

Technische Universität Wien

A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Context-based Multimodal

Interaction for Mobile

Collaboration Systems

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering/Internet Computing

eingereicht von

Ursula Fida
Matrikelnummer 8825745

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung

Betreuer: Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Schahram Dustdar

Mitwirkung: Mag.rer.soc.oec. Dr.techn. Christoph Dorn

Wien, 21.01.2011

 (Unterschrift Verfasserin) (Unterschrift Betreuer)

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

3

Erklärung zur Verfassung der Arbeit

Ursula Fida

Diamantgasse 40

1210 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die

verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die

Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen

Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf

jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10.12.2010

 (Unterschrift Verfasserin)

4

Abstract

Mobile devices and wireless networks give us the possibility to use the Web where ever

we go, in all situations, at all times. But devices like PDAs have small displays and

limited or even no keyboards. Enabling speech as an additional input and output mode

will help to overcome these physical limitations. In a multimodal application the user may

use his preferred mode or the most appropriate mode for the situation or he may use

voice, keyboard, mouse and pen in a synergistic way. Moreover multimodal applications

allow one-handed and hands-free operations. Mobile collaboration systems handle a lot

of information so it is important for the user to get the right information at the right time

and at the right place. Making the speech output and input context sensitive will prevent

overloading the user with unwanted information and leads to better speech recognition

rates.

Zusammenfassung

Mit mobilen Endgeräten und kabellosen Netzwerken haben wir die Möglichkeit das

Internet zu nutzen wo auch immer wir hingehen, in allen Situation und zu allen Zeiten.

Aber mobile Geräte wie z.B. PDAs haben nur kleine Bildschirme und eine kleine oder

sogar keine Tastatur. Diese physikalischen Grenzen kann man mit Sprache als

zusätzlichem Eingabe- und Ausgabemodus überwinden. In einer multimodalen

Anwendung hat der Benutzer die Möglichkeit den Modus zu verwenden den er

bevorzugt oder der für die Situation am besten passt oder er verwendet Sprache,

Tastatur, Maus und Stift gemeinsam. Zusätzlich erlauben multimodale Anwendungen

ein- und freihändige Tätigkeiten. Mobile Collaboration Systeme verwalten eine Vielzahl

von Daten, sodass es für den Benutzer sehr wichtig ist, die richtigen Daten zum

richtigen Zeitpunkt und am richtigen Ort zu erhalten. Wenn man die Sprachausgabe und

–eingabe an den Kontext anpasst, kann man den Benutzer vor einer Informationsflut

schützen und bessere Spracherkennungsraten erzielen.

5

Contents

Abstract ... 4

Zusammenfassung... 4

1. Introduction... 7

1.1. Motivation and Problem Description ... 7

1.2. Structure and Goal of this Thesis.. 9

2. State of the Art Review... 10

2.1. XML-based Languages that facilitate Multimodal Input 10

2.1.1. VoiceXML... 10

2.1.2. SALT .. 12

2.1.3. XHTML+Voice .. 17

2.1.4. EMMA... 22

2.2. Development Tools... 27

2.2.1. Microsoft Speech Application SDK... 27

2.2.2. IBM WebSphere Multimodal Toolkit ... 30

2.2.3. Eclipse Voice Tools .. 32

2.3. Speech Recognition and Speech Synthesis Technologies............... 35

2.3.1. Speech Recognition ... 35

2.3.2. Speech Synthesis... 36

3. Related Work... 38

3.1. Voice-only Applications... 38

3.2. Multimodal Applications .. 40

3.3. Context-aware Mobile Applications... 42

3.3.1. Location Awareness ... 42

3.3.2. Working Context and Social Awareness 44

3.3.3. Environment Context and User Situation.................................. 46

3.3.4. Collaborative Working Environments 47

3.4. Composite Device Computing .. 50

6

3.5. Multimodal Architecture .. 51

3.6. Usability .. 53

4. Framework .. 54

4.1. Scenario – Schedule Meetings & Calls... 54

4.2. Design .. 57

4.3. GUI and VUI Design ... 65

4.4. Implementation ... 69

4.4.1. Java on a Mobile Device .. 70

4.4.2. OSGi Framework.. 71

4.4.3. Multimodal Browser .. 72

4.4.4. Team Scheduling Server Application 74

4.4.5. Team Scheduling Client Application... 75

4.4.6. Deployment .. 77

4.4.7. Deployment Problems .. 79

4.5. Evaluation... 81

5. Conclusion and Outlook .. 88

List of Figures... 91

Bibliography.. 92

7

1. Introduction

1.1. Motivation and Problem Description

Mobile workers use mobile computing devices like a PDA to have access to their

working environment where ever they go to collaborate and communicate with other

team members and to have access to their project data in all situations and at all times.

But these handheld computers have small displays and limited or even no keyboards. A

text may be quite difficult to type and a large table may be difficult to read under these

physical limitations. Furthermore there is a need for applications allowing one-handed

and hands-free operations, for example while driving a car the user needs his hands on

the wheel and the eyes on the road to pay attention to the traffic. Thus users of mobile

devices need additional output and input modes than the common ones like display,

keyboard and mouse. Most mobile devices are equipped with speakers and

microphones, so voice input and output is technically possible. An application may use

text-to-speech mechanism to read out the content to the user and the user may use

voice commands to fill in Web forms, select a link on a list, and start another service and

so on. A voice modality can be another possible interaction mode for mobile applications

on PDAs. And using speech for interacting with a device will keep the hands free which

is important for mobile users.

Having speech as the only input or output mode is not practical in every situation. A user

may prefer a stylus or keypad for giving inputs due to background noise or to keep his

privacy. An output like a map or a diagram can hardly be presented or described by

voice. With a multimodal application the user has the possibility to interact with the

interface using his preferred mode or the most appropriate mode for the current

situation. Furthermore he may use voice, keyboard, mouse and pen in a synergistic

way. And the output can be audio as spoken prompts and playback, using text-to-

speech or visually on graphical displays.

Mobile workers are often involved in more than one project and handle a lot of

information in their working environment. Thus it is important for the user to get the right

information at the right time and at the right place. Making the speech output context

sensitive and relevance based will prevent overloading the user with unwanted

information. Without adapting the speech output to the current context, the user must

listen, for example, to a long list of unwanted information before he gets the needed

data. Information about the current location can be used to choose the adequate mode

1. Introduction

8

for the actual situation. If the user is in a meeting speech output will disturb the others,

so the application should present the information only on the display. Including context

and relevance information in the application to present the user only the needed

information and using an adequate mode will improve the usability of the application or

is even a necessity.

Context and relevance based information can also be used for improving speech input.

A grammar can be pretty large or of ambiguity without having detailed information about

the context. An address book or a list of contacts for example can contain two persons

with the same name, one working at one company and a different person with the same

name who works at another company. Context-based information can be used to

identify the notional wanted person without asking the user for additional information.

The speech recognition component can use context and relevance information to

generate a reduced list of expected speech commands to generate well-fitting grammar

rules which leads to better speech recognition rates.

Apart from these aspects making multimodal application context-aware will reduce costs

such as network bandwidth and battery consumption, because only the relevant pieces

of context information will be transferred, for example smaller lists or grammar rules.

This work presents a team scheduling application as an example of a context-based

multimodal application for mobile collaboration systems. Starting from a simple Web

application for a PDA for planning team meetings, we developed a multimodal

application where the user has the possibility to use speech and text as input modalities

and where the application gives the user a recommendation on the best modality for the

current situation. The decision-making on the best mode, text or speech, depends on

many parameters, some are dependent on the user and some are dependent on the

surrounding environment. This part will be implemented in a general way so that it can

be used for other applications too.

1. Introduction

9

1.2. Structure and Goal of this Thesis

Chapter 1 gives a general introduction to the problem area and the motivation of this

thesis and defines the goal of this work.

Chapter 2 gives a review of the languages and development tools that can be used to

implement multimodal applications and a description of the underlying technologies for

speech recognition and synthesis.

Chapter 3 examines related work.

Chapter 4 describes the design, implementation and evaluation of the team scheduling

application.

Chapter 5 concludes the thesis, gives a brief summary of the presented work and an

outlook for future work.

The goal of this thesis is to elaborate an overview of the current technologies and the

present applications that support multimodal interaction with a computer system.

Furthermore this research concerns with context-awareness and how integrating context

and relevance based criteria can improve multimodal applications. Examining the state

of the art and building a context-based multimodal application will help to have a look at

the future possibilities of the Web in conjunction with mobile devices and collaboration.

10

2. State of the Art Review

2.1. XML-based Languages that facilitate Multimodal Input

There are three XML-based languages for multimodal development:

• SALT, the Speech Application Language Tags [58],

• XHTML+Voice, or short X+V [82] and

• EMMA, the Extensible MultiModal Annotation markup language [19].

SALT and X+V both use underlying speech engines to do the work of recognizing and

generating human speech. Both languages have language elements (tags) that specify

what the speech-recognition engine should listen for and what the synthesis engine

should "say". EMMA is a complimentary language, it is not authored by developers like

SALT and X+V, but generated by interpretation components like speech recognition

engines. Moreover EMMA serves as a standard data interchange format between the

components of a multimodal system and provides semantic interpretation for various

modalities including but not necessarily limited to speech, natural language text, GUI

and ink.

Whereas VoiceXML [74] is a standardized format for speech-only applications.

VoiceXML has been developed over several years and is mostly used to develop user

interfaces for phones, as used in Call Centers.

2.1.1. VoiceXML

The Voice eXtensible Markup Language, an XML-based markup language for creating

distributed voice applications, was defined and promoted by the VoiceXML Forum [73].

It was founded 1999 by AT&T, Lucent, Motorola and IBM and submitted the VoiceXML

1.0 to the W3C’s Voice Browser Working Group [75] in May 2000. The next major

release is VoiceXML 3.0. While SALT was designed to develop also multimodal

application that run on multiple devices like PDAs, smart phones, tablet PCs and

conventional PCs, VoiceXML was designed to support voice-only user interfaces for

telephones and cell phones. VoiceXML has become a standard for developing

Interactive Voice Response (IVR) systems. With VoiceXML audio dialogs can be

created featuring text-to-speech and pre-recorded audio files, recognizing spoken as

2.1. XML-based Languages that facilitate Multimodal Input

11

well as keystroke input (DTMF – Dual Tone Multi-Frequency), recording telephony and

mixed-initiative conversations.

VoiceXML can be used to create a lot of applications in different domains. Typical voice

applications best suited for VoiceXML are information retrieval, for example personal

voice newsletter containing news, sports, traffic, weather and stock information. Also

directory assistance and telephone services like for example personal voice dialing can

easily be voice-enabled with VoiceXML. Additionally customer service applications of

electronic commerce like package tracking, account status, support and catalog

applications are other areas where voice services can be used. Certainly many other

domains can benefit from voice-enabling their interfaces and services.

VoiceXML is interpreted by a voice browser with audio output coming from a text-to-

speech synthesizer or consisting of recordings and audio input handled by a speech

recognizer and keypad input. A voice browser runs on a voice gateway node which is

connected to the internet and to the public switched telephone network. The voice

gateway supports a large amount of simultaneous callers and can be accessed by any

phone from conventional up to modern mobile phones (Figure 1).

Figure 1: VoiceXML architecture

A VoiceXML application consists of one or more VoiceXML documents. Just like in all

other XML documents a VoiceXML document must start with <?xml

version="1.0"?>, the rest is surrounded with <vxml version="2.0"> and

</vxml>. Inside the <vxml> tag the document contains several voice dialogs which

provide information to the user or request input from the user. In VoiceXML there are

two types of dialogs: <form> and <menu>. Whereas a VoiceXML form is similar to an

HTML form, saving user input into variables and doing something depending on these

variables, a menu element is like a link list in HTML, providing a list to the user where he

can choose out of it. The <block> element is one of the elements allowed within a form

tag and contains text or executable VoiceXML elements. Text is queued by the

VoiceXML interpreter and played to the user with the text-to-speech engine. The

2.1. XML-based Languages that facilitate Multimodal Input

12

<audio src=”hello.wav”> element can be used to play an audio file to the user.

With the <goto> element the dialog flow can be redirected to another dialog in the

current page or in another document. The element <record name="userinput">

records text and saves it in the variable userinput. The result can be forwarded via a

script to a server for saving it. The <field> element is used to get input from the user.

It contains <prompt>s with user instructions, <grammar>s that describe the allowable

user input and instructions that are executed when the field is filled. A variable is

declared and initialized with <var name=”abc” expr=”hello”>, the element

<assign name=”def” expr=”100”> sets a variable to a new value and <value

expr=”abc” /> can be used to play a variable value inside a prompt. A call can be

forwarded with the element <transfer dest=”phone://555”> or disconnected with

the tag <disconnect/>.

The VoiceXML code for the “Hello World” example would look like this:

<?xml version="1.0"?>

<vxml version="2.0" xmlns="http://www.w3.org/2001/vxml">

 <form>

 <block>

 <prompt>

 Hello world!

 </prompt>

 </block>

 </form>

</vxml>

More details about VoiceXML and especially about grammars are described further on

in chapter 2.1.3 that explains XHTML+Voice, a markup language that uses a subset of

VoiceXML for the voice part of a multimodal application.

2.1.2. SALT

Speech Application Language Tags (SALT) extend HTML pages to add a speech and

telephony interface to Web applications and services. SALT contains a set of tags for

specifying voice interaction. SALT was developed by the SALT Forum as a competitor to

VoiceXML. The SALT Forum was founded 2001 by Microsoft and other companies.

2002 the SALT 1.0 specification was submitted to W3C for review. But VoiceXML

prevailed and Microsoft decided 2006 to join the VoiceXML Forum to stay competitive.

2.1. XML-based Languages that facilitate Multimodal Input

13

Whereas the Microsoft Speech Server 2004 supports only SALT, Microsoft Speech

Server 2007 additionally supports VoiceXML. Today nearly every other company had

committed to VoiceXML and the SALT Forum is not active anymore.

The great advantage over VoiceXML is that SALT can also be used to speech-enable

Web applications for multimodal clients while VoiceXML is limited to voice-only

interactions. For multimodal applications a visual page like an HTML form can be

extended with SALT to support speech input and output. The recognition may be started

by clicking on a button, which activates a grammar relevant to an input field and the

recognition result will be bound to that input field. Voice-only applications like telephony

applications do without a graphical display, the user of such an application has access

to information via a phone, and he calls a certain number with his phone or mobile

phone to access data by using voice commands. SALT can be used like VoiceXML for

applications that are accessible by telephone, in such applications SALT is used to

describe the rules of the dialog-flow. Such speech processing applications are important

to call centres, to make them more efficient, to forward calls to corresponding scopes or

to gain particular information. So the two major scenarios for the use of SALT are

multimodal and voice-only applications.

The most important elements of the SALT markup language are:

<prompt> for speech output, plays audio recordings or synthesized speech from

the text-to-speech engine

<listen> for speech input, it executes and handles the speech recognition, a

distinction is drawn between three listen modes: automatic, single and

multiple

<grammar> for specifying words and phrases the user might say

<record> for capturing spoken speech or other audio

<bind> for integrating recognized words and phrases with the application logic

<dtmf> for telephony applications to recognize telephone touch-tones

<smex> for communications between the speech platform components

Microsoft provides an extension to SALT, the <audiometer> element, which shows a

visual cue for the speech recognition proceeding.

SALT dialogs can be used with both voice-only and multimodal browsers, thus allowing

telephony and multimodal applications. But SALT requires a host environment, it uses

data models and execution environments of its containing environment, these are HTML

forms and scripting. A simple “Hello World” example would look like the following:

2.1. XML-based Languages that facilitate Multimodal Input

14

 <html xmlns:salt="http://www.saltforum.org/2002/SALT">

 <head>

 <title>Hello World</title>

 </head>

 <body onload="hello.Start()">

 <salt:prompt id="hello">Hello World</salt:prompt>

 </body>

 </html>

The architecture of a SALT implementation (Figure 2) consists of four components: a

Web server, a telephony server, a speech server and a client device. The Web server

generates Web pages with HTML extended with SALT, for voice-only interaction an

embedded script is managing the dialog flow. The telephony server has an incorporated

voice browser which interprets the HTML, SALT and script and connects to the

telephone network. The speech server does the speech recognition, plays audio

prompts, and gives a response to the user. The client device, for example a Pocket PC,

can interpret HTML and SALT with a special version of Internet Explorer respectively a

plug-in for local and remote speech recognition. The speech add-in for Pocket Internet

Explorer supports only remote speech recognition, for example on the Microsoft Speech

Server [41].

2.1. XML-based Languages that facilitate Multimodal Input

15

Figure 2: SALT architecture

The Microsoft Speech Server (MSS) contains the Telephony Application Services (TAS)

and the Speech Engine Services (SES), as Figure 3 outlines. TAS comprises basically

the SALT interpreter. SES includes speech recognition and text-to-speech engine which

consists of a speech synthesis engine and a prompt engine. The prompt engine can use

pre-recorded prompts and can furthermore even construct prompts by concatenating

pre-recorded prompt-segments. SES converts spoken speech into text and text into

human-sounding speech. The Telephony Interface Manager (TIM) is not included but

resides on MSS. TIM interacts between MSS and the telephony card.

2.1. XML-based Languages that facilitate Multimodal Input

16

Figure 3: Speech Server

In a voice-only scenario the telephone call comes in through the telephony card, goes

through TIM and then TAS, which informs the Web server and asks for the start page to

begin the dialogue with the caller. Then the system asks questions which the user

answers, the order for playing these prompts to the user is managed by an embedded

script. Telephony or voice-only applications accessed by a conventional telephone or a

mobile phone accept input in form of spoken words and phrases or of numerical digits

by pressing the keypad of the phone, this is called DTMF (Dual Tone Multi-Frequency).

