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Kurzfassung

Quaternäre Selten-Erd Nickel Boronitride R3Ni2B2N3−δ sind intermetal-
lische Verbindungen mit einer einzigartigen, geschichteten Kristallstruktur,
die sich aus alternierenden NiB Lagen (Anordnung im PbO-Typ) und LaN
dreifach Lagen (Schicht im NaCl-Typ) zusammensetzt. Ihre besonderen
physikalischen Eigenschaften wie Supraleitung und Selten-Erd Magnetismus
qualifizieren diese Verbindungen für Untersuchungen des Wechselwirkung von
Supraleitung und Magnetismus.

Im Rahmen dieser Dissertation werden kristallchemische und elektronische
Grundzustandseigenschaften von R3Ni2B2N3−δ mit R= La, Ce, Pr und Nd
untersucht. Wie mit Pulver-Röntgendiffraktion gezeigt wird, kristallisieren
alle diese Verbindungen und deren Mischkristallreihen in der raumzentri-
ert tetragonalen La3Ni2B2N3 Struktur. Das Substituieren von La durch
Ce, Pr oder Nd in (La,R)3Ni2B2N3−δ führt zu einer sukzessiven Unterdrück-
ung der Supraleitung, die im Rahmen der Abrikosov-Gorkov Paarbrechungs-
theorie analysiert wird. Während die erstmalig hergestellte Verbindung
Nd3Ni2B2N3−δ zwei magnetische Phasenübergange, einen ferrimagnetischen
und eine Spin-Reorientierung zu einem nahezu antiferromagnetischen Zu-
stand, zeigt, wurde für Pr3Ni2B2N3−δ keine langreichweitige magnetische Ord-
nung festgestellt. Die Temperaturabhängigkeiten der physikalischen Eigen-
schaften von Ce3Ni2B2N3−δ charakterisieren diese Verbindung als zwischen-
valentes System mit einer Cer Valenz nahe 3.2. Das Verhalten des elektrischen
Widerstandes und der Thermokraft werden im Rahmen eines Anderson Git-
termodels diskutiert.

Untersuchungen mittels Röntgen- und Neutronendiffraktion an
La3Ni2B2N3−δ offenbaren eine endliche Ausdehnung der Phasenbildung
bezüglich der N-Stöchiometrie. Eigenschaften im normalleitenden und
supraleitenden Zustand wurden durch Messungen von Transporteigen-
schaften, der Magnetisierung und der spezifischer Wärme untersucht. Eine
systematische Abnahme der supraleitenden Sprungtemperatur Tc von 14 K
auf 12 K und bemerkenswerte Zusammenhänge mit Änderungen normal-
leitender Eigenschaften wie dem Restwiderstand mit zunehmender Häufigkeit
von N-Fehlstellen wurden festgestellt. Starke paarbrechende Effekte durch
Fehlstellen oder andere nichtmagnetische Gitterstörungen weisen im Allge-
meinen auf einen unkonventionellen supraleitenden Ordnungsparameter
hin. Die Auswertung thermodynamischer Eigenschaften des supraleitenden
Zustandes von La3Ni2B2N3−δ sowie Vergleiche mit theoretischen Modellen
bezeugen aber einen s−Wellen Ordnungsparameter mit einer vollständig
ausgebildeten Energielücke.



Abstract

Quaternary rare-earth nickel boronitrides R3Ni2B2N3−δ are intermetallic
compounds with a unique layered crystal structure where NiB layers (PbO-
type sheets) alternate with LaN triple-layers (rock salt type sheets) and they
exhibit interesting physical properties such as superconductivity and rare
earth magnetism and are, thus, candidates for studying the interplay of su-
perconductivity and magnetism.

In the scope of this thesis crystal-chemistry and electronic ground state
properties of R3Ni2B2N3−δ (R=La, Ce, Pr, Nd) were investigated. Powder
X-ray diffraction studies confirmed all these compounds and their solid so-
lutions to crystallize in the body centered tetragonal La3Ni2B2N3 structure
type. The substitution of La by Ce, Pr or Nd in (La,R)3Ni2B2N3−δ leads
to a gradual suppression of superconductivity which is analyzed in terms of
Abrikosov-Gorkov pair breaking effects. The novel compound Pr3Ni2B2N3−δ
is found to exhibit no long range magnetic order while Nd3Ni2B2N3−δ shows
ferrimagnetic ordering and a spin re-orientation transition to a nearly anti-
ferromagnetic state. Temperature dependent physical properties characterize
Ce3Ni2B2N3−δ as an intermediate valence system with a cerium valence near
3.2. The electrical resistivity and thermoelectric power of Ce3Ni2B2N3−δ are
analyzed in terms of the degenerate Anderson lattice model.

From X-ray and neutron powder diffraction studies on La3Ni2B2N3−δ a fi-
nite width of formation with respect to the N-stoichiometry is observed. The
normal and superconducting state properties of La3Ni2B2N3−δ were inves-
tigated by means of transport, magnetic and calorimetric measurements. A
remarkable correlation and systematic reduction of the superconducting tran-
sition temperature Tc from about 14 K to 12 K as well as changes of normal
state characteristics like the residual resistivity with an increasing density of
N-vacancies are established. A strong pair-breaking effect caused by vacancies
or other non-magnetic impurities usually points towards an unconventional
superconducting order parameter. The analysis of thermodynamic features of
the superconducting state of La3Ni2B2N3−δ as well as a theoretical modeling,
however, indicate a fully-gapped s-wave order parameter.
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Introduction

In search for superconductors with higher superconducting (SC) transi-
tion temperatures Tc, various more complex multinary SC compounds have
been discovered. The most exciting systems amoung them are the high-
Tc cuprates, iron-pnictides and among others, quaternary borocarbides and
boronitrides. The SC compound La3Ni2B2N3−δ was reported around the same
time when superconductivity in the closely related borocarbide superconduc-
tors RNi2B2C (R. . . rare earths and Y) was discovered. Many compounds
RT 2B2C (T . . . transition metals, e.g. Ni, Pd, Pt) have been explored reveal-
ing a large variety of low-temperature ground states ranging from supercon-
ductivity (for e.g. Y- and LuNi2B2C) with possibly an unconventional order
parameter, superconductivity coexisting with magnetic order (for RNi2B2C
with R= Dy, Ho, Er, Tm) to magnetic order without superconductivity (with
R= Pr, Sm, Nd, Gd, Tb). On the other hand, in the case of the related triple
layer boronitrides, no compounds other than the SC La3Ni2B2N3−δ and non-
SC Ce3Ni2B2N3−δ have been reported yet.

La3Ni2B2N3−δ was reported to be a moderate to strong coupling super-
conductor with a Tc of about 12 K which exhibits various interesting features
of the SC state, some of them very similar to those of the related borocarbide
superconductors, some of them clearly different. An important aspect of the
boronitride superconductors yet to be explored is the specific role of nitro-
gen vacancies with respect to the significant (up to 20%) spread of Tc values
observed in earlier studies. If caused by impurity scattering, the latter may
refer to an unconventional (other than s-wave) SC order parameter. One aim
of this work is, thus, to explore the interrelationship between nitrogen vacan-
cies, Tc, and SC state properties and to test models that have been developed
e.g. for anisotropic electron-phonon mediated s-wave superconductors with
paramagnetic impurities. La3Ni2B2N3−δ could prove to be a model system
if it can be shown that nitrogen vacancies act as potential scattering centers
without changing the electronic structure.

An equally important aim of the present work is to explore novel boroni-
tride intermetallics R3Ni2B2N3−δ with magnetic rare earth ions R= Ce, Pr,
Nd with respect to structural, superconducting and magnetic properties. Ce
based intermetallic compounds are known to exhibit a rich variety of ground
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states namely, Kondo lattice, intermediate valence, Kondo insulator, and in
some cases unconventional superconductivity. Also, many cases are known
where Ce causes a strong pair breaking effect if added as an impurity in a su-
perconducting matrix. The structural, superconducting, and Ce ground state
properties of (La,Ce)3Ni2B2N3−δ are, thus, studied here in detail by means of
x-ray diffraction, susceptibility, specific heat, and transport measurements.

In this work, the compounds Pr3Ni2B2N3−δ and Nd3Ni2B2N3−δ are char-
acterized for the first time. They are studied with respect to magnetic pair-
breaking in their solid solutions with La3Ni2B2N3−δ and with respect to the
magnetic ground state properties of the pure compounds.
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Chapter 1

Experimental

Most measurements were carried out on home made setups while some se-
lected measurements were performed on commercially available systems like
the vibrating sample magnetometer (VSM) of the Quantum Design PPMS
and the Cryogenic SQUID magnetometer. Powder x-ray diffraction studies
were performed on a Siemens D5000 equipped with a graphite monochroma-
tor. A brief summary of the home made systems is given below.

1.0.1 Electrical resistivity measurements

Electrical resistivity measurements were performed by standard 4 probe a.c.
and d.c. techniques. Measurements were carried out from 4.2 K to room
temperature in a conventional 4He cryostat with sample dimension of ap-
proximately 1 × 1.5 × 5 mm3. The specimen are mounted on an electrically
isolated brass plate and contacted by four gold needles, serving as electrical
contacts. For temperature measurements, calibrated resistive Ge sensors for
T < 30 K and Pt PT100 for T > 30 K, respectively, were used. A Lakeshore
a.c. resistance bridge 370 with low resistance scanner acquired the experi-
mental data.

Electrical resistivity down to 400 mK in external magnetic fields up to
12 T was measured in a Cryogenics 3He cryostat. Sample geometry and
contacting resemble those of the 4He cryostat setup. Temperature was deter-
mined using calibrated Cernox temperature sensors by Lakeshore Cryogenics.
A description of the cryostat, the operation principles, the sample holder as
well as measurement setup and equipment are given in Ref. [1].

Electrical resistivity under pressure up to 19 kbar was measured in the
temperature range 1.45-300 K by means of a standard four-probe electrical
resistivity measurement technique. The current was supplied by a Knick J152
DC-Calibrator and a Keithley K-181 Nanovoltmeter was used to measure the
voltage. A current reversal method was employed to avoid any influence from
thermoelectric voltage. Hydrostatic pressures were generated in a double wall
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piston-cylinder cell made from non-magnetic MP3-N alloy. Daphne oil was
used as the pressure-transmitting medium while the pressure was measured
by the shift of the first order magnetic phase transition in HoCo2.

1.0.2 Specific heat measurements

Specific heat measurements were carried out on samples of about 2 − 3 g
in the temperature range 1.8 K to 180 K employing a quasi adiabatic step
heating technique in external magnetic fields up to 9 T. Temperature was
obtained from a field calibrated Cernox resistor; heat capacity data were
calibrated against NBS Cu. By means of a design originating from a quasi-
adiabatic Nernst setup [2], a temperature sensor (Cernox ) is placed in the
bore of a sapphire plate sample holder fixed by nylon wires and surrounded
by a radiation shield. Details concerning implemented algorithms as well as
calibration are found in [3, 4].

1.0.3 Thermopower measurements

Thermopower measurements were carried out from 4 K to 300 K with a so-
called a differential seesaw-heating method [5]. The absolute thermopower
Sx(T ) was calculated using the following equation:

Sx = SA −
VA

VA − VB
(SA − SB). (1.1)

where SA and SB represent the absolute thermopower of Chromel and Con-
stantan and VA and VB are the voltages along Chromel and Constantan cir-
cuits depending on the temperature difference ∆T , respectively. The spot
welded junctions of thermocouple pairs Chromel-Constantan were connected
to the surface of the sample by soldering or by a two component silver conduc-
tive Epoxy. During the measurement a temperature gradient 0.2< T <2 K
is applied to the specimen, in both directions (seesaw heating). The heaters
provides the essential temperature gradient. The voltages between the ther-
mocouple wires were measured in both directions by a Keithley 192 nanovolt-
meter. The sample temperature and the absolute temperature were measured
with a Pt sensor in the range from 40 to 300 K and a Ge sensor below 40 K [1].

1.0.4 Thermal conductivity measurements

Thermal conductivity measurements from 4 to 300 K were carried out by a
steady state heat flow method in a 4He Cryostat. The sample was surrounded
by three radiation shields; the inner is held on the same temperature as the
heat sink. Generally the rectangular shaped samples with a typical cross sec-
tion A of 1-2 mm2 and a length of about 10 mm were studied. One end of
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the sample was placed to a copper stage at a reference temperature T0. At
the other end of the sample, a strain gauge was attached as heater estab-
lishing the temperature gradient ∆TS. ∆TS was determined by a differential
thermocouple, which had its reference temperature from Pt and Ge sensors
at the heat sink. The temperature gradient between the heat sink and the
lower sample end is ∆TB. The voltage drop at the strain gauge was measured,
allowing to deduce the thermal flux Q. Using these temperatures the average
sample temperature TS is given as:

TS = T0 +
∆TS

2
+ ∆TB (1.2)

and the thermal conductivity λ is calculated

λ =
l

A

Q

∆TS
. (1.3)

A is the sample cross-section and l the effective length. This configuration
has been used for high accuracy measurements by including a radiation shield
and establishing about the same temperature profile along the shield as exists
along the sample. This helps to minimize the radiative losses making T0 ≈ TS.



Chapter 2

Some theoretical Concepts of
superconductivity

2.1 The critical magnetic fields

The investigation of magnetic properties of elementary superconductors by
Meissner and Ochsenfeld [6] revealed that when a superconductor is cooled
below its transition temperature in a magnetic field, it expels the magnetic
flux (perfect diamagnetism). The existence of the Meissner effect implies the
existence of a critical magnetic field above which the superconducting (SC)
state will be destroyed. This critical field is related thermodynamically to
the free energy difference between the SC and normal state in the zero field,
∆F = Fs − Fn, the so called thermodynamic condensation energy of the
SC state. The thermodynamic critical field Hc is defined by equating the
difference in free energy ∆F to the magnetic energy µoH

2
c /2

µoH
2
c (T )

2
=

∫ T

Tc

∫ T ′

Tc

(Cs − Cn)

T ′′
dT ′′dT ′. (2.1)

Up to the critical field Hc a type I superconductor is always in the Meissner
state (except for some special geometries) where M = −H, while flux pen-
etration occurs in a type II superconductor already at a lower critical field
Hc1 which is smaller than the thermodynamic critical field Hc. Almost all
elementary superconductors belong to this group, but the much larger group
of SC alloys and compounds show a more complex magnetic behaviour. In
1957 Abrikosov [7] explained that a continuous increase in the flux penetra-
tion starting at a lower critical field Hc1 and reaching full penetration at an
upper critical field Hc2 which is higher than the thermodynamic critical field.
Between Hc1 and Hc2 is the so called mixed state, where magnetic field pen-
etrates the superconductor by forming vortices, which have a constant value
of magnetic flux, i.e. a flux quantum φo = h/2e = 2.07× 10−15 Wb.
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2.2 Concepts of GLAG theory 10

2.2 Concepts of GLAG theory

The fundamental ideas for a basic understanding of the magnetic properties
of type II superconductors have been worked out by Ginzburg, Landau [8],
Abrikosov [7] and Gor’kov [9], referred to as GLAG theory.

The theoretical advance came in 1950 with the theory of Ginzburg and
Landau (GL) [8]. They presented a phenomenological theory of SC which is
related to Landau’s theory of second order phase transition. Ginzburg and
Landau formulated a complex pseudo wave function ψ as an order parameter
for the SC state which is related to the local density of the SC charge carriers
as ns = |ψ(r)|2. The GL formalism describes situations where ns varies
in space and also the nonlinear response to fields that are strong enough
to change ns. Ginzburg and Landau argued that the free energy F of a
superconductor near the SC transition can be expressed in ψ. The free energy
F can be expanded in a Landau series of the form

Fs − Fn = α |ψ|2 +
β

2
|ψ|4 +

1

2m∗

∣∣∣(−i~~∇− µ0e
∗~A
)
ψ
∣∣∣2 +

µ0H
2

2
(2.2)

where Fn is the free energy in the normal phase, the e and m refers to the
SC charge carriers and α and β are phenomenological parameters. A is the
electromagnetic vector potential, and H is the magnetic field. Introducing
boundary conditions and applying variational principles to minimize the over-
all free energy, Ginzburg and Landau derived the so called GL equations [10].
From these equations they obtained qualitatively the temperature dependen-
cies of the spatial variation length of the order parameter (Cooper-pair den-
sity), ξGL and the penetration depth of the local magnetic field, λGL. Since
within the GL theory these two parameters are related to each other via the
thermodynamic critical field Hc, they introduced the dimensionless Ginzburg-
Landau parameter κ, which is defined as the ratio of the two characteristic
lengths, penetration depth λ and coherence length ξ,

κGL ≡
λ

ξ
=

2π
√

2µ0Hc(T )λ2
GL(T )

Φ0

(2.3)

where Φ0=h/2e = 2.07 ×10−15 Wb. The question of flux penetration depends
on the energy balance between flux expulsion and the condensation energy
on the two length scales λ and ξ. This yields for κ < 1/

√
2 a positive surface

energy and κ > 1/
√

2 a negative surface energy between a normal and SC
domain (i.e. mixed state).

The analysis of the consequence of negative surface energy was analyzed
by Abrikosov [7]. He argued that in case of negative surface energy (κ > 1

√
2),

the magnetic flux penetrating into a so-called type II superconductor will be
subdivided into distinct flux lines (vortices) each carrying a quantum of flux
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Φ0=h/2e. This vortex state reduces the diamagnetic energy and therefore SC
can persist up to the so-called upper critical field Hc2 gives by

Hc2(T ) =
Φ0

2πµ0ξ2(T )
=

4πλ2(T )H2
c (T )

Φ0

=
√

2κ(T )Hc(T ). (2.4)

This implies that materials with a high value of κ remain in the mixed state
until external magnetic field exceeds Hc2. According to an approximation for
κ� 1, Abrikosov related the lower critical field Hc1 to the penetration depth
λ as follows

Hc1(T ) =
Φ0

4πµ0λ2(T )
lnκ(T ). (2.5)

Equations 2.4 and 2.5 can be used to estimate the coherence length from
specific heat measurements. Gor’kov [9] showed that the phenomenological
Ginzburg-Landau equations follow from the microscopic BCS theory in the
temperature region close to Tc. He proposed that ψ is proportional to the
gap parameter ∆(r), which for a homogeneous medium reduces to the BCS
gap ∆, and that ψ can be thought of as the wave function of Cooper pairs.

2.3 BCS theory

Despite the fact that the Ginzburg-Landau theory is phenomenological, it
had surprising success in explaining many of the principal properties of su-
perconductor. Nevertheless, it has limitations since it does not explain the
microscopic origins of superconductivity. The biggest complication in the de-
velopment of the microscopic theory of superconductivity was to discover the
nature of the interaction responsible for the appearance of superconductivity.
Fröhlich [11] and Bardeen [12] suggested that the superconductivity is based
on an electron-phonon mechanism and that the interaction between electrons
and phonons may lead to an effective interaction between electrons them-
selves. The possibility of electron-phonon mediated SC was reinforced by the
experimental discovery of the isotope effect [13]. The theories by Fröhlich
and Bardeen are based primarily on the effect of electron-phonon interaction
energy upon the self energy of electrons and do not present a suitable model
for the phonon mediated electron-electron interaction. The problem was later
solved by Cooper who formulated a wave function for a single pair of electrons
excited above the Fermi surface [14]. He found that for a negative interaction
a bound state is formed no matter how weak the interaction may be.

In 1957 Bardeen, Cooper, and Schrieffer [15] proposed a general micro-
scopic theory (BCS theory) of superconductivity that quantitatively predicts
many properties of superconductors and is now widely accepted as providing
a satisfactory explanation of the phenomenon. The basic assumptions of the
BCS theory are as follows:
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• The normal state is characterized by the Bloch individual-particle
model.

• The ground state wave function of a superconductor is formed by taking
a linear combination of many normal-state configurations in which the
Bloch states are occupied by pairs of opposite momenta and spin known
as Cooper pairs. If the state k↑ is occupied in any configuration, −k↓ is
also occupied. The average excitation energy of the Cooper pairs above
the Fermi sea is of the order of transition temperature Tc.

• The interaction between electrons resulting from the virtual exchange
of phonons is attractive. Once this attractive interaction dominates
over the repulsive Coulomb interaction, the system would produce as
many Cooper pairs as possible to lower its energy. The energy difference
between the electronic states involved is lower in energy than the phonon
energy ~ωD characterized by the characteristic phonon Debye frequency
ωD.

• Excited states of the superconductors are formed by a specific occupa-
tion of certain Bloch states and by using all of the rest to form a linear
combination of virtual pair configuration.

• The electron phonon coupling strength, N(Ef )V , is much smaller than
one (weak coupling limit) where N(Ef ) represents density of states of
the normal state electrons at the Fermi energy and V is the net coupling
between electrons at Fermi surface as a consequence of phonon mediated
attraction and Coulomb repulsion.

An attractive interaction between electrons mediated by phonons can lead
to a ground state separated from excited states by an energy gap. The critical
field, the thermal properties, and most of the electromagnetic properties are
consequences of the energy gap. The essential (and universal) thermodynamic
properties of the SC state in terms of BCS theory (see Ref. [10] for review)
are the BCS relation for the critical temperature and the expression for the
free-energy. The SC transition temperature in framework of the BCS theory
is given as

Tc = 1.14ΘD exp

(
− 1

N(0)V

)
(2.6)

where ΘD is Debye temperature. Near the transition temperature Tc, the
temperature dependent gap width can be approximated by the following re-
lation:

∆(T ) ≈ 3.2kBTc

√
1− T

Tc
. (2.7)
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Another important BCS result is the ratio of the critical temperature Tc and
the energy gap ∆(0) at T = 0, given by

∆(0)/kBTc = 1.76. (2.8)

The expression for the free-energy of the SC state yields an exponential
temperature dependence of the electronic specific heat in the SC state
(2.5 < Tc/T < 6)

CeS ∼= 8.5γTc exp

[
−1.44

(
Tc
T

)]
. (2.9)

The BCS theory predicts a sharp jump in the electronic specific heat at Tc
from the normal state value γTc to the SC state value CeS(Tc) [15]. The
height of the specific heat jump is given by

∆C

γTc
= 1.43. (2.10)

2.4 Eliashberg theory and impurity scatter-

ing

Many formulas of the BCS theory are of an universal character, for example
gap to critical temperature ratio (equation 2.8) and the normalized specific
heat jump (equation 2.10). The universal nature of the BCS theory is due to
the fact that is was developed in the weak coupling approximation and on the
basis of a single spherical Fermi surface. In other words, the electron-phonon
interaction is assumed to be weak (λ � 1) and the entire model is deter-
mined by two parameter: The Sommerfeld coefficient γ [i.e. the electronic
density of states N(Ef )] and the transition temperature Tc. Superconductors
with significant electron mass enhancement λ, due to electron-phonon many
body interactions are called strong coupling superconductors and have to be
treated by a theory going beyond the BCS approximations. Eliashberg de-
rived a pair of coupled integral equations which relate a complex energy gap
function ∆(ω) and a complex renormalization parameter Zs(ω) for the SC
state to the electron-phonon and electron-electron interaction in the normal
state. Details about the Eliashberg equations and further references are e.g.
given in the books by Grimvall [16] and Vonsovsky et al. [17]. The impor-
tant parameter of the Eliashberg equations [18] is the elctron-phonon spectral
function, α2(ω)F (ω), where F (ω) is the spectral function of the phonon den-
sity of states and α2 is the effective square of the electron-phonon matrix
element. The spectral function has to be determined experimentally from
tunneling spectroscopy, specific heat measurements or from ab initio calcula-
tions of the phonon density of states. It has to be noted that the theoretical
definition of the electron-phonon spectral function does not refer to the SC
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state, thus the electron-phonon spectral function is the same as in the normal
state. The details of the spectral function can be found in Ref. [19]. Within
the Eliashberg formalism, the electron-phonon coupling strength λ is defined
as

λ ≡ 2

∫
α2F (ω)

ω
dω. (2.11)

The Eliashberg theory has been successfully adopted to apply strong cou-
pling corrections to the BCS theory as reviewed by Carbotte [20].

