
Effects and Mitigation of Transient Faults in

Quasi Delay-Insensitive Logic

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Dipl.-Ing.(FH) Werner Friesenbichler
Registration Number 0526423

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: A.o.Univ.Prof. Dipl.-Ing. Dr. Andreas Steininger

The dissertation has been reviewed by:

A.o.Univ.Prof. Dipl.-Ing. Dr. Andreas Steininger Prof. Dr.-Ing. Heinrich Theodor Vierhaus

Wien, im Dezember 2011

Dipl.-Ing.(FH) Werner Friesenbichler

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Dipl.-Ing.(FH) Werner Friesenbichler

Rosengasse 10/7, 2700 Wiener Neustadt

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-

wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der

Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem

Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe

der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

I would like to thank Andreas Steininger for his advice, experience and patience in

the often lengthy discussions. Of course I also would like to thank Heinrich Vierhaus from

the Brandenburg University of Technology Cottbus for reviewing the thesis and giving

fruitful feedback. Thank you RUAG Space Gmbh for granting sponsoring to attend

conferences.

Thanks to my colleague Thomas Panhofer, for all the helpful suggestions, reviews,

collaborations on papers, coffee break discussions and especially for the motivation during

stressful periods.

Finally, my thanks go to my family, my friends and especially to Stephanie, for

supporting my work and giving me the strength and endurance to get the job done.

iii

Abstract

Asynchronous Quasi Delay-Insensitive (QDI) logic offers an improved fault tolerance

compared to common synchronous logic. Its delay-insensitive encoding makes QDI circuits

not only robust to varying delays but also highly insensitive to transient faults, as such

faults likely generate illegal data that is simply ignored.

To describe these fault effects in a quantitative manner, a model that includes all

assumptions and boundary conditions has to be employed on. With existing models one

has to make a trade-off between the level of detail they provide and their complexity.

In this work, a new trace based fault model is developed. It covers both unprotected as

well as hardened QDI circuits in the necessary level of detail, while still only moderate

computational efforts are required to analyze real-world circuits. A trace is the sequence

of all signal transitions a circuit receives and generates. As that sequence can be used to

synthesize QDI circuits, it only seems to be natural to utilize traces for the description

of QDI circuits in a faulty environment as well. Thereby the developed model is used to

identify problematic fault scenarios and to derive their relative probability.

In the field of QDI circuits, different hardening strategies exist. Based on the insights

gained from the trace based fault model, a new method called duplication and rail cross-

coupling is derived. The idea is to re-arrange the particular rails of QDI signals in such a

way that a transient fault will lead to an illegal code that prevents the fault from being

processed. Such a hardened QDI circuit simply waits until the transient fault decays or

it deadlocks for indefinite time, but without propagating any data errors. The initial

approach was refined and led to the modified DRXS / DRXX / DRS methods, which

are investigated in more detail.

For a systematic assessment of the proposed hardening methods two complementary

approaches using simulation and hardware based fault injection are applied. While related

tools are described in literature, these do not appropriately consider the peculiarities of

QDI logic. Consequently, two customized fault injection tools are developed, one for fault

simulation and one for fault emulation. These tools allow an adequate investigation of

transient fault effects, thereby backing up the theoretic results from both the trace based

fault model as well as the proposed hardening methods. Several basic test circuits as

well as one moderately complex signal processing application are selected to verify the

predicted fault tolerance of the different hardening strategies. It is shown that a clever re-

arrangement of a duplicated QDI circuit helps to improve the tolerance against transient

faults significantly, while keeping the hardware overhead low.

v

Kurzfassung

Asynchrone Quasi Delay-Insensitive (QDI) Logik liefert eine im Vergleich zu syn-

chroner Logik verbesserte Fehlertoleranz. Die delay-unabhängige Kodierung macht sie

nicht nur robust gegenüber veränderlichen Verzögerungen sondern auch insensitiv gegen

transiente Fehler, da solche mit hoher Wahrscheinlichkeit illegale Daten erzeugen die ein-

fach ignoriert werden.

Um die Effekte von transienten Fehlern zu beschreiben, muss zuerst ein Modell mit

sämtlichen Annahmen und Randbedingungen gefundent werden. Existierende Modelle

gehen dabei oft einen Kompromiss zwischen Detailierungsgrad und Komplexität ein. In

dieser Arbeit wird ein auf Traces basierendes Modell entwickelt, das sowohl ungeschützte

als auch gehärtete QDI Schaltungen ausreichend detailiert beschreibt und gleichtzeitig den

Aufwand zur Analyse von realistischen Schaltungen in Grenzen hält. Ein Trace beschreibt

die Abfolge aller Signalereignisse einer Schaltung. Da diese Abfolge auch zur Synthese

von QDI Schaltungen verwendet werden kann, scheint es nur natürlich die selbe Methodik

auch für die Schaltungsbeschreibung in einer fehlerbehafteten Umgebung einzusetzen. Das

entwickelte Modell dient sowohl zur Identifizierung von problematischen Fehlerszenarios

als auch zur Berechnung deren relativer Wahrscheinlichkeit.

Im Bereich der QDI Schaltungen existieren unterschiedliche Härtungsverfahren. Auf

Basis der Erkenntnisse des Trace-Modells wird eine neue Methode namens duplication

and rail cross-coupling abgeleitet. Die Idee ist die einzelnen Leitungen eines QDI Signals

so umzuordnen, dass ein transienter Fehler zu einem illegalen Code führt, der eine Wei-

terverarbeitung verhindert. Die Schaltung wartet bis der Fehler wieder verschwindet oder

bleibt für immer stehen, ohne falsche Daten zu verbreiten. Der erste Ansatz dieser Idee

führt schließlich zu den verfeinerten DRXS / DRXX / DRS -Methoden, welche genauer

untersucht werden.

Für eine systematische Untersuchung der vorgeschlagenen Verfahren werden komple-

mentäre Fehlerinjektionsexperimente auf Simulations- und Hardware-Ebene angewandt.

Da etablierte Verfahren die Besonderheiten von QDI Logik nicht ausreichend berücksichtigen,

werden zwei individuell angepasste Fehlerinjektionswerkzeuge entwickelt, eines für Feh-

lersimulation und eines für Fehleremulation. Diese erlauben eine adquate Untersuchung

von transienten Fehlereffekten und erlauben so eine Bestätigung der theoretischen Er-

kenntnisse des Trace-Modells als auch auf die vorgeschlagenen Härtungsverfahren. Einige

grundlegende Testschaltungen sowie eine komplexere Signalverarbeitungsanwendung wer-

den ausgewählt, um die prognostizierte Fehlertoleranz der unterschiedlichen Verfahren

zu überprüfen. Es wird gezeigt, dass eine intelligente Neu-Anordnung einer duplizierten

QDI Schaltung die Toleranz gegen transiente Fehler signifikant verbessert, während der

zusätzliche Schaltungsaufwand klein gehalten werden kann.

vii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Scope . 3

1.3 Contribution . 4

1.4 Outline and Methodology . 5

2 Background 7

2.1 Asynchronous Logic . 7

2.1.1 General . 7

2.1.2 Classification . 9

2.1.3 Operating Modes . 10

2.1.4 Handshake Protocols . 10

2.1.5 Quasi Delay-Insensitive Logic . 12

2.2 Faults and Errors in QDI Circuits . 17

2.2.1 Definitions and terms . 17

2.2.2 Fault Classification . 18

2.2.3 Logic Fault Models . 19

2.2.4 Masking Effects . 20

2.2.5 Fault Model . 22

2.2.6 Error Classification . 24

3 Fault Description 27

3.1 Related Work . 27

3.1.1 Transition Based Fault Description 27

3.1.2 Token Based Fault Description . 28

3.2 Circuit Definition . 29

3.2.1 Signal Transition Graph . 29

3.2.2 State Graph . 31

3.2.3 Trace Theory . 31

3.2.4 Delay-Insensitivity . 32

3.3 Nominal Behavior of QDI Circuits . 34

ix

3.3.1 Combinational Circuits . 34

3.3.2 Sequential Circuits . 34

3.3.3 Nominal Trace Description . 35

3.4 Trace Based Fault Description . 39

3.4.1 Introduction . 39

3.4.2 Boundary Conditions . 40

3.4.3 Token Classes . 41

3.5 Fault Effects . 47

3.5.1 Effects at Block Interconnections 47

3.5.2 Effects in Combinational Logic . 49

3.5.3 Effects in Sequential Logic . 53

3.6 Summary . 55

4 Fault Mitigation 59

4.1 Introduction . 59

4.1.1 Soft Error Rate . 60

4.1.2 Fault Trace Propagation . 62

4.1.3 Assessment of Soft Error Probability 63

4.1.4 Principle of Redundancy . 65

4.2 Related Work . 65

4.2.1 Hardware redundancy methods . 65

4.2.2 Duplication . 66

4.2.3 Rail synchronization . 67

4.2.4 Re-calculation . 68

4.2.5 Forcing deadlocks . 69

4.2.6 Concurrent error detection . 70

4.3 Trace Based Fault Assessment . 71

4.3.1 Evaluation of Fault Propagation . 71

4.3.2 Trace Re-ordering . 75

4.3.3 Dependency on the encoding . 78

4.3.4 Impact of the handshake protocol 80

4.3.5 Multiple rail transitions . 81

4.4 Duplication and Rail Cross-coupling . 86

4.4.1 Principle . 86

4.4.2 Evaluation of Fault Masking . 86

x

4.4.3 Synchronized rail cross-coupling . 92

4.4.4 Tolerance against multiple errors 98

4.4.5 Fault propagation and storage in cross-coupled circuits 102

4.4.6 Rail comparison . 106

4.4.7 Summary . 109

4.5 Fault Injection Overview . 112

5 Simulation 115

5.1 Related Work . 115

5.2 Fault Simulation in QDI Logic . 119

5.3 The FOSTER Tool . 122

5.3.1 Description of the Tool . 122

5.3.2 Error detection . 125

5.3.3 Random Tests . 126

5.3.4 Evaluation of Token Classes . 128

5.3.5 Interpretation of Soft Error Probability 129

5.4 Simulation of DRXS Hardened Circuits . 136

5.4.1 Test Setup . 136

5.4.2 Test Circuit Selection . 138

5.4.3 Results . 141

5.5 Summary . 150

6 Emulation 153

6.1 Related Work . 153

6.2 Fault Emulation in QDI Logic . 155

6.2.1 Error Coverage . 155

6.2.2 Reproducibility . 157

6.3 The STEFAN Tool . 159

6.3.1 Description of the Tool . 159

6.3.2 A Versatile Saboteur . 161

6.3.3 Usage . 166

6.4 Application: The GAIA Video Pre-Processing Algorithm 168

6.4.1 The GAIA Mission . 168

6.4.2 The GAIA Pre-Processing Algorithm 168

6.4.3 FSL Implementation . 169

6.4.4 Emulation of the GAIA Algorithm 171

6.5 Summary . 180

xi

7 Conclusion 183

7.1 Summary . 183

7.2 Outlook . 185

Bibliography 187

xii

1
Introduction

This chapter gives an overview of the motivation behind this thesis. It briefly de-
scribes the main objectives and the contribution that is made.

1.1 Motivation

Today’s modern integrated circuits are still facing a continuing down-scaling process.
The smaller feature size has lead to several improvement trends as shown in Table 1.1.
The most remarkable trends are higher integration, faster operation and decreasing cost
per function, which has led to significant improvements microelectronic products [1]. At
the same time, the supply voltage is reduced as well leading to a higher power efficiency.

Table 1.1: Improvement Trends for ICs Enabled by Feature Scaling from [1]

TREND EXAMPLE

Integration Level Components/chip, Moore’s Law
Cost Cost per function
Speed Microprocessor throughput
Power Laptop or cell phone battery life
Compactness Small and light-weight products
Functionality Nonvolatile memory, imager

That higher integration and improved performance is paid by an increased fault
sensitivity as the amount of electric charge that defines a logical value in a digital circuit
(critical charge) is becoming smaller. Fig. 1.1(a) depicts the critical charge versus the
circuit technology. As the circuit’s environment is not affected by that trend, it becomes
more easy to disturb the logic state of a circuit node [2], [3] and soft errors mainly
caused by high-energy cosmic neutrons are becoming a major source of errors in modern
integrated circuits [4].

The effect of the reduced critical charge is an increased soft error rate as depicted in
Fig. 1.1(b). Thereby the soft error rate for SRAM cells did not change significantly. The

1

2 1. Introduction

reason for this is the compensation of the smaller critical charge by a disproportionate
reduction in the cell area and an improvement in technology. However, for logic elements
and latches, the soft error rate grows as predicted by the critical charge reduction.

(a) Critical charge for SRAM/latches/logic (b) Soft error rate / chip for SRAM/latches/logic

Figure 1.1: Critical charge and soft error trends versus technology [5]

Although the analysis in [5] has been performed already in 2002, the results are con-
firmed by recent research [6]: The soft errors in logic cells start to overtake the soft errors
in SRAM cells and will become the dominating source of errors in future technologies.
Table 1.2 compares the SEU (single event upset, soft error) rates in microprocessors that
are designed in different technologies. The failures in time (FIT) per bit are declining,
while the higher integration density lead to an overall increase in the SEU rate for the
complete device. Even worse, it was shown that shrinking feature sizes lead to an increase
of multi-cell upsets, i.e. a single particle incident will disturb several logic cells. These
multiple upsets primarily affect memory cells, thus more complex error correcting codes
are required to minimize the system level effects [6].

Table 1.2: Raw SEU Rate per Microprocessor from [6]

Tech.
(nm)

Relative SEU rate
in FITs/kbit

Approx. Mbits per
microprocessor

Relative uncorrected
SEU rate per micro-
processor (kFIT)

250 3.2 1.52 4.95
180 3.0 1.52 4.29
130 2.4 3.28 10.24
90 1.0 33.6 33.60
65 0.7 44.3 30.46

Especially for high reliability (hi-rel) applications, an improvement in circuit perfor-
mance that is accompanied with a reduction in dependability is not acceptable. Moreover,
radiation effects that have been known for a long time in fields such as space engineering
or radioactive applications for science, medicine or military have now found their way
into commercial products. Soft errors, induced by e.g. irradiation with high energetic
particles are becoming a concern for terrestrial applications [7], [8], [9], [10].

1.2. Scope 3

Aside these reliability issues, modern highly integrated microcircuits make it harder
to distribute a low skew central clock signal across a chip and to maintain the necessary
timing margins for synchronous technology. Providing a reliable communication between
particular on-chip modules is getting more challenging as well [1].

Within this field, asynchronous circuits are becoming more popular [11]. They show
some properties that make them superior to their synchronous counterparts. The clock
distribution problem is eliminated, the obtained performance is more an average case
than a worst case as every single module runs at its own maximum speed and no timing
margins have to be considered. Further the asynchronous modules are easy to compose
as they are based on a local handshake that autonomously adapts to the slowest device.
Transitions take place only when they are needed, which reduces electromagnetic emission
and susceptibility as well as dynamic power consumption. Asynchronous designs also offer
an improved fault tolerance, not only to internal process variations but also to external
faults.

On the other hand, asynchronous circuits have a clear disadvantage in terms of
area compared to equivalent synchronous circuits. The design market thinks and acts
synchronous. Tools for developing asynchronous circuits are in the minority compared to
synchronous tools and often limited to university usage. Although synchronous tools can
be utilized, their outcome and performance is not as satisfactory.

While there is a lot of research done on fault tolerance in synchronous systems,
less attention has been paid to asynchronous circuits. Well established error detection
techniques applied to synchronous circuits cannot be directly applied to asynchronous
designs. Further, the different classifications of asynchronous circuits [12] – bounded
delay (Huffman), speed independent, (quasi) delay-insensitive circuits – entail different
methods of error detection.

1.2 Scope

The main objective of this work is the investigation of transient fault effects in asyn-
chronous Quasi Delay-Insensitive (QDI) circuits [12] and the development of hardening
strategies to mitigate these faults. Thereby both the fault effects and their countermea-
sures are applied at the register level, which regards general combinational logic and
registers as primitive items. That level of abstraction provides more simplicity as well as
yields general, technology independent results compared to more fine grained levels such
as the gate or transistor level. Similarly, as the mitigation of faults is also applied to the
register level, higher level hardening methods such as checksums or parity protection are
not applicable. Therefore the developed mitigation strategies will be system independent
as well.

Although this work provides a general treatment of QDI circuits, a focus is set on a
special member of the QDI family, namely Four-State Logic (FSL) [13], which describes
one possible implementation of the Level Encoded Dual-Rail (LEDR) [14] protocol. The
robustness of an asynchronous FSL processor was investigated in [15] and showed a high
inherent robustness to transient faults, which is based on the delay-insensitive encoding
of QDI logic. Basically, the fault mitigating feature of QDI logic relies on its inherent

4 1. Introduction

tendency to block manipulated data: A fault rather stops a QDI circuit instead of pro-
ducing any functional errors. If the circuit is stopped forever, it is said to be deadlocked.
It depends on higher level requirements, whether such a deadlock is preferable not.

While a deadlock can be assumed for nearly all kinds of permanent faults, that
is not necessarily true for transient faults and it has been shown that transient faults
have become the major source of errors [16]. Traditional methods applied to synchronous
circuits cannot be directly mapped to asynchronous circuits [17], [18]. There is no global
clock that produces a new set of valid data each clock edge that can be used for e.g.
comparison with a redundant data set. The absence of a clock also prevents synchronous
fault injection test methods to be applied to asynchronous designs [19]. This thesis aims
to improve both, simulation and hardware based transient fault injection in QDI logic.
Thereby the characteristics of QDI circuits are taken into account, especially when using
commercial design tools that have been developed for synchronous circuits.

1.3 Contribution

Within this thesis a comprehensive investigation of transient fault effects in QDI
logic is performed:

Trace Based Fault Model – A new fault model is developed to describe the effect
of transient faults in QDI logic and to derive proper hardening techniques. Contrary to
existing models that are based on transition [20] or token level [21], this model is based
on trace theory [22]. The trace based approach is well suited for the description of events
in asynchronous circuits and it combines the benefits of transition (high level of details)
and token based methods (simplicity).

Duplication and Rail Cross-coupling – Various methods are examined to mit-
igate transient faults in asynchronous QDI logic. A new method called duplication and
rail cross-coupling was derived. It is based on duplication but comes along with a mini-
mum amount of supplemental hardware by modifying the signal trace during a transient
fault. Thereby the hardware overhead is minimized, which is one of the main drawbacks
of asynchronous circuits. The properties, benefits and drawbacks of this new method
are discussed and compared to established hardening techniques such as duplication and
double checking [18].

Consideration of latching effects in QDI simulation – A widely used technique
to evaluate different fault effects, hardening methods or the robustness of a system is fault
simulation. One key difference between synchronous and asynchronous circuits is the
transparent phase of a storage element. In flip-flop based, synchronous logic that phase is
very short, limited by the rise time of the clock and the internal delays. In asynchronous
circuits a storage element may be transparent for a considerable amount of time, leading
to different effects. A special fault injection tool for VHDL simulation was developed that
considers these peculiarities. It allows to simulate both soft errors and transient errors
without modifying the underlying circuit architecture and may be used for all kind of
synchronous and asynchronous circuits if transient faults shall be examined. The benefit
of this tool over existing methods is its simplicity and a minimum computation effort.

1.4. Outline and Methodology 5

QDI fault injection considering controlled traces – Contrary to simulation,
emulation offers improved performance as the circuit’s operation takes place in real hard-
ware and does not need to be simulated. A common practice is to add invasive elements,
or saboteurs, that provoke faults. The problem with asynchronous circuits opposed to
synchronous circuits is to achieve a full fault coverage. In a synchronous design the clock
is the only event that generates a new state. In an asynchronous design each signal event
triggers a new state, which requires not only to control the logic value of a fault and the
moment of its occurrence but also to control the sequence when events take place – the
trace. A new hardware fault injector has been designed that allows to control that trace.
Thereby, a deterministic and reproducible fault investigation of QDI circuits in hardware
is obtained, which takes care of the state coverage problem that is commonly disregarded
in other tools.

1.4 Outline and Methodology

The thesis is structured in different chapters, which are – as far as possible – self-
standing parts providing the interested reader a more efficient way to study the subjects
he is interested in without working through the whole document.

Chapter 2 gives a brief introduction in asynchronous logic especially in QDI logic. It
comprises the idea behind the asynchronous design style and introduces the peculiarities
it is accompanied by. A general overview of the different faults and fault models in QDI
logic is provided. Fault tolerance and its application in QDI logic is described.

Chapter 3 presents an overview of the different fault models that are suited for QDI
logic. It describes the trace based model that has been developed during this thesis and
applies that model to different circuit parts, especially interconnections as well as combi-
national and sequential circuits. The chapter derives the necessary rules and boundary
conditions of the trace based model, which are then applied in the following chapters to
determine the mitigation of transient faults.

Chapter 4 handles the general aspects of soft errors and what mitigation strategies
may be applied. It introduces the concept of duplication and rail cross-coupling and inves-
tigates the properties of this method applying the trace based fault model that has been
developed in Chapter 3. The duplicated and rail cross-coupled method aims to improve
the logical masking capability of a system. Several implementations of this concept are
compared with respect to fault tolerance but also in terms of hardware overhead.

Chapter 5 describes the simulation of QDI circuits that are subjected to transient
faults. Thereby the characteristics of QDI logic is highlighted, which lead to the design of
the FOur STate ERror injection tool (FOSTER). Originally, that tool was developed to
simulate transient faults in Four State Logic (FSL), which is a special design style of QDI
logic. In principle it can be also mapped to other common styles such as 4-phase dual-rail.
This chapter investigates the theoretically derived results from the previous chapters by
means of simulation based experiments using typical building blocks of digital systems.

Chapter 6 deals with the fault emulation of QDI circuits, focusing on an opti-
mum error coverage and reproducibility of the fault injection. Thereby the trace based
model is applied to real hardware by means of the Synthesizable Test Environment For

6 1. Introduction

Asynchronous Networks (STEFAN). That tool allows to test QDI circuits in a deter-
ministic manner by presenting a new type of saboteur that takes over the control over a
circuit’s trace. The new fault injection method is applied to a real signal processing ap-
plication. Thereby the fault tolerance of the different duplication and rail cross-coupling
architectures is investigated.

Chapter 7 draws a conclusion and gives an outlook to remaining fields of investiga-
tion on this subject.

2
Background

This chapter provides necessary background for this thesis. First an introduction to
asynchronous logic, especially into Quasi Delay-Insensitive (QDI) circuits is given. The
different types of faults in asynchronous logic are presented and an overview of the state
of the art in fault tolerant QDI circuits is reviewed.

2.1 Asynchronous Logic

2.1.1 General

Digital logic deals with binary signals. An analog signal, typically a voltage, is as-
signed to discrete boolean values TRUE/FALSE or 0/1. Fluctuations in the analog nature
of information are not relevant as long as the boolean value remains unchanged. Another
simplification in the design of digital circuits is the assumption of a common, discrete
time – defined by the clock signal [23]. A discrete time resolves many problems, since
the actual behavior of a signal between two consecutive clock edges is of no importance.
Properties such as different propagation delays (skew), glitches or hazards do not alter
the logic function as long as all transients have settled to a stable state before the next
clock edge occurs. That fundamental constraint manifests in the setup and hold time
known from synchronous flip-flops. If these timings are violated a correct operation is
not guaranteed and metastability may occur. As long as the circuit operates solely in a
synchronous domain, which means that no asynchronous signals have to be processed, the
setup and hold problem can be solved by simply reducing the clock frequency. Thereby
the transients have a longer time to settle. An asynchronous signal does not follow a
discrete time, i.e. events on such a signal may occur at any time and are not related to
the clock signal.

Asynchronous circuits neither assume a discrete time nor do they have a common
clock signal. The communication between the sender and the receiver of data is based
on a local handshake between these two instead of a global clocking scheme. Thereby
the actual speed of the circuit depends on the actual propagation delays of the particular
circuit elements and not on an externally imposed clock frequency. Any communication

7

8 2. Background

actually takes place when it is needed and not at pre-defined time intervals such as clock
edges. This fundamental principle generally results in considerable benefits compared to
synchronous circuits [23], [11], [12], [24]:

• Less dynamic power – Asynchronous circuits only perform an action when such
an event is requested by the local handshake and not at every clock edge. Fewer
switching reduces the dynamic power consumption.

• Average case performance – In synchronous circuits, the clock frequency must be
selected according to the worst case delay for a correct operation. Asynchronous
circuits, especially those which are insensitive to delays show an average case per-
formance as they regulate their operational speed inherently.

• Adaptivity – Asynchronous circuits are not affected by environmental variations that
change the operating speed of the circuit. They simply adapt their local handshake
protocol to the new conditions.

• Modularity – The local handshaking as well as the reduced impact of actual delays
makes asynchronous circuit highly modular. Components may be simply replaced
without considering synchronization issues or making worst case timing analyzes.

• No clock skew problem – The distribution of a low skew, high-speed clock signal is
not needed any more.

• Reduced electromagnetic emission – Since there is no dominant regular switching
operation at every clock edge but rather a distributed, smooth activity across the
circuit the electromagnetic emissions are reduced.

• Security – Less emissions of asynchronous circuits make them more rugged to secu-
rity attacks. It is harder to both scan as well as disturb a system that operates at
rather arbitrary time instants.

• Robustness – The reduced susceptibility to delays, environmental impacts and the
lack of a common clock signal that affects all parts of a design makes asynchronous
circuits inherently very robust.

• Reliability – The clock signal constitutes a single point failure in a synchronous
circuit. Asynchronous circuits eliminate that source of errors, since no clock is
needed. As the circuit operation is more evenly distributed across a chip, the wear-
out of specific circuit parts is reduced, which improves the life time of a component.

Of course, all the above items are more general statements that have to be treated
on case-by-case basis. Detailed information about asynchronous logic can be found in
various books and articles such as [25], [26], [27], [23], [12], [24], [28] [29], [30] to name a
few.

However, asynchronous circuits also face considerable drawbacks. In general, they
are not as efficient as an equivalent synchronous circuit especially in terms of area over-
head. Although they consume less dynamic power and offer average case performance,
their increased area and complex design may annul these benefits when overall power and

2.1. Asynchronous Logic 9

performance is compared. The design methodology is more complex and asynchronous
circuits are neither easy to test nor easy to develop due to the lack of commercially
available CAD tools. For prototyping tasks, these drawbacks become much more evident
as typical platforms such as FPGAs are optimized for synchronous designs. Although
a synchronous FPGA can be used for asynchronous designs they resulting design may
even have a worse efficiency than predicted, which makes a fair comparison asynchronous
versus synchronous even harder.

This thesis focuses on the investigation of transient fault effects and their mitigation
in asynchronous circuits. The deficiencies such as area overhead are of secondary concern,
although they are briefly tackled.

2.1.2 Classification

Asynchronous logic is not a new principle and lasts back to the 1950s. Pioneers
in that field, such as D. A. Huffman [31, 32] and D. E. Muller [33], derived different
methods of digital asynchronous circuit design. There exist several possibilities to classify
asynchronous circuits. One of the most obvious methods is the delay model the system
adheres to. In principle, there are two disjunctive models:

1. The Bounded Delay model places certain constraints on the propagation delays of
gates and wires in a circuit.

2. The Unbounded Delay model allows arbitrary delays for at least some parts of a
circuit.

Within the unbounded delay model, two main families can be distinguished: Speed
Independent (SI) and Delay-Insensitive (DI) circuits. SI circuits assume positive, un-
known delays in gates but zero delays on wires. DI circuits do not apply any delay
restrictions, neither in gates nor on wires. Unfortunately, the class of DI circuits is lim-
ited to circuits that only consist of inverters and so called Muller C-gates [34]. A less
restrictive sub-class of DI circuits are Quasi Delay-Insensitive (QDI) circuits, which al-
low unbounded delays in all elements except in isochronic forks. Such forks assume the
difference in the delay of each branch is negligible, i.e. a transition that starts at the root
of the fork will arrive at the end of each branch at the same time. With that limitation
the class of QDI circuits becomes bigger and thus more practicable than pure DI logic. If
all forks in a QDI circuit are required to be isochronic, the circuit essentially becomes a
SI circuit. In this case, the wire delays are transferred into their associated gates, as the
SI paradigm allows arbitrary gate delays. In practical QDI circuits, such isochronic forks
are applied to the gate level implementation of basic building blocks (gates, registers),
where the matched delays are more easy to control, while at a higher level the connection
between these blocks is truly DI [12].

Synchronous circuits also adhere to the bounded delay model. The synchronous
paradigm assumes that all transient states have settled to a steady state by the next
clock edge. Asynchronous circuits that follow the bounded delay model require certain
timing assumptions and operation modes. They are also referred to as Self-Timed [23].

10 2. Background

2.1.3 Operating Modes

The classification of asynchronous circuits according to their delay model does not
define the interaction with their environment. There are two basic operating modes [24]:

1. Fundamental Mode

2. Input-Output Mode

The fundamental mode was developed by D. A. Huffman [31, 32]. This mode requires
that the next input must not be applied until the circuit has settled to stable state. Thus
an upper limit must be placed on the delays of the circuit as the internal states of the
circuit are not visible to the environment. Fundamental mode circuits always adhere to
the bounded delay model. The classic fundamental mode only allows one single input
to be changed at a time. The burst mode [35] extends that single-input limitation and
allows several inputs to be changed at once. The environment still has to wait until the
circuit has stabilized before the next input burst may be applied. The completion of an
operation in a fundamental mode circuit cannot be concluded by solely looking at the
outputs as these may change due to transient, intermediate states as well.

In the input-output mode developed by D. E. Muller [33], the environment may
apply the next input as soon as an output change has been observed. So there exists
a causal relation between input and output transitions. The internal signals as well as
internal states of the circuit are not regarded, so each output transition must be a valid
one. No transient or intermediate output transitions are allowed. Therefore a circuit that
operates in the input-output mode must be at least speed-independent.

2.1.4 Handshake Protocols

In a synchronous circuit, the clock signal determines when data is valid. So new
data will be sampled at the clock edge only. Asynchronous circuits have no clock that
defines the validity of data and triggers the capture process. Thus some kind of handshake
protocol between the circuit and its environment is needed to decide when data is valid
and may be captured. In general, two handshake events are required as shown by Fig. 2.1:

1. A request event, which signals the receiver that new data is available.

2. An acknowledge event, which signals the source that data has been captured.

In the nominal case, i.e. without any faults, these two events will alternate. A
request is followed by an acknowledge, which will be followed again by a request and so
on. In synchronous circuits, the clock serves as global request event that triggers the
storage of new data. An acknowledge signal is not needed as the synchronous principle
requires that data is processed by the next clock event. In asynchronous circuits, there
exist several handshake implementations.

In bounded delay circuits, such as Huffman state machines operating in the fun-
damental mode, the handshake is implicitly provided by the delay of the environment

2.1. Asynchronous Logic 11

f(x) SinkSource

Acknowledge:
„Data has been captured“

Request:

„New data is available“

Figure 2.1: Principle of handshake

before consecutive data is applied. Therefore, fundamental mode circuits operate similar
to synchronous circuits. Other types of bounded delay circuits and especially circuits that
operate in the input-output mode, require dedicated handshake signals.

In bundled data circuits, the handshake information is explicitly transmitted together
with the data. The handshake signals comprise one request signal and one acknowledge
signal for N data signals. Thereby the request signal has to be delayed to guarantee that
data is valid when the request event is received. Therefore, bundled data circuits follow
a bounded delay model and require a positive timing margin between the propagation
delay on the request line and the worst case propagation delay on the data lines. For
the acknowledge signal, no such timing constraint is required. Other asynchronous design
techniques, such as SI and (Q)DI circuits do not require a dedicated request line. In these
circuits, the validity of data is implicitly determined by the data encoding.

The request and handshake events may be level or edge encoded. The type of
encoding defines whether the event is defined by the logic state (level signalling) of the
handshake lines or by the change of that state (transition signalling) [36]. In general,
level signalling results in simpler circuits as transition signalling requires the circuit to
react on signal events rather than on signal states.

Within the handshaking, either the sender or the receiver may initiate the commu-
nication. In general, the sender performs this task by means of providing new data. This
standard configuration is known as push channel. On the other hand, the receiver may
also control the handshaking by asking for new data, which is referred to as pull channel.

The handshake protocol can be classified by the number of operation phases it
consumes. The four phase protocol (4-phase) uses a simple return-to-zero encoding for
the handshake. Although this protocol does not convey any information in the return to
zero phases, the 4-phase protocol allows to design quite simple circuits and is therefore
the most popular one. Second, the computation time in an asynchronous circuit may
be much longer than the transmission time, so the return to zero phases do not have
a large weight in the overall budget and justify the more simple circuit design. The
two phase protocol (2-phase) is a good choice when this is not the case. It uses a non
return-to-zero encoding. That protocol does not waste the time of the reset phases,
however, a 2-phase circuit design is generally more complex than a 4-phase circuit. Some
asynchronous designs utilize the benefit of both protocols by applying the 4-phase protocol

12 2. Background

to the computational part of the circuit and the 2-phase protocol to the interconnection
parts [37], [38]. Another improvement of data throughput for asynchronous handshake
protocols is Level Encoded Transition Signalling (LETS), which combines a return-to-zero
encoding with 1-of-N codes [39]. An example for a practical 4-phase realization that has
been placed commercially on the market in the 90’s is Null Convention Logic (NCL) [40].

The classification of an asynchronous circuit does not define its physical implemen-
tation. For instance, a DI circuit may use a 4-phase or a 2-phase protocol. Additionally,
the properties of bounded and unbounded delay can be combined as in the Micropipeline
[41], which uses a DI control circuit for the handshaking but bounded-delay data path.

2.1.5 Quasi Delay-Insensitive Logic

As already highlighted, real DI circuits do not comprise a lot of practical applica-
tions. Thus QDI logic is applied instead, provided the limitation of isochronic forks is
acceptable – which is often the case considering practical designs. Due to the unbounded
delay the sender does not know when the receiver has captured the requested data. There-
fore the receiver must explicitly inform the sender about such an event by means of an
acknowledge signal. The sender is not allowed to transmit the next data until it has
received an acknowledge.

On the other hand, the receiver must only process valid data. Bundled data circuits
solve that problem by attaching a dedicated request signal to the data signals. That
request signal must always be late compared to the data, which requires a bounded delay
model. In case of arbitrary, unbounded delays a temporal order between any signals is not
guaranteed anymore. Therefore, data must be transmitted using a delay-insensitive or
unordered code. Thus the receiver is able to detect new, valid data by simply evaluating
its code. There is a variety of delay-insensitive codes [42]. The combination of a delay-
insensitive code and a handshake protocol allows different styles.

The most widely applied handshake scheme is the 4-phase protocol, which is shown
in Fig. 2.2(a). Actually only two phases carry valid data and acknowledge events while
the other two phases are used to reset the data and the acknowledge signal to their initial
value. The drawback of this protocol is invalid data (I) between the valid code words (V).
The advantage is a rather simple circuit implementation. More efficient is Level Encoded
Dual-Rail Signalling (LEDR) [14] that uses a 2-phase protocol. Data is transmitted in two
alternating phases, ϕ0 and ϕ1, as depicted by Fig. 2.2(b). No invalid codes are needed,
however, the circuit implementation is in general more complex.

01 00

x

Ack

y

0 N

I

II

III

IV

Phase

(a) QDI, 4-Phase Protocol

10 00

1 N

10 00

1 N

01

0

V I V I V I V

01 11 00

x

Ack

y

0 1 0

I

II

I

II

ϕ1Phase ϕ0

(b) LEDR, 2-Phase Protocol

ϕ0ϕ1

10

1

Figure 2.2: Data sequence using a 4-phase and a 2-phase protocol

2.1. Asynchronous Logic 13

Table 2.1 shows two possible implementations of QDI logic. Both map a boolean
variable x ∈ {0, 1} to a dual-rail variable y comprising the two rails a and b: x 7→ yayb

with ya, yb ∈ {0, 1}. The most widely applied style is a 1-of-2 one hot or simple dual-rail
code together with a 4-phase protocol. In 4-phase dual-rail, data alternates between the
valid code set V = {01, 10} and the invalid code I = {00}. The remaining code {11} is
not used, which means only three of the four possible code states are used.

Table 2.1: Truth table of 2- and 4-phase dual-rail logic

2-ph. dual-rail 4-ph. dual-rail
(four-state coding) (three-state coding)

yayb x code set x code set

0 0 0 ϕ0 - I
0 1 0 ϕ1 0 V
1 0 1 ϕ1 1 V
1 1 1 ϕ0 - Not used

The invalid code in a 4-phase dual-rail protocol does not convey any information
and is purely used to separate consecutive code words or tokens :

Definition 2.1.1. A token describes any legal data in an asynchronous system that can
be interpreted.

To be legal, data must be consistent as well. During the transition between the code
phases, the encoding reaches intermediate states that are inconsistent. Both terms are
detailed later on. In addition to illegal codes, such as ’11’ in 4-phase dual-rail, there is
a second reason for illegal data. Once a token has been consumed, the data held by the
predecessor becomes obsolete. In this case the token in the predecessor is transformed
into a bubble.

Definition 2.1.2. A token is transformed into a bubble after it has been consumed, i.e.
acknowledged, by the successor.

Any QDI circuit may only receive a token if it holds a bubble. During the operation,
tokens travel from the source to the receiver, while at the same time bubbles travel from
the receiver to the source. This token – bubble game describes the data flow in an
asynchronous circuit. For more details refer to [12].

Within this thesis, the term illegal means any code that does not comply with
the circuit’s protocol, while the term inconsistent means that the code word cannot be
evaluated. In general, a QDI circuit shall be designed such that it will never process
inconsistent data. Regarding illegal codes, it depends on the circuit implementation
whether it will process such data or not. For example, the illegal code ’11’ in 4-phase
dual-rail may be used for error detection [43], [17], but it can as well be simply ignored
to save area.

In LEDR a more efficient dual-rail encoding together with a 2-phase protocol is
used. As this style uses all four possible states of a dual-rail code it is also called four-
state coding compared to the previously described three-state coding [13]. One way to

14 2. Background

implement the LEDR protocol is Four State Logic (FSL) or 2-phase dual-rail. In FSL,
data alternates between the two codes sets ϕ0 = {00, 11} and ϕ1 = {01, 10} as shown in
Table 2.1 and Fig. 2.3. Each phase uniquely defines the boolean states FALSE and TRUE.
Phase ϕ0 is also called the even phase and ϕ1 is called the odd phase, which stems from
the modulo-2 sum of the two rails in the code. Contrary to the 4-phase protocol, both
FSL code sets carry valid information. The benefit of the 2-phase protocol is higher speed
[44], thereby LEDR allows to build circuits with more acceptable complexity compared
to classical transition signalling [36]. Within this thesis the terminology FSL refers to the
design style of a LEDR encoded QDI circuit.

„TRUE“

L(0,1)
ϕ1

H(1,0)
ϕ1

h(1,1)
ϕ0

l(0,0)
ϕ0

„FALSE“

logic state ϕ0 (a,b)

l (0,0)

h (1,1)

ϕ1 (a,b)

L (0,1)

H (1,0)

„FALSE“

„TRUE“

Figure 2.3: FSL encoding and state transitions

The most promising application of LEDR lies in the realization of asynchronous
interconnections. For example, a single buffer implemented in LEDR has 187% higher
throughput but consumes only 62% of the energy compared to an equivalent 4-phase
dual-rail buffer [38]. In [45] a very fast asynchronous shift register designed for high speed
bit serial on-chip interconnection channels is presented. The interconnection channel was
implemented using LEDR signalling. Simulations showed a speed of 67 Gbps in 65 nm
CMOS and at the same time an immunity to in-die process variations in the order of 10σ,
with σ being the standard process variation.

In Fig. 2.2, the boolean sequence x = {..., 0, 1, 1, 0, ...} has been transferred to both
common 3-state QDI logic using a 4-phase protocol and to FSL using a 2-phase protocol.
From that example, two fundamental properties can be derived, which have to be satisfied
by all types of QDI circuits:

(I) Data is always processed in alternating code phases, which is called the alternation
property.

(II) Any QDI function z = f(Y) with Y = 〈y1, ..., yn〉 will produce a consistent output
z if and only if its input Y is also consistent. Otherwise the current output is
preserved, which is called the (strong) completeness property.

Property (I) allows to distinguish consecutive data, while property (II) prevents
the mixture of code phases. The concept of consistency is an important property that
distinguishes QDI from common synchronous logic. To formally describe consistency, the
code set Φ is introduced:

Definition 2.1.3. The code set Φ holds all legal codes that can be processed by a QDI
function.

2.1. Asynchronous Logic 15

Similarly, the code set can be split into subsets that only hold legal codes of their
own code phase. For dual-rail and 1-of-N codes there are two subsets Φ0 and Φ1:

Definition 2.1.4. The code subset Φp ⊂ Φ holds all legal codes of the code phase p. For
dual-rail and 1-of-N codes one can state Φ0, Φ1 ⊂ Φ and for complete codes such as FSL
Φ0 ∪ Φ1 = Φ, i.e. the complete code set is covered by two subsets. Further the code sets
are disjoint, i.e. Φ0 ∩ Φ1 = ∅.

The code phase of a signal vector Y = 〈y1, y2, ..., yn〉 can be calculated by the
consistency function ϕ(Y):

ϕ(Y) = 0 ⇔ ∀yi ∈ Y : yi ∈ Φ0

ϕ(Y) = 1 ⇔ ∀yi ∈ Y : yi ∈ Φ1

ϕ(Y) = X ⇔ ∃yk, yl ∈ Y |yk ∈ Φ0 ∧ yl ∈ Φ1

(2.1)

For a one-bit dual-rail signal y the code phase can be calculated with a simple XOR
function of the two rails: ϕ(y) = ya⊕yb. For an (n > 1)-bit signal vector the code phase is
logical 1/0 if and only if the code phase of each bit in the vector is logical 1/0. Otherwise
the code phase is not defined, which is expressed by X. For a completion detection circuit
that is used in all types of QDI logic to determine the current code phase, no unknown
state is defined. Thus if a completion detector cannot evaluate its output because at least
two bits are not in the same code phase, the last known output is maintained.

In LEDR, all possible members of the code set are used, while 4-phase dual-rail
does not have this property. Here, the code ’11’ is not used. Depending on the actual
implementation, ’11’ may be a legal code or not. In the first case, {11} ∈ Φ and the code
is processable. In the latter case, {11} /∈ Φ and the circuit will not be able to evaluate
the next code phase. So for a QDI function to process a code, it is mandatory that the
code is legal and consistent. This requirement applies to all bits of the code word.

Definition 2.1.5. A code word Y = 〈y1...yn〉 is called consistent if all bits yi are member
of the code set and have the same code phase:
{∀yk, yl ∈ Y : k, l = 1...n : yk, yl ∈ Φ ∧ ∄yk, yl|ϕ(yk) 6= ϕ(yl)}.

The definition of consistency does not define whether the data is valid or invalid. In
QDI circuits, only valid data conveys information. It is mandatory that valid data must
be both legal and consistent. However, the same applies for invalid data, which is used as
a spacer in e.g. 4-phase dual-rail or 1-of-N circuits. For these codes we can derive another
property that is helpful in the analysis of QDI logic.

Definition 2.1.6. The transition between consecutive dual-rail code words is performed
by one single rail transition for each bit od the code, which is called the single-event
property.

The above properties can be used describe the behavior of combinational and se-
quential QDI circuits. The completeness property implies that even combinational QDI
circuits require state holding elements. Any inconsistent code must not be interpreted and
lead to the completion of an output. The word completion is important in this context
because the completeness property only applies to atomic QDI gates. An atomic gate

16 2. Background

performs any boolean function, no matter how many terms it is composed of, in one dis-
tinct computation step without requiring any intermediate results. If circuits composed of
atomic gates adhere to the completeness property they are called strongly indicating [12].
In this case, the outputs will be only computed if all inputs have the same code phase. On
the other hand, QDI combinational functions can also be designed weakly indicating, i.e.
they will begin to produce valid outputs even if not all inputs are in the same code phase.
Nevertheless, the complete output will not be created before the complete input is in the
same phase. A simple example for a weakly indicating circuit is a ripple carry adder.
The adder may start to produce an output on its lower bits provided the associated input
bits are consistent. The complete result will only be generated if the complete input is
consistent.

For sequential QDI circuits, that prerequisite for processing an input must be ex-
tended by the handshake protocol.

Definition 2.1.7. Any sequential FSL function will process its input if and only if (i) it
is consistent, (ii) its code phase is inverse to the code phase of the currently stored token
and (iii) the successor has already acknowledged the current token, which is called the
acknowledge property.

Sequential gates or registers control the data flow in a QDI circuit, while combina-
tional functions are transparent to the handshaking. The acknowledge property is one of
the fundamental properties of any QDI design.

A typical implementation of a QDI circuit is the pipeline in Fig. 2.4. Data is
passed from stage (i) to stage (i+1) via the (optional) combinational function f(x). The
handshake is controlled by the registers, while the combinational functions are transparent
to the handshake. More details, especially on the implementation of FSL in synchronous
FPGAs are given in [46], [47].

f(x)
Datai -1 Datai+1

Acki+1Acki

i i+1

Datai

Acki+2

RegisterRegister

Figure 2.4: Generic QDI pipeline

The physical implementation of QDI circuits is often combined with certain delay
assumptions especially when regarding the basic building blocks such as plain registers
or simple combinational gates. For the internal design of a practical QDI circuit nearly
all forks are required to have matched delays. Additionally, the control signals of latches
need to have a minimum pulse width for a correct operation [47], [37], [39]. If these timing
constraints are fulfilled, the QDI function can be treated as atomic gate and any circuit
that is composed of such functions will be delay-insensitive.

2.2. Faults and Errors in QDI Circuits 17

2.2 Faults and Errors in QDI Circuits

2.2.1 Definitions and terms

Some frequently used terms related to fault tolerance and error detection shall be
clarified. The terms failure, error and fault are understood as established in the Working
Group 10.4 (WG10.4) on Dependable Computing and Fault Tolerance of the International
Federation For Information Processing (IFIP), summarized in [48]:

• A failure occurs when the delivered service deviates from the correct system func-
tion, the latter being what the system is aimed at.

• An error is that part of the system state which is liable to lead to a subsequent
failure. An error is an observable discrepancy between the computed and the correct
value due to the activation of a fault.

• A fault is the adjudged or hypothesized cause of an error.

The chain in Fig. 2.5 describes the causal relationship between faults, errors and
failures: A fault will generate an error provided the fault is activated and not dormant.
The produced error will lead to a failure provided the error changes the intended behavior
of the system. Basically, an error must propagate to the system boundaries to trigger a
failure. This causal chain is continued on the next higher level. A failure in a subsystem
may be regarded as fault on the higher system level.

Fault

activation

Error

propagation

Failure

Fault

subsystem level

system level

Figure 2.5: Fault-Error-Failure Chain (adapted from [49])

When applying error detection the result of a function is checked to validate its
correctness. The detection of errors can be conducted during the operation of a system,
which is called Concurrent Error Detection (CED). On the other hand, when preemptive
error detection is applied, the operation has to be stopped while the error detection takes
place. In this thesis, whenever the term error detection is used, it is regarded as CED.

Example 2.2.1: Let’s consider a simple serial protocol where a message of 8 bits is
followed by one parity bit. Due to electromagnetic interference, a transient fault occurs
and corrupts one data bit during the transmission. We assume the receiver will detect
a parity error and ignore the message. Although the error has been identified, the
system has failed if we consider the delivery of the message as an integral requirement
of the system.

In contrast, fault tolerance means the system is able to provide the correct service
despite the presence of faults. Fault tolerant systems require error detection to identify

18 2. Background

the error plus some kind of recovery mechanism to correct the error and to re-establish
the correct function or service.

Example 2.2.2: Memories of reliable computing systems are often equipped with an
Error Detection And Correction (EDAC) code that stores the information together
with check bits. Typically, an EDAC code not only allows to detect errors but also to
correct them. The number of detectable and correctable errors must not necessarily
be the same and varies with the EDAC code structure. In this example, the system
is fault tolerant as the error will not propagate and become a failure.

The main purpose of error detection schemes is to improve a system’s dependability,
which defines the ability to deliver a service that can be justifiably trusted [49]. De-
pendability is seen as an integrative concept that includes attributes such as reliability,
availability, safety and security.

2.2.2 Fault Classification

Faults can be classified according to their persistence in transient and permanent
faults. Sometimes the term intermittent fault is added to this collection, which is used to
describe faults that occur repetitive but not continuously [50].

Transient faults may be introduced by three main radiation effects [9]: High-energy
cosmic neutrons that interact with the silicon nuclei of semiconductor devices [51], low-
energy cosmic or thermal neutrons that interact with insulation layers [52] and alpha
particle radiation due to package imperfections [53]. As today’s integrated circuits gen-
erally use advanced processes with purified materials, high energetic cosmic neutrons are
the dominating radiation effect [9]. Beside radiation, transient faults could also be pro-
voked by electromagnetic interference (EMI) due to external sources or signal integrity
problems such as ground bounce. Transient faults, especially those generated by particle
strikes can be modeled by an electric charge injected to or removed from a circuit node
that is represented by the boolean signal x. Thereby the charge is typically described by
a double exponential current pulse [54]. Together with the total node capacitance, the
injected current pulse modifies the electric voltage of the node. If the injected charge
is high enough, the logic threshold of the circuit’s technology may be exceeded in either
direction and a positive x↑ or negative x↓ logic transition is generated. At the same time,
the injected charge is restored by the node’s driver, thus the disturbed signal will return to
its initial state after the fault duration tf depending on the amount of charge, the circuit
technology and the node’s driver strength. Eventually, the transient fault manifests itself
either as a positive or negative digital pulse on the subjected signal x. Our main interest
lies in this secondary effect – the corruption of the boolean value of x. The shape or the
amplitude of the induced current are not important in the digital domain.

Cosmic rays or other charged particles will induce transients with a pulse width tf
of 100 to 200 ps. In modern microcircuits with feature sizes below 0.35 µm, these tran-
sients are no longer attenuated within the gates and will propagate like normal digital
signals [55]. At high energies, transient faults longer than 1 ns are predicted for 100 nm
bulk CMOS at both proton-rich space environments but also for terrestrial neutron en-
vironments [56]. At 90 nm the nodal capacitance and the supply voltage are further

2.2. Faults and Errors in QDI Circuits 19

reduced, decreasing the critical charge that defines the logical value of a node to a few
femto-coulomb. That increases the probability that a charged particle induces a logical
disturbance of a few hundred picoseconds [57]. Faults that originate from e.g. glitches on
the supply voltage or due to EMI can be described similarly although their underlying
primary source is different.

If a transient fault is injected into a circuit without feedback elements, it will only
generate a logic pulse at the output of the circuit. Especially in space engineering, such
pulses are called Single Event Transients (SET) [58]. In circuits with feedback elements,
e.g. in a latch, a transient fault may be memorized and generate a permanent upset or
error, which is also referred to as Single Event Upset (SEU) or simply as soft error [59].

Permanent faults are typically used to model physical defects, such as fabrication
imperfections, malfunctions due to excessive voltage, current, power or wear out effects
such as electro migration [60] or gate oxide break down [61]. Contrary to transient faults,
a permanent fault cannot be restored or removed. This fact has to be observed, especially
when permanent faults are compared with soft errors. For example, both a transient and
a permanent fault may corrupt a memory cell. The transient fault may result in a soft
error that can be restored by updating the affected memory with the correct value. If a
permanent fault corrupts the memory cell, it cannot be restored, therefore the effect of a
permanent fault is also called a hard error.

Intermittent faults are assumed to be a sub-class of transient faults, since they occur
regularly but will disappear after some time. Thus they can be described the same way
as transient faults.

Within this thesis, only the effects and mitigation of transient faults are treated.

2.2.3 Logic Fault Models

At the logic level, faults can be modeled in different ways. One popular method
is the Single Stuck-At Fault (SSAF) model [62], which disconnects a circuit node from
its surrounding elements and forces the isolated node either to the power supply or to
ground. The result is either a stuck-at-1 (s@1) or stuck-at-0 (s@0) fault. The SSAF model
was originally defined for permanent faults, but can be applied to transient faults as well.
The difference lies in the fault duration tf . Although the SSAF model is simple, it can
cover at least 70% of all fabrication defects [17]. Therefore this model is widely applied.

A drawback of using the stuck-at model for transient faults is its inherent activation
problem. If a s@0 or s@1 fault is applied, there is a certain probability that the fault
will force the subjected signal to its anticipated value. That probability has to be taken
into account in the analysis as well as in the practical conduction of fault experiments,
otherwise the results could be falsified. As an alternative, bit-flip faults are popular
because they invert the logic value of the victim signal and therefore avoid the activation
problem of stuck-at faults [63]. However, a simple inversion of the fault-free signal is not
a good representation of a physical transient fault. Consider a logic signal that is forced
to its opposite value. Now, during the fault duration tf the original signal changes its
logic state. The bit flip model will again invert that value. Thus any transition of the
fault-free signal will be inverted by the bit flip model. Such a behavior deviates from the

20 2. Background

original physical effects of transient faults that will rather hold the subjected signal at
either logical value until the disturbed charge has been removed by the signal’s driver.

A more realistic representation is a pulse that forces the fault-free signal to the
inverse value at the fault occurrence and maintains that state during the complete fault
duration [64]. This pulse model requires the knowledge of the fault-free signal before the
fault is applied. Although such a behavior is easy to simulate it is more difficult to emulate
in real hardware. Here, a pure combinational saboteur function is not sufficient anymore.
The pulse model requires a state holding element that maintains the faulty state during
the fault duration.

In the past, gate delay was the major delay source in an integrated circuit. How-
ever, with smaller feature sizes, the delays in wires and interconnects are becoming the
dominating source of delay and determine a circuit’s performance. Thus delay faults are
gaining more importance, especially for devices with very high quality and reliability
requirements [1]. This is also due to the parameter variations in gates.

Other types of faults that are getting more important are open faults. This fault
just disconnects and isolates a circuit node from its environment. Since the node has no
associated driver anymore its logic state is controlled by the surrounding noise and may
fluctuate and probably lead to oscillations. A bridging fault occurs, when the logic state
of a node called victim is controlled by another signal called aggressor. For example, a
s@0 fault could also be described as a bridging fault to the lower supply voltage rail,
typically ground.

2.2.4 Masking Effects

Masking prevents a fault from becoming active and generating an error. In general,
there are three main reasons for fault masking [5]:

1. Electrical masking : Although a fault is injected on the electrical level, it does not
have an impact on the logical level. For example, the current pulse induced by a
charged particle, see 2.2.2, is not large enough to corrupt the boolean value. Or
there is a glitch on the subjected node but this glitch is attenuated by subsequent
gates or wire and eventually has no effect.

2. Logical masking : The fault corrupts a boolean signal, however, the logic function
that is connected to that faulty signal does not take it into account. An example is
implicit logical masking: e.g. a faulty logic 1 pulse at one input of an AND-gate will
only propagate if the other input is also at logic 1. Hence, implicit logical masking
also depends on the input data of the affected circuit as well. Another example is
explicit logical masking: adding a majority voter to replicated functions will block
an erroneous replica as long as the fault-free replicas are in the majority.

3. Temporal (latching-window) masking : The fault disturbs a signal but the fault is
not captured. That type of masking only applies in circuits with state holding
elements. For example, a transient fault between two clock edges in a synchronous
circuit has no effect as long as its effect is removed by the next clock event. In a
QDI circuit, a faulty input will not be captured if the successor circuit has not yet
sent its acknowledge.

2.2. Faults and Errors in QDI Circuits 21

Fig. 2.6 illustrates these basic masking effects. One might regard fault masking
as a separate mechanism that allows to mitigate a fault without explicit error recovery
measures [49].

(a) electrical masking

1

1

1

(b) logical masking

Clk

D

Q

(c) temporal masking

analog

digital

Figure 2.6: Classical fault masking

For this thesis, another masking effect is introduced that deals with QDI logic,
namely code masking. Fig. 2.7 shows a QDI OR-gate that receives a transient fault at
one of its inputs. The fault generates a logic 1 value that would propagate to the output
due to the logic OR function. However, as the second input is not in the same code
phase, the faulty input is masked and the output remains in its current state. Code
masking considers the fundamental property of processing only consistent tokens, while
inconsistent tokens – independent whether their content is correct or wrong – are rejected:

4. Code masking : A fault is rejected by a QDI circuit, if it leads to an inconsistent
token. Such a token is prevented from propagating any further as long as it persists.

x

y 00

00 01

01

00z 01

10

y.b

z.b
QDI 0

0

0
y.a

x.b
0

0x.a

z.a0

00

Figure 2.7: Principle of code masking

Code masking may also be interpreted as logical masking, since the logic function
of the receiver does not evaluate the token. Contrary to the logical masking as described
above, it is not the data content that leads to the masking effect but the code phase
of that data. Therefore, the term code masking has been introduced to highlight that
fundamental difference. A similar approach has been presented in [65], where the ter-
minology C-element masking is used. However, that masking effect is described solely
for C-elements that receive different inputs, while the definition of code masking is more
generally applicable to any type of QDI logic. The authors also mention the masking of
delay faults, which is not explicitly highlighted in this work as QDI logic is immune to
this type of faults by definition.

