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Abstract
Collision-free trajectory planning is a major task for any autonomous robotic system.
Algorithms that solve the planning task have to be fast enough to operate online, e.g. in
order to react to changing environments. Hence, low computation time is a major criteria
for algorithms performing online trajectory planning. This thesis deals with a special class
of optimal control algorithms with application to collision-free trajectory planning, called
iterative linear quadratic regulator (iLQR). The main benefit of these algorithms is the
linear time dependency on the considered time horizon length. Two recent algorithms
that integrate constraints into the iLQR are compared and applied to offline trajectory
planning for a simple 2D kinematic vehicle and, a more realistic example, a timber crane.
Additionally, an online model predictive control (MPC) trajectory planner is implemented
for the timber crane in order to benchmark the performance of the constrained iLQR
algorithms for an online motion planning problem.
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Kurzzusammenfassung
Kollisionsfreie Trajektorienplanung ist eine der wichtigsten Augaben für jedes autonome
System. Solche Trajektorienplanungen müssen in der Lage sein in Echtzeit zu operieren,
um z.B. auf dynamische Umgebungen reagieren zu können. Daher is eine kurze Laufzeit
ein wesentliches Kriterium für diese Algorithmen. Diese Arbeit beschäftigt sich mit
einer speziellen Klasse von Algorithmen, nämlich Iterative Linear Quadratic Regulator
(iLQR), zur Lösung von Optimalsteuerungsproblemen. Der wesentliche Vorteil dieser
Algorithmen ist die lineare Abhängingkeit der Laufzeit von der Länge des betrachteten
Zeithorizontes. Zwei jüngst veröffentliche Algorithmen zur Integration von Beschränkungen
in das iLQR Schema werden als offline Trajektorienplaner für ein einfaches kinematisches
Fahrzeugmodell und fÃ¼r einen Holzkran implementiert und verglichen. Zusätzlich wird
ein modelprädiktiver Regeler als online Trajektorienplaner für den Holzkran implementiert,
um die iLQR Algorithmen mit Beschränkungen in einem online Szenario zu evaluieren.
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Nomenclature

Acronyms

NP Non polynomial
NLP Nonlinear programming
iLQR Iterative linear quadratic regulator
DDP Differential dynamic programming
SQP Sequential quadratic programming
KKT Karush-Kuhn-Tucker
AL Augmented Lagrangian
ALTRO Augmented Lagrangian trajectory optimizer

General Notation

a, γ, A, Γ, . . . Scalars
a, γ, b, ξ, . . . Vectors
A, Γ, B, Ξ, . . . Matrices
A, B, . . . Sets
(·)T Transpose of a quantity
˙(·) Total time derivative of a quantity
❘ Set of real numbers
◆ Set of natural numbers
 Set of integers
Cn(A, B) Set of n-times continuous differentiable functions from A to B
fx Partial derivative of scalar function f w.r.t. x
Fxy Partial derivative of scalar function f first w.r.t. x, then w.r.t. y
(·)[i, j] Element in row i and column j of a matrix
diag(·) Diagonal matrix generated from argument vector
Jf ,x Jacobian of a function f w.r.t. argument x

General Symbols

0 Vector or matrix with all entries being zero
I Identity matrix
Rj

i Rotation matrix transforming a point from frame i to frame j

dj
i Position of frame j in frame i
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V

Hj
i Homogeneous transformation from frame i to frame j

x State of a general system
u Control input of a general system
λ Lagrange multiplier
ζ Slack variable
ϕ(·) Terminal cost of an optimal control problem
l(·) Step cost of an optimal control problem
Vk(·) Value function for discrete time k
J(·) Cost function of an optimization problem
Ak State Jacobian of a discrete time system
Bk Control Jacobian of a discrete time system
lx,k, lu,k Partial derivative of step cost at discrete time k
Lxx,k, Luu,k, Lxu,k Second derivative matrix of step cost at discrete time k
Kk, kk iLQR feedback gains at time k
sk, Sk Quadratic approximation terms for value function at time k
Δuk Control increment at time k
Δxk State increment at time k
f(xk, uk) Discrete time state equation of general a system
h(x, u) Inequality constraint function
u, u Upper and lower bound of control input
x, x Upper and lower bound of state
q, q Upper and lower bound of joint coordinates
q̇, q̇ Upper and lower bound of joint velocities
N Horizon length of optimal control problem
Ts Sampling time
xN,d, qN,d Desired endpoints of an optimal control problem
d(O1, O2) Distance function between objects O1 and O2
ν(O) Mapping to minimum norm point of object O
hO Support function of object O
sO Support mapping of object O
Sk Simplex of GJK algorithm at iteration k
q Generalized coordinates of a rigid body
qA Actuated joint coordinates of a rigid body
qU Non-actuated joint coordinates of a rigid body
q1, . . . , qn Components of generalized coordinates
D(q) Mass matrix
C(q, q̇) Coriolis matrix
g(q) Potential forces
τ Generalized forces
F Diagonal matrix with viscous friction coefficients
Li(q) Sets representing link collision objects
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1 Introduction

1.1 Motivation
Collision-free trajectory planning is a major task of every autonomous robot. In order to
implement a machine that is able to react to its dynamic environment such algorithms must
be able to perform the planning tasks in real time. Hence, fast trajectory computation is a
major criterion for an online planner. While approaches like grid-based or sampling-based
planners benefit from their ability to find globally optimal trajectories, grid-based methods
have non-polynomial (NP) complexity and the computational complexity of sampling-
based methods is hard to characterize due to their random nature, c.f. [1, 2]. This is
why optimization-based planning algorithms, i.e. algorithms that solve an optimal control
problem for trajectory generation, are more popular to solve the online (re-)planning
task, while combinatorial planners are often used for computing an initial trajectory for
optimization-based planners, see, e.g., [3–6]. These optimization-based algorithms can be
categorized as follows, c.f. [7].

• Direct methods: The original infinite-dimensional optimal control problem is first
transformed into a finite-dimensional nonlinear optimization problem (NLP). This
can then be solved using standard NLP solvers.

• Indirect methods: First, optimality conditions of the original infinite-dimensional
optimal control problem are formulated using the calculus of variations, which are
then solved in order to get a solution candidate.

Indirect methods require prior knowledge of active parts in path inequality constraints, c.f.
[7]. In robotic trajectory planning, a typical path inequality constraint comes from the
requirement that the trajectory must be collision free and it is not possible to determine the
active set for these constraints in advance. Hence, direct methods are used for collision-free
trajectory planning.

Direct optimal control algorithms can be further distinguished as follows, c.f. [7, 8].

• Multiple shooting methods: In these methods both (some) states and control
inputs are used as optimization variables. The connection between these quantities
is considered using the system equation as equality constraint.

• Single shooting methods: Here only the control inputs are used as optimization
variables and the state is retrieved by forward simulation of the system dynamics.

Since the state in single shooting methods is not handled as optimization variable, the
resulting optimization problem has a smaller dimension, which leads to a lower number
of linear equations and thus less computational complexity per iteration. However, as a
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1 Introduction 1.2 Related Work 2

consequence, the initial state trajectory cannot be chosen arbitrarily because it has to be
consistent with the initial control trajectory. This is not the case in multiple shooting
methods.

This thesis deals with optimization-based trajectory planning for collision avoidance
applications. More specifically, a special class of algorithms for solving discrete time
optimal control problems is studied, called iterative linear quadratic regulator (iLQR),
c.f. [9]. In their original formulation, these algorithms belong to the class of direct single
shooting methods and, compared to other common NLP solvers, the main benefit lies in
the linear time complexity in the number of discrete trajectory sampling points, which is
why these algorithms are especially well suited for fast trajectory planning.

The iLQR algorithms are evaluated for two applications, namely a 2D kinematic vehicle
and a timber crane. The former has a lower state-space dimension and simpler collision
constraints, which is why it is used as a first test example. The latter one deals with
more realistic collision constraints and a higher state space and aims at evaluating the
algorithms for a more realistic application.

Finally, an online planner based on model predictive control (MPC) is implemented for
the timber crane using the constrained iLQR algorithms presented in this thesis.

1.2 Related Work
Unconstrained differential dynamic programming (DDP) was originally proposed in the
1960’s [10]. The main idea is to use a second-order approximation of both, the nonlinear
system dynamics and the nonlinear cost function and solve the resulting problem using
Bellman’s principle of optimality. Hence, the main benefit of DDP compared to other
common optimization techniques, such as sequential quadratic programming (SQP), is
that instead of optimizing all control inputs of size m in the prediction horizon of size
N , i.e. Nm variables in one turn, m controls are optimized by formulating N separate
optimization problems. Considering that second-order optimization methods are used,
this leads to N equations of size m that have to be solved instead of solving one system
of size Nm. Hence, the computational costs of DDP increase only linearly with N and
lower computation times can be achieved. Additionally, the gain matrix retrieved in the
last DDP iteration can be used as optimal state feedback gain without any additional
computation required. Conditions in order to guarantee quadratic convergence behavior
of DDP are dicussed in [11].

However, the original DDP formulation does not allow to initialize the system with
infeasible trajectories. The work [8] extends the idea of DDP by a multiple shooting
approach. This allows to initialize the DDP algorithm with state and control trajectories
that do not satisfy the system equations. While this is an interesting approach for systems
where it is not easy to compute control inputs for a given state trajectory, the control
inputs of the crane considered in this thesis are the second-order time derivatives of the
joint coordinates. Additionally, no special initialization technique is considered for both
applications studied in this thesis, which is why this approach is not used. However, note
that another interesting advantage of this multiple shooting formulation is that it enables
a parallel implementation of the forward calculation, see, e.g.,Â´ [12].
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Iterative linear-quadratic regulator (iLQR) algorithms, originally proposed in [9], are a
subclass of DDP. The difference is that iLQR uses a linear approximation of the system
dynamics instead of the quadratic approximation used in DDP, which can be quite
expensive to compute. The authors achieved an increase in efficiency by a factor of 10
using iLQR instead of DDP. This idea is extended to stochastic systems subject to control
constraints in [13] .

The first work that integrates control and terminal constraints in DDP is [14], which
presents a variational form of DDP using the Hamilton-Jacobi-Bellman equations. In
[15], the initial works on DDP are extended to handle terminal constraints by solving the
Karush-Kuhn-Tucker (KKT) first-order optimality conditions. An early application of
constrained DDP is presented in [16], where general nonlinear inequality constraints are
incorporated using the augmented Lagrangian (AL) method in order to solve a hydroelectric
generation scheduling problem.

A combined AL and KKT based approach is proposed in [17, 18], where soft constraints
are considered using an AL method and hard constraints are incorporated using KKT
conditions.

In [19], box constraints for control inputs are incorporated into iLQR using projected
Newton quadratic programming combined with an active set method. The resulting
algorithm is compared to simpler heuristic methods, called clamping and penalizing.
Clamping, which simply crops box control constraints in the forward calculation, has the
drawback that the search direction might not be a descent direction anymore. On the
other hand, squashing, where the control signal is parameterized using a nonlinear function
that ensures the constraints, e.g. the sigmoid function for box constraints, suffers from the
cost function becoming a highly nonlinear function of the control inputs, which is reflected
in bad convergence properties. However, the proposed projected Newton method can only
be applied to box control constraints and not to arbitrary nonlinear control and state
constraints. A projected Newton method able to handle such nonlinear state and control
equality constraints is presented in [20], where the control inputs are projected onto the
nullspace of the linearized constraints. However, it does not enable the integration of
nonlinear state inequality constraints such as collision avoidance constraints.

One approach that is able to handle general nonlinear state and control constraints is
provided in [21]. The method solves the KKT conditions using an active set approach.
Lagrange multiplier based sensitivity analysis is used in order to determine constraints
that have to be removed from the active set. In the forward calculation, a quadratic
program is solved in order to guarantee that the new trajectory satisfies the constraints.
In their experiments, they additionally show that penalty methods are more sensitive to
local minima compared to their method. However, the number of possible active sets is
exponential in the number of constraints, which is why this approach is not chosen in this
thesis.

The augmented Lagrangian trajectory optimizer (ALTRO) provided in [22] is an open
source iLQR framework based on the augmented Lagrangian method. Additionally,
a square root formulation of the iLQR equations is used in order to increase numeri-
cal stability. While in [17, 18] the control variables and the Lagrange multipliers are
updated simultaneously in the forward calculation, [22] uses the standard Powell-Hestenes-
Rockafellar (PHR) approach [23–26]. Finally, a projection method combined with an
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active set approach is used to fine-tune the final results.
A similar augmented Lagrangian approach is presented in [27]. Additionally, a sample-

based gradient and Hessian approximation method is provided that is motivated by the
unscented Kalman filter.