Starting from BCS theory, the effect of non-magnetic impurities on an
anisotropic superconductor was investigated by Markowitz and Kanadoff [21].
They introduced a separable pairing potential given as

V (k, k′) = (1 + αk)VBCS(1 + αk′) (2.12)

where ak is the temperature independent anisotropy matrix and VBCS is the
electron-phonon coupling potential of the BCS theory. The parameter ak

determines the effect of anisotropic Fermi surface on the isotropic BCS cou-
pling potential VBCS. The mean square anisotropy parameter 〈a2〉, which
denotes average of a2 over the Fermi surface, expresses the average deviation
of the coupling from the isotropic case. Therefore 〈a2〉 comprises in a rather
simple way anisotropies of the electron phonon interaction. Markowitz and
Kanadoff [21] argued that the electron-phonon interaction must depend on
the direction of the electronic momenta relative to the crystal axes, and in
pure material the electrons take maximum advantage of this anisotropy in
forming pairs. However, in the impure material, scattering will act to smear
the electronic states over Fermi surface resulting in a reduction of Tc. This
separable model for the Eliashberg theory was later adopted to describe an
anisotropic electron-phonon interaction spectral function [22][

α2F (ω)
]

k,k′ = (1 + ak)α2F (ω)(1 + ak′) (2.13)

where k and k′ are the incoming and outgoing quasiparticle momentum vec-
tors in the electron-phonon scattering process and ak is an anisotropy func-
tion describing the deviation of the anisotropic spectral function, [α2F (ω)]k,k′ ,
from the isotropic one, α2F (ω), in the direction of k. In the framework of the
Eliashberg theory, non-magnetic impurities are treated in Born’s limit [23]
which assumes that the impurities are randomly distributed and are of dilute
concentration. In such a limit, impurities are characterized by a scattering
rate t+ which is proportional to impurity concentration and is given as

t+ =
1

2πτn
(2.14)

where τn in the normal state represents the mean scattering time, and in the
superconducting state [24], the mean lifetime of the electronic excited states
of the (anisotropic) s−wave order parameter.
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The theory of the upper critical field Hc2 for anisotropic polycrystalline
superconductors including strong coupling effects, isotropic impurity scatter-
ing and mean-square anisotropies of the electron-phonon interaction and of
the Fermi velocity, was developed by Prohammer and Schachinger [25]. The
calculation of Hc2 employs a seperable ansatz to describe the anisotropy of
the Fermi velocity vF,k [25, 26]

vF,k = (1 + bk)〈vF 〉 (2.15)

where 〈vF 〉 is the isotropic Fermi velocity and bk is the anisotropy matrix
defined in the same way as ak.

The effect of impurity scattering on Tc, Hc and Hc2 has been studied
for elemental superconductors Indium (In) and Niobium (Nb) in terms of
Eliashberg theory. In case of type-I In, Niel et al. [24] extended the work
of Ref. [21] to strong-coupling Eliashberg theory and employed the separable
model given in equation 2.13 which can be described in its simplest form by
a Fermi surface split into two half spheres of equal weight

P (a) =
1

2
δ(−a) +

1

2
δ(a) (2.16)

with radii r ± a, if r is the radius of the equivalent isotropic Fermi sphere.
Niel et al. [24] calculated Tc from linearized Eliashberg equations and found
the that the model gives an accurate interpretation of the experimental data
in terms of mean square anisotropy of electron-phonon interaction not only
for Tc but also for other bulk properties like Hc(T ). They analyzed the
dependence of Tc on the impurity concentration in terms of scattering rate
t+ and found a range 0.035 6 〈a2〉 6 0.04 for the anisotropy parameter. The
variation of Hc(0) with impurity concentration was also rather well described
by the model for 〈a2〉 = 0.035.

The elemental Nb is more relevant with respect to boronitrides because
its a type-II superconductor. The effect of impurities on the anisotropy in
Nb were investigated by Weber et al. [27] within the Eliashberg theory. The
impurity dependence of the normal state resistivity of Nb revealed an almost
linear increase in the residual resistivity (ρo) with increasing impurity concen-
tration (ci). The residual resistivity is related to Ginzburg-Landau parameter
κ in terms of Gor’kov-Goodman relation [28]

κ = κo + 0.0237
√
γρo (2.17)

where κo is clean limit GL parameter, γ is Sommerfeld coefficient in units
J/m3K2 while ρo is given in µΩcm. A clear correlation between the ex-
perimentally determined κ and ρo was obtained which was rather well de-
scribed by equation 2.17. The impurity dependence of the transition tem-
perature was also described rather accurately with the anisotropy parameter
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Figure 2.1: Tc depression of Nb as a function of the impurity concentration as
adopted from Ref. [27]. The symbols with error bars represent experimental
data while the two lines represent theoretical result for values of 〈a2〉 as
labeled.

0.030 6 〈a2〉 6 0.037. The Tc suppression as a function of the impurity (ni-
trogen) concentration in Nb is shown in figure 2.1 that fits equally well to the
measured data for two values of 〈a2〉. Based on the anisotropic Eliashberg the-
ory of Hc2 [25] and using 〈a2〉 as determined from Tc depression with impurity
content, a mean square anisotropy of Fermi velocity, 0.111 6 〈b2〉 6 0.13 was
estimated. The upper critical field of Nb along with the theoretical curves of
Ref. [27] are shown in figure 2.2 revealing good agreement between measured
and calculated results. These results suggest that a certain set of anisotropy
parameters can indeed explain the SC properties of pure and impure niobium
with dilute impurity concentrations within the Eliashberg theory.

Besides elemental superconductors, the Eliashberg theory has also been
applied to study the SC properties of borocarbides. A positive curvature of
Hc2(T ) near Tc has been reported for the single layer borocarbides YNi2B2C
and LuNi2B2C [29, 30, 31]. The temperature dependence of Hc2 of Y- and
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Figure 2.2: Hc2 of Nb as adopted from Ref. [27]. Full line 〈a2〉 = 0.037,
〈b2〉 = 0.111, dashed-dotted line 〈a2〉 = 0.03, 〈b2〉 = 0.13. vF in both cases is
0.57 × 106m/s. The dased line represents the results for an isotropic system
with 0.42× 106m/s.

LuNi2B2C has been analyzed by various authors within the isotropic single
band model by Werthamer et al. [32] which fails to reproduce the experimental
data [33, 34]. Shulga et al. [35] later extended the Hc2 calculations to an
isotropic two band model in terms of the Eliashberg theory and successfully
modeled Hc2(T ) of YNi2B2C and LuNi2B2C in the whole temperature range
and associated the positive curvature of Hc2(T ) near Tc to interband coupling
of electrons.

The separable model was also adapted for YxLu1−xNi2B2C by Manalo
et al. [36] who obtained a set of anisotropy parameters to analyze the SC
properties of the whole series. They also investigated the SC properties of
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La3Ni2B2N3−δ assuming a clean limit case (t+ = 0) and reproduced the mea-
sured data rather well within the Eliashberg theory. However, the nitro-
gen vacancies in La3Ni2B2N3−δ may act as scattering centers and reduce the
electron-phonon coupling anisotropy resulting in depression in Tc and the
clean limit assumption of Ref. [36] may not be valid. So it is important to
investigate if La3Ni2B2N3−δ could be a model system for vacancy induced
changes in SC properties within the Eliashberg theory.



Chapter 3

Preparation, structure and
width of formation of
La3Ni2B2N3−δ

3.1 Introduction

The borocarbides and boronitrides are complex quaternary compounds and
a full knowledge of their quaternary phase diagrams is difficult to achieve.
Many different phases of quaternary borocarbides R-T-B-C have been re-
ported showing rich physics, including interplay of superconductivity and
magnetism [34]. Techniques for producing high purity RNi2B2C samples are
well developed [37, 38, 39]. According to investigations on the formation
of single crystals, the phase RNi2B2C is formed by a peritectic reaction of
the melt with the preperitectic phases RB2C2 [37, 38]. The pseudobinary
phase diagram of the Y based system obtained by differential thermal analy-
sis (DTA) and is shown as an example in figure 3.1. Similar phase diagrams
for Tb and Ho based RNi2B2C borocarbides have been reported with slight
variations of the peritectic temperature [39]. In the case of the boronitrides
not even a rudimentary phase diagram has been reported yet. One has to ex-
pect a bigger complexity of the quaternary R-Ni-B-N phase diagram because
of a gaseous component (nitrogen) involved.

The initially reported preparation technique [40] for La3Ni2B2N3−δ is
based on arc melting La-Ni-B under N2 atmosphere with subsequent anneal-
ing at 1050 ◦C. This technique may result in reasonably phase pure mate-
rial but the amount of nitrogen absorbed by the matrix phase may not be
optimal. An alternative method was employed for the preparation of bulk
La3Ni2B2N3−δ based on a two step process in which a LaNi alloy was reacted
with a boron nitride pellet by dissolving it into the LaNi melt heated by the
arc [41]. A technique based on a pyrolysis of La and Ni powder dispersed in

19
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Figure 3.1: Phase diagram of the Y-Ni-B-C system [37].

polyborazylene was reported by Wideman et al. [42]. In all techniques men-
tioned above the nitrogen stoichiometry of La3Ni2B2N3−δ was not in real con-
trol and may have effects on the phase purity and superconducting properties
of the material. In two subsequent masters thesis works by Sieberer and Rup-
precht [43, 44] the nitration and annealing of La3Ni2B2N3−δ was investigated.
Sieberer developed a process for the controlled nitration of La3Ni2B2 alloys
and reported that the as-cast material shows very little or no La3Ni2B2N3−δ
phase suggesting that the phase formation occurs at annealing via a solid
state reaction. The annealing process was later optimized by Rupprecht to
produce bulk La3Ni2B2N3−δ with reasonable phase purity.

The following chapter describes a process for preparing bulk La3Ni2B2N3−δ
with various nominal N-stoichiometries. The phase purity and crystal struc-
ture of the material is investigated by X-ray diffraction analysis and a width
of formation of La3Ni2B2N3−δ is established. To verify the width of formation,
neutron powder diffraction studies on selected compositions were performed.
Complementary local probe information obtained from nuclear magnetic res-
onance (NMR) spectroscopy of 11B and 139La isotopes is presented.
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3.2 Sample preparation

For preparing bulk La3Ni2B2N3−δ samples the following starting materials,
La ingot (Metall Rare Earth, 99.9%) additionally purified by pre-melting in
vacuum, Ni (Alpha Aesar, 99.99%), crystalline natural boron (HCTS, 99.5%)
or for selected samples, hoghly isotope enriched 11B (Eagle Picher, chemical
purity 99.9999% and 11B isotope purity 99.97%) and nitrogen gas (Linde,
99.999 %) are used. Argon and nitrogen gases are additionally precleaned by
OXISORB devices.

The samples are synthesized on a water cooled copper crucible by high
frequency inductive levitation melting technique on a Hüttinger IG, 30/400,
220 kHz generator with a maximum primary power of 30 kW. To ensure a
good homogeneity of the material, a three step melting procedure is applied.
In the first step the NiB binary compound is prepared by taking stoichiometric
amounts of Ni and B and alloying them in a protective Ar atmosphere in two
to three melting cycles. The second step of the process is a melting of the
NiB binary compound with La metal in several cycles till a homogeneous
alloy La3Ni2B2 is obtained. The alloy is flipped between melting cycles to
improve homogeneity.

The third step of the process is melting of the La3Ni2B2 precursor alloy in
Ar/N2 atmosphere. Melting in pure N2 gas would result in a strong spitting
of the melt due to the exothermic reaction. For preparing the atmosphere a
mixture of Ar and N2 streams through the recipient for 1 to 1.5 hour with
Ar flow always adjusted to 20 cm3/min while the N2 flow is adjusted ac-
cording to envisaged atmosphere composition. The La3Ni2B2 alloy is then
melted in a static reaction atmosphere in multiple melting cycles such that
the N-stoichiometry is slowly increased to reach a composition close to the
stoichiometric one. The latter is determined by measuring the mass gain after
each melting cycle and by measuring the pressure drop within the recipient.
Between successive melting cycles, the N2 in the atmosphere is readjusted by
altering the Ar/N2 ratio (20:5 to 20:10) in the stream to get better control
over the amount of nitrogen absorbed by the alloy button. The combination
of measuring the mass gain and the pressure drop in the recipient allows to
determine the nominal nitrogen stoichiometry of La3Ni2B2Nx within ±0.05
formula units when preparing bulk samples of about 10 g. In few cases the
stoichiometry obtained by the mass gain differed from the stoichiometry ob-
tained by pressure drop by about 2% at largest. The reason for this may be
some material loss during the melting process. Throughout this thesis the
samples are always referrd to by their nominal compositons.
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3.3 Thermal treatment and phase purity

The heat treatment of the material after the melting processes is an impor-
tant factor which greatly affects the overall quality of the material. Anneal-
ing helps to improve the homogeneity and to establish the thermodynamic
equilibrium between the phases present. In this work several nominal com-
positions of La3Ni2B2N3−δ were annealed in two steps. In the first step the
samples are wrapped in tantalum foil and annealed in a high temperature
continuously pumped vacuum furnace at 1100 oC for one week. During the
annealing most samples had minimal or no reaction with Ta foil and the
weight loss is typically less than 1%. There is no indication that the com-
pound would release nitrogen at 1100 ◦C. In the second step individual pieces
of each sample are sealed in quartz ampoules under 200 mbar Ar atmosphere
and annealed at 1130-1150 oC for 42 hours. After the annealing, samples are
rapidly quenched in water at room temperature. Contrary to previous works,
the material is sealed without any foil to achieve a maximal quenching speed.
The samples obtained after this process have a bluish colour suggesting some
oxidation on the surface which however, has little impact on overall quality
of the material.

From heat treatment of La3Ni2B2N3−δ with various N-stoichiometries it
was observed that the second annealing with rapid quenching has a significant
effect on phase purity of the material. The X-ray diffraction analysis of several
nominal compositions revealed the main impurity phase in La3Ni2B2N3−δ to
be the two layer boronitride LaNiBN. The right annealing temperature for
a particular stoichiometry also depends on its nitrogen composition. For
La3Ni2B2N3−δ with δ ranging from 0.3 to 0.4 the optimum temperature
before quenching is 1130 ◦C. For La3Ni2B2N2.6∼2.7, temperatures above or
below 1130 ◦C tend to increase the impurity phases. With increasing nominal
nitrogen composition of La3Ni2B2N3−δ i.e. for δ ranging from 0.1 to 0.3 the
optimum annealing temperature was identified to be 1150 ◦C.

3.4 Powder X-ray diffractometry

Huang et al. [45] reported a detailed investigation of the structure by means
of neutron powder diffraction showing La3Ni2B2N3−δ to crystallize in a body
centered tetragonal structure shown in figure 3.2 with space group I4/mmm
and lattice parameters a and c of 0.3725 nm and 2.0517 nm respectively. The
structure is layered having LaN triple layers with rock-salt type configuration
separated by Ni2B2 layers built from NiB4 tetrahedra.
The structure has two nitrogen and two lanthanum sites in the unit cell. The
La(2) and N(2) sites are located in the central LaN layer while the La(1) and
N(1) sites are adjacent to Ni2B2 layer. The results of neutron diffraction in
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Figure 3.2: The crystal structure of La3Ni2B2N3−δ

Ref. [45] suggested that all crystallographic sites of La3Ni2B2N3−δ have full
occupancies except the N(2) which was reported to have about 10% vacancies.
The related boronitride LaNiBN has two LaN layers staked within Ni2B2 lay-
ers with lattice parameters a and c of 0.372 nm and 0.759 nm respectively [46].

3.4.1 Phase analysis and nominal width of formation

In this work various compositions of La3Ni2B2N3−δ are prepared with the
aim to achieve a systematic variation of N(2) site occupancy. The effect
of nitrogen off-stoichiometry on the crystal structure and phase purity of
La3Ni2B2N3−δ is initially analyzed by means of X-ray diffraction studies at
room temperature with Cu-Kα radiation on a Siemens D5000 equipped with
a graphite monochromator. Data is collected at room temperature for a
range 20◦< 2θ <120◦ with steps of 0.02◦ on powders which are ground and
sieved to a particle size of less than 32µm. The X-ray powder patterns for
all the nominal compositions are indexed on the basis of the crystal structure
of La3Ni2B2N3 with space group I4/mmm and LaNiBN with space group
P4/nmm using the Fullprof Rietveld refinement software [47]. The maximum
number of refined parameters are 27 which reduces to 18 if the impurity
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Figure 3.3: Measured, calculated and difference XRD pattern of La3Ni2B2N2.7

(a) and La3Ni2B2N2.6 (b). Vertical lines in (a) and (b), and lower vertical
lines in (b) indicate Bragg positions of La3Ni2B2N3 and LaNiBN respectively.
Asterisks in (a) indicate an unidentified secondary phase.
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phase LaNiBN is not included in the fit. The parameters refined are a scale
factor, zero shift, shape profile, half width parameters, atomic parameters,
thermal parameters and lattice constants. For profile refinement a flat plate
like geometry with a preferential orientation [101] produced the best fit of
measured patterns. This suggests that the powder grains tend arrange plate
like when being put on a flat glass sample holder. The total number of
reflections of La3Ni2B2N3 measured in the X-ray diffraction are 97 with about
30 having enough intensity to be relevant for the refinement.

The observed and calculated XRD pattern of an essentially pure sample
La3Ni2B2N2.7 are shown in figure 3.3(a). The pattern reveals an almost sin-
gle phase material with < 2% fraction of two layer LaNiBN. The asterisks in
figure 3.3(a) mark reflections of an unidentified phase. The calculated inten-
sity pattern represented by the solid line and the resulting difference pattern
demonstrate the quality of the fit. For La3Ni2B2N2.7 the refined a and c
lattice parameters are 0.3720 nm and 2.054 nm respectively which are compa-
rable to values reported earlier [41, 45]. The XRD pattern of La3Ni2B2N2.6

shown in figure 3.3(b) is typical for a sample with a significant amount of
LaNiBN impurity phase. Well defined peaks of LaNiBN are observed at
2θ =26.7◦, 36.0◦ and 41.8◦ with an overall phase fraction of ∼10%. X-ray
powder diffraction analysis of various compositions of La3Ni2B2N3−δ together
with physical properties (see Chapter 5) suggest an approximate nominal
width of formation with δ ∼ 0.1 to 0.4. Nevertheless, the material always
contains a small fraction of LaNiBN even in the approximate width of for-
mation proposed here. The optimum composition for obtaining single phase
samples is La3Ni2B2N2.7 (δ = 0.3) while other compositions in the proposed
width of formation contain LaNiBN phase fractions varying from 5% to 15%.
Though having some fraction of impurity phases, all samples (with δ varying
from 0.1 to 0.4) have a clear composition dependence of the superconduct-
ing transition temperature and residual resistivity while showing reasonably
sharp specific heat anomalies (see chapter 5).

The variation of lattice parameters a and c of La3Ni2B2Nx as a function of
the N-stoichiometry is shown in figure 3.4. The figure indicates an almost lin-
ear increase of the a lattice parameter with increasing nitrogen content while
the c lattice parameter does not exhibit a clear trend. Rupprecht reported
clearer trends for the variation of lattice parameters [44] which however, are
an artifact of the LaNiBN phase which was not included in his profile refine-
ments. Due to the very close values of a lattice parameters of both phases,
fitting XRD data of La3Ni2B2N3−δ without considering the LaNiBN impurity
phase may cause a reduction of the a lattice parameter of La3Ni2B2N3−δ. In
the present work the XRD profiles of La3Ni2B2N3−δ are refined including the
LaNiBN phase. It has to be mentioned that the results of Ref [44] fit well
to the present ones if both phases are refined simultaneously. Although the
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Figure 3.4: Variation of lattice parametrs a and c for various nominal com-
positions of La3Ni2B2N3−δ

XRD analysis together with the observed systematic changes in the physical
properties (see Chapter 5) indicates an approximate width of formation of
La3Ni2B2N3−δ with δ varying from 0.1 to 0.4, a clear trend for the variation
of lattice parameters with the nitrogen off-stoichiometry is not observed. It
is a well known fact that the X-ray scattering cross-section varies smoothly
as square of the atomic number and is very small for light elements. Ac-
cordingly N and B atoms in La3Ni2B2N3−δ are hardly sensed by X-rays. On
the other hand neutrons are scattered from atomic nuclei by neutron-nuclear
force and their scattering cross-sections are usually high even for light ele-
ments. The neutron scattering lengths for La, Ni, 11B, and N are 8.24 fm,
10.3 fm, 6.65 fm, and 9.36 fm, respectively [48]. In order to get a deeper in-
sight into the structural properties of La3Ni2B2N3−δ and to verify the width
of formation, neutron powder diffraction studies were carried out for selected
nominal compositions (see section 3.6).

3.5 Nuclear magnetic resonance spectroscopy

In order to obtain microscopic local probe insight on the local structure
at La and B sites, nuclear magnetic resonance (NMR) of selected composi-
tions of La3Ni2B2N3−δ were performed on a pulse spectrometer using Fourier-
transformed spin echos technique [49] for 11B and 139La isotopes [50]. The
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Figure 3.5: 139La (a) and 11B (b) NMR spectra of La3Ni2B2N2.7 and
La3Ni2B2N2.9 at 17K and in an applied field of 1.316T. Spin echo intensi-
ties are given in arbitrary units.
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139La NMR spectra of La3Ni2B2N2.6 and La3Ni2B2N2.9 obtained by sweeping
the frequency at 17 K and in an applied field of 1.316 T is shown in fig-
ure 3.5 (a). The spectra of both samples are rather similar, except for a drop
in the intensity for La3Ni2B2N2.9 on the high frequency side which is an ar-
tifact of the measurement. The oscillatory behaviour is due to a resolution
enhancement used to improve the representation of the central transition.
The central transition is relatively narrow but sits on top of a broad spec-
trum which is clearly not the powder spectrum of a well defined electric field
gradient at the La sites. No satellite transitions are observed indicating that
the mean value of the electric field gradient distribution is small and the
asymmetry parameter is quite large resulting in a collapse of the satellite
lines in the central transition. This suggest that the 4-fold point symmetry
is broken for all La sites which may be a consequence of N vacancies in the
La-N triple layers.