Fig. 2.8 shows a boolean tree of how masking effects help to mitigate faults. Small
graphics highlight the masking effect. The electrical masking branch attenuates a faulty
glitch. The logical masking branch blocks the positive going pulse via the implicit AND-
gate masking. The temporal masking branch rejects the fault as the receiving circuitry is

22 2. Background

not yet ready for any data at all. The code masking shows a QDI circuit that holds data
in code phase ϕ0 and therefore waits for the opposite code phase ϕ1. A fault corrupts
one bit to the old phase ϕ0, which produces inconsistent data that is not processed. The
figure can be read as an inverse fault tree, i.e. it is sufficient to have at least one valid
branch through the tree to mask the fault.

No logical
perturbartion

Electrical

Masking

Logical
Masking

Fault implicitly or
explicitly masked
by logic function

&

Temporal
Masking

Circuit is in an
insensitive state

Fault mitigated

0
0

not
ready

0

Code
Masking

Fault generates
inconsistent data

waiting
for ϕ1...

ϕ0

ϕ0

ϕ0

ϕ1

ϕ1

ϕ0

0

Figure 2.8: Fault masking tree

Electrical masking is not further dealt at all within this thesis as it is concerned
with the transistor level and with the design of semiconductor processes. Other types
of masking effects as well as their application to prevent any fault propagation will be
handled in 4.1.2.

2.2.5 Fault Model

The fault model collects all previously defined boundary conditions under which
faults are assumed to occur, such as the fault classification (2.2.2), the logic model (2.2.3)
and the applicable masking effects (2.2.4). Additionally, the number of faults that occur
per time as well as the rate of their occurrence has to be defined for a comprehensive fault
model. A common approach is to limit faults to one single physical net per time, which is
referred to as the single fault model. In single-rail logic, such as the common synchronous
logic, this restriction means that only one single boolean variable is affected by the fault.
In asynchronous QDI logic, a boolean variable is composed of multiple physical rails. To
utilize the single fault model, only one single rail must be affected by a fault per time.
When comparing dual-rail with single-rail designs that bias has to be considered by e.g.
assuming twice the fault rate in the dual-rail circuit to obtain a fair comparison.

The single fault model also assumes that consecutive faults are separated in time and
are not interleaved. In synchronous logic that separation means that two distinct faults
are separated at least by one clock period. That temporal restriction can be transformed

2.2. Faults and Errors in QDI Circuits 23

to QDI logic, by assuming that only one transient fault occurs per handshake cycle.
Alternatively, when hardening methods are deployed, the single fault assumption often
means that the next single fault is not applied before a potential recovery has been
completed.

Finally, it should be mentioned that the single fault model only limits the fault
itself as being a singular event. It does not tell anything about its effects, e.g. it might
be possible that a single fault leads to multiple errors.

Within this thesis only input faults are considered, while output faults are not
treated. This restriction stems from two main reasons:

1. Primarily, we want to examine how a circuit reacts to a faulty input.

2. A faulty output is hard to prevent especially at register level as it requires hardening
of the internal structure. Eventually, all output faults will occur at the input of the
next component and are therefore covered by item (1).

Like in synchronous circuits, only the sequential circuits define the progression of
states. If a state is not altered the fault has no effect. Therefore the end-effect of a fault
is always projected to the primary input of a sequential circuit independent of where
the fault occurs. Although combinational QDI functions are state-holding, the evolution
of these states is defined by the sequential circuits that control the handshake in the
asynchronous pipeline. For example, a faulty result of the combinational function in the
QDI pipeline given in Fig. 2.4 will not lead to an error as long as it is not captured by the
receiving register. The effect is the same as the latching-window masking in a synchronous
pipeline.

Finally, the abstraction level of the faults has to be defined. This abstraction may
range from transistor level, to gate level, register level or even system level. The abstrac-
tion level defines the least significant granularity of a circuit from a fault’s perspective.
At each level, faults may be considered differently. For instance, on transistor level it is
common to investigate the effect of transient faults by taking into account its analog prop-
erties, such as the injected charge as well as the effective node capacitance and impedance
at the fault location. At system level, modeling a fault as an analog signal is impractical.
Here, higher level fault abstractions such as a corrupted operand may be used. In this
thesis faults are solely considered at register level, which regards general combinational
logic and registers as primitive items of a circuit. Thereby the design of a logic function
or a register – their actual composition by means of logic gates or even transistors – is
not of interest. That abstraction has some benefits:

• Faults can be applied as logic disturbances, which allows to use fast digital simula-
tion tools and modeling languages such as VHDL.

• Rather complex systems can be treated with still acceptable insight.

• The internal design of basic building blocks or gates need not to be tackled, which
allows to examine fault tolerant systems if the internal structure of these blocks
is not accessible. For instance, the gate library in an ASIC or FPGA cannot be
changed by the user without detailed modifications on transistor level.

24 2. Background

• Some physical properties of faults, such as a logic glitch on a particular net, can still
be taken into account, which is not possible at higher level where faults are modeled
with less physical background.

Investigating fault at the register level does not consider the physical design of a
gate or a register. Therefore it lacks a detailed insight as it would be available at finer
abstraction levels such as the gate level or even at the analog transistor level. Apply-
ing hardening methods at register level also excludes modifications of the internal gate
structure as these details are regarded invisible. Investigation at gate or transistor level
not only provides a more detailed investigation of fault effects but also allows to place
mitigation strategies more directly in the gate design. The fine resolution of gate and
transistor level has to be paid by a much higher computation effort, which soon hits prac-
tically infeasible boundaries when more complex systems have to be investigated, such
as a complete processor for example. Finally, the gate and transistor level depend on
the circuit technology, which may not be available at all or which will not allow to draw
generic conclusions.

2.2.6 Error Classification

When the different transient faults described in section 2.2 are applied to a QDI
circuit, they may – according to literature [17] – result in a deadlock, synchronization
failure, token generation or token consumption. Within this thesis, the errors in QDI
circuits are classified slightly different as token error, synchronization error and deadlock.

Definition 2.2.1. A token error describes the appearance of syntactically legal (see 2.1.5)
but semantically erroneous data.

Definition 2.2.2. A synchronization error describes a disturbance in the order of con-
secutive tokens in a way that violates the protocol.

Eventually, both a token error and a synchronization error lead to wrong data.
However, their immediate effect is different. Regarding a sequence of N tokens, a token
error takes any of these N tokens replaces it by wrong data. A synchronization error does
not touch the token contents. It takes k > 1 tokens from that sequence and either deletes
them or inserts copies. A simple example shall illustrate these properties.

Example 2.2.3: Let’s assume a 2-bit wide pipeline implemented in 4-phase dual-
rail that transmits the sequence {0, 1, 2, 3, 0, 1, 2, ...} as given by the top waveform in
Fig. 2.9. The token error in the middle waveform corrupts the code 〈1001〉 → 〈1010〉
or 2 → 3 using a binary representation. So the received sequence is changed to
{0, 1, 3, 3, 0, 1, 2, ...}. The bottom waveform shows a synchronization error. We assume
the token 〈0110〉 is applied to the receiver, which is not yet ready to capture that
token. A transient fault on the handshake forces the sender to issue the next token
pair 〈0000, 1001〉. Now the receiver becomes ready. It detects a valid token in the
correct code phase and continues its operation. The handshake fault has lead to an
unintended consumption of the token 〈0110〉 and its associated null token, which are
both removed from the sequence. The received sequence is {0, 1, (), 3, 0, 1, 2, ...}.

2.2. Faults and Errors in QDI Circuits 25

0 1 3

01 01Correct

Token Error

Sync. Error

00 00 01 10 00 00 10 01

2

00 00 10 10

00 00 01 10 00 00 10 10 00 00 10 1001 01

0 1 33

00 00 01 10 00 00 00 00 10 1001 01

0 1 3

10 01

2

Figure 2.9: Token and Synchronization Errors

Contrary to token and synchronization errors, a deadlock stops the circuit. A dead-
lock may also be regarded as infinite delay error that originates either from (i) a permanent
fault or from (ii) a soft error that freezes the handshake:

Definition 2.2.3. A deadlock defines a state of a circuit that has no successor state that
belongs to the set of reachable states of the circuit.

This definition of a deadlock originates in trace theory (see 3.2.3), which investigates
the state evolution of asynchronous circuits. If the state cannot evolve any further, i.e.
no successor state applies to the current state, the circuit has stopped. More practically,
a QDI circuit will deadlock if it stops producing output transitions although the circuit’s
environment does produce or is ready to produce input transitions. This definition stems
from the fact that all input transitions are controlled by the circuit’s environment – which
is not related to the circuit’s state.

3
Fault Description

This chapter takes a closer look at the description of faults and their effects in QDI
circuits. A new method to describe single faults is derived. It is based on trace theory,
a tool set which is already used quite a long time in the development of QDI circuits.
The trace based method is used to describe the various effects of faults and to assess the
inherent fault tolerance of QDI logic.

3.1 Related Work

The treatment of faults in QDI logic can be classified in either transition based
methods or token based methods. The main difference is the used abstraction level.

3.1.1 Transition Based Fault Description

In the transition based model, transient faults are directly applied to the external
and internal signals of a QDI circuit, depending whether the analysis takes place on
register, gate or transistor level, respectively. For instance, the hardened properties of a
duplicated double checking architecture on register level is extensively analyzed in [18].
Another example, which investigates the effects of transient faults in QDI network-on-chip
links on gate level is described in [20]. Fig. 3.1(a) shows a 1-of-3 QDI pipeline where a
transient fault is applied to one input of the middle latch. The effect of this glitch is
analyzed by means of a STG in Fig. 3.1(b) and tabulated in Table 3.1.

The transition based method investigates the impact of a transient fault or hazard
on an arbitrary signal rail in an arbitrary state of the circuit and its environment. This
method seems to be the most natural one as it directly models the primary effect of a
transient fault – the perturbation of a logic signal.

The benefit of a transition based fault investigation is a high level of details. It
also considers the actual design of the circuit. Especially for hardening methods that
are applied on transistor level, such as transistor sizing [66], [67] or on gate level [20], a
transition based analysis is mandatory as the effect of this measure are not observable

27

28 3. Fault Description

(a) Glitch on a data wire of a 1-of-3 RTZ QDI pipeline (b) STG of the affected pipeline latch

Figure 3.1: Investigation of a transient fault using a transition based description [20]

Table 3.1: Resulting effects of a glitch in a 1-of-3 QDI pipeline latch [20]

Glitch Location Expected next activity Effect possible

+ ack New 1-of-n code Temporary lockout

+ ack Ack assertion Symbol loss (race through)

+ code-wire New 1-of-n code (same wire) Additional symbol

+ code-wire New 1-of-n code (different
wire)

Additional symbol, Illegal
symbol

+ code-wire Ack assertion Illegal symbol (2-of-n)

+ code-wire Ack deassertion Additional symbol, Illegal
symbol

- ack code rtz Temporary lockout

- ack Ack rtz Illegal symbol (race
through)

- code-wire code rtz (0-of-n) Additional symbol

- code-wire Ack assertion No effect

- code-wire Ack deassertion Additional symbol

at higher abstraction levels. On the other hand, the state space that has to be covered
grows rapidly especially if all possible scenarios shall be covered. Thus the transition
based method involves elaborate computations even at moderate complex circuitries.

3.1.2 Token Based Fault Description

In token based methods faults are applied at a higher abstraction level that regards
the token as an atomic unit. For example, a formal analysis of QDI circuits in the presence
of SEUs using a token based fault model is presented in [21]. The authors develop a rule
set that describes how the different types of tokens (valid, invalid, bubble) are corrupted
by an SEU. The resulting soft error leads to token vanishing, token generation, bubble
vanishing, bubble generation and valid token corruption. The rule set is described using
4-phase dual-rail QDI logic but it may be also adopted to other design styles such as

3.2. Circuit Definition 29

FSL that is used in this thesis. The benefit of the token based approach is its simplicity
compared to the transition based method. In Fig. 3.2(a), a 3-stage state machine is
investigated on token level. The 3 stages are described in a column vector. In each
stage, one of the previously defined soft error representations is applied and the effect is
evaluated. Fig. 3.2(b) shows such a fault injection example.

(a) 3 stage state machine and state representation (b) Fault injection in one of the possible circuit states

Figure 3.2: Investigation of a transient fault using a token based description [21]

The token based method efficiently describes the end effect of a transient fault, such
as a soft error or SEU. Contrary to a transition based analysis, it already assumes that an
SEU is generated by some kind of hidden transient fault. Although this approach eases
a formal investigation of the effect of soft errors it does not allow a detailed investigation
in the presence of transient faults as it disregards this primary cause of an error.

3.2 Circuit Definition

To understand a trace oriented description as it is developed in this thesis, the
temporal definition of QDI circuits is briefly presented. Fundamental and burst mode
circuits can be described similar to synchronous sequential circuits by means of a state
graph (SG) because the occurrence of signal transitions is well defined. SI and (Q)DI
circuits work in input-output mode and signals may change in an arbitrary order. These
circuits need to be described considering all allowed sequences of signal transitions or
traces. A common method for specifying such circuits are signal transition graphs (STG)
[24]. Contrary to a SG, the STG also specifies the behavior of the circuit’s environment,
which is necessary for all circuits operating in input-output mode.

3.2.1 Signal Transition Graph

A STG is a variant of a Petri Net that models the causal relations between the signal
transitions of a system [24]. A petri net is a directed graph for modeling concurrent
systems. The graph has two types of nodes that are connected via arcs: places and
transitions. The transition nodes are interpreted as a signal transition, either as a rising
(x+), a falling (x−) or an arbitrary transition (x∗ or simply x). The places describe the
condition or prerequisite for a transition to take place. Regarding the modeling of a (Q)DI
circuit, a transition will happen only if all places that are connected to that transition
hold legal data – or simply a token.

For completeness, a STG must satisfy special conditions to describe a meaningful
circuit. It must be 1-bounded (only one token can be held in a place), deadlock-free

30 3. Fault Description

(the circuit will never halt inherently) and contain only simple forms of input choices
(inputs must be mutually exclusive) [12]. In addition, to describes a SI circuit, a STG
must be both consistent and output-persistent [68]. Consistency means that transitions
must alternate, i.e. a rising edge must always be followed by a falling edge. Persistency
means that once a transition has been enabled the condition must be maintained until the
transition has taken place. The circuit design has to ensure persistency for all internal
signals and for all outputs, while the environment is responsible for persistent inputs.
To describe a (Q)DI circuit, no input transition must directly precede another input
transition [69], i.e. before the next input transition may be applied by the environment
the circuit must have generated an output transition. This constraint applies to the
external interfaces of a module and assumes the internal design being practically delay-
insensitive. Throughout this thesis the same assumption is made – the practical QDI
approach assumes the delays within a circuit can be tightly controlled, while the external
interfaces have to be DI. The visual representation of the transition sequences in a STG
eases the understanding of the trace theory. Further details on delay-insensitivity is
provided in 3.2.3.

Example 3.2.1: Fig. 3.3 shows the STG of an arbitrary two-input combinational
FSL gate (a) compared to the STG of a 4-phase dual-rail gate (b). Typically only
the transitions between the particular places of the graph are shown, while the places
(especially implicit places having only one input and output transition) are omitted.

z

x y

x y

FSL gate

x

z
y

ϕ0

ϕ1

z

z+

x+ y+

x- y-

e

z-

4-phase

dual-rail

gate

x

z
y

(a) STG of an FSL gate (b) STG of a 4-phase dual -rail gate

T1

T0

TI

TI

TV

TN

TI

TI

Figure 3.3: STG of 2-input QDI gates

Both gates have dual-rail inputs and outputs. The STG only shows the composite
inputs but not their particular rails. The STGs are nearly identical. In the FSL gate,
we consider either falling or rising transitions on any rail of the inputs and outputs.
The STG in Fig. 3.3(a) also marks the code phase of the tokens that alternates between
ϕ1 (T1) and ϕ0 (T0). The output token sequence can be expressed as trace to =
{T1; T0; T1; ...}. The situation on the inputs can be generalized when all inputs
are collected in the input vector I = 〈x, y〉. Since there is more than one input,
the intermediate inconsistent token TI is introduced, which is produced when only
one of the two inputs has a transition. The input token sequence would be then
ti = {T0; TI; T1; TI; T0; ...}, where the duration of the inconsistent phase can be
arbitrarily short or long depending on the circuit’s environment. Both the input and

3.2. Circuit Definition 31

output traces have been started with the initial marking in Fig. 3.3(a). Note that the
common notation is used, where a semicolon marks the temporal order of events.

In the STG of the 4-phase dual-rail gate in Fig. 3.3(b), the rising and falling
transitions can be explicitly marked. All rising transitions will eventually lead to a
valid code phase, while all falling transitions will eventually lead to an invalid code
phase. Consequently, if there is a rising transition on one rail in a 4-phase dual-rail
circuit there must be a falling transition on the same rail in the next invalid code phase.
The temporal behavior of a 4-phase dual-rail gate is similar to the FSL gate. The
invalid or Null Token TN means that all rails are logical 0. A valid token TV occurs
when exactly one rail per bit is logical 1, while the inconsistent token TI marks any
intermediate configurations between TN and TV in case of multiple bit. Considering
the initial marking in Fig. 3.3(b) the output trace is to = {TV ; TN ; TV ; ...} and the
input trace is ti = {TN ; TI; TV ; TI; TN ; ...}.

The previous example has shown how the behavior of QDI circuit and its environ-
ment can be visualized in a STG. To derive a circuit implementation from such a STG
specification, the corresponding SG has to be derived. The SG comprises all reachable
states and transition sequences described by the STG. This conversion can be done man-
ually for simple circuits or by means of CAD tools such as Petrify [70] for more complex
circuits.

3.2.2 State Graph

A SG models the temporal behavior of a circuit implementation, where each node
of the graph describes a unique state of the circuit and each edge describes the transition
between these states. Each state is defined by a binary encoded vector that at least
comprises all input and output signals but may also contain additional internal signals
to guarantee a unique state assignment. The latter is important as each state of the SG
must only correspond to one unique marking in the STG.

Contrary to a STG, the SG expands all possible state transition sequences, thus in
general the SG is more complex than its associated STG. The edges of the SG are labeled
with signal transitions using the same conventions as in the STG. In a SG, only one
transition is allowed to occur at a time. To model concurrent events all possible transition
sequences have to be considered, e.g. if two inputs x and y may change concurrently, the
SG must include the two possible orderings {x; y} and {y; x}, respectively. Section 3.3
gives an example for a SG of both a combinational and a sequential QDI circuit. A good
overview of state graphs and their application in asynchronous circuits is given by [36],
[24].

3.2.3 Trace Theory

Trace theory is a method to describe concurrent computation using formal language
theory compared to the graph theory applied to STGs [22]. In the design of asynchronous
circuits, trace theory has been used for both circuit specification and synthesis. Thereby,

32 3. Fault Description

all possible communication between an asynchronous circuit and its environment can be
described by means of directed trace structures [71].

Definition 3.2.1. A directed trace structure describes the behavior of a circuit C by
a triple P = 〈I, O, T 〉, where I is the set of input transitions, O is the set of output
transitions and T is the trace set of C. The trace set T ⊆ (I ∪ O)∗ comprises all finite-
length sequences of input and output transitions, where the asterisk (*) expresses arbitrary
repetitions. Each trace in the trace set T defines one possible finite sequence of such input
and output transitions.

In the description of traces, the concatenation of signal transitions is either explicitly
marked with the caret operator (ˆ) or more commonly the concatenation operator is
omitted, e.g. xˆy ≡ xy. An example shows the application of a directed trace structure.

Example 3.2.2: A two-input Muller-C gate, one of the basic building blocks of SI
and (Q)DI circuits can be described by the following directed trace structure 〈I, O, T 〉:
I = {a, b}, O = {c}, T = {ε, a, b, ab, ba, abc, bac, abca, ...}, where ε describes the empty
trace. The output of a Muller-C gate will be logic 1/0 only if both inputs are logic
1/0, otherwise it will maintain its current state [33].

A trace structure is directed if it clearly separates input and output transitions.
Thereby it expresses that delay has a direction, i.e. a signal’s sending must precede
its reception [72]. Whenever speaking about trace structures in this thesis, a directed
trace structure is meant. To describe a delay-insensitive circuit the trace set T must be
prefix-closed :

Definition 3.2.2. A trace set T is called prefix-closed if ts ∈ T ⇒ t ∈ T ∧ s ∈ I ∪ O. It
means that any prefix t of a trace in T must be a member of the trace set T as well.

The idea behind a prefix-closed trace is that any trace of a circuit can be extended
during the circuit’s communication with the environment. A trace may be extended by
an input transition received from the circuit’s environment or the trace may be extended
by an output transition generated by the circuit itself. This definition applies to both
combinational circuits as well as to sequential circuits having internal feedback structures.
Internal signal transitions are not considered. The practical meaning of prefix-closure
becomes evident if components are connected to delay-insensitive networks.

3.2.4 Delay-Insensitivity

Several components are connected together to describe a system or network. The
trace set is a convenient tool to check whether the communication between the particular
components is delay-insensitive (DI) or not. Thereby two fundamental properties must
be fulfilled [73]:

1. There must be no computation interference, which means a new output must only be
generated when the receiver is ready. Assuming the receiver is a valid DI component,
its specification must not be violated within a DI system. Therefore, only traces

3.2. Circuit Definition 33

that belong to the (prefix-closed) trace set of the receiver are allowed, otherwise an
input may be received at the wrong moment :
∀s ∈ I ∪ O ∧ t ∈ T : ts ∈ T .

2. The system must be free of transmission interference, which means that successive
events on a wire must not interfere with each other. That restriction ensures that
no new event is sent over a wire before the previous event has been received and
acknowledged:
∀s ∈ I ∪ O ∧ t ∈ T : tss /∈ T .

The absence of computation interference ensures that the component’s specification
is not violated, while the absence of transmission interference ensures that information is
not corrupted during the journey between the particular components. Both restrictions
are quite similar (a wire may be regarded as a simple component) and eventually require
some kind of handshake between communicating components.

Example 3.2.3: Let’s examine a two-input Muller-C gates within a DI network. The
DI trace structure of such a gate was described in Example 3.2.2. Regarding a trace
tci = {aba}, the next input transition on a is received before the gate has produced its
output transition on c. Computation interference has occurred. On the other hand,
the trace tti = {abcc} implies that the C-gate produces two consecutive transitions on
its output. Transmission interference is generated.

The definition of delay-insensitivity is also closely related to the so called Foam
Rubber Wrapper postulate [74]. A circuit is surrounded by a foam rubber wrapper where
all inputs and output must pass. That wrapper arbitrarily affects the propagation delays
of each signal between the environment and the circuit. So the temporal order of events
at the environment and at the enclosed circuit may be changed by the wrapper. For a
DI circuit a re-ordered event sequence must not have any consequences on a circuit’s and
system’s behavior – which is ensured by using a DI code. On the other hand, if certain
timing constraints are applied on that event ordering, a DI encoding is not necessary. The
most popular constraint is an isochronic fork.

Another simplification is to apply local delay constraints on the internal construction
of gates and registers. In such a case the internal design is not DI anymore although a
system that is composed of such gates may still be DI. The restriction of DI to the
interfacing level eases the development [47], reduces the hardware overhead [69] as well as
simplifies the design of fault tolerant systems as will be shown in chapter 4. The internal
delays of a module can be more tightly controlled, since the particular components are
placed closely together. However, the connection between these modules, e.g. in a system-
on-chip design, is much harder to control and to predict, especially as the wire delays are
gaining more importance in the design of integrated circuits [1]. A DI inter-module
communication interface guarantees the correct functionality between the modules, while
the correct intra-module functionality is ensured by more easy to control local timing
constraints.

34 3. Fault Description

3.3 Nominal Behavior of QDI Circuits

3.3.1 Combinational Circuits

The STGs of two-input combinational QDI gates have been depicted in Fig. 3.3.
Their corresponding SGs are shown in Fig. 3.4. The graphs have been derived with
write sg, which is included in Petrify. For such simple examples a manual conversion
from the STG to the SG would be as quick as the automatic method. For the FSL gate,
the two code phase regions of the output z are marked, since they are not related to an
event direction (rising or falling edge). In the 4-phase dual-rail gate, the valid code phase
transition is related to the rising edges and the invalid phase is related to the falling edges.
They are not highlighted for visibility.

s0

s1

x

s2

y

s3

y x

s7

z

s4

z

s5

y

s6

x

x y

s0

s1

x+

s2

y+

s3

y+ x+

s7

z-

s4

z+

s5

y-

s6

x-

x- y-

(a) SG of an FSL gate (b) SG of a 4-phase dual -rail gate

ϕ0

ϕ1

Figure 3.4: SG of 2-input QDI gates

The trace structure of the FSL gate can be described by 〈I, O, T 〉 = 〈{xa, xb, ya, yb},
{za, zb}, {ε, xa, xaya, xayaza, xayazayb, xayazaybxa...}〉 where the event direction is not spec-
ified. The trace structure of the 4-phase dual-rail gate is similar but here the event direc-
tion can be unambiguously stated, e.g. 〈I, O, T 〉 = 〈{xa, xb, ya, yb}, {za, zb},
{ε, xa+, xa+yb+, xa+yb+za+, xa+yb+za+yb−, xa+ya+za+yb−xa−...}〉.

3.3.2 Sequential Circuits

In the STG of a sequential QDI circuit, the handshake protocol has to be considered.
The reception of a token must be explicitly acknowledged by a dedicated signal. Fig. 3.5
shows the schematic of a FSL register together with its associated STG and SG. The
graphs were generated with draw astg and write sg from Petrify. The register uses the
Done signal to acknowledge when Dout has been captured and that a new input Din may
be applied by the predecessor. To store a token the successor must be ready, otherwise
computation interference may occur. So the acknowledge signal Ack from the successor
determines whether a new input can be processed or not. The trace structure of a 2-bit

3.3. Nominal Behavior of QDI Circuits 35

FSL register looks as follows:

〈I, O, T 〉 = 〈{Din(2)a, Din(2)b, Din(1)a, Din(1)b, Ack},

{Dout(2)a, Dout(2)b, Dout(1)a, Dout(1)b, Done},

{ε, Din(1)a, Din(1)aDin(2)b, Din(1)aDin(2)bDone,

Din(1)aDin(2)bDoneAck, Din(1)aDin(2)bDoneAckDout(2)b, ...}〉.

Note that the order of the output transitions Dout must not necessarily correspond to
the order of the input transitions Din.

s0

s9

Ack-

s10

Din

s11

DinAck-

s8

Done-

s2

Dout

s4

Done+

s1

Ack+

s7

Done-

Ack-

s5

Dout

s3

Ack+

s6

DinDone+ Din Ack+

Din

Dout

Done+

Ack+

Ack-

Din

Dout

Done-

(b) STG of a FSL sequential circuit (c) SG of a FSL sequential circuit

ϕ1

ϕ0

FSL
register

DoutDin

Done Ack

(a) Schematic of a FSL sequential circuit

Figure 3.5: FSL sequential circuit with corresponding STG and SG

The STG and SG for a 4-phase dual-rail sequential circuit is nearly identical. The
difference is the same as for a combinational circuits, i.e. in FSL the direction of the
transitions on the rails of Din and Dout is arbitrary, while for the 4-phase dual-rail
circuit, the rising and falling transitions are clearly defined by the invalid and valid code
phase.

3.3.3 Nominal Trace Description

In the sequel, the usage of traces to describe the nominal behavior of QDI circuits is
examined in more detail. A simple index notation is introduced that eases the processing
and visualization of traces. All n input signals of a circuit are collected in the input
vector I = 〈i(1)a, i(1)b, i(2)a, ... , i(n)b〉. At the moment only dual-rail signals are treated,
where the rails are labeled a and b. The input vector is ordered starting with the a-rail of
the most significant bit i(1)a and ending with the b-rail of the least significant bit i(n)b.
A numeric index 1...2n is assigned to each rail. All a rails get the odd index 2k-1 and

36 3. Fault Description

all b rails get the even index 2k with 1 ≤ k ≤ n. When building the input trace, all
alphanumeric rail labels are replaced by their corresponding indices.

Example 3.3.1: Let’s assume a 4-phase dual-rail XOR gate with the logic function
f(x, y) : z = x ⊕ y. The input vector of this gate I = 〈xaxb, yayb〉 is described by the
numeric vector I = 〈1, 2, 3, 4〉. The gate may be in the state 〈x, y, z〉 = 〈00, 00, 00〉.
Constructing the operation f(x, y) : 01⊕ 01 = 01 (or 0⊕ 0 = 0 in single-rail notation)
eventually leads to the state 〈x, y, z〉 = 〈01, 01, 01〉. For the input trace there exist
two possibilities. If y precedes x (y ≺ x): t1 = {yb+xb+} or t1 = {42} using the index
notation as shown in Fig. 3.6(a). If x precedes y (x ≺ y): t2 = {xb+yb+} = {24} as
given in Fig. 3.6(b).

xa

xb

ya

yb

consistent

(a) XOR-gate: t={4 2}

1

3

2

4

(b) XOR-gate: t={2 4}

consistent

1

3

2

4

xa

xb

ya

yb

Figure 3.6: Possible traces of a simple XOR-gate

As introduced in 2.1.5, data in a (Q)DI circuit is transmitted in alternating code
phases, which can be illustrated as infinite long sequence {...; Φ0; Φ1; Φ0; Φ1; Φ0; ...}. Any
trace t01 that leads from the code set Φ0 to Φ1 must be a member of the circuit’s trace set
T . The same applies to any trace t10 that leads from the code set Φ1 to Φ0. All possible
code phase traces t01 and t10 that lead from one code phase to the next one are collected
in the code phase set.

Definition 3.3.1. The code phase set T ϕ comprises all legal input traces that lead from
a stable consistent state in one code phase to a stable consistent state in another code
phase.

The code phase set is a subset of the circuit’s trace set: T ϕ ⊂ T . For the trace based
fault model that has been developed in this thesis, it is sufficient to use the much smaller
code phase set than the circuit’s trace set, which may be theoretically infinitely long. To
construct the complete code phase set T ϕ, each valid circuit state must be extended by
all legal transitions described by the delay-insensitive coding rules in 2.1.5. Thereby the
rules for a simple deterministic input-output behavior in [75] are adopted:

1. The initial state is stable.

2. The final state is stable.

3. Only one signal transition takes place per time.

A stable initial and a stable final state ensure a deterministic behavior. The lim-
itation to single transitions avoids to deal with concurrent events. This limitation is a

3.3. Nominal Behavior of QDI Circuits 37

fundamental property of STG and trace based models in general. Concurrent events can-
not be expressed. Considering two signals x and y, one could construct the trace {xy}
or {yx}. Thus one signal will always precede the other one, i.e. x ≺ y or y ≺ x but
x � y or y � x do not hold. The exclusion of concurrent events may be regarded as
a limitation to the unbounded delay model. However, a small deviation in any delay is
sufficient to change concurrent events sequential ones, which also simplifies the handling
of such events [75].

Considering concurrency requires the analysis of out-of-spec behavior of components,
such as metastability, which is another field of research [76], [77], [78]. The relative
probability of a true concurrent signal transition is estimated to be very low. Thus for
this work it is assumed that metastability is not an issue as long as the circuit is properly
designed and no faults occur. Finally, in a real, physical circuit one might observe what
is called pseudo-concurrency, which means that two events take place within such a small
time window that the detecting circuit is not able to separate them. Thus even the
received trace has a defined sequence of the transitions, that sequence is not detectable.
The practical meaning of this pseudo-concurrency is illustrated on a concrete example.

Example 3.3.2: Consider a realistic XOR-gate where a rising edge is applied to both
inputs that are tied together. Even if the two inputs are received a few picoseconds
apart, the finite propagation delay of the gate will not be able to separate them and
the output will not change its value.

Taking into account the previously defined constraints, the construction of the code
phase set T ϕ for a given QDI circuit with n inputs is demonstrated. A simple but illus-
trating example is selected to highlight the meaning of this fundamental trace set.

Example 3.3.3: Let’s assume a 2-input QDI gate 〈xy〉, which has 4 possible input
states. There are 4 × 4 = 16 possible input state transitions between the two code
phases and 32 state transitions taking either code phase as the initial one for these
state transitions. The input is actually defined as dual-rail vector 〈xaxb, yayb〉. Each
state transition can take place on any of these 2 rails, thus in total there are 32×2! = 64
possible input traces as shown in Table 3.2. The table applies to any 2-input QDI
function.

Eventually, the code phase set only includes the unique traces. For a 2-input
QDI function it becomes T ϕ = {13, 31, 23, 32, 14, 41, 24, 42}.

The size of the code phase set is calculated as follows: Having n inputs, there exist
n! possibilities to arrange the input transitions. For each transition either rail a or b can
be selected, which results in 2n variations. Thus the total number of traces in T ϕ is

|T ϕ| = 2nn!. (3.1)

That equation applies to all dual-rail codes including 4-phase and FSL. For other
codes, (3.1) has to be modified accordingly. For example, in the general 1-of-m code, the

code phase set has mnn! entries. A k-of-m code can be described by
(

m

k

)n
n! code phase

traces.

38 3. Fault Description

Table 3.2: Trace assignment of a 2-input XOR gate

Initial state Final state
〈xaxb, yayb〉 〈xaxb, yayb〉 Traces Unique traces
〈12, 34〉 〈12, 34〉

00,00 01,01 {2 4, 4 2} {1 3, 3 1}
01,10 {2 3, 3 2} {2 3, 3 2}
10,01 {1 4, 4 1} {1 4, 4 1}
10,10 {1 3, 3 1} {2 4, 4 2}

00,11 01,01 {2 3, 3 2}
01,10 {2 4, 4 2}
10,01 {1 3, 3 1}
10,10 {1 4, 4 1}

11,00 01,01 {1 4, 4 1}
01,10 {1 3, 3 1}
10,01 {2 4, 4 2}
10,10 {2 3, 3 2}

11,11 01,01 {1 3, 3 1}
01,10 {1 4, 4 1}
10,01 {2 3, 3 2}
10,10 {2 4, 4 2}

01,01 00,00 {2 4, 4 2}
00,11 {2 3, 3 2}
11,00 {1 4, 4 1}
11,11 {1 3, 3 1}

01,10 00,00 {2 3, 3 2}
00,11 {2 4, 4 2}
11,00 {1 3, 3 1}
11,11 {1 4, 4 1}

10,01 00,00 {1 4, 4 1}
00,11 {1 3, 3 1}
11,00 {2 4, 4 2}
11,11 {2 3, 3 2}

10,10 00,00 {1 3, 3 1}
00,11 {1 4, 4 1}
11,00 {2 3, 3 2}
11,11 {2 4, 4 2}

Next, the expected trace set is introduced as a subset of the code phase set. Contrary
to the code phase set, the expected trace set depends on the current circuit operation that
has to be processed.

Definition 3.3.2. For a specific code phase transition, the expected trace set T e ⊂ T ϕ

holds all expected traces that lead from one stable code phase to the next one.

Similarly, the unexpected trace set describes the remaining members of the code
phase set that include unexpected rail transitions for the observed code phase transition:

Definition 3.3.3. For a specific code phase transition, the unexpected trace set T u ⊂ T ϕ

describes all traces that lead from one stable code phase to the next one and where at
least one unexpected rail is excited.

3.4. Trace Based Fault Description 39

The above definitions ensure that

T e = T ϕ \ T u

T u = T ϕ \ T e

T ϕ = T e ∪ T u. (3.2)

For an n-bit dual-rail QDI circuit, any legal code phase transition can be described
by exactly n rail transitions. Therefore, the size of T e can be calculated as

|T e| = n!. (3.3)

Note that the T ϕ, T e and T u only consider legal traces. For example, the trace
{xa+xb+} = {12} is illegal as two consecutive transitions on any dual-rail signal are
prohibited. Such a trace require a fault to be produced. In the next section, the single
fault model according to 2.2.5 is used to extend the code phase set.

3.4 Trace Based Fault Description

3.4.1 Introduction

Trace theory has been used in the previous section to describe the nominal properties
of QDI circuits. In a similar way, the same theory can be used as well to describe
the behavior when the circuit is subjected to faults. A concrete example illustrates the
application of traces to describe transient faults and how the effect of such a fault can be
evaluated.

Example 3.4.1: Fig. 3.7 shows a portion of the state graph of the 4-phase dual-rail
XOR gate from the previous example given in Fig. 3.6. Let’s assume the circuit is
in the stable state s0. Now the state graph is scanned to find a legal path to the
next code phase. Fig. 3.7(a) highlights one possible code phase trace starting in s0:
t1 = {yb+xb+} = {42}. Thereby only the input transitions are considered and the
output transition zb+ is excluded so far. The figure also depicts a transient fault
ya+ ≡ 3, which is indicated by the dotted lines. The fault can be inserted at any
position in t1. It will either generate an invalid code and delay the execution if the
output z has not yet been calculated or the fault will be ignored. In any case, no
token error is generated.

Fig. 3.7(b) shows another trace of the circuit’s code phase set, namely t2 =
{xb+yb+} = {24}. Although both t1 and t2 lead to the same result, a different trace
will have a significant impact on the fault tolerance. Let’s assume the fault ya+ occurs
in state s16. It will modify the trace to t3 = {xb+ya+} = {23} and lead to the wrong
output transition zb+ provided yb+ is late. The result of the calculation will be wrong
and a token error has been generated.

To enhance the readability of traces, faulty transitions are highlighted with an over-
line, e.g. {1} or {xb+}. That notation is maintained throughout the complete thesis.

40 3. Fault Description

s0

s16s8 s4

s24 s20

s26 s21

s0

s16

xb+

s8

ya+

s4

yb+

s24

ya+

s20

yb+xb+

xa+
xb+

s26

za+

s21

zb+

(a) Inherent trace (b) Modified trace

xb+ya+ yb+

ya+ yb+xb+

xa+
xb+

za+ zb+

Figure 3.7: Dependency of the fault sensitivity on the circuit’s trace

The goal of the trace based model developed in this thesis is to combine the benefits
of the transition based approach (high level of details) and the token based approach
(simplicity). Thereby the various effects of single transient faults that are superimposed
to the nominal circuit trace are analyzed. First the boundary conditions of the trace
based fault description are defined.

3.4.2 Boundary Conditions

The trace based model considers transient faults on the token level. Thereby the
token based model in 3.1.2 is extended beyond the treatment of soft errors. For this
extension, there are certain boundary conditions that have to be obeyed. The model
comprises all possible tokens

1. that are received at the primary inputs of a sequential QDI circuit

2. in the stable state

3. if the handshake would be opened

4. due to single faults.

Item (1) only considers faulty inputs at register level (see 2.2.5). Items (2) and (3)
ensure that all faults eventually arrive at the circuit input and cannot be masked by the
handshake protocol. Finally, item (4) restricts the model to single faults only.

The faults are assumed to occur at the locations given in Fig. 3.8. We consider
faults that are directly applied to the primary inputs of the sequential circuit under in-
vestigation. Thereby a primary input can be either the handshake (1) or the data path
(2). This location will efficiently simulate faults in pure interconnection buses between
two pipeline stages. Especially in network-on-chip designs, the long interconnection wires
between the particular units are susceptible to glitches as they are typically too expensive

3.4. Trace Based Fault Description 41

to be hardened by technological measures [20]. Further, faults are applied to the com-
binational function that calculates the input for the circuit under investigation (3) and
(4). Such an architecture is typically encountered in processing systems. The handshake
is not affected by this fault location as the combinational function is transparent to the
handshake. Finally, the faults are applied to the predecessor sequential circuit stage.
Again, handshake (5) and data path (6) are considered.

f(x)
Datai-2 Datai

Acki-1Donei-1

i-1 i

Datai-1

Acki

Register
DUT

Register

Done i

Data i

(2)

(6)

(3)

(4)

(1)

(5)

Figure 3.8: Transient fault locations

Now that the boundary conditions of the trace based fault description are defined,
the effect of transient faults can be examined on token level. Thereby so called token
classes are introduced.

3.4.3 Token Classes

Single transient faults are applied on top of the nominal trace based definition of
a QDI circuit. Such a fault manifests as logic glitch, which can be described by two
consecutive transitions on the subjected signal. Using a trace definition, a transient
fault on a signal x can be described by the single fault trace txx = {xx}. Two consecutive
transitions one the same signal may lead to transmission interference as described in 3.2.4.
Thus a transient fault trace alone already violates one of the fundamental constraints of
delay-insensitivity.

All possible single fault traces are collected in the single fault trace set :

Definition 3.4.1. The single fault set T sf = {11, 22, 33, 44, ..., 2n2n} contains all possible
single fault traces. Its size depends on the encoding. In an n-bit dual-rail circuit it is

|T sf | = 2n. (3.4)

Merging a single fault trace with a code phase trace leads to the simple fault set :

Definition 3.4.2. The simple fault set T xx
y describes all traces that are obtained when

the single fault trace txx is merged into a code phase trace ty: T xx
y = {t|t = txx ∪ ty}.

The size of T xx
y is calculated as follows: There are n dual-rail signals that build the

trace. The first faulty transition can be placed before any of the n expected transitions as

42 3. Fault Description

well as after the last one, which leaves n+1 possible locations. The second fault transition
must be placed after the first one. If the first fault transition is set to the beginning of
the trace, there are n+1 possible locations for the second one. If the first fault transition
is set as second transition, there exist only n possible locations for the second one, etc.
In case the first fault is placed after the last expected transition, only one possibility
remains to place the second transition. That situation is depicted in Fig. 3.9 for n = 4.
Eventually, all different configurations are summed, which yields

|T xx
y | = (n + 1) + n + (n − 1) + ...1 =

(n + 1)(n + 2)

2
. (3.5)

… faulty transition on rail x… correct transition on rail x

1x 3 5 7

xx

x

n+1

1x 3 5 7 x1x 3 5 7 x1x 3 5 7

x1x 3 5 7 x1x 3 5 7

1 x 3 5 7 x

n

1 x 3 5 7 x1 x 3 5 7 x1 x 3 5 7

x1 x3 5 7

1 x3 5 7 x1 x3 5 7 1

......

1st

2nd

(n+1)th

Figure 3.9: Size of the simple fault set

Example 3.4.2: Let’s assume an arbitrary 2-input QDI function, with the input
vector I = 〈xaxb, yayb〉 = 〈1, 2, 3, 4〉 and the following input trace t1 = {13}. Now,
a transient fault on rail index 2 (xb) is added, which will extend t1 to the fault set
T 22

1 = {2213, 2123, 2132, 1223, 1232, 1322}. The set contains 6 traces, which could also
be found by applying (3.5): 3 · 4/2 = 6.

Similarly, T xx
e is obtained when a single fault trace is merged with the expected

trace set. Thereby (3.5) has to be multiplied with (3.3):

|T xx
e | = |T e| · |T xx

y | = n! ·
(n + 1)(n + 2)

2
=

(n + 2)!

2
. (3.6)

That result could also be obtained analytically by considering that the faulty trace
has n+2 transitions, i.e. in general it may comprise (n+2)! permutations. Since the order
of the two faulty transitions cannot be reversed only half of these permutations remain.
In the next step, the complete single fault set according to (3.4) is merged with the code
phase set T ϕ. The resulting phase fault set T f(ϕ) describes all possible fault scenarios an
n-input QDI circuit receives due to a single fault trace on one signal rail.

Definition 3.4.3. The phase fault set T f(ϕ) merges the single fault set T sf with the
code phase set T ϕ: T f(ϕ) = {t|t ∈ T sf ∪ T ϕ}. The size of the phase fault set can be
calculated considering (3.1):

|T f(ϕ)| = |T sf | · |T ϕ| · |T xx
y | = 2n · 2nn! ·

(n + 1)(n + 2)

2
= 2n · n(n + 2)!. (3.7)

3.4. Trace Based Fault Description 43

Example 3.4.3: Table 3.3 depicts all 192 traces in the phase fault set T f(ϕ) of an
arbitrary 2-input QDI circuit. That overview can be better visualized by listing the
excited rail indices for each combination of phase trace versus single fault trace, which
is shown in Table 3.4, or by simply counting the number of unexpected excited rails
as given in Table 3.5.

Table 3.3: Phase fault set of a 2-bit QDI signal

Single Fault Trace

Phase
Trace

11 22 33 44

13 1113, 1113, 1131 2213, 2123, 2132 3313, 3133, 3133 4413, 4143, 4134

1113, 1131, 1311 1223, 1232, 1322 1333, 1333, 1333 1443, 1434, 1344

31 1131, 1311, 1311 2231, 2321, 2312 3331, 3331, 3313 4431, 4341, 4314

3111, 3111, 3111 3221, 3212, 3122 3331, 3313, 3133 3441, 3414, 3144

23 1123, 1213, 1231 2223, 2223, 2232 3323, 3233, 3233 4423, 4243, 4234

2113, 2131, 2311 2223, 2232, 2322 2333, 2333, 2333 2443, 2434, 2344

32 1132, 1312, 1321 2232, 2322, 2322 3332, 3332, 3323 4432, 4342, 4324

3112, 3121, 3211 3222, 3222, 3222 3332, 3323, 3233 3442, 3424, 3244

14 1114, 1114, 1141 2214, 2124, 2142 3314, 3134, 3143 4414, 4144, 4144

1114, 1141, 1411 1224, 1242, 1422 1334, 1343, 1433 1444, 1444, 1444

41 1141, 1411, 1411 2241, 2421, 2412 3341, 3431, 3413 4441, 4441, 4414

4111, 4111, 4111 4221, 4212, 4122 4331, 4313, 4133 4441, 4414, 4144

24 1124, 1214, 1241 2224, 2224, 2242 3324, 3234, 3243 4424, 4244, 4244

2114, 2141, 2411 2224, 2242, 2422 2334, 2343, 2433 2444, 2444, 2444

42 1142, 1412, 1421 2242, 2422, 2422 3342, 3432, 3423 4442, 4442, 4424

4112, 4121, 4211 4222, 4222, 4222 4332, 4323, 4233 4442, 4424, 4244

Table 3.4: Excited rails of a 2-bit QDI signal with a single fault

Single Fault Trace
Phase
Trace

11 22 33 44

13 1,3 1,2,3 1,3 1,3,4
31 1,3 1,2,3 1,3 1,3,4
23 1,2,3 2,3 2,3 2,3,4
32 1,2,3 2,3 2,3 2,3,4
14 1,4 1,2,4 1,3,4 1,4
41 1,4 1,2,4 1,3,4 1,4
24 1,2,4 2,4 2,3,4 2,4
42 1,2,4 2,4 2,3,4 2,4

Table 3.5 shows that a single fault trace will either excite zero or exactly one ad-
ditional unexpected rail. That situation remains the same even for multiple faults in
a circuit as each dual-rail signal is exposed to one single fault only. In fact the entry
+1 means that the fault affects one rail that would have made no transition in the ob-
served code phase change, while +0 means two extra transitions on a rail that would have

44 3. Fault Description

Table 3.5: Unexpected number of excited rails of a 2-bit QDI signal with a single fault

Single Fault Trace
Phase
Trace

11 22 33 44

13 +0 +1 +0 +1

31 +0 +1 +0 +1

23 +1 +0 +0 +1

32 +1 +0 +0 +1

14 +0 +1 +1 +0
41 +0 +1 +1 +0
24 +1 +0 +1 +0
42 +1 +0 +1 +0

been excited anyhow. Although this property seems quite obvious at the moment, it will
be helpful later on when checking the delay-insensitivity of a system under faults. The
observation of the number of excited rails has led to the introduction of token classes :

Definition 3.4.4. The token class is a set that is defined for each single bit accord-
ing to the number of additionally excited rails during the transitions from one code
phase to the next one compared to a legal code phase transition. The notation is
T(# of additionally excited rails).

The token classes are defined for each bit of an n-bit signal separately. The reason
will become clear later on in 3.5 where the effect of a single transient fault in block
interconnections as well as in combinational and sequential logic is investigated. The fault
scenarios in Table 3.4 and Table 3.5 were created for all single fault traces T sf , where a
logical glitch was assumed to occur on one single rail. The general definition of the token
classes also allows to include faults that will inhibit an expected rail transition or that
generate a single edge on a signal rail. Such cases are not covered when a fault is modeled
as glitch that has two transitions. However, it depends on the circuit implementation
what effect that single transient pulse has on the primary outputs of the circuit.

This theoretic part shall not be restricted to any implementation constraints. Thus
for generality, inhibited transitions and single edges are considered, which finally creates
three different token classes:

• T(-1): one expected transition is inhibited. That class will be inherently masked
by all QDI circuits as it prevents the code phase completion. However, it requires
redundant gates in the function to inhibit an output transition.

• T(+0): the expected number of rails is excited. Although the class describes legal
tokens, it also contains token errors if unexpected rails are excited.

• T(+1): one additional rail is excited. That class is not delay-insensitive anymore.
Although unexpected rail transitions are involved, not all members of this class lead
to a token error.

Example 3.4.4: Fig. 3.10 defines the three different token classes using simple ex-
amples. The expected waveform is illustrated in (a). Wave (b) shows a T (−1) token.

3.4. Trace Based Fault Description 45

As the code phase cannot be completed by an inhibited transition, no token error is
produced. Wave (c) illustrates a T (+0) token, where the expected rail is hit by the
fault. The effect is a premature completion of the code phase and the expected token
is received. Wave (d) gives another possibility of the T (+0) class. Here the transition
takes place on the unexpected rail, while no transition occurs on the expected rail.
Such a constellation will lead to a token error. In wave (e) a fault generates a glitch on
the unexpected rail, which is described by the class T (+1). A token error is generated
if the glitch completes the code phase before the expected transition is received. A
similar scenario is depicted in wave (f), where the fault leads to a single edge on the
unexpected rail. Right to the waveforms both the number of observed transitions and
the number of additional excited rails compared to a correct dual-rail code are shown.

xb

xa

(a) expected sequence (b) T(-1): xb is inihibited

(c) T(+0): add. transition on x b

of
trans.

add.

rails

1 0

3 +0

of
trans .

add.

rails

0 -1

(d) T(+0): xa is excited, xb inhibited

1 +0

(e) T(+1): add. transition on x a

3 +1

(f) T(+1): xa is excited

2 +1

xb

xa

xb

xa

xb

xa

xb

xa

xb

xa

Figure 3.10: Definition of token classes

The token classes describe all types of single-faults in a single-bit QDI signal. The
model is independent of the applied code, since it only counts the number of excited rails
and not the overall number of transitions. As long as a fault only affects one rail in a bit,
the token class description is exhaustive.

Especially the class T (+1) has different effects, which is examined in more detail in
Fig. 3.11: In Fig. 3.11(a) the fault occurs just after the capture event and is not activated,
while in Fig. 3.11(b) the correct and the erroneous transition occur nearly at the same
time. Therefore, it depends on the actual delay of the circuit whether it senses the correct
token 〈01, 01〉 or the token error 〈10, 01〉. The scenario in Fig. 3.11(c) leads to a token
error as the fault is active during the capture event. Finally, a T (+1) has no impact at all
if the fault has already gone before the capture event takes place as shown in Fig. 3.11(d).
These list of T (+1) effects is complete and also applies if the fault does not appear as
glitch but as edge as shown in Fig. 3.10(f). In this case Fig. 3.11(d) does not apply.

To examine the effect of a transient fault more formally the properties of the token
classes are investigated more closely. First, the prefix relation is introduced.

46 3. Fault Description

Capture :

01,01

Capture:

01,01 or 10,01

(a) T(+1) with no effect (b) T(+1) with potential error

Capture :

10,01

Capture:

01,01

(c) T(+1) with token error (d) T(+1) with no effect

xb

xa

yb

ya

xb

xa

yb

ya

xb

xa

yb

ya

xb

xa

yb

ya

Figure 3.11: Example of a T (+1) token

Definition 3.4.5. For any two traces t1, t2 ∈ T , t1 = pref(t2) or t1 ⊑ t2 if there exists
another trace t3 ∈ T such that t1t3 = t2 [22].

The above definition is generally applicable and also holds if t1 = t2 as any trace
may always be extended by the empty trace ε ∈ T . Similarly, the empty trace can be
regarded always as prefix of any trace. A practically relevant prefix must be not empty
and has to contain signal transitions. For this thesis, the term trace is understood as all
rail transitions that lead from one code phase to the next, see 3.3.3, while it generally
may be used to describe an arbitrary number of code phase transitions. Similarly, the
above definition is restricted to the scope of one single code phase.

Example 3.4.5: Let’s consider a 4-bit QDI circuit that receives the code phase trace
t1 = {1368}. All valid prefixes shall be collected in the trace set T p, which results in

T p = pref(t1) = {1; 13; 136; 1368}. (3.8)

Note that e.g. t2 = {36} 6= pref(t1) as t2 cannot be extended to obtain t1. Although
t2 ⊂ t1, t2 6⊏ t1 as the traces do not have the same initial rail transition.

The limitation of single code phase transitions applies throughout the complete
thesis. Finally, the prefix relation can also be applied on two trace sets.

Definition 3.4.6. For any two trace sets Tp and T , Tp = pref(T) or Tp ⊑ T if Tp only
contains prefixes of T : Tp = {tp|∃t ∈ T : tp = pref(t)}.

Finally, it can be shown that the token classes form disjoint sets:

T (−1) ∩ T (+0) = ∅

T (−1) ∩ T (+1) = ∅

T (+0) ∩ T (+1) = ∅. (3.9)

3.5. Fault Effects 47

A T (−1) trace cannot be described by a T (+0) or T (+1) trace, as the traces in these
two classes have no inhibited transitions. Similarly, a T (+1) trace has one additional rail
excited, therefore it cannot be described by a T (+0) trace that has one rail less. There
exist no common traces in disjoint token classes. Consequently, the behavior of a QDI
circuit can be examined separately for each token class.

Finally, the token classes have a different susceptibility to metastability, which has
already been briefly discussed in the frame of concurrent events in 3.3.3. Now, faults
are imposed on the nominal traces of a circuit. As long as the fault provokes the token
classes T (+0) or T (−1), it does not violate the fundamental operation principles of QDI
logic and metastability is not an issue, provided the circuit and especially the internal
structure of gates and registers is properly designed. The class T (+1) violates the DI
encoding of the data. Thus closely spaced events on the same dual-rail signal may lead
to unexpected short glitches that cannot be properly resolved by a QDI gate or register.
The three possible manifestations of metastable behavior are excessive delay, an undefined
signal amplitude in between the values of logic 1 and 0 for an unbounded time or output
oscillation [78]. It mainly depends on the internal circuit design on transistor level how
a circuit generates or reacts on such events. A detailed investigation of metastability
goes beyond the scope of this thesis and it is assumed that any metastable behavior will
eventually provoke either a token or delay error.

For a comprehensive examination of the trace based model, all applicable token
classes need to be considered. Thereby it will be shown that the applicability of the three
token classes depends on the fault location (as defined in Fig. 3.8) as well as the circuit
implementation.

3.5 Fault Effects

This section investigates the effects of transient faults in different areas of a QDI
circuit, such as interconnections, combinational and sequential logic. It shows how the
token classes can be used to conveniently describe these fault effects.

3.5.1 Effects at Block Interconnections

First, the effects of transient faults that are directly applied to the primary inputs
of a sequential circuit are examined according to locations (1) and (2) of Fig. 3.8. A
transient fault injected at such a wire will trigger a transient error or SET. Soft errors
or SEUs are not an issue for these fault locations. Fig. 3.12 shows the different effects
on the dual-rail signal x when the fault hits the rail xa, which is expected to receive a
transition. The top waveform depicts the original, fault-free signal and the superimposed
fault. The bottom waveform shows the corresponding result. Three different cases can
be distinguished:

1. The fault is injected before the expected transition as shown in Fig. 3.12(a). The
fault terminates the code phase on the subjected signal too early, which is referred
to as premature firing.

48 3. Fault Description

2. The fault coincides with the expected transition, as shown in Fig. 3.12(b). In that
case, the faulty event prolongs or delays that expected transition.

3. The fault occurs after the expected transition as given by Fig. 3.12(c), which is
called late firing.

xa

xb

(a) premature firing

00 10x 10

(b) delayed firing

00x 10

(c) late firing

00x 1010 00

expected

transitions

faulty

transitions

xa

xb

xa

xb

xa

xb

xa

xb

xa

xb

Figure 3.12: Transient fault effects at expected inputs

Scenarios (1) and (2) solely affect the duration of the disturbed code phase and
are recognized as delay error. No token error is generated as only expected rails receive
a transition, thus the value of a token is not changed. For instance, the trace {1113}
merely describes a premature firing on the lowest a-rail of the subjected signal vector.
No class fault set is applicable for such cases, although they belong to the token class
T (+0). Scenario (3) constitutes an exception. The fault occurs after the code phase was
completed on the subjected signal, therefore it either has no effect at all or it is already
transferred to the next code phase where its effect has to be evaluated from scratch.