A solution that combines benefits of AL and KKT is presented in [28]. An initial
solution is generated by a standard AL method with a modified penalty term that is two
times differentiable in order to prevent numerical instabilities when using second-order
methods. The solution is then fed to an algorithm that solves the KKT conditions using
the iLQR scheme with slack variables for inequality constraints. This aims at combining
the benefit of AL based methods, which is the robustness with respect to initialization,
and simultaneously overcome the slow convergence rate near the optimal solutions, as
pointed out in [29].

A primal-dual interior-point based DDP algorithm is proposed in [30], where the
primal-dual system is optimized using barrier functions for the inequality constraints.
Additionally, a formulation based on slack variables is provided, which allows violations of
the original inequality constraints in the initialization trajectories.

1.3 Contribution and structure of the thesis
This thesis deals with online and offline optimization-based trajectory planning using
constrained iLQR as the optimization framework. As the main application, offline
trajectory planning and online model predictive control (MPC) based planning for a
timber crane with collision avoidance constraints is considered. The thesis is structured
as follows:

• The main theory behind the constrained iLQR algorithms used in this thesis is
summarized in Chapter 2. As the main goal is to achieve low computational
complexity, this thesis focuses on augmented Lagrangian and primal-dual interior
point methods, since they do not require to solve the combinatorial active set
problem.

• In Chapter 3, the algorithms discussed in Chapter 2 are benchmarked for a simple
2D kinematic vehicle model with very simple collision objects.

• Chapter 4 covers offline trajectory planning for a timber crane with more complex
collision constraints and system dynamics compared to the kinematic vehicle applica-
tion in Chapter 3. The mathematical model of the crane is presented and the optimal
control problem as well as the mathematical treatment of the collision constraints
is formulated. Additionally, a MPC for the timber crane based on the constrained
iLQR algorithms as presented in Chapter 2 is implemented and evaluated.



2 Iterative Linear Quadratic Regulator
Unconstrained DDP is originally proposed in [10]. The main idea is to use a second-order
approximation of both, the nonlinear system dynamics and the nonlinear cost function
and solve the optimal control problem using Bellman’s principle. In this work, as proposed
in [9], iLQR is used instead of DDP. The difference is that only a first-order approximation
of the system dynamics is used in iLQR. This results in less computation time, since the
second-order terms of the system dynamics can be quite complex. The main benefit of
these algorithms compared to other nonlinear optimization techniques for solving discrete
time optimal control problems is the linear time complexity in the length of the time
horizon.

This chapter summarizes the main ideas of the algorithms from [9, 19, 22, 30] used
in this thesis and explains the implementation details. Additionally, a simple kinematic
vehicle model is used as a benchmark example in order discuss some properties of the
different methods.

2.1 Unconstrained iLQR
Consider a discrete time optimal control problem given by

min
u0,...,uN−1∈❘m

J(u0, . . . , uN−1) (2.1a)

s.t. xk+1 = f(xk, uk), x0 = ξ0 , (2.1b)

with a fixed ξ0 ∈ ❘n and the cost function

J(u0, . . . , uN−1) = ϕ(xN ) +
N−1∑
j=0

l(xj , uj) , (2.2)

where the cost l ∈ C2(❘n ×❘m,❘) and the terminal cost ϕ ∈ C2(❘n,❘) are two times
continuously differentiable functions. The discrete time system state at time tk = kTs,
with the sampling time Ts, is denoted by xk ∈ ❘n, k = 1, . . . , N and the control input
is denoted by uk ∈ ❘

m, k = 1, . . . , N − 1. For the discrete time system dynamics
f ∈ C1(❘n ×❘m,❘n) only continuous differentiability is required.

Due to Bellman’s principle of optimality, the solution of the optimal control problem
(2.1) is equivalent to the solution V ∗

0 (xk), which is recursively defined by

V ∗
k (xk) = min

uk∈❘m

(
l(xk, uk) + V ∗

k+1
(
f(xk, uk

)´ ´´ ´
=:Vk(xk,uk)

)
)

with V ∗
N (xN ) = ϕ(xN ) (2.3)

for k = 0, . . . , N − 1, c.f. [10].
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2 Iterative Linear Quadratic Regulator 2.1 Unconstrained iLQR 6

In iLQR, the nonlinear optimization problem (2.3) is solved iteratively using a quadratic
approximation of Vk(xk, uk) and a linear approximation of the discrete time system
dynamics (2.1b). The quadratic approximation of Vk(xk, uk) is derived using small
perturbations of the state xk + x̃k, x̃k ∈ ❘n, and the control input uk + ũk, ũk ∈ ❘m,
around the actual values xk and uk

Vk(xk + x̃k, uk + ũk) ≈ Vk(xk, uk) + Ṽk(x̃k, ũk) , (2.4)

with the quadratic cost perturbation

Ṽk(x̃k, ũk) := x̃T
k vx,k + ũT

k vu,k + 1
2 x̃T

k Vxx,kx̃k + 1
2 ũT

k Vuu,kũk + x̃T
k Vxu,kũk . (2.5)

Using the definition of Vk(xk, uk) in (2.3) with a linear approximation of (2.1b), i.e.

x̃k+1 = Akx̃k + Bkũk (2.6)

with Ak ∈ ❘n×n and Bk ∈ ❘n×m being the Jacobian of f(x, u) w.r.t. to x and u evaluated
at (xk, uk), respectively, yields

vx,k = lx,k + AT
k sk+1 (2.7a)

vu,k = lu,k + BT
k sk+1 (2.7b)

Vxx,k = Lxx,k + AT
k Sk+1Ak (2.7c)

Vuu,k = Luu,k + BT
k Sk+1Bk (2.7d)

Vxu,k = Lxu,k + AT
k Sk+1Bk , (2.7e)

with

Lxx,k = ∂2l(x, u)
∂x2

││││x=xku=uk

lx,k =
(

∂l(x, u)
∂x

││││x=xku=uk

)T

(2.8a)

Luu,k = ∂2l(x, u)
∂u2

││││x=xku=uk

lu,k =
(

∂l(x, u)
∂u

││││x=xku=uk

)T

(2.8b)

Lxu,k = ∂

∂u

(
∂l(x, u)

∂x

)T││││x=xku=uk

. (2.8c)

Hence, (2.3) can be numerically minimized by iteratively minimizing (2.4), and equivalently
(2.5), w.r.t. ũk. If Vuu,k ∈ ❘n×n in (2.5) is positive definite, the function (2.5) is striclty
convex and the unique minima can be computed by setting the derivative w.r.t. ũk to zero.
This yields the optimal control perturbation ũ∗

k as a function of the state perturbation x̃k

with

ũ∗
k = Kkx̃k + dk , Kk := −V−1

uu,kVT
xu,k and dk := −V−1

uu,kvu,k . (2.9)

The updated control inputs ūk ∈ ❘m, k = 1, . . . , N − 1 are then computed using

ūk = uk + ũ∗
k (2.10)
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and the updated states x̄k ∈ ❘n, k = 1, . . . , N are retrieved by forward simulation of
the discrete time system dynamics (2.1b). The state perturbation x̃k, k = 1, . . . , N is
computed using the difference x̃k = x̄k − xk.

The vector sk+1 ∈ ❘n and the matrix Sk+1 ∈ ❘n×n, k = 0, . . . , N − 1, are gradient and
Hessian approximation of V ∗

k+1
(
f(xk, uk)

)
, respectively. They can be computed recursively

in a backward iteration as follows:
For k = N we get V ∗

N (xN ) = ϕ(xN ), which yields

sN =
(

∂ϕ

∂x
│││
x=xN

)T
and SN =

(
∂2ϕ

∂x2

│││
x=xN

)T
. (2.11)

Assuming that sk+1, Sk+1 is known, sk and Sk can be computed by plugging the optimal
control perturbation ũ∗

k from (2.9) into (2.5) which yields a quadratic function Ṽ ∗
k (x̃k) in

the state increment x̃k. Equating coefficients of the linear and quadratic parts yields

sk = vxk
+ KT

k Vuu,kdk + KT
k vu,k + Vxu,kdk (2.12a)

Sk = Vxx,k + KT
k Vuu,kKk + KT

k VT
xu,k + Vxu,kKk . (2.12b)

Hence, given an initial control sequence (uk)N−1
k=0 and a corresponding feasible state

sequence (xk)N
k=0, the algorithm first computes sk, Sk in (2.12) and Kk, dk in (2.9)

backwards for k = N − 1, . . . , 0. Then x̃k and ũ∗
k can be computed in a forward iteration

using (2.1b) and (2.9). Algorithm 1 summarizes the whole iLQR optimization procedure.
For the concrete implementation, the change in cost is considered as termination criteria,

i.e. as soon as the change in cost falls below a certain threshold, the algorithm terminates.
Additionally, a line search parameter α > 0 with

ũ∗
k = Kkx̃k + αdk (2.13)

is used in order to improve the convergence behavior. Let J̄ = J(ū0, . . . , ūN−1) be the
cost (2.2) of the update state and control sequences and J = J(u0, . . . , uN−1) the one of
the original state and control sequences. The actual cost change J̃ is computed as

J̃ = J̄ − J . (2.14)

As described in [31], the expected cost decrease ˆ̃J can be written

ˆ̃J(α) = α2

2

N−1∑
k=0

dT
k Vuu,kdk + α

N−1∑
k=0

dT
k vu,k . (2.15)

Starting from α = 1, this parameter is decreased until J̃
ˆ̃J

∈ [10−4, 10].
Regularization is implemented by additionally penalizing large control perturbations

ũk in the cost function (2.5), which yields

Ṽ ∗
k+1(x̃k+1) = min

ũk∈❘m

(
vT

x,kx̃k + vT
u,kũk + 1

2 x̃T
k Vxx,kx̃k (2.16)

+ 1
2 ũT

k

(
Vuu,k + νI

)
ũk + x̃T

k Vxu,kũk

)
,
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Algorithm 1 Unconstrained iLQR
Require: An initial control sequence (uk)N−1

k=0 ∈ ❘m×N−1 and the corresponding feasible
state sequence (xk)N

k=0 ∈ ❘n×N .

while J̃ > ε do

sN =
(

∂ϕ
∂x

│││
x=xN

)T

SN =
(

∂2ϕ
∂x2

│││
x=xN

)T

for k = N − 1 . . . 0 do > Backward-Pass
vx,k ← lx,k + AT

k sk+1
vu,k ← lu,k + BT

k sk+1
Vxx,k ← Lxx,k + AT

k Sk+1Ak

Vuu,k ← Luu,k + BT
k Sk+1Bk

Vux,k ← Lux,k + BT
k Sk+1Ak

Kk ← −V−1
uu,kVT

xu,k

dk ← −V−1
uu,kvu,k

sk ← vxk
+ KT

k Vuu,kdk + KT
k vu,k + Vxu,kdk

Sk ← Vxx,k + KT
k Vuu,kKk + KT

k VT
xu,k + Vxu,kKk

end for

x̄0 ← x0
for k = 0 . . . N − 1 do > Forward-Pass

x̃k ← x̄k − xk

ũk ← Kkx̃k + dk

ūk ← uk + ũk

x̄k+1 ← f(x̄k, ūk)
end for

(xk)N
k=0 ← (x̄k)N

k=0
(uk)N−1

k=0 ← (ūk)N−1
k=0

end while
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with the identity matrix I ∈ ❘m×m.
The regularization parameter ν > 0 is decreased in every iteration. The linear system

(2.9) is solved using the Cholesky factorization. If this factorization fails due to missing
positive definiteness of Vuu,k the penalty weights ν are increased again. Additionally, if
the step size α becomes too small ν is increased as well.

2.2 Constrained iLQR
This section deals with the constrained optimal control problem given by

min
u0,...,uN−1∈❘m

J(u0, . . . , uN−1) (2.17a)

s.t. xk+1 = f(xk, uk) (2.17b)
h(xk, uk) ≤ 0 (2.17c)

with J being defined as in (2.2). Again, l ∈ C2(❘n × ❘m,❘), ϕ ∈ C2(❘n,❘) are two
times continuously differentiable and f ∈ C1(❘n ×❘m,❘n) is continuously differentiable.
Additionally, for h ∈ C1(❘n ×❘m,❘q) continuous differentiability is required.

2.2.1 Projected Newton method for control limits
A method for incorporating box control constraints using the projected Newton method is
provided in [19]. As seen in the derivation of the unconstrained iLQR, in each iteration we
solve a quadratic program in order to get an expression for the optimal control perturbation
ũk ∈ ❘m. If we take into account the control constraints we get, compare (2.5)

min
ũ∈❘m

(1
2 ũTVuuũ + ũT(

VT
xux̃ + vu

))
(2.18a)

s.t. u ≤ u + ũ ≤ u , (2.18b)

where u, u ∈ ❘m are lower and upper bounds of the control input. The time index is
omitted for simplicity.

