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Abstract

New generations of integrated programmable logic devices offer more and more resources,

which makes them very attractive for implementing even complete systems on chip. Advancing

miniaturization, higher integration, continuously decreasing supply voltage and other changing

parameters lead to a situation where fault effects that previously were an issue only in extremely

harsh environments, e.g. space missions, are now impacting the circuits also in “normal” en-

vironments. At the same time the probability for multiple faults occurring during operation is

increasing. This diverging evolution – increasing complexity vs. decreasing (system) reliability

– is getting a serious problem for high reliability applications.

While a lot of methods exist to handle transient faults, there are no consolidated concepts

available for permanent faults. Traditional fault tolerance concepts, e.g. TMR, are usually costly

in terms of hardware resources, mass and power consumption. Furthermore, for highly complex

systems it is difficult to predict the failure modes. In particular for those high-reliability appli-

cations, where a repair is very expensive or even impossible, the trend goes towards adaptive

systems, that can autonomously cope with failure situations as they arise.

In this thesis a self-healing concept for integrated digital logic is presented. The approach

is based on asynchronous circuits and uses uses a redundant pipeline as basic circuit structure.

Combinational logic is replaced by reconfigurable Self-Healing Cells (SHC). The inherent prop-

erties of the asynchronous design style FSL simplifies the design of a fault tolerant system, as

it features e.g. fail-stop behavior without additional effort. A watchdog circuit monitors the

circuit’s activity and triggers the reconfiguration controller to start the circuit reconfiguration in

case of a deadlock. As soon as a valid data and acknowledge path is established, the pipeline

autonomously starts working again. In general, this procedure works without loss or corruption

of data. However, the pipeline structure and the applied reconfiguration algorithm influence the

sensitivity to timing effects and the probability for a successful repair.

To verify the function of the concept, a VHDL model of the self-healing pipeline as well

as of several different reconfiguration controllers was designed. In addition an abstract Matlab

model was established and used for exhaustive fault injection simulations. Finally, the circuits

were implemented in a Xilinx Virtex-4 FPGA and hardware fault injection experiments were

performed. All models used the same stimulus interface, so that identical situations could be

investigated and compared on different abstraction levels.

The results justify the suitability of the approach for increasing the fault tolerance of inte-

grated circuits: All single faults, more than 80% of the double faults and nearly 60% of triple

faults can be tolerated by the developed concept, while introducing a hardware overhead com-

parable to a TMR system.
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Kurzfassung

Neue Generationen von integrierten, programmierbaren Bauelementen stellen ausreichend Res-

sourcen zur Verfügung, um komplette “Systems-on-Chip” (SoC) zu realisieren. Fortschreitende

Miniaturisierung, höhere Integrationsdichten, sinkende Versorgungsspannungen und einige an-

dere Parameterveränderungen führen dazu, daß Fehlereffekte, die bisher nur in extremen Um-

gebungsbedingungen wie z.B. im Weltraum von Relevanz waren, nun auch Schaltungen in nor-

maler Umgebung stören können. Gleichzeitig steigt auch die Wahrscheinlichkeit für Mehrfach-

fehler während des Betriebs. Diese divergierende Entwicklung – steigende Komplexität und sin-

kende (System-) Zuverlässigkeit – wird zunehmend zu einem signifikanten Problem für hoch-

zuverlässige Anwendungen.

Während für die Mitigation von transienten Fehlern zahlreiche etablierte Methoden existie-

ren, ist die Behandlung von permanenten Fehlern weitgehend unerforscht. Traditionelle Mass-

nahmen, wie z.B. TMR, sind oft aufgrund ihres Ressourcenverbrauchs, zusätzlicher Masse und

erhöhter Leistungsaufnahme unattraktiv. Weiters sind die Fehlerauswirkungen in komplexen

Systemen schwer vorherzusagen. Insbesondere für Anwendungen, in denen eine Reparatur sehr

teuer oder sogar unmöglich ist, wird nun versucht, eine gewisse Autonomie in der Fehlerbehand-

lung zu erzielen.

Diese Dissertation beschreibt ein selbstheilendes System für integrierte digitale Logik. Das

Konzept verwendet eine redundante asynchrone Pipeline als Ausgangsstruktur. Kombinatorische

Logik wird durch sogenannte selbstheilende Zellen (SHC) ersetzt. Insbesondere die asynchrone

Design-Methodik FSL bietet einige inhärente Eigenschaften, die für ein fehlertolerantes System

von Vorteil sind (z.B. “fail-stop” Verhalten). Ein Watchdog überwacht die Schaltungsaktivität

und startet im Fehlerfall eine Rekonfiguration. Sobald gültige Signal-Pfade vorhanden sind, setzt

die Pipeline ihre Arbeit fort. Grundsätzlich werden die Daten dabei nicht gestört. Die enstehende

Struktur der Pipeline beeinflusst jedoch das zeitliche Verhalten und kann zu Problemen führen.

Für die Verifikation des Konzepts wurde ein VHDL Modell sowohl der Pipeline als auch

unterschiedlicher Algorithmen entwickelt, sowie auch ein abstraktes Modell in Matlab. Schließ-

lich wurde die Schaltung in einem Xilinx Virtex-4 FPGA implementiert und umfangreichen

Experimenten unterzogen. Alle Modelle verwenden den gleichen Kontollmechanismus, sodass

idente Situationen in allen Modellen auf unterschiedlichen Abstraktionsebenen untersucht wer-

den konnten.

Die Ergebnisse beweisen die Eignung des Konzepts für die Erhöhung der Fehlertoleranz

in integrierten Schaltungen: alle Einzelfehler, mehr als 80% der Doppelfehler und fast 60%

der Dreifachfehler konnten behoben werden, während der zusätzliche Ressourcenaufwand ver-

gleichbar mit TMR Systemen ist.
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CHAPTER 1
Introduction

The complexity of applications is continuously increasing and at the same time the requirements

on power consumption, reliability and performance become more and more stringent. The semi-

conductor industry is following the demands from application side very well and offers more

resources, higher operating speed and less power consumption at lower supply voltage each new

chip generation. In 1965 Gordon Moore [91] predicted a duplication of resources per square

inch every 18 months1. More than 40 years later the International Technology Roadmap for

Semiconductors (ITRS) [58] shows that this prediction is still fairly true and, as can be seen in

Figure 1.1 [119], has not yet reached the end.

Although this evolution was and is one of the major contributors for the level of technology

we have reached, the designers are also facing new challenges:

1. Susceptibility to Faults: Due to the lower charge stored at the circuit nodes the chips

become more prone to various fault effects. For example, in the past transient faults like

Single-Event-Upsets (SEUs) were a serious problem only in extreme environments such

as space, but now become problems even in on-ground applications [46,63,94,128]. Apart

from soft-errors, the increased technology scaling causes more and more manufacturing

imperfections [39, 93, 110]. On the one hand, this decreases the yield and thus increases

the component costs. On the other hand, some of these faults might even not be detected

during manufacturing tests, and may appear as permanent faults even after a long time of

successful operation. So, recently also permanent defects gained higher attention [4, 72].

Moreover, the single-fault model seems to become outdated. The probability for multiple

errors caused by a single fault event is increasing, and a massive number of defects has to

be assumed [1].

2. System Complexity: The increasing complexity of the applications makes system failures

more difficult to predict and to understand. Thus, they are often not considered sufficiently

in the system design. Furthermore, new and powerful technologies and semiconductor

1The time horizon varies between 12 and 24 months but seems to settle at 18 months.
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Figure 1.1: Trend of Feature Size [119]

processes are often either not available or not tolerated, respectively, in conservative in-

dustries (such as space), or are not robust enough - and the available robust technologies

typically lack in performance. For example, radiation-tolerant anti-fuse FPGAs offer less

than 1/10 of the resources compared to SRAM-based FPGAs [40]. As a consequence, the

components selected for such applications often have to be operated at their limits.

3. Electromagnetic Field (EMF) Pollution: The operation environment becomes harsher due

to increasing EMC disturbances caused by the huge number of wireless services (WiFi,

Bluetooth, mobile communication, GPS, etc.).

4. Extreme Application Demands: The progress in technology causes new areas of appli-

cations to evolve. For example, interplanetary space missions [22] where the spacecraft

is “on the way” for several years, require a highly robust circuit and autonomous failure

detection, isolation and repair (FDIR), as a manual repair is not possible.

5. Use of complex integrated circuits in critical applications: While failing systems and sub-

systems due to defective components might be tolerated to some extent in consumer elec-

tronics, this is absolutely not acceptable in applications where human life is jeopardized

or where human interaction (e.g. repair) is not possible or extremely expensive. Typical

examples for the latter ones are automotive, aerospace and space applications.

2



This list is certainly not complete, but illustrates some important issues that need particular

attention.

In conservative industries, e.g. the space industry, the traditional approach to gain high

reliability is fault avoidance by using screened components and reducing component stress by

parameter derating. Of course, high quality components are very expensive, and nevertheless

there is a limit that can only be overcome by additional means. Rather than trying to make the

components perfectly reliable, the trend now changes to build reliable systems from unreliable

components [4] – which requires fault tolerance techniques.

1.1 Motivation

The traditional approach to increase fault tolerance of unreliable modules is to apply hardware

redundancy on system level [115]. The granularity is typically rather coarse and thus quite ex-

pensive in terms of hardware costs. In addition, dedicated fault control mechanisms are required,

which regularly check some characteristics of the system and decide, when the redundant sec-

tion shall be used. A significant amount of resources usually has to be spent on the management

of the implemented fault tolerance mechanisms.

Each new generation of programmable logic devices, such as FPGAs and ASICs, provides

more and more resources, so that these components are increasingly used to accomplish the main

functionality of an application. However, as they comprise the functionality of a huge system

of earlier days in a single chip, this implies that they become critical elements in the system.

Although their failure rate is rather low [16], in particular for long mission times the probability

for even multiple faults can become an issue. While a lot of methods for handling transient faults

are well established, there are hardly any concepts available to deal with permanent faults.

From an application point of view there is a demand on a generic and reliable hardware plat-

form, which can handle transient as well as permanent faults, and which is able to autonomously

recover from faults without external interaction. Runtime reconfiguration is deemed to be a

promising way to provide such features.

Methods applied on transistor level are considered to be too specific, and furthermore would

require completely new component libraries. The solution to be found should therefore apply

on gate level, which will also ease the development and prototyping.

Irrespectively of the implementation, some kind of diagnosis is required first to locate the

fault. Here asynchronous logic has significant advantages, as it is inherently tolerant against

timing variations e.g. caused by changed circuit routings, and it tends to stop operation in the

presence of permanent faults [3]. Although asynchronous logic is not well established at least

for large applications and lacks from appropriate design tools, it was already shown that it is

possible to implement reasonably complex asynchronous circuits such as processors even in

standard FPGAs [14].

The main drawback of asynchronous circuits is the inherent logic overhead due to the design

technique, e.g. handshake protocols, dual rail encoding, etc. However, by improving the design

flow it is possible to reduce the overhead significantly [26]. Anyway, the hardware overhead is

not seen as major criterion for this thesis.
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1.2 Contribution and Objectives

This thesis describes an adaptive system, which is able to autonomously perform all necessary

tasks to stay alive, while the higher level application can rely on a correctly working hardware

and can concentrate on the intended function instead of dealing with fault tolerance.

The concept implements autonomous self-repair within integrated circuits on gate level and

can be based on existing processes and design tools. This requires to decompose the circuit into

parts with appropriate granularity, which are then implemented by flexible, reliable structures.

These elements allow being reconfigured in case errors occur to bypass the defective resources

with working ones. The concept is based on asynchronous logic and makes use of the inherent

properties, such as fail-stop behavior. The reconfiguration is performed during runtime and

is transparent to the application. The only impact is increased delay, which is tolerated by

definition of an asynchronous circuit.

The methodology presented in this thesis is called self-healing, as the aim is to achieve a

completely autonomous handling and repair of faults occurring during operation. The main

objectives can be summarized by the following items:

• Recover from multiple permanent faults and errors

• occurring in integrated circuits, irrespectively of their origin

• within a predictable timing

• with deterministic measures

• by autonomous reconfiguration

• transparent to the application

• using existing processes and standard libraries

Although the considerations in this thesis are not focused on a particular application, harsh

environment and high reliability as e.g. needed in space applications, are always kept in mind

regarding their special requirements. This implies e.g. that the circuit behavior shall be deter-

ministic and reproducible so that it can be well analyzed although the circuit architecture might

evolve during operation.

To achieve these goals a novel structure of self-repairing blocks was developed. Three im-

portant topics, namely fault detection, diagnosis and repair, are of particular interest and needed

to be harmonized. The behavior of asynchronous pipelines in the presence of permanent (mul-

tiple) faults is investigated in detail and various reconfiguration options are analyzed. An archi-

tecture as well as algorithms for fault removal are presented and the optimum reconfiguration

strategy is elaborated. The effectiveness and suitability of the concept is proven by simulations

and hardware experiments.

Within the scope of this thesis several generic tools as well as simulation and analysis mod-

els were established, which allow comparing different implementations, architectures and algo-

rithms in a structured and deterministic way.
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1.3 Structure of the Thesis

Chapter 2 briefly describes the terminology used in this thesis and gives an overview about

the considerations for fault tolerant systems on chip level. Furthermore, the basic principle of

asynchronous logic in general and the used design style Four State Logic (FSL) in particular is

described.

Chapter 3 presents the state-of-the-art of circuit reconfiguration in integrated circuits. The

concepts are presented and evaluated with respect to the requirements and needs defined for this

thesis.

Chapter 4 presents details about the developed architecture and the methodology for circuit

reconfiguration. It is explained how to apply the concept to a standard FSL circuit. The behavior

of FSL pipelines in failure cases and the respective observable symptoms are derived, which

builds the prerequisite for establishing an appropriate reconfiguration algorithm later on. Lastly,

the overhead of the self-healing approach is assessed.

In chapter 5 the results of all simulations, analysis and experiments as well as a description

of the used tools, development and prototyping environments is presented. Different reconfigu-

ration algorithms are implemented in a simulation model as well as in hardware and compared

with each other. The proof-of-concept is established by - among several other simulations and

experiments - the implementation of a complex video processing circuit and by hardware fault

injection experiments. A reliability analysis is performed for an exemplary circuit to evaluate

the gain of reliability for the developed concept. The results are compared with other state-of-

the-art methods.

Finally, chapter 6 forms the conclusion. The work is compared with the initial goals and an

outlook to future work is given.
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CHAPTER 2
Principles of Fault Tolerance and

Asynchronous Logic

2.1 Basics of Fault Tolerance

This section presents an overview and clarification of commonly used terms related to reliability

and fault tolerance. Details can be found e.g. in [2].

2.1.1 Terminology

Errors may appear unpredictably in every electronic circuit. The method, how to cope with the

error and to which extent this has to be done, depends on the application and its criticality in the

system. The threats to a system can be distinguished into three main categories: faults, errors

and failures [73].

• The term fault is used to describe the cause of an error in a system. A fault is an action

or event that affects a system in a way that an error can occur, however, the existence of

faults does not necessarily imply that an error occurs. Possible faults could be e.g. single

event effects due to radiation.

• Error describes an unintended system state due to a manifested fault. Errors may be

explicitly related to external events (e.g. EMC or radiation) or e.g. due to defective

components, aging effects of components inside the chip, etc. The existence of an error

still does not necessarily imply that the system fails. If the error is e.g. located in unused

resources or in a currently unused circuit part, it will not affect the circuit functionality,

at least until this part or these resources come into operation. An error that has not yet

triggered a failure is called latent.

• Failure is the effect visible from the outside world, i.e. a deviation from the system speci-

fication caused by an error that has propagated to the system boundary. This could be e.g.
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a wrong result or a result produced at a wrong (unexpected) time. Failures can already

occur at component level, e.g. if a transistor does not fulfil its specified performance any

more. A failure in a subsystem might become a fault in the higher level system.

The causal relationship between these terms and the propagation between system boundaries

can be expressed by the “fundamental chain” [2]:

... → failure → fault → error → failure → fault → ...

A system should be designed so that no single-point failure exists, i.e. that no single

fault/error causes the system to deviate from the specification. Typically, this is analyzed in

a Failure Mode, Effects and Criticality Analysis (FMECA) [95].

While some effects can be handled by preventive actions aiming for fault avoidance (e.g.

shielding to reduce radiation dose), others require appropriate fault and error detection tech-

niques to be able to detect and repair the error before it propagates in the system and results in

a failure, i.e. fault tolerance. The method to be applied depends on the application and on its

criticality in the system.

Doumar et.al. [18] further introduces the term defect tolerance, which is used to describe

techniques performed by the manufacturer, i.e. handles defects that occur during manufacturing,

whereas fault tolerance describes the method done by the user to heal errors which occur during

operation of the circuit.

Before a fault can be corrected, it must be detected and correctly identified. There exist

several ways of error detection, a very common example in particular for serial transmissions is

parity information [115].

The aim of fault tolerance is to provide the requested service even in the presence of faults,

i.e. the system must be able to re-construct the information transmitted by the sender from the

received faulty data. Of course, fault tolerance mechanisms can only correct faults and errors

that have been considered in the fault hypothesis. Typically, the limitation is the number of

faults and the fault frequency. For example, memories can be protected by an Error Detection

and Correction (EDAC) mechanism. Depending on the number of syndrome bits (which limit

the useable memory size) one or more faults can be detected and corrected [115]. With the

EDAC an error may be removed before it affects the system.

The term dependability summarizes the attributes reliability, availability, maintainability,

safety, integrity and confidentiality [2]. Except of reliability and availability the attributes are

rather qualitative and cannot be quantified by measurements. Reliability describes the probabil-

ity that a system provides its specified service at a particular time. Availability gives the relation

between the time the system fulfils its specification and the time the system is repaired (main-

tenance time), i.e. the readiness of usage. For systems without repair (e.g. typically in space

systems) the reliability defines the mission success, as the system is considered to be failed after

the first fault occurrence. An important parameter for reliability analysis is the failure rate of the

used elements, which expresses the probability of failure per time. In fact, components cannot

have a failure rate, as they cannot be repaired, but anyhow the term failure rate is commonly

used for components to express the contribution to the system failure rate.

The time until a system fails the first time is called Mean Time To Fail (MTTF). For re-

pairable systems a Mean Time Between Failure (MTBF) can be defined (MTBF = 1/failure rate),

8



as well as a Mean Time To Repair (MTTR), i.e. the average time it takes to repair a system.

Obviously, in order to be become practically usable, the MTTR must be significantly lower than

the MTBF.

2.1.2 Fault Classification

Faults can be classified into different categories [2], of which the distinction by their persistence

into temporary and permanent faults is of particular interest for this thesis.

Transient faults are temporary faults originating from the physical environment. They are

present for a limited time and can be caused e.g. by radiation [24] or by Electromagnetic Inter-

ference (EMI). Radiation induced faults are also called Single Event Effect and can be further

classified into Single Event Transient (SET), Single Event Upset (SEU), Single Event Latchup

(SEL) and Single Event Burnout (SEB).

In general, radiation induced particle strikes change the electrical charge stored at a cir-

cuit’s node and thus the voltage of this node. Depending on the amount of charge stored and

removed/induced, as well as the circuit’s technology and the driver’s strength, the logic level of

the signal is changed. A SET is a logic transition that is restored by the driver. If the changed

logic level is stored and thus remains, the effect is called SEU. A SEU can be removed by

re-defining the signal state or resetting the storage element. The duration of radiation induced

transient faults is in the order of 1ns [17]. SEUs do not alter the hardware, and are thus defined

as soft error [116].

Permanent faults typically model physical defects. Possible causes are manufacturing imper-

fections, overstress, electromigration [25], or can be a consequence of transient faults. Some-

times a particle strike triggers a parasitic thyristor and the signal remains in the wrong state,

unless the device is power-cycled. This effect is called SEL. It is potentially destructive because

high currents can be induced, leading to a SEB, which may destroy the device. The SEB was

first seen in power MOSFETs and causes a physical (hardware) defect of the device due to high

current. It is thus defined as hard error. As hardware defects cannot be removed, they lead

to permanent errors. The effect in MOSFETs is also called single event gate rupture (SEGR).

A similar effect has been observed in CMOS circuits and is there called single event dielectric

rupture (SEDR) [38].

In SRAM based FPGAs these definitions become a bit indistinct. As the function is defined

by a bitstream stored in a SRAM, a soft error can change the circuit structure, which would be

visible as permanent error, although the hardware is not defect (i.e. a permanent soft error).

Such an error could be resolved by restoring the original function e.g. by scrubbing or a device

reset.

2.1.3 Fault Models

A very popular model to describe the fault behavior of a circuit under test is the (single) stuck-at

fault model (SSAF) [39, 64, 103]. According to this fault model a circuit line is stuck-at one or

zero if it is disconnected from any other circuit’s wires and connected to the power supply or

ground.
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Although it is a very simple model, it covers at least 70% of fabrication defects [76] and is

well suited to model permanent faults. In contrast to “open” faults, i.e. simply disconnecting

a signal from its target, stuck-at faults represent shorts and thus need particular handling with

respect to fault isolation.

Bridging faults model connections to other signals, i.e. the logic state is controlled by an-

other signal that is connected due to a physical fault [39].

Since some fault effects could be masked by the simple stuck-at fault model or the bridging

model (if the fault forces the signal to the same logical value as it has anyhow), some other fault

models have been developed.

The bit-flip model simply inverts a signal state. This can be troublesome as e.g. for latent

faults the signal could toggle its state several times, which does not represent the correct physical

behavior. Other fault models such as delay faults or pulse faults do not affect the circuit’s logical

function and are only relevant for the investigation of transient fault behavior, which is out of

scope for this thesis.

2.1.4 Masking Effects

Faults might be masked and thus prevented from becoming active due to mainly the following

three reasons [114]:

• Temporal masking: The fault does not affect the circuit function because it appears at a

time where the signal is not evaluated (e.g. between clock edges).

• Electrical masking: The fault is attenuated sufficiently by gates, wires, etc. so that it does

not change a signal state.

• Logical Masking: The logical function receiving a faulty input is insensitive to the signal

state, e.g. an OR gate does not change its output if one input has state 1 and the fault

forces the other input to 0.

The only relevant masking effect in the scope of this thesis is the logical masking, which

could delay the occurrence of inconsistent data.

2.1.5 Fault Hypothesis With Respect to This Thesis

The fault hypothesis summarizes all conditions, under which faults are assumed to occur, and

forms the basis for fault handling in an application.

Within this thesis the following fault hypothesis applies:

• The faults are modeled according to the stuck-at fault model. Both stuck-at-1 and stuck-

at-0 faults may occur.

• Only permanent faults are considered, irrespectively of their origin. Whenever the term

fault is used, it refers to a permanent fault.
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• Multiple faults are considered with the restriction that only one fault occurs at a time. As

permanent faults are considered, they are all existent simultaneously in the system at the

end, but there was sufficient time to repair a fault before the next one occurred.

• Faults are modeled at register level. With this restriction the internal design of basic

elements need not be taken into account, and thus the faults can be simulated at different

platforms and target devices (e.g. FPGA design vs. ASIC design).

2.2 Increasing Circuit Reliability

2.2.1 Introduction

Ideally, a circuit shall never fail after it is switched on, i.e. have a reliability of 100%. Clearly

this is not possible, as components degrade over time and the environment influences various

parameters that might reduce the lifetime. In order to increase the reliability of a circuit, either

faults have to be avoided (fault avoidance) or the application must be able to deal with faults

(fault tolerance).

There exist basically three methods to improve the reliability of a circuit/system.

1. Reduce the stress the components are exposed to in order to reduce the failure rate and to

add additional design margin (fault avoidance)

2. Use high quality (screened) components offering higher reliability and robustness against

faults (fault avoidance)

3. Implement redundancy in the circuit (fault tolerance)

In the following sections these methods are described in more detail.

2.2.2 Methods

Component Stress

The lifetime, reliability and performance of components are affected by several factors, such as

e.g. voltage/current stress and temperature. Temperature is one of the main contributors that

decrease the component reliability [16], and the relation between part failure rate and device

temperature can be expressed by the Arrhenius law [62].

A very common approach to reduce the stress is to derate the design parameters, having the

advantage that the higher reliability is “built-in” and does not need any further actions during

operation. Derating rules and methods for analysis have been established and standardized by

the industry, such as by the “European Cooperation for Space Standardization” [27], so that it’s

basically straightforward to provide evidence for the compliance to these rules. The drawback

of component derating is that oversized components might be needed, which require more board

space, are more expensive and often also have higher power consumption.

Recently methods for thermal de-stressing in integrated components [70] have been pub-

lished, where the circuit is reconfigured to use redundant resources to reduce the stress of e.g.
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clock trees. Currently no results of field experiments are available to evaluate the practicability

and gain in reliability in real applications.

Component Quality

Component screening means to expose components to stringent tests to find those with out-

standing performance even under extreme conditions. It is obvious that such components are

very expensive and have long lead times.

Particular processes have to be used to harden components against radiation effects. Unfor-

tunately, these components often provide reduced electrical performance and have higher power

consumption. Since dedicated design measures have to be applied, modern components are

rarely available in hardened technology. Furthermore, such components are often subjected to

export regulations which increases both lead time and cost. Basically, the trend currently goes

towards building highly reliable systems from less reliable but cheaper components [4].

As for the parameter derating, the higher reliability is “built-in” and does not need to be

handled during operation. Software tools for reliability calculations according to established

models, such as MIL-HDBK-217 [16], allow to assign the component quality for standardized

screening so that the effect on the system can be analyzed very easily.

Redundancy

Redundancy means to add additional information to a data path so that it is possible to determine

at least the correctness of data, or even to correct it in case of errors. Basically, redundancy can

be applied (i) in time (e.g. dual calculation), (ii) in the value domain (e.g. correcting codes)

or (iii) in hardware. While time redundancy and codes are well suited to correct effects caused

by transient faults, only hardware redundancy is able to handle permanent errors. Subsequently,

whenever the term “redundancy” is used, it refers to hardware redundancy.

In hardware redundancy alternate paths in a circuit/system are implemented that take over

in case of a failure, or provide additional information that is used by voters to take a decision on

the correctness of results.

Redundancy can be distinguished into active redundancy (Figure 2.1a) and standby redun-

dancy (Figure 2.1b). In active redundant systems the spare resources are continuously powered

simultaneously with the nominal circuit, e.g. two power supplies that are ORed with diodes. A

particular active redundant system is N-modular redundancy (Figure 2.1c), where the majority

m-out-of-n redundant results is used. The most common and widely accepted majority voting

system is the Triple Modular Redundancy (TMR) structure, where the results of three paths are

evaluated by a majority voter.

In a standby redundant system the spare elements are by default powered down and put into

operation when the nominal circuit fails. Standby redundant systems need a dedicated fault

detection logic and a controller which performs all necessary boot actions (e.g. transferring

internal states), i.e. the circuit/system will be down for some time. A redundant system with one

parallel path is also called duplex system, and is usually used in standby redundancy.

Redundancy can be implemented on different levels and in different granularity. In general,

component redundancy is superior to system redundancy ( [115], chapter 3.3) because the finer

12



granularity implies more alternate paths1. However, implementing redundancy is a complex task

and not all theoretical solutions can be realized. Switches, voters and redundancy controllers

significantly contribute to the system reliability, as they add series elements in the reliability

path and thus lower the overall reliability. Particular techniques might be necessary, e.g. to split

the triplicated logic and the voter into different components [121]. Furthermore, components

can not always be parallelized (e.g. two brake pedals in a car would be an impractical solution;

also electrical components cannot simply be put in parallel). The impact of the series elements

and additional interconnect resources also puts practical limits on the granularity of redundant

systems [1].

R1

a) active redundancy

Rn

...

R1

b) standby redundancy

Rn

...

R1

R2

Rn

... m
-o

u
t-

o
f-

n

c) m-out-of-n redundancy

Figure 2.1: Redundancy Techniques

Finally, it must be considered that detection, diagnosis and repair circuits add additional

resources to the application, that itself are susceptible to faults and thus limit the achievable

reliability.

Triple Modular Redundancy (TMR) is one of the most popular techniques and can be imple-

mented on gate as well as an system level [109]. Tools are available that assist the implementa-

tion during the design process [12,13]. Such structures can even be implemented e.g. in flip-flop

resources in FPGAs [8] to make them tolerant against SEUs.