A different situation emerges when the fault hits a rail that is not expected to
be excited, such as xb in Fig. 3.13. Three additional cases are added to complete that
analysis:

4. The fault occurs before the expected rail transition on xa, so it will generate the
token error 〈xaxb〉 = 01. The effect of this premature firing is shown in Fig. 3.13(a).

5. The fault occurs after the expected transition as given in Fig. 3.13(b). The effect is
the same as in scenario (3) given in Fig. 3.12(c).

6. The fault occurs nearly at the same time as the expected transition as shown in
Fig. 3.13(c). Such concurrent events are excluded in trace theory as discussed in
3.3.3. Thus it is assumed that such a scenario will either tend towards a premature
or late firing as shown in Fig. 3.13(a) and Fig. 3.13(b), respectively.

The effect of hitting an unexpected rail can be described by the class T (+1) as there
are n + 1 excited rails, n expected and one unexpected rail.

A different situation emerges when the fault hits the handshake line of the intercon-
nection according to location (1) of Fig. 3.8. The fundamental properties of (Q)DI logic
require a handshake transition to acknowledge each new code phase. The fault effect list
is continued:

3.5. Fault Effects 49

(a) premature fault

00 01x 10

(c) concurrent firing

00x 10

(b) late firing

00x 1010 11

xa

xb

xa

xb

xa

xb

xa

xb

xa

xb

xa

xb

expected

transitions

faulty

transitions

Figure 3.13: Transient fault effects at unexpected inputs

7. A handshake fault occurs around the completion of the current code phase. In this
case, it is will lead to a premature acknowledge. The number of handshake events
is not altered, so the fault has no effect.

8. The handshake fault occurs at an unexpected time and is interpreted as additional
acknowledge events. If the receiver of the handshake signal processes these addi-
tional events, a synchronization error occurs and two consecutive are vanished.

Example 3.5.1: Fig. 3.14 shows a simple QDI pipeline with the consecutive tokens
being numbered 1,2,3,... The transient fault on Ack(i) loads the tokens 3 and 4 into
the register x(i). The successor stage x(i + 1) is not fast enough to process these two
tokens and they are eventually removed from the data sequence.

0 1x(i)

0x(i+1)

Ack(i)

2 3 4

3

1

0 1x(i) 7

0x(i+1)

Ack(i)

3

1 5

5

2 4 5

5

2 4 6

2 6

expected

transitions

faulty

transitions

Figure 3.14: Token vanishing due to a synchronization error

A synchronization error does not disturb the content of a single token – it corrupts
the content of a token sequence. As the next token that is received after such an error
looks like an expected token with respect to its protocol properties, a synchronization
error is described by the class T (+0).

3.5.2 Effects in Combinational Logic

Next, the effects of transient faults injected at the combinational logic corresponding
to locations (3) and (4) in Fig. 3.8 are examined. As introduction the effect of a transient

50 3. Fault Description

fault that hits some internal node of a basic gate is examined. Thereby, two different
effects can be distinguished:

9. The fault affects a gate that receives a consistent input as shown in Fig. 3.15(a).
Provided the fault generates any output response, the correct output will be re-
established after the fault duration due to that consistent input. The effect of such
a scenario is a logic glitch or SET at the output.

10. The fault occurs while the gate receives an inconsistent input as shown in Fig. 3.15(b).
Provided the fault generates any output response, the circuit will not autonomously
recover when the fault has expired. An inconsistent input cannot be processed,
thus whatever effect the fault has, that state will be maintained until the output is
recalculated by a consistent input. As the fault effect persists beyond its duration,
the transient fault has lead to a static soft error or SEU.

yb

zb

QDI 0

0

1
ya

xb
0

1
xa

za
1

(a) SET at consistent input

QDI 0

0

0

0

1

1

(b) SEU at inconsistent input

yb

ya

xb

xa

zb

za

Figure 3.15: Effect of transient fault depending on input state

These two basic fault effects are independent of the design style of the gate and have
already been published in other research [79], [80], [65]. The reason for this architecture-
independent behavior lies in the fundamental property of combinational (Q)DI logic that
must be adhered by any implementation style: Consistent inputs lead to an update of
the output, while inconsistent inputs are ignored and the current output is maintained.
That fundamental property means that combinational (Q)DI gates will even recover from
multiple internal faults as long as the input is consistent. A different situation emerges,
when the fault is applied directly to a primary input:

11. The fault as well as the other inputs produce a consistent code, as shown in
Fig. 3.16(a). The circuit will update its output, which is maintained even after
the fault has gone. The effect is a static soft error or SEU.

12. The fault occurs while the gate receives a consistent input as shown in Fig. 3.16(b).
Provided the fault affects only a single data rail, it will generate an inconsistent
input, which is rejected by the circuit. The fault is masked.

Finally, a fault may directly hit a primary output. Thereby it is assumed that the
output has no direct feedback to some internal node, otherwise the fault could be regarded
as internal fault covered by scenarios (9) and (10) as presented above.

3.5. Fault Effects 51

QDI 0

0

1

0

0

0

(a) SEU due to input fault

QDI 1

0

1

1

0

0

(b) Rejection of input fault

yb

ya

xb

xa

zb

za

yb

ya

xb

xa

zb

za

Figure 3.16: Effect of transient fault directly hitting an input

13. The fault directly hits a primary output of a circuit. It will propagate as logic glitch
or SET the same way as it is produced.

It was shown that any consistent, correct input will also produce a correct output as
well. However, that property requires a non-redundant circuit design [81], which has been
assumed so far. In a non-redundant combinational circuit all internal nodes are a direct
function of the primary inputs. On the other hand, in a redundant combinational circuit,
at least one gate also relies on some internal feedback and cannot be calculated exclusively
from the primary input. If a fault affects a redundant gate, a soft error is generated that
persists even after the fault is removed and the primary inputs are consistent.

The effect of redundant gates is shown using the optimized full adder in Fig. 3.17
[79] that is designed in Null Convention Logic (NCL), a special design style based on a
4-phase dual-rail protocol. In the popular implementation of [40], NCL utilizes so called
threshold gates, where n of m inputs must be logic 1 in order to produce a logic 1 at the
output, while all m inputs must be logic 0 to produce a logic 0. The asymmetric behavior
of these threshold gates reduces the circuit complexity.

Example 3.5.2: Let’s regard the full adder in Fig. 3.17 [79], which implements the
function 〈x + y + ci〉 = 〈co + s〉. The threshold levels of the particular gates are
indicated by the enclosed numbers, e.g. gate G1 has level 2 so it requires at least
two inputs being logic 1 to produce a logic 1 at its output. Fig. 3.17(a) shows the
calculation 〈01+01+10〉 = 〈01, 10〉. In this state, only gates G1 and G4 have reached
their threshold level and produce a logic 1. Gates G2 and G3 do not react on the
consistent input and are redundant. In Fig. 3.17(b) a transient fault is injected at c0

i

and generates the inconsistent input 〈01 + 01 + 11〉. According to effect (4) from the
above list that input should be rejected. However, the fault exceeds the threshold of
the redundant gate G3 and produces a static soft error on s0. That error remains even
if the fault on c0

i is removed as G3 will only switch back if x0 and y0 are logic 0 as
well.

Up to now a single transient fault is expected to produce only a single error. How-
ever, if the circuit under investigation comprises forks, a single fault may even trigger
multiple errors such as in Fig. 3.18. The single transient fault at the internal node B
generates SETs at the two primary outputs X and Y .

52 3. Fault Description

1

0

1

0

1

0

1

0

0

1

1

1
0

0

0

1

1

1

0

0
0
1

1
1

0

1

0

1

0

1

1

1

0

0

1

1

1

0

0
0
1

(a) Intended adder function (b) SEU in redundant gate G3

Figure 3.17: SEU in optimized NCL full adder

A

B

C

X

Y

Figure 3.18: Multi errors due to a fork

The previous figure has shown a scenario where the fork is directly visible. Another
example is given, where that fork is not that obvious.

Example 3.5.3: A 2-bit adder shall calculate x + y = z : 2 + 1 = 3 or in dual-rail
〈10, 01〉 + 〈01, 10〉 = 〈01, 10, 10〉 as given by Fig. 3.19. During the intermediate, in-
consistent input state 〈x(1)x(0), y(1)y(0)〉 = 〈10, 00, 01, 10〉 a transient fault hits x(0)
and produces the wrong input 〈10, 10, 01, 10〉. The adder calculates the corresponding
result 〈10, 01, 01〉 = 4. Compared to the expected result, all three outputs are wrong.

Adder
01

10

x(1)

00,10,11,01

10

y(1)

Z

00,10,10,XX,01

00,01,01,XX,10 00,00 01,10

00,00,00

00,00 01,1010,10 11,10

fault duration

10,01,01 01,10,10

0 4 3

0, 7 or inconsistent

00,01,01,XX,10

X

Y

Z

x(0)

y(0)

01

10

10

01

nominal

Figure 3.19: Multi errors due to a single fault that completes the code phase transition

3.5. Fault Effects 53

That error persists until the input fault vanishes and the correct input is applied.
Now the adder calculates the expected result. However, the transition from the wrong
to the correct output is not delay-insensitive anymore. In the given example, the
output transition is 〈10, 01, 01〉 → 〈01, 10, 10〉, which has two rail transitions per bit
and thus violates the single event property of the dual-rail code, see 2.1.5. Those
multiple transitions may lead to different intermediate states depending on the delays
of the circuit. As long as these intermediate states only generate inconsistent outputs
they have no impact. If intermediate states generate consistent data additional valid
tokens are formed that can lead to token or synchronization errors. As shown in in
Fig. 3.19, the adder may generate the intermediate tokens 〈00, 00, 00〉 or 〈11, 11, 11〉
when the output is recalculated after the fault has vanished.

To summarize, a transient fault in a combinational circuit may result in single or
multiple SETs or SEUs, depending on the circuit’s state. Applying the token class model,
that means that all fault effects can be described by the sets T (+0) and T (+1). These
classes also cover multiple fault effects, since the token class itself is defined for each
dual-rail signal separately.

It was also shown that any non-redundant QDI circuit will eventually calculate
the correct output as long as the correct, consistent input is applied. This property
does not hold in redundant QDI circuits, as there are internal nodes that rely also on
feedback signals and are not exclusively defined by primary inputs. Mapped to the token
class model, a redundant QDI circuit may also inhibit transitions and generate a T (−1)
fault. In this thesis, all combinational functions are designed using non-redundant gates
only, which excludes the fault effect (11) from the above list. Consequently, inhibited
transitions are excluded and non-redundant combinational QDI circuits are deadlock-free
with respect to transient faults. Additionally, a transient fault may also not produce a
static soft error on one rail, which appears as single edge as shown in Fig. 3.10(f). That
kind of fault effect is excluded from the class T (+1) and not covered in this work.

3.5.3 Effects in Sequential Logic

Location (5) of Fig. 3.8 considers transient faults in the preceding sequential circuit.
As for combinational logic, the effect of a fault is strongly influenced by the physical
implementation. Below, two possible implementations of a general n-bit register are
shown, one for FSL and one for 4-phase dual-rail logic.

Fig. 3.20 depicts the FSL register design primarily used in this thesis [47]. Its
function is as follows: Let’s assume the register and its successor hold a token in code
phase ϕ0, Acki = Acki+1 = 0. Now the predecessor applies a token in ϕ1. Due to
skew (1), the transitions arrive at different times. As the last transition is completed,
Datai−1 = 〈10, 01〉, the input phase detector (ϕin) enables the internal latch by asserting
en = 1 (2). The transitions propagate through the latch (3) until Datai = 〈10, 01〉.
The output phase detector (ϕout) is triggered and it disables the internal latches, en = 0
(4). This event also acknowledges the storage of the token, Acki = 1 (5). A dedicated
acknowledge latch guarantees that the token is stored before the acknowledge signal is
toggled.

54 3. Fault Description

Ctrl

L
a

tc
h

e
s

en

Latch
Acki

ϕ ϕ

Datai-1 Datai

Acki+1

Datai-1

Datai

Acki+1

Acki

en

00

00 10

01

00

00 10

01

(1)

(2)

(3)

(5)

(4)

en

Figure 3.20: Timing of a FSL register

Fig. 3.21 shows a typical implementation and the operation of a 4-phase dual-rail
register. We assume the register and its predecessor hold an invalid token, which is
indicated by Acki = Acki+1 = 1. The predecessor applies the next valid token and the
skew on the data bus leads to different arrival times of the rail transitions. This design
does not have an input phase detector. As soon as a consistent bit in the new code phase
is received, the corresponding output bit is generated (2) and (3). Only after the complete
output has changed to the new code phase, the output phase or completion detector will
acknowledge the reception of the token, Acki = 0 (4).

Acki

Datai-1 Datai

Acki+1

Datai-1

Datai

Acki+1

Acki

00

00 10

01

00

00 10

01

(1)

(2) (3)

(4)

C

C

C

C

0a

0b

na

nb

...

ϕ

na

nb

0a

0b

Figure 3.21: Timing of a 4-phase dual-rail register

Contrary to combinational logic, the operation of sequential logic is based on the
consistency of the data path and the state of the acknowledge input that is driven from
the subsequent sequential cell. This basic property is independent of the actual design
style or implementation. As a result, one can distinguish the effects of a fault either in
the data path (such as the latches in Fig. 3.20 or the Muller-C gates in Fig. 3.21) or in
the control part of the cell (such as the acknowledge control logic including the phase
detectors in Fig. 3.20 or the completion detector in Fig. 3.21):

14. The fault hits some internal node of the data path. The result is similar to hit-
ting an internal node of a combinational circuit described by items (9) and (10).
Since sequential circuits control the handshake, an SEU may additionally generate
a deadlock.

3.6. Summary 55

15. The fault hits the data path input. The result is similar to hitting an input of
a combinational circuit described by items (11) and (12). Again, there exists the
possibility to generate a deadlock due to an SEU.

16. The fault hits a primary data path output. The same result as for item (13) applies.

17. The fault hits some internal node of the control path. That part does not have a
direct impact on the data path but on the handshake protocol. Therefore a fault in
this section may either have no effect if it is acceptable for the handshake protocol
or the fault may result in a deadlock if it violates that protocol.

18. The fault hits the input or output of the control path, which are formed by the
acknowledge signal. The effect is the same as for items (7) and (8). Either the
handshake fault is ignored or a synchronization error is generated.

The possibility of deadlocks is examined in more detail. From a higher level point of
view, the control path of a (Q)DI register can be regarded as a redundant function. For
instance, even if a consistent input is applied and the subsequent register stage signals
ready, it depends on the state of the output completion detector whether this consistent
input will be processed. Thus there exist internal nodes that are not a direct function of a
consistent input – which has been defined as basic property of redundant circuits in 3.5.2.
As a direct consequence, a transient fault may inhibit an output transition and thereby
generate a deadlock.

Sequential circuits have no forks that branch to several outputs, therefore no multiple
outputs can be disturbed by a single fault. Applying the token classes to the previous
findings, all possible class fault sets may occur in a sequential circuit due to a single
transient fault, i.e. T (+0), T (+1) and T (−1).

3.6 Summary

In this chapter a new fault description based on trace theory has been introduced.
The particular traces that occur due to a fault can be generally characterized by three
different token classes T (−1), T (+0) and T (+1), depending on the number of additionally
excited rails. Previously, the phase fault set T f(ϕ) was used as an introduction how to
derive the token classes by merging the single fault set T sf into the code phase set T ϕ.
Thereby, it was assumed that a transient fault eventually manifests as logic glitch being
described by two transitions on the same rail. The token classes are more general and
also allow the removal of a rail transition, which is entirely described by the class T (−1),
replacing an expected transition by a faulty one, which can be described by the class
T (+0), as well as faults that lead to one single edge on an unexpected rail, which is
covered in T (+1).

As the token class model describes all kinds of fault effects on a trace between
two consecutive code phases, it does not distinguish whether the fault hits a rail that
is anyhow expected to be excited or a rail that is not expected to produce a transition.
To evaluate the what kind of fault may lead to an error, all traces that have an error
generation capability are collected in the class fault sets :

56 3. Fault Description

Definition 3.6.1. The class fault sets T f(−1), T f(+0) and T f(+1) contains all traces
that may result in a token error, synchronization error or deadlock due to a transient fault
on a single rail. These sets can be derived from the expected trace te as well as from the
expected trace set T e:

T f(−1) = {t|t = pref(T e) : |te| − |t| = 1}

T f(+0) = {t|t ∈ T ϕ : |te ∩ t| = n − 1}

T f(+1) = {t|t ∈ (T e ∪ T usf) : T usf ⊂ T sf : ∀t ∈ T usf : t ∩ te = ∅} (3.10)

with the magnitude |x| describing the length of a trace x.

The set T f(−1) removes one single expected transition. A convenient way to derive
that set is to take all expected traces, remove the last transition and collect the unique
remaining traces in a set. The set T f(+0) describes all expected traces, where exactly
one rail transition of a signal is replaced by its companion rail. To generate that set, use
those traces from the code phase set T ϕ that share n-1 rail transitions with the expected
trace T e. In T f(+1), the expected trace set is merged with all single fault traces that
contain unexpected rail transitions T usf . That trace collects all rail transitions that do
not occur in te.

The size of the class fault sets can be determined by means of combinatorics. In
T f(−1), each of the n rails may be removed, leaving n − 1 transitions in the trace.
Regarding T f(+0), there exist n possibilities to replace an expected transition, while the
remaining trace still comprises n transitions in total. The size of T f(+1) is obtained by
merging an expected trace with a single fault trace as described in (3.6) and multiplying
by all n possible unexpected rails. Thereby, it is assumed that all faults in T (+1) manifest
as logic glitch that adds two additional rail transitions, which is justified by only using
non-redundant combinational QDI functions:

|T f(−1)| = n · (n − 1)!

|T f(+0)| = n · n!

|T f(+1)| =
n(n + 2)!

2
(3.11)

Example 3.6.1: For a 3-bit QDI circuit with the expected trace te = {135}, the class
fault sets describing single faults, are then:

T f(−1) = {13; 31; 15; 51; 35; 53} |T f(−1)| = 3 · 2! = 6

T f(+0) = {(235)!; (145)!; (136)!}! |T f(+0)| = 3 · 3! = 18

T f(+1) = {(12235)!; (13445)!; (13566)!}! |T f(+1)| = 3 ·
5!

2
= 180 (3.12)

Thereby the operator (t)! defines all permutations of the trace t.

3.6. Summary 57

Table 3.6: Applicable Fault Sets

Circuit Type Fault location
(Fig. 3.8)

Applicable fault set T f

Block interconnections – handshake path (1) T f(+0)

Block interconnections – data path (2) T f(+1)

Combinational logic without redundant
gates

(3), (4) T f(+0), T f(+1)

Combinational logic with redundant gates (3), (4) T f(−1), T f(+0), T f(+1)

Sequential logic (5), (6) T f(−1), T f(+0), T f(+1)

There exists the following relationship between the token class and its associated
class fault set:

T f(−1) ≡ T (−1)

T f(+0) ⊂ T (+0)

T f(+1) ≡ T (+1) (3.13)

That relation becomes obvious when the nominal behavior of QDI circuits described
in 2.1.5 is reconsidered. The suppression of a rail transition as expressed in T (−1) cannot
produce a legal code phase transition, therefore T (−1) is equivalent to T f(−1). Similarly,
adding an unexpected rail transition as in T (+1) violates the single event property, since it
does not describe a DI code phase transition. Thus T (+1) must be equivalent to T f(+1).
Finally, the token class T (+0) describes various effects, such as replacing an expected
transition but also generating additional transitions on an expected rail. Replacing an
expected transition with an unexpected one might lead to an error, while hitting an
expected rail will only generated a premature or delayed code transitions, which complies
with the DI protocol. Therefore, the traces that describe potential errors T f(+0) are only
a subset of T (+0).

The applicability of the token classes depends on the circuit type and the fault
location. As described in 3.5 the different portions of a circuitry – block interconnections,
combinational logic and sequential logic – have a different susceptibility to the token
classes as sown in Table 3.6. For instance, combinational logic with redundant gates as
well as sequential logic may generate inhibited transitions described by T f(−1). On the
other hand, inhibited transitions may not occur in block interconnections.

The class fault sets will be applied in the next chapter to evaluate the inherent
robustness of QDI circuits as well as the robustness of fault mitigation strategies.

A short summary of the introduced terms is presented in Table 3.7. It describes a
2-bit QDI register with the expected input trace te = {13} and depicts the various traces
and trace sets that emerge from single faults.

58 3. Fault Description

Table 3.7: Summary of trace based fault model with example

Item Abbr. Description Example (n = 2)

Expected
trace

te example of an ex-
pected trace

{13}

Expected
trace set

T e Set of all expected
traces

{13, 31}

Code Phase
Set

T ϕ all traces that lead
from one code phase
to the next phase

{13, 31, 23, 32, 24, 42, 14, 41}

Single fault
trace

txx transient fault on rail
x

{11}

Single fault
set

T sf all possible transient
faults

{11, 22, 33, 44}

Unexpected
single fault
set

T usf all transient faults on
unexpected rails

{22, 44}

Simple fault T xx
y fault trace txx applied txx = {22}, ty = {13}:

set to trace ty {2213, 2123, 2132, 1223, 1232, 1322}

Phase fault
set

T f
ϕ all traces when T sf is

applied to T ϕ

see Table 3.3

Class fault set
T (−1)

T f(−1) traces derived from
T e with an inhibited
transition

{1, 3}

Class fault set
T (+0)

T f(+0) traces derived from
T e with one expected
transition replaced by
an unexpected one

{23, 32, 14, 41}

Class fault set T f(+1) traces derived from {2213, 2123, 2132, 1223, 1232, 1322,

T (+1) T e with one unex- 4413, 4143, 4134, 1443, 1434, 1344,

pected excited rail 2231, 2321, 2312, 3221, 3212, 3122,

4431, 4341, 4314, 3441, 3414, 3144}

4
Fault Mitigation

This chapter takes a closer look at the mitigation of faults in QDI circuits using
the trace based model developed in the previous chapter. First an overview of different
mitigation methods is given. Then a new method based on cross-coupled signal rails is
presented. Thereby a fault provokes an inconsistent token that is inherently blocked by
QDI logic.

4.1 Introduction

This work investigates the mitigation of transient fault effects in asynchronous QDI
logic. Thereby the word mitigation is understood as follows:

Definition 4.1.1. Fault mitigation aims to reduce or eliminate the frequency, impact
and effect of harmful errors in a system.

According to this definition, the mitigation of faults is a rather general term. In
principle, two strategies can be applied to mitigate the effect of a transient fault:

1. Fault prevention deals with the reduction of the fault cause. It is often associated
with removing external sources of faults. For instance, the operation of a circuit is
only allowed in a less harsh environment or the environmental are reduced by e.g.
shielding.

2. Fault tolerance deals with the reduction of errors while faults are assumed to occur.
In fault-tolerant systems, the internal structure is hardened by various techniques
to reduce the generation of errors. The faulty environment is accepted.

This thesis is only concerned with the second methodology, the application of fault
tolerance mechanisms, so a system will meet its specification despite the presence of faults.
Therefore within this work the term fault mitigation is equivalent to fault tolerance. Any
fault mitigation strategy must adhere to certain boundary conditions. If these boundaries
are violated, e.g. another fault model is applied, the fault tolerance properties may change.

59

60 4. Fault Mitigation

Therefore, whenever defining fault tolerance or fault mitigation, the underlying boundary
conditions must be known as well.

Another term that is often used in this context is robustness: A system is called
robust if it is able to tolerate some unspecified behaviors, such as faults but also unspecified
operating conditions such as ambient temperature or the speed of the environment. A
robust system may not tolerate all abnormalities. In a more formal way, robustness can
be understood as continuous property: If the operating conditions (which includes the
presence of faults) are changed by a positive real epsilon, a robust system will respond
at most with some finite delta change [82]. Thus the system’s response is bounded and
will not be totally wrong. This definition primarily applies to embedded systems that
interact with a physical environment. For an abstract digital system the term robustness
can hardly be applied as the response is discrete: A boolean result is either true or false.
For this work, robustness is understood as the quality of fault-tolerance as no connection
to physical effects are considered. A circuit’s robustness depends on many parameters
such as the data content, the moment of fault occurrence, the fault duration, the speed
of the circuit, the current state of the circuit, the application, etc. [15], [63], [83].

The mitigation of faults can be related to different abstraction levels. Within this
thesis, it is applied to the register level, which is the same abstraction as the fault model,
see 2.2.5. Mitigating a fault at the register level also means that this abstraction level
is aimed to be fault-free, or more simply, no wrong result shall be stored in a regis-
ter. Other possibilities may be to mitigate faults at lower levels, e.g. by hardening a
transistor circuitry using an adequate semiconductor process or at higher levels, e.g. by
inserting checksums into a data stream, which is a common technique in communication
engineering.

4.1.1 Soft Error Rate

Soft errors arise from Single Event Transients (SET), which become memorized. A
soft error is not permanent and can be removed by restoring the correct data. Permanent
or hard errors are not treated in this thesis, i.e. only soft errors are considered in the
assessment of the circuit’s robustness.

The Soft Error Rate (SER) defines how often soft errors occur per time. It depends
on both external parameters such as the particle flux as well as on internal parameters
such as the circuit design. The SER has been intensively investigated in synchronous
circuits [5], [84], [85]. In general, the soft error susceptibility of a circuit node n with
respect to a latch l can be described by three factors [86]:

1. RSET (n) is the rate of SETs at node n that have sufficient energy to generate a
logic glitch. This parameter depends on the device characteristics (sensitive area,
capacitance, etc.) as well as the energy distribution of the external particle flux.

2. Psens(n, l) is the probability that node n is functionally sensitized to propagate a
transient fault to the latch l. This parameter depends on the input data and the
logic function between n and l but also on the electrical properties on that path,
which define the propagation of a logic glitch.

4.1. Introduction 61

3. Platched(n, l) describes the probability that a logic glitch created at node n is captured
in the latch l. In such a case the fault must have a sufficient duration and it must
arrive during the sensitive timing window of the latch.

The above terminology differs slightly from [86] where the authors use the term
Single Event Upset (SEU) rate RSEU(n) to describe the transient fault rate. There is
no generally accepted naming convention and the term SEU is often used to describe a
single event effect in general. In this thesis, the terminology as commonly used in space
engineering is applied. An SEU describes a transient fault that has already been stored
and become a soft error [59]. An SET describes a logic glitch that may become an SEU
if it is captured in a memory cell. So the terminology RSET (n) is used instead, although
the origin and effect are identical.

To compute the soft error rate of an arbitrary node-latch pair SER(n, l), these three
factors have to be multiplied:

SER(n, l) = RSET (n) · Psens(n, l) · Platched(n, l). (4.1)

The soft error rate of a particular latch l is defined by adding the soft error rates
from all nodes in the circuit

SER(l) =
N∑

i=1

SER(ni, l) (4.2)

with {n1, n2, ..., nN} being the node set of the circuit. In principle that sum can be
simplified by only taking into account those nodes that are functionally sensitized to the
latch l. Finally, the soft error rate of a circuit C can be computed by adding the soft error
rates from each particular latch:

SER(C) =
L∑

i=1

SER(li) (4.3)

with {l1, l2, ..., lL} being the latch set of the circuit.

This thesis does not cover the analysis of the SET rate RSET (n), as there is a lot
of research available on that topic e.g. [55], [87], [8]. Especially for the space industry,
the calculation of the SET/SEU rate is supported by tools such as GEANT4 [88] or
CREME [89]. These tools allow to specify a radiation environment and to input radiation
test data from components to calculate the soft error rate for a specific mission. In
principle, RSET (n) is also more a technological problem. It does not distinguish between
synchronous and asynchronous circuits with one exception: Since asynchronous circuits
generally require more area they contain more radiation sensitive nodes.

This thesis focuses on the last two terms in (4.1), which describe the masking effects
that prevent a transient fault to be captured in a latch. As already introduced, one has
to consider electrical, logical, temporal and code masking. Omitting electrical masking
as stated in 2.2.4 and setting RSET (n) = 1 as described above, modifies (4.1) to

Pf(n, l) = [1 − Qlog(n, l)] · [1 − Qcode(n, l)]
︸ ︷︷ ︸

=Psens(n,l)

· [1 − Qtemp(n, l)]
︸ ︷︷ ︸

=Platched(n,l)

(4.4)

62 4. Fault Mitigation

where Pf(n, l) expresses the overall probability that a transient fault leads to a soft error.

Logical (Qlog(n, l)) and code masking (Qcode(n, l)) determine the prevention of a
sensitized path to a memory element and temporal masking (Qtemp(n, l)) determines the
rejection of an applied fault. In the following, these masking effects are assessed in
conjunction with the trace based fault description from 3.4.

4.1.2 Fault Trace Propagation

As defined in 3.4.3, a transient fault may disturb an expected trace and generate a
fault trace that can be separated by the three token classes T (−1), T (+0) and T (+1).
Thereby the classes T (+0) and T (+1) may lead to a token error if they are captured in
a memory element. It was shown that a T (−1) token can only lead to a deadlock, which
does not directly contribute to the SER. Although a deadlock contributes to the overall
failure rate of a circuitry, it’s nature is not considered as soft error. A deadlock cannot be
recovered by non-redundant QDI circuit. It requires some kind of redundancy to remove
the cause of the deadlock either by (i) initiating a reset after a time-out has been expired
[17] or by (ii) bypassing the source of the deadlock via a redundant path [90], [66]. The
latter methods can be deployed to even mitigate from permanent faults that trigger a
deadlock in a QDI circuit. This thesis focuses on the mitigation of soft errors or token
errors that are caused by transient faults. Therefore, the mitigation of T (−1) tokens is
not further treated.

In a first assessment, no explicit redundancy is assumed, which means an unpro-
tected QDI circuit is subjected to transient faults. To have an application independent
investigation, the implicit logical masking is also excluded, i.e. the masking properties of
the logic function and the impact of the input value are not considered. Finally, temporal
masking is also not taken into account, since it is also related to implementation proper-
ties such as the used logic family or the complexity of the logic function that determines
the processing speed and therefore the handshake period.

These prerequisites constitute a worst case boundary and mean that a transient
fault, provided it arrives at the input of a memory element will be latched and trigger a
soft error or token error. The only masking terms that may prevent such a scenario is
code masking. This kind of masking helps to reduce the SER in QDI circuits, without
adding explicit redundancy. So (4.4) is further simplified to

Pc(T
f , l) = 1 − Qcode(T

f , l). (4.5)

Thereby the node n in the parameter list has been replaced by the applicable fault
set, since the error probability is now based on the input trace of latch l. It should be
clarified that although no explicit redundancy is needed to prevent a transient fault from
propagating in a QDI circuit, that (information) redundancy is implicitly added via the
delay-insensitive encoding, which is the reason for the code masking property.

To asses the code masking, it must be investigated under which conditions a fault
trace tf will be processed by a memory element, without taking into account any other
masking effects. Thereby the fault propagation possibility is introduced:

4.1. Introduction 63

Definition 4.1.2. The fault propagation possibility Pb(tf) = {0, 1} describes whether a
faulty trace tf will be received by a latch l and manifest as token error.

Instead of using a probability figure, the term propagation possibility is used. Since
all masking effects except code masking have been excluded, it implies that any fault
trace that is received by a latch will also propagate as token error. The possibility that a
fault trace is received is a boolean decision, either 0 (the trace is masked) or 1 (the trace
propagates).

Applied to a trace set, such as the class fault sets T f (+0), T f(+1) as defined in 3.4.3,
the fault propagation possibility is converted to a probability figure. That probability
largely depends on the actual fault trace distribution within the trace set. To compare
the inherent fault tolerance of QDI circuits as well as to compare different hardening
methods on a fair base, a uniform fault trace distribution is assumed, which is described
by the fault propagation probability (FPP):

Definition 4.1.3. The fault propagation probability 0 ≤ FPP(T f) ≤ 1 describes the soft
error probability Pc(T

f , l) of a latch l when all traces within T f are uniformly distributed
and only code masking is considered.

The fault propagation probability can be calculated by relating all fault traces to
the size of the applicable fault set:

FPP(T f) =
1

|T f |
·
|T f |
∑

i=1

Pb(ti); ∀ti ∈ T f . (4.6)

If FPP(T f) = 0, it means that no fault trace will propagate under the agreed
boundary conditions of the fault hypothesis. If FPP(T f) = 1, every trace in T f will
propagate as error. Both cases are rather theoretic.

4.1.3 Assessment of Soft Error Probability

To obtain a realistic soft error probability Pf(n, l) according to (4.4) all masking
effects as well as the probability of each faulty trace within the phase fault set T f

ϕ have to
be considered. In a real circuit, a uniform trace distribution is unlikely. In such a case,
the real trace distribution in T f

ϕ has to be determined. A weighting factor 0 ≤ wi,k(l) ≤ 1
is derived for each trace ti ∈ T f

ϕ a latch l receives, which describes how often the trace ti
occurs within k handshake cycles:

wi,k(l) =
1

k
·

k∑

j=1

(tj = ti) (4.7)

with tj being the trace of the jth handshake cycle. Thereby only those handshake cycles
are counted where a fault is applied.

To get a confident statistical weighting factor, k has to be selected large enough,
at least k ≫ |T f

ϕ | or ideally k → ∞. In that case the probability distribution of each ti
within T f

ϕ is found and the index k can be omitted. Eventually, the reduced soft error

64 4. Fault Mitigation

probability of a latch l taking into account all applicable masking effects can be calculated
as

Pf (l) = [1 − Qlog(l)] · [1 − Qtemp(l)] ·
|T f

ϕ |
∑

i=1

Pb(ti) · wi(l); ∀ti ∈ T f
ϕ . (4.8)

To calculate the SER of a circuit C, the SER of all included latches l have to be
added according to (4.3). Thereby the transient fault rate RSET (n) has to be taken into
account to convert the probability figure into errors per time.

Since the weighting factor considers the real fault trace distribution of a circuit, it
actually describes the amount of code masking. Neglecting the input data distribution
and the inherent logic function of a circuit, the fault trace distribution depends on factors
that are generally not affected by the user, such as the supply voltage, the temperature
or inherent delay settings due to process variations in different implementations.

Example 4.1.1: Let’s regard a 2-bit ripple carry adder, which has the output z =
〈s(1)a, s(1)b, s(0)a, s(0)b, coa, cob〉 = 〈1, 2, . . . , 6〉. Due to its design, the adder generates
an output sequence {s(0); s(1); co}, i.e. starting with the least significant bit s(0) and
ending with the carry output co. Provided the skew on the path to the receiving latch
is moderate, this order will also be observed by that latch. Using index notation, the
trace t1 = {236} is more likely to be received at the successor than e.g. t2 = {632},
which requires that the last generated co rail transition will be received first.

The logical masking in (4.8) takes care about the rejection of faults by means of the
implemented logic function itself, which also depends on the input distribution. In prin-
ciple, code and logical masking are closely related, however, they are treated separately
in this work.

Example 4.1.2: Let’s take the 2-bit adder from the previous example. Under nominal
input conditions, no overflow may occur. Thus the carry output should be logic 0 most
of the time: 〈co〉 = {00, 01}, i.e. the a-rail will remain at logic 0, while the b-rail toggles
with each new code phase. So a trace with a transition on coa (= rail index 5) is rather
seldom. So the trace t1 = {135}, is assumed to occur less frequently in the circuit’s
trace set than t1 = {136}, which marks the code phase transition on co.

Temporal masking describes the probability that a faulty trace received at the pri-
mary input of a latch will be captured, e.g. a latch that is not ready to receive a new
token will reject any faults applied to its input. The probability to temporary mask a
faulty trace depends on the fault duration, the duration of a sensitive state within the
actual handshake cycle and the critical window of the latch. The latter defines how long
a fault must persist until it can be captured. That parameter is also strongly related to
electrical masking, which is however, not considered in this work.

Example 4.1.3: The expected trace of a 2-bit QDI register may be te = {13}. Due
to a T f (+1) fault the register receives the wrong trace tf = {1434}, where the first
two transitions describe a token error. If the latch is in an insensitive state until the
last transition {4} is received, the token error is rejected.

4.2. Related Work 65

The previous examples have shown how the particular masking effects will contribute
to the overall soft error probability of a latch. A theoretic assessment how to calculate
these masking factors goes beyond the scope of this thesis. Their practical evaluation is
limited to experiments by means of simulation in chapter 5.

4.1.4 Principle of Redundancy

To mitigate faults that are not inherently masked some kind of redundancy has to
be added to the system, which inevitably decreases the efficiency. In general, redundancy
can be applied at three different areas [91]:

• Hardware redundancy: The hardware needed to perform an operation is repli-
cated. A popular representative of this method is Triple Modular Redundancy
(TMR), which triplicates a function and assigns the overall output to the major-
ity of the three individual results. Other popular methods are ”duplication and
comparison” or short duplex, where only two instances of a function are generated.
Often this method is just used to detect an error.

• Temporal redundancy: The function is calculated several times. This method
requires additional hardware or computation time to compare the results of the
replicated calculations and to determine the final output.

• Information redundancy: Redundant data is added to the information to be
conveyed. Based on this information, integrity checks on the data (and the results
produced thereof) can be performed. This type of redundancy is often found in
broadcast systems and for memory protection. A well known implementation is the
simple parity, which allows to detect a single error. More sophisticated schemes
allow to detect multiple errors or even correct them.

This thesis focuses on hardware redundancy, which is commonly used to protect the
core functions of processors or signal processing applications. Temporal redundancy may
also be applied in that area but it has a significant drawback in terms of throughput. Infor-
mation redundancy is rarely used for such applications. Further, hardware redundancy is
the only method that allows to mitigate permanent faults and static errors because in this
case parallel, redundant data is needed to replace the erroneous information. Although
only transient faults are treated in this thesis, it is considered as framework to generally
improve the fault tolerance of QDI logic for both, transient and permanent faults [90].

4.2 Related Work

4.2.1 Hardware redundancy methods

Comparing several replicas of an asynchronous circuit is not that easy as in syn-
chronous systems. Especially the handshaking protocol used in asynchronous circuits
makes it difficult to apply any N-modular redundancy (NMR) scheme. It implies a ”wait-
for-all” strategy, and thus a soft error in the handshake of one replica might lead to a

66 4. Fault Mitigation

deadlock of the complete system because the voter indefinitely waits for the next token.
Although the majority of the replicas is correct, the erroneous replica blocks any further
processing so the complete system fails. NMR generates an increased hardware effort
due to the replication. QDI logic anyhow has a bad hardware efficiency as it requires
more resources to implement the DI encoding and the handshake protocol. Installing a
QDI-NMR scheme would further degrade the overall resource efficiency. It has also been
shown that NMR reduces the throughput depending on the fault rate [92]. Due to these
disadvantages an NMR approach doesn’t seem to be well suited for QDI logic.

4.2.2 Duplication

A hazard-free comparison by means of duplication and double-checking (DD) is pre-
sented in [93]. The logic functions are duplicated and the associated rails are synchronized
via C-elements. Fig. 4.1 shows a normal AND gate and its duplicated soft error tolerant
version. The double-checking C-elements only pass a token if both paths agree. If a soft
error corrupts one path the circuit is halted until the soft error is removed. To prevent
a corruption if a second soft error occurs on the other path and leads to an agreement,
additional ”weak” feedback C-elements can be added to the synchronized outputs that
tend to restore the inputs in case they differ [93]. The hardware overhead of this method
is slightly higher than 100% due to the synchronizing C-gates in addition to the duplica-
tion. A simple, one-bit wide comparator implemented using a standard Pre-Charged Half
Buffer (PCHB) design is compared with the duplicated double-checking version in [18].
The hardware effort of the soft error tolerant comparator is three times larger and the
circuit ran only with half the speed of the standard implementation.

C

C

Figure 4.1: Duplicated Double-Checking Gate [93]

The duplicated double-checking architecture was used to design a soft-error tolerant
asynchronous microprocessor (STAM) [94]. The STAM was simulated in TSMC.SCN
0.18 µm using SPICE. It runs at 170 MHz with a cost in through-put of 30 to 40%
compared to a non-error tolerant version. The area penalty is between a factor 2 and 3.

In [95], QDI circuit elements are decomposed into a computational part that imple-
ments the logical function and a memory part (registers) that implements the handshake
protocol between the consecutive asynchronous stages. The computational part is dupli-
cated and hardened, using modified Muller gates in the memory part, see Fig. 4.2. The
technique is similar to the previously described double-checking, except that it applies
the synchronizing C-gates only within the registers. Thereby the C-gates are not doubled
on gate level but their transistor level design is altered and the duplicate computational
result is also received. The circuit will prevent any different results from the duplicated
computational logic, as the received inputs of the hardened C-gates do not agree. The
circuit requires about twice the area compared to the initial design and the speed is only

4.2. Related Work 67

marginally affected as the C-gate synchronization takes place on transistor level, which
improves the throughput.

Computational

part (original)

Computational

part (duplicate)

Memory part

C

original

duplicate

Ack

out

Ack

Ack

In

In

Figure 4.2: Asynchronous stage hardened by duplication [95]

4.2.3 Rail synchronization

The rail synchronization techniques in [96] uses synchronized, cross-coupled channels
in a pipeline stage as shown in Fig. 4.3(a). The method uses 4-phase dual-rail logic. A
common implementation of this design style is that each particular bit of a register is
individually controlled by its own C-gate (see Fig. 3.21), which reduces the hardware
overhead especially for smaller register widths. The drawback is the reduced inherent
code masking, since a single dual-rail cannot mask a false rail transitions (mapped to
the trace based model, any fault trace on a 1-bit dual-rail signal will generate a soft
error provided the receiving register is ready for new data). The code masking can be
improved by synchronizing two bits in an N -bit pipeline. Thereby only the presence of
data is synchronized not their content. Thus as soon as both channels sense the reception
of a new token, both will initiate its capturing without evaluating its content. The
method is based on the timing assumption that a correct and faulty transition are not
much separated in time. If the faulty transition occurs first, the circuit will wait until the
coupled channel receives its expected transition. In the meantime the faulty channel will
also receive its expected transition, which generates the illegal code ’11’ in the 4-phase
dual-rail protocol. In case of a single-bit register, an artificial redundant control circuit is
proposed as depicted in Fig. 4.3(b).

C

Computational

part

Computational

part

Memory part
 Out(0)

Ack(0)

Ack(0)

In(0)

In(1)
 Memory part

Ack(1)

Out(0)

Ack(0)

Computational

part

Memory part
 Out

Ack

Ack

In

Ack’

Out’

Ack’

Delay
In’

(a) 2-bit channel hardened by synchronization
 (b) Synchronization with redundant control circuit

Figure 4.3: Asynchronous stage hardened by rail synchronization [96]

The advantage of this method is the reduced hardware overhead as no literal du-
plicated items are necessary and the speed of the circuit is only slightly decreased.

68 4. Fault Mitigation

However, the fault tolerance is by far not not as good as for the previously mentioned
duplication-based methods. The fault tolerance of a Data Encryption Standard (DES)
crypto-processor using the rail synchronization method is investigated in [96]. The fault
resistance of an unprotected reference design was found as 17%, while the rail-synchronized
design had only 7% faults. The area overhead of the rail synchronization was 8% and the
computation speed was only 82% of the unprotected design.

In principle, the rail synchronization technique is very similar to one possible basic
implementation style of QDI registers when LEDR is applied (see Fig. 3.20) [36], [47].
Here, the presence of a valid token at the input of a register is determined by a completion
detector that monitors all bits of the input. So essentially, the difference to the rail
synchronization is that ALL channels of a pipeline stage are synchronized and not only two
coupled channels and that the channel synchronization is already an inherent, mandatory
function and not added to improve the robustness. The error detection capability of these
FSL registers is investigated in [15], [63].

4.2.4 Re-calculation

A research focusing on soft errors in combinational circuits by simple recalculation
without duplicating the hardware is presented in [79]. First, the gate structure is modified
on transistor level to harden the logic cells against soft errors. Second, the probability
of storing a soft error is reduced by introducing additional latches as well as a reset
circuit that resets the combinational functions in case of erroneous transitions. The circuit
requires a delay element to mitigate some fault classes as well as assumes the registers
and the reset circuit are error-free.

Figure 4.4: Soft error detection and detection scheme [79]

The method in [97] uses duplication and recalculation. A checker compares the
output of two redundant circuits as depicted in Fig. 4.5. In case of a mismatch, the
affected circuit parts are reset and the corrupted data is re-calculated until the results
agree. Thereby the handshake protocol of QDI logic ensures that the correct inputs are
still kept in the preceding pipeline stage. This method combines hardware and temporal
redundancy, although the latter is only applied in case of a mismatch. The addition of a
checker as well as the modification of the circuit parts to make them resetable generates

4.2. Related Work 69

considerable hardware overhead. An experimental evaluation of the method has not been
presented.

Figure 4.5: Duplication and recalculation method [97]

4.2.5 Forcing deadlocks

In [98], pipelined QDI circuits are modified in such a way to achieve a fail-stop
behavior in the presence of permanent and transient faults. The authors limit their
investigation on the Pre-Charged Half Buffer (PCHB) depicted in Fig. 4.6, which is an
important building block for QDI circuits. An important property of the PCHB is its
fail-stop behavior with respect to permanent stuck-at faults. The circuit either produces
a deadlock or it returns the illegal dual-rail code ’11’.

Figure 4.6: Pre-charged half buffer [98]

That fail-stop property can also be applied to soft errors. However, a soft error may
lead to premature firings that generates a wrong computation or an illegal event-ordering.
By adding extra rails and logic a Fail-Stop Pre-charge Half Buffer (FS-PCHB) is created

70 4. Fault Mitigation

as shown in Fig. 4.7. One additional rail Lv, Rv is added to cross-check each dual-rail
encoded input (Lt, Lf) and output (Rt, Rf). The acknowledge rail is duplicated, La

1, L
a
2

and Ra
1, R

a
2, cross-checking each other. Any soft error as well as any single stuck-at fault

leads to a deadlock in the FS-PHCB. The advantage of this method compared to the
duplication-based error detection is that no timing assumptions are necessary and that
no component has to be fault-free. The drawback is the mandatory a deadlock detector,
usually formed by some kind of delay line, and the limitation to the PCHB architecture.
Thus the method cannot be applied to commonly available prototyping platforms such
as FPGAs. Several adder circuits where evaluated in terms of hardware overhead, data
throughput and power consumption in [98]. The result was nearly independent of the
adder size and gave a hardware overhead of 92%, a throughput reduction of 30% and
an increase in power consumption of 80%. These figures are getting better with more
complex circuits. As an example, a 6-input FS-PCHB block shows a hardware overhead
of 54%, a throughput reduction of 35% and a power increase of 50%.

Figure 4.7: Fail stop pre-charged half buffer [98]

A similar approach is presented in [99] and applied on self-timed VLSI pipelines. An
asynchronous circuit is constructed in Differential Cascode Voltage Switch Logic (DCVSL),
which has nearly the same topology as a PCHB. A checker circuit is added that raises a
completion signal only in the case all dual-rail encoded bits are complementary. If one
or more signal pairs have the value ’00’ or ’11’ the circuit is halted. A simple RC timer
is suggested that will detect such a condition. The authors simulated various transient
errors on net list level, where all errors were detected. No indication about the additional
hardware effort and performance impact was presented.

4.2.6 Concurrent error detection

A concurrent error detection method in a QDI security application by means of
minimum distance robust error-detecting codes is presented in [100]. The technique is
investigated on the example of an Advanced Encryption Standard (AES) circuitry but
may be applicable for general QDI designs as well. Fig. 4.8 shows the basic architecture
for the concurrent error detection. The 32-bit input of the linear portion of an AES round
is in parallel fed to a predictor (P). The output of that predictor and the unprotected
AES circuit are passed to an error detecting network (EDN), which compares the AES

4.3. Trace Based Fault Assessment 71

output with the prediction and raises an error flag if an unpredicted result is encountered.
The presented work aims on security applications, therefore it’s scope is to detect errors
but not to autonomously correct them.

Figure 4.8: AES architecture for concurrent error detection [100]

Additional work in this field, such as asynchronous processors that use concurrent
error detection based on Dong’s code are presented in [91], [101]. An asynchronous burst-
mode machine that uses a Berger code-base error detection is published in [102].

A comprehensive overview of concurrent error detection, such as duplication and
comparison, block codes for error detection, parity and group parity checking, code-
disjoint circuits, etc. is found in [103]. In principle, the methods described in this book
could also be applied to QDI circuits, however, they may result in non-optimum results.
Contrary to common single-rail logic, QDI logic already includes inherent checker circuits
by means of the phase or code completion detectors. This thesis shows how these com-
pletion detectors can be utilized not only for error detection but also for error correction.

4.3 Trace Based Fault Assessment

This section shows how to generally derive the fault propagation probability as
defined in 4.1.2 by using the trace based model developed in 3.4. The impact of the internal
circuit design, which affects the trace re-ordering in a gate or register, the dependency on
the encoding of the data and the handshake protocol are highlighted. Special care is also
taken of multiple errors in QDI circuits.

4.3.1 Evaluation of Fault Propagation

In 4.1.2, the fault propagation probability (FPP) was introduced, which calculates
the code masking of a certain latch l, assuming a uniform fault trace distribution. Thereby,
the masking effects are reduced to the fundamental property of QDI circuits to reject
inconsistent data. This approach allows to assess the fault tolerance of a circuit inde-
pendently of application dependent effects and allows a more transparent comparison of

72 4. Fault Mitigation

the inherent robustness of QDI circuits as well as the robustness of explicit hardening
methods. To calculated the FPP of a given latch a general procedure has been developed:

1. Select an expected trace te from the code phase set T ϕ and build the
expected trace set T e as well as the unexpected trace set T u.

2. Derive the applicable fault set T f as shown in Table 3.6.

3. Determine the wrong prefix set T pf = {t ∈ T f |pref(t) ∈ T u}.

4. Calculate

FPP (T f) =
|T pf |

|T f |
(4.9)

The first two points of the above list construct the faulty traces starting from the
expected trace set. Thereby the applicable class fault set T f(−1), T f(+0) or T f(+1),
depend on the type of circuit and the fault location, see also 3.5. The remaining points
describe the migration of code masking: A fault must (i) complete the code phase tran-
sition (2.1) to be received by a QDI circuit and (ii) generate unexpected data. All traces
that fulfill these two conditions are collected in the wrong prefix set.

Definition 4.3.1. The wrong prefix set T pf of a trace set T f is the subset of T f containing
all traces for which the prefix is a member of the unexpected code set T u = T ϕ \ T e:
T pf ⊆ T f and T pf = {t ∈ T f |pref(t) ∈ T u}.

If a trace t ∈ T f contains a prefix that is a member of the unexpected code set T u, it
will complete the code phase and trigger the capture of wrong data as Pb(T u) = 1. That
statement holds if the receiving register is ready for new data – which has been defined
as a boundary condition for this fault assessment. Contrary, a fault trace will be code
masked if all its prefixes solely contain expected traces, i.e. T pf = ∅.

Example 4.3.1: Let’s calculate the fault propagation probability of a 2-input QDI
register and let’s assume, the faults are directly applied to the inputs of the register,
which corresponds to location (2) in Fig. 3.8. According to Table 3.6, the applicable
fault set becomes T f(+1). The expected trace may be te = {13} and the expected
trace set T e = {13, 31}. The class fault set T f(+1) comprises the following 24 entries
(which are repeated from Table 3.7 for convenience):

T f(+1) = {2213, 2123, 2132, 1223, 1232, 1322, 4413, 4143, 4134, 1443, 1434, 1344,

2231, 2321, 2312, 3221, 3212, 3122, 4431, 4341, 4314, 3441, 3414, 3144}

From these 24 traces, the wrong phase prefix set is calculated. A 2-input QDI
register will complete its code phase, if a single rail transition is received at each of the
two dual-rail inputs. Scanning the class fault set for traces that complete the phase
with an unexpected trace leaves the following 8 traces in the wrong prefix set:

T pf = {3221, 3212, 2321, 2312, 4143, 4134, 1443, 1434}

4.3. Trace Based Fault Assessment 73

The fault propagation probability is found as

FPP (T f(+1)) =
|T pf |

|T f(+1)|
=

8

24
= 33.33%

i.e. 33.33% of all traces in T f(+1) will be received as wrong data.

That example shows how to determine the fault propagation probability in a simple,
non-redundant QDI circuit that is exposed to single rail faults. The example and its
formatted output have been generated using Matlab. Although a numerical method is a
handy tool to check whether the assumptions being made are correct, it soon runs into
limitations even at moderate number of bits as the number of permutations grows very
rapidly. There is also an analytical solution to the prefix problem, which depends on the
class fault set.

First, the wrong prefix set is derived for T f(+1), which is the more complicated
task. Fig. 4.9 shows how to define a wrong prefix in a 4-bit circuit. Both traces convey
the information {1357}, i.e. there is a transition on every a-rail. The definition of the
T f(+1) set requires that a fault excites one additional rail, i.e. injecting a transient fault
generates n + 2 = 6 transitions. Fig. 4.9(a) depicts such a trace with two additional
events on the unexpected rail 4. The trace {145437} is one possible result from the |T 44

e |
= (n + 2)!/2 = 360 possibilities. To complete the code phase, the first n transitions must
be a member of the phase set, which is not the case for {1454}. In this trace, the code
phase will be completed only after the last transition so the fault is masked. Another
scenario is shown in Fig. 4.9(b) with the trace {145743}. Here, the first n transitions
complete the code phase and the token error {1457} is received.

(a) fault is masked

n+2 trans .

phase prefix

… faulty transition on rail x

… correct transition on rail x

(b) fault propagates

1 4 5 3 7 x

x

4 1 4 5 347

n+2 trans .

no phase prefix

Figure 4.9: Definition of sensitive prefixes in single fault trace

Looking at this simple example, three prerequisites have to be fulfilled to generate
a wrong prefix T pf(+1):

1. The fault must affect an unexpected rail, otherwise it has no effect at all.

2. The last two transitions must contain one faulty transition, while the other faulty
transition occurs in the phase prefix.

3. The last two transitions must take place on the same (dual-rail) signal, which ensures
that an expected transition is replaced by a faulty transition in the phase prefix. The
dual-rail expression has been put into parentheses, as this statement is applicable
for all types of delay-insensitive codes.

74 4. Fault Mitigation

In simple words, the first n rail transitions must complete the code phase with an
unexpected trace. The number of traces in T pf(+1) can be calculated by the following
approach. From Fig. 4.9, a single transient fault generates two additional transitions, i.e.
the total number of transitions in the trace is n+2. If the first n transitions shall complete
the code phase, the last two transitions must take place on the same signal. These two
transitions offer two possible arrangements, while the preceding n transitions contain n!
arrangements. From the 2n single faults in T sf , exactly n affect an unexpected rail, thus
the wrong phase prefix set comprises

|T pf(+1)| = 2n · n! (4.10)

entries and the fault propagation probability is given by

FPP(T f(+1)) =
|T pf(+1)|

|T f(+1)|
=

2n · n!
n·(n+2)!

2

=
4

(n + 1) · (n + 2)
. (4.11)

Example 4.3.2: The fault propagation probability FPP (T f(+1)) from example 1
can be calculated analytically using (4.10) and (4.11):

FPP(T f(+1)) =
4

(n + 1) · (n + 2)
=

4

3 · 4
= 33.33%.

The number of wrong phase prefixes and the fault propagation probability for the
remaining class fault sets could be also derived by this method, however, they are much
more simpler to obtain. The inhibited class fault set T f(−1) cannot complete a code
phase so it cannot contain any phase traces, i.e. T pf(−1) = ∅. The T f(+0) set contains
exactly as much transitions as expected by the encoding. Thus every member of T f (+0)
will hold a wrong phase prefix, i.e. T pf(+0) ≡ T f(+0). Taking these properties into
account, the fault propagation probability according to (4.9) will be:

FPP (T f(−1)) = 0

FPP (T f(+0)) = 1

FPP (T f(+1)) = 0 ≤ x ≤ 1 (4.12)

From (4.12), some important properties can be derived:

1. The set T f(−1) does not contain any wrong phase prefixes, i.e. the fault propagation
is zero. Inhibited transitions cannot propagate wrong data, although they will
always lead to a deadlock independent of the trace distribution.

2. All traces in T f(+0) hold wrong phase prefixes, i.e. every trace of that set will
generate wrong data due to a token or synchronization error, independent of the
fault trace distribution. A non-hardened QDI circuit cannot mask a T f (+0) trace.

3. In T f (+1), not all traces will propagate an error. There exist traces within this class
that will not complete the code phase with an unexpected trace and it depends on the

4.3. Trace Based Fault Assessment 75

actual fault trace distribution how the class fault set T f(+1) eventually contributes
to the soft error rate. The impact of the fault trace distribution is investigated in
chapter 5.

Table 4.1 presents an overview of the fault propagation probability of the different
class fault sets versus the number of bits n of a simple, non-redundant QDI function. Due
to the nonlinear relation, the fault propagation drops rapidly at large n.