The 11B NMR spectra of La3Ni2B2N2.6 and La3Ni2B2N2.9 are shown in
figure 3.5 (b). The spin echo spectra of both compositions compare rather well
except for two small bumps (marked by asterisks) symmetrically appearing
at approximately 100 kHz left and right to the central transition. They could
indicate a second B site either in the structure or in some secondary phase.
Since the X-ray and neutron powder diffraction revealed that the composition
La3Ni2B2N2.9 contains large fraction of LaNiBN phase, the two bumps at
may represent 11B located in the LaNiBN phase. No such bumps are seen
in La3Ni2B2N2.7 which is almost 100% phase pure. The central transition in
figure 3.5(b) is well defined and the quadrapole splitting νq obtained from
the distance between the two sattelite transitions is approximately 800 kHz.
The steep drop of the intensity at the outer flanks of the sattelite transitions
reveals a well defined electric field gradient. The fact that the intensity drops
to zero shows that the asymmetry parameter of the electric field gradient is
zero as it should be due to the 4-fold point symmetry of the B site. Since B
is in the vicinity of the nitrogen site N(1), the 11B spectra strongly advocate
that there are no vacancies around the B site and that the nitrogen site
N(1) is fully occupied. On the other hand the 139La spectra shows a broad
distribution of field gradients which may be a consequence of vacancies at the
nitrogen site N(2).

3.6 Neutron powder diffractometry

To directly measure the N-site occupancies in La3Ni2
11B2N3−δ, neutron pow-

der diffraction studies were performed for selected compositions using samples
with highly isotope enriched (99.97%) 11B. The neutron powder diffraction
data were acquired on the D1A diffractometer at the Institut Laue-Langevin
(Grenoble, France). D1A is a high resolution powder diffractometer operating
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Figure 3.6: Schematic layout of the D1A diffractometer at ILL, Grenoble

at a take-off angle of the monochromator of 122◦, giving high resolution at
large scattering angles (up to 160◦). It has a bank of 25 high efficiency colli-
mators and 3He counting tubes each spaced by 6◦. A schematic representation
of the instrument layout of D1A is shown in figure 3.6 while a more detailed
description can be found elsewhere [51]. The neutron powder diffraction data
were collected for three nominal compositions of La3Ni2

11B2N3−δ with δ '0.1,
0.15 and 0.35. A vanadium sample holder of diameter 1 cm and a length of
5 cm was used for samples of 6g mass. Neutron data was collected for a
wavelength of 1.3894 Å and a 2θ range 8◦< 2θ < 159.5◦ with steps of 0.05◦ or
0.1◦. The data were collected at five different temperatures ranging from 4 K
to 300 K. The background was corrected by means of a linear interpolation
between selected points taken from each profile. The program FULLPROF
was used for the Rietveld refinement of the diffraction data. The parameters
refined were zero shift, scale factor, shape profile, atomic parameters, thermal
factors, half width parameters, lattice constants and fractional occupancies.
The maximum number of refined parameters and the total number of reflec-
tions obtained for La3Ni2B2Nx were 50 and 168 respectively. Accordingly,
there is a better statistic in the neutron diffraction analysis as compared to
XRD.
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Figure 3.7: Measured, calculated and difference neutron (a) and X-ray (b)
powder diffraction pattern of La3Ni2

11B2N2.85 at room temperature. The
upper and lower vertical bars indicate Bragg positions for La3Ni2B2N3 and
LaNiBN, respectively.
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3.6.1 Phase analysis

The neutron powder diffraction pattern of La3Ni2
11B2N2.85 measured at 300 K

together with the calculated pattern is shown in figure 3.7(a). The LaNiBN
impurity phase is included in the fit and the upper and lower vertical bars
indicate the Bragg positions for La3Ni2B2N3 and LaNiBN, respectively. The
profile refinement of XRD data of the same sample is shown in figure 3.7(b)
for a comparison of the amount of LaNiBN impurity phase. The XRD pattern
indicates an almost phase pure sample with an amount of LaNiBN phase less
than 2%. On the other hand the neutron powder diffraction pattern shows
prominent peaks of LaNiBN phase, the strongest being marked by an aster-
isks in figure 3.7(a). The refinement of the neutron diffraction data reveals
an amount of impurity phase near 19%. The neutron powder diffraction pat-
terns for the compositions La3Ni2B2N2.65 and La3Ni2B2N2.90 are shown in
figure 3.8(a) and 3.8(b) respectively. The results of the profile refinements
indicate LaNiBN phase fractions of about 5% for La3Ni2

11B2N2.65 and about
15% for La3Ni2

11B2N2.9. Interestingly, the X-ray diffraction analysis for both
compositions indicated the LaNiBN phase to be less than 2%. It has to be
noted that for X-ray diffraction measurements very small pieces of the sam-
ple with masses of 80-100 mg are used while the mass of the material used
for neutron diffraction was ∼6g. The discrepancy in the amount of impurity
phase in X-ray and neutron diffraction results indicates that the impurity
phase LaNiBN is not distributed homogeneously throughout the material.
So a very small piece with mass ∼100 mg used for X-ray diffraction may not
represent the bulk material. For this reason the phase analysis by X-ray
diffraction can be ambigous.

3.6.2 Structure analysis and real width of formation

The room temperature structural data for the three samples measured at
D1A are summarized in table 3.1. Previous neutron powder diffraction stud-
ies of the material indicated a N(2) nitrogen site occupancy of 0.9 [45]. In the
present work the La3Ni2B2N3−δ samples were prepared with nominal compo-
sition δ being varied in a systematic way from 0.0 to 0.5 and X-ray diffraction
and physical properties propose a significant width of formation. The analysis
of neutron powder diffraction data revealed that the refinement of occupan-
cies of all crystallographic sites did not at all improve the fit indicating the
positions to be fully occupied. In the final run the occupancies of other po-
sitions were kept fixed to fully occupied values except for nitrogen site N(2).
Since the occupation of a certain crystallographic position is closely corre-
lated to its related thermal parameter (Biso), the Biso of nitrogen site N(2) is
constrained with the Biso of the fully occupied site N(1). The data in table 3.1
shows slight variation of crystallographic parameters but most interesting re-
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Figure 3.8: Measured, calculated and difference neutron powder diffraction
pattern of La3Ni2

11B2N2.65 (a) La3Ni2
11B2N2.90 (b) at room temperature. The

upper and lower vertical bars indicate Bragg positions for La3Ni2B2N3 and
LaNiBN, respectively.
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sult is the occupation of the nitrogen site N(2). Interestingly, the structural
refinement by neutron powder diffraction data resulted in fewer vacancies at
the nitrogen site N(2) than expected from the nominal composition. The data
in table 3.1 shows a N(2) site occupancy of 0.9 for the nominal composition
La3Ni2B2N2.65 which corresponds to the real composition of La3Ni2B2N2.90.
The profile refinement results in relatively close values of Biso of N(1) and
N(2) indicating that the occupancy of 0.9 for the N(2) site is realistic. The
thermal factors of N(1) and N(2) are in line with the mass relation to La,
Ni and B. Similar neutron powder diffraction analysis of La3Ni2B2N2.85 re-
vealed a N(2) site occupancy of 0.93 corresponding to a real composition
of La3Ni2B2N2.93 while La3Ni2B2N2.9 exhibits a N(2) occupancy of 0.92 and
thus, a refined composition of La3Ni2B2N2.92. These results suggest that the
matrix phase absorbs more nitrogen during the melting possibly indicating
a systematic error in the nominal composition. The profile refinements of

La3Ni2
11B2N2.65

a = 0.37188(2) nm, c = 2.05222(2) nm, V = 0.2839(4)nm3, c/a = 5.5117
Atom Site x y z Biso Occ.
La(2) 2a 0.0000 0.0000 0.00000 0.430(12) 1.00
La(1) 4e 0.0000 0.0000 0.37037(4) 0.413(12) 1.00

Ni 4d 0.0000 0.5000 0.25000 0.551(11) 1.00
B 4e 0.0000 0.0000 0.19433(6) 0.761(17) 1.00

N(1) 4e 0.0000 0.0000 0.12390(4) 0.611(13) 1.00
N(2) 2b 0.0000 0.0000 0.50000 0.656(13) 0.90

La3Ni2
11B2N2.85

a = 0.37187(2) nm, c = 2.05285(2) nm, V = 0.2838(4)nm3, c/a = 5.5203
Atom Site x y z Biso Occ.
La(2) 2a 0.0000 0.0000 0.00000 0.419(15) 1.00
La(1) 4e 0.0000 0.0000 0.37074(5) 0.402(15) 1.00

Ni 4d 0.0000 0.5000 0.25000 0.578(13) 1.00
B 4e 0.0000 0.0000 0.19413(7) 0.791(21) 1.00

N(1) 4e 0.0000 0.0000 0.12395(5) 0.602(16) 1.00
N(2) 2b 0.0000 0.0000 0.50000 0.647(16) 0.93

La3Ni2
11B2N2.90

a = 0.37208(2) nm, c = 2.05082(2) nm, V = 0.2839(4)nm3, c/a = 5.5117
Atom Site x y z Biso Occ.
La(2) 2a 0.0000 0.0000 0.00000 0.511(20) 1.00
La(1) 4e 0.0000 0.0000 0.37089(7) 0.494(20) 1.00

Ni 4d 0.0000 0.5000 0.25000 0.647(17) 1.00
B 4e 0.0000 0.0000 0.19438(9) 0.853(26) 1.00

N(1) 4e 0.0000 0.0000 0.12429(7) 0.652(20) 1.00
N(2) 2b 0.0000 0.0000 0.50000 0.697(20) 0.92

Table 3.1: Crystal structure and Lattice parameters data for nominal com-
positions La3Ni2B2N2.65, La3Ni2B2N2.85 and La3Ni2B2N2.90 at room tempera-
ture.
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300 K 180 K 80 K 30 K 4 K
a (nm) 0.37188 0.3714 0.3711 0.3710 0.3710
c (nm) 2.05221 2.0510 2.0511 2.0517 2.0519
c/a 5.519 5.522 5.528 5.531 5.530
V (nm3) 0.2838 0.2829 0.2824 0.2824 0.2824
z(La2) 0.37037 0.37057 0.37074 0.37071 0.37066
z(B) 0.19432 0.19422 0.19411 0.19415 0.19414

Biso (Å2)
La(2) 0.4300 0.2590 0.1740 0.1590 0.144
La(1) 0.4130 0.2420 0.1570 0.1420 0.1270
Ni 0.5510 0.3860 0.2720 0.2270 0.2230
B 0.7610 0.5450 0.4400 0.4140 0.3960
N(1) 0.6110 0.4770 0.3900 0.3500 0.3530
N(2) 0.6550 0.4920 0.4360 0.3960 0.3980

R-factors
Rp 6.91 7.04 7.25 7.23 7.70
Rwp 6.52 6.77 7.04 7.12 7.54
Rexp 4.49 4.33 4.21 4.18 2.35
RBragg 2.37 2.27 2.60 2.29 2.65
χ2 2.10 2.44 2.80 2.91 2.96

Table 3.2: Crystal structure and lattice parameter data for La3Ni2B2N2.65 at
various temperatures as listed.

neutron powder diffraction data and the refined occupancy of N(2) propose
a relatively narrow real width of formation of La3Ni2B2N3−δ with δ varying
from ∼0.06 to 0.10. A nominal composition La3Ni2B2N2.7 thus corresponds to
a real composition La3Ni2B2N2.9. It seems that in order to realize the actual
width of formation it requires to accept certain amounts of secondary phases
for reaching limiting compositions. Accordingly, to achieve a composition de-
pendent change in Tc and other physical properties, one needs to vary the N
stoichiometry within the much wider nominal width of formation. The a and
c lattice parameters for the three samples studied at D1A are summarized
in table 3.1. They are relatively close to each other and do not show a clear
dependence on nitrogen vacancies, which is in line with the observed narrow
real width of formation.

3.6.3 Thermal expansion

Neutron powder diffraction performed at temperatures ranging from 4 K
to 300 K allows to investigate the thermal and vibrational properties of
La3Ni2B2N3−δ. The refined lattice parameters for La3Ni2B2N2.65 at various
temperatures are listed in table 3.2. The R-factors and the corresponding
χ2 values suggest the quality of the fits. The temperature dependent vari-
ation of lattice parameters a and c of La3Ni2B2N2.65 and La3Ni2B2N2.90 is
shown in figure 3.9. The data reveal a decrease of the a lattice parameter
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with decreasing the temperature while the c lattice parameter shows a non
monotonic variation with a minimum. A similar temperature dependent vari-
ation of lattice parameters of CeNi2B2C borocarbide has been reported [52]
which was explained on the basis of geometrical effects of rather rigid B-C
and Ni-B bond lengths. For the borocarbides a decrease in temperature ef-
fects the lattice in a similar manner as the lanthanide contraction leading to
an increase in the B-Ni-B tetrahedral angle and thus to a stretching of the
tetragonal c-axis when the basel plane lattice constant a contracts [53, 52].
Since the NiB layers in La3Ni2B2N3−δ are isostructural with that of the single
layer borocarbides, a similar approach for explaining the structural variation
may be adopted. In La3Ni2B2N3−δ the reduction in temperature results in a
reduction in the volume of La-N triple layer which is reflected by decrease in
La(2)-N(2) distance from 0.263 nm at 300 K to 0.262 nm at 4 K. This has a
direct effect on the a lattice parameter as seen in figure 3.9. The change in
the c lattice parameter is attributed to rather rigid Ni-B bonds in the Ni2B2

layers. The Ni-B bond length hardly exhibits any variation with tempera-
ture. If the Ni-B distance is not effected by temperature, then this requires
an increase in the B-Ni-B tetrahedral angle from 105.9◦ to 106.1◦ and also
in the Ni2B2 layer thickness. For La3Ni2B2N2.65 the Ni2B2 layer thickness
increases from 0.228 nm at 300 K to 0.229 nm at 4 K. A similar increase in
Ni2B2 layer thickness and corresponding increase in the B-Ni-B tetrahedral
angle is observed for La3Ni2B2N2.90. Another important factor effecting the
c lattice parameter is the variation in the thickness of the La-N triple lay-
ers. For La3Ni2B2N2.65 the thickness of the La-N triple layer decreases from
0.532 nm at 300 K to 0.530 nm at 100 K while it remains almost constant
at further lowering of the temperature to 4 K. An identical temperature de-
pendent behavior of the La-N triple layer is observed for La3Ni2B2N2.90. So
the non-monotonic variation of the c lattice parameter for both samples is
a consequence of the superposition of positive and negative contributions to
the c-axis expansion from Ni2B2 and La-N triple layers. In the temperature
range 300-100 K the effect of the reduction in the La-N triple layer thickness
is dominant over the increase in the Ni2B2 layer thickness resulting in a de-
crease in the c lattice parameter. At temperatures below 100 K the thickness
of the La-N triple layers becomes almost constant resulting in an increase
in the c lattice parameter. The variation of the unit-cell volume with tem-
perature for La3Ni2B2N2.65 and La3Ni2B2N2.90 is shown in figure 3.10. The
unit cell volume varies like the a lattice parameter and shows a reduction
with decreasing temperature. From 300 K, to about 100 K the lattice volume
reduces almost linearly while at low temperature it becomes almost temper-
ature independent. The experimental data of the unit cell volume is modeled
by the Grüneisen approximation for the zero-pressure equation of state, in
which the effects of the thermal expansion are considered to be equal to the
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Figure 3.9: Variation of lattice parameters of La3Ni2B2N2.65 (a) and
La3Ni2B2N2.90 (b) as a function of temperature. Lines are guides to eye.

elastic strain [54]. Thus, the temperature dependence of the volume can be
described by

V (T ) =
γU(T )

Ko

+ Vo +BT 2 (3.1)

where γ is the Grüneisen parameter, Ko is the bulk modulus, Vo is the volume
at T = 0 K and B is the electronic contribution to the volume expansion. The
internal energy in the Debye approximation is given by
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Figure 3.10: Variation of the lattice volume of La3Ni2B2N2.65 (a) and
La3Ni2B2N2.90 (b) as a function of temperature. Lines indicate a fit of the
data on the basis of the Debye model (see text).

U(T ) = 9NkBT

(
T

θD

)3
ΘD/T∫
0

x3

ex − 1
dx (3.2)

where N is the number of atoms in the unit cell, kB is the Boltzmann con-
stant and θD is the Debye temperature. The variation of the lattice volume
with temperature can be very well approximated by the above model as rep-
resented by the solid line in figure 3.10(a) for La3Ni2B2N2.65. The fit yields
γ/Ko of 1.85×10−7 Pa−1, ΘD of 345 K , Vo = 0.2823 nm3 and a very small T 2

dependent contribution with a coefficient B = 7.1× 10−9. For La3Ni2B2N2.9

(figure 3.10) the values of θD and Vo are 356 K and 0.2824 nm3, respectively,
while other fit parameters remain similar. The value of Debye temperature
determined from the neutron diffraction measurements is in reasonable agree-
ment with that determined from specific heat measurements (see chapter 5).
A similar approximation of the refined lattice volume of La3Ni2B2N2.90 is
shown in figure 3.10(b). To compare with the results of neuron diffraction
measurements, the linear thermal expansions (αL) of selected compositions
were measured from 4.2 K to 300 K in a miniature capacitive dilatometer [55].
The measurement setup includes a lower ringlike capacitor plate made of sil-
ver with a hole in which the sample is placed. The lower capacitor plate is
separated from the upper plate by two needle bearings for the support. The
calibration of the capacitor plate sensor is performed using the tilted plate
principle [56]. Since the αL data for all the measured samples are in reason-
able agreement, it is obvious that the thermal expansion of all polycrystalline
samples is isotropic and the volume thermal expansion can be calculated by
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Figure 3.11: Measured volume thermal expansion of various La3Ni2B2N3−x
samples with x as labeled. The line shows a Debye fit of the volume thermal
expansion of La3Ni2B2N2.65 from neutron diffraction measurements.

the equation αv = 3αL. The volume thermal expansion of selected samples is
shown in figure 3.11 all showing a kink at 200K which is an artifact from the
temperature regulation. The anomaly visible below 30 K may be associated
with the non monotonic variation of c lattice parameter but it is not clear
because we have no neutron diffraction data in temperature range between 4
and 30 K. Also it could be an artifact from cell caliberation because absolute
expansion of La3Ni2B2Nx is small below 50 K. The solid line in figure 3.11
indicates αV as determined from the approximation of lattice volume on the
basis of Debye theory (see figure 3.10). The data in figure 3.11 reveals good
quantitative agreement with the αV determined by neutron diffraction mea-
surements.

3.6.4 Atomic displacement parameters

In any kind of Bragg diffraction measurement a rise in the temperature of
the crystal results in a reduction in the intensity of the Bragg reflected beam,
but the angular width of reflected lines does not change [57]. The intensity
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Figure 3.12: Isotropic thermal parameters for different atoms in
La3Ni2B2N2.65 (a) and La3Ni2B2N2.90 (b). Solid lines are fit according to
equation 3.7.

of a typical Bragg peak is qualitatively given as

I = Io exp(−1

3
〈U2〉G2) (3.3)

where Io is the intensity from a rigid lattice with static atoms and G is the
magnitude of scattering vector. The exponential factor in equation 3.3 is
the Debye-Waller factor [57] which corresponds to the thermal parameters
(B factors). The term 〈U2〉 in equation 3.3 represents atomic displacement
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La3Ni2B2N2.65 La3Ni2B2N2.90

θD(K) ωD(THz) θD(K) ωD(THz)

La(1) 268 5.58 256 5.33
La(2) 195 4.06 187 3.89
Ni 267 5.56 260 5.41
B 537 11.18 560 11.66
N(1) 554 11.54 570 11.87
N(2) 757 15.76 771 16.05

Table 3.3: Debye temperatures and Dedye frequencies of different atoms for
La3Ni2B2N2.65 and La3Ni2B2N2.90 as listed.

parameters (ADP) of different atomic species in the crystal. The ADP’s
are basic crystallographic parameters that reflect the atomic thermal motion
and provide useful information on thermal properties of the materials. ADP
measure the mean-square displacement amplitudes of the atoms away from
their equilibrium position in a crystal lattice and can be due to vibration
of the atoms or due to static disorder. Most often an isotropic ADP Uiso is
given corresponding to mean square displacement of an atom averaged over
all directions. Within the Debye model the Uiso is given as [58]

< U2
iso >=

3h2T

4π2mkBθ2
D

[
Φ(ΘD/T ) +

ΘD

4T

]
(3.4)

with θD being a Debye temperature of the atom vibrating at a particular
lattice site and kB is the Boltzmann constant. The term Φ(θD/T ) is given by

Φ(θD/T ) =
T

θD

ΘD/T∫
0

x

ex − 1
dx. (3.5)

At high temperatures (T > θD) Uiso varies linearly with T and is given as

< U2
iso >=

3h2

4π2mkBθ2
D

T (3.6)

and at low temperature Uiso reaches the zero point value of 3h2/16π2mkBθD.
The ADP of different crystallographic sites for nominal compositions
La3Ni2B2N2.65 and La3Ni2B2N2.90 are investigated over the measured tem-
perature range. The isotropic thermal parameter Biso is related to the mean-
square displacement amplitude < Uiso > as [59]

Biso = 8π〈U2
iso〉+Bsta (3.7)

where Bsta is the component of the thermal parameter caused by the pres-
ence of a certain amount of static disorder in the compound. The thermal
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parameters of all the atoms were analyzed on the basis of the model described
above and the results are summerized in figure 3.12. The solid lines in fig-
ure 3.12 indicate a fit of Biso values according to equation 3.7 revealing that
the Biso of all atoms being reasonably well described by the Debye model in
the measured temperature range. The Debye temperatures along with the
corresponding Debye frequencies for different atomic species are listed in ta-
ble 3.3. The Debye frequencies of B and N(1) are comparable while N(2)
which is located in central LaN layer has a slightly higher frequency.



Chapter 4

Normal state properties of
La3Ni2B2N3−δ

4.1 Introduction

After their discovery, the rare-earth nickel borocarbides RNi2B2C remained
center of interest for more than 10 years mainly due to the rich variety of
their physical properties [34]. Many investigations of the normal state trans-
port and magnetic properties of RNi2B2C has been reported (see Ref. [34, 60]
for reviews), whereas no comprehensive study of normal state transport and
magnetic properties of La3Ni2B2N3−δ is yet reported. Detailed studies of
superconducting properties of bulk La3Ni2B2N3−δ samples have been pub-
lished [41, 61].

To achieve a better understanding of the interactions responsible for su-
perconductivity, it is important to investigate the normal state properties
of a superconductor. The following chapter presents an analysis of normal
state specific heat, susceptibility and resistivity of La3Ni2B2N3−δ. The normal
state thermal conductivity and thermopower are reported for the first time
and data of the high temperature magnetic susceptibility is also presented.
The specific heat data are analyzed on the basis of Debye and Einstein mod-
els and measured data are compared with phonon density of states (PDOS)
obtained from ab initio calculations. The density functional theory calcu-
lations were performed by Reith and Podloucky using the Vienna ab initio
simulation (VASP) package [62].
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4.2 Transport properties

4.2.1 Electrical resistivity

The electrical resistivity is a direct probe of electron scattering inside the
material. The dependence of the electrical resistivity on temperature, pres-
sure, magnetic field or any other parameter thus, provides information of
the interactions present. The electrical resistivity of a metal in the case of
simple independent scattering processes obeys Matthiessen’s rule and can be
considered as a sum of partial resistivities [57, 63]

ρtotal(T ) = ρo + ρph(T ) + ρe(T ) (4.1)

where ρo is the temperature independent residual resistivity due to elastic
electron scattering by any kind of static defects scattering while ρph and
ρe represent resistivities corresponding to the inelastic electron-phonon and
electron-electron scattering respectively. The ρph in the simplest case is de-
scribed by the Bloch-Grüneisen model which assumes a phonon spectrum
based on the Debye model whereas ρe displays a T 2 dependence at lowest
temperatures [57, 63].