During the backward computation x̃ is unknown. However, the assumption x̃ ≈ 0 can
be used, which allows to solve

min
ũ∈❘m

(1
2 ũTVuuũ + ũTvu

)
(2.19a)

s.t. u ≤ u + ũ ≤ u (2.19b)

during the backward pass in order to estimate the active inequality constraints as shown
in the following.

Let g := Vuuũ + vu be the gradient of the objective function. If uj = uj and gj > 0,
where ·j indicates the j-th component of the corresponding vector, we know that the
steepest descent direction points towards smaller values of uj , i.e. it allows to assume that
the inequality constraint is active for uj . A similar argument can be made for uj = uj

and gj < 0. The active set of controls can be estimated using

A =
(

j ∈ {1, . . . , m} : (uj = uj ∧ gj > 0) ∨ (uj = uj ∧ gj < 0
)

. (2.20)
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This allows to transform the original quadratic program with inequality constraints into
one with equality constraints, that is

min
ũ∈❘m

(1
2 ũTVuuũ + ũTvu

)
(2.21a)

s.t. ũj = 0, j ∈ A . (2.21b)

Since the equality constraints trivially fulfill the linear independence constraint qualification
(LICQ) condition, the search space is reduced to the manifold U = {ũ ∈ ❘m : ũj = 0, j ∈
A} with dimension d = m − |A|.

The general idea of projected Newton methods is to project the gradient and Hessian
of the objective function onto the tangent space of U defined by the equality constraints
and then use the projected quantities to perform a Newton step. With general nonlinear
equality constraints, an additional projection from the tangent space to the manifold
is required, but since they are equal for linear constraints, this is not required for the
purpose of the considered limited control problem.

Given a matrix T ∈ ❘m×d, where the columns form a basis of U , every ũ ∈ U can be
written as Tz̃ with z̃ ∈ ❘d. This allows to finally reduce the problem to an unconstrained
quadratic program given by

min
z̃∈❘d

(1
2 z̃TTTVuuTz̃ + z̃TTT(VT

xux̃ + vu)
)

. (2.22)

Note that for this special problem, we can choose T = (ej)j∈{1,...,m}\A where ej has a 1 in
its j-th component and zeros else. From ũ = Tz̃, the update rule from (2.9) changes to

ũ = Kx̃ + αd , (2.23a)

with

K = T
(
TTVuuT

)−1TTVxu and d = T
(
TTVuuT

)−1TTvu (2.23b)

and the step size α > 0. This control update is then used to perform the projected update

u ←− max(min(u, u + ũ), u) . (2.24)

2.2.2 Augmented Lagrangian method
The Augmented Lagrangian method is similar to the penalty method, but additionally
tries to include an estimate of the Lagrange multipliers λk ∈ ❘q, k = 0, . . . , N − 1. As
discussed in [32], this avoids the ill-conditioning of the pure penalty method, which is that
convergence is only guaranteed if the penalties µ ∈ ❘≥0 go to infinity. Among others, it
is used in [22, 28] for solving constrained iLQR in different variants.

The main idea of augmented Lagrangian methods is to minimize the constrained
optimiziation problem (2.17) by minimizing the so called augmented Lagrangian

LA(u0, . . . , uN−1, λ0, . . . , λN−1, µ) = J(u0, . . . , uN−1) +
N−1∑
k=0

q∑
i=1

p
(
hi(xk, uk), λi,k, µ

)
(2.25)



2 Iterative Linear Quadratic Regulator 2.2 Constrained iLQR 11

where λk = [λ1,k, . . . , λq,k]T ∈ ❘q, k = 0, . . . , N − 1 are the Lagrange multipliers, µ ∈ ❘≥0
is the penalty weight and p : ❘ × ❘≥0 × ❘≥0 → ❘ is a suitable penalty-Lagrangian
function, c.f. [29].

For fixed Lagrange multipliers λk ∈ ❘q, k = 0, . . . , N −1 and a fixed penalty weight µ ∈
❘≥0, the resulting unconstrained optimal control problem (2.25) is first minimized w.r.t.
u0, . . . , uN−1 ∈ ❘m, which yields a solution u∗

0, . . . , u∗
N−1 ∈ ❘m and the corresponding

state sequence x∗
0, . . . , x∗

N ∈ ❘n. Then the Lagrange multipliers and the penalty weight
are adapted according to

λi,k ← ∂p
(
hi(x∗

k, u∗
k), λi,k, µ

)
∂hi

(2.26a)

µ ← φµ (2.26b)

where φ > 1 is a constant scaling parameter. This process is repeated until all constraints
are satisfied. In [32], the author strongly suggests to select φ not much larger than
one. Otherwise the penalty weights increase too fast and ill-conditioning, similar to pure
penalty methods, might occur. This is why the algorithm is implemented with φ = 1.5 for
this thesis. The Lagrange multipliers are initialized with λk = 0, k = 0, . . . , N − 1, since
constraints would be treated as being active otherwise.

In order to solve the unconstrained optimal control problem (2.25) using iLQR, (2.2) is
plugged into (2.25), which yields

LA = ϕ(xN ) +
N−1∑
k=0

(
l(xk, uk) +

q∑
i=1

p
(
hi(xk, uk), λk, µ

))
´ ´´ ´

l̄(xk,uk)

. (2.27)

A quadratic approximation (2.5) of (2.27) is computed using the linear approximation of
the inequality constraints

h(xk + x̃k, uk + ũk) ≈ h(xk, uk) + HT
x,kx̃k + HT

u,kũk (2.28a)

with

Hx,k :=
(

∂h(x, u)
∂x

│││x=xku=uk

)T
and Hu,k :=

(
∂h(x, u)

∂u
│││x=xku=uk

)T
. (2.28b)

Hence, instead of using (2.7) to compute the quadratic approximation (2.5), the following
quantities are used

v̄x,k = vx,k + Hx,kph,k (2.29a)
v̄u,k = vu,k + Hu,kph,k (2.29b)

V̄xx,k = Vxx,k + Hx,kPhh,kHT
x,k (2.29c)

V̄uu,k = Vuu,k + Hu,kPhh,kHT
u,k (2.29d)

V̄ux,k = Vux,k + Hu,kPhh,kHT
x,k , (2.29e)
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where vx,k, vu,k, Vxx,k, Vuu,k, Vux,k are computed using (2.7) and ph,k =
┌

∂p
∂h1

, . . . , ∂p
∂hq

┐T

as well as Phh,k = diag
(

∂2p
∂h2

1
, . . . , ∂2p

∂h2
q

)
.

For the penalty-Lagrangian function p, the following methods are discussed in this
thesis.

1. The first method developed to solve constrained optimization problems is the well
known Powell-Hestenes-Rockafellar (PHR) approach, which is originally proposed
in [24, 25]. The penalty-Lagrangian function is chosen as

p(h, λ, µ) = 1
2µ

(
max(0, λ + µh)2 − λ2

)
=

⌠
λh + 1

2µh2 , λ + µh > 0
− λ2

2µ , otherwise .
(2.30)

The corresponding first and second derivatives are

∂p(h, λ, µ)
∂h

=
⌠

λ + µh , λ + µh > 0
0 , otherwise

(2.31)

and

∂2p(h, λ, µ)
∂h2 =

⌠
µ , λ + µh > 0
0 , otherwise .

(2.32)

Hence, the algorithm treats the constraint hi(xk, uk) as active and thus gets penalized,
if λi,k + µhi(xk, uk) > 0. Otherwise it is set inactive and is not penalized.

2. One drawback of the standard PHR approach is that the second derivative (2.32) is
not continuous, i.e. p is not twice continuously differentiable. This may yield to a
bad performance of second-order methods, c.f. [28, 29]. A smooth approximation of
the PHR (S-PHR) method is proposed in [29] and used in combination with iLQR
in [28]. The penalty-Lagrangian function is given by

p(h, λ, µ) =

(((
λh + 1

2µh2 , h ≥ −1
2

λ
µ

−λ2

µ

(
1
4 log

(
− 2µ

λh
)

+ 3
8

)
, otherwise .

(2.33)

The corresponding first and second derivatives are

∂p(h, λ, µ)
∂h

=

(((λ + µh , h ≥ −1
2

λ
µ

−1
4

λ2

µ
1
h otherwise

(2.34)

and

∂2p(h, λ, µ)
∂h2 =

(((µ h ≥ −1
2

λ
µ

1
4

λ2

µ
1

h2 otherwise .
(2.35)

Plugging h = −1
2

λ
µ into (2.35) shows that p is twice continuously differentiable in

h. However, note that p in (2.33) is not defined for λ = 0. Hence, as in [29], the
Lagrange parameter is limited to λ ≥ λ where λ = 10−6 is chosen.
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3. The approach used in ALTRO [22] is a slight adaption of the standard PHR approach.
The penalty-Lagrangian function is chosen as

p(h, λ, µ) =
⌠

λh + 1
2µ2h , h ≥ 0 ∨ λ > 0

0 , otherwise .
(2.36)

The corresponding first and second derivatives are

∂p(h, λ, µ)
∂h

=
⌠

λ + µh , h ≥ 0 ∨ λ > 0
0 otherwise

(2.37)

and

∂2p(h, λ, µ)
∂h2 =

⌠
µ , h ≥ 0 ∨ λ > 0
0 , otherwise .

(2.38)

Additionally, ALTRO uses a slightly modified update rule for the Lagrange multipliers
than (2.26), i.e.

λk = max
(
0, λk + µh(x∗

k, u∗
k)

)
, k = 1, . . . , N − 1 . (2.39)

Hence, a constraint hi(xk, uk) is treated as active and thus gets penalized, if
hi(xk, uk) ≥ 0 or λi,k > 0. Otherwise it is inactive and not penalized.

The augmented Lagrangian based iLQR algorithm is summarized in Algorithm 2.

Algorithm 2 AL-iLQR
Require: Initial control sequence (uk)k∈{0,...,N−1}, corresponding state trajectory

(xk)k∈{0,...,N}, initial penalty factor µ, scaling parameter φ and initial Lagrange multi-
pliers (λk)k∈{0,...,N−1}.

while ¬ converged do
Solve unconstrained iLQR using (2.29)
Update λk, k = 0, . . . , N − 1 and µ with the appropriate update rule

end while

2.2.3 Primal-Dual Interior Point
In this section, the Primal-Dual Interior Point based iLQR method from [30] is presented.
Two variants of this algorithm are given in [30]. The first directly solves the dual problem
of the constrained optimal control problem (2.17). However, this approach suffers from the
requirement of feasible control and state trajectories that fulfill the inequality constraints
during the whole optimization process. Hence, it is not possible to initialize the algorithm
with infeasible trajectories, which might be desired in e.g. MPC applications, where the
solution of the previous time horizon could be reused for the next time horizon, but, e.g.,
due to a model-plant mismatch it might not be feasible. Hence, another formulation
provided in [30] uses slack variables in order to allow for initialization with infeasible
trajectories.
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Feasible Primal-Dual Interior Point

Consider the constrained optimal control problem (2.17). It can be shown, that a local
solution to (2.17) is equal to a local solution of the dual problem

min
u0,...,uN−1∈❘m

max
λ0,...,λN−1∈❘q

(
ϕ(xN ) +

N−1∑
k=0

l̄(xk, uk, λk)
)

(2.40a)

s.t. xk+1 = f(xk, uk) (2.40b)
λk ≥ 0, k = 0, . . . , N − 1 , (2.40c)

with

l̄(xk, uk, λk) = l(xk, uk) + λT
k h(xk, uk) , (2.41)

provided some convexity assumptions and the LICQ condition hold, c.f. [26].
As in the derivation of the unconstrained iLQR in Section 2.1, Bellman’s principle of

optimality yields

V̄ ∗
k (xk) = min

uk∈❘m
max

λk∈❘q

(
l̄(xk, uk, λk) + V̄ ∗

k+1
(
f(xk, uk)

))
with V̄N (xN ) = ϕ(xN )

(2.42)

for k = 1, . . . , N − 1. Analogous to Section 2.1, the perturbations x̃k ∈ ❘n, ũk ∈ ❘m and
λ̃k ∈ ❘q around xk, uk and λk, k = 1, . . . , N − 1 allow for the approximation

V̄k(xk + x̃k, uk + ũk, λk + λ̃k) ≈ V̄k(xk, uk, λk) + ˜̄Vk(x̃k, ũk, λ̃k) , (2.43)

with

˜̄Vk(x̃k, ũk, λ̃k) := x̃T
k v̄x,k + ũT

k v̄u,k + λ̃
T
k v̄λ,k + 1

2 x̃T
k V̄xx,kx̃k + 1

2 ũT
k V̄uu,kũk (2.44)

+1
2 λ̃

T
k V̄λλ,kλ̃k + x̃T

k V̄xu,kũk + x̃T
k V̄xλ,kλ̃k + ũT

k V̄uλ,kλ̃k .