Typically, TMR is well suited to increase the tolerance against transient faults, as the result

will be correct without delay and additional diagnosis. As in case of SRAM FPGAs a SEU

can change the circuit structure, a possible approach is to triplicate the design (three identical

FPGAs) and use an external voter [109]. If an error is detected, the correct FPGA configuration

can be recovered by partial reconfiguration [131, 132] without affecting the functionality of the

operating circuit. Similar approaches are described in [122] and [121]. In [121] three soft CPU’s

are implemented in an SRAM based FPGA and are voted externally by a rad-had antifuse FPGA.

In case of an error the SRAM-based FPGA is scrubbed to recover from the upset. However, the

internal states are lost by this action. The Maxwell Super Computer for Space SCS750 [122]

contains three non-rad-hard PowerPC’s and a rad-hard voter FPGA to detect the errors and con-

trol the recovery actions. Once an error occurs, the processor registers are stored, the processors

are reset and then the old register contents are restored to be able to start from the previous state.

1Note that “component” does not necessarily mean “electrical component” in this context. A component could

e.g. be a turn indicator in a car.
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In [67, 77] TMR based approaches combined with time-redundancy are presented, in order to

reduce the area overhead. The results show that it depends both on the type of data structure

that shall be protected (throughput logic, state-machine logic, I/O logic, special features) and

the location of the voter (only at the last output, inside the design) how efficient and costly the

implementation is.

For permanent faults TMR soon reaches its limits as after two faults in different redundancy

elements it is not possible any more to correctly conclude on a majority. TMR in its basic

variant is thus only effective for short mission times unless repair is possible [115,134]. Various

methods for TMR systems to improve the long-time reliability are proposed in [29, 30, 35, 36],

however, they can only handle soft errors in the configuration memory but not real hardware

defects, so these approaches are not considered any further within this thesis. To lengthen the

mission time, it is necessary to handle permanent errors by changing the circuit structure and

replacing defective elements by working ones, e.g. as proposed in [65]. In [129] an evolutionary

voting system is described, where a genetic algorithm tries to bring a faulty module back to

operation. The results indicate that this approach could be useful, however, only simulations

with a simple model of an FPGA have been performed.

In synchronous circuits implementing a TMR system is straight-forward, as all results are

available at the same time instant. TMR in asynchronous circuits is a bit more complex, as a

fault in the asynchronous logic could prevent the result to appear at the output and thus block

the comparison permanently [102]. In [41] a modified TMR architecture is proposed that can be

used also for asynchronous circuits.

2.3 Introduction to Asynchronous Logic

This chapter gives an overview about asynchronous logic in order to understand the described

self-healing concept later on. For details the reader is referred to e.g. [47, 78, 92, 120].

2.3.1 General

Digital circuits can be distinguished into two significant areas - synchronous logic and asyn-

chronous logic. While any transition in synchronous logic is triggered by a clock, which thus

defines the timing of the whole circuit, asynchronous logic relies on other mechanisms.

One big advantage of the discrete timing in synchronous logic is that the logic states are only

relevant at a clock edge. Between the clock edges the signals may enter other states, e.g. due to

faults, without having any effect on the circuit functionality. This property simplifies the circuit

design, but implies a restriction on the maximum reachable speed. The circuit must be designed

to achieve the design goal even under worst case propagation delays, setup and hold times.

Asynchronous circuits do not require a clock, instead a local handshake provides the infor-

mation that new data is available and ready to be processed. The speed of the circuit is therefore

determined by the propagation delay of the involved elements, and data is processed when it is

available, and not at discrete times.

Apart from several other benefits compared to synchronous logic, such as lower power con-

sumption [81, 127] and lower electromagnetic emissions [81, 99], the main advantage of asyn-
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chronous logic with respect to this thesis is the inherent robustness against faults. Due to the

insensitivity to circuit timings, a lot of environmental effects, such as thermal drifts, do not

influence the behavior of the design.

Although this basically sounds excellent for electronic circuits, asynchronous logic also has

some drawbacks. Currently, there exist no comfortable design tools, the design itself is more

complex and it requires more resources than synchronous logic. Furthermore, although research

on asynchronous FPGAs is ongoing [48, 123], there are no commercial prototyping environ-

ments available, which makes integration tasks very difficult. As will be shown later, it is pos-

sible to use standard FPGAs to implement asynchronous designs, however, the results with

respect to resource effort, timing and efficiency are not very representative, as these FPGAs are

optimized for synchronous designs.

2.3.2 Classification of Asynchronous Circuits

Asynchronous logic can be distinguished into two main models:

• the bounded delay model, which constrains gate and wire delays

• the unbounded delay model, which admits arbitrary delays at least for some parts of the

circuit

Synchronous circuits follow the bounded delay model, as it is assumed that all transient

states have settled to a steady state before the next clock edge occurs. Asynchronous circuits

following the bounded delay model require particular timing assumptions and are also referred

to as self-timed circuits [47].

Two families of asynchronous circuits following the unbounded delay model can be distin-

guished, which are the speed independent (SI) and delay insensitive (DI) circuits. While speed

independent circuits assume positive but unknown delays in gates and zero delays on wires,

delay insensitive circuits do not apply any restriction on delays in gates and wires. The fam-

ily of delay insensitive circuits is, however, restricted to circuits consisting only of Muller-C

gates and inverters [79], which limits its usability for practical applications. The class of Quasi

Delay-Insensitive (QDI) circuits is a bit less restrictive, and allows unbounded delays with the

exception of isochronic forks. These forks anticipate that all transitions starting at the root of a

fork reach the end at the same time, i.e. the difference of the branch delay is negligible. This

assumption is feasible from a practical point of view, and the class of circuits becomes much

bigger. If all forks in a circuit are isochronic, the circuit can be considered to be speed inde-

pendent. In a practical implementation, isochronic forks can be achieved on gate level (gates,

registers), where matched delays are easier to control. The connection between such blocks is

then delay insensitive [118].

2.3.3 Asynchronous Protocols

Without a clock, the validity and capturing of new data must be determined by some kind of

handshake protocol. As shown in Figure 2.2, a request event is needed to inform the receiver
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that new data is available, and an acknowledge event to inform the sender that the data has been

captured. During fault-free conditions these two events will alternate.

Source Sinkf(x)

Request: New data is available

Acknowledge: Data has been captured

Figure 2.2: Handshake Principle in Asynchronous Circuit

In synchronous circuits no handshake is needed, as the clock signal serves as global event

that triggers any storage of data. In asynchronous logic different handshake protocols are possi-

ble, which can be distinguished e.g. by their encoding (level or transition) or by the number of

protocol phases [53, 59, 86, 92, 117, 125].

The following section provides an overview about Four State Logic (FSL), also known as

Level Encoded Dual-Rail Signalling (LEDR), which is the design style the self-healing concept

is based on.

2.4 Four-State-Logic

2.4.1 General

FSL is a Quasi Delay Insensitive asynchronous design style [118] that uses a two-phase hand-

shake protocol. Consecutive data is separated by two alternating, diverse code sets ϕ0 and ϕ1,

called phases. Figure 2.3 shows the encoding and transition between the boolean values TRUE/

FALSE denoted as ’h’/’l’ in phase ϕ0 and ’H’/’L’ in ϕ1. Each logic value is encoded by the two

signal rails a and b [15]. A data vector is called token.

The data path of FSL circuits is modeled similarly as Sutherland’s micropipeline [120] and

is shown in Figure 2.4.

It comprises capture-done registers with combinational functions between the stages. The

registers handle the handshake protocol, as they only capture and pass through new data if the

subsequent stage has stored the current data.

The combinational functions between the particular pipeline stages are calculated by FSL

gates, having an inherent synchronization mechanism: A new output is only generated when

all inputs are in the same phase, otherwise the old output is preserved. This property is called
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logic state ϕ0 (a,b) ϕ1 (a,b)

"FALSE" l (0,0) L (0,1)

"TRUE" h (1,1) H (1,0)

L(0,1)
ϕ1

H(1,0)
ϕ1

l(0,0)

ϕ0

h(1,1)

ϕ0

„FALSE“

„TRUE“

Figure 2.3: FSL Encoding and State Transitions
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Figure 2.4: FSL Pipeline Structure

strongly indicating2 . Thus, even a pure combinational function requires storage elements, which

generates considerable area overhead compared to common single-rail logic.

An FSL based asynchronous embedded processor has already been successfully imple-

mented [15].

2.4.2 Combinational Logic

FSL combinational functions can be designed with basic gates, such as AND, OR, XOR, etc.

functions. With these basic gates larger and more complex circuits can be built by connecting

them together such as with “normal” synchronous logic gates. As an example, an FSL AND

gate is described in detail. Table 2.1 shows the truth table on signal levels for a 2-input FSL

AND gate.

If the inputs are consistent and have the same phase, the AND function is applied, and the

output is generated in the same phase as the inputs. For all other cases the last valid output is pre-

served (designated with “hold”). This means that storage elements are needed in combinational

FSL functions, as shown in Figure 2.5.

On rail level the truth table needs to be defined for two rails per signal (input). For each rail

of the output a logic function is required that generates the respective set and reset signals for

the RS flip-flops.

2In weakly indicating asynchronous logic single bits could already change, while the whole vector is still not

valid.
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h l H L

h h l hold hold

l l l hold hold

H hold hold H L

L hold hold L L

Z
E1

E2

Table 2.1: 2-Input FSL-AND Truth Table (Signal Level)
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Figure 2.5: Schematic of 2-Input FSL AND Gate and Truth Table on Rail Level

2.4.3 Registers

An FSL register (Figure 2.6) contains phase detectors at the input and output and control logic

for the handshake control. The phase detectors check that all input signals are within the same

phase. If this is not the case, the phase detector output corresponds to the last phase. The input

phase detector Φ enables the internal latches when all inputs are in the same phase, while the

output phase detector freezes the latches after the complete data has been captured. Finally, an

acknowledge signal informs the preceding stage to issue new data. To store new data, (i) the

phase of the latched data inside the register must differ from the phase of the data applied to

the register inputs and (ii) the subsequent stage must have acknowledged that it is ready for new

data, i.e. it has captured the last token.

In order to distinguish the handshake signals, the following terms are used within this thesis:
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• Done is an output of the register and indicates that the register has captured new data. The

logic state equals the phase of the captured data. This signal is fed towards the Pass input

of the preceding register.

• Pass is an input to the register and indicates that the subsequent register has captured the

last issued data. This signal is coming from the Done output of the subsequent register.

Ctrl

Latch

Φ Φ

Data in Data out

en
La

tc
h
e
s

Done Pass

Phi in Phi out

Figure 2.6: FSL Register

2.4.4 Timing Parameters

The following three timing parameters have to be considered in an FSL pipeline. Figure 2.7

shows the meaning of these parameters in a timing diagram.

• tR is the time data needs to propagate from a register input to the output.

• tH is the time between availability of new data at the register output until the Done signal

is set accordingly.

• tL is the time the data needs to propagate through the FSL logic f(x).

A register will become ready to capture a new token if (i) it has captured the last valid token

and (ii) it has received the corresponding acknowledge from the subsequent pipeline stage. The

capturing process can be triggered by two conditions, depending on whether a new token or the

acknowledge signal is provided earlier:
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Figure 2.7: Timing Parameters

1. If the last captured token i was acknowledged to register n by the subsequent register

(n + 1) before a new token (i + 1) in the other phase is provided to the input of register

n, the new capturing process will start as soon as the new token is available at the input of

register n.

2. If the preceding stage (n−1) provides a new token (i+1) to the input of register n before

the subsequent stage (n+1) has acknowledged the last token i, the new capturing process

at register n will start as soon as the acknowledge signal (Done output of register (n+1))
is received on the Pass input of register n.

In case of a stuck-at fault either the new token is inconsistent and will thus not be processed,

or the acknowledge signal has the wrong state. In both cases the capturing process will not

be started. Transient faults causing toggling signals could even lead to the loss of tokens [28],

but transient effects are out of scope for this thesis and thus not considered in the following

definitions.
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The time δack is defined as the duration between two subsequent toggles of the Done signal

of the same register, and δtoken is the duration between two subsequent tokens (in alternating

phases) being available at the same register input. In order to guarantee a correct capturing two

constraints must be fulfilled:

Constraint 1 The register n must not receive the acknowledge from the subsequent stage (n+ 1)
for capturing token i before register n has captured the token i and has acknowledged this to the

preceding stage (n− 1): δack(n + 1) > tR(n) + tH(n)

Constraint 2 Any register must not receive a new token at its input before the last token has

been captured and acknowledged: δtoken(n) > tR(n) + tH(n)

If any of these constraints is violated, the register might either not capture the data or capture

wrong data. In a standard pipeline as shown in Figure 2.7 δack is determined by the time the

preceding stage (n − 1) needs to provide new data after stage n has issued the Done signal

(return path), and by the time the subsequent stage (n + 1) needs to capture the last token and

assign the Done signal correctly (forward path).

Equation 1 δack = max(δack,min(return); δack,min(forward))

Equation 2 δack,min(return)(n) = tR(n− 1) + tL(n− 1) + tR(n) + tH(n)

Equation 3 δack,min(forward)(n) = tL(n) + tR(n+ 1) + tH(n+ 1) + tR(n)

Note: Equation 2 describes the minimum time, assuming that register (n− 1) receives valid

inputs fast enough.

The duration δtoken is defined by the time the register n needs to capture the token i and

by the time the new token (i + 1) needs to propagate from the preceding stage to the input of

register n after the Done signal was asserted.

Equation 4 δtoken,min(n) = tR(n) + tH(n) + tR(n− 1) + tL(n− 1)

In a practical implementation constraint 2 is always fulfilled in the fault-free case because

register (n− 1) will not become transparent and issue a new token (i+ 1) before register n has

acknowledged the capturing of token i. Constraint 1 would only be violated if the handshake

path of register n would be slower than the sum of data and acknowledge path of stage (n+ 1),
which can easily be avoided by careful routing.

2.4.5 Faults in Asynchronous Circuits

Asynchronous circuits behave different to synchronous circuits in many points. They are in-

sensitive to timing variations and are therefore robust against many radiation effects that affect

timing [60]. However, SEUs can cause deadlocks or other types of erroneous behavior. Tradi-

tional methods such as TMR cannot easily be applied to asynchronous circuits, as a fault in the
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asynchronous logic could prevent the result to appear at the output and thus block the compari-

son permanently [101, 102].

A detailed investigation of the effect of various fault types on asynchronous circuits is pre-

sented in [76, 80]. Methods to harden asynchronous circuits against transient faults/errors are

presented in [60, 61, 88–90, 108] but are not considered any further in this chapter as the the-

sis focusses on permanent errors. In [103] and [49] various methods of testing asynchronous

circuits are presented.

With FSL registers and combinational logic designed as described above, only consistent

data will propagate through a pipeline. Permanent faults at the handshake lines between el-

ements or at the data inputs/outputs will either directly stop the handshake process or cause

inconsistent data and indirectly lead to a deadlock. Any permanent fault inside the elements

(e.g. register control logic) will show an effect on the external interfaces (e.g. inconsistent data,

wrong handshake signal, etc.) and thus can be covered by an appropriate fault model on pipeline

level (for details refer to chapter 4).

However, the anticipation that only consistent data is processed in an FSL pipeline is only

true on boolean level, i.e. in the fault-free case. As soon as a permanent fault exists in an FSL

circuit it is not hazard-free any more. As will be shown below, this can lead to the case that

consistent, but wrong data moves through the pipeline.

As an example, such a case is given for the FSL AND gate described in a previous section.

A fault at the b-rail of input E2 shall be assumed. The applied tokens will thus be changed to

inconsistent tokens if the affected rail would have a different logic state than appears due to the

fault.

Figure 2.8 below presents the Karnaugh map for the Set-signal of the latch defining the a-

rail of the output. Table 2.2 lists a sequence of input tokens to the AND gate, the resulting input

pattern due to the fault and the effect if the transition causes a hazard. It can be seen that due

to the fault there exist transitions which can cause hazards and generate consistent data values,

which are, however, wrong.

E2.b E2.b

E2.a 1 (hh) 0 (Lh) 1 (LL) 0 (hL)

0 (Hh) 0 (lh) 0 (lL) 1 (HL)

0 (HH) 0 (lH) 0 (ll) 0 (Hl)

E2.a 0 (hH) 1 (LH) 0 (Ll) 0 (hl)

E1.b /E1.b

Sa

/E2.b

E1.a

/E2.a

/E1.a

Figure 2.8: Karnough Chart of Sa Signal for 2-Input FSL AND Gate

This issue has not been treated within this thesis, as it is an inherent problem of FSL logic

and needs to be handled on higher level. A detailed investigation of such timing dependent

effects and their probability of occurrence can be found in [28].

For the simulations and experiments the combinational logic has been chosen appropriately

so that the described effect does not occur. Details are described in chapter 5.
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Applied Faulty Token Transition Output Expected Status

ll (0000) ⇒ lH (0010)
LL (0101) ⇒ Lh (0111) via LH L L O.K.

hl (1100) ⇒ hH (1110) via hh h l WRONG

LL (0101) ⇒ Lh (0111) via LH L L O.K.

hl (1100) ⇒ hH (1110) via hh h l WRONG

Table 2.2: Exemplary Token Sequence and Effect for Faulty FSL Logic Input
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CHAPTER 3
State of the Art of Circuit

Reconfiguration

3.1 Introduction to Autonomous Self-Repair

So far, achieving high hardware reliability in critical applications (e.g. for space missions) was

only possible by combining the three measures (i) reducing component stress, (ii) increasing

component quality and (iii) implementing redundancy (see section 2.2.2). It is quite obvious

that traditional repair, e.g. exchanging a defective component, cannot be performed as soon as

the affected electronics is in space. Consequently, since the fault density is increasing [1], the

traditional methods of reducing component stress and screening the components might not be

sufficient any more.

Redundant systems are typically designed to be tolerant against a single fault. After the first

fault the redundant part can take over, but a second fault occurring in the redundant part will lead

to a system failure.

One possible way to improve the tolerance also against multiple faults and to increase the

reliability is to repair the faulty part to bring it back to operation. If the circuit/system cannot

be repaired by exchanging hardware elements, the circuit must be reconfigured so that defective

resources are bypassed and replaced by working ones. Systems that can perform such repair-

actions autonomously are called self-healing systems.

The term self-healing and its differentiation to fault-tolerance is extensively discussed [71]

and still not clearly defined. One basic identification is that for fault tolerance the aim is to keep

the system at 100% functionality, while self-healing systems allow to operate at less than 100%

after the healing procedure [111].
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The following definitions of self-healing were published:

• Tosi [126] describes the need for self-management to handle the increasing complexity of

computing systems. Due to the increasing state-space of fault combinations not all effects

can be foreseen. As a consequence, systems that can adopt to new situations and condi-

tions as they arise are needed. Self-healing is one important category of self-management

and is defined as “the system ability to examine, find, diagnose and react to system mal-

functions”.

• According to Saha [112], who describes a software-based self-healing system, “self-

healing deals with imprecise specification, uncontrolled environment and reconfiguration

of system according to its dynamics”.

• Gericota [36] describes self-reconfiguration (of FPGAs) as a “method to give the currently

configured functions the control of (re-)configuring areas of the same FPGA”.

• Rodosek et.al [111]: “A system is showing the self-healing characteristic if it is able to

monitor and heal itself from the inside, which requires the ability of this system to decide

about and perform recovery actions to return itself to a behavior conforming to its initial

specification, especially without external interference”.

• Laster et.al [113] describes self-healing as a closed-loop cycle, where the processes “mon-

itoring”, “error detection and diagnosis”, “analysis and selection of a repair operation” and

“execute repair and operation (self-repair)” are continuously followed.

Self-repair is already state-of-the-art in regular circuit structures such as memories [54]. In

irregular circuits self-repair is a complex task, but gains more and more interest as redundant

resources can be used in a much finer granularity and distributed redundancy and repair (dis-

tributed self-healing) can significantly increase the circuit’s lifetime [105].

A self-healing system thus must be able to perform autonomously the following tasks:

1. fault detection: detect the fault, either offline or online

2. fault diagnosis: identify the faulty unit/element in the circuit/system

3. fault isolation: remove the faulty element from the operational circuit, e.g. by switches

4. redundancy allocation: replace the defective parts by redundant elements

5. repair validation: test/validate the performed repair

Within this thesis the self-healing procedure (circuit reconfiguration) shall be performed dur-

ing runtime, thus not only the logic functionality and the interconnections, but also the internal

states have to be restored. The following section assesses the possibilities for circuit recon-

figuration in integrated digital circuits. A summary and conclusion about the suitability for

self-healing is presented at the end of this chapter.
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3.2 Circuit Reconfiguration

3.2.1 Runtime Reconfiguration with FPGAs

This section does not describe a dedicated method for circuit reconfiguration, but gives a general

overview about FPGAs and in particular about those that offer (runtime-) reconfiguration capa-

bilities. This feature can be used in several approaches described in the subsequent paragraphs.

Field Programmable Gate Arrays (FPGA) are integrated circuits that consist of configurable

logic blocks (CLBs), vertical and horizontal routing paths, and programmable interconnections

(switch boxes). Figure 3.1 [18] shows the basic architecture of an FPGA. The actual function

of the circuit as well as the interconnections are programmed by the user. Depending on the

type of FPGA the configuration is either stored in an internal SRAM (SRAM-based FPGA,

e.g. [10,56]), which can also be updated, or by burning fuses (anti-fuse FPGA), which results in

one-time-programmable devices [5].

Figure 3.1: Basic FPGA Architecture [18]
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In the past FPGAs were mostly used for prototyping and low volume applications. Increased

performance, memory size and flexibility of modern FPGAs, as well as lower costs, make them

now an attractive alternative to ASICs.

A rather new area of FPGA applications is reconfigurable computing, which allows to share

hardware between different applications, to adapt hardware algorithms, increase the resource

utilization, and allows to upgrade the hardware remotely [66]. Possible applications in this

scope are e.g. reconfigurable accelerator processors in supercomputers [55], where algorithms

are out-sourced into hardware to speed up calculations. The same component can be used for

other calculations at a later point in time.

Although radiation-hardened FPGAs are available, the SRAM is susceptible to SEUs [42],

and so there is still great scepticism in using SRAM-based FPGAs in e.g. space applications.

Currently, mainly anti-fuse types such as the Actel Axcelerator series [7] are used for high

reliability applications being operated in extreme environments.

The Xilinx Virtex series is SRAM-based and can be reconfigured during runtime, called

dynamic or runtime reconfiguration. As only this series is suitable for self-repair during circuit

operation, the following explanations refer to the Virtex series. In particular, Virtex FPGAs

also can be partially reconfigured, which allows to update specific parts of the circuit while the

remaining circuit is operating.

The circuit synthesis and place&route process requires powerful processors and may take

minutes to hours, and is thus usually not feasible to be performed in an embedded system during

operation. Various approaches have been proposed to speed up this task and make it possi-

ble to be performed online [6, 82, 84, 85]. The only tool for runtime routing provided from a

FPGA manufacturer is JBits and the extension JRTR [43, 83], which is, however, restricted to

the Virtex-II series.

The Virtex series offers different interfaces that allow external (serial, SelectMap, JTAG) as

well as internal configuration (ICAP; controlled from the application), which differ in the data

width and the clock speed [133].

The smallest unit which can be read or written to/from Virtex FPGAs is a frame. The size of

a frame depends on the FPGA type and limits the granularity for any applied configuration.

3.2.2 Dynamic Rotation and Free for Test

The Dynamic Rotation And Free for Test (DRAFT) method [31, 32] is a non-intrusive approach

for on-line concurrent testing, detecting and avoiding permanent faults, and correcting errors

due to transient faults by utilizing active, respectively dynamic replication. This method is

suitable for FPGAs, in particular the Xilinx XCV200 was used. All resources of the FPGA are

continuously tested on CLB level through the whole system life time. The CLB to be checked

is copied to a free CLB (Figure 3.2, [34]) and then tested. If an error is detected, the location is

marked as erroneous and avoided for future use.

The DRAFT method performs an online reconfiguration by means of a two-phase replication

(Figure 3.3). In the first phase the configuration of the CLB is replicated and the inputs of the

two CLBs are connected in parallel. After at least one clock cycle both CLBs have the same

internal state. In the second phase the outputs of the replicated CLB are connected to the circuit.
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Figure 3.2: CLB Replication and Rotation of Free Resources [34]

For transferring the internal state three cases have to be considered: synchronous free-running

clock circuits, gated-clock circuits and asynchronous circuits.

Figure 3.3: Two Phase Replication [31]

For synchronous free-running clocks the two-phase replication will ensure the correct state

in the replica. In gated-clock circuits a replication aid-block is used, as shown in Figure 3.4.

Figure 3.4: Replication Scheme for Gated-Clock Circuits [31]
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The replication aid-block establishes a temporary transfer path between the replica and the

replicated cell. If only free routing resources are used this does not influence the functionality

of the circuit. With the aid-block the state-information can be transferred to the replica cell. The

same method is suitable for asynchronous circuits or circuits with multiple clocks. In any case a

clock is needed as trigger for transferring the internal state.

Synchronous free-running clock circuits do not copy the internal state, but acquire the values

as the replicated cell does. Therefore the replica cell shows the correct value afterwards, even

if there is an error in the original cell. However, in gated-clock or asynchronous circuits, the

state of the original cell is transferred to the replica cell with the aid-block. If the value of the

replicated cell is erroneous, the fault is propagated to the replica cell. For detection of these

errors a higher level routine has to be applied.

The number of faults that can be handled depends on the number of spare CLBs that can be

used for testing and replacement. At least one CLB in the FPGA must be free, which is used to

test another CLB. For the different phases of the replication process several configuration files

are needed, which need to be pre-defined during the design phase. The configuration is loaded

via the FPGA configuration interface.

If LUTs are configured as RAM, the replication process is not possible as memory coherence

problems can occur. The system would have to be stopped during replication to be able to cope

with this problem.

A dedicated controller is needed, which handles the regular testing and replacement in case

of faults. Interconnect faults are not considered in this approach.

3.2.3 Fine-Grained Self-Healing Hardware

The approach introduced in [130] describes a fine-grained method for implementing self-healing

hardware. Small amounts of reconfigurable hardware are used to implement redundancy for

multiple cones. A cone is defined as a combinational logic block that has several input signals

and one output. Any component can be split into a set of cones, and look-up tables (LUTs) can

implement the functionality of any cone with a defined maximum number of inputs. The size of

the LUT depends only on the number of inputs and not on the complexity of the implemented

function. Figure 3.5 shows the principle of this method.

Figure 3.5: Cone-Level Fault Detection and Diagnosis [130]
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First, the LUT is configured to implement the functionality of the cone to be tested. Then

the nk:k multiplexer selects one cone (respectively its inputs) and another multiplexer selects the

corresponding output. The cone output and the multiplexer output are compared with the XOR

gate, and an error signal (fault flag) is generated if they are different. If the cone currently tested

is detected to be faulty, the LUT can take over its function and the error is hidden (self-healing).

The timing overhead is small since only a low number of bits need to be reconfigured to

implement the cone function in the LUT and the testing is performed in parallel to the remaining

functionality.

The cones have to be extracted during the design time, as well as the LUT SRAM configu-

ration, placement and cone routing. All bit configurations have to be pre-generated and stored

in either on-chip or off-chip memory.

The fine-grained self-healing hardware approach can only handle combinational circuits. A

dedicated controller is needed, which handles the regular testing and replacement in case of

faults. Interconnect faults are not addressed in this approach.

3.2.4 Dynamic Reconfiguration using Atomic Fault Tolerant Blocks

The key elements of the method described in [74] are tiles and atomic fault tolerant blocks

(AFTB). A tile consists of three elements: (i) a set of CLBs and interconnect resources, (ii)

a net-list which must be placed on those CLBs and (iii) an interface specification of how the

tile connects to adjacent tiles. The AFTB is one instance of a tile and contains at least one

spare CLB that serves to cover the faulty CLB. The circuit is partitioned into tiles which all

have the same interface to the surrounding areas of the design. The tile contains the logic circuit

implemented in CLBs and at least one free CLB. For this circuit functionality several placements

within the tile are possible so that the free CLB moves to different locations (Figure 3.6). With

this approach the active circuit can be moved away from faulty resources.