Residual resistivity

The electrical resistivity versus temperature of selected La3Ni2B2N3−δ sam-
ples is plotted in figure 4.1(a). The room temperature resistivity for
La3Ni2B2N2.6 is ∼75µΩcm which decreases with increasing nominal nitrogen
stoichiometry and reaches a value of ∼60µΩcm for La3Ni2B2N2.9. The resid-
ual resistivity, ρo, for all the samples was taken to be the resistivity at 15 K.
The resistivity data in figure 4.1(a) reveal an increase in ρo with increase
in nitrogen off-stoichiometry. The variation of ρo as a function of nominal
N-stoichiometry shown in figure 4.2(a) reveals an increase of ρ0 from about
12µΩcm for La3Ni2B2N2.90(5) to about 24µΩcm for La3Ni2B2N2.60(5). The
increase in ρo is accompanied by a concomitant reduction of the room tem-
perature to residual resistivity ratio (RRR) from 5.0 to 3.2. These changes
are obviously related to the increasing density of nitrogen vacancies, since
any lattice vacancy acts as scattering potential for conduction electrons and
thus contributes to the temperature independent residual resistivity. ρo as a
function of N-vacancies δ as determined from neutron powder diffraction (see
section 3.6) is shown in figure 4.2(b). The dashed line in the figure 4.2(b)
reveals that the data approximately extrapolates to ρo = 0 for a vacancy and
impurity free La3Ni2B2N3.
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Figure 4.1: Temperature dependent electrical resistivity of selected
La3Ni2B2Nx samples (a) and La3Ni2B2N2.6 (b). Solid line in (b) represents a
fit according to the Bloch-Grüneisen relation.
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Figure 4.2: Residual resistivity ρo as a function of nominal nitrogen stoi-
chiometry x (a) and nitrogen vacancies δ (b) determined by neutron powder
diffraction. Dashed line in (b) is a guide to eye.
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Figure 4.3: (a): ρ(T ) of selected La3Ni2B2N2.6 with solid line representing a
fit of low T part according to equation 4.3. (b): ρ(T ) of selected La3Ni2B2Nx

compositions with solid lines representing linear fits.

T 5 versus T 2 dependence

The resistivity of La3Ni2B2N3−δ reveals simple metallic behaviour at T > Tc,
and may roughly be accounted for by the standard model for the tempera-
ture dependent electrical resistivity of metals given by the Bloch-Grüneisen
relation

ρ(T ) = ρ0 +
4B

ΘD

(
T

ΘD

)5 ∫ ΘD
T

0

z5dz

(ez − 1)(1− e−z)
, (4.2)

where ρo is residual resistivity, B is electron-phonon coupling constant and
ΘD is Debye temperature. Figure 4.1(b) shows the temperature depen-
dent resistivity of La3Ni2B2N2.6 with a solid line representing a fit according
to Bloch-Grüneisen relation yielding ρ0 = 24.2µΩcm, B= 18.8 mΩcmK and
Θρ
D = 319(20) K. From the analysis of selected compositions no significant

impact of the N-stoichiometry on the Debye temperature Θρ
D as well as on

the electron-phonon coupling constant B is observed. From figure 4.1(b) it
is seen that equation 4.2 describes the data rather well in the temperature
range 80 6 T 6 300 K. Below 80 K, the resistivity is not well accounted for by
the Bloch-Grüneisen relation which predicts a T 5 low temperature behaviour.
In order to describe the temperature dependence of ρ(T ) at low temperature
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the data was fitted to the expression

ρ(T ) = ρ0 + AT 2. (4.3)

The low temperature resistivity of selected compositions is shown in fig-
ure 4.3(b) as ρ(T ) vs. T 2 with solid lines representing fits of the data in the
temperature interval Tc 6 T 6 60 K by equation 4.3 revealing a quadratic
temperature dependence of resistivity at low T for all samples. The fit pa-
rameter A does not show any significant composition dependence and has
a value ∼1.3×10−3µΩcm/K2. A quadratic temperature dependence of the
low T resistivity has also been reported for the related borocarbide super-
conductors Y and LuNi2B2C [30, 64] and also for superconducting high-Tc
A-15 compounds [65] which belong to the same class of superconductors as
La3Ni2B2N3−δ. The most plausible explaniations for a T 2 dependence of
the resistivity are electron-electron (e-e) and electron-phonon (e-ph) scatter-
ing processes. The T 2 behaviour in the low temperature resistivity of A-15
compounds was initially suggested by Webb et al. [66] to be due to e-ph in-
teraction resulting from a non-Debye phonon spectrum. However this idea
was discounted by Gurvitch et al. [65] who later proposed that strong e-ph
coupling together with high disorder in A-15 compounds may lead to a T 2

dependence of low temperature resistivity. However this mechanism of e-
ph scattering in a disordered compound is highly unlikely in well crystalline
borocarbides and La3Ni2B2N3−δ.

In case of the borocarbide superconductors, Rathnayaka et al. [30] argued
that the Gurvitch model is not applicable because of the relatively high value
of A coefficient of T 2. They attributed the quadratic temperature dependence
of resistivity at low T to e-e correlation effects caused by narrow Ni 3d derived
bands. This was explained by Rice [67] in terms of the Baber mechanism
for d metal compounds where the main contribution to resistivity is from the
scattering of s electrons (with highest mobility and small effective mass) from
heavier d holes due to screened Coulomb interactions.

The validity of Gurvitch model of e-ph scattering was later questioned [68]
on several basis, one of which was the MacDonald model [69, 70] of e-e scat-
tering. The MacDonald model suggests that the T 2 dependence of ρ is due
to phonon mediated e-e interactions which are expected to weaken at about
ΘD/T to yield the limited temperature range in which the power law is ob-
served. The model asserts that the e-e interaction induced by e-ph coupling
is almost 20 times the value expected e.g. from Baber mechanism [67] which
has been calculated in terms of Kadowaki-Woods ratio [71].

Kadowaki-Woods ratio

The A coefficient of T 2 dependent ρ and the Sommerfeld coefficient γ are
related in terms of the Kadowaki-Woods ratio (KWR) A/γ2 [71]. In case of
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d metals, the Fermi liquid calculations by Rice based on Baber mechanism
implies a KWR of 0.9 × 10−6µΩcm(mol K/mJ)2 however the mean experi-
mental trend revealed a KWR 0.4× 10−6µΩcm(mol K/mJ)2 [67]. A universal
behaviour of KWR with A/γ2 = 1.0× 10−5µΩcm(mol K/mJ)2 has also been
observed for heavy fermion compounds and for A-15 superconductors [72].

For La3Ni2B2N3−δ with A '1.3×10−3µΩcm/K2 and γ ' 13.0mJ/mol-
NiK2 a Kadowaki-Woods ratio of 0.8×10−5µΩcm(mol-Ni K/mJ)2 is obtained
which is in reasonable agreement with A-15 superconductors. The KWR of
boronitreides is exactly 20 times the mean experimental trend for d met-
als mentioned by Rice [67] and is consistent with the MacDonald model
discussed before. This explains the comparatively higher values of A esti-
mated for borocarbides and some A − 15 compounds. Since the value of
A ∼1.3×10−3µΩcm/K2 for boronitrides is significantly higher than the value
expected from Baber mechanism, one may conclude that the quadratic de-
pendence of ρ at low temperature is a consequence of phonon mediated e-e
correlation effects in term of MacDonalds model. The same mechanism may
also be responsible for higher values of A in borocarbides and A-15 com-
pounds.

It should be noted that in the case of A-15 compounds, a common practice
is to take the Sommerfeld coefficient in units of mJ/g-at K2 which results in a
A/γ2 ' 1.0×10−5µΩcm(mol K/mJ)2. However if one uses γ in units of mJ/g-
at K2 for La3Ni2B2N3−δ, the KWR gets very large and could be misleading
because the dmetal fraction is much smaller than that of the A-15 compounds.

Transport electron-phonon coupling constant

The resistivity data can be used to determine the transport electron-phonon
coupling constant (λtr). The Bloch-Grüneisen transport theory relates the
temperature dependence of resistivity ρ to electron-phonon coupling constant
λtr as [73]

dρ

dT
=

8π2

3~ω2
p

kBλtr (4.4)

where ωp is the Drude plasma frequency given by

ω2
p =

4

3
π2N(Ef )e

2v2
F (4.5)

with N(Ef ) as density of states at Fermi level and vF the Fermi velocity.
Equation 4.4 is valid in temperature range T > 0.7ΘD and assumes that the
residual resistivity ρo as well as other contributions to be small compared
to the electron-phonon contribution described by the Boltzman theory [73].
The value of vF is taken to be 2.4×105 m/s from electronic structure calcula-
tions [74]. For the nominal composition La3Ni2B2N2.70 with ΘD '329 K and



4.2 Transport properties 48

0 50 100 150 200 250 300
-8

-6

-4

-2

0  La
3
Ni

2
B

2
N

2.7

 

 
S

 (
µV

/K
)

T (K)

Figure 4.4: Temperature dependent thermopower of La3Ni2B2N2.7. Dashed
line indicates a least square fit of the data in range 200 K< T < 300 K.

N(Ef ) ' 6.0 states/eV. f.u (see section5.4.5) a value λtr ' 0.9 which is in
good agreement with λep obtained from Tc in terms of Mc Millan formula (sec-
tion 5.4.3). Allen [75] calculated a λtr of 0.29 using the data of Ref. [41] which
however is in disagreement with the present results and obviously wrong by a
factor of about 3 and is the obvious reason for the discrepancy in the values
of λtr as compared to the present estimate.

4.2.2 Thermopower

Thermopower measurements were carried out from 4 K to 300 K by employing
the so called differential seasaw heating technique. The temperature depen-
dence of the thermopower S(T ) of La3Ni2B2N2.7 is shown in figure 4.4. S(T )
is negative above the superconducting transition temperature (Tc ' 13 K)
indicating a positive slope of electron density of states at Fermi level. The
room temperature thermopower S(300K) = −6.77µV/Ks is close to the
values reported for single crystals of the nonmagnetic borocarbide supercon-
ductors Y and LuNi2B2C [30]. The thermopower decreases almost linearly
with T near room temperature within the accuracy of the measurement and
an extrapolation of the data in temperature range 200 K< T <300 K ac-
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cording to S(T ) = a + bT gives a linear contribution to S(T ) with a slope
b = −15.2 nV/K2 and an intercept a = −1.85µV/K. A similar behaviour of
the absolute thermopower has been reported for most borocarbides with the
coefficient of the linear contribution to the thermopower b, varying between
−10.4 nV/K2 and −23.5 nV/K2 and magnitude of the parameter a, slightly
higher than that of the boronitrides [76]. For a conventional nonmagnetic
metal the thermopower consists of contributions from diffusion and phonon-
drag thermopowers which results from the transfer of phonon momentum
to electrons. The diffusion thermopower is proportional to the temperature
while the phonon-drag thermopower vanishes at high temperature as phonon-
phonon scattering increases, and also at low temperatures where phonons
freeze out. This temperature dependence of the phonon-drag thermopower
normally results in a peak with a T 3 dependence below 0.1ΘD and a 1/T
dependence above 0.3ΘD, where ΘD is the Debye temperature.

The thermopower data shown in figure 4.4 reveals a change in the slope
at about 170 K while a peak is observed at ∼30 K indicating additional con-
tributions to the thermopower other than diffusion. Such a non linear tem-
perature dependence of S(T ) is similar to that of Y and LuNi2B2C single
crystals [30]. Rathnayaka et al. [30] found that S − bT , representing con-
tributions to S(T ) other than diffusion, is almost constant between 100 to
300 K and varies as 1/T below 100 K for both, YNi2B2C and LuNi2B2C, sin-
gle crystals. They attributed the observed change of slope in S(T ) to phonon
drag effects. Analyzing S(T ) of La3Ni2B2N2.7 in the same manner, it is found
that S− bT is almost constant above 170 K and varies as 1/T in temperature
range 0.3ΘD < T < 170K and as T 3 in Tc < T < 0.1ΘD (ΘD = 330 K). This
temperature dependence of S(T ) together with a peak at 30 K suggests that
a phonon drag contribution to thermopower is dominant at low temperature.

4.2.3 Thermal Conductivity

The thermal conductivity of metallic systems is given by λ = λe+λph where λe
and λph represent the contributions from electrons and phonons, respectively.
In the case of simple metals the Wiedemann-Franz law is expected to be valid
approximating λe as

λe = LoT/ρ (4.6)

with the Lorentz number Lo = 2.44 × 10−8WΩK−2 and ρ being the elec-
trical resistivity. The temperature dependent thermal conductivity of a
La3Ni2B2N2.7 is shown in figure 4.5. The thermal conductivity shows an
overall behaviour typical of an intermetallic compound. The high tempera-
ture λ(T ) is approximately linear which may not be intrinsic and most likely
due to radiation losses during the measurement. A similar trend in the high
temperature thermal conductivity has been reported for single crystal boro-
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Figure 4.5: Temperature dependent thermal conductivity of La3Ni2B2N2.7.
λe and λph represent electronic and lattice contributions, respectively.

cabides but with absolute values relatively higher than reported here [77, 78].
To disentagle the electronic and lattice contributions, equation 4.6 is applied
to the resistivity data (figure 4.1) to calculate λe(T ) and λph = λexp − λe.
The resulting electronic and lattice thermal conductivities are displayed in
figure 4.5 labeled as λe and λph respectively. The dominant contribution to
the total thermal conductivity comes from the λe but there is no peak in
λe(T ) below 0.1ΘD which is expected for a good metallic behaviour. Ac-
cording to Matthiessen’s rule, the electrical resistivity can be represented as
a sum of partial resistivities, corresponding to different processes of electron
scattering. By analogy, the inverse electronic thermal conductivity, 1/λe, can
be expressed as a partial sum of thermal resistivities W . So for non-magnetic
materials, the temperature dependence of λe (e.g. for T < 0.1ΘD) is approx-
imated as [79]

1/λe(T ) ≡ We,0(T ) +We,ph(T ) =
α

T
+ βT 2 (4.7)

where We,0 and We,ph represent the thermal resistivities due to interactions
of electrons with imperfections and thermally excited phonons, respectively
while α and β are constants. The electronic thermal resistivity We(T ) as
calculated from the Wiedemann-Franz law is shown in figure 4.6. The solid
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Figure 4.6: Temperature dependent electronic thermal resistance of
La3Ni2B2N2.7 in the normal state. The solid line indicates a fit according
to equation 4.7 while dashed and dotted lines indicate contributions from
electron-impurity and electron-phonon scattering, respectively.

line indicates a fit of We(T ) according to equation 4.7 yielding α = 1.02 ×
103 cmK2/W and β = 1.67 × 10−3 cm/WK. These fit parameters give the
electron-impurity and electron-phonon contribution to thermal resistitivty
shown as dashed and dotted lines in figure 4.6 respectively. The electronic
thermal conductivity, λe can be written as [80]

1/λe(T ) =
3

Cev2
f

[τ−1
ei + τ−1

ep ] (4.8)

where τ−1
ei and τ−1

ep represent the relaxation rates for electron imperfection
and electron phonon scattering processes respectively. At low temperature
i.e. T << ΘD where ΘD is Debye temperature, the electron-phonon relaxation
processes freez out and electron-impurity scattering is dominant in λe. Since
λe,0 varies linearly with T as in equation 4.7, it causes an overall linear be-
haviour of λ(T ) above the superconducting transition temperature (∼13 K).
As the temperature increases, electron-phonon scattering increases as indi-
cated by figure 4.6 and becomes the dominant process for the thermal re-
sistivity. At high temperature (T > ΘD), the electron-phonon scattering
processes are elastic with τ−1

ep ∝ T resulting in λe = const.
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The phonon thermal conductivity λph for a normal metal is expected to
vary as T 3 at low temperature and to fall as 1/T at high T . The λph of
La3Ni2B2N2.7 roughly reveals a normal metal like behaviour except for the
increase at high temperature which could be an artifact of the measurement.

4.3 Magnetic Properties

The normal state magnetic susceptibility, χ(T ), of selected La3Ni2B2N3−δ
samples was studied from Tc up to 300 K by means of magnetization mea-
surements on a dc-SQUID magnetometer at 1 T while the high temperature
measurements were performed on a Quantum-Design Physical Property Mea-
surement System, vibrating sample magnetometer (VSM) at 9 T. The suscep-
tibility plot of La3Ni2B2N2.7 is shown in figure 4.7 at an applied field of 1T.
The data in circles represents the original measurement from VSM which is
adjusted by a factor to match the low temperature SQUID measurement.
The susceptibility is weakly temperature dependent between 50 and 1000 K
while an upturn at low temperatures is most likely due to the presence of
small amounts of paramagnetic impurities. The normal state χ(T ) data for
samples with various nominal compositions are almost matching and can be
accounted for by a weakly temperature dependent Pauli susceptibility (from
Sommerfeld expansion) plus a Curie-Weiss term for the impurity contribution
as

χ = χo(1− aT 2) + C/(T −Θp) (4.9)

where χo is the low temperature Pauli susceptibility, a is its temperature co-
efficient, Θp is paramagnetic Curie temperature, and C is the Curie constant.
A fit of the data in the temperature range 15-1000 K is shown as a solid line
in figure 4.7. The fit yields a χo ' 0.22× 10−3emu/mol, a = 3.4× 10−7 K−2,
C ' 7.2 × 10−3emu K/mol and a paramagnetic Curie temperature Θp of
the order of -10 K. χo obtained from the fit includes contributions from core
diamagnetism, the Landau diamagnetism and the enhanced Pauli paramag-
netism

χo = χcore + χLandau + SχPauli. (4.10)

The core diamagnetic contribution χcore is estimated to be −8.4 ×
10−5 emu/mol [61, 81] while χPauli and χLandau are given as

χPauli = µ2
BN(Ef ) (4.11)

and

χLandau =
−µ2

BN(Ef )

3(1 + λ)2
(4.12)
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Figure 4.7: Normal state temperature dependent magnetic susceptibility of
La3Ni2B2N2.7 at an applied field of 1T (from 4-300 K) and 9T (from 300-
1000 K). Circles represent high T susceptibility as measured on the VSM (see
text). Solid line represents a fit according to equation 4.9.

where µB is the Bohr magneton, N(Ef ) is the density of states at the Fermi
level and λ is the electron-phonon coupling constant. La3Ni2B2N2.7 has an
electron-phonon coupling constant λ ' 0.89 and a Sommerfeld coefficient
γ ' 26mJ/molK2 (see chapter 5). Using γ one can calculate the N(Ef ) from
the relation

γ =
π2

3
k2
B(1 + λ)N(Ef ) (4.13)

yielding N(Ef ) ' 6 states/eV-f.u. Inserting the values in equation 4.11
and 4.12 results in χPauli and χLandau of 0.19 × 10−3 emu/mol and 1.75 ×
10−5 emu/mol respectively. The equation 4.10 allows to determine the Stoner
enhancement factor as

S =
χo − χcore
µ2
BN(Ef )

+
1

3(1 + λ)2
(4.14)

yielding S ' 1.6 which is slightly smaller than the value reported earlier [61].
For a non-interacting Fermi gas the density of states as probed by magnetic

measurements enters as given in equation 4.11 while the density of states
probed by the specific heat measurements enters in equation 4.13. One can
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Figure 4.8: The normal state specific heat of La3Ni2B2N2.7 and La3Ni2B2N2.85

up to 120 K. inset: C/T vs. T 2 graph of the low temperature part with a
solid line indicating a C/T = γ + βT 2 linear fit.

therefore define a dimensionless Wilson ratio [82]

RW =
π2k2

B

3µ2
B

(
χo
γ

)
(4.15)

where γo is the Sommerfeld coefficient. Using the experimentally determined
values of χo and γ, equation 4.15 gives a Wilson ratio of 0.6 which is close to
unity, as expected for a material with nearly filled d-bands.

4.4 Specific Heat

Specific heat measurements were performed from 2 to 180 K in order to
study electronic and lattice contributions. The normal state specific heat
of La3Ni2B2Nx shown in figure 4.8 as obtained at high enough field (9T)
to suppress superconductivity. The low temperature electronic and lattice
contributions to the specific heat of the normal metal are given by Cp =
Ce + Cph ' γT + βT 3 where γ is Sommerfeld parameter and β is related to
the low-temperature value of the Debye temperature, ΘLT

D = (1944×N/β)1/3

where N being the number of atoms per formula unit. The low temperature
(16 K2 > T 2 > 40 K2) fit of La3Ni2B2N2.85 shown in the inset of figure 4.8,
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Figure 4.10: Phonon specific heat of La3Ni2B2N2.7. Solid line represents
phonon specific heat calculated from the DFT phonon spectrum (figure 4.9)
on the basis of equation 4.16
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Figure 4.11: The normal state specific heat of La3Ni2B2N2.7 up to 180 K.
Solid line represents a fit according to equation 4.17 with fit parameters also
listed.

yields γ ' 24.0 mJ/molK2 and β ' 0.51 mJ/molK4, i.e. ΘLT
D ' 340 K. In or-

der to perform an in-depth analysis of vibrational properties of La3Ni2B2N3−δ,
the Density Functional Theory (DFT) calculations were performed by by Re-
ith and Podloucky VASP [62]. The experimentally determined lattice vol-
ume was used in ab initio calculations. The model phonon density of states
(PDOS) spectrum obtained from DFT calculations is shown in figure 4.9 for
a composition close to La3Ni2B2N2.9. To compare the contribution from local
atomic modes, the frequencies of individual atoms obtained from isotropic
atomic displacement parameters (see section 3.6.4) are indicated with dashed
lines. From the spectrum it is evident that the low frequency vibrational
spectrum up to ∼250 K is dominated by the heavy atoms La and Ni. Above
400 K the dominant contribution to the phonon DOS comes from vibrations
of lighter elements B and N. The PDOS is related to the phonon specific heat
in terms of a general relation

Cph(T ) = R

∫ ∞
0

F (ω)

(
ω

2T

)2

sinh2
(
ω

2T

)dω (4.16)

where F (ω) is a phonon spectrum, e.g. the one obtained from ab initio calcu-
lations. Based on equation 4.16, Cph is calculated and is shown in figure 4.10
together with the measured data. The electronic contribution to the total
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Figure 4.12: Model phonon spectrum of La3Ni2B2N2.875. Dashed line rep-
resents the Debye spectrum with the cutoff representing Debye frequency.
The refined Einstein frequencies and indicated by short vertical lines with
corresponding spectral weights.

specific heat was subtracted from the measured data to get the phonon spe-
cific heat (Cph). The calculated Cph indicated by solid line in figure 4.10 is in
reasonable agreement with measured one at low and high temperature while
a small mismatch is observed at intermediate temperatures. This small error
can be expected from ab initio calculations and may be due to the over esti-
mate of nitrogen vacancies. To analyze the measured specific heat in context
of PDOS, a model with combination of one Debye function and 4 Einstein
functions is adopted to describe the phonon specific heat as

Cph(T ) =
9R

ω3
D

∫ ωD

0

ω2
(
ω

2T

)2

sinh2
(
ω

2T

)dω +
4∑
i=1

ciR

(
ωi

2T

)2

sinh2
(
ωi

2T

)dω (4.17)

Thereby 3 acoustical and 27 optical branches of the phonon dispersion of
La3Ni2B2N3 represent a minimum set of parameters to describe the overall
temperature dependence of the specific heat. The spectral weights and posi-
tions of Debye and Einstein contributions were estimated by hand from the
PDOS. A fit of the measured Cph according to equation 4.17 is shown as a
solid line in figure 4.11. Reasonable agreement between measured and cal-
culated Cph is achieved and the obtained Debye and Einstein temperatures
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are listed in figure 4.11. The spectral weights of the Debye and Einstein con-
tributions are indicated in figure 4.12. The analysis reveals good agreement
between measured and calculated specific heat and is a good starting point
for analyzing the superconducting state properties. The PDOS spectrum is
used in Eliashberg model calculations of the superconducting properties of
La3Ni2B2N2.7 (see chapter 5).



