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A B S T R A C T

In this work, a novel method for using a set of electromagnetic quadrupole fields is presented to implement
arbitrary unitary operators on a two-state quantum system of electrons. In addition to analytical derivations of
the required quadrupole and beam settings which allow an easy direct implementation, numerical simulations
of realistic scenarios show the feasibility of the proposed setup. This is expected to pave the way not only for
new measurement schemes in electron microscopy and related fields but even one day for the implementation
of quantum computing in the electron microscope.
1. Introduction

Unitary operators play a vital role across quantum mechanics and
related fields as they model transformations between orthonormal
bases. In transmission electron microscopy (TEM), the best-known such
transformation is the Fourier transform which relates position space
and reciprocal space and can be realized easily using a standard, round
lens [1]. Going from position space representation into reciprocal space
representation allows the efficient determination of crystal structures
and orientations with better accuracy and signal-to-noise ratio (SNR)
than, e.g., when using high-resolution TEM images acquired in imaging
mode. One primary reason for this is the fact that all electrons carrying
a certain information — e.g., about the lattice plane distance — are
focused in one spot in reciprocal space, while being distributed over the
whole micrograph in position space. Thus, measuring a few electrons in
a specific reciprocal space point already gives quantifiable information
about the lattice plane spacing, whereas measuring the same (low)
number of electrons in a position space image will just give a few counts
scattered over the entire field of view.

Another example of a unitary transformation is the use of a quadratic
phase plate for measuring the orbital angular momentum (OAM) of a
pure electron vortex beam [2]. Recently, an effective basis transforma-
tion was also employed to measure the OAM spectrum of an electron
beam by means of a log-polar transformation [3]. In that instance, too,
a setup was found that transformed different OAM components in such
a way that they showed up in unique measurement channels — similar
to diffraction spots —, rather than producing small variations on an
otherwise fairly large signal.
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The idea of having a direct one-to-one correspondence between
the intensity in a channel and the sought information is closely re-
lated to the concept of sparsity commonly found in compressed sens-
ing applications (see, e.g., [4–6] and references therein) and blind
source separation (see, e.g., [7]). These methods, however, are post-
processing techniques that in many cases require prior knowledge
about the measured quantity. Above all else, however, their outcome
strongly depends on the quality of the measured data, which in turn is
heavily influenced by various noise sources, including shot noise and
different electronic noise contributions in the read-out and process-
ing components. However, unitary operators do not suffer from this
problem.

Unitary operators can be applied directly to a (quantum) system
before a measurement, thus allowing the measurement to be performed
in a basis with optimal signal sparsity and SNR. The key requirement
for this, however, is to find a way to perform the necessary unitary
transformations directly in the instrument.

It must be emphasized that the use of unitary operators is not
limited to the measurement process. It can also be used for shaping
the beam. For example, a specific transformation has been used for
producing electron vortex beams [8–10].

In this work, a setup is described that allows to realize arbitrary
unitary operators on a two-state quantum system in a TEM. Two-state
quantum systems are of particular importance as they model qubits, the
building blocks of quantum computers. Such free electron qubits [11]
would have many beneficial properties, from easy manipulation down
to the sub-Ångstrom regime in a TEM to well-established measurement
devices to very weak interaction with the environment to (in principle)
easy storage, e.g. in a magnetic storage ring. Additionally, interactions
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with photons or quantum dots or other physical qubit implementations
can be triggered easily [12]. Moreover, recent advances also outline
potential roads towards scaling this from one to several qubits [13–16].

Apart from the fundamental research aspects, the two-state system
acts as an important model for the future development of setups for
unitary operators on higher-dimensional systems. Such developments
could give rise to new optimized measuring schemes with improved
SNR as outlined above which would be of great practical importance
in electron microscopy.

2. Theory

Here, we use the vector space  spanned by the two orthonormal
states |0⟩, |1⟩ given in position representation as

⟨𝑟|0⟩ = 𝐻𝐺1,0(𝑟) ∝ 𝑥 ⋅ e
− 𝑟2

𝑤(𝑧)2 ⋅ e−
i𝑘𝑟2
2𝑅(𝑧) ⋅ ei𝛾(𝑧)

⟨𝑟|1⟩ = 𝐻𝐺0,1(𝑟) ∝ 𝑦 ⋅ e
− 𝑟2

𝑤(𝑧)2 ⋅ e−
i𝑘𝑟2
2𝑅(𝑧) ⋅ ei𝛾(𝑧),

(1)

where 𝐻𝐺𝑛,𝑚 denotes the Hermite-Gaussian mode of order (𝑛, 𝑚) [9,17,
18], 𝑤(𝑧) = 𝑤0

