in this case creates a
10-seconds timer and holds all incoming messages until that timer is over. When
the timer is over, all accumulated messages are sent and the timer restarts for the
next burst.

e Same message delay Intuitively, if at a certain time point the body of a rule
is satisfied, there is a good chance that the body will also be satisfied during the
next iteration if the knowledge base does not change considerably. This would lead
to a message being fired during each iteration. For example if the time interval
between one iteration and the next is one second and the conditions making the
body of a rule true do not change for a minute, it would result in 60 event type
messages being sent to the Operator. While redundant, these messages would also
slow down the Operator if we consider that the same could be true for dozens of
other predicates. By implementing same message delay, we can make sure that the
same type of message will be discarded by the Communication Manager if too little
time has passed from the last message of the same type that has been transmitted.

3.3 The Communication Channels

In the previous section we mentioned the usage of communication channels between the
stream reasoner, interface and Operator to deliver information. The type of communica-
tion protocol can be altered depending on the use case, ranging from UDP-, TCP- or a
Websocket-based implementation. The split into 4 channels as suggested by the DynaCon
[EDTF*19] architecture allows for a clear separation of the information exchange between
the different modules.

e Event Channel: By its nature the event channel is used for sporadic messages
whose occurrence is unpredictable. Events are previously defined occurrences of
(unexpected) changes in the streamed data that the stream reasoner is able to
detect. When a new event is detected, the Communication Manager is responsible
for transferring it. To decide on the mode of transportation the Communication
Manager checks the Data section of the interface in order to decide whether a
message should be transmitted and which additional options are applied.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

ABSTRACT ARCHITECTURE AND COMPONENTS

36

e Process Information Channel: Unlike the Event Channel where communication
is mostly push based, process information can both be requested ad hoc as well
as be set up for regular transmission. Such information will mostly be used to
check conditions responsible for triggering eventual reconfigurations. Separating
communication into an event and a process information channel also allows to use
different communication protocols such as HTTP/REST or Websockets.

e Information Request Channel: If more information is required by the Operator
it can be queried through this channel. The message format allows us to filter
data according to some specifications, allowing to retrieve data meant to support
the constant stream provided by the process information channel. Additionally, in
the case where the event channel collapses, this channel can be used as a backup
solution making the whole architecture more robust.

e Command Channel: Through this channel the Operator can issue changes to the
rule set by adding, removing, activating, or deactivating specific rules. Moreover,
the channel can be used to change entries in the interface description. This includes
parameter values, but also modes of communication for predicates. While the other
channels communicate directly with the stream reasoner or the Communication
Manager, these commands are intercepted by the Update Manager. The Update
Manager then executes the commands and stores eventual persistent commands.

3.3.1 Message Format

Depending on whether we are communicating by the occurrence of an event through the
Event Channel or exchanging data through one of the others, different message formats
apply depending on the channel:

e To communicate the occurrence of events the Communication Manager uses the
tuple me =< e, a,t,l,d,p > where:

— e is the FventType, specifying the unique name or id of the event

a is the Source, specifying the source stream reasoner

— t are the Targets, specifying the recipients of the message

[is the Location, specifying the location where the event occurred
— d is the Time, specifying the time and date

— pis a tuple with additional parameter names and values

Example 8. Take the predicate trafficJam(X), where X is the lane with a traffic
jam. Additionally, the event occurs on January 31, 2020 at 14:30. The context is
the same as seen before, we are modeling a traffic situation where roadside units
(RSU) with sensors control the traffic. Then the message would have the following
format:

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.4. Update Manager

MirafficTam = <trafficJam, RSU#S3, Operator, lane#231, 310120201430, ->
Where the time is simply encoded in the DD.MM.YYYY HH:MM format.

e For process information the tuple is defined as m, =< e,a,t,l,d,v > where v
simply holds the value for the process information and e, a,t,l,d are defined as
above.

Example 9. The Operator requests details about the number of cars in lane 231
observed by RSU number 3, in response the following message is sent.

MearinLane = <carInLane, RSU#3, Operator, lane#231, 310120201430, 10>

e To request information the message format for process information can be reused
in the form m, =< e, a,t,l,d > as a filter, where e, a,t,[are as above and d again
defines the time. Each parameter of the tuple can then act like it was part of a
WHERE clause. By defining a parameter we look for process information matching
that value, instead by leaving an asterisks ("*’) all data is retrieved regardless of
the value for that parameter.

Example 10. If RSU number 3 produces information about the 4 lanes around
the intersection (lane nr. 231, 232, 233 and 234) concerning the amount of cars in
the lanes, a request could look as the following;:

MearinLane = <carInLane, RSU#3, *, * 10m>

This query would be answered with all the carInLane messages that were generated
in RSU#3 for all the 4 lanes, regardless of the target and the location, in the last
10 minutes.

e Finally the format of messages required to issue commands depends on the imple-
mentation of the Stream Reasoner. Examples can be seen in Section 3.4.1 regarding
Update Commands.

3.4 Update Manager

The Update Manager is the module responsible for managing the stream reasoner and the
interface depending on update commands sent by the Operator. The Update Manager is
essential since the stream reasoner alone "only" evaluates a given logic program. It cannot
decide on its own, whether some rules need changing and it cannot update the program
while the evaluation is running. The Update Manager can thus change the behavior of a
running stream reasoner by changing the underlying program. Specifically, this happens
through the commands that can be sent by the Operator through the command channel
targeted at a specific stream reasoner instance. Then, depending on the command type,
the Update Manager changes the interface or the logic program itself. We consider the
following types of update commands for a program P

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

ABSTRACT ARCHITECTURE AND COMPONENTS

38

e Interface:

— Modify parameters, i.e., constants to program P
— Modify communication settings for predicates, i.e., push or pull and delays

e Stream reasoner:

— Add rules (including facts) to P
— Delete rules from P

— Activate and deactivate rules from P through comments

We also distinguish update commands by their temporal scopes. Some rules might be
added permanently (inertial commands): this means a rule will remain in the logic
program until it is removed by a future command. Instead, non-inertial commands
like the ones specified through the event keyword in LUPS or with the for keyword in
TLUPS, will automatically be retracted by the Update Manager after a given amount of
time. This distinction is important on the update manager level, but on the operator
level we distinguish two further type of commands: persistent and non persistent. Non
persistent commands are evaluated and executed once by the Operator. For example the
modification of an interface component or the assertion of a fact. Persistent commands
stay in the Operator for future iterations too and will be evaluated each time. This allows
us to state update commands with conditions, without knowing when the condition will
become true. Examples for persistent commands can be seen in Section 3.4.2.

3.4.1 Update Commands

Update commands are a central part that allows for dynamic reconfiguration of the
interface and modification of the rule set of a (logic) program in the stream reasoner.
Through the usage of a command language similar to LUPS [APPP02], policies can be
stated in the Operator, which can trigger update commands. These update commands
can be used to change the parameters located in the interface or to change the mode of
communication for specific predicates.

All update commands in this section are in the form in which they can be found as
TLUPS policies in the Operator. Once a policy is triggered on the Operator, the
command is sent to the Update Manager. Undesired information like the condition
(when ...) are removed and the flags interfaceCommand or srCommand will be
added depending on whether the execute or the assert/remove/enable/disable
keywords, respectively are part of the policy.

Example 11. Take a rule written in LARS to be as the following:

room_hot(X) <« BFOCroom_temperature(X,Y),Y > 30 (3.2)

Where room__temperature(X,Y) states that the room X that was measured a temper-
ature Y and k = 60 is a parameter specifying the time units, say in minutes. These

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.4. Update Manager

parameters are defined in the Parameter section of the interface description (elaborated
in Section 3.5). Now assume that room__hot(X) triggers air conditioning in room X. The
problem with k& = 60, is that this rule will imply that the room is hot up until 60 minutes
after the measurement that exceeded 30 degrees, even though the air conditioning might
have lowered the temperature enough already. An update command can be used to
change this parameter to 10:

execute setParameter (k, 10) (3.3)

At this point we will preview a new function made available with the TLUPS keyword
for, namely the timed addition of rules. This function is useful when we want to assert a
rule for a given amount of time and then immediately retract it. The policy

assert for 60 rule <rule> when <condition>

will cause the rule <rule> to be asserted for 60 time units, for example seconds, if the
condition is matched. The rule will then automatically be retracted after 60 seconds. A
function that is not yet implemented in TLUPS but still could be useful is the option to
assert a rule in the future. A keyword like in could be used in the following way:

assert in 30 for 60 rule <rule> when <condition>

If the condition is satisfied, the rule would be asserted after exactly 30 seconds and then
retracted after a total of 90 seconds.

3.4.2 Persistent Updates

Now suppose the following scenario: A room is being used both as a lecture room
and, during summer months, as a research laboratory that requires strict temperature
monitoring. For such a laboratory it is not enough to update the state of the room (hot
or not) every 10 minutes since temperature deviations of 2 degrees might already be
detrimental to the experiments. Thus instead of changing the parameter twice every
year through the command seen in (3.3) at the beginning and at the end of the summer
period, the following conditional commands can be employed:

always execute rule setParameter(k, 1) when room_is_laboratory (X)

always execute rule setParameter(k, 10) when room_is_classroom(X)

(3.4)

These commands are so called persistent updates and make use of a fragment of the TLUPS
language displayed in Section 4.2. With the always keyword, once these commands have
gone through the command language interpreter, they will be preserved and checked
during all successive iterations. During each iteration, the command language interpreter

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

ABSTRACT ARCHITECTURE AND COMPONENTS

40

will go through the commands stored as persistent updates and by using the information
received through the event channel, and occasionally by requesting additional information
through the information request channel, decide whether the commands should be sent
to the Update Manager or not.

Another possibility for update commands is the addition or removal of rules from the
(logic) program that is currently active in the stream reasoner. Going back to the previous
example of the room that can function both as a classroom and a laboratory, we want
the room to be locked at all times and are employing an NFC card reader to regulate
access. While it is being used as a classroom, all students are granted access. Instead,
while it is being used as a laboratory, it is desirable that only authorized people have
access to the room. In this context we look at the following rules:

As a base rule, we always want authorized personnel to have access to the room through
Rule (3.5), where card__scanned(X,Y’) simply means that person X attempted to enter
room Y through the NFC card reader and has__authorization_for _room(X,Y") is true if
person X is authorized to access room Y:

open__Door(Y') < card__scanned(X,Y'), has__authorization__for _room(X,Y) (3.5)
Now take the rule r1, which we do not want to be active at all times.
r1 : open__Door(Y') < card_scanned(X,Y'), is_Student(X) (3.6)

This rule can be added through an update command with a precondition, both establishing
when the rule should be added and retracted:

always assert rule r; when room_is_classroom (X)

always retract rule r; when room_is_laboratory (X) (3.7)

The examples displayed above show the usage of update commands. The available options
fully depend on the implementation of the command language and the command language
interpreter. For instance, instead of having two separate rules for addition and retraction
of a rule as seen in (3.7), a new keyword when ... until ... could both define
the conditions for activation and deactivation. One could also add other parameters to
the policies to indicate for how long (duration in time units) the rule should persist or
the parameter should be changed. We can observe this functionality in the design of
TLUPS in Section 4.2.

3.5 The Interface Description Language

For easy parsing, an XML format will be used to define the interface description. The
XML format is well suited due to the numerous XML parsers and programming API’s
(DOM!) for Java, LINQ? for .NET, which allow for easy editing of the files. On the first

"https:/ /javadoc.scijava.org/Java7 /org/w3c/dom/package-summary.html
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/ling/

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.5. The Interface Description Language

level of tags encountered in the interface description we define Sections. These Sections
include Parameters and Data. We will now look further into each Section to show what
keywords can be used to define properties.

For clarity’s and brevity’s sake, the following snippets of the interface will be shown in
YAML. Nonetheless, the actual implementation will be in XML as stated before.

3.5.1 Parameters
A typical entry in the Parameters Section would look like this:

1 parameters:
2 parameter:

3 id: O

4 name: window_size_traffic

5 type: int

6 value: 5

7 comment: Sets the window size for rules that
8 detect traffic jams on roads

Listing 3.2: Example for a Parameter Section

The parameters defined here in the interface description can have their value changed by
appropriate commands as seen in the previous section on update commands. At the same
time, the stream reasoner implementation has access to these parameters, which will
potentially influence the way it communicates facts or even how certain rules work (for
example by changing window sizes). We now give a description for each of the attributes:

e id acts as a unique identifier. It allows for unique identification when requested
through the Information Request Channel or when it is used by a command.

e name acts as a description.

e type defines the data type of the attribute value. We restrict ourselves to the two
basic types of integer and string and the type collection.

e value represents the data held by this parameter. In the case of numerical parame-
ters this would be either an integer or a natural number.

e comment serves as an annotation to describe what the parameter is used for.

3.5.2 Data

We use the Data Section to define what, when and how data is exchanged. We will
explain the structure of this section through the Interface Description examples seen in
Listing 3.3 and give the following example.

Example 12. Vienna Traffic. Take the map seen in Figure 3.2, which is a subset of the
public transport grid in Vienna and will be use as a simplified version of traffic monitoring.
In this network we have two main roads labeled with "U1" and "U4". Each have multiple

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.

ABSTRACT ARCHITECTURE AND COMPONENTS

42

intersections with other streets (not shown on the map) that are marked with white
nodes. In this simplified road example, we are concerned with two intersections, namely
"Karlsplatz" and "Schwedenplatz'. The predicate trafficSlow(X,Y) can become true when
a significant delay is measured on road X at intersection Y.

ST U e

Friedensbricke

Landstralie
Wien Mitte

Taubstummen-
gasse

Siidtiroler Platz
Hauptbahnhof

Figure 3.2: Subset of Vienna transportation map used as traffic example, lines "U1" and
"U4" treated as car lanes and white nodes as intersections

Assuming that traffic slows down enough to trigger a threshold in an intersection
Y, say '"Nestroyplatz", preceding "Schwedenplatz" on road "U1", triggering the event
trafficSlow("U1", "Nestroyplatz"). The Communication Manager is then responsible for
packaging the event with meta data and sending it to the Operator. We now look at the
interface shown in Listing 3.3 to see how the communication behavior is defined:

e Stream Reasoner Default Behavior: Checks the data section and looks for a
predicate with the appropriate name and number of arguments. In this example
it is the name trafficSlow and the number of arguments 2. If none is found, the
default behavior defined in lines 2-5 will be used. For this example, no message
regarding the occurrence of this event would be sent, since the default behavior for
this stream reasoner is defined as pull only.

Now assume that the slow traffic leads to a traffic jam with cars having to wait in the
middle of the intersection. This would trigger the event trafficJam("U1", "Nestroyplatz") at
the "Nestroyplatz" intersection. Again the Communication Manager tries to communicate
the event as follows:

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.5. The Interface Description Language

e Predicate Default Behavior: Again the data section is checked and the predicate

with name trafficJam is found with the correct number of arguments, occupying
line 6-26. The section for the exceptions in lines 18-26 is checked by iterating
through all of them to find a matching one, in this case there is only 1 exception.
Exceptions are defined in the same format used for SQL WHERE query conditions.
To decide whether this exception matches, we have to check the conditions for the
arguments, which in this case are:

— The SQL syntax "in" checks whether a term is included in the comma separated
collection. In this case, the first argument should either be "U1" OR "U4"
(line 22)

— AND the second argument should either be "Karlsplatz' OR "Schwedenplatz"
(lines 23)

The second condition does not apply because "Nestroyplatz" does not fulfil the
conditions in line 22, thus we check whether a default behavior for this predicate is
defined. This might be different from the default behavior of the stream reasoner
seen before. We see that the default behavior for the predicate trafficJam defined
in lines 15-18, is to push event data respecting a buffer of 10 time units.

Soon afterwards, the traffic jam also starts affecting one of the main intersections "Schwe-
denplatz" on the road "U1". This triggers the predicate trafficJam("U1", "Schwedenplatz")
in the stream reasoner. We observe the following behavior:

© 00 N O UoAs W Ny =

R e e e
[N V=)

e Predicate Exception: Again we check for an exception for the matching pred-

icate and we see that this time the restrictions for both arguments match. As a
consequence, the communication settings for this exception found in lines 24-26
trigger and the message is pushed without a buffer.