Using the linear approximations (2.6) and (2.28) yields

v̄x,k = vx,k + Hx,kλk V̄xx,k = Vxx,k (2.45a)
v̄u,k = vu,k + Hu,kλk V̄uu,k = Vuu,k (2.45b)
v̄λ,k = h(x̃k, ũk) V̄λλ,k = 0 (2.45c)

V̄xλ,k = Hx,k V̄uλ,k = Hu,k (2.45d)
V̄ux,k = Vux,k , (2.45e)

where vx,k, vu,k, Vxx,k, Vuu,k and Vxu,k are given in (2.7). Minimizing (2.44) w.r.t.
ũk ∈ ❘m results in one first-order necessary condition

V̄uu,kũ∗
k + V̄T

xu,kx̃k + V̄uλ,kλ̃k + v̄u,k
!= 0 . (2.46)
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Additionally, (2.44) has to be maximized w.r.t. λ̃k ∈ ❘q s.t. λk + λ̃k ≥ 0. This yields
another first-order necessary condition, c.f. [30]

diag
(
λk + λ̃

∗
k

)(
v̄λ,k + V̄T

xλ,kx̃k + V̄T
uλ,kũk

) != 0 . (2.47)

Combining (2.46) and (2.47) and adding the perturbation vector η = [η, . . . , η]T ∈ ❘q

with η ∈ ❘>0 to the left-hand side of (2.47) brings about┌
V̄uu,k Hu,k

ΛkHT
u,k Hk

┐┌
ũk

λ̃k

┐
= −

┌
v̄u,k

rk

┐
−

┌
V̄T

xu,k

ΛkHT
x,k

┐
x̃k , (2.48)

where Λk := diag(λk), Hk := diag
(
h(xk, uk)

)
and rk = Λkh(xk, uk) + η. The second

order terms in (2.47) are neglected. The perturbation vector η aims at penalizing points
near the inequality constraints. It can be interpreted as weighting of a barrier function
applied to the inequalities, which is why it is also called barrier parameter, c.f. [26].
Hence, η together with a proper step size selection strategy asserts that all inequalities
are fulfilled during optimization, which justifies the name interior point method.

Solving for λ̃k ∈ ❘q in the second row of (2.48) yields

λ̃k = −H−1
k

(
ΛkHT

u,kũk + ΛkHT
x,kx̃k + rk

)
. (2.49)

Plugging the result (2.49) for λ̃k in the first row of (2.48) yields the update rule

ũk = Kkx̃k + dk , (2.50)

with

Kk = −
(
V̄uu,k − Hu,kH−1

k ΛkHT
u,k

)−1(
V̄T

xu,k − Hu,kH−1
k ΛkHT

x,k

)
(2.51a)

dk = −
(
V̄uu,k − Hu,kH−1

k ΛkHT
u,k

)−1(
v̄u,k − Hu,kH−1

k rk

)
. (2.51b)

Similarly, substituting ũk in (2.49) with (2.50) yields

λ̃k = Ψkx̃k + ψk (2.52)

with

Ψk = −H−1
k Λk

(
HT

x,k + HT
u,kKk

)
(2.53a)

ψk = −H−1
k

(
rk + ΛkHT

u,kdk

)
. (2.53b)

Back-substitution of (2.50) and (2.52) into (2.44) yields

sk = v̂xk
+ KT

k V̂uu,kdk + KT
k v̂u,k + V̂xu,kdk (2.54a)

Sk = V̂xx,k + KT
k V̂uu,kKk + KT

k V̂T
xu,k + V̂xu,kKk , (2.54b)
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where

v̂x,k = v̄x,k − Hx,kH−1
k rk V̂xx,k = V̄xx,k − Hx,kH−1

k ΛkHT
x,k (2.55a)

v̂u,k = v̄x,k − Hu,kH−1
k rk V̂uu,k = V̄uu,k − Hu,kH−1

k ΛkHT
u,k (2.55b)

V̂xu,k = V̄xu,k − Hx,kH−1
k ΛkHT

u,k . (2.55c)

Following [30], the perturbation η is initialized using η = J(u0,...,uN−1)
Nq . The step size α

is selected s.t. the inequalities h(xk, uk) ≤ 0 and λk ≥ 0, k = 0, . . . , N − 1 are fulfilled in
all iterations.

Infeasible Primal-Dual Interior Point

In order to allow initialization of the algorithm with infeasible trajectories, [30] reformulated
(2.17) by slack variables ζk ∈ ❘q, k = 1, . . . , N − 1, i.e.

min
u0,...,uN−1∈❘m

ζ0,...,ζN−1∈❘q

J(u0, . . . , uN−1) (2.56a)

s.t. xk+1 = f(xk, uk) (2.56b)
g(xk, uk, ζk) := h(xk, uk) + ζk = 0 (2.56c)
ζk ≥ 0 . (2.56d)

Similar to the derivation of the feasible Primal-Dual Interior Point algorithm, the dual
problem can be used to derive the system of linear equations┌││V̄uu,k Hu,k 0

HT
u,k 0 I
0 Zk Λk

┐││
┌││ũk

λ̃k

ζ̃k

┐││ = −
┌││ v̄u,k

g(xk, uk, ζk)
rk

┐││ −
┌││V̄T

xu,k

HT
x,k

0

┐││x̃k , (2.57)

with rk := Λkζk + η, Zk := diag(ζk), Λk := diag(λk) and I being the identity matrix,
c.f. [30]. Again, η ∈ ❘q is the perturbation vector and λ̃k, ζ̃k ∈ ❘q, x̃k ∈ ❘n as well as
ũk ∈ ❘m are perturbations around the actual values λk, ζk ∈ ❘q, xk ∈ ❘n and uk ∈ ❘m.
This brings about

ũk = Kkx̃k + dk (2.58a)
λ̃k = Ψkx̃k + ψk (2.58b)
ζ̃k = Φkx̃k + φk , (2.58c)
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where

Kk =
(
V̄uu,k + Hu,kZ−1

k ΛkHT
u,k

)−1(
v̄u,k + Hu,kZ−1

k rk

)
(2.59a)

dk =
(
V̄uu,k + Hu,kZ−1

k ΛkHT
u,k

)−1(
V̄T

xu,k + Hu,kZ−1
k ΛHT

x,k

)
(2.59b)

Ψk = Z−1
k Λk

(
HT

x,k + HT
u,kKk

)
(2.59c)

ψk = Z−1
k

(
rk + ΛkHT

u,kdk

)
(2.59d)

Φk = −HT
x,k − HT

u,kKk (2.59e)
φk = −g(xk, uk, ζk) − HT

u,kdk . (2.59f)

Back-substitution of (2.58) into (2.59) yields

sk = v̂xk
+ KT

k V̂uu,kdk + KT
k v̂u,k + V̂xu,kdk (2.60a)

Sk = V̂xx,k + KT
k V̂uu,kKk + KT

k V̂T
xu,k + V̂xu,kKk , (2.60b)

where

v̂x,k = v̄x,k − Hx,kZ−1
k rk V̂xx,k = V̄xx,k − Hx,kZ−1

k ΛkHT
x,k (2.61a)

v̂u,k = v̄x,k − Hu,kZ−1
k rk V̂uu,k = V̄uu,k − Hu,kZ−1

k ΛkHT
u,k (2.61b)

V̂xu,k = V̄xu,k − Hx,kZ−1
k ΛkHT

u,k . (2.61c)

Similar to the feasible interior point method, the step size α is selected s.t. the
constraints ζk ≥ 0 and λk ≥ 0 are fulfilled in all iterations. Note that this strategy does
not require to evaluate the inequality constraints for the step size selection procedure.
Considering that the constraints can be elaborate functions, this can lead to advantages
regarding runtime.



3 Application: Kinematic Vehicle Model
This chapter studies iLQR-based trajectory planning for a simple 2D kinematic vehicle
model. The mathematical model is presented in Section 3.1 while in Section 3.2 the results
generated by the different constrained iLQR algorithms from Chapter 2 are given. All
algorithms are implemented in Matlab/Simulink R2021a and all measurements are
performed on an Intel Core i7-10850H CPU @ 2.7 GHz × 12.

3.1 Model
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Figure 3.1: Experiment setup for the 2D vehicle benchmark. The green point represents the
initial state x0 and the red ones show the desired end points xN,di, i = 1, 2, 3, 4.
The gray circles represent the collision objects

Figure 3.1 shows the experimental setup for the 2D kinematic vehicle application.
The goal is to find a feasible, collision-free trajectory from the initial state x0, which is
visualized as a green point in Figure 3.1, to the desired endpoints xN,di, i = 1, 2, 3, 4,
visualized as red points in Figure 3.1. The collision objects are represented by the gray
circles in Figure 3.1.
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3.1.1 Vehicle Kinematics
The dynamic equations of the kinematic vehicle model are given by, c.f. [28]

d
dt

┌││││
x
y
v
θ

┐││││
´´´´

x

=

┌││││
v sin(θ)
v cos(θ)

a
ωv

┐││││
´ ´´ ´

f(x,u)

, (3.1)

where the control input u := [ω, a]T ∈ ❘2 comprises the steering command ω in rad
m and

the acceleration a in m
s2 of the vehicle. The state x := [x, y, v, θ]T ∈ ❘4 consists of the

position represented by the 2D Euclidean coordinates x and y given in m, the velocity v
in m

s and the heading θ in rad. The discrete time system equations are retrieved using
Euler forward integration

xk+1 = xk + f(xk, uk)Ts , (3.2)

where Ts = 100 ms is the sampling time. The initial state is chosen as

x0 =

┌││││
0 m
0 m
0 m

s
0 rad

┐││││ . (3.3)

3.1.2 Constraints
Three circles with radius ri = 0.5 m, i = 1, 2, 3 and centers c1 = [1 m, 1 m]T, c2 =
[1 m, 2.5 m]T and c3 = [2.5 m, 2.5 m]T are used as collision objects, see Figure 3.1. The
collision constraints are formulated using the distance to the center of these circles, i.e.‖‖‖‖ci −

┌
x y

┐T
‖‖‖‖2

2
≥ ri, i = 1, 2, 3 . (3.4)

Unless otherwise stated, the control constraints are chosen as

ω ∈ [−π/4, π/4] rad/m and a ∈ [−0.6, 0.6] m/s2 . (3.5)

The vehicle forward velocity is limited by

− 8.3 m
s ≤ v ≤ 8.3 m

s k = 1, . . . , N − 1 . (3.6)

3.1.3 Cost Function
In order generate a trajectory that controls the system towards a desired final configuration
xN,d ∈ ❘4, a quadratic cost function of the form

J(u0, . . . , uN−1) := (xN − xN,d)TLxx,N (xN − xN,d) +
N−1∑
k=0

uT
k Luuuk , (3.7)
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with the matrix Lxx,N := diag(500, 500, 100, 500) which penalizes the deviation from the
desired endpoints xN,d and the matrix Luu := diag(1, 30) which constitutes a regularization
term. The algorithms are evaluated with four target configurations

xN,d1 := [3 m, 3 m, 0 m/s, π/2 rad]T (3.8a)
xN,d2 := [2 m, 1.5 m, 0 m/s, π/2 rad]T (3.8b)
xN,d3 := [2 m, 3.5 m, 0 m/s, π/2 rad]T (3.8c)
xN,d4 := [1 m, 3.5 m, 0 m/s, π/2 rad]T , (3.8d)

which are shown in Figure 3.1 by the red points (1)-(4).

3.2 Offline Planning
This section shows the results of the algorithms presented in Chapter 2 applied to offline
trajectory planning for the 2D kinematic vehicle model introduced in Section 3.1. The
overall discrete time optimal control problem

min
u1,...,uN ∈❘m

J(u0, . . . , uN−1) (3.9a)

s.t. xk+1 = xk + f(xk, uk)Ts (System equations) (3.9b)
− ‖ci − [xk, yk]T‖2

2 ≤ −0.5 m , i = 0, . . . , N (Collision constraints)
(3.9c)

− π

4
rad
m ≤ ωk ≤ π

4
rad
m (Control limit) (3.9d)

− 0.6 m
s2 ≤ ak ≤ 0.6 m

s2 (Control limit) (3.9e)

− 8.3 m
s ≤ vk ≤ 8.3 m

s (State limit) (3.9f)

is solved using the constrained iLQR algorithms from Chapter 2.

3.2.1 Augmented Lagrangian
The resulting trajectories generated by the augmented Lagrangian method presented in
Section 2.2.2 are depicted in Figure 3.2, and Figure 3.3 shows the corresponding control
sequence. Since there is no qualitative difference in the results of the algorithms using the
variants of the augmented Lagrangian approach (2.30), (2.33) and (2.36), only the ones
computed with (2.36) are visualized. The algorithm is able to generate trajectories that
move the kinematic car model to the vicinity of the desired endpoints and fulfill both, the
collision and control constraints.