This method can handle multiple faults in the circuit, but only one faulty CLB per tile. Local

interconnect faults can be handled in the same manner. If an interconnect line is defective,

a routing solution not using this line is configured. Faults in global interconnections require

different handling since much of the interconnect crosses tile boundaries. Global lines are used

as backup to replace defective interconnect lines [75].

Although the basic structure of course remains the same, the actual implementation of the

algorithm depends on the FPGA architecture.

The partitioning into tiles as well as the different routings have to be generated during design

time. These configurations are stored in memory and are used for reconfiguration depending on

the location of the faulty cell.

The repair process can be performed during runtime if the FPGA supports runtime reconfig-

uration. The timing effort is then rather low, as partial reconfiguration can be used.

The approach does not include error detection and fault localization.

3.2.5 Column-Based Precompiled Configuration

In this method the FPGA, respectively the design, is partitioned into columns which can be

shifted, so that faulty resources are moved to unused areas in the FPGA [50]. An example for the
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Figure 3.6: Tile-Based Design [74]

overlapping precompiled reconfiguration scheme is given in Figure 3.7. The base configuration

of the design is mapped in four consecutive CLB columns. The rightmost column is reserved

as backup column for alternative configurations. In the right picture column three is faulty.

All columns to the right of the faulty column are shifted rightwards using the spare column

so that the faulty resource is then unused. Only inter-region signals need to be rerouted. All

signals within the column remain the same since the CLB columns in the FPGA contain the

same programmable logic and routing resources.

Figure 3.7: Column-Based Precompiled Configuration [50]

Another possibility is the non-overlapping scheme, which can be applied if the circuit is

small enough to fit within half of the FPGA. It is then not necessary to precisely find out the

location of the faulty column. To minimize fault location overhead, all possible configurations

can be tried until a working solution is found.
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For error correction the dual FPGA architecture is proposed. Each of the two FPGAs in

figure 3.8 implements a soft-microprocessor of which one is able to reconfigure the other FPGA

and vice versa.

Figure 3.8: Dual FPGA Architecture [50]

It is important that the communication channels between the two FPGAs are working cor-

rectly in all situations. Since this is a vital part of this method, the communication channel has

to be made fault tolerant [87]. Furthermore, the microcontrollers have to be able to recover from

faults. Appropriate techniques such as TMR inside the FPGA have to be considered.

The partitioning into columns has to be considered during the design phase, and the different

configurations have to be pre-compiled.

By only shifting the columns, similarities of the configurations can be achieved. This allows

to use data compression efficiently and thus to reduce storage overhead. However, a lot of

functional resources might be lost in a replaced column and so the number of configurations

soon reaches a limit if multiple faults are considered.

In the overlapping scheme this method is able to tolerate m faulty columns where m is the

the number of spare columns reserved in the FPGA. For the non-overlapping scheme the base

configuration has to fit into 1/(m+1) columns to tolerate m faulty columns. The base configu-

ration should take care that most of the signals flow in vertical direction, since the maximum

number of horizontal routes is limited.

If the LUTs are used for RAMs, memory coherence problems can occur if write attempts are

performed between readback and writeback. This issue is described in detail in [51] and [52].

The internal states are not transferred to the new column, thus this method is not transparent

to the application.

3.2.6 Roving STARS

This method is based on roving self-testing areas (STARs) [21]. The STAR is a small roving

portion of the FPGA which is tested off-line while the other parts remain on-line and continue

normal system operation. This approach therefore integrates on-line test, diagnosis and fault

tolerance within the same framework.

As can be seen in Figure 3.9 there are one horizontal and one vertical STAR. The horizontal

STAR moves up and down, while the vertical STAR moves across the FPGA and back again.

Both STARs are required to test the interconnect resources. Since the STAR is a currently
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unused area in the FPGA it can be tested without affecting the remaining functionality. After

testing has been completed, the STAR moves to a new location. This is performed by partial

reconfiguration, i.e. by copying a part of the working system into a previous STAR. Then the

system clock is stopped for a few cycles to transfer the state to the copied region. After that, the

clock is restarted and the new STAR can be tested. Apart from that, no timing overhead occurs.

Figure 3.9: Roving STARs [21]

Any fault detected during testing is located in a STAR and does therefore not affect the

system.

The reconfiguration is controlled by an external controller, usually an embedded micropro-

cessor. This controller has to keep track of the status of the FPGA, in particular in which section

the different functions are currently implemented and where the faulty resources are, to avoid

their use in future configurations. In [21] it is assumed that the controller also performs the test,

diagnosis and fault-tolerance functions including their associated reconfigurations and is there-

fore called test and reconfiguration controller (TREC). The TREC controls all actions via the

boundary scan interface.

Testing is performed with an integrated test pattern generator which applies pseudo-random

patterns to two identically configured programmable logic blocks (within a STAR) under test.

The outputs are directly compared, thus avoiding overhead of storing expected output patterns.

The logic blocks are continuously configured in all possible modes of operation, such as adder,

flip-flops, RAM, LUTS. This approach allows to define partial usable blocks, which means that

in a programmable logic block e.g. a flip-flop is defective but the combinational resources can

though be used. Before re-mapping the area to a working area again, it is reconfigured around

faulty resources to avoid using the defective parts.

In level two the FPGA has to be reconfigured to avoid usage of the faulty resources. For

single faults, for each system logic cell function a partial configuration can be pre-compiled and

stored in the memory. For multiple faults pre-compiled configurations are not feasible any more

so processing has to be done online by the TREC. Since the faulty resource is covered by a

STAR, the system functionality is not affected even if the online processing takes a long time.
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There must be enough spare area available in the FPGA to have one horizontal and one

vertical STAR.

3.2.7 Node Covering Technique

The method of node covering [44, 45] can be applied to SRAM-based FPGAs and allows each

cell1 to replace its neighbor in the same row. To each cell in the FPGA a cover cell is assigned

which can be reconfigured to take over the functionality of the other cell in case it becomes faulty.

Applying the node covering method allows to tolerate one fault in each row or column. Since

all cells in an FPGA are equal, all cells can cover each other with respect to functionality, and

the configuration can simply be transposed to the other cell without the need for re-routing. The

difficult issue is to establish the correct connectivity, which requires additional wiring segments.

In the example in Figure 3.10 the rightmost cells are spares. The cell-to-channel intercon-

nections belong to the configuration data and do not need to be modified since the complete cell

configuration is transposed. However, the channel segment interconnections require cover seg-

ments, bordering the cover cell. Such segments may either be already in the correct position (e.g.

channel segment between A and B in figure 3.10) or reserved segments have to be implemented.

Reserved segments are spare routing resources for the basic configuration but are needed if the

covering procedure is performed. For example, the connection between B and C in Figure 3.10

can only be established via a reserved segment. Covering vertical segments may require up to

two reserved segments [44].

Figure 3.10: Node Covering Methodology [45]

Due to the additional segments (reserved segments) the propagation delay will increase. In

the fault-free case, the reserved segments need not be connected. This requires two different

configurations for each row, resulting in a 30% overhead of the configuration data [44]. Alter-

natively, a more sophisticated method can be applied which identifies a re-configured cell and

deduces from that whether the reserved segment shall be connected or not.

1A cell is a programmable combinational function with an optional output register, i.e. a CLB.
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State recovery is not covered by the method, and an external error detection and reconfigu-

ration controller is needed. This approach can handle one fault in each row or column, but it is

not intended to be used during operation of the application.

3.2.8 Method of Shifting Configuration Data

Due to the homogeneous structure of FPGAs it is possible to achieve fault tolerance by shifting

the configuration data [19] to move the circuit to another region avoiding the usage of the de-

fective resource. The approach can be applied to SRAM-based FPGAs. With this method both

defects in CLBs as well as in interconnect resources can be tolerated. The prerequisite for this

method is to have spare CLBs regularly distributed among the whole FPGA as well as at the bor-

ders. If an error is detected, the user data is shifted to the nearest spare CLB. For the allocation

of the spare CLBs two methods are described: king-shifting and horse-shifting allocation.

If a defect is detected, the configuration is shifted to the corresponding direction, depending

on the defect location. The defective CLB is unused after the shifting. Since all unit elements

are shifted, the interconnections between the CLBs do not change. An example for a shift is

given in Figure 3.11.

Figure 3.11: Example of Shifting the Configuration Data [19]

The king-shifting allocation requires fewer spares since only every nine CLBs one spare is

needed, while the horse-shift method requires one spare every five CLBs. Since the user data

remains the same after shifting, there is no additional delay introduced.

This method is able to tolerate faults in CLBs and in connection blocks which are connected

directly to the CLBs. For interconnect resources this method also can be applied, but with

some restrictions. It will fail if all eight elements around the faulty CLB are used by the user

application.

The reconfiguration is performed with the whole application, i.e. the complete configuration

is shifted. The number of faults that can be tolerated is thus quite limited.

This method is not intended to be used during operation of the application.
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3.2.9 Nature-Inspired Methods

The embryonic electronics architecture, called embryonics [124], describes an approach for self-

repair in integrated circuits using both S/W and H/W redundancy. The structure of integrated cir-

cuits is mapped to molecules, cells and genomes. An organism is able to detect faults and repair

them without any centralized controller by the two properties self-repair and self-replication.

In Figure 3.12 it is shown how the embryonic approach can be implemented on an electronic

circuit.

Figure 3.12: Embryonics Landscape [124]

The circuit (organism) is constructed from universal cells, where each cell is a small proces-

sor which executes its gene program. For this approach a new kind of FPGA is proposed. The

principle of the algorithm has been successfully implemented on a prototype system.

The benefit of the embryonic approach for memories has been investigated in [106] with

explicit focus on soft error tolerance in space applications. It is stated that embryonics alone

does not solve the problems, but it is advantageous if it is applied in addition to traditional

error correction techniques. Both approaches [106, 124] are only described theoretically, but no

practical measurements or hardware implementations are available.

Genetic algorithms that can autonomously evolve a new working circuit have been success-

fully implemented with combinational logic [96]. The repeatability of the results is, however,

considered rather unpredictable. Vigander [129] applied a genetic algorithm to a traditional vot-

ing system to improve the long term fault tolerance, but only simulations have been performed.

In [104] another method inspired by the human immune system is described. Here, the

resources are split into identical functional cells. The function of each cell is defined by the

genetic code. The functional cells are surrounded by spare cells which can clone a functional
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cell. This approach, however, is only described theoretically and no details how to implement

this method in a real circuit are given.

For all mentioned approaches internal state recovery is not addressed.

3.2.10 Self-Repair using Re-Configurable Logic Blocks (RLBs)

The approach published by Vierhaus et.al. [37, 68, 69] is based on reconfigurable logic blocks

(RLBs) that contain a particular number of gates, of which (at least) one can be selected to

replace any of the other ones. Each gate can be completely isolated by means of switches at its

input and output (Figure 3.13).

a) Reconfigurable Logic 
    Block (RLB)

b) Example for Basic Gates

Figure 3.13: Reconfigurable Logic Blocks (RLBs) [37, 69]

The RLBs can contain basic gates (AND, OR, etc.) or even complex circuits (e.g. an adder).

Depending on the number of elements, the RLB has several states. In each state one or more of

the functional elements are replaced by spare elements.

This approach is implemented on transistor level. The overhead is quite high for basic gates

(e.g. 230% for a 2-input NAND gate), but can be significantly reduced if the blocks become more

complex (e.g. 38% for an 8-bit ALU), as the overhead is mainly introduced by the switching

elements. It is mentioned that sequential logic as basic block is not feasible due to the complex

wiring. Furthermore, the overhead due to the test pattern generation and diagnosis is not included

in the numbers. Larger blocks might become even more efficient, but reduce the multiple fault

tolerance. Although the wiring between gates is not explicitly covered by the repair scheme, for

larger blocks the majority of the total wiring is within the block and so it is likely that also faults

in the wiring/interconnects can be repaired.

As simple and efficient solutions are only possible for regular structures (e.g. memories), an

approach to extract regular units from irregular netlists was investigated. This allows to reach

reasonable and efficient sizes for basic RLBs [37] while still maintaining feasible fault densities.
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The reconfiguration principle is shown in Figure 3.14. After a test pattern has been applied,

the output is compared to a reference value, both being provided e.g. via scan chains. If the

results are different, there obviously exists a fault in at least one element. A 2-bit counter is

triggered by this information and changes the configuration of the RLBs. Then the same pattern

is checked again. This sequence is repeated until there is either no difference detected, or all

configurations have been tried out. If no solution can be found, an error flag is set to indicate

this status to the higher level system.

Figure 3.14: Concept of Self-Repair with RLBs [37]

The reconfiguration can be controlled from a central instance or from local controllers. Al-

though the central approach is more efficient in terms of resources, the high amount of signals

that need to be routed to the controller are considered as potential problem for transient faults.

This approach is also proposed to be used for thermal de-stressing of resources.

The approach using reconfigurable logic blocks determines the required reconfiguration pat-

tern during runtime (built-in self repair), however, for the reconfiguration process the application

has to be stopped and the circuit has to enter a dedicated test mode. It is proposed that this is done

after power up to configure a correctly working circuit. The gain in reliability is not quantified

for the time being, but several ideas for further improvements are proposed, such as implement-

ing the repair circuitry more robust by using thicker oxides for transistors. As in all redundant

systems, also here the switching elements are the bottleneck and need to be highly reliable in

order to increase the overall reliability.

39



3.2.11 Self-Healing Asynchronous Arrays

The method presented in [102] is dedicated to asynchronous logic. Linear arrays are defined as

basic building blocks, as most circuits can be designed from such arrays.

Due to the multi-rail encoded data representation these circuits provide self-checking capa-

bility, which can be extended to fail-stop behavior with low effort [100]. The deadlock is then

detected by a watchdog, and a reconfiguration procedure can be started. The principle is shown

in Figure 3.15.

Figure 3.15: Block Diagram of a Reconfigurable Self-Healing Asynchronous Array [102]

The method is applied on transistor level. In particular a precharge half buffer (PCHB)

has been chosen as circuit template, which can be used to construct almost any pipelined QDI

logic. The deadlock detector (watchdog) waits for the next valid protocol state to occur by

checking the handshake activity. If this does not happen for a dedicated time, a deadlock is

assumed. The delay is implemented using a delay line which allows delays in the order of

milliseconds. Two methods for online reconfiguration are proposed: (i) locate faults and use a

workable configuration or (ii) try all possible solutions until a workable one is found. Although

the first method achieves a faster fault recovery time, the required logic can be quite large which

decreases the overall reliability. The second method is slower but also needs less hardware

overhead. The slower procedure does not influence the overall performance significantly since

faults are expected to be rare. The second method is thus proposed to be used and has the

advantage, that all possible configurations would be re-tried for subsequent errors and so also

transient effects can be resolved. After a reconfiguration the circuit needs to be reset and re-

started from the last system entry point.

A fault-tolerant asynchronous adder has been successfully implemented based on this ap-

proach [101].

The logic for deadlock detection is not described in detail, but it is said that this part should

be designed conservatively to achieve high robustness. Furthermore, the reconfiguration logic is

proposed to be implemented as synchronous logic, as it requires less hardware resources.
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3.3 Comparison and Conclusion

Due to the increasing fault density in integrated circuits, the traditional means for fault avoidance

might not be sufficient any more to reach the reliability goal of an application. Self-repair seems

to be a promising way to implement fine granular fault tolerance that can be handled even during

runtime and transparent to the application.

Triple-modular redundancy is one of the most commonly known approaches for fault tol-

erance. Basically, TMR is mainly suitable for transient fault tolerance. Considering also per-

manent faults, the reliability soon decreases for longer mission times [115]. Furthermore, TMR

implies high costs in terms of resources (factor > 3) and power consumption. In principle all

reconfiguration methods can be used to implement a self-healing TMR architecture, which then

might even provide long-time fault tolerance against permanent faults.

Most of the approaches require dedicated fault detection, diagnosis and localization tech-

niques before a fault situation can be handled. While in clocked circuits it is simple to stop the

execution for performing recovery actions, in asynchronous circuits particular means have to be

considered, such as forcing a deadlock. However, asynchronous circuits inherently tend to stop

their execution in case of permanent faults [76] and are thus advantageous in this sense.

Asynchronous circuits require storage elements even for combinational functions, thus the

method described in [130] is not suitable, as it only covers LUT functions. Although the other

methods basically seem to be usable for asynchronous circuits, they have not been investigated

for this kind of circuits.

Logic reconfiguration in FPGAs is quite handy if the FPGA supports partial and/or runtime

reconfiguration, however, the FPGA configuration interface is a single-point-of-failure, and is

thus considered as a critical part for the methods that depend on this interface. Furthermore,

the FPGA resources can be fragmented and thus the probability for finding a new configuration

might be reduced [33].

All known methods of runtime reconfiguration for permanent error recovery in FPGAs im-

plement spare resources of different granularity, which are used to bypass defective circuit parts.

Some methods require spare combinational logic blocks (CLBs) to be regularly distributed

across the FPGA [19] or just at particular positions [44, 74]. Other methods use even large

spare areas in an FPGA that occupy whole columns [50]. The size and distribution of these

spare resources also defines the granularity of a possible reconfiguration.

The majority of the FPGA-based approaches [19,21,31,44,50,74,130] requires pre-defined

circuit configurations which have to be stored in (large) memories. In order to achieve a gain

in reliability, these memories also have to be highly fault tolerant. Additionally, the above men-

tioned methods require a dedicated controller that performs all necessary tasks like masking of

defective resources, transferring internal states, copying CLB configurations, etc.. Online cir-

cuit synthesis is complex and very time consuming [84], and is not considered possible to be

performed during runtime in an embedded dependable system.

Genetic algorithms can autonomously evolve a new working circuit. Although success-

ful implementations for combinational logic were presented [96], the result seems to be rather

unpredictable and the approach may thus not be acceptable for high-reliability applications.

Reverse-engineering the bitstream to manipulate the circuit systematically is possible [107], but
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also seems to be not appropriate for high-reliability applications, as there is no guarantee that

all effects have been considered. The only known tool for manipulating synthesized circuits

provided by FPGA manufacturers is JBits [43], but it is restricted to the Xilinx Virtex-II series

and based on Java. It therefore requires a powerful processor, which excludes it from e.g. space

applications, and consequently also methods using this tool, e.g. [36], are not considered to be

appropriate for the scope of this thesis.

The embryonics approach [124] addresses self-repair in integrated circuits but requires a

particular new kind of FPGA, which is, however, not commercially available.

Another approach for self-repair that uses simple spare gates and is applied on transistor level

is presented in [68]. This method provides a deterministic approach towards a re-configuration,

however, it does not tackle the detection of errors.

A method particularly developed for asynchronous circuits is presented in [102]. It is based

on fault tolerant basic elements called Pre-Charge Half Buffers, which can be used to construct

most asynchronous circuits. The approaches in [68] and [102] are applied on transistor level and

thus cannot be implemented in existing programmable devices.

Most of the approaches are not able to transfer/recover the internal circuit state. As a conse-

quence, the application has to be reset and restarted from a ground state. All presented methods

can cope with multiple faults with different granularity.

Table 3.1 summarizes the different methods and compares them with respect to some rele-

vant criteria.
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CHAPTER 4
Self-Healing Approach

4.1 Introduction

The self-healing architecture presented here aims to recover a circuit from permanent faults

occurring any time during operation on any position in the circuit. The architecture is based on

asynchronous logic and relies on the following properties:

1. The inherent robustness of asynchronous circuits against transient faults: This does

not mean that transient faults can be neglected, but allows to separate the investigation and

evaluation of the fault tolerance against transient and permanent faults into two distinct

topics. The fault tolerance with respect to transient faults is handled in [28], whereas the

fault tolerance with respect to permanent faults is topic of this thesis.

2. The fundamental property of asynchronous logic to stop in case of permanent faults:

This is an important advantage of asynchronous circuits, as it implies an inherent fail-stop

behavior for permanent faults, which makes fault detection rather simple. Exceptions of

this property are highlighted in chapter 2.

3. The fundamental property of asynchronous logic to autonomously start working as

soon as a valid data and acknowledge path exists and consistent data in the pipeline

is available: This implies that we do not need a ground state [73] for re-synchronization,

and we can assume that the circuit either is working correctly, or it stops (Property 2).

Again, the limitations of this property are presented in chapter 2.

4. The delay insensitivity of asynchronous logic: This property is useful with respect to

circuit routing and corresponding timing: even if a modified circuit routing results in a

different timing, this does not affect the correct function of the circuit. The limitations

of delay insensitivity are well known and can be handled very well [79], and are thus not

treated any further in this thesis.
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The self-healing approach does not seek for a real-time circuit recovery, but to bring the

circuit back to operation “as soon as possible” and keep the circuit alive “as long as possible”.

The idea behind this approach is that e.g. for interplanetary space applications with mission

times of several years, the most important issue is to keep the hardware working, while it will be

acceptable to wait some seconds or even minutes until the application resumes operation after a

fault situation occurs.

The architecture also aims for multiple fault tolerance by adding distributed redundancy with

user-defined granularity.

The concept is based on three steps:

1. Try to mitigate the faults by making use of the inherent properties of FSL and some addi-

tional measures to reduce transient fault sensitivity

2. If the fault cannot be mitigated, i.e. if it is a permanent fault or the fault leads to a perma-

nent error, force a deadlock

3. Reconfigure the circuit by applying the presented concept

The self-healing approach expects a deadlock, i.e. step 2, as prerequisite, and focuses on

step 3 - the circuit reconfiguration.

4.2 Architecture Overview

4.2.1 Concept and Fault Hypothesis

In general, an asynchronous circuit is structured into a pipeline with logic blocks between the

register stages. The presented approach adds a redundant pipeline path and extends the asyn-

chronous pipeline by a reconfiguration unit, which consists of a deadlock detector (watchdog)

and a reconfiguration controller. The watchdog monitors the circuit’s activity. After a period

of inactivity longer than the watchdog timeout, a deadlock is recognized and a reconfiguration

of the circuit is started. Two reconfigurable elements are used: Self-Healing Cells (SHC) for

the logic function, and acknowledge switches for the handshake signals. The reconfiguration

controller changes the circuit routing in such a way, that the defective element is isolated and its

function is provided by a redundant resource. This concept is shown in Figure 4.1.

As long as data is moving through the pipeline, the phase detectors and acknowledge signals

will change their states regularly. This behavior can be used as indication that the circuit is

working. Any permanently inconsistent FSL signal vector, e.g. caused by a permanent error,

stops the handshake and thus leads to a deadlock. In this context we consider permanent faults

using the stuck-at fault model (see section 2.1.3). The class of permanent faults represents all

faults with a permanent manifestation. This could be hardware defects or e.g. faults caused by

radiation, such as total dose effects, which are a common problem in space missions [9, 24].

During a deadlock the input values to the register or combinational logic, which is affected

by a permanent fault, are kept valid, because no subsequent pipeline stage will consume the data

due to the stopped handshake (see section 2.4). In general, as soon as a new configuration is
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Figure 4.1: Self-Healing Approach

found that establishes a valid data and acknowledge path, the circuit will continue its operation

autonomously without loss or corruption of data. However, one case has been identified where

this assumption is not true (see section 2.4.5). This exception is a general problem of FSL and is

not related to the self-healing concept itself. However, because no deadlock occurs in this case,

such an effect could generate erroneous results which cannot be detected by only applying the

presented concept.

The circuit is defined to be working if at least one of the two redundant outputs shows a

correct result. The determination of the correct output, as well as the treatment of erroneous

results, need to be covered on application level and are not scope of this thesis.

4.2.2 Fault Locations

Figure 4.2 shows – at the example of a standard FSL pipeline – that all possible fault locations

can be subsumed by three fault positions (indicated with red arrows): (i) the input to the com-

binational logic, (ii) the input of registers, and (iii) the acknowledge signal. All faults within

the blocks (combinational logic, register/latch control and faults within the register/latch, [103];

indicated with blue arrows) will end up with one of these three effects (indicated with dotted

lines).

The same is true for a self-healing redundant pipeline. As the self-healing architecture ex-

pects a deadlock as prerequisite for a reconfiguration, i.e. the fault has settled and shows effect,
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all fault conditions within the pipeline and within the involved elements can be subsumed by the

following three cases:

1. Faults at the input of a SHC (covering those faults within the SHC that affect both outputs,

faults at the register outputs, and the interconnection between registers and SHCs)

2. Faults at the input of a register (covering faults within the SHC affecting one output, single

faults at the SHC outputs and on the interconnections between SHCs and registers)

3. Faults at an acknowledge signal (covering faults on the acknowledge output/input at the

register component, interconnections between the registers and faults in the acknowledge

switches - if applicable)

Faults within registers or SHCs will also end up with one of the described effects. Depending

on the fault position, the configurable elements must be controlled in different ways.

Faults within a SHC can cause various effects in the pipeline, and either one or both outputs

can be incorrect. In the first case this situation is similar to a fault at a register input, in the latter

case it affects the pipeline like a fault at a SHC input. The correct identification of the fault has to

be taken into account for the design of the reconfiguration unit (see section 4.4.5 for observable

symptoms).

Faults within registers will always affect either the data output (equal to a fault at the input

of the subsequent logic) or the handshake signal to the preceding register.

The following paragraphs describe the means to handle the different faults in the self-healing

architecture.

4.2.3 Reconfiguration of Combinational Logic

To be able to re-route the circuit so that the defective resources are bypassed, switching possibil-

ities are needed. For the logic circuits Self-Healing Cells (SHCs) were introduced (Figure 4.3a).
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A SHC is an internally redundant circuit element, which provides flexible internal routing

possibilities while maintaining the same external interface. Depending on the configuration, the

redundant logic circuits implemented in the SHC either use the nominal or redundant inputs

and provide two independent outputs. The routing is controlled by reconfiguration inputs. One

SHC is able to tolerate at least one fault, either internally or at its interfaces. Depending on the

distribution of the faults over the whole application there is a significant probability that even

multiple faults can be mitigated (section 5.3.1, [97]). The logic circuit in the SHC can be of

arbitrary complexity, ranging from low level gates (AND, OR, etc.) as shown in Figure 4.4a, up

to complex circuits (e.g. arithmetic units) such as in Figure 4.4c. Individual SHCs can be com-

posed to construct larger and more complex circuits (Figure 4.4b), which permits establishing a

hierarchical design. This allows to implement a self-healing logic at different granularity, which

influences the reconfiguration possibilities and fault tolerance.
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Apart from the granularity of the logic function per block, also the reconfiguration inside

the block can be performed in different granularity, depending on the number of switching pos-
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sibilities between the nominal and redundant signals within a SHC. The results of the analysis

can be found in section 5.3.2. A feasible trade-off is to use two switches, which allows to select

whether the nominal or redundant signals shall be used as source for the nominal and redundant

logic. All further explanations in this chapter assume this SHC architecture.

4.2.4 Reconfiguration of Control Logic

Just by applying SHCs, faults of combinational functions can be recovered. However, in an

asynchronous pipeline, a permanent fault at a register input may block the handshake. So,

additional elements called Acknowledge Switches are needed (Figure 4.3b) [98], to be able to re-

route the acknowledge signal around a defective register as shown in the example in Figure 4.5.
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Figure 4.5: Handshake Reconfiguration

4.2.5 Reconfiguration Unit

The reconfiguration process is controlled by the reconfiguration unit, which consists of a dead-

lock detector and the reconfiguration controller.

Deadlock Detector

To detect a deadlock, some kind of watchdog is used that will be reset by the circuit’s activity,

e.g. by one of the handshake signals. Unfortunately, a deadlock is not distinguishable from the

state where the circuit waits for transitions to complete or for new data to arrive at the pipeline

input. Therefore the unbounded delay model in QDI circuits (see chapter 2) has to be violated.

If there is no transition within the watchdog’s timeout, it can be assumed that a deadlock has

occurred. Strictly speaking, the watchdog timeout restricts the maximum allowed delay in the

system to some upper boundary, which is in contradiction to the unbounded delay model. How-

ever, as long as this timeout is several orders of magnitude higher than the actual maximum
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system delay, the unbounded delay model still holds at least within practical limits. Choosing

a large timeout basically is considered acceptable from a fault-tolerance perspective, since the

faults are assumed not to occur frequently. For example, in an integrated circuit the delay lies

within the pico or nanosecond range. If a watchdog is designed that requires a microsecond or

even a millisecond to expire, the circuit delays won’t even come close to the watchdog timeout –

except there is something wrong. Such a timeout is still sufficient to provide the circuit recovery

within reasonable time.