Data:

sr_default:
mode: pull
buffered: false
delay: O
Predicate:
id: O
name: trafficJam
number_of_arguments: 2
type: string
comment: "Takes as first Argument the road
identifier and as second Argument the
intersection on the road"
Communication:

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.

ABSTRACT ARCHITECTURE AND COMPONENTS

W
N

15
16
17
18
19
20
21
22
23
24
25
26

default:
mode: push
buffered: true
delay: 10
Exceptions:
Exception:
id: 0
condition: argl in ("U1,U4") AND
arg2 in ("Karlsplatz, Schwedenplatz")
mode: push
buffered: false
delay: O
Listing 3.3: Data Section for the Vienna Metro Example

Let us give a more detailed description of the communication keywords:

e mode: When mode is defined as pull, no automatic message transmission from

the Stream Reasoner will occur. The status of the predicate will only be sent when
requested through the Information Request Channel. Instead, the communication
mode push can make use of the two other attributes. In essence, when a new fact
or predicate is evaluated by the Stream Reasoner, its value will be transmitted to
the Operator. How this is done depends on the next two attributes.

buffered: If the newly evaluated facts and predicates are to be sent directly to
the Operator without delay, then the buffered attribute would hold the value false.
Instead, if information should be collected and only submitted in regular time
intervals the attribute would hold value true. The last attribute defines when or
how often buffered data has to be transmitted over the communication channel.

delay: The time settings for the buffered delay communication. The type of delay
can vary based on the implementation as laid out in Section 3.2.

Adding the Parameters and the Data part together results in an XML file incorporating
the sections as named above:

1
2
3

InterfaceDescription:

Parameters: "..."
Data- n "

3.5.3 Formal description in EBNF

To formalize the Interface Descriptions in XML, we present the following context free
grammar using the Extended Backus-Naur Form (EBNF)3. The words written in bold

http://matt.might.net /articles/grammars-bnf-ebnf/

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

3.5. The Interface Description Language

font are called tokens. Recall that these tokens are further expanded in the remaining
parts of the grammar until all tokens that appear on the left side are expanded on the
right side. The tokens placed between curly brackets can be repeated zero or more times
while the text between quotation marks is to be matched verbatim.

Top Production rules:

int_ desc ::= "<InterfaceDescription>" , param__section , data__section,
"< /InterfaceDescription>";

param__section := "<Parameters>" , {parameter} , "</Parameters>";

data__section ::= "<Data>", sr_ default , {predicate} , "</Data>"; (gl)

As seen before, following the first production rule we can add as many parameter
and predicate tokens as desired. These are the basic building steps for the interface
description. As we further analyze the command language to edit the interface we will
dive deeper into the construction of parameters and predicates. The complete EBNF
grammar is presented in Appendix A.

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Command Languages

In this chapter, we will show both command languages that we designed. In Section 4.1
the commands are aimed at changing the interface and will be displayed in the format in
which they are received by the Update Manager. Interface commands will also include a
function that is later elaborated on in Section 4.2, namely the timed addition of rules.
Through a duration parameter <t> also interface commands can be set to only execute
their changes for a certain duration of time. After the duration t expires, the interface is
reverted back to its state before the command was executed. Since we will have more
examples later that deal with timed addition, all commands of this section will be viewed
as permanent and thus carry the value -1 for parameter <t>.

In Section 4.2 we will introduce stream reasoner commands in connection with TLUPS,
our modified version of LUPS [APPP02]. TLUPS allows to define policies that are
evaluated in the Operator. Once a policy is triggered, the interface or stream reasoner
command is extracted and sent to the Update Manager for execution.

4.1 Interface command language

First, we want to clearly define what role the TLUPS policies play with interface
commands. TLUPS policies, as will be elaborated on in Section 4.2, are only used in the
Operator. The policies wrap both interface and stream reasoner commands in order to
give a framework to set conditions and timing options.

An interface command wrapped by a TLUPS policy in the Operator has the following
form, where srqy identifies the targeted stream reasoner or interface:

Interface command Interface command
—_——
srg : always execute for <t> rule editParamValue (<id>, <value>)
TLUPS policy TLUPS policy

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

COMMAND LANGUAGES

48

when <condit ion>;1
TLUPS policy

For now we will ignore the meaning of TLUPS policies as they will be explained in the
next section. The important part is that when the condition part of the TLUPS policy is
satisfied and the command needs to be sent to the Update Manager, the TLUPS policy
parts are removed and the keyword "interfaceCommand" is added creating the type
of interface command that we will be analyzing in this section:

interfaceCommand (editParameterValue, <t>, <id>, <value>);

We also add the duration <t> which defines for how long the command should be active
and get rid of the srq identifier, because once the command has been sent through the
command channel to the responsible update manager, the target has already been chosen.
We now define a series of commands that allow us to make changes to the interface. It is
clear that due to the size of the interface description (specifically the data part containing
default mode, exceptions and multiple conditions) a lot of different commands could be
created in order to satisfy specific use cases. To keep the command language concise, we
will focus on the most important features.

Add a new "Parameter" entry

— interfaceCommand (addParameter, <t>, <id>, <name>, <type>,
<value>, <comment>);

Parameters have small entries in the interface description and can thus be fully added
through the usage of one single command. The EBNF grammar for a parameter is as
follows:

parameter ::= "<Parameter><id>" , integer , "</id><name>" |
parameter__name , "</name>" | value__type_ pair , "<comment>" , text ,
"< /comment>< /Parameter>"; (g2)

To differentiate between parameter names and predicates names, parameter names are all
lower case and spaces are to be substituted by the ’_’ symbol. The value_ type_ pair
token can have three different formats highlighted by the following grammar:

value__type_ pair ::= "<type>string</type><value>" , word , "</value>"
|"<type>int</type><value>" , integer , "</value>"
|"<type>collection< /type><value>" | word__array , "</value>"; (g3)

The word__array token represents a list of comma separated values. The definition for
other basic tokens like word, integer, text etc. is given in Appendix A.

In this example, the word Parameter has been substituted with Param for visualization purposes

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.1. Interface command language

Example 13. For instance, assume that we want to add a parameter of type collection.
The collection type can be used inside the interface description itself. In Example 12 one
of the conditions in the communication exceptions was "in ("Karlsplatz,Schwedenplatz")".
This can be substituted by using the placeholder #1 where 1 is the id of the collection
parameter defined in the interface. The placeholders allow for reusability of parameters
within the interface description keeping it more consistent and easier to change.

interfaceCommand (addParameter, -1, 1, main_stops,
collection, {Karlsplatz,Schwedenplatz}, Main stops on
Ul metro line);

The resulting entry would then look like this:

Parameters:
Parameter:
id: 1
name: main_stops
type: collection
value: Karlsplatz,Schwedenplatz
comment: Main stops on Ul metro line

=

N4 o oA W W

Listing 4.1: Result of using addParameter command

The condition in("Karlsplatz,Schwedenplatz") can then be rewritten as in("#1") and
reused throughout the interface.

Add a new "Predicate" entry
— interfaceCommand (addPredicateBase, <t>, <id>, <name>,

<numberOfArguments>, <type>, <comment>, <mode>, <buffered>,
<delay>);

The construction of a predicate entry is more intricate than the one of a parameter. We

thus split the commands to insert a predicate and its exceptions into multiple commands.

By doing so, we can keep the base command to add a predicate without exceptions simple,

but still allowing the addition of multiple exceptions later through additional commands.

Depending on the use case, one could also consider different encoding methods in order
to fit predicate and exceptions into one single command. The EBNF grammar for a
predicate looks the following:

predicate ::= "<Predicate><id>" , natural__number , "</id><name>" |
predicate__name , "</name><number_of arguments>" , natural__number,
"< /number_of arguments><type>" ;| type , "</type><comment>" , text ,
"< /comment>" , communication , "'</Predicate>"; (g4)

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4. COMMAND LANGUAGES
Example 14. We want to reproduce the predicate entry for trafficJam in the interface
used previously in Example 12. We thus apply the addPredicateBase command in
the following way:
interfaceCommand (addPredicateBase, -1, 0, trafficJam, 2,
string, "Takes as first Argument...", push, true, 10);
As expected, the command creates an entry in the interface similar to the addParameter
command. The default communication for the predicate is set using the last three
arguments mode, buffered, delay. The resulting interface Data entry can be seen
in Listing 4.2.
1 Data:
2 Predicate:
3 id: O
4 name: trafficJdam
5 number_of_ arguments: 2
6 comment: "Takes as first Argument..."
7 Communication:
8 default:
9 mode: push
10 buffered: true
11 delay: 10
Listing 4.2: Result of using addPredicate command
Once the base predicate has been created, we can now add exceptions to fine tune the
communication behavior.
— interfaceCommand (addException, <t>, <predicate_id>, <id>,
<condition>, <mode>, <buffered>, <delay>);
In this command we define for what predicate we want to add the exception and state
the unique identifier for this exception. Following is an SQL style condition that will
define when this specific exception is triggered. Lastly, we add three arguments that
describe the communication details for the case in which this exception applies.
Example 15. cont’d
We created the base predicate and now want to add the exception. If we wanted to
achieve the exception defined in Example 12 for the trafficJam predicate, we would use
the following command:
interfaceCommand (addException, -1, 0, 0, argl in ("U1l,U4")
AND arg2 in ("#1"), push, false, 0);
50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.1. Interface command language

Note that in the condition for the second argument, we make use of the parameter that we
defined previously. This command will add an Exception entry to the Communication
section of the trafficJam predicate. The result can be seen in Listing 4.3

1 Data:

2 Predicate:

3 id: O

4

5 Communication:

6

7 Exceptions:

8 Exception:

9 id: O

10 condition: argl in ("Ul, U4") AND
11 arg2 in ("#1")
12 mode: push

13 buffered: false
14 delay: O

Listing 4.3: Result of using addException command to predicate with id 0. Predicate
definition omitted since it is equal as in Listing 4.2

Editing parameters and predicates

Once again the necessity of editing commands strongly depends on the use case. The
approach here will be minimalistic, we will thus take into consideration the cases in which
the value of a parameter needs to be changed and the case in which the communication
details for a predicate need to be changed (not for specific exceptions). The two commands
are as follows:

— interfaceCommand (editParameterValue, <t>, <id>, <value>);

— interfaceCommand (editPredicateCommunication, <t>, <id>,
<mode>, <buffered>, <delay>);

Example 16. If we wanted to change the value for the parameter main_stops that
we added before we would use the command

interfaceCommand (editParametervalue, -1, 0, "Karlsplatz,
Rathaus") ;

The Update Manager finds the parameter with id 0 in the interface and substitutes the
old value "Karlsplatz,Schwedenplatz" with "Karlsplatz, Rathaus".

Example 17. We previously added the predicate trafficJam with default communication
settings "push, true, 10". If we now decide that the default communication settings
should be to send the message without any delay we would use the command

o1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

COMMAND LANGUAGES

52

interfaceCommand (editPredicateCommunication, -1, 0, push,
false, 10);

The delay value of "10" does not need to be set to 0 since the Communication Manager
will ignore it after seeing that buffered is set to false. If greater changes need to be made
to a specific parameter or predicate, it can always be deleted and re-added with the new
information.

Deletion of interface components

In general the most likely use cases will simply involve deleting a parameter or a predicate.
In some cases one might also wish to delete a certain exception from a predicate. The
deletion commands will thus be limited to the following three commands:

— interfaceCommand (deleteParameter, <t>, <id>);
— interfaceCommand (deletePredicate, <t>, <id>);

— interfaceCommand (deleteException, <t>, <pred_id>, <exc_id>);

While deletion commands for parameters and predicates are straightforward (only require
stating the duration and id of the parameter or predicate entry), the deletion of an
exception needs two identifiers.

Example 18. In our previous example we defined an exception for the trafficJam
predicate. If we wanted to change both the condition and communication mode attached
to this exception, it might be easier to delete it and re-add it with the addException
command. To uniquely identify the exception, we state both the predicate identifier and
the exception identifier in the deletion command:

interfaceCommand (deleteException, -1, 0, 0);

4.2 TLUPS as a policy language and stream reasoner
commands

As seen in the previous section, TLUPS can be used in the Operator to define conditions
or timing options regulating update commands. To motivate the creation of TLUPS and
show its syntax and semantics, we will use update commands aimed at a stream reasoner.

Just like with interface commands, stream reasoner commands are stripped of their
TLUPS components before being sent to the Update Manager. A stream reasoner
command wrapped by a TLUPS policy in the Operator has the following form, where
sro identifies the targeted stream reasoner:

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.2. TLUPS as a policy language and stream reasoner commands

Sr command TLUPS policy TLUPS policy
—_——~ ~ = —
sro: always assert pcifort rule a<Db when ¢ ;
N~——— h Vond N——
TLUPS policy both Sr command

When the condition part of the TLUPS policy is satisfied and the command needs to
be sent to the Update Manager, the TLUPS policy parts are removed and the keyword
"srCommand" is attached. Following is the final format for the message sent to the
Update Manager:

srCommand (assert, t, a < b);

We also get rid of the srg identifier since once the command has been sent through the

command channel to the responsible update manager the target has already been chosen.

The time parameter t is also added to the stream reasoner command.

Assuming a cursory knowledge of the contents discussed in the Updating rule sets of logic
programs Section of Chapter 2, we will now elaborate on the problems that we identified
with LUPS*.

4.2.1 Motivation

Take the following persistent commands:

always assert a <— b when c (4.1)
always assert a <— b when d (4.2)
always assert event a < b when e (4.3)

Following the semantic transformation defined in LUPS*, we would end up with the
following set of persistent commands:

PC = {assert a < b when c,
assert a < b when d,

assert event a < b when e} (4.4)

Now if we want to delete the translation of the persistent command 4.1 from PC, we
have to use the cancel assert statement:

cancel assert a <— b when ... (4.5)

We now observe two problems:

e (i) Since the cancel command cannot specify that it wants to delete the assertion
rule with condition ¢, it will also remove the translation of the command 4.2.

e (ii) There is no way to specify whether we want to delete an inertial assertion (like
the one seen in 4.1 and 4.2), or a non inertial one using the event keyword as used
in 4.3. This would again cause the removal of both commands.

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

COMMAND LANGUAGES

54

We also note a further point of improvement that can be made through the following
example.

Example 19. To avoid speeding at intersections or pedestrian crossings, a technology not
unlike the one introduced in the UK? is implemented, where red lights are automatically
triggered for a fixed period of time if an approaching vehicle exceeds the speed limit.
Modeling this with the set of commands available in LUPS* can prove to be tricky. There
is no way to specify that a rule should remain in place for a fixed period of time. Rules
can either be asserted and retracted when a condition is matched or they can be asserted
only for the next state through the event keyword.

In the first case, the event triggering the red light would be the detection of a speeding
vehicle. However, the only condition for the traffic light to turn back to green is the
passing of time. Using the event keyword in order to hold the red light for a specified
amount of time, one would need to connect it to a condition that remains true over the
whole time interval. However, the event of speeding that would trigger such a rule, is no
longer true as soon as the vehicle slows down for the red light. We will thus define the
third problem as:

e (iii) There is no way to assert a rule for a given amount of time, without being
dependent on some event being active at the same time.

4.2.2 Our own solution: TLUPS - Timed LUPS

The root of the problem is that the persistent update commands are identified by the
rule’s syntax, which in some use cases might not be unique. To solve both problems (i)
and (ii) we introduce an unique identifier for each persistent update command. We thus
extend the command seen in (4.1) with an identifier and a new rule keyword to maintain
a clear structure in the command syntax:

always assert pc; rule a < b when c (4.6)

This identifier is then carried over to the semantic transformation and stored in the set
of persistent commands PC as assert pc; rule a < b when c¢. The command cancel
assert/retract can then optionally be extended with the identifier of the persistent
command that one wishes to cancel. If left unspecified, the cancel statement will maintain
its previous behavior of deleting all persistent assert or retract commands for the specified
rule. Following is the syntax for the cancel assert command with an unique identifier:

cancel assert pc; rule a <~ b when ... (4.7)

While the addition of a persistent command identifier solves problems (i) and (ii), we still
do not have a solution to assert rules for a fixed period of time as described in problem (iii).