Chapter 5

Superconducting properties of
La3Ni2B2N3−δ

5.1 Introduction

La3Ni2B2N3−δ was reported to be superconducting with a transition tempera-
ture of ∼ 11.7− 13 K [40, 41]. Detailed studies of superconducting properties
of La3Ni2B2N3−δ by means of resistivity, specific heat and magnetic measure-
ments have been reported earlier [41, 36] suggesting it to be a phonon me-
diated medium- to strong-coupling BCS superconductor. In previous reports
the specific role of the nitrogen stoichiometry has not been explored which is
expected to have relevant influence on the superconducting properties.

The following chapter presents studies of superconducting state properties
of La3Ni2B2N3−δ by means of resistivity, specific heat and magnetic measure-
ments. The composition dependence of physical properties is investigated for
nominal compositions of La3Ni2B2N3−δ with δ varying from 0.1 to 0.4. The
thermodynamic and microscopic parameters of the superconducting state are
and briefly compared with model calculations based on the Eliashberg theory
for anisotropic s−wave superconductor and are analyzed in context with new
ab initio calculation performed using Vienna simulation package [62].

5.2 Results of resistivity measurements

5.2.1 Resistivity in zero field

The temperature dependent electrical resistivity of La3Ni2B2N3−δ was mea-
sured using standard four probe technique in a 4He cryostat. The resistivity
ρ(T ) for several compositions of La3Ni2B2Nx (measured in zero magnetic field)
is depicted in figure 5.1 to highlight the superconducting transition tempera-
ture. All samples exhibit a relatively sharp superconducting transition with a

59
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Figure 5.1: Temperature dependent electrical resistivity of La3Ni2B2Nx with
x as labeled.

systematic increase in the resistive transition temperature T ρc from ∼ 12.5 K
to ∼ 14.5 K as the nitrogen stoichiometry (x in fig. 5.1) increases from 2.6
to 2.9. The resistive transition temperature T ρc is determined by the mean of
the temperatures corresponding to 10% and 90% of the resistive jump which
matches well with Tc onset obtained from specific heat measurements. The
width of the transition is evaluated from ∆Tc = T (0.9ρ0) − T (0.1ρ0) yield-
ing about 0.5 K for most of the samples. The normal state resistivity above
80 K for all samples behaves like a simple metal and can be roughly described
in terms of the Bloch-Grüneisen (BG) relation (equation 4.2) whereas be-
low 80 K a low temperature dependence close to T 2 is observed. A detailed
description of normal state resistivity is given in section 4.2.1.
Besides having an effect on the superconducting transition, the nitrogen
off-stoichiometry also affects the temperature independent residual resis-
tivity. The electrical resistivity for several La3Ni2B2Nx samples is shown
in figure 5.2(a) revealing an increase of the residual resistivity ρ0 from
about 12µΩcm for samples near La3Ni2B2N2.90(5) to about 24µΩcm for
La3Ni2B2N2.60(5). As demonstrated in detail in chapter 4, this variation of
ρo is related to the increasing density of nitrogen vacancies which act as scat-
tering potentials for conduction electrons and thus contribute to the temper-
ature independent residual resistivity. Scattering originating from vacancies,
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Figure 5.2: Temperature dependent electrical resistivity for various
La3Ni2B2N3−x samples (a); T

Cp
c (circles) and T ρc (squares) vs ρ0 for

La3Ni2B2N3−x with error bars indicating width of the specific heat transi-
tion (b).

impurity atoms or other lattice defects may further act as non-magnetic pair-
breaking for Cooper electrons, thereby reducing Tc to below the clean limit
value of the ideally pure and crystalline material (see section 2.4). Accord-
ingly, figure 5.2(b) shows the correlation between T c (obtained from specific
heat) and the corresponding values of the normal state residual resistivity ρ0

of the samples in figure 3a. A linear regression of the available data points
T c(ρ0) extrapolates to a clean limit T clc ∼ 16 K for terminal, vacancy- and im-
purity free La3Ni2B2N3 approximately matching the Tc value of LuNi2B2C.
It is very suggestive that impurities which increase the residual resistivity
would at the same time be the reason for the decrease in Tc via a potential
scattering effect (see chapter 2).

5.2.2 Magnetoresistance measurement

In order to determine the upper critical field, Hc2(T ), the temperature de-
pendent magnetoresistance of various compositions of La3Ni2B2Nx was mea-
sured in magnetic fields up to 9.5 T in a 3He cryostat. The electrical resistiv-
ity curves for La3Ni2B2N2.6 and La3Ni2B2N2.9 under various applied external
magnetic fields are shown in figure 5.3 (a) and (b) respectively. At zero
applied external magnetic field T ρc of La3Ni2B2N2.9 is 14.3 K with a width
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Figure 5.3: Temperature dependent electrical resistivity of La3Ni2B2N2.6 (a)
and La3Ni2B2N2.9 (b) under various external magnetic fields as labeled.

∆Tc ' 0.7 K. For the resistive superconducting transition we define tem-
perature T onc for the onset of superconducting transition and T oc where the
resistivity becomes zero. With an increase in magnetic field the transition
width ∆Tc increases and may point towards an anisotropy of the upper crit-
ical field Hc2(T ) in this layered superconducting material. Quantitatively,
the temperatures T onc and T oc of La3Ni2B2N2.9 are shifted by 9 K and 13 K
respectively when the external field is increased from 0 to 9T. At 9T the T ρC
is reduced to ∼3 K while ∆Tc increases to ∼2.5 K. Similarly for La3Ni2B2N2.6

the T ρC at zero applied external magnetic field is ∼12.5 K with ∆Tc ' 0.5K
while at 7 T the value of T ρC decreases to ∼4 K with ∆Tc increasing to ∼1.5 K.
Above 7 T the superconductivity of La3Ni2B2N2.6 is suppressed significantly
and tails in superconducting transition start to appear. The temperature
dependence of upper critical field for selected La3Ni2B2N3−δ compositions
determined by resistivity measurements under applied magnetic is shown in
figure 5.4. An important feature of the Hc2(T ) curve is its positive curvature
near Tc which is evident for all the samples. The conventional single band
theory as worked out by Werthamer et al. [32] suggests that the slope of
Hc2(T ) does not change significantly below Tc over a wide range of tempera-
ture. The experimentally observed significant curvature near Tc, thus, refers
to multiband features. A similar positive curvature of the upper critical field
Hc2(T ) of Y- and LuNi2B2C was successfully described with high accuracy
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Figure 5.4: Hc2 of selected La3Ni2B2Nx samples obtained by magnetoresis-
tivity measurements. Solid lines indicate a fit of the data according to equa-
tion 5.1.

by a simple phenomenological relation [84, 85]

Hc2 =
Hc2(0)z

1− (1 + α)tz + L(tz)2 +M(tz)3
(5.1)

where t = T/Tc and z = (1 − T/Tc)1+α. The positive curvature of Hc2

near Tc is characterized by the value of the critical exponent α and is very
sensitive to disorder or the quality of samples while the negative curvature
at low temperature is described by the ratio L/M . The lines in figure 5.4
represent a fit of the data according to equation 5.1. It has to be noted that
equation 5.1 has too many parameters and may yield multiple solutions, a
reference set of fit parameters for La3Ni2B2N2.85 is α = 0.25, L = 1.75 and
M = 0.93. The parameter α shows an increase from 0.11 for N∼ 2.6 to 0.25
for N∼ 2.85. The Hc2(0) for La3Ni2B2N2.6 is about 8.7 T which increases to
about 10.3 T for La3Ni2B2N2.9. An analysis of upper critical field in terms of
Eliashberg theory is presented in section 5.4.6.
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Figure 5.5: Temperature dependent electrical resistivity of La3Ni2B2N2.9 un-
der hydrostatic pressure as labeled (a) and corresponding values of Tc Vs p
(b); the line in (b) indicate a linear regression for p < 14kbar.

5.2.3 Resistivity under hydrostatic pressure

The effect of hydrostatic pressure upto 19.5 kbar for selected La3Ni2B2N3−x
samples is studied by means of resistivity measurements employing a standard
piston-cylinder technique with Daphne oil as pressure transmitting medium.
Earlier hydrostatic pressure measurements up to 12 kbar on La3Ni2B2N3−δ
with T c = 11.7 K [41] revealed a relatively large negative dTc/dp ' -
130 mK/kbar and a significant increase of the residual resistivity by about
10 % at 12 kbar. Having a composition La3Ni2B2N2.92 with defined nitrogen
stoichiometry and significantly higher T c = 14.2 K than the earlier studied
La3Ni2B2N3−δ with T c = 11.7 K, the effect of pressure on the superconduct-
ing properties is re-investigated. The temperature dependent electrical re-
sistivity data obtained at hydrostatic pressures up to 19.0 kbar is shown in
figure 5.5(a). The pressure dependent superconducting transition tempera-
ture Tc reveals a reduction of Tc from 14.6 K to 13.3 K as pressure is increased
from 0.2 kbar to 19.0 kbar. The transition to superconducting state is rea-
sonably sharp at 0.2 kbar with a width ∆Tc ' 0.4 K that increases to ∼1.4 K
at 19 kbar. The Tc(P ) data of La3Ni2B2N2.9 shown in figure 5.5(b) reveals
an initialy linear reduction before tending to saturate for p > 14 kbar. The
linear regression of the data for P < 14 kbar (dashed line in figure 5.5(b))
yields dTc/dp ' -80 mK/kbar as compared to dTc/dp ' -130 mK/kbar re-
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Figure 5.6: Temperature dependent electrical resistivity of La3Ni2B2N2.9 un-
der hydrostatic pressure up to room temperature. For clarity, curves are
shifted by offsets of 2µΩcm with increasing pressure.

ported earlier [41] for a sample with lower Tc ' 11.7 K. On the other hand
very small values of dTc/dp for related borocarbides YNi2B2C (' -6 mK/kbar)
and LuNi2B2C ('+18 mK/kbar) has been observed [86]. The effect of hy-
drostatic pressure upon Tc of La3Ni2B2Nx provides further information about
the elastic and electronic properties of the boronitrides. In general, a pressure
dependence of Tc is mainly a consequence of two effects: Firstly, a volume
compression gives rise to a lattice stiffening and results in an increase of the
mean phonon frequency and secondly, causes a broadening of the bandwidth
concomitant with a change in the density of states N(Ef ) either in positive
or negative direction. The Tc depression under hydrostatic pressure can be
analyzed in terms of the Mc Millan model [19]. Both quantities, N(Ef ) and
the mean phonon frequency ω2, enter the Mc Millan formula via the electron-
phonon coupling constant

λ = N(Ef )〈I2〉/(Mω2
2) (5.2)

with M the mean atomic mass and 〈I2〉 the average electron-phonon ma-
trix elements. In earlier analysis [41] the pressure dependence of Tc via the
Mc Millan formula simply on the basis of the experimentally observed pressure
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P (kbar) ΘD (K) T ρc (K) λ(ΘD) T ∗c (K)

0.2 352 14.55 0.91 14.6
4.5 356 14.24 0.89 14.1
9.5 361 13.84 0.86 13.5
13.5 365 13.48 0.85 13.1

Table 5.1: Pressure induced increase in Debye temperature for La3Ni2B2N2.9

estimated from a Bloch-Grüneisen fit. T ∗c represents transition temperature
calculated from λ(ΘD) using the Mc Millan formula.

dependence of the characteristic phonon frequency (i.e. Debye temperature)
yielded dTc/dp ' -150 mK/kbar in close agreement with the experimental re-
sult [41], thus, suggesting that pressure affects Tc in this material primarily
via the effect of lattice stiffening. To re-investigate the previous claim, the
present data is analyzed again on the basis of Mc Millan formula which de-
scribes Tc as

Tc =
ΘD

1.45
exp

[
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
(5.3)

where ΘD is the Debye temperature, µ∗ is Coulomb pseduopotential and λ is
the electron phonon coupling constant as given before. Ignoring any pressure
dependence of µ∗ and 〈I2〉, the pressure induced stiffening of lattice gener-
ally leads to a decrease of Tc. The pressure induced electronic changes may
either increase or decrease Tc depending on whether N(Ef )〈I2〉 is enhanced
or diminshed. Figure 5.6 shows the temperature dependent electrical resis-
tivity of La3Ni2B2N2.9 under hydrostatic pressure up to room temperature.
The analysis of normal state data in terms of the Bloch-Grüneisen relation
reveals a pressure induced increase of the Debye temperature ΘD by about
4% at 13.5 kbar. The pressure induced increase in Debye temperature along
with the corresponding decrease in electron-phonon couplind constant (λΘD

)
is summerized in table 5.1. The increase of ΘD is also directly evident from
the decreasing slope of ρ(T ) on increasing pressure in figure 5.6 and is used as
a first estimate for the stiffening of the mean phonon frequency ω2 (assuming
ω2 ∝ ΘD) under hydrostatic pressure. In the framework of Mc Millan formula,
these purely phononic changes yield a decrease in λ (see table 5.2.3 and a cor-
responding decrease in T ∗c with dT ∗c /dp ' -110 mK/kbar which is in reason-
able agreement with the experimentally determined dTc/dp ' -80 mK/kbar.
This rather close agreement between experimental and calculated rate of Tc
depression indicates that the electronic effects plays a minor role, i.e. pres-
sure induced changes of N(Ef ) are rather small. The pressure results of a
higher-Tc sample are in line with earlier conclusions of Ref. [41] though the
pressure induced changes in Tc, i.e. dTc/dp mentioned in the above analysis
are roughly 30 % smaller than those reported earlier in Ref. [41] and may
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be a consequence of a smaller number of nitrogen vacancies and, thus, lower
compressibility of the material.

5.3 Magnetic measurements

The magnetization measurements were performed on a dc-SQUID magne-
tometer. The temperature dependence of the zero-field and field-cooled mag-
netization data of La3Ni2B2N2.6 and La3Ni2B2N2.9 in applied magnetic fields
up to 1.0 T is shown in figure 5.7. Relatively sharp superconducting tran-
sitions are observed for both the samples with Tc values of ∼ 12.5 K and
∼ 14.1 K for La3Ni2B2N2.6 and La3Ni2B2N2.9 respectively which are close to
the values obtained from resistivity measurements. The transition width de-
fined as the temperature difference between 10% and 90% of the transition is
∆Tc ' 0.5 K for both the samples. The irreversibility upon field cooling and
zero field cooling is due to hard type II superconductivity with strong pinning
effects. With increasing strength of applied magnetic field Tc decreases grad-
ually but it becomes difficult to determine the superconducting transition
temperature by means of susceptibility measurement in fields above 0.5 T.
The normal state DC magnetic susceptibility of La3Ni2B2N3−δ is discussed
in section 4.3. The lower critical field of a type-II superconductor is the lim-
iting field at which flux quanta first enter the superconductor and cause a
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Figure 5.7: Temperature dependent magnetic susceptibility of La3Ni2B2N2.6

(a) and La3Ni2B2N2.9 (b) under under applied magnetic fields as labeled.
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Figure 5.8: Magnetization as a function of applied magnetic field for
La3Ni2B2N2.7 at selected temperatures (a). Lower critical field of selected
La3Ni2B2Nx samples (b); solid lines indicate a fit of the data according to
equation 5.4

deviation from perfect diamagnetism. Various techniques are used for the de-
termination of the lower critical field such as magnetization, radio frequency,
mechanical oscillation, electron spin resonance and optical visualization of
magnetic flux methods [87]. In the present work Hc1(T ) of various composi-
tions La3Ni2B2Nx is determined by isothermal magnetization measurements.
The initial part of isothermal magnetization curves of La3Ni2B2N2.7 is shown
in figure 5.8(a) for selected temperatures with a solid line indicating perfect
diamagnetism in the Meissner state. The lower critical field at any particular
temperature is determined as the field where M(H) deviates from the linear
behavior. The temperature dependence of lower critical field for selected sam-
ples is shown in figure 5.8(b) with solid lines in indicating an extrapolation
of the data according to relation

Hc(T ) = Hc(0)
[
1− (T/Tc)

3/2
]

(5.4)

which yields a lower critical field µoHc1(0) = 14.5(2) mT for the nominal
composition La3Ni2B2N2.6. As expected, the lower critical field increases with
increasing Tc and reaches a value of 16.1(2) mT for La3Ni2B2N2.8 with a Tc
'13.5 K. The increase in the lower critical field Hc1(0) goes hand in hand
with the increase in Tc of La3Ni2B2Nx.
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5.4 Specific heat measurements

The superconducting properties of bulk La3Ni2B2N3−δ were studied by low
temperature specific heat measurements in applied fields up to 9.0 T. The
temperature dependent specific heat of La3Ni2B2N2.7 for various external
magnetic fields is shown in figure 5.9(a) as Cp/T vs. T 2. At zero field,
La3Ni2B2N2.7 shows a reasonably sharp superconducting transition around
13 K. With the application of an external magnetic field Tc is reduced and a
field of 9T is sufficient to suppress superconductivity and to observe the nor-
mal state specific heat. A detailed analysis of the low and high temperature
normal state specific heat is given in section 4.4.

The specific heat jump (∆C)Tc = Cs − Cn (where Cs and Cn are the
specific heat in the superconducting and normal state, respectively) is one
of the important quantities to characterize the superconducting state. The
difference between superconducting and normal state specific heat, ∆C,
for La3Ni2B2N2.7 is shown in figure 5.9(b). By idealizing the specific heat
anomaly under the constraint of entropy balance between the superconduct-
ing and the normal state we get the thermodynamic mean value of the su-
perconducting transition temperature T c = 13.0 K and the height of the spe-
cific heat jump at Tc is (∆C)Tc ' 0.42 J/mol K. The effect of the nitrogen
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Figure 5.9: Temperature dependent C/T at various external magnetic fields
as labeled (a) and difference of specific heat between superconducting and
normal state ∆C at 0T of La3Ni2B2N2.70

(b).
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Figure 5.10: Temperature dependent C/T (a) and ∆C (b) for selected com-
positions of La3Ni2B2Nx.

stoichiometry on the superconducting properties of La3Ni2B2Nx is shown in
figure 5.10(a) revealing that the superconducting transition shifts to higher
temperature with filling the nitrogen vacancies. The same can be seen in
figure 5.10(b) where the difference ∆C(T ) for selected composition is plot-
ted. The transition temperature T c increases from 12.2 K for La3Ni2B2N2.6

to 14.0 K for La3Ni2B2N2.9. With increasing nitrogen stoichiometry of the
compound, the width of superconducting transition tends to broaden while
the height of the jump at Tc decreases. Samples with nominal nitrogen stoi-
chiometry ∼ 2.65 − 2.7 have the sharpest specific heat anomaly and highest
jump at Tc.

The low temperature electronic and lattice contributions to specific heat
are analyzed in terms of Cp = Ce + Cph ' γT + βT 3. From low temper-
ature (16 K2 > T 2 > 40 K2) fit of the normal state specific heat data of
La3Ni2B2N2.65 a γ ' 26.0 mJ/molK2 is obtained (see figure 4.8). The Som-
merfeld coefficient of selected compositions along with Tc, ∆C and ρo is sum-
marized in table 5.2. Also listed in the table is the fraction of impurity phase
LaNiBN for each composition as obtained from X-ray or neutron diffraction
measurements. A clear composition dependent variation in Tc and a corre-
spondence between ρo and Tc (see figure 5.2) is observed which is clearly an
intrinsic behaviour of La3Ni2B2Nx. However γ as well as ∆C do not correlate
with Tc which is unexpected and obviously an effect of the impurity phase
LaNiBN in those samples.
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x LaNiBN ρo Tc (∆C)Tc (∆Cintr.)Tc γ γintr.
(%) (µΩcm) (K) (J/molK) (J/molK) (mJ/mol K2) (mJ/mol K2)

2.60 14 23.5 12.2 0.38(5) 0.44(5) 23.4(10) 24.3(10)

2.65a 7 19.3 12.8 0.44(5) 0.47(5) 26.0(10) 26.6(10)
2.65b 5* 18.8 13.0 0.46(5) 0.48(5) 26.5(10) 27.0(10)

2.70a 5 18.9 13.1 0.42(5) 0.44(5) 26.5(10) 27.0(10)
2.70b 5 18.5 13.1 0.43(5) 0.44(5) 24.5(10) 24.9(10)

2.75 8 15.5 13.3 0.44(5) 0.47(5) 24.4(10) 25.1(10)
2.85 19* 11.9 13.7 0.34(5) 0.42(5) 24.1(10) 25.5(10)
2.90 15 12.2 14.0 0.41(5) 0.48(5) 24.6(10) 26.0(10)

Table 5.2: Characteristic superconducting and normal state properties for
various La3Ni2B2Nx samples. Asterisks represent the LaNiBN phase fraction
determined by neutron powder diffraction.

Specific heat of LaNiBN. - In order to investigate the influence of
impurities on intrinsic properties of La3Ni2B2Nx, a LaNiBN sample was syn-
thesized. It is very difficult to get a phase pure LaNiBN and the X-ray
diffraction analysis indicated only about 80% phase purity. The specific heat
of LaNiBN is shown in figure 5.11 with an inset showing the low tempera-
ture part of the specific heat curve. A very broad superconducting anomaly
is observed with Tc onset of about 4 K. A fit of the data in temperature
range 30 K2 < T 2 < 50 K2 according to Cp = Ce + Cph ' γT + βT 3 results
in γ ' 6.1mJ/molK2 and β ' 0.1106 mJ/molK4 yielding ΘLT

D = 412 K. The
normal state specific heat is estimated by extrapolating the Cp curve as shown
in the inset of figure 5.11. The specific heat data of La3Ni2B2Nx are corrected
by the simple formula

Cpm = [Cp − Fi × Cpi] /Fm (5.5)

where Cpm and Cpi represent the specific heat (in mJ/gK) of matrix and impu-
rity phase, respectively, and F representing the corresponding phase fractions.
The measured and corrected specific heat of La3Ni2B2N2.85 are shown in fig-
ure 5.12 which reveal a significant influence of the LaNiBN fraction on specific
heat anomaly and also on the low temperature behaviour. A similar correc-
tion for selected compositions yields the intrinsic Sommerfeld coefficient, γintr.,
and the specific heat jump (∆Cintr.)Tc which are summarized in table 5.2. The
values of γintr. in table 5.2 reveal a generally increasing trend with increasing
nitrogen stoichiometry with the exception of La3Ni2B2N2.65∼2.7 samples. No
clear correlation between Tc and (∆Ccorr)Tc is observed, rather an approxi-
mately constant height of specific heat jumps (within error bars) in phase
pure materials is revealed.
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Figure 5.13: The electronic specific heat of selected La3Ni2B2Nx samples with
x as labeled calculated from measured data (a) and corrected according to
the phase fraction of LaNiBN (b).