Reconfiguration Controller

The task of the reconfiguration controller is to reconfigure the circuit by applying appropriate

patterns to the reconfiguration inputs of the SHCs and acknowledge switches, so that the de-

fective resource is bypassed. In order to have an asynchronous circuit operating, both the data

and the handshake path must be valid. Depending on the fault location, it is necessary to either

reconfigure a SHC, or the handshake signal(s), or both. The required activities are explained in

detail in section 4.3.

Each time the watchdog expires, the reconfiguration controller is triggered and changes the

circuit routing. If the new configuration does not solve the problem or another fault occurs, the

watchdog expires again. This sequence is repeated until a working solution is found. Basically,

using only the acknowledge signals to detect a deadlock does not provide any information about

the fault location. If the phase detector outputs of the adjacent stages are used, the defective

pipeline stage can be determined and the fault location can even be narrowed to the affected

element (see section 4.4). This information can be used to define an algorithm that reconfigures

the circuit in a directed manner until it resumes its operation. Results of the experiments using

different reconfiguration controllers can be found in section 5.4.2.

Note that in the figures usually a single SHC between two registers is drawn, but this is

only for illustration. A fine granular logic implementation would consist of several SHCs so

that knowing the defective pipeline stage does not give more detailed information about the fault

location within this SHC.

Tradeoffs

For the actual implementation of the reconfiguration unit several aspects have to be considered.

The following explanations are not quantified in this place, but summarize thoughts on the self-

healing design. Some issues are treated in other sections and the relevant references are given

below, others are left open for future work.

The system immanent application processing time, i.e. the time from a new data input until

there occurs activity on the handshake signals, determines the lower boundary of the watchdog

timeout and thus directly influences the reconfiguration time. Shorter timeouts would trigger the

reconfiguration unit even in a fault-free case, and as the pipeline is in a dynamic state, unexpected

reconfigurations during pipeline operation could occur based on the observed signals.

The fault tolerance requirements, e.g. fault model (fault types, total number of faults and

fault frequency, see section 2.1), set up the requirements for the “intelligence” of the reconfig-
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uration controller, and define the needed granularity of the SHC internal logic as well as the

architecture of the reconfiguration unit (distributed or central).

A complex reconfiguration controller, that evaluates a lot of details of the pipeline internal

signals, might be able to handle more faults and fault combinations, but at the same time it will

require more resources to handle the increased state space and thus it might be getting more

susceptible to faults than a simple controller that uses fewer resources.

A fine granular circuit implementation will provide higher fault-tolerance (in particular

against multiple faults), but requires (much) more reconfiguration signals that increase the re-

source effort for the reconfiguration controller (see section 4.6).

Basically, it would be sufficient to have one central reconfiguration unit which handles all

reconfiguration inputs. However, if the complexity is high and/or the circuit is very large, it

might be easier to use a distributed, modular reconfiguration unit. Each unit will then cover

only a small part of the circuit. This approach allows to define self-contained regions in the

design that can be reconfigured independently. Furthermore, the regions can be built with dif-

ferent approaches (e.g. fine/coarse granular) according to their criticality in the system (e.g.

reconfiguration time).

4.2.6 Self-Healing Reconfiguration Unit

Faults occurring within the reconfiguration unit have not been addressed so far. Although this is

not the main scope of the thesis, some words are spent on this issue.

Basically, since the reconfiguration unit can be designed in asynchronous logic as well, the

same self-healing concept as for the application logic can be applied. At least two reconfig-

uration units would be needed as shown in Figure 4.6a: RU-A covers the application and the

support unit RU-B, and RU-B covers the main unit RU-A. From the view of RU-A, RU-B acts

like an extension of the application pipeline. All circuits (application, RU-A and RU-B) are

operating independently from each other. Any fault in RU-A, which leads to a deadlock in this

unit, will be detected and handled by RU-B without interruption of the application. A fault in

RU-B, however, will not be handled unless also a fault in the application occurs. Then both the

application and RU-B will be reconfigured by RU-A.

To overcome the disadvantage that the application needs to fail in order to repair a fault in

the reconfiguration unit, an architecture as in Figure 4.6b could be used. Here RU-A checks the

application, RU-B checks RU-A and RU-C, and RU-C checks RU-B. The application can thus

operate independently from the reconfiguration units and vice versa. However, a fault only in

RU-A would not lead to a reconfiguration unless also RU-C stops its operation. If the application

fails before RU-C, no repair would be started and the whole application would fail.

With these approaches the application and the reconfiguration unit are not independent from

each other. Since the reconfiguration unit does not contribute to the intended function of the

application, the whole circuit is not free of single-point failures from an application point of

view.

Basically, it is a general problem of fault-tolerant systems that implemented redundancy does

not help if the checker and/or controller fails. However, while e.g. in a TMR system a failing

voter already results in a system failure, the described approaches - although they look awkward

at a first glance - would autonomously bring the system back to operation.
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The effort of building the reconfiguration unit in a self-healing way can be avoided if it

provides significantly higher reliability than the application. As the application in general will

dominate the complexity and resource occupation, this goal should easily be achieved. The same

conclusion has been reported for other approaches, e.g. in [70].

To avoid common mode failures, the application and the fault-tolerance logic can be dis-

tributed into different components, e.g. as described in [121].

4.2.7 Default State of Configurable Elements

The combination of SHCs and acknowledge switches allows various configurations of a pipeline,

where data and handshake path could be mixed arbitrarily. Although this basically gives a lot of

possibilities to bypass a defective element, the crossing of these paths can cause severe troubles

due to timing differences. As long as the handshake path follows the associated data path, all

timings (time of capturing data in a register, time of asserting the acknowledge, etc.) are defined

from the same source and from the same path. Switching either the data or the handshake path

to the redundant pipeline path means that the nominal data timing is defined by the redundant

handshake timing or vice versa. In this configuration timing assumptions are required for correct

functionality – otherwise the reconfiguration might fail (see section 5.5).

By default, a configuration for the SHCs was chosen where both outputs are determined from

the nominal input. In order to be able to use the same circuit for reconfiguration with and with-

out acknowledge switches, the default configuration for the acknowledge switches was chosen

to have individual acknowledge paths for the nominal and redundant pipeline. This was appro-

priate for the reconfigurations without acknowledge switches, but caused timing problems with

acknowledge switches, so that also a different default configuration was used for the experiments

(see section 5.5).

Details about the timing in different pipeline configurations are discussed in section 4.3.5.
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4.2.8 Transformation from FSL to SH-FSL

The steps to transform a standard FSL circuit into a Self-Healing FSL circuit are as follows:

• Duplicate the pipeline into a nominal and a redundant pipeline

• Replace each combinational logic block by a SHC circuit of appropriate granularity

• Add an Acknowledge Switch for each handshake connection between two registers1

• Add a reconfiguration unit to control the reconfiguration inputs

These steps are depicted in Figure 4.7. Note that the first step also implies the duplication of

the registers.

1Note: As will be shown later, acknowledge switches are not mandatory, but increase the reconfiguration possi-

bilities and thus the fault tolerance.
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4.3 The Principle of Pipeline Reconfiguration

4.3.1 Introduction

The self-healing architecture shall be able to repair stuck-at faults on any position in the cir-

cuit while losing as few resources as possible in order to keep the maximum of possibilities

for further repairs. In section 4.2 it was shown that all faults can be subsumed by three fault

locations.

The following paragraphs describe each of these cases in detail and present possible config-

urations to recover from the particular fault situations. For these explanations a single fault is

assumed, corresponding to the first fault in the pipeline. The possibilities for successful recon-

figurations of subsequent faults depend on the reconfiguration algorithm, i.e. how the first fault

has been handled. This topic is treated in section 4.4.6.

Note: the figures referred to in the following paragraphs are presented at the end of this

chapter.

The following default settings are assumed in the explanations:

• SHC: the nominal input is used as source for both the nominal and redundant logic. Con-

sequently, the faults are injected in the nominal path. Any (first) fault in a redundant path

will not influence the result on the nominal path in this configuration.

• Acknowledge switch: each pipeline uses its associated acknowledge, i.e. the nominal path

receives the nominal acknowledge and the redundant path the redundant acknowledge.

This configuration is the same as for a pipeline without using acknowledge switches which

eases the comparison. As the explanations only address the principle possibilities for

routing both the data and acknowledge path, regardless of their usability in a real circuit,

the default configuration does not matter in this context. As will be described later in

section 5.4.3, it turned out to be better if the acknowledge path follows the data path for

reconfigurations using acknowledge switches. This is also consistent with the standard

way of designing asynchronous pipelines.

Notice that reconfigured components (differing from the default configuration) are shaded

in grey. The fault origin is designated with a circled cross “
⊗

”, blocking signals being a con-

sequence of the initial fault are designated with a bold cross “×”, and other non-nominal signal

states due to deadlock propagation by a thin cross.

Furthermore, the pipeline status in the fault conditions will be explained. Knowing this

status is a prerequisite for defining rules for a reconfiguration unit (see section 4.4).

4.3.2 Faults at SHC Inputs

FSL logic will only update its output if consistent data is applied to the inputs (see section 2.4.2).

Assuming a SHC with two reconfiguration inputs (see also section 5.3.2), four SHC configura-

tions are possible. The following explanations consider a fault at the nominal input of a SHC.

The same arguments, however, are also true for faults at the redundant input for the inverse

configuration.
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1. Configuration 1 (default configuration): Both SHC outputs use the nominal input as source

(Figure 4.18a). A fault at the nominal SHC input will cause both outputs to keep the old

value, i.e. the pipeline will end up in a deadlock. A fault at the redundant input will not

influence the outputs in this configuration.

2. Configuration 2: Both SHC outputs use the redundant input as source (Figure 4.18b). A

fault at the nominal input does not influence the outputs. Both the nominal and redundant

pipeline path keep working and all handshakes can be maintained. A fault at the redundant

SHC input will cause both outputs to keep the old value, i.e. the pipeline will end up in a

deadlock.

3. Configuration 3: The nominal output is defined by the nominal input, the redundant out-

put by the redundant input (Figure 4.18c). Assuming a fault at the nominal input, this

(re-)configuration would only recover the redundant path. The nominal pipeline path

would be stopped forever, because the nominal handshake is blocked. This can be im-

proved by the acknowledge switch (Figure 4.18d): If the redundant handshake is fed to

the preceding nominal register, the nominal pipeline will work up to the faulty SHC. By

appropriately configuring the subsequent SHC it is even possible to establish a circuit

where both pipeline paths are working again (Figure 4.18e). The fault is locally bypassed

and all preceding and subsequent elements are in default configuration. However, this con-

figuration splits the data and acknowledge path, which will only work in highly symmetric

circuits (see section 4.3.5). As will be shown later in section 5.5, the forks emerging in

such configurations cause troubles in hardware implementations.

4. Configuration 4: In this case the nominal output uses the redundant input and the redun-

dant output the nominal input as source (Figure 4.18f). A fault at the nominal input would

cause the pipeline to process one more token on the nominal path, because the redundant

output shows valid data, and then end up in a deadlock because the redundant register

would receive inconsistent input data and thus not update the handshake signal. This fur-

ther causes the preceding redundant register to not feed-through the new input data, which

means that there will not appear any new data at the input of the nominal register. There-

fore the nominal handshake signal must be routed to the redundant preceding register by

appropriately configuring the acknowledge switch (Figure 4.18g). However, as explained

in section 4.3.5, crossing the data and acknowledge path can cause troubles and such a

configuration is not recommended. Without using acknowledge switches the fault at the

SHC input cannot be repaired in this SHC configuration.

The figures show abstract SHCs where the two paths, nominal and redundant, can be switched

as a whole. For a fine granular implementation, where the combinational circuit is built from

several SHCs, this is basically also possible, but several switches of the involved SHCs would

have to be switched to achieve such a configuration within the pipeline. The four described

fault cases still remain true also for fine granular circuits, since also internal faults (within the

SHC) will finally have the same effect at the circuits outputs (e.g. that one of the outputs will

not update its value). For a fine granular circuit it might even be possible to find a working

configuration without switching the whole path. This, however, depends on the granularity and
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the design of the circuit. A comparison of fine and coarse granular SHC reconfiguration and the

resulting fault tolerance is presented in section 5.3.1 .

4.3.3 Faults at Register Inputs

A fault at a register input causes the register to stop updating the output with new input data.

In the default configuration of the SHCs and acknowledge switches this would block both the

nominal and redundant path (Figure 4.19a). While for faults at SHC inputs there exist solutions

where only the SHC has to be reconfigured for a local repair, the situation is more complex for

faults at register inputs. Without acknowledge switches the affected pipeline path is completely

lost with the simple reconfiguration shown in Figure 4.19b. Any additional fault in the other

pipeline path cannot be repaired any more. In the optimized solution the pipeline path is lost up

to the defective register (Figure 4.19c). Here, all SHCs up to the fault location are configured

to separate the nominal and the redundant path, and after the fault location the default configu-

ration is used again. With acknowledge switches in addition to SHC reconfigurations the fault

can be locally bypassed and all preceding and subsequent elements are in default configuration

(Figure 4.19d). Such a configuration can, however, be troublesome (see section 4.3.5).

Note that with the configuration in Figure 4.19b the nominal and redundant pipeline path are

working completely independent from each other. Since there will be slight timing differences,

the nominal and redundant pipeline outputs would drift apart after some time and experience a

mis-alignment. Thus, at least one data source in the path has to generate synchronized outputs.

This can be a SHC configured to use the same source for the nominal and redundant logic, or a

common pipeline input.

4.3.4 Faults at Acknowledge Signals

Faults at acknowledge signals cause quite similar effects as faults at register inputs. There exist

two basic solutions: (i) using only SHCs for reconfiguration, the affected pipeline path is lost

(Figure 4.20b), or (ii) acknowledge switches are used, which allows a local repair without loss

of a huge amount of resources. In this case the acknowledge signal of the redundant register

is fed back to the nominal register and all components and both paths stay in operation (Fig-

ure 4.20c). The same optimization as for register faults without using acknowledge switches can

be applied and is shown in Figure 4.20d. As described in section 4.3.5 below, splitting the data

and acknowledge path can cause timing problems.

4.3.5 Timing Investigation of Different Pipeline Configurations

This section exploits the influence of different pipeline configurations on the pipeline timing. In

section 2.4.4 two basic constraints were defined in order to guarantee a correct capturing of data

in registers. In a standard non-redundant pipeline these constraints are easy to fulfill because

data and acknowledge signals are provided by the same element (register). For a self-healing

pipeline the situation is a bit more complex, as - depending on the configuration - data and

acknowledge signals are not necessarily defined by the preceding or subsequent register of the

same path, and thus the constraints could be violated.
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In the redundant pipeline each of the timing parameters defined in section 2.4.4 can be

expressed for both the nominal and the redundant path (e.g. tR_Nom, tR_Red).

Three particular configurations are taken as examples and described in detail below:

• Pipeline with acknowledge switches in nominal configuration, i.e. both the data and hand-

shake path are defined by the nominal pipeline. This is the default configuration for the

pipeline using acknowledge switches.

• Pipeline without acknowledge switches in nominal configuration, i.e. the data path is

defined by the nominal pipeline, but both pipelines maintain their individual handshake.

This is the default configuration for the pipeline without acknowledge switches.

• Pipeline without acknowledge switches and one SHC configured to use the redundant

input as source for both the nominal and redundant output. This configuration caused

troubles during the hardware experiments (refer to section 5.5).

The three listed configurations cover all situations being used with the reconfiguration algo-

rithms described in this thesis. Several other configurations are possible (e.g. one or more SHCs

within the pipeline splitting the nominal and redundant path) which could make the timing con-

ditions even more severe, as e.g. timing differences could accumulate from multiple stages.

These situations need to be investigated in detail if they shall be used with a more complex

reconfiguration algorithm, however, this is beyond the scope of this thesis.

In the following explanations the timing is investigated from the view of an input to a SHC

which is used as source for both the nominal and redundant output and thus acts as synchroniza-

tion point in the pipeline. For the registers that receive the data and acknowledge from registers

of the same path, the same equations as listed in section 2.4.4 for the standard pipeline apply.

The equations given in the following paragraphs describe the situation for registers, where data

and acknowledge are provided by different elements.

The capturing of a new token applied to the input of the SHC is finished after the token has

propagated through the SHC and the register and the register has assigned the Done signal. This

time is designated as tcapture.

Equation 5 tcapture(n)(nom) = tL_Nom(n) + tR_Nom(n) + tH_Nom(n)

Equation 6 tcapture(n)(red) = tL_Red(n) + tR_Red(n) + tH_Red(n)

Pipeline with AS - Synchronized Data and Acknowledge Path

In the pipeline configuration shown in Figure 4.8 the timing of both the data and the acknowledge

path is defined by the nominal pipeline, as the nominal register provides the data to the SHC, the

SHC uses the nominal data input only and the nominal Done signal is fed back to the Pass input

of both the nominal and the redundant register.

According to Constraint 1, register n must not receive an acknowledge from register (n+ 1)
before it has received and acknowledged the last token. The time tcapture for the redundant

register n must therefore be shorter than the time the token needs to propagate to the output of

the nominal register (n + 1) and the register assigns the Done signal.
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Figure 4.8: Pipeline with Acknowledge Switches and Synchronized Data and Handshake Paths

Constraint 3 tcapture(n)(red) < tL_Nom(n) + tR_Nom(n) + tcapture(n+ 1)(nom)

Constraint 2 requires that register n must not receive a new token at its input before the last

token has been captured and acknowledged. The redundant register n thus must have finished

its capturing of token i before the nominal register n has requested a new token (i + 1) from

register (n− 1) and this token has propagated to the input of the redundant register.

Constraint 4 tcapture(n)(red) < tcapture(n)(nom) + tR_Nom(n− 1) + tL_Red(n)

Pipeline without AS - Split Data and Acknowledge Path

In the pipeline configuration shown in Figure 4.9 the timing of the data is defined by the nominal

pipeline, as the nominal register provides data to the SHC and the SHC uses the nominal input

only, while the acknowledge path is defined individually by the nominal and redundant registers.

To fulfill Constraint 1, the redundant register n must have finished its capturing before the

nominal register (n+ 1) provides the Done signal.

Constraint 5 tcapture(n)(red) < tL_Nom(n) + tR_Nom(n) + tcapture(n+ 1)(red)

To fulfill Constraint 2, the same logic applies as for the pipeline with acknowledge switches.

Constraint 6 tcapture(n)(red) < tcapture(n)(nom) + tR_Nom(n− 1) + tL_Red(n)

Pipeline without AS - Problem Case

The pipeline configuration shown in Figure 4.10 is basically the same as before, but with one

SHC configured to use the redundant input as source for the nominal and redundant output. Both

pipeline paths maintain their individual handshake signals. This configuration may be the result

of a self-repair (see section 5.5).
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Figure 4.9: Pipeline without Acknowledge Switches and Split Data and Handshake Paths
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Figure 4.10: Pipeline without Acknowledge Switches, Problem Case

The redundant register n provides the data to SHC (n + 1) and consequently to register

(n + 1). In order to fulfill Constraint 1 the nominal register n therefore must have finished the

capturing before the token has propagated through the redundant register n and SHC (n+ 1) to

the nominal register (n + 1) and this register has assigned its Done signal.

Constraint 7 tcapture(n)(nom) < tL_Red(n) + tR_Red(n) + tcapture(n+ 1)(nom)

Regarding Constraint 2, two different constraints can be defined. From the view of SHC n
the redundant register n must have finished its capturing of token i before the nominal register n
requests a new token (i+1) and this token has propagated to the input of the redundant register

n.

Constraint 8 tcapture(n)(red) < tcapture(n)(nom) + tR_Nom(n− 1) + tL_Red(n)
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From the view of SHC (n+1) the nominal register (n+1) must have finished its capturing

of token i before the redundant register (n+ 1) requests a new token (i+ 1) and this token has

propagated to the input of the redundant register n.

Constraint 9 tcapture(n+ 1)(nom) < tcapture(n+ 1)(red) + tR_Red(n) + tL_Nom(n+ 1)

Comparison and Discussion of Timing Investigation

In all configurations particular timing constraints for the provision of new data and the acknowl-

edge signal must be considered to ensure a correctly capturing of data in all registers. All these

conditions essentially bound the skew between the tcapture of adjacent stages to the sum of some

tR and tL. The delay tL through a SHC is usually significant, so the conditions are relatively

safe in practice.

While in a non-redundant pipeline the conditions can easily be achieved (refer to section 2.4.4),

in the self-healing pipeline the mixture of signal sources between the nominal and the redundant

pipeline path requires more complex constraints. The timing conditions emerge from the ex-

istence of concurrent paths. In the fault free configurations these paths are short and span two

pipeline stages only (this was one important reason for this choice of initial configuration), but

after repair longer concurrent paths may form, and hence the potential for violations of the tim-

ing constraints increases.

With the set of equations expressed above it can be shown that for arbitrary timings there

exist several combinations that will lead to a violation of one or more constraints and conse-

quently to an unexpected pipeline behavior as some tokens might not be captured. Basically

even meta-stabilities could occur if the inputs are changing while the register is in a dynamic

state. However, such a behavior has not been observed.

4.3.6 Summary

Basically, the first fault on all three fault locations can be repaired with and without the use

of acknowledge switches. However, the amount of resources that are lost differs significantly.

This influences the fault tolerance with respect to multiple faults, since with more operational

resources there remain also more possibilities for subsequent reconfigurations.

Without acknowledge switches fault combinations affecting the nominal and redundant path

at the same time can only be repaired if the faults are particularly distributed. Otherwise such a

situation leads to the loss of the whole pipeline. With acknowledge switches only those combi-

nations affecting nominal and redundant elements at the same position within the pipeline (e.g.

nominal and redundant part of the same register) or neighbor elements (e.g. nominal SHC input

and redundant acknowledge of preceding register) lead to a loss of the circuit. Details about

these cases are presented in section 4.5.

Care has to be taken that there is at least one synchronization point between the nominal and

the redundant path in the pipeline, otherwise a mis-alignment of the pipeline outputs can occur

due to the accumulation of the individual pipeline timings.

As will be shown in section 5.4.2, only a subset of the presented configurations will actually

be used for a practical implementation. On the one hand, not all configurations are necessary

61



for the developed algorithms, on the other hand the timing investigation in section 4.3.5 showed

that some configurations are difficult to implement with respect to timing constraints.

4.4 Fault Diagnosis in a Pipeline

This section explains how the different fault types described in the previous sections can be

identified in the pipeline after a deadlock has been detected. Initially the descriptions assume a

nominal (fault-free) behavior of the pipeline prior to the fault occurrence. The validity of this

assumption and exceptions for multiple faults are discussed at the end of this chapter.

4.4.1 General

The designators as per Table 4.1 will be used for the explanations. For each of the fault descrip-

tions a table showing the pipeline status will be given. In these tables the “X” designates the

fault location. Note that in the columns “ϕin” and “ϕout” the phase status ϕn equals the output

of the phase detectors checking the FSL data vector, while in the columns “Done” and “Pass”

it represents the logical signal value

Designator Meaning

Regm
mth register in the pipeline

without further designators both NOM and RED registers are meant

SHCm mth SHC in the pipeline.

The first element in the pipeline is SHC1. SHC2 follows Reg1.

Ackmk Acknowledge signal between register Regm and Regk

Elementin|out input|output of Element

Signal
faulty Signal

e.g. Ackmk, SHCin

ϕn nth token with phase ϕ; ϕn 6= ϕn+1, ϕn = ϕn+2

Table 4.1: Designators

A generic pipeline with the numbering scheme as in Figure 4.11 is analyzed. The pipeline

receives data from two independent source buffers and stores the data in two independent sink

buffers. The sink buffers mirror the phases of their individual data as Done signal to the last

register in the pipeline. All explanations assume the pipeline and its elements, respectively, to

be in their default configuration as described in section 4.2.7.

4.4.2 Fault at SHC Input

Faults at SHC inputs will generate inconsistent input data for the FSL combinational logic. In the

assumed strongly indicating implementation, FSL logic will only change its output if consistent

data is applied. Thus, the SHC will keep its output corresponding to the last consistent input.

Since the SHC is embedded in a pipeline, the subsequent register will not receive new data with

a new phase and stop the handshake.
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Figure 4.11: Generic Pipeline for Symptom Determination

In this case the input and the output phase detectors of register Regm+1, located subse-

quently to the faulty SHCm+1, will indicate the same phase, since still the old input data is

applied and the register has already captured these data.

The register Regm, preceding the faulty SHC, will capture the new input data with phase

ϕn+1. Then the pipeline enters the deadlock status, as the new data will not be processed by

SHCm+1 and thus Regm+1 will not receive and acknowledge the new data. Table 4.2 shows

the pipeline status for the deadlock condition due to a fault at the input of SHCm+1. This

situation is depicted in Figure 4.18a.

Regm SHCm+1 Regm+1

ϕin ϕout Done Pass ϕin ϕout ϕin Done

NOM ϕn+2 ϕn+1 ϕn+1 ϕn X (ϕn) ϕn ϕn ϕn

RED ϕn+2 ϕn+1 ϕn+1 ϕn ϕn ϕn ϕn ϕn

Table 4.2: Pipeline Deadlock State for Fault at SHC Input

Since by default the SHC uses the same input as source for both the nominal and redundant

logic, and thus both outputs will provide the same result, the same symptoms will occur at both

the nominal and redundant register in the self-healing pipeline.

4.4.3 Fault at Register Input

A fault at a register input will cause inconsistent input data, thus the input phase detector will not

update its output to a new phase. All preceding registers will capture new input data up to the

faulty register, because this one does not update its Done signal. All subsequent registers will

have captured the last consistent data. The status as shown in Table 4.3 will appear. The SHCs

between the registers will only pass through the nominal data to the nominal and redundant

register and are not shown in the table for the sake of brevity.

Even with a faulty input at the nominal register RegmNOM , the redundant register RegmRED

can capture the new data provided from SHCm. However, the subsequent SHCm+1 will use

the (not updated) nominal output Regmout_NOM as source, so that register Regm+1 will not re-

ceive new data and still acknowledges the last consistent data. Thus, DonemRED will be unequal
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Regm−1 Regm Regm+1

ϕin ϕout Done Pass ϕin ϕout Done Pass ϕin Done

NOM ϕn+2 ϕn+1 ϕn+1 ϕn X (ϕn) ϕn ϕn ϕn ϕn ϕn

RED ϕn+2 ϕn+2 ϕn+2 ϕn+1 ϕn+1 ϕn+1 ϕn+1 ϕn ϕn ϕn

Table 4.3: Pipeline Deadlock State for Fault at Register Input

to PassmRED.

A faulty input at a redundant register would block the redundant handshake but not lead to

a deadlock in the default configuration of the pipeline, i.e. remain as a latent fault. This issue is

described in section 4.4.6

4.4.4 Fault at Acknowledge Signal (Pass Input)

A faulty acknowledge signal (Pass signal) will block the handshake of the register receiving

the faulty signal, which will thus not capture the new input data. All preceding registers will

capture new input data up to the affected register, because this one does not update its Done
signal. All subsequent registers will have captured the last consistent data. The status as shown

in Table 4.4 will appear. The SHCs between the registers will only pass-through the nominal

data to the nominal and redundant register and are not shown in the table.

Regm−1 Regm Regm+1

ϕin ϕout Done Pass ϕin ϕout Done Pass ϕin Done

NOM ϕn+2 ϕn+1 ϕn+1 ϕn ϕn+1 ϕn ϕn X (¬ϕn) ϕn ϕn

RED ϕn+2 ϕn+2 ϕn+2 ϕn+1 ϕn+1 ϕn+1 ϕn+1 ϕn ϕn ϕn

Table 4.4: Pipeline Deadlock State for Faulty Pass Signal

Even with a faulty Pass signal at the nominal register RegmNOM , the redundant register

RegmRED can capture the new data. However, the subsequent SHCm+1 will use the nominal

output Regmout_NOM as source so that register Regm+1 will not receive new data and still ac-

knowledge the last consistent data. Thus, DonemRED will be unequal to PassmRED.

A faulty Pass signal at a redundant register would block the redundant handshake but not

lead to a deadlock in the default configuration of the pipeline, i.e. remain as a latent fault. This

issue is described in section 4.4.6.