Zhttps:/ /www.itsinternational.com /its8/its2/feature/traffic-signals-turn-red-stop-speeding-drivers

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.2. TLUPS as a policy language and stream reasoner commands

Ideally, we want a mechanism that can trigger a rule and then retract it after a given
amount of time. This concept is not new in the LUPS* language, in fact the event
keyword is nothing else but a modifier stating that the rule should be asserted or retracted
for exactly one transition. We can thus use this concept to introduce the new keyword
for. In our example, we would write:

always assert pc; for 60 rule trafficlight(TLid, red) < when speeding(X) (4.8)

The command sets the traffic light with id TLid to red for 60 seconds if someone is
detected speeding on road X. Using the for modifier with the value 1 would exactly
mimic the previous behavior of the event keyword. At this point we briefly recall the
stream reasoner command format discussed at the beginning of Section 4.2. We saw that
the TLUPS components are stripped before the command is sent to the Update Manager.
However, the for keyword is an exception. It is the Update Manager’s responsibility to
retract the rule once the time defined with the for keyword has passed. We thus need to
add the timing information to the stream reasoner command:

srCommand (assert, 60, trafficlight (TLid, red).);

We summarize the original LUPS commands, the improvements done in LUPS* and our
TLUPS version in Table 4.1.

LUPS LUPS* TLUPS
assert [event | assert [event | assert [for |
retract [event | retract [event | retract [for |
always | event | | always assert [event | | always assert rID | for |
non existing always retract | event | | always retract rID | for |
cancel cancel assert cancel assert [r[D)]
non existing cancel retract cancel retract [rID]

Table 4.1: LUPS evolution
TLUPS: the for keyword substitutes the event keyword in LUPS*

4.2.3 Adapted semantics - translation to dynamic logic program

We adapt the semantics specified in LUPS* [Lei01] by keeping the same Base step,
Inductive step and NU; = U, U PC} definition. We instead change the definitions for
PC; and P;. The logic program resulting from the translation differs from the one in
LUPS* only in the substitution of the Ev predicate by the T predicate (for assertions)
and Re predicate (for retractions) and behaves in the same way after this modified
translation procedure.

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4. COMMAND LANGUAGES
PC; = PCy_1U
U {assert pcy rule R when ¢: always assert pcy rule R when ¢ € U }U
U {retract pcy rule R when ¢: always retract pcy rule R when ¢ € U;}U
U {assert pcy for s rule R when ¢: always assert pcy for s rule R when ¢ € U }U
U {retract pcy for s rule R when ¢: always retract pcy for s rule R when ¢ € U, }—
— {assert pcy [for s | rule R when ¢: cancel assert pcy rule R when ¢ € U; A @Pt_l Ey}—
— {assert pcy [for s | rule R when ¢: cancel assert rule R when ¢ € U; A @Pt_1 Ey}—
— {retract pcy [for s] rule R when ¢: cancel retract pcy rule R when ¢ € U; A @Pt_l Ey}—
— {retract pcy [for s | rule R when ¢: cancel retract rule R when ¢ € U; A @Pt_l Ey}
For the cancel assert statement that specifies a command identifier pc;q, all assert
statements with a matching pc;q are removed from the PC set, regardless of whether
they have a for modifier. The second cancel assert statement instead does not specify
a pc;g and will thus remove all assert commands with a matching rule R, regardless of
command identifiers pc;q or for modifiers. The two cancel retract statements mirror
this behavior.
P =
={N(R) « ; H(R) +- B(R), N(R):
assert pcy rule R when ¢ € NU; A @Pt_l Eolu
U {not N(R) < ; not Ti(R, t, X, Y) +:
retract pcy rule R when ¢ € NU; A @’Pt,l Eot U
U{Ti(R, t, 1, s)«< ; HR)+ B(R), Ti(R, T, X, Y):
assert pcy for s rule R when ¢ € NU; A EBPt—l Eot U
U{Re(R, t, 1, 8) <+ ; not N(R) + Re(R, T, X, Y); not Ti(R, T', X', Y') + Re(R, T, X, Y):
retract pcy for s rule R when ¢ € NU; A @Pt_l Eo} U
U{Ti(R, t, X+1, Y)« : @Pi1F Ti(R, t-1, X, ¥), X<V} U
U{Re(R, t, X+1, V)« : @Pi1 F Re(R, t-1, X,), X<Y} U
U {not Ti(R, -1, X, Y) + : @ Pi1 F Ti(R, t-1, X, Y)} U
U {not Re(R, t-1, X, Y) < : @D Pi_1 £ Re(R, -1, X, Y)}
56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.2. TLUPS as a policy language and stream reasoner commands

Why do timed commands work?

As seen in the LUPS* semantics, we extend normal asserts with the predicate N(R), but
instead extend our definition of timed asserts and retracts with the T%(R, T, X, Y) and
Re(R, T, X, Y) predicates respectively, where:

R : The rule R for which the timing predicate is meant.

T : Always carries the value of the current time point ¢. This value is necessary because
during each iteration we can disable the 7% and Re predicates from the previous
round.

X : Is a counter resembling how long the rule has been asserted or removed for. This
counter always starts at value 1 and is increased after each iteration as long as it is
smaller than Y.

Y : Resembles the total amount of time for which the rule should be asserted or removed.
It is instantiated with value s carried by the for parameter and remains unchanged
throughout.

In the following example we show that a rule added through a timed command, will
remain active only as long as the for parameter specifies. Once the specified time elapses
the rule is effectively disabled and cannot be derived any longer in the dynamic logic
program unless it is asserted again in the future.

Example 20. Assume we have the following command in Uy starting off with Py = {}
and PCy = {}:

U, = {assert pc; for 2 rule a < b}

By the semantics of P;, the command in U; would cause the following addition to P; at
t=1:

P ={Ti(a+b,1,1,2) «; a+ b, Ti(a+b,T,X,Y)}
With these two additions the predicate Ti(a < b,T, X,Y’) holds at P; since it can be

instantiated to T' = 1, X = 1, Y = 2. During the next iteration assume we get no
additional update commands and thus Uy = {}. Since

DBPi—1=P1E Ti(a+b,1,1,2) and 1 < 2
we have to perform 2 operations to P5, we add the fact Ti(a < b,2,2,2) since X <Y
and we add not Ti(a < b,1,1,2). We then end up with:
PP ={ Ti(a+b,1,1,2) +;
a< b, Ti(a <+ b,T,X,Y);
Ti(a + b,2,2,2);
notTi(a < b,1,1,2) < ;}

We can see a conflict for the first and the last fact. This conflict is resolved by the
semantics of dynamic logic programming, which places the first fact in the Rejection Set

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

COMMAND LANGUAGES

58

since it has been added in P;, whereas the last fast was added in P,. We also observe
that the rule a < b still holds, since the T% predicate in the body can be instantiated to
T=2 X=2Y =2

We now iterate through one more step to observe how the rule will stop being enabled.
Again we assume Us = {}. This time we have to only add 1 fact since X £ Y and

P Pi_1 =Py E Tila <+ b,2,2,2)

we thus only add notTi(a < b,2,2,2) and get the following result (clashing clauses
already removed):

PPs={a<b, Tila+bT,X,Y);
not Ti(a < b,2,2,2) < ;
not Ti(a < b,1,1,2) < ;}

We now see that there are no positive T4 atoms left to satisfy the atom in the rule body
for the first rule. We observe that regardless of the value of b, the rule body can now
not be satisfied anymore and the conclusion a also cannot be derived. The rule is now
effectively disabled.

We now proved how a rule is added and removed from the dynamic logic program exactly
as we would expect from the semantics of the for command. Due to the semantic
intricacies of the translation to a dynamic program, we show a further example including
persistent commands and timed for commands.

Example 21. We now present an example to show how to apply the semantics. Semicolon
will be used as a separator between rules and the comma is used as a conjunction in the
body of rules.

Let Py = {} and PCy = {}. With the commands in U; we then get:

U, = {assert rule a < b; always assert pc; rule b+ when c}
PC) = {assert pc; rule b+ when c}
NU, = {assert rule a + b; always assert pc; rule b« when ¢
assert pc; rule b < when c}
Pi={N(a+b)+ ; a<+ b N(a+b)}

At this state the model is M = {} since no knowledge can be derived as we do not have
b to satisfy the condition b, N(a < b).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4.2. TLUPS as a policy language and stream reasoner commands

Us; = {assert for 1 rule c+ }

PCy = {assert pc; rule b < when ¢}

NU; = {assert for 1 rule c+ ; assert pc; rule b+ when c}
P, ={Ti(c+ ,2,1,1)« ; c<« Ti(c+ ,T,X,Y)}

Now the Model is M = {c} since we can instantiate T'= 2, X = 1, Y = 1. Now one
could wrongly think that the rule assert pc; rule b <~ when c should trigger and
thus granting us b too in the model, but the condition ¢ needs to be satisfied in P;_;.

Us = {}
PC3 = {assert pc; rule b+ when c}
NU; = {assert pc; rule b+ when c}
Ps={N(b+)< ;b NOb+)notTi(c+ ,2,1,1)« ;}

Finally the model is M = {b,a} since the previously mentioned rule triggers granting
us b in the model and consequently also satisfying a < b, N(a < b) from P;. We also
observe that ¢ no longer holds since we assert the negation of the literal Ti(c < ,2,1,1)
without adding a new T literal.

There are some further improvements that could be done, specifically regarding new
use cases and diverse requirements. These will be further discussed in the Future Work
Section 7.1.1.

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Dynamic Configuration System
Prototype

We aim to provide a basic implementation of the architecture introduced in Figure 3.1.
The prototype is developed in Java 13!. In Figure 5.1, we demonstrate on how the single
components communicate using the communication channels described in Section 3.3.

Description
Communication

Manager java R Port 1976: Stream Channel
Port 1977 Information Reguest Channel
Port 1980 Port 1978: Command Channel
Port 1977 < - Port 1979: Update Channel
Por 1976 Port 1980: Event Channel

Port 1979 —.

S A P

Operator java
Stream Reasoner.hex
[ommmmmmmbemem oo Port 1980
Port 1976 i Interface_xml i e Port 1977
* bemeeeee- A ~—— Port1978
W Update RAW |

T Managerjava [€ [T

Port 1979 —
Port 1978 < -

Figure 5.1: Connection structure for Java implementation

The prototype is implemented in Java 13 due to portability reasons. Portability is
required because parts of the architecture will be run on a Linux operating system,
since the HexLite stream reasoner, used in the prototype, is designed to run on a
Linux system. For implementing the communication between the stream reasoner and

Thttps://openjdk.java.net/projects/jdk/13/

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

DyNAMIC CONFIGURATION SYSTEM PROTOTYPE

62

our modules, we decided to use web sockets and the Jetty? library. For the internal
communication between Update Manager, Communication Manager, and Operator, we
use a basic Java Socket implementation (more details are given in Appendix B). With
this implementation, a client only needs to know the IP address and the port of the server
in order to connect. The web socket technology also works cross-platform allowing our
HexLite Stream Reasoner to communicate with the java modules. The development of
the Communication Manager is simple, but does require the implementation of efficient
message handling techniques. Another challenge arises with the handling of pull-based
reasoner, since they have different ways on how they can be called/activated. Extensions
to deal with pull-based stream reasoners are discussed in Chapter 7.1.2.

The implementation of the Update Manager is more challenging, since it either needs
to have direct access to the KB (including the rules) of the stream reasoner, or to have
a communication channel to the stream reasoner to send update commands. Another
challenge arises from different rule language “dialects”. For instance, LARS rules might
not be understood by the HexLite reasoner, therefore the Update Manager would need to
convert the commands to a specific rule language. In the heart of the Operator lies the
TLUPS decision maker module that currently covers a reduced version of the TLUPS
language. We leave the following features for future work:

e Persistent: All TLUPS policies remain in the operator until removed manually.

e Conditions: Only event-based conditions are checked.

5.1 Overview

Before we cover the implementation of each part we give an overview of how we imple-
mented the configuration cycle seen in the Introduction Chapter in Figure 1.1. We set
the following scenario:

e All modules are running and connected to each other.
e The Communication Manager holds a cached copy of the Interface.

e The interface contains a parameter with id = 3, which is currently set to 180 and
is used by the stream reasoner to set the length in seconds of the green phase for
traffic lights on road 134.

e The interface contains a predicate trafficJam, the communication behavior is
defined as push without delay.

e In the Operator, we have 2 TLUPS policies that are as follows:

— execute for -1 rule (setParameter, 3, 300) when
trafficJam(134)

Zhttps://www.eclipse.org/jetty /about.html

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.1. Overview

— disable for -1 rule <rule> when trafficJam(134)

The first policy targets the interface and the second targets the stream reasoner.

Both are triggered when the message trafficJam (134) is received. <rule> is
a placeholder and is located in the stream reasoner’s knowledge base. For instance,
if the goal is to dissolve the traffic jam, the rule could be one that recommends
other traffic participants to take road 134. In that case, we want to disable it when
there is a traffic jam.

Stream Communication Update
[Reasnner] [Manager] [Manager][Interface]

trE'f-ﬁ':JE"m':l34{:_'913-9r1t|{trE|f'Fit:JE|m , sr0,

<time>, {I34}) i interfaceCommand(
SF‘tF'EIFEI'I'IE'tE' -1, 3, 300);

*read file™

L RO

Y

“write to file®
__________h.

X..

srCommand
(disable, -1, <rule=);

*write to file®

el e e e

[P [N RS ——

Figure 5.2: UML diagram representing configuration flow

In Figure 5.2, we show the configuration flow as an UML sequence diagram of the above
scenario. The red part (starting from interfaceCommand until xread filex is
triggered by the first (interface) policy while the blue part (everything including and
after srCommand) is triggered by the second (stream reasoner) policy. In detail, the
steps are as follows:

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5. DyNAMIC CONFIGURATION SYSTEM PROTOTYPE

e Based on the rules in the KB that are evaluated by the stream reasoner, the event
trafficJam(134) is detected and sent exactly in a predefined format to the
Communication Manager.

e The Communication Manager receives the message and checks the local copy of
the interface to determine the communication behavior, which is push without
delay. Next, the meta data is added: sr0 is the source stream reasoner, <time> is
a placeholder for the timestamp relating to the moment where the Communication
Manager received the message and {134} is the set of arguments for the event. The
message is sent to the Operator.

e The Operator receives the message at which point both policies are triggered. As a
consequence, the Operator creates two update commands and sends them to the
Update Manager:

1. interfaceCommand (setParameter, -1, 3, 300);
2. srCommand (disable, -1, <rule>);

e Without loss of generality, we assume the interface command is executed first with

the following steps:
1. The changes of parameter with id=3 are written to the interface file
2. An alert is sent to the Communication Manager
3. The Communication Manager loads the new version of the interface
4. Stream Reasoner is updated with the new value
5. A restart signal is sent.
e Following is the execution of the stream reasoner command:
1. Stream Reasoner is updated with disabled rule
2. A second restart signal is ignored (see Section 5.2.1)

e Update Manager sends restart signal to the Stream Reasoner

e After receiving the signal, the Stream Reasoner reloads the file containing the new
settings.

5.2 Stream Reasoner

As a stream reasoner, we decided to use the HexLite solver that was already introduced
in Section 2.2.2. Our choice was not driven by performance, in which case the Ticker
[BEF17] engine would present a better choice. HexLite is well suited, since for our
implementation a highly customizable implementation was preferred, allowing us to add
new functionalities through plugins that can be written in Python® and then accessed
from the stream reasoner through external atoms.

https://www.python.org/

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.2. Stream Reasoner

Example 22. For instance, connecting to the web socket server and sending messages can
be done using the external atoms @wsConnect and @wsSend, respectively as follows:

1 server_adr ("ws://localhost:8082").