√

1 + (𝑧∕𝑧𝑅)2 is the propagation-dependent beam size
with the minimal beam waist 𝑤0 =

√

2𝑧𝑅∕𝑘 and the Rayleigh range 𝑧𝑅,
𝑘 is the wave number, 𝑅(𝑧) = 𝑧(1+(𝑧𝑅∕𝑧)2) is the curvature radius, and
𝛾(𝑧) = arctan(𝑧∕𝑧𝑅) is the Gouy phase. Due to their primary orientation,
|0⟩ will be referred to as ‘‘horizontal’’ and |1⟩ will be referred to as
‘‘vertical’’ in the following.

Apart from a global phase factor, all normalized states |𝜓⟩ ∈  can
be written as

|𝜓⟩ = cos(𝜃∕2)|0⟩ + sin(𝜃∕2)ei𝜑|1⟩ (2)

with 𝜃 ∈ [0, 𝜋], 𝜑 ∈ [0, 2𝜋). Thus, all such states lie on the Bloch sphere
(with the polar angle 𝜃 and the azimuthal angle 𝜑) as depicted in Fig. 1.
Unitary operators are simply those changing 𝜃 and 𝜑, i.e. rotations
on the sphere. Following the scheme of (extrinsic) Euler angles, it is
well-known that any arbitrary rotation can be decomposed into three
successive rotations around cardinal axes, e.g. in the order 𝑥–𝑧–𝑥.

From Fig. 1 it can be seen that rotations around 𝑥 correspond to
changing 𝜃. As is evident from Eqs. (1) and (2), such an operation in
the chosen basis corresponds to a rotation of the coordinate system
in the plane perpendicular to the optical axis by an angle of 𝛿𝜃∕2,
i.e. 𝑟 ↦ �̂�𝑟, which can be realized in two ways: either one rotates
the experimental setup (electro-magnetic fields, image, sample, etc.),
which may even be achievable in post-processing in some cases, or
one uses the well-known Larmor rotation [19–23] in the magnetic field
of round lenses ubiquitous in electron microscopy. Note that the first
approach, i.e., rotating the electro-magnetic fields, is easy in the case
of quadrupole fields as those can be rotated simply by changing the
excitation of the four poles.

The second ingredient to realizing arbitrary unitary operators on 
is the ability to change 𝜑, i.e., rotations around 𝑧 in Fig. 1. From Eq. (2),
it is evident that this corresponds to a relative phase shift between the
two basis states. Here, a scheme for creating electron vortex beams
(EVB) can be extended upon: the so-called ‘‘mode conversion’’ [8–10],
which is based on the idea of the optical mode converter [17] and uses
a set of two quadrupole lenses to convert a 𝐻𝐺1,1 beam into a 𝐿𝐺0,±1
beam by means of the specific phase shift of 𝛿𝜑 = ±𝜋∕2. Here, this
approach will be generalized to arbitrary phase shifts.

Fig. 2 shows the principle setup of a relative phase shifter, consisting
of two quadrupole lenses. The first quadrupole (QP1) produces an
astigmatic beam from an incident round beam. The beam is focused in
one direction (say, horizontally) before the second quadrupole (QP2),
while it is defocused in the orthogonal direction. Due to this difference,
the horizontal and vertical components (corresponding to the basis
states |0⟩ and |1⟩, respectively) acquire different Gouy phase shifts, thus
resulting in a relative phase shift by the time they reach QP2. QP2
then has to be set up to compensate the action of QP1 and produce
a non-astigmatic beam again.
2

Fig. 1. (a) Schematic of the Bloch sphere for the vector space described in the text.
(b) Selected states for various values of 𝜃, 𝜑 according to Eq. (2). For all depicted
states, intensity represents amplitude and color represents phase as indicated in the
color wheel inset.