4.4.5 Observable Symptoms

From the three different deadlock conditions unique symptoms for each type of fault can be

derived. The common symptom for all faults in the nominal path is that Done 6= Pass at a

redundant and/or a nominal register. Note that all subsequently defined symptoms are described

for a fault at a nominal signal, corresponding to the first fault in the default configuration. The
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same symptoms, however, can also be defined for faults at redundant signals. For simplicity

these rules are not listed below. Latent faults at redundant signals are treated in section 4.4.6.

Symptom 1

SHCm+1

in_NOM

Regmin_NOM

Ackmk
NOM , k = m+ 1



























→ DonemRED 6= PassmRED

Note: For a faulty nominal SHC input also DonemNOM 6= PassmNOM can be observed, but

this is not relevant for identifying the fault location.

Depending on the fault either the preceding register (SHC input faulty) or the affected reg-

ister (input of register or Pass signal) will show this condition, which obviously can be used to

determine the fault location. We designate this register RegFL.

It can further be seen that for SHC and acknowledge faults the input phases of RegFL
NOM and

RegFL
RED are equal, while for faults at register inputs the phases are unequal:

Symptom 2

SHCm+1

in_NOM

Ackmk
NOM , k = m+ 1











→ ϕm
in_NOM = ϕm

in_RED

Symptom 3 Regmin → ϕm
in_NOM 6= ϕm

in_RED

As the source buffer can be seen similar to an FSL register, the same observations can be

made at the input to the pipeline (equivalent to the output of the source buffer): For faults at SHC

inputs the phases of the nominal and redundant tokens of the source buffer will be equal, while

for acknowledge and register faults it will be different. These symptoms are a special case of

the latter three ones and are thus not listed explicitly here. They are used for the reconfiguration

based on the “global view” of the pipeline, which means that only the symptoms at the first

register of the pipeline are used to determine the appropriate reconfiguration pattern (see RU_C

in section 5.4.2).

For a fault at the SHC input the input phase of RegFL is equal to the input phase of

RegFL+1. In fact, RegFL already has the next value at its input. However, due to the alter-

nating phases every second phase value is equal (ϕn = ϕn+2).

Symptom 4 SHCm+1

in_NOM → ϕm
in_NOM = ϕm+1

in_NOM

For faulty Pass signals the input phase of RegFL is unequal to the input phase of RegFL+1.

Symptom 5 Ackmk
NOM → ϕm

in_NOM 6= ϕk
in_NOM , with k = m+ 1

Apart from these basic symptoms, some cases require exceptional handling.

Since there is no register preceding the first SHC in the pipeline, symptom 1 cannot be

observed if the input data of the first SHC is faulty. In this case we can assume that if the
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pipeline is in a deadlock condition and there is no register where Donem 6= Passm, the input

of the first SHC in the pipeline must be faulty.

Symptom 6 Deadlock ∧ (Donem = Passm) | m = 1..mmax → SHC1
in_NOM

If the Pass signal of the last register in the pipeline is faulty, symptom 5 cannot be observed

because the sink does not provide the status of the input phase detector and a Done signal like

a register. So, if a deadlock has been detected and Donemmax 6= Passmmax , the acknowledge

between the last register in the pipeline and the sink is faulty.

Symptom 7 Donemmax 6= Passmmax → Ackmmaxsink

Assuming two independent sink memories for the nominal and redundant pipeline path

which store the data each time the phase changes, a fault at the input of the last register in

the pipeline looks like symptom 4. Thus, additional symptoms have to be considered.

Due to a fault at the input of the last nominal register in the pipeline, this register will not

update the output. The redundant register will receive the correct value and so the redundant

sink can store the data. The resulting pipeline status is shown in Table 4.5.

Regmmax−1 Regmmax Sink
ϕin ϕout Done Pass ϕin ϕout Done Pass ϕin Done

NOM ϕn+2 ϕn+1 ϕn+1 ϕn X (ϕn) ϕn ϕn ϕn ϕn ϕn

RED ϕn+2 ϕn+2 ϕn+2 ϕn+1 ϕn+1 ϕn+1 ϕn+1 ϕn+1 ϕn+1 ϕn+1

Table 4.5: Pipeline Deadlock State for Fault at Last Register Input

This condition looks similar to a fault at a SHC input or an acknowledge fault (symptom

2). The difference is that for a fault at the input of the last register, the nominal and redundant

input phases of the last register are different, whereas for the other mentioned fault conditions

the input phases are equal. Therefore the following additional rules were defined.

Symptom 8

SHCm+1

in_NOM

Ackmk
NOM , k = m+ 1











→ ϕm+1

in_NOM = ϕm+1

in_RED

Symptom 9 Regmmax

in_NOM → ϕmmax

in_NOM 6= ϕmmax

in_RED

A fault within a SHC will prevent the SHC from updating the output due to inconsistent data

at the input of the FSL combinational logic inside the SHC. Depending on the fault location and

the SHC configuration, either the nominal or the redundant output or both will not change value.

If both outputs stop, the behavior follows the rules described above for SHC faults. If only one

output is affected, the subsequent register using the respective nominal or redundant value will

not get new data, i.e. the input phase detector will not change state, while the other register

receives and processes a new value. This behavior is equal to a fault at a register input. Thus, by
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observing the symptoms defined above, a fault within a SHC might not be distinguishable from

a fault at the input of the subsequent register. The handling of this particular condition must

be considered in the reconfiguration unit, e.g. by always first performing a SHC reconfiguration

and moving on to the corresponding reconfiguration for register faults if the SHC reconfiguration

was not sufficient to solve the problem. This approach is also applicable for fine-granular SHC

implementations, see section 4.5.2.

Table 4.6 summarizes the symptoms, and shows which combination of symptoms identifies

the different faults. All symptoms marked with “X” must occur in order to clearly identify the

corresponding fault.

General Exceptions

Symptoms SHCin Regin Ack SHC1
in Regmmax

in Ackmmaxsink

1 X X X X X

2 X X X

3 X

4 X

5 X

6 X

7 X

8 X X

9 X

Table 4.6: Summary of Symptoms due to Single-Faults in the Pipeline

Figure 4.12 shows an exemplary algorithm using the above symptoms in a graphical repre-

sentation. The reference to the symptoms is given in brackets.

4.4.6 Effects due to Multiple Faults

In this section the conditions for multiple faults are evaluated. As we expect the probability

of multiple permanent faults occurring at the same time (or in close temporal proximity) to be

negligible, we rather consider here the case of a single permanent fault emerging after a finished

reconfiguration due to a previous fault.

Multiple Faults at SHC Inputs

For the first fault at a SHC input a reconfiguration of only the affected SHC is sufficient. The

fault can be bypassed locally inside the SHC, and - if a configuration is applied, so that both

outputs are correct - fault-free conditions prior and after the defective SHC are established. Any

additional fault in the pipeline can thus be identified following the initial diagnosis and rules.

Multiple Faults at Register Inputs

Without acknowledge switches a fault at a register input can only be repaired by separating the

two pipeline paths at least up to the defective register (see section 4.3.3). With the simple recon-
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Figure 4.12: Reconfiguration Rules and Algorithm for Local Observability

figuration any additional fault in the same pipeline path will therefore not affect the functionality,

because this pipeline path is deactivated anyway. An additional fault in the other path cannot be

repaired. For the optimized reconfiguration these statements are true for faults prior the defec-

tive register. After the SHC located subsequently to the defective register, nominal conditions

are established again. Thus, the initial rules are valid for faults occurring at least one SHC after

the defective register (see Figure 4.19c).

With acknowledge switches the fault can be bypassed locally by routing both the acknowl-

edge and data signals via the redundant pipeline path. In appropriate distance from this faulty

register (at least one SHC in between, see Figure 4.19d) the pipeline will then look fault-free,

and all the symptoms described previously are valid. Within a distance of one register and one
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acknowledge switch the symptoms depend on the previously performed reconfigurations and

can differ from the initial ones. In this case the resulting symptoms could lead to a wrong

reconfiguration, i.e. the fault situation cannot be repaired.

Multiple Faults at Acknowledge Signals

Faults at acknowledge signals cause the same behavior as faults at register inputs, thus the same

effects as described above can be observed.

Fault Combinations on SHC and Register Inputs

For the fault combination of SHC input and register input the sequence of the fault occurrence

will influence the behavior of the pipeline and the success of the reconfiguration.

Without acknowledge switches:

• If the fault at the register input occurs first, the pipeline paths need to be separated. Any

further fault at the same pipeline path will thus not affect the functionality.

• If the fault at the SHC input happens first, the reconfiguration will re-establish the fault-

free conditions due to the local bypass. The subsequent fault at the register input will cause

the described symptoms for register faults, and thus the pipeline paths will be separated.

• If the defective register is located later in the pipeline than the defective SHC only the

redundant path will provide valid results (Figure 4.13a). Otherwise, both the nominal and

redundant outputs of the pipeline will be correct (Figure 4.13b).

a) Defective Register after Defective SHC b) Defective Register prior Defective SHC

SHC Reg Reg SHC

Figure 4.13: Multiple Faults at SHC and Register Inputs

With acknowledge switches basically the same statement is valid, as well as the statement

for multiple faults at register inputs. The only exception is that the pipeline paths will not be

separated.

Fault Combinations on SHC Inputs and Acknowledge Signals

Since faults at acknowledge signals have the same effect as faults at register inputs, the same

statements as above are valid.

Fault Combinations on Register Inputs and Acknowledge Signals

This combination causes the same behavior as multiple faults at register inputs.
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4.4.7 Summary

Each of the three single-fault conditions “faulty SHC input”, “faulty register input” and “faulty

acknowledge signal” can be clearly identified with the symptoms presented above. Depending

on the location of the fault within the pipeline, different symptoms will appear. Three basic

locations have to be distinguished, which are “begin of the pipeline”, “end of the pipeline” and

“between begin and end of the pipeline” and need to be treated differently.

In general, after a successful repair, the pipeline with acknowledge switches behaves like in

the fault-free configuration and causes the same symptoms in a new fault situation. However,

there exist some particular cases, where the application of the “single fault diagnosis” to multiple

faults can lead to a wrong identification and thus to an incorrect reconfiguration (see section 5.4).

This is an issue for the design of the reconfiguration unit, which needs to be intelligent enough

to apply different rules, depending on the history of the circuit.

4.5 Reconfiguration Rules and Algorithm Efficiency

4.5.1 Reconfiguration on Pipeline-Level

In order to evaluate the effectiveness of different reconfiguration algorithms applied on a cir-

cuit, first the number of possible circuit configurations leading to a successful repair must be

determined. As already explained in section 4.3, all single faults can be tolerated by the archi-

tecture. This is not surprising considering the duplication of the pipeline. The strength of the

fine-grained self-repair becomes visible, however, in the presence of multiple faults.

Table 4.7 presents formulas to calculate the number of non-repairable double faults as a

function of the number n of pipeline stages. The correctness of these formulas was verified by

simulations. The criterion for a successful repair was, that the configuration creates a circuit,

where a data and acknowledge path exists, so that at least one of the two outputs delivers correct

results, and the pipeline does not end up in a deadlock.

Note that the formulas for the case “without AS” assume the “simple” reconfiguration by

separating the pipeline paths as described in section 4.3.3. This algorithm has been used for the

hardware injection experiments with RU_C (see section 5.4.2).

Basically, in both variants (with and without acknowledge switches) all fault combinations,

where the nominal and redundant element of the same pipeline stage are affected, cannot be

repaired (e.g. nominal and redundant register input). Without using acknowledge switches

also all fault combinations affecting any nominal and any additional redundant register input or

acknowledge signal cannot be repaired. Finally, there are some specific combinations of faults

that cannot be repaired:

• Without using acknowledge switches all combinations of a faulty SHC input and a faulty

register input or acknowledges signal in the other path cannot be repaired (2 ∗ n2), except

those combinations where the faulty register or acknowledge signal is located earlier in the

pipeline than the SHC fault, and there is at least one SHC in between (2*
∑n−1

i=2
(n − i)).

The reason for this exception is obvious: Let’s assume a faulty nominal SHC input, which

requires to configure the SHC to use the redundant input. If there occurs another fault at a

70



faulty signals number

without AS

SHCj
In_Nom ∧ SHCj

In_Red, j = {1, ..., n} n

RegjIn_Nom ∧RegkIn_Red, j, k = {1, ..., n} n2

PassjNom ∧ PasskRed, j, k = {1, ..., n} n2

Regj
In_Nom|Red

∧ Passk
Red|Nom

, j, k = {1, ..., n} 2 ∗ n2

Regj
In_Nom|Red

∧ SHCk
In_Red|Nom

, j, k = {1, ..., n} 2 ∗ (n2 −
∑n−1

i=2
(n − i))

exception: | j − k |≥ 1

Ackj
Nom|Red

∧ SHCk
In_Red|Nom

, j, k = {1, ..., n} 2 ∗ (n2 −
∑n−1

i=2
(n − i))

exception: | j − k |≥ 1

total 8 ∗ n2 + n− 4 ∗
∑n−1

i=2
(n− i)

with AS

PassnNom ∧ PassnRed n

SHCn
In_Nom ∧ SHCn

In_Red n

RegnIn_Nom ∧RegnIn_Red n

Passn
Nom|Red

∧Regn
In_Red|Nom

2 ∗ n

SHCn
In_Nom|Red

∧ Passn−1

Red|Nom
2 ∗ (n− 1)

SHCn
In_Nom|Red

∧Regn−1

In_Red|Nom
2 ∗ (n− 1)

total 9 ∗ n− 4

Table 4.7: Number of Non-Repairable 2-Fault Configurations in an n-Stage Pipeline

register input or acknowledge signal later in the redundant pipeline path (Figure 4.14a), the

redundant handshake is blocked and thus the register providing the data for the redundant

SHC input will not be updated any more.

• If the additional fault occurs earlier in the pipeline, the redundant handshake is only

blocked up to the faulty register, and the redundant SHC input can receive new data (Fig-

ure 4.14b) - provided, that there is at least one SHC in between. Otherwise the register

providing data to the redundant SHC input would also be defective (Figure 4.14c).

• With acknowledge switches these cases can be repaired, except if there is a fault at a SHC

input and at a register input or acknowledge signal in the previous stage in the other path

(e.g. Figure 4.14c).

The difference of the two pipeline architectures with respect to fault tolerance is clearly vis-

ible in Figure 4.15. The relative improvement of the success rate with rising n can be explained

by the fact, that with longer pipelines the number of fault combinations where no neighbor stages

are affected is increasing faster than the number of troublesome situations described above.

For the evaluation whether a valid path exists in the pipeline for a particular fault situation,

all faults can be injected simultaneously, because all possible paths (pipeline configurations)
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Figure 4.14: Fault Combinations of SHC and Reg Faults

are checked until a valid data and acknowledge path is established, without any dependency on

previous reconfigurations, i.e. assuming a “perfect” algorithm.

The number of fault combinations equals
(

FPos
NofFaults

)

, where FPos = 6 ∗ n (three fault

locations per pipeline path and stage), and n =number of pipeline stages. Table 4.8 presents the

results for a 5-stage pipeline (FPos = 30) and 1 to 3 faults. The same circuit was used for the

hardware experiments described in section 5.5. These numbers show the theoretical best case

and can be used as benchmark to evaluate the efficiency of a reconfiguration algorithm. Without

any fault all possible configurations are valid. For more than two faults no formulas were devel-

oped, instead simulations covering all possible fault combinations and pipeline configurations

have been performed to determine the maximum number of successful reconfigurations.
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Figure 4.15: Comparison of Double-Fault Handling

No. of faults fault combinations max success

without AS

0 0 - 100.0%

1 30 30 100.0%

2 435 254 58.4%

3 4060 1126 27.7%

with AS

0 0 - 100.0%

1 30 30 100.0%

2 435 394 90.6%

3 4060 2988 73.6%

Table 4.8: Theoretical Maximum of Successful Reconfiguration Paths in 5-Stage Pipeline

4.5.2 Embedded Fine-Granular SHC Reconfiguration

Faults inside a SHC will prevent the SHC from updating either one or both outputs due to the

inconsistent data on any internal FSL logic input. Thus, the symptoms of either a fault at a SHC
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input (both outputs blocked), or of a fault at the input of the subsequent register (one SHC output

blocked), can be observed (see section 4.4.5).

So far, the reconfigurations considered coarse granular SHCs only, i.e. the implemented

logic can either use the nominal or the redundant input and the SHC will produce two respective

outputs.

Following the described symptoms, an internal fault affecting only one output would be

handled as a register fault, which is indeed the only possibility for coarse granular SHCs.

With fine granular SHCs some new topics come up:

1. Fine granular self-healing logic is built from several SHCs, i.e. several reconfiguration

inputs have to be handled.

2. For a configuration to “completely redundant” like for a coarse granular logic, several

reconfiguration inputs have to be set correctly.

3. Although an internal fault can cause symptoms like a fault at a register input, it can be

repaired within the SHC. A complete switch to the redundant part would be possible, but

is a waste of resources.

This means that faults being identified as faults at a register input should be handled as

follows. First, only the SHC preceding the suspicious register should be reconfigured. This can

be done with random configuration patters, as the handshake is not affected and no unintended

data capturing will occur. If the deadlock cannot be removed this way, it can be concluded that

the fault is located either late in the SHC so that it cannot be removed by SHC reconfiguration,

or it is located at the input of the subsequent register. In both cases it has to be treated as register

fault.

This 2-level reconfiguration has not been considered in the simulations and experiments

within this thesis. However, SHC and pipeline reconfigurations have been investigated in detail

as separate topics (see sections 5.3 and 5.5).

4.6 Overhead of the Self-Healing Approach

This section presents an analysis of the overhead the self-healing approach introduced in terms

of logic resources compared to a standard FSL circuit. Only the overhead caused by the in-

strumentation of the application circuit is analyzed. The overhead of the reconfiguration unit

depends significantly on the algorithm and thus cannot be calculated in a general way.

The overhead in terms of logic resources, which the self-healing approach adds, accumulates

from (i) the redundant logic and (ii) the control logic needed to operate the redundant logic

(routing elements, i.e. switches).

The overhead was analyzed at the example of an adder. In the fine granular (FG) implemen-

tation each gate of the adder is a basic SHC (AND, OR, etc.) with two inputs, which provides

much more routing possibilities. In contrast, the coarse granular (CG) adder is built as one single

SHC which contains two equal adder circuits. The principle of fine and coarse granular SHC is

depicted in Figure 4.4.
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Independent from the SHC granularity, the logic resources in a SHC will be doubled com-

pared to a standard FSL implementation. The number of switches (one for each input) and the

number of reconfiguration inputs (two for each SHC), however, makes a significant difference.

The resource occupation for a two input logic function (34 equivalent logic gates) and a switch

(12 equivalent logic gates) was determined from the Xilinx synthesis report.

Fig. 4.16 shows the resource overhead (OH) compared to a standard FSL implementation

versus the width of the adder. The relative resource overhead for the FG SHC is constant (factor

of 3.4), because each bit of the adder requires the same amount of resources (1-bit adder). For

the CG SHC adder the overhead decreases from approximately 2.35 for a 2-bit adder to 2.15
for a 10-bit adder because the constant overhead of the switches decreases relative to the total

amount of resources.

For complex circuits a completely fine granular implementation is not meaningful due to the

high number of reconfiguration inputs that have to be controlled by the reconfiguration unit. As

shown in the figure, for a 10-bit adder more than 10000 reconfiguration inputs would be needed.

In this case, the resource overhead of the reconfiguration unit would very likely dominate the

total amount of resources and keep the overhead of the SHC implementation insignificant. A

fine granular implementation is thus only reasonable for small applications that are particularly

critical or where an extremely high failure rate is expected. Of course, fine and coarse granular

circuits can be combined as needed in the application to achieve the reliability goal. A compar-

ison of the two implementations with respect to fault tolerance is presented in section 5.3.1.
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Figure 4.16: Overhead and Number of Reconfiguration Inputs vs. Width of a Full-Adder
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In addition to the redundant logic in the SHCs the self-healing concept doubles the resources

of the pipeline registers due to the redundant pipeline path. However, it is expected that in

a typical application the amount of resources used for the logic (implemented in SHCs) will

be much higher than for the “administrative logic” in the pipeline, so that the overhead of the

SHCs dominates. Figure 4.17 shows the total overhead of the self-healing approach (without

reconfiguration unit) versus the ratio of resources related to the registers (CG SHC is considered

with factor 2.15). For a circuit consisting only of registers (100%) the overhead settles at a factor

of 2 which is caused by the redundant pipeline.
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Figure 4.17: Overhead of Self-Healing Approach
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CHAPTER 5
Analysis, Simulations and

Experimental Results

5.1 Introduction

This chapter summarizes all results of the steps performed in scope of the thesis. Table 5.1 lists

the activities and provides a reference to the relevant section where they are described in detail.

Description Method Reference

SHC Related Activities

SHC Fault Tolerance, Fine vs. Coarse Granular Simulation §5.3.1

SHC Optimization Analysis §5.3.2

Pipeline Related Activities

Elaboration of Pipeline Reconfiguration Algorithm Simulation §5.4

Verification of Pipeline Reconfiguration with H/W Fault Experiment §5.5

Injection

Architecture Related Activities

Show Case: Complex Self-Healing Circuit Experiment §5.6

Reliability Analysis of Self-Healing Pipeline Analysis §5.7

Table 5.1: Summary of Simulations, Analysis and Experiments

The explanations in the previous chapter already showed that the complexity of the whole

self-healing approach is rather high. It was quite clear that it is not possible to use one particular

model or environment for all investigations. In particular the focus was completely different

between e.g. the determination of fault tolerance in a SHC and the elaboration of reconfigura-

tion strategies for the pipeline. Therefore a combination of analysis, simulations (on different

abstraction levels) and hardware experiments has been chosen to validate the self-healing ap-
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proach. Each model was optimized for a particular goal and, as far as feasible, was verified by

supplementary experiments.

For example, exhaustive fault injection simulations with Modelsim would not have been

feasible due to the large simulation time, so an abstract Matlab model neglecting the timing

was developed. The same fault injections have been performed in hardware, which on the one

hand verified the correctness of the abstract simulation model, and on the other hand proved the

concept under real conditions.

5.2 Environment

5.2.1 General

This section describes the major simulation and hardware environments developed and used in

scope of this thesis.

The environments used to investigate the pipeline configurations, both for simulations and

hardware experiments, are described in detail below. One important aim was the ability to emu-

late the same situations in both the simulation model and the hardware environment on different

abstraction levels and with different observability (level of insight and access to internal circuit

parameters). This was supported by having a compatible interface for the stimulus definition and

fault injection. With the simulation and hardware environment described herein it is possible to

perform both simulation-based and hardware fault injection.

For the exploration of SHCs no such sophisticated environment was necessary, so no general

description is given here. The details about the chosen exemplary circuits that were implemented

and evaluated can be found in the respective section.

5.2.2 Simulation Environment for Pipeline Reconfiguration

The model used to evaluate pipeline reconfigurations and different algorithms was established

in Matlab. It considers basic behavioral rules of the involved elements (e.g. the conditions when

a FSL register is transparent) and then calculates the new values and phases. Signal vectors are

modeled in an abstract way as a value that can be either correct or incorrect. Fault injections

on rail-level are not possible, neither is the simulation of circuit timings. This considerably

improves the simulation performance and makes the model insensitive to hazard-based effects

as described in section 2.4.5. Timing effects due to crossing of nominal and redundant data and

acknowledge paths (see section 4.3.5) are neglected as well here for a first estimate.

The model is composed from two main blocks:

• Target circuit: is designed from several elements such as SHC, register, acknowledge

switch, and builds the pipeline, which is investigated in various fault conditions and with

different reconfiguration algorithms

• Reconfiguration Unit: simulates the functionality of a reconfiguration unit, including the

watchdog circuit and the reconfiguration controller. Different reconfiguration algorithms

can be configured for the reconfiguration controller.
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Target Circuit

The target circuit for the investigation of pipeline reconfigurations shall on the one hand be as

small as possible, so that simulations and experiments can be performed in a reasonable time, but

it shall also be complex and long enough to get rid of “border effects”. Thus, a 5-stage pipeline is

used as target circuit with combinational logic implemented as SHCs in between. Two pipelines

were investigated, one only with SHCs as reconfigurable elements (Figure 5.1) and a second

one using also acknowledge switches (Figure 5.2). The default configuration for the SHCs is

that the nominal input is used as source for both the nominal and redundant logic. For the

acknowledge switches two variants have been investigated: (i) in the default configuration the

nominal Done is routed to the nominal Pass and the redundant Done to the redundant Pass
of the preceding registers (as it is the case without acknowledge switches) and in (ii) both the

nominal and redundant registers receive the nominal Pass signal by default, i.e. the handshake

path follows the data path.
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Figure 5.2: Simulated Pipeline with Acknowledge Switches

Two independent sources and sinks are used. Each calculation cycle defines the new value

and phase independently for each element and so the new conditions/tokens move through the

pipeline. The sources deliver values from 0 to 9 in alternating phases each time the acknowledge

input changes state and wrap around after the value 9 has been reached.
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Fault Injection

Faults can be injected at any time on register inputs, Pass signals and SHC inputs by simply

replacing the value property of a signal with an ’X’, indicating an inconsistent or incorrect value,

respectively. These signals are then not evaluated any more for the determination of a token

transfer or capturing (the rules can be seen in listing 5.7, 5.8 and 5.9). It is possible to inject any

number of faults at a time.

Reconfiguration Unit

The model of the reconfiguration unit defines the rules for the applied reconfiguration. If there

is no change in data and phases in the pipeline after a calculation cycle, a deadlock is assumed.

Depending on the pipeline length, several calculation cycles need to be performed in order to

allow the fault to settle and cause a deadlock.

If a deadlock is detected, the reconfiguration unit checks the internal pipeline states (phases

and values) according to the symptoms elaborated in section 4.4.5, and performs defined actions

accordingly. Different reconfiguration algorithms can be easily tried the same target circuit for

comparison.

Simulation Elements

2-Input SHC The SHC is modeled as a simple feed-through (i.e. no combinational func-

tion implemented) with two reconfiguration inputs. Each input/output has a value and a phase

property (Figure 5.3). The model assumes a correctly working combinational logic, i.e. a de-

fective input (causing inconsistent data) does not propagate to the SHC output, as it will be

blocked by the FSL logic (see chapter 2.4.2). Internal faults cannot be injected, but as outlined

in section 4.5.2 they will cause the same behavior as faults at SHC or at register inputs.

The rules of the SHC model are presented in listing 5.7.

ReconfNom ReconfRed

ValInNom
PhiInNom

ValInRed
PhiInRed

ValOutNom
PhiOutNom

ValOutRed
PhiOutRed

Figure 5.3: Properties of SHC Simulation Model

Register The register is modeled as a redundant component, i.e. two independent registers

are considered. Apart from the data inputs/outputs acknowledge signals are needed as well

(Figure 5.4). The model assumes a correctly working register control logic, i.e. a defective input

(meaning inconsistent) does not propagate to the register output (see chapter 2.4.3). A fault in
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the control logic would cause an incorrect output or the Done signal to be not updated, which

can be modeled as a fault on the subsequent SHC or sink input, or as a fault on the Pass input of

the preceding register.

The rules of the register model are presented in listing 5.8.

ValInNom

ValInRed

PhiInNom

PhiInRed

ValOutNom
PhiOutNom

ValOutRed
PhiOutRed

DoneNom

DoneRed

PassNom

PassRed

R
e
g

is
te

r

Figure 5.4: Properties of Register Simulation Model

Acknowledge Switch The acknowledge switch is basically a switch matrix which routes

the acknowledge signals according to the configuration inputs (Figure 5.5).

The rules of the acknowledge switch model are presented in listing 5.9.

ReconfNom ReconfRed

AckInNom

AckInRed

AckOutNom

AckOutRed

Figure 5.5: Properties of Acknowledge Switch Simulation Model

5.2.3 Environment for Hardware Experiments

The hardware fault injection experiments were performed using the Memec Virtex-4 FX12 LC

evaluation board. All activities, like defining the source data, applying faults, reading data from

the sink buffer, etc., can be controlled via an USB interface. Basically a simple terminal program

would be sufficient, but for convenience a dedicated application with a graphical user interface

was designed. A screen snapshot can be found in Figure 5.29 at the end of this chapter. This

application includes a simple script interpreter which eases the definition of test sequences.