2 @wsConnect (X) :— not &wsConnected[X], server_adr (X).
3 @wsSend("info (VehicleSpeed,",vO0,",",Vv1l,")™")

4 trafficCount (VO,V1), VO > 0.

The server address is stored in the fact server adr. In line 2 we use the @wsConnect
command to connect to the server, if a connection has not already been established. With
the external command @wsSend we send messages from the stream reasoner through
web sockets.

The stream reasoner fetches sensor data from PipelineDB* (a PostgreSQL extension that
can run SQL queries on streams of data while storing the results in tables) through
dynamic SQL commands with fixed window sizes. We recall that window functions allow
to restrict the window of observation to avoid retrieving obsolete data. Through our
generic approach, we are able to exchange the stream reasoner as long as the substitute
provides the same communication methods.

5.2.1 Updates and restarts

For dealing with updates and restarts we decided to use template files for the stream
reasoner. A template file has the same contents as the actual stream reasoner file
representing an active program, with the exception that the template file has the
parameter identifiers in the form of !param!, while the original file has the actual
values for those parameters. We now describe how and when the original program file is
generated from the template.

When the Update Manager starts, it opens the template and creates the original version

of the stream reasoner by substituting all parameter values retrieved from the interface.

The stream reasoner is then started by the Update Manager in order to obtain the
process id, denoted as pid. In addition, when receiving commands targeting any of
the rules (i.e., assert, retract, enable, disable) or any of the parameters (i.e.,
addParameter, editParameterValue, deleteParameter), the Update Manager
will restart the stream reasoner with the following procedure.

1. In case of parameter commands, apply changes to the interface.

2. Commands targeting rules are performed directly on the template. This means
that a rule will be disabled in the template file directly.

3. The Update Manager creates the original file by making a copy of the template and
inserting the parameter values. By doing so, any rules that were added, removed,
disabled or enabled in the template will remain so in the original file as well.

“https://www.pipelinedb.com/

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

5.

DyNAMIC CONFIGURATION SYSTEM PROTOTYPE

66

4. Once the original file has been created from the template, the Update Manager
send the signal "ki1ll -SIGHUP pid" to the process id of the stream reasoner to
trigger its reload.

5. The stream reasoner receives the signal and reloads the newly created original file.

Since the reload happens after each of the commands, we decided to add a small buffer
in the case that two such commands arrive simultaneously. Before restarting the stream
reasoner, the Update Manager waits for 100 ms in which he ignores all further restart
requests. By doing so, two commands that arrive simultaneously (maybe triggered by
the same condition of a TLUPS policy) asserting two different rules will only cause one
restart. Such an example can be seen in Section 6.2.3.

The 100 ms time interval is hard coded, but could easily be adjusted according to the
use case in the following ways:

e The time interval could be dynamic and increase with each rule received in the time
interval. For example, the Update Manager executes one rule and starts waiting
before the restart. A new restart request arrives before the 100 ms elapse and is
ignored. At this point, we could add another 100 ms to the timer to give more time
for additional rules that might have been fired simultaneously.

e The time interval could be defined in the interface as a stream reasoner setting.
When the Update Manager loads the interface it could simply read the value and
use it as a restart timer. Having the value in the interface also means that it can
be changed by the Operator through interface commands.

5.3 Communication Manager

When the Communication Manager is started, it reads the current interface description
for the stream reasoner it is responsible for. This will be used as a reference point once
the stream reasoner starts sending data. The communication settings contained in the
interface description are loaded only at the start and whenever the Update Manager
communicates that it performed changes to the interface. An alternative would be to
check the interface each time a message is received by the Communication Manager, but
that would quickly result in a performance bottleneck since multiple messages can arrive
in very small time frames.

5.3.1 Data processing

In our prototype we decided to implement push and pull communication as well as
the buffering of push-based messages. Immediate push-based communication and pull
requests are handled as intended. If a predicate has the communication settings push
with buffering set to false, then the message is packaged with a timestamp and the
meta information from the sending stream reasoner. Similarly, if a predicate has pull

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.3. Communication Manager

communication enabled, the messages are stored in the Communication Manager until
a request for that predicate is sent by the Operator. Furthermore, we enter the more
intricate type of communication, which is push-based with burst type communication.

Example 23. For instance, we have the following communication settings:

1 communication:

2 mode: push

3 buffered: true
4 delay: 5

For this type of buffered data, a list of active predicates is maintained. Every data item
received from the stream reasoner is added to the respective predicate entry in the list of
active predicates. If there has not been any previous communication, we can send the
message immediately. When we do, a timer starts with the number of seconds specified in
the delay node. Until the timer expires, all messages received for the specific predicate
are placed in the aforementioned list without being sent. Once the time delay expires, in
this case b seconds, all accumulated messages for this predicate are sent.

1 Timer timer = new Timer () ;
2 timer.schedule (new SendMessagesTask (PredicatelId,
3 detectedEvent .ExceptionId), 0, 5000);

Listing 5.1: Messages are scheduled to be sent every 5000ms for a specific predicate id
and exception id

As shown in Listing 5.1, we also use an exception identifier, since inside of a predicate we
can define exceptions for the communication behavior. Examples of such exceptions are
given in Section 3.5.2. In order to allow different timings within a predicate there is one

more distinction that happens after the first distinction based on the predicate identifier.

The second distinction is based on the exception identifier. For a hypothetical predicate
with identifier 0 we could have the following active communications:

e exception id 0 (urgent): push, 0 delay

e exception id 1 (important): push, 3 delay
e exception id 2 (warning): push 10 delay
e cxception id -1 (default): pull

Note that each exception for each predicate spawns a thread of its own in order to upkeep
responsiveness in our multi-threaded implementation. A negative aspect of this approach
is that we end up with dozens of active threads that try to send messages regularly, even
if there are no messages to be sent. We thus optimized the system by applying a check
every time the timer expires. If the timer expires once and there are no messages to be
sent, the thread is killed. The thread will only be restarted once a new message for the

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

DyNAMIC CONFIGURATION SYSTEM PROTOTYPE

68

corresponding predicate and exception is received. Implementing this method allows us
to limit the number of active threads to the bare minimum by also respecting the delay
defined for each exception. This is possible because a thread is only killed once the delay
has elapsed one time without sending messages.

Example 24. (Push 10s delay) Let us look at an example for a hypothetical exception
id 2 with 10-second delays from the point of view of the Communication Manager.

0: message received from SR <event_ message>
0: message sent to Operator <packaged_ event>
1: message received from SR <event_ message>
10: message sent to Operator <packaged_ event>
20: no messages to send, killing thread
22: message received from SR <event_ message>

22: message sent to Operator <packaged_ event>

We can see that when the message arrives at time point 1 it is not sent until 10 seconds
passed from the previous time we have sent a message. Then, no new messages are
received until time point 20, at which we kill the thread responsible for this exception.
At time point 22 we receive a new message and we are free to start the thread anew and
immediately send the message.

Another approach could involve distinguishing the threads responsible for sending mes-
sages by their start time and delay instead of by their predicate and exception identifier.
By doing so, messages could be managed by the same thread if two predicates have the
same timing regarding their delays and when the message transmissions started off.

Example 25. The Communication Manager receives two messages from the Stream
Reasoner at the time point t. In the interface, the same communication behavior is
defined for both: push based with 5 seconds delay. Instead of creating two separate
threads to deal with the communication, they could be merged into one thread responsible
for sending messages that coincide with starting point t (or any increment of t by 5
seconds) and a 5-second delay.

5.3.2 Determining exceptions

Specific exceptions are defined in the interface and are thus unknown to the stream
reasoner. This means that when an event message reaches the Communication Manager,

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.3. Communication Manager

there is no exception or predicate identifier attached to it. To determine these identifiers,
which will later define how the message is communicated, we use Algorithm 5.1.

Algorithm 5.1: Determining predicate and exception Id

Data: predicateName, [predicateArgs|, interfacePredicates
Result: (predicateld, exceptionld)

1 foreach p € interfacePredicates do

2 if p.name==predicateName then
3 if p.numberOfArgs == predicateArgs.count then
4 predicateld < p.id;

foreach e € p.exceptions do
if eval(e.condition, [predicateArgs]) then
L exceptionld <« e.id;

8 return (predicateld, exceptionld);
9 exceptionld « -1;
10 | return (predicateld, exceptionld);

11 predicateld + -1;
12 exceptionld « -1;

13 return (predicateld, exceptionld);

When we get a message from the stream reasoner, the information we have are the
predicate name and the arguments. The Communication Manager also has a local copy
of the interface, and thus knows all the predicates and exceptions stored therein. In line
1 we start iterating through all the predicates stored in the interface, checking whether
the names match (line 2) and the number of arguments match (line 3). When a match
is found, the predicate id is assigned and we iterate through the exceptions of that
predicate. The function eval in line 6 takes the SQL condition for the exception e and
checks whether it is satisfied with the given predicate arguments. If eval returns true, we
also found the exception and can return from execution. If no exception matches, we
return -1 for the exceptionId, which is synonymous with the default communication
mode for the predicate. Lastly, we have the case in which the predicate could not be
found in the interface file. In this case we return -1 to both identifiers, which will cause
the default stream reasoner communication mode to trigger.

Once both identifiers are known, the Communication Manager can easily retrieve the
communication mode for the exception, the default mode for the predicate or the most
general for the stream reasoner.

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.

DyNAMIC CONFIGURATION SYSTEM PROTOTYPE

70

5.3.3 Information requests

Currently the Communication Manager can receive information requests from the Oper-
ator over port 1977. In our prototype it is currently limited to requesting messages of
a specific predicate with the option to narrow down the results to an exception. These
messages can be sent at any time and the Communication Manager will answer immedi-
ately by sending all messages corresponding to the request through this communication
channel and not through the event channel. Optionally more parameters could be added
for the Operator in order to restrict the delivered results to location or time intervals.

5.4 Operator

When the Operator starts, it launches the threads that listen for incoming connections
from Communication and Update Managers. Once an incoming connection is established,
a separate thread is launched to deal with all incoming messages. Incoming connections
are stored in the active connections list, where the respective Communication and Update
Manager are mapped to their stream reasoner. Each Update Manager and Communication
Manager pair is responsible for one stream reasoner and consequently also one interface.
The connections to the Communication Manager are twofold: one of the connections
represents the event channel on port 1980 and the other the information request channel
on port 1977. If the Operator receives an incoming connection request, an object in the
active connections list is created as follows:

e srID: The stream reasoner identifier uniquely identifies the stream reasoner that
will be managed by this active connection object.

e cmThread: The Communication Manager thread is responsible for information
requests. When required, the Operator can request information by sending a
message through port 1977 and will then obtain the response on this communication
channel. By doing so, it is independent from the eventThread and the event
channel on port 1980. Given the correct configuration, this setup theoretically
allows to handle a situation where communication from the event thread dies down
by obtaining all necessary information through the cmThread.

e eventThread: The event thread is also used for simplex communication from the
Communication Manager to the Operator and is used for event related messages
that are sent according to push communication settings, with or without delay.

e umThread: The Update Manager thread allows for simplex communication. It
functions as the command channel where the Operator can send commands directed
to change the interface description or the stream reasoner.

e tlupsRules: This is a set of TLUPS rules that defines what commands will be
fired based on what conditions. In the following section we will give more details
on how the rules are evaluated.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.4. Operator

5.4.1 The TLUPS Decision Maker

We implemented a slightly different and reduced version of the conceptualized version
in Section 4.2. We implemented TLUPS policies with two type of commands, interface
and stream reasoner commands. They are distinguished mainly by the first keyword,
where execute is reserved for interface commands and assert, remove, enable and
disable are reserved for stream reasoner commands. A TLUPS policy with an interface
command looks as follows:

execute for <t> rule <command> when <condition>;
A TLUPS policy with commands aimed at the stream reasoner looks as follows:

[assert | remove |enable|disable] for <t> rule <rule> when
<condition>;

If we want to enforce permanent changes, we can either set <t> to -1 or omit the for
<t> part completely.

In our current implementation we omitted the following functionalities of the TLUPS
language as described in Section 4.2:

e Persistent & non persistent: all TLUPS policies remain in the Operator until
removed by a user (thus treated as persistent) and will be checked each time a new
event message arrives. For this reason, the when condition is required, otherwise
the policy would trigger each iteration. If a command does not require a condition
it can be entered manually.

e Conditions: only simple conditions that require fixed equality assignments are sup-
ported. For example a condition could be when TrafficJam (U5, Karlsplatz),
which becomes true if exactly that message is sent by the respective stream reasoner
and Communication Manager.

As shown in Algorithm 5.2, whenever an event message arrives at the Operator, all TLUPS
policies aimed at that stream reasoner are checked. To do this, the information regarding
event name and arguments are extracted from the message sent by the Communication
Manager (line 1-3) and then compared to the policy conditions (line 5). If any of them
are matching, the command specified in the policy is extracted and transformed into the

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

DyNAMIC CONFIGURATION SYSTEM PROTOTYPE

72

update command format (line 6) before being sent to the Update Manager.

Algorithm 5.2: Checking if TLUPS rules trigger
Data: eventMessage, [tlupsPolicies]

Result: [commands]
1 eventName < extractName(eventMessage);
2 eventArgs < extractArgs(eventMessage);
3 eventCompare < eventName + "(" + eventArgs + ")";

4 foreach policy € tlupsPolicies do
if eval(policy.condition, eventCompare) then
L commands.add(transform(policy));

7 return commands;

Example 26. For example, we have the following TLUPS policy:

execute for -1 rule editPredicateCommunication (4, push,
false, 0) when <condition>

its transformation to the update command format is:

interfaceCommand (editPredicateCommunication, -1, 4, push,
false, 0).

We will later see that in our implementation the comma is substituted by a = symbol,
which facilitates parsing.

5.5 The Update Manager

The Update Manager receives all commands for a certain stream reasoner instance that
are sent by the Operator. It deals both with commands aiming to change the interface
description and the stream reasoner’s KB. As a result, the Update Manager loads an
instance of the interface in a Java class structure, making use of the org.wc3.dom?
package, which provides useful methods for XML processing. The commands sent by
the Operator using the format described in Section 4.1 are then received by the Update
Manager and elaborated with the usage of regular expressions and string manipulation.

5.5.1 Interface commands

We now look at an example targeting the interface configuration.

Shttps://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.5. The Update Manager

Example 27. We assume the following inertial (second parameter is -1) interface
command (cm), adding an exception with id 2 to predicate 0 with condition [(3,
[valuel, value2]), (4, [value3, value4])] and 10-second burst delayed
communication that is sent by the Operator as:

interfaceCommand (addException, -1, 0, 2, [(3, [valuel,
value2]), (4, [value3, wvalued])], push, true, 10)

Note: For the conditions in exceptions, we use a simplified version in our implementation.
Instead of an SQL condition as suggested before, we simply check if an argument
is included in a set of values. For example, the above condition [(3, [valuel,
value2]), (4, [value3, wvalued])] checks whether argument 3 is equal to either
valuel or value2 and argument 4 is either equal to value3 or valued.

The command cm would then be dissected in the following way:

1 String command = cm.substring (0, cm.indexOf (" ("));

A substring command extracts the "interfaceCommand" string and splits the execution
to a thread responsible for changing the interface. To extract all parameters one option
would be to split the command message after every comma, but this does not work
for all commands as seen in this example since some commas are included inside the
argument array [(3, [valuel, value2]), (4, [value3, valued])] defining
the conditions for the exception.

Consequently, we attempted to extract all the arguments by using the following regular
expression:

1 List<String> arguments = new ArrayList<String>();

2 cm=cm.substring(cm.indexOf (" (")+1, cm.indexOf(")"));

3 Matcher m = Pattern.

4 compile (" ([\\w+[\\s*] [\\[.+\\])+(,?)") .matcher (cm) ;

5 while (m.find()) {

6 String raw = m.group () ;

7 arguments.add((raw.endsWith (", ") *?