In a multimodal interaction with a PDA or smart phone the connection goes directly via

Web to the Web server, which initiates a session with SES for server-side speech

recognition and prompting. The recognition result and the prompts are transmitted over

wireless WAN or LAN while the Web server delivers the pages. The local client on the

mobile device handles the pages containing SALT. The SALT interpreter included in the

speech add-in for Pocket Internet Explorer interprets SALT tags, HTML and the

embedded script. If the multimodal interaction takes place with a desktop computer

there is also a speech add-in for Internet Explorer, so that speech recognition and

prompting can take place locally. But if wanted SES can be used again for server-side

recognition. Both Internet Explorer Versions for PC and for Pocket PC require the

installation of a speech add-in to enable SALT. Multimodal applications are as GUI-only

applications often user-directed, so the user clicks or points to specify the kind of data

he will enter and then enters the data while voice-only applications are system-directed,

where the system guides the user through a dialogue of questions.

For the development of multimodal SALT applications Microsoft Visual Studio .NET and

the Speech Application Software Development Kit (SASDK) can be used, described in

2.1. XML-based Languages that facilitate Multimodal Input

17

chapter 2.2.1. Multimodal and voice-only applications built with SASDK are deployed to

the Web server.

2.1.3. XHTML+Voice

XHTML+Voice, short called X+V, is another markup language for voice-enabling Web

pages. A developer creates a multimodal application by adding voice markup to XHTML

[80] pages so that a user can interact with the application by voice as well as

traditionally with text. The developer simply adds voice markup for each visual element

of the user interface and specifies which voice snippet should be activated when.

Whether the user interacts with the multimodal application using voice or keystrokes, the

input is returned to the application, which recognizes the information automatically and

handles it accordingly. There is no need for developing separate applications for each

type of input. X+V uses standard XHTML for the visual part, a small and simple subset

of VoiceXML for the voice markup and XML Events [83] to associate the VoiceXML

snippets with specific visual elements of the Web page. So X+V is based on open

standards.

XHTML, an application of XML, is used for the visual part. It is like HTML, but must be

well-formed XML. An HTML page can be converted to XHTML by doing some simple

structural changes. For example in XHTML all elements must be closed, in HTML there

are some elements that are always empty and need no closing tag, e.g.
. In

XHTML
 must be used for a line break. In HTML it is allowed that some

elements have no ending tag, like or <p>, that is not valid in XHTML. XHTML is

like XML case-sensitive whereas HTML is not. And there are a few other differences,

see [80] for details.

The voice part of X+V is a subset of VoiceXML, primarily the <form> element and its

children [81], which define a speech dialog:

<form> represents a voice handler which is activated in response to an HTML or

VoiceXML event; it collects user input and presents information to the

user using speech

<initial> can be used to prompt for form-wide information. It has prompts,

catches, and event counters

<field> defines an input field in a form and the speech dialog between the user

and the application. It has prompts, catches and event counters like the

<intial> element and additionally grammars and <filled> action

2.1. XML-based Languages that facilitate Multimodal Input

18

<record> records the spoken input

<block> contains executable content, that is executed if the block’s form item

variable is undefined or if there is a cond attribute then it is executed

only if that attribute evaluates to true

The elements <catch> and <throw> are used for catching and throwing events. For

some main events there are own tags to catch them: <error> catches all error events,

<help> catches the event thrown when the user says “help”, if a timeout occurs while

waiting for a user input a noinput event is thrown which can be caught with <noinput>

and <nomatch> catches the event thrown if the user input does not match the active

grammars.

Other VoiceXML elements supported in X+V are the elements for speech input:

<grammar> defines a speech recognition grammar, <option> specifies alternatives

for the user within the <field> element and <lexicon> contains a reference to an

external pronunciation lexicon. For speech output and audio the elements <audio>,

<enumerate>, <prompt>, <reprompt> and <value> can be used. Where <audio>

plays an audio file or an audio variable and can define an alternate content if the audio

sample is not available and <prompt> plays a recorded audio file and synthesized text

to speech. A subdialog of the current dialog can be invoked with the element

<subdialog>, this is a reusable dialog.

The element <assign> assigns a value of an expression to a variable of either the

voice or the visual part. It can be used to update XHTML control values as <input>,

<button> or <select> elements and JavaScript variables defined within XHTML

<script> elements. With the VoiceXML element <clear> one or more variables or

form items can be reset. Conditional logic can be implemented with the tags <if>,

<elseif> and <else>. The element <filled> specifies an action which is executed

after some input fields are filled. With <log> logging and debugging messages are

generated and <var> declares a variable in the VoiceXML form. <property> sets a

speech parameter for the VoiceXML form or an input item of the form that affects

platform behaviour like timeout and confidence level of the speech recognition engine.

X+V additionally offers the tags <sync> and <cancel>. The <sync> element binds an

input field of an XHTML form to a VoiceXML field, it synchronizes data entered via

speech or text. With <cancel> a running speech dialog can be cancelled.

An important part of the voice interface is the grammar, because it influences the

2.1. XML-based Languages that facilitate Multimodal Input

19

accuracy of speech recognition. The developer must define all words and phrases that

are accepted for a certain prompt, so that the speech recognition engine can detect and

interpret the spoken input. The speech recognition engine compares the utterances of

the active grammar with the incoming speech. A grammar can be just a simple list of

words or it is more complex to recognize natural language with phrases and whole

sentences. Grammars should not be too complex and should not contain too many

words because size and complexity degrade the performance. Grammars can be

created inline or in external files. It is not recommended to use inline grammars because

they cannot be reused. A grammar consists of a set of rules defining all utterances that

can be recognized. For writing grammars the Java Speech Grammar Format, short

JSGF [28], can be used, a platform and vendor independent textual representation of

grammars. The developer can specify semantic interpretation tags in the grammar which

are used to translate speech recognition results into another format e.g. for reformatting

dates and numbers.

The following sample code shows a JSGF grammar which recognizes “yes” and “no” or

similar words users might use for meaning “yes” or “no”:

#JSGF V1.0 iso-8859-1;

grammar yes_no;

public <yes_no> = <yes> { $ = true; }

 | <no> { $ = false; };

<yes> = yes [please] | sure | okay | fine | yep | yup |

 affirmative;

<no> = no | nope | no thanks | negative;

A call to this grammar in VoiceXML will look like the following:

<vxml:grammar src="yes_no.jsgf" />

A multimodal application in X+V consists of a visual markup that specifies the visual

interface and voice markup snippets for each component specifying the voice interface.

XML Events are used to create the correlation between visual and voice elements, so

that the browser knows which snippet of voice markup is related to which visual part and

when to activate the voice snippet. The familiar event types from HTML like on mouse-

over or on input focus are used to associate a visual element of the user interface

like an input field with the corresponding voice markup. An event handler defines the

action to be done when a special event, for example a mouse click, occurs. In X+V an

2.1. XML-based Languages that facilitate Multimodal Input

20

event handler enables the interaction between visual and voice markup. X+V supports

the XML Events event types and additionally the following VoiceXML event types:

nomatch, noinput, error and help. And the vxmldone event, which is generated

when a voice handler completes is also supported by X+V. Instead of an XML event and

event handler the X+V element <sync> can be used to bind visual and voice elements.

Figure 4 shows an example for speech enabling a Web form with the three elements:

visual markup, voice markup and the X+V markup for the correlation of visual and voice.

Figure 4: A speech enabled Web form with X+V code segments

2.1. XML-based Languages that facilitate Multimodal Input

21

The following X+V example is a “Hello World” example. It will output the words “Hello

World” by voice if it is loaded in a voice enabled browser:

<!DOCTYPE html PUBLIC "-//W3C/DTD XHTML+Voice 1.2/EN"

"xhtml+voice.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:xv="http://www.voicexml.org/2002/xhtml+voice"

 xmlns:ev="http://www.w3.org/2001/xml-events">

<head>

 <title>Hello, World</title>

 <form xmlns="http://www.w3.org/2001/vxml" id="sayHello">

 <block>Hello World!</block>

 </form>

</head>

<body ev:event="load" ev:handler="#sayHello">

 <h1>"Hello World!"</h1>

</body>

</html>

A simple type of speech interaction is the “directed dialog”. This means that each input

field of a Web form is speech enabled so that if the user moves from one field to another

he gets a voice prompt as well as a visual one. While the “mixed initiative” interaction is

more powerful and allows a more natural voice input, for example the user says the

input in a whole sentence to fill in all fields at once. X+V also supports mixed initiative

interaction.

X+V applications can be developed using the Multimodal Toolkit for IBM’s WebSphere

Studio [27], presented in chapter 2.2.2. But for authoring X+V pages there is not really

the need for a specific tool, any HTML or XML editor can be used. The voice capability,

the speech recognition engine and speech synthesizer, is included in the multimodal

browser. The Multimodal Tools package includes two multimodal browsers, one based

on the Opera Browser V 7.55 [47] and the other is based on NetFront Browser V 3.1 by

Access Systems [45]. Both are enhanced with IBM speech recognition and synthesis

technology and can be used to interact with multimodal applications written in X+V. Both

browsers have three listening modes using the Push-to-talk or microphone button in a

certain manner:

2.1. XML-based Languages that facilitate Multimodal Input

22

• Push-to-talk or Hold key while talking:

the user presses and holds the Push-to-talk or microphone button on the device

while he speaks and releases it afterwards

• Push-to-activate or Press key, then talk:

the user presses and releases the button and then he talks. After he has finished

talking the system detects silence and automatically stops the listen mode. But

when using the <record> tag, the user must press and release the button, begin

to speak and to signal the end he pushes and releases the button again.

• Auto-push-to-activate or Key not required to talk:

the browser sounds a tone to indicate that it is ready to record and after the user

has finished speaking it detects silence and automatically stops listening

The listening mode and the Push-to-talk or microphone button can be changed in the

Voice Preferences of the multimodal browser.

The great advantage over SALT is that X+V uses standard markup languages as

XHTML and VoiceXML, so developers need not to learn a whole new language. And

because all these parts of X+V are XML-compliant the voice markup can be separated

from XHTML by packing each in one file. This makes the development more flexible,

voice dialogs can be built by speech interface developers and XHTML can be built by

traditional Web design professionals. Another advantage of separating voice and visual

markup into two files is that VoiceXML dialogs can be reused in many other XHTML

pages and even in other containers than XHTML for example in a VoiceXML document

for building a voice-only application. With X+V a single application can be created which

supports multimodal browsers as well as GUI-only browsers and voice-only systems.

2.1.4. EMMA

EMMA, the Extensible MultiModal Annotation markup language, an XML markup

language, is in contrast to SALT and X+V not authored by developers but generated by

the components of a multimodal system. Interpretation components such as speech

recognizers, handwriting recognizers and other input media interpreters are generating

EMMA automatically to provide semantic interpretations of user input taken in any

modality for example voice, keyboard, ink, GUI and others, see Figure 5. EMMA serves

as a data exchange format between input processors and the interaction manager of a

multimodal application [76]. Where the interaction manager coordinates and manages

multiple input and output modality components. One of the advantages of a multimodal

application is that the user can use one modality in combination with another for giving

input, for example he points to a position on a displayed map and asks for further

2.1. XML-based Languages that facilitate Multimodal Input

23

information for that point. Also the multimodal application may use two modalities in

combination for giving output, for example playing spoken prompts and showing

information on the display. Each modality component uses the EMMA notation to

express the user input and then the fusion module combines them into a single EMMA

document representing the user command and its parameters. But EMMA not only

provides the semantic interpretation for an input modality component but also

annotations on the input interpretation such as confidence scores, timestamps and input

medium. These various attributes assist the multimodal fusion engine to combine the

inputs into one single interpretation of the user input for the interaction manager.

Figure 5: Input components of a multimodal system generating EMMA

The main components of an EMMA document are the instance data contained within an

<emma:interpretation> element, the data model which is optionally specified as an

annotation of that instance and the metadata annotations that may be applied at

different levels of an EMMA document. The <emma:interpretation> element

represents the user input interpreted by an input processor such as a speech recognizer

and contains application specific markup. An EMMA document may contain multiple

interpretations of a single input.

The root element of all EMMA documents is <emma:emma>, containing attributes like

EMMA version, namespace and schema declaration. The core of an EMMA document

consists of the container elements <emma:group>, <emma:one-of>, and

<emma:sequence> and a number of <emma:interpretation> elements containing

the semantic interpretation of the user input. Each container element is again a

container for one or more interpretation elements or container elements. The element

<emma:one-of> is used as a container for the N-best interpretations of the user input

where each interpretation is contained within an <emma:interpretation> element.

The element <emma:group> is used for grouping user inputs and the element

2.1. XML-based Languages that facilitate Multimodal Input

24

<emma:sequence> for the representation of sequences of inputs.

An EMMA document consists of the root node, a tree of container elements and a

number of interpretation elements. The interpretation elements are representing the

interpretation of the user input or containing a <emma:lattice> or a

<emma:literal> element. The <emma:lattice> element represents lattices, a

compact representation of possible recognition results like speech, gesture, handwriting

or other interpretations of multimodal inputs. And the <emma:literal> element is for

semantic results in the form of string literals without any application-specific markup. An

<emma:interpretation> element must contain a single interpretation of the user

input represented in application specific markup or a single <emma:lattice> element

or a single <emma:literal> element or it must be empty. An EMMA document

consist of at least the root node, a <emma:interpretation> element, a <emma:one-

of> element, a <emma:literal> element and the EMMA attributes emma:no-input,

emma:uninterpreted, emma:medium and emma:mode. All other elements and

attributes are optional.

The EMMA annotations are a series of attributes and elements which are used to

provide metadata associated with the user input. EMMA annotation elements can

appear more than once within an element and can have an internal structure whereas

EMMA annotation attributes are represented as attributes and occur on

<emma:interpretation> elements and some can occur on container elements,

<emma:lattice> elements and elements in the application-specific markup.

Annotations of the element <emma:one-of> apply to all contained

<emma:interpretation> elements. The attributes emma:medium and emma:mode

must be set for all EMMA interpretations either directly on the

<emma:interpretation> element or on an ancestor <emma:one-of> element or on

an earlier stage of the derivation list in the element <emma:derivation>. The

attributes emma:medium and emma:mode provide a classification of the input modality,

indicating the input medium and the mode of communication used on that medium, for

example the value of modality may be voice and the medium acoustic. With the

annotation attribute emma:function other uses than interactive dialog for example

recording can be outlined and to distinguish verbal mode from non-verbal the attribute

emma:verbal can be used. The attribute emma:uninterpreted=”true” indicates

that no interpretation for the input was produced, then the <emma:interpretation>

element must be empty. Also the interpretation is empty if the attribute emma:no-input

is set to true. The previous stage of processing of an interpretation and the fusion of

multimodal inputs may be represented with the annotation elements <emma:derived-

2.1. XML-based Languages that facilitate Multimodal Input

25

from> and <emma:derivation>. The attributes emma:start and emma:end are for

timestamps representing start and end of the user input signal and emma:signal is an

URI indicating the location of the input signal, for example an audio file. Then the

attribute emma:signal-size contains the size of that file. The attribute emma:source

provides a description of the device that captured the input. A description of the

processing stage which resulted in the current interpretation is emma:process which

has the value asr if the process is speech recognition and it then specifies the speech

recognizer version. The attribute emma:lang provides the language spoken,

emma:media-type indicates the MIME type of the signal and contains a location for

specifying codec and sampling rate. The attribute emma:grammar-ref provides the

grammar resulted in that interpretation, the grammar used in the processing is specified

with the element <emma:grammar> under the root element <emma:emma>. So multiple

grammars are allowed to be specified and referenced for each interpretation. Likewise

multiple data models can be specified and referenced with the emma:model-ref

attribute for each interpretation and the element <emma:model> contains the inline

specification of the data model of the semantic representation. emma:tokens and

emma:confidence are attributes of the <emma:interpretation> element

containing particular strings of recognized words and a confidence score between

0 and 1. A container for application and vendor specific annotations is the

<emma:info> element.

The following code is an example of an EMMA document representing input to a flight

reservation application. The document represents two semantic interpretations of the

user input, where the speech recognizer is uncertain about what the user meant, the

annotations show the confidence scores and timestamp for the input.

<emma:emma version="1.0"

 xmlns:emma="http://www.w3.org/2003/04/emma"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.w3.org/2003/04/emma

 http://www.w3.org/TR/2009/REC-emma-20090210/emma.xsd"

 xmlns="http://www.example.com/example">

 <emma:grammar id="gram1" ref="grammarURI"/>

 <emma:model id="model1" ref="datamodelURI"/>

 <emma:one-of id="r1"

 emma:medium="acoustic" emma:mode="voice"

 emma:function="dialog" emma:verbal="true"

 emma:start="1282990164000" emma:end="1282990167000"

 emma:grammar-ref="gram1" emma:model-ref="model1">

2.1. XML-based Languages that facilitate Multimodal Input

26

 <emma:interpretation id="int1" emma:confidence="0.75"

 emma:tokens="from boston to denver">

 <flight>

 <origin>Boston</origin>

 <destination>Denver</destination>

 </flight>

 </emma:interpretation>

 <emma:interpretation id="int2" emma:confidence="0.68"

 emma:tokens="from austin to denver">

 <flight>

 <origin>Austin</origin>

 <destination>Denver</destination>

 </flight>

 </emma:interpretation>

 </emma:one-of>

</emma:emma>

2. State of the Art Review

27

2.2. Development Tools

In this section we discuss different development tools for multimodal and voice-only

applications using the languages SALT or X+V for multimodal development and

VoiceXML for creating voice applications. It’s not necessary to use such a development

environment but it facilitates creating, editing, testing and deployment of multimodal and

voice applications.

2.2.1. Microsoft Speech Application SDK

Microsoft, one of the founders of SALT, has built a Speech Application Software

Development Kit (SASDK) [40], integrated in the Visual Studio .NET development

environment. This SDK contains a set of development tools for building and testing

speech-enabled ASP .NET Web applications that use SALT. The SASDK includes a

speech add-in for Internet Explorer and Pocket Internet Explorer that makes IE speech

capable. It interprets SALT tags on Web pages, but for speech-enabling a Web

application on a Pocket PC the MS Speech Server is needed for speech recognition and

remote speech output, while speech-enabled applications running on desktop

computers can use local installed speech engines.