To model the propagation of the beam through the QP lens setup, it
is beneficial to introduce the complex beam parameter 𝑞(𝑧) = 𝑧−𝑧0+i𝑧𝑅
for the two components, where 𝑧0 is the position of the component’s
focus [18]. Without loss of generality, 𝑧0 = 0 will be assumed in the
following. The complex beam parameter completely defines a Gaussian
beam and allows to calculate all its properties such as

𝑤(𝑧) =

√

2|𝑞|2

𝑘ℑ[𝑞]
𝑅(𝑧) =

|𝑞|2

ℜ[𝑞]
𝛾(𝑧) = − arg [i𝑞] . (3)

Additionally, both the propagation and the action of a lens can be
modeled easily. Propagation over a distance 𝛿𝑧 transforms 𝑞 ↦ 𝑞 + 𝛿𝑧,
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Fig. 2. Sketch of a relative phase shifter consisting of two quadrupoles (QP1, QP2).
Two different settings leading to different phase shifts are shown (blue and orange). The
top panel shows the horizontal (full lines) and vertical (dashed lines) beam diameters.
The bottom panel shows the relative phase shift. In the shown scenario, the incident
beam size was fixed.

while a lens with focal length 𝑓 transforms 𝑞 ↦ 1∕(1∕𝑞 − 1∕𝑓 ). A QP
an then be modeled as a lens with focal length 𝑓 for one component
e.g., the horizontal one) and −𝑓 for the other component (e.g., the
ertical one) [24].

The mode matching condition, i.e., the condition that the beam
s round and non-astigmatic after QP2, results in the two conditions
ℎ(𝑧2) = 𝑤𝑣(𝑧2) and 𝑅ℎ(𝑧2) = 𝑅𝑣(𝑧2), where the subscripts ℎ, 𝑣 denote

he horizontal and vertical components, respectively, and 𝑧2 is the
osition of QP2. The first of the two conditions ensures that the beam
s round at QP2, while the second condition ensures that it stays round
ven when propagating further after QP2 (i.e, it is non-astigmatic). It
s easily seen that mode matching is achieved if 𝑞ℎ(𝑧2) = 𝑞𝑣(𝑧2) [9]. A
engthy but straight-forward calculation (see Appendix) shows that for
wo quadrupoles with focal lengths 𝑓1, 𝑓2 at a distance 𝑑, this can be
chieved for an incident beam with

in = −𝑑𝑓1
𝑓1 + i𝑑𝑢
𝑓 2
1 + 𝑑2𝑢2

with 𝑢 = − sgn[𝑓1]
√

𝑓1𝑓2
𝑑2

− 1, (4)

ith a relative phase shift of

𝜑 = arctan
[

2𝑢
𝑢2 − 1

]

. (5)

Solving for 𝑢 gives

𝑢 =
1 ±

√

1 + tan2 𝛿𝜑
tan 𝛿𝜑

. (6)

This allows to calculate 𝑢 for any given relative phase shift 𝛿𝜑, where
he sign has to be chosen appropriately for the quadrant in the 𝑥-𝑦-plane

in which points with polar angle 𝛿𝜑 lie (corresponding to the normal-
ized point 1

𝑢2+1 (𝑢
2 − 1, 2𝑢) according to Eq. (5); see also Appendix). As

shown in Fig. 3, for 𝛿𝜑 ∈ [0, 𝜋∕2] ∪ [3𝜋∕2, 2𝜋] the + branch of Eq. (6)
as to be taken whereas for 𝛿𝜑 ∈ (𝜋∕2, 3𝜋∕2) the − branch has to be
aken. Knowing 𝑢 in turn fixes the relation between 𝑓1 and 𝑓2 according

to Eq. (4).
As a first example, consider 𝛿𝜑 = 𝜋∕6. tan 𝛿𝜑 = 1∕

√

3 ≈ 0.577,
resulting in the two solutions 𝑢 =

√

3 + 2 ≈ 3.732 and 𝑢 =
√

3 − 2 ≈
0.268. The first solution corresponds to the (correct) point (0.866, 0.5)

in the first quadrant, while the second solution corresponds to the
(incorrect) point (−0.866,−0.5) in the third quadrant. Therefore, in this
case, 𝑢 =

√

3 + 2 is the correct solution. Since 𝑢 is positive, 𝑓1 must
e negative (diverging the horizontal component). This is also seen in
ig. 2.

As a second example, consider the phase shift 𝛿𝜑 = −2𝜋∕3. tan 𝛿𝜑 =
√

3 ≈ 1.732, resulting in the two solutions 𝑢 =
√

3 ≈ 1.732 and 𝑢 =
3

Fig. 3. Plot of 𝑢 over 𝛿𝜑. The color represents the branch (the + or − variant of
q. (6)) that produces the correct result.