8 raw.substring (0, raw.length() - 1) : raw).trim());
9 }

10 String[] ar = arguments.toArray(new String[0]);

Firstly, we extract only the contents of the interface command by using the substring
function in line 2. Following is the regular expression that is designed to match words,
or the whole content inside of a squared bracket, followed by a comma. This approach
would not work when trying to send commands aimed at disabling rules spanning over
multiple lines. Hence, we simply substitute the commas with '~" symbols. By doing so,
the command can be transformed into an array by simply splitting after each occurrence
of the "~" symbol. The command becomes

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

DyNAMIC CONFIGURATION SYSTEM PROTOTYPE

74

interfaceCommand (addException”-1°072"[(3, [valuel,
value2]), (4, [value3, valued])]"push”true~10)

The specific interface command is then contained in the first slot of the string array and
the corresponding method can be started through a simple switch statement by passing
the corresponding parameters. The information on how long the command should be
active for is in the seconds parameter, in this case -1.

For example in the following code listing, we check if the command is equal to "ad-
dParameter" and if it is we pass the parameters needed for the method signature
AddParameter (duration, id, name, type, value, comment), where IE is
the Interface Editor object:

1 switch (cm) {
case "addParameter":
IE.AddParameter (Integer.parselnt (a)

(11,
(41, arl[5],

2

3 r
4 Integer.parselnt (arf[2]), arl[3], ar
5 ar[6]);
6

7

8

break;

Once a change has been made to the interface description, it is saved to the XML file
and a message is sent over port 1979 to the Communication Manager, warning it that
some changes to the interface have been performed. More details on the implementation
can be found in the Communication Manager Section.

5.5.2 Stream reasoner commands

Similarly to an interface command, the input string is split to determine which command
should be executed. Additions and removals of rules are performed by exactly matching the
syntax of the submitted rule. When considering the option of activating and deactivating
rules we have constructed a test that is shown in Section 6.2.1. The test demonstrates on
how to deactivate a predicate, which will result into deactivating any rules that contain it.
As described in Section 5.2.1, the Update Manager performs the changes to the template,
creates the original copy for the stream reasoner and then sends a reload signal.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Use Cases and Functionality
Showcase

In this chapter we will use the previously describes prototype to showcase some of its
functionalities in a use case environment. As the main use case, we will continue with
the traffic related use case that was briefly mentioned in section 2.1.1.

The Siemens C-ITS use case
The C-ITS use case as described in [ESS19] and [EDTF*19] is as follows:

Cooperative Intelligent Transportation Systems (C-ITS) are the setting for this use
case. The edge devices are roadside units (RSU) that observe V2X communication
messages of traffic participants (i.e., cars and traffic lights). A traffic control centre
that is responsible for managing the overall traffic and the different RSUs acts as
the configuration unit. The initial goal is the detecting of undesired traffic events,
i.e., accidents or traffic jams, and the second goal is finding a reconfiguration
of traffic light signal plans that ameliorates the effects of the undesired event.
Concretely, we aim to improve vehicle throughput compared to an unmodified
system for undesired traffic events. [ESS19]

In Figure 6.1, we show an example for a C-ITS instantiation of our general
architecture. The producers (P) are in this setting either vehicles that communicate
via V2X messages to the surrounding or traffic light (TL) installations that manage
their assigned intersection. Fach intersection has one edge device, the RSU, which
is connected to the traffic lights installations and receives the V2X messages from
the vehicles. The RSUs acts as monitor (M) and actuator (A) by analyzing the
V2X messages streams, detecting events such as accidents, and updating the (new)
signal plans to the connected TL installation. Resulting, the stream reasoner
would be located on the RSU, and sending (detected) events and (local) process

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

6.

UsE CASES AND FUNCTIONALITY SHOWCASE

76

Figure 6.1: C-ITS Architecture Example [ESS19]

information to the traffic control centre (TCS), which is our cloud server and has
the tasks of re-configuring the TL installations using the decision module (DM) to
trigger the re-configuration. Note that the configurator (C) should be on the TCS,
since only there all the events and local information is available. Since, we have
several RSUs deployed, and vehicles have their own capabilities of monitoring and
changing the surrounding, we naturally have also multi-agent environment.[ESS19]

Relating this back to our work, we can draw some parallels. As the use case states, in
an RSU we have the stream reasoner that filters data. In our implementation, the RSU
would also contain the Communication Manager and the Update Manager. The interface
file is also located on the RSU. Furthermore the role of the traffic control center (TCS)
is taken by the Operator in our implementation.

Note that the tests can be replicated by following the instructions outlined in Appendix
C.

6.1 Experiment 1: Change in communication behavior

In this example we will perform two tests that showcase the ability of changing the
communication behavior of information derived in the stream reasoner without restart-
ing it. This is done through changes to the interface that are then adapted by the
Communication Manager.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.1. Experiment 1: Change in communication behavior

6.1.1 Test 1: Change existing communication behavior

In this test, we will change the default communication behavior of predicate carInLane
through a TLUPS policy that triggers when the message trafficJam (134) is received.
No stream reasoner restarts are required.

Setting:

A deployed RSU on a given intersection monitors the number of cars in the lanes,
and reports it every second. The initial setting in our interface states that this type of
information should be delivered once every 10 seconds. This setting would be as follows:

1 Predicate:

id: 0

name: carInlane

number_of_arguments: 2

type: string

comment: "First Argument is lane identifier and
second Argument the number of cars."

communication:
default:

10 mode: push

11 buffered: true

12 delay: 10

© 0 N O O W N

The transmission of this type of data is in 10-second intervals, which is fine during
a normal operation. The configurator does not need to get messages regarding the

number of cars in a lane more often if there is no situation that requires reconfiguration.

Suppose that from one of the RSU’s overlooking an intersection we get the message
trafficJam(134), where 134 is the lane identifier. At this point the configurator
could take action by trying to change the traffic light plan to alleviate the traffic jam, or
possibly even try to change the traffic flow to be redirected through other roads. Hence
it becomes important to obtain more information regarding the number of cars in all of
the lanes merging up to the intersection. A 10-second interval is too long and we now
want to obtain this information instantly without a delay. A TLUPS policy to trigger
such a change could be the following (implemented without the always keyword but
maintains functionality of inertia):

execute rule editPredicateCommunication (0, push, false, 0)
when trafficJam(134)

Ideally, the operator would then send a message to the Update Manager to change the
interface and change the communication behavior. In this example let us assume that for
the first 20 seconds, every second the stream reasoner will send data on the number of
cars in the lanes seen by a RSU. Then it will send the message trafficJam(134) and

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.

UsE CASES AND FUNCTIONALITY SHOWCASE

78

resume submitting data on the number of cars in the lanes. Let us see how our prototype
reacts to such a situation:

Expected outcome:

After a delay of 6 seconds after starting the system, we expect to receive the following
outcome:

6 : Communication Manager sends burst to Operator with 1 message
16 : Communication Manager sends burst to Operator with 10 message
26 : Communication Manager sends burst to Operator with 10 message
26 : Communication Manager sends trafficJam(134) message to Operator
26 : TLUPS policy triggers and Operator sends command to Update Manager
26 : Update Manager changes interface and warns Communication Manager
26 : Communication Manager reloads the interface

27 : Each second, Communication Manager sends carInLane message to Operator.

Outcome:

In Figure 6.2, we show the command-line output of the Communication Manager for
our test. The first 22 seconds are omitted as they simply repeat in a 10-second cycle,
namely 6-16, 17-26 and are shown again at time point 26. As we can see, each second
the Communication Manager receive a message from the stream reasoner. The buffered
messages are sent for the second time in a 10 messages burst at time point 26. After the
burst we observe the trafficJam(134) message and the carInLane message for the
26th time point. We then see that at second 26 a message is sent to the Operator for a
predicate with the id 1, which corresponds to the entry for trafficJam in the interface.
We can then take a look at the output of our Operator to see what happens when the
trafficJam message arrives. In Figure 6.3, we show that right after the trafficJam
message is received, we receive a confirmation that the message triggered one of our
policies. In the next line a command is sent to the responsible update manager. The
Update Manager receives the command, performs the changes specified by setting the
buffered field to false and then saves the changes to the interface.

Finally, we look back to our Communication Manager in Figure 6.2 and observe the
alert that is sent by the Update Manager. As a result the interface is reloaded and
we can immediately observe a change in how the messages are communicated. The
messages are now relayed instantly. In time point 27, we show that two messages are
sent, this is because the carsInLane message for time point 26 was received after the
Communication Manager started sending the messages for the 26th second. It thus ended
up in the buffer and was sent along with the next burst.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6.1. Experiment 1: Change in communication behavior

22: Stream Reasoner sends: carInLane(134,2)
23: Stream Reasoner sends: carInlLane(134,2) Sr sends carInLane
24: Stream Reasoner sends: carInLane(134,6) message every second
25: Stream Reasoner sends: carInLane(134,1)
26: Sending to Operator: Predicate id: @ with exception: -1
26: Sending to Operator: Predicate id: @ with exception: -1
26: Sending to Operator: Predicate id: @ with exception: -1
26: Sending to Operator: Predicate id: @ with exception: -1 ' I
26: Sending to Operator: Predicate id: @ with exception: -1 Burst %ltt‘ie .
26: Sending to Operator: Predicate id: © with exception: -1 26th time point
26: Sending to Operator: Predicate id: @ with exception: -1
26: Sending to Operator: Predicate id: @ with exception: -1
26: Sending to Operator: Predicate id: @ with exception: -1
26: Sending to Operator: Predicate id: © with exception: -1 Receive trafficdam
26: Stream Reasoner sends: trafficlam(134) ';message
26: Stream Reasoner sends: carInLane(134,1) Send trafficl
26: Sending to Operator: Predicate id: 1 with exception: -1—P end tratficlam
26: Update Manager sends: alert(interface updated) message to operator
26: Interface reloaded
27: Stream Reasoner sends: carInLane(134,5) Um alerts CM and CM
27: Sending to Operator: Predicate id: @ with exception: -1 reloads interface
27: Sending to Operator: Predicate id: @ with exception: -1
28: Stream Reasoner sends: carInlLane(134,6) Messages are now
28: Sending to Operator: Predicate id: @ with exception: -1 sent without delay
29: Stream Reasoner sends: carInLane(134,8)
29: Sending to Operator: Predicate id: @ with exception: -1
Figure 6.2: Communication Manager for Test 1

26: Event Channel says: event(carInLane,CM,Operator,location,Sat Apr 25 11:23:11 CEST 2020,[134, 1])
26: Event Channel says: event(trafficJam,CM,Operator,location,Sat Apr 25 11:23:12 CEST 2028,[134])
26: The event message event(trafficlam,CM,Operator,location,Sat Apr 25 11:23:12 CEST 2020,[134])

triggered the policy execute rule editPredicateCommunication(®,push,false,8) when trafficlam(134)
26: Seding command: interfaceCommand(editPredicateCommunication®™-1"0"push”false™0)
27: Event Channel says: event(carInLane,CM,Operator,location,Sat Apr 25 11:23:12 CEST 2820, [134, 1])
27: Event Channel says: event(carInLane,CM,Operator,location,Sat Apr 25 11:23:13 CEST 2020,[134, 5])

Figure 6.3: Operator for Test 1

Problems:

In a previous implementation on a Windows operating system and with a previous version
of this test (hence the different timestamps and capitalization of event names), we ran
into an unexpected behavior: We sent multiple predicate messages from the SR to the
CM and then to the Operator. Since it is a multithreaded environment and the messages
are sent towards the same receiving port simultaneously, this can lead to problems in
the code shown in Appendix B. The DataOutputStream object uses the writeBytes
method, which means that messages are received byte by byte, and this can lead to the
problem illustrated in the Figures 6.4 and 6.5.

: Event Channel says: event{CarzInLane.CH.Operator,location.Fri Mar 27 11:38:42 CET 20826,.[134, 31>
: Event Channel says: event{CarzInLane.CM.Operator,location.Fri Mar 27 11:38:43 CET 20828,.[134, 61>
: Event Channel says: eyen (CaPsInLane,CH,OperatoP,location,EC}i Mar 27 11:38:44 CET 2828.[134,. 81>
: Event Channel says:*
: Event Channel says:pafficdam.CH.Operator,.location,.Fri Mar 27 11:38:47 CET 2828,.[1341)>

: Event Channel says: event{CarzInLane.CM.Operator,location.Fri Mar 27 11:38:46 CET 20826.[134, @1>
: Event Channel says: euent(CaPsInEEEe,CH,Operator,location,FPi ﬂgr 27 11:38:47 CET 2828,.[134, 51>

pevent (CarsInLane .CHM.Operator.location,.Fri Mar 27 11:38:45% CET 2828.[134,. 31>

Figure 6.4: Split message instance 1

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.

UsE CASES AND FUNCTIONALITY SHOWCASE

80

In Figure 6.4, we show how this problem manifests: Each letter is represented by 1 byte
and we can see that when the two messages are sent simultaneously by two threads
they can arrive at different time points. In this case the TrafficJam message arrives
contemporarily to two other CarsInLane messages. The letter "e" appears two messages
before and the sub string "vent (Tr" appears in the previous message. The actual message
is then missing exactly those letter. This problem is not given by the output to the
console; the event message is exactly received as that. As a consequence, the TLUPS
policies will not recognize the name of the event since it is incomplete. The problem is

: Event Ghannel says: event{(GarsInLane.CHM. Operator locatlon Fri Mar 27 12:89:18 CET 2828.[134. 21>

: Event Channel says: event{CarsInLane.CH.0p a on . Fri Mar 27 12:89:19 CET 2828.[134, 81>

: Event Channel says: event{(CarsInLai Uent(TPaff1cJam CH Opefne, CH. Ope@ator location.Fri Mar 2'?
12:HtP:24 CET 2828,[1341>

: Event Channel says: or.location.Fri Mar 27 12:89:28 CET 2828.[134. 61>

: Event GChannel says: event{(GarsInLane.CM.Operator.location.Fri Mar 27 12:89:21 CET 2828.[134. 11>

: Event Channel says: event{CarsInLane.CH,0perator.location, Fri Mar 27 12:89:22 CET 2828,[134, 51>

Figure 6.5: Split message

accentuated even more in Figure 6.5 where the TrafficJam message is scattered across
the previous message. Fortunately, modern programming languages such as Java offer a
solution to deal with these kind of problems.

Solution:

The reason for this problems is that messages are sent asynchronously. By doing so, the
bytes have a chance of arriving in mixed order at the destination. Ideally, we would like
for the message sending part to be synchronous. In this way, a new message would only be
sent if no other message was being sent at the same moment. Java allows this through the
usage of the synchronized keyword, which introduces a Monitor. The Monitor checks
which program parts access the synchronized part of code. By definition, "...a block of
code that is marked as synchronized in Java tells the JVM: "only let one thread in here at
a time"!. The improved code looks like this, where out is the DataOutputStream:

1 synchronized(out) {
out .writeBytes (message + "\n");
out.flush();

=W N

The compiler places a lock on the out object, appending instructions for the threads
on how to obtain and release the lock. When a thread obtains a lock it becomes the
owner and any other threads attempting to access the object need to wait until the lock
is release by the other thread. By doing so, messages are never sent simultaneously and
the problem of scrambled messages is solved.

https://www.javamex.com/tutorials/synchronization_ concurrency synchronizedl.shtml

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.1. Experiment 1: Change in communication behavior

6.1.2 Test 2: Add communication exceptions

In this test we take the predicate carInLane that has no exceptions defined and where
all messages use the default communication of push with delay. We then change the
behavior only for certain messages by adding an exception to the interface. Again, no
stream reasoner restarts are required.

Setting:

We start from the same setting as in Test 1; we have a predicate carInLane that
periodically sends information about the number of cars in a lane. In the last test, we
changed the communication of the whole predicate from push based with 10-second
delays to immediate communication. This change influenced all carInLane messages
sent by the stream reasoner. Now assume that we are interested in the number of cars in
lane 120 and want to receive immediate messages only for this lane. We can manually
input the command:

interfaceCommand (addException,-1, 0, 0, [(0,[120])]1, push,
false, 0)

In order of appearance the values mean the following:

e addException: defines the specific command to be executed

e —1: is the timing variable. -1 means that the changes done by the command should
be permanent (inertial)

e 0 is the unique id for predicate carInLane

e 0 is the new unique identifier for the added exception

e [(0,[120]) 1] is the condition defining when the exception triggers. In this case
it triggers if the argument 0 is contained in the array [120]

e push is the communication mode for this exception

e false defines whether messages should be sent in bursts

0 is the number of seconds for the interval between bursts

Note that the used syntax is different from the command used in Test 1. In Test 1 we
saw a TLUPS policy for an interface command. In this test we skip the TLUPS policy
since the command will be entered manually by the system user, we thus immediately
use the format of an interface command since this command will not pass through the
Operator.