The SASDK is seamlessly integrated into Visual Studio .Net, it contains authoring and

debugging tools, the ASP .NET speech controls, a graphical grammar editor, a prompt

database and management tools, call inspection, log analysis and reporting tools,

testing and debugging tools, a telephony application simulator, reference applications

and sample code. With the Speech Controls Editor, integrated with the Web Form

Editor, speech controls can be placed on Web pages graphically by drag-and-drop just

like other ASP.NET server-side Web controls, but with additional properties that enable

speech. Apart from that they work like other Web controls of .NET.

In the SASDK there is a template for creating speech applications included, the “Speech

Web Template”. This template sets default application settings and the default

application mode is voice-only, but all can be changed. Additionally it creates a default

grammar library file and if he wants the developer can create a new prompt project.

While creating a voice-only project a default.aspx Web page will be built, containing two

basic speech controls and a prompt project and a grammars folder is built by default.

While creating a multimodal project there are no controls on the default.aspx Web page

and no prompt project will be created by default.

The developer uses the Speech Control Editor to specify prompts to speak to the user,

2.2. Development Tools

28

to recognize answers using grammars and to confirm the answers. The developer does

not need to do textually SALT programming, Visual Studio .NET creates the

corresponding HTML and SALT tags. The SASDK includes two types of speech

controls, basic dialog controls and application speech controls. Especially in a voice-only

application the speech controls are used for controlling the dialog-flow between user and

application. The most commonly used dialog control is the QA control, which contains a

prompt and a response, a question and an answer. Contrary to voice-only applications a

multimodal application uses visible controls instead of prompts to initiate dialogs with the

user and there is a need of one or more prompts to provide descriptive information to

the user about the handling of the application, which phrase can be spoken and what to

do in which order and so on. An extension of the basic dialog controls are the speech

application controls, which are for building typical user interactions. For example, the

YesNo control is used to collect a yes or no answer. And the developer can create

custom controls; a sample solution file is installed with the SASDK.

In order for the speech recognition engine to return recognition from audio input, a

grammar must be added to each Speech Control. Speech applications developed with

SASDK are not open to any spoken text, they are restricted to certain phrases. The

speech engine utilizes grammar rules to interpret what the user is saying. The developer

defines them in multiple grammar files and associates them with a particular user

interaction. The application developer must try to anticipate every spoken phrase the

user may utter. This requires more work but has the great advantage that there is no

need for a training process to interpret the users’ speech. The speech engine returns the

recognized text in the Semantic Markup Language (SML) [66]. The Grammar Editor is

the tool for creation and graphical representation of speech grammars; it exports the

SRGS (Speech Recognition Grammar Specification) [68] grammar format. The grammar

file is an XML file, and when saved using Speech Grammar Editor, has a .grxml

extension. The Speech Grammar Editor displays a graphical representation of the

relationships within the grammar. The grammar can be compiled into a context-free

grammar (.cfg) using the grammar compiler (SrGSGc.exe) provided. Compiled grammar

files increase the speed of the application, they have reduced file size and loading into

memory is done faster. Common grammar rules for handling numbers, dates, credit card

information and rules for yes/no responses are defined in the library.grxml file which is

included in each project by default. If the data content is likely to change then it is useful

to build dynamic grammars where the creation of the grammar files take place during

the application execution time.

Another important tool is the prompt editor for specifying prompts and recording wave

files and associating them with a prompt. A prompt is an utterance, a single phrase or a

whole sentence that is used to speak to the user of the application. It is recommended to

2.2. Development Tools

29

use recorded prompts because they are more natural than the text-to-speech engine. A

prompt project consists of one or more prompt databases, each prompt database

contains all potential prompts needed to communicate with the user. Resources like

grammar files and prompt projects will be preloaded and cached by the Speech Server

to improve performance.

The speech debugging console, working in conjunction with the Visual Studio debugger,

has a simple GUI interface, which shows client and server-side SALT. A developer can

view and edit the speech recognition results, they are shown in SML files, and simulate

errors and exceptions and he can use speech and text emulation while interacting with

the application. While debugging a voice-only application the Telephony Application

Simulator (TASim) can be used to simulate the client experience and to test telephony

applications, for example for giving DTMF input. With SASDK the speech application log

analysis tools can be installed which can be used to analyse and extract important data

from the trace log files created on the Speech Server.

Figure 6: Deployment of SALT applications using Visual Studio with SASDK

A speech application can be manually deployed following the same steps that are used

to deploy any other ASP.NET Web application. The .NET deployment model involves

replicating an application's entire directory structure and dropping it at the target, so the

application directory and subdirectories can easily be zipped up and then unzipped on

the target. This should work as well as creating a Web Setup Project. The SASDK

provides a Project Wizard to create a self-installing .msi for a speech application. This

2.2. Development Tools

30

makes deploying the application to a Web server simple and convenient (Figure 6).

A detailed description and introduction in developing speech applications using SASDK

can be found in [56].

2.2.2. IBM WebSphere Multimodal Toolkit

The Multimodal Toolkit [26], an extension to IBM’s WebSphere Studio framework, is an

integrated development environment with multiple tools, editors and views to create, test

and run multimodal applications written in XHTML+Voice. Additionally it includes

reusable dialog components for common functions like credit card, date and numbers.

The Multimodal Toolkit contains two multimodal browsers based on Opera Browser and

ACCESS Systems NetFront Browser that are both enhanced with extensions including

the IBM speech recognition and text-to-speech technology, allowing to view and interact

with multimodal applications that have been built using X+V, see Figure 7.

Figure 7: The Multimodal Toolkit for developing X+V applications

With the Multimodal Toolkit X+V applications are created with a multimodal project. The

main part of a multimodal project is one or more X+V files with the file extension .mxml.

2.2. Development Tools

31

An X+V file can consist of parts, the visual and the voice code of the application. Figure

8 shows the basic steps to create a multimodal application with X+V. When using the

development kit for creating an X+V file a basically prefilled .mxml file including the X+V

DTD and the definitions for the namespaces is opened in the X+V editor. In the next

step the developer adds the visual component by using an existing HTML or XHTML file

or by writing the code directly. A useful feature of the editor is Content Assist showing all

valid tags for a current position to help the developer inserting correct code. After coding

the visual part the XHTML file should be validated to ensure that it is XML-compliant.

Figure 8: Basic steps to create an X+V application

In the next step, a voice portion for each visual field that should be voice-enabled is

2.2. Development Tools

32

added. The Multimodal Toolkit contains many reusable dialog components for common

functions which either can be added easily or the developer can write his own grammar

and VoiceXML code. The voice part is commonly added in the <head> element to

separate it clearly from the visual part. Another feature of the Multimodal Toolkit is the

Reusable Dialog Component Wizard that helps integrating an existing subdialog. The

developer can code VoiceXML from scratch, consisting of a VoiceXML <form> element

containing other VoiceXML elements like <grammar> which defines the grammar to be

used and <prompt> which contains the text for the speech synthesizer or a reference to

an audio file for prompting the user. The Multimodal Toolkit includes a SRGS grammar

editor to write, check, compile, validate, convert and test grammars. Grammar code

generated with the editor is stored in an external file with the extension .grxml although

inline grammars will work, but are not recommended. The speech recognition engine

provides default pronunciations for words included in grammars, but the developer can

customize pronunciations for his grammars by creating pronunciation pool files with the

Pronunciation Builder tool. A helpful feature for testing the grammars is the grammar

test tool of the development kit.

After coding the visual and the voice part of the multimodal application the developer

has to add the interface between the two parts. Therefore he specifies an event type

and an event handler in the XHTML element where he wants to access a voice part. The

event type specifies the event when the VoiceXML will be executed and the event

handler binds the event to the VoiceXML element. An alternative to event and event

handler is the X+V element <sync> which can be used to synchronize visual and voice

element. After developing a multimodal application with the Multimodal Toolkit it can be

tested using the Multimodal Browser which can be launched in the development

environment.

2.2.3. Eclipse Voice Tools

The development platform Eclipse [18] is widely used as a Java development

environment but additionally the Eclipse Foundation hosts various projects for creating

different applications using diverse languages. One of these projects is the Voice Tools

Project [17], a development environment for voice applications based on the Eclipse

Platform, so that developers are able to use the same tools as for developing visual

applications. The OpenVXML Designer is the primary software package, the graphical

development environment of the Voice Tools Project that is based on a drag and drop

interface.

2.2. Development Tools

33

The main components within the OpenVXML Designer are the Voice and the

Application, so the logic is separated from the presentation. All audio and grammar files

that are necessary for a voice application are included in a voice project. With the

OpenVXML Designer grammar files in the common format GRXML are created easily.

Pre-recorded audio files are organized in subfolders of the Media Files folder of the

Voice Project so that OpenVXML can use the pre-recorded snippets for playing dynamic

data automatically, for example dates and phone numbers. The VoiceFormatter

associated with the voice project uses audio files or text-to-speech (TTS) to render

dynamic values. Shared content like predefined prompts that can be invoked at any

point in the application can be modified in one place and updated throughout the system

because they are stored in the Voice.xml file which can easily be edited in the Voice

Project Editor. The Logic of the voice application is handled by an application project,

call flow and configuration information are organized into a simple structure. Primitive

objects like the PlayPrompt module and complex structures like dialogs can be used to

build the voice application in the application editor. Built-in components like databases,

business objects and Web services can be used for data access. A voice project is

created for a specific language, but the application project can be multilingual if an

additional Voice for another language is added.

After having created the voice application with OpenVXML Designer it is exported and

uploaded as a WAR file to a Web server running a Java servlet container like Apache

Tomcat. The Eclipse Voice Tools Project can interact with any VoiceXML 2.1 compliant

platform. The voice browser requests VoiceXML from the Web server when a caller dials

into the system. The requested VoiceXML contains the dialog flow, the audio files and

TTS prompts to be played to the caller, what is expected as input from the caller and

other actions depending on the caller’s response. Figure 9 shows these basic

components of a voice application using OpenVXML.

Figure 9: An OpenVXML voice application

2.2. Development Tools

34

In the past there was the Multimodal Tools Project for Eclipse [43] that enhanced the

Eclipse Voice Tools with a few helpful plug-ins for developing and testing XHTML+Voice

applications. It contained an editor for X+V with syntax-highlighting that facilitates coding

and could validate XHTML. Additionally the package included voice-enabled Multimodal

Browsers for testing the developed multimodal applications.

2. State of the Art Review

35

2.3. Speech Recognition and Speech Synthesis Technologies

Speech is the most natural and easiest way for humans to communicate and interact.

Talking to a computer is not science fiction anymore, many advances have been made

in the field of speech technologies in the past years. Speech recognition and speech

synthesis are the key technologies in the area of speech technologies. Speech

recognition engines have considerably improved, from speaker dependent and relying

on a time-spending training phase or limited vocabulary to larger grammar support and

enhanced with noise filtering technologies. Synthesized speech has changed from

robotic and unnatural sounding towards almost undistinguishable from recorded human

voice.

2.3.1. Speech Recognition

Speech recognition engines are used to get a semantic interpretation [65] for speech

recognition results. A semantic result is a computer processable representation of a

natural language utterance. Grammars implement the semantic interpretation to

associate spoken words and phrases with meaningful application data. A speech

recognition engine understands all words and phrases that are defined in one or more

grammars. Grammars can be defined inline or in an external file. The preferred markup

language for grammars is SRGS, the Speech Recognition Grammar Specification.

Grammars should be created in consideration of accuracy and efficiency of the speech

recognition. Accuracy is composed of the engine and the application accuracy. The

engine accuracy quantifies how often the speech recognizer returns the correct phrase.

The application accuracy expresses how often the application provides the intended

result. The measured application accuracy can be better than the engine accuracy

because even though the speech recognition engine was not accurate, the application

can handle the utterances correctly. The application accuracy can be increased by

adding phrases that users prefer to say. These phrases can be determined with usability

tests. But the engine accuracy decreases the more phrases are enabled, because they

can be confused with each other.

The grammar efficiency can be measured with two values: recognition time and compile

time. The simpler the grammar, the shorter the recognition time and the compile time.

Furthermore developers can use pre-compiled grammars to shrink compile time. This

avoids compilation but the grammar efficiency now depends on the network connection

and the load time of the compiled grammar. Also pronunciations are generated at

compile time, so if the grammar has unusual words an application-specific pronunciation

2.3. Speech Recognition and Speech Synthesis Technologies

36

dictionary can be used to fasten compile time and moreover to improve the engine

accuracy.

A semantic interpretation can also be used to convert the user input. Grammars can

return such as a symbolic representation of the recognized words or phrases. So that

the user is allowed to speak naturally, but the application gets the form needed, for

example the zip code of a country, the user says “Austria” and the grammar returns “A”.

Accuracy and efficiency of the speech recognition can be improved by setting adequate

speech recognizer properties. Speech recognizer properties like confidence level,

sensitivity and speedvsaccuracy can be set. The result of the speech recognition engine

has a confidence value that indicates how certain the engine is of that result. With the

confidence level property results below that certain level are rejected. Specify a low

sensitivity property to avoid interpreting background noise as valid input. Speech

recognition engines can operate in a mode optimized for accuracy, but then speech is

reduced and vice versa. A higher speechvsaccuracy value means greater accuracy and

slower speed whereas lower values mean faster speed but lower accuracy. The timeout

property sets when the speech engine considers that the user has finished talking.

2.3.2. Speech Synthesis

Speech synthesis engines are used to generate speech output from text input. Speech

output can be pre-recorded audio or output from a TTS engine. Recorded audio files

sound more natural and require less memory and CPU time but if the prompts change

new recordings are needed. There are several speech synthesis technologies with

different advantages and disadvantages, the primary are: formant and concatenative

speech synthesis [26]. A formant synthesis engine operates algorithmically and

generates speech output from scratch. Whereas a concatenative synthesizer

concatenates segments of pre-recorded speech to produce speech output. The

segments which are assembled into speech output can be entire phrases or even

smaller than syllables. The advantages of formant TTS are that it does not require a lot

of memory or disk space whereas concatenative TTS requires more memory and disk

space. Formant and concatenative synthesis engines operating with syllables or smaller

segments have an unlimited vocabulary. That is an advantage over concatenative

speech synthesis engines who work just with a fixed set of phrases, where new phrases

must be pre-recorded. But the great advantage of such TTS engines is that their speech

output sounds so natural that it is possibly not distinguishable from pre-recorded audio.

Speech output from formant TTS does not sound very natural.

2.3. Speech Recognition and Speech Synthesis Technologies

37

Mostly the characteristics of the synthesized voice like gender, age, speed and volume

can be configured. But recorded prompts should be used whenever possible because of

natural pronunciation. One of the most important qualities of TTS is naturalness, the

synthesized speech should sound like human speech. Nevertheless naturalness is not

always the goal of a synthesizer, sometimes high-speed synthesis and smaller memory

and disk space is more important, for example in mobile devices a formant TTS is

maybe more advantageous.

The Speech Synthesis Markup Language (SSML) [69] is an XML-based markup

language for documents provided as input to a speech synthesizer. With SSML different

aspects of the generated voice output can be defined such as pronunciation, volume,

speed, pitch, rate and emphasis and voice characteristics like name, gender and age

can be selected.

38

3. Related Work

Within this thesis we evolved a mobile context-aware multimodal application for a PDA.

Our implementation takes context information to improve speech input and output as

well as text input and output. In terms of multimodal the user of the application can

decide if he will use pen or voice or both for giving input. And the application takes the

context information of the device to decide which the best output modality is in the

current situation of the user or the device.

In the literature exists some related work dealing with speech or multimodal

technologies and several are combining context-awareness information within speech

and multimodal applications respectively. Much research takes place in the medical

domain, but also other domains like personal information management functions and

mobile guides concern with multimodal interaction. Especially mobile applications for

PDAs, smart phones, tablet PCs benefit from allowing multimodal interaction, because

they are not usually equipped with common hardware input devices like mouse and

keyboard and mostly have just small displays. So using other input and output modes

like voice, gesture or handwriting increases the usability of mobile devices and even

makes their usage possible under certain circumstances like driving a car or for people

with disabilities.

3.1. Voice-only Applications

A great help for people with disabilities, especially for blind and visually impaired users

who have troubles with reading, is a speech enabled Web interface. A voice or

multimodal interface facilitates or even makes possible that blind and visually impaired

users can interact with Web applications. [30] investigates how people with visual and

motor disabilities use mobile devices. A result of the study is that even though these

people have accessibility problems with common mobile devices, they favour commodity

devices over specialized devices which are specially designed for people with

disabilities. Improving the accessibility of common mobile devices with additional input

modalities like voice will be a great advantage for people with disabilities too. eVALUES

(e-library Voice Application for European Blind, Elderly and Sight-impaired) [21] provides

blind and visually impaired users downloading of online-books and documents and

listening to it. This Web service uses advanced text-to-speech technology and works not

only with PCs but also with PDAs.

3. Related Work

39

Another great advantage for visually impaired persons are interactive voice browsers,

which facilitate using internet applications, which is relevant also for car drivers and

mobile workers who need their hands free. [23] describes Vox Portal, a scaleable

VoxML client, which supports ubiquitous voice-driven access to multiple information

services for a range of devices. VoxML is a markup language that specifies the dialogs

of voice applications and it features speech synthesis and recognition technologies. Vox

Portal uses a dynamic converter for translating HTML to VoxML and vice versa to

enable interactive input of data and to submit form data to the Web server. Much of the

context of an HTML document is derived implicitly through the document structure and

the layout of the content; users of a graphical interface get orientation and navigation out

of the structure of a document. So translating a visual document to a voice browser

means not only converting the content but also getting out the structure of the

document. The HTML-VoxML converter uses an analytical algorithm to elicit structure

and context out of an HTML document and generates VoxML output which is forwarded

to the Vox Portal. To make structural elements explicit to the listener the audio rendering

combines the use of descriptions, earcons, multiple voices, prosody, announcements

and pausing.

Impromptu [62] is an audio-only platform supporting multiple voice services, for example

news, radio, personal audio to-do lists, telephone and chat. It uses speech recognition

for user input and speech synthesis to play sounds or text. While only one application

can be active at a time, others will run asynchronously in the background and can give

an alert sound so that the user takes attention and can activate the application if

desired, for example an incoming phone call which the user is awaiting for.