1∕
√

3 ≈ −0.577. The first solution corresponds to the (incorrect) point
(0.5, 0.866) in the first quadrant, while the second solution corresponds
to the (correct) point (−0.5,−0.866) in the third quadrant. Therefore, in
this case, 𝑢 = −1∕

√

3 is the correct solution. Since 𝑢 is negative, 𝑓1 must
e positive (converging the horizontal component).

Several distinct values require special attention. These are 𝛿𝜑 ∈
0,±𝜋∕2, 𝜋}. For 0 and 𝜋, Eq. (6) is indeterminate. Taking the limits
f 𝛿𝜑 → 0 and 𝛿𝜑 → 𝜋, gives the values 0 and ±∞. For 𝑢 = 0, Eq. (4)

gives 𝑓1𝑓2 = 𝑑2 and 𝑞in = −𝑑, meaning a negligible small Rayleigh
range and diverging beam size. This corresponds to the geometrical
limit, i.e. a very large beam (compared to its waist size) far from its
focus (compared to the Rayleigh range). One component goes through
focus while the other one does not, resulting in a relative phase shift
of 𝜋 in the far field. 𝑢 = ±∞, on the other hand, corresponds to infinite
focal lengths, i.e., switched off quadrupoles and no relative phase shift.

𝛿𝜑 = ±𝜋∕2 is the special case used for vortex creation. For these
values, Eq. (6) is also indeterminate. Taking the limits results in the
values 𝑢 = ±1. Taking the corresponding limits in Eq. (5) shows that
𝑢 = 1 corresponds to 𝛿𝜑 = 𝜋∕2 and 𝑢 = −1 corresponds to 𝛿𝜑 = −𝜋∕2.
n both cases, Eq. (4) gives the well-known condition 𝑓1𝑓2 = 2𝑑2 for
ortex creation [9].

Another lengthy but straight-forward calculations shows that the
eam parameter of the outgoing beam (directly after QP2) reads

out = −𝑑𝑓2
−𝑓2 + i𝑑𝑢
𝑓 2
2 + 𝑑2𝑢2

. (7)

Noteworthy properties of the incident and the outgoing beam are

|𝑞in|
2 =

𝑑2𝑓 2
1

𝑓 2
1 + 𝑑2𝑢2

𝑤in =

√

−
2𝑓1
𝑘𝑢

𝑅in = −𝑑

|𝑞out|
2 =

𝑑2𝑓 2
2

𝑓 2
2 + 𝑑2𝑢2

𝑤out =

√

−
2𝑓2
𝑘𝑢

𝑅out = 𝑑.

(8)

With these values, it is possible to express 𝑓1 as a function of 𝑤in and
𝑢, thus yielding the following alternative form of the incident beam
parameter

𝑞in =
−𝑑𝑘2𝑤4

in + 2i𝑑2𝑘𝑤2
in

𝑘2𝑤4
in + 4𝑑2

(9)

with

𝑓1 = −
𝑘𝑢𝑤2

in
2

and 𝑓2 =
𝑑2

𝑓1
(𝑢2 + 1) (10)

To sum up, for given 𝛿𝜑, the dimensionless parameter 𝑢 is uniquely
etermined and Eq. (10) gives the QP settings required to obtain 𝛿𝜑 for

a given incident beam (with size 𝑤 and curvature −𝑑).
in
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Fig. 4. Simulations of the phase shifter setup for the same values of 𝜃, 𝜑 as in Fig. 1.
In all cases, the incident beam was a 𝐻𝐺1,0 beam rotated by 𝜃∕2. For each 𝜑, the
incident beam size 𝑤, the QP1 focal length 𝑓1, and the global phase compensation 𝜒
are indicated. For illustration purposes, a symmetric setup with 𝑤in = 𝑤out and 𝑓1 = 𝑓2
was used. For 𝑓1 = ∞, a numerical value of 1 km was used. Amplitude and phase are
shown as in Fig. 1.

3. Simulations

To corroborate the theoretical results, numerical simulations were
performed using the virTUal TEM software package [9]. All optical
elements were modeled as effective phase plates (i.e., thin elements)
and the propagation was performed in paraxial approximation using
a Fourier-space Fresnel propagator (owing to the small beam diame-
ters and convergence angles). All simulations were performed for an
incident 𝐻𝐺1,0 beam rotated by 𝜃∕2 with an energy of 200 keV using
a setup as shown in Fig. 2. For simulation simplicity, a symmetric
setup (i.e., 𝑓1 = 𝑓2) was chosen in all cases. To achieve the required
curvature radius of the incident beam, an initially non-diffracting beam
was transformed into a convergent beam using a round transfer lens
before QP1. For clarity, a matching round lens after QP2 was included
to flatten the phase front to ease comparability. The two QPs had a
spacing of 𝑑 = 120mm.