Listing 5.6 presents an example of such a scenario.
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For the fault injection saboteur components were designed, which allow to apply stuck-at-0

and stuck-at-1 faults to any signal in the circuit. Figure 5.6 shows the component and its logic

table.

Saboteur

Action

Type

Signal_In

Signal_Out

Type|Action|Signal_In||Signal_Out||Mode

========================================

  0 |   0  |    0    ||     0     | pass

  0 |   0  |    1    ||     1     | pass

  0 |   1  |    0    ||     0     | SA0

  0 |   1  |    1    ||     0     | SA0

  1 |   0  |    0    ||     0     | pass

  1 |   0  |    1    ||     1     | pass

  1 |   1  |    0    ||     1     | SA1

  1 |   1  |    1    ||     1     | SA1

Figure 5.6: Saboteur Component

For fault injection experiments the saboteur must be placed manually in the design on any

signal that shall be able to be modified. The principle environment and examples for a saboteur

application are given in Figure 5.7.

Each saboteur receives the target signal and two configuration signals as input. The config-

uration signals allow defining the type of fault (stuck-at-0, stuck-at-1) and control the activation

of this fault injection. The saboteur configuration signals are mapped to a distinct bit position in

a “Type” and an “Action” register, which are controlled from the fault injector. Each bit position

refers to exactly one saboteur, i.e. one signal. The fault injector processes a configuration table

which must be pre-loaded into a FIFO buffer before starting the application. Each entry in the

FIFO contains

• The time when the fault injection shall take place, i.e. the number of clock ticks of a

dedicated fault-injector clock. In the experiments described herein a pipeline handshake

signal was used as clock, so that the time of fault injection was equal to the number of

handshake cycles in the pipeline (corresponding to the number of processed tokens).

• The signal number to which the fault shall be applied (corresponding to the bit offset in

the “Type” and “Action” register).

• The action to be performed (activate, de-activate the fault).

• The fault type (stuck-at-0, stuck-at-1).

• An “Offset” field, which defines the delay in number of system clock cycles after the fault

injector is triggered. This allows to shift the actual fault injection in fine time steps within

the handshake cycle.

After the fault injector is started, it waits for the next trigger condition and then performs the

configured action. If the time is set to zero the next injection is performed immediately without

waiting for the next handshake cycle. This gives the possibility to apply multiple faults nearly

simultaneously.
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Figure 5.7: Fault Injection Environment

Furthermore, the fault injector allows to read-out the actual reconfiguration vector of the

application, and also to manually define a reconfiguration vector for debugging purposes.
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5.3 Reconfiguration of Self-Healing Cells

5.3.1 Fault Tolerance of Fine and Coarse Granular Self-Healing Cells

Introduction

In this section the tolerance of fine and coarse granular SHC circuits against single and multiple

faults is compared, as well as the difference of the occupied resources. The goal of the simulation

was to prove the anticipation that for any single stuck-at fault a working configuration can be

found, and that the SHC is also highly tolerant against multiple faults.

Simulation Description

The target circuit was a full adder which was designed in two ways:

1. The first circuit (circuit A) was built from low level SHCs (Figure 4.4a; example given for

a half adder in Figure 4.4b).

2. In the second circuit (circuit B, Figure 4.4c) two complete full adders were implemented

in the SHC, which basically act as active-redundant circuits.

Both circuits were designed as RTL model in VHDL and Modelsim was used for the sim-

ulation. The reconfiguration inputs of the SHCs were controlled by a testbench-model of a

reconfiguration unit. It was implemented as a counter, which ensures that all possible config-

urations are tested. The drawback is the large simulation time, so that only a 1-bit adder was

simulated. However, since adders with higher bitwidths can be constructed by cascaded 1-bit

adders, and faults on the external interfaces have been considered in the simulation, the results

obtained from the 1-bit adder are also representative for larger adders.

A list of all internal signals and external interfaces, including the reconfiguration inputs, was

extracted from the RTL design. Then up to 11 faults were injected on these signals. The first

signal was chosen sequentially from the extracted list. To obtain a good statistical distribution

the additional signals, as well as the fault type (stuck-at-0 or stuck-at-1), were selected randomly.

The applied sequence guaranteed that each signal was subjected at least once to both stuck-at

faults per simulation run.

After the fault injection all valid input stimuli were applied in alternating phases. The 1-

bit full adder provides three inputs (a, b, cin), resulting in 8 combinations for each phase or

16 combinations in total. Due to the storage elements in the FSL gates the circuit behavior

in the presence of errors depends on the history. To consider this dependency, five independent

simulation runs (with random signal selection as described above) were performed, and the mean

values of the success rates were taken as the final result. In total, 22720 fault conditions with

the fine granular circuit (circuit A) and 17600 for the coarse granular circuit (circuit B) were

simulated1.

In case of a deadlock the counter controlling the reconfiguration inputs started to count up.

As soon as a configuration was found that resumed the circuit’s operation, it was assumed that

1The different number of fault conditions results from the different number of internal signals, e.g. 142 signals

* 16 input combinations * 2 fault types * 5 simulation runs = 22720 fault combinations for circuit A.

88



the circuit has been repaired correctly. The result of the adder (sum and carry) was compared to

the expected value and the circuit was defined to be working if at least one of the two redundant

outputs showed the correct result. If the applied configuration did not remove the deadlock, the

reconfiguration process was continued by trying the next configuration pattern until all possible

patterns were applied. If no working configuration could be found, this fault combination was

declared as uncorrectable.

Results

The simulations confirmed that for both circuits it is possible to repair all single faults. For

multiple faults there is a high probability for a successful repair which, however, depends on the

fault location in the circuit. If e.g. two faults affect both the nominal and the redundant path

within a SHC, the circuit will fail. The same applies if a signal and its associated reconfiguration

input are affected by a permanent fault at the same time. The summary of the simulations is

presented in Table 5.2. To obtain the resource occupation of the two circuits, both designs were

synthesized into a Xilinx Virtex-4.

Table 5.2: Comparison of SHCs with Different Complexity

Circuit A: 22720 fault conditions circuit A circuit B A/B

Circuit B: 17600 fault conditions fine gran. coarse gran. comparison

number of signals 142 110 +29.1%

number of reconfig. inputs 10 2 +400.0%

equivalent gate count 580 412 +40.8%

failed with 1 fault 0.0% 0.0% 0.0%

failed with 2 faults 2.1% 5.0% -57.2%

failed with 3 faults 5.5% 14.3% -61.9%

failed with 4 faults 11.0% 22.8% -51.8%

failed with 5 faults 16.0% 30.5% -47.4%

failed with 6 faults 22.0% 39.0% -43.7%

failed with 7 faults 26.8% 45.2% -40.6%

failed with 8 faults 32.5% 49.9% -34.9%

failed with 9 faults 38.1% 54.7% -30.4%

failed with 10 faults 42.3% 59.2% -28.5%

failed with 11 faults 46.0% 62.5% -26.5%

It can be seen, that even with 11 simultaneously injected faults, which equals about 10% of

the circuit’s signals being defective, still about 54% (circuit A) and 37.5% (circuit B), respec-

tively, of the fault constellations could be repaired. The resource overhead of the fine granular

circuit is approximately 40% compared to the coarse granular circuit. However, as can be seen in

Figure 5.8, the gain of fault tolerance with the fine granular implementation is also significant, in

particular for a small number of faults where the probability for multiple faults within the same

reconfigurable element is low.
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5.3.2 Optimization of Self-Healing Cells

In the following subsections three different SHC architectures, as presented in Figure 5.9, are

analyzed with respect to their resource occupation, fault tolerance and the influence on the re-

configuration process.
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Figure 5.9: Different Self-Healing Cell Architectures

In architecture A both redundant logic functions can use either the nominal or the redundant

SHC inputs. Architecture B allows to individually select either the nominal or redundant SHC

inputs for each logic function. In architecture C each operand of both redundant logic functions

can be selected from either the nominal or redundant SHC inputs.

The number of reconfiguration switches of the three architectures is the same, however they

are controlled by a different number of reconfiguration inputs. In architecture A there will always
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be one, in architecture B always two reconfiguration inputs, while for architecture C the number

of reconfiguration inputs depends on the number of operands fed into the SHC.

Resource Comparison

In all three architectures the number of SHC inputs and outputs is the same, and each input

signal (more precisely: each rail) requires one switch. For comparison the three different SHC

architectures from Figure 5.9 were synthesized into a Xilinx Virtex-4 FPGA. As the logic circuit

in the SHC has no relevance for this analysis, the two internal logic inputs were simply com-

bined to one output vector. This synthesis was performed with 2-bit, 4-bit and 8-bit wide SHC

input signals. The results are summarized in Table 5.3 as absolute numbers and related to one

(signal-)bit.

Table 5.3: Resource Occupation for the Different SHC Architectures

absolute per bit

2bit 4bit 8bit 2bit 4bit 8bit

A
No. of 4 input LUTs 16 32 64 8 8 8

equiv. gate count 96 192 384 48 48 48

B
No. of 4 input LUTs 16 32 64 8 8 8

equiv. gate count 96 192 384 48 48 48

C
No. of 4 input LUTs 16 32 64 8 8 8

equiv. gate count 96 192 384 48 48 48

The equivalent gate count per bit is constant within one architecture, as well as for the

different architectures. Thus the absolute gate count increases linearly with the width of the

signal vector. The equivalent gate count does not include the routing, but this is considered

negligible.

From these results it can be concluded that the resource occupation is independent from the

SHC architecture. However, the latter might affect the reconfiguration time and the complexity

of the reconfiguration unit due to the different number of reconfiguration inputs that need to be

controlled.

Comparison of Fault Tolerance

To compare the fault tolerance of the three different architectures, first the relevant signals were

determined. These signals are the SHC inputs anom, bnom, ared, bred, the internal logic inputs

a1int, b1int, a2int, b2int, the SHC outputs cnom and cred and – depending on the architecture –

up to four reconfiguration inputs (R1..R4). The switches and interconnects are covered implic-

itly since such an erroneous resource would lead to a defect on one of the mentioned signals.

The logic circuit implemented in the SHC is not relevant for this analysis and has not been

considered.

A correct case is defined as a situation where at least one of the two SHC outputs (nominal

or redundant) is correct. All signals can have the status ’correct’ or ’defect’, where a defective

91



signal is defined as one that is affected by a stuck-at-1 or stuck-at-0 fault. Then all possible

combinations were permuted and rules were applied to exclude those combinations, that would

lead to an error on both the nominal and redundant output. Such a case is defined as an SHC

failure. With this approach it is possible to investigate the fault tolerance even for multiple faults.

As an example, Figure 5.10 shows a situation with two defective signals, anom and b2int. In

the nominal configuration both the nominal and redundant logic use the nominal input signals.

Thus, the depicted situation in Figure 5.10a would lead to an error on both outputs cnom and

cred. The fault on anom can be mitigated by switching reconfiguration input R1, so that the

redundant input signals are used for the nominal path (Figure 5.10b). Then the nominal output

will be correct. The redundant output remains incorrect since one of the internal logic inputs is

defective, which cannot be repaired.

However, Figure 5.10b assumes that R1 can be switched to ’1’. This is either possible if

R1 is not affected by a fault, or if it is defective but is affected by a stuck-at-1 fault. Since we

assume an equal probability for stuck-at-1 and stuck-at-0 faults, this gives a 50% probability to

achieve a working configuration even if the reconfiguration signal is defective.
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For this reason two analyses, one for the worst case and one for the best case, were per-

formed. In the worst case it is assumed that the reconfiguration signal will always have the

wrong state if it is defective, whereas in the best case it always has the correct state anyhow, and

thus the reconfiguration will be successful. The exclusion rules are as follows:

1. For each SHC input: if the SHC input is defective and (i) either the reconfiguration input

or (ii) the corresponding redundant SHC input is defective, then the internal logic input is

incorrect. In the worst case (i) and (ii) apply, in the best case only (ii) applies.

2. If the internal logic input is incorrect or defective, the corresponding SHC output is incor-

rect.
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3. If both the nominal and redundant SHC output are incorrect or defective, this fault com-

bination is a ’fail’ case. Otherwise the combination is a ’success’.

Figure 5.11 shows the results of this analysis. It presents the number of ’success’ cases

in relation to the percentage of defective signals for the individual architectures. The absolute

number of defective signals varies between the different architectures and between the worst and

best case, since in the best case the reconfiguration inputs are considered to have the correct state

even if they are defect.
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Figure 5.11: Comparison of SHC Architecture vs. Fault Tolerance

For the worst case all three architectures show a similar fault tolerance (’bundle’ of curves

on the left). For the best case, however, in particular for the range of 20% to 70% of defective

signals, architecture C shows a significantly better multiple fault tolerance than architectures A

and B. Single faults can be handled with all architectures in both the worst and best case.
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5.4 Simulation of Pipeline Reconfiguration

5.4.1 Simulation of a Deadlock Recovery

To illustrate the recovery procedure a first simple implementation of an autonomous deadlock

recovery is shown in Figure 5.12. This simulation was performed using Modelsim, with circuits

coded in VHDL.

The watchdog counter (in the deadlock detector) is reset by the phase detectors in the FSL

registers. If it wraps around, a new configuration is requested by asserting Req. The reconfig-

uration unit comprises a counter that is incremented with each request. After the new reconfig-

uration has been applied, the Ack signal is asserted, which resets the deadlock detector. If the

configuration was successful, the circuit’s operation continues, preventing any further requests.

If not, a new setting will be requested after the deadlock timeout has expired until a working

configuration is found.
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Figure 5.12: Deadlock Detection and Reconfiguration

The logic f(x) contained a fine granular 4-bit ripple carry adder (the principle design is

shown in Figure 5.13), where each basic gate was replaced by a SHC. The circuit comprises 34

reconfiguration inputs. All SHCs are initialized to use their nominal input by default. Figure 5.14

shows the simulation of a permanent fault injected into the carry bit calculation of the LSB. More

precisely, the a-rail of one input of the nominal AND gate that calculates the carry bit in a half

adder is forced to logic 1.

The inputs of gate HA0_AND2_NOM are a1 = 00 and b1 = 11, which nominally results in

an output of c1 = 00. Due to the permanent fault, the output is stuck at c1 = 10, which generates

a wrong phase and produces a deadlock. Examining the reconfiguration inputs shows that bits

8-11 have to be set to logic 1 to select the redundant carry bit. To save time, the simulation

starts with a reconfiguration setting of 0x000000EFE. The circuit is halted due to the permanent

fault and the deadlock unit starts generating requests for the reconfiguration unit. When the

reconfiguration input is set to 0x000000F00, the redundant carry bit is selected, which holds the

correct value c1 = 00 and the circuit resumes its operation, which is indicated by the activity on

the data lines.
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5.4.2 Simulation Results of Different Reconfiguration Algorithms

Initially, the idea was to randomly “search” for a configuration that brings the circuit back to

operation after a permanent fault has occurred. This would make diagnosis obsolete. However,

it turned out that a stochastic approach can cause incorrect data within the pipeline that cannot

be detected on this level (details are described later in this section). As a consequence, the

pipeline status in case of a fault has to be regarded and particular rules have to be followed, i.e.

an algorithm has to be applied. In order to evaluate the effectiveness, efficiency and behavior of

different reconfiguration algorithms a simulation model was established (see section 5.2.2).

The following paragraphs describe the results and experiences obtained with this model.

Different reconfiguration algorithms were applied to a 5-stage pipeline with up to three injected

faults.

While for the evaluation of valid data and acknowledge paths in the pipeline all faults could

be injected simultaneously, because the paths are checked without any dependency on previous

reconfigurations (section 4.5), a real reconfiguration algorithm only tries some particular routes

according to the defined rules. Therefore, the sequence of multiple fault injection can play an

important role, as the determination of the fault type, and thus its reconfiguration, could change

depending on previous activities.

So, the faults were injected one-at-a-time. After each fault injection the reconfiguration unit

checked for a deadlock and executed a reconfiguration, if necessary. If a fault could not be

repaired, this sequence was stopped and declared to be “un-repairable”. This was repeated for

all permutations of multiple faults in order to determine the influence of the fault sequence. This

evaluation is depicted in Figure 5.15
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perform 
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no
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Figure 5.15: Evaluation of Reconfiguration Algorithm

As a general rule, faults at SHC inputs were repaired by changing both the nominal and

redundant path of the SHC to use the redundant input data. Basically, faults at nominal SHC

inputs could be repaired by changing only the redundant reconfiguration bit of the affected SHC.

However, as the SHC input will remain defective for a permanent fault, it does not make sense

to stay with the nominal configuration for the nominal input.
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As will be described below, toggling reconfiguration signals can cause troubles in the pipeline.

Therefore any changed reconfiguration bit was never reset again in all reconfiguration units de-

scribed hereafter.

The designators for the various reconfiguration algorithms are related to identifiers used dur-

ing the integration of the simulation environment and do not follow any particular nomenclature.

Therefore, some designators (e.g. A and B) are missing in the further descriptions.

RU_Stochastic

This reconfiguration unit was implemented as simple counter where the counter output con-

trolled the reconfiguration inputs of the application. Each time a deadlock occurred, the counter

was increased by one step. With this approach no evaluation of any internal pipeline symptoms

would be necessary, as the reconfiguration simply progresses until pipeline activity is detected

again. All possible configurations would be tried, and after a wrap around the whole range of

configurations is available again.

However, although this approach elegantly exploits the benefits of asynchronous design (see

section 2.3), it turned out to be troublesome due to the following reason: For faults at register

inputs and acknowledge signals the phase conditions will be different for the nominal and re-

dundant pipeline path after the fault location (see sections 4.4.3 and 4.4.4). If the configuration

bits of working elements located later in the pipeline are then toggled, every second time the

expected phase will appear and thus cause the data being captured by the register. However, it

might not be the correct data but the last data stored in a previous register, which is not updated

any more due to the deadlock. Finally, this will cause alternating, consistent but wrong data at

the output due to an up-counting reconfiguration controller.

The listing 5.1 below shows an example of such a situation with a fault at the input of Reg5.

The nominal path is in a deadlock condition and the redundant output toggles between the value

’5’ and ’6’.

Another disadvantage of the stochastic approach is the potentially large reconfiguration time

of treconfigure = tWD_timeout ∗ ♯reconfigurations. If an n-bit counter is used the reconfig-

uration might take up to 2n ∗ tWD_timeout, which will soon reach unacceptable values even for

short watchdog timeouts.

RU_C

This reconfiguration unit evaluates the symptoms at the first register of the pipeline only to

determine the reconfiguration rules (global view, see section 4.4.5), but checks the Done and

Pass signals of all registers to determine the fault location. This method is suitable for a single

reconfiguration controller which handles the whole pipeline.

The reconfiguration rules after occurrence of a deadlock are as follows:

1. Check the phase of the pipeline inputs and determine the type of the fault

2. Start from the end of pipeline and go to begin of the pipeline

3. Locate the fault according to the symptoms defined in section 4.4.5
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Listing 5.1: Phase Toggling with Counter RU

1 ConfigVector: 0000000000

2 src SHC1 Reg1 SHC2 Reg2 SHC3 Reg3 SHC4 Reg4 SHC5 Reg5

3 9__9______9____8______8____7______7____6______6____5____X_4_____ 4

4 \ \ \ \ \

5 \ \ \ \ \

6 \ \ \ \ \

7 0__0 \__9____9 \__8____8 \__7____7 \__6____6 \__5_____ 5

8

9 ConfigVector: 0000000001

10 src SHC1 Reg1 SHC2 Reg2 SHC3 Reg3 SHC4 Reg4 SHC5 Reg5

11 9__9______9____8______8____7______7____6______6____5____X_4_____ 4

12 \ \ \ \

13 \ \ \ \

14 \ \ \ \

15 0__0 \__9____9 \__8____8 \__7____7 \__6____6______6_____ 6

16

17 ConfigVector: 0000000010

18 src SHC1 Reg1 SHC2 Reg2 SHC3 Reg3 SHC4 Reg4 SHC5 Reg5

19 9__9______9____8______8____7______7____6______6____5 X_4_____ 4

20 \ \ \ \ \ /

21 \ \ \ \ \/

22 \ \ \ \ /\

23 0__0 \__9____9 \__8____8 \__7____7 \__6____6/ \__5_____ 5

24

25 ConfigVector: 0000000011

26 src SHC1 Reg1 SHC2 Reg2 SHC3 Reg3 SHC4 Reg4 SHC5 Reg5

27 9__9______9____8______8____7______7____6______6____5 X_4_____ 4

28 \ \ \ \ /

29 \ \ \ \ /

30 \ \ \ \ /

31 0__0 \__9____9 \__8____8 \__7____7 \__6____6/_____6_____ 6

4. For a fault at a SHC input: reconfigure the SHC located subsequently to the suspect reg-

ister to use the redundant input for both the nominal and redundant logic

5. For a fault at a register input: split the data path by reconfiguring all SHCs to use the

nominal inputs for the nominal logic and the redundant inputs for the redundant logic in

order to split the data paths (see section 4.3.2)

6. For a fault at an acknowledge signal: split the data path by reconfiguring all SHCs to use

the nominal inputs for the nominal logic and the redundant inputs for the redundant logic

7. If no suspect register has been identified: the fault is located at the input of the first SHC

in the pipeline. Reconfigure the first SHC to use the redundant input for both the nominal

and redundant logic
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This reconfiguration controller works well for single faults and even comes close to the

theoretical maximum of reconfigurable conditions for double faults. However, it fails in the

following situations with multiple faults: If the first fault blocks the redundant handshake, i.e.

the fault is located at a redundant register input or at a redundant acknowledge signal, it will not

cause an immediate deadlock but only stop the processing of tokens in the redundant path up

to the fault location. As separated sources for the nominal and the redundant pipeline path are

used, only the redundant source will not provide any new tokens to the pipeline. A second fault,

occurring in the nominal path, will cause a deadlock. The recovery actions of this reconfiguration

unit are based on the phase information of the pipeline input. If the second fault is located later in

the pipeline than the first fault, the phase of the redundant pipeline input depends on the number

of tokens that have been processed between the two fault occurrences. Thus, there is a 50%

probability that the correct recovery action is selected.

The listings 5.2 and 5.3 show the same double-fault situation but with one more token pro-

cessed between the two fault occurrences in the second case. The first situation fails because

the symptoms lead to an acknowledge fault where the pipeline paths become separated. Since

there is another fault in the nominal path, this reconfiguration does not work. In the second

case the SHC fault is observed, which is reconfigured locally and leads to a working pipeline

configuration.

Listing 5.2: Example where RU_C fails

1 Deadlock condition after second fault:

2 src SHC1 Reg1 SHC2 Reg2 SHC3 Reg3 SHC4 Reg4 SHC5 Reg5

3 7__7______7____6______6____5______5____4______4____X______2_____ 2

4 \ \ \ \ \

5 \ \ \ \ \

6 \ \ \ \ \

7 6__6 \__7____5 \__6____4 \__5____4 \__4____3 \__2_____ 2

8 X

9 Phases:

10 src SHC1 Reg1 SHC2 Reg2 SHC3 Reg3 SHC4 Reg4 SHC5 Reg5

11 0___1______1__0________0__1________1__0________0__1________0__0__

12 \ 0 1 \ 1 0 \ 0 1 \ 1 0 \ 0 0

13 \ \ \ \ \

14 \ \ \ \ \

15 1___0 \__1__1__ \__0__0__ \__1__0__ \__0__1__ \__0__0__

16 1 0 0 X 0 1 1 0 0 0

17

18 Recovery condition (ConfigVector: 0101010101):

19 src SHC1 Reg1 SHC2 Reg2 SHC3 Reg3 SHC4 Reg4 SHC5 Reg5

20 7__7______7____6______6____5______5____4______4____X______2_____ 2

21

22

23

24 6__6______7____5______6____4______5____4______4____3______2_____ 2

25 X
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Listing 5.3: Example where RU_C succeeds in same condition

1 Deadlock condition after second fault:

2 src SHC1 Reg1 SHC2 Reg2 SHC3 Reg3 SHC4 Reg4 SHC5 Reg5

3 8__8______8____7______7____6______6____5______5____X______3_____ 3

4 \ \ \ \ \

5 \ \ \ \ \

6 \ \ \ \ \

7 6__6 \__8____5 \__7____4 \__6____5 \__5____4 \__3_____ 3

8 X

9 Phases:

10 src SHC1 Reg1 SHC2 Reg2 SHC3 Reg3 SHC4 Reg4 SHC5 Reg5

11 1___0______0__1________1__0________0__1________1__0________1__1__

12 \ 1 0 \ 0 1 \ 1 0 \ 0 1 \ 1 1

13 \ \ \ \ \

14 \ \ \ \ \

15 1___0 \__0__1__ \__1__0__ \__0__1__ \__1__0__ \__1__1__

16 1 0 0 X 1 0 0 1 1 1

17

18 Recovery condition (ConfigVector: 0000000011):

19 src SHC1 Reg1 SHC2 Reg2 SHC3 Reg3 SHC4 Reg4 SHC5 Reg5

20 8__8______8____7______7____6______6____5______5____X __3_____ 3

21 \ \ \ \ /

22 \ \ \ \ /

23 \ \ \ \ /

24 6__6 \__8____5 \__7____4 \__6____5 \__5____4/_____3_____ 3

25 X
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RU_D

This reconfiguration controller considers the local symptoms presented in section 4.4.5.

The reconfiguration rules after occurrence of a deadlock are as follows:

1. Start from the end of the pipeline and go to the begin of the pipeline

2. Locate the fault according to the symptoms defined in section 4.4.5

3. For a fault at a SHC input: reconfigure the SHC located subsequently to the suspect reg-

ister to use the redundant input for both the nominal and redundant logic

4. For a fault at a REG input: reconfigure all SHCs up to the suspect register to use the redun-

dant input for the redundant output + configure the subsequent SHC to use the redundant

input for both the nominal and redundant output (section 4.3.3).

5. For a fault at an ACK signal: reconfigure all SHCs up to the suspect register to use the

redundant input for the redundant output + configure the subsequent SHC to use the re-

dundant input for both the nominal and redundant output (section 4.3.4)

6. For a fault at the input of the last register: reconfigure all SHCs to use the redundant

input for the redundant output. This needs to be done because the nominal path is blocked

and there is no possibility to bypass the nominal register, as there are no reconfigurable

elements after the last register

7. For a fault at the acknowledge signal of the last register: reconfigure all SHCs to use the

redundant input for the redundant output

8. If no suspicious register has been identified: the fault is located at the input of the first

SHC in the pipeline. Reconfigure the first SHC to use the redundant input for both the

nominal and redundant logic

9. If the SHC preceding or following the suspect register has been reconfigured previously,

the symptoms would lead to a fault at a SHC input, but it is a fault between the suspect

and the next register. In this case all SHCs shall be reconfigured to use the redundant input

for the redundant output. This rule is an exception which provides an improvement of the

fault detection.

This reconfiguration unit is well suited for a distributed reconfiguration controller, as it

moves from one register to the next and takes the decisions based on the local phase conditions.
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RU_E

This reconfiguration unit considers the local symptoms presented in section 4.4.5 and also uses

acknowledge switches for the reconfiguration. The default configuration of the acknowledge

switches was chosen in a way that the nominal pipeline receives the nominal acknowledge and

the redundant pipeline receives the redundant acknowledge. RU_E is also suitable for a dis-

tributed reconfiguration unit.

The reconfiguration rules are as follows:

1. Start from end of pipeline and go to begin of the pipeline

2. Locate the fault according to the symptoms mentioned in section 4.4.5

3. For a fault at a SHC input: reconfigure the SHC subsequent to the suspect register to use

the redundant input for both the nominal and redundant logic

4. For a fault at a REG input: reconfigure the SHC subsequent to the suspect register to

use the redundant input for both the nominal and redundant output (section 4.3.3) and the

acknowledge switch between the suspect and the preceding register to use the redundant

acknowledge for the nominal pipeline path.