3. Related Work

40

3.2. Multimodal Applications

The combination of speech and pen use for input, the so called tap and talk interaction,

makes speech processing easier [9]. It reduces speech recognition and understanding

errors because the selection of a form field indicates what the user wants to say, for

example a name or a zip code while filling in an address form. As well as tap and talk

offers significant advantages over the pen-only interface. MiPad, short for Multimodal

Intelligent Personal Assistant Device, is a wireless mobile PDA prototype embedding

several keysubareas of spoken language technology to enable users to accomplish

many common tasks using a multimodal interface with speech, pen and display. It is

developed to provide PIM (Personal Information Management) functions like email,

calendar, notes, tasks and contact lists. MiPad has a tap and talk interface which

combines speech and pen input. Also in Search Vox [49], an automated directory

assistance application, the user can use speech and text input in combination. With this

application the user can request telephone and address information. If the speech

recognition fails to interpret the speech result correctly, it presents an nbest list where all

possible recognized phrases are displayed as words. So the user can not only select an

entire phrase but also select words of the list to compose a phrase to refine his query

and receive a correct speech recognition result. And on the other hand a user can type

text hints like an initial letter to help the speech recognizer identify the query better.

Additionally the user has the possibility to use verbal wildcards, he can use the word

“something” as a placeholder if he is unsure about a word or phrase in his query.

In contrast to directed dialogs where the system always controls the dialog, mixed-

initiative dialogs allow both human and computer to influence the dialog flow. ISIS [39],

which stands for Intelligent Speech for Information Systems, is a spoken dialog system

providing real-time stock market information, managing simulated personal portfolios

and handling simulated financial transactions via mixed-initiative conversational

interactions. Additionally the system is augmented with a display so that the user can

also input textual queries by typing or writing with a stylus. The user can delegate tasks

like the monitoring of a financial feed to a software agent which is working in the

background until the defined alert conditions are met. Alerts are stored in an offline

queue and to minimize disruption ISIS informs the user with visual icons about the

arrival of new alerts. Whereas InCA [29] uses a conversational agent, its features are

spoken natural language input and speech output with facial animation. It provides

making and listing appointments, email reading, weather reports, exchange rates and

news headlines. The interesting part of it is the facial expressions of the agent, for

example the agent raises its eye brows and looks up before the system is ready to

speak and while it is listening to the user.

3. Related Work

41

A multimodal system for home-healthcare nurses is Care View [34]. It visualizes historic

trajectories and identifies trends in patient’s conditions. A nurse captures a number of

patient data, vital signs like blood pressure, but to make a decision about the

appropriate action she has to classify the current data and analyze it in the context of

the patient’s clinical history. Care View presents all data such as vital signs and lab

results two-dimensional along a horizontal timeline using a colour-scheme to identify

values below, within or above the normal range. During the examination of a patient a

nurse needs her hands free to support this CareView uses speech recognition to

navigate between the categories of data or to enter data. Also WARD-IN-HAND [1] is a

project in the medical domain. Doctors and nurses in a hospital are equipped with

handheld computers that are connected to a server by a wireless network, to receive

information about patients, clinical records, results of tests and so on. The main mode of

interaction with the system is voice and secondary pen and touch-screen. Whereas the

SHARE system [67] offers a multimodal user interface allowing voice and text input, an

interactive digital map, location-based services and intelligent information processing

and indexing. It is an information and communication system that supports fire

departments and emergency teams during rescue operations and management of

catastrophes. The system is based on the Push-to-Share service which extends the

Push-to-Talk technology. Push-to-Talk allows direct user communication by simply

pressing a button, but it is just an audio communication. The Push-to-Share service

enlarges the communication with other media types like images, video and text. Another

multimodal application is presented in [15]. With a handheld device a police officer can

create an intersection or road diagram for documenting traffic accident reports. He can

use speech and pen inputs to place icons representing the participants involved in the

accidents and attributes of their vehicles like colour, turning indication or lights to create

the accident diagram on a PDA instead of drawing it on a paper.

Users not only prefer multimodal interactions they are even more efficient with this kind

of interface [6]. This is the result of the evaluation of the multimodal service Record &

Replay. With this service the user has the possibility to write and record a structured

document for the World Wide Web, e.g. a Blog or a Wiki. Furthermore the paper

describes the design and realization of a multimodal platform.

3. Related Work

42

3.3. Context-aware Mobile Applications

3.3.1. Location Awareness

Mantoro and Johnson [35] establish location as the most important aspect of context for

mobile users. In their work they present the helpfulness of location awareness history for

a context-awareness environment. To identify user’s location a history database of

events is created. Location data is created whenever a user identifies him via iButton or

login to the network and with receptors, sensors and actuators like Web cams and

badges. Users can give speech commands for finding the nearest resources, navigating

or locating objects and people. The Speech Context Agent interprets the speech

commands as SQL commands to the location awareness history database. The result is

sent to a speech synthesizer, thus the system supports speech input and speech output

and therefore allows the user to interact with his computational environment more in the

way he does with other people. Whereas ComMotion [36], another context-aware

communication system for a mobile computing platform, uses speech and text for input

and output. Its main feature is the delivery of dynamic user-defined content, delivered

when the user is at the relevant learned location. The system recognizes frequented

locations, stores the GPS data and asks the user for a virtual location string tag. The

user can assign to-do-lists to locations or class of locations. Other users can send

reminders to a user at a specific location or query the user’s position. The system also

provides mobile access to location-based information from the Web. When the user

enters a virtual location he receives an auditory cue that informs him of relevant

messages to this context. Different auditory cues are associated with the various types

of information (reminders, to-do-lists, subscribed content information). All text data can

be received as text or synthesized speech and the interaction with the system is done

with speech commands or through the graphical user interface. Also GCCM

(GeoCollaborative Crisis Management) [5] uses geospatial information, it describes a

collaboration system for managing crisis situation. It provides a multimodal user

interface where team members can communicate and collaborate through speech and

gesture with shared maps and with each other.

The Mobile Reality framework [24] offers the user a seamless, location-dependent,

mobile multimodal interface. The interface allows the user to navigate through a three-

dimensional graphical view, using location-sensitive speech interaction with the objects

around him and it supports mobile collaboration like shared VRML browsing with

annotations and a full-duplex voice channel. The application area for such an interface is

mobile maintenance. PlaceMemo [20] is another mobile system that supports mobile

workers. In this case infrastructure managers and road inspectors who need to identify,

3.3. Context-aware Mobile Applications

43

report and take care of defects along the roads. The system uses a handheld computer

and a GPS-receiver to allow users to record voice annotations connected to

geographical locations. While working on the road the user can record a voice memo

and the system saves the geographical position in addition. When the user reaches a

previously marked location once again, the system will play the voice memo associated

with that location. The system has a stationary mode to administer placed voice memos.

Based on the routes driven the system shows a simple map with a grid where routes are

presented as lines and flags along the lines symbolize the recorded voice annotation.

The user can select a flag to get additional information like time and date or to mark it for

deleting. He can display a list of all recordings and he can listen through the recordings.

Many multimodal applications are mobile guides that inform users like tourists, museum

visitors or hikers about interesting places, show the route on a map and are a guidance

for the environment. LoL [55] is such a tourist guide for the city of Vienna, the

abbreviation stands for Local Location Assistant. [54] implements a tourist guide as a

demonstration application to show the usefulness of the developed platform. The Web

service-based platform facilitates the development and deployment of context-aware,

integrated mobile speech and data applications. The demo application is a context-

aware application providing tourists with interesting information and services of the

visited country like dynamic navigation, meeting friends and information about

interesting places. These points of interest are discovered by using the profile of the

user which can be imported or the user can describe his interests. An interactive map is

used to display static points of interests like tourist attractions, restaurants and dynamic

points of interests like the location of friends, services like calling the friend, reserving a

table at a restaurant or retrieving detailed information.

A mobile location-aware, multi-device museum guide is UbiCicero [22]. The guide

provides the user multimedia information like videos, audios and graphical maps

regarding the artworks. The mobile guide is a PDA equipped with a RFID (Radio

Frequency Identification) reader and the museum artworks are fitted with physical tags

that makes possible that the guide can localise the position of the user. Then it updates

the displayed museum map and alerts the user that it has detected artworks nearby with

interesting information. Artwork and room descriptions are dynamically created by a

TTS module, because of limited memory on PDAs, audio files would require more

physical storage and additionally text can easily be managed, because it has not to be

read and recorded to create an audio file. Additionally the guide logs information about

the user during his visit, e.g. the time he spent by listening to an artwork description, to

estimate user preferences and to provide the user personalized information and

suggestions regarding the next artworks to visit. To support and even enrich the user’s

experience the guide provides educational games for individuals or groups of players.

3.3. Context-aware Mobile Applications

44

For extending the functionality of the mobile device especially while playing a game, the

guide can exploit a larger screen of a stationary device. This resolution to augment a

PDA with a surrounding screen or other computing devices near the mobile user is as

well the subject of different papers, presented in chapter 3.4. Another multimodal guide

for a cultural heritage is presented in [2]. Users can inform themselves about the

historical wood ceiling at the University of Palermo. They can navigate a virtual

representation of the medieval paintings and interact with the multimodal interface using

speech or ordinary visual input devices. On the Bundesgartenschau 2005, a horticultural

show that took place in Munich, visitors could rent the so-called BUGAbutler [25], a

GPS-PDA that showed interesting places and navigated the user through the 330

hectare area of the show. It showed via display and by voice the current place of the

user, offered information about the surrounding plants and objects, informed about

actual events and could route the user to a venue. In addition the user could experience

with geocaching, a paper chase supported per satellite.

Some applications use additional input modes to voice and text, for example gestures

and handwriting. SmartKom [57] is a multimodal interface that uses an anthropomorphic

personalized interface agent which uses speech and gestures for the interaction with the

user. A part of the SmartKom project is the SmartKom Companion [7] which can be

used while walking around and while driving a car where it is plugged into a docking

station. Switching between these different mobile environments is easy, because the

interaction with the system can be continued seamlessly. The main functionalities of the

system are navigation and location-based information like planning a route, getting and

presenting information about points of interest and guidance and monitoring of the user.

Car-specific services are route planning and parking place reservation, while for

pedestrians there are other places of interests relevant like historical buildings and

museums or shops.

3.3.2. Working Context and Social Awareness

There are some projects providing solutions to the challenge of an everywhere and

everytime messaging system [63]. Such a system should give the user the ability to

send and receive messages everywhere and at any time. The requirements of such

systems are minimizing interruption, while ensuring delivery of important messages

timely, adaptation to the user’s behaviour, location awareness and unobtrusive user

interfaces. CLUES [37] is a dynamic message filter. It uses a number of sources of

information about working relationships to infer which are relevant messages and to

prioritise them. CLUES extracts meaningful items from calendar entries and other

information sources to use them to find messages that are important for the user and to

3.3. Context-aware Mobile Applications

45

categorize and prioritise the messages. Nomadic Radio [59], an interface that manages

voice and text-based messages on a wearable computing platform, uses CLUES. The

user has two modes for interacting with the system: navigating among messages and

asynchronous notification of newly arrived messages. Content filtering is used to

prioritise messages and based on the user’s recent activities and the context of the

environment the system determines the user’s interruptability. The system operates

primarily audio-only. Email, voicemail, hourly news broadcasts, and calendar events are

automatically downloaded to a wearable audio device. The user has a wearable audio

device to give spoken commands and the system uses synthetic speech to present

textual messages such as emails and audio streams for voicemail and broadcast news.

MailCall [38] is another messaging system in a non-visual environment. It also

categorizes and prioritises messages by importance with CLUES and supports random

access to the messages using speech recognition and synthesis. The system is used

only via telephone.

Muñoz et al. presents a study on instant messaging in a hospital [44]. The user can

specify contextual information for messages with his handheld system that has an

interface for instant messaging. The study discovers four critical contextual elements:

location, delivery time, role reliance and artifact location and states. A message can be

relevant only for a specific location. A message is not sent immediately, the user can

specify the delivery time. Messages are often addressed to special roles and not to

particular individuals. For supporting timely delivery of pertinent information the relevant

artifacts are monitored. Awarenex [71] is another interface for mobile devices that

integrates awareness information and instant messaging. And it has also a speech

interface to provide access over a telephone. The primary components of Awarenex are

Contact List and Contact Locator. The Contact List shows a list of all users including

awareness information like where that user is, whether he is logged in and using

Awarenex, has been idle or is engaged, which means that he is involved in any

communication activity. So this list helps to determine whether a person is available for

contact. Clicking on an entry of the Contact List opens the Contact Locator which shows

detailed awareness information to help the user to determine the best way to contact

that person and it presents the relevant communication resources like instant messaging

or email.

AwarePhone [3] provides social awareness among clinical professions. Social

awareness relies on knowing the current work context of the co-workers which is

important when initiating a conversation with another person. Especially the cooperation

between clinical professions benefits from social awareness. A nurse needs to notify a

doctor without disturbing him and a young doctor wants to contact a more experienced

doctor and needs to know who is available and where he can find him. AwarePhone has

3.3. Context-aware Mobile Applications

46

two main interfaces: the contact list and the message list. The contact list shows the

user’s list of contact persons. Three context cues are associated to each person

describing the personal status, the current activity and location. When the user clicks on

an entry of the contact list he can choose if he wants to phone the person or to leave a

prioritized written message. The message list displays incoming and active messages in

a prioritized order. With this list the user can read, reply and delete the messages.

Additionally the paper describes the design and implementation of a framework for

developing applications providing social awareness also for other mobile co-workers

than medical personnel in hospitals.

The Klinikum Saarbrücken in Germany has started a pilot project in 2005 with the RFID

technology [53]. In the admission ward each patient gets a wristlet with an integrated

RFID chip, which includes the number of the patient. Physicians and nursing staff can

read out the number with the aid of Tablet PCs or PDAs and get access via WLAN to

the protected database to retrieve all details about the patient’s record including the

given medicine and their dosage, or further data that are important risk circumstances

like allergies. The possibility to identify patients and their records easier and faster

intensifies medical care and makes rationing and dosage of drugs more secure.

Furthermore patients have the possibility to get specific personal information via

infoterminals, like blood pressure, weight, therapy appointments and the end of

hospitalization or general information about medical conditions, diagnosis and therapies.

3.3.3. Environment Context and User Situation

Djinn [32] is a multi-modal interaction framework to model interfaces for home

environment based on speech and vision. It collects information from cameras, sensors,

devices, appliances, etc to exploit the residential environment context. The user can

control and communicate with his home via the PDA or telephone using basically voice

commands. For example he can use a PDA to set the oven into a specific cooking

mode, the GUI displays the items like temperature, duration and recipe and the user can

set them all by one spoken command. [77] presents a mobile multimodal system which

aids a user in finding out product information and product comparison information while

shopping. The user can interact with the Mobile ShopAssist using speech, handwriting

and gestures. Gestures can be performed either off-device like picking up a product

from the shelf, so that product information can be retrieved through the RFID-tag or

directly on the mobile device like pointing on an object displayed on the screen.

[31] describes an architecture for developing and executing mobile multimodal

applications using multimodal interfaces and contextual information processing in

3.3. Context-aware Mobile Applications

47

synergy. Contextual information, such as available modality, user situation and device

information is used to decide which output devices are to be bound best into the actual

user interface.

3.3.4. Collaborative Working Environments

In the past most mobile context-aware applications were developed only for single and

independent users who are interacting with the system and they often used only spatial

context information. New emerging team forms [70] in collaborative working scenarios

can also take advantage of context-aware applications but they need more information

of the environment than location to support them in their team interactions.

[12] presents a team characteristics model that defines the significant indicators for

classifying emerging teams into Nimble, Virtual and Mobile Teams. The model combines

related characteristics into the following five views: Spatial, Organizational, Project,

Human Interaction and Service View. This model also structures team requirements in

collaborative working environments into four categories: Management, Interactions,

Information and Technology Requirements. The required features are implemented with

Web services which are performing activities [61]. An activity is defined as everything

people do in a collaborative working environment. The user can organize work and team

collaboration according to these activities. An activity may be a basic activity or a

composition of sub-activities. Moreover activities can be remodeled, sub-activities can

be added or removed during runtime and sub-activities can be assigned to different

team members. Providing such a flexible and reusable composition of services

addresses the requirements of ad hoc collaboration.

Virtual teams mainly require ad hoc processes where the control flow between activities

cannot be defined before execution and therefore the process cannot be modeled in

advance. Team members of virtual teams require information on all work activities of all

team members for a certain project. Process-aware tools are required to support virtual

teams in ad hoc as well as collaborative processes. [16] discusses concept, design and

implementation issues for process-aware collaboration systems and presents such a

system called Caramba, which supports virtual teams on the Internet. Caramba users do

not need to model processes in advance to achieve process-awareness. Users of

Caramba can coordinate the activities of a process that is not based on a process

template with Organizational Objects. Where Objects like Persons, Roles, Groups,

Skills, Units, Organization, Tasks and Documents and their relationship are used to

model organizational structures and responsibilities. Or virtual team members may use

the Process Modeler component if it is able to model a process template. Caramba

3.3. Context-aware Mobile Applications

48

supports modeled process templates, ad hoc activities and a combination of both.

A user of a collaborative working environment may be a member of many teams and is

working on multiple tasks, projects and activities at the same time and he may want to

collaborate while on the move. Because such users handle a lot of information filtering

of content is very important for them. Information is relevant at a certain time and

depends on the user’s current situation and his context. Moreover amount and level of

detail of the information is depending on time, situation and context. Using granular

context [13] allows retrieving information in the relevant level of detail and therefore

reduces the amount of unnecessary information exchanged which furthermore reduces

network bandwidth and computing power which is especially important for mobile users

who are using small devices and laptops. Granular context is modeled in a hierarchical

form from the most generic information to the most detailed information. For example

the highest level of a location information is country, and then city, street, floor and the

lowest part is the room. For team members working at different location a higher level

location information is needed such as city and street. Whereas for team members who

are in the same building but in different rooms the relevant location is more detailed, at

room level.