Expected outcome:

Before the above command is sent, the Operator should receive messages for lanes 110
and 120 every 10 seconds in bursts of 10 messages each. After we input the manual
command adding the exception at time point 27, we should start receiving the messages
for 120 every second, while the messages for 110 keep arriving in 10 second bursts.

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6. USE CASES AND FUNCTIONALITY SHOWCASE
7 : All modules are running and connected to eachother
7 : Communication Manager sends burst to Operator with 1 message each for
carInLane (110) and carInLane (120).
17 : Communication Manager sends burst to Operator with 10 messages each for
carInLane (110) and carInLane (120).
27 : Communication Manager sends burst to Operator with 10 messages each for
carInLane (110) and carInLane (120).
28 : Update Manager receives our manual command and updates the interface with
the new exception, also warning the Communication Manager
28 : Communication Manager reloads the interface
28-: Each second, Communication Manager sends carInLane message for argument
120
37 : Communication Manager sends burst to Operator with 10 messages only for
carInLane (110)
Outcome:
The Communication Manager sends the first message pair at time point 7, after all
modules had loaded up and connected. The Operator receives the two messages at
time point 7 and then receives nothing until time point 17, where he receives a burst
of mixed messages for both 110 or 120. They are mixed since they have been sent by
two separate threads and thus can arrive in random order. As shown in Figure 6.6 at
time point 27, the Operator receives the burst of mixed messages, where the text at the
end of each message indicates if it was for 110 or 120. At time point 27 we insert our
manual command and immediately after that we can see that at time points 28-30 the
information regarding 120 is sent without a delay. The messages for 110 arrived in 10
27: Event Channel says: event(carInLane,CM,Operator,location,5at Apr 25 12:59:30 CEST 2020,[128, 91)
27: Event Channel says: event({carInLane,CM,Operator,location,Sat Apr 25 12:59:30 CEST 2820,[118, 9])
27: Event Channel says: event{carInLane,CM,Operator,location,Sat Apr 25 12:59:31 CEST 2820,[118, 21)
27: Event Channel says: event(carInLane,CM,Operator,location,Sat Apr 25 12:59:31 CEST 2620,[l28, 2])
interfaceCommand (addException™-17"0~[(8,[120]) 1 push~false”8)
27: Seding command: interfaceCommand(addException™-178°@~[(0,[128]1)]1 push~false”8)
28: Event Channel says: event(carInLane,CM,Operator,location,Sat Apr 25 12:59:33 CEST 2828,[128, 4])
29: Event Channel says: event(carInLane,CM,Operator,location,Sat Apr 25 12:59:34 CEST 2820,[128, 31)
38: Event Channel says: event(carInLane,CM,Operator,location,Sat Apr 25 12:59:35 CEST 2820,[128, 8])
Figure 6.6: Operator with manual message in green (""" substitutes ",")
message bursts at time point 37 and in addition there was also one more messages for
120. This message is the one generated at time point 27. It has been waiting in the
buffer since the exception was only added after the Communication Manager had placed
that message in the 10 second buffer queue.
82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.2. Experiment 2: Changes to stream reasoner’s KB

As planned, we now obtain immediate communication for carInLane messages from
120 while the communication for 110 remains burst based with 10-second intervals. If
we check the interface, we indeed see the exception that has been added?:

Predicate:
id: O
name: carlInlane
number_of_ arguments: 2

—

type: string
comment: "First Argument is lane identifier and
second Argument the number of cars."
communication:
default:
mode: push
buffered: true
delay: 10
Exceptions:
Exception:
id: O
condition: argl in ("120")
mode: push
buffered: false
delay: O

© 00 N O g oA~ W N

I T T~ T = T =S
© 00 N O Ot ks W N = O

6.2 Experiment 2: Changes to stream reasoner’s KB

In this experiment we will perform three tests, which will each require a restart of the
stream reasoner. We will conduct the following tests:

1. Based on two TLUPS policies, we disable and enable a predicate in the stream
reasoner’s KB.

2. We change a parameter in the stream reasoner’s knowledge base (KB) that controls
which information is sent to the Communication Manager.

3. We use three TLUPS policies that trigger simultaneously adding three rules to the
stream reasoner’s KB, which allows us to retrieve new information from a database
and send it to the Communication Manager.

6.2.1 Test 1: Disabling and enabling rules

Depending on the information collected by the stream reasoner, it might be desirable or
necessary to add or remove certain rules from the KB. If rules are removed, the stream

2Here displayed using YAML and the SQL format for the condition. In our implementation the
interface is an XML file and the condition is stated for each argument

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.

UsE CASES AND FUNCTIONALITY SHOWCASE

84

reasoner will have to check less of them and automatically work faster (assuming that he
has to evaluate the condition for each one).

Additionally, removing or disabling rules that cause events or process information will
automatically reduce the number of messages sent to the Communication Manager and
thus to the Operator. As seen before, the Operator controls all TLUPS policies, every
time a message is received we also lower the burden on the Operator.

Setting:

Once a year in Vienna (during summer) the Pride Parade is held organised by HOSI
Wien®. The parade goes through the "Innerer Ring" (the Ring Road) of the city and as
such, disrupts the normal flow of traffic since no cars are allowed on the affected streets.
Let us assume that there is a setting like the one in the previous example. RSUs are
located at selected intersections and observe traffic and relay events of significance to the
Communication Manager. Clearly, events regarding traffic jams, the number of cars in a
lane or which vehicles stopped are not used during the Pride Parade. We observe three
options:

1. Shut down: the easiest option would be to turn off all stream reasoners that are
located on the parade route.

2. Remove: undesired rules can be removed from the stream reasoner’s KB.

3. Disable: since the rules are stored in a KB represented by a text file, rules can be
disabled by commenting them out.

We observe that all three options achieve the goal of lessening the strain on the Stream
Reasoner, Communication Manager and Operator.

Option 1 is the easiest to implement, however, there might be some relevant information
that can be transmitted despite of the parade. For instance, there could be temperature
sensors that detect high temperatures. In case one of the parade wagons malfunctions,
these sensor could detect a fire and immediately trigger a warning to the fire brigade.

Option 2 can be implemented by removing all rules in the stream reasoner that contain
the unimportant rules. The problem with this approach is that in order to re-add the
rule, it must be stated inside of a policy to its entirety matching the exact syntax.

Option 3 allows us to comment out the affected rules. Depending on the implementation
this can be achieved by simply adding the % character. The rules are then effectively
disabled and thus achieving the same result as if they were removed. Later, these rules
can be enabled again by simply removing the commenting character. To identify the
lines to be commented out we can simply use the predicate name and comment all rules
containing it in the rule head. Optionally, we can also comment all rules that have

3https://viennapride.at/en/

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6.2. Experiment 2: Changes to stream reasoner’s KB

that predicate name as a positive atom in the rule body, since it will never be satisfied.

Following are the TLUPS policies responsible for the disabling:

— disable for -1 rule trafficCount when prideParade (134)

— enable for -1 rule trafficCount when prideParadeEnd(134)

Expected outcome:

All rules containing the to be disabled predicate in the head, or with a positive atom in
the rule body, should be disabled by comments. For rules that extend over multiple lines
this means commenting each one of the lines in order not to corrupt the file with invalid
data. All non-affected rules should remain unchanged and keep working as expected. In
addition, enabling the predicate again should also behave as expected. The comment
symbols should be removed from each line belonging to an affected rule.

Outcome:

In Listing 6.1 a subset of the stream reasoner rules is presented and we see that both
rules contain the trafficCount predicate. In addition, both rules span over multiple
lines (end of a rule is marked by the "." symbol).

trafficCount (V0,V1) :-—
&sgl2 ["SELECT iid, to_char (ROUND (x, 2), "fm000.00") as x1
FROM v_speed_mrel GROUP BY iid, x, tp HAVING (iid, tp) IN (
SELECT iid, MAX(tp) FROM v_speed_mrel GROUP BY iid) ORDER
BY iid"] (v0o,V1l).

@wsSend ("vehicleStop(",VvO0,",",Vv1l,")") :— trafficCount(V0,Vl),
vVl <= "000.00", VO > 0.

© 0 N O O ke W N

10

Listing 6.1: Snippet of the Stream Reasoner before disabling

We start our Stream Reasoner and send a prideParade (134) message at time point
7. We can see in Figure 6.7 that the Operator receives the message at time point 7 and
that it triggers the correct policy. The command is sent to the Update Manager that is
responsible for performing the changes on the stream reasoner’s KB.

: Event Channel says: event(prideParade,CM,Operator,location,Sat Apr 25 14:33:33 CEST 2020,[134])
: The event message event(prideParade,CM,Operator,location,Sat Apr 25 14:33:33 CEST 2020,[134]) triggered
the policy disable for -1 rule trafficCount when prideParade(134)

7
7

Figure 6.7: Policy on the Operator is triggered by prideParade (134) message

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6.

UsE CASES AND FUNCTIONALITY SHOWCASE

Qo
(@)

In Figure 6.8, we can see that the Update Manager receives the command; it substitutes
any parameter in the template with their actual values and then restarts the Stream
Reasoner. To disable the rules, the Update Manager reads the stream reasoner’s KB

Operator sends: srCommand(disable”-1"trafficCount)
Parameters substituted

Restart message sent to Stream Reasoner

Rule trafficCount has been disabled.

15: Operator sends: srCommand{enable*-1*trafficCount)
15: Parameters substituted

15: Restart message sent to Stream Reasoner

15: Rule trafficCount has been enabled.

Figure 6.8: Policy on the Operator is triggered by prideParade (134) message

(represented by a file) and attributes each line to a rule. For example the rule starting line
2 extends over multiple lines, all of those lines are mapped to rule 0. All lines pertaining
to a rule are then checked to see if the substring trafficCount is included. If any line
is found matching, all lines belonging to the analyzed rule will be modified by adding the
comment symbol %. Finally, the contents of the file are overwritten with the updated
version. Listing 6.2 shows the effects of this change on the stream reasoner.

2 StrafficCount (V0O,V1) :-&sgl2["SELECT iid, to_char (ROUND (x, 2)
, "fm000.00") as x1 FROM v_speed_mrel GROUP BY iid, x,
tp HAVING (iid, tp) IN (SELECT iid, MAX (tp) FROM
v_speed_mrel GROUP BY iid) ORDER BY iid"] (VO0,V1).

o° oo o

4 %@wsSend ("vehicleStop(",v0,",",Vv1l,")") :— trafficCount (V0,V1)
% , V1 <= "000.00", VO > O.

Listing 6.2: Snippet of the Stream Reasoner after the rules have been disabled

As expected, when sending the prideParadeEnd (134) message, the second policy
triggers on the Operator and sends the corresponding command to the Update Manager.
In Figure 6.8, we can again see the command arriving at the Update Manager. Following
the same procedure as before, the stream reasoner file is parsed and the lines containing
comments and belonging to a rule that contains the trafficCount string have their
comments removed.

Problems:

There is currently no history that allows us to tell which lines have been commented by
a previous command and which were already commented before for other reasons. So in
this example, if the lines containing the event trafficCount were already commented
before executing any changes, the lines would end up being uncommented at the end of
the enable command. This might lead to unwanted behavior. To solve this, one could

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.2. Experiment 2: Changes to stream reasoner’s KB

implement a trace log to keep track of which lines were affected by the commands or
attribute an identifier to each command. For example, a previous rule deactivated a rule
and we mark it with the new comment symbol %1%. The new command disabling all
trafficCount rules would then carry the comment %2%. When the rules have to be
enabled again we would then only remove the comments of the form %2% and maintain
the previous comment.

6.2.2 Test 2: Timed parameter value change

In this test, we change a parameter located in the stream reasoner’s KB through the
interface and showcase the ability to seamlessly restart the stream reasoner. In addition
the change to the parameter only lasts for 60 seconds, requiring an additional edit with
restart.

Setting:

We define an event vehicleStop which triggers when a vehicle slows down below a
certain speed threshold. The rule in the stream reasoner is defined as follows:

@wsSend ("vehicleStop(",VvO0,",",V1l,")")
trafficCount (VO,V1), V1<= !speed_for_vehicle_stop!, VO
>780.

trafficCount (V0,V1) is information retrieved from PipelineDB. It simply gives
information about each car VO and the speed they are travelling at V1. If a car slows
down under the threshold defined by the parameter ! speed_for_vehicle_stop!, a
message vehicleStop is sent to the stream reasoner with the car id and velocity. For
this test, we also reduce the number of incoming messages to reduce clutter and limit
the information to vehicles with id greater than 780.

Normally, the value for !speed_for_vehicle_stop! is set at "010.00" which is
equivalent to 10 km/h. During normal traffic conditions, a car slowing down to less than
10 km/h can be assumed to be in the process of stopping. However, during a traffic
jam most vehicles move slower than 10 km/h even though they are not stopping. We
thus send a trafficJam message after a random time interval, which will trigger the
following TLUPS policy:

execute for 60 rule editParameterValue (0,001.00) when
trafficJam(120)

This policy will change the value of the parameter with id 0 to the value 001.00 (1
km/h) when the message trafficJam(120) is received. Since we also have the for
keyword, these changes will last for 60 seconds.

Expected outcome:

The test should unfold as follows:

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6. USE CASES AND FUNCTIONALITY SHOWCASE
1. The stream reasoner submits multiple vehicleStop messages each second report-
ing on the vehicle id and speed of cars travelling at less than 10 km /h.

. At a certain point, the Operator will receive the trafficJam (120) message and
trigger the TLUPS policy. The command will then be executed by the Update
Manager, which restarts the stream reasoner.

. We should then see a change in the message that we receive: only information
about cars travelling at less than 1 km/h should be submitted.

. After 60 seconds, the Update Manager should reverse the changes made to the
parameter and set the value back to 10 km/h, before restarting the stream reasoner
once more. The Operator should then go back to receiving all messages like before
for vehicles travelling at less than 10 km/h.

Outcome:

Before we observe the messages that arrive at the Operator we show the succession of

events inside the Update Manager. In Figure 6.9, we show the console output of the

Update Manager: at time point 17 it receives the interface command extracted from the

TLUPS policy described in the Settings part of this experiment. It then changes the

interface entry for the parameter with id 0 to the following:

1 parameters:

2 parameter:

3 id: O

4 name: speed_for_vehicle_stop

5 type: string

6 value: 001.00

7 comment : Speed under which a vehicle is deemed

8 as stopped.

The changes are saved and the parameter values are inserted into the running stream

reasoner. To apply the changes, the stream reasoner needs to be restarted on-the-fly.

After the restart of the stream reasoner, the Update Manager is idle for 60 seconds.

17: Operator sends: interfaceCommand(editParameterValue”68°0°001.08)

17: Changes saved.

17: Parameters substituted

18: Restart message sent to Stream Reasoner

78: Changes saved.