For numerical reasons, both the focal lengths and the beam sizes
were bounded. The focal length was limited to |𝑓1| ≤ 1 km, resulting
in a minimal achievable phase shift of 𝛿𝜑 ≈ 0.24mrad, while the beam
size was limited to 𝑤in ≤ 2 μm resulting in phase shifts between 3.09 rad
and 3.19 rad being unachievable with a single phase shifter setup.

The results are summarized in Fig. 4. A comparison to Fig. 1 shows
perfect agreement. It should be noted that in all cases except 𝜑 = 0, the
beam acquired a global phase 𝜒 as indicated in the figure. This stems
from the propagation distance between the QPs, similar to the optical
4

path length in light optics. As the global phase is inconsequential in
this work (and can be compensated for by physical flight paths, lens
systems, or temporarily changing the speed of the electrons), it is
removed from the images in Fig. 4 for better comparability.

In terms of practical applicability, the chosen parameters, while
not specific to any particular instrument, are in a realistic order of
magnitude range. Also the beam sizes of a few hundred nanometers are
readily achievable in a TEM. As far as the incident beam is concerned,
no perfect Gaussian beams have been produced to date, but sufficiently
close approximations are possible [2,8,9,21].

4. Discussion & outlook

Some properties of this setup are worth emphasizing. First, in order
to achieve mode matching, the incident beam must have a curvature
at QP1 of −𝑑, meaning that in the geometric limit (for large beams),
it is focused at QP2 (although for small beams, the focus will be in
front of QP2). This can easily be achieved by a transfer lens before the
quadrupoles.

Second, focal lengths 𝑓1, 𝑓2 (and therefore the beam sizes 𝑤in, 𝑤out)
are coupled by the phase shift. Thus, while it is possible for a given
phase shift to choose either the incident or the outgoing beam size,
it is not possible to choose both at the same time. Again, this can be
compensated if needed by a transfer lens system.

Third, phase shifts close to 0 lead to a very large magnitude of 𝑢 and,
hence, of the focal lengths. Such long focal lengths typically require
very small excitations of the QPs which may not be controllable with
suitable accuracy. This can be worked around by a two-step process: to
achieve a small relative phase shift 𝜀, first shift by a large 𝛼 and then
by −𝛼 + 𝜀. Similarly, phase shifts around 𝜋 lead to very small 𝑢 and
therefore require very short focal lengths (or very large beam sizes).
This, too, can be worked around by a two-step process: to achieve a
phase shift of 𝛼 ∼ 𝜋, one can instead perform two shifts by 𝛼∕2.

The setup in this work, i.e. two quadrupoles acting on a specific
two-state quantum system, is, of course, a simple model system for
studying unitary transformations. One big advantage of this system is
that it can readily be investigated in existing TEMs [10] without the
need for any changes to the instrument or the development of custom
electron-optical elements. In the future, however, it will certainly be
beneficial to expand this concept to other systems, in particular higher-
dimensional quantum systems. On the one hand, this will facilitate
enhanced measurement schemes with improved SNR for common mi-
croscopy tasks (which are usually not confined to a two-state quantum
system). On the other hand, this will allow for the handling of 𝑛-state
qudits (as opposed to 2-state qubits). Such a system will likely have
to rely on advanced — and probably adaptive — methods for phase
manipulation, such as programmable phase manipulators [13,25,26]
akin to spatial light modulators (SLMs) in optics.

Performing quantum computations in an electron microscope in
the future will require the realization of so-called universal quantum
gates [27] — similar to universal logic gates such as NAND in conven-
tional computing. One key ingredient to this is unitary transformations
(or so-called one-qubit gates) which can arbitrarily change the state
of a single qubit as presented in this paper. The other ingredient is at
least one two-qubit gate such as CNOT. It can be shown that such a
gate is entangling [27], i.e. it creates entanglement between previously
unentangled systems. One common way this is achieved in electron
microscopy is scattering [28,29]. However, it is still an open question
how scattering experiments could be designed — e.g. using wave front
shaping of the electron beams before and after scattering — such that
most electrons scatter into an (entangled) state inside the vector space
spanned by the chosen basis vectors (𝐻𝐺1,0 and 𝐻𝐺0,1 in the case
discussed in this work).