Table 4.1: Fault propagation probability of a simple, non-redundant n-bit QDI function

n FPP (T f(−1)) FPP (T f(+0)) FPP (T f(+1))

1 0% 100% 66.67%

2 0% 100% 33.33%

4 0% 100% 13.33%

8 0% 100% 4.44%

16 0% 100% 1.31%

32 0% 100% 0.36%

The definition of the fault propagation probability requires that all wrong phase
prefixes will capture an error while all correct phase prefixes independent whether there
are faulty transitions appended or not will be received as correct token. That model is
based on two important constraints:

1. The design of the receiving QDI register includes an input completion detector that
will only enable the capture of new data if all n inputs are in the same code phase,
see [36], [47].

2. The method assumes that a trace, once it has been received will not alter its sequence
anymore. This constraint prohibits the re-ordering of traces within basic gates and
registers.

While the first constraint can be fulfilled by means of a proper implementation, the latter
one requires to accept certain timing assumptions.

4.3.2 Trace Re-ordering

An important constraint for this thesis deals with the re-ordering of traces. Fig. 4.10
shows the preferred implementation of an n-bit QDI register in FSL as it is used in
this work. The principle of operation has already been illustrated in Fig. 3.20. The
register timing can be described via 10 delay elements d1 . . . d10 that not only define the
propagation speed of the signals but also their skew and therefore the internal signal trace.
Each delay element is actually a vector di = {di,1, di,2, . . . , di,2n} where each entry defines
the propagation delay of its associated rail and thereby the trace of rail transitions. For
single-rail signals, the vector contains only one entry. The propagation delay of a 2n-rail
wide signal is defined by ∆d = max(d).

76 4. Fault Mitigation

Xi-1

ϕ

d2

d3

d1
t1

t2

Ctrl

d4

L
a

tc
h

e
s

d5
d6

t4t3t0 Xi

ϕ

d7

Latch

d8

t5

d9

d10
Acki

Acki+1

Figure 4.10: Different inherent delays and traces in a QDI register

New data is received as trace t0 at the primary input Xi−1. The trace t1 received by
the input phase detector after ∆d1 determines whether a token is recognized or not. If a
new token is sensed, the latches will be enabled after ∆d3 + ∆d4, provided the register is
ready for new data. At the same time, the input data propagates as trace t2 via ∆d2 to
the latch input. Actually the register input forms a fork as displayed in Fig. 4.11(a) with
the input enable time ten = max(∆d1 + ∆d3 + ∆d4, ∆d2).

This fork may be isochronic, but since all internal blocks of the register are located
close together, the path via the phase detector is assumed to be the longer one in practice.
In Fig. 4.11(b) the corresponding delay graph is depicted. Assuming (∆d1+∆d3+∆d4) >
∆d2 holds in practical circuits, the partial order of t2 at the latch inputs is destroyed as
all transitions of t2 have already taken place when the latches are enabled. Thus the trace
t3 at the latch output may differ from t2 at the latch input.

prim.

input

(a) Register input fork (b) Corresponding graph

ϕ

d2

d3

d1

Ctrl

d4

L
a

tc
h

e
s

input latch

ϕ ctrl

d3

d4
d1

d2

Figure 4.11: Input delay graph of a real FSL register design

At the output, another fork becomes evident as given in Fig. 4.12. Again, a practical
implementation leads to the constraint (∆d7+∆d8+∆d4) > ∆d6. That fork will not have
an impact on the output trace but defines how long the register remains in a transparent
state after providing a new output. The asymmetric fork in conjunction with the dedicated
acknowledge latch also ensures that a new token becomes visible at the register output
before it is acknowledged, see also [47].

4.3. Trace Based Fault Assessment 77

Ctrl

d4
L

a
tc

h
e

s

d5

d6

prim.

output

ϕ

d7

d8

t5

Ack

(a) Register output path (b) Corresponding graph

latch

ctrl

d8

d4

d5+d6
output

ϕ

d5+d7

Figure 4.12: Output delay graph of a real FSL register design

Without faults, these practical constraints do not affect the operation of a QDI
register. The same applies to T (−1) and T (+0) tokens as well. On the other hand,
the input and output forks influence the handling of T (+1) tokens. The additional rail
transition(s) lead to prefixes that may be correct or wrong. The various delays and skews
in the receiving QDI register may e.g. prevent a wrong phase prefix from propagating
to the output although it was been captured by the input or they may output a wrong
phase prefix if a correct prefix trace is re-ordered on its journey through the register.
The probability of such effects depends on various parameters such as the actual timing,
the semiconductor process, the environmental conditions, the implementation, etc. To
simplify the treatment of all these internal traces but also to be independent of the actual
implementation, fixed trace circuits are introduced:

Definition 4.3.2. In a fixed trace circuit all internal gates see the same trace as the
primary inputs, provided the circuit is ready to receive new data.

Applying that definition to Fig. 4.10, means t0 ≡ t1 ≡ t2 ≡ t3 ≡ t4 ≡ t5. Hence the
internal skew defined by the delay vectors d1, d2, d5, d6, d7 is small enough so no internal
re-ordering of the traces occurs. Thereby only the constant ordering of the rail transitions
is of interest, the time between the particular transitions is irrelevant. The benefit of a
fixed trace circuit is that the traces are all well defined. A correctly received trace is not
re-ordered and cannot produce a wrong output. Similarly, a wrong phase prefix at the
input will generate a wrong output.

Example 4.3.3: Let’s assume the faulty trace t0 = t1 = {1322} is received. That
trace has an expected phase prefix followed by a transient fault on rail index 2. Con-
sequently, the input phase detector will enable the capture of this trace. Allowing an
unbounded delay, the trace may be re-ordered by d2 and turned into t2 = {2321}.
This trace has a wrong phase prefix {23} that enters the latch and may be captured.
In a fixed trace circuit, t2 = t1 and the correctly received trace will enter the latch.

The processing of erroneous tokens in a QDI register is considered in the temporal
masking factor Platched(n, l) of (4.1). A fixed trace circuit excludes that masking term at
first glance and only takes code masking into account. So a token error is assumed if a
wrong phase prefix is received and the correct token is assumed if a correct phase prefix

78 4. Fault Mitigation

is received. Thereby different implementations of circuits can be compared on a fair base.
In real circuits, temporal masking will additionally affect the processing of both correct
or erroneous tokens.

Example 4.3.4: From the previous example, the fault trace t0 = {1322} is received.
Provided the register is ready for new data, the input phase detector will initiate the
capturing as it receives the prefix pref(t1) = {13}. During the storage process, the
first faulty transition reaches the latches and when the control circuitry switches the
latches opaque, an inconsistent token described by the trace t4 = {132} is stored.

Fixed trace circuits cannot adhere to the unbounded delay model. Therefore, this
restriction is only applied to the internal design of the basic building blocks of a circuit,
such as registers and simple gates. A more complex logic function that is composed
of several (non-DI) gates and registers still follows an unbounded delay model on the
macroscopic level. That assumption is similar to the practical design constraint of QDI
circuits that makes realistic timing assumptions for the internal design of a gate, see
2.1.5. For the remainder of this thesis, all internal designs of registers as well as gates are
assumed to be fixed trace circuits.

4.3.3 Dependency on the encoding

In QDI circuits, data is transmitted with a delay-insensitive code. There exist
various coding schemes such as the dual-rail code (also called 1-of-2 or length-two one
hot code), the 1-of-m code or the k-of-m code, to name some popular representatives.
The dual-rail code is typically used in logic function, while for data transmission channels
other codes provide higher throughput and power savings potential. Although these codes
look different, their nominal behavior is identical as they all must adhere to the principles
of delay-insensitive communication.

In [20], the susceptibility of interconnection buses in network-on-chip structures is
investigated on rail level. The authors examined various 4-phase k-of-m protocols, such
as the a 1-of-3 code. This code is used to show the application of the trace based model.

Example 4.3.5: Let’s assume an arbitrary 2-input function X = 〈x0x1〉 with a 1-of-3
code. The 3n = 6 rails are assigned to rail indices from 1 to 6. The expected trace is
te = {15}, i.e. rail 1 of x0 and rail 2 of x1 are excited. The expected trace set becomes
T e = {15, 51}. The size of e.g. the class fault set |T f(+1)| can be derived from (3.11)
by taking into account that each of the n bits in a 1-of-3 code contains 3 − 1 = 2
unexpected rails:

|T f(+1)1−3| = 2n ·
(n + 2)!

2
. (4.13)

The number of wrong prefixes in T f(+1) is found by adapting (4.10) in a similar
way: Each of the 2n unexpected rails contains 2n! wrong prefixes:

|T pf(+1)1−3| = 4n · n!. (4.14)

4.3. Trace Based Fault Assessment 79

The fault propagation probability is then

FPP(T f(+1))1−3 =
|T pf(+1)1−3|

|T f(+1)1−3|
=

4n · n!
2n(n+2)!

2

=
4

(n + 1) · (n + 2)
. (4.15)

The code masking in a 1-of-3 circuit is the same as in a dual-rail code circuit, see
(4.11). That statement holds for any 1-of-m code, which can be shown by considering
m · n expected rails and (m − 1) · n unexpected rails in (4.13) and (4.14), respectively:

|T f(+1)1−m| = (m − 1) · n ·
(n + 2)!

2
|T pf(+1)1−m| = (m − 1) · n · 2 · n!

FPP(T f(+1))1−m =
|T pf(+1)1−m|

|T f(+1)1−m|
=

(m − 1) · n · 2 · n!

(m − 1) · n · (n+2)!
2

=
4

(n + 1) · (n + 2)
(4.16)

However, the dual-rail code is the optimum 1-of-m code if the probability of hitting
an unexpected rail is considered and a uniform fault probability is assumed. The chance
that the fault hits an unexpected rail in a 1-of-m code is (m− 1)/m, since each bit has m
expected rails opposed to m−1 unexpected rails. In the dual-rail code, the probability to
hit an unexpected rail is 1/2 per bit, while the probability is increasing for higher numbers
of m. For instance, in a 1-of-3 code the probability that a fault hits an unexpected rail is
2/3. Thus the error probability of the dual-rail code is only 3/4 compared to the 1-of-3
code, provided all other masking effects have an equal impact on both codes.

Since the fault propagation probability decreases at larger bit widths n, a 1-of-m
code performs even worse as it requires fewer signals to transmit the same information.

Example 4.3.6: Let’s assume a 1-of-4 code with n14 bits. That code conveys 4n14

symbols, while an n-bit dual-rail code only conveys 2n symbols. An 8-bit data bus
shall be implemented, which requires 16 rails in a dual-rail system. A 1-of-4 code only
requires 4 bits due to its more efficient encoding. However, in terms of signal rails the
same effort is required, i.e. 16 rails are needed.

The fault propagation of the 1-of-4 code is worse. Applying (4.16), a dual-
rail system ends up with FPP (T f(+1)dr) = 4.44%, while the 1-of-4 code yields
FPP (T f(+1)dr) = 13.33%. Taking into account the probability to hit an unexpected
rail, is pdr = 0.5 in the dual-rail code, while it is p14 = 0.75 in the 1-of-4 code. That
higher chance to hit an unexpected rail further degrades the robustness of the 1-of-4
code.

General k-of-m codes can be treated in a similar fashion. There are k rail transition
on each bit, i.e. an n-bit code word comprises (k · n)! permutations. There are (m − k)
unexpected rails per bit. A fault may replace any of the k expected rails in the phase
prefix, leaving 2k rail transitions that complete the trace, provided the fault manifests as
logic glitch with two transitions. The number of wrong prefixes is

|T pf(+1)k−m| = (m − k) · n · 2k · (k · n)!. (4.17)

80 4. Fault Mitigation

The class fault set for a k-of-m code is derived from (3.11) by taking into account
(m − k) unexpected rails per bit and (k · n + 2)! permutations on each fault trace

|T f(+1)k−m| = (m − k) · n ·
(k · n + 2)!

2
. (4.18)

The fault propagation probability of an k-of-m code is then:

FPP(T f(+1))k−m =
|T pf(+1)k−m|

|T f(+1)k−m|
=

(m − k) · n · 2k · (kn)!

(m − k) · n · (kn+2)!
2

=
4k

(kn + 1) · (kn + 2)
.

(4.19)

Example 4.3.7: The implementation of an 8-bit data bus using a 2-of-7 code is
compared with a dual-rail code. The FPP of the dual-rail is FPP (T f(+1)dr) = 4.44%
as shown in the previous example. The 2-of-7 code can transmit 21 symbols per bit,
i.e. it only requires 2 signals or 14 rails to transmit an 8-bit message. Regarding
(4.19), the FPP of such a interconnection is FPP (T f(+1)2−7) = 26.67%. Again, the
example assumes equally distributed faults. As the circuits are nearly of the same
size, the fault rate can be assumed equal as well.

This subsection has shown that the coding scheme has a significant impact on the
fault propagation in a QDI circuit and that a dual-rail code is the optimum choice in terms
of robustness provided the fault rate and fault distribution is identical. This preconditions
may not hold in practical cases, thus a general statement which encoding scheme is the
most robust one cannot be given without further investigations, which goes beyond the
scope of this thesis.

4.3.4 Impact of the handshake protocol

So far the traces in this work are understood as the change between two consecutive
code phases. If more consecutive code phases shall be examined, the handshake protocol
must be considered. For a 2-phase protocol such as used in FSL, a sequence of code phases
can be described by lining up arbitrary traces from the code phase set:

t2ph = t1t2...tn : t1, t2, ..., tn ∈ T ϕ. (4.20)

Regarding the 4-phase protocol, only one code phase holds a valid token. The next code
phase holds an invalid token or spacer, see 2.1.4. Again, all traces must be selected from
the code phase set. However, all transitions that have been received in the valid code
phase must be removed in the invalid code phase to generate the all-zero spacer:

t4ph = t1 (t ∈ t1!) t2 (t ∈ t2!) ... tn (t ∈ tn!) : t1, t2, ..., tn ∈ T ϕ (4.21)

with the expression tn! meaning all permutations of tn. Thus during the invalid code
phase, any permutation of the previous trace will be applied.

Example 4.3.8: Let’s assume a 2-bit QDI function with the trace t1 = {13} in the
first code phase. The next code phase depends on the handshake protocol. In case of

4.3. Trace Based Fault Assessment 81

a 2-phase protocol, the next trace t2 can be arbitrarily selected from the code phase
set T ϕ = {13, 31, 23, 32, 14, 41, 24, 42}. In case of a 4-phase protocol, the next code
trace t2 must be selected from t1! = {13, 31}.

Assuming the 2-bit binary series {00, 11, 00, 11, ...} shall be transmitted with a
dual-rail code. Each bit requires two rails, e.g. 0 7→ 〈01〉, 〈00〉 7→ 〈0101〉 depending on
the code phase, see Table 2.1. The initial trace may be t1 = {24}, which can occur with
both handshake protocols. Applying a 2-phase protocol, that series is translated to
{0101; 1111; 0101; 1111, ...} described by the trace {24; 13; 24; 13; ...}. When a 4-phase
protocol is used, the series can be written as {0101; 0000; 1010; 0000; 0101; 0000, ...}
taking into account the alternating valid and invalid tokens. A corresponding trace
would be {24; 24; 13; 31; 24; 42; 13; 13; ...}.

These different handshake protocols have a significant impact on the fault sensitiv-
ity. The 2-phase protocol has already been described extensively, therefore the 4-phase
protocol shall be examined more closely. In general, 4-phase QDI circuits are not fully
encoded in the valid code phase, i.e. they wait for a transition on any of the two rails. If
a fault hits an unexpected rail it generates a T (+1) token. If the wrong rail transition is
detected first, it will propagate a token error provided the receiving QDI register is ready
for new data. Depending on the implementation, if a transition on both rails occurs nearly
simultaneously, an illegal token ’11’ will propagate. This state can be used to trigger an
alarm [104], [105]. In conclusion, the valid code phase, a 4-phase QDI circuit behaves
identically as a 2-phase circuit.

In the invalid code phase, a 4-phase QDI circuit is fully encoded, i.e. all rails have
to go to logic zero to acknowledge an invalid token. The invalid code phase only contains
falling transitions. A rising transition in this phase may lead to an illegal token ’11’ but
it will not lead to wrong data. Thus the token class T (+1) cannot occur in that phase.
A falling transition will lead to a premature completion of the invalid token, which is
generally not a problem. Thus the invalid code phase is more robust to transient faults.
That is another advantage of the 4-phase protocol in addition to the (general) more simple
circuit design. With respect to fault tolerance that does not help, as the invalid code phase
is solely used for the handshaking but does not convey data tokens. Therefore, although
the 4-phase protocol seems to be more robust it eventually behaves identically as the
2-phase protocol as only the valid code phase must be counted.

4.3.5 Multiple rail transitions

As shown in 3.5.2, a single fault applied to the primary inputs or to an internal
node of a combinational QDI function may lead to multiple errors at the primary outputs
due to some internal forks. As shown by Fig. 3.19, a single fault at the input of a 2-bit
adder leads to multiple transient errors on its 3-bit output. The adder first produces the
wrong result 〈z2, z1, z0〉 = 〈10, 01, 01〉 = 4. After the input fault has gone, the correct
result 〈01, 10, 10〉 = 3 is established. The transition 4 → 3 is accompanied by transitions
on all rails, which violates the single event property of dual-rail codes, see 2.1.5. That
descriptive example leads to a more general conclusion:

82 4. Fault Mitigation

1. A single fault at the primary inputs of a QDI network or a single internal fault in
such a network may lead to a consistent output where 1 to n bits are wrong, with
n being the total width of the output. That initial token can be described by the
class T (+0), since exactly the expected number of rail transitions are generated on
each primary output bit.

2. Once the wrong output has been generated, it will be maintained for the complete
duration of the transient fault, even if the expected transition arrives in the mean-
time. The expected transition leads to an inconsistent state, either at the primary
input or at least at some internal node. The basic properties of QDI logic will
prevent that the current output reacts to such an inconsistent state.

3. This thesis only considers non-redundant logic functions, i.e. a transient fault cannot
be memorized in a combinational function as long as the primary inputs are driven.
So the fault will eventually disappear and the correct input will re-calculate the
primary output. That re-calculation means that there must be transitions on both
rails at least on one output: One transition to remove the faulty rail and one to
restore the correct result. This sequence can be described by the class T (+1).

That sequence is important for the fault mitigation. The class T (+0) and its asso-
ciated fault set T f(+0), which describes the initial token error is hazard-free. Thus it is
possible to detect by comparison that error on token level and to prevent it from being
further processed. On the other hand, being free of hazards also means no code masking
will prevent a token being captured – independent whether correct or erroneous. Thus
a hardening method becomes mandatory to mitigate the class fault set T f (+0). The
transfer to the token class T (+1), when the correct result is re-calculated, is problematic
as well because that process may involve hazards. At first glance, that partial order of
the token classes T (+0) ≺ T (+1) will be considered when the code masking of multiple
rail faults is calculated.

Example 4.3.9: A single fault at the input of the 2-bit adder in Fig. 3.19 results in
the faulty trace set T1 = {146}! instead of the expected trace set T e = {235}!. When
the correct output is re-established, the trace set T2 = {146235}! has to be appended.
The total number of traces considering T1 ≺ T2 is 3! · 6! = 6 · 720 = 4320. Fig. 4.13(a)
shows an expected trace modeled by the class T (+0). Fig. 4.13(b) depicts one possible
fault trace that obeys T1 ≺ T2.

… faulty transition on rail x

… correct transition on rail x

x

x

(a) expected trace

n+2k trans.

(b) multiple token error

1 4 6

{146}� T1

232 5 531 6 4

{235}�T
e

n trans.

{213564}� T2

T(+0) T(+0) T(+1)

Figure 4.13: Possible trace description of the fault in Fig. 3.19

More generally, a single fault in an n-bit circuit is able to trigger k ≤ n errors. The
fault model in this thesis assumes all faulty transitions will eventually take place, which

4.3. Trace Based Fault Assessment 83

is practically achieved by assuming the duration of the fault and its effect is shorter than
the handshake period. This assumption seems to be legitimate by taking into account
the typical fault durations that are caused by radiation or EMI, see 2.2.2, compared
to handshake periods that are an order of magnitude longer, see chapter 5. Since the
preceding T (+0) token will complete the phase it might happen that the last 6 transitions
in Fig. 4.13(b) that form the T (+1) postfix will not be completed as the next token is
requested, which depends on the handshake cycle time, the propagation delay of the
predecessor circuit stage, etc. For the assessment of the code masking of multiple errors,
it is assumed that all transitions in the T (+1) postfix take place. In this case, the complete
faulty trace is described by

tf = tf1 ≺ tf2 (4.22)

with tf1 ∈ T (+0) and tf2 ∈ T (+1). Due to the partial order of these two traces, the fault
propagation probability becomes

FPP(T f(+1)n,k) = 1 (4.23)

as the preceding T (+0) trace completes the code phase with an error. Thus no code
masking applies in this case.

Although that pre-defined order is generated at the primary outputs of the erroneous
combinational function, it does not necessarily arrive at the primary inputs of the receiving
logic as depicted by Fig. 4.14. A single transient fault at locations (1) or (2) leads to
multiple errors at location (3) that can be described with (4.22). While the transitions
travel to the receiving register (4), the trace may be re-ordered. The trace t1 generated
at location (3) eventually is received as t2 at location (4). The change of the trace on its
travel path is described by a trace sequence, e.g. {t1; t4; t8; t2}. Each of these traces can
be received at (4).

f(x)
Datai-2 Datai

Acki-1Donei-1

i-1 i

Datai-1

Acki

Register
DUT

Register

Done i

Data i

(3)

(2)

(1) (4)

t1 t4 t8 t2

distance

trace t1,t4,t8,t2 ∈ T�

Figure 4.14: Trace Re-ordering in the data path

Taking into account an unbounded delay on the received path between locations (3)
and (4) in Fig. 4.14, (4.22) is modified to

tf = tf1 ∪ tf2 (4.24)

84 4. Fault Mitigation

and the partial order at the receiver is resolved and replaced by the merged trace tf1∪tf2 ∈
T f(+1).

While the precedence order described in (4.22) inhibits code masking, the arbitrary
order described by (4.24) has a certain code masking capability that can be assessed by a
similar 3-step approach as already shown for single faults in 4.3.1. The calculation of the
fault propagation probability is similar to the approach for single faults in T f(+1). To
generate a wrong prefix T pf(+1) taking into account k faults, the following prerequisites
have to be fulfilled:

1. At least one fault must affect an unexpected rail.

2. The last 2k transitions must contain at least k faulty transitions.

3. At least one pair within the last 2k transitions must take place on both rails of a
(dual-rail) signal.

The first n transitions have to trigger a new code phase, thereby expected transitions
in the first n events are replaced by faults and shifted to the last 2k transitions of the
trace. Therefore each multiple fault trace has (2k)! · n! permutations. The wrong prefix
may contain one to k faults, thus all combinations to select up to k faults have to be
considered. Finally, the result has to be multiplied by the number of combinations to
select k faults out of n unexpected rail transitions. Fig. 4.15 depicts the calculation of
the wrong prefix for k = 1 and k = 3.

|T pf(+1)n,k| =

(

n

k

)

· (2k)! · n! ·
k∑

j=1

(

k

j

)

. (4.25)

… faulty transition on rail x

… correct transition on rail x

x

x

2 4 5 3 4

n+2 trans.

n! (2k)!

1 1 k

1
21 53 4 4 1

215 34 4 1
k

2

Figure 4.15: Calculation of T pf(+1) for k = 3 faults

The size of the class fault set T f (+1) for k faults is also derived from the single
fault case in (3.11). A fault trace comprises (n + 2k) transitions. As the order of the k
faulty transitions is arbitrary, a multiple fault generates (n+2k)/2k possible traces, which
can be derived from a simple variation with k identical elements. To complete the class
fault set, all combinations to select exactly k faults within n unexpected rails have to be
considered:

|T f(+1)n,k| =

(

n

k

)

·
(n + 2k)!

2k
. (4.26)

4.3. Trace Based Fault Assessment 85

The fault propagation probability due to multiple faults becomes

FPP(T f(+1)n,k) =
|T pf(+1)n,k|

|T f(+1)n,k|
=

(
n

k

)

· (2k)! · n! ·
k∑

j=1

(
k

j

)

(
n

k

)

· (n+2k)!
2k

=

2k · (2k)! ·
k∑

j=1

(
k

j

)

2k∏

i=1
(n + i)

(4.27)

for k = 1, (4.27) is getting equal to (4.11)

FPP(T f(+1)n,1) =
2 · 2!

2∏

i=1
(n + 1)

=
4

(n + 1)(n + 2)
(4.28)

and for the worst case k = n, (4.27) becomes

FPP(T f(+1)n,n) =

2n · (2n)! ·
n∑

j=1

(
n

j

)

2n∏

i=1
(n + 1)

. (4.29)

Table 4.2 summarizes the FPP for k = n, k = 1 faults versus n dual-rail signals and
the type of re-ordering. The first two columns show an arbitrary re-ordering according
to (4.24). For n ≤ 8, the fault propagation when k = n faults occur is higher than for
single faults, as the number of wrong prefixes is larger. To generate a token error, one
fault in the phase prefix is already sufficient. For larger n, the fault propagation drops,
as the class fault set grows faster than the wrong prefix set when the number of faults k
increases. The rightmost column shows a fault propagation of 100% for the fixed partial
order given by (4.22).

Assuming a practical circuit, that fixed order as it is produced by the faulty circuit,
is unlikely to be disturbed on its journey towards the receiver. Although the unbounded
delay model allows an arbitrary re-ordering, it would rather highlight a bad chip design
or bad routing if the skew on an interconnection bus completely re-arranges the rail
transitions. Thus under practical circumstances, a fixed partial order can be expected
due to transient faults and has to be considered in the evaluation of a circuit’s robustness.
In this case, some kind of fault mitigation method is mandatory to prevent a token error.

Table 4.2: Multiple fault propagation probability versus re-ordering for k faults

tf = t1 ∪ t2 tf = t1 ≺ t2

n FPP(T f(+1)n,1) FPP(T f(+1)n,n) FPP(T f(+1))

1 66.67% 66.67% 100%

2 33.33% 80.00% 100%

4 16.67% 48.48% 100%

8 6.67% 8.88% 100%

16 2.22% 0.20% 100%

32 0.65% 6.2e-05% 100%

86 4. Fault Mitigation

4.4 Duplication and Rail Cross-coupling

4.4.1 Principle

To mitigate a transient fault it must not be stored in a sequential element (register,
latch) and become a soft error. Keeping this in mind, a new duplication based method
with minimal additional hardware overhead has been developed. A dual-rail pipeline is
duplicated and the rails of the redundant register inputs are cross-coupled. While the a-
rails are used from their associated path, the b-rails are connected to the redundant path
as shown in Fig. 4.16. This original concept is called Duplication and Rail Cross-Coupling
(DRXC).

a

Yi
b

Xi
Regp

Regr

Xi+1

Yi+1

a

b

Xc,i

Yc,i

Figure 4.16: Simple rail cross-coupling

The idea is that a single fault, even a token error, will eventually lead to an incon-
sistent codeword, which will stop the circuit operation as long as the fault persists. Due
to the unbounded delay model, any QDI circuit may be stopped for an arbitrary time
without violating the circuit’s specification. The cross-coupling serves as both completion
detector and comparator at the same time. Thereby, a rail cross-coupled signal is defined
as follows:

Definition 4.4.1. Assuming two dual-rail signals X = 〈xaxb〉 and Y = 〈yayb〉, the rail
cross-coupled signals Xc = 〈xayb〉 and Yc = 〈yaxb〉 are obtained by swapping the b-rails
between X and Y . This property can be extended to n-bit signals X = 〈x1,ax1,b...xn,axn,b〉
and Y = 〈y1,ay1,b...yn,ayn,b〉 accordingly. The rail cross-coupled n-bit signals are then
Xc = 〈x1,ay1,b...xn,ayn,b〉 and Yc = 〈y1,ax1,b...yn,axn,b〉, respectively.

The following subsections investigate the properties of rail cross-coupled QDI cir-
cuits. Thereby the nominal path is denoted X and the redundant path is denoted Y .

4.4.2 Evaluation of Fault Masking

The tokens on two redundant pipelines are equal if all associated rails match:

Definition 4.4.2. Two dual-rail signals x, y are equal if and only if each the rails a, b
match: {xa = ya ∧ xb = yb}. Two dual-rail tokens X = 〈xi〉

n,Y = 〈yi〉
n are equal if and

only if all signals xi, yi in the token are equal: {∀i ∈ {1...n} : xi = yi}.

4.4. Duplication and Rail Cross-coupling 87

These two conditions can be summarized in the checker function

X = Y ⇔ {∀i ∈ {1...n} : (xi,a = yi,a) ∧ (xi,b = yi,b)}. (4.30)

The checker function is adapted to rail cross-coupled tokens:

Xc = Yc ⇔ {∀i ∈ {1...n} : (xi,a = yi,a) ∧ (yi,b = xi,b)} (4.31)

which is nothing but the operands of the second equation in (4.30) swapped, so

X = Y ⇔ Xc = Yc. (4.32)

To compare dual-rail signals as well as tokens, they must be in the same code phase.
If two tokens x 6= y are received in the same code phase, they do not fulfill (4.30). If
the rails are cross-coupled, (4.31) is not fulfilled either. However, the rail cross-coupling
modifies the code phase of the faulty signal xc 6= yc to the old code phase, which will stop
the processing of the complete signal vector. A short example illustrates this property.

Example 4.4.1: A duplicated single-bit pipeline holds the token x = y = 〈00〉, so
the actual code phase is ϕ2 = {00, 11}. The next token in phase ϕ1 = {01, 10} shall
be x = y = 〈01〉. Due to a transient fault, the token error y = 〈10〉 is produced.
Fig. 4.17(a) shows a simple duplicated pipeline. Although x 6= y, both tokens are
received in the expected code phase ϕ1 and the circuit proceeds with a token error.
In Fig. 4.17(b) the rails are cross-coupled. Here, the same token error generates the
cross-coupled signals xc = 〈00〉 and yc = 〈11〉. Again xc 6= yc but now both tokens are
from the old code phase ϕ2, which will not be interpreted by the receiver. The circuit
stops as long as the error persists.

01original :

fault

�value

�phase

01

01duplicate: 10

(a) Duplex circuit proceeds with token error

01original :

01duplicate:

fault

01

10

0

1

1

0

00

11

�value

�phase

(b) Rail cross-coupled circuit is halted with a token error

Figure 4.17: Blocking of a token error due to rail cross-coupling

The goal of the rail cross-coupling is to prevent that any faulty trace leads to a new,
valid code phase. The properties of rail-cross coupling are investigated more formally.
The code phase can be calculated with (2.1). In the special case of a dual-rail code, that
equation can be further simplified to

ϕ(X) = 1 ⇔ (x1,a ⊕ x1,b) ∧ ... ∧ (xn,a ⊕ xn,b) = 1

ϕ(X) = 0 ⇔ (x1,a ⊕ x1,b) ∨ ... ∨ (xn,a ⊕ xn,b) = 0

ϕ(X) = X otherwise (4.33)

88 4. Fault Mitigation

and adapted to rail cross-coupled tokens

ϕ(Xc) = 1 ⇔ (x1,a ⊕ y1,b) ∧ ... ∧ (xn,a ⊕ yn,b) = 1

ϕ(Xc) = 0 ⇔ (x1,a ⊕ y1,b) ∨ ... ∨ (yn,a ⊕ xn,b) = 0

ϕ(Xc) = X otherwise. (4.34)

The code phase will be logic 1(0) if and only if all XOR-terms (⊕) in (4.33), (4.34)
are logic 1(0). Otherwise the phase is undefined, which is marked by the X, and has
the effect that the current phase is maintained. Thus the code phase will only change,
when each XOR-term in (4.33) and (4.34) toggles the same way, respectively. To toggle
a 2-input XOR term, exactly one input must be inverted – which has been described by
the single-event property in 2.1.5.

To formulate the change of the code phase in a dual-rail QDI circuit, an artificial
signal ei = {0, 1} is added to each dual-rail signal xi, which describes the occurrence of
an event (ei = 1) as well as its absence (¬ei = 0). The toggling of a logic state can
be expressed by the function ¬x = x ⊕ 1, thus the event signal is combined with the
current code phase ϕ(xi) via an XOR-function to derive the next code phase ϕ(xi)

′. So
the nominal change of the code phase for the X path can be described by (the Y path
behaves accordingly)

ϕ(X)′ = (x1,a ⊕ x1,b ⊕ e1) ∧ ... ∧ (xn,a ⊕ xn,b ⊕ en) = ¬ϕ(X)

ϕ(Xc)
′ = (x1,a ⊕ y1,b ⊕ e1) ∧ ... ∧ (xn,a ⊕ yn,b ⊕ en) = ¬ϕ(Xc). (4.35)

A single rail transition per dual-rail signal also ensures that the circuit operates
hazard-free, see 2.1.5. The single-event ensures that the same data that is generated by
the transmitter eventually arrives at the receiver, independent of the actual delay on the
transmission path.

To show the impact of transient faults on that fundamental property of QDI logic,
the token class model is utilized. Table 4.3 illustrates the code phase transition of one
particular XOR-term xi in an N -bit code word. The first row shows a nominal circuit
operation, which is described by T (+0). The next code phase ϕ(xi)

′ is the inverse of
the current code phase ϕ(xi) according to (4.35). The class fault set T f(+0) excites an
unexpected rail but has no impact on the code phase transition. The inhibited fault set
T f(−1) does not change the code phase and (4.33) will maintain its current state. The
fault class T f(+1) might have one additional transition or one additional glitch on an
unexpected rail. The resulting trace sets do not follow the single-event property. If an
additional transition occurs, the next code phase is the same as the current one. For an
additional glitch, the next code phase is the inverse of the current one. Both statements
only hold after all transitions, the expected and the unexpected ones, have taken place,
which has been defined as boundary condition in this thesis.

Table 4.4 shows the code phase transitions of a rail cross-coupled signal. The fault
is assumed to occur only on X, while the same result is obtained if it is applied on Y . The
b-rails, which are expressed by the even rail indices are swapped between X and Y and
the cross-coupled signals Xc and Yc are generated. Once all transitions have occurred,
only correct traces lead to a change of the code phase. That also applies to the trace

4.4. Duplication and Rail Cross-coupling 89

Table 4.3: Code phase transitions on a simple dual-rail signal

Token class Trace Set Code Phase Transition

T (+0) {1} ϕ(xi)
′ = ϕ(xi ⊕ ei) = ¬ϕ(xi)

T f(+0) {2} ϕ(xi)
′ = ϕ(xi ⊕ ei) = ¬ϕ(xi)

T f (−1) {ǫ} ϕ(xi)
′ = ϕ(xi ⊕¬ei) = ϕ(xi)

T f(+1) {12}! ϕ(xi)
′ = ϕ(xi ⊕ ei ⊕ ei) = ϕ(xi)

{122}! ϕ(xi)
′ = ϕ(xi ⊕ ei ⊕ ei ⊕ ei) = ¬ϕ(xi)

{122}! ∈ T f(+1) where the glitch eventually removes the fault condition. The fault
{2} ∈ T f(+0) will not change the code phase anymore.

Table 4.4: Code phase transitions on a cross-coupled dual-rail signal

Token class Trace set Cross-coupled
trace set

Code Phase Transition

T (+0) X = {1} Xc = {1} ϕ(xi)
′ = ϕ(xi ⊕ ei) = ¬ϕ(xi)

Y = {1} Yc = {1} ϕ(yi)
′ = ϕ(yi ⊕ ei) = ¬ϕ(yi)

T f(+0) X = {2} Xc = {ǫ} ϕ(xi)
′ = ϕ(xi ⊕ ¬ei) = ϕ(xi)

Y = {1} Yc = {12}! ϕ(yi)
′ = ϕ(yi ⊕ ei ⊕ ei) = ϕ(yi)

T f(−1) X = {ǫ} Xc = {ǫ} ϕ(xi)
′ = ϕ(xi ⊕ ¬ei) = ϕ(xi)

Y = {1} Yc = {1} ϕ(yi)
′ = ϕ(yi ⊕ ei) = ¬ϕ(yi)

T f(+1) X = {12}! Xc = {1} ϕ(xi)
′ = ϕ(xi ⊕ ei) = ¬ϕ(xi)

Y = {1} Yc = {12}! ϕ(yi)
′ = ϕ(yi ⊕ ei ⊕ ei) = ϕ(yi)

X = {122}! Xc = {1} ϕ(xi)
′ = ϕ(xi ⊕ ei) = ¬ϕ(xi)

Y = {1} Yc = {122}! ϕ(yi)
′ = ϕ(yi ⊕ ei ⊕ ei ⊕ ei) = ¬ϕ(yi)

Unfortunately, the concept of DRXC only prevents the propagation of faults in the
steady state, provided all faulty transitions are allowed to take place before the receiving
circuitry will evaluate them. Table 4.4 clearly shows that T f(+0) and T f(+1) do not
comply with the single-event property of QDI logic as these classes comprise #ei > 1
events. The code phase transition is not monotonic and the phase toggles at least once
before it settles to its final state. However, as the fault is masked in the steady state,
DRXC should lead at least an improvement in the FPP, which will be calculated in the
following.

First, a combined index notation is introduced. To describe the main and redundant
path in one common trace, the Y path is offset by 2n and all even rail indices are swapped:

∀y ∈ Y : y = x + 2n

∀xb ∈ X : yb = xb + 2n

∀yb ∈ Y : xb = yb − 2n (4.36)

with X = 〈x〉n and Y = 〈y〉n being n-bit tokens in index notation. The concatenated

90 4. Fault Mitigation

token 〈XY 〉2n is described by the indices 1 to 4n. As there are two nominal and two cross-
coupled circuit paths, there exist four possible end-effects a transient fault will have: The
fault will generate

a) no wrong prefixes at all

b) a wrong prefix in both the nominal and cross-coupled circuit

c) a wrong prefix only in the cross-coupled circuit

d) a wrong prefix only in the nominal circuit

A simple example illustrates these different scenarios.

Example 4.4.2: Fig. 4.18 depicts a 3-bit DRXC pipeline, which conveys the expected
trace set T e

x = {1, 3, 6}!. The corresponding trace set for Y is T e
y = {7, 9, 12}!. A sin-

gle fault trace t44 is injected at X. Fig. 4.18(a) shows one possible fault trace, t1 =
{1, 4, 3, 6, 4, 7, 9, 12} and its corresponding DRXC trace t1c = {1, 10, 3, 12, 10, 7, 9, 6}
obtained via (4.36). Neither t1 nor t1c have a wrong prefix, so the fault will not prop-
agate. Fig. 4.18(b) selects another trace from the trace set: t2 = {1, 4, 6, 7, 4, 9, 3, 12}
and t2c = {1, 10, 12, 7, 10, 9, 3, 6}, respectively. Here, a wrong phase prefix occurs on
X as well as on Yc. Fig. 4.18(c) shows the trace t3 = {1, 4, 7, 9, 4, 6, 3, 12} that is mod-
ified to t3c = {1, 10, 7, 9, 10, 12, 3, 6}. Although t3 is code masked, the cross-coupling
generates a wrong prefix. Finally, Fig. 4.18(d) depicts the last possibility. The wrong
prefix trace t4 = {1, 4, 6, 12, 4, 7, 9, 3} is modified to t4c = {1, 10, 12, 6, 10, 7, 9, 3}. That
last scenario constitutes the original idea of the cross-coupling: The wrong prefix is
modified in such a way to be code masked in the other circuit path.

Regarding the above example, the calculation of the FPP for a DRXC circuit seems
to be more complex. The extension to 2n rails, significantly increases the number of
permutations that have to be scanned for wrong prefixes. Thus for the first assessment,
a Matlab script was written that, based on a pre-defined expected trace, generates all
possible single fault traces, their cross-coupled counterparts and eventually searches for
wrong prefixes.

For the class T f(+1) the same result as for the original circuit was found. The reason
for that result is that the phase prefixes of the two branches X and Y can be calculated
independently from each other. All faults that affect an odd index are not affected by the
cross-coupling at all, thus they contribute to the FPP as in a non cross-coupled pipeline.
All faults that affect an even index are merely transferred to the other pipeline, where
their contribution to the FPP is the same as no cross-coupling would have been applied
at all. The DRXC scheme does not improve the FPP for the class T (+1). Since there is
no interaction between Xc and Yc the FPP is identical to a non-redundant circuit, given
by (4.11) and Table 4.1.

The class T f(+0) will have a 100% fault propagation, as each member constitutes
a wrong prefix. Although that class was first only associated with redundant QDI gates
(see 3.4.3), a fault that hits a combinational function may generate a fixed partial order
on the fault trace, with the first token being a member of T f(+0) (see 4.3.5). If that

4.4. Duplication and Rail Cross-coupling 91

(a) fault is masked in both X,Y and Xc,Yc

… faulty transition

on rail x

… correct

transition on rail x

1 4 3

x

x

4

tX = {1,4,3,6,4}: correct phase prefix
tY = {7,9,12}: correct phase prefix

6

7 9 12

X 1

10

3

1012 7 9

6Xc

tXc = {1,3,6}: correct phase prefix
tYc = {10,12,10,7,9}: correct phase prefix

(b) fault propagates in both X ,Y and Xc,Yc

1 4 6 4

tX = {1,4,6,4,3}: wrong phase prefix
tY = {7,9,12}: correct phase prefix

7 9

3

12

1

10 12 107 9

3 6

tXc = {1,3,6}: correct phase prefix
tYc = {10,12,7,10,9}: wrong phase prefix

Y Yc

X Xc

Y Yc

(c) fault propagates in X c,Yc

1 4 64

tX = {1,4,4,6,3}: correct phase prefix
tY = {7,9,12}: correct phase prefix

7 9

3

12

1

10 12107 9

3 6

tXc = {1,3,6}: correct phase prefix
tYc = {10,7,9,10,12}: wrong phase prefix

X Xc

Y Yc

(d) fault propagates in X ,Y

1 4 6 4

tX = {1,4,6,4,3}: wrong phase prefix
tY = {12,7,9}: correct phase prefix

7 9

3

12

1

10 12 10 7 9

36

tXc = {1,6,3}: correct phase prefix
tYc = {10,12,10,7,9}: correct phase prefix

X Xc

Y Yc

Figure 4.18: Wrong prefixes in a DRXC circuit subjected to T f(+1)

fixed partial order is maintained at the receiver, the fault cannot be masked. However,
when DRXC is applied the sensitivity against T f(+0) faults can be improved. A fault
that hits an even rail is transferred to the other branch, while a fault that hits an odd
rail is maintained on the same branch. Eventually, the rail cross-coupling transforms the
T f(+0) token into a T f (+1) token that has n + 1 rail transitions, as shown in Fig. 4.19.
Such a token was excluded in this work, as it requires redundant QDI gates, see 3.4.3.
The FPP for the class T f(+1) with n + 1 can be calculated by taking into account that
the fault must occur in the first n transitions while the last transition must occur on the
same dual-rail signal as the fault. Thus the number of wrong prefixes is simply n · n!
taking into account the n unexpected rails in the trace set

FPP(T f(+0)n+1) =
n · n!

n · (n + 1)!
=

1

n + 1
(4.37)

with the FPP related to the origin T f(+0) class fault set. Table 4.5 compares the FPP
for the different class fault sets in an n-bit DRXC circuit.

Although the basic idea of token errors that force inconsistent tokens and prevent a
fault from propagating looked quite promising in the beginning, a detailed investigation
did not yield the expected reduction in terms of FPP. Fig. 4.20(a) shows depicts the prop-
agation of a T f(+0) token error. The pair T f(+0)/T (+0) in the main and redundant path
is separated into the pair T f(+1)/T f(−1) due to the rail cross-coupling. While T f(−1)
cannot propagate, T f(+1) may propagate an error depending on trace ordering. Similarly,
T f(+1) token error is separated into the pair T f(+1)/T f(+0) as given in Fig. 4.20(b).

92 4. Fault Mitigation

(a) T
f
(+0) fault masked

1 4 6

tX = {1,4,6}: wrong phase prefix
tY = {7,9,12}: correct

7 9 12

X 1

10

6

7 9 12

Xc

tXc = {1,6}: no phase prefix
tYc = {7,10,9,12}: correct phase prefix

Y Yc

… faulty transition

on rail x

… correct transition

on rail x

x

x

(b) Tf(+0) fault propagates

1 4 6

tX = {1,4,6}: wrong phase prefix
tY = {7,9,12}: correct

7 9 12

X 1

10

6

7 912

Xc

Y Yc

tXc = {1,6}: no phase prefix
tYc = {7,10,12,9}: wrong phase prefix

Figure 4.19: Wrong prefixes in a DRXC circuit subjected to T f(+0)

Table 4.5: Fault propagation probability of an n-bit DRXC QDI function

n FPP (T f(−1)) FPP (T f(+0)) FPP (T f(+1))

1 0% 50.00% 66.67%

2 0% 33.33% 33.33%

4 0% 20.00% 13.33%

8 0% 11.11% 4.44%

16 0% 5.88% 1.31%

32 0% 3.03% 0.36%

The reason for the unexpected high FPP of a DRXC circuit is the missing correlation
between the nominal and redundant path. Especially, the T f(−1) can be utilized to pre-
vent a token error from propagating any further as this token class stops the operation of
the circuit without producing any hazards. An improved, more robust version of DRXC
is presented in the next subsection.

T
f
(+0)

T(+0)

T
f
(+1)

T
f
(-1)

a

a

b

b
T(+0)

a

a

b

b

fault
propagates

a) propagation of T
f
(+0) b) propagation of T

f
(+1)

T
f
(+1)

T(+0)

fault
propagates

T
f
(+1)

Figure 4.20: Principle of DRXC masking

4.4.3 Synchronized rail cross-coupling

By means of a synchronization, as shown in Fig. 4.21, DRXC can be made more
robust. The ϕ-detectors from the main and redundant path are synchronized and a token
will only be received when both paths are in the same phase. As will be shown below,

4.4. Duplication and Rail Cross-coupling 93

the synchronized duplicated and rail cross-coupled architecture (DRXS) is able to mask
all T f(+0) faults and further improves the robustness against T f(+1) faults.

Regp

Regr

ϕp

ϕr

Ack

Ack

Xi+1

Yi+1

a

Yi
b

Xi

a

b

Xc,i

Yc,i

Figure 4.21: Rail cross-coupling with synchronized phase detectors

The synchronization of the two paths will mask all T f(+0) faults as illustrated
by Fig. 4.22(a). The T f(−1) token that has been generated via the cross-coupling will
block the hazardous T f(+1) token in the other path. Regarding T f(+1) faults, the
synchronization cannot prevent this type of fault from propagating down a circuit. As
shown in Fig. 4.22(b), no T f (−1) token is being generated due to the rail cross-coupling.
However, as the circuit must wait until both paths have reached the same phase, the
propagation of a T f(+1) fault is reduced as it is less likely that a wrong prefix completes
both code phases. In general, a T f(+1) fault cannot be mitigated on token level. In 4.4.6
it will be investigated whether that behavior is possible on rail level.

T(+0)

a

a

b

b
T(+0) T(+0)

a

a

b

b

synchronization

enabled

a) masking of Tf(+0) b) propagation of T f(+1)

T
f
(+0) T

f
(+1)

T f(-1)

fault
masked

T
f
(+1)

synchronization

inhibited

fault
propagates

T
f
(+1)

Figure 4.22: Principle of simple versus synchronized rail cross-coupling

The code masking of all T f(+0) tokens in a DRXS can be proved by regarding
Table 4.4. Due to the rail cross-coupling, at least one signal xi of the token will not see
an event ei as the rail transition is transferred to the other path while no event is received
in exchange. Thus the missing transition will (i) prevent the code phase completion on
its own path and (ii) via the synchronization on the other path as well.

To propagate a T f(+1) token, the same prerequisites as derived in 4.3.1 apply: The
fault must affect an unexpected rail and the last two transitions must take place on the
same dual-rail signal. Due to the duplication, a faulty trace comprises 2n + 2 transitions.
The FPP can be derived from (4.11) by substituting n with 2n:

FPP(T f(+1)DRXS) =
2 · (2n) · (2n)!

(2n)·(2n+2)!
2

=
4

(2n + 1) · (2n + 2)
. (4.38)

94 4. Fault Mitigation

Table 4.6 presents the FPP for a DRXS pipeline versus the number of bits n. As for
the non-redundant pipeline, the fault propagation decreases non-linear with the number
of bits. So the code masking capability of DRXS is higher than just the factor of two that
would have been expected due to the duplication. Nevertheless, it should be emphasized
that the reduced FPP stems from an artificial duplication of the number of bits n. The
robustness of a circuit also has to take into account the higher fault rate due to the
increased circuit area, as described in 4.1.1.

Table 4.6: Fault propagation probability of an n-bit DRXS QDI function

n FPP (T f(−1)) FPP (T f(+0)) FPP (T f(+1))

1 0% 0% 33.33%

2 0% 0% 13.33%

4 0% 0% 4.44%

8 0% 0% 1.31%

16 0% 0% 0.36%

32 0% 0% 0.18%

Next, some physical implementations of a DRXS circuit are discussed. Fig. 4.23
shows two principal methods. In Fig. 4.23(a) the outputs of the input code phase detectors
are fed to the latch control circuit, which enables / disables the register internal latches, see
Fig. 3.20. The latches will only be enabled if the output of both two input phase detectors
are identical. The benefit of this implementation is the minimum amount of supplemental
hardware in addition to the duplication. Only two additional AND-gates are needed.
In Fig. 4.23(b) the phase detector inputs are synchronized. Therefore the set (Sx/Sy)
and reset (Rx/Ry) signals of the input code phase detector are routed to the redundant
register and combined via AND-gates. This implementation needs two more AND-gates
as the previous architecture. The schematics also show that DRXS synchronizes the
acknowledge signals as well, which is mandatory to mitigate synchronization errors that
would otherwise unalign the two pipelines, see Fig. 3.14. Each of the two methods has its
merits, which is shown by an example.

Example 4.4.3: A 3-bit DRXS pipeline according to Fig. 4.23(a) receives the T f (+1)
fault trace tf = {1, 3, 6, 7, 9, 5, 11, 6}. The first triple t1 = {1, 3, 6} toggles the in-
puts phase detector X, but the latches are disabled until Y completes its phase af-
ter t2 = {7, 9, 5, 11} has arrived. When the Y phase is completed, the illegal trace
tI = {1, 3, 6, 5} is applied to X as there must not be two transitions on the same
dual-rail signal {6, 5}. As the X phase detector maintains its state until the next code
phase is applied, tI is passed to the output.

The same trace tf is applied to a DRXS pipeline according to Fig. 4.23(b).
Here, the X phase detector will not be triggered by t1. The circuit waits until the
complete trace tf has been received, as no intermediate trace stimulates both input
phase detectors in the same way. Possibly, the fault is masked without passing a token
error or inconsistent token to the output.

4.4. Duplication and Rail Cross-coupling 95

ϕ

ϕ

Latch
Ctrl

Latch
Ctrl

En

Latches
Yc

Latches
Xc

AckY

AckX

(a) DRXS with synchronized phase
detector outputs

ϕ

ϕ

Latch
Ctrl

Latch
Ctrl

En

Latches
Yc

Latches
Xc

AckY

AckX

Sx,

Rx

Sy,

Ry

(b) DRXS with synchronized phase
detector set/reset

Figure 4.23: Different methods how to synchronize a DRXS pipeline

The synchronization of the set and reset signals presented in Fig. 4.23(b) has emerged
as the more robust implementation and is used as preferred architecture for the DRXS
designs in this thesis. The hardware overhead compared to Fig. 4.23(a) is negligible.
Nevertheless, both implementations require timing assumptions if they are subjected to
T (+1) tokens. Otherwise hazards may occur that lead to an unspecified metastable
behavior. In Fig. 4.24(a) the previous example {1, 3, 6, 7, 9, 5, 11, 6} is illustrated. The
transition on rail 5 de-asserts the set input Sx, while the transition on rail 11 asserts the set
input Sy. As long as these two events are sufficiently separated the synchronized set signal
Sx·Sy will be hazard-free. Fig. 4.24(b) depicts another possible trace {1, 3, 6, 7, 9, 11, 5, 6},
where the transition sequence generates a glitch on the synchronized set signal. Such
glitches may trigger a metastable behavior, which eventually results in a token or delay
error, see 3.4.3.

Sx

tx 1,3,6

ty 7,9

1,3,6,51,3

7,9,11

Sy

Sx·Sy

t={1,3,6,7,9,5,11,6}

1,3,5

(a) Correct set/reset synchronization

Sx

tx 1,3,6

ty 7,9

1,3,6,51,3

7,9,11

Sy

Sx·Sy

t={1,3,6,7,9,11,5,6}

1,3,5

(b) Glitch due to set/reset synchronization

Figure 4.24: Race condition on synchronized set/reset signals of DRXS pipeline

In the next step, the overhead of DRXS is examined. The resources are analyzed
in a general fashion by counting the number of 2-input gates and latches. Thereby the

96 4. Fault Mitigation

register design is based on Fig. 4.25.

Acki

Datai-1

...

L(1)b

L(1)a

L(n)b

L(n)a ϕ

Datai

Acki+1

ϕ

L

en

en

(a) FSL register Implementation

S Q

R

Data(1)a

Data(1)b

Data(n)a

Data(n)b

...

...

...

AND tree

NOR tree

ϕ(Data)

(b) Phase detector implementation

Figure 4.25: Hardware resources of an FSL register

In general, a register comprises two latches for each dual-rail signal, two latches for
the input and output phase detector and one acknowledge latch [47]. In case of a single-bit
register (n = 1), the input and output phase detector can be built using just an XOR
gate, thus no latches are needed in this special case. The number of latches |L(n)| versus
the number of bits n can be calculated with

|L(n)| = 2n + 1 + 2(n > 1). (4.39)

The number of 2-input gates in the register control block is 3 and independent of
n. Thereby the inverter has been neglected. The number of 2-input gates for a phase
detector is

|Gϕ(n)| = nXOR + (n − 1)AND + (n − 1)NOR = 3n − 2 (4.40)

as there are n XOR gates and two trees of 2-input AND/NOR gates that define the set
and reset signals of the phase detector latch. The size of these trees is n − 1, which can
be checked by simple graph theory. Finally, the total number of 2-input gates |G(n)|
including two phase detectors and the latch control block is

|G(n)| = 2(3n − 2) + 3 = 6n − 1. (4.41)

The DRXS architecture requires two times the latches and gate resources plus addi-
tional hardware for synchronization. Regarding the implementation in Fig. 4.23(b) four
AND-gates are needed to synchronize the set and reset signals of the two input phase
detectors. To give a closed expression for the resource occupation, the latches are ex-
pressed in equivalent 2-input gates. Thereby each latch is counted as 5 gates, which will
be discussed below. So the number of 2-input gates in DRXS is

|G(n)DRXS| = 2 · (5 · |L(n)| + |G(n)|) + 4 =

= 2 · (10n + 5 + 10(n > 1) + 6n − 1) + 4 =

= 32n + 12 + 20(n > 1). (4.42)

4.4. Duplication and Rail Cross-coupling 97

Table 4.7 compares the hardware resources of a simple QDI register, with DRXS
and calculates the overhead.

Table 4.7: Overhead of DRXS versus number of bits n by counting gates

latches + 2-input gates
n simple DRXS overhead

1 20 44 120%
2 46 96 109%
4 78 160 105%
8 142 288 103%

16 270 544 101%
32 526 1056 101%

The previous assessment suffers from two uncertainties. First, the equivalent gate
count of a latch is assumed to be 5 and second, each 2-input gate is counted equally.
In reality, a NAND gate can be implemented quite efficiently using just 4 transistors,
while e.g. an AND gate already requires 6 transistors. These numbers correspond to a
simple CMOS implementation and may vary in other semiconductor processes. Thus the
hardware overhead was investigated by implementing simple and DRXS registers using
the LSI Logic 10K library. The gate level netlist was generated in Synopsys (Version
C-2009.06-SP4) and the cell area was compared. The correspondence of 5 times the area
of a simple 2-input NAND gate and a latch was actually derived from these experiments.
Table 4.8 shows the results.

Table 4.8: Overhead of DRXS versus number of bits n by gate level synthesis

cell area in µm2

n simple DRXS overhead

1 37 94 154%
2 68 138 103%
4 120 228 90%
8 192 356 85%

16 354 654 85%
32 673 1252 86%

Surprisingly, the overhead of DRXS was less than 100% as it would have been
expected merely due to the duplication. The reason lies in the physical implementation
of the gates. A tree of 2-input gates can be implemented more efficiently in terms of
transistor count by means of multiple input gates. That fact has not been taken into
account by the gate counting method presented in Table 4.7. Further, the synthesis tool
is not optimized for asynchronous designs and such results shall not be used to derive
an absolute metric for the hardware overhead of QDI logic. To conclude, it was shown
that the overhead of DRXS in addition to the duplication is negligible. Thus the DRXS
method has a clear advantage compared to other duplex based systems that need dedicated
comparators to detect a token error such as [93], [95] or [97].