Besides spatial information like the geographical distribution of the team members,

organizational information about team hierarchies, project management information

about resources and artifacts and human interactions in collaboration are used to

establish the team context [60]. Sequence and type of reoccurring human interactions in

collaboration are described with interaction patterns. The interaction context defines the

scope of the interaction and the different roles in a team. Team-awareness can be

achieved by using context information as location, availability and current workload of

the team members and considering the time-schedule of planned work and the

deadlines of the projects. Such context information can be used to retrieve for example

the team member who is able to process a certain request due to his availability, nearest

location, no pending tasks and so on.

The inContext project [72] is a pervasive and collaborative working environment

especially for all emerging team forms. inContext supports collaborative teamwork with

common services like calendar, instant messaging, task and document management

and with diverse other services to support emerging teamwork and autonomic

capabilities. Different types of collaboration services, especially Web services that are

loosely coupled and can be easily composed and adapted to different teams are

integrated. Context related to teams and users, their activities and environment is

modeled with ontologies. The inContext context model consists of reusable existing

ontologies for modeling persons, addresses, geo-spatial context and so on and of five

3.3. Context-aware Mobile Applications

49

new developed core ontologies: Location, Resource, Activity, Team and Action Context

Ontology. The Context Management component collects, aggregates and provides

context information for context-aware service adaptation. Within this scientific research

activities and especially modeling the relations of team members with their work

activities and the used resources are emphasized as the key component for retrieving

context-awareness in collaborative working environments. Additionally the inContext

platform uses meaningful patterns from observed interactions to enrich context

information and for selecting and ranking services. The intensive use of context

information and interaction patterns to adapt collaboration services to the changes and

requirements of teams and environment reduces the necessity of human intervention.

3. Related Work

50

3.4. Composite Device Computing

An interesting idea to overcome the limitations of small devices like PDAs is presented

in [52]: a Composite Device Computing Environment. CDCE provides an infrastructure

to augment a small mobile device with the available surrounding computing resources.

The framework provides mechanisms for exploiting and interacting with “the world that

surrounds the mobile user”. It describes this framework that supports users of small

screen devices with a communication network infrastructure for seeking surrounding

devices, to overcome small client constraints, to retrieve rich contents and access

diverse services in conjunction with these other devices. Another CDCE is presented in

[64]. An UPnP (Universal Plug and Play) implementation allows users to access larger

screen devices like PCs, laptops, monitors, TV sets, public terminals, etc and to

remotely control those with the PDA to extend the capabilities of the small screen device

to provide access to rich multimedia context and services without content reduction. The

key is that the devices incorporate and that computing tasks are outsourced so that

each device does what it is best suited for. A possible application domain is in a

hospital, as presented in [51]. Each doctor is equipped with a PDA and has wireless

access to the patient information system. If he visits a patient his PDA detects the

presence of possible other devices like a TV, his PDA communicates with the gateway

server, x-ray images are transmitted to the TV for viewing and the doctor can use his

PDA to annotate a region of the x-ray. So the PDA builds, with other devices, a

convenient infrastructure for the doctor so that he can access, view, interact and

collaborate upon the multimedia information.

3. Related Work

51

3.5. Multimodal Architecture

A project at the Forschungszentrum Telekommunikation Wien is MONA – Mobile

multimOdal Next-generation Applications [42]. This research project deals with the

problem that developers had to adapt the user interfaces of their applications so that a

user is able to access the application from different devices. It presents a solution for

developing and deploying device- and modality-independent applications that combine a

graphical user interface (GUI) with a voice user interface (VUI), enabling the user to use

text and speech as input and output modality on different devices. A MONA developer

specifies his user interface on an abstract level with an editor especially developed for

the project, based on a special developed UIML (User Interface Markup Language). An

application developer of this project is not concerned with device specific issues. He

provides a single implementation of the user interface and the MONA presentation

server renders a multi-modal user interface for each device which is accessing the

application. For supporting other devices the application needs no update. In the context

of the MONA project two prototype multimodal applications were developed, one in the

business and one in the entertainment domain. The MONA Quiz is a multi-user quiz in

the style of “Who wants to be a millionaire?” The players interact in real-time; each

player is represented by an avatar which expresses his different moods depending on

the current game situation. Additionally the quiz provides a multimodal chat for user-to-

user communication where sending and receiving messages can be done visually or by

voice. The MONA Server automatically translates spoken words to written text for GUI-

only users and vice versa text-messages are translated to voice by TTS (text-to-

speech). The second prototype application is a mobile multimodal unified messaging

client that enables the user to administrate emails, SMS and voice messages. It

addresses to a business user who wants to get an overview of new messages while he

is not at his office. The application informs the user when a new message has arrived,

he can read the text or listen to the synthesized audio output.

Another experimental platform for mobile information systems that supports the rapid

prototyping of multi-channel, multi-modal, context-aware applications is presented in [4].

The platform consists of a Web publishing component, a cross-media server and a client

controller. The client controller is responsible for the input and output handling with the

user; he sends requests to the server and activates the appropriate output channel. The

cross-media server delivers the information from the content database or the active

content. The Web publishing component includes a context engine, which transforms

the information to the appropriate format of the output channels. All information such as

structure and presentation of Web documents, as well as the content, are represented

as database objects which can be updated at runtime. The platform was used to

develop a tourist information system for an international arts festival where interaction

3. Related Work

52

was based on a combination of speech input-output and interactive paper. For

supporting locator and navigation tasks the user also has a GPS device. Visitors of the

festival can use the special interactive paper brochure containing a map and an event

list with a digital pen to retrieve information about events and locations of the festival.

They point with the pen on the map and the system initiates a voice dialogue via an

earpiece to get additional information from the user on the one hand and on the other

hand to give the desired information back to the user. Users can set a reminder for

specific events and they can write short comments, which are stored in a database and

can be requested by other users.

Fabbrizio et al. introduce a speech mashup architecture [11], a network-hosted

application framework for mobile devices like Smart Phones, iPhone and BlackBerry that

makes integrating Web content and speech processing easier. There is no need to

install, configure or manage speech processing on the multimodal device. The

framework consists of a speech mashup server for speech recognition and text-to-

speech synthesis, a Web mashup or application server for additional service logic and a

client running on a mobile device or a Web browser. The client application captures and

relays speech or text to the speech mashup manager over an HTTP connection, which

communicates with the speech server where the speech processing and the text-to-

speech conversion takes place and relays text or spoken response back to the device.

The speech mashup manager accepts and returns three data formats: XML, JSON and

EMMA, the data format for the TTS engine is SSML.

3. Related Work

53

3.6. Usability

In the literature some interesting studies compare voice with other modalities and

examine the usability of voice in user interfaces. A study on information retrieval

research is presented in [14]; it compares forming queries in written form with forming

queries via voice to evaluate the feasibility of spoken queries for search purposes. The

results of the study are that spoken queries are lengthier and contain more stop words,

but the ease of speaking encourages people also to express more semantically. Unless

as expected they found no significant differences on durations for formulating queries in

spoken or written form. Something similar is evaluated in [46]. This work analysed if the

absence of a visual display impairs usability in a gesture input system that is combined

with speech output. The system provides information to patients in a hospital; the

display shows a GUI presenting the available services and the gestures that invoke

them. The result of the study is that there are no significant differences in the number of

incorrect gestures made by participants using the system with or without the display, but

users of the system with the display take longer than those using it without it. Both user

groups the one with the GUI and the one without were given a training period practising

the gestures, the one without the GUI had to remember the gestures, the other group

were able to see the corresponding gestures on the GUI while they were asked to use

the services. Again there were two groups, one with a training time of 5 minutes and the

other one had 10 minutes for training. For those who could not see the visual display an

additional training time decreased the number of incorrect gestures made. And on the

other hand for the group that had a visual display, additional training time increased the

number of incorrect gestures. This result was not expected. So the solution of this

evaluation is that the presence of a GUI does not enlarge the count of incorrect gestures

and the absence of a GUI did not lead to larger processing time, on the contrary the

mean processing time was longer with the presence of a GUI, because the people were

looking at the display. [50] presents an evaluation of unimodal and multimodal form-

filling systems on desktop and PDAs. The study found synergies between speech and

visual modes. Multimodal interfaces have shorter interaction times, visual feedback like

GUI output and input modality choice is important. The results show that integrating

visual output in spoken dialogue systems increases the efficiency significantly and that

giving the user the possibility to choose his preferred input modality decreases

interaction time significantly.

54

4. Framework

4.1. Scenario – Schedule Meetings & Calls

The most commonly needed services in the context of collaboration are calendar and

address book applications for requesting and making appointments. On the basis of a

team scheduling application we will demonstrate what kind of problem we want to solve

within this approach.

Figure 10 illustrates the following scenario:

A project manager receives new information and data concerning a special project of

one of his customers. Now he wants to call a meeting to inform all team members,

discuss the details and plan the workflow. Using a common Web application he fills out

a Web form with all data specifying the meeting, like costumer, project, start date and

start time, duration, location and he selects the persons he wants to invite to the

meeting. When he has finished, notifications are sent to all specified persons including

the details of the appointment.

Figure 10: Basic scenario – team scheduling

If the project manager uses a mobile device with a small display and a pen for giving

inputs he will encounter difficulties while filling out the form. Often he is included in many

projects, so that the selective list of projects will be long and more than ever the list of

4. Framework

55

persons will be pretty large. Select boxes with a large list of options can soon be too

large for a small display such as the screen of a mobile device. Scrolling down and

selecting an item out of a long list of options is hard with a small screen resolution.

Inserting date and time are as well difficult because the keypad of a mobile device like a

PDA is small or it has even only a virtual keyboard which covers a part of the display

and so reduces the already small screen.

A speech-enabled Web form gives the user the possibility to fill out the form by giving

voice commands. For selecting an option of the list of projects or the list of persons, the

user simply says the name he wants. If he wants to know which options are possible, he

clicks on a button to hear them all and then he selects one of the options with his voice.

But he has not to listen to the whole list of possible options, if he knows which one he

wants to select, the reading will be stopped soon after his voice input. He can choose a

start date and time by simply saying for example “seventh of September 2010 at five

o’clock in the afternoon” or a similar phrase and the date and time fields will be filled out

as usual with “2010-07-09 17:00”. A great advantage of a speech-enabled Web form is

the possibility to fill out the whole form at once. The user can talk to the application in a

whole sentence like in a dialog of a human-to-human communication. The application

takes out the special words needed to fill-in the form and ignores the in-between

phrases.

Regarding context data and relevance criteria in speech input and output will further

improve the usability of such an application. The system can use context data to reduce

the list of options of a select box, so that a user has not to listen to a long list of

unwanted information. For example, the list of projects contains only those where the

user is currently working on; the list of persons contains only those with whom the user

had contact during the last week or only the team members of the user and his current

projects. Location information of the device can be used to offer only that locations for a

meeting in the Web form that are close to the current position of the user or the device,

for example locations that are in the same city as the user currently. Furthermore

location information can help to identify the kind of appointment, if it is a meeting or a

conference call. If the user is far away or he is on the way then it can be assumed that

the user wants to make a conference call instead of meeting the persons in real. Figure

11 illustrates the team scheduling scenario enlarged with context-based multimodal

interaction.

4. Framework

56

Figure 11: Team scheduling with context-based multimodal interaction

Integrating context and relevance information in multimodal application reduces long

lists and complex grammar rules, so usability and speech recognition rates are

improved, but also network bandwidth or battery consumption are reduced. Because

there are two ways speech recognition can be integrated: either on the client or on the

server.

Besides making these preselections we have to consider that the user has the possibility

to enlarge or change the selection criteria. The user should have the possibility to

specify these parameters or to get out the whole data list. For example, if the user plans

a meeting concerning a project that does not occur in the list, because the user is not

currently working on it, he needs the opportunity to enlarge the list and select another

person. Or if the user wants to invite a person to a conference call who is not in the list

because he is not actually in the same projects, but this person can be helpful with the

current problem. Context information will be used to make recommendations to the user,

but it should never be obligatory.

4. Framework

57

4.2. Design

We divided the context information into two parts: the scenario-specific and the device-

specific part, see Figure 12. The scenario-specific data objects contain all relevant

information about projects, tasks, teams and the team members and their location. The

device-specific data contain details to identify the situation of the user and his device to

decide which output mode will be recommended.

The scenario-specific objects are: project, team, task, member and location. A project

can consist of many tasks and a task must be part of one specific project. A project is

handled by one particular team. A team can have many members; a member can be

assigned to a team. A member has a current situation and can be the assignee of many

tasks. A task can be assigned to a member. A user is a special member and is always in

a specified situation. We decided to use a simplified model, so that we can extend it in

the future. A possible extension might be to allow that a project consists of more than

one team, or we can restrict the relation between team and member, so that a member

must be part of a team and a team must consist of at least one member respectively.

4. Framework

58

Figure 12: Diagram of context objects

The context of the device will be used to find the adequate modality, text or speech. The

context object situation has four parameters: noise, privacy, disturbance and activity. To

obtain the values of these parameters we can use different recognition methods:

microphone, location data and other team scheduling context data or calendar

information. The microphone of the PDA can be used to detect surrounding noise; the

values can be loud or silent. The parameter privacy states if the user wants to keep his

privacy, if he is at a public location or if he is at a private location like his office, so it can

have the values public or private. The attribute disturbance means if there are other

people around the user who can be disturbed or if he is alone, so the values are group

or alone. Activity is a value representing if the application has the primary attention focus

of the user or if the application has only the secondary attention focus of the user, for

example if he is driving a car, so the values can be primary or secondary. This

parameter can be achieved with calendar information of the user or his current location.

Which modality is the best for the current situation depends on the values of these

4. Framework

59

attributes. The parameters, their possible values to decide between speech and text

output and how they will be recognized are summarized in the following table:

Situation Parameter Text out Speech out Recognition via

noise loud silent microphone

privacy public private information of location and tasks

disturbance group alone number of members with same

location

activity primary

attention

focus

secondary

attention

focus

calendar information and location

of the user

The best modality for the current situation depends on the values of the situation

parameters, see the flowchart in Figure 13 which illustrates the decision-making of the

best modality, text or speech. We decided to use a key-value model to define and store

the context data. We use just simple 0 (=text) or 1(=voice) to decide between speech

and text-only. So just if all parameters are set to 1 speech-output and speech-input will

be used. In future extensions we can use a range of values instead of just 0 or 1 and

decide which parameters have to be used strict and which can have a wider range to

accept voice-output. For example, if a radio is playing in the office, noise will neither be

silent nor loud and so it makes sense to use speech even if surrounding noise is a little

bit loud.

4. Framework

60

Figure 13: Flowchart of finding the best modality with the situation parameters

A use case is illustrated in Figure 14, a user can enter a new task or edit an existing

task, which he chooses from the task list, and then the Scheduler updates the task list.

The Scheduler can show a list of all tasks. If the user enters a new meeting or call, the

Scheduler sends notifications to the user and all other persons that are concerned.

4. Framework

61

Figure 14: Use case

The basic components of our context-based multimodal team scheduling application are

illustrated in Figure 15. On the one side there is a server hosting the team scheduling

server application and the database containing all team, task and project data. On the

other side is the PDA, the client, with a multimodal browser installed that displays visual

and voice output and gets the input from the user. Furthermore the client has two

applications running: the team scheduling client application and the device-context-data

application. The Teamscheduler creates the multimodal Web forms including the

scenario-specific context derived from the server and the device-specific context derived

from the device-context-data application. Server and client communicate with SOAP

messages. The client sends specific parameters via SOAP to the server, with these

parameters the server can query the database, adapt the result to the context and then

sends back the resulting context-aware data in a SOAP message to the client.

4. Framework

62

Figure 15: Basic component diagram

The sequence diagram in Figure 16 shows a few interactions of the objects of the team

scheduling scenario. The first interaction starts with the user who questions the

application for a list of all existing tasks by saying “show all tasks” or taping on the

appropriate point on the GUI. Then the Browser sends the parameter “?list=tasks” with

an HTTP request to the Teamscheduler which passes through the request unchanged to

the Server within a SOAP message. The Server queries the Database and receives a

list of all tasks in an array. Again over SOAP the Server communicates with the

Teamscheduler and sends it the list of all tasks in an XML format. After receiving the

data, the Teamscheduler checks the device context by querying the DeviceContext

object that retrieves the situation parameters to check if activating the voice modality will

be useful. This recommendation is sent to the Teamscheduler which sends HTML and if

recommended VoiceXML output to the Browser. The second and third interaction in

Figure 16 shows how context data will be used to achieve context awareness. Every

time the user looks at the details of a specific task or edits a task the Teamscheduler

gets a request from the Browser containing the id of the task for example

“?show=task&id=xyz” as shown in the second interaction of Figure 16. Then the

Teamscheduler adds the id of the requested task to a history element to save it. This

history element is used to retrieve context aware data for the “editing a new meeting”-

4. Framework

63

form. If the Teamscheduler gets the request “?form=meeting” from the browser it sends

to the Server a list with the task ids used lastly so that the Server can retrieve all data

regarding these context, shown in the third interaction of Figure 16. More context-

awareness for the Teamscheduler can be obtained. The list of projects can be adapted

in a similar way, so that it shows only projects the user has lately viewed or edited. The

list of persons can be adjusted to a list of those persons who had contact lately, who had

been in meetings with him or are working in the same projects as the user. If the device

has the possibility to get the current position of the user, for example with a GPS, this

information can be used to adapt the selectable locations to present just meeting

locations near to the user’s current location. The GPS position can be used to assume

that the user wants to make a conference call instead of a meeting because his current

position is far away or he is on the way.

4. Framework

64

Figure 16: Sequence diagram

4. Framework

65

4.3. GUI and VUI Design

We decided to use X+V for implementing the multimodal user interface because it

consists of existing XML compliant languages and the voice and the visual part can be

designed and (re)used separately. First we designed the Graphical User Interface and

implemented it in XHTML. The GUI consists of eight pages. The start page of the

application shows the menu with all possible actions the user can do (see Figure 17):

entering a new task, entering a new meeting, viewing a list of all existing tasks, viewing

a list of all entered meetings and changing the configuration.

Figure 17: Graphical User Interface: Start page – Menu

On the list of all tasks each task (see Figure 18a) can be selected to show the details of

the task and with click on an edit button (see Figure 18b) the user can change the

properties of the task. The same applies to the list of meetings (see Figure 19a and b).