Additionally, in a quantum computing scheme, one will eventually
want to increase the number of quantum gates. As far as pairs of
quadrupoles (and higher-order multipoles that can be driven to act
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as quadrupoles) are concerned, current TEMs are limited to at most
a handful, spread between the condensor/probe corrector system, the
imaging lenses/image corrector system, and potentially an imaging
filter. Similarly, there is a very limited number of (aperture) planes
in which programmable phase manipulators could be inserted by de-
fault. Thus, large-scale quantum computation applications will require
additional custom elements added to a TEM or even a complete cus-
tom instrument. However, for the time being, many open questions
and tasks remain that can easily be investigated with the handful of
elements at our disposal in a general-purpose TEM.

5. Conclusions

In this work, a novel concept for using mode converters in the
TEM was presented that allows the realization of arbitrary unitary
operators on a two-state quantum system. This paves the way for
the realization of higher-dimensional unitary operators, which in turn
will open entirely new possibilities for electron microscopy and all
fields it is applied in, from physics to material science and chemistry
to biology. Instead of post-processing data and looking for tiny sig-
nals in a huge, noisy background, the realization of unitary operators
will allow much more efficient experiments by enabling scientists to
devise measurement schemes where the electron beam is quantum-
mechanically transformed into a basis in which the sought information
can be read out directly. Moreover, together with the recent progress
in understanding entanglement of free electrons, this work may well
contribute one day to performing quantum computations in the electron
microscope.
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Appendix. Derivation of the mode matching condition and the
phase shift

In this section, the matrix transfer method [18,24] is heavily used
to derive the general mode-matching criteria for Hermite-Gaussian
waves in a two-quadrupole setup. For a closely related treatment in
a charged-particle formalism, see e.g. [24].

The effect of lenses (𝑳) and free space (𝑻 ) is modeled by matrices

𝑳(𝑓 ) =

(

1 0
− 1
𝑓 1

)

𝑻 (𝑑) =
(

1 𝑑
0 1

)

(A.1)

where 𝑓 is the lens’ focal length and 𝑑 is the distance the beam
propagates through free space. An optical system of several components
can be described by the product of the individual component matrices.
Assuming a system described by

𝑴 =
(

𝐴 𝐵
𝐶 𝐷

)

, (A.2)

a complex beam parameter 𝑞in is transformed according to

out =
𝐴𝑞in + 𝐵

. (A.3)
5

𝐶𝑞in +𝐷
Mathematically, this corresponds to a projective transform which can
be modeled in matrix notation by

𝑞out = 𝑴 ⋅
(

𝑞in
1

)

= 𝑴 ⋅ 𝑞in (A.4)

if all vectors that only differ by a non-zero scalar factor are treated as
equivalent.

The two quadrupole setup discussed in this work can therefore be
modeled by two matrices

𝑴ℎ = 𝑳(𝑓2) ⋅ 𝑻 (𝑑) ⋅𝑳(𝑓1)

𝑴𝑣 = 𝑳(−𝑓2) ⋅ 𝑻 (𝑑) ⋅𝑳(−𝑓1)
(A.5)

wing to the fact that quadrupoles act differently on horizontal and
ertical components. The mode matching condition thus becomes

ℎ𝑞in ∝ 𝑴𝑣𝑞in (A.6)

or, equivalently,

𝑴−1
𝑣 𝑴ℎ𝑞in = 𝜆𝑞in (A.7)

where the proportionality comes from the equivalence of vectors that
are scalar multiples of one another. Thus, finding an incident beam that
is mode matched at the output is equivalent to finding an eigenvector
of Eq. (A.7). Note that the eigenvectors of a matrix of the form given
in Eq. (A.2) — given 𝐶 ≠ 0 — can be directly derived as

𝑴
(

𝑞
1

)

=
(

𝐴𝑞 + 𝐵
𝐶𝑞 +𝐷

)

=
(

𝜆𝑞
𝜆

)

= 𝜆
(

𝑞
1

)

(A.8)

𝐶𝑞2 + (𝐷 − 𝐴)𝑞 − 𝐵 = 0 (A.9)