78: Parameters substituted

78: Restart message sent to Stream Reasoner

Figure 6.9: Actions taken by Update Manager

Note that it could still receive and execute other commands from the Operator due to

our multi-threaded implementation. After 60 seconds, at time point 78, the interface is

changed back to the previous value 010.00, the changes are saved and inserted into
88

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

6.2. Experiment 2: Changes to stream reasoner’s KB

the stream reasoner, which then gets triggered to restart. When we now look at the
Operator, we expect the communication behavior to change soon after time point 18
and after time point 78. In Figure 6.10,* we observe three time intervals and the output

17:
01 o
19:
19:
the
19:

25:
25:
25:
26:
26:

82:
82:
82:
82:
82:
82:

Event Channel says: event(vehicleStop,CM,Operator,location,Thu Apr 23 16:00:26 CEST 2820,[794, 800.008]1)
Event Channel says: event(vehicleStop,CM,Operator,location,Thu Apr 23 16:080:26 CEST 2020,[799, 086.92])
Event Channel says: event(trafficlam,CM,Operator,location,Thu Apr 23 16:80:27 CEST 2028,[120])

The event message event(trafficlam,CM,Operator,location,Thu Apr 23 16:80:27 CEST 2828,[120]) triggered
policy execute for 60 rule editParameterValue(®,0801.80) when trafficlam{120)

Seding command: interfaceCommand(editParameterValue®60°8"801.080)

Event Channel says: ewvent{vehicleStop,CM,Operator,location,Thu Apr 23 16:00:33 CEST 2020, [783, 900.001)
Event Channel says: event{vehicleStop,CM,Operator,location,Thu Apr 23 16:00:33 CEST 2020,[798, 808.00]1)
Event Channel says: event{vehicleStop,CM,Operator,location,Thu Apr 23 16:00:33 CEST 2820,[794, @08.008]1)
Event Channel says: event(wvehicleStop,CM,Operator,location,Thu Apr 23 16:88:35 CEST 2028, [782, d08.08])
Event Channel says: event{vehicleStop,CM,Operator,location,Thu Apr 23 16:00:35 CEST 2028,[791, §06.34])

Event Channel says: event(vehicleStop,CM,Operator,location,Thu Apr 23 16:01:31 CEST 2820,[791, 800.34])
Event Channel says: event{vehicleStop,CM,Operator,location,Thu Apr 23 16:01:31 CEST 2820,[785, 8084.84])
Event Channel says: event{vehicleStop,CM,Operator,location,Thu Apr 23 16:81:31 CEST 2028,[799, 8086.92])
Event Channel says: event(wvehicleStop,CM,0Operator,location,Thu Apr 23 16:01:31 CEST 2020,[783, 800.08]1)
Event Channel says: event(vehicleStop,CM,Operator,location,Thu Apr 23 16:01:31 CEST 2820,[792, 804.25])
Event Channel says: event{vehicleStop,CM,Operator,location,Thu Apr 23 16:01:31 CEST 2020,[788, B883.46]1)

Figure 6.10: Operator sections showing the change in communication.

generated by our Operator.

We thus changed the interface settings twice and restarted the stream reasoner twice
as well. These restarts took less than a second and would seem nonexistent from the

e At time point 17, we observe that the vehicleStop messages contain information

for cars travelling at 0 km/h and at 6.92 km/h.

e At time point 19, we receive the trafficJam message and the policy is triggered

sending the interface command to the Update Manager.

o We then skip ahead to time point 25 and see that all messages that are received

are for cars travelling at less than 1 km/h.

e We skip ahead one more time to point 82, which is after the changes to the interface
have been retracted. We observe that messages are now being sent also for vehicles

driving faster than 1 km/h.

Operator’s perspective, we only spot them through the update manager’s output.

6.2.3 Test 3: Addition of data source

In this example, we will trigger three TLUPS policies simultaneously with the goal of
including a new PipelineDB data source to enable the communication of traffic light

signal states.

4The timestamps of the Operator are 2 seconds ahead of the Operator since it gets started slightly

later.

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6.

UsE CASES AND FUNCTIONALITY SHOWCASE

©
@)

Setting:

In the past examples, we retrieved data from a database to obtain information about the
number of cars in lanes and their speed. The stream reasoner connects at startup to the
PipelineDB database, which is kept open during the evaluation of the KB.

Assume that we receive a message regarding a traffic jam and we are unsure if this
might be caused by a malfunction of some traffic light. We now want to add a new data
source that gives us information on the state of the traffic lights. With an appropriate
implementation, the Operator could then decide based on the new data whether there are
any abnormalities in the traffic lights behavior or whether the cause lies elsewhere, e.g.,
an accident. The three rules that we will need in our stream reasoner are the following:

—rl: hasSignalGroup(L,T) :-
&sgl2 ["SELECT a,b FROM object_role_assertion WHERE
object_role=151"]1(L,T).

—r2: trafficLighState(T,S) :-—
&sqgl2 ["SELECT DISTINCT ON (iid) iid, x FROM
v_signalstate_mrel WHERE tp > 0O ORDER BY iid, tp
DESC"] (T, S) .

—r3: @wsSend("trafficLightState(",T,",",S,")") :-
hasSignalGroup (L, T), trafficLighState(T,S).

For asserting these rules, we use the following TLUPS policies:

— assert for 600 rule rl when trafficJam(120)
— assert for 600 rule r2 when trafficJam(120)

— assert for 600 rule r3 when trafficJam(120)

As stated before, the * symbol substitutes the comma due to easier parsing. This example
in particular shows the difficulty of parsing a comma separated command when a rule
involving SQL requests is involved.

Expected outcome:

The three TLUPS policies trigger and arrive at the Update Manager simultaneously, and
are added to the stream reasoner template file before the Update Manager creates the
original file and triggers stream reasoner restart. At this point, the concept described in
Section 5.2.1 should come into play. Without intervention, the Update Manager would
trigger the stream reasoner to restart three times. This causes unnecessary downtime.
Instead, by adding a small delay the Update Manager waits 100 ms before it restarts
ignoring any other restart commands. After the restart, we will be receiving information
from the new data source on the Operator.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

6.2. Experiment 2: Changes to stream reasoner’s KB

Outcome:

We can see the actions of the Update Manager in Figure 6.11. Specifically, we can

observe that all steps are repeated for each command except for the restart message.

The multiple restart prevention method worked and only caused one restart causing less
downtime. The three commands come in at time point 28, at which point any eventual

28: Operator sends: srCommand(assert”15~hasSignalGroup(L,T) :- &sql2["SELECT a,b FROM object role assertion
WHERE object role=151"1(L,T).)

28: Operator sends: srCommand(assert™15™trafficLighState(T,S) :- &sql2["SELECT DISTINCT ON (iid) iid, x FROM
v_signalstate mrel WHERE tp > @ ORDER BY iid, tp DESC"](T,S).)

28: Operator sends: srCommand(assert®15”@wsSend("trafficLightState(",T,",",5,")") :- hasSignalGroup(L,T), tr
afficLighState(T,5).)

28: Parameters substituted

28: Parameters substituted

28: Rule hasSignalGroup(L,T) :- &sql2["SELECT a,b FROM object role assertion WHERE object role=151"]1(L,T). h
as been asserted.

28: Parameters substituted

28: Rule @wsSend("trafficLightState(",T,",".5,")") :- hasSignalGroup(L,T), trafficLighState(T,S). has been a
sserted.

28: Restart message sent to Stream Reasoner

28: Rule trafficLighState(T,S) :- &sql2["SELECT DISTINCT ON (iid) iid, x FROM v_signalstate mrel WHERE tp >

© ORDER BY iid, tp DESC"1(T,S). has been asserted.

Figure 6.11: Operator section showing the assertion of rule r1, r2 and r3

parameters present in the template are inserted and a restart message is sent. Right
after the execution of the three commands the Communication Manager starts receiving
new message concerning traffic lights and their current status. Note that if no predicate
for the trafficLightState event is defined in the interface, its message will use
the default behavior of the stream reasoner. Optionally, another TLUPS policy could
be added to add the predicate trafficLightState to the interface and define the
communication behavior there.

With these experiments we demonstrated how the communication settings can be changed
in the interface and how the communication behavior changes without touching the
Stream Reasoner. For changes involving the modification of rules and thus requiring
a stream reasoner restart, we exemplified the restart behavior showing the seamless
interaction through stream reasoner, Update Manager and Operator.

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Conclusion

In this thesis, we presented an approach that allows declarative adaptive interface
monitoring. We extended the DynaCon [EDTF*19] framework by adding specialized
modules: the Communication Manager and the Update Manager. In combination came
the creation of an interface description language, introducing a way to dynamically adapt
communication with the stream reasoner. For a formal underpinning of the interface,
we created TLUPS, an extension of LUPS [APPP02] (a language for updating logic
programs), which in addition also allows us to assert rules for a given amount of time.
We combined TLUPS with our interface command language to not only allow changing
the stream reasoner through TLUPS policies, but also change the interface configuration,
directly influencing communication behavior and stream reasoner parameters. For
interacting with the interface and defining the format for parameter and predicate entries,
we created an interface description language, which we then formalized using the EBNF
grammar described in Appendix A.

To showcase declarative adaptive interface monitoring, we created a Java prototype
including modules for the Communication Manager, the Operator and the Update
Manager. Lastly, in combination with the HexLite [Sch19] stream reasoner we performed
some experiments in the scope of a C-ITS use case in order to demonstrate the capabilities
of our approach.

7.1 Future Work

The concepts and ideas presented in Chapter 3 and 4 still dwarf in comparison to the
myriads of use cases in real world scenarios. The evolution of LUPS over LUPS* [Lei01]
to TLUPS is only a small example showing the necessity for more functionalities in update
policies for temporal rule languages. In this section we will mention some improvements
and future extensions connected to this thesis.

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

7. CONCLUSION

94

7.1.1 TLUPS

While TLUPS has many functionalities like conditional, persistent, and timed commands
we identified some features that could be added:

e Support for asserting rules at future time points, i.e., assert a rule or perform a
change after a specific time interval has elapsed.

Example 28. Suppose we want to assert a rule with the delay ¢ when a certain
event occurs. We would extend the current assert command with the in keyword
as follows:

assert in 60 rule <rule> when <condition>

The policy would then be triggered as soon as <condition> is satisfied, but
<rule> would only be asserted after 60 seconds passed.

e When we assert a rule, the only way to retract it automatically is through the for
keyword that can only take a time unit as an input. What if we wanted to retract
a rule that we asserted once a certain condition is achieved?

Example 29. In Experiment 2 Test 2, we set the speed threshold to 1km/h with
the intention of reverting it after 60 seconds. What if the traffic jam is still ongoing
after 1 minute? Then we would have to assert the rule again. Instinctively, as
soon as cars start circulating at higher speeds the traffic jam is over. The stream
reasoner could detect this through a window function checking how many cars are
travelling above a certain speed. So we could set a condition of the type:

execute rule editParameterValue (0,001.00) when
trafficJam(120) until trafficJamEnd (120)

e Adding more functions to commands makes the semantic transformation to a logic
program more intricate. We could see in Section 4.2 that the transformation to
a logic program became harder with LUPS* and even more complicated with
the substitution of the event keyword by the timed for keyword in our TLUPS
extension.

7.1.2 Prototype functions

As is often the case with prototypes, ours also is not a full fledged implementation of the
concepts described in Chapter 4.1. Within the given time frame, some parts had to be
omitted in favor of a quicker implementation while others present new challenges that we
could not address in the scope of this thesis. We subdivide the omitted features by the
responsible modules in the following sections.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7.1. Future Work

Communication Manager

Our implementation of the Communication Manager had a limited expressibility for
conditions in exceptions. Ideally, we would want our prototype to be able to evaluate
arbitrary SQL-like or Datalog-like conditions in order to fine-tune the exceptions as
envisioned in the concept in Chapter 3. Furthermore, a particularly hard challenge is
given by pull based stream reasoners where data has to be retrieved by polling. Our
Communication Manager can only work with push based stream reasoners that send
messages on their own.

Operator

Right now all TLUPS policies in the Operator are persistent due to the lack of a ticker
system. The Operator does not work in iterations, it immediately responds as soon as
a message is received by the Communication Manager. While this approach is more
responsive compared to a ticker system where the Operator has to wait for the next
iteration before acting, it is harder to deal with non persistent commands since there is
not a succession of clearly defined states where conditions can be evaluated also for non
persistent commands.

Our implementation currently supports one simultaneous stream reasoner. More com-
munication and update managers can connect to the Operator but both messages and
commands are hard coded to only work with the first stream reasoner that connects.

The conditions for TLUPS policies also had to be restricted to exact matching of event
messages. For example we can wait for the arrival of certain event messages through

when trafficJam(134);

This condition will only be satisfied if the exact matching message trafficJam (134)
arrives at the Operator. Clearly, more expressiveness is desired. Once again SQL or
Datalog type syntax would offer far more elaborate tools to fine tune conditions. The
minor change of introducing a wildcard symbol would already increase the flexibility of
defining conditions. By using trafficJam(_) or trafficJam(*) as a condition we
could accept any trafficJam message.

Information requests sent by the Operator can only specify a specific predicate and
exception. Ideally, the Operator should be able to filter by locations, time stamps,
arguments and more to obtain the information that it needs.

Example 30. Let carsInLane (X, Y) be a predicate that contains information about
the number of cars X in lane Y. This predicate also is defined to work on pull based
communication and has no exceptions in the interface. The Operator is interested in
knowing whether there was any instance in the last 10 time points, where the number
of cars in lane 134 were above 20. The only tool available right now is to ask for
predicate carsInLane. The Operator would then receive all messages stored in the
Communication Manager related to the predicate and check by himself whether one of

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

7. CONCLUSION

96

the messages is helpful. Ideally, we would want a filter to retrieve messages created in the
last 10 minutes, where X = [34 and Y > 20. The same functionality should be available
for the Communication Manager when evaluating the conditions defined for predicate
exceptions.

Update Manager

Currently to perform any changes through update commands, data has to travel from the
Stream Reasoner through the Communication Manager to the Operator and then finally
to the Update Manager. While we have not constructed any performance benchmarks,
undeniably there would be a gain in speed if the cycle was shortened somewhere along the
path. For example, some TLUPS policies could be stored with the Update Manager and
some of the information delivered by the stream reasoner could be immediately routed
to the Update Manager as well. By doing so, the Communication Manager and Operator
are skipped in the workflow, which would speed up the process of performing changes to
the interface and Stream Reasoner.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

APPENDIX

Full EBNF grammar

int_ desc ::= "<InterfaceDescription>" , param__section , data__section,
"< /InterfaceDescription>";

param__section ::= "<Parameters>" 6 {parameter} , "</Parameters>";

parameter : := "<Parameter><id>" , natural__number , "</id><name>" |
parameter__name , "</name>" | value__type_ pair , "<comment>" , text ,
"< /comment>< /Parameter>";

parameter__name ::= low__case__letter , {['_"] , low__case__letter};
data__section ::= "<Data>", sr__default , {predicate} , "</Data>";
sr__default ::= "<sr_default>" , comm__detail , "</sr_ default>";

predicate ::= "<Predicate><id>" , natural__number , "</id><name>" |
predicate__name , "</name><number_of arguments>" , natural__number,
"< /number_of arguments><type>" ;| type , "</type><comment>" , text ,
"< /comment>" , communication , "</Predicate>";

predicate__name ::= up__case__letter , {low__case_ letter | up__case__letter };
communication ::= "<communication>" , [default] , exc__section,
"< /communication>";
default ::= "<default>" , comm__detail, "</default>";
exc__section ::= "<exceptions>" , {exc} , "</exceptions>";
exc 1= "<exception><id>" , natural__number , '</id><arguments>" , argument

, {argument} , "</arguments>" , comm__detail , "</exception>";

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

A. FuLL EBNF GRAMMAR

argument ::= "<argument nr="" , natural__number , "">" | word__array ,
"< /argument>";
comm__detail ::= "<mode>" , comm_ mode , "</mode><buffered>" , boolean ,

"< /buffered><delay>" , natural__number , "</delay>";

value__type_ pair ::= "<type>string</type><value>" , word , "</value>"
|"<type>int</type><value>" , integer , "</value>"
|"<type>collection< /type><value>" | word__array , "</value>";

boolean ::= "true" | "false";
comm__mode ::= "push" | "pull";
type = "int" | "string";

text = {word|" "};

word ::= (digit | low__case_ letter | up__case_ letter) , { digit |
low__case__letter | up__case__letter};

non

word__array ::= word , {","word};

| IIj“ | ||k|| | lllll | llmll |
I|le;

IOW_Case_letteI' = lla|l | |l'bll | IICII ‘ lld" ’ l|el| ’ l|fl| ’ llgll | Ilh" ‘ lli"
n |

n " | lIO" ‘ llp" ’ l|ql| l|rll | IISH | Ilt" | lIuH | |IV|I | HWII | I|Xl| ’ l|yl| ’
up_case_letter — I|AI| ’ I|BI| ’ I|Cll ‘ IIDII | |IE|I | "F" ’ I|GH ‘ HHH ‘ III" ’ I|J|I ’ HKH ‘ IIL" ‘
llMll | IIN" | IIO“ ‘ llP" ‘ IIQ" ’ I|Rll | IISII | IIT" | ||U|l | |IVII | IIW“ | |IX|I | |IY|I | |IZI|;

integer ::= "0"|["-"], natural__number;
natural__number ::= "0"| (digit__excl_zero, {digit});
digit ::= "0"| digit__excl__zero;

digit—excl_zero o Il1|l | |12l| ’ ll3ll | Il4|l | |I5I| ’ ll6ll | Il7|l | |18l| ’ l|9!l;

98

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

APPENDIX

Implementation code

The basic Java Socket implementation for communication between internal modules
(Communication Manager, Update Manager and Operator)

© 0 N o Ul oA W N e

e e o
g W N = O

0 N O O e W N

import java.io.BufferedReader;
import Jjava.io.InputStreamReader;
import java.net.ServerSocket;
import java.net.Socket;

ServerSocket server= new ServerSocket (1979);
Socket client= server.accept|();

InputStreamReader inp = null;
BufferedReader bReader = null;

inp = new InputStreamReader (client.getInputStream());
bReader = new BufferedReader (inp);

String text= bReader.readLine();

Listing B.1: Java server implementation

import java.io.DataOutputStream;
import java.net.Socket;

Socket socket = new Socket ("localhost", 1979);
DataOutputStream out =
new DataOutputStream(socket.getOutputStream());

out.writeBytes ("message" + "\n");

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

IMPLEMENTATION CODE

B.

out.flush ();

9

Listing B.2: Java client implementation

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq

100

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

APPENDIX

Experiment replication

On a Linux system, install HexLite by following the procedure outlined in
https://github.com/hexhex/hexlite.