Editing an existing task and entering a new task is one of the three different forms in the

application (see Figure 18c). The user can give input for the following data of a task:

description, project, start date, end date, priority and assignee. The description of the

task is a text input field. The project of the task can be selected from a list box. Start and

end date of the task are calendar dates. The priority of the task can be selected from a

list box too; this select box contains the following five values: highest, high, middle, low

and lowest. A multiple selection list box is used to assign the task to one or more

persons, the assignees of the task.

4. Framework

66

a) shows the list of all tasks

b) shows details of a task c) form to enter or edit a

task

Figure 18: Graphical User Interface – Tasks

Another form is used to enter a new meeting and accordingly to edit an existing meeting

(see Figure 19c). The following input parameter can be given for a meeting: project,

task, meeting or call, invitees, start date, start time, duration, location, notification.

Project and task can be selected again from a list box. If the meeting is where people

come together at a certain place or if it is just a conference call can be defined with a

radio button. One or more invitees for the meeting are selected using a multiple

selection list box. Start date is a calendar date and start time represents the time of day

when the meeting takes place. In the field duration the user can specify the duration of

the meeting in hours and minutes. The location of the meeting can be selected out of a

list box. If the application should send notifications to all invitees the user can specify

this by clicking the correspondent checkbox of the form.

4. Framework

67

a) shows the list of all

meetings

b) shows the details of a

meeting

c) form to enter or edit a

meeting

Figure 19: Graphical User Interface – Meetings

The third form of the application is to change the configuration of the lists, the user can

decide which properties should be shown in the lists and the sorting of the lists (see

Figure 20).

Figure 20: Graphical User Interface – Configuration

4. Framework

68

After designing the GUI and validating it is XML compliant, we designed the Voice User

Interface with VoiceXML and JSGF grammars. We composed the voice part of

meaningful prompts and reprompts in case of error, missing or misunderstanding input

and with assistant hints. We enabled almost each graphical element of the XHTML

pages for voice by entering VoiceXML snippets, correlating them with the visual part and

creating JSGF grammars or using links to existing predefined grammar files like for

example the date.jsgf representing calendar date and time. We decided that the dialog

flow is always the same as the order of the XHTML elements in the GUI. All grammars

besides the date grammar are simple grammars consisting of all possible values for the

XHTML field combined with phrases like “the assignee is”, “the task is assigned to”, “the

task is for”, “it is a task for” and so on. These grammars are all generated at runtime, we

created just a few static ones for testing purpose. For calendar dates and time we used

the existing predefined grammar date.jsgf contained in the Multimodal Toolkit of IBM’s

WebSphere Studio framework. Additionally two static grammars are created: one used

for skipping the input of a field or form and the other for the menu of the team scheduling

application. The skip.jsgf grammar allows phrases like “go forward”, “go ahead” and

“next” to skip the input of a field and give the attention to the next field. The grammar

menu.jsgf holds the phrases for selecting the menu points. Then we designed a voice

input field for each form that can be filled in at once when the user talks all input in one

whole sentence. At the end of each form we built a dialog that reprompts all given input

in a whole sentence followed by a question if the input is given correctly. So before the

data is saved, the user has the possibility to correct his input by voice.

4. Framework

69

4.4. Implementation

The team scheduling scenario is implemented as classical client-server architecture, see

Figure 21. The client runs on a mobile device in our case a PDA and the server is

responsible for saving and loading the data from a database that holds the main data of

the application. The client consists of a proxy application that exchanges data with the

server application via SOAP messages. Furthermore the proxy on the client is

responsible for the user interface and renders the visual and the voice part regarding the

context information from the device.

Figure 21: Software architecture

Our team scheduling scenario consists of two main components: a server and a client

application, both written in Java and using the Eclipse IDE for development. The server

part of the Teamscheduler consists again of two components: the server side application

teamserver and the database. The server side application teamserver is a Java Web

Service. All data is stored in a MySQL database. In our case the MySQL Server runs on

the same computer as the Teamscheduler server application, but it might be separated.

The team scheduling client application is written in Java too, but because it runs on a

small device it is implemented as an OSGi bundle running within the OSGi framework

Knopflerfish [33]. We are using the Java Virtual Machine J9 from IBM to run it on a PDA

with Windows Mobile 2003 installed. On the client there are two bundles installed, the

Teamscheduler bundle which uses a history context and the bundle which handles the

device context to achieve context-awareness. Figure 22 shows the detailed component

diagram.

4. Framework

70

Figure 22: Detailed component diagram

4.4.1. Java on a Mobile Device

The Java 2 Micro Edition (J2ME) platform allows Java to be used on small and

embedded devices. The J2ME specification defines just a small subset of the J2SE API

and two configurations of the J2ME: Connected Limited Device Configuration (CLDC)

and Connected Device Configuration (CDC). The CLDC is the smaller one and could be

implemented on many different devices with limited memory, slow processors and

having intermittent network connections like mobile phones and PDAs. Whereas CDC is

more substantial because it includes a full-featured Java virtual machine, needs more

memory, faster processors and greater network bandwidth. Both configurations support

profiles: Personal and Foundation Profile are based on CDC, PDAP and Mobile

Information Device Profile (MIDP) extends CLDC. MIDP is designed for very small

devices like mobile phones and entry-level PDAs. It provides a complete Java runtime

environment for handheld devices. Its functionalities are user interface, network

connectivity, local data storage and application management. The Foundation profile

based on the CDC provides most of the functionality of J2SE except for graphical

support. The Personal Profile extends the Foundation profile with GUI support and is for

high-end PDAs. The J9 JVM from IBM is J2ME compliant. The J9 is included in

WebSphere Everyplace Micro Environment [79] and also part of WebSphere Device

Developer [78]. We downloaded and installed a trial version of WebSphere Everyplace

Micro Environment (WEME) 5.7.2 - Personal Profile 1.0 for Windows Mobile 2003 2nd

Edition which includes a .cab file that can be executed on Windows Mobile for installing

the J9 VM on the mobile device. The J9 runtime environment of these WEME contains

Connected Device Configuration, Foundation and Personal Profile based technologies.

CDC meets the requirements for OSGi container deployment and thus enables richer

4.4. Implementation

71

Java applications on small devices. Also managed services can be deployed in OSGi

containers in form of bundles.

4.4.2. OSGi Framework

We decided to use the OSGi container technology as a framework for our client

application. The OSGi Alliance [48] has specified a Java-based service platform

enabling the deployment of services over wide area networks to local networks and

devices. The OSGi framework is the core component and it provides a standardized

environment to applications. The applications and libraries are packed into bundles and

share a single Java VM. The Framework manages the collaboration and the life cycle

(install, resolve, start, stop, refresh, update, uninstall) of these bundles. The bundles can

be remotely installed without restarts, they run unmodified on different hardware and

software architectures. A large number of standard component interfaces for common

functions like HTTP servers, configuration, logging, security, user administration, XML

and more have been defined. All of them are implemented as bundles based on the

Knopflerfish framework and can be run in this open source OSGi.

We use Knopflerfish as the framework for running our team scheduling client as an

OSGi bundle. Knopflerfish is an open source implementation of the OSGi R4 framework

specification. The OSGi Service Platform Release 4 specification defines a minimum

execution environment that is a subset of Java 2 Micro Edition, the CDC configuration

and the Foundation Profile. Knopflerfish can be installed using an installation wizard or

by simply unpacking the jar file manually to a directory on the computer. It includes the

OSGi runtime environment, the Knopflerfish framework and bundles, all Java source

code files and a build system so that Knopflerfish may be rebuild locally and a

documentation for users and developers. The framework can be started by running java

on the framework.jar file in the osgi directory or simply execute the jar file within the file

system because it is distributed as an executable jar file. After starting the framework a

default set of bundles is started, including the Knopflerfish Desktop bundle and other

useful bundles.

The framework can be controlled by xarg files. An xargs file sets the system properties,

installs and starts the bundles. The framework can be further controlled by command

line options and by setting system properties. When the framework is started at the first

time it reads in the init.xargs file which includes all start options. All bundle data is stored

in the default directory fwdir. The framework remembers its state from the previous start.

It uses the restart.xargs file for restarting, that file includes no install options but sets

system properties and uses the launch option for restarting the bundles. One can force a

4.4. Implementation

72

restart with the initial options by removing the fwdir directory or by giving the

framework.jar an adequate command line option. An xargs file must at least contain all

the options needed for installing and managing the bundles even though an empty

framework can be started too but nothing can be done in it.

We use the Eclipse IDE for developing the server part as well as for creating and

developing bundles. Therefore we installed the Knopflerfish Eclipse Plugin so that we

can define a J9 JRE under Eclipse for building, running and debugging a Java project

for J9. The Plugin includes a special editor for .manifest files, using a graphical and a

text view so that bundle.manifest files can be edited easily.

4.4.3. Multimodal Browser

Another component of the Teamscheduler client application is the Multimodal Browser

which shows the GUI and VUI of the Teamscheduler and gathers input from the user by

tapping as well as voice. There exist two Multimodal Browsers for Pocket PCs: Opera for

Sharp Zaurus and NetFront by Access Systems for Pocket PC with Windows 2003. Both

are enhanced with extensions that include the IBM speech recognition and text-to-

speech technology. We used the NetFront v3.1 Browser where a trial-version is included

in the Multimodal Toolkit of IBM. We installed the multimodal browser on the

development PC for testing purpose. A trial version of the NetFront Browser for Pocket

PC can be downloaded, it is a .cab file with a Device Installer that will be copied to the

mobile device and can be executed on it directly.

4.4. Implementation

73

Figure 23: Voice preference of NetFront multimodal browser

In the NetFront browser voice preferences can be set by selecting File -> Preferences

respectively Tools -> Browser settings in the version for Pocket PC and then choosing

the Voice tab, see Figure 23. All Voice features can be disabled but they are enabled by

default. The Listening mode can be changed from Push-to-talk mode to Push-to-activate

or Auto push to activate mode (see page 22 for a description of these listening modes).

In the PC Version of NetFront a Push-to-talk key can be set, that is a keyboard key that

can be used for activating the microphone for voice input. One of the following keys can

be selected to be the Push-to-talk key: Scroll Lock, Ins, Shift, Ctrl, F8 or F12.

Furthermore on the PC Version a Voice Log Level can be set to disabled, info, warning,

verbose or severe. Via a checkbox it can be managed if a mouse click on the screen

stops voice prompts. In the Pocket PC version of NetFront it is a stylus tab instead of the

mouse click that can be enabled to be a cancelling feature. C3N stands for Command

Control and Content Navigation which means that voice commands can be used to

activate controls in the browser, these voice commands are:

• back, forward, home

• refresh

• page up, page down

• zoom in, zoom out, normal size

• show bookmarks

• show help and

• show voice commands.

4.4. Implementation

74

A voice command must be preceded by a name which can be specified within the voice

preference, it is “browser” by default. For example the user can say “browser, show

bookmarks” to see a list of his bookmarks if the C3N option is enabled. “Browser show

voice commands” will show a list of all voice commands that can be used. After making

changes a restart of the browser is required to activate the changes.

4.4.4. Team Scheduling Server Application

The team scheduling server application consists of two components: the server and the

database. A MySQL server is used for data storage in a MySQL database. In our case

the MySQL server is running on the same computer as the team scheduling server

application, but it can be separated to different computers. The database structure is

nearly the same as the structure of the context objects which is described in Figure 12

on page 58.

The database consists of eight tables, Figure 24 shows the details of the database

tables and their relations. The project, task, team, member, location and meeting tables

hold the corresponding data. The table task_member stores the assignees of a task, it is

an m:n relation between task and member. Accordingly meeting_member stores the

invitees for a meeting, an m:n relation between meeting and member. The table project

holds the unique name of a project, its start and end date and its possible costs. For

each task is stored the description of the task, its start and end date, the priority that is a

range from highest, high, middle, low to lowest and the project name the task is part of.

The team table stores just the name of the team. For all members included in the team

scheduling scenario is stored the first and last name, the job title, department and

company where the member is working and his current location. This is the primary key

of the table location that stores country, city, zip code, street, number, floor and room

number representing the location where a member resides. For each meeting is stored:

the project and the task it deals with, the form it has, which means if it is a meeting or

call, start date and time, duration and location of the meeting and if notifications are sent

to the invitees of the meeting. The invitees of a meeting are stored in the table

meeting_member, each member can be invited to one or more meetings, a meeting can

have one or more invitees. The table task_member stores the relation between member

and task, each task can be assigned to one or more members and a member can be the

assignee of one or more tasks.

4.4. Implementation

75

Figure 24: Database tables and their relations

The team scheduling server application consists of a package containing two Java

classes. One that handles the database connection, queries the database and stores

data to the database. The other part handles the communication with the client team

scheduling application. It retrieves the request and sends back the required data within a

SOAP message.

4.4.5. Team Scheduling Client Application

The team scheduling client application runs on a small device and uses an OSGi

container as the application framework. We implemented two OSGi bundles: one is

called teamscheduler.proxy and the other is called teamscheduler.devicecontext. Both

are HTTP servlets running as bundles in the Knopflerfish framework. The bundle

teamscheduler.devicecontext retrieves the values of the parameters of the context

object, representing the situation of the device. These parameters are: noise, privacy,

disturbance and activity. Details are described in Figure 12 on page 58.

Different methods can be used to detect the values. The parameter noise identifies the

loudness of the surrounding environment and can be retrieved using the microphone of

the PDA. The microphone takes an audio sample, which is the input of a function that

calculates the root-mean-square (RMS), a measure of loudness. This RMS value is

4.4. Implementation

76

compared with reference values representing several noise levels so that it can be

mapped to a certain situation. For each reference situation a minimum and maximum

value has been set. The reference situations are for example: a quiet environment like

an office, a little bit louder like an office room where a few other persons are working, a

louder room like a meeting room during a talk or a discussion and the loudest

environment like a bar in the evening. Each reference value is assigned to a situation

representing an environment of certain loudness from silent to loudest. These reference

values are depending on the used device and therefore have to be adjusted if a different

device will be used. The reference values can be retrieved using the root-mean-square

function too. The sample code uses the .NET Compact Framework and can be

downloaded from the Article of MSDN Magazine [8].

The situation parameter privacy represents if the user wants to keep his privacy, which

means that using voice mode is most likely unwanted. This can be determined by his

current location. If the user is at a private location like his home or his office he may

prefer voice mode but if he is at a public location like a meeting room or in the subway

he may want to keep his privacy and prefers text output and tapping for giving input. On

the basis of the numbers of people with the same current location as the user the

parameter disturbance can be set. If there are other people around him they may be

disturbed when the user talks to the application respectively the Teamscheduler uses

voice as output method. Whereas if the user is alone nobody can be bothered by using

voice. The fourth parameter is activity where calendar information of the user and his

current location is used to retrieve if the application has the primary or secondary

attention focus of the user. If the application has just the secondary attention of the user

because he is driving a car then using voice may be more useful and safer.

The situation parameters are describing the device context and are used to decide

which the best suitable modality is: voice or text. Currently each parameter can have just

the value 0 or 1 where 0 means text and 1 means voice is the best modality. In future

extension a range of values may be used for each parameter so that the combination of

them gives more possibilities for deciding if voice or text is the most suitable modality. At

present the teamscheduler.proxy bundle reads out the device context parameters and if

all parameters are set to 1 then it determines voice as the best suitable modality.

The main application on the client device is the teamscheduler.proxy bundle. It is

implemented as an HTTP Servlet also. There are a few resources which are registered

when the service is added. These are a stylesheet .css file and the static JSGF

grammar files for date, menu and skip phrases. All other grammar files are dynamic and

generated at runtime. The Teamscheduler servlet handles HTTP requests with GET and

POST. Where GET request parameters are empty, list or id. If the parameter is empty

4.4. Implementation

77

then it shows the menu and if the parameter is list the list of all tasks is shown. The

parameter id is used to retrieve detailed data of a certain task so that a detailed view of

a task can be shown. The POST request parameters are id or save. If the parameter id

is empty, then an empty form for editing a new task is requested otherwise if the id is not

empty the form is filled in with the data of the corresponding task. If the button save in

the form was clicked, then the POST request parameter save is sent.

The taskHistory array holds the ids of five lastly used tasks and is used to achieve

context-awareness. The id of a certain task is stored in this array whenever the user

requests the details of a task or edits the parameters of a task. After a new task has

been entered the id is also stored in the taskHistory array. If an empty meeting form is

requested this history context array is used to set the task list box. For now we have just

implemented this task-awareness, but this can further be extended with more context-

awareness. For example the project list box can be adjusted in a similar way, so that it

list projects the user has viewed or edited lately. The list of task assignees and meeting

invitees can be adapted with using task and project information of the members to show

just persons who are working at the same projects and tasks. Furthermore if we have a

device with GPS the current location of the user can be used to retrieve just meeting

locations that are near to the user and to identify if the user is far away or on the way so

that the form of the meeting may be a conference call.

4.4.6. Deployment

We used three different environment configurations:

1. a PC with Windows XP running all parts of the team scheduling scenario,

2. the same PC for the server application and the database but the client application

running in a Windows Mobile 5 Emulator Image for Pocket PC in Microsoft Device

Emulator [10] and

3. the client application running on a HP iPAQ hx4700 PDA with Windows Mobile

2003 installed and again the PC with Windows XP hosts the database and the

server application.

Running all parts on one Windows XP PC was used just for development, debugging

and testing purpose because it is easier to handle and to trace all debugging messages

and output parallel at runtime. On the Windows XP PC we used the Java SE Runtime

Environment 1.6 and started Knopflerfish in the standard configuration. This includes the

Desktop bundle which is a graphical overview of the OSGi framework so that managing

bundles is easier. The multimodal browser NetFront looks just a little bit different than

4.4. Implementation

78

the version for the PDA.