98 4. Fault Mitigation

4.4.4 Tolerance against multiple errors

The effects of multiple errors due to a single transient fault have been examined in
4.3.5. In this case, an n-bit sequential circuit will receive a trace with k ≤ n token errors.
The fault trace is generated in combinational logic at locations (3) and (4) in Fig. 3.8.
At the primary output of this circuitry, the trace will have a pre-defined order according
to (4.22) While the trace propagates to the receiver that order may be (i) re-arranged
arbitrarily according to (4.24) or (ii) it may be maintained.

Case (i) can be handled similar to single faults handled by (4.27) when n is substi-
tuted with 2n to consider the duplication:

FPP(T f(+1)2n,k) =

(
2n

k

)

· (2k)! · (2n)! ·
k∑

j=1

(
k

j

)

(
2n

k

)

· (2n+2k)!
2k

. (4.43)

For the two extremes k = 1 and k = n that equation becomes:

FPP(T f(+1)2n,1) =
2 · (2n)!
(2n+2)!

2

=
2 · (2n)!
(2n+2)!

2

=
4

(2n + 2)(2n + 1)
(4.44)

FPP(T f(+1)2n,n) =

2n · (2n)! ·
n∑

j=1

(
n

j

)

2k∏

i=1
(2n + i)

(4.45)

For an arbitrary order of the fault trace between the source of the error and the
receiving circuitry, DRXS effectively reduces the fault propagation. As in a non-redundant
QDI circuit, the higher the number of signals n, the smaller the fault propagation as shown
in Table 4.9. For convenience, numbers smaller than 5E-06 are shown as zero.

Table 4.9: Fault propagation for multiple faults in DRXS with an arbitrary order

n k = 1 k = 2 k = 4 k = 8

1 33.333% - - -
2 13.333% 17.143% - -
4 4.444% 2.424% 1.865% -
8 1.307% 0.248% 0.033% 0.011%
16 0.357% 0.020% 0.000% 0.000%
32 0.093% 0.001% 0.000% 0.000%

Example 4.4.4: Fig. 4.26 depicts the general case of multiple errors for the expected
trace set T e

X = {13}! and T e
Y = {57}!. A multiple fault described by t22 and t44 is

imposed on T e
X ∪T e

Y and the effect of this fault in a DRXS circuit is investigated. The
example assumes that the prefix contains k = n = 2 faults. In Fig. 4.26(a) and (c)
the fault is masked by DRXS, in Fig. 4.26(b) and (d) the fault propagates through
the DRXS circuit.

4.4. Duplication and Rail Cross-coupling 99

(a) fault propagates

2n+2k trans.

… faulty transition on rail x

… correct transition on rail x

(b) fault is masked

2 4 4

x

x

2

tX = {24}: wrong phase prefix
tY = {57}: correct phase prefix

1

tX = {2143}: wrong phase prefix
tY = { }: no complete phase at all

X

(c) fault is masked

2n+2k trans.

tXc = { }: no complete phase at all
tYc = {6587}: no phase prefix

Xc

5

3

7

56 8 8

13

7 6

2n+2k trans.

2 4 4 21

5

3

7

(d) fault propagates

tXc = {13}: correct phase prefix
tYc = {68}: wrong phase prefix

2n+2k trans.

6 8 8 6

1

5

3

7

Y

Yc

Figure 4.26: Definition of sensitive prefixes with multiple errors in a DRXS circuit

In case (ii), a receiver detects the same partial order T f (+0) ≺ T f(+1) as generated
at the source of the error. A non-redundant QDI circuit is not be able to mask the
preceding T f(+0) fault as it completes the code phase. A DRXS circuit will mask the
premature T f(+0). To analyze the trace that is received by a DRXS register the main
(X) and redundant (Y) trace are merged, with X having a fixed partial order as shown
in Fig. 4.27.

n+2k trans.

T(+0)

fault token preceds

X T(+1)

n trans .

T(+0)Y

correct token

X∪Y

partial order of X is maintained !

Figure 4.27: Merging of two traces, with a fixed partial order

A simple example illustrates that behavior and also points out the difference when
the partial order is fixed on one path.

Example 4.4.5: Let’s assume a 3-bit DRXS circuit with a faulty trace tf = {1, 3, 6, 5, 6}
on Xc and the expected trace te = {7, 9, 11} on Yc. The number of faults is k = 1. If an
arbitrary order is applied, the traces may be merged to e.g. txyc = {7, 1, 3, 5, 6, 9, 6, 11} ∈
{tf ∪ te}, which does not contain wrong phase prefixes. Applying (4.38), the circuit
has an FPP of 4/(7 · 8) = 7.14%.

If the partial order in tf has to be maintained the previous scenario is illegal,
since {1, 3, 6} ≺ {5, 6} does not hold in the merged trace txyc. One possible trace

100 4. Fault Mitigation

that maintains that partial order is e.g. txyc = {7, 1, 3, 9, 6, 11, 5, 6}. Here, the first 2n
transitions contain a wrong phase prefix for Xc and a token error may be captured.
The fault propagation probability for n = 3 and a fixed partial order is 1.79%. That
result has been calculated with a Matlab script that counts all wrong phase prefixes
within all legal traces due to a single fault and a fixed partial order.

The number of wrong phase prefixes for an arbitrary number of k faults in DRXS
with a fixed partial order can be calculated analytically as shown in the following example.
The criterion for a wrong phase prefix with k faults in a fixed partial order is that the
last 2k transitions take place on exactly k signals.

Example 4.4.6: Fig. 4.28 derives the number of wrong prefixes for a fixed partial
order assuming n = 4 and k = 2. Let’s assume a faulty trace set T f

X = {1, 3, 4, 6}! ≺
{5, 7, 4, 6}! on X and the expected trace set T e

Y = {9, 11, 13, 15}! on Y . The associated
DRXS trace swaps all even indices as shown in the upper two rows of the figure. A
wrong prefix completes the code phase of the DRXS circuit after 2n = 8 transitions
and has to be selected from the trace set {1, 3, 12, 14, 5, 7, 9, 11}! where {1, 3, 12, 14}! ≺
{5, 7}! ≡ {1, 3, 4, 6}! ≺ {5, 7}! must hold due to the fixed partial order. The fixed
partial order applies to both the nominal and the cross-coupled traces.

The first n transitions of X are are defined by the preceding {1, 3, 12, 14} ∈
T (+0) token. The expected rail transitions (5, 7) on the k faulty rails are successively
moved from their most early position n + 1 to the end of the 2n long prefix trace.
These transitions are highlighted for a better visualization. As the transitions on the
two paths are not correlated, all transitions from Y may be merged with the preceding
T (+0) on X. So the number of wrong prefixes for that example are

|T 44,66(2n, k)| = (2k)! · [n! ·

(

n − k

0

)

· k · (n − 1)! + (n + 1)! ·

(

n − k

1

)

· k · (n − 2)!+

+ (n + 2)! ·

(

n − k

2

)

· k · (n − 3)!].

Plugging in the numbers for that example n = 4 and k = 2 gives

|T 44,66(8, 2)| = 4! · [4! ·

(

2

0

)

· 2 · 3! + 5! ·

(

2

1

)

· 2 · 2! + 6! ·

(

2

2

)

· 2 · 1!] =

= 24 · [288 + 960 + 1440] = 64512.

The FPP for the general case can be derived from the previous example considering
that there are

(
2n

k

)

combinations to select k faulty rails within the total 2n unexpected
rails of a DRXS circuit. The number of wrong prefixes becomes then

|T pf(+1)fo
2n,k| =

(

2n

k

)

· (2k)! ·
n−k∑

j=0

(n + j)! · k ·

(

n − k

j

)

· (n − 1 − j)!. (4.46)

The size of the class fault set T f(+1)fo
2n,k can be derived similarly to (4.46). First, the

4.4. Duplication and Rail Cross-coupling 101

2n trans.

12

7

Yc

3 51

14 9 11 13 15 12 14

(2k)! trans.

75 9 11 79 11 79 11

7 11 9 711 9 711 9

57 9 11 59 11 59 11

5 11 9 511 9 511 9

(n-1)!

k

79 11 711

7 11

5 9 9

(n-2)!

k
5

5 511

11 7 7

7 5 59 9
k

n-k

1

k n-k

12

31

14

12

31

14

n!

79 11

7

(n-3)!

k
5

5

n-k

2

12

31

14

(n+2)! ·

n

n!

n-k

0

n-k

0
k (n-1)!

(n+1)!
n-k

1
k (n-2)!

(n+1)! ·

n! ·

(n+2)!
n-k

2
k (n-3)!

431 6X

9 11

75 4 6

13 15Y

Xc

Yc

Xc

Yc

Xc

Yc

Xc

Figure 4.28: Wrong phase prefixes with k faults and a fixed partial order

last 2k transitions are merged with the preceding 2n traces of the phase prefix. Second, it
has to be ensured that the partial order on the faulty path is is fulfilled in all permutations:

|T f(+1)fo
2n,k| =

(

2n

k

)

·
n∑

j=0

(n + j)! · 2k ·

(

n

j

)

· (n − 1 + 2k − j)!. (4.47)

Table 4.10 presents the fault propagation probability |T pf(+1)fo
2n,k|/|T

f(+1)fo
2n,k| for

a fixed partial order using (4.46) and (4.47), respectively. The table shows all numbers
smaller than 5E-06 as zero. Comparing with an arbitrary fault order shown in Table 4.9,
the FPP with a fixed partial order is less for n ≤ 2, while it becomes larger for n > 2.
The reason for that behavior is that the class fault set does not grow that fast compared
to the wrong prefix set when a fixed partial order is maintained.

The fixed partial order constitutes the worst case for a QDI pipeline, as it assumes
that a faulty T f(+1) trace always starts with a T f(+0) error. A simple QDI pipeline
cannot prevent that error from being received, while the DRXS scheme reduces that

102 4. Fault Mitigation

Table 4.10: Fault propagation probability for multiple faults with a fixed partial order

n k = 1 k = 2 k = 4 k = 8

1 25.000% - - -
2 13.333% 3.571% - -
4 6.667% 0.943% 0.055% -
8 3.268% 0.227% 0.004% 0.000%

16 1.604% 0.054% 0.000% 0.000%
32 0.793% 0.013% 0.000% 0.000%

probability significantly. As it is not possible to mitigate the class fault set T f(+1) on
token / signal level, it will be investigated how such a fault will propagate once it has
been received as error.

4.4.5 Fault propagation and storage in cross-coupled circuits

As subsections 4.4.3 and 4.4.4 have shown that DRXS cannot code mask all T f (+1)
faults, the propagation and storage of wrong prefixes is investigated in more detail.
Thereby it is assumed that the subsequent circuit stage also implements DRXS. After
receiving a wrong prefix from a T f(+1) token, three possibilities emerge:

1. Although a wrong prefix triggers the storage process, the complete T f(+1) token
is received before the storage can be completed. Eventually, the expected token is
stored, while a T f(+1) trace propagates to the output.

2. Before the storage process is completed, additional transitions arrive. The register
captures an inconsistent token as well as propagates a T f (+1) token.

3. The wrong phase prefix, described by T f(+0) is captured and propagated to the out-
put. This scenario occurs when the receiving circuitry is very fast and immediately
captures the detected prefix.

Case (1) simply shifts the fault to the next circuit stage without storing any wrong
or inconsistent data. In fact, that scenario is like if the fault would have been generated
in the subsequent circuit stage at all. The masking effects in that stage will determine
whether the propagated T f(+1) will again lead to a wrong phase prefix or whether the
fault is mitigated. The FPP in the subsequent stage can be calculated using (4.38). Thus
the probability of a T f(+1) fault that passes the first stage and generates a wrong phase
prefix in the subsequent stage is very unlikely, provided the trace distributions in the
two stages are independent from each other. See Fig. 4.29(a) how a T f(+1) trace will
propagate a multi-stag DRXS circuit.

Case (2) applies an inconsistent token to the subsequent circuit stage, which may
lead to a deadlock if the propagated trace does not contain a phase prefix. Assuming a
single fault, the inconsistent token is described by 2n + 1 transitions, where 1

2n+1
traces

contain a correct or wrong phase prefix, while 2n−1
2n+1

traces lead to a deadlock. Thus the
deadlock is the most probable result of this scenario.

4.4. Duplication and Rail Cross-coupling 103

Case (3) even always leads to a deadlock since any T f(+0) fault will stop the circuit
operation until the fault has been resolved – which will never happen. That scenario is
depicted in Fig. 4.29(b).

T(+0) T(+0)

b) propagation of T
f
(+0)a) propagation of T

f
(+1)

T
f
(+1) T

f
(+1) T(+0)

T
f
(+1)

FPPi FPPi+1

T(+0) T(+0)

T
f
(+1) T

f
(+0)

T
f
(+1)

FPPi FPPi+1=0

T
f
(-1)

Figure 4.29: Propagation of faulty tokens in DRXS

Taking these scenarios into account, case (1) is the most preferable one as it prevents
a deadlock of the circuit. If a wrong phase prefix is received, its storage should be
prevented. Therefore, the rail cross-coupling principle is revised. As shown in Fig. 4.22,
a received pair T f(+0)/T (+0) will be separated in the pair T f (+1)/T f(−1), where the
inhibited transition in T f(−1) will prevent the hazardous T f(+1) from being processed.
The rail cross-coupling was applied to the input of a register to block any incoming wrong
prefixes. Similarly, the same principle can be applied to the output detection of a register
to prevent any wrong prefix from being captured. Such a modified DRXS register is
depicted in Fig. 4.30. The DRXS with cross-coupled completion detectors is called DRXX
to distinguish it from the ordinary DRXS scheme.

ϕ
a

ϕ
b

Latch
Ctrl

Latch

Ctrl

En

Latches
Yi-1

Latches
Xi-1

a

b
ϕ

ϕ

AckYi+1

AckXi+1

Yi

Xi

Sx,

Rx

Sy,

Ry

Yc

Xc

Y

X

Sx,

Rx

Sy,

Ry

Figure 4.30: DRXS with synchronized completion detectors (DRXX)

The FPP of DRXX is identical to the ordinary DRXS, but the tolerance against
deadlocks can be reduced. The upper part of Fig.4.31 shows the token sequence as it is
received by the DRXX register. The transient fault generates the pair T f (+0)/T (+0)
that triggers the storage process. Contrary to DRXS, the DRXX register passes the non
cross-coupled data to the synchronized output phase or completion detectors as given in

104 4. Fault Mitigation

the lower part of Fig.4.31. Thus the output receives the pair T f(+1)/T f(−1), which will
delay the completion of the storage process until both paths get a phase prefix.

In a fixed trace circuit, the order of the transitions as received at the input must
not be changed, which applies to both the original non cross-coupled trace and the cross-
coupled trace. Thus when the output has received the T f(+1)/T f(−1) pair, the inhibited
trace T f(−1) trace suppresses the completion of the storage process. The next transition
either removes the fault (which is the preferred scenario) or generates a T f(+1)/T f(+0)
token pair at the output. Due to the synchronization of the completion detectors, the
T f(+1) trace will now suppress the completion of the storage. That state is maintained
until all transitions have taken place and the fault is removed.

Although a T f(+1) has been propagated, a fixed trace circuit prevents the capture
of both T f(+0) and T f (+1) tokens and thereby prevents a deadlock in a DRXX pipeline
due to transient faults. That principle is illustrated in a simple example.

T(+0) T(+0)

a) tokens received by the

input phase detector

T
f
(+1) T

f
(+0)

triggers

storage

T(+0)

T
f
(+1)

T(+0)

T(+0)

n+1

transition
fault gone

Tf(+1)

T(+0)

b) tokens received by the

completion detector

T
f
(-1)

input

output

Tf(+1)

T(+0)

T(+0)

Figure 4.31: Fault propagation in a DRXX register

Example 4.4.7: The DRXX circuit according to Fig. 4.30 receives the expected
trace txy = {1, 3, 5, 7, 9, 11}. A single fault applied on rail 6 leads to the trace tfxy =
{1, 3, 6, 5, 7, 9, 11, 6}. The input phase detectors receive the cross-coupled trace tfxyc =
{1, 3, 12, 5, 7, 9, 11, 12}, where the first 2n transitions complete the code phase on either
path, as shown in Fig. 4.32(a). An ordinary DRXS circuit would receive the token
error tfy = {12, 7, 9}, which will lead to a deadlock if it is stored in the register.

In a DRXX register, the first 2n transitions of the original trace tfxy = {1, 3, 6, 5, 7,
9} propagate through the latches as shown in Fig. 4.32(b). As the sub-trace ty =
{7, 9} belongs to T (−1) it will prevent the completion of the storage process. That
completion is even prevented when the next transition 11 arrives, as the phase of X
meanwhile holds an inconsistent token tx = {1, 3, 6, 5}.

In a practical QDI register, the enable time of the register internal latches is typically
longer than the input propagation delay, as described by Fig. 4.11 in 4.3.2. The partial
order of a trace is likely to be destroyed as the transitions have already been applied to
the register internal latch inputs when the latch is enabled. These timing constraints

4.4. Duplication and Rail Cross-coupling 105

x

x1 3

12

tXc = {1,3,5}: correct phase prefix
tYc = {12,7,9}: wrong phase prefix

5

7 9 11Yc 12

1 3 6

tX = {1,3,6,5}: wrong phase prefix
tY = {7,9}: no prefix

5

7 9 11Y

6 … correct transition on rail x

… faulty transition on rail x

Xc X

(a) Input phase detector (b) Completion detector

Figure 4.32: Different perception of traces in a DRXX register

have no effect on the FPP, but they may lead to a re-ordering of the rail transitions when
propagate through the latches to the output.

Applied to the previous example, the trace txy = {1, 3, 6, 5, 7, 9, 11, 6} that is received
at the latch inputs, may be perceived as txy = {1, 3, 6, 7, 9, 11, 5, 6} at the synchronized
completion detectors. That reordering would not be allowed in a fixed trace circuit but
may be encountered if the asymmetric input delays are taken into account in a practical
circuit realization.

The reduction of deadlocks only applies to faults that are introduced via the data
path, see Fig. 3.8. Handshake faults or faults in the acknowledge section of a register
may lead to a deadlock as they lead to a misalignment of the redundant pipelines. The
treatment of deadlocks due to transient faults is not further investigated on theoretic level
and will be handled by means of fault simulations in chapter 5.

Table 4.11 compares the overhead of a DRXX circuit with DRXS and a simple duplex
architecture versus the number of bits n. The hardware resources have been evaluated by
counting latches and 2-input gates. The synchronization of the output phase detectors
requires 4 additional gates, thus the overhead is slightly more than for the original DRXS
scheme given in Table 4.7. The table does not consider the additional interconnections
that are needed to distribute the b-rails to both the main and redundant circuitry. If this
rail distribution comes along without any buffers, there is no difference to the hardware
need of ordinary DRXS. A performance impact is assumed as the splitting of the b-rails
will increase the delay on this path as the load capacitance is increased. That impact is
not further investigated as it is assumed to be minor.

Table 4.11: Overhead of DRXX compared to a simple QDI register by counting gates

latches + 2-input gates
n simple DRXC DRXS DRXX overhead

1 20 40 44 48 140%
2 46 92 96 100 117%
4 78 156 160 164 110%
8 142 284 288 292 106%

16 270 540 544 548 103%
32 526 1052 1056 1060 102%

So far, all token based methods have failed to mitigate a T f(+1) token when arbi-
trary delays have to be taken into account. It was not possible enforce the generation of
a T f(−1) token in the presence of a T f(+1) fault that can be used to stop the processing

106 4. Fault Mitigation

of a wrong phase prefix. The solution is to place the comparison on rail level, as it allows
to generate the essential T f(−1) token as shown in the next subsection.

4.4.6 Rail comparison

The comparison of rails has been introduced by Martin et al [93], [18], [94] as
duplication and double-checking. This topic has been thoroughly investigated by the
cited authors and has been summarized in 4.2.2. Now the function of this method is
examined using the trace based model derived in this thesis. Fig. 4.33 shows the principle
of operation. Each pair of redundant rails is synchronized via a dedicated Muller C-gate
that acts as rail comparator. A transition is only passed if it occurs on both the main
and redundant path.

The function of the double-checking can be described with the token class model
from 3.4.3. Fig. 4.33 shows a T f(+1) fault that generates a rising edge on rail a0. As
long as the redundant rail a1 is correct, the fault is ignored and the synchronized output
a0,syn is not excited. The b-rails only carry expected transitions and b0,syn will be excited
as expected.

a0

[11]

faulty a-rail
blocked

b0

a1

b1

T(+0)

T(+0)

a0

a1

[01]

b0

b1

C

C
T(+0)

a0,syn

b0,syn

Tf(+1)

T(+0)

Tf(+1)

Figure 4.33: Principle of duplication and double-checking [93]

Fig. 4.34 illustrates the different possibilities of comparing rail transitions via a C-
gate using token classes. Fig. 4.34(a) shows a nominal scenario. Both inputs receive
an expected transition so the C-gate will also generate an output transition, which is de-
scribed by T (+0). In Fig. 4.34(b), one expected transition is inhibited, which corresponds
to T (−1). The C-gate will maintain its current output as it requires two transitions to
change its output. Similarly, Fig. 4.34(c) shows the case where an unexpected rail is
excited, which forms a T (+1) token. Since the second input has no transition, the C-gate
will maintain its output. Finally, Fig. 4.34(d) depicts the only case where the rail com-
parison fails. Both inputs are subjected to a fault, which is illegal in a single-fault model.
This scenario cannot be distinguished from a nominal case as the class T (+0) is observed.

The benefit of comparing tokens on the rail level is that T (+1) tokens are code
masked. One additional, unexpected rail transition cannot trigger a code phase comple-
tion like in systems that compare at token level. A T (+1) token does not comply to the
specification of DI codes as it cannot be distinguished whether the first received rail tran-
sition is expected or unexpected. Only one transition is required to change the code phase.
If the particular rails of a dual-rail signal are compared with a C-gate, two transitions are
required to change the code phase. Thus a single rail fault cannot propagate.

4.4. Duplication and Rail Cross-coupling 107

C C

(a) 2 expected transitions (b) 1 inhibited transition (c) 1 unexpected transition

C

T(+0) T(-1) T(+1)

(d) 2 unexpected transitions

C

T(+0)

Figure 4.34: Different possibilities of comparing rail transitions

In the original work by Martin, the duplication and double-checking method explic-
itly adds C-gates to the outputs of redundant gates, each checking the associated rails for
equality. For sequential functions the method works similarly. Additionally, the acknowl-
edge signals are also synchronized via C-gates. Fig. 4.35 shows the detailed designs of a
simple and duplicated double-checking register implemented as so called pre-charge half
buffer.

(a) Pre-charge half buffer (b) Duplicated double-checked pre-charge half buffer

Figure 4.35: Simple and fault tolerance pre-charge half buffers [94]

For this thesis, the adaptation of the duplication and double-checking method to
FSL has been briefly investigated. Thereby the most common form of a QDI register
implementation for a 4-phase protocol given by Fig. 3.21 is ported to FSL.

The duplicated version of a single-bit register is depicted in Fig. 4.36. Compared to
the preferred implementation of an FSL register, the phase of each particular input signal
is checked separately. The set and reset signals for each rail latch are synchronized via
AND gates. That specific FSL implementation is referred to as duplication and rail syn-
chronization (DRS). Contrary to the original duplication and double-checking scheme, the
DRS method minimizes the hardware effort as it does not need to place explicit synchro-
nizing C-gates at the output of a register, but already incorporates the rail synchronization
within the register control signals. That approach also eliminates the dedicated C-gates
to synchronize the acknowledge signals that are required in the duplication and double-
checking circuits to prevent a synchronization error. A single fault on one acknowledge
line will be ignored as the synchronized register control circuit prevent loading the next
token as long as the redundant path does not receive an acknowledge as well.

108 4. Fault Mitigation

XAcki

Xi

XAcki+1

ϕ

S

R
Ctrl

S

R

Xi-1

YAcki

Yi

YAcki+1

ϕ

S

R

Ctrl

S

R

Yi-1

1a

1b

1a

1b

1a

1b

1a

1b

Figure 4.36: FSL register designed using DRS

Table 4.12 illustrates the FPP of an n-bit DRS register. All token classes that are
produced by single faults that affect only one redundant rail at the same time are masked
due to the comparison performed at rail level.

Table 4.12: Fault propagation probability of an n-bit DRS QDI function

n FPP (T f(−1)) FPP (T f(+0)) FPP (T f(+1))

1 0% 0% 0%

2 0% 0% 0%

4 0% 0% 0%

8 0% 0% 0%

16 0% 0% 0%

32 0% 0% 0%

Table 4.13 compares the hardware overhead of DRS with DRXX versus the number
of bits n by means of gate counting. A more efficient implementation at transistor level
as in Fig. 4.35 is not considered in this work. Each redundant path has 2n latches for
each signal and 1 latch for the completion detector. In case of a single bit register, the
completion detectors do not require a latch:

|L(n)| = 2n + (n > 1)

The number of 2-input gates for the completion detector are calculated with (4.40).
The combinational function to derive the distinct set/reset signals for the data latches
requires 6n gates, the synchronization of the set/reset signals requires another 4n gates
in either path. The total number of 2-inputs gates, where each latch is counted again as
5 gates like in 4.4.3, is

|G(n)DRS| = 2 · (5 · |L(n)| + 6n + 4n + 3n − 2) =

= 2 · (10n + 5(n > 1) + 13n − 2) = 46n − 4 + 10(n > 1). (4.48)

4.4. Duplication and Rail Cross-coupling 109

Table 4.13: Overhead of DRS versus number of bits n by counting gates

latches + 2-input gates
n simple DRXX DRS overhead

vs simple vs DRXX

1 20 48 42 110% -13%
2 46 100 98 113% -2%
4 78 164 190 144% 16%
8 142 292 374 163% 28%

16 270 548 742 175% 35%
32 526 1060 1478 181% 39%

For n ≤ 2 bits, the DRS system is more area efficient than DRXX that is based on
a register design according to Fig. 3.20. Although DRS comes along with fewer latches,
the separate input phase detection for each bit begins to dominate the resources at higher
number of bits. As for the resource estimate of DRXX, a latch was counted equivalent to
5 gates. That factor may depend on the physical implementation of the latch. A synthesis
with Synopsys using the LSI Logic 10K library reported an even worse picture for DRS
as given in Table 4.14. It has to be emphasized that the reported cell area shall not be
used for a comparison with synchronous logic, as the device library is not well suited for
asynchronous designs. The intention is to compare the relative overhead to a simple FSL
design. Here DRS is only efficient for small numbers of n.

Table 4.14: Overhead of DRS versus number of bits n from gate level synthesis

cell area in µm2

n simple DRXX DRS overhead
vs simple vs DRXX

1 37 94 82 122% -13%
2 68 138 152 112% 10%
4 120 228 308 150% 35%
8 192 356 560 183% 57%

16 354 654 1110 205% 70%
32 673 1252 2208 219% 76%

4.4.7 Summary

Several duplication based methods to mitigate single transient faults in QDI circuits
were presented. Comparing the received data on the main and redundant path on the
token level, no solution was found to mask a T f (+1) fault. Only the DRS method, which
compares on rail level is able to reliably prevent this kind of fault class.

On token level, the DRXS scheme has evolved as promising candidate as it minimizes
the hardware overhead in addition to the duplication and mitigates all T f(+0) faults. This
kind of fault is expected to occur frequently if the receiver is connected to a combinational
function, since a wrong intermediate result can be characterized by the sequence T f(+0) ≺
T f(+1). The DRXS scheme was improved with negligible overhead by synchronizing

110 4. Fault Mitigation

the completion detectors. The resulting DRXX method further stores the original non
cross-coupled data and only cross-couples the rails that are evaluated by the input phase
detectors, see 4.4.5. Both modifications do not have an impact on the FPP of T f (+1)
faults but reduce the probability of storing a wrong or inconsistent token, which reduces
the susceptibility of deadlocks.

An investigation of the hardware overhead has shown that DRS is efficient for small
circuits, while DRXX becomes more efficient at larger circuits. Additionally, the FPP of
a DRXX circuit is reduced the higher the number of input rails it receives. A strategic
approach can be derived to adapt the fault mitigation technique depending on the number
of input signals. For small circuits, such as glue logic, DRS is the optimum choice. The
hardware overhead is kept small and the fault tolerance is optimized. For larger circuits,
such as the data path or the arithmetic unit of a processor, DRXX is an alternative
as it reduces the hardware overhead and still provides sufficient fault tolerance. The
more signals a DRXX circuit receives, the higher is its code masking capability. So the
implementation of a fault tolerance mechanism is getting application dependent as each
method has its merits. Table 4.15 summarizes the FPP for all methods discussed in this
chapter.

Table 4.15: Summary of fault propagation probability in an n-bit QDI register

simple DRXC DRXS DRXX DRS

FPP (T f(−1)) 0 0 0 0 0

FPP (T f(+0)) 1
1

n+1 0 0 0

FPP (T f(+1))
4

(n+1)(n+2)
4

(n+1)(n+2)
4

(2n+1)(2n+2)
4

(2n+1)(2n+2) 0

The fault propagation is zero for all T f(−1). Although this fact does not need to
be illustrated, that token class is also depicted to highlight that fundamental property.
Nevertheless, an inhibited transition will lead to a deadlock as it does not complete the
code phase. For this work, a deadlock is acceptable as long as the circuit does not
stop its operation with a token error. The recovery from a deadlock is not scope of
this thesis. The token class T f(+0) is dangerous, as it will always propagate a token
error if no hardening methods are applied. The DRXS and DRXX method show the
same properties, although DRXX is more robust against deadlocks – which is based on
physical, reasonable timing constraints within a register design, but not included in the
boundary conditions defined in 3.4.2. The DRS method does not propagate faults under
these boundary conditions. However, even this type of QDI design requires gate and
register internal timing constraints for a correct operation, while a network composed of
DRS circuits is delay-insensitive.

A detailed assessment of the overhead in terms of power, speed, cost goes beyond
the scope of this thesis. A general overview of the overhead of different asynchronous
design styles is provided in [106]. So far, the hardware overhead for each particular
hardening methods was only compared to an unhardened FSL circuit. As asynchronous
logic is typically compared with synchronous logic, that overhead is briefly investigated

4.4. Duplication and Rail Cross-coupling 111

on the example of unhardened as well as hardened register implementations. Fig. 4.37(a)
shows a simple synchronous register with asynchronous clear and Fig. 4.37(b) depicts the
TMR-hardened version, both circuits are extracted from [107]. Both synchronous and
asynchronous FSL registers are synthesized in Synopsys (Version C-2009.06-SP4) using
the LSI Logic 10K library, which has already been used in this chapter to estimate the
circuit area.

(a) Simple Sequential Cell (DFC1B) (b) TMR Sequential Cell (DFC1B TMR)

Figure 4.37: Synchronous register implementations with asynchronous clear [107]

The simple, unhardened FSL register design is based on Fig. 4.25. A dedicated clear
input is added to make it functionally equivalent to its synchronous counterpart DFC1B.
The fault tolerant FSL register is implemented using the DRXS method according to
Fig. 4.23(b). That design is compared with the synchronous TMR cell DFC1B TMR.

Table 4.16 compares the hardware resources and the overhead of simple FSL registers
with synchronous DF1CB registers for different bit widths n. Both the overhead in terms
of sequential elements (seq) and circuit area (µm2) decreases at higher n. The FSL
design is optimized for larger number of bits, since the overhead of the phase detector
in Fig. 4.25 becomes less significant as the number of bits is increased. In general, the
hardware overhead of FSL is significant. However, it should be mentioned that the used
circuit library does not contain special asynchronous primitive blocks, such as Muller-C
gates. Thus the hardware overhead cannot be assumed as being optimized.

Table 4.16: Hardware overhead of FSL versus synchronous registers

FSL register Actel DFC1B Overhead
n #seq area (µm2) #seq area (µm2) seq µm2

1 5 52 1 10 5.0 5.2
2 7 78 2 19 3.5 4.1
4 11 148 4 37 2.8 4.0
8 19 220 8 73 2.4 3.0

16 35 410 16 145 2.2 2.8
32 67 788 32 289 2.1 2.7

112 4. Fault Mitigation

Table 4.17 compares the overhead of the FSL-DRXS register with the synchronous
DFC1B TMR versus the number of bits n. Although the used circuit library is not
dedicated to asynchronous designs, the duplication plus inherent comparison of DRXS
instead of the triplication and the dedicated voter in TMR, significantly reduces the
hardware overhead of the asynchronous solution. Especially at larger number of bits, the
DRXS design nearly approaches the TMR register. Although, these results cannot be
used as a general statement, they serve as an indication that it is indeed possible to build
resource efficient fault-tolerant asynchronous circuits.

Table 4.17: Overhead of FSL-DRXS versus synchronous TMR

FSL-DRXS Actel DFC1B TMR Overhead
n #seq area (µm2) #seq area (µm2) seq µm2

1 10 112 3 43 3.3 2.6
2 14 160 6 83 2.3 1.9
4 22 266 12 163 1.8 1.6
8 38 418 24 323 1.6 1.3

16 70 764 48 643 1.5 1.2
32 134 1458 96 1283 1.4 1.1

The comparison between asynchronous and synchronous logic was limited to reg-
ister designs only. In combinational functions, the hardware overhead of asynchronous
logic applies as well. That overhead highly depends on the type of the function and the
asynchronous design style. Using Null Convention Logic (NCL) (see 3.5.2) it is possible
to design more optimize combinational functions than using synchronous circuit libraries
– as it was done in this thesis. An example of such an NCL gate is provided in Fig. 3.17,
which shows an optimize full adder. With this technology, a hardware overhead in the
range of 2–3 is achievable [108].

A detailed investigation requires to implement benchmarks or practical applications
on different platforms, which is dedicated to future research. A brief examination is
carried out in chapter 5 where circuits are simulated on gate level.

4.5 Fault Injection Overview

Fault injection is a common practice to evaluate a circuit’s behavior under various
types of faults as well as to assess hardening strategies. One common classification of fault
injection methods distinguishes simulation based, hardware based and software based
techniques as well as combinations of them called hybrid fault injection [109].

• Simulation based methods apply the faults in a simulation model of the system
under test, which almost places no restriction on the type of fault to be injected,
its duration, its location, etc. The system can be simulated on different abstraction
levels depending what granularity shall be reached. That topic is investigated in
chapter 5.

4.5. Fault Injection Overview 113

• Hardware based methods, often referred to as emulation directly apply the fault
in the target hardware. Thereby invasive elements such as saboteurs are added or
mutants are used to replace nominal circuit components. That topic is investigated
in chapter 6.

• Software based methods are targeting the application or operation software of a
system. Faults are injected directly in the software that is executed. The system
may be available as real hardware or as software model. The level of intrusiveness
is not hat high as in hardware based methods. That topic is not examined in this
thesis.

The following chapters 5 and 6 apply the trace based fault model and the developed
DRXX method to practical circuits. For the circuits under test both building blocks such
as adders, comparators, ISCAS benchmark circuits as well as a real-life signal processing
application are used. Rather simple circuits are selected to highlight the properties of
the trace based fault assessment more clearly. These properties apply to complex, larger
circuits and systems in the same way.

5
Simulation

The trace based model developed in chapters 3 and 4 is subjected to simulation based
fault injection experiments. The simulation of faults provides a detailed insight compared
to other methods. However, to simulate asynchronous QDI logic some adaptations to
common fault simulation applied to synchronous circuits are needed.

5.1 Related Work

When dealing with synchronous integrated circuits, there exists a variety of fault
injection tools covering simulation such as [110], [64], [111], etc. In the domain of asyn-
chronous logic that list of tools becomes scarce. Especially due to the absence of a global
clock, fault injection and simulation tools for synchronous circuits cannot directly be used
in asynchronous circuits and vice versa [19].

A template based fault simulation that compares the sequence of signal transitions
in a faulty circuit with the specified sequence in the correct circuit is presented in [19]. The
idea of this simulator is to check whether the expected transition sequence of a QDI circuit
occurs during a fault injection. If not, the specification of the circuit is violated and an
error is reported. Fig. 5.1 shows a simple register and its corresponding signal sequence.
The register is designed as pre-charged full buffer, which is one of the various QDI design
styles. That style is similar to the design of an FSL register in Fig. 3.20. Both the input
and output signals are connected to completion or validity detectors (LCD, RCD) that
enable the calculation of the logic function F if the input is consistent and the buffer is
ready for new data. In case of a simple register or buffer, F is just an identity function.
The pre-charged style also allows any other logic function to be implemented. In this case,
the circuit can be regarded as combinational circuit with a latched output. Fig. 5.1(b)
shows the corresponding register timing.

The template based method considers the simulation of random delays to modify
the main signal sequence. Thereby the delays are extracted from the synthesized signal
list. According to the actual fault location, the delays in the affected part of the circuit
are randomly chosen, while the non-affected circuit parts are simulated with an average
delay. Finally assertion statements are included in the synthesized code that check for

115

116 5. Simulation

(a) Pre-charged Full Buffer (Register) (b) Expected signal transition sequence

Figure 5.1: Template Based Fault Simulator [19]

the correct timing sequence as shown in Fig. 5.1(b) as well as monitor a deadlock by
setting an upper boundary to the processing speed of these signals. The test patterns are
calculated depending on the intended fault location to obtain an optimized test coverage.

Another method to simulate faults in QDI circuits is presented in [112]. The au-
thors apply single stuck-at faults to QDI circuits and evaluate their effects by means of
production rules [34]. The principle is depicted in Fig. 5.2.

Figure 5.2: Token Counting Based Fault Simulator [112]

The effects of single stuck-at faults are classified as token dropping and token gen-
eration, which are combined in the term token error in this thesis. Additionally, a single
stuck-at fault may lead to a deadlock. It is concluded that the fault changes the number

5.1. Related Work 117

of tokens. This property is used to design a fault simulator on a high level of abstraction.
The tool utilizes the token monitor in Fig. 5.2 to compare the number of input tokens
to the number of output tokens to identify a faulty circuit. The expected token count is
pre-evaluated for the circuit design before the synthesis takes place. The faults are then
applied to the synthesized design. Similarly to the approach in [19], the delays for the
selected fault location are adapted and the non-affected circuit parts are simulated with
their inherent delays. Test vectors are selected carefully to obtain a high test coverage.

In [83] the sensitivity of an asynchronous circuit to transient faults is evaluated
during simulation. The goal of this fault simulation method is to identify all valid sensitive
states of a circuit. Thereby a gate is in a sensitive state when an input transition leads
to an unexpected output transitions. Fig. 5.3(a) shows the expected behavior of a 1-bit
QDI register designed in 4-phase dual-rail. In this example, only input I0 is expected to
receive a transition, therefore the C-gate M00 generates an output transition O0. The
register is sensitive to any input transition if Ack = 1 and I0 = I1 = 0. Fig. 5.3(b) shows
an invalid sensitive state. The input I0 receives a premature transition, which leads to
the expected behavior. No error is memorized. Fig. 5.3(c) depicts a valid sensitive state
where a transient on input I1 leads to a wrong output transition on O1.

(a) Expected behavior (b) Premature firing of expected rail (c) Firing of unexpected rail

Figure 5.3: Example of sensitive states in a simple 1-bit QDI register

A fault sensitivity tool analyzes each gate in the circuit for valid sensitive states.
Thereby the natural timings from the gate level netlist after the place and route process
are used. The tool computes a metric that corresponds to the total sensitive time of the
circuit, which is used a measure for the circuit’s robustness. The method can also be
used to identify weak points that are in a sensitive state most of the time and apply local
hardening strategies.

A comparison of transient fault effects in synchronous and asynchronous logic by
simulation is presented in [65]. Faults are injected by means of simulator commands
(force) into a gate-level netlist. The circuit timings are extracted from a Standard Delay
Format (SDF) file that is obtained after the place and route process. Fig. 5.4 shows the
flow and the methodology of the proposed fault simulation tool.

Faults are applied via the pulse model [64] that forces the signal to its inverse value
for the time of transient fault width. The tool distinguishes two different simulation
schemes for transient faults:

1. If the fault hits a combinational block or a C-element with equal input values, the
output is simply forced to its faulty state for the transient fault duration. Fig. 5.5(a)
shows a 2 ns long transient fault that is injected into a simple 2-input C-element.

118 5. Simulation

(a) Simulation flow (b) Methodology

Figure 5.4: Simulation flow and methodology of [65]

After the fault has vanished, the C-element will restore the initial output state logic
0, since both inputs are at logic 0.

2. If the fault directly hits a memory cell or a C-element with different input values,
the faulty output is forced with the deposit option, which holds the subjected signal
at the faulty state until it is updated by its driver. No fault width applies to this
option. Fig. 5.5(b) shows how a transient fault in a C-element leads to a static soft
error at the output. Due to the different inputs, the C-element will preserve the
faulty output even after the fault has gone.

C

(a) C-gate with simple force

0

0

0
x

y

z

force z 1 2ns

C
1

0

0
x

y

z

force -deposit z 1

(b) C-gate with deposited force

Figure 5.5: Fault simulation of a C-element depending on its state

To apply the appropriate force method, the complete netlist of the circuit is pro-
cessed. For each signal, the type of its associated drive circuitry (combinational or memory
cell) and the actual input state at the moment of the fault injection are determined.

That overview focuses on fault simulation in QDI logic but is not exhaustive. Related
work that mainly focuses on the testability of asynchronous circuits is found in [113], [114].
Others perform fault simulation in the analog domain using SPICE simulation [18]. A
symbolic simulation that applies faults on token level depending on the state of the circuit
is presented in [21]. The fault tolerance of a 2-phase 2-of-7 code used for the inter-chip
connections in an asynchronous communication link is simulated in [115]. Random faults
with different width and frequency are injected onto the post-synthesized circuit, although
the simulation itself is not explained in detail.

5.2. Fault Simulation in QDI Logic 119

5.2 Fault Simulation in QDI Logic

A transient fault in a logic circuit has two principle effects. Fig. 5.6(a) shows a
transient fault in a combinational function z = f(x, y). The output z is only defined by
the external inputs x, y. Provided the fault is not logically masked by the function itself,
an SET will be observed at the output. In Fig. 5.6(b), a fault is injected in a sequential
function z = f(x, y, z), where the next output depends not only on the external inputs
but also on the current output. A fault injected into a sequential circuit will be fed back.
Depending on the external inputs x, y the faulty output state may be maintained even
after the fault has vanished. The fault has become a soft error or an SEU.

signal under

test

f(x,y)
x

y

external

inputs

transient fault

f(x,y,z)

x

y

external
inputs

internal

feedback

(a) combinational function (b) sequential function

transient fault

signal under

test

z z

Figure 5.6: Fault injection in combinational and sequential circuits

In [65], this different behavior is taken into account by using the appropriate force
command of the simulator. However, the subjected signal must be first identified to belong
to a sequential gate. Second the external input state of that gate must be evaluated to
determine whether the output state is defined by the feedback or not, which has been
shown in Fig. 5.5. If the gate is in a sensitive state, the deposited force is used, otherwise
the simple force is used.

Within this thesis, another method for the correct signal enforcement has been de-
veloped. Thereby no signal classification and state evaluation is necessary, which reduces
the complexity of the simulation environment. The focus is placed on the fault injection
method itself rather than on a comprehensive fault coverage. In general, the following
approach would be desirable: First, the fault is applied to the signal under test. Then that
faulty state is maintained for the complete fault duration. Finally, the fault is removed
and the subjected signal is re-evaluated by the logic function it belongs to. The following
examination is based on digital circuits designed and described in VHDL. All simulations
are performed in ModelSim from Mentor Graphics.

To obtain the above behavior on register level a dummy signal tForceEvent S was
added to the sensitivity list of all processes in the VHDL design. This signal has no
actual function and is solely used to interact with the simulator environment. A VHDL
process will be only evaluated if any of the signals declared in its sensitivity list generates
an event. Changing tForceEvent S will re-evaluate each process of the design and if
necessary, refresh any signal. That action has no impact on the function or performance
of the circuit. The re-evaluation of the process simply acts as an additional calculation
of the circuit state that is not necessary in the fault-free case. The fault injection will be
performed as follows:

120 5. Simulation

1. The logic state of the subjected signal for the fault injection is evaluated.

2. The signal is forced to the inverted logic state according to the pulse model [64]
using the simple force command, which maintains the faulty state for the complete
duration of the transient fault.

3. After the fault duration, the forced state is replaced by a deposited force command
so the preservation of faults in sequential circuits is modeled correctly.

4. The tForceEvent S signal is toggled and the circuit state is re-evaluated.

If the subjected signal is calculated by a combinational function, the re-evaluation
of the signal’s process will update the signal according to the current external input. If
the signal’s function is sequential and the external inputs are not taken into account,
the faulty state will be preserved. The concept is illustrated using the behavioral VHDL
model of a phase detector.

Example 5.2.1: A phase detector evaluates the code phase of the dual-rail word
rDataIn and generates a logic 1/0 at its output Phase I if all dual-rail signals of
rDataIn are in the phase ϕ1/ϕ0. Otherwise the current phase is maintained. The
corresponding VHDL design comprises two processes. The first one Set P creates the
set and reset signals for the RS-latch that is described in Latch P. See also Fig. 4.25(b)
for a schematic of the phase detector.

Set P : process (rDataIn , tForceEvent S)
variable Set V : s t d u l o g i c ;
variable Reset V : s t d u l o g i c ;

begin

Set V := ’ 1 ’ ;
Reset V := ’ 0 ’ ;
for i in 0 to (rDataIn ’ length −1) loop

Set V := Set V and (rDataIn (i) . a xor rDataIn (i) . b) ;
Reset V := Reset V or (rDataIn (i) . a xor rDataIn (i) . b) ;

end loop ;
Set <= Set V ;
Reset <= not Reset V ;

end process Set P ;

Latch P : process (Set , Reset , tForceEvent S)
begin

i f Reset = ’1 ’ then

Phase I <= ’ 0 ’ ;
e l s i f Set = ’1 ’ then

Phase I <= ’ 1 ’ ;
end i f ;

end process PD P ;

Next, a 10 ns long transient fault is injected onto Phase I at t = 38 ns.
We assume the RS-latch is opaque, i.e. Set = Reset = 0, Phase I = 0 and
tForceEvent S = 0. First the simulation is run for t = 38 ns, then the current
state of Phase I is evaluated using the examine command in ModelSim. The force
value is the opposite logic value. Next the fault is applied using the simple force

5.2. Fault Simulation in QDI Logic 121

method, which utilizes the -freeze option. The simulation is continued for the fault
duration of 10 ns. A deposited force replaces the previous simple force via the -deposit
option and tForceEvent S is set to logic 1, which will re-evaluate Set P and Latch P.
The deposited force maintains the forced Phase I until it will be updated by an event
on the Set or Reset signal of the latch.

run 38ns
i f { [examine / uut i /Phase I] == 1} {

set f v a l 0
} else {

set f v a l 1
}

force − f r e e z e / uut i /Phase I $ f v a l
run 10ns
force −depo s i t / uut i /Phase I $ f v a l
force / uut i / tForceEvent S 1 10ns
run 100ns

-freeze -deposit

fault duration

force duration

The presented approach can also be used on gate level. Since the synthesis process
removes any unnecessary signals from the design, the tForceEvent S signal was manually
added to the gate level simulation models. It has to be emphasized again, that adding
this signal does neither have an impact on the logic function nor, in case of the gate level,
on the timings of the modified circuit.

Manipulating the tForceEvent S signal in the process sensitivity list allows a realistic
simulation of combinational and sequential circuits on register level. Especially in QDI
logic, even combinational circuits contain latches that have to be simulated correctly. In
the transparent phase, a latch behaves like a simple combinational function. In the opaque
phase, it behaves like a sequential circuit that is solely defined by its internal feedback.
The presented approach of adding a dummy signal to each process sensitivity list can also
be applied to synchronous designs to perform a realistic simulation of both SET’s and
SEU’s.

To simulate a circuit with representative timings there exist two choices depending
on the level where the simulation takes place:

1. On register level, the timings have to be added explicitly e.g. by using the after

statement in VHDL. Although this process generates considerable effort, it is a
convenient way to model arbitrary delays.

2. On gate level, the synthesis tools provide a realistic simulation model using native
components with their timings described in a Standard Delay Format (SDF) file.
This file can be loaded in the simulator to run realistic timing simulations.

Both methods have their merits. On register level, the design and the impact of
delays, faults, etc. are more easy to understand and to describe. In practical QDI
circuits, the internal gate design anyhow depends on matched delays, while the connections
between such atomic gates are delay-insensitive, as described in chapter 2. The timings

122 5. Simulation

of these connections define the circuit’s trace and these few parameters can be modeled
quite simple on register level. The transparent design allows to adjust these traces easily.
This allows to easily study different scenarios and find clues for optimal routing.

On gate level, realistic timing figures are provided by the SDF file and the native
components of the target platform. A fault injection simulation comes closer to reality
than on register level. Since a circuit’s robustness also depends on temporal masking,
a realistic assessment of this figure requires a simulation with realistic parameters. To
assess the fault tolerance of a particular design on a particular platform, a simulation of
the gate level netlist is inevitable.

Within this thesis, the timings of the circuit are defined on register level for the
testbench components only. These components are not related with the function of the
design under test, such as testbench control functions or test vector memories. The
design under test is simulated on gate level. Thereby all circuits are synthesized in a
Xilinx Virtex-4 device using the Xilinx ISE 10.1 tool suite. The timings of the design
under test are generated during the synthesis and implementation process and provided
in an SDF file. A simulation of the design under test on register level is not performed.

5.3 The FOSTER Tool

To simulate the effects of transient faults in QDI logic, the FOur STate ERror
(FOSTER) simulation tool was developed. The name originates from its original intended
application, the examination of fault and errors in FSL circuits. However, it can be applied
to other QDI implementations, such as 4-phase dual-rail or k-of-m codes as well. The
FOSTER tool allows to inject transient and permanent faults into the VHDL model of
the design under test via the simulator environment. It has been fit to ModelSim from
Mentor Graphics but can be adapted to other simulation tools as well. The functionality
of the tool is similar to [116] developed for the European Space Agency (ESA). However,
it is extended to simulate not only single event upsets, but in general all types of transient
and permanent faults.

Since fault injection itself is not the main topic of this thesis, not too much effort
has been spent on designing a sophisticated, highly customizable tool. The focus was set
on the special needs for simulating faults in QDI logic.

5.3.1 Description of the Tool

The FOSTER tool was written in TCL/Tk, which is the scripting language not only
for ModelSim but also for other digital design tools such as Xilinx ISE or Synopsys. It
can be run either within ModelSim or from the command line. Fig. 5.7 shows a screen
shot of the user interface. On top of the main window, a menu bar offers several options
such as to define the simulation settings, to load new designs, to compare log files from
different simulation runs, etc. In the center of the main window, the different signals of
the design are listed. The user has the following options to perform fault injections:

• The disturbed signal can be selected manually, randomly or the tool may be setup
to step through all signals of the circuit.

5.3. The FOSTER Tool 123

• The fault type can be either a stuck-at 0/1 or a pulse fault, see 2.2.3.

• The fault duration can be defined fixed or randomly.

• The moment of the fault injection can be selected manually, randomly or the tool
may be setup to inject a fault every pre-defined time step.

• The primary input stimulus can be loaded from a file.

All these options can also be defined in a configuration file and the FOSTER tool can
then be run from the command line using that configuration file.

Figure 5.7: FOSTER - A simple fault injection tool for FSL circuits

The tool includes a parser that prepares the design for the fault injection. In the
first step all internal signals of the circuit under test are extracted and compared with the
file ExcludeList.txt. This file is used to manually exclude signals from the fault injection.
In this thesis, all global Reset signals were excluded. Applying a fault on the reset will
always produce an error, thus this net is a special case in any digital design and has been
excluded.

Input and output ports are treated specifically. The force command in ModelSim
does not allow to stimulate an input port that is connected to a higher level module.
Therefore only the input ports of the highest level – the primary inputs – are added to
the list of fault injection signals. If the output port of a component is directly forced,
all externally connected signals will follow the forced state but the internally connected

124 5. Simulation

signals of the component will be unaffected. That constitutes an undesirable and unre-
alistic behavior. Therefore, each output port will be connected to one dedicated internal
signal. Instead of the port, only its internal signal will be subjected to fault injections.
That approach leads to the desired effect, i.e. the fault will propagate externally via the
port as well as internally.

entity FSL NAND2 i s

port (
rX : in f s l u l o g i c ;
rY : in f s l u l o g i c ;
rZ : out f s l u l o g i c) ;

end FSL NAND2 ;

architecture r t l of FSL NAND2 i s

s ignal rZ Q : f s l u l o g i c ;
. . .

begin

−− app ly f o r c e to rZ Q ins t ead o f por t rZ

rZ <= rZ Q ;
. . .

end r t l ;

In a hierarchical design, the output port of a component is mapped to a higher level
via an interconnection signal. This signal as well as the internal signal that has been
introduced to stimulate the output port actually form a single physical net. For a correct
fault evaluation a multiple stimulation of a net must be avoided. Therefore all signals that
are connected to a port are labeled with the postfix I to mark them as interconnections.
These interconnection signals are removed from the fault signal list automatically.

Example 5.3.1: Fig. 5.8 shows a modular design that comprises three components
C1, C2 and C3. The output ports of these components are C1O, C2O and C3O. The
logic state of these outputs is represented by the component internal signals C1 Q,
C2 Q and C3 Q. The external connections of the output ports are formed by the
signals C1 I, C2 I and C3 I. When generating the signal list for the fault simulation,
the interconnection signals and component output ports are removed. Finally, the
signal list comprises {PI1; C1 Q; C2 Q; C3 Q}. Now each physical net of the shown
design level is represented by one signal only.

C1 C2

C3

C1_Q C2_Q

C3_Q

C2_I

C3_I

PO2

PO3

PI1 C1_IPI_I

Figure 5.8: Signal connections in a hierarchical design

To interact with the simulator environment, the dummy signal tForceEvent S was
added to the sensitivity list of each process declaration. Thus, all signals ending with S
are also excluded from the fault signal list. After this selection process, each physical net

5.3. The FOSTER Tool 125

of the design under test is described by one single signal no matter how many hierarchical
levels the design has.

That process works for both register transfer level and gate level VHDL models. In
gate level simulation models, the design is typically composed solely by interconnections
of primitives such as buffers, latches, look-up tables, etc. These models are rather large
VHDL files and it would be cumbersome to add the ending I to the interconnection
signals. Thus in gate level net lists, the top level signals are excluded from the fault
injection in general. A flattened design is not used as it does show the hierarchical levels,
which eases the location of signals within the design. Additionally, gate level net lists
contain global signals to define nets that are fixed strapped to logic 1 or 0 as well as
unused signals for e.g. clock management units that are automatically synthesized in
FPGAs. The FOSTER tool automatically excludes all fixed strapped and unused signals
from the fault injection as they would falsify the result.

5.3.2 Error detection

The sensitivity of the circuit under test to the applied transient faults is evaluated
by comparing the result at the primary output with a golden reference model that is
obtained by simulating a fault-free circuit. All consistent, primary output data is written
to a log file that is used for comparison. Thereby the logged time stamp is ignored as
the timings may differ from run to run according to the simulation setup or to the fault
impact. Only the data sequence is compared, since each consistent data must describe a
valid token. If the fault has no impact, the token sequence of the faulty run must agree
with the token sequence of the reference run.

That decoupling from time is only applicable up to a certain value. In the event of a
deadlock, the circuit will have stopped and the number of logged tokens will be less than
the number of expected tokens. The simulation time must be extended compared to the
time needed for the reference run to take into account delay faults. However, it is quite
easy to set the simulation time to a realistic upper boundary. If there are tokens missing
after that time has expired, a deadlock will be indicated.

The FOSTER tool handles three different types of errors – deadlock, token error and
synchronization error. Table 5.1 shows the log files of a 4-bit register output. The table
only depicts the a-rail of the register output, which corresponds to the boolean value, see
Table 2.1.

Table 5.1: Errors detected at a 4-bit QDI register output

Reference Data Deadlock Token Error Synchronization
Error

49 ns 0100 49 ns 0100 49 ns 0100 49 ns 0100
68 ns 0011 68 ns 0011 68 ns 0011 68 ns 0011
98 ns 1110 98 ns 1110 98 ns 1110
122 ns 1001 120 ns 1101 124 ns 0101
143 ns 0000 141 ns 0000 145 ns 1100
171 ns 0101 169 ns 0101 173 ns 1010
189 ns 1100 187 ns 1100 191 ns 0001
219 ns 1010 217 ns 1010 221 ns 0110

126 5. Simulation

A deadlock is detected by comparing the lengths of the recorded data and the
reference data. In Table 5.1 only two tokens were recorded before the circuit deadlocked.
Token and synchronization errors do not alter the length of the recorded data. The token
error in column three solely corrupted the forth entry. The FOSTER tool indicates a
token error if a single entry of the recorded data set differs from the reference data. A
synchronization error will remove tokens from the recorded sequence. In Table 5.1 the
token pair {1001; 0000} is removed by a synchronization error, which is indicated by the
horizontal line in the column. The FOSTER tool counts a synchronization error if one or
two tokens are removed from the reference series but the content of the remaining tokens
is not changed.