5.4.1 Electronic specific heat and superconducting gap

The temperature dependence of the SC state electronic specific heat Ces, is
obtained by subtracting the phonon contributions Cph (derived from the nor-
mal state specific heat) from the zero-field specific heat measurement. The
electronic specific heat of selected compositions of La3Ni2B2Nx is shown in
figure 5.13(a). In order to get an insight on the influence of the LaNiBN
fraction, only those samples for the analysis of electronic specific heat are
chosen for which a reliable estimates of the LaNiBN fraction by neutron pow-
der diffraction analysis are available. Reasonably sharp specific heat anomaly
is observed for La3Ni2B2N2.65 which has a LaNiBN fraction of only 5% while
for other two compositions (with LaNiBN > 15%) the height of specific heat
anomaly is reduced. Ces calculated from the corrected specific heat data ac-
cording to the phase fraction of LaNiBN is shown in figure 5.13(b) which
reveals an almost constant height of specific heat jump of all three samples.
The BCS expression for the electronic specific heat in the superconducting
for 2.5 < Tc/T < 6 is given by

Ces = 8.5γTc exp

(
−0.82

∆(0)

kBT

)
(5.6)

where ∆(0) is the width of the superconducting gap at zero tempera-
ture. The normalized electronic specific heat Ces/γTc of La3Ni2B2N2.65 and
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Figure 5.14: Ces/γTc of selected La3Ni2B2Nx compositions. The solid line
represent the exponential temperature dependence according to BCS theory
while broken lines are fit of the data according to equation 5.7.

La3Ni2B2N2.85 as a function of Tc/T is shown in figure 5.14 in a semi logarith-
mic plot where the solid line indicates an exponential dependence according
to the BCS theory. The Ces of La3Ni2B2N3−δ reported previously showed
an exponential dependence and a fit of the data by equation 5.6 yielded a
gap to critical temperature ratio ∆(0)/kBTC '1.85 [41]. As measured Ces
data shown in figure 5.6 do not reveal an exponential dependence and may
follow a power law at low temperature. The electronic specific heat of the
related borocarbides YNi2B2C and LuNi2B2C has been reported to show a
T 3 power law dependence [33] which is well described by the two fluid model
Ces(T ) = 3γTc(T/Tc)

3 [88]. In order to investigate phenomenologically the
behaviour of electronic specific heat equation 5.6 is modified as

Ces
γTc

= 8.5 exp

(
−0.82

∆(0)

KBT

)
(1−B) + 3B

(
T

Tc

)C
(5.7)

where the term 3B(T/Tc)
C represent a power law dependence similar to the

two fluid model and B is a factor for phase factors related to exponential
and power law behaviours. The fit of experimental data according to equa-
tion 5.7 for Tc/T > 2.5 is indicated by broken lines in figure 5.14 with fit
parameters as labeled. The data are well reproduced by equation 5.7 with an
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Figure 5.15: Corrected Ces/γTc of selected La3Ni2B2Nx compositions accord-
ing to equation 5.5. Lines represent a fit of the data according to equation 5.6.

almost linear contribution together with ∆(0)/kBTC which is close to BCS
value ∆(0)/kBTC = 1.76 for both samples. The linear term in Ces may not
be an intrinsic behaviour of La3Ni2B2Nx and could possibly be a consequence
of the impurity phase LaNiBN. This is corroborated by the fact that the fit
parameter B of 5.6% and 15.6% for La3Ni2B2N2.65 and La3Ni2B2N2.85 respec-
tively is very close to the phase fraction of LaNiBN determined by neutron
powder diffraction (see table 5.2). To investigate the influence of LaNiBN
on low temperature specific heat the corrected (according to LaNiBN phase
fraction) intrinsic Ces/γTc is shown in figure 5.15. The lines in figure 5.15
represent a fit of the data for Tc/T > 2.5 according to equation 5.6. It is evi-
dent that after subtracting the impurity contribution to the electronic specific
heat, clearly shows an exponential dependence is well described by the BCS
relation. The gap to critical temperature ratio ∆(0)/kBTC for La3Ni2B2N2.65

and La3Ni2B2N2.85 is 1.75 and 1.69 respectively, i.e. close to BCS value of 1.76.
These results indicate that the LaNiBN phase has a significant impact on low
temperature results of La3Ni2B2Nx. In phase pure La3Ni2B2Nx the electronic
specific heat reveals an exponential temperature dependence while in case of
dirty samples it is a mixture of an exponential term and an approximately
linear contribution from impurities. The low temperature exponential tem-
perature dependence of Ces is in line with BCS theory prediction and points
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Figure 5.16: Entropy difference (a) and free energy difference (b) between
the superconducting and normal state of La3Ni2B2N2.7. Dashed lines indicate
extrapolations of data to absolute zero.

towards an s−wave symmetry of the superconducting order parameter and
strongly supports that an s−wave model like the Eliashberg theory shall be
applicable.

5.4.2 Thermodynamic critical field

The thermodynamic critical field corresponds to the free energy gain of the
superconducting state and is obtained by integrating the entropy difference
between the superconducting and normal state, according to equation 2.1.
By starting with the specific heat difference (Cs − Cn) for the composition
La3Ni2B2N2.7 and integrating it according to equation 2.1 gives the entropy
and free energy displayed in figure 5.16. The dashed lines indicate the extrap-
olation of the data to absolute zero. The thermodynamic critical field of se-
lected samples of La3Ni2B2Nx as calculated from equation 2.1 is shown in fig-
ure 5.17(a). For La3Ni2B2N2.6 with a Tc of about 12.2 K an Hc of ∼ 147(5) mT
is obtained. One would expect an increase in Hc with increase in Tc but fig-
ure 5.17(a) reveals a different trend of Hc for La3Ni2B2N2.85 with a Tc of
about 13.7 K. The reduction of Hc with increasing nitrogen stoichiometry is a
consequence of enhanced impurity fraction which is labeled in figure 5.17(a)
for each sample. The increase of impurity fraction results in a concomitant
reduction of the volume fraction of the main phase which is reflected in the
decrease of Hc. The corrected (according to impurity fraction) intrinsic ther-
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Figure 5.17: Thermodynamic critical field of La3Ni2B2Nx samples with x as
labeled (a). The corrected (intrinsic) Hc(T ) according to the LaNiBN phase
fraction is shown in (b).

modynamic critical fields are shown in figure 5.17(b) which reveals that the
thermodynamic critical field is in line with Tc if the contribution from the
LaNiBN phase is taken into account. The highest value of Hc ' 190 mT is
estimated is for La3Ni2B2N2.85 which is almost as large as the Hc reported for
related borocarbide superconductors (Y,Lu)Ni2B2C.

5.4.3 Electron phonon mass enhancement λep

An evaluation of the electron-phonon mass enhancement λep from the tran-
sition temperature Tc and the low T Debye temperature is based on the
Mc Millan model [19]. Within this model Tc is given by the Mc Millan for-
mula (equation 5.3) which can be inverted to obtain λep in terms of Tc, ΘD

and µ∗ as

λep =
1.04 + µ∗ln

(
ΘD

1.45Tc

)
(1− 0.62µ∗) ln

(
ΘD

1.45Tc

)
− 1.04

(5.8)

The value of λep determines the attractive part of the Cooper pair bonding
while µ∗ is the repulsive screened Coulomb part. The values of ΘD and Tc of
selected samples are listed in table 5.3. Taking µ∗ = 0.1− 0.13 we obtain for
La3Ni2B2N2.7 λep = 0.8 − 0.9. The λep values for selected compositions are
listed in table 5.3 and exhibit an increase with increasing N-stoichiometry.
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Property x=2.6 x=2.7 x=2.85

T c (K) 12.2 13.1 13.7

ΘLT
D (K) 335(5) 329(5) 340(5)

λ 0.85 0.89 0.90
∗N(Ef ) (states/eV-f.u) 5.6 5.8 5.7
∗4CT c (J/molK) 0.44 0.44 *0.42
∗4C/γTc (BCS: 1.43) 1.48(10) 1.35(10) 1.22(10)
∗4(0)/kBTc (BCS: 1.76) 1.74(5) 1.75(5) 1.69(5)
∗µ0Hc(0) (mT) 169(5) 176(5) 190(5)

µ0Hc1(0) (mT) 14.5(1) 15.3(1) 16.8

µ0Hc2(0) (T) 8.7(5) 10.0(5) 10.4(5)

κGL(0) 38(2) 40(2) 41(2)

ξGL(0) (nm) 6.2(5) 5.8(5) 5.7(5)

λGL(0) (nm) 236 232 233

Table 5.3: The critical fields and superconducting parameters for selected
samples of La3Ni2B2Nx with x as listed. (*) indicates correction in the corre-
sponding value according to phase fraction of LaNiBN obtained from X-ray
or neutron powder diffraction measurements.

It should be mentioned here that λep calculated from Mc Millan’s formula is
in good agreement with the transport electron phonon coupling constant λtr
estimated from resistivity measurements (see section 4.2.1). Having estimated
λep the electronic density of states at the Fermi level N(Ef ) can be estimated
from the value of the Sommerfeld coefficient γ using the relation

γ =
2

3
π2k2

BN(Ef )(1 + λep) (5.9)

N(Ef ) for selected nominal compositions shown in table 5.3 does not show
a significant composition dependent variation suggesting that the nitrogen
vacancies have only a small effect on the density of states at the Fermi level
N(Ef ) of La3Ni2B2N3−δ. From γ and λep the bare Sommerfeld coefficient γbs
can be estimated as

γbs =
γ

1 + λ
(5.10)

resulting in a value of γbs = 13.7 mJ/molK2 in close agreement with the value
calculated by Mattheiss [89].
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5.4.4 Ginzburg-Landau parameter κ and characteristic
lengths ξ and λGL

The Ginzburg-Landau parameter (κGL) is determined by low temperature
extrapolation of upper critical field µ◦Hc2(0) and thermodynamic critical field
µ◦Hc(0) according to Abrikosov’s relation

λGL/ξGL(0) ≡ κGL(0) =
Hc2(0)√
2Hc(0)

(5.11)

yielding a Ginzburg-Landau parameter of 40(2) for La3Ni2B2N2.7. Using the
GLAG relations (Eqs. 2.3-2.5) given in chapter 2 and with the results of
Hc2(0), HC(0) and κGL(0), one can estimate the characteristic lengths λGL(0)
and ξGL(0) as well as the lower critical field Hc1(0). The superconducting
parameters determined of selected La3Ni2B2N3−δ samples determined from
GLAG relations are summarized in table 5.3. In comparison to an earlier
report [41], a larger λGL(0) ∼ 230 nm while smaller ξGL ∼ 6 nm is obtained
resulting in an increase in κGL(0) ' 40 as compared to earlier proposed κGL '
33. Within the width of formation the characteristic lengths do not indicate
any composition dependence which is unexpected. The variation in ρo within
the width of formation is approximately 10µΩcm (see figure 4.2). Thus, on
the basis of Gor’kov-Goodman relation (equation 2.17), an increase in κGL
with increase in ρo is expected. For La3Ni2B2N2.7 with γ = 304.05 J/m3K2,
the Gor’kov-Goodman relation suggests a variation ∆κ ∼ 4. So one would
expect an increase of κ by 4 for La3Ni2B2N2.6 as compared to La3Ni2B2N2.9

which, however, is within error bars of the experimental values of κ (the trend
of the insignificant variation indicated in table 5.3 would be opposite to the
expected one).

5.4.5 Field dependent Sommerfeld coefficient γ(H)

The magnetic field dependence of the Sommerfeld coefficient γ(H) has been
argued to provide information about the superconducting gap symmetry [90].
The application of an external magnetic field (H) results in a gradual suppres-
sion of superconductivity and also the collapse of the specific heat anomaly.
In a sufficiently strong applied external magnetic field, vortices enter the sam-
ple resulting in a rise of the normal state component in the vortex cores which
contributes a linear specific heat, γT . As the field increases, the vortex core
grows and γ is expected to increase proportionally. The entropy balance also
implies that the reduction of the specific heat anomaly must be accompanied
by an increase of the Sommerfeld coefficient. For an s-wave superconductor
the quasi particle excitations are expected to be confined in the vortex cores
and γ(H) is proportional to the density of vortices resulting in γ(H) ∝ H [91].
On the other hand for a d-wave superconductor the zero gap regions along
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Figure 5.18: Low T specific heat of La3Ni2B2N2.65 with dashed lines repre-
senting the extrapolation of the data to obtain γ.

the lines on the Fermi surface may result in a
√
H dependence of γ [90]. In an

earlier report on La3Ni2B2N3−δ, an approximately
√
H dependence of γ was

observed but at the same time it was concluded to be a conventional s-wave
superconductor [33]. A similar

√
H dependence of Sommerfeld coefficient has

been observed in related borocarbide LuNi2B2C [92] that motivated discus-
sions about the possibility of unconventional pairing in the superconducting
state of the borocarbides. However, Ramirez [93] pointed out that for the
conventional s-wave superconductor V3Si, γ shows a

√
H dependence which

is interpretable from the standpoint of vortex-vortex interactions near Hc1.
The low temperature specific heat of La3Ni2B2N2.65 is shown in figure 5.18.

As expected, Cp/T varies linearly with T 2 and a least square fit of the exper-
imental data gives the Sommerfeld coefficient at the corresponding applied
magnetic field. Figure 5.18 reveals essentially a parallel shift of the specific
heat curves with increase in strength of H. The field dependence of γ as deter-
mined from a linear fitting of the low temperature data in figure 5.18 is shown
in figure 5.19. The solid line in figure 5.19 represents a linear regression of
the data in range 0T 6H6 1T while the dashed line represents a

√
H depen-

dence of γ. Recently, a theoretical investigation by Nakai et al. [94] revealed
that for an isotropic-gapped type II superconductor, γ(H) ∝ H behaviour
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Figure 5.19: Sommerfeld coefficient γ as a function of applied field. Solid
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persists only up to a certain crossover field, H∗ above which an
√
H depen-

dence is observed. For the isotropic superconducting gap, H∗ is expected to
be approximately 0.32Hc2 which is reduced as the degree of anisotropy of the
superconducting gap increases. As shown in figure 5.19(b), γ(H) varies lin-
early only up to an H∗ ' 1.1 T above which a

√
H dependence is evident. A

similar field dependence of Sommerfeld coefficient has been observed in other
s-wave superconductors like pure niobium [95] and in layered nitride super-
conductor LixZrNCl [96]. For La3Ni2B2N2.65 with an Hc2 ' 9 T, the ratio
H∗/Hc2 ' 0.1 which is lower than the value predicted by Nakai et al. [94] for
an isotropic s-wave superconductor. This may suggest an anisotropic s-wave
superconducting gap for La3Ni2B2Nx.

5.4.6 Discussion and analysis in terms of Eliashberg
model calculations

In an earlier study Manalo et al. [36] performed model calculations for
La3Ni2B2N3−δ based on an Eliashberg theory for anisotropic s−wave super-
conductors (see chapter 2). Thereby, thermodynamic features, e.g. the SC
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Figure 5.20: Hc2 of La3Ni2B2N2.65 determined by resistivity and specific heat
measurements (a). Solid and dashed lines in (a) represnet a fit of the data in
terms of the separabel Eliashberg model (see text). Tc as a function of the
scattering rate t+ (b).

state electronic specific heat CeS(T ), and the temperature dependent upper
critical field Hc2(T ) where reasonably well reproduced by a clean limit model
using 〈a2

k〉 ' 0.08 and 〈b2
k〉 ' 0.245 as the set of parameters for the anisotropy

of the electron-phonon coupling and the anisotropy of the Fermi velocity, re-
spectively. For such given set of parameters the model further yields a specific
relation for the effect of non-magnetic impurities (characterized by the param-
eter t+ upon Tc which, however, could not be analyzed in this earlier study
which was based on a single sample La3Ni2B2N3−δ. In the present work an
extended set of good quality samples La3Ni2B2Nx with Tc varying between
12.2 K and 14.0 K and a well elaborated PDOS (see figure 4.10 in chapter 4)
allows a re-examination of the Eliashberg model calculations. A set of pa-
rameters which a not too far from those used in Ref. [36], namely 〈a2

k〉 = 0.09,
〈b2

k〉 = 0.205, and t+ = 0.2 meV, allows to reproduce reasonably well Hc2(T )
of La3Ni2B2N2.65 as demonstrated by the solid line in figure 5.20a. The rel-
atively large value of the paramater 〈a2

k〉 = 0.09 is needed to obtain nearly
BCS like thermodynamic features of the SC state (e.g. borocarbides with
more pronounced strong coupling features are well described with smaller
〈a2

k〉 ' 0.02, see Ref. [36]) and also to enable a significant variation of Tc
in this model. The latter result, i.e. the separable model result for the im-
purity dependence of the SC transition temperature, Tc(t+), is displayed in
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figure 5.20b which is strongly non-linear and thus in disagreement with the
experimentally established, approximately linear relation between Tc and the
residual resistivity ρ0 which is expected to be directly proportional to the
parameter t+. The chosen set of model parameters further results in signifi-
cant modifications of Hc2(T ) when increasing t+ as indicated by the dashed
line in figure 5.20a which displays an upper critical field calculation with
t+ = 10.75 meV where Hc2(0) increases to above 17 T and the curvature right
below Tc disappears. The present Eliashberg model calculations, thus, fail
to provide a simple account for the experimentally established variation of
Tc and the more modest variation of Hc2(T ) of La3Ni2B2Nx. The latter re-
sults from a rather insignificant variation of the Ginzburg-Landau parameter
κGL ∼ 40 ± 2 which, however, is quantitatively in line with the minor vari-
ation of κ estimated via the Gorkov-Goodman relation which yields ∆κ ∼ 4
when the residual resistivity ρ0 increases by about 10µΩcm.

As proposed also earlier in Ref. [36], all experimental Hc2 data of
La3Ni2B2Nx are compatible with a rather small impurity scattering rates.
Manalo et al. [36] speculated that the substantial residual resistivity of their
sample might be caused by scattering on the grain boundaries rather than
by intrinsic scattering inside the grains, which, however, seems ruled out by
the approximate proportionality between in the residual resistivity ρ0 and the
density of N-vacancies revealed by NPD (see chapter 4), thus, referring to an
intrinsic scattering.

The most plausible reason for the observed discrepancies between the
Eliashberg model calculations in figure 5.20 and the experimental results of
La3Ni2B2Nx might be subtle electronic changes caused by N-vacancies. Fermi
surface calculations by Reith and Podloucky [83] which were performed for a
number of supercells (La3Ni2B2N3−δ)n with increasing number of N-vacancies
δ possiblly indicate some modification of Fermi surface nesting features while
overall changes of the band structure (e.g. N(Ef )) remain small. The signifi-
cant variation of Tc of La3Ni2B2Nx might, thus, be a consequence of changes
in the electron-phonon coupling (i.e. λ) caused by electronic effects which can
not be captured by the present Eliashberg model. The relatively large value
of the mean anisotropy of the electron-phonon spectral function 〈a2〉 ' 0.9,
thus, seems to be an unrealistic overestimate which is mainly motivated to
obtain a large variation of Tc as shown in figure 5.20b. A more realistic
modeling of the SC state properties of La3Ni2B2Nx in terms of the separable
model of the Eliashberg theory might be based on more moderate values of
the anisotropy parameter 〈a2〉 which would allow to obtain more subtle effects
of t+ variations upon Hc2(T ) (assuming that the changes of Tc are caused by
electronic structure or Fermi surface effects).



Chapter 6

Ground state properties of
Ce3Ni2B2N3−δ

6.1 Introduction

Special interest in intermetallic compounds containing cerium is due to their
rich low temperature physics interrelated with ground states such as e.g.
the Kondo lattice with and without long range magnetic order, intermediate
valence, Kondo insulator, and in some cases unconventional superconduc-
tivity (see e.g. Ref. [97] for a recent review). This variety of ground states
adopted in cerium compounds is a consequence of competing interactions:
RKKY-type Ce-Ce intersite exchange, crystal field effects and Kondo inter-
action between Ce 4f and conduction electrons. A subtle balance between
RKKY and Kondo interactions in some cases leads to the formation of novel
ground states of correlated electrons such as magnetically mediated unconven-
tional superconductivity. Cerium based superconductors at ambient pressure
are e.g. CeCu2Si2, CeT In5, and non-centrosymmetric CePt3Si [98, 99, 100].
From earliest studies of magnetic pair breaking effects in rare earth elements
by Matthias et al.[101] cerium is known to act as a strongly pair breaking
impurity in a superconducting matrix.

A prominent system among intermetallics showing interplay of magnetism
and superconductivity is the quaternary borocarbide, RNi2B2C (R = rare
earths and Y), with relatively high Tc (up to 16 K, see e.g. Refs. [34, 60]).
In the corresponding solid solution with cerium, Y1−xCexNi2B2C, a complete
suppression of superconductivity was observed at x ≥ 0.25 [102]. Studies of
structural and magnetic features of CeNi2B2C revealed intermediate valence
of Ce and absence of superconductivity down to 2 K [53, 103]. Interestingly,
El-Massalami et al. [104] reported conventional BCS type superconductivity
for CeNi2B2C at temperatures below Tc ' 100 mK. The related quaternary
boronitride, La3Ni2B2N3−δ, with rocksalt type triple LaN layer sheets in be-

84
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tween the NiB layers shows superconductivity with Tc ∼ 12–15 K [40, 46, 105].
A cerium based homologue, Ce3Ni2B2N3−δ, was synthesized as powder mate-
rial via a metathesis reaction by Glaser et al. [106] Magnetic susceptibility
measurements down to 5 K revealed neither superconductivity nor magnetic
ordering [106] .

The following chapter presents an investigation of the ground state proper-
ties of bulk metallic samples of (La,Ce)3Ni2B2N3−δ by means of x-ray diffrac-
tion, susceptibility, specific heat and transport measurements.

6.2 Sample preparation

For preparing bulk La3−xCexNi2B2N3−δ samples the following starting materi-
als, La ingot (Metall Rare Earth, 99.9%), Ce ingot (Metall Rare Earth, 99.9%)
additionally purified by pre-melting in vacuum, Ni (Alpha Aesar, 99.99%),
crystalline natural boron (HCTS, 99.5%) and nitrogen gas (Linde, 99.999 %)
are used. For selected Ce3Ni2B2N3−δ samples Ames MPC high purity Ce was
used.