The deployment on the iPAQ and the Device Emulator is nearly the same. We specified

in the Device Emulator a certain folder on the host as the shared folder for exchanging

data between the host system and the Windows Mobile Emulator. For exchanging data

with the iPAQ we used ActiveSync. As Java Runtime Environment we needed a Java

Micro Edition which is especially for mobile devices. The J9 VM is a J2ME compliant that

allows Java applications to run on small devices. We installed the J9 VM included in the

trial version of WEME for Windows Mobile 2003. If the installer on the PC can establish

an ActiveSync connection between the mobile device and the PC then it is installed on

the mobile device too automatically. Manually it can be installed by copying the .cab file

to the mobile device and executing it there. The .cab file includes the Device Installer of

WEME. Then we installed the open source OSGi framework Knopflerfish with a minimal

set of bundles to save memory and disk space. Additionally included are the bundles

HTTP-Server and JSDK lib and of course our own implemented bundles

teamscheduler.proxy and teamscheduler.devicecontext.

Instead of executing Knopflerfish and J9 from command line as on the Windows XP PC

we need a shortcut file to run them on small mobile devices like the iPAQ or the Device

Emulator. With a shortcut we can execute a program with parameters on Windows

Mobile because it does not have a command line. A shortcut file has the extension .lnk

and contains the command to be executed. It consists of a number that describes the

length of the command line, followed by the # character and the actual command to be

executed. In our case it looks like this:

255#"\Program Files\J9\PPRO11\bin\j9.exe" "-jcl:ppro11" "-cp"

"\Program Files\kf\framework.jar" org.knopflerfish.framework.Main

The command must be one single line and must not be more than 255 bytes long. The

command with parameters can then be executed on the mobile device with the shortcut

file. Figure 25 shows the output of the J9 console after calling the .lnk file that launches

the Knopflerfish framework with the bundles of the team scheduling client application.

4.4. Implementation

79

Figure 25: J9 console with Knopflerfish framework launched

The last step was to install the Multimodal Browser. We installed the NetFront Browser

which is included in the Multimodal Tools package. There exists a special PDA version

where the Device Installer is in a .cab file, which is transferred to the iPAQ or Device

Emulator and installed by executing this cab file.

4.4.7. Deployment Problems

Unfortunately we had troubles with deploying the team scheduling client application on

mobile devices, on an emulator as well as on the PDA. We have not yet found an

emulator which runs all our team scheduling client components. We tried a few Windows

Mobile 2003 Emulator Images for Pocket PCs that were available in Microsoft Visual

Studio 2003. But in none of them we got any version of the IBM J9 JVM running.

Furthermore we had troubles with memory and disc space, it was not possible to

enlarge these parameters even though the emulator had this feature. Then we tried the

Standalone Device Emulator with a Windows Mobile 5.0 Image. Therefore we used a

trial version of WEME 6.1 which contained the J9 with CDC Foundation 1.1 and

Personal Profile 1.1 for PDAs running Windows Mobile 5.0. The LIB and BIN directories

of the J9 had to be copied manually to the emulator using a shared folder that could be

defined in the Device Emulator. We got the J9 JVM running and also the open source

OSGi Knopflerfish in a minimal configuration and with our team scheduling bundles. But

then we had troubles with the NetFront multimodal browser. Most of the time the

4.4. Implementation

80

NetFront browser did not perform correctly, sometimes it even did not open just a simple

HTML file or it did not respond. But sometimes the browser rendered HTML and X+V

files correctly. Unfortunately it was irreproducible under which configurations and

requirements the NetFront browser will render files correctly without hanging up.

Furthermore it was not possible to use a microphone with these emulators.

On the PDA the NetFront Browser worked correctly, we could use voice to fill in the

multimodal examples which were installed with the multimodal browser. We had no

troubles running J9 JVM and the Knopflerfish OSGi with the bundles of our team

scheduling application. But running both the JVM with Knopflerfish and the NetFront

browser caused problems because of limited memory space. Additionally we had

difficulties setting up the WLAN configuration of the PDA but this is beyond the scope of

this paper.

4. Framework

81

4.5. Evaluation

We evaluated the usefulness and usability of the team scheduling application in a user

study. We asked different users with varying experiences in using mobile devices to

participate. A few were novices and had never used a PDA while some had used Pocket

PCs before, for navigation or calendar applications and a few were nearly experts in

using mobile devices of various types. But none of them had ever used a multimodal

application. First of all we gave them a little demonstration to explain the features of the

application and how they can use the voice modality. Moreover each user was

familiarized with the allowed grammar rules and utterances. Additionally they got some

instructions about the tests they were expected to carry out: The user should create

some new tasks and then a new meeting dealing with one of the formerly entered tasks.

He should use voice or text or both as he may prefer.

A test of the team scheduling application should look like the following. After the user

has started the application and has logged in, he first sees the Teamscheduler Menu

(Figure 26) where he can decide what he wants to do: enter a new task or a new

meeting or view a list of all existing tasks. He may use the voice button of the multimodal

browser to give his voice input or use the pen and tap on the screen to select an item of

the menu.

4. Framework

82

Figure 26: Teamscheduler – Menu

In the next test case the user should enter some new tasks. He can fill in the task form,

see Figure 27, using voice or pen. He may use voice for all fields except the description

of the task which is a text field with no grammar rules behind. If he uses voice, the dialog

flow goes through the form from top to bottom while the active field is marked with a red

border. If the speech input matches the grammar rules the field is filled in with the given

input and the dialog flow proceeds with the next field. Additionally he may fill in the

whole form with almost just one sentence. Furthermore he has the possibility to use help

commands to hear all possible input values. If the speech input does not match the

grammar rules he is asked to give the input again. At the end of the form the voice

interface replays all given input and asks the user if this input is correct, then the user

can do corrections or confirm the given input which is saved then.

4. Framework

83

Figure 27: Teamscheduler – Edit Task

After having saved a task the application shows the list of all tasks, see Figure 28. On

this graphical view the user can again select a task using voice or pen. If the user uses

the voice button to give speech input the microphone icon of the multimodal browser

displays a green circle instead of a red cross. This means the microphone is active and

listening to input. There are three listening modes which can be configured in the

multimodal browser, see page 22 for details.

4. Framework

84

Figure 28: Teamscheduler – Show all Tasks

If the user selected a task out of the list of all tasks, the application shows the details of

this task, see Figure 29. The parameters of the task are shown not only graphically but

also played by voice. The user has the possibility to change the values of the task by

giving a voice command like “change” or “edit”. Here he has as well the possibility to

listen to all available speech commands when he uses the voice command “help”.

4. Framework

85

Figure 29: Teamscheduler – Show Task

After editing a few tasks the user was expected to edit a new meeting dealing with one

of the tasks he had entered before. The new meeting form, see Figure 30, is adapted

with context information. The application saved recently edited tasks and used these

parameters to fill in the options of the list boxes of project and task and the option values

of the multiple selection list box of invitees. Again the user can use his preferred input

modality, voice or pen, to fill in the form. If he uses voice he has again the possibility to

use just one sentence to specify all parameters of the meeting. As in the task edit form

he can get help about the voice commands he may use. And if the speech recognition

does not understand the given voice input he is asked to repeat his input as in the task

form. Again all given input is repeated at the end of the form and the user can make

corrections or confirm the speech input.

4. Framework

86

Figure 30: Teamscheduler – New Meeting

We observed the users while they were interacting with the application and they were

interviewed afterwards. The user tests showed an overall good acceptance for the

multimodal team scheduling application, but additionally outlined some limitations and

problems. All users had sometimes difficulties with the speech recognition, few users

had even great troubles being understood by the application. Despite these troubles with

speech recognition accuracy most of the users preferred using voice. Mostly the users

combined speech and pen inputs throughout the application. For selecting an element

out of a list like the menu of the team scheduling application or the list of tasks most

participants of our study used the pen instead of voice. Whereas filling in the form of a

task or a meeting were mostly done by voice.

After completing the tasks the participants of the study were asked to express their

satisfaction regarding the multimodal interaction in terms of usefulness and of speech

recognition accuracy. In spite of some difficulties with the accuracy of the speech

recognition nearly all participants declared that they prefer using speech. Almost 90

percent of the users liked using speech instead of pen and they considered that the

voice interaction is faster than the pen-based. Only for simple interactions like selecting

an item from the menu the pen is suggested as more suitable. All users liked that they

4. Framework

87

had the possibility to choose their preferred input modality. All users found especially the

help messages and the error handling useful when speech recognition failed. Especially

before the form is submitted when the application repeats the whole input and the user

can correct it once more was outlined as helpful. Additionally filling out the whole form at

once with one sentence was judged useful by the testers.

Also we asked the participants of our user study if they prefer using the voice part or the

graphical part of the application, for output and for giving input. Only one user preferred

using just the visual interface for input and output. He found it embarrassing to talk to a

PDA. Additionally he outlined that he would prefer using mouse and keyboard because

he feels more comfortable with these traditional devices. While one user suggested that

he would like to use only voice mode. He stated that he is often on the way, for example,

driving a car, and then he needs his hands and eyes free and would like to handle such

a team scheduling application with his voice. While all other preferred using text and

voice in combination. Mostly the users preferred multimodal interaction using speech

and thought that they were more efficient with this kind of interface. Especially the visual

feedback like output on the GUI was outlined as important and helpful.

Our evaluation took place in an office environment where it was rather very silent so that

we had ideal conditions for accurate voice recognition. Further evaluation should be

done in other environments with various noise levels to prove if ambient noise levels are

a problem. Moreover this is needed to test if the application uses the adequate modality.

The application uses the context of the device to decide which the best modality for the

current situation is, voice or text. In a further user study it should be tested if the

participants follow this suggestion. But for now we asked the users if they would prefer

using voice in other situations too. Just one user requested pen-only interaction in a

situation where other people are around him because he might not necessarily want

others to know what he is doing and furthermore he did not want to disturb others. While

most of the users would not mind if other people heard them talking and listening to a

mobile device, because it is the same as using a mobile phone.

88

5. Conclusion and Outlook

This work deals with the problem that mobile collaboration systems running on mobile

devices like PDAs have to overcome the limitations of small devices like screen

resolution and unusual input facilities. Furthermore mobile users are often on the way

and therefore prefer hands- and eyes-free interaction with the system. Using speech as

input mode would improve such systems but having speech as the only input and output

modality is not practical. There may be situations where the user would prefer using a

stylus to give text input to keep his privacy or because of ambient noise. With a

multimodal application the user has the possibility to interact with the interface using his

preferred mode or the most appropriate mode for the current situation. For example he

has the choice to use speech as the easier mode for providing input or he may prefer an

input device such as a stylus, keypad or mouse to protect privacy or due to surrounding

noise. Furthermore he may use voice, keyboard, mouse and pen in a synergistic way.

The output can be audio as spoken prompts and playback, using text-to-speech or

visually on graphical displays. Additionally a multimodal application simplifies using

speech as an input modality by allowing the user to specify multiple pieces of the input

with just one spoken sentence.

Users of mobile collaboration systems handle lots of information. Therefore speech

output can be pretty long where the user has to listen a long time before he gets the

data needed. And large data leads to large grammar rules which interferes speech

recognition rates. For mobile workers it is important to get the appropriate information for

a current place and time. Making speech output context sensitive will prevent

overloading the user with unwanted information and context information can be used to

improve speech grammars. Furthermore information of the current location and situation

of the user can be used to find the adequate modality. In a noisy environment or when

other people are around the user the best input and output mode will be the GUI using

pen and display. Whereas speech will be the better modality for input and output when

the user is driving a car and needs his hands and eyes free and cannot fully concentrate

on the GUI. Enhancing a mobile collaboration system with multimodal interaction and

additionally using context-based data for speech input and output will improve such a

system considerably.

Within this thesis we implemented a team scheduling application for a PDA to show how

context-based multimodal interaction can be used to improve mobile collaboration. With

our team scheduling application a project manager can schedule meetings and tasks for

5. Conclusion and Outlook

89

his team. A common Web application is enhanced with a speech-enabled Web form that

gives the user the possibility to fill out the form by giving voice commands or combining

text and voice input. The application consists of a server part and a client part. The

teamserver application holds the database and serves all data requests. The client part

runs on an HP iPAQ and consists of a multimodal browser and a Java application that is

implemented as a bundle running in the Knopflerfish OSGi framework. Client and server

communicate with SOAP messages. We used XHTML+Voice as the markup language

to enable voice with VoiceXML snippets in an XHTML Web form. On the PDA we used

the multimodal browser NetFront that can interact with multimodal applications written in

XHTML+Voice. The browser handles the user input and the system output, speech and

text. NetFront is enhanced with IBMs speech recognition and synthesis technology.

Most of the time speech recognition has functioned accurate and brought promising

results. But the system configuration of the used mobile device, an HP iPAQ, has been

insufficient. Limited memory space has led to troubles running both the JVM with

Knopflerfish including our team scheduling client application and the multimodal browser

NetFront. Sometimes it worked, but sometimes starting one application forced closing

the other application because of the limited memory space. The decision when speech

will be the best modality for the current situation depends on a few context parameters.

We used just a simple key-value model where a value of 0 means text and a value of 1

means voice is the best mode. But just if all parameters are set to 1 speech-output and

speech-input will be used. If just one parameter has the value 0 text is used as input and

output mode. It would be better to use a range of values instead of just 0 or 1 and to

decide which parameter has to be used strict and which can have a wider range to

accept voice-output. In a further user study taking place at different places of diverse

noise levels could be tested if the participants follow the suggestion of the best modality

to find out which parameter can have what values.

Future extensions should implement additional context-awareness. At this time the team

scheduling application uses just information about recently used tasks to adapt the list

box of tasks. The project list box can be adjusted in a similar way, so that it lists projects

the user has viewed or edited lately. The list of task assignees and meeting invitees can

be adapted with using task and project information of the members to show just persons

who are working in the same projects and tasks. Furthermore if we have a device with

GPS the current location of the user can be used to retrieve just meeting locations that

are close to the user and to identify if the user is far away or on the way so that the form

of the meeting might be a conference call.

In our future work it would be interesting and make sense to enable the client application

to run on a smart phone. Over the past years smart phones have replaced mobile

5. Conclusion and Outlook

90

devices like the HP iPAQ in the area of PDAs. They have considerably higher

performance and memory space. Additionally research has to be done in the area of

speech technology, because the multimodal browser NetFront does not exist anymore

and above all is not advanced anymore. The other XHTML+Voice enabled browser

Opera does not support voice in the version for mobile devices. So our future work has

to be done with other speech engines and maybe with another multimodal language for

example with EMMA. This will be additionally advantageous because EMMA supports

other input modes too. We currently support voice and text as possible input modalities,

other modalities especially handwriting recognition will be an important additional input

mode for the future. Pen or stylus can be used for handwriting, drawing and making

notations.

We think that speech is the most convenient and natural way of interacting with other

people and with the computer too. Multimodal interaction, a combination of speech and

other input modalities, will be an important issue in the future. This work shows that

there are other possible application domains besides navigation devices and reading

email or text messages. In the future there might be many applications supporting

multimodal interaction in challenging situations.

91

List of Figures

Figure 1: VoiceXML architecture ... 11

Figure 2: SALT architecture... 15

Figure 3: Speech Server.. 16

Figure 4: A speech enabled Web form with X+V code segments 20

Figure 5: Input components of a multimodal system generating EMMA........................ 23

Figure 6: Deployment of SALT applications using Visual Studio with SASDK............... 29

Figure 7: The Multimodal Toolkit for developing X+V applications 30

Figure 8: Basic steps to create an X+V application ... 31

Figure 9: An OpenVXML voice application .. 33

Figure 10: Basic scenario – team scheduling .. 54

Figure 11: Team scheduling with context-based multimodal interaction........................ 56

Figure 12: Diagram of context objects ... 58

Figure 13: Flowchart of finding the best modality with the situation parameters............ 60

Figure 14: Use case .. 61

Figure 15: Basic component diagram .. 62

Figure 16: Sequence diagram ... 64

Figure 17: Graphical User Interface: Start page – Menu ... 65

Figure 18: Graphical User Interface – Tasks ... 66

Figure 19: Graphical User Interface – Meetings .. 67

Figure 20: Graphical User Interface – Configuration ... 67

Figure 21: Software architecture.. 69

Figure 22: Detailed component diagram.. 70

Figure 23: Voice preference of NetFront multimodal browser.. 73

Figure 24: Database tables and their relations .. 75

Figure 25: J9 console with Knopflerfish framework launched.. 79

Figure 26: Teamscheduler – Menu.. 82

Figure 27: Teamscheduler – Edit Task.. 83

Figure 28: Teamscheduler – Show all Tasks... 84

Figure 29: Teamscheduler – Show Task ... 85

Figure 30: Teamscheduler – New Meeting.. 86

92

Bibliography

[1] Ancona, M.; Dodero, G.; Minuto, F.; Guida, M. and Gianuzzi, V.: Mobile computing

in a hospital: the WARD-IN-HAND project. In Proceedings of the 2000 ACM

Symposium on Applied Computing - Volume 2 (Como, Italy). J. Carroll, E.

Daminani, H. Haddad, and D. Oppenheim, Eds. SAC '00. ACM Press, New York,

NY, 554-556. DOI= http://doi.acm.org/10.1145/338407.338419

[2] Andolina, S.; Santangelo, A.; Cannella, M.; Gentile, A.; Agnello, F.; Villa, B.:

Multimodal virtual navigation of a cultural heritage site: The medieval ceiling of

Steri in Palermo. Human System Interactions, 2009. HSI '09. 2nd Conference on

21-23 May 2009 Page(s):562 – 567. Digital Object Identifier

10.1109/HSI.2009.5091039

[3] Bardram, J. E. and Hansen, T. R. : The AWARE architecture: supporting context-

mediated social awareness in mobile cooperation. In Proceedings of the 2004

ACM Conference on Computer Supported Cooperative Work (Chicago, Illinois,

USA, November 06 - 10, 2004). CSCW '04. ACM Press, New York, NY, 192-201.