The evolution of the costs (3.7) over the optimization iterations are depicted in Figure 3.4.
Hence, the algorithm is able to find a feasible solution for the optimal control problem
(3.9) in a finite number of iterations. Figure 3.4 shows that, in all three cases, the overall
costs decrease at the beginning and then slightly increase again in later iterations. The
algorithm first computes a solution with fixed penalties and fixed Lagrange multipliers,
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Figure 3.2: Resulting state trajectories of the augmented Lagrangian method.

which in general does not fulfill the constraints. The penalties and the Lagrange multipliers
are increased after convergence which leads to a larger influence of the constraint violations
than in the previous iteration with smaller penalties and Lagrange multipliers. Hence, the
actual cost function starts to increase again, since a solution of the constrained problem
in general yields higher costs than the unconstrained one.

The number of iterations required to converge are approximately equal for all three
penalty-Lagrangian functions (ALTRO, PHR and S-PHR), which confirms the results
from [29] where PHR and S-PHR is considered as well. This suggests that, similar to [29],
the lack of a two times continuously differentiable penalty-Lagrangian in the standard
PHR method does not have a huge influence on the algorithm’s convergence. However,
the chosen step sizes, which are depicted in Figure 3.5, are smaller on average for the
PHR penalty-Lagrangian than for the other ones.
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Figure 3.3: Resulting control trajectories of the augmented Lagrangian method.
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Figure 3.4: Cost evolution of the augmented Lagrangian method.
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Figure 3.5: Step size evolution of the augmented Lagrangian method.
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3.2.2 Augmented Lagrangian combined with Projected Newton
A combined augmented Lagrangian (AL) approach applied to the 2D kinematic vehicle
example is discussed in this section. While the control limits are handled using the projected
Newton method from Section 2.2.1, collision and state constraints are incorporated using
the augmented Lagrangian method from Section 2.2.2.

0 50 100 150 200 250 300

10 2

10 3

10 4

(a) Augmented Lagrangian

0 50 100 150 200 250 300

10 2

10 3

10 4

(b) Augmented Lagrangian with Projected New-
ton

Figure 3.6: Cost evolution of the pure and the combined AL approach with the projected
Newton method for more restrictive control constraints.

One drawback of the pure augmented Lagrangian is the degradation of the performance
when multiple conflicting constraints shall be fulfilled, e.g. the trajectory has to be
collision free but the control limit is very small. This leads to convergence issues, since
the algorithm jumps from one constraint, e.g. a collision constraint, to another one, e.g. a
control limit. Figure 3.6a shows the cost evolution of the augmented Lagrangian approach
using more restrictive control constraints ω ∈ [−π/5, π/5] rad/s and a ∈ [−0.35, 0.35] m

s2 .
On the other hand, Figure 3.6b depicts the cost evolution of the combined augmented
Lagrangian with the projected Newton method. Hence, handling the control constraints
with the projected Newton method frees the augmented Lagrangian method from the
burden to find a solution that fulfills conflicting constraints and improves the convergence
behavior. Especially for end configuration (4) the combined approach requires a much
lower number of iterations, c.f. Figure 3.6b, since the algorithm mainly has to handle
the control limits and only little effort has to be taken in order to fulfill the collision
constraints.

The following experiments discuss the results of the combined augmented Lagrangian
with the projected Newton method using the original control constraints (3.9d) and (3.9e).

Figure 3.7 shows the resulting state trajectories, Figure 3.8 the resulting control
trajectories and Figure 3.9 the cost evolution. Since the resulting state and control
trajectories of the algorithms using the different penalty-Lagrangian functions (2.30),
(2.33) and (2.36) are qualitatively the same, only the results of the approach that uses
(2.36) is depicted in Figures 3.7 and 3.8.

Comparing Figure 3.9 with Figure 3.4 shows that the cost decrease at the beginning is
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Figure 3.7: Resulting state trajectories of the combined AL with the projected Newton
method.

steeper for the pure augmented Lagrangian approach than for the combined one. This
comes from the update rule (2.24). Since the active set is determined by looking at the
gradient at x̃ = 0, all control inputs that are not labeled active, but violate the constraints
due to the influence of x̃ /= 0, are simply clamped. This might result in a non-descending
search direction.

Similar to the pure augmented Lagrangian approach, the choice of the actual penalty-
Lagrangian does not seem to be highly influential on the convergence behavior.

Figure 3.10 visualizes the selected step sizes in each optimization iteration. The average
step size is slightly larger in all cases compared to the ones of the pure augmented
Lagrangian approach in Figure 3.5. Note that the clamping operation (2.24) already
yields smaller control updates, which is why larger step sizes can be accepted. Since
the line search strategy requires additional evaluations of the system dynamics and the
constraints, a larger average step size may be beneficial, especially for applications where
the evaluation of these functions is computationally expensive.
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Figure 3.8: Resulting control trajectories of the combined AL with the projected Newton
method.
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Figure 3.9: Cost evolution of the combined AL with the projected Newton method.
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Figure 3.10: Step size evolution of the combined AL with the projected Newton method.
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3.2.3 Primal-Dual Interior Point
Figure 3.11 shows the resulting trajectories of the feasible primal-dual interior point
method from Section 2.2.3 and the corresponding control trajectories are depicted in
Figure 3.13. Again, since the qualitative results of the feasible and the infeasible primal-
dual interior point method are equal, only the solutions of the former one are visualized in
Figure 3.11 and Figure 3.13. Other than the augmented Lagrangian method, the inequality
constraints are fulfilled during the whole optimization procedure with the interior point
methods. The consequence is that once the trajectory starts passing an obstacle at one
side there is nearly no chance to change this decision. Trajectory (2) in Figure 3.11 exactly
reveals this behavior.

The cost evolution for both variants of the primal-dual interior point algorithm is
depicted in Figure 3.12. Closeness to obstacles is penalized more at the beginning and
then becomes less as the barrier parameter increases, which is exactly the opposite strategy
compared to the augmented Lagrangian method. It turns out that due to the barrier
characteristics, the algorithm proceeds very slowly at the beginning, especially for more
complex environments where free space gets narrower. This can be observed by comparing
Figure 3.12 with Figure 3.4. Due to the slow progress, the decrease of the cost, especially in
the earlier iterations, is much steeper for the augmented Lagrangian method in Figure 3.4
than for the interior point method in Figure 3.12.

Figure 3.12 shows that the feasible interior point method shows slightly faster conver-
gence compared to the infeasible variant. Additionally, the step size history depicted
in Figure 3.14 suggests that the infeasible interior point method requires smaller step
sizes than the feasible one. However, as already stated in Section 2.2.3, the requirement
of initial control and state trajectories that observe all collision constraints is a huge
limitation of the feasible primal-dual interior point method. This is why the infeasible
interior point method might still be preferable in applications.



3 Application: Kinematic Vehicle Model 3.2 Offline Planning 29

-1 0 1 2 3 4
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3.11: Resulting state trajectories of the primal-dual interior point method.
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Figure 3.12: Cost evolution of the primal-dual interior point method.
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Figure 3.13: Resulting control trajectories of the primal-dual interior point method.
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Figure 3.14: Step size evolution of the primal-dual interior point method.
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3.2.4 Conclusions
The numerical experiments show different properties of the presented algorithms. The
augmented Lagrangian method exhibits good convergence, even if the algorithm is initial-
ized with the control inputs and velocities being zero. However, increasing the penalties
of the constraint violations may lead to bad convergence for competing and restrictive
constraints. It is shown that the augmented Lagrangian can be relieved from handling
control limits by combining it with the projected Newton method. The performance of
the projected Newton method depends on the quality of the active set estimation during
the backward calculation. The primal-dual interior point method converges quite robustly,
even for very restrictive constraints. However, for collision avoidance applications with
narrow free space the algorithm requires more iterations to converge, at least if the initial
trajectory equals the starting point with zero acceleration and zero velocity.



4 Application: Timber Crane
This chapter presents iLQR-based trajectory planning for a timber crane. First, the
crane model is presented in Section 4.1 while in Section 4.2 the optimization problem
is formulated and the results generated by the different constrained iLQR algorithms
introduced in Chapter 2 are presented. Finally, Section 4.3 describes an online trajectory
planner based on model predictive control (MPC). All algorithms are implemented in
Matlab/Simulink R2021a and all experiments are performed on an Intel Core i7-10850H
CPU @ 2.7 GHz × 12.

4.1 Model
The kinematic chain of the timber crane is visualized in Figure 4.1. It has eight degrees of

68,04°

49,62°

28,72°

32,45 mm

Figure 4.1: Kinematic chain of the timber crane.

32



4 Application: Timber Crane 4.1 Model 33

freedom (DoFs), but in order to reduce the complexity of the model used for planning the
jaw angle q8 is assumed to be a constant parameter. This allows to reduce the complete
grab to a single rigid body with only one mass, center of gravity and moment of inertia.
Hence, the kinematic chain considered for planning has only seven degrees of freedom,
consisting of five actuated qA := [q1, q2, q3, q4, q7]T ∈ ❘nA and two non-actuated ones
qU := [q5, q6]T ∈ ❘nU . Thereby, q4 is a linear DoF, whereas all others are rotational DoFs.

4.1.1 Crane Kinematics
The mathematical model of the crane’s kinematic chain is described by transformations
from a coordinate Frame Fi attached to joint i to a coordinate frame Fi−1 attached to
joint i − 1

Hi
i−1 =

┌
Ri

i−1 di
i−1

0T 1

┐
∈ SE(3) (4.1)

where Ri
i−1 ∈ SO(3) is a three dimensional rotation matrix and di

i−1 ∈ ❘
3 a three

dimensional translation vector. The coordinate frames depicted in Figure 4.1 are selected
according to the Denavit-Hartenberg convention, see, e.g., [1, 33]. However, note that
frame F11 is not defined by Denavit-Hartenberg parameters w.r.t. frame F10, but rather
from frame F8. Hence, every transformation Hi

i−1, i = 1, . . . , 10, 12 and H11
8 can be

described using four Denavit-Hartenberg parameters θi, di, ai and αi as

Hi
i−1 = HRz(θi)HT z(di)HT x(ai)HRx(αi) , (4.2)

where HRi is a pure rotation around the i-axis and HT i is a pure translation in direction
of the i-axis. The transformation from Fj to Fi, 0 ≤ i < j can be computed using

Hj
i =

(((
∏j

l=i+1 Hl
l−1 , for j ≤ 10( ∏8

l=i+1 Hl
l−1

)
H11

8 Hj
11 , for 11 ≤ j ≤ 12

, (4.3)

where ∏j
l=i+1 Hl

l−1 being the identity for j ≤ i. The Denavit-Hartenberg parameters for
the crane are given in Table 4.1.
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i θi [rad] di [m] ai [m] αi [rad]

1 q1 2.425 0.1800 π
2

2 q2 0 3.4931 0
3 q3 0 -0.3925 π

2
4 0 q4 0 0
5 0 q4 0 −π

2
6 q5 0 -0.2130 −π

2
7 q6 0 0 −π

2
8 q7 0.578 0 0
9 −π

2 0 0.3402 π
2

10 1.5708 0 0.8566 0
11 π

2 0 0.3248 π
2

12 1.5708 0 0.8566 0

Table 4.1: Denavit-Hartenberg parameters of the timber crane.

4.1.2 Crane Dynamics
For a general rigid-body system the equations of motion can be derived using the Lagrange
formalism, c.f. [1, 33]. This yields

D(q)q̈ + C(q, q̇)q̇ + g(q) + Fq̇ = τ , (4.4)

where q ∈ ❘n are the joint coodinates, D(q) ∈ ❘n×n is the positive definite mass matrix,
C(q, q̇) ∈ ❘n×n is the Coriolis matrix, g(q) ∈ ❘n are the potential forces and τ ∈ ❘n

are the generalized joint forces. The diagonal matrix F = diag(τ v) ∈ ❘n×n contains the
viscous friction coefficients τ v ∈ ❘n. The joint coordinates comprise the coordinates
qA ∈ ❘nA of the actuated joints and the coordinates qU ∈ ❘nU of the non-actuated ones,
i.e.

q :=
┌
qA

qU

┐
. (4.5)

Since no external forces can be applied to non-actuated joints, (4.4) can be partitioned
into ┌

DAA(q) DAU (q)
DUA(q) DUU (q)

┐
´ ´´ ´

D(q)

┌
q̈A

q̈U

┐
+

( ┌
CA(q, q̇)
CU (q, q̇)

┐
´ ´´ ´

C(q,q̇)

+
┌
FA

FU

┐
´ ´´ ´

F

)
q̇ +

┌
gA(q)
gU (q)

┐
´ ´´ ´

g(q)

=
┌
τ A

τ U

┐
´ ´´ ´

τ

(4.6)

where

τ U = DUA(q)q̈A + DUU (q)q̈U +
(
CU (q, q̇) + FU

)
q̇ + gU (q) = 0 (4.7)

for the non-actuated joints.
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For iLQR, a discrete time state-space description of the system is required. Hence, the
state is defined as

x :=
┌
q
q̇

┐
=

┌││││
qA

qU

q̇A

q̇U

┐││││ (4.8)

and the second derivatives of the actuated joint coordinates serve as control inputs, i.e.

u := q̈A . (4.9)

Assuming that the control u(t) is constant for t ∈ [tk, tk+1) yields the discrete time state
equation of the actuated joints

qA,k+1 = qA,k + q̇A,kTs + 1
2ukT 2

s (4.10a)

q̇A,k+1 = q̇A,k + ukTs , (4.10b)

where Ts > 0 is the sampling time and qA,k = qA(kTs), q̇A,k = q̇A(kTs) and uk = u(kTs).
From (4.7) an expression for the second derivative of the non-actuated joint coordinates
can be derived as

q̈U (q, q̇, q̈A) = −DUU (q)−1
(

DUA(q)q̈A +
(
CU (q, q̇) + FU

)
q̇ + gU (q)

)
. (4.11)

Assuming that q̈U (t) is constant for t ∈ [tk, tk+1) yields

qU,k+1 ≈ qU,k + q̇U,kTs + 1
2 q̈U,k(qk, q̇k, q̈A,k)T 2

s (4.12a)

q̇U,k+1 ≈ q̇U,k + q̈U (qk, q̇k, q̈A,k)Ts , (4.12b)

where qA,k = qU (kTs), q̇U,k = q̇U (kTs) and q̈U,k = q̈U (kTs). However, note that, other
than for the actuated joints, the assumption that q̈U is constant is just an approximation
here.