For preparing La3−xCexNi2B2N3−δ solid solution stoichiometric amounts
of La and Ce was melted to get a starting rare-earth alloy. The rest of
the preparation process and thermal treatment is similar as described in
sections 3.2 and 3.3 for La3Ni2B2N3−δ. The annealing temperature before
quenching was 1130 ◦C for all samples.

6.3 Structural Characterization

The structure and phase purity of selected samples is analyzed by means of
X-ray powder diffraction studies at room temperature with Cu-Kα radiation.
Data is collected at room temperature for a range 20◦< 2θ <120◦ with steps
of 0.02◦ on powders which are ground and sieved to a particle size of less than
32µm. The XRD pattern refinement is performed on the basis of La3Ni2B2N3

structure type using FULLPROF software and the parameter refined are scale
factor, zero shift, shape profile, half width atomic and thermal parameters and
lattice constants. The total number of reflections of La3Ni2B2N3 measured
in the X-ray diffraction are 85 with ∼30 having reasonable intensity relevant
for refinement.

Powder XRD data of all samples of the series La3−xCexNi2B2N3−δ display
the body centered tetragonal La3Ni2B2N3-type structure with space group
I4/mmm. Except for Ce3Ni2B2N3−δ, some minor admixtures of the related
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Figure 6.1: Measured room temperature XRD pattern of LaCe2Ni2B2N3−δ
(a) and Ce3Ni2B2N3−δ (b). The solid lines are from Rietveld refinements.
The strongest impurity line is marked by an asterix.
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Figure 6.2: Variation of the lattice parameters a (circles) and c (squares) in
(a) and unit cell volume (b) in the solid solution La3−xCexNi2B2N2.7; lines
are guides to the eye.

two-layer boronitride (La,Ce)NiBN are identified with phase fractions of up
to 5%. In the case of Ce3Ni2B2N3−δ traces of an unidentified impurity phase
are observed for both samples, one prepared with cerium produced by Metall
Rare Earth and one prepared with highest purity cerium prepared by Ames
MPC, but the two-layer phase CeNiBN is not observed. Two exemplary
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powder XRD patterns of La3−xCexNi2B2N3−δ and their Rietveld refinements
are shown in Fig. 6.1 while some more patterns are given in appendix A.

The variation of the lattice parameters a and c in the solid solution
La3−xCexNi2B2N3−δ is summarized in Fig. 6.2. The lattice parameters a
and c obtained for Ce3Ni2B2N3−δ are 0.357 nm and 2.025 nm, respectively.
These values are in good agreement with the lattice parameters reported ear-
lier [106]. The reduction of the unit cell volume of Ce3Ni2B2N3−δ as compared
to La3Ni2B2N3−δ is about 9%. As expected from the lanthanide contraction,
the a lattice parameter decreases with increasing Ce-fraction, however, the
c lattice parameter shows a non-monotonic variation with a maximum at
about x = 0.2. An even opposite trend for the variation of the a and c lattice
parameters was reported for the related quaternary borocarbides [53] which
has been attributed to rather stiff Ni-B and B-C bonds leading to an in-
crease in B-Ni-B tetrahedral angle and thus to a stretching of the tetragonal
c-axis when the basal plane lattice constant a contracts. The lanthanide con-
traction in La3−xCexNi2B2N3−δ causes a similar effect on the NiB layers and
their tetrahedral bonding angle which changes from ∼106◦ for La3Ni2B2N3−δ
to ∼104◦ for Ce3Ni2B2N3−δ, however, in this case with an additional change
in the width (parallel to the c-axis) of the (La,Ce)N triple layers, thus, caus-
ing the non monotonic variation of the c lattice parameter shown in Fig. 6.2.
We note, that the change of the unit cell volume by about 9% in the series
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Figure 6.4: Temperature dependent susceptibility for La3−xCexNi2B2N3−δ
measured at 1 mT (ZFC) with x as labeled.

(La,Ce)3Ni2B2N3−δ is two orders of magnitude larger than the volume changes
caused by varying the nominal nitrogen stoichiometry in La3Ni2B2Nx [105]
and also larger than expected from the lanthanide contraction among R3+

ions (see figure 6.3), thus, pointing towards a intermediate valance of Ce.

6.4 Superconductivity in La3−xCexNi2B2N3−δ

The superconducting transition temperatures of La3−xCexNi2B2N3−δ with
x= 0, 0.05 and 0.1 were determined from dc susceptibility measurements
(see Fig. 6.4) which were performed after zero field cooling (ZFC) at a field of
1 mT. Field-cooled susceptibility (not shown for the sake of clarity in Fig. 6.4)
reveal Meissner fractions of about 10% due to strong pinning effects. The lat-
ter was discussed in detail in Ref. [41].
The susceptibility data reveal an almost linear reduction of Tc with increasing
Ce fraction at a rate of dTc/dx ' −8.9 K/Ce% in the formula La3Ni2B2N3−δ
and a corresponding critical concentration for the suppression of supercon-
ductivity of 1.3 % Ce in the full formula with 10 atoms. The related light rare
earth solid solutions La3−xRxNi2B2N3−δ with R = Pr and Nd exhibit one or-
der of magnitude larger critical concentrations of 19 % and 10 %, respectively
(see chapter 7). The larger suppression rate observed for Ce which is also well
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known for elemental La [101] is due to valance fluctuations and/or Kondo ef-
fects. Interestingly, although parent boronitride and borocarbide compounds,
La3Ni2B2N3−δ and YNi2B2C, exhibit similar values of Tc ' 13 and 15 K, and
similar upper critical fields Hc2(0) ∼ 5 – 8 T, [33] the rate of suppression of
Tc by Ce-subsitution in the boronitride system is significantly larger than the
corresponding value of −2.5 K/Ce% reported by Alleno et al. [102] for the
related borocarbide system Y1−xCexNi2B2C.

6.5 Ground state properties of Ce3Ni2B2N3−δ

6.5.1 Results of thermodynamic and transport studies

The ground state properties of Ce3Ni2B2N3−δ were studied by means of spe-
cific heat, magnetic susceptibility, resistivity and thermoelectric power mea-
surements. The normal state properties of La3Ni2B2N3−δ with an empty
4f shell are used as a reference for non-4f contributions. The specific
heat of Ce3Ni2B2N3−δ measured at zero external field and the normal state
specific heat of La3Ni2B2N3−δ measured at 9 T are shown in Fig. 6.5 as
Cp/T vs. T . The low temperature electronic and lattice contributions of
a plain metal are given by Cp = Ce + Cph ' γ + βT 3 where γ is the
Sommerfeld value and β is related to the low-temperature Debye temper-
ature, ΘLT

D = (1944 × n/β)1/3 where n = 10 is number of atoms per for-
mula unit. From the low temperature fit of the Ce3Ni2B2N3−δ data (see
inset in Fig. 6.5) we obtain γ ' 54 mJ/molK2 and β ' 0.36 mJ/molK4 cor-
responding to ΘLT

D = 378 K. The later, however, might be misleading be-
cause the C ∝ βT 3 lattice term is superimposed by magnetic contributions
from Ce 4f orbitals. In the case of La3Ni2B2N3−δ the low temperature data
yield γ ' 26 mJ/molK2 and ΘLT

D ' 329 K (see chapter 5). The enhanced
electronic contribution to the specific heat of Ce3Ni2B2N3−δ as compared to
La3Ni2B2N3−δ, i.e. ∆γ ' 28 mJ/K2mol, is attributed to magnetic contribu-
tions of Ce-4f in the intermediate valent regime. Dc magnetic susceptibilities
of Ce3Ni2B2N3−δ and La3Ni2B2N3−δ were measured from 3 K to room tem-
perature (RT) and from RT to 1000 K at applied fields of 1 T and 9 T, respec-
tively (see Fig. 6.6 a). While La3Ni2B2N3−δ displays (above its Tc) a simple,
weakly temperature dependent Pauli paramagnetism with a low temperature
susceptibility, χ0 ' 0.2×10−3 emu/mol, Ce3Ni2B2N3−δ exhibits an about one
order of magnitude larger susceptibility with a maximum at about 800 K. For
both compounds, a small additional Curie-Weiss component is observed at
low temperatures and a corresponding fit of the data from 10 to 200 K in
terms of a temperature independent component χ0 plus a Curie-Weiss term
χ = χ0 + C/(T − Θp) where C is a Curie constant and Θp a paramagnetic
Curie temperature yields for Ce3Ni2B2N3−δ a χ0 ' 1.6 × 10−3emu/mol and
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Figure 6.5: Specific heat of Ce3Ni2B2N3−δ (0 T) and La3Ni2B2N3−δ (9 T) at
selected temperatures; inset: C/T vs. T 2 graph of the low temperature part
with solid lines indicating C/T = γ + βT 2 linear fits.

C ' 9 × 10−3 emu K/mol. In case of La3Ni2B2N∼3 the fit of the low tem-
perature magnetic susceptibility data gives χ0 ' 0.2 × 10−3 emu/mol and
C ' 4 × 10−3 emu K/mol. The paramagnetic Curie temperature for both
the samples is of the order of −10 K. The Curie-Weiss like contribution in
Ce3Ni2B2N3−δ is attributed to paramagnetic impurities (e.g. Gd traces of
the order of 100 ppm in the La and Ce raw elements) and seems to be not
an intrinsic property. The values of χ0 and C obtained for La3Ni2B2N3−δ
are close to values reported earlier [61]. The moderately temperature de-
pendent, but nevertheless largely enhanced susceptibility of Ce3Ni2B2N3−δ
is attributed to f -electron contributions from intermediate valent Ce ions
with strongly Kondo screened Ce 4f moments. In order to obtain a mea-
sure for the 4f occupation from the susceptibility data an approach pro-
posed by Wohlleben and Röhler [107] (see also Ref. [108]). Comparing the
Ce3Ni2B2N3−δ 4f susceptibility (obtained by subtracting the La3Ni2B2N3−δ
data) with the theoretical susceptibility of Ce3+ ions (4f 1 configuration with
a ground state total angular momentum J = 5/2 and excited state J = 7/2
separated be a spin-orbit splitting ∆ ' 3150 K, see e.g. Ref. [109]) in a χT
versus T plot in Fig. 6.6 b suggests a 4f occupation clearly larger than 0.7.
χT (1000 K) ' 0.63 emu K/mol-Ce compares with CePd3 and CeRh3 with va-
lences near 3.2+ obtained from LIII x-ray absorption studies [107]. Thus, a
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inset: ρ vs. T 2 graph of the Ce3Ni2B2N3−δ data.

realistic estimate for the 4f occupation of Ce3Ni2B2N3−δ is near 0.8.
The 4f contribution to the low temperature susceptibility ∆χ(0) ' 1.4×

10−3emu/mol and the Sommerfeld value ∆γ ' 28 mJ/K2mol is analyzed in
terms of the Fermi-liquid relation (see e.g. Ref. [110]),

Rg2
JJ(J + 1)µ2

B∆γ = π2k2
B∆χ (6.1)

yielding with J = 5/2 an experimental value of the Wilson ratio, R ' 1.8
which slightly larger than the value expected for a degenerate Ce∼3.2+

state [111, 112], R = N/[N − 1 + (nf − 1)2] ' 1.19 for a degeneracy N = 6
and nf ' 0.8.

The temperature dependent electrical resistivity, ρ(T ), of La3Ni2B2N3−δ
and Ce3Ni2B2N3−δ is shown in Fig. 6.7. Except for small variations of
the residual resistivities, absolute values of ρ(T ) obtained in this study
have been well reproduced with several samples of La3Ni2B2N3−δ [105] and
Ce3Ni2B2N3−δ. The superconducting La3Ni2B2N3−δ has a T ρc ' 12.5 K while
Ce3Ni2B2N3−δ remains in the normal state at least down to the base temper-
ature of the experiment, i.e. 0.35 K. At temperatures below 30 K, the ρ(T ) vs.
T 2 graph of the experimental data shown as inset in Fig. 3 reveals a quadratic



6.5 Ground state properties of Ce3Ni2B2N3−δ 94

temperature dependence ρ(T ) = ρ0+AT 2, with A ' 1.2×10−9Ω cm/K2. This
coefficient A yields a Kadowaki-Woods ratio A/γ2 ' 4 × 10−6µΩcm(Kmol-
Ce/mJ)2 which is in between the typical Kadowaki-Woods ratio A/γ2 ∼
10−5µΩcm(Kmol-Ce/mJ)2 of (mostly twofold degenerate) cerium Kondo-
lattice systems and the expected generalized Kadowaki-Woods ratio of Kondo
lattice systems with sixfold degenerate Ce-4f moments [113] yielding A/γ2 ∼
0.7× 10−6 µΩcm(molK/mJ)2.

The value of the coefficient A together with the Sommerfeld coefficient of
the electronic specific heat, is indicative of Kondo interaction in Ce3Ni2B2N3−δ
with a relatively high Kondo temperature as compared to typical crystal field
splittings of the J = 5/2 multiplet of the Ce 4f 1 state. Accordingly, numerical
results of a sixfold degenerate Anderson lattice model (ALM) without Ce-Ce
intersite coupling compiled by Cox and Grewe [114] are used to analyze the
resistivity and thermoelectric power [ALM model provides S(T > 0.2TALM

K ),
see below] of Ce3Ni2B2N3−δ. In the simple fully degenerate case, i.e. for
strong Kondo coupling as compared to the crystal field splitting, the ALM
yields a universal temperature dependency for the magnetic contribution to
the resistivity and also the thermoelectric power, which simply scale with the
Kondo temperature TALM

K .
To analyze the temperature dependent resistivity data of Ce3Ni2B2N3−δ

a magnetic contribution according to the numerical ALM results,
ρALM(T/TALM

K ) is combined with a Bloch-Grüneisen model for the normal
metal phonon contribution yielding

ρ(T ) = ρ0 + α · ρALM(T/TALM
K ) +

+
4B

ΘD

(
T

ΘD

)5
ΘD/T∫
0

z5dz

(ez − 1)(1− e−z)
.

(6.2)

A reasonable set of parameters (further corroborated by the analysis of the
thermoelectric power discussed below) is: ρ0 = 17.6µΩcm [essentially fixed
by ρ(T → 0) data], α = 89.6µΩcm and TALM

K = 1100 K (characteristic
Kondo temperature of the ALM model), the electron-phonon coupling con-
stant B = 0.013 ΩcmK and Debye-temperature Θρ

D = 262 K of the Bloch-
Grüneisen model. The resulting fit is indicated as solid line in Fig. 6.7. The
resulting normal metal contribution, i.e. residual resistivity ρ0 plus phonon
contribution according to the Bloch-Grüneisen fit, is in remarkably close
agreement with the resistivity data of La3Ni2B2N3−δ (in absolute values).

The temperature dependent thermopower, S(T ), of La3Ni2B2N3−δ and
Ce3Ni2B2N3−δ is shown in Fig. 6.8b. For La3Ni2B2N3−δ, S(T ) is negative
above Tc indicating a positive slope of the electronic density of states near
the Fermi level. The mismatch between T < 300 K and T > 300 K data
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Figure 6.8: The electronic thermal resistance contributions estimated via
the Wiedeman-Franz law from the electrical resistivity data and fitting by
equation 2 (a). Temperature dependent thermopower of Ce3Ni2B2N3−δand
La3Ni2B2N3−δ (b); the solid line indicates the ALM fit (see text), dashed and
dash-dotted lines are straight lines.
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is an artifact of having used two different measuring techniques with im-
perfect overlap. The dashed-dotted line in Fig. 6.8b indicates a linear high
temperature extrapolation of the T < 300 K measurement corresponding to
S(T ) = a+ bT with a = −16.7 nV/K and b = −1.77µV/K2.

The TEP for Ce3Ni2B2N3−δ exhibits a sharp linear increase at low temper-
ature with an initial slope S/T ' 0.2µV/K and a broad Kondo maximum at
high temperature with Smax ' 26µV/K at about 500 K. The latter is analyzed
in terms of the ALM data by Cox and Grewe [114] using the characteristic
Kondo temperature TK = 1100 K derived above. When comparing the TEP
of Ce3Ni2B2N3−δ with the clean limit ALM calculation for sixfold degener-
ate Ce∼3+ which yields a broad maximum Smax = 103µV/K at T/TK ' 0.6
(see Fig. 3 of Ref. [114]), it is necessary to consider in addition to Kondo
scattering, at least, defect and phonon scattering. At elevated temperatures,
an estimate for the total diffusion thermopower Sd due to different types of
scattering mechanisms α, e.g. electron-defect (Se,0), electron-electron (Se,e)
or in the case of Ce3Ni2B2N3−δ the Kondo contribution SALM according to
the ALM) and electron-phonon (Sep) scattering, is obtained via the Kohler
relation [115],

Sd = W−1
∑
α

SdαWα, (6.3)

with W being the electronic thermal resistance. The latter obeys the
Matthiessen rule, W =

∑
αWα where Wα are the contributions due to

particular scattering mechanisms α. For simplicity of the analysis, Wα is
estimated via the Wiedeman-Franz law, Wα(T ) = ρα(T )/LαT, assuming
Le,0 ≈ Lep ≈ Le,e ≈ L0 = 2.44 × 10−8 WΩ/K2 (L0 is the Lorenz-number)
where equation 3 conforms to the Northeim-Gorter rule. Accordingly, contri-
butions WALM, W0 +WBG, and the total electronic thermal resistance Wtotal

corresponding to the above analysis of the resistivity data are displayed in
Fig. 6.8a. An estimate for the contribution Se,0 + Sep is obtained from the
La3Ni2B2N3−δ reference data (see the dashed-dotted line in Fig. 6.8b). The
latter together with the Kondo contribution SALM are added according to the
Kohler relation, thus yielding a total TEP based on the degenerate ALM with
TK = 1100 K as indicated by the solid line in Fig.6.8b which is in reasonable
agreement with the experimental data. In the low temperature limit, the
Seebeck coefficient S and the Sommerfeld coefficient γ are related by [116]

S

T
= q

γ

NAe
(6.4)

where NA is Avogadro’s number and q is a dimensionless quantity which is
found to be close to unity for most of the Ce based compounds [116]. For γ '
18 mJ/K2mol-Ce, the fit of the low temperature part of thermopower data
of Ce3Ni2B2N3−δ (dashed line in Fig.6.8b) yields S/T ' 0.2µV/K2 revealing
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Figure 6.9: S/T versus γ as adopted from Ref. [116] where the two solid
lines represent ±γ/(eNAv). Solid circles represent Ce based systems where
Ce3Ni2B2N2.7 has been added to the original graph.

q ' 1 which is well in line with the empirical trend observed for a large
number of Ce based compounds compiled in Ref. [116] (see figure 6.9).



Chapter 7

Formation and ground state
properties of La3−xRxNi2B2N3−δ
with R= Pr, Nd

The following chapter presents a description of the preparation proce-
dure of solid solutions La3−xRxNi2B2N3−δ as well as the novel compounds
Pr3Ni2B2N3−δ and NdxNi2B2N3−δ. The structural characterization is carried
out by means of X-ray diffraction while ground state properties are investi-
gated by magnetic susceptibility, resistivity and specific heat measurements.

7.1 Sample preparation

For La3−xRxNi2B2N3−δ samples (with R= Pr, Nd) the following starting
materials, La ingot (Metall Rare Earth, 99.9%), Nd ingot (Strem Chem-
icals 99.9%), Pr ingot (Strem Chemicals 99.9%), additionally purified by
pre-melting in vacuum, Ni (Alpha Aesar, 99.99%), crystalline natural boron
(HCTS, 99.5%) and nitrogen gas (Linde, 99.999 %) were used.

For preparing La3−xRxNi2B2N3−δ solid solutions a three step melting
process similar to the one described in section 3.2 was adopted. For pure
Pr3Ni2B2N3−δ samples an approximately 2-5 % excess to the stoichiometric
amount of Pr is added to compensate for the excessive losses because of
the high vapour pressure of Pr. The process of preparing Nd3Ni2B2N3−δ
is the same as for other quaternary boronitride compounds in this work.
The only difference is that under Ar/N atmosphere the melting tempera-
ture of the Nd3Ni2B2Nx alloy becomes too high and it becomes impossible to
melt it with the available facility. To prepare Nd3Ni2B2N3−δ a technique of
glowing the material in Ar/N2 is adopted with multiple cycles such that the
N-stoichiometry is slowly increased to reach a composition close to the stoi-
chiometric one. Thereby, Nd3Ni2B2 is glowed at the full power of Hüttinger

98
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Figure 7.1: Variation of the lattice parameters a (squares) and c circles in the
solid solution La3−xPrxNi2B2N2.7; lines are guides to eye.

IG, 30/400, 220 KHz high frequency generator with the material absorbing
nitrogen by the process of diffusion. The N-stoichiometry was determined
by measuring the mass gain after each glowing cycle and by measuring the
pressure drop within the recipient. After preparation the La3−xRxNi2B2N3−δ
were annealed in a two step process similar to the one described in sec-
tion 3.3 for La3Ni2B2N3−δ. The only difference is that in the final step all
La3−xRxNi2B2N3−δ were annealed at 1150 ◦C before quenching. All the sam-
ples were prepared with a nominal nitrogen stoichiometry near 2.7.

7.2 Structural characterization

7.2.1 Phase analysis of La3−xPrxNi2B2N3−δ

Polycrystalline La3−xPrxNi2B2N2.7 solid solution with x varying from 0
to 3 were prepared and phase purity of the samples was studied by
means of powder XRD. The observed, calculated and difference XRD pat-
tern of Pr3Ni2B2N2.7 is shown in figure 7.2 while the patterns for some
La3−xPrxNi2B2N2.7 are given in the appendix A. The solid line in figure 7.2 in-
dicates the calculated pattern from FULLPROF refinement while the vertical
bars represent the Bragg positions. The refinement revealed the related two
layer boronitride PrNiBN as the main impurity phase with a refined fraction
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Figure 7.2: Measured, calculated and difference XRD pattern of
Pr3Ni2B2N2.7. Short vertical lines indicate the positions of Bragg reflections.

of about 10%. The variation of a and c lattice parameters in the solid solution
La3−xPrxNi2B2N2.7 is summarized in figure 7.1. An almost linear reduction of
the a lattice parameter is observed which is a direct consequence of the lan-
thanide contraction. However, the c lattice parameter shows a non-monotonic
variation with a maximum at about x = 1.0. A similar variation of lattice pa-
rameters has been observed for the solid solutions La3−xCexNi2B2N3−δ while a
directly opposite trend of the a and c lattice parameters has been observed for
the related borocarbides [53]. In the borocarbides the increase in the c lattice
constant is attributed to an increase in the NiB tetrahedral angle resulting in a
stretching of the lattice along the c-axis. The NiB tetrahedral angle increases
from ∼105.8◦ for La3Ni2B2N2.7 to ∼107.3◦ for Pr3Ni2B2N2.7 which tends to
stretch the lattice but a concomitant reduction of the (La,Pr)N triple layer
thickness is observed. The combined effect of these variations leads to a non-
monotonic variation of the c lattice parameter within the La3−xPrxNi2B2N2.7

solid solution. The structural data of Pr3Ni2B2N2.70 are summerized in ta-
ble 7.1. It should be mentioned here that since N and B scattering lengths
are small in X-ray diffraction, the positions of B and N(1) sites are initially
refined and then fixed to an appropriate value before the final refinement.
Also the occupation of all the crystallographic sites is fixed while the occu-
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Pr3Ni2B2N2.7

Structure type: La3Ni2B2N3, Space group: I4/mmm
a = 0.3622(2) nm, c = 2.05161(2) nm, V = 0.272(4)nm3, c/a = 5.664

Atom Site x y z Occ.
Pr(2) 2a 0.0000 0.0000 0.00000 1.00
Pr(1) 4e 0.0000 0.0000 0.37241(11) 1.00

Ni 4d 0.0000 0.5000 0.25000 1.00
B 4e 0.0000 0.0000 0.19249 1.00

N(1) 4e 0.0000 0.0000 0.12775 1.00
N(2) 2b 0.0000 0.0000 0.50000 0.90

Table 7.1: Crystal structure and lattice parameters data of Pr3Ni2B2N2.70 at
room temperature.

pation of N(2) is fixed to 0.9 on the basis of the neutron powder diffraction
results of La3Ni2B2N2.65. Finally refined parameters are given with error bars
in table 7.1. The lattice volume of 0.272nm3 for Pr3Ni2B2N2.70 represents a
∼5% reduction as compared to La3Ni2B2N2.7 which is due to the lanthanide
contraction.