5.3.3 Random Tests

Chapter 3 has shown that the number of traces in a QDI circuit grows rapidly with
the size of the circuit due to the usage of permutations. If faults are injected, the circuit
trace set is extended to the fault trace set, which is even larger. An exhaustive fault
injection requires an enormous effort even at moderate circuit complexity and becomes
practically impossible for large and complex circuits. Therefore random fault injections
in combination with probability theory are used in this thesis.

In general, a fault injection experiment can be regarded as Bernoulli experiment
with the result being either a success (0) or a failure (1). A successful trial is defined
when the injected fault did not lead to an error. The results of these experiments can
be described by discrete random variables Xk ∈ {0; 1}, where k denotes the kth fault
injection run. If N fault injection runs with randomly chosen parameters are performed,
the average soft error probability p̂ can be computed with

p̂ = 1/N
N∑

k=1

Xk =
|T f |

N
(5.1)

which corresponds to the number of received errors |T f | divided by the total number of
simulation runs N . If the number of runs is selected sufficiently high (ideally N → ∞)
the measured p̂ will approximate the true mean value (typically denoted µ in statistics)
of the discrete random variable X. Thereby the mean value describes the true soft error
probability of a latch l that receives a specific trace set T : µ ≡ p ≡ Pf(l, T).

In case N < ∞, the average p̂ will deviate from the real unknown mean p. A confi-
dence interval [pu, po] can be given that encloses the real mean value pu < p < po with a
certain probability. To determine that interval, the probability distribution of the random
variables Xk must be known. In the case of a success/failure fault injection experiment,
Xk follows a binomial distribution. Typically, that distribution is approximated by a nor-
mal distribution according to the central limit theorem as that distribution is more handy
to work with. However, a normal distribution will not provide accurate results if the true
soft error rate is anticipated low (p < 0.1) [117]. In this case, the binomial distribution
is asymmetric and cannot be estimated very well by the Gaussian shape of the normal
distribution. Therefore, the confidence intervals in this thesis are determined by using the
Clopper-Pearson method [118], which calculates [pu, po] using the binomial distribution
itself and not any approximate distribution.

5.3. The FOSTER Tool 127

If not otherwise stated a confidence level of γ = 1 − α = 95% is selected for p, i.e.
the calculated confidence interval will contain the unknown mean p with a probability of
95%. The intervals are calculated using Matlab.

Example 5.3.2: A fault injection experiment with N = 1000 independent runs results
in 38 errors in a latch l, i.e. p̂ = 3.8%. The 100(1 − α) = 95% confidence interval is
found using Matlab:

[phat, pci] = binofit(38, 1000, 0.05)

phat = 0.038

pci = [0.0270, 0.0518]

Thus the confidence interval is [pu, po] = [2.70%, 5.18%].

Table 5.2 shows the 95% confidence interval [pu, po] versus the average probability
p̂ and the number of runs N . For an accurate fault investigation based on random ex-
periments a high number of runs has to be selected. Performing 1000 fault injections
results in an acceptable simulation time, while it does not provide a satisfactory confi-
dence interval especially for small p̂. Making 10000 runs narrows the confidence interval
but requires a high computation effort. As a compromise, the fault injection experiments
in this thesis were generally performed with N = 5000 independent random runs if not
otherwise stated.

Table 5.2: Confidence interval versus p̂ and number of runs

N = 100 N = 1000 N = 5000 N = 10000
p̂ pu po pu po pu po pu po

0.1% 0.000% 3.823% 0.003% 0.556% 0.033% 0.233% 0.048 0.184%
0.2% 0.000% 4.019% 0.024% 0.721% 0.096% 0.368% 0.122 0.309%
1.0% 0.025% 5.446% 0.481% 1.831% 0.743% 1.316% 0.814 1.215%
2.0% 0.243% 7.038% 1.226% 3.072% 1.630% 2.427% 1.735 2.294%
5.0% 1.643% 11.284% 3.734% 6.539% 4.412% 5.641% 4.581 5.446%

10.0% 4.901% 17.622% 8.211% 12.029% 9.182% 10.865% 9.419 10.605%
20.0% 12.666% 29.184% 17.562% 22.616% 18.899% 21.136% 19.220 20.798%
50.0% 39.832% 60.168% 46.855% 53.145% 48.604% 51.396% 49.015 50.985%

Finally, a random fault injection experiment yields the soft error probability for the
applied stimulus vector. For this thesis, the stimulus vectors were also selected randomly.
The size of the code phase set for an n-bit wide test vector can be calculated according
to (3.1). Thereby the factorial n! considers the different possible arrangements of rail
transitions in the trace, while the factor 2n considers the number of distinct boolean
values that can be described. For a process, which includes environmental impacts as
well as the circuit layout, the observable sequences of rail transitions for a single boolean
value is much smaller than n! as there are only minor variations depending on which rail
is excited, see 5.4.2. Therefore, the number of different code traces that is expected is in
the range of 2n. The length of the selected stimulus vectors in the fault injections has
been selected > 5 · 2n to ensure that each possible trace occurs several times in the test

128 5. Simulation

data. For example, the test vector for a 4-bit circuit has to contain at least 80 entries.
The impact of the test vector length has been verified by means of experiments. Longer
thest vectors did not have any significant impact on the test results. A more detailed
investigation of test vector length is left for future research.

5.3.4 Evaluation of Token Classes

The token classes were introduced in 3.4.3 as general property to describe the be-
havior of QDI signals with and without transient faults. The FOSTER tool allows to
extract these token classes by using the TraceLogger component. Fig. 5.9(a) depicts the
general logging circuitry. The data to be evaluated is DataIn, which is received by the
register under test. That register is simulated as synthesized component with the timings
defined in the SDF file. If the unit under test is placed within a pipeline, the successor
stage(s) are also synthesized registers that belong to the circuit under test. The last stage
of a pipeline is formed by a virtual testbench register. If it detects a new code phase, it
will store the received token in the file Result.log and acknowledges its reception after a
user-defined delay ∆t. Thus in general, the testbench cannot be synthesized.

The TraceLogger records all transitions at the register input and stores them in
trace.log. To convert the recorded transitions into code phase traces, a dedicated TCL
script is used that stores them in traceset.log. Thereby each acknowledge event starts a
new trace. The trace logger can be connected to an arbitrary net in the circuit to record
the traces at that location. Thereby a fork is formed between the logged trace and the
input trace of the monitored register under test. While that register receives the trace
t1, the trace logger receives the trace t2. As the trace t1 shall be logged, all signals and
buffers on the branch towards the trace logger are modeled with zero delay to ensure
t2 = t1. That is accomplished by correcting the delays in the associated SDF file.

Additionally, no register duplication is allowed for the monitored signals. Register
duplication is typically implemented by synthesis tools to reduce the loading of registers
that drive multiple sinks. As the trace logger is a virtual testbench component, it has to
be attached via primary output ports of the design under test. These ports constitute a
high loading. So the driver that is connected to the root of the fork in Fig. 5.9(a), which
is formed by a register in the preceding logic, will be typically replicated and each branch
of the fork will be attached to a separate driver. Thus the trace logger may actually
monitor a replicated signal with a different trace. The replication of registers is prevented
in the configuration of the synthesis flow. It does not have any inadvertent effect on the
simulation.

Fig. 5.9(b) gives a simple example of a 2-bit FSL circuit. It shows the capture of the
register output in the file Result.log and the evaluated code phase traces in traceset.log.
The recorded trace set is used to determine the impact of the different types of error
masking on the soft error rate.

5.3. The FOSTER Tool 129

Ack
Result.log

new code

phase

trace.log

trace

logger

Register
(UUT)

DataIn

traceset.log

calculate

traces

(a) Data and trace logging (b) Example of a 2-bit FSL circuit

0000 0100 0101 1101 1100 1101 1010DataIn

Ack

Result.log 0000 0101 1100 1010

{2} {2,4} {1} {1,3} {4} {4,2}traceset.log

zero-delay

Register
(Test-

bench)∆t

t1

t2=t1

Figure 5.9: Logging the trace of a QDI circuit

5.3.5 Interpretation of Soft Error Probability

The soft error probability Pf (T, l) of a register/latch that receives a specific trace set
T is derived by counting the received errors |T f | within N independent fault simulations:

Pf(l, T) =
|T f |

N
. (5.2)

The soft error probability can be expressed by code, logical and temporal masking
as given in (4.4). Electrical masking is not considered as already described. Thereby the
masking factors in (4.4) are now expressed as a function of the affected latch l and the
received trace set T :

Pf (l, T) =
|T f |

N
= Psens(l, T) · Platched(l, T). (5.3)

So far, temporal masking has been excluded in this thesis. To examine its contri-
bution, faults are injected directly at the primary inputs of a register. Thereby, temporal
masking only applies if the register and the application is simulated with realistic timings.
A register with zero delay would immediately capture a token error if the input receives
a wrong phase prefix. That conservative assumption has been made in the assessment of
the fault propagation in 4.3.1 but it will not hold in a real circuit. Similarly, in an infinite
fast application a register will always be able to receive new data. In a real application,
the register will not be sensitive to new data for a certain time due to the finite handshake
period. To detect temporary masked traces, traceset.log is scanned for all traces ti that
may propagate an error, i.e. FPP (ti) = 1, but that did not lead to a token error:

1. The trace must be a member of the wrong prefix set T pf , see 4.3.1

2. The simulation run must be successful, i.e. no error is reported

The FOSTER tool marks such simulation runs to indicate the suppression of wrong
prefix traces by means of temporal masking.

Example 5.3.3: Transient faults were injected at the inputs of a 2-bit FSL register
as shown in Fig. 5.9(a). Both the register internal timings and the timings of its

130 5. Simulation

environment are modeled by an SDF file. In the fault-free simulation the register
receives the data sequence rtOutP = {1010; 0010; 0011}, which can be described by
the trace t1 = {14}. In a random simulation, a transient fault was injected on rail
3, which generated the trace tf3 = {1343} and the wrong phase prefix tpf

3 = {13}. A
portion of the recorded data from the trace logger is given below. It shows that rail 3
is disturbed for a total time of 820354 - 818629 = 1725 ps, while the duration of tpf

3 is
819131 - 818629 = 502 ps. The simulator detected the transitions on rails 1 and 3 at
the same time, although the trace based model does not consider concurrent events.
This difference is not a limitation and has been discussed in 3.4.

Listing 5.1: Trace logger output with wrong prefix not captured

Time : Data : Ack : Cons : Trace
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
. . .
803769 ps : 1010 : 1 : 1 :
818629 ps : 0000 : 1 : 0 : 1 3
819131 ps : 0001 : 1 : − : 1 3 4
820354 ps : 0011 : 1 : 0 : 1 3 4 3
833200 ps : 0011 : 0 : 0 :
851175 ps : 0010 : 0 : − : 4
. . .

Although the register received a wrong prefix, it did not capture a token error
as illustrated in Fig. 5.10. The register input is described by the two top waveforms
rtOutP1/rtOutP0. The register output is provided in rOutP1/rOutP0 below. The
bottom waveforms show the acknowledge signal of the register (ack) and the boolean
value of the register output (dataout). The duration of tpf

3 is not long enough to
capture the wrong input 〈0000〉. The fault even did not propagate to the register
output as shown in waveform.

Sink

10 00

10 00 01 11

{1 0} {0 0}

{1 0} {1 1}

11 01

820 ns 824 ns 828 ns

Sink

uuti/rtOutP1 10 00

uuti/rtOutP0 10 00 01 11

/fsl_c17regt_syn_tb/routp(1) {1 0} {0 0}

/fsl_c17regt_syn_tb/routp(0) {1 0} {1 1}

sinki/ack

sinki/dataout 11 01

prefix duration

fault duration

Figure 5.10: Temporal masking of a T (+1) token error

There exist two main reasons for the rejection of a wrong phase prefix:

1. In the definition of the FPP in 4.3, any T (+1) token with a wrong phase prefix
was counted as error, since it was assumed that the register is always ready for new
data. In reality that is not always the case. If the register does not immediately
process the wrong phase prefix, there exists a certain probability that the fault is
removed before the register is able to receive it. Such a behavior is similar to the

5.3. The FOSTER Tool 131

latching-window masking of synchronous circuits, if the fault is removed before the
clock edge occurs.

2. Even if the register awaits the wrong prefix, the non-zero internal delays may prevent
the capture of a token error. Either the fault duration is too short to be processed
or several transitions are that close in time that a practical circuit cannot separate
them. In this case an inconsistent token is sensed, which will be rejected. The
previous example has shown such timing effects.

From the number of received token errors, the temporal masking effect can be cal-
culated with

Platched(l, T) =
|T f |

|T f | + |T pf
c |

(5.4)

where |T pf
c | denotes the number of wrong prefixes that lead to a correct result. The

number of sensitive traces may be received as token error can be found by solving (5.3)
for Psens(l, T):

Psens(l, T) =
Pf(l, T)

Platched(l, T)
=

|T f |

N
·
|T f | + |T pf

c |

|T f |
=

|T f | + |T pf
c |

N
. (5.5)

As Pf(l, T) is a function of the actually received trace set T , different trace sets may
lead to different results as well. For a generally valid soft error probability, the trace set
must contain all possible code phase traces with a uniform distribution.

Example 5.3.4: A pipelined C17 benchmark circuit was simulated as shown in the
setup of Fig. 5.16. Thereby a series of 1000 random 2 ns long transient faults was
injected only at the inputs of the 2-bit receiving register. In total 23 token errors were
recorded, while 29 traces had a wrong phase prefix, but did not trigger an error:

Platched(l, T) =
|T f |

|T f | + |T pf
c |

=
23

23 + 29
= 44.2%

Psens(l, T) =
|T f | + |T pf

c |

N
=

23 + 29

1000
= 5.2%.

The previous example showed 5.2% sensitive traces. This number deviates from
the predicted FPP of a 2-bit FSL circuit, which is 33.33% as calculated in 4.3.1. The
following reasons lead to this deviation:

1. The term Psens(l, T) includes logical masking, where a fault may hit a rail that is
anyhow expected to be excited. A detailed investigation of the recorded trace set
showed that 51.6% of all faults led to an expected rail transition. That comes close
to the theoretic probability of 50% if all faults were injected uniformly across all
dual-rail signals.

2. The FPP not only assumes that a fault solely generates unexpected rail transitions,
it also assumes that all fault traces are uniformly distributed.

132 5. Simulation

Both factors are eventually taken into account by the weights given in (4.8). Note
that the FPP has been introduced to compare the robustness of a circuit independent of
the actual trace set it receives. It will only become equal to Psens(l, T) if all fault traces
are distributed uniformly and if all transient faults affect unexpected rails.

In the following, the fault trace distribution is examined more closely. Fig. 5.11(a)
shows the inherent input trace distribution and Fig. 5.11(b) depicts the injected fault
distribution from the previous example. The average is marked with a dotted line. While
the fault distribution is rather uniform, the inherent trace distribution depends on the
input data set as well as the circuit timings.

13 31 14 41 23 32 24 42
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

e
x
p
e
c
te

d
 t
ra

c
e
s

(a) Input Trace distribution

1 2 3 4
0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

fa
u
lt
 d

is
tr

ib
u
ti
o
n

(b) Fault distribution

Figure 5.11: Simulated trace and fault distribution

Fig. 5.12 shows the distribution of all traces that led to an error. That figure is even
more distorted as it would be expected from the input trace distribution in Fig. 5.11(a).

All traces where the faulty transitions are placed in between the nominal trace and
not at the boundary, e.g. {3, 1, 1, 2}, did not occur. Looking at the signal waveform, it
was found out that the skew on the signal under investigation (which is understood as
the delay between the first and the last rail transition during the code phase change) was
around 600 ps, which is much shorter than the fault duration of 2000 ps. Such a scenario
is depicted by Fig. 5.13(a).

Similarly, if the complete recorded trace set is examined, it was found out that
93.5% of all traces had both faulty transitions at their boundaries, e.g. {1, 1, 3, 2} or
{3, 2, 1, 1}. These traces constitute the majority in the simulation and they do not lead
to a token error as they do not comprise a wrong phase prefix. The reason for this non-
uniform distribution is the rather long handshake cycle period Tc compared to the fault
duration ∆t. Fig. 5.13(b) illustrates that behavior. The handshake cycle can be divided in
sensitive and insensitive windows. During the sensitive window, the register receives the
n rail transitions that are needed to change the code phase. If the fault occurs during that
window, it is able to generate a wrong prefix. The length of the sensitive window is defined
by the skew on the data bus ∆s. After a token has been captured and acknowledged, the
register waits until the predecessor provides the next one. During that time, the register is
not fault sensitive as a single fault alone cannot change the code phase (the only exception
is a single-bit register, which is not regarded here). If the fault occurs in the insensitive

5.3. The FOSTER Tool 133

0

1

2

3

4

5

6

7

8

9

10

11
Fault trace distribution

N
u
m

b
e
r

o
f
T

ra
c
e
s

t1
3

1
2

t1
3

2
1

t1
3

3
4

t1
3

4
3

t1
4

1
2

t1
4

2
1

t1
4

3
4

t1
4

4
3

t2
3

1
2

t2
3

2
1

t2
3

3
4

t2
3

4
3

t2
4

1
2

t2
4

2
1

t2
4

3
4

t2
4

4
3

t3
1

1
2

t3
1

2
1

t3
1

3
4

t3
1

4
3

t3
2

1
2

t3
2

2
1

t3
2

3
4

t3
2

4
3

t4
1

1
2

t4
1

2
1

t4
1

3
4

t4
1

4
3

t4
2

1
2

t4
2

2
1

t4
2

3
4

t4
2

4
3

Figure 5.12: Actual fault trace distribution from Example 5.3.4

ϕ0

fault duration => {3112 } ∉ Tf

inconsistent

Code

Phase
ϕ1

{3}

Ack

{32} {4} {42}

ϕ0

Trace

skew

∆t

Faults

Rail 1

Tc

(a) Removal of fault traces depending on fault duration (b) Fault probability during a sensitive window

sensitive

window

insensitive

window

{1132 } {3211 }
{1321}

∆s

Figure 5.13: Impacts on fault trace distribution

window, it will generate a trace with all faulty transitions placed at the trace boundary.
The combinational probability to get a faulty transition within the sensitive window is
given by

pw =
∆t + ∆s

Tc

. (5.6)

The average handshake period in Example 5.3.4 was Tc = 31 ns. That time was
mainly determined by the input / output buffer delays that have been generated by the
synthesis process and the artificial delays in the test bench. With the fault duration of
∆t = 2 ns and the average skew of ∆s = 0.6 ns, the probability to hit the sensitive
window is only pw = 8.3%. That theoretic number almost correlates with the measured
figure of 100%−93.5% = 6.5%, which is obtained by excluding all traces with both faulty
transitions at the trace boundaries. The difference mainly stems from the non-uniform
distribution of the fault injection moments as well as from the variations of Tc and ∆s

134 5. Simulation

between each particular handshake cycle.

The impact of the ratio of the handshake cycle to the fault duration was tested
by reducing the average handshake period in Example 5.3.4 from 31 ns to 24 ns. That
reduction was obtained by making the testbench circuits faster and by reducing the I/O
delays of the circuit under test via its SDF file. As a result, the probability to hit the
sensitive window pw increases by 31/24 = 29.2%. A random fault injection scenario using
this setup gave Psens(l, T) = 6.6%, i.e. the number of sensitive traces was increased by
26.3% compared to Example 5.3.4, which is almost the same factor as the increase in pw.

To further examine the impact of the fault duration as well as the handshake cycle
period, fault injections with different fault durations were performed. Thereby the fault
duration was even extended beyond one handshake cycle.

Example 5.3.5: The fault injection experiments from Example 5.3.4 were repeated
with fault durations ∆t = {100 ps ... 5 µs}. The results are presented in Fig. 5.14.
Both Pf(l, T) and Psens(l, T) increase with a longer fault duration until they saturate
at fault durations 50 ns and longer, when the fault duration exceeds the nominal
handshake period.

∆t Pf (l, T) Platched(l, T) Psens(l, T)
100 ps 0.4% 30.8% 1.3%
200 ps 0.6% 37.5% 1.6%
500 ps 3.2% 71.1% 4.5%

1 ns 3.5% 66.0% 5.3%
2 ns 3.8% 62.8% 7.8%
5 ns 4.8% 57.1% 8.4%

10 ns 5.7% 47.5% 12.0%
20 ns 7.9% 42.3% 18.7%
50 ns 9.1% 36.0% 25.3%

100 ns 9.1% 36.0% 25.3%
...
5 µs 9.1% 36.0 25.3%%

10
2

10
3

10
4

10
5

10
6

10

20

30

40

50

60

70

Fault Duration [ps]

P
e
rc

e
n
ta

g
e
 [
%

]

Pf

Psens

Platched

Figure 5.14: Fault sensitivity versus fault duration (Example 5.3.4)

At long fault durations with ∆t > Tc, a faulty transition will always be present in the
sensitive window and pw = 1. The fault trace distribution will be even further distorted
as the majority of all traces start and end with a faulty transition, e.g. {1, 3, 2, 1}. Only
faults that are applied during the sensitive window will not generate a trace that starts
with a faulty transition, however, these traces are the minority as ∆t ≪ Tc. That can
also be checked using Fig. 5.13.

The FPP of traces where a fault occupies the first and last transition of the trace
can be calculated as follows. There are n! total traces, where (n − 1)! have a wrong
phase prefix as the last two transitions must take place on the same dual-rail signal,
compare also with 4.3.1. So FPP = 1/n or 50% for the 2-bit test circuit. Taking into
account a uniform chance to hit an expected rail, reduces FPP by another 50%. Thus

5.3. The FOSTER Tool 135

Psens(l, T) = 25% in the theoretic case when all traces are uniformly distributed. Fig. 5.14
shows a high correlation to this theoretic boundary. However, as the trace distribution
is not expected to be uniform (as shown in the previous investigations on this example)
that correlation is rather coincidental. Repeating the experiment with different stimuli
yielded to Psens(l, T) = 25% . . . 30% and Pf (l, T) = 5.9% . . . 9.1%.

Another property shown in Fig. 5.14 is the peaking of Platched(l, T). That peak
could be reproduced also at other fault injections with different stimuli, although not that
distinctive. A closer investigation has shown that the peak always occurred at ∆t ≈ ∆s.
At longer fault durations ∆t > ∆s, the number of wrong prefixes is getting larger as
it is more likely to hit the sensitive window. Similarly, the number of wrong prefixes
that do not lead to an error, |T pf

c |, is also increasing. That number grows faster than
the total number of received errors |T f |, so (5.4) is decreasing. If the fault duration
becomes ∆t < ∆s, both |T pf

c | and |T f | are decreasing, which eventually also reduces
Platched(l, T). If the fault duration is in the range of the skew, the size of the fault trace
set is a maximum, as the short fault duration permits all possible trace constellations,
which leads to a maximum in |T f | compared to |T pf

c |. A more detailed investigation of
all the particular contributions to the soft error probability goes beyond the scope of this
work, especially since nothing can be done against the fault duration on application level.

In Example 5.3.5 fault durations up to several microseconds were simulated. Such
long fault durations are not realistic when speaking about transient faults. As already
discussed in 2.2.2, transients fault durations range from 100 ps up to 1 ns, depending on
the circuit environment and the manufacturing process.

A surprising result of the simulation was the occurrence of deadlocks, although
these deadlocks should not occur when faults are injected at interconnections, as derived
in 3.5.1. A closer examination of the simulations revealed that some faults violated
timing constraints of the used circuit models, such as minimum set/reset pulse width,
set/reset recovery time, etc. The simulation model reacts on these violations by setting the
corresponding signal to an unknown state. An unknown boolean state eventually freezes
the handshake as it cannot be interpreted as valid dual-rail code. A post-processing of
the simulation results confirmed the theoretic assumptions, that no deadlocks are possible
when faults are applied to pure interconnects. To solve this issue, the undefined state in
the test result is detected and marked. Such a result is not counted as deadlock but
highlighted to the user. A more detailed investigation of the drawbacks when simulating
asynchronous logic is given in 5.4.

A real circuit should not be able to generate any undefined or unknown boolean
states. The only exception is metastability when a logic signal is forced to the forbidden
zone between logic 0 and logic 1. However, even those metastable states will resolve
within some time and will not be permanent as in the simulation results. The generation
of unknown states when simulating synthesized circuits has evolved as major drawback
of fault simulation in general. A simulation is just as good and realistic as the model it
uses. For the fault simulations in this thesis, only synthesized net lists after the place
and route process were used. These are described by VITAL (VHDL Initiative Towards
ASIC Libraries) compliant VHDL models that use platform dependent primitives. For
this work the Xilinx Virtex-4 libraries were taken, since this FPGA will be used later for
hardware implementations as well. The timings of the routed design are provided in an
SDF file, which defines the parameters for the VITAL functions in the VHDL gate net

136 5. Simulation

list. In general this modeling approach generates a quite realistic behavior, although it
cannot replace hardware based fault injections.

Nevertheless, simulation based fault injection provides a level of insight into a design
that cannot be reached by hardware based fault injection. The effect of transient faults
can be investigated down to the particular transistor that is actually affected by the
transient fault incident. Further, the timings of the circuitry can be adjusted by e.g.
placing dedicated statements in the code or by adapting the SDF file. Thereby, the
fault tolerance to different trace settings can be evaluated easily. Chapter 6 will show a
method how to modify the trace in hardware, however, the presented method limits the
possible trace adjustments to a certain level of granularity that can be easily overcome
in simulation. Thus both methods, simulation and hardware based fault injection have
its merits. Finally, it depends on the scope of a fault injection program which methods is
more suitable.

The previous examples have shown how to separate the particular masking effects
that determine the soft error probability and its dependence on the distribution of the
faults, traces and the fault duration. The next section presents fault injection experiments
on different types of circuits using the rail cross-coupling methods that have been derived
in chapter 4.

5.4 Simulation of DRXS Hardened Circuits

5.4.1 Test Setup

The test setup and method how QDI circuits are simulated using the FOSTER tool
are demonstrated using the ISCAS-85 C17 benchmark circuit in Fig. 5.15(a). The circuit
has five inputs, two outputs and comprises six NAND gates. The FSL design of such
a 2-input NAND gate is depicted in Fig. 5.15(b). Each dual-rail output of the gate is
generated from a RS-latch, whose set and reset inputs actually implement the logic NAND
function. The fault injection setup of a typical pipeline stage is given in Fig. 5.16.

In(0)

In(2)

In(3)

In(1)

In(4)

Out(0)

Out(1)

(a) C17 benchmark circuit

S Q

R

xa

xb

ya

yb

(b) FSL NAND gate design (VHDL)

set

reset

za

zb

zx
y

1

2

3

4

5

6

Figure 5.15: FSL version of the ISCAS-85 C17 benchmark circuit

Only the shaded blocks are synthesized, with their timings provided by an SDF file
after the place and route. All other functions are testbench models with user defined
timings or ideal circuitries. The stimulus is a random 5-bit data word that is applied

5.4. Simulation of DRXS Hardened Circuits 137

Ack Result.log

trace.log

trace

logger

Register

(UUT)

traceset .log

calculate

tracesDelay

Generator

Register

ModelStimulus

pkg_Timing.vhd

Fault

Generator
cmd.do

Design

Parser
Signals.txt

C17
5 2

Place &

Route
SDF File

Tk GUI

Command Line

ModelSim Interface

fault

injections

Register

∆t

circuit

timings

Register

Model
∆t

Figure 5.16: Typical fault injection setup

via a register model, whose timings are modeled using a timing package that can be
generated manually or randomly. Faults are injected into the input register including the
acknowledge signal and the C17 circuitry itself. All relevant signals that are subjected to
faults are extracted from the cleaned-up signal list of the synthesized model. Thereby a
dual-rail signal is replaced by two signals representing the two rails. The fault duration
can be selected arbitrarily with the impacts as described in 5.3.5. No faults are injected
in the receiving register (UUT), since Pf(UUT, T) shall be investigated. The input trace
of this register is recorded by a trace logger.

For each simulation run, the recorded data is compared with a fault-free reference
run. In case of a difference, a token error, synchronization error or a deadlock is reported.
Additionally, the trace logger detects all wrong prefix traces that do not lead to an error
as described in 5.3.5.

Example 5.4.1: The setup according to Fig. 5.16 was simulated with 100 random
input data. At simulation time 230 ns, a 2 ns long transient fault was injected in the
output of the a-rail of NAND gate number 1 in Fig. 5.15. Fig. 5.17 shows the recorded
output and its corresponding trace log.

Reference Data Recorded Data

145345 ps 11 134200 ps 11
173572 ps 11 150300 ps 11
199561 ps 11 167500 ps 11
228071 ps 11 183600 ps 11
253425 ps 11 200800 ps 11
281652 ps 11 216900 ps 11
306019 ps 01 230100 ps 00
334366 ps 01 246200 ps 01
362584 ps 00 263300 ps 00
389929 ps 00 279500 ps 00
418175 ps 11 296600 ps 11
446402 ps 11 312700 ps 11
471243 ps 01 327900 ps 01
500514 ps 01 343900 ps 01

Time : Data : Ack : Cons : Trace
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
. . .
222900 ps : 1111 : 0 : 0 :
229000 ps : 0111 : 0 : − : 1
230100 ps : 0101 : 0 : 1 : 1 3
232000 ps : 0111 : 0 : − : 1 3 3
232100 ps : 0110 : 0 : 1 : 1 3 3 4
236100 ps : 0110 : 1 : 1 :
246200 ps : 0111 : 1 : − : 4
246200 ps : 0011 : 1 : 0 : 4 2
. . .

Figure 5.17: Token error due to a transient fault and corresponding trace log

138 5. Simulation

Instead of the expected output OutP = 〈01〉 the erroneous result OutP = 〈00〉
was received. The circuit expects the sequence {〈11〉; 〈01〉} or in dual-rail {〈1111〉; 〈0110〉}.
Using the index notation, the expected trace set is T e = {14; 41}. The trace logger
shows the effect of the fault, which generates the faulty trace tf = {1334} and the
wrong phase prefix tpf = {13}. This time, no temporal masking prevented the capture
of a token error and the receiver stored OutP = 〈0101〉 7→ 〈00〉.

5.4.2 Test Circuit Selection

The derived duplication and rail cross-coupling methods are applied to several test
circuits, which have been selected according to their inherent trace distribution. In 5.3.5,
it was shown that the fault trace distribution affects the amount of masking and eventually
Pf(l, T). The following circuits are selected:

• C17 benchmark (C17)

• 4-bit adder (Add4)

• 3-to-8 decoder (3to8)

• 4-bit greater or equal comparator (Geq4)

• 4-bit binary-to-gray decoder (B2G)

These circuits constitute typical building blocks of digital designs (the C17 bench-
mark is regarded as some kind of simple glue logic) and have different trace distributions.
To better visualize the large number of different traces, the trace set of a fault-free ref-
erence run was parsed and each particular transition was assigned to its parent dual-rail
signal. That process compresses the traces by a factor of two, which is a significant im-
provement regarding the factorial function that is used to calculate the permutations.
Next, each particular transition is associated with an artificial, incremental time stamp
that starts with 1 at the first transition and ends with n at the last transition.

Example 5.4.2: Let’s assume a trace t1 = {3, 8, 6, 1}. The sequence of rail tran-
sitions is converted to its equivalent signal trace ts1 = {2, 4, 3, 1} by evaluating the
corresponding dual-rail signal of each rail transition. Thereby, the signals are labeled
with the index is that can be calculated from the rail index ir with is = floor((ir+1)/2).
Finally, the artificial time stamp is associated to each signal, which yields the signal
delay matrix z1 = 〈(1, 2); (2, 4); (3, 3); (4, 1)〉.

With the above conversion, the signal delay matrices of the selected test circuits
are plotted in Fig. 5.18 using the same random input patterns were applied as in the
following fault injection experiments. The Geq4 circuit provides a 2-bit output signal
〈greater,equal〉 = 〈1, 2〉. The equal output (signal 2) preceded the greater output (signal
1) in every code phase trace, which stems from the circuit architecture. In the C17
benchmark circuit, the most significant bit is faster than the least significant bit in the

5.4. Simulation of DRXS Hardened Circuits 139

majority of the code phase traces. However, in some rare cases, the signal sequence is
reversed, which is expressed by the slight deviation from the ideal 1:2 delay ratio. The
B2G decoder also shows a clear order of precedence. The most significant bit is always the
first one to be produced. Although the remaining bits follow in a sequence, some traces
are re-arranged, which is indicated by the deviation from the ideal monotonic delays
2;3;4. The Add4 design has a monotonic signal delay matrix. All traces start with the
least significant bit (signal 5) and end with the most significant bit (signal 1). That order
comes from the ripple-carry structure of the adder. Finally, the 3to8 decoder shows a
random signal delay distribution, which is based on the parallel processing of the input
data.

1 2
0

0.5

1

1.5

2

2.5

3
Geq4

signal index

d
e

la
y

1 2
0

0.5

1

1.5

2
C17

signal index

d
e

la
y

1 2 3 4
0

1

2

3

4
B2G

signal index

d
e

la
y

1 2 3 4 5
0

1

2

3

4

5

6
Add4

signal index

d
e

la
y

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6
3to8

signal index

d
e

la
y

Figure 5.18: Trace distribution of test circuits expressed as signal delay

The test circuits were subjected to a random fault injection campaign using the
setup described in Fig. 5.16. The circuit under test is composed of a pipeline with one
input and one output register and the test circuit in between. The faults were injected
on all circuit signals, except for the output register. For the experiments, the VHDL
simulation model after the place and route process was taken. The timings were used
from the associated SDF file, with the delays of path towards the trace logger set to zero
as explained in 5.3.4. Additionally, all primary input and output delays were also reset
to zero delay to minimize the handshake cycle time Tc in the application and thereby to
maximize the probability to hit the sensitive window pw in (5.6).

For each test circuit, 5 random input stimulus vectors were generated. The length
of the stimulus vector was set to 100 for the C17, 3to8 and B2G circuit and 1000 for the
Add4 and Geq4 circuit. Each stimulus vector was subjected to 1000 random faults, so

140 5. Simulation

in total 5000 fault injection runs were performed. From the results of each stimulus the
average was calculated. The fault injection runs were performed with a fault duration of
{100 ps; 500 ps; 1000 ps}, which covers the typical variation of transient fault widths,
see 2.2.2. Before a fault injection run is performed, a fault-free golden run is executed
and the logged data is used for the comparison with the faulty runs. Further, the golden
run determines the nominal execution time of the test vector [tmin; tmax]. The faults are
injected within that time boundaries. The following pseudo-code illustrates the applied
fault injection methodology.

for each Stimulus Vector {1 2 3 4 5}
process Golden Run ;
get [tmin ; tmax] ;
for each Fault Duration {100ps 500 ps 1000ps}

i = 0 ;
while i < 1000

get random n e t l i s t s i g n a l ;
get random f a u l t i n j e c t i o n time (tmin ≤ tf ≤ tmax) ;
do f a u l t i n j e c t i o n ;
log r e s u l t s ;
compare with Golden Run ;
i = i + 1 ;

next Fault Duration ;
next Stimulus Vector ;

process log f i l e s ;
calculate average va lue s for Deadlocks , Pf (l, T) , Platched(l, T) , Psens(l, T) ;

In addition, the fault tolerance was also examined in the test circuit according to
Fig. 5.19. The test setup is identical to Fig. 5.16, but the output of the register under
test is routed via an additional pipeline stage. That architecture has been selected to
investigate the propagation of faulty traces. In the original test setup of Fig. 5.16, register
under test is directly evaluated by the testbench register model, which is not synthesized.
Therefore, the additional pipeline stage was added to check the influence of the testbench
model on the results of the fault injections. As a conclusion, no significant impact could
be found. Therefore both setups, Fig. 5.16 and Fig. 5.19, could be applied. For simplicity
and for higher simulation speed, the more simpler setup of Fig. 5.16 was chosen.

Ack

trace

logger

Register
(UUT)

Testbench
Register
Model

Comb.

Circuit

5 2

Register

∆t ∆t

Register
Testbench
Register
Model

Figure 5.19: Typical fault injection setup using additional pipeline stage

The next subsection present the results of the fault injection simulation. First, the
faults were applied to the unprotected test circuits, then the experiments were repeated
with the DRXS, DRXX an DRS scheme applied.

5.4. Simulation of DRXS Hardened Circuits 141

5.4.3 Results

Table 5.3 shows the inherent fault tolerance of the selected test circuits. Most
circuits showed the roughly the same Pf (l, T) = 2% ... 3%. Only the B2G decoder had
a higher Pf(l, T) = 3% ... 5%. That circuit is only composed of three XOR gates, so it
does not provide a lot of logical masking capability.

Table 5.3: Inherent fault tolerance of test circuits

∆t Deadlocks Pf (l, T) Platched(l, T) Psens(l, T)

C17

100 ps 0.00% 2.16% 86.40% 2.50%

500 ps 0.00% 3.10% 94.51% 3.28%

1 ns 0.00% 2.34% 86.67% 2.70%

Add4

100 ps 0.00% 2.54% 91.37% 2.78%

500 ps 0.00% 2.76% 89.03% 3.10%

1 ns 0.00% 1.94% 80.17% 2.42%

3to8

100 ps 0.00% 2.60% 97.35% 3.96%

500 ps 0.00% 3.00% 86.71% 3.46%

1 ns 0.00% 2.20% 97.35% 2.26%

Geq4

100 ps 0.06% 2.48% 99.20% 2.50%

500 ps 0.10% 2.46% 97.62% 2.52%

1 ns 0.08% 1.66% 92.22% 1.80%

B2G

100 ps 0.04% 4.82% 74.84% 6.44%

500 ps 0.10% 5.42% 86.03% 6.30%

1 ns 0.02% 3.04% 75.25% 4.04%

Checking the particular simulations, it was found out that two fault locations lead
to the majority of the erroneous runs. First of all, the most failures were triggered by
synchronization errors that emerged from transient faults in the handshake logic, such as
the handshake lines theirselves or the output phase detector. The second major group of
failures were triggered by transient faults in the data path, which lead to both token and
synchronization errors.

A small number of deadlocks was recorded in the Geq4 and B2G circuits. These
deadlocks were checked, whether they result from model imperfections or whether they
really stem from inconsistent data that stops the handshake process. It turned out that
all deadlocks emerged from such inconsistent data that is stored in the input pipeline
register. The probability to store a deadlock in a sequential circuit such as a register
largely depends on the internal timings of that register. A detailed investigation of these
timings as well as the impact of the internal register design on the capability to capture
deadlocks is not investigated in this thesis. Nevertheless, the models that are used to
simulate the QDI circuits in this work are investigated in more detail.

The results in Table 5.3 were obtained by using the default simulation settings of
ModelSim. As already discussed in 5.3.5, the simulations were performed using VITAL
compliant gate level models. These models do not only simulate the logic functions

142 5. Simulation

including the propagation delays, but also provide timing checks that imply whether a
circuit will operate correctly or not. The VHDL code below shows an excerpt of the
VITAL model of a simple latch.

architecture X LATCHE V of X LATCHE i s

. . .
signal CLK ipd : s t d u l o g i c := ’X’ ;
signal GE ipd : s t d u l o g i c := ’X’ ;
. . .
−− FRI : tForceEvent S added

signal tForceEvent S : s t d u l o g i c := ’U’ ;
−− FRI : e x p l i c i t output s i g n a l added

signal O Q : s t d u l o g i c := TO X01(INIT) ;

begin

. . .
VITALBehavior : process (CLK dly , GE dly , GSR resolved , I d ly ,

PRLD resolved , RST dly , SET dly , tForceEvent S)
. . .
variable PInfo SET : VitalPeriodDataType := Vi ta lPer i odDataIn i t ;
variable Pviol CLK : s t d u l o g i c := ’ 0 ’ ;
variable Vio l a t i on : s t d u l o g i c := ’ 0 ’ ;
. . .

begin

i f (TimingChecksOn) then

VitalSetupHoldCheck (
V i o l a t i on => Tviol I CLK negedge ,
TimingData => Tmkr I CLK negedge ,
Tes tS i gna l => I d ly ,
TestSignalName => ” I ” ,
TestDelay => 0 ps ,
Re fS i gna l => CLK dly ,
RefSignalName => ”CLK” ,
RefDelay => 0 ps ,
SetupHigh => tsetup I CLK posedge negedge ,
SetupLow => tsetup I CLK negedge negedge ,
HoldHigh => thold I CLK posedge negedge ,
HoldLow => thold I CLK negedge negedge ,
CheckEnabled => TO X01 (((not RST dly)) and (GE dly)

and ((not SET dly))) /= ’0 ’ ,
Re fTrans i t i on => ’F ’ ,
HeaderMsg => ”/X LATCHE” ,
Xon => XON,
MsgOn => MSGON,
MsgSeverity => warning) ;
. . .

end i f ;
V i o l a t i on := Tviol I CLK negedge or Tviol GE CLK negedge or

Tviol SET CLK negedge or Tviol RST CLK negedge or

Pviol RST or Pviol SET or

Pviol CLK ;

i f ((GSR resolved = ’ 1 ’) or (PRLD resolved = ’ 1 ’)) then

O zd := To X01(INIT) ;
e l s i f ((GSR resolved = ’ 0 ’) and (PRLD resolved = ’ 0 ’)) then

Vita lStateTab l e (
Resul t => O zd ,
PreviousDataIn => PrevData O ,
StateTable => X LATCHE O tab ,
DataIn => (CLK dly , I d ly , SET dly , RST dly , GE dly)) ;

O zd := V i o l a t i on xor O zd ;
end i f ;

end process ;
end X LATCHE V;

The VITAL model highlights the check for a proper setup and hold time. The
applicable timing parameters are passed to the process VitalSetupHoldCheck, which sets

5.4. Simulation of DRXS Hardened Circuits 143

the output variable Tviol I Clk negde to ’X’ if a timing violation is detected. Finally,
all these violation variables are logically combined and eventually define the output of
the latch, which is provided in O zd. That timing check can be disabled by setting the
variable TimingChecksOn to false. The effect of a timing violation is an undefined logic
state ’X’. If that state applies for too long, the circuit may not be able to continue its
operation and run into a deadlock.

Example 5.4.3: Fig. 5.20 depicts the timing simulation of a transient fault at the
input of the final register in the pipelined C17 benchmark circuitry. The fault leads
to the inconsistent register input uuti/OutP = 〈00, 01〉 and occurs during the storage
process. The inconsistent token propagates to the register output /fsl c17regt syn tb/
routp and leads to a timing violation in the output phase detector uuti/regouti
phaseout q 425 (1). The VITAL model responds with an undefined logic state that
propagates via the acknowledge signal to the predecessor of the pipeline (2). That
predecessor, which is the source testbench component, delivers the next token with
undefined logic states (3). These undefined states propagate through the pipeline (4),
as the VHDL models used in the simulation generate an undefined output if they
receive an undefined input. Eventually, the sink testbench component receives an
undefined logic state (5), which is never acknowledged and deadlocks the pipeline.

Source

{{0 1} {1 0} {0 1} {0 1} {0 0}} {{0 1} {1 0} {0 1} {0 1} {1 0}} {{0 0} {1 1} {1 1} {1 1} {0 0}}

{0 1} {0 X} {0 0} {1 X}

{1 0} {0 0} {1 0} {1 X} {1 1} {0 1}

{0 1} {0 X} {0 1} {1 1} {1 X} {0 X}

{0 1} {1 1} {1 X} {1 1} {1 X}

{0 0} {1 0} {1 X} {1 0} {0 0}

RegOut

11 01 00 01 0X 00

00 01 00

{1 1} {0 0} {0 1} {X X}

{0 0} {0 1} {X X}

Sink

{{1 1} {0 0}} {{0 0} {0 1}} {{0 1} {0 1}} {{X X} {X X}}

2560 ns 2580 ns 2600 ns

Source

sourcei/rdataout {{0 1} {1 0} {0 1} {0 1} {0 0}} {{0 1} {1 0} {0 1} {0 1} {1 0}} {{0 0} {1 1} {1 1} {1 1} {0 0}}

(4) {0 1} {0 X} {0 0} {1 X}

(3) {1 0} {0 0} {1 0} {1 X} {1 1} {0 1}

(2) {0 1} {0 X} {0 1} {1 1} {1 X} {0 X}

(1) {0 1} {1 1} {1 X} {1 1} {1 X}

(0) {0 0} {1 0} {1 X} {1 0} {0 0}

sourcei/ack

RegOut

uuti/OutP1 11 01 00 01 0X 00

uuti/OutP0 00 01 00

/fsl_c17regt_syn_tb/routp(1) {1 1} {0 0} {0 1} {X X}

/fsl_c17regt_syn_tb/routp(0) {0 0} {0 1} {X X}

uuti/regouti_phaseout_q_425

uuti/regouti_phaseout_q_clkinvnot

uuti/regouti_phaseout_q_ffy_rstand_1159

Sink

sinki/rdatain {{1 1} {0 0}} {{0 0} {0 1}} {{0 1} {0 1}} {{X X} {X X}}

(1)

(2)

(3)

(4)

(5)

Figure 5.20: Undefined logic state due to timing violation leads to a deadlock

The previous example showed how a deadlock can be accidentally generated due to a
timing violation of the used VITAL simulation model. These deadlocks due to undefined
states are detected by the FOSTER tool. It is hard to predict how such an undefined state
will resolve, whether it will really lead to a deadlock, whether it will generate wrong data
or whether it will only delay the circuit execution. Due to this uncertainty, all simulation
runs that lead to a deadlock due to undefined data were not considered at all, i.e. they
were neither counted as correct nor as wrong result. As the number of such runs was in
the range of 2% that approach is acceptable.

144 5. Simulation

In addition to the rather easy detectable deadlocks due to undefined states, the
simulations presented in Table 5.3 contained many unexpected synchronization errors.
Checking these faulty runs by inspection of the timing waveform in ModelSim revealed
that they were also triggered by violations of the circuit timing models. These errors
due to violations of the model’s timing specification cannot be identified that easily as
they are not distinguishable from real synchronization errors that emerge from handshake
disturbances. It shall be further noted, that the VITAL models indeed notify the user of
such timing violations. However, such notifications occurred rather often in the simulation
as the injection of faults in an asynchronous circuit does not comply to the circuit timings
at all.

Modelsim allows to disable the timing checks in the VITAL models using the com-
mand parameter +notimingchecks. The following example repeats the fault injection
experiment from the previous one with disabled timing checks and shows the different
behavior in the simulation of transient faults.

Example 5.4.4: Fig. 5.21 shows the same waveform as Fig. 5.20, with the timing
checks of the VITAL models disabled. As depicted, the closely spaced input transitions
of the output phase detector do not trigger an undefined state and consequently, no
undefined state propagation occurs. The transient fault is masked and the circuit
continues its nominal operation without reporting any errors.

Source

{{0 1} {1 0} {0 1} {0 1} {0 0}} {{0 1} {1 0} {0 1} {0 1} {1 0}} {{0 0} {0 0} {0 0} {1 1} {1 1}} {{0 1} {0 0} {0 0} {1 1} {1 1}}

{0 1} {0 0} {0 1}

{1 0} {0 0} {1 0}

{0 1} {0 0}

{0 1} {1 1}

{0 0} {1 0} {1 1}

RegOut

11 01 00 01 11

00 01 11

{1 1} {0 0} {0 1} {1 1}

{0 0} {0 1} {1 1}

Sink

{{1 1} {0 0}} {{0 0} {0 1}} {{0 1} {0 1}} {{1 1} {1 1}}

2560 ns 2580 ns 2600 ns

Source

sourcei/rdataout {{0 1} {1 0} {0 1} {0 1} {0 0}} {{0 1} {1 0} {0 1} {0 1} {1 0}} {{0 0} {0 0} {0 0} {1 1} {1 1}} {{0 1} {0 0} {0 0} {1 1} {1 1}}

(4) {0 1} {0 0} {0 1}

(3) {1 0} {0 0} {1 0}

(2) {0 1} {0 0}

(1) {0 1} {1 1}

(0) {0 0} {1 0} {1 1}

sourcei/ack

RegOut

uuti/OutP1 11 01 00 01 11

uuti/OutP0 00 01 11

/fsl_c17regt_syn_tb/routp(1) {1 1} {0 1} {1 1}

/fsl_c17regt_syn_tb/routp(0) {0 0} {0 1} {1 1}

uuti/regouti_phaseout_q_425

uuti/regouti_phaseout_q_clkinvnot

uuti/regouti_phaseout_q_ffy_rstand_1159

Sink

sinki/rdatain {{1 1} {0 0}} {{0 0} {0 1}} {{0 1} {0 1}} {{1 1} {1 1}}

(1)

(2)

(3)

(4)

(5)

Figure 5.21: Suppression of undefined logic states by disabling the timing checks

To test the impact of the timing checks, all erroneous simulation runs from Table 5.3
were repeated with these timing checks disabled. The FOSTER tool allows to repeat a
simulation run with the same fault injection settings (signal under test, fault type, injec-
tion time, etc.) under different simulation parameters, such as different fault durations
or different simulator settings. This procedure has the advantage that the result are not
statistically distorted by running a new, independent random test. The summary of this
second test run are presented in Table 5.4.

5.4. Simulation of DRXS Hardened Circuits 145

Table 5.4: Inherent fault tolerance of test circuits without timing checks

∆t Deadlocks Pf (l, T) Platched(l, T) Psens(l, T)

C17

100 ps 0.00% 1.16% 96.67% 1.20%

500 ps 0.00% 2.30% 96.64% 2.38%

1 ns 0.02% 2.68% 100.00% 2.68%

Add4

100 ps 0.00% 0.64% 91.43% 0.70%

500 ps 0.00% 1.50% 96.15% 1.56%

1 ns 0.00% 1.48% 96.10% 1.54%

3to8

100 ps 0.00% 0.92% 97.87% 0.94%

500 ps 0.02% 1.80% 95.74% 1.88%

1 ns 0.04% 1.76% 94.62% 1.86%

Geq4

100 ps 0.12% 0.78% 90.70% 0.86%

500 ps 0.22% 1.34% 95.71% 1.40%

1 ns 0.14% 1.52% 97.44% 1.56%

B2G

100 ps 0.30% 1.14% 96.61% 1.18%

500 ps 0.56% 2.60% 98.48% 2.64%

1 ns 0.84% 2.38% 94.44% 2.52%

Without applying any timing checks the recorded Pf (l, T) was generally reduced.
An exception occurred in the simulation of the C17 benchmark, where the total number of
errors with a fault duration of 1 ns was even larger without timing checks. An investigation
of this unexpected results showed that some of the ignored runs with undefined results
actually resulted in token errors. Thus a timing violation will not always resolve in a
correct result.

Taking into account timing checks allows to identify violations of the circuit’s spec-
ification. These checks have their merits as a timing violation may lead to an undefined
behavior such as metastability. As briefly noted above, it cannot be easily predicted how
long such a metastable state persists and to what logic state it will resolve. Thus having
timing checks enabled will lead to conservative results in terms of fault tolerance. On the
other hand, omitting the timing checks will rather give best case results. Therefore, both
methods provide a valuable output for the assessment of transient faults in QDI logic.
For this work, the figures are regarded as lower and upper boundaries of the randomly
evaluated fault tolerance. Of course, the confidence interval applies to both of them. This
uncertainty in the simulation of QDI logic is another argument for performing hardware
based fault injections in parallel to simulation based fault investigations. That topic will
be tackled in chapter 6.

After performing fault injections with bare, unhardened QDI circuits, the selected
test circuits are now implemented using the DRXS and DRXX methods, developed in 4.4.
Thereby the same stimuli as for the inherent fault tolerance measurements were used. Due
to the different circuit architecture, it is not possible to disturb the same nets as in the
unhardened circuit and a random fault injection campaign was performed.

Table 5.5 shows the results of DRXS with the timing checks enabled. Table 5.6

146 5. Simulation

depicts the results of DRXS with the timing checks disabled. Table 5.7 shows the results
of DRXX with enabled timing checks. Table 5.8 shows the results of DRXX with the
timing checks disabled. With the timing checks enabled, the fault tolerance of DRXS was
generally better than DRXX, although both methods should behave identically in theory.
The reason for this practical deviation was found in the tendency of DRXX to propagate
token errors that are temporary mitigated in DRXS. The DRXX method performed bet-
ter than DRXS when the timing checks were disabled, where the propagation of token
errors generated by timing violations are reduced. Eventually, the DRXS/DRXX method
significantly reduced Pf(l, T) of all test circuits.

Table 5.5: Fault tolerance of test circuits using DRXS with timing checks

∆t Deadlocks Pf (l, T) Platched(l, T) Psens(l, T)

C17

100 ps 0.08% 0.00% 0.00% 0.18%

500 ps 0.10% 0.12% 42.86% 0.28%

1 ns 0.00% 0.12% 54.55% 0.22%

Add4

100 ps 0.30% 0.44% 75.86% 0.58%

500 ps 0.12% 0.42% 67.74% 0.62%

1 ns 0.04% 0.26% 50.00% 0.52%

3to8

100 ps 0.46% 0.00% 0.00% 0.44%

500 ps 0.62% 0.06% 23.08% 0.26%

1 ns 0.02% 0.04% 50.00% 0.08%

Geq4

100 ps 0.16% 1.16% 93.55% 1.24%

500 ps 0.14% 0.68% 87.18% 0.78%

1 ns 0.00% 0.32% 66.67% 0.48%

B2G

100 ps 0.38% 0.00% 0.00% 0.56%

500 ps 0.42% 0.10% 22.73% 0.44%

1 ns 0.12% 0.22% 42.31% 0.52%

Table 5.9 and Table 5.10 show the results of DRS hardened circuits with and with-
out timing checks enabled, respectively. The C17, 3to8 and B2G test circuit showed a
better performance than DRXS/DRXX. That property was expected from the theoretical
considerations. The soft error probability of the Add4 and Geq4 circuit, however, was
in the same range as with DRXS/DRXX. These results were not expected, as the DRS
should perform much better. A closer examination has shown that most of the recorded
errors were accompanied with timing violation messages in the simulator. Comparing the
results of DRS with the timing checks disabled, shows a general better performance than
DRXS/DRXX. The unexpected high soft error probability of the DRS hardened circuits is
another strong indication for the non-trivial simulation of faults in asynchronous circuits.