DOI= http://doi.acm.org/10.1145/1031607.1031639

[4] Belotti, R.; Decurtins, C.; Norrie, M. C.; Signer, B. and Vukelja, L: Experimental

platform for mobile information systems. In Proceedings of the 11th Annual

international Conference on Mobile Computing and Networking (Cologne,

Germany, August 28 - September 02, 2005). MobiCom '05. ACM Press, New York,

NY, 258-269. DOI= http://doi.acm.org/10.1145/1080829.1080856

[5] Bolelli, L.; Cai, G.; Wang, H.,;Mortazavi, B.; Rauschert, I.; Fuhrmann, S.; Sharma,

R. and MacEachren, A.: Multimodal interaction for distributed collaboration. In

Proceedings of the 6th international Conference on Multimodal interfaces (State

College, PA, USA, October 13 - 15, 2004). ICMI '04. ACM Press, New York, NY,

327-328. DOI= http://doi.acm.org/10.1145/1027933.1027990

[6] Bouyer, A.; Chuffart, F.; Courval, L: The Design of a Multimodal Platform:

Experimentation of Record & Replay. Advances in Computer-Human Interactions,

2009. ACHI '09. Second International Conferences on 1-7 Feb. 2009 Page(s):1 - 6

Digital Object Identifier 10.1109/ACHI.2009.27

[7] Bühler, D.; Minker, W.: Mobile Multimodality – Design and Development of the

SmartKom Companion. In Journal of Sol-Gel Science and Technology, Volume 8,

Issue 2, Jun 2005, Pages 193 - 202, DOI 10.1007/s10971-005-2170-y, URL

http://dx.doi.org/10.1007/s10971-005-2170-y

[8] Chris Mitchell, Anpassen der Klingellautstärke an Umgebungsgeräusche, 1.8.2010,

http://msdn.microsoft.com/de-de/magazine/cc163341.aspx

Bibliography

93

[9] Deng, L.; Wang, Y.; Wang, K.; Acero, A.; Hon, H.; Droppo, J. ; Boulis, C. ;

Mahajan, M.; Huang, X.D.: Speech and Language Processing for Multimodal

Human-Computer Interaction. The Journal of VLSI Signal Processing, Volume 36,

Issue 2 - 3, Feb 2004, Pages 161 - 187, DOI

10.1023/B:VLSI.0000015095.19623.73, URL

http://dx.doi.org/10.1023/B:VLSI.0000015095.19623.73

[10] Device Emulator wth Windows Mobile 5.0, 1.8.2010,

http://www.microsoft.com/downloads/en/details.aspx?FamilyId=C62D54A5-183A-

4A1E-A7E2-CC500ED1F19A&displaylang=en

[11] Di Fabbrizio, G.; Okken, T. and Wilpon, J. G.: A speech mashup framework for

multimodal mobile services. In Proceedings of the 2009 international Conference

on Multimodal interfaces (Cambridge, Massachusetts, USA, November 02 - 04,

2009). ICMI-MLMI '09. ACM, New York, NY, 71-78. DOI=

http://doi.acm.org/10.1145/1647314.1647329

[12] Dorn, C.; Schall, D.; Gombotz, R.; Dustdar, S.: A View-Based Analysis of

Distributed and Mobile Teams. WETICE 2007: 198-203

[13] Dorn, C.;Schall, D.; and Dustdar S.: Granular context in collaborative mobile

environments. In International Workshop on Context-Aware Mobile Systems

(CAMS’06), Montpellier, France. Springer.

[14] Du, H.; Crestani, F.: Spoken versus Written Queries for Mobile Information Access.

Lecture Notes in Computer Science, Volume 2954, Jan 2004, Pages 67 – 78

[15] Dusan, S.; Gadbois, G.J.; Flanagan, J.: Multimodal interaction on PDA’s integrating

speech and pen inputs. Eurospeech (2003).

[16] Dustdar, S.: Caramba - A Process-Aware Collaboration System Supporting Ad hoc

and Collaborative Processes in Virtual Teams. In Distributed and Parallel

Databases, vol. 15, no. 1, pp. 45–66, January 2004.

[17] Eclipse Voice Tools Project, 29.8.2010, http://eclipse.org/vtp/

[18] Eclipse, 1.9.2010, http://www.eclipse.org

[19] EMMA, 20.5.2010, http://www.w3.org/TR/emma/

[20] Esbjörnsson, M.: From ethnography on infrastructure management to initial user

feedback on PlaceMemo. In Personal Ubiquitous Comput. 10, 4 (Mar. 2006), 195-

204. DOI= http://dx.doi.org/10.1007/s00779-005-0041-8

[21] eVALUES, 1. 7. 2008, http://evalues.moviquity.com/

[22] Ghiani, G.; Paterno, F.; Santoro, C.; Spano, L. D.: UbiCicero: A location-aware,

multi-device museum guide. Interacting with Computers, Volume 21, Issue 4,

Bibliography

94

August 2009, Pages 288-303, ISSN 0953-5438, DOI:

10.1016/j.intcom.2009.06.001.

http://www.sciencedirect.com/science/article/B6V0D-4WGBFKG-

1/2/36207800e2ab702fabc2d48e9a1121fd

[23] Goose, S.; Newman, M.; Schmidt, C.; Hue, L.: Enhancing Web accessibility via the

Vox Portal and a Web-hosted dynamic HTMLVoxML converter. Computer

Networks 33(1-6): 583-592 (2000)

[24] Goose, S.; Wanning, H.; Schneider, G.: Mobile Reality: A PDA-Based Multimodal

Framework Synchronizing a Hybrid Tracking Solution with 3D Graphics and

Location-Sensitive Speech Interaction. In Lecture Notes in Computer Science,

Volume 2498, Jan 2002, Page 33

[25] GPS-Wegbegleitung für die Bundesgartenschau, 1. 7. 2008,

http://www.heise.de/newsticker/meldung/58648

[26] IBM Multimodal, 1. 7. 2008, http://www-

306.ibm.com/software/pervasive/multimodal/

[27] IBM WebSphere development tools, 1. 7. 2008,

http://www.ibm.com/developerworks/websphere/zones/studio/

[28] JSGF Specification, 1.7.2010, http://www.w3.org/TR/jsgf/

[29] Kadous, M. W.; Sammut, C. : InCA: A Mobile Conversational Agent. Lecture Notes

in Computer Science, Volume 3157, Jan 2004, Pages 644 – 653

[30] Kane, S. K.; Jayant, C.; Wobbrock, J. O. and Ladner, R. E.: Freedom to roam: a

study of mobile device adoption and accessibility for people with visual and motor

disabilities. In Proceedings of the 11th international ACM SIGACCESS Conference

on Computers and Accessibility (Pittsburgh, Pennsylvania, USA, October 25 - 28,

2009). Assets '09. ACM, New York, NY, 115-122. DOI=

http://doi.acm.org/10.1145/1639642.1639663

[31] Kernchen, R.; Boda, P.P.; Moessner, K.; Mrohs, B.; Boussard, M.; Giuliani, G.:

Multimodal user interfaces for context-aware mobile applications. Personal, Indoor

and Mobile Radio Communications, 2005. PIMRC 2005. IEEE 16th International

Symposium on Volume 4, 11-14 Sept. 2005 Page(s):2268 - 2273 Vol. 4 Digital

Object Identifier 10.1109/PIMRC.2005.1651849

[32] Kleindienst, J.; Macek, T.; Seredi, L.; Sedivy, J.: Interaction framework for home

environment using speech and vision. Image and Vision Computing, Volume 25,

Issue 12, The age of human computer interaction, 3 December 2007, Pages 1836-

1847, ISSN 0262-8856, DOI: 10.1016/j.imavis.2006.04.026.

Bibliography

95

http://www.sciencedirect.com/science/article/B6V09-4M2WP0D-

2/2/04fbbea472fa82a7a0371bb62ce5e129

[33] Knopflerfish, 1.7.2008, http://www.knopflerfish.org/

[34] Mamykina, L.; Goose, S.; Hedqvist, D.; Beard, D. V.: CareView: analyzing nursing

narratives for temporal trends. CHI Extended Abstracts 2004: 1147-1150

[35] Mantoro, T. and Johnson, C.: Location history in a low-cost context awareness

environment. In Proceedings of the Australasian information Security Workshop

Conference on ACSW Frontiers 2003 - Volume 21 (Adelaide, Australia). C.

Johnson, P. Montague, and C. Steketee, Eds. ACM International Conference

Proceeding Series, vol. 34. Australian Computer Society, Darlinghurst, Australia,

153-158.

[36] Marmasse, N.; Schmandt, C.: Location-Aware Information Delivery with

ComMotion. Lecture Notes in Computer Science, Volume 1927, Jan 2000, Page

157

[37] Marx, M. and Schmandt, C.: CLUES: dynamic personalized message filtering. In

Proceedings of the 1996 ACM Conference on Computer Supported Cooperative

Work (Boston, Massachusetts, United States, November 16 - 20, 1996). M. S.

Ackerman, Ed. CSCW '96. ACM Press, New York, NY, 113-121. DOI=

http://doi.acm.org/10.1145/240080.240230

[38] Marx, M. and Schmandt, C.: MailCall: message presentation and navigation in a

nonvisual environment. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems: Common Ground (Vancouver, British Columbia,

Canada, April 13 - 18, 1996). M. J. Tauber, Ed. CHI '96. ACM Press, New York,

NY, 165-172. DOI= http://doi.acm.org/10.1145/238386.238467

[39] Meng, H.; Ching, P. C.,;Chan, S. F.; Wong, Y. F. and Chan, C. C.: ISIS: an

adaptive, trilingual conversational system with interleaving interaction and

delegation dialogs. In ACM Trans. Comput.-Hum. Interact. 11, 3 (Sep. 2004), 268-

299. DOI= http://doi.acm.org/10.1145/1017494.1017497

[40] Microsoft Speech Application SDK, MSDN Library, 1. 7. 2008,

http://msdn.microsoft.com/en-us/library/ms986944

[41] Microsoft Speech Server, 1. 7. 2008,

http://www.microsoft.com/speech/default.mspx

[42] MONA - Mobile Multimodal Next Generation Applications, 20. 5. 2010,

http://mona.ftw.at

[43] Multimodal Tools Project for Eclipse, November 2006,

http://www.alphaworks.ibm.com/tech/mmtp

Bibliography

96

[44] Muñoz, M. A.; Rodríguez, M.; Favela, J.; Martinez-Garcia, A. I. and González, V.

M.: Context-Aware Mobile Communication in Hospitals. In Computer 36, 9 (Sep.

2003), 38-46. DOI= http://dx.doi.org/10.1109/MC.2003.1231193

[45] NetFront Browser for Pocket PC, Access Company, 1.11.2006, http://www.access-

us-inc.com/Prod_NetFront_nf_xhtml.html

[46] O’Neill, E.; Kaenampornpan, M.; Kostakos, V.; Warr, A.; Woodgate, D.: Can we do

without GUIs? Gesture and speech interaction with a patient information system.

Personal and Ubiquitous Computing, Jan 2006, Pages 1 - 15, DOI

10.1007/s00779-005-0048-1, URL http://dx.doi.org/10.1007/s00779-005-0048-1

[47] Opera Browser V 7.55, 1.11.2006,

http://www.opera.com/products/verticals/multimodal/index.dml

[48] OSGi Alliance, 1.11.2010, http://www.osgi.org

[49] Paek, T.; Thiesson, B.; Ju, Y. and Lee, B.: Search Vox: leveraging multimodal

refinement and partial knowledge for mobile voice search. In Proceedings of the

21st Annual ACM Symposium on User interface Software and Technology

(Monterey, CA, USA, October 19 - 22, 2008). UIST '08. ACM, New York, NY, 141-

150. DOI= http://doi.acm.org/10.1145/1449715.1449738

[50] Perakakis, M.; Potamianos, A.: A Study in Efficiency and Modality Usage in

Multimodal Form Filling Systems. Audio, Speech, and Language Processing, IEEE

Transactions on Volume 16, Issue 6, Aug. 2008 Page(s):1194 – 1206. Digital

Object Identifier 10.1109/TASL.2008.2001389

[51] Pham, Thai-Lai; Schneider, Georg; Goose, Stuart: A situated computing framework

for mobile and ubiquitous multimedia access using small screen and composite

devices. ACM Multimedia 2000: 323-331

[52] Pham, Thai-Lai; Schneider, Georg; Goose, Stuart: Exploiting Location-Based

Composite Devices to Support and Facilitate Situated Ubiquitous Computing. HUC

2000: 143-156

[53] Pilotprojekt am Klinikum Saarbrücken, 1. 7. 2008,

http://www.heise.de/newsticker/meldung/58777

[54] Pokraev, S.; Koolwaaij, J.; van Setten, M.; Broens, T.; Costa, P.D.; Wibbels, M.;

Ebben, P.; Strating, P.: Service platform for rapid development and deployment of

context-aware, mobile applications, Web Services, 2005. ICWS 2005.

Proceedings. 2005 IEEE International Conference on , vol., no.pp.- 646, 11-15 July

2005

[55] Pospischil, G.; Umlauft, M. and Michlmayr, E: Designing LoL@, a Mobile Tourist

Guide for UMTS. In Proceedings of the 4th international Symposium on Mobile

Bibliography

97

Human-Computer interaction (September 18 - 20, 2002). F. Paternò, Ed. Lecture

Notes In Computer Science, vol. 2411. Springer-Verlag, London, 140-154.

[56] Rea, S. Morgan: Building Intelligent .NET Applications, Addison-Wesley, ISBN 0-

321-24626-8

[57] Reithinger, N., Alexandersson, J., Becker, T., Blocher, A., Engel, R., Löckelt, M.,

Müller, J., Pfleger, N., Poller, P., Streit, M., and Tschernomas, V. 2003. SmartKom:

adaptive and flexible multimodal access to multiple applications. In Proceedings of

the 5th international Conference on Multimodal interfaces (Vancouver, British

Columbia, Canada, November 05 - 07, 2003). ICMI '03. ACM Press, New York,

NY, 101-108. DOI= http://doi.acm.org/10.1145/958432.958454

[58] SALT, 1. 7. 2008, http://www.saltforum.org/

[59] Sawhney, N. and Schmandt, C.: Nomadic radio: speech and audio interaction for

contextual messaging in nomadic environments. ACM Trans. Comput.-Hum.

Interact. 7, 3 (Sep. 2000), 353-383. DOI=

http://doi.acm.org/10.1145/355324.355327

[60] Schall, D.; Dorn, C.; Dustdar, S. (2008): Context-aware Mobile Computing. In

Encyclopedia of Wireless and Mobile Communications, CRC Press

[61] Schall, D.; Gombotz, R.; Dorn, C.; Dustdar, S.: Human Interactions in Dynamic

Environments through Mobile Web Services. ICWS 2007: 912-919

[62] Schmandt, C.; Lee, K. H.; Kim, J. and Ackerman, M.: Impromptu: managing

networked audio applications for mobile users. In Proceedings of the 2nd

international Conference on Mobile Systems, Applications, and Services (Boston,

MA, USA, June 06 - 09, 2004). MobiSys '04. ACM Press, New York, NY, 59-69.

DOI= http://doi.acm.org/10.1145/990064.990074

[63] Schmandt, C.; Marmasse, N.; Marti, S.; Sawhney, N.; Wheeler, S.: Everywhere

messaging. IBM Systems Journal 2000; 39(3/4)

[64] Schneider, G.; Hoymann, C.; Goose, S.: Adhoc Personal Ubiquitous Multimedia

Services Via Upnp. ICME 2001

[65] Semantic Interpretation for Speech Recognition, 1.7.2008,

http://www.w3.org/TR/semantic-interpretation/

[66] Semantic Markup Language Reference, 1.8.2010, http://msdn.microsoft.com/en-

us/library/ff394926.aspx

[67] SHARE Project, 20.5.2010, http://www.ist-share.org

[68] Speech Recognition Grammar Specification, 1.7.2008,

http://www.w3.org/TR/speech-grammar/

Bibliography

98

[69] Speech Synthesis Markup Language (SSML), 1.7.2008,

http://www.w3.org/TR/speech-synthesis/

[70] T. van Do, I. Jørstad, S. Dustdar. Mobile Multimedia Collaborative Services. In

Handbook of Research on Mobile Multimedia, Edited by Ismail Khalil Ibrahim, Idea

Group Publishing, USA, 2006

[71] Tang, J. C.; Yankelovich, N.; Begole, J.; Van Kleek, M.; Li, F. and Bhalodia, J.:

ConNexus to Awarenex: extending awareness to mobile users. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems (Seattle,

Washington, United States). CHI '01. ACM Press, New York, NY, 221-228. DOI=

http://doi.acm.org/10.1145/365024.365105

[72] Truong, H.L.; Dustdar, S.; Baggio, D.; Corlosquet, S.; Dorn, C.; Giuliani, G.;

Gombotz, R.; Hong, Y.; Kendal, P.; Melchiorre, C.; Moretzky, S.; Peray, S.;

Polleres, A.; Reiff-Marganiec, S.; Schall, D.; Stringa, S.; Tilly, M.; Yu, H. Q.:

inContext: A Pervasive and Collaborative Working Environment for Emerging

Team Forms. SAINT 2008: 118-125

[73] VoiceXML Forum, 20. 5. 2010, http://www.voicexml.org/

[74] VoiceXML, 20. 5. 2010, http://www.w3.org/TR/voicexml20/

[75] W3C “Voice Browser” Working Group, 20.5.2010, http://www.w3.org/Voice/

[76] W3C Multimodal Interaction Framework, 1.7.2010, http://www.w3.org/TR/mmi-

framework/

[77] Wasinger, R.; Krüger, A.; Jacobs, O.: Integrating Intra and Extra Gestures into a

Mobile and Multimodal Shopping Assistant. In Lecture Notes in Computer Science,

Volume 3468, Jan 2005, Pages 297 - 314, DOI 10.1007/11428572_18, URL

http://dx.doi.org/10.1007/11428572_18

[78] WebSphere Device Developer 5.7.1, 1.7.2008,

http://www.ibm.com/software/wireless/wsdd/

[79] WebSphere Everyplace Micro Environment, 1.7.2008, http://www-

306.ibm.com/software/wireless/weme/

[80] XHTML, 20. 5. 2010, http://www.w3.org/TR/xhtml1/

[81] XHTML+Voice Programmer’s Guide, IBM WebSphere Multimodal Toolkit

[82] XHTML+Voice, 1. 7. 2008, http://www.voicexml.org/specs/multimodal/x+v/12/

[83] XML Events, 20. 5. 2010, http://www.w3.org/TR/xml-events/