7.2.2 Phase analysis of La3−xNdxNi2B2N3−δ

The XRD pattern of Nd3Ni2B2N2.7 is shown in figure 7.3. The patteren
does not reveal a significant fraction of the related two layer phase NdNiBN
but some reflections of an unidentified phase are observed. The variation
of lattice parameters within the solid solution La3−xNdxNi2B2N3−δ is shown
in figure 7.4 while the structural data of Nd3Ni2B2N2.7 are summarized in
table 7.2. In the refinement, the positions of B and N(1) were fixed and may,
thus, be ambiguous. The occupation of all crystallographic sites were also
fixed. An almost linear reduction of the a lattice parameter similar to the Pr
case is observed while the c lattice parameter shows again a non-monotonic
variation with a maximum at x = 0.8 which is attributed to a competition
between the NiB tetrahedral angle and the (La,Nd)N layer thickness. In
La3−xNdxNi2B2N3−δ the lattice volume shows a reduction with increasing Nd
concentration and reaches a value of 0.265nm3 for pure Nd3Ni2B2N2.7.

7.3 Magnetic and resistivity measurements

7.3.1 Magnetic measurements

The magnetic susceptibility, χ(T ), of La3−xRxNi2B2N3−δ (R=Pr, Nd) was
studied from 3 K up to 300 K by means of magnetization measurement on a
dc SQUID magnetometer. The low temperature dc magnetic susceptibility
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Nd3Ni2B2N2.7. Short vertical lines indicate the positions of Bragg reflections.
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Nd3Ni2B2N2.7

Structure type: La3Ni2B2N3, Space group: I4/mmm
a = 0.3595(2) nm, c = 2.0486(2) nm, V = 0.265(4)nm3, c/a = 5.698

Atom Site x y z Occ.
Nd(2) 2a 0.0000 0.0000 0.00000 1.00
Nd(1) 4e 0.0000 0.0000 0.37281(10) 1.00

Ni 4d 0.0000 0.5000 0.25000 1.00
B 4e 0.0000 0.0000 0.20910 1.00

N(1) 4e 0.0000 0.0000 0.12816 1.00
N(2) 2b 0.0000 0.0000 0.50000 0.90

Table 7.2: Crystal structure and lattice parameters data for Nd3Ni2B2N2.70

at room temperature.

for La3−xPrxNi2B2N2.7 as well as for La3−xNdxNi2B2N2.7 measured in an ap-
plied field of 1 mT after zero field cooling is shown in figure 7.5. As shown
in figure 7.5(a) La/Pr substitution shifts the superconducting transition tem-
perature, Tc, from about 13 K for x = 0 to about 7 K for x = 1.0. Supercon-
ductivity is suppressed more strongly in case of La/Nd substitution with Tc
decreasing from 13 K for pure La system to about 8 K for x = 0.5 while no su-
perconductivity is observed in La3−xNdxNi2B2N2.7 for compositions beyond
x = 0.75. A detailed discussion about the suppression of superconductiv-
ity in La3−xRxNi2B2N3−δ analyzed in terms of Abrikosov-Gor’kov type pair
breaking is given in section 7.4.

In order to study the normal state magnetic properties of
La3−xRxNi2B2N3−δ solid solutions, dc magnetic susceptibilies were measured
up to room temperature in an applied field of 1.0 T. To investigate the
magnetism of Pr and Nd ions, the magnetic susceptibility of the reference
non-magnetic system La3Ni2B2N2.7 was subtracted and the results are
displayed figure 7.6. The inverse susceptibility is analyzed for T > 60 K in
terms of the Curie-Weiss model, χ = C/(T − Θp) with Θp being the param-
agnetic Curie temperature and C the Curie constant, C = µoNAµ

2
eff/3kB.

The latter allows to calculate the effective paramagnetic moments (µeff )
which are listed in figure 7.6 for each composition. It is evident that µeff
as obtained from the Curie constant (µeff =

√
8C with C given in units of

emuK/mol) for the La/Pr and La/Nd systems are in good agreement (within
experimental error) with the free ion values of 3.58µB and 3.62µB for Pr
and Nd, respectively. The paramagnetic Curie temperatures Θp for Pr and
Nd are of the order of -50 K and -10 K, respectively.

The low temperature resistivities of La3−xPrxNi2B2N3−δ are shown in fig-
ure 7.7 revealing a suppression of superconductivity with increasing Pr con-
centration. An almost linear reduction of Tc is evident at a rate dTc/dx '
−0.44 K/Pr% with Tc being reduced from ∼13 K for pure La3Ni2B2N2.7 to
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∼8.0 K for a Pr concentration x = 1.3. Theses values of Tc are consistent with
those determined from magnetic susceptibility measurements. The resistiv-
ity data of solid solutions La3−xNdxNi2B2N3−δ are summarized in figure 7.8.
With Nd substitution, superconductivity is suppressed at a faster rate with
dTc/dx ' −0.93 K/Nd% as compared to Pr. Nd destroys superconductivity
completely for x & 1.0.

7.4 Discussion of Abrikosov Gor’kov type

pair breaking

From the results of magnetic susceptibility as well as resistivity it is clearly
seen that the magnetic rare-earths Pr and Nd result in a suppression of
superconductivity in La3Ni2B2N3−δ. The antagonistic nature of supercon-
ductivity and magnetism is well known from earliest studies of paramagnetic
rare-earth impurities in La metal [101] and has been explained theoretically
by Abrikosov and Gor’kov (AG) [117] as a consequence of the exchange inter-
action between impurities carrying local magnetic moments and the conduc-
tion electrons which leads to (Cooper) pair breaking. The superconducting
transition temperature of the samples within the La3−xRxNi2B2N3−δ series
(R=Ce, Pr, Nd) determined from dc-susceptibility are plotted as a function
of the respective rare-earth concentration in figure 7.9. The depression of
the superconducting transition temperature due to spin disorder scattering
by paramagnetic impurities is described in terms of the AG formula

ln

(
T 0
c

Tc

)
= Ψ

(
T 0
c

2Tc
ρ+

1

2

)
−Ψ

(
1

2

)
(7.1)

where Tc and T 0
c are the critical temperatures with and without magnetic

impurities and Ψ is the digamma function. The pair breaking parameter ρ is
given by

ρ =
cN(Ef )J

2
sf (gJ − 1)2J(J + 1)

kBT 0
c

(7.2)

where T 0
c ' 13 K for La3Ni2B2N2.7, c is the impurity concentration (c = x/10),

N(Ef ) is density of states at Fermi energy (' 6 states/eV f.u), Jsf is the
exchange integral and (gJ−1)2J(J+1) is the de Gennes factor (dGCe = 0.18,
dGPr = 0.8 and dGNd = 1.8). The dashed lines in figure 7.9 represent fits of
the data in terms of the AG theory. A significantly stronger depression of Tc
is observed for La3−xCexNi2B2N2.7 while for La/Pr and La/Nd substitution
an initially almost linear reduction of Tc is observed before rapidly reaching
zero. This trend agrees with the AG theory. The s-f exchange integral Jsf
is an important parameter that can be evaluated from the AG theory. The
fits yield Jsf ∼ 77.0 meV and ∼ 84.0 meV for La/Nd and La/Pr substitution,
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respectively. The observed weak variation of Jsf is in line with the local
spin density approximation which predicts a small variation of Jsf within the
rare-earths series [118].

In the case of the related borocarbide superconductors Y1−xRNi2B2C
(with R= La, Pr, Nd, Sm) it was shown that the AG theory may account
qualitatively for the rapid breakdown of superconductivity in light rare-earth
systems [119]. However, the suppression of superconductivity in borocarbides
by light rare-earths (La, Pr, Nd) is more realistically attributed to the reduc-
tion of the density of states at the Fermi level [120]. For La3−xRxNi2B2N3−δ,
the values of Jsf for Pr and Nd substitution are similar, accordingly, the
chemical pressure induced changes in N(Ef ) may be relatively small. This
implies that for Pr and Nd the only parameter governing the significant Tc
depression is the effective de Gennes factor. The Tc reduction as a function of
the effective dG factor is plotted in figure 7.10 which indicates that the pair
breaking effect of Pr and Nd roughly scales with de Gennes factor. Thereby,
one may conclude that AG pair breaking with critical R concentrations xcri
of about 1.9 and 1.0 for Pr and Nd may account for the suppression of super-
conductivity in La3−xRxNi2B2N3−δ. However, for Ce which has a smaller dG
factor, a strong pair breaking effect in La3−xCexNi2B2N2.7 series is attributed
to intermediate valance and/or Kondo effect (see chapter 6).

7.5 Ground state properties of Pr3Ni2B2N3−δ

The ground state properties of Pr3Ni2B2N3−δ were investigated by means of
magnetic susceptibility, specific heat and resistivity measurements. The dc
magnetic susceptibility of two different Pr3Ni2B2N2.7 samples measured in an
applied field of 3T is shown in figure 7.11. The susceptibilities of both samples
are almost matching at high temperature while at low temperature sample (a)
exhibits a slightly higher impurity contribution. The inverse susceptibility of
sample (a) is also shown in figure 7.11 and is analyzed in terms of the modified
Curie-Weiss law. Contrary to the previous analysis of the solid solution, the
susceptibility of La3Ni2B2N2.7 is not subtracted but a Pauli paramagnetic
contribution is included in the fit. The solid line in figure 7.11 represents a
fit of the data for T > 90 K according to χ = χo + C/(T − Θp) yieldinga
χo = 4 × 10−4 emu/mole, a paramagnetic Curie temperature ΘP ' −40 K
and a Curie constant C' 1.53 emu K/mol-Pr. The latter gives an effective
magnetic moment µeff ' 3.49µB which is close to free ion value of 3.58µB
for Pr.

The specific heat of Pr3Ni2B2N2.7 samples (a) and (b) is shown in fig-
ure 7.12 and reveals a normal metallic behaviour with two different magnetic
anomalies observed in the two samples. Small anomalies below 10 K in sam-
ple (a) and at about 23 K in sample (b) may be attributed to some impurity
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Figure 7.11: magnetic susceptibility of two different Pr3Ni2B2N2.7 in an ap-
plied field of 3 T. Solid line indicates a fit for T > 90 K in terms of a modified
Curie-Weiss model.

phases. The solid line in figure 7.12 represents the phonon specific heat (Cph)
of the reference compound La3Ni2B2N2.7 while the inset shows the low temper-
ature specific heat of sample (b) revealing a linear behaviour in a very narrow
temperature range. For related borocarbide PrNi2B2C an antiferromagnetic
order at about 4 K with a relatively high value of the Sommerfeld coefficient
γ = 250 mJ/molK2 was reported [121]. However, Mazmudar et al. [122] per-
formed detailed neutron scattering studies on PrNi2B2C and demonstrated
that crystalline electric field (CEF) level schemes explains the low tempera-
ture behaviour very well.

The low T specific heat of Pr3Ni2B2N2.7 shows a very small enhancement
which means that the CEF splitting is relatively large. Figure 7.13 shows the
difference specific heat (∆Cp/T ) obtained by subtracting Cph of La3Ni2B2N2.7

from the measured specific heat of Pr3Ni2B2N2.7. The inset in figure 7.13
shows the magnetic entropy of Pr3Ni2B2N2.7 as calculated from ∆Cp/T . At
about 15 K (corresponding to the minimum in ∆Cp/T ), the entropy is about
0.6 which is far less than the entropy (S = 3Rln2) for a doublet ground state
of Pr3Ni2B2N2.7 suggesting that the upturn in ∆Cp/T at low temperature is
an impurity contribution.

The electrical resistivity of Pr3Ni2B2N2.7 along with the resistivity of
La3Ni2B2N2.7 is shown in figure 7.14 while the inset shows the difference ∆ρ.
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Figure 7.12: Specific heat of two different samples of Pr3Ni2B2N2.7 with
solid line indicating the phonon specific heat of the reference compound
La3Ni2B2N2.7. The inset shows the low temperature specific heat of
Pr3Ni2B2N2.7.

Interestingly, ∆ρ exhibits a remarkably similar variation as the magnetic en-
tropy gain in the inset of figure 7.13. Since the specific heat measurement
indicates a singlet ground state, the increase of the resistivity with temper-
ature may be attributed to spin disorder scattering which increases as the
CEF levels are populated because more and more scattering channels for
conduction electrons become available. The specific heat and resistivity data
of Pr3Ni2B2N2.7 point towards a singlet ground state, however, the magnetic
susceptibility shows a strong upturn at low temperature. For a singlet ground
state, one would expect a flattening of the susceptibility at low T . The mag-
netic properties of Pr3Ni2B2N2.7 do not suggest any magnetic ordering but
a clear evidence of a singlet ground state of Pr is possibly hindered by a
significant Curie-Weiss like impurity susceptibility.

7.6 Ground state properties of Nd3Ni2B2N3−δ

The ground state properties of Nd3Ni2B2N3−δ were investigated by means of
specific heat, resistivity and magnetic susceptibility measurements. The spe-
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Figure 7.13: ∆Cp/T Vs. T of Pr3Ni2B2N2.7 (sample b, see text). The inset
shows the magnetic entropy calculated from ∆Cp/T .
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Figure 7.14: Temperature dependent electrical resistivities of Pr3Ni2B2N2.7

and La3Ni2B2N2.7. The inset shows the difference between these resistivities,
i.e. the magnetic contribution ∆ρ.
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Figure 7.15: Specific heat of Nd3Ni2B2N2.7 measured in zero field.

cific heat of Nd3Ni2B2N2.7 measured in zero field is shown in figure 7.15. The
specific heat clearly reveals two magnetic transitions at approximately 20 K
and 10 K respectively. The small anomalies at low temperature may be some
impurity contributions. The electrical resistivity of Nd3Ni2B2N2.7 is shown in
figure 7.16 which indicates normal metallic behaviour at high T and an onset
of magnetic ordering at around 20 K. The low temperature part of the re-
sistivity shown as inset in figure 7.16 clearly shows two magnetic transitions
at temperatures matching with the specific heat measurement. To investi-
gate the nature of the magnetic transitions, the resistivity was measured in
applied magnetic field and the results are shown in figure 7.17. Under ap-
plied magnetic field, the anomaly at low temperature (10 K) is suppressed
which corresponds to an antiferromagnetic behaviour. On the other hand
the anomaly at 20 K is shifted to higher temperatures which is typical for a
ferromagnetic ordering [123].

Magnetization measurements were performed on a dc SQUID magnetome-
ter. The dc magnetic susceptibility of Nd3Ni2B2N2.7 is shown in figure 7.18(a)
under applied magnetic fields as labeled. The susceptibility under an applied
field of 0.01T reveals magnetic transitions in agreement with the specific heat
and resistivity measurements. The inverse susceptibility in an applied field of
3T is shown in figure 7.18(b). The solid line in figure 7.18(b) represents a fit of
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Figure 7.16: Electrical resistivity of Nd3Ni2B2N2.7 with an inset zooming out
the low temperature part.

0 8 16 24 32 40 48 56
0

20

22

24

26

28

30

32

34

 

 

 0T
 1T
 2T
 3T
 5T
 7T

ρ 
(µ

Ω
 c

m
)

T (K)

Nd
3
Ni

2
B

2
N

2.7

Figure 7.17: Electrical resistivity of Nd3Ni2B2N2.7 at applied magnetic fields
as labeled.
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Figure 7.18: Dc magnetic susceptibiliy at applied magnetic fields as labeled
(a) and inverse susceptibility at 3 T (b) of Nd3Ni2B2N2.7 . Solid line in (b)
indicates a fit for T > 60 K in terms of a modified Curie-Weiss model.

the data above 60 K in terms of, χ = χo+C/(T−Θp) yielding a paramagnetic
Curie temperature Θp = −8 K and a Curie constant C = 1.31emu K/mol Nd
that allows to calculate an effective magnetic moment µeff = 3.24µB/Nd
which is slightly reduced as compared to the free ion value 3.62µB for Nd
may be due to crystal field effects.

The isothermal magnetization up to 6 T for a wide range of tempera-
tures is shown in figure 7.19. Normal paramagnetic behaviour is observed
at higher temperatures while ferrimagnetic ordering is revealed at 20 K. The
magnetization tends to increase at further lowering the temperature but no
hysteresis is observed. A spin reorientation transition towards a nearly an-
tiferromagnetic state with a small ferrimagnetic component is observed at
10 K below which a hysteresis starts to open. At 3 K the isothermal magne-
tization displays a metamagnetic spin flip transition at about 1 T connected
with a strongly hysteretic behaviour and a saturation magnetization of about
1.3µB/Nd. This reduction of the ordered moment as compared to the free
ion value of fully polarized Nd moments (µs = 3.3µB) may have different
origins. One possible origin can be that the CEF of Nd(1) and Nd(2) may
have different easy directions resulting in a canted ferromagnetic state. An-
other possible explanation could be a strong c-axis anisotropy which reduces
the measured µs of polycrystalline material to one-third of the free ion value.
However, a strong a-axis anisotropy has been observed in related borocarbide
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Figure 7.19: Isothermal magnetization M(H) of Nd3Ni2B2N2.7 at tempera-
tures as labeled.

NdNi2B2C [52]. The most plausible interpretation for the observed reduced
ordered moment of Nd3Ni2B2N2.7 is a ferrimagnetic coupling of Nd moments.
Since Nd3Ni2B2N2.7 contains two different crystallographic sites i.e. Nd(1)
and Nd(2) atom in the unit cell, it is possible that the two Nd(1) moments
are aligned parallel and have ferrimagnetic coupling with Nd(2) which would,
thus, result in a µs ' 1.3µB. A final conclusion whether the magnetic struc-
ture of Nd3Ni2B2N3−δ is a ferromagnetic or ferrimagnetic one would of course
require neutron powder diffraction studies of the magnetic structure.



Summary

The structural and physical properties of quaternary R3Ni2B2N3−δ and their
pseudo-quaternary solid solutions La3−xRxNi2B2N3−δ (with R= Ce, Pr, Nd)
have been investigated.

For La3Ni2B2N3−δ, the main focus was to control the nitrogen off-
stoichiometry in a systematic way and to study the interrelationships between
the nitrogen stoichiometry and the physical properties of this compound.
Nuclear magnetic resonance studies as well as neutron powder diffraction
confirmed the N-vacancies being located on a specific nitrogen lattice site.
Various nominal compositions of La3Ni2B2N3−δ were synthesized with a well
optimized preparation technique. On the basis of powder X-ray diffraction
(XRD) studies, an approximate nominal width of formation of the compound
(with δ ∼ 0.1 – 0.4) was anticipated. The neutron powder diffraction studies
on selected compositions, however, established a relatively narrow width of
formation (δ ∼ 0.06 – 0.1).

The superconducting properties of La3Ni2B2N3−δ revealed distinct com-
position dependent variations. A linear correlation of residual resistivity with
the N-stoichiometry as well as with the transition temperature Tc is observed.
Within the width of formation, Tc varies from 12.2 K to 14 K which is unusual
for conventional s−wave superconductors and may indicate an unconventional
order parameter. However, La3Ni2B2N3−δ clearly exhibits an exponential
temperature dependence of the electronic specific heat for T < Tc/2 which is
a solid evidence for an s−wave superconducting order parameter. An attempt
to model SC state physical properties and their N-vacancy induced variations
together with the corresponding variation of Tc in terms of an anisotropic
Eliashberg model failed. The variation of Tc with the N-stoichiometry in
La3Ni2B2N3−δ might, thus, be a consequence of defect induced electronic
changes rather than an effect of simple potential scattering.

Powder XRD confirms the existence of the solid solutions
La3−xRxNi2B2N3−δ with R= Ce, Pr, and Nd from x = 0 – 3 whereby
the lattice parameter a follows the lanthanide contraction, i.e. decreases with
increasing R-fraction, whereas the lattice parameter c shows a non-monotonic
variation with a maximum at low R-fraction. Magnetic susceptibility and
resistivity data of La3−xRxNi2B2N3−δ reveal a rapid reduction of Tc with
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increasing R content which is analyzed in terms of the Abrikosov-Gor’kov
pair breaking theory. The suppression of superconductivity is stronger in
the case of Ce substitution and is attributed to an intermediate valance
behaviour of Ce. In case of Pr and Nd substitution, Tc scales roughly with
the effective de Gennes factor of these R−ions.

The results of magnetic, thermodynamic and transport studies charac-
terize Ce3Ni2B2N3−δ as an intermediate valence system with moderately en-
hanced values of the Sommerfeld coefficient and the low temperature suscep-
tibility χ0 as compared to La3Ni2B2N3−δ originating from Ce 4f contribu-
tions. The high temperature susceptibility indicates a Ce valence of about
3.2. Transport properties, namely the electrical resistivity and thermoelec-
tric power, are analyzed in terms of the degenerate Anderson lattice model
revealing a Kondo temperature, TALM

K ∼ 1100 K.
The specific heat and resistivity data of Pr3Ni2B2N3−δ point towards

a non-magnetic singlet ground state though a clear evidence from mag-
netic susceptibility might require studies on cleaner samples. In the case
of Nd3Ni2B2N3−δ a ferrimagnetic ordering below 20 K and a spin reorienta-
tion transition towards a nearly anitferromagnetic state at about 10 K are
observed.



Appendix A

Additional X-ray diffraction
data
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Figure A.1: Measured, calculated and difference XRD pattern of
La2.67Pr0.33Ni2B2N2.7. Short vertical lines indicate the position of Bragg re-
flections.
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Figure A.2: Measured, calculated and difference XRD pattern of
La2.34Pr0.66Ni2B2N2.7 (a) and La2.5Nd0.5Ni2B2N2.7 (b).
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Figure A.3: Measured, calculated and difference XRD pattern of
La2.25Nd0.75Ni2B2N2.7 (a) and La1.5Nd1.5Ni2B2N2.7 (b).
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Figure A.4: Measured, calculated and difference XRD pattern of
La2.95Ce0.05Ni2B2N2.7 (a) and La2.5Ce0.5Ni2B2N2.7 (b).
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