5. For a fault at an ACK signal: reconfigure the SHC subsequent to the suspect register to

use the redundant input for both the nominal and redundant output (section 4.3.4) and the

acknowledge switch between the suspect and the preceding register to use the redundant

acknowledge for the nominal pipeline path

6. For a fault at the input of the last register: reconfigure the last acknowledge switch to use

the redundant acknowledge for the nominal pipeline path

7. For a fault at the acknowledge of the last register: reconfigure the last acknowledge switch

to use the redundant acknowledge for the nominal pipeline path

8. If no suspicious register has been identified: the fault is located at the input of the first

SHC in the pipeline. Reconfigure the first SHC to use the redundant input for both the

nominal and redundant logic

The simulations of this reconfiguration unit revealed the following problems:

1. Tokens might be lost and cause a subsequent uncorrectable deadlock although a valid data

and acknowledge path has been established. This phenomenon can occur if a nominal

acknowledge signal is affected by a permanent fault and a previous fault at a SHC input

earlier in the pipeline caused the data path to be separated from the acknowledge path.

Listing 5.4 shows the final status of the pipeline in such a condition (the first fault was

at the input of SHC2, the second one at the Pass signal of REG4). The handshake of the

nominal acknowledge path will be blocked due to the second fault and the registers will

be filled up with new tokens up to the affected register. Since the redundant path is not

affected by a fault, it will capture one more token than the nominal path. However, since
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data and handshake path are separated between the nominal and the redundant path due to

the first fault at the SHC input, the redundant path defines the input of both the nominal

and the redundant register located subsequently to the reconfigured SHC. Thus, although

the nominal register has not updated its Done signal, it receives new input data (the one-

after-the-next token) and looses the token in between (input vs. output of Reg2). Since the

redundant path captured one more token than the nominal path, the input and the output of

the nominal register in this stage then have the same phase. Consequently, the condition

that the output phase must be different to the input phase to become transparent cannot

be achieved any more, and the pipeline will end up with a permanent and uncorrectable

deadlock.

Listing 5.4: Fault combination leading to uncorrectable deadlock

1 src SHC1 Reg1 SHC2 Reg2 SHC3 Reg3 SHC4 Reg4 SHC5 Reg5

2 4__4______4____X __4____2______2____1______1____0______0_____ 0

3 \ / \ \ X \

4 \ / \ \ \

5 \ / \ \ \

6 4__4 \__4____4/_____4____3 \__2____2 \__1____1 \__0_____ 0

2. In the initial default configuration, a fault leading to a deadlock must have occurred in the

nominal path. After a reconfiguration has been performed, this might not be true any more.

With the observation possibilities described so far, a fault at a nominal signal (acknowl-

edge signal or register input) cannot be distinguished from a fault at a redundant signal.

However, the reconfiguration must be performed differently for nominal and redundant

faults. Thus, after a reconfiguration the fault location is not known accurately enough to

decide which configuration to be used. This means that the chosen configuration will fail

with 50% probability.

3. Since a fault at a register input or acknowledge signal will cause the register to not update

the output any more even after a successful reconfiguration, this might cause the following

troubles: If a redundant register input or acknowledge signal is affected by the first fault,

this will not stop the pipeline. A subsequent nominal fault earlier in the pipeline will

cause a deadlock and trigger the reconfiguration controller to find out the fault location.

However, depending on the number of processed tokens between the occurrence of the

two faults, the Pass and Done of the redundant register can be different and thus the

reconfiguration unit might find the fault in the redundant path first. Since the difference

between Pass and Done will never disappear, the fault earlier in the pipeline will never be

found. The same is true if the first fault at a nominal register input or acknowledge signal

was successfully reconfigured and the subsequent fault occurs earlier in the pipeline. This

requires more intelligent reconfiguration units, which consider previous configurations.

4. Due to the split of the acknowledge and data path and its independent routing some con-

figurations can lead to timing problems (the data path is timed by the nominal pipeline, the
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acknowledge path by the redundant pipeline). This was not observed in this simulation,

but in the hardware implementation described in section 5.5.

RU_F

This reconfiguration controller is based on RU_E, but also considers previous reconfigurations.

From the results with RU_E it was obtained that the acknowledge path should follow the data

path. Thus, the default configuration of the acknowledge switches was changed in a way, that

both the nominal and redundant pipeline receive the nominal acknowledge.

The following rules were added:

1. If the SHC located subsequently to the suspect register (if applicable, i.e. not for the

last register in the pipeline) and the acknowledge switch preceding the suspect register

was previously reconfigured (configuration is different to default configuration), skip this

cycle and move on with checking for symptoms at the next (preceding) register.

2. For reconfigurations due to faults at register inputs or acknowledge signals: reconfigure

the acknowledge switches surrounding the SHC being reconfigured in a way, so that the

acknowledge path follows the data path.

These rules need to be applied in addition to the already defined rules. For example, the

fault location (suspect register) needs to be identified as described for RU_E, but then it must be

checked if the subsequent SHC and/or acknowledge switch has been reconfigured previously. If

this is the case, the additional rule 1) applies (i.e. no reconfiguration), otherwise the reconfigu-

ration as defined for RU_E shall be performed.

Three variants were simulated, with only one of the above additional rules and both rules

implemented, in order to see the influence of the distinct improvements.

For the final variant (both rules added), the following improvements in the results could be

observed compared to RU_E :

• Problem 1) of RU_E is solved due to the changed default configuration and the additional

rule, that the acknowledge path shall follow the data path.

• Problem 2) of RU_E remains but is only relevant for multiple faults in the pipeline.

• Problem 3) is solved because earlier reconfigurations are considered in the reconfiguration

rules. If a situation “Pass is unequal to Done” at a register is detected but either the sub-

sequent SHC or the preceding AS has been reconfigured previously, this stage is skipped

in the reconfiguration sequence and the next (preceding) register is checked.

• Problem 4) is mitigated: due to the rule that the acknowledge path follows the data path,

the circuit timings are controlled in a better way.
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5.4.3 Result Summary and Comparison

The following table 5.4 summarizes the simulation results of the different reconfiguration units

for up to three faults. Analysis with a higher number of faults could not be performed due to the

combinational explosion of possibilities and the resulting high simulation time. Furthermore, as

can be seen in the table, the probability that three faults in the pipeline can be handled, is less

than 60% in the best case. With more than three faults the probability is expected to drop below

50%, which is thus not really useful any more from a practical point of view.

For each reconfiguration unit the absolute and relative value of successfully handled fault

situations (not necessarily repairs) are given. Since all possible sequences (permutations) of the

fault injection were applied, the number of fault combinations presented previously in Table 4.8

is multiplied by n! with n being the number of faults. Although there is no dependency on the

sequence for the theoretical values due to the way they are determined (see section 4.5), the

theoretical values from table 4.8 have been multiplied as well for comparison.

RU_C comes very close to the theoretical number of possible reconfigurations. A depen-

dency of the success rate was observed for different fault sequences (0.5% difference for double

faults, 0.2% for triple faults), the reasons are described above. In table 5.4 the lowest number

(percentage of successful repairs) is shown.

RU_D4 does not show any dependence on the fault sequence and can repair all double faults

that have been identified to be repairable. For triple faults nearly the theoretical number is

reached.

RU_E uses acknowledge switches but splits the data and acknowledge path. For double

faults this reconfiguration unit provides better results than the units without using acknowledge

switches, but for triple faults the performance decreases significantly and is lower than that

from RU_C and RU_D4 without acknowledge switches. The reason is that a lot of faults are

incorrectly identified and thus the selected reconfiguration is not appropriate.

RU_F is based on RU_E, but with the difference that the acknowledge path follows the data

path. The results improve significantly, in particular for triple faults.

RU_F1 is also based on RU_E, but considers previous configurations and skips cycles which

could lead to wrong reconfigurations. The results also improve significantly compared to RU_E.

RU_F3 considers previous configurations and takes care that the acknowledge path follows

the data path. This reconfiguration unit provides the best results of all simulated algorithms.

Some of the remaining situations could be solved by very specific measures and explicit

handling, so that the fault tolerance for double faults could be improved to 85.6%. However,

as no general rule could be found, this approach is not considered feasible and not listed in

the table. Overall, the variants of RU_F achieve significantly better results than the algorithms

without using acknowledge switches.

It shall be noted that the results consider pipeline faults only, i.e. faults at SHC inputs,

register inputs and at acknowledge signals, but do not cover faults in (complex) SHCs. Due to the

high fault tolerance of SHCs the overall improvement will be even higher. Refer to section 5.8

for more information.

Based on the described symptoms it is not possible to distinguish between faults in the

nominal or redundant path (see the explanation for RU_E). The rules could be improved by

more intelligent reconfiguration units, which check more details of the pipeline and consider
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differences between faults in the two paths. However, this has not been done for the presented

reconfiguration units.

Although the self-healing architecture provides quite a lot of reconfiguration possibilities

(refer to section 4.3), only a subset of them is needed and actually used in the reconfiguration

units. This gives the opportunity to either simplify the design of the configurable elements

(e.g. architecture A of the SHCs could be used for coarse granular implementations, refer to

section 5.3.2), or to make use of the remaining configurations to increase the fault tolerance.

Such optimizations of the reconfiguration units are, however, out of scope of this thesis and have

not been further treated.

As described in section 4.4.5, in most cases a successful repair with a pipeline structure using

acknowledge switches re-establishes a situation like in the fault-free configuration, and causes

the same symptoms for subsequent faults. The rare cases where the application of the “single

fault diagnosis” to multiple faults leads to a wrong identification would need to be handled by

a rather intelligent reconfiguration unit. However, as this is only a problem in particular fault

combinations (e.g. the faults occur in neighboring elements) and only affects the multiple fault

tolerance, it was considered acceptable to use the same reconfiguration rules as for single faults

also for subsequent faults. This also reduces the complexity of the reconfiguration unit.

The results justify the usefulness of the approach: A probability of > 80% for tolerating

double faults and ∼ 60% for triple faults is significantly better than a TMR system (see sec-

tion 5.8).

5.5 Hardware Fault Injection Experiments

5.5.1 General

The hardware fault injection experiments aimed to prove the concept of the self-healing archi-

tecture, the correctness of the simulations, the validity of the simplification made, and should

highlight any effects that were not observed in the simulations, e.g. due to timing problems in

the circuit. For a detailed description of the used environment refer to section 5.2.3.

Two circuits were implemented in an FPGA:

1. A 5-stage pipeline without acknowledge switches and using the reconfiguration unit RU-

D4

2. A 5-stage pipeline with acknowledge switches and using the reconfiguration unit RU-F3

The reconfiguration units, which are basically simple state machines, were implemented

as synchronous circuits to save resources and to avoid any side-effects. A clock frequency of

100MHz was used, and the watchdog timeout was chosen to be 500 clock cycles, i.e. 5µs.

The reconfiguration takes 3 clock ticks to start, 2 clock ticks per pipeline stage (the number

of reconfiguration controllers equals the number of pipeline stages in a distributed approach,

such as with RU_F3), and 1 clock tick to set the reconfiguration pattern. This results in a total

maximum reconfiguration time of 14 clock cycles for the implemented circuits, equal to 140ns.
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The target device for the hardware experiments was a Xilinx Virtex-4 FPGA. Although the

author is aware that using this device might not lead to resource-efficient and fully representative

implementations of asynchronous circuits, this approach is considered appropriate to prove the

concept in hardware.

The circuit is shown in Figure 5.16. The red rectangles designate saboteurs which allow

injecting faults at particular signals. At FSL vectors rail ’a’ of bit ’0’ was taken as representative

and subjected to fault injections to generate a token fault.

The same situations as simulated with the Matlab model (see section 5.4) were applied to

the circuit and compared to the simulation results. In contrast to the Matlab simulation, where

the faulty state of an FSL vector was considered in an abstract way (vector is either valid or

inconsistent), the faults for the hardware fault injection experiments were injected on a single

rail of a 4-bit FSL vector. This implies that – depending on the phase of the vector at the time

the fault is injected – the fault can either have an immediate effect if it changes the state of the

affected rail, or it is latent for one or more asynchronous processing cycles, if the rail currently

has the same state as the applied stuck-at fault. The fault will not lead to a deadlock until it

causes an inconsistent vector.

To highlight this behavior, four data sequences as shown below were applied. Each sequence

consists of 20 values with different distributions of ones and zeros. Furthermore, when multiple

faults were injected, the faults were applied at different phases. Each fault injection scenario

was run twice to identify potential timing problems.

Data sequences (values in hexadecimal):

1: 1 2 3 4 5 6 7 8 9 A B C D E F 1 2 3 4 5

2: 5 4 3 2 1 F E D C B A 9 8 7 6 5 4 3 2 1

3: 5 A 5 A 5 A 5 A 5 A 5 A 5 A 5 A 5 A 5 A

4: F 1 E 2 D 3 C 4 B 5 A 6 9 7 8 F 7 E 6 D

The SHCs did not contain any logic function but only switches to route the input signal

through to the output. This makes the model insensitive to effects caused by hazards as described

in section 2.4.5.
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5.5.2 Results of Pipeline without Acknowledge Switches

All single faults could be repaired and worked with all data patterns. With two faults 17 out of

870 fault combinations could be repaired in the simulation but not in hardware. Table 5.5 lists

the cases with different results of both experiment runs for all four data sequences. A blank cell

indicates that the same result as in the simulation was achieved, an “X” indicates a difference,

i.e. this case was repaired successfully in the simulation using reconfiguration unit RU_D4, but

not in the hardware experiment. No cases were observed, where the hardware could solve a

failure case which failed in the simulation.

first fault second fault P1 P2 P3 P4

Reg1.PassRed SHC3.ValInNom X X X X

SHC3.ValInNom Reg1.PassRed X X X X

SHC3.ValInNom Reg1.PassNom X X

SHC5.ValInRed SHC3.ValInNom X X X X

SHC3.ValInNom SHC5.ValInRed X X X X

SHC4.ValInRed SHC3.ValInNom X X X X

SHC3.ValInNom SHC4.ValInRed X X X X

SHC2.ValInRed SHC3.ValInNom X X X X

SHC3.ValInNom SHC2.ValInRed X X X X

SHC1.ValInRed SHC3.ValInNom X X X X

SHC3.ValInNom SHC1.ValInRed X X X X

SHC3.ValInNom SHC2.ValInNom X X

SHC3.ValInNom SHC1.ValInNom X X

SHC3.ValInNom Reg1.ValInRed X X X X

Reg1.ValInRed SHC3.ValInNom X X X X

SHC5.ValInRed Reg2.ValInNom X X

Reg2.ValInNom SHC5.ValInRed X X

SHC4.ValInRed Reg2.ValInNom X X

Reg2.ValInNom SHC4.ValInRed X X

SHC3.ValInNom Reg2.ValInNom X X

SHC3.ValInNom Reg1.ValInNom X X

Differences 17 17 0 0 16 16 0 0

Table 5.5: Cases with Differences between Hardware Experiments and Simulation for the Cir-

cuit without Acknowledge Switches using RU_D4

It can be seen that for pattern P2 and P4 no differences were observed, while for P1 and

P3 17 and 16 differences occurred. Except of four combinations, the nominal input of SHC3

was always affected by a fault. For all unsuccessful combinations the reconfiguration leads to

a configuration, where SHC3 uses the redundant input as source for both outputs. This means

that the data and acknowledge path are split, i.e. the redundant acknowledge defines the timing

of the data in the nominal pipeline path. SHC3 is in the middle of the pipeline and thus has
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the maximum distance to both the source and the sink, which could lead to an awkward signal

routing in the FPGA. Similar fault situations and configurations exist with the other SHCs in the

pipeline for which such troubles were not observed.

In listing 5.5 two examples are given, which show that with such a SHC-3 configuration

the redundant register Reg-2 becomes the data source, while the acknowledges are separated.

Based on the constraints given in section 4.3.5 a violation of the timings can occur if the differ-

ence between nominal and redundant path is above approximately 30% in such a configuration.

From the place&route report of the FPGA synthesis some timings of the control signals in the

FSL registers were extracted (internal phase detector outputs SetIn and SetOut, control signals

of data and handshake latches LatchEnable and DoneEnable). A comparison of these timings

revealed variations between the nominal and redundant path of the same stage of up to approx-

imately 90% (Figure 5.17). Between subsequent stages even differences of more than 120%

have been found. The large differences are concentrated on the stages three and four, i.e. the

timing conditions are most severe in this area. This corresponds to the observation of the fault

injection experiments explained above, where the problems were observed with SHC3 being

configured to use the redundant input. In the hardware implementation the SHCs did not contain

any sophisticated logic, so the propagation delay tL was rather short, which makes the timing

conditions more severe. Violations of the timing constraints are obviously the reason for the

unsuccessful repairs in this particular pipeline configuration. Although the available timing re-

sults confirm the theoretical predictions quite well, more details need to be investigated to gain

additional confidence. Such investigations were not performed within the scope of this thesis

due to insufficient tool support.

Listing 5.5: Unsuccessful Reconfiguration without AS in Hardware

1 Faults at SHC3.ValInNom and SHC4.ValInRed:

2 src SHC1 Reg1 SHC2 Reg2 SHC3 Reg3 SHC4 Reg4 SHC5 Reg5

3 8__8______8____8______8____X __8____8______8____8______8_____ 8

4 \ \ / \ \

5 \ \ / \ \

6 \ \ / \ \

7 8__8 \__8____8 \__8____8/_____8____X \__8____8 \__8_____ 8

8

9 Faults at SHC5.ValInRed and Reg2.ValInNom:

10 src SHC1 Reg1 SHC2 Reg2 SHC3 Reg3 SHC4 Reg4 SHC5 Reg5

11 4__4______4____3______X____2 __8____8______8____8______8_____ 8

12 / \ \

13 / \ \

14 / \ \

15 8__8______8____8______8____8/_____8____8 \__8____X \__8_____ 8

Furthermore, there is a dependency on the data pattern: if the fault does not change the

signal state (i.e. the signal has the same state as the fault would generate), it does not lead to an

immediate deadlock in the next cycle, but one or more tokens could be processed before the fault

leads to a deadlock. Since the order and sequence of “high” and “low” states of the individual
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Figure 5.17: Timing Comparison of Nominal vs. Redundant FSL-Register Control Signals

rails is different for the four patterns, a fault applied at the same time on the same signal (rail) can

cause different behavior. Since the tokens are provided to the pipeline in alternating phases, it

depends on the number of tokens that are processed and the value of the tokens which phases are

visible when the deadlock occurs - and thus wrong symptoms can be identified. Two examples

for such situations are described in detail in the next section for the pipeline with acknowledge

switches. Similar situations occurred here, which explains the differences between the patterns.

5.5.3 Results of Pipeline with Acknowledge Switches

Again, all single faults could be repaired and worked with all data patterns. With two faults 7

differences out of 870 fault combinations were observed between the simulation and the hard-

ware experiments. Table 5.6 lists the cases with different results of both experiment runs for all

four data sequences. As before, an “X” designates a difference compared to the simulation, a

blank cell indicates that the same result was achieved. All combinations, where a difference was

found, were successfully repaired in the simulation using reconfiguration unit RU_F3.

All differences are related to a second fault on a nominal acknowledge signal and have only

been observed in particular cases, which can be distinguished into two scenarios:

Fault at nominal register input (Situation 1) The first fault affects a nominal register

input, which will cause a deadlock and initiate a repair. The defined reconfiguration in RU_F3 for

this fault is to switch the preceding and the subsequent acknowledge switch and the subsequent

SHC to the redundant configuration in order to bypass the defective register (except for the last

register in the pipeline, where only the preceding acknowledge switch is changed).

A second fault affects the nominal acknowledge signal between the previously affected reg-

ister and the preceding one, and at a time, where the signal has the same state as the stuck-at

fault would generate, i.e. the fault is masked (Figure 5.18 shows an example for such a situation
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first fault second fault P1 P2 P3 P4

Reg4.ValInRed Reg2.PassNom X X X X

Reg4.ValInRed Reg1.PassNom X X X X

Reg3.ValInRed Reg1.PassNom X X X X

Reg5.ValInNom Reg4.PassNom X X X X

Reg4.ValInNom Reg3.PassNom X X X X

Reg3.ValInNom Reg2.PassNom X X X X

Reg2.ValInNom Reg1.PassNom X X X X

Differences 7 7 0 0 7 7 0 0

Table 5.6: Cases with Differences between Hardware Experiments and Simulation for the Cir-

cuit with Acknowledge Switches using RU_F3

REG
N

REG
R

SHC

AS

REG
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SHC
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REG
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REG
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REG
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SHC
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first faultsecond fault

Figure 5.18: Example for Situation 1

after the first fault has been repaired). The pipeline thus will process tokens until the fault causes

an invalid data vector leading to a deadlock condition. Depending on the number of tokens pro-

cessed in the meantime, the registers will have stored tokens in either equal or different phase, so

that either the condition for symptom 8 or symptom 9 is fulfilled. The latter one does not meet

the expectations of the pipeline behavior in this fault condition and thus will lead to a wrong

reconfiguration.

Fault at redundant register input (Situation 2) The first fault is located in the redundant

path. It will not lead to a deadlock and remain as latent fault until a subsequent fault affects a

nominal signal.

A second fault affects a nominal acknowledge signal earlier in the pipeline at a time, where

the signal has the same state as the stuck-at fault would generate, i.e. the fault is masked (Fig-

ure 5.19 shows an example for such a situation). The pipeline thus will process tokens until the

fault causes an invalid data vector leading to a deadlock condition. Depending on the number

of tokens processed in the meantime, either the condition for symptom 2 for the faulty nominal

acknowledge signal or symptom 3 for the faulty redundant register is fulfilled. The latter one cor-

rectly detects the fault at the redundant register, but as the RU cannot distinguish between faults
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in the nominal and redundant path, a nominal fault is identified and the defined reconfiguration

is applied – which is wrong in this case.
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Figure 5.19: Example for Situation 2

5.5.4 Summary

Table 5.7 summarizes the results obtained from the hardware experiments and compares them

with the simulation results.

No. of total RU D4 RU F3

faults sequ. sim H/W sim H/W

1 30 30 (100.0%) 30 (100%) 30 (100%) 30 (100%)

2 870 508 (58.4%) 487 (56.0%) 725 (83.3%) 718 (82.5%)

3 24360 6594 (27.1%) 6430 (26.4%) 17928 (73.6%) 13814 (56.7%)

Table 5.7: Result Comparison of Simulation and Hardware Experiments

Faults at SHC inputs can be completely recovered by the SHC reconfiguration, because the

defective input is then not used any more. Faults at register inputs remain in the circuit as the

input cannot be “switched off”.

All single faults could be repaired with the implemented reconfiguration units. For double

faults the hardware experiments nearly matched the simulation results. The differences occur

due to timing and masking effects, which were not visible in the abstract simulation. For triple

faults these effects seem to become even more severe, since the difference between the simu-

lation and the hardware experiments increases in particular for the pipeline with acknowledge

switches. Nevertheless, it was proven that the concept can be implemented in hardware and

provides the expected results.
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5.6 Hardware Implementation of a Complex Self-Healing Circuit

5.6.1 Introduction

In order to prove the suitability of the self-healing approach for complex circuits, the concept

was applied to a video processing algorithm as specified for the space mission GAIA.

The Global Astrometric Interferometer for Astrophysics (GAIA) is a scientific mission of the

European Space Agency (ESA) that is scheduled for launch in 2012 [23]. The mission places a

large telescope at the Lissajous-type orbit around L2 to generate a precise three-dimensional map

of our Galaxy. The Video Processing Unit (VPU) provides one of the central functions in GAIA.

It pre-processes the digital data acquired by a large CCD array before it will be transmitted

to Earth for the final analysis. The algorithms in the GAIA VPU comprise one of the most

demanding applications for today’s space borne signal processors.

5.6.2 The GAIA Pre-Processing Algorithm

For performance reasons and due to the lack of an adequate, powerful space-compatible proces-

sor, the various tasks in the GAIA VPU have been divided into hardware and software based

algorithms. For the experiments a portion of the hardware based algorithms was chosen and

made self-healing. The following information is retrieved from the official invitation to tender

for the VPU and is provided by courtesy of ESA and the prime contractor EADS Astrium [20].

A block diagram of the hardware algorithms in the GAIA VPU is shown in Figure 5.20. For

the test application the preprocessing of the star mapper samples was selected, which is encircled

in the figure. Actually, these samples are used to identify the stars within the huge amount of

data provided by the CCD.

A more detailed view of the star mapper preprocessing is shown in Figure 5.21. Although

it only comprises a small portion of the complete VPU algorithms, the preprocessing already

includes all typical functions used in signal processing applications, such as saturation checks,

multiplication, addition, feedback filters, etc. Actually, it is composed of two main functions:

1. A linear correction checks for saturated values and applies column response and dark

signal non-uniformity correction.

2. A dead column correction performs a simple neighbor interpolation for samples coming

from pixels that are marked as dead.

The linear correction takes the raw samples UNPREPRO_DATA[ac] and compares them

with a saturation level SATURATION_LUT [ac] for each CCD row ac. If the sample is satu-

rated, it is replaced by the constant SATURATED. Otherwise a linear function correcting the

Dark Signal Non Uniformity (DSNU) and the CCD Column Response Non Uniformity (CRNU)

(both are parameters of the CCD) is applied:
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Figure 5.20: GAIA VPU Hardware Algorithms

1 i f UNPREPRO_DATA[ ac ] > SATURATION_LUT[ ac ] then

2 PREPRO_DATA [ ac ] = SATURATED

3 e l s e

4 crnu [ ac ] = trunc (UNPREPRO_DATA[ ac ] ∗ CRNU_LUT[ ac ] , 1 5 )

5 dsnu [ ac ] = s a t ( c rnu [ ac ] , 1 6 ) + DSNU_LUT [ ac ] , 1 6

6

7 PREPRO_DATA [ ac ] = s a t ( dsnu [ ac ] , 1 6 )

where the truncation operator Y = trunc(X,n) eliminates the n less significant bits of the

input X and the saturation operator Y = sat(X,n) limits the input X to 2n − 1.

The dead column correction performs a neighbor interpolation using the current as well as

the two previous samples. Table 5.8 illustrates the principle of this interpolation. Dead columns

can be marked for each sample index ac in a separate buffer DEAD_LUT . If a particular

index is considered as unreliable, a ’1’ has to be written to the corresponding buffer location. A
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Figure 5.21: Principle of Hardware Pre-Processing

’0’ will declare the sample index as correct. The algorithm takes the dead column marking of

the current as well as the two previous samples DEAD_LUT [ac-2, ac-1, ac] and modifies the

linear corrected samples PREPRO_DATA according to Table 5.8.

Table 5.8: Principle of Dead Column Correction

DEAD_LUT PREPRO_DATA

DL[ac-2] DL[ac-1] DL[ac] PREPRO_DATA[ac-1] PREPRO_DATA[ac]

0 0 0 Unchanged Unchanged

0 0 1 Unchanged PREPRO_DATA[ac-1]

0 1 0 (PREPRO_DATA[ac-2]+ Unchanged

PREPRO_DATA[ac])/2

0 1 1 PREPRO_DATA[ac-2] Unchanged

1 0 0 Unchanged Unchanged

1 0 1 Unchanged PREPRO_DATA[ac-1]

1 1 0 PREPRO_DATA[ac] Unchanged

1 1 1 Unchanged Unchanged
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5.6.3 FSL Implementation

The preprocessing is very well suited for a pipelined structure. In reality, the un-preprocessed

input data are 16-bit samples and the VPU has to process 983 rows within a period of 1 ms. For

the experiments the input data width has been reduced to 4-bit and the memory size has been

reduced to 64 rows, so that the circuit was easier to handle. Both parameters are just a matter of

scale.

The linear correction in FSL is shown in Figure 5.22. The circuit consists of a three stage

pipeline. In the first stage R1, the saturation check is performed. Each raw sample

UNPREPRO(ac) is compared with the corresponding entry SAT_LUT (ac). Both the re-

sult of this check and the raw input data are stored in register R1.

The second stage performs the column non-uniformity correction. The input

UNPREPRO(ac) is multiplied by CRNU_LUT (ac), truncated and limited to 4-bit. The

result is stored in register R2 together with the saturation information from the previous stage,

which simply accompanies the data.

The third stage considers the dark non-uniformity correction by adding DSNU_LUT (ac)
and limiting the result to 4-bit. Depending on the saturation check, either the result of the DSNU

correction or the constant SATURATE is stored in register R3.