Due to the nonlinear dependence of the non-actuated joint coordinate’s second derivative
on the joint coordinates, their first derivatives and the second derivatives of the actuated
joint coordinates, see (4.11), the discrete time system equations (4.10) and (4.12) are
nonlinear. However, iLQR requires a linearization of this nonlinear dynamics and so the
derivatives ∂q̈U

∂q , ∂q̈U
∂q̇ and ∂q̈U

∂q̈A
are required. The expression in (4.7) gives the following

derivatives

∂q̈U

∂q = −
(∂τ U

∂q̈U

)−1 ∂τ U

∂q = −DUU (q)−1 ∂τ U

∂q (4.13a)

∂q̈U

∂q̇ = −
(∂τ U

∂q̈U

)−1 ∂τ U

∂q̇ = −DUU (q)−1 ∂τ U

∂q̇ (4.13b)

∂q̈U

∂q̈A
= −

(∂τ U

∂q̈U

)−1 ∂τ U

∂q̈A
= −DUU (q)−1DUA(q) . (4.13c)
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Figure 4.2: Mean runtime for derivative computation using 100 repetitions.

This method to compute the derivatives aims at avoiding symbolic differentiation using
Maple, which can be quite time consuming considering that DUU (q) can be a very
complex expression that has to be inverted before the derivative is computed. Figure 4.2
shows the mean measured runtime for both variants of derivative computation using 100
repetitions. It can be seen that using the formulation based on (4.13) instead of the
symbolic maple computation yields a speedup of 3.

4.1.3 Collision Constraints
In order to incorporate the collision constraints, a simplified geometrical model of the
crane is used according to in Figure 4.3. The relevant links Li(q), i = 1, 2, 3 are modeled
as line segments from which a certain minimum distance is required, which geometrically
leads to the red capsules that can be seen in Figure 4.3. Note that the space occupied
by these capsules depends on the actual joint coordinates q ∈ ❘n. The collision objects
Oi, i = 1, . . . , 8, i.e. the truck in these experiments, are modeled using static oriented
bounding boxes (OBB), visualized by the blue transparent cuboids in Figure 4.3. The
minimal distances between the crane and the collision objects are computed using the
GJK algorithm described in Appendix A. Every object is defined by its support mapping,
which is

sLi(q)(d) =
⌠

pi1 , if dT(pi1 − pi2) > 0
pi2 , otherwise

i = 1, 2, 3 (4.14)

for the line segments, where pi1, pi2 ∈ ❘
3, i = 1, 2, 3 denote the endpoints of the

corresponding line. Note that if the line is parallel to a surface of a bounding box the
support mapping is in general not unique. However, in this case the point pi2 is returned in
this case. OBBs could be modeled by projecting each endpoint onto d = [dx, dy, dz]T ∈ ❘3.
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Figure 4.3: Collision model for the timber crane.

However, there is a computationally cheaper method. Let cj ∈ ❘3, j = 1, . . . , 8 be the
origins of the OBBs and let Rj ∈ SO(3), j = 1, . . . , 8 be the orientations. Further let
lj = [lxj , lyj , lzj ]T be the length of the edges in x-, y- and z-direction. Then the support
mapping can be computed as

sOj (d) = cj + Rj

(
diag

(
sign(d)

) lj
2

)
j = 1, . . . , 8 , (4.15)

where

sign(d) =

┌││sign(dx)
sign(dy)
dign(dz)

┐││ with sign(d) =
⌠

1 , d ≥ 0
0 , d < 0

. (4.16)

Self collision is avoided by the limits of the joint angles. Hence, for every link in the crane
covered by a red capsule in Figure 4.3 Li(q), i = 1, 2, 3 and every object representing the
truck Oi, i = 1, . . . , 8, there is one collision constraint of the form

h8(i−1)+j(q) = −
(
d

(Li(q), Oj
) − ri

)
≤ 0 m, i = 1, 2, 3 and j = 1 . . . 8 (4.17)

where d is the distance between Li(q) and Oj computed by the GJK algorithm as discussed
in Appendix A and ri is the radius of the capsule around the link. Hence, for nL = 3 links
and nO = 8 objects there are nL · nO collision constraints in total which are stacked into
the vector inequality ┌││ h1(q)

...
hnL·nO (q)

┐││ =: h(q) ≤ 0 , (4.18)
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where h : ❘n → ❘
nL·nO is assumed to be sufficiently smooth such that the required

derivatives do exist. However, note that differentiability of the distance function is not
guaranteed in every case. In order to use the constrained iLQR techniques presented in
Chapter 2 a linear approximation of the constraints and hence the Jacobian

Jh,q(q) := ∂h(q)
∂q (4.19)

is required. The method described in [34] is used to approximate the Jacobian (4.19). Let
pi(q) ∈ Li(q) be the point on the link and pj ∈ Oj be the point on the object such that
they are the closest points to each other. Then the distance between Li(q) and Oj can be
written as

d
(Li(q), Oj

)
= nT(

pi(q) − pj
)

with n = pi(q) − pj

‖pi(q) − pj‖2
. (4.20)

Assuming that pi(q) and pj are fixed in their local frames and that n does not change,
we get

∂d
(Li(q), Oj

)
∂q ≈ nTJpi,q(q) with Jpi,q = ∂pi(q)

∂q . (4.21)

4.2 Offline Planning
In summary, the overall optimization problem to solve the trajectory planning task reads
as

min
u0,...,uN−1∈❘m

J(u0, . . . , uN−1) (4.22a)

s.t. qA,k+1 = qA,k + q̇A,kTs + 1
2ukT 2

s (Sys. dyn.) (4.22b)

qU,k+1 = qU,k + q̇U,kTs + 1
2 q̈U,k(qk, q̇k, q̈A,k)T 2

s (4.22c)

q̇A,k+1 = q̇A,k + uTs (4.22d)
q̇U,k+1 = q̇U,k + q̈U (qk, q̇k, q̈A,k)Ts (4.22e)

(4.22f)
h(q) ≤ 0 m (Collisions)

(4.22g)
u ≤ uk ≤ u (Ctrl. limits)

(4.22h)
q ≤ qk ≤ q (State limits)

with

J(u0, . . . , uN−1) = ϕ(qA,N , q̇N ) +
N−1∑
k=0

(
l1(q̇k) + l2(uk)

)
Ts (4.23a)
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Figure 4.4: Experimental setup for the crane trajectory planning problem.

where

ϕ(qA, q̇) = (qA − qA,d)TP(qA − qA,d) + q̇TRq̇ (4.23b)
l1(q̇) = q̇Vq̇ (4.23c)
l2(u) = uTQu . (4.23d)

The desired end configuration is denoted by qA,d ∈ ❘nA and P, R, V as well as R are
positive (semi-) definite diagonal weighting matrices. The sampling time is chosen as
Ts = 100 ms and the horizon length is N = 50. The matrix P ∈ ❘

nA×nA penalizes
deviations from the desired end configuration and with the diagonal elements being 500.
Note that only the actuated joints can be freely chosen, which is why the end configuration
of non-actuated joints are not considered in (4.23b). Remaining velocities at the last
trajectory sample are penalized using the matrix R ∈ ❘n×n. The diagonal elements here
are chosen as 500 as well. For all other time instances of the trajectory there are two terms
serving as regularization. The first one comes with the weighting matrix V ∈ ❘n×n and
aims at penalizing large velocities. This is especially important in order to avoid abrupt
motions of the non-actuated joints, which is why velocities of the non-actuated joints are
penalized more than the actuated ones. To be more specific, the diagonal elements are
chosen as 1 for the non-actuated degrees of freedom and 0.1 for the actuated ones. The
second term penalizes large control inputs and thus accelerations. The matrix Q ∈ ❘m×m

is chosen as diagonal matrix with 1 as a diagonal elements.
The experimental setup is visualized in Figure 4.4. The initial state is visualized by the

actual configuration of the red crane in Figure 4.4. The goal is to compute collision-free
trajectories that additionally fulfill the control and state limits to reach seven different
desired end configurations, visualized by the red dots (1)-(7) in Figure 4.4. However, note
that the end configurations are given by the generalized coordinates qA,d ∈ ❘nA , but for
clarity the red points in Figure 4.4 visualize the corresponding Euclidean positions of the



4 Application: Timber Crane 4.2 Offline Planning 40

frame F5. The control limits are chosen as

u =
┌
0.3 rad/s2 0.3 rad/s2 0.3 rad/s2 0.3 rad/s2 0.3 rad/s2

┐T
(4.24a)

u =
┌
−0.3 rad/s2 −0.3 rad/s2 −0.3 rad/s2 −0.3 rad/s2 −0.3 rad/s2

┐T
(4.24b)

and for the state limits

q =
┌
212.57◦ 89.5◦ 263.56◦ 2.24 m 89.95◦ 180◦ 360◦

┐T
(4.25a)

q =
┌
−212.57◦ −63.03◦ −52.14◦ 0 m −89.95◦ 0◦ −360◦

┐T
(4.25b)

is used.
In the following experiments, the iLQR algorithms from Chapter 2 are evaluated and

compared regarding their performance in solving the optimal control problem (4.22).

4.2.1 Augmented Lagrangian

Figure 4.5: Resulting state trajectories of the augmented Lagrangian method.

Figure 4.5 shows the resulting trajectories generated by the augmented Lagrangian
method, while being initialized with a zero velocity and acceleration. The red points in the
left image depict the locations of the coordinate frame F5 from Figure 4.1, which result
from the desired end points qA,d and the black lines show the corresponding computed
trajectories. Additionally, the joint coordinates of every fifth point of trajectory (1) are
visualized on the right-hand side of Figure 4.5 and Figure 4.6 shows the corresponding
control trajectories with their limits. Note that these are just illustrative examples in order
to avoid overloading of the figures. The qualitative results for the other trajectories are
equivalent to those shown in Figure 4.5 and Figure 4.6. There is no qualitative difference
in the results generated by the methods using the different penalty-Lagrangian functions
(2.30), (2.33) and (2.36), which is why only the results generated by the one used in
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the ALTRO approach are shown in Figure 4.5 and Figure 4.6. Hence, the algorithm is
able to find collision-free trajectories that additionally fulfill all control and state limits.
Furthermore, abrupt movements of the non-actuated degrees of freedom is avoided.
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Figure 4.6: Resulting control trajectories for target configuration (1) using the augmented
Lagrangian method.

Figure 4.7 shows the cost evolution of the augmented Lagrangian method with the
penalty-Lagrangian functions (2.30), (2.33) and (2.36), respectively. As already discussed
in Chapter 3, the cost increases in iterations where the penalty factor is increased. It
seems that for this application the ALTRO approach performs better than the PHR and
S-PHR approaches. However, the influence of the penalty-Lagrangian function on the
convergence behavior is limited.
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Figure 4.7: Cost evolution of the augmented Lagrangian method.
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4.2.2 Augmented Lagrangian combined with Projected Newton

Figure 4.8: Resulting state trajectories of the combined AL with projected Newton method.