𝑞 =
𝐴 −𝐷 ±

√

(𝐴 −𝐷)2 + 4𝐵𝐶
2𝐶

. (A.10)

n the present case, the relevant matrix reads

−1
𝑣 𝑴ℎ = 1

𝑓 2
1 𝑓

2
2

(

𝑓 2
1 𝑓

2
2 + 2𝑓1𝑓2𝑑(𝑓1 − 𝑑) 2𝑓 2

1 𝑓2𝑑
2

2𝑓2𝑑2 − 2𝑓1𝑓2(𝑓1 + 𝑓2) 𝑓 2
1 𝑓

2
2 − 2𝑓1𝑓2𝑑(𝑓1 + 𝑑)

)

(A.11)

and thus

𝑞in =
𝑓 2
1 𝑑 ± |𝑓1| sgn[𝑓2]𝑑

√

𝑑2 − 𝑓1𝑓2
𝑑2 − 𝑓 2

1 − 𝑓1𝑓2
. (A.12)

ote that only one of the two solutions results in a sensible Rayleigh
ange (i.e. strictly positive imaginary part) and only if 𝑓1𝑓2 > 𝑑2. Thus,

it makes sense to rewrite the expression as

𝑞in =
−𝑑𝑓 2

1 + i𝑑|𝑓1|
√

𝑓1𝑓2 − 𝑑2

𝑓 2
1 + 𝑓1𝑓2 − 𝑑2

. (A.13)

his is identical to Eq. (4). For future reference, note that

𝑞in|
2 =

𝑑2𝑓 2
1

𝑓 2
1 + 𝑓1𝑓2 − 𝑑2

. (A.14)

To calculate the relative phase shift, one needs to calculate the beam
parameters directly after QP1 (𝑞1,ℎ, 𝑞1,𝑣) at 𝑧1 and directly before QP2
(𝑞2,ℎ, 𝑞2,𝑣) at 𝑧2. Direct calculation yields the expressions

𝑞1,ℎ =
𝑞in𝑓1
𝑓1 − 𝑞in

𝑞2,ℎ =
𝑑𝑓1 + (𝑓1 − 𝑑)𝑞in

𝑓1 − 𝑞in

𝑞1,𝑣 =
𝑞in𝑓1
𝑓1 + 𝑞in

𝑞2,𝑣 =
𝑑𝑓1 + (𝑓1 + 𝑑)𝑞in

𝑓1 + 𝑞in
.

(A.15)

The relative phase shift is thus

𝛿𝜑 = −arg[i𝑞2,𝑣] + arg[i𝑞1,𝑣] + arg[i𝑞2,ℎ] − arg[i𝑞1,ℎ]

= arg
[ 𝑞1,𝑣𝑞2,ℎ
𝑞1,ℎ𝑞2,𝑣

]

= arg
[

𝑞∗1,ℎ𝑞1,𝑣𝑞2,ℎ𝑞
∗
2,𝑣

]

= arg
[

(𝑑𝑓1 + (𝑓1 − 𝑑)𝑞in)(𝑑𝑓1 + (𝑓1 + 𝑑)𝑞in)∗
]

= arg
[

𝑑2𝑓 2 + (𝑓 2 − 𝑑2)|𝑞 |

2 + 2𝑑𝑓 2ℜ[𝑞 ] − 2i𝑑2𝑓 ℑ[𝑞 ]
]

1 1 in 1 in 1 in
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o

t

= arctan

(

−2𝑑2𝑓1ℑ[𝑞in]
𝑑2𝑓 2

1 + (𝑓 2
1 − 𝑑2)|𝑞in|

2 + 2𝑑𝑓 2
1ℜ[𝑞in]

)

(A.16)

where the fact that a positive (real) factor does not change the ar-
gument of a complex number was used. Note that it is important to
keep the minus sign in the numerator (rather than moving it to the
denominator or in front of the fraction) to ensure the correct quadrant
can be determined (as arctan is unique only up to an integer multiple
f 𝜋). Applied to the specific case of Eq. (A.13) gives

an 𝛿𝜑 =
−2𝑑 sgn[𝑓1]

√

𝑓1𝑓2 − 𝑑2

𝑓1𝑓2 − 2𝑑2
. (A.17)

By the introduction of the dimensionless parameter

𝑢 = − sgn[𝑓1]
√

𝑓1𝑓2
𝑑2

− 1, (A.18)

the phase shift can be rewritten as

tan 𝛿𝜑 = 2𝑢
𝑢2 − 1

. (A.19)

which corresponds to Eq. (5).
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