5.4. Simulation of DRXS Hardened Circuits 147

Table 5.6: Fault tolerance of test circuits using DRXS without timing checks

∆t Deadlocks Pf (l, T) Platched(l, T) Psens(l, T)

C17

100 ps 0.00% 0.00% - 0.00%

500 ps 0.02% 0.20% 83.33% 0.24%

1 ns 0.00% 0.16% 100.00% 0.16%

Add4

100 ps 0.00% 0.00% - 0.00%

500 ps 0.00% 0.10% 100.00% 0.10%

1 ns 0.00% 0.14% 100.00% 0.14%

3to8

100 ps 0.00% 0.00% - 0.00%

500 ps 0.02% 0.02% 100.00% 0.02%

1 ns 0.00% 0.04% 100.00% 0.04%

Geq4

100 ps 0.00% 0.02% 50.00% 0.04%

500 ps 0.00% 0.04% 100.00% 0.04%

1 ns 0.00% 0.02% 100.00% 0.02%

B2G

100 ps 0.00% 0.00% 0.00% 0.02%

500 ps 0.02% 0.24% 92.31% 0.26%

1 ns 0.06% 0.14% 100.00% 0.14%

Table 5.7: Fault tolerance of test circuits using DRXX with timing checks

∆t Deadlocks Pf (l, T) Platched(l, T) Psens(l, T)

C17

100 ps 0.22% 0.40% 68.97% 0.58%

500 ps 0.04% 0.60% 88.24% 0.68%

1 ns 0.00% 0.42% 91.30% 0.46%

Add4

100 ps 0.10% 1.44% 90.00% 1.60%

500 ps 0.10% 0.94% 79.66% 1.18%

1 ns 0.02% 0.40% 57.14% 0.70%

3to8

100 ps 0.54% 0.10% 33.33% 0.30%

500 ps 0.50% 0.50% 71.43% 0.70%

1 ns 0.02% 0.22% 100.00% 0.22%

Geq4

100 ps 0.16% 0.86% 87.76% 0.98%

500 ps 0.04% 0.48% 66.67% 0.72%

1 ns 0.06% 0.20% 62.50% 0.32%

B2G

100 ps 0.32% 0.34% 42.50% 0.80%

500 ps 0.34% 0.82% 80.39% 1.02%

1 ns 0.14% 0.64% 86.49% 0.74%

148 5. Simulation

Table 5.8: Fault tolerance of test circuits using DRXX without timing checks

∆t Deadlocks Pf (l, T) Platched(l, T) Psens(l, T)

C17

100 ps 0.00% 0.00% - 0.00%

500 ps 0.00% 0.18% 100.00% 0.18%

1 ns 0.04% 0.16% 100.00% 0.16%

Add4

100 ps 0.00% 0.00% - 0.00%

500 ps 0.00% 0.04% 66.67% 0.06%

1 ns 0.00% 0.18% 100.00% 0.18%

3to8

100 ps 0.00% 0.00% 0.00% 0.02%

500 ps 0.04% 0.30% 83.33% 0.36%

1 ns 0.00% 0.16% 100.00% 0.16%

Geq4

100 ps 0.00% 0.00% - 0.00%

500 ps 0.00% 0.02% 100.00% 0.02%

1 ns 0.00% 0.00% - 0.00%

B2G

100 ps 0.00% 0.00% 0.00% 0.02%

500 ps 0.04% 0.28% 82.35% 0.34%

1 ns 0.06% 0.28% 100.00% 0.28%

Table 5.9: Fault tolerance of test circuits using DRS with timing checks

∆t Deadlocks Pf (l, T) Platched(l, T) Psens(l, T)

C17

100 ps 0.14% 0.00% 100.00% 0.00%

500 ps 0.10% 0.00% 0.00%

1 ns 0.00% 0.00% 0.00%

Add4

100 ps 0.12% 0.96% 100.00% 0.96%

500 ps 0.14% 0.50% 0.50%

1 ns 0.02% 0.14% 0.14%

3to8

100 ps 0.30% 0.02% 100.00% 0.02%

500 ps 0.20% 0.00% 0.00%

1 ns 0.00% 0.04% 0.04%

Geq4

100 ps 0.18% 1.00% 100.00% 1.00%

500 ps 0.18% 0.42% 0.42%

1 ns 0.00% 0.34% 0.34%

B2G

100 ps 0.34% 0.02% 100.00% 0.02%

500 ps 0.26% 0.02% 0.02%

1 ns 0.00% 0.00% 0.00%

5.4. Simulation of DRXS Hardened Circuits 149

Table 5.10: Fault tolerance of test circuits using DRS without timing checks

∆t Deadlocks Pf (l, T) Platched(l, T) Psens(l, T)

C17

100 ps 0.00% 0.00% 100.00% 0.00%

500 ps 0.00% 0.00% 0.00%

1 ns 0.00% 0.00% 0.00%

Add4

100 ps 0.00% 0.00% 100.00% 0.00%

500 ps 0.02% 0.00% 0.00%

1 ns 0.04% 0.00% 0.00%

3to8

100 ps 0.00% 0.00% 100.00% 0.00%

500 ps 0.00% 0.00% 0.00%

1 ns 0.00% 0.04% 0.04%

Geq4

100 ps 0.00% 0.00% 100.00% 0.00%

500 ps 0.00% 0.00% 0.00%

1 ns 0.00% 0.04% 0.04%

B2G

100 ps 0.00% 0.00% 100.00% 0.00%

500 ps 0.00% 0.02% 0.02%

1 ns 0.00% 0.00% 0.00%

150 5. Simulation

5.5 Summary

That chapter presents a method how to simulate transient faults in QDI logic.
Thereby the FOSTER tool was introduced, which takes care of the peculiarities in QDI
fault simulation and allows to separate the different masking effects during the fault evalu-
ation process. A special test setup was created, which is capable of recording the different
traces that are received by the circuit under test. Thereby different test circuits lead
to different trace distributions. Applying transient faults, generates a certain fault trace
distribution, whose shape also highly depends on the fault duration and the handshake
period. It was shown that a uniform trace distribution in practical circuits, especially
when transient faults are applied, is rather a theoretic case.

During fault simulation experiments, different test circuits were subjected to tran-
sient faults of various durations. Thereby the circuits were simulated on gate level using
VITAL models to obtain a realistic behavior. These models also check the timing spec-
ification of the particular components in the circuit. It was found out that transient
faults may violate these timings, which may lead either to undefined circuit states but
may also lead to errors without propagating undefined states. It is therefore difficult to
assess, whether an error in a fault injection experiment stems from wrong data or from a
violation of a component specification.

The DRXS/DRXX scheme influences Psens(l, T) as predicted in chapter 4. Compar-
ing Table 5.3, Table 5.5 and Table 5.7 shows a reduced Pf(l, T) when applying DRXS/-
DRXX compared to the inherent fault tolerance of the unhardened test circuits. The
DRS method even further improves that fault tolerance as shown by Table 5.9. However,
in contradiction to Table 4.15, which predicts no fault propagation in a DRS hardened
circuitry, a few token errors were observed in the fault simulations. That deviation came
from the timing violations in the simulation models, which makes a correct evaluation of
the fault injection results difficult.

Fig. 5.22 compares the average Pf(l, T) of all test circuits versus the hardening strat-
egy with and without applying timing checks. A quantitative comparison is difficult as
all three architectures were subjected to independent, random fault injections. Neverthe-
less, the improved fault tolerance is evident. For instance, comparing FPP(l,T) from a
non-hardened circuitry with a DRXS/DRXX circuit gives a factor of 4, see Table 4.15.
The same factor should be visible in Psens(l, T), provided the trace distribution between
the non-hardened and the hardened circuit as well as the temporal masking expressed by
Platched(l, T) are the same. That cannot be guaranteed, thus the improvement factor will
deviate from that theoretic value. As expected, the DRS method shows the highest fault
tolerance.

Table 5.11: Average Pf(l, T) of DRXS, DRXX, DRS versus unhardened test circuits

Timing checks DRXS DRXX DRS

Pf (l,T)unhardened

Pf (l,T)hardened

enabled 3 ... 87 2 ... 10 4 ... 443
disabled 15 ... 75 10 ... 121 121 ... ∞

This chapter has shown that it is possible to improve the fault tolerance of a pipelined
QDI circuit by means of DRXS/DRXX. The reduction in the error rate is significantly

5.5. Summary 151

C17 Add4 3to8 Geq4 B2G
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P
f(l

,T
)

[%
]

unhardened

DRXS

DRXX

DRS

(a) Timing checks enabled

C17 Add4 3to8 Geq4 B2G
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P
f(l

,T
)

[%
]

unhardened

DRXS

DRXX

DRS

(b) Timing checks disabled

Figure 5.22: Average Pf(l, T) versus hardening strategy of test circuits

higher than the required additional hardware resources, which is only minimal larger than
a factor of 2, see 4.4. The same applies for the DRS method.

No detailed investigation of the speed penalty due to the hardening methods was
made. The average increase in the processing time was 15% compared to an unhardened
test circuit. Thereby smallest penalty was generated by the DRS method, followed by
DRXS and DRXX, but the observed differences were rather small. The observed degrada-
tion in the processing of the hardening methods presented in this thesis is less than the 30
to 40% penalty that has been reported for the duplication and double-checking method,
see 4.2.2. As the results are only based on a rather small number of tests, additional work
is needed to draw a general conclusion.

The occurrence of timing violations had a significant impact on the simulation results
and leaves many questions open that would go beyond the scope of this thesis and is
reserved for future research. It has to be investigated whether these violations suppress
any errors as well as whether they lead to wrong errors, which are actually only the result
of an unexpected simulation behavior. The uncertainties in the fault simulation of QDI
logic has also lead to hardware based fault injection experiments, which are discussed in
chapter 6.

6
Emulation

Fault injection by means of simulation has shown some weak points. For instance,
unexpected deadlocks have been generated by undefined logic states that did not resolve to
a defined state within a finite time. Any simulation model will only be as good as its own
specification within the model boundaries. Therefore fault investigations are extended
by testing circuits directly in hardware using the trace based fault model developed in
chapter 3.

6.1 Related Work

Similar to simulation based fault injection, there are several tools available although
none of them has been developed for asynchronous logic. For instance, pin level fault
injection is presented in [119]. In this method, stuck-at faults with various durations are
applied to the I/O pins of the device under test by means of high-speed probes. Thereby
the physical hardware of the tested design is not changed by the fault emulation environ-
ment. Injecting faults at the pin level imposes some limitations in terms of speed as well
as restricts the locations of the fault origin to the device boundaries. FPGA-based fault
emulation is provided in [120], [121]. The circuit under test is implemented in an FPGA
and special saboteur circuits are added to disturb the logic state of internal signals. These
saboteurs influence the nominal circuit behavior. To minimize their impact, their number
has to be limited. Thus for a high fault coverage, the FPGA has to be reprogrammed
several times with saboteurs placed at different locations. A general overview of fault
injection techniques including hardware based fault emulation is given in [109].

Physical fault injection in hardware by means of laser irradiation is presented in
[122]. This approach allows to precisely inject faults into small circuit areas and at
locations that cannot be reached by other means. This technique can be used to simulate
the behavior of particle irradiation but cannot disturb a single net as the laser beam cannot
be focused that high. The presented work uses a hardened Data Encryption Standard
(DES) crypto-processor designed in 4-phase dual-rail. The laser beam was focused to
a relative spot size of 1.9% of the circuit area, which definitely comprises several nets.
Fig. 6.1 shows the principal test setup and the test sequence of the laser irradiation based

153

154 6. Emulation

fault injection. Drawbacks of this method are the necessity of a laser equipment and the
associated costs. Further, the fault duration cannot be controlled directly, as it depends
on the injected charge and the node capacitances.

(a) Test setup (b) Test sequence

Figure 6.1: Laser irradiation based fault injection [122]

The inherent robustness of an asynchronous processor compared to its synchronous
counterpart by means of hardware fault injection is investigated in [15], [63]. Fig. 6.2 shows
the block diagram and the typical implementation of the saboteurs of the Flexible On-
Chip Fault Injector for runtime DependabilitY Validation with target specific COmmand
language (FIDYCO). Saboteurs are placed at the desired locations of the circuit to gener-
ate faults at gate level. Both methodical and random faults are injected and their effects
are evaluated. The tool compares the sequence of asynchronous events between a golden
reference run and the faulty run, thereby the absolute time scale is not important. The
experiments conducted in this work were limited to the data path of an asynchronous
processor. Handshake faults were not generated, although the single-rail encoding of the
handshake makes this path especially vulnerable to transient faults.

(a) Implementation of saboteurs (b) Block diagram

Figure 6.2: Hardware based fault injection setup [63]

6.2. Fault Emulation in QDI Logic 155

Hybrid solutions that combine the observability of a simulator with the performance
of hardware based fault injection are presented in [123], [124]. The latter work introduces
the Fault injection using SEmulation (FuSE) tool. It allows to run certain parts of
a design in an FPGA to speed up the simulation time. Although not dedicated for
asynchronous circuits, it may be used to reduce the high simulation effort due to the
larger circuit area. The tool is currently extended to asynchronous circuits.

(a) Structure (b) Overview

Figure 6.3: FUSE fault injection tool [124]

Compared to simulation there are even less tools available to perform hardware
based fault injection in QDI logic. Although it is assumed that such tools are used to
overcome the bottleneck of simulation speeds, it seems that either not much effort is spent
on the development of such a tool or it is assumed to be a straightforward task. This
thesis also does not want to present a hardware based fault injection tool as main research
topic alone, however, it wants to highlight some peculiarities that may be overlooked.

6.2 Fault Emulation in QDI Logic

This section briefly discusses the main requirements for a deterministic fault emu-
lation in QDI logic. The key idea is to utilize the trace based model to ensure full error
coverage and to obtain reproducible results.

6.2.1 Error Coverage

A fault injection tool shall be able to provoke all kind of errors in QDI logic, which
are deadlock, synchronization error and token error, see 2.2.6. Deadlocks and token errors
can be generated by solely corrupting the data path of a pipelined QDI circuit. To trigger
a synchronization error the handshake has to be disturbed as well. Especially when faults

156 6. Emulation

are injected at register transfer level the acknowledge line(s) have to be included in the
set of victim signals. Often these signals are omitted in fault injection tools.

Contrary to the fault simulation in chapter 5, the fault emulation method developed
in this thesis, injects the faults solely at register transfer level, which comprises the data
path as well as the handshake lines. Fig. 6.4(a) shows how simple single event transients
are generated. The faulty state will be preserved only for the duration of the fault. A
saboteur disturbs either the data rails or the handshake line for the desired fault duration.
As discussed in 3.5, transient faults on the data path or the handshake will either generate
token errors or synchronization errors. That statement holds as long as the circuit does
not contain any redundant functions. If the circuit is hardened e.g. using DRXS, a
synchronization error will turn into a deadlock if the two redundant tokens disagree. The
same effect can be observed in any QDI circuitry that uses a synchronization between two
redundant pipelines.

Ack

(a) Single event transient

Register Sabo-

teur

Data

faulty Data

faulty Ack

(b) Single event upset

Register,
Gate

Sabo -

teur

faulty Data

S
R

Figure 6.4: Different injection types in fault emulation

To produce a soft error or single event upset the principle in Fig. 6.4(b) is used.
Here, the transient fault is directly applied to the set/reset inputs of a storage cell. Once
the fault is removed, the erroneous state is maintained until the storage cell is refreshed.
To ensure that soft errors can be provoked according to Fig. 6.4(b), each storage cell has
to be designed using externally available set and reset inputs. As these ports are generally
not needed, their implementation generates additional hardware overhead, which has to
be considered when comparing the circuit occupation.

As described in chapters 3 and 4, the circuit trace determines the fault sensitivity
of a circuit. The actual trace of a circuit depends on the inherent routing of the design,
the data content, environmental conditions (temperature, supply voltage) and especially
the process parameters, which suffer large variations [125]. A circuit that works correctly
in one environment and with one set of process parameters might fail at different process
parameters, which are additionally hard to predict. Thus if a comprehensive fault inves-
tigation in QDI logic shall be conducted, the circuit traces must be taken into account.

Reshuffling the rail transitions to modify the trace will help to detect all weaknesses.
In simulation, that reshuffling can be accomplished by modifying the delay of the circuit.
On gate level, the delays can be adapted by modifying the SDF file, on register level,
the trace can be changed by using special delay statements in the source code, such as
the after statement in VHDL. Such an artificial delay modification has already been
performed in 5.3.4, where the propagation delays of the TraceLogger have been reset to
zero in the SDF file to ensure the logged trace equals the monitored trace.

6.2. Fault Emulation in QDI Logic 157

A modification of the circuit trace itself has not been performed in chapter 5. Al-
though the particular components and gates can be identified in the SDF file, the synthesis
software may obscure the physical assignment of the gates and signals by its optimization
algorithms. Special statements allow to keep signal labels visible, however, a general pro-
cessing of delay modifications in the SDF file has been analyzed being too complex, going
beyond the scope of this thesis. A delay and trace modification on register level is not
that complex, as the particular signals are kept visible to the user. However, a register
level based simulation has been left out as that level does not include the timings of the
target platform. The user would have to take care of all timings, which was regarded as
leading to theoretical circuits without any connection to a physical device.

That situation is different for the fault emulation method applied in this thesis. To
not disturb the internal timings of gates and registers (which require a certain matching
to produce practical QDI circuits), saboteurs are only placed in the data and handshake
path of the circuit as well as directly at the set / reset inputs of flip-flops and latches.
Thus the fault emulation takes place on register level. As the emulated circuit already
exhibits real timings, the user does not have to take care of the inherent delay settings
– they are provided in a realistic manner. Thus a modification of the circuit trace is
more easy to accomplish as it only requires to change the timings on the register level
were the saboteurs have already been placed. However, to change the circuit trace in
hardware, a special type of saboteur is needed, as presented in 6.3.2. Modifying the trace
not only helps to check the robustness of a circuit in general but also supports a systematic
verification as it allows to generate worst case scenarios more easily.

6.2.2 Reproducibility

The results of a fault injection shall be reproducible. Synchronous tools can always
rely on consistent states to trigger an action. The clock edges are the only events that
define the state of a circuit. In asynchronous circuits, each signal transition defines a
new state as depicted by the state graphs in 3.3. The particular transitions may take
place at any time and in theory even concurrently. In hardware experiments this trace is
generally unknown, especially since the observability in hardware is much worse than in
simulation where it is possible to monitor every signal, even internal ones. Hence for a
reproducible fault injection in asynchronous circuits, it is vital to know the actual circuit
trace. Otherwise, repetitive identical fault injections may lead to different results.

For a deterministic fault injection in asynchronous logic, the fault injection trigger
has to be set on these signal events. Thereby the latency between the recognition of the
trigger and the moment of the fault injection is critical. In synchronous logic, that latency
must be smaller than a clock cycle so the fault will be present at the next clock edge –
and thereby at the next state. In QDI logic, once a particular trace has been detected, it
is generally arbitrary when the next signal transitions takes place. If a fault is injected in
response to a trace or circuit state, it may happen that the next transition occurs before
or just during the fault injection, which is not intended as it alters the current trace and
thereby the behavior of the circuit. On the other hand, if the fault injector itself is a
synchronous circuit it requires a synchronizer stage to process the asynchronous signal
transition. The uncertainty of the synchronizer makes it nearly impossible to precisely
control the moment of the fault injection as the recorded trace may differ from the real

158 6. Emulation

trace. Such effects have been identified in [63]. They add some unexpected noise to the
fault injection scenario and require a more statistical fault evaluation.

Example 6.2.1: Fig. 6.5(a) shows a generic fault injection setup in a 2-bit QDI
pipeline. Let’s assume the circuit produces the expected trace te = {24}. A fault
shall be injected on rail 3 after the first transition has been received and before the
expected second transition on rail 4 arrives. That scenario is depicted in Fig. 6.5(b),
with the intended faulty trace tf = {2343}. That trace has a wrong phase prefix and
may therefore lead to a token error in the receiver.

However, the fault injector will not be infinitely fast and propagation delays
occur between the detection of a rail transition as well as the response of the fault
injector, which has been highlighted by ∆t identifiers. As long as these delays are
smaller than the inherent skew ∆s of the circuitry, the desired fault trace can be
generated. However, if ∆t > ∆s the fault injector will not be able to produce the
desired fault trace as illustrated in Fig. 6.5(c). The delay until the fault is applied is
too long and the expected transition occurs before the fault could be activated. The
next stage receives the trace t3 = {2433}, which has the correct phase prefix. In this
example, the fault has actually been transferred to the next handshake period. If it is
short enough as shown in the waveform, it won’t have any effect.

Configuration

Register Register

Fault

Injector

Sabo-

teur

∆t

∆t

(a) Generic fault injection setup

(b) Correct fault injection trigger

0000 0100 0101 1101 1100

Data

{2} {2,4} {1}

DataFI

Ack

Data

0000 0100 0110 0111 1100DataFI 0101 1101

{1,4}

{2} {2,3,4} {1,4}{2,3} {2,3,4,3} {1}

(c) Wrong fault injection trigger

0000 0100 0101 1101 1100

{2} {2,4} {1}

Data

0000 0100 0111DataFI

{1,4}

{2} {2,4,3} {1,4}{2,4} {1}

∆t∆t

0101
∆t

11001101

{2,4,3,3}

0101

∆s

∆s

Figure 6.5: Trigger problem in QDI fault emulation

Although statistical investigations have their merits and shall exist in parallel, this
work investigates how to obtain a reproducible environment, which has to take care of the
trigger problem to aid a systematic validation of hardening strategies. One conclusion is
that in QDI hardware fault injection, it is impossible to inject a fault in a specific state
if the delay between the detection of the state (or more precisely the trace) and the time
when the fault becomes active is longer than the minimum time between two arbitrary
signal events on the subjected data path or signal. Since the delays are arbitrary in QDI
logic and hence no lower bound on the distance between events can be given, such a fault
injection method – detecting a trace and responding with a user-defined fault – will always
fail.

6.3. The STEFAN Tool 159

6.3 The STEFAN Tool

To overcome the drawbacks presented in the previous subsection – consideration of
error coverage and reproducibility – a novel tool for hardware based fault injection in
QDI logic has been developed. The Synthesizable Test Environment For Asynchronous
Networks (STEFAN) is not only able to control the logic value of a fault and the moment
of its injection but also allows to control the circuit trace and thereby avoids the trigger
problem in unbounded delay circuits.

6.3.1 Description of the Tool

Like the FOSTER tool presented in 5.3, the STEFAN tool was also written in
TCL/Tk. That programming language was selected to ensure compatibility with the
ModelSim simulator. That approach eases the debugging of the tool in the simulator
environment before the code is synthesized and programmed in the target hardware. As
target, a Xilinx Virtex-4 FPGA (XC4VFX12-10FF668C) placed on an evaluation board
from Memec was used. A functional block diagram of STEFAN is given by Fig. 6.6.

LCD

UUT

Test vector

Command File

Data

Ack

Command

Controller

UutReset, UutEn

Internal Bus

UutStop
(Sink Full)

UutLength
(Test Length)

UART

Source

Data

Source

Data

...

Data

Ack

Sink

Data

Data

Ack

Clock

Fault Injection

FI Control

Figure 6.6: The STEFAN environment

The tool is operated via the USB from the PC. All components are attached to
an internal bus that is handled by a command controller, which controls the complete
application including the execution of test cases. Test data can be loaded into one or
more source components. These sources are memories where test vectors can be written
in single-rail logic. An integrated converter transforms that single-rail data into the
appropriate dual-rail coded representation. The relevant output of the unit under test
(UUT) is stored in one sink component. For this work only one common sink has been
sufficient, however, the system can be easily extended due to the internal bus concept.
The sink is designed as dual-rail memory and records the received data including code

160 6. Emulation

phase information and a time stamp in multiples of FPGA clock cycles. After all test
vectors have been applied to the UUT, the sink is read out from the PC via an UART/USB
bridge. That UART interface is the bottleneck in terms of speed, thus the concept does not
allow arbitrary long test vectors to be processed in real-time. An interface with a higher
throughput, e.g. PCI, would be needed to increase the performance of the emulation tool.
Since the intention of STEFAN is only to proof the theory developed in this thesis rather
than to be a competitive fault emulator, that drawback in throughput is accepted.

The architecture of STEFAN is generic and allows to operate common 4-phase dual-
rail circuits as well as the FSL designs that are primarily investigated in this thesis. Other
types of codes, such as generic 1-of-m codes or k-of-m codes are not supported. The
architecture of STEFAN does not exclude these codes in principle, however, they require
a modification of the source and sink memory structure.

To control STEFAN, a graphical user interface has been developed. Fig. 6.7(a)
shows the main window of the application. Test vectors are defined in a command script.
The fault injection setup can be defined via a command script as well or it can be entered
manually. A list box displays any selected buffer memory of the tool such as source and
sink data as depicted in Fig. 6.6. Two text boxes log the transmitted and received data
from the target.

Process a
command script

Current

command script
Target

connection
status

Test result

Detailed test

compare

Receive log

Transmit log

Fault type

Sequence

controller status

Step through
fault scenarios

Start a test

Fault injection

setting

Initialize UUT

Compare with

expected

data

Detailed
buffer display

Configuration settings

Received data
with time stamp

Expected data
without time

stamp

(a) Main window (b) Compare window

Figure 6.7: STEFAN graphical user interface

The tool supports user-defined as well as random fault injections. The command
script also includes the expected results. After a test run, the received data is automati-
cally compared with that expected data. Thereby the following results may occur:

• ERROR: At least one recorded token does not match the reference run.

6.3. The STEFAN Tool 161

• DEADLOCK: The number of recorded tokens does not match the expected length.

• DELAY: All tokens are equal to the reference run but at least one time stamp differs.

• OK: All tokens and all time stamps agree.

The result of a test run is immediately displayed on the main window. The user
may also make a detailed comparison in the compare window as shown in Fig. 6.7(b),
where the expected and received data are displayed side by side. The results of several
test runs are logged in a separate log file. After a number of test runs, this log file is
post processed to generate a failure statistics. Finally, the VHDL code of STEFAN can
be loaded into a simulator, which accepts the same commanding syntax as the hardware.
Thereby hardware tests can be compared with simulations.

6.3.2 A Versatile Saboteur

The key component of the STEFAN tool is the so called versatile saboteur (VS). A
block diagram is shown in Fig. 6.8. The VS comprises three main elements:

• A Sequence Controller receives a token plus acknowledge and passes it to the output
with a user-defined trace.

• The Fault Injector applies one or several faults into the reshuffled output of the
sequence controller. The fault type, its duration and the moment of insertion are
read from the internal bus of the STEFAN environment.

• The Saboteur Process eventually injects the fault and corrupts the selected rails.

Saboteur

Process
Sequence

Controller

Command

Controller
Fault

Injector
FI_Control

F
a
u
lt
 M

a
s
k

F
a
u
lt
 T

yp
e

Internal Bus

Data with artificial
sequence (correct, victim)

Data with
faults injected

Data

Versatile SaboteurBridging fault
aggressor

A
g
g
re

s
so

r
In

d
e
x

Ack
Sync

AckQQ
Faulty AckQQ
(optional)

Faulty AckQQ
with artifical delay
(optional)

AckQQ

CdQQ

SelFI

S/R

S/R_fault

Figure 6.8: Block diagram of the versatile saboteur

162 6. Emulation

The VS is configured by the STEFAN command controller via the internal bus of
the test bench as depicted in Fig. 6.6. The VS can be placed at arbitrary positions of the
circuit. An example is shown in Fig. 6.9. These locations are the same as used for the
description of the different fault effects in 3.8, see 3.4.2.

Datai-1 Datai+1

Acki+1

Acki

i
i+1

Datai

Acki+2Sab
S,R

S,R

f(x)

Sab
SabSab

Register
Register

Figure 6.9: Placement of saboteurs

The sequence controller allows to reshuffle the transitions and thereby to define the
circuit’s trace. The block diagram and functional behavior in Fig. 6.10 illustrate the
principle of operation. The sequence controller is based on a synchronous design. A
state machine (FSM) checks whether a new token is received at the synchronized input
rDataIn. In this case the first line of the configuration memory will be read. That
memory is organized similar to the rail index notation that has been introduced in this
thesis to describe a dual-rail code word. Each bit of that configuration is associated with
one particular rail of the received token. The most significant bit of the configuration
setting corresponds to rail index 1 and the least significant bit points to rail index N of
an N -bit dual-rail signal. For example, a 4-bit dual rail sequence controller is organized
as shown in Table 6.1.

Table 6.1: Sequence controller configuration

Config Bit 7 6 5 4 3 2 1 0

Rail Index 1 2 3 4 5 6 7 8
rDataIn (3)a (3)b (2)a (2)b (1)a (1)b (0)a (0)b

If a bit is set, the associated input rail will be passed to the output rDataOut,
otherwise the old value of the rail is maintained. Listing 6.1 shows a snapshot of the
VHDL code used in the sequence controller to illustrate that behavior.

Listing 6.1: VHDL design of the sequence controller configuration

for i in rDataOut ’ range loop

i f Config (i) = ’1 ’ then

rDataOut (i) <= rDataIn (i) ;
end i f ;

end loop ;

To prevent deadlocking the circuitry, it has to be ensured that each expected rail
transition is passed to the output. On the other hand, one can artificially delay a rail
transition by setting the corresponding configuration bit to logic 0. The sequence con-
troller in this thesis was designed 16-bit wide, i.e. a VS is capable to define the trace
of an 8-bit dual-rail signal. That size has been selected to limit the complexity of the
implementation.

6.3. The STEFAN Tool 163

After reading a configuration line, the FSM waits for N clock cycles to check whether
the actual output is acknowledged. Thereby the correspondence between the actual con-
figuration and its impact is ensured. If no acknowledge is received, the next configuration
is applied, otherwise the FSM waits for the next token. If all rails are enabled, the FSM
returns to the initial state waiting for the next token. The N clock cycles are selected
in such a way to ensure that each configuration is acknowledged before the next config-
uration is applied. The value of N depends on the worst case delay retrieved from the
actual routing. The prototyping FPGA in this thesis runs with 100 MHz. Thereby one
clock cycle delay has been analyzed as being sufficient to ensure the causality between a
configuration setting and its associated acknowledge event.

Latch

FSM

Config
RAM

rDataIn

Addr

CD

AckQQ

Latch

Done

Enable

Read

n

n

rDataOut

n

Sync

Ctrl
Bus

CdQQ

Wait for
completion

Apply next
configuration

Wait N clocks

New token
received

Config � all 1's
AND

RamAddr � Last

Config = all 1's
OR

RamAddr = Last

iCnt =
iWait_G

iCnt �
iWait_G

Ack
received

Figure 6.10: Sequence controller

No matter when the particular rail transitions are received at rDataIn, the output
trace at rDataOut will depend on the content of the configuration memory, which is
user defined. One minor timing assumption remains: The theoretical unbounded delays
between the output of the saboteur and the subsequent QDI circuit must not reorder the
trace. This is prevented by the wait states between the configurations. As long as the
practical delays are much shorter than these wait states no unintended reordering of the
trace will take place.

Example 6.3.1: Fig. 6.11 shows how each rail of a 2-bit QDI signal rDataIn is
enabled by its associated bit in the configuration memory. The natural input trace
is tin = {14}, which corresponds to the sequence rDataIn = {0000; 1000; 1001} as
shown in the top waveform. In Fig. 6.11(a) a running 1 pattern enables each rail
starting from rail index 4 down to 1. The first configuration ’0000’ disables all rails.
The next setting ’0001’, enables rail 4 and generates the output 〈0001〉. The next
three settings have no impact until the setting ’1111’ completes the output to 〈1001〉.
The depicted configuration setting has modified the output trace to tout = {41} as
shown in the bottom waveform. The end effect is not only a reversal of the trace but
also an increase in the inconsistent time between the two code phases as ∆t2 > ∆t1.
Fig. 6.11(b) shows a more arbitrary configuration pattern. In this example, tout ≡ tin.
The only effect is a longer intermediate inconsistent phase due to the synchronized
operation of the sequence controller, i.e. ∆t2 > ∆t1 still applies.

164 6. Emulation

rDataIn 00 00

1 2 3 4 5

10 01

(a) Running 1 pattern

Config 1111 0000 0001 0011 0111

00 00 10 01rDataOut 00 01

1111

Step

Config

0000

0001

0011

0111

1111

rDataIn 00 00

1 2 3 4

10 01

(b) Arbitrary configuration pattern

Config 11 11 00 00 01 00 11 00 11 01

00 00 10 01rDataOut 10 00

Config

Config

0000

0100

1100

1101

1111

...

1000

rDataIn rDataOut

∆t1∆t1
∆t2

rDataIn rDataOut

∆t1 ∆t2

10 00

∆t1
∆t2

∆t2

Figure 6.11: Example of trace modification by the sequence controller

In principle, the sequence controller converts the asynchronous QDI circuit trace
in a synchronous state sequence. That conversion is valid, since synchronous circuits
are covered by the unbounded delay model of QDI. That conversion also ensures the
reproducibility, as the traces are now synchronized and the time of the next transition
is not arbitrary anymore but well defined. Unfortunately, that approach reduces the
performance of the circuitry as it prolongs the duration of the inconsistent state between
the two code phases. Further, the maximum clock frequency of the sequence controller
defines the minimum delay between two transitions. There is the possibility to excite
several rails at once by setting more than one bit in the configuration line. Such a
concurrent excitement will lead to an arbitrary trace, which should be avoided by the
sequence controller. The FPGA used in this thesis runs at 100 MHz, i.e. the minimum
amount of time between two transitions is 10 ns. It was tried to reduce the granularity
by designing delay lines. Unfortunately, the used Virtex-4 FPGA only has dedicated
tapped delay lines for its input ports. For internal delay lines, the timing reports have
shown possible delays in the order of 5 ns, i.e. half a clock cycle. Since the reduction in
granularity is not as much as expected, no further effort was spent on designing a fine
grain delay line. The synchronized concept is sufficient to show the ideas of the versatile
saboteur concept.

The fault injector receives a complete fault scenario including fault type, moment
of injection and duration from the internal bus of the test bench. As QDI circuits are
not bound to timing constraints, the moment of the fault injection is defined as a specific
number of handshake cycles after the start of the application. To allow a more detailed
tuning, the fault injector allows to specify an offset in terms of application clock cycles
within the injection handshake cycle. The fault duration is also specified in multiples of
application clock cycles.

The fault injector is synchronized to the sequence controller, so the injection of a
fault and the generation of a particular trace are well defined. Up to 32 victim rails can
be subjected to the same type of fault. The fault injector allows to model stuck-at 0/1
faults, bit flip faults, pulse faults and bridging faults.

6.3. The STEFAN Tool 165

The saboteur process reads the output of the fault injector and eventually corrupts
the selected rails according to the fault type. Stuck-at faults simply force the selected
rail to the intended logic state. Bit flip faults invert the actual logic state. Like stuck-at
faults, bit flip faults are generated by a simple combinational saboteur. Bit-flip faults are
popular to model transient faults as they invert the logic value of the victim signal and
avoid the masking effect of stuck-at faults. However, the simple inversion of the fault-
free signal is not a good physical representation of a transient fault, since each transition
of the fault-free signal within the fault duration is inverted as well. Therefore, the pulse
model [64] is preferred as it maintains the faulty value for the complete fault duration and
ignores any intermediate transitions of the victim. The pulse model is easy to simulate by
using the force command in the simulator. In hardware, this fault model requires a more
complex saboteur that includes a state holding element to preserve the inverted faulty
state for the complete fault duration. Finally, to emulate bridging faults, the saboteur
reads an aggressor index that replaces the selected victim signal by an aggressor signal.

Example 6.3.2: Let’s assume a 2-bit FSL circuit with a fault-free data sequence as
shown in the top signal Dorig of Fig. 6.12. The fault injector is set up to inject a
stuck-at 0 fault on rail index 3 in handshake cycle number 2 with offset 1. The fault
duration is 4 application clock cycles. The fault completes the code phase transition
and leads to the wrong new token Dfault = 〈1111〉, which may be captured by the
receiver provided it is ready for new data. In that example, it is assumed that the token
error is blocked, thus after the fault has vanished the expected token Dfault = 〈1100〉
is applied to the receiver, which is captured and acknowledged.

00 00 10 00 11 11

10 3

AckQQ

Cycle

0xxOffset 1 2

00 00

11 11

10 01Dfault

Dorig

2

3 4 0 1 2 3 4 5 6 7 8 0 1 2

11 00 01 0110 01 11 01

10 00 10 01 11 01 11 10 11 00

3 4

Fault

Active

Figure 6.12: Example of the Fault Injector

Beside the constraint to adjust the sequence of the rail transitions only in multiples
of application clock cycles, the fault duration is subjected to the same limitation as well,
which forms another drawback of the emulation approach compared to fault simulations.
In general, emulation does not provide that high level of insight as well as the adjustment
capabilities that are offered by simulation. To reduce these disadvantages the approach
to stick to a synchronized fault injection can be replaced by a pure asynchronous method
where the fault duration is defined by e.g. delay lines to allow shorter transients.

Despite these drawbacks, the reproducible fault injection of the STEFAN tool by
means of controlling the circuit trace are helpful in a systematic verification of hardening
methods. The higher speed of hardware based fault emulation allows to test a higher

166 6. Emulation

number of fault scenarios than a simulation based approach. Of course, a high-speed data
interface is mandatory to take advantage of these benefits.

This work focuses on presenting a new hardware based fault injection method, which
takes care on systematics and reproducibility. The application of the STEFAN tool is
limited to the fault testing of a specific test circuit, which is presented in 6.4. A more
detailed investigation as well as testing several circuit types and hardening methods would
go beyond the scope of this thesis and is left for future research.

6.3.3 Usage

The STEFAN tool requires a synthesized design under test with versatile sabo-
teurs placed at the desired locations. A unique address is assigned to each saboteur for
commanding. The test vectors, the saboteur configuration and the expected result are
provided in a command script. The syntax of such a command script is shown in List-
ing 6.2 and explained by comments. Especially the setup of the sequence controller shall
be highlighted, which is defined as WrBuf 6, 0xFC 0xFC 0xFC 0xFC 0xFF. According to
Table 6.1, that setting will delay the two least significant rails of the controlled data vector
during the first four configurations (0xFC). Only in the fifth configuration (0xFF) all rails
will be enabled to be passed to the output of the sequence controller.

Listing 6.2: Example of a STEFAN command script
−−−
−− Command f i l e f o r STEFAN

−−
−− WrBuf <Buffer >, <Data1> <Data2> . . . <DataN> . . . wr i t e b u f f e r

−− RdBuf <Buffer >, <No of b y t e s to read> . . . read b u f f e r

−− SetLengh <Tokens> . . . number o f tokens to be processed in s ink

−− Reset . . . r e s e t UUT, a f t e r re−l e a s e the UUT i s stopped

−− S t ar t . . . s t a r t a t e s t

−− Exp <Length> <Byte0 Byte1 . . . ByteN>

−−−
Reset

−− F i l l t he source b u f f e r wi th t e s t data , o thers use d e f a u l t s e t t i n g

WrBuf 0 , 0x3 0x3 0xA 0xA 0x7 0x7 0xD 0xD 0xE 0xE 0xB 0xB 0x5 0x5
−− de f i n e the con f i g u ra t i on s e t t i n g f o r sabot eur #6

WrBuf 6 , 0xFC 0xFC 0xFC 0xFC 0xFF
−− de f i n e the l eng t h o f the t e s t and s t a r t i t

SetLength 14
Start

−− read the recorded data

RdBuf 1 , 64
−− de f i n e expec t ed response f o r comparison

−− Length Bit0 1 2 3 4 5 6 7 8 9 10 11 12 13

Exp : 0xE 0x0 0x0 0x7 0x8 0x7 0x7 0x7 0x9 0x9 0xC 0xC 0xC 0xF 0xF

The fault injection setup is input via the main window shown in Fig. 6.7 and inter-
nally defined as 72-bit structure. The particular fields of this structure are explained in
Table 6.2. The injection setup defines fault type, duration and moment of occurrence as
well as whether the fault shall be applied on the output of sequence controller or on the
natural input data of the versatile saboteur. At the heart of that structure is a 32-bit fault
mask that collects all data rails and acknowledge signals that eventually will be disturbed.
The size of that structure has been selected for a moderately complex implementation. It
can be resized according to the needs of the application.

6.3. The STEFAN Tool 167

To show the operation of the STEFAN tool and to test the efficiency of the different
hardening methods from 4.4 in real hardware, a realistic application was used. For that
purpose, a small portion of the video pre-processing algorithm of the GAIA space telescope
has been implemented in FSL and subjected to transient fault injections.

Table 6.2: Configuration of a fault injection scenario

Field Reserved SabEn Reserved SeqEn Type Reserved Aindex Fmask Cycle Offset Duration

#Bit 1 1 1 1 4 3 5 32 8 8 8

Field Function

Reserved don’t care

SabEn 0 ... Bypass the saboteur (general saboteur disable)

1 ... Pass data via the saboteur

Reserved don’t care

SeqEn 0 ... Use the natural input data of the versatile saboteur

1 ... Use the data after the sequence controller

Type Fault type. Applied on all rails enabled in Fmask

0000 ... no fault is injected (victim = expected data)

0001 ... stuck-0 (victim forced to 0)

0010 ... stuck-1 (victim forced to 1)

0011 ... bit flip (invert victim rails)

0100 ... pulse fault (victim forced to the inverted state at the injection moment)

0101 ... bridging fault (victim forced to aggressor rail defined in Aindex)

0110 to 1111 ... not used

Reserved don’t care

Aindex Aggressor index. This setting only becomes effective if a bridging fault is
applied (Type = 0101). It determines, which rail of the aggressor signal replaces
the victim rails defined by Fmask.

Fmask Fault mask. Determines the rail that is subjected to the fault injec-
tion. Each pair of 2 consecutive bits form a dual-rail signal in the form
D(n)a, D(n)b, ..., D(1)a, D(1)b. For example 0x0010 will select D(2)b.

Cycle Determines the handshake cycle where the fault is applied, e.g. Cycle = 0x48
means the fault will be applied after 72 transitions of the synchronized ac-
knowledge signals upon release of the reset.

Offset Determines the exact time instant of the fault injection in terms of clock events
after Cycle has been reached. In case Offset=0 the fault injection will take place
immediately after the acknowledge event has been detected.

Duration Defines the fault duration in multiples of clock cycles. If Duration=0 the fault
will be applied permanently.

168 6. Emulation

6.4 Application: The GAIA Video Pre-Processing

Algorithm

6.4.1 The GAIA Mission

The Global Astrometric Interferometer for Astrophysics (GAIA) is a scientific mis-
sion of the European Space Agency (ESA) that is scheduled for launch in 2012 [126]. The
mission places a large telescope at the Lissajous-type orbit around L2 to generate a precise
three-dimensional map of our Galaxy. The Video Processing Unit (VPU) provides one of
the central functions in GAIA. It pre-processes the digital data acquired by a large CCD
array before it will be transmitted to Earth for the final analysis.

6.4.2 The GAIA Pre-Processing Algorithm

For performance reasons and due to the lack of an adequate, powerful space-compatible
processor, the various tasks in the GAIA VPU have been divided into hardware and soft-
ware based algorithms. The following information is retrieved from the official invitation
to tender for the VPU and is provided by courtesy of ESA and the prime contractor EADS
Astrium [127]. A block diagram of the hardware algorithms in the GAIA VPU is shown
in Fig. 6.13. For this thesis, a small portion of that algorithm, namely the preprocessing
of the star mapper samples was selected, which is encircled in the figure.

The task of the star mapper preprocessing is to identify the particular stars within
the huge amount of data provided by the CCD. A more detailed view of the algorithm
is shown in Fig. 6.14. Although it only comprises a small portion of the complete VPU
algorithms, the star mapper preprocessing already includes all typical functions used in
signal processing applications, such as saturation checks, multiplication, addition, feed-
back filters, etc. Actually, it is composed of two main functions:

1. A linear correction checks for saturated values and applies column response and
dark signal non-uniformity correction.

2. A dead column correction performs a simple neighbor interpolation for samples
coming from pixels that are marked as dead.

The linear correction takes the raw samples UNPREPRO DATA[ac] and compares
them with a saturation level SATURATION LUT [ac] for each CCD row ac. If the sample
is saturated, it is replaced by the constant SATURATED. Otherwise a linear function
correcting the Dark Signal Non Uniformity (DSNU) and the CCD Column Response Non
Uniformity (CRNU) (both are parameters of the CCD) is applied:

i f UNPREPRO DATA[ac] > SATURATION LUT[ac]
PREPRODATA[ac] = SATURATED

else

crnu [ac] = trunc (UNPREPRODATA[ac] ∗ CRNU LUT[ac] , 1 5)
dsnu [ac] = sat (crnu [ac] , 1 6) + DSNU LUT[ac] , 1 6

PREPRODATA[ac] = sat (dsnu [ac] , 1 6)
end

6.4. Application: The GAIA Video Pre-Processing Algorithm 169

AF1_SAMPLE_ACQUISITION

AF2_9_SAMPLE_ACQUISITION

BP_RP_SAMPLE_ACQUISITION

RVS_SAMPLE_ACQUISITION

DS10

FOCAL PLANE

(samples)

SM1_SAMPLE_REQUEST

SM2_SAMPLE_REQUEST AF2_9_SAMPLE_REQUEST

AF1_SAMPLE_REQUEST

BP_RP_SAMPLE_REQUEST

RVS_SAMPLE_REQUEST

FOCAL PLANE

(sample commands)

HW

SM1_SAMPLE_ACQUISITION

DS2 DS1

SM1_RAW_DATA

SM2_RAW_DATA

SM1_DETECTION

SM1

FIL TERIN G_STAGE

SATURATED_ STAR_DETECTI ON

SM1_OBJECTS_PRESELECTION

FAI NT_ STAR _DETECTI ON

SM1_PREPROCESSING

SW_PROCESSING

SM1_SW_PROCESSING

SM2_SW_PROCESSING

Figure 6.13: GAIA VPU hardware algorithms

The truncation operator Y = trunc(X, n) eliminates the n less significant bits of the
input X and the saturation operator Y = sat(X, n) limits the input X to 2n − 1.

The dead column correction performs a neighborhood interpolation as illustrated
in Table 6.3. Dead columns are marked for each sample index ac in a separate buffer
DEAD LUT. If an index is considered as unreliable, a ’1’ is written to the corresponding
buffer location, while a ’0’ declares the index as correct. The algorithm takes the dead col-
umn marking of the current as well as the two previous samples DEAD LUT [ac-2, ac-1, ac]
and modifies the linear corrected samples PREPRO DATA accordingly.

6.4.3 FSL Implementation

The preprocessing is very well suited for a pipelined structure. According to [127],
the un-preprocessed input data are 16-bit samples and the VPU has to process 983 rows
within a period of 1 ms. To limit the complexity for the implementation in this thesis,
the data width has been reduced to 4-bit and the memory size has been reduced to 64
rows. Both parameters are just a matter of scale.

The linear correction in FSL is shown in Fig. 6.15. The circuit consists of a three
stage pipeline. In the first stage R1, the saturation check is performed. Each raw sam-
ple UNPREPRO [ac] is compared with the corresponding entry Saturation LUT [ac]. The

170 6. Emulation

Pre-processing

Linear

correction

Dead column correction

YES

YES

NO

NO

PREPRO_DATA

Check for

dead columns

Neighbour

Interpolation

Check for

SATURATION

UNPREPRO_DATA

Set value to

SATURATED

Apply linear

correction

Figure 6.14: Principle of hardware pre-processing

Table 6.3: Principle of dead column correction

DEAD LUT PREPRO DATA
DL[ac-2] DL[ac-1] DL[ac] PREPRO DATA[ac-1] PREPRO DATA[ac]

0 0 0 Unchanged Unchanged
0 0 1 Unchanged PREPRO DATA[ac-1]
0 1 0 (PREPRO DATA[ac-2]+ Unchanged

PREPRO DATA[ac])/2
0 1 1 PREPRO DATA[ac-2] Unchanged
1 0 0 Unchanged Unchanged
1 0 1 Unchanged PREPRO DATA[ac-1]
1 1 0 PREPRO DATA[ac] Unchanged
1 1 1 Unchanged Unchanged

result of this check and the raw input data are stored in register R1. The second stage
performs the column non-uniformity correction. The raw input UNPREPRO [ac] is multi-
plied by CRNU LUT [ac], truncated and limited to 4-bit. The result is stored in stage R2
together with the saturation information from the previous stage, which simply accompa-
nies the data. The third stage adds the dark non-uniformity correction DSNU LUT [ac]
and limiting the result to 4-bit. Depending on the saturation check performed in the first
stage, either the result of the DSNU correction or the constant SATURATE is stored in
register R3.

The dead column correction is depicted in Fig. 6.16. This algorithm is more complex
as the output depends on previous samples. Since the circuit uses feedback elements, phase
inverters have to be deployed to ensure that all input data is applied in the correct code

6.4. Application: The GAIA Video Pre-Processing Algorithm 171

R1

>=

SATURATE

CRNU

LUT

Saturation

LUT

x

R1

trunc, sat R2 +

DSNU

LUT

sat
R3

R2

PREPRO[ac]

UNPREPRO[ac]

Figure 6.15: Implementation of the linear correction

phase. See [46] for a detailed treatment of how to design non-linear FSL circuits. The dead
column correction requires two pipeline stages R4 and R5, which hold PREPRO [ac-1]
and PREPRO [ac-2], respectively. The input value to these registers depends on the
content of the dead column look-up table, which is used to select the appropriate input
via multiplexers.

R4

R5

R4 R5DEAD

LUT

ϕ

PREPRO[ac]

Sel1

ϕ

+ ÷2

PREPRO[ac-1]

PREPRO[ac-2]

Sel2

PREPRO[ac]
ϕ

Figure 6.16: Implementation of the dead column correction

6.4.4 Emulation of the GAIA Algorithm

The GAIA algorithm is emulated using the STEFAN tool. Thereby versatile sabo-
teurs (VS) are placed at different locations of the circuit. The fault sensitivity is then
tested for both a plain unhardened circuitry as well as for a DRXS hardened version.

172 6. Emulation

Before the detailed test results are presented, the operation of the STEFAN tool
and the VS is illustrated in more detail. Therefore, a VS has been placed at the output
of the linear correction (R3), see Fig. 6.15. The command script used to test the circuit
has already been presented in Listing 6.2. Fig. 6.17(a) shows the result with a stuck-at
0 fault applied to PREPRO(1).b. That fault accelerated the execution but it did not
lead to a wrong result as the disturbed b-rail was anyhow expected to switch to logic
0. Fig. 6.17(b) shows the result with a bit flip fault applied to PREPRO(0).b. That
fault did not lead to an expected transition and instead of the expected result sequence
{0x0;0x0;0x7;0x8;0x7;...} the circuit captured {0x0;0x0;0x6;0x8;0x7;...}, i.e. a token error
did occur. The figure shows another user interface of the STEFAN tool, which provides
two buffer listings on the main window instead of the fault injection controls. The readings
of the sink buffer clearly show the expected result for the stuck-at-0 fault and the wrong
result for the bit-flip fault.

(a) Rejection of stuck-at 0 fault (b) Error due to bit-flip 1 fault

Figure 6.17: Example of a token error emulation

To explain the operation of this hardware fault injection in more detail, the simula-
tion interface of the STEFAN tool was used. Thereby, the GAIA circuitry was simulated
with the same fault injection settings as depicted in Fig. 6.18. As described in Listing 6.2,
the sequence controller delays the two least significant rails of PREPRO by using the
configuration FC. The next stage circuit R4 has to wait until all rails are enabled, which
is signalled by the configuration FF, until the code phase can be completed. The op-
eration of the sequence controller and the mapping of a particular rail index to a bit
in the configuration is explained in Table 6.1 and Fig. 6.11. During the delayed state,
the bit-flip fault was injected onto PREPRO(0).b. That fault completes the code phase
and corrupts the output to rDataOut=〈01, 10, 10, 01〉=0x6 instead of the expected value
rDataOut=〈01, 10, 10, 10〉=0x7. Without any fault applied, the artificial delay introduced

6.4. Application: The GAIA Video Pre-Processing Algorithm 173

by the sequence controller solely delays the execution of the circuit as shown at the right
end of the waveform. If no fault is injected, the output data rDataOut is delayed, but
identical to the input data rDataIn.

FI Settings

8300000001010103

0000 0001 0000

0 3 0

0 1

1 3

0 2

Correct Signal

0 0 0 1 1 1 0 1 0 0

0 0 1 0 0 0 1 0 1 1

0 0 1 0 0 0 0 1 1 1

0 0 1 0 0 0 0 1 1 1

Faulty Signal

0 0 0 1 1 1 0 1

0 0 1 0 0 0 1 0

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

Seq Control

FC FC FC FC FC FC FF FC

3527200 ns 3527400 ns 3527600 ns

FI Settings

fi_setting 8300000001010103

fmask 0000 0001 0000

ftype 0 3 0

clkcounter_rel 0 1

udurcnt 1 3

ofscounter 0 2

Correct Signal

rdatain(3) 0 0 0 1 1 1 0 1 0 0

rdatain(2) 0 0 1 0 0 0 1 0 1 1

rdatain(1) 0 0 1 0 0 0 0 1 1 1

rdatain(0) 0 0 1 0 0 0 0 1 1 1

Faulty Signal

rdataout(3) 0 0 0 1 1 1 0 1

rdataout(2) 0 0 1 0 0 0 1 0

rdataout(1) 0 0 1 0 0 0 0 1

rdataout(0) 0 0 0 1 0 0 0 1

Seq Control

configdata FC FC FC FC FC FC FF FC

ackqq

(Bit flip fault)

Config 0xFC delays rdataout(0)
no fault, the output is only delayed

Figure 6.18: Generation of a token error by means of a transient fault

Fig. 6.19 shows the fault emulation setup of the GAIA algorithm. The versatile
saboteur V S7 was placed at the lower 4-bit output of R1 and the saboteur V S13 was
placed at the lower 4-bit output of R4. The sequence controller in these saboteurs was
setup using 4 different configurations: {FF00;FFFF}, {FFF0;FFFF}, {FFFC;FFFF} and
{FFFF}. The objective of these configurations is to differently delay particular rail tran-
sitions and thereby to generate different traces and a different fault sensitivity. For each
setting, 1000 random fault injection runs were performed using 5 different, randomly se-
lected stimuli for all LUTs in the circuit. Each stimuli had a length of 16 entries. In total,
5000 fault injection runs were performed with V S7 and V S13, respectively. Thereby only
one saboteur was activated.

Table 6.4 presents the first fault injection campaign using the unprotected GAIA test
circuitry. The individual results of each saboteur and the average numbers are presented
for each of the four sequence controller settings. The columns have to be interpreted as
follows:

”VS” labels the saboteur (7, 13 or average of these two), ”Seq” describes the se-
quence controller setting that has been used in that scenario. ”OK” contains the per-
centage of correct results. ”Deadlock” collects all runs that have stopped the circuitry
without producing erroneous data. ”Errors” shows the relative number of emulation runs
that produced wrong data at the GAIA output PREPRO [ac], independent whether the
expected number of data was recorded or whether the wrong data occurred together with
a deadlock. ”SEU” marks all runs that inject a stuck-at fault into the set/reset input
of any rail latch of the associated register. ”SEUD” and ”SEUE” show the percentage
of such fault injections that lead to a deadlock and wrong data, respectively. ”SET”

174 6. Emulation

R1

>=

UNPREPRO[ac]

SATURATE

R1

trunc,
sat

R2 sat
R3

R2

R4

R5

R4 R5

Sel1

ϕ

÷2

PREPRO[ac-1]

PREPRO[ac-2]

PREPRO[ac]

CRNU

x
VS

7
+

DSNU

CRNU

DEAD

Sel2

ϕ
VS

13

ϕ

+

PREPRO[ac]

S/R

Ack

S/R

Ack

Figure 6.19: Fault emulation setup of the GAIA algorithm

marks all runs that inject a stuck-at fault into the data path the saboteur is attached to.
Thereby the acknowledge signal is also considered as victim signal. ”SETD” and ”SETE”
show the percentage of such data path faults that lead to a deadlock and wrong data,
respectively.

The separate evaluation of faults that were injected into the set/reset input of the
register latches and the data path stems from their different behavior with respect to
deadlocks. In fact, transient faults on the set/reset input of the register latches did
trigger the majority of deadlocks, while transient faults on the data path triggered much
less deadlocks. The number of deadlocks is highly influenced by the setting of the sequence
controller. A closer examination by means of simulating a fault injection scenario has
shown that (i) the design of the sequence controller and (ii) the number of disabled rails
determine the affinity to deadlocks.

It was shown that a transient fault in a register latch will upset the latch and
generate a soft error. Using the definitions from 3.4.3, such an error may lead to a T (−1)
token if it affects a delayed rail and suppresses its transition, which is illustrated by an
example.

Example 6.4.1: Fig. 6.20 shows a simulation that deadlocks due to a register upset.

6.4. Application: The GAIA Video Pre-Processing Algorithm 175

Table 6.4: Fault sensitivity of the GAIA test circuit

VS Seq OK Deadlocks Errors SEU SEUD SEUE SET SETD SETE

7 FF00 77.6% 17.2% 5.2% 49.0% 17.2% 2.4% 51.0% 0.0% 2.8%

FFF0 85.4% 10.6% 4.1% 51.4% 10.6% 1.9% 48.6% 0.0% 2.2%

FFFC 91.3% 4.7% 4.0% 50.5% 4.7% 1.8% 49.5% 0.0% 2.2%

FFFF 97.7% 0.5% 1.8% 49.8% 0.2% 0.6% 50.2% 0.34% 1.1%

13 FF00 76.3% 18.0% 5.7% 50.2% 17.2% 2.5% 49.8% 0.88% 3.1%

FFF0 87.0% 9.3% 3.6% 50.9% 8.6% 2.2% 49.1% 0.76% 1.5%

FFFC 91.8% 4.0% 4.3% 49.7% 3.1% 2.5% 50.3% 0.82% 1.7%

FFFF 97.3% 1.7% 1.0% 49.2% 1.2% 0.3% 50.8% 0.44% 0.7%

Average FF00 76.9% 17.6% 5.4% 49.6% 17.2% 2.5% 50.4% 0.44% 3.0%

FFF0 86.2% 9.9% 3.9% 51.2% 9.6% 2.0% 48.8% 0.38% 1.8%

FFFC 91.5% 4.3% 4.1% 50.1% 3.9% 2.2% 49.9% 0.41% 2.0%

FFFF 97.5% 1.1% 1.4% 49.5% 0.7% 0.5% 50.5% 0.39% 0.9%

The register output of R1 is rdataout = 〈00, 00, 11, 00, 11, 00〉. The lower 4 dual-
rail bits are passed to the sequence controller, which applies the configuration FFFC.
First, it passes the inconsistent token rfiout10 = 〈11, 00, 11, 01〉 and delays the least
significant bit 00. In this state a transient fault hits set(0) and generates the incon-
sistent R1 output rdataout = 〈00, 00, 11, 00, 11, 01〉. The next configuration of the
sequence controller is FFFF, which will pass all rdataout signals to the next stage, so
rfiout10 = 〈11, 00, 11, 01〉. The transition on the least significant bit is still missing,
eventually generating a deadlock as it produces a T (−1) token.