R1

>=

UNPREPRO 

DATA

SATURATE

CRNU 

LUT

Saturation 

LUT

x

R1

trunc, sat R2 +

DSNU 

LUT

sat
R3

R2

PREPRO DATA

Figure 5.22: Implementation of the Linear Correction

The dead column correction in Figure 5.23 is more complex as the output depends on the

value of previous samples. Since the circuit uses feedback elements, phase inverters have to

be inserted to ensure that all input data is applied in the correct code phase. The dead column

correction consists of two pipeline stages R4 and R5, which hold PREPRO_DATA[ac-1]
and PREPRO_DATA[ac-2], respectively. The input values to these registers depends on

the content of the dead column look-up table, which is used to select the appropriate input via

multiplexers.

The conversion from the synchronous description to the FSL implementation was performed

manually and without any assistance by tools, in order to have full control of the structure of the

resulting circuit. Also, no radical optimizations for speed or area were performed.
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Figure 5.23: Implementation of the Dead Column Correction

5.6.4 Self-Healing GAIA Algorithm

The GAIA algorithm was transformed to a self-healing circuit following the steps described in

section 4.2.8. This was done manually for the same reason as described above for the conversion

to an FSL circuit.

Application

Each combinational logic block was replaced by its respective SHC. The 4-bit full adder needed

in both the linear correction and the dead column correction was built fine-granular, i.e. the

adder itself is composed of basic SHC gates (AND, OR, etc.). This provides more reconfigura-

tion possibilities and a higher fault tolerance but also requires a high amount of reconfiguration

inputs, namely 34 per 4-bit adder. To reduce the total amount of reconfiguration inputs all other

SHCs (multiplier, multiplexer, etc.) were designed coarse granular, i.e. the nominal and redun-

dant multiplier is designed as one single SHC. This implementation allows to repair faults on

any position within the GAIA preprocessing algorithm. Between all pipeline (register) stages an

acknowledge switch was implemented.

Control Environment

The nominal and redundant circuit paths (pipelines) are completely separated, so each pipeline

has its own source and sink RAMs. The sink stores all consistent data appearing at the output of

the Dead Column Correction (PREPRO_DATA). Together with each token the reconfiguration

status is stored, i.e. whether a reconfiguration was required to generate this token.
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Figure 5.24: Self-Healing GAIA Implementation

Reconfiguration Unit

A dedicated reconfiguration unit was spent for each algorithm, i.e. one for the Linear Correction

and a second one for the Dead Column Correction (Figure 5.24). The watchdogs in these two

units are reset by activity on the nominal and redundant acknowledge signals between the two

algorithm parts.

Within the reconfiguration unit an asynchronous counter was used as watchdog and a syn-

chronous counter, controlled from the watchdog, as reconfiguration controller. As this approach

could lead to rather long reconfiguration times (46-bit reconfiguration vector for the Linear

Correction and 48-bit for the Dead Column Correction) the relevant reconfiguration bits were

mapped to the LSBs of the counter output, so that a reconfiguration could be performed within

a feasible time.

Fault Injection Environment

Saboteurs were implemented at three important locations in the circuit:

• Handshake path: at the nominal and redundant acknowledge signal in the Linear Correc-

tion between the first (R1) and the second (R2) register

• Register input: in the Linear Correction at the nominal and redundant input of register R2

• Register output: in the Linear Correction at the output of the nominal and redundant

register R1
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Although the resource effort did not allow to perform exhaustive fault injection experiments

with this implementation, it was possible to verify the correct functionality of all basic con-

cepts: A fault in the acknowledge signal can be repaired by a reconfiguration in the Acknowl-

edgeSwitch, the fault at the register output (i.e. input to subsequent logic implemented as SHCs)

requires a reconfiguration in the SHC and the fault at the register input requires a reconfiguration

in both the SHC and the AcknowledgeSwitch.

5.6.5 Results

The hardware implementation of the Self-Healing GAIA algorithm worked correctly and ba-

sically proved the suitability of the self-healing concept for complex circuits. Fault-injection

experiments with single faults showed that the injected permanent fault can be recovered by au-

tonomous re-routing of the application. The reconfiguration controller was a simple counter, i.e.

it was a stochastic reconfiguration, and the effects described in section 5.4.2 due to acknowledge

toggling were observed. If the reconfiguration was performed manually by applying the correct

(manually determined) reconfiguration pattern, the circuit output was always correct.

Resources

Table 5.9 summarizes the resource occupation (number of 4-input LUTs in a Xilinx Virtex-4) as

listed in the synthesis reports, as well as the relation to the non-fault tolerant FSL circuit.

Table 5.9: Resource Comparison

resources relation

Synchronous GAIA 35 5%

FSL GAIA (reference) 755 100%

SH-GAIA 1565 207%

Reconfiguration Unit (RU) 1865 247%

SH-GAIA incl. RU 3430 454%

The synchronous implementation requires only 5% resources compared to the FSL imple-

mentation, which is obvious, as the FPGA is optimized for synchronous architectures. Due to

the transformation to a self-healing circuit the logic resources of the FSL implementation are

doubled. The acknowledge switches add some additional logic so that the resource occupation

of the self-healing circuit was expected to be slightly more than twice of the resources of the

standard FSL implementation. The synthesis tool reported 207% with respect to the non-fault

tolerant GAIA implementation, which sounds reasonable.

The implemented reconfiguration units were asynchronous ripple carry counters, which were

more complex than the algorithm of the GAIA application and dominated the total amount of

resources. Experiments with counters based on Linear-Feedback Shift Registers (LFSR) resulted

in significantly lower values.

121



Measurements

Figure 5.25 shows the oscilloscope plot of an autonomous reconfiguration of the SH-GAIA

algorithm. After the reset is de-asserted (upper waveform, channel 1) the command controller

starts to apply source data. The lower waveform (channel 4) shows the acknowledge signal.

Each event on the acknowledge signal corresponds to one token shifted through the pipeline.

First, three tokens are processed, then a stuck-at-1 fault is injected which holds the acknowledge

signal in the high state and causes a deadlock. The watchdog expires several times (not visible

in the plot) and after approximately 6ms a working configuration is found. The circuit resumes

operation as can be seen on the activity of the acknowledge signal, indicating that the remaining

tokens are processed after the reconfiguration.

Reset

Acknowledge

Figure 5.25: Measurement of a Reconfiguration
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5.7 Reliability Analysis of Self-Healing Circuit

5.7.1 Introduction

This section presents a reliability estimation for the circuit described in section 5.6, in order

to get an impression about the effectiveness of the self-healing concept in terms of reliability.

Traditional models for reliability analysis, such as the MIL-HDBK-217 [16], only account for

the hardware failure rate of components, and any single fault that causes the component to be out

of specification is considered as a total component failure. This means that for programmable

integrated components, like FPGAs and ASICs, any applied fault tolerance mechanism that

influences the implementation of the circuit in a way that faults could be tolerated, e.g. XTMR

[13], is not considered, and thus would not increase the analyzed reliability.

Due to the self-healing concept the circuit is composed from distributed active redundant

elements which in total results in a circuit being tolerant against a certain number of faults and

fault combinations. In order to compare the reliability of the self-healing implementation with

the standard FSL implementation, the methodology of reliability block diagrams as usually used

on board or system level was applied to our circuits on gate level. For each element used in our

circuit (e.g. SHC, register, Acknowledge Switch, etc.) a Matlab model was established which

allows determining its reliability considering also possible reconfigurations. For these elements

the signals (input interfaces of SHCs and registers, internal signals of SHCs, reconfiguration

inputs), switches, registers and logic were considered to be either defective or correct, each of

these sub-elements having assigned a specific failure rate. The model considers all permutations

of the involved sub-elements and thus also multiple faults. In the case that a reconfiguration

input is defective, the worst case is considered by assuming that the reconfiguration will not be

successful. As we know from section 5.3.2, in reality there is a 50% probability that this input

is stuck at the intended value, and thus will allow the reconfiguration to take place. For registers

an offset (control logic for handshake) and a variable part of the failure rate (depending on the

number of inputs) has been considered.

While in the standard for discrete components failure rates were determined based on sta-

tistical drop out, no values are available for e.g. an AND gate implemented in an FPGA. We

therefore guessed values in a reasonable magnitude and analyzed the reliability for a wide range

of the failure rate. In Table 5.10 the used values for the analysis are listed, unless varied over a

range. The failure rates (FR) are given in failures in 109 hours [FIT].

Table 5.10: Parameters for Reliability Analysis

FR of a signal 0.0005 FIT

FR of a switch 0.1 FIT

FR of a 2-input logic 0.1 FIT

FR of register (offset) 1 FIT

FR of register (variable, per input) 0.01 FIT

The failure rate λ is assumed to be constant, and the resulting reliability can be calculated

with the formula R(t) = e−λ∗t. A constant failure rate corresponds to the “normal life” period
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in the bathtube curve. However, this might not be fully true: (i) for long mission times of

tenths of years the wear-out period of the bathtube curve could be reached, where the failure

rate is increasing and (ii) permanent faults which are not caused by hardware defects but e.g.

due to radiation might not follow the constant failure rate model. It is assumed that (i) can be

avoided by choosing appropriate components. For (ii) the assumption will still hold as long as

the occurrence is random, which is usually the case for SEUs.

5.7.2 GAIA Reliability Estimation

To compare the reliability of the GAIA algorithm implementation (see section 5.6) it was first de-

termined which of the parameters listed in Table 5.10 influence the results most. For the detailed

analysis later on only the critical parameters were varied. Figure 5.26 shows the gain in relia-

bility for an 8-bit (left plots) and a 16-bit (right plots) self-healing GAIA algorithm compared

to a standard FSL implementation. Note that the analysis does not consider the reconfiguration

unit, but assumes that the GAIA circuit can be reconfigured. This would be equivalent with a

reconfiguration unit having a failure rate of zero. The failure rates for switches and logic were

varied over a wide range up to values which seem unrealistic for the hardware failure rate for

functions in integrated circuits. However, if also other causes for faults are considered, such

as radiation, we might reach even such high values. The lower plots show the magnified area

for the section with low failure rates. A mission time of 20 years was assumed. Except of the

varied parameters, all values were chosen as listed in Table 5.10. The surface being above the

grey plane means that the self-healing implementation achieves a better reliability than the FSL

circuit, below it would be worse.

It can be seen that the gain in reliability is significantly influenced by the width of the input

vectors (top left vs. top right plot). The reason is, that with a SHC having two reconfiguration

inputs, the redundant blocks become larger for higher widths, i.e. each reconfiguration input

switches more signals. Thus in case of a fault requiring a reconfiguration, a large amount of

resources is lost. If the switches have a high failure rate, they dominate the total reliability,

which then might get lower than that of the non-redundant FSL implementation. Assuming that

the logic will be more complex and thus have a significantly higher failure rate than the switches,

the self-healing implementation provides a significant reliability improvement. With the chosen

failure rates the influence of the signals and registers is negligible.
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Figure 5.26: Reliability gain of SH vs. FSL GAIA implementation with varying failure rates of

switches and logic for 8bit and 16bit wide inputs

5.8 Comparison with State-of-the-Art Methods

In this section the self-healing approach is compared with a duplex-system (1-out-of-2) and a

TMR system (1-out-of-3) with respect to multiple fault tolerance.

5.8.1 Duplex System

A duplex system consists of two parallel paths. For simplification it is assumed that, as soon as

one path is affected by a fault (False result), the other one takes over (leading to a True result).

Any detection or switching logic is neglected here.

Already with the first fault the two outputs will disagree, so that the probability for a correct

result is 50%. For each subsequent fault the probability of survival decreases by factor 1

2
, which

is the probability that the same path is affected again and the other one thus remains fault free.
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Figure 5.27: Probability of Success for Duplex System

5.8.2 TMR System

A TMR system consists of three parallel paths and the majority is taken as result. The majority

voter is not considered in the calculations.

The first fault does not influence the result, as with two working paths a correct majority can

be found. A second fault can only be tolerated if the same path is affected, otherwise the output

will be wrong. Thus, for each subsequent fault the probability of survival decreases by factor 1

3
.
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Figure 5.28: Probability of Success for TMR System

5.8.3 Comparison with Self-Healing Approach

As can be seen in Table 5.11, the self-healing approach provides significantly higher fault tol-

erance than a duplex or TMR system. Note that the values for the self-healing approach only

consider the pipeline reconfiguration, but not the SHCs. In a typical application the logic func-

tions (implemented in SHCs) will dominate the complexity and amount of resources, and the

“administrative logic” such as the pipeline register stages will only have a minor impact. Since

SHCs are highly tolerant against multiple faults (refer to section 5.3) the total fault tolerance

might thus be even significantly higher than that of the pipeline. As this heavily depends on the

logic functions, pipeline length, etc. no such evaluation has been performed within this thesis.

The resource overhead given in Table 5.11 is calculated as (Rft−R0)/R0, where R0 are the

resources of the simplex system and Rft the resources of the fault tolerant system. If the logic

for detection, voting and switching is neglected, the total resources of a duplex system increase
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Table 5.11: Comparison of Self-Healing Approach with Duplex and TMR Systems

No. of Faults probability of success Overhead

Duplex TMR SH-Approach Duplex TMR SH-Approach

1 50% 100% 100%

100% 200% 115%..240%2 25% 33.3% 82.5%

3 12.5% 11.1% 56.7%

by a factor of 2, for a TMR system by a factor of 3 compared to a simplex (non-redundant)

system. Assuming 10% of the resources being related to registers and 90% being related to

logic, the resource effort for the self-healing approach increases by a factor of approximately

3.3 (see section 4.6).

The resource effort for the reconfiguration units described in section 5.4.2 will not be signif-

icant, as they are basically lookup-tables with latches at the outputs that store the configuration

bit of each reconfiguration input. The overhead is assumed to be in the same order as the voting

and switching logic in a TMR system.

Overall, the relative resource overhead of the self-healing concept for a typical application

will be between that of a duplex and a TMR system for a coarse granular implementation, and

slightly above that of a TMR system for a fine granular implementation.

Basically the self-healing approach could be applied to duplex and TMR systems to make

them repairable and thus increase the fault tolerance even more. However, for asynchronous

circuits this is not as easy as for synchronous logic and requires particular techniques [102]. Of

course, the resource overhead will increase significantly with this approach.

The overhead of the method using reconfigurable logic blocks [69] is similar for basic gates

(230%), but considerably lower for more complex circuits (e.g. < 40% for an 8-bit ALU).

However, these values do not include the effort for diagnosis and the approach does not cover

the connections between the implemented functions.

While the approach based on a self-healing asynchronous linear array [101] reports lower

overheads for fault tolerance up to two faults (e.g. 74% for a 64-bit adder being tolerant against

one fault), the overhead increases significantly and exceeds the values of the self-healing ap-

proach described in this thesis for multiple fault tolerance (e.g. 307% for an 8-bit adder being

tolerant against three faults, 387% for four faults). Although a k-fault tolerant array can guaran-

tee the recovery from k faults, this method might soon become unattractive for a higher number

of faults due to the enormous resource effort. Our self-healing approach does not guarantee a

k-fault tolerance, but provides a high probability for it at much lower resource overhead.
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5.9 Summary and Discussion

This chapter presented the results of various simulations and hardware fault injection experi-

ments performed on different levels of the self-healing concept. In general, it was shown that

the concept is able and suitable to improve the fault tolerance of FSL circuits. In particular, the

concept provides also a significant probability for multiple fault tolerance and is advantageous

compared to duplex and TMR systems in this respect.

The presented self-healing approach is beneficial in several respects compared to the meth-

ods described in chapter 3:

• It is not restricted to FPGAs but also applicable to ASICs.

• The concept is applied on gate level, and the FSL circuits can use standard component

libraries for integrated circuits.

• The actual circuit configuration can easily be determined via the reconfiguration vector, so

the circuit’s behavior is predictable even if stochastic reconfiguration-algorithms are used.

• SHCs also cover faults in the interconnections and can implement any kind of circuits.

• The different configurations do not need to be generated during design time.

• Since the concept is based on asynchronous circuits, a different timing due to a modified

configuration does not influence the circuit functionality.

• The concept provides inherent state-mitigation. In general, FSL circuits deadlock when

permanent faults occur but keep the data. The circuit continues autonomously after the

reconfiguration without loss or corruption of data.

• Most methods are restricted to FPGAs and use the external configuration interface, which

is a single-point of failure. The SHCs are distributed across the whole circuit and are

controlled by only a few signals without particular protocol behind. Thus no central con-

figuration interface is needed.

Some important general observations obtained during the simulations and experiments are

summarized below.

5.9.1 Fault Frequency

Due to the handshake mechanism, effects occurring in the pipeline might not be visible immedi-

ately. Depending on the location within the pipeline, a permanent fault will not instantaneously

lead to a deadlock, but the data and the handshakes could still work for some cycles, until the

latent fault blocks the handshake protocol.

On the one hand, this delays the fault detection by some time which depends on the pipeline

length, because the fault effect must propagate through the pipeline until all handshakes are

stopped. On the other hand, this might have an impact on the functionality of the reconfigura-

tion unit. As shown in chapter 4, each fault ends up in a characteristic pattern of the handshake
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signals and phase detector status. However, this pattern is only visible if the fault has completely

settled in the pipeline. If another fault occurs too early, i.e. while the effects of the previous fault

are still propagating in the pipeline, the resulting pattern might be interpreted incorrectly and

thus a wrong reconfiguration rule could be applied. Consequently, this results in a maximum

fault frequency, which depends on the pipeline length and the reconfiguration speed. The recon-

figuration of one fault must be finished before the next fault occurs in the pipeline.

We assume repair in the millisecond range, while the rate of permanent faults is orders

of magnitude higher (e.g. in [11] a failure rate of 7.73 failures per 109 hours is reported for

the RTAX-S antifuse FPGA, corresponding to a mean-time-to-fail (MTTF) of 1.29E+08 hours

(>14767 years)). Although transient faults can cause deadlocks in FSL circuits [28], even with

SEU rates of e.g. 4.0E-03 SEUs per device day in GEO orbit (MTBF of ∼ 250 days) as given

in [57] for the space qualified floating point DSP SMV320C6701, the MTTF will remain signif-

icantly higher than the repair time.

5.9.2 Timing Assumptions

In section 4.2.5 the timing constraints due to the deadlock detector (watchdog circuit) were

explained. As stated there, although the watchdog formally violates the unbounded delay model,

it is no practical restriction if the timeout is chosen several orders of magnitude higher than the

maximum circuit processing time.

For the hardware implementation of the asynchronous circuits an asynchronous component

library was established, which can be used for synthesis in standard FPGAs (for the experiments

a Xilinx Virtex-4 FPGA was used). These components assume delay insensitivity on gate level.

Although this is not guaranteed by the design, the experiments showed that the assumption seems

to be fulfilled in most of the cases.

Splitting the data and acknowledge path requires additional timing restrictions (see sec-

tion 4.3.5), which cannot be solved by simply using delay insensitive components. In particular

the relative timing between the nominal and redundant pipeline path needs to be considered in

the circuit routing. As no such timing definition was performed for the circuits used for the hard-

ware experiments, it is likely that timing problems occurred. This would explain some effects

that were seen during the experiments (e.g. as described in section 5.5).

5.9.3 Mis-alignment of Nominal and Redundant Path

The considerations in this thesis assume permanent faults, i.e. faults that appear at any time and

remain forever. A particular phenomenon has been observed if a fault lasts for a long time (long

enough so that a reconfiguration takes place and brings the circuit back to operation), but not

forever, i.e. it disappears later on.

Depending on the fault location, circuit granularity and applied reconfiguration, it might be

the case that only one of the two pipeline outputs provides new tokens, and the other output

is stopped. If the fault disappears, also this output could start to produce tokens again. For a

counter, e.g., this could lead to two working outputs with different values. Such a behavior must

be handled on application level.
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5.10 Annex

Figure 5.29: GUI for Controlling the Hardware Fault Injection Experiments
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Listing 5.6: Example of a Stimulus File for HW Fault Injection

1 InitLog .\\result\\HW_Sim_sequence_2-to-2-faults_1-1.txt

2 LogDetail OFF

3 LogSummary ON

4 --Flush sink buffers

5 Reset

6 WrMem 0, 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

7 0x0 0x0 0x0 0x0 0x0 0x0

8 WrMem 8, 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

9 0x0 0x0 0x0 0x0 0x0 0x0

10 SetLength 20

11 ResetFI

12 Start

13 SrcDelay 20

14

15 -- 1-1) NEW SEQUENCE --- 2 faults applied, sequence: 30-29

16 Reset

17 WrMem 0, 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE

18 0xF 0x1 0x2 0x3 0x4 0x5

19 WrMem 8, 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE

20 0xF 0x1 0x2 0x3 0x4 0x5

21 SetLength 20

22 ResetFI

23 -- enable WD

24 FaultInjection R C 1 0 ON 0 0

25 -- Injecting 1. fault

26 -- stuck-at-1 on 137 (Reg5.PassRed) in cycle 2 (absolute), offset

27 2 clock cycles

28 FaultInjection A F 2 137 ON 1 2

29 -- Injecting 2. fault

30 -- stuck-at-1 on 103 (Reg4.PassRed) in cycle 9 (absolute), offset

31 2 clock cycles

32 FaultInjection A F 9 103 ON 1 2

33 LoadFI

34 TestID 1-1

35 Reset

36 Start

37 RdMem4 1, 0x00, 80

38 RdMem4 9, 0x00, 80

39 LogData
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Listing 5.7: Rules of 2-Input SHC Model

1 if SHC1.ValOutNom ~= ’X’

2 if (SHC1.ReconfNom == 0)

3 if SHC1.ValInNom ~= ’X’

4 SHC1.ValOutNom = SHC1.ValInNom;

5 SHC1.PhiOutNom = SHC1.PhiInNom;

6 end

7 else

8 if SHC1.ValInRed ~= ’X’

9 SHC1.ValOutNom = SHC1.ValInRed;

10 SHC1.PhiOutNom = SHC1.PhiInRed;

11 end

12 end

13 end
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Listing 5.8: Rules of Register Model

1 if Reg1.ValInNom ~= ’X’

2 % do not propagate a defect-marker

3 if SHC1.ValOutNom ~= ’X’

4 Reg1.ValInNom = SHC1.ValOutNom;

5 Reg1.PhiInNom = SHC1.PhiOutNom;

6 end

7 end

8 if Reg1.ValInRed ~= ’X’

9 % do not propagate a defect-marker

10 if SHC1.ValOutRed ~= ’X’

11 Reg1.ValInRed = SHC1.ValOutRed;

12 Reg1.PhiInRed = SHC1.PhiOutRed;

13 end

14 end

15

16 % transparent: phi_in != phi_out, phi_out=pass

17

18 if (Reg1.PhiInNom ~= Reg1.PhiOutNom)

19 if (Reg1.PhiOutNom == Reg1.PassNom) & (Reg1.PassNom ~= 9)

20 % transparent

21 Reg1.ValOutNom = Reg1.ValInNom;

22 Reg1.PhiOutNom = Reg1.PhiInNom;

23 % set done signal accordingly

24 Reg1.DoneNom = Reg1.PhiOutNom;

25 end

26 end

27

28 if (Reg1.PhiInRed ~= Reg1.PhiOutRed)

29 if (Reg1.PhiOutRed == Reg1.PassRed) & (Reg1.PassRed ~= 9)

30 % transparent

31 Reg1.ValOutRed = Reg1.ValInRed;

32 Reg1.PhiOutRed = Reg1.PhiInRed;

33 % set done signal accordingly

34 Reg1.DoneRed = Reg1.PhiOutRed;

35 end

36 end
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Listing 5.9: Rules of Acknowledge Switch Model

1 % AS between Reg1 and Reg2

2 AS12.AckInNom = Reg2.DoneNom;

3 AS12.AckInRed = Reg2.DoneRed;

4

5 if (AS12.ReconfNom == 0)

6 AS12.AckOutNom = AS12.AckInNom;

7 else

8 AS12.AckOutNom = AS12.AckInRed;

9 end

10 % AS between Reg1 and Reg2

11 if (AS12.ReconfRed == 0)

12 AS12.AckOutRed = AS12.AckInRed;

13 else

14 AS12.AckOutRed = AS12.AckInNom;

15 end

134



CHAPTER 6
Conclusion and Outlook

In this thesis a self-healing concept based on asynchronous circuits is presented. It uses a re-

dundant pipeline as basic circuit structure and replaces the combinational logic by Self-Healing

Cells (SHC), which provide the possibility of reconfiguration. The concept utilizes the inherent

properties of the asynchronous design style FSL, in particular the fail-stop behavior, which helps

to reduce the resource effort for fault diagnosis. The reconfigurable elements are distributed over

the whole circuit, so the concept is able to tolerate also multiple faults, which makes it particu-

larly interesting for long mission times. The granularity, and thus the fault tolerance, is variable

and can be defined by the designer as needed to achieve the reliability goal for the application.

The objectives as defined in section 1.2 have essentially been accomplished:

• Recover from multiple permanent faults and errors: achieved; the fault tolerance for dou-

ble faults is > 83% and for triple faults nearly 60%, and could be improved even further

with more intelligent reconfiguration units

• occurring in integrated circuits: achieved; experiments have been performed with circuits

implemented in a standard FPGA, but the concept can be applied also to ASICs; the

concept covers interconnects, combinational and sequential logic

• within a predictable timing: achieved; the duration of a reconfiguration using the investi-

gated algorithms is limited to an upper boundary which depends on the pipeline length

• with deterministic measures: achieved; the symptoms occurring in case of a permanent

fault lead to a clear reconfiguration pattern; by knowing this pattern, the actual circuit

structure is unambiguously defined

• by autonomous reconfiguration: achieved; a watchdog circuit monitors the circuit’s activ-

ity and triggers the reconfiguration process during runtime
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• transparent to the application: achieved; due to the inherent fail-stop behavior of FSL

logic, the application is autonomously stopped for the reconfiguration process; after the

reconfiguration the circuit starts working again autonomously without external interaction

by the application or the user

• using existing processes and standard libraries: achieved; the concept is applied on gate

level, and although optimizations with a dedicated library are assumed to be possible, it

was shown that the implementation works even with standard elements

The main focus of the thesis was to handle faults that occur during operation and lifetime,

i.e. the application was working correctly before the fault occurred. In fact, the concept can also

be used to increase the yield, as after switch-on it will immediately change its routing so that

it starts working. However, no detailed investigation has been performed with respect to this

application.

The apparent drawback of asynchronous circuits is the initial overhead compared to syn-

chronous implementations. The presented approach is thus not considered as replacement for

fault tolerance mechanism in the synchronous domain. However, if asynchronous circuits are

being used, the concept is an appropriate method to increase the fault tolerance significantly by

introducing a relative overhead comparable to a TMR system. The author is aware that the sim-

ulations and experiments performed do not provide adequate coverage to conclude on the fault

tolerance for any arbitrary system, but the results justify the suitability of the presented approach

for tolerating multiple faults.

Although the concept is beneficial in several points compared to other methods of circuit re-

configuration, some issues have been identified, which need further investigation. The following

list shall therefore be seen as some kind of a roadmap for the continuation of research in this

area.

• Basically, the reconfiguration process performs without loss or corruption of data and

internal states are recovered. However, FSL logic is not hazard-free any more in presence

of permanent faults, which could lead to wrong data being propagated in the circuit. It is

assumed, that such effects must be handled on application level.

• In this thesis two independent data sources and sinks were assumed. The circuit was

defined to be working, if at least one of the two outputs showed activity. The approach

itself, however, does not include methods to identify which of the two outputs is the correct

one. Thus, the management of the redundant pipeline must be solved.

• The simulations and experiments revealed that it is not sufficient to just establish any valid

data and acknowledge path, but some timing constraints need to be fulfilled. A compre-

hensive and detailed study of the path timings could not be performed due to insufficient

tool support, while a manual inspection would cause prohibitive efforts. Although the few

available timing results confirmed the theoretical predictions very well, a more compre-

hensive study of both, the working and the failing configurations would have yielded an
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even higher confidence in the predictions, or might also have revealed interesting new in-

sights. With the availability of newer tool versions and/or circuits optimized for this scope

such investigations will become possible.

• Currently a fixed watchdog timeout is used. This could be improved, e.g. to start the

watchdog with each new token provided by the source, to avoid timeouts due to pauses of

data inputs.

• Random algorithms cause problems during operation but would increase the number of

possible configurations. It should be investigated, if e.g. a “test mode” could be added to

establish a new configuration without disturbing the actual tokens.

• As transient faults are more likely to occur than permanent faults, the application of ad-

ditional measures to increase also the robustness against transient fault should be investi-

gated.
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