The Java prototype can be found in https://github.com/patrik999/adaptive-stream-
reasoning-monitoring/tree/master/src/LinuxThesis .

To run one of the tests from the thesis follow these steps:

e Inside the LinuxThesis folder are subfolders for each test containing the interface
file for the test, the stream reasoner template file and the original stream reasoner
file.

e For example, to execute Experiment 1 Test 2, open the startup files

— OperatorStartup. java
— UmStartup. java
— CmStartup. java
and set the variables exp=1 and test=2. By doing so, the Operator will assert the

correct TLUPS commands and the Communication Manager and Update Manager
will know in what folder to find the interface and stream reasoner template.

e Start the Modules in the order: Operator — Communication Manager — Update
Manager. The Update Manager will then take care of starting the Stream Reasoner.

Note that some tests like Experiment 1 Test 1 will change the interface after it is run
once. To replicate the experiments multiple times you will need to revert the interface
back to its original state.

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[AGMS5]

[ALP*00]

[APO6]

[APPP02]

[AS13]

[Bal09)]

[BBCG10]

[BBU17]

Bibliography

Carlos Alchourrén, Peter Gérdenfors, and David Makinson. On the logic of
theory change: Partial meet contraction and revision functions. J. Symb.
Log., 50:510-530, 06 1985.

J.J. Alferes, J.A. Leite, L.M. Pereira, H. Przymusinska, and T.C. Przymusin-
ski. Dynamic updates of non-monotonic knowledge bases. The Journal of
Logic Programming, 45(1):43 — 70, 2000.

José Alferes and Luis Pereira. Update-programms can update programs, pages
110-131. Springer, 04 2006.

José Julio Alferes, Luis Moniz Pereira, Halina Przymusinska, and Teodor C.
Przymusinski. Lups—a language for updating logic programs. Artificial
Intelligence, 138(1):87 — 116, 2002. Knowledge Representation and Logic
Programming.

Antonio Alberti and Dhananjay Singh. Internet of things: Perspectives, chal-
lenges and opportunities. In International Workshop on Telecommunications

(IWT 2013), Volume: 1,05 2013.

Martin Baldz. Answer set programming: Syntax and semantics. url:
http://dai.fmph.uniba.sk/~siska/asp/asp0l.pdf, [Online; ac-
cessed 03-May-2020], 2009.

Davide Barbieri, Daniele Braga, Stefano Ceri, and Michael Grossniklaus. An
execution environment for c-sparql queries. In 13th International Conference
on Eztending Database Technology (EDBT 2010), Lausanne, Switzerland,
01 2010.

Hamid R. Bazoobandi, Harald Beck, and Jacopo Urbani. Expressive stream
reasoning with laser. In Claudia d’Amato, Miriam Fernandez, Valentina
Tamma, Freddy Lecue, Philippe Cudré-Mauroux, Juan Sequeda, Christoph
Lange, and Jeff Heflin, editors, The Semantic Web — ISWC 2017, pages
87-103, Cham, 2017. Springer International Publishing.

103

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[BDTE15]

[BDTE16]

[BDTEF15]

[BEF17]

[BJCO5]

[Bun13]

[CHVF09)

[DFI103]

[dH16]

[DVVHB17]

104

Harald Beck, Minh Dao-Tran, and Thomas Eiter. Answer update for rule-
based stream reasoning. In Proceedings of the 24th International Conference
on Artificial Intelligence, IJCAT'15, page 2741-2747. AAAI Press, 2015.

Harald Beck, Minh Dao-Tran, and Thomas Eiter. Equivalent stream rea-
soning programs. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI’'16, page 929-935. AAAT Press,
2016.

Harald Beck, Minh Dao-Tran, Thomas Eiter, and Michael Fink. Lars: A
logic-based framework for analyzing reasoning over streams. In AAAI15:
Twenty-Ninth Conference on Artificial Intelligence, Austin, Texas, USA, 01
2015.

Harald Beck, Thomas Eiter, and Christian Folie. Ticker: A system for
incremental asp-based stream reasoning. Theory and Practice of Logic
Programming, 17(5-6):744-763, Aug 2017.

Thais Batista, Ackbar Joolia, and Geoff Coulson. Managing dynamic recon-
figuration in component-based systems. Lecture Notes in Computer Science,
98:1-17, 06 2005.

Alan Bundy. The interaction of representation and reasoning. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences,
469(2157):20130194, 2013.

S. Ceri, F. Harmelen, E. Valle, and D. Fensel. It’s a streaming world!
reasoning upon rapidly changing information. IEEFE Intelligent Systems,
24(06):83-89, nov 20009.

Tina Dell’Armi, Wolfgang Faber, Giuseppe Ielpa, Nicola Leone, and Gerald
Pfeifer. Aggregate functions in DLV. In Marina De Vos and Alessan-
dro Provetti, editors, Answer Set Programming, Advances in Theory and
Implementation, Proceedings of the 2nd Intl. ASP’03 Workshop, Messina,
Ttaly, September 26-28, 2003, volume 78 of CEUR Workshop Proceedings.
CEUR-WS.org, 2003.

D. de Leng and F. Heintz. Dyknow: A dynamically reconfigurable stream
reasoning framework as an extension to the robot operating system. In 2016
IEEE International Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR), pages 55—60, Dec 2016.

Daniele Dell’Aglio, Emanuele Della Valle, Frank van Harmelen, and Abraham
Bernstein. Stream reasoning: A survey and outlook. Data Sci., 1:59-83,
2017.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[EDTF*T19] Thomas Eiter, M. Dao-Tran, A. Falkner, P. Ogris, K. Schekotihin, P. Schnei-

[EFI+15]

[EFTW18)]

[EISTO05)

[Eit16]

[ESF+19]

[ESS19]

[FLPO4]

[GLSS]

[KMO91]

der, P. Schiiller, and A. Weinzierl. Stream reasoning and multi-context sys-
tems. Stream Reasoning Workshop 2019, 2019. url: https://sr2019.on.
liu.se/slides/eiter-keynote-sr2019ws.pdf , [Online; accessed
19-April-2020].

Thomas Eiter, M. Fink, G. Ianni, T. Krennwallner, C. Redl, and P. Schiiller.
A model building framework for answer set programming with external
computations. Theory and Practie of Logic Programming, 07 2015.

Thomas Eiter, Gerhard Friedrich, Richard Taupe, and Antonius
Weinzierl. Lazy grounding for dynamic configuration: Efficient large-scale
(re)configuration of cyber-physical systems with asp. KI - Kinstliche Intelli-
genz, 32, 05 2018.

Thomas Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform
integration of higher-order reasoning and external evaluations in answer-set
programming. In IJCAI-05, Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, pages 90-96, Edinburgh, Scotland,
UK, 01 2005.

Thomas Eiter. Answer set programming and extensions. url:
http://www.kr.tuwien.ac.at/staff/eiter/courses/vtsal6/
unitl.lnup.pdf, [Online; accessed 03-May-2020], 2016.

Thomas Eiter, Patrik Schneider, Andreas Falkner, Konstantin Schekotihin,
and Weinzierl Antonius. Deliverable D2.1: Requirements and architecture
(v9). internal report, Project DynaCon (FFG 861263), 2019.

Thomas Eiter, Patrik Schneider, and Peter Schiiller. Deliverable D5.1:
Interface between stream reasoner and configurator (v4). internal report,
Project DynaCon (FFG 861263), 2019.

Wolfgang Faber, N. Leone, and G. Pfeifer. Recursive aggregates in disjunctive
logic programs: Semantics and complexity. In Logics in Artificial Intelligence,
9th European Conference, JELIA 2004, volume 3229, pages 200-212, 01 2004.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Robert Kowalski, Bowen, and Kenneth, editors,
Proceedings of International Logic Programming Conference and Symposium,
pages 1070-1080. MIT Press, 1988.

Hirofumi Katsuno and Alberto O. Mendelzon. On the difference between
updating a knowledge base and revising it. In Proceedings of the Second
International Conference on Principles of Knowledge Representation and
Reasoning, KR’91, pages 387-394, San Francisco, CA, USA, 1991. Morgan
Kaufmann Publishers Inc.

105

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

[KM14]

[KowT74]

[KWH13]

[Lee06]

[Lee08]

[Leel7a]

[Leel7b]

[Lei01]

[MSLMO09]

[MT94]

[0C99]

[Oet80]

106

S.K. Khaitan and James Mccalley. Design techniques and applications of
cyberphysical systems: A survey. IEEE Systems Journal, 9:1-16, 07 2014.

Robert A. Kowalski. Predicate logic as programming language. In Jack L.
Rosenfeld, editor, Information Processing, Proceedings of the 6th IFIP
Congress 1974, Stockholm, Sweden, August 5-10, 1974, pages 569-574. North-
Holland, 1974.

Henning Kagermann, W. Wahlster, and J. Helbig. Recommendations for
implementing the strategic initiative industrie 4.0 — securing the future of
german manufacturing industry. Final report of the industrie 4.0 working
group, acatech — National Academy of Science and Engineering, Muenchen,
04 2013.

Edward Lee. Cyber-physical systems - are computing foundations adequate?
NSF Workshop On Cyber-Physical Systems, 01 2006.

E. A. Lee. Cyber physical systems: Design challenges. In 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC), pages 363-369, May 2008.

Kent Lee. Foundations of Programming Languages. Springer Verlag, 01
2017.

Kent Lee. Logic Programming, pages 277-304. Springer Verlag, 12 2017.

Jodo Alexandre Leite. A modified semantics for LUPS. In Pavel Brazdil
and Alipio Jorge, editors, Progress in Artificial Intelligence, Knowledge
Extraction, Multi-agent Systems, Logic Programming and Constraint Solving,
10th Portuguese Conference on Artificial Intelligence, EPIA 2001, volume
2258 of Lecture Notes in Computer Science, pages 261-275, Porto, Portugal,
2001. Springer.

Joao Marques-Silva, Inés Lynce, and S. K. Malik. Conflict-driven clause
learning sat solvers. In Handbook of Satisfiability, 2009.

Victor W. Marek and Mirostaw Truszczynski. Revision specifications by
means of programs. In Craig MacNish, David Pearce, and Luis Moniz Pereira,
editors, Logics in Artificial Intelligence, pages 122—136, Berlin, Heidelberg,
1994. Springer Berlin Heidelberg.

Ming Ouyang and Vasek Chvatal. Implementations of the DPLL Algorithm.
PhD thesis, Rutgers University, USA, 1999. AAI9947888.

J. Oetting. An analysis of meteor burst communications for military ap-
plications. IEEE Transactions on Communications, 28(9):1591-1601, Sep.
1980.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

[PAGO9]

[PT97]

[Ray13]

[RG18]

[Rob65]

[Roj17]

[Sch19]

[SWD*14]

[TAB*+17]

[VCB+09]

[YZL*19]

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and com-
plexity of sparql. ACM Trans. Database Syst., 34(3), September 2009.

Teodor C. Przymusinski and Hudson Turner. Update by means of inference
rules. The Journal of Logic Programming, 30(2):125 — 143, 1997.

A. Ray. Autonomous perception and decision-making in cyber-physical sys-
tems. In 2013 8th International Conference on Computer Science Education,
pages 1-10, April 2013.

Jacqueline Reis and Rodrigo Gongalves. The Role of Internet of Services
(10S) on Industry 4.0 Through the Service Oriented Architecture (SOA):
IFIP WG 5.7 International Conference, APMS 2018, Seoul, Korea, August
26-30, 2018, Proceedings, Part I, pages 20-26. Springer, 08 2018.

J. A. Robinson. A machine-oriented logic based on the resolution principle.
J. ACM, 12(1):23-41, January 1965.

Andreja Rojko. Industry 4.0 concept: Background and overview. Interna-
tional Journal of Interactive Mobile Technologies (IJIM), 11. 77. 10.3991/i-
jim.v11i5.7072, 2017.

Peter Schiiller. The hexlite solver. In Francesco Calimeri, Nicola Leone,
and Marco Manna, editors, Logics in Artificial Intelligence, pages 593-607,
Cham, 2019. Springer International Publishing.

Pradhan Subhav, O. William, A. Dubey, C. Szabo, G. Aniruddha, and
G. Karsai. Towards a self-adaptive deployment and configuration infras-
tructure for cyber-physical systems. Technical report, Institute for Software
Integrated Systems, Nashville, 06 2014.

M. Toérngren, F. Asplund, S. Bensalem, J. McDermid, R. Passerone,
H. Pfeifer, A. Sangiovanni-Vincentelli, and B. Schitz. Chapter 1 - character-
ization, analysis, and recommendations for exploiting the opportunities of
cyber-physical systems. In Cyber-Physical Systems, Intelligent Data-Centric
Systems, pages 3 — 14. Academic Press, Boston, 2017.

Emanuele Valle, Stefano Ceri, Davide Francesco Barbieri, Daniele Braga,
and Alessandro Campi. A first step towards stream reasoning. In John
Domingue, Dieter Fensel, and Paolo Traverso, editors, Future Internet FIS
2008, pages 72-81. Springer-Verlag, Berlin, Heidelberg, 2009.

Xifan Yao, Jiajun Zhou, Yingzi Lin, Yun Li, Hongnian Yu, and Ying Liu.
Smart manufacturing based on cyber-physical systems and beyond. Journal
of Intelligent Manufacturing, 30(8):2805-2817, December 2019.

107

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Stream Reasoners
	Industrial digitization
	Cyber-Physical Systems (CPS)
	Thesis structure

	State of the Art
	DynaCon
	Logic programming
	Updating rule sets of logic programs
	LUPS and LUPS*- A language for updating logic programs

	Abstract Architecture and Components
	Stream Reasoners
	Communication Manager
	The Communication Channels
	Update Manager
	The Interface Description Language

	Command Languages
	Interface command language
	TLUPS as a policy language and stream reasoner commands

	Dynamic Configuration System Prototype
	Overview
	Stream Reasoner
	Communication Manager
	Operator
	The Update Manager

	Use Cases and Functionality Showcase
	Experiment 1: Change in communication behavior
	Experiment 2: Changes to stream reasoner's KB

	Conclusion
	Future Work

	Full EBNF grammar
	Implementation code
	Experiment replication
	Bibliography