Figure 4.8 shows the resulting trajectories generated by the combined augmented
Lagrangian with the projected Newton approach, while being initialized with zero velocity
and accelerations. Similar to the pure augmented Lagrangian approach, this algorithm is
able to generate collision-free trajectories in all seven cases, while the control and state
limits are observed. Additionally, on the right-hand side of Figure 4.8 trajectory (1)
generated by the combined augmented Lagrangian with the projected Newton method
is visualized for every fifth trajectory sample in joint coordinates. Figure 4.9 shows the
corresponding control inputs. Again, note that this trajectory is used as one illustrative
example and the results of the other ones are qualitatively equal. Additionally, there is no
qualitative difference in the results of the algorithms using the different penalty-Lagrangian
functions (2.30), (2.33) and (2.36), which is why only the results of the algorithm with
the ALTRO penalty-Lagrangian are depicted in Figure 4.8 and Figure 4.9. Hence, the
algorithm is able to find trajectories that fulfill all constraints and avoid abrupt motions
of the non-actuated joints.

Figure 4.10 shows the cost evolution of the trajectories generated by the combined
augmented Lagrangian and the projected Newton method. Note that while the cost func-
tion (4.23) is depicted in Figure 4.10, the algorithm minimizes the augmented Lagrangian
(2.25). Hence, the step size selection strategy forces the augmented Lagrangian (2.25) to
decrease and not the cost (4.23), which is why the costs in Figure 4.10 can increase even
without an increase in the penalties. The reason for depicting the costs (4.23) and not
the augmented Lagrangian (2.25) is to be able to compare the evolution of the different
algorithms (the interior point method does not minimize the augmented Lagrangian and
the pure and combined approaches differ in that the latter ones do not penalize control
violations).

As already discussed in Chapter 3, the projected Newton method might yield bad search
directions if the active set estimate is inaccurate. In this application, the cost decrease in
earlier iterations suffers even more than in the 2D car example from Chapter 3. Again, the
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Figure 4.9: Resulting control trajectories using the combined AL with projected Newton
method.

specific choice in penalty-Lagrangian function has only little influence on the convergence
behavior.
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Figure 4.10: Cost evolution of the combined AL with projected Newton method.

4.2.3 Primal-Dual Interior Point
Figure 4.11 shows trajectories generated by the primal-dual interior point based iLQR
method, while being initialized with zero velocity and accelerations. While the trajectories
of the feasible interior point method are depicted in Figure 4.11a, Figure 4.11b shows the
trajectories computed by the infeasible interior point algorithm. From Figure 4.11a it can
be seen that the feasible interior point algorithm is not able to generate trajectories that
reach the desired endpoints for (1) and (6). Due to the barrier approach to handle the
inequality constraints, the solution stays feasible during the whole optimization procedure
and the algorithm tends to avoid narrow areas. Hence the algorithm prefers a longer path
to the desired end configuration and the control limits are too small to actually reach these
configurations. Since the infeasible interior point algorithm allows constraint violations
(but keeps them as small as possible), it is actually able to reach end configuration (6),
as can be seen in Figure 4.11b. Hence, the infeasible interior point algorithm has some
advantages in narrow environments compared to the feasible one.

Figure 4.12 shows the control trajectory that belongs to trajectory (1) in Figure 4.11.
Since there is no qualitative difference in the time evolution of the feasible and the
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(a) Feasible Interior Point (b) Infeasible Interior Point

Figure 4.11: Resulting state trajectories using the primal-dual interior point method.

infeasible interior point algorithm, only the results of the former one are visualized in
Figure 4.12.

Figure 4.13 shows the cost evolution of the interior point based constrained iLQR. It
can be seen that far more iterations are required compared to the augmented Lagrangian
method in Figure 4.7 and the combined approach in Figure 4.10. Similarly, the cost
reduction is much slower compared to the augmented Lagrangian method. As discussed in
Chapter 3, the cost decreases when the barrier parameters are reduced, which is in contrast
to the augmented Lagrangian method. Again, note that the cost function (4.23) is not
directly optimized by the interior point method, but rather (2.40) and (2.56), respectively.

All in all, the results suggest that the augmented Lagrangian approach is better suited
to incorporate collision constraints compared to feasible and infeasible primal-dual interior
point methods.
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Figure 4.12: Resulting control trajectories using the primal-dual interior point method.
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Figure 4.13: Cost evolution of the primal-dual interior point method.
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4.2.4 Runtime Comparison
This section deals with the runtimes required by the different constrained iLQR methods.
The algorithms are implemented in Matlab and converted to mex using Matlab codegen.
For all seven end configurations, the runtime is measured 100 times for each algorithm
and the resulting distributions are depicted in Figure 4.14. Hence, the pure augmented
Lagrangian approach is clearly the fastest for this application.
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Figure 4.14: Runtimes of different trajectory optimization techniques (blue: augmented
Lagrangian, red: augmented Lagrangian with projected Newton, yellow:
feasible primal-dual interior point, green: infeasible primal-dual interior
point).

The primal-dual interior point algorithms require higher computation times compared
to the other iLQR based methods. Figure 4.15 depicts the average runtime per iteration
for the different algorithms. It shows that, even though the overall runtime of the interior
point based method is worse than the augmented Lagrangian based ones, the computation
time required per iteration is still comparable to the pure augmented Lagrangian approach.
Hence, the main reason for the slower performance of the interior point method is the
large number of iterations required, which, however, originates from the barrier nature
of the algorithm. Especially at the beginning, the algorithm requires a large number of
iterations until the trajectory starts passing the objects. Figure 4.16 shows the step size
distribution of the algorithms. The pure augmented Lagrangian approach clearly uses
larger step sizes than both interior point methods, which is the source of the remaining
difference in runtime shown in Figure 4.15. Additionally, it can be observed that the
infeasible interior point algorithm achieves lower runtimes per iteration than the feasible
counterpart, even though the step size distributions in Figure 4.16 are comparable. The
infeasible interior point algorithm does not require additional evaluation of the inequality
constraints for the step size selection procedure, which is why one iteration can be faster
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Figure 4.15: Mean runtimes per iteration of different trajectory optimization techniques
(blue: augmented Lagrangian, red: augmented Lagrangian with projected
Newton, yellow: feasible primal-dual interior point, green: infeasible primal-
dual interior point).

than for the feasible interior point method.
The relation of the runtimes in Figure 4.14 and the runtimes per iteration in Figure 4.15

of the pure augmented Lagrangian approach and the one combined with the projected
Newton method is quite similar. Figure 4.16 shows that one source of runtime difference
is the requirement for smaller step sizes of the combined approach. However, while the
mean runtime of the combined approach is smaller than the one of the interior point
methods, Figure 4.15 shows that the mean runtime per iteration becomes larger, even
tough the average step size in Figure 4.16 is still larger. Hence, the larger runtime per
iteration originates from the underlying constrained quadratic programming algorithm.
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Figure 4.16: Step size distribution of the different trajectory optimization techniques (blue:
augmented Lagrangian, red: augmented Lagrangian with projected Newton,
yellow: feasible primal-dual interior point, green: infeasible primal-dual
interior point).

4.3 Model Predictive Control
This section deals with the implementation of an MPC based online trajectory planner
using the iLQR algorithms from Chapter 2. The requirements for the MPC are as follows:

R1) The MPC has to be able to bring the crane to a desired end configuration without
any collisions and without any other constraint violations.

R2) The MPC has to be able to stabilize the non-actuated degrees of freedom on arrival
at the desired end configuration, i.e. the velocity of the non-actuated joints has to
be zero and no oscillations shall occur.

R3) The MPC has to be able to compute the control command fast enough, i.e. an
upper limit is given by the sampling time.

The following experiments focus on the ability of the MPC algorithm to fulfill R1)-R3).
Note that, in general, there are many more requirements, e.g. robustness to parameter
uncertainties and so on. However, since the main focus of this thesis is the evaluation of
iLQR algorithms for collision-free motion planning problems, no further studies regarding
robustness are performed. Additionally, the actuated joints of the crane are assumed to
be velocity controlled and the design of these lower level controllers is out of scope of this
thesis. Due to these reasons, inaccuracies due to tracking errors of the velocity controllers
are not studied here.
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The MPC computes acceleration commands ud(k̃Ts) = u∗̃
k

∈ ❘m at each discrete time
k̃ ∈ N as a solution of the optimal control problem

min
uk̃,...,uk̃+N−1∈❘m

J(uk̃, . . . , uk̃+N−1) (4.26a)

s.t. qA,k+1 = qA,k + q̇A,kTs + 1
2ukT 2

s (Sys. dyn.) (4.26b)

qU,k+1 = qU,k + q̇U,kTs + 1
2 q̈U,k(qk, q̇k, q̈A,k)T 2

s (4.26c)

q̇A,k+1 = q̇A,k + uTs (4.26d)
q̇U,k+1 = q̇U,k + q̈U (qk, q̇k, q̈A,k)Ts (4.26e)

(4.26f)
h(q) ≤ 0 (Collisions)

(4.26g)
u ≤ uk ≤ u (Ctrl. limits)

(4.26h)
q ≤ qk ≤ q (State limits) .

The desired velocities q̇A,dvc passed to the lower level velocity controllers are computed
using

q̇A,dvc(t) = q̇A,k + (t − kTs)uk , kTs ≤ t < (k + 1)Ts , (4.27)

where q̇A,k = q̇A(kTs) is the measured or estimated velocity of the actual system at time
kTs. Since exact velocity tracking is assumed here, the desired and true velocities and
accelerations of the actuated joints are assumed to be equal.

Motivated by [35], the MPC is formulated as endpoint stabilization with the cost for
the optimal control problem (4.26) being

J(uk̃, . . . , uk̃+N−1) = ϕ(qA,k̃+N , q̇k̃+N ) +
k̃+N−1∑

k=k̃

l3(qA,k, q̇k, uk)Ts (4.28)

with

ϕ(qA, q̇) = (qA − qA,d)TP(qA − qA,d) + q̇TRq̇ (4.29a)
l3(qA, q̇, u) = (qA − qA,d)TW(qA − qA,d) + q̇Vq̇ + uTQu , (4.29b)

where qA,d ∈ ❘nA is the desired end configuration of the crane. The positive definite
matrices P ∈ ❘nA×nA and R ∈ ❘n×n are chosen as diagonal matrices with entries 100.
Similarly, W ∈ ❘nA×nA is a diagonal, positive definite matrix with diagonal elements
1. For the diagonal, positive definite matrix V ∈ ❘n×n the diagonal elements are 0.1
for those elements which penalize actuated velocities and 1 for those ones penalizing
non-actuated velocities. Finally, Q ∈ ❘m×m is a positive definite diagonal matrix with
diagonal elements 1. The controller is operated with Ts = 100 ms and N = 50.
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The runtime required in the first iteration is not that critical because it can be computed
offline in advance. In order to speed up the optimization in the following iterations, the
control trajectories gained in the previous iteration are used for initialization.

In the following, the performance of the different constrained iLQR algorithms from
Chapter 2 is evaluated as underlying solver for the MPC. However, since the specific
choice of the penalty-Lagrangian function (2.30), (2.33) and (2.36) has little impact on the
result, (2.36) is used for the following experiments. Additionally, since the feasible interior
point algorithm from Section 2.2.3 in general does no allow to initialize the algorithm with
the resulting control trajectories of the previous iteration, only the infeasible counterpart
is considered. The experimental setup is equal to the one used in Section 4.2 and is
depicted in Figure 4.4. Point (1) visualizes the position of frame F5 the MPC aims to
reach. However, note that in the optimization problem the desired end configuration is
given by the generalized coordinates qA,d of the actuated joints.

4.3.1 Augmented Lagrangian

Figure 4.17: Resulting state trajectory of the simulated, augmented Lagrangian based
MPC-controlled crane.

The resulting trajectory of the simulated MPC-controlled crane that uses augmented
Lagrangian-based iLQR as underlying solver, with the desired end configuration (1) from
Section 4.2, is depicted in Figure 4.17 and Figure 4.21 shows the corresponding control
inputs with their limits. The trajectory of the generalized coordinates are visualized
in Figure 4.19. The MPC is able to bring the crane into the desired end configuration
without any collision and any violation of the control limits. Additionally, no abrupt
movements of the non-actuated joints occur. Figure 4.20 depicts the generalized velocities
of the non-actuated joints. Hence, the controller is able to stabilize the non-actuated
degrees of freedom in the final end configuration.

The required runtime of the MPC at each sampling time is depicted in Figure 4.18.
Hence, the MPC is able to compute the control inputs with runtimes lower than Ts = 100
ms (even in the first iteration).
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Figure 4.18: Runtime required by the MPC based on augmented Lagrangian iLQR.
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Figure 4.19: Resulting generalized actuated coordinates qA of the simulated, augmented
Lagrangian based MPC-controlled crane.
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Figure 4.20: Resulting generalized non-actuated velocities q̇U of the simulated, augmented
Lagrangian based MPC-controlled crane.
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Figure 4.21: Resulting control inputs u of the simulated, augmented Lagrangian MPC-
controlled crane.
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4.3.2 Augmented Lagrangian with Projected Newton
The resulting trajectories of the combined augmented Lagrangian with the projected
Newton method is qualitatively equal to the ones of the pure augmented Lagrangian
approach. Hence, in order to save space, they are not explicitly outlined here.
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Figure 4.22: Runtime required by the MPC based on augmented Lagrangian with the
projected Newton iLQR.

Figure 4.22 shows the runtimes of the combined augmented Lagrangian with the
projected Newton approach. The first iteration, which requires approximately 0.58 s,
is not depicted for clarity. Hence, the runtime required in order to compute the initial
trajectory is by far larger than for the pure augmented Lagrangian approach. As discussed
in Section 4.2 and Section 3.2, this comes from the bad initial active set guesses for
the control inputs. However, note that all other runtimes of the MPC based on the
combined approach in Figure 4.22 are comparable to the ones of the MPC based on the
pure augmented Lagrangian approach in Figure 4.18 and at the beginning (approximately
≤ 2 s) they are on average even slightly smaller. Since the resulting control trajectories
from the previous optimization are used as initialization, the active set estimation of
the projected Newton method is better than in the initial iteration. In summary, all
time-critical optimizations converge fast enough, i.e. in less time than Ts = 100 ms.

4.3.3 Primal-Dual Interior Point
Figure 4.23 visualizes the resulting trajectory of the simulated MPC-controlled crane that
uses primal-dual interior point based iLQR. Other than the results from the algorithms
based on the augmented Lagrangian method to incorporate collision constraints, c.f.
Figure 4.17, the algorithm avoids the narrow space between the stanchions. As discussed
in Section 4.2 and Section 3.2, this behavior comes from the barrier characteristics of
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the algorithm. However, the algorithm is able to bring the crane into the desired end
configuration without any collision, c.f. Figure 4.23 and Figure 4.25, and without any
violations of the control limits, c.f. Figure 4.27. Additionally, abrupt movement of the
non-actuated joints are avoided.

Figure 4.23: Resulting state trajectory of the simulated, primal-dual interior point based
MPC-controlled crane.

Figure 4.26 shows the generalized velocities of the non-actuated joints. Hence, the MPC
is able to stabilize the non-actuated joints at the end configuration.

The runtime of the primal-dual interior point algorithm is depicted in Figure 4.24. The
first iteration, which requires approximately 0.18 s, is not depicted for clarity. The later
runtimes are comparable to the ones of the augmented Lagrangian based approaches and
even faster in some cases. However, note that the algorithm avoids the narrow space
between the stanchions. Passing them introduces two conflicting constraints the algorithm
has to handle, which is why it is difficult to directly compare these runtimes.
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Figure 4.24: Runtime required by the MPC based on primal-dual interior point iLQR.
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Figure 4.25: Resulting generalized actuated coordinates qA of the simulated, primal-dual
interior point based MPC-controlled crane.
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Figure 4.26: Resulting generalized non-actuated velocities q̇U of the simulated, primal-dual
interior point based MPC-controlled crane.
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Figure 4.27: Resulting control inputs u of the simulated, primal-dual interior point based
MPC-controlled crane.



5 Conclusions and Outlook
This thesis studied different constrained iLQR methods with application to collision-
free trajectory planning of a timber crane. Two recent methods based on augmented
Lagrangian, as presented in [22], and primal-dual interior point, as presented in [30], are
investigated in order to integrate the collision constraints as well as state and control
limits into the iLQR approach. Additionally, a third algorithm that uses the method from
[22] for collision and state limits combined with the projected Newton method, presented
in [19], to incorporate control box constraints is implemented and compared to the other
concept. Numerical experiments show that the augmented Lagrangian method is very
well suited for collision avoidance applications and the combined augmented Lagrangian
with the projected Newton method leads to improved performance for conflicting state
and control constraints. However, the combined approach might result in a degraded
convergence if the clamping operations impair the quality of the search direction too much.
While there are for sure constraints where the barrier nature of the interior point method
has nice properties, like e.g. it avoids too fast progress into the direction of state and
control limits, it turns out to be not that suited for collision constraints. Especially when
free space becomes narrower, the algorithm requires a large number of iterations until
the trajectory starts passing an object. On the one hand, this increases the runtimes
compared to the augmented Lagrangian method and on the other hand, it may result in
suboptimal trajectories because the barrier function forces the trajectory to keep larger
distances to objects, in particular at the beginning of the optimization.

Based on these results, an MPC based trajectory planner is implemented using the
constrained iLQR algorithms presented in Chapter 2. The results show that all three
algorithms are able to navigate the crane to the desired end configuration without any
collisions. Additionally, all algorithms are able to perform the optimization in less than
Ts = 100 ms, which renders all of them fast enough. However, similar to the offline
trajectory planning, the primal-dual interior point methods avoid narrow spaces.

In this thesis, collision objects are assumed to be known and static, This does not
necessarily hold true for autonomous systems operating in unknown and dynamic environ-
ments. Hence, the system must be able to handle static and dynamic components of the
environment. This leads to additional challenges for future research:

• Static Map Representation: There are many different map representations, most
of them developed for small-scale systems, that can be represented by a single, or a
few, point locations like cars or drones. However, the question arises which of these
representations is suited for motion planning of large-scale structures like the timber
crane regarding both, runtime and memory requirements. Additionally, sensors used
to generate those maps are noisy and parts of the environment are occluded from
certain sensor locations. Hence, a representation not only has to be well suited for
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motion planning, but for the mapping task as well. Additionally, it is clear that the
accuracy of the generated map influences the quality of the planned trajectory, but
it is possible to consider certain aspects regarding the mapping task during planning
as well, e.g. to plan a trajectory that in some sense optimizes occluded areas or
viewpoint locations.

• Dynamic Object Representation: In real-world applications there are not only
static collision objects. Similar to the static case, the question arises which rep-
resentation is best to be able to estimate location and other properties of moving
objects and to incorporate the acquired information into an online motion planning
algorithm. One of the main challenging requirements for all algorithms used for
this task is the necessity of low computation times in order to be able to perform
real-time online planning.

In order to handle these requirements, this work suggests iLQR solvers based on the
augmented Lagrangian method might be for such tasks. However, in more complex
environments proper trajectory initialization methods must be incorporated in order to
prevent the planner to get stuck at local minima not reaching the desired end configuration.



A GJK Algorithm for Collision Detection
Collision detection is a problem with applications in robotics, computer-aided design and
computer graphics. The so called Gilbert-Johnson-Keerthi (GJK) Algorithm [36], named
after its authors, is specifically designed for optimal path planning and allows to determine
the distance between two convex objects. However, the initial algorithm was limited to
objects represented as polytopes and an extension to general convex object was presented
in [37]. Instead of modeling objects as convex hull of a finite set of points as done in [36],
[37] uses the corresponding support mappings to model convex objects.

For the application of collision avoidance in robotics it is sufficient to consider objects
in the Euclidean space ❘2 or ❘3. In order to tackle both cases, this section gives a more
general formulation in the Euclidean space ❘n. An object is defined as the set of points
that is occupied by the volume of the object, i.e. an object in ❘n is a compact and convex
set O ⊂ ❘n. The set of all objects, i.e. the set of all convex and compact subsets of ❘n,
is denoted by D ⊆ 2❘n .

The distance between two objects O1, O2 ∈ D is defined by the mapping

d : D × D → ❘, (O1, O2) -→ min{‖p1 − p2‖2 : p1 ∈ O1, p2 ∈ O2} . (A.1)

Note that the minimum is well defined because each object is a compact set.
Another important mapping is the one that maps an object O ∈ D to a point p ∈ O

that is closest to the origin, i.e.

ν(O) := arg min{‖p‖2 : p ∈ O} . (A.2)

Again, since O is a compact set the minimum always exists. However, ν(O) might not be
unique. It is easy to verify that for O1, O2 ∈ D the relation

d(O1, O2) = min{‖p‖2 : p ∈ D} = ‖ν(D)‖2 D := O1 − O2 (A.3)

holds. Hence, two object collide, if and only if 0 ∈ D. While the Minkowski-difference
D := {p1 − p2 : p1 ∈ O1, p2 ∈ O2} of two convex sets O1, O2 is convex and compact, i.e.
D ∈ D, it is generally more complex than both, O1 and O2. However, the GJK algorithm
allows to avoid the explicit computation of this difference.

The support function of an object O ∈ D maps any direction d ∈ ❘n to the maximum
distance of a point p ∈ O in the direction of d, i.e. it is defined by

hO : ❘n → ❘, d -→ max{d · p : p ∈ O} . (A.4)

The point that maximizes the distance in direction of d can be retrieved by the corre-
sponding support mapping sO(d).
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Figure A.1: Visualization of the GJK algorithm in two dimensions.

The GJK algorithm determines d(O1, O2) using repeated evaluations of hD and sD,
D := O1 − O2. However, as already mentioned, it is not required to explicitly compute D,
because

hD(d) = hO1(d) − hO2(−d) and sD(d) = sO1(d) − sO2(−d) (A.5)

for any two objects O1, O2 ∈ D and d ∈ ❘n.
The main idea of the GJK algorithm is to generate a sequence (Sk)k∈◆ with Sk ⊆ D

s.t. ν
(
conv(Sk)

) → ν(D) as k → ∞, where conv(·) denotes the convex hull. The

Algorithm 3 GJK Algorithm
Require: Objects O1, O2 ∈ D, initial points p1, . . . , pm ∈ D := O1 − O2, 1 ≤ m ≤ n + 1

k ← 0
Initialize the simplex S0 ← {p1, . . . , pm}, i.e. S0 ⊆ D is a simplex in D.
while true do

Compute the minimum norm point νk ← ν
(
conv(Sk)

)
if gD(νk) = 0 then

return νk

else
Compute the smallest subset S̄k ⊆ Sk s.t. νk ∈ conv(S̄k) and |S̄k| ≤ n.
Update Sk+1 ← S̄k ∪ {sD(−νk)} using sD(−νk) = sO1(−νk) − sO2(νk).
k ← k + 1

end if
end while

GJK algorithm is summarized in Algorithm 3 and Figure A.1 visualizes one iteration
of the algorithm for n = 2. Given an initial simplex S0 := {p1, p2, p6}, the algorithm
first determines the point ν0 that has minimum norm visualized by the blue vector in
Figure A.1. The set S̄0 = {p2, p6} is then determined choosing at most n = 2 points in S0
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for which ν0 ∈ conv(S̄0) is satisfied. In Figure A.1 ν0 lies on the line that connects p2 and
p6, which is why S̄0 := {p2, p6}. Finally, the point sD(−ν0) that maximizes the projection
onto ν0 is used to form S1 = S̄0 ∪ {sD(−ν0)}. Since sD = sconv({p1,...,p6}) = s{p1,...,p6} it
holds that sD(−ν0) = p4.

The function g used as termination criterion is defined as

gD : ❘n → ❘≥0, ‖νk‖2
2 + hD(−νk) . (A.6)

There are two cases:

• Case gD(νk) = 0: This case occurs if and only if hD(−νk) = −‖νk‖2
2 = −νT

k νk. By
the definition of hD is follows that for every p ∈ D it holds that −νT

k p ≤ −‖νk‖2
2

and thus

‖p‖2 = pTp
‖p‖2

≥ νT
k p

‖νk‖ ≥ ‖ν‖2 . (A.7)

Hence, there is no p ∈ D with ‖p‖2 < ‖νk‖, which is why the property

gD(νk) = 0 ⇐⇒ νk = ν(D) (A.8)

holds. Hence, we know that νk is the minimum norm point in D, i.e. it is the
minimum distance vector between O1 and O2.

• Case gD(νk) > 0: In this case it can be shown that the property

∃νk+1 ∈ conv({νk, sD(−νk)}) : ‖νk+1‖ < ‖νk‖ (A.9)

holds. Since νk ∈ conv(Sk), Sk ⊆ ❘n and |Sk| ≤ n + 1 it is possible to represent νk

by a convex combination (which is a linear combination too) of at most n elements of
Sk. Hence, the existence of S̄k+1 with |S̄k| ≤ n and νk ∈ S̄k is guaranteed. Obviously
conv({νk, sD(−νk)}) ⊆ S̄k ∪ {sD(−νk)} from what follows that νk+1 = ν(Sk) with
‖νk+1‖ < ‖νk‖ exists.

A convergence proof for polytopes generated by a finite set of points is given in [36].
More specifically, if an object is represented by a convex polytope generated by a finite
number of points, the algorithm terminates in a finite number of iterations. An extension
to general convex objects not necessarily generated by the convex hull of a finite number
of points is presented in [37]. In this case, an object is fully characterized by its support
mapping sO. However, there is no proof that the algorithm terminates after a finite
number of iterations, but asymptotic convergence can be shown. Additionally, a proper
termination constraint has to be chosen. In order to compute the minimum distance
from the origin, the original work [36] uses the so called Johnson’s algorithm, originally
provided in [38].
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