GAIA_TOP

{0... {0 1} {0 1} {1 0} {0 1} {1 0} {0 1} {0 0} {0 0} {1 1} {... {0 0} {0 0} {1 1} {0 0} {1 1} {0 1}

0 0 0 1 0 0

0 0 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 0

1 1 1 0 1 1

1 1 0 1 0 0 0 1

FFFC FFFF FFFC FFFF FFFC

wait4compl_e a... waitnclk_e a... wait4compl_e a... waitnclk_e a... wait4compl_e

{0 0} {0 0} {1 1} {1 1} {1 0} {0 1} {1 0} {1 1} {1 0} {0 1} {1 0} {0 1} {1 1} {0 0} {1 1} {0 1}

0 0 1 0 1 1

0 0 0 1 0 0

1 1 1 0 1 1

1 1 0 1

2507600 ns 2507700 ns 2507800 ns

GAIA_TOP

set(0)

rdataout {0... {0 1} {0 1} {1 0} {0 1} {1 0} {0 1} {0 0} {0 0} {1 1} {... {0 0} {0 0} {1 1} {0 0} {1 1} {0 1}

(5) 0 0 0 1 0 0

(4) 0 0 0 1 0 0

(3) 0 0 1 0 1 1

(2) 0 0 0 1 0 0

(1) 1 1 1 0 1 1

(0) 1 1 0 1 0 0 0 1

pass

configdata FFFC FFFF FFFC FFFF FFFC

tconfigstate wait4compl_e a... waitnclk_e a... wait4compl_e a... waitnclk_e a... wait4compl_e

rfiout0 {0 0} {0 0} {1 1} {1 1} {1 0} {0 1} {1 0} {1 1} {1 0} {0 1} {1 0} {0 1} {1 1} {0 0} {1 1} {0 1}

(3) 0 0 1 0 1 1

(2) 0 0 0 1 0 0

(1) 1 1 1 0 1 1

(0) 1 1 0 1

Figure 6.20: Deadlock due to hitting a delayed rail

176 6. Emulation

The number of delayed bits is defined by the sequence controller configuration. For
instance, {FFF0;FFFF} already delays the least 2 significant bits, i.e. the chance to hit
one of this delayed rails in an error case is much higher than for {FFF0;FFFF}. On the
other hand, if the upset hits a rail that has already been enabled in the first iteration,
the fault may generate a T (+1) token if it hits a rail that is not expected to switch in the
current code phase. Thereby, it depends on the local timings how such a token resolves.

Example 6.4.2: In Fig. 6.21, the simulation from Fig. 6.20 is repeated, but now a
transient fault is injected on clear(3). The output of R1 is modified to rdataout =
〈00, 00, 11, 00, 11, 00〉 → 〈00, 00, 11, 00, 01, 00〉. That inconsistent token is stopped at
the sequence controller until it applies the next configuration and generates the output
transition rfiout10 = 〈11, 00, 11, 01〉 → 〈11, 00, 01, 00〉. The subsequent circuit stage
sees two transitions on rfiout10(1), which corresponds to a T (+1) token. In the
current simulation, the subsequent circuit stage resolves that hazard and processes the
correct token rfiout10 = 〈11, 00, 11, 00〉. However, not all such T (+1) tokens resolve
to the correct data, some produce wrong data while others produce a deadlock.

GAIA_TOP

{0 1} {0 1} {1 0} {0 1} {1 0} {0... {0 0} {0 0} {1 1... {0 0} {0 0} {1 1} {0 0} {0 1} {... {0 1} {0 1} {0 1} {1 0} {1 0} {1 0}

0 1 0 0 0 1

0 1 0 0 0 1

1 0 1 1 0 1

0 1 0 0 1 0

1 0 1 1 0 1 1 0

0 1 0 0 1 0

waitnclk_e a... wait4compl_e a... waitnclk_e a... wait4compl_e a... waitnclk_e a... wait4compl_e

F... FFFF FFFC FFFF FFFC FFFF

{1 0} {0 1} {1 0} {1 1} {1 0} {0 1} {1 0} {0 1} {1 1} {0 0} {1 1} {0 1} {1 1} {0 0} {0 1} {0 0} {0 1} {1 0} {1 0} {0 0} {0 1} {1 0} {1 0} {1...

1 0 1 1 0 1

0 1 0 0 1 0

1 0 1 1 0 1 1 0

1 1 0 1 0 0 1 0

2507700 ns 2507800 ns 2507900 ns

GAIA_TOP

clear(3)

rdataout {0 1} {0 1} {1 0} {0 1} {1 0} {0... {0 0} {0 0} {1 1... {0 0} {0 0} {1 1} {0 0} {0 1} {... {0 1} {0 1} {0 1} {1 0} {1 0} {1 0}

(5) 0 1 0 0 0 1

(4) 0 1 0 0 0 1

(3) 1 0 1 1 0 1

(2) 0 1 0 0 1 0

(1) 1 0 1 1 0 1 1 0

(0) 0 1 0 0 1 0

pass

tconfigstate waitnclk_e a... wait4compl_e a... waitnclk_e a... wait4compl_e a... waitnclk_e a... wait4compl_e

configdata F... FFFF FFFC FFFF FFFC FFFF

rfiout0 {1 0} {0 1} {1 0} {1 1} {1 0} {0 1} {1 0} {0 1} {1 1} {0 0} {1 1} {0 1} {1 1} {0 0} {0 1} {0 0} {0 1} {1 0} {1 0} {0 0} {0 1} {1 0} {1 0} {1...

(3) 1 0 1 1 0 1

(2) 0 1 0 0 1 0

(1) 1 0 1 1 0 1 1 0

(0) 1 1 0 1 0 0 1 0

Figure 6.21: No deadlock due to sequence controller setting

Finally, the faults were randomly but uniformly applied at register level. Thus the
number of faults that affect a register latch is approximately the same as the number
of faults that are applied to the data path. In reality, the number of circuit nodes that
contribute to the column ”SEU” is less than the number of nodes that can be assigned to
column ”SET”, since the register latches comprise only a few gates while the data path

6.4. Application: The GAIA Video Pre-Processing Algorithm 177

typically comprises complex combinational functions. Taking into account solely the
faults on the data path provides a more realistic estimate of the overall fault tolerance.
Regarding only the data path faults, the unhardened GAIA circuit showed an average fault
tolerance between 0.9% and 3.0%. From all sequence controller configurations {FFFF}
will be the most realistic one, i.e. the 0.39% deadlocks and 0.9% data errors are regarded
as realistic property of the unhardened GAIA circuit.

Table 6.5 shows the results from fault injection campaign with a DRXS hardened
GAIA circuitry. Thereby the same input stimulus and sequence controller settings as for
the unhardened tests were used. The saboteurs V S7 and V S13 were placed at the same
location as shown in Fig. 6.19. However, their scope was limited to the nominal path of
the cross-coupled circuit and the faults were only injected into the nominal data path as
well as into the nominal set/reset inputs of the register latches. That limitation has been
performed for simplicity. Placing the saboteurs on the redundant path will lead to the
same results.

Regarding the number of deadlocks, no improvement with respect to the unhard-
ened GAIA test circuit was observed. That is not unexpected, as nearly all deadlocks
were triggered by upsets in the set/reset inputs of the subjected register latches (column
”SEUD”). The DRXS cannot mitigate these deadlocks as the violate the fundamental
handshake property of QDI circuits. However, no emulation run produced any wrong
data, independent whether the fault was applied to the register latches or directly to the
data path.

Looking at the most realistic sequence (FFFF), the DRXS hardened GAIA circuit
had only 0.01% deadlocks and 0.0% data errors. The improvement compared to the
unhardened circuit is significant. The DRXS method is regarded as being fault tolerant
with respect to the investigated implementation and the applied boundary conditions
via the saboteurs, the circuit topology, the target platform, etc. A general fault tolerance
cannot be assumed as the DRXS method has limitations with respect to T (+1) as derived
in chapter 4 and also confirmed by means of fault simulation in chapter 5.

Table 6.5: Fault sensitivity of the GAIA test circuit using DRXS

VS Seq OK Deadlocks Errors SEU SEUD SEUE SET SETD SETE

7 FF00 85.0% 15.0% 0.0% 51.4% 14.8% 0.0% 48.6% 0.22% 0.0%

FFF0 91.5% 8.5% 0.0% 49.8% 8.3% 0.0% 50.2% 0.24% 0.0%

FFFC 96.4% 3.6% 0.0% 49.7% 3.5% 0.0% 50.3% 0.06% 0.0%

FFFF 100.0% 0.0% 0.0% 48.4% 0.0% 0.0% 51.6% 0.00% 0.0%

13 FF00 81.7% 18.3% 0.0% 50.0% 18.0% 0.0% 50.0% 0.30% 0.0%

FFF0 90.3% 9.7% 0.0% 50.8% 9.4% 0.0% 49.2% 0.34% 0.0%

FFFC 95.2% 4.8% 0.0% 49.8% 4.8% 0.0% 50.2% 0.00% 0.0%

FFFF 99.4% 0.6% 0.0% 49.7% 0.6% 0.0% 50.3% 0.02% 0.0%

Average FF00 83.3% 16.7% 0.0% 50.7% 16.4% 0.0% 49.3% 0.26% 0.0%

FFF0 90.9% 9.1% 0.0% 50.3% 8.8% 0.0% 49.7% 0.29% 0.0%

FFFC 95.8% 4.2% 0.0% 49.7% 4.2% 0.0% 50.3% 0.03% 0.0%

FFFF 99.7% 0.3% 0.0% 49.0% 0.3% 0.0% 51.0% 0.01% 0.0%

Table 6.6 shows the results with a DRXX hardened GAIA test circuit. Looking at
the total number of deadlocks shows a comparable performance as with the DRXS method.

178 6. Emulation

However, the deadlocks due to transient faults on the data path (column ”SETD”) are
significantly reduced compared to DRXS. In principle, that is exactly the predicted dif-
ference between DRXS and DRXX, as predicted in 4.4.5 based on theoretic assumptions.
The DRXX method is able to reduce the number of deadlocks due to data path faults,
while it does not bring any improvement for deadlocks that are generated by register
upsets due to direct hits. As for the DRXS runs, no wrong data was observed in any run.

Table 6.6: Fault sensitivity of the GAIA test circuit using DRXX

VS Seq OK DEADLOCKS Errors SEU SEUD SEUE SET SETD SETE

7 FF00 82.0% 18.0% 0.0% 49.9% 18.0% 0.0% 50.1% 0.02% 0.0%

FFF0 91.8% 8.2% 0.0% 50.4% 8.2% 0.0% 49.6% 0.00% 0.0%

FFFC 96.2% 3.8% 0.0% 50.2% 3.7% 0.0% 49.8% 0.06% 0.0%

FFFF 100.0% 0.0% 0.0% 49.9% 0.0% 0.0% 50.1% 0.00% 0.0%

13 FF00 84.7% 15.3% 0.0% 49.6% 15.3% 0.0% 50.4% 0.00% 0.0%

FFF0 91.4% 8.6% 0.0% 50.3% 8.6% 0.0% 49.7% 0.00% 0.0%

FFFC 95.5% 4.5% 0.0% 50.2% 4.5% 0.0% 49.8% 0.00% 0.0%

FFFF 99.1% 0.9% 0.0% 49.7% 0.9% 0.0% 50.3% 0.02% 0.0%

Average FF00 83.4% 16.7% 0.0% 49.7% 16.6% 0.0% 50.3% 0.01% 0.0%

FFF0 91.6% 8.4% 0.0% 50.4% 8.4% 0.0% 49.7% 0.00% 0.0%

FFFC 95.9% 4.1% 0.0% 50.2% 4.1% 0.0% 49.8% 0.03% 0.0%

FFFF 99.6% 0.4% 0.0% 49.8% 0.4% 0.0% 50.2% 0.01% 0.0%

Table 6.7 presents the results of a DRS hardened GAIA test circuit. Again, the
number of deadlocks due to direct transient faults in the register latches remains approx-
imately the same as for the DRXS and DRXX method. As predicted, the DRS method
cannot reduce the sensitivity to deadlocks when the fault directly hits a register latch.
However, contrary to the previous methods, none of the data path faults lead to a deadlock
(column ”SETD”). Thus the DRS method furhter improves the fault tolerance compared
to the DRXX method, which also corresponds to the predicted behavior. Additionally,
no transient fault in the DRS hardened GAIA test circuit produced wrong data, which
already has been observed using the DRXS and DRXX method.

Table 6.7: Fault sensitivity of the GAIA test circuit using DRS

VS Seq OK DEADLOCKS Errors SEU SEUD SEUE SET SETD SETE

7 FF00 82.2% 17.8% 0.0% 49.6% 17.8% 0.0% 50.4% 0.0% 0.0%

FFF0 91.3% 8.7% 0.0% 49.9% 8.7% 0.0% 50.1% 0.0% 0.0%

FFFC 95.3% 4.7% 0.0% 49.9% 4.7% 0.0% 50.1% 0.0% 0.0%

FFFF 100.0% 0.40% 0.0% 49.6% 0.0% 0.0% 50.4% 0.0% 0.0%

13 FF00 82.2% 17.8% 0.0% 49.6% 17.8% 0.0% 50.4% 0.0% 0.0%

FFF0 91.3% 8.7% 0.0% 49.9% 8.7% 0.0% 50.1% 0.0% 0.0%

FFFC 95.3% 4.7% 0.0% 49.9% 4.7% 0.0% 50.1% 0.0% 0.0%

FFFF 100.0% 0.04% 0.0% 49.6% 0.0% 0.0% 50.4% 0.0% 0.0%

Average FF00 82.2% 17.8% 0.0% 49.6% 17.8% 0.0% 50.4% 0.0% 0.0%

FFF0 91.3% 8.7% 0.0% 49.9% 8.7% 0.0% 50.1% 0.0% 0.0%

FFFC 95.3% 4.7% 0.0% 49.9% 4.7% 0.0% 50.1% 0.0% 0.0%

FFFF 100.0% 0.04% 0.0% 49.6% 0.0% 0.0% 50.4% 0.0% 0.0%

6.4. Application: The GAIA Video Pre-Processing Algorithm 179

Fig. 6.22(a) illustrates the number of deadlocks in the GAIA test circuit that have
been observed in the particular test runs. Thereby the results of the different hardening
methods are displayed for each sequence controller setting. The setting FFFF corresponds
to the most realistic one taken into account the artificial synchronized design of the
sequence controller. For this setting, (i) the number of deadlocks are minimized and (ii)
the additional reduction in terms of deadlocks by applying a hardening method becomes
evident.

In Fig. 6.22(b), the number of wrong data (consisting of token plus synchronization
errors) is presented versus sequence controller setting and hardening method. The diagram
is reduced solely to the display of wrong data in an unhardened circuitry, as all hardening
methods (DRXS, DRXX, DRS) did not yield to any wrong data. The reduction of wrong
data when applying a realistic sequence controller setting is also to be mentioned.

FF00 FFF0 FFFC FFFF
0

2

4

6

8

10

12

14

16

18

Sequence Controller Setting

D
e
a
d
lo

c
k
s
[%

]

unhardened

DRXS

DRXX

DRS

(a) Deadlocks

FF00 FFF0 FFFC FFFF
0

1

2

3

4

5

6

Sequence Controller Setting

W
ro

n
g
 D

a
ta

[%
]

unhardened

DRXS

DRXX

DRS

(b) Wrong Data

Figure 6.22: General fault sensitivity of the GAIA test circuit versus trace setting

Fig. 6.23 presents the same data as Fig. 6.22, however, it only considers the data
path faults. Fig. 6.23(a) emphasizes the advantage of the DRXX method over the DRXS
method in terms of less deadlocks. The DRS method provides the best performance
regarding both register latch and data path fault injection. Fig. 6.23(b) shows the same
shape as Fig. 6.22(b) when considering only data path faults. Contrary to the deadlocks,
which are less than 0.5% when injecting the fault on the data path, the probability of
getting a wrong data with such a fault injection is quite significant and can be compared
as being equally probable as when the fault is injected directly into a register latch. Again,
Fig. 6.23(b) only compares the sequence controller settings for the unhardened circuitry,
since all hardening methods were immune to data path faults during the test campaign.

180 6. Emulation

FF00 FFF0 FFFC FFFF
0

0.1

0.2

0.3

0.4

0.5

0.6

Sequence Controller Setting

D
e
a
d
lo

c
k
s
[%

]

unhardened

DRXS

DRXX

DRS

(a) Deadlocks

FF00 FFF0 FFFC FFFF
0

1

2

3

4

5

6

Sequence Controller Setting

W
ro

n
g
 D

a
ta

[%
]

unhardened

DRXS

DRXX

DRS

(b) Wrong Data

Figure 6.23: Data path fault sensitivity of the GAIA test circuit versus trace setting

6.5 Summary

That chapter presents a deterministic method to emulate transient faults in QDI
logic using the STEFAN tool. Hardware fault injection has its merits due to the increased
speed compared to simulation based methods. For instance, 1000 fault simulation runs
of a simple 4-bit QDI adder using the synthesized netlist takes approximately 1 hour
on a commercial PC, using the simulation setup and the FOSTER tool as presented in
chapter 5. A comparable scenario in the STEFAN tool is completed within 2 minutes. As
example for the fault emulation, a portion of the GAIA video processing algorithm was
chosen. Although that circuit only has a moderate complexity, it requires several hours
to simulate, while it the emulation only takes a few minutes.

The STEFAN tool is able to place several versatile saboteurs within the circuit to
be tested, which allow not only to inject different types of faults but also to reshuffle
the particular rail transitions of the subjected signal. Thereby the circuit trace can be
modified, which will give a different fault sensitivity and enables the investigation of
different trace settings. The saboteurs have been implemented as synchronous circuitries,
which complies to the unbounded delay requirement of QDI logic. The synchronization
ensures that the fault injection will be reproducible and solves the trigger problem in
QDI fault emulation. The STEFFAN tool also allows to reproduce a hardware fault
injection by means of loading the same stimulus and fault injection setups to a simulator
and investigate the fault behavior on a much finer granularity. This cross-checking allows
to investigate the behavior of internal circuit nodes that are not visible in the hardware
based emulation.

The drawback of this reproducibility is the limited separation of consecutive rail
transition to multiples of the target platform clock period. Even if the clock runs at high
speed, the minimum separation time between two rail transitions would be in the order
of several nanoseconds. On the Virtex-4 platform that has been used for this thesis, that
separation was bound to minimum 10 ns. In general, real-world circuits are able to cope
with such timings quite easily. In a realistic QDI circuit, the separation of rail transitions
is not bound and may range from a few picoseconds up to several nanoseconds, depending

6.5. Summary 181

on a various number of parameters. The same restriction applies to the fault duration,
i.e. the minimum fault duration in the STEFAN tool is one clock cycle, while in reality
transient faults will be more than a order of magnitude shorter. Thus the STFAN tool is
not able to provoke all kind of fault behaviors due to these fundamental limitations.

A work around would be to modify the sequence controller by changing the trace via
asynchronous delay lines, which will result in more fine grained traces. In addition, the
fault injection itself could also be performed asynchronously. Both modification would
result in a more realistic fault emulation, however, the reproducibility and the interchange-
ability with a simulator would be degraded. Such investigation goes beyond the scope of
this thesis.

The results of the fault emulation by testing the GAIA test circuit have confirmed
the theoretically derived properties of the different hardening methods postulated in 4.4.
However, neither the DRXS nor the DRXX protected circuitry have shown any wrong
data during the test campaign. That is in contradiction to the predicted behavior, as the
DRXS and DRXX method should not be immune to T (+1) tokens. The improved fault
tolerance of DRXX versus DRXS in terms of deadlock reduction could be confirmed. As
expected, the DRS method showed the best performance.

Table 6.8 shows the average relation in the number of deadlocks between the hard-
ened GAIA circuit and the unhardened circuit. Considering all fault locations (columns
”SEUE” + ”SETD” in the tables of 6.4.4), the hardened GAIA circuit only shows a neg-
ligible improvement in the tolerance against deadlocks. However, when only data path
faults are considered (columns ”SETD” in the tables of 6.4.4) the significant improve-
ment of the different hardening methods becomes evident. The DRXS method reduces
the number of deadlocks due to data path faults by a factor of 2.75, DRXX already in-
creases that factor to 32.4 while DRS lead to a deadlock immune circuitry, at least for
that specific test campaign.

Table 6.8: Average improvement of deadlock reduction of versus hardening method

fault location DRXS DRXX DRS

|DEADLOCKSunhardened|
|DEADLOCKShardened|

register latches + data path 1.09 1.12 1.06
data path 2.75 32.40 ∞

In contrast to the simulation based methods presented in chapter 5, the fault em-
ulation in hardware by means of versatile saboteurs allowed quite easily to adapt the
delays in a circuit and thereby to change the trace. It was shown by a number of random
experiments that the trace setting has a significant impact on the fault sensitivity of QDI
circuits, which confirms the theoretic expectations from chapter 3. Without modifying a
circuit’s trace, only a small portion of the possible delay scenarios a circuit will encounter
in reality can be verified. Even if it is tested on the final hardware implementation, the
unpredictable process and environmental impacts may lead to different delays and thus
to a different fault sensitivity.

That thesis presented a first approach that supports the assessment of hardening
strategies as well as serves helpful in the systematic verification of QDI circuits. The
(reproducible) modification of a circuit’s trace in hardware is a novel topic, which requires

182 6. Emulation

more research, especially to overcome the limitations due to the synchronized design of
the STEFAN tool.

7
Conclusion

This chapter provides a brief summary of the work that is contained in this thesis.
The key elements are summed up in the same logical order as they occur in the written
text. Finally, an outlook to future research topics is given that could not be tackled in
this thesis.

7.1 Summary

This work presents a novel treatment of transient faults in asynchronous QDI logic.
Thereby trace theory has been selected as the main tool set for both description of transient
fault effects and the assessment of hardening methods against such faults. Since traces
are an established way to express the nominal operation of asynchronous circuits, it only
seems to be natural to extend their usage to the characterization of faulty operations as
well.

The operation of asynchronous QDI circuits is based on a local handshake between
the sender and receiver of a piece of information. That handshake takes place in alter-
nating code phases, each processing legal data also referred to as token. To model all
kinds of fault effects on a token, three token classes T (−1), T (+0) and T (+1) were intro-
duced, which describe the number of additionally excited rails in a code phase compared
to the nominal case. Each class has different fundamental properties and leads to dif-
ferent effects. It was investigated what kind of token classes are related to what kind of
circuit topology and what fault effect may be provoked. Thereby the token class model
has emerged as a general tool set that can be applied to unhardened and hardened QDI
circuits as well as to different encoding schemes.

Within this thesis, the duplication and rail cross-coupling method was developed.
The idea is to duplicate a QDI circuit and to swap one signal rail between the nominal
and redundant path. Thereby any mismatch between these two paths will stop the cir-
cuit. The advantage of this method is the minimum hardware overhead. No dedicated
comparator is needed as the comparison is implicitly performed. Applying the token class
model to that basic idea has shown some weaknesses and has lead to the synchronized
duplicated and rail cross-coupled (DRXS) method, which is able to mitigate most of the

183

184 7. Conclusion

token classes. However, there exist some faulty traces of the T (+1) class that remain
undetected. Another improvement has been the DRXS with cross-coupled completion de-
tectors (DRXX) method, which has the same fault detection properties as DRXS but
additionally reduces the probability of deadlocks. Finally, it could be shown that the
duplication and rail synchronization (DRS) method, which is one possible representation
of Martin’s duplication and double-checking method [93], is able to mitigate all token
classes. However, the hardware overhead of DRS exceeds DRXS/DRXX at larger cir-
cuitries. Thus DRXS/DRXX is regarded as an alternative hardening method especially
for complex architectures, which reduces the hardware overhead but still provides a high
degree of fault tolerance.

The theoretic assumptions and hypotheses that have been derived in this thesis
were confirmed by both simulation and hardware based fault injection experiments. The
simulation of QDI circuits is not a trivial task as QDI logic has a fundamentally different
behavior compared to synchronous circuits. To correctly simulate the effects of transient
faults, the FOSTER simulation tool was developed. It is able to handle faults in both
combinational and sequential circuits and correctly models their properties without mak-
ing a time-consuming state evaluation, leading to a short simulation time while keeping
the simulation model simple. The FOSTER tool is also able to record the different traces
the circuit under test receives. Hence the connection to the token class model is estab-
lished and the evaluation of the faults is done in a systematic way. Several test circuits
have been subjected to transient fault injections and the different hardening methods have
been evaluated. Both the DRXS and DRXX method significantly improved the fault tol-
erance. The DRS method showed the highest fault tolerance, although not as high as
expected.

To be as realistic as possible, the fault injection was performed using VITAL com-
pliant, synthesized netlists. Thereby a Virtex-4 FPGA has been selected as the target
platform. Due to the asynchronous nature of both the QDI design itself and the fault
injection, timing violations were reported frequently. Although most effects of these vio-
lations could be taken into account for the evaluation of the results, many effects remain
questionable. So far no work is known that tackles that problem.

Since a simulation model is only as good as its specification, the transient fault
behavior was also tested in hardware. For that reason, the STEFAN emulation tool was
derived, which allows to test fault effects in QDI hardware in a reproducible manner.
Thereby not only faults can be injected, but also the trace, which has a significant impact
on the fault tolerance, can be modified. To keep the complexity of the STEFAN tool
moderate, the fault injection and trace control mechanism was implemented by means
of synchronous functions. That synchronicity does not impose a contradiction to the
unbounded delay model, however, it limits the resolution of both the trace modification
and the fault injection task. Thus the STEFAN tool also only draws a limited picture
of the real world behavior of a QDI circuit and leaves improvements for future work. To
test the properties of the hardening methods derived in this thesis, a real application was
chosen: a small portion of the video processing algorithm of the European space mission
GAIA. The hardening techniques performed even better than expected, no erroneous data
was generated in a DRXS / DRXX / DRS protected system. Overall, the results of the
emulation confirmed the theoretically derived expectations.

7.2. Outlook 185

7.2 Outlook

Although this work tried to cover as much as possible in the field of transient faults
in asynchronous QDI logic, a lot of topics could not be investigated within the scope of
this thesis and are reserved for future research:

Metastability – It was shown that a fault of the class T (+1) violates the delay-
insensitive encoding of the data. That violation may result in a metastable behav-
ior. It would be interesting whether hardening methods support the generation of such
metastable states or whether they reduce their occurrence.

Analytical soft error calculation – There exists some work on the analytical
calculation of soft error rates in conventional synchronous logic, while no research is
known that tackles that topic in asynchronous logic. That thesis has shown the impact
of the trace setting on the number of soft errors based on some selected test circuits. A
more general approach that takes into account the actual trace distribution may lead to
an estimate of fault tolerance of a circuit without needing time consuming simulations.

Encoding schemes – That thesis has only focused on dual-rail encoded QDI cir-
cuits. Especially networks-on-chip tend to use other, more efficient codes for data trans-
mission channels. A different encoding scheme may have a direct influence on the fault
tolerance and the selected hardening strategy.

Detailed assessment of overhead – That thesis has only investigated the hard-
ware area overhead of different mitigation schemes. A more general assessment of the
overhead a hardening method generates (in terms of power, speed, cost) will help to
select the optimum method, depending on the main requirements of an application.

Recovery of deadlocks – It was shown that not only permanent but also transient
faults may lead to a deadlock in QDI circuits. Although a deadlock does not explicitly
produce wrong data and solely stops the circuit execution, such a behavior may be not
acceptable from a system level perspective. For example, a safety system may cope with
wrong data from one of its subsystems but it may not accept a subsystem that has stopped
working. The recovery of deadlocks is closely related to the treatment of permanent faults.
For related work on this topic see [128].

Realistic simulation – The simulation of transient faults in QDI circuits has
emerged as non-trivial, especially because of the occurrence of timing violations. The
particular gates and sequential elements of a QDI circuit were modeled by means of
conventional circuit libraries that are dedicated to synchronous designs. The usage of
synchronous models goes along with the synchronous hardware platforms that are used
as target for the circuit synthesis. The occurrence of timing violations within fault simu-
lations makes the result of these simulations questionable. Thus a synthesis library that
is based on an asynchronous target platform would improve the validity of QDI fault
simulations. In addition, a modification of the circuit trace for the simulation would also
be very helpful. A possible idea would be e.g. the automatic modification of the timings
in the SDF file, so the circuit still complies with its specification, but faces a different
trace setting that directly has an impact on its fault tolerance.

Realistic emulation – Testing the sensitivity of a circuit by means of hardware
experiments yields to a high confidence on such results, provided the fault emulation does
not have a significant impact on the behavior of the circuit. Although the presented

186 7. Conclusion

fault emulator in this thesis leads to reproducible results, it is limited by its synchronous
implementation. A pure asynchronous fault emulation will allow to modify the trace
at a much finer level and to apply more realistic transient fault durations. It would be
interesting how a more realistic fault emulator behaves. Additionally, random experiments
should be performed as well to exclude systematic faults in the emulation setup. Thereby
a trade-off with respect to reproducibility has to be made.

Bibliography

[1] Semiconductor Industry Association, “International technology roadmap for semicon-
ductors (ITRS),” http://public.itrs.net, 2009.

[2] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,” IEEE Micro,
vol. 23, no. 4, pp. 14–19, 2003.

[3] M. J. Gadlage, P. H. Eaton, J. M. Benedetto, M. Carts, V. Zhu, and T. L. Turflinger,
“Digital device error rate trends in advanced CMOS technologies,” IEEE Transactions
on Nuclear Science, vol. 53, no. 6, pp. 3466–3471, 2006.

[4] R. Baumann, “The impact of technology scaling on soft error rate performance and
limits to the efficacy of error correction,” in Proceedings of the IEEE International
Electron Devices Meeting, 2002, pp. 329–332.

[5] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi, “Modeling the
effect of technology trends on the soft error rate of combinational logic,” in Proceedings
of the 2002 International Conference on Dependable Systems and Networks, 2002, pp.
389–398.

[6] A. Dixit, R. Heald, and A. Wood, “Trends from ten years ofsoft error experimenta-
tion,” in Proceedings of IEEE Workshopon Silicon Errors in Logic - System Effects,
2009.

[7] E. Normand, “Single event upset at ground level,” IEEE Transactions on Nuclear
Science, vol. 43, no. 6, pp. 2742–2750, 1996.

[8] P. Hazucha and C. Svensson, “Impact of CMOS technology scaling on the atmospheric
neutron soft error rate,” IEEE Transactions on Nuclear Science, vol. 47, no. 3, pp.
2586–2594, 2000.

[9] R. Baumann, “Radiation-induced soft errors in advanced semiconductor technologies,”
IEEE Transactions on Device and Materials Reliability, vol. 5, no. 3, pp. 305–316,
2005.

[10] G. Asadi and M. B. Tahoori, “Soft error rate estimation and mitigation for SRAM-
based FPGAs,” in Proceedings of the 2005 ACM/SIGDA 13th international sympo-
sium on Field-programmable gate arrays. New York, NY, USA: ACM, 2005, pp.
149–160.

[11] C. H. K. van Berkel, M. B. Josephs, and S. M. Nowick, “Scanning the technology:
Applications of asynchronous circuits,” in Proceedings of the IEEE, 87(2), February
1999., 1999, pp. 223–233.

[12] J. Sparso and S. Furber, Eds., Principles of Asynchronous Circuit Design - A Systems
Perspective. Kluwer Academic Publishers, 2001.

187

188 Bibliography

[13] A. J. McAuley, “Four state asynchronous architectures,” IEEE Transactions on Com-
puters, vol. 41, no. 2, pp. 129–142, Februray 1992.

[14] M. E. Dean, T. E. Williams, and D. L. Dill, “Efficient self-timing with level-encoded
2-phase dual-rail (LEDR),” in Proceedings of the 1991 University of California/Santa
Cruz conference on Advanced research in VLSI. Cambridge, MA, USA: MIT Press,
1991, pp. 55–70.

[15] B. Rahbaran, “An experimental comparison of robustness between synchronous and
asynchronous logic design,” Ph.D. dissertation, Vienna University of Technology, 2005.

[16] N. Miskov-Zivanov and D. Marculescu, “Soft error rate analysis for sequential cir-
cuits,” in Proceedings of the conference on Design, automation and test in Europe.
San Jose, CA, USA: EDA Consortium, 2007, pp. 1436–1441.

[17] C. LaFrieda and R. Manohar, “Fault detection and isolation techniques for quasi
delay-insensitive circuits,” in Proceedings of the 2004 International Conference on De-
pendable Systems and Networks (DSN’04). Washington, DC, USA: IEEE Computer
Society, 2004, p. 41.

[18] W. Jang and A. J. Martin, “SEU-tolerant QDI circuits,” in Proceedings of the 11th
IEEE International Symposium on Asynchronous Circuits and Systems, 2005.

[19] A.-M. Rahmani, A.-A. Salehpour, M. Zamani, S. Mohammadi, and H. Pedram, “An
efficient fault simulator for QDI asynchronous circuits,” in Proceedings of the 4th
Southern Conference on Programmable Logic, 2008, pp. 99–104.

[20] W. Bainbridge and S. Salisbury, “Glitch sensitivity and defense of quasi delay-
insensitive network-on-chip links,” in Proceedings of the 15th IEEE Symposium on
Asynchronous Circuits and Systems, 2009, pp. 35–44.

[21] Y. Monnet, M. Renaudin, and R. Leveugle, “Formal analysis of quasi delay insen-
sitive circuits behavior in the presence of SEUs,” in Proceedings of the 13th IEEE
International On-Line Testing Symposium (IOLTS’07), 2007.

[22] V. Diekert, The Book of Traces, G. Rozenberg, Ed. River Edge, NJ, USA: World
Scientific Publishing Co., Inc., 1995.

[23] S. Hauck, “Asynchronous design methodologies: An overview,” Proceedings of the
IEEE, vol. 83, no. 1, 1995.

[24] C. Myers, Asynchronous Circuit Design. JohnWiley & Sons, 2001.

[25] K. van Berkel, Handshake circuits: An asynchronous architecture for VLSI program-
ming. Cambridge University Press, 1993.

[26] G. M. Birtwistle and A. L. Davis, Asynchronous digital circuit design. Springer,
1995.

[27] J. A. Brzozowski and C.-J. H. Seger, Asynchronous Circuits. Springer, 1995.

[28] M. M. Nystrom and A. Martin, Asynchronous Pulse Logic. Springer, 2002.

Bibliography 189

[29] K. Fant, Logically Determined Design: Clockless System Design with NULL Conven-
tion Logic. John Wiley and Sons, 2005.

[30] S. C. Smith, J. Di, and M. Thornton, Designing Asynchronous Circuits Using Null
Convention Logic (NCL). Morgan & Claypool, 2009.

[31] D. Huffman, “The synthesis of the sequential switching circuits,” Journal of the
Franklin Institute, vol. 257, no. 4, pp. 161–190, March 1954.

[32] D. Huffman, “The synthesis of the sequential switching circuits,” Journal of the
Franklin Institute, vol. 257, no. 3, pp. 275–303, April 1954.

[33] D. E. Muller and W. S. Bartky, “A theory of asynchronous circuits,” in Proceedings
of the International Symposium on Theory of Switching, 1959, pp. 204–243.

[34] A. J. Martin, “The limitations to delay-insensitivity in asynchronous circuits,” in
Proceedings of the sixth MIT conference on Advanced research in VLSI. Cambridge,
MA, USA: MIT Press, 1990, pp. 263–278.

[35] S. M. Nowick and D. L. Dill, “Synthesis of asynchronous state machines using a local
clock,” in Proceedings of the International Conference on Computer Design (ICCD).
IEEE Computer Society Press, Oct. 1991, pp. 192–197.

[36] W. B. Toms, “Synthesis of quasi-delay-insensitive datapath circuits,” Ph.D. disser-
tation, University of Manchester, 2006.

[37] A. Mitra, W. F. McLaughlin, and S. M. Nowick, “Efficient asynchronous proto-
col converters for two-phase delay-insensitive global communication,” in Proceedings
of the 13th IEEE International Symposium on Asynchronous Circuits and Systems.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 186–195.

[38] S. Ishihara, Y. Komatsu, M. Hariyama, and M. Kameyama, “An asynchronous FPGA
using LEDR/4-phase-dual-rail protocol converters,” in International Conference on
Reconfigurable Systems and Algorithms (ERSA), 2009, pp. 145–150.

[39] P. B. McGee, M. Y. Agyekum, M. A. Mohamed, and S. M. Nowick, “A level-encoded
transition signaling protocol for high-throughput asynchronous global communica-
tion,” in Proceedings of the 14th IEEE International Symposium on Asynchronous
Circuits and Systems. Washington, DC, USA: IEEE Computer Society, 2008, pp.
116–127.

[40] K. Fant and S. Brandt, “NULL convention logicTM: A complete and consistent logic
for asynchronous digital circuit synthesis,” in Proceedings of the International Confer-
ence on Application Specific Systems, Architectures, and Processors (ASAP 96), 1996,
pp. 261–273.

[41] I. E. Sutherland, “Micropipelines,” Communications of the ACM, vol. 32, no. 6, pp.
720–738, 1989.

[42] T. Verhoeff, “Delay-insensitive codes – An overview,” Distributed Computing, vol. 3,
no. 1, pp. 1–8, 1988.

190 Bibliography

[43] S. Moore, R. Anderson, R. Mullins, G. Taylor, and J. J. A. Fournier, “Balanced
self-checking asynchronous logic for smart card applications,” Microprocessors and
Microsystems, vol. 27, no. 9, pp. 421 – 430, 2003.

[44] C. LaFrieda, B. Hill, and R. Manohar, “An asynchronous FPGA with two-phase
enable-scaled routing of delay-insensitive modules,” in Proceedings of the 16th IEEE
International Symposium on Asynchronous Circuits and Systems, H. Fuchs, Ed., 2010,
pp. 141–150.

[45] R. R. Dobkin, R. Ginosar, and A. Kolodny, “Fast asynchronous shift register for
bit-serial communication,” in Proceedings of the 12th IEEE International Symposium
on Asynchronous Circuits and Systems. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 117–126.

[46] M. Delvai, “Design of an asynchronous processor based on code alternation logic -
treatment of non-linear data paths,” Ph.D. dissertation, Vienna University of Tech-
nology, 2004.

[47] W. Huber, “Design of an asynchronous processor based on code alternation logic - ex-
ploration of delay insensitivity,” Ph.D. dissertation, Vienna University of Technology,
2005.

[48] J. Laprie, Ed., Dependability: Basic Concepts and Terminology. Springer-Verlag,
1992.

[49] A. Avizienis, J.-C. Laprie, and B. Randell, “Fundamental concepts of dependability,”
in Proceedings of the 3rd IEEE Information Survivability Workshop (ISW-2000), 2000,
pp. 7–12.

[50] D. J. Sorin, Fault Tolerant Computer Architecture, ser. Synthesis Lectures on Com-
puter Architecture. Morgan & Claypool Publishers, 2009.

[51] J. F. Ziegler, “Terrestrial cosmic rays,” IBM J. Res. Dev., vol. 40, no. 1, pp. 19–39,
1996.

[52] R. Baumann, T. Hossain, S. Murata, and H. Kitagawa, “Boron compounds as a
dominant source of alpha particles in semiconductor devices,” in Proceedings of the
International Reliability Physics Symposium, 1995, pp. 297–302.

[53] T. May and M. Woods, “Alpha-particle-induced soft errors in dynamic memories,”
IEEE Transaction on Electron Devices, vol. 26, 1979.

[54] G. C. Messenger, “Collection of charge on junction nodes from ion tracks,” IEEE
Transactions on Nuclear Science, vol. 29, pp. 2024 – 2031, 1982.

[55] D. G. Mavis and P. H. Eaton, “Soft error rate mitigation techniques for modern
microcircuits,” in Proceedings of the 40th Annual Reliability Physics Symposium, ser.
216–225, 2002.

[56] P. E. Dodd, M. R. Shaneyfelt, J. A. Felix, and J. R. Schwank, “Production and prop-
agation of single-event transients in high-speed digital logic ICs,” IEEE Transactions
on Nuclear Science, vol. 51, no. 6, pp. 3278 – 3284, 2004.

Bibliography 191

[57] R. Naseer, J. Draper, Y. Boulghassoul, E. Dasgupta, and A. Witulski, “Critical
charge and set pulse widths for combinational logic in commercial 90nm CMOS tech-
nology,” in Proceedings of the 17th great lakes symposium on Great lakes symposium
on VLSI. ACM Press, 2007, pp. 227–230.

[58] European Cooperation for Space Standardization (ECCS), “Methods for the calcu-
lation of radiation received and its effects, and a policy for design margins (E-ST-10-
12C),” http://www.ecss.nl/, 2008.

[59] A. Holmes-Siedle and L. Adams., Handbook of Radiation Effects. Oxford University
Press, 2002.

[60] A. H. Fischer, A. von Glasow, S. Penka, and F. Ungar, “Electromigration failure
mechanism studies on copper interconnects,” in Proceedings of the 2002 IEEE Inter-
connect Technology Conference, 2002, pp. 139–141.

[61] J. R. Carter, S. Ozev, and D. J. Sorin, “Circuit-level modeling for concurrent test-
ing of operational defects due to gate oxide breakdown,” in Proceedings of Design,
Automation and Test in Europe (DATE), 2005, pp. 300–305.

[62] B. Johnson, Design and Analysis of Fault Tolerant Digital Systems. Addision Wesley,
1989.

[63] B. Rahbaran and A. Steininger, “Is asynchronous logic more robust than synchronous
logic?” IEEE Transactions on Dependable and Secure Computing, vol. 6, no. 4, pp.
282–294, 2009.

[64] D. Alexandrescu, L. Anghel, and M. Nicolaidis, “Simulating single event transients
in VDSM ICs for ground level radiation,” Journal of Electronic Testing-Theory and
Applications, vol. 20, pp. 413–421, 2004.

[65] R. P. Bastos, Y. Monnet, G. Sicard, F. Kastensmidt, M. Renaudin, and R. Reis,
“Comparing transient-fault effects on synchronous and on asynchronous circuits,”
IEEE International On-Line Testing Symposium, vol. 0, pp. 29–34, 2009.

[66] S. Peng and R. Manohar, “Self-healing asynchronous arrays,” in Proceedings of the
International Symposium on Asynchronous Circuits and Systems (ASYNC), 2006, pp.
34–45.

[67] G. Rui, C. Wei, L. Fang, D. Kui, and W. Zhiying, “Modified triple modular redun-
dancy structure based on asynchronous circuit technique,” in Proceedings of the 21st
IEEE International Symposium on on Defect and Fault-Tolerance in VLSI Systems.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 184–196.

[68] T. Chu, “Synthesis of self-timed VLSI circuits from graph-theoretic specifications,”
Ph.D. dissertation, MIT, 1987.

[69] H. Saito, A. Kondratyev, J. Cortadella, L. Lavagno, and A. Yakovlev, “What is
the cost of delay insensitivity?” in Proceedings of the 1999 IEEE/ACM international
conference on Computer-aided design. Piscataway, NJ, USA: IEEE Press, 1999, pp.
316–323.

http://www.ecss.nl/

192 Bibliography

[70] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Yakovlev, and N. R.
England, “Petrify: A tool for manipulating concurrent specifications and synthesis of
asynchronous controllers,” IEICE Transactions on Information and Systems, vol. 80,
pp. 315–325, 1997.

[71] J. C. Ebergen, “A formal approach to designing delay-insensitive circuits,” Dis-
tributed Computing, vol. 5, no. 3, pp. 107–119, 1991.

[72] J. L. A. van de Snepscheut, “Trace theory and VLSI design,” Ph.D. dissertation,
Eindhoven University of Technology, 1983.

[73] M. Rem, “The nature of delay insensitive computing,” Eindhoven University of Tech-
nology, Tech. Rep., 1990.

[74] C. E. Molnar, T.-P. Fang, and F. U. Rosenberger, “Synthesis of delay-insensitive
modules,” in 1985 Chapel Hill Conference on Very Large Scale Integration, H. Fuchs,
Ed. IEEE Computer Society Press, 1985, pp. 67–86.

[75] J. A. Brzozowski and J. C. Ebergen, “On the delay-sensitivity of gate networks,”
IEEE Transactions on Computers, vol. 41, no. 11, pp. 1349–1360, Nov. 1992.

[76] A. Lines, “Asynchronous interconnect for synchronous soc design,” IEEE Micro,
vol. 24, pp. 32–41, 2004.

[77] A. J. Martin and M. Nyström, “Asynchronous techniques for system-on-chip design,”
in Proceedings of IEEE, vol. 94, no. 6, 2006, pp. 1089–1120.

[78] G. Fuchs, M. Fuegger, and A. Steininger, “On the threat of metastability in an
asynchronous fault-tolerant clock generation scheme,” in Proceedings of the 15th IEEE
Symposium on Asynchronous Circuits and Systems, 2009, pp. 127–136.

[79] W. Kuang, P. Zhao, J. Yuan, and R. F. DeMara, “Design of asynchronous circuits
for high soft error tolerance in deep submicron CMOS circuits,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 3, pp. 410–422, 2010.

[80] Y. Monnet, M. Renaudin, and R. Leveugle, “Asynchronous circuits sensitivity to fault
injection,” in Proceedings of the 10th IEEE International On-Line Testing Symposium
(IOLTS’04). Washington, DC, USA: IEEE Computer Society, 2004, pp. 121–126.

[81] A. J. Martin and P. J. Hazewindus, “Testing delay-insensitive circuits,” in Proceedings
of the 1991 University of California/Santa Cruz conference on Advanced research in
VLSI. Cambridge, MA, USA: MIT Press, 1991, pp. 118–132.

[82] T. A. Henzinger, “Two challenges in embedded systems design: Predictability and
robustness,” Philosophical Transactions Of The Royal Society, vol. 366, pp. 3727 –
3736, 2008.

[83] Y. Monnet, M. Renaudin, and R. Leveugle, “Asynchronous circuits transient faults
sensitivity valuation,” in Proceedings of the 42nd Design Automation Conference
(DAC’05), 2005.

Bibliography 193

[84] G. Asadi and M. B. Tahoori, “An analytical approach for soft error rate estimation
in digital circuits,” in Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS), 2005, pp. 2991–2994.

[85] F. Wang, Y. Xie, R. Rajaraman, and B. Vaidyanathan, “Soft error rate analysis for
combinational logic using an accurate electrical masking model,” in Proceedings of the
20th International Conference on VLSI Design, 2007, pp. 165–170.

[86] K. Mohanram and N. A. Touba, “Cost-effective approach for reducing soft error
failure rate in logic circuits,” in Proceedings of the International Test Conference,
2003, pp. 893–901.

[87] V. F. Bashkirov, N. V. Kuznetsov, and R. A. Nymmik, “An analysis of the SEU rate
of microcircuits exposed by the various components of space radiation,” Radiation
Measurements, vol. 30, no. 3, pp. 427 – 433, 1999.

[88] C. Inguimbert and S. Duzellier, “SEU rate calculation with GEANT4 (comparison
with CREME 86),” IEEE Transactions on Nuclear Science, vol. 51, no. 5, pp. 2805 –
2810, 2004.

[89] “The cosmic ray effects on micro-electronics (CREME),”
https://creme-mc.isde.vanderbilt.edu/.

[90] T. Panhofer, W. Friesenbichler, and M. Delvai, “Fault tolerant four-state logic by
using self-healing cells,” in Proceedings of the 2008 International Conference on Com-
puter Design (ICCD’08), October 2008, pp. 1–6.

[91] P. D. Hyde and G. Russell, “ASSEC: An asynchronous self-checking RISC-based
processor,” in Proceedings of the Digital System Design, ser. DSD’04, 2004, pp. 104–
111.

[92] S. Peng and R. Manohar, “Fault tolerant asynchronous adder through dynamic self-
reconfiguration,” in Proceedings of the 2005 International Conference on Computer
Design. Washington, DC, USA: IEEE Computer Society, 2005, pp. 171–179.

[93] W. Jang and A. J. Martin, “Soft-error robustness in QDI circuits,” in Workshop on
System Effects of Logical Soft Errors - SELSE1, 2005.

[94] W. Jang and A. J. Martin, “A soft-error-tolerant asynchronous microcontroller,” in
13th NASA Symposium on VLSI Design, 2007.

[95] Y. Monnet, M. Renaudin, and R. Leveugle, “Hardening techniques against transient
faults for asynchronous circuits,” in Proceedings of the 11th IEEE International On-
Line Testing Symposium (IOLTS’05), 2005, pp. 129–134.

[96] Y. Monnet, M. Renaudin, and R. Leveugle, “Designing resistant circuits against ma-
licious faults injection using asynchronous logic,” IEEE Transactions on Computers,
vol. 55, no. 9, pp. 1104–1115, September 2006.

[97] J. Di, “A framework on mitigating single event upset using delay-insensitive asyn-
chronous circuits,” in Proceedings of the 2007 IEEE Region 5 Technical Conference,
2007, pp. 354–357.

https://creme-mc.isde.vanderbilt.edu/

194 Bibliography

[98] S. Peng and R. Manohar, “Efficient failure detection in pipelined asynchronous cir-
cuits,” in Proceedings of the 2005 20th IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems (DFT’05), 2005.

[99] D. A. Rennels and H. Kim, “Concurrent error detection in self-timed VLSI,”
in FTCS-24. Digest of Papers, Twenty-Fourth International Symposium on Fault-
Tolerant Computing, 1994, pp. 96–105.

[100] K. J. Kulikowski, M. G. Karpovsky, E. Taubin, Z. Wang, and A. Kulikowski, “Con-
current fault detection for secure QDI asynchronous circuits,” in Proceedings of the
17th Workshop on Dependable and Secure Nanocomputing (WDSN), 2008.

[101] N. Minas, M. Marshall, G. Russell, and A. Yakovlev, “FPGA implementation of an
asynchronous processor with both online and offline testing capabilities,” in Proceed-
ings of the 2008 14th IEEE International Symposium on Asynchronous Circuits and
Systems, 2008, pp. 128–137.

[102] S. Almukhaizim and Y. Makris, “Concurrent error detection methods for asyn-
chronous burst-mode machines,” IEEE Transactions on Computers, vol. 56, no. 6,
2007.

[103] M. Goessel, V. Ocheretny, E. Sogomonyan, and D. Marienfeld, New Methods of
Concurrent Checking, ser. Frontiers in Electronic Testing. Springer, 2008.

[104] J. Waddle and D. Wagner, “Fault attacks on dual-rail encoded systems,” in Proceed-
ings of the 21st Annual Computer Security Applications Conference. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 483–494.

[105] S. Moore, R. Anderson, P. Cunningham, R. Mullins, and G. Taylor, “Improving
smart card security using self-timed circuits,” in Proceedings of the Eighth Interna-
tional Symposium on Asynchronous Circuits and Systems (ASYNC.02), 2002.

[106] M. Delvai and A. Steininger, “A practical comparison of logic design styles,” The
3rd International Conference on Cybernetics and Information Technologies, Systems
and Applications - Volume 3, Jul. 2006.

[107] Actel Application Note, “Using synopsys to design actel’s radiation-hardened
FPGAs,” http://klabs.org/richcontent/fpga content/synopsis actel.pdf (17.12.2010),
1997.

[108] R. Smith and M. Ligthart, “High-level design for asynchronous logic,” in Proceedings
of the 2001 conference on Asia South Pacific design automation, 2001, pp. 431–436.

[109] A. Benso and P. Prinetto, Fault Injection Techniques and Tools for Embedded Sys-
tems Reliability Evaluation. Norwell, MA, USA: Kluwer Academic Publishers, 2003.

[110] R. Leveugle and K. Hadjiat, “Multi-level fault injections in VHDL descriptions:
Alternative approaches and experiments,” Journal of Electronic Testing, vol. 19, no. 5,
pp. 559–575, 2003.

http://klabs.org/richcontent/fpga_content/synopsis_actel.pdf

Bibliography 195

[111] J.-C. Baraza, J. Gracia, S. Blanc, D. Gil, and P.-J. Gil, “Enhancement of fault
injection techniques based on the modification of VHDL code,” IEEE Transactions
on VLSI Systems, vol. 16, no. 6, pp. 693–706, 2008.

[112] B. Ghavami, A. Tajary, and H.-R. Z. H. Pedram, “High-level fault simulation
methodology for QDI template-based asynchronous circuits,” in Proceedings of the
2009 IEEE Region 10 Conference (TENCON 2009), 2009, pp. 1–6.

[113] S. Sur-Kolay, M. Roncken, K. Stevens, P. P. Chaudhuri, and R. Roy, “Fsimac: A
fault simulator for asynchronous sequential circuits,” in Proceedings of the 9th Asian
Test Symposium. Washington, DC, USA: IEEE Computer Society, 2000, pp. 114–119.

[114] F. Shi and Y. Makris, “Fault simulation and random test generation for speed-
independent circuits,” in Proceedings of the 14th ACM Great Lakes symposium on
VLSI. New York, NY, USA: ACM, 2004, pp. 127–130.

[115] Y. Shi, S. B. Furber, J. Garside, and L. A. Plana, “Fault tolerant delay insen-
sitive inter-chip communication,” in Proceedings of the 2009 15th IEEE Symposium
on Asynchronous Circuits and Systems. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 77–84.

[116] D. G. Gutierrez, “Single event upsets simulation tool,”
http://www.esa.int/TEC/Microelectronics (06.05.2008).

[117] K. S. Trivedi, Probability and statistics with reliability, queuing and computer science
applications, 2nd ed. Chichester, UK: John Wiley and Sons Ltd., 2002.

[118] C. J. Clopper and E. S. Pearson, “The use of confidence or fiducial limits illustrated
in the case of the binomial,” Biometrika, vol. 26, no. 4, pp. 404–413, 1934.

[119] R. J. Mart́ınez, P. J. Gil, G. Mart́ın, C. Pérez, and J. J. Serrano, “Experimental
validation of high-speed fault-tolerant systems using physical fault injection,” in Pro-
ceedings of the conference on Dependable Computing for Critical Applications. Wash-
ington, DC, USA: IEEE Computer Society, 1999, p. 249.

[120] K. Cheng, S. Huang, and W. Dai, “Fault emulation: A new methodology for fault
grading,” IEEE Transactionson Computer-Aided Design of Integrated Circuits and
Systems, vol. 18, no. 10, pp. 1487–1495, 1999.

[121] P. Ellervee, J. Raik, K. Tammemae, and R.-J. Ubar, “FPGA-based fault emulation
of synchronous sequential circuits,” Computers and Digital Techniques, vol. 1, no. 2,
pp. 70–76, 2007.

[122] Y. Monnet, M. Renaudin, R. Leveugle, N. Feyt, P. Moitrel, and F. M. Nzenguet,
“Practical evaluation of fault countermeasures on an asynchronous DES crypto proces-
sor,” in Proceedings of the 12th IEEE International Symposium on On-Line Testing.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 125–130.

[123] A. Ejlali and S. G. Miremadi, “Error propagation analysis using FPGA-based SEU-
fault injection,” Microelectronics Reliability, vol. 48, no. 2, pp. 319 – 328, 2008.

http://www.esa.int/TEC/Microelectronics

196 Bibliography

[124] M. Jeitler, M. Delvai, and S. Reichoer, “FUSE - A hardware accelerated HDL fault
injection tool,” in Proceedings of the 5th Southern Conference on Programmable Logic,
2009, pp. 89–94.

[125] S. Bhunia, S. Mukhopadhyay, and K. Roy, “Process variations and process-tolerant
design,” International Conference on VLSI Design, vol. 0, pp. 699–704, 2007.

[126] European Space Agency, “The GAIA Mission,” http://sci.esa.int/gaia/ (16 Nov
2009).

[127] EADS Astrium, “VPU Algorithms Requirements Specifications,” Invititation to
Tender for GAIA VPU, 2006.

[128] T. Panhofer, “Self-healing asynchronous circuits for high-reliability applications,”
Ph.D. dissertation, Vienna University of Technology, 2012.

http://sci.esa.int/gaia/

List of own publications

[1] W. Friesenbichler, T. Panhofer, and M. Delvai, “Improving fault tolerance by us-
ing reconfigurable asynchronous circuits,” in Proceedings of the 11th Workshop of
Design and Diagnostics of Electric Circuits and Systems, March 2008, pp. 267–270.

[2] T. Panhofer, W. Friesenbichler, and M. Delvai, “Fault tolerant four-state logic by
using self-healing cells,” in Proceedings of the 2008 International Conference on
Computer Design, October 2008, pp. 1–6.

[3] T. Panhofer, W. Friesenbichler, and M. Delvai, “Optimization concepts for self-
healing asynchronous circuits,” in Proceedings of the 12th International Symposium
on Design and Diagnostics of Electronic Circuits and Systems, April 2009, pp. 62–
67.

[4] W. Friesenbichler, T. Panhofer, and M. Delvai, “A comprehensive approach for soft
error tolerant four state logic,” in Proceedings of the 12th International Symposium
on Design and Diagnostics of Electronic Circuits and Systems, April 2009, pp. 214–
217.

[5] W. Friesenbichler and A. Steininger, “Soft error tolerant asynchronous circuits based
on dual redundant four state logic,” in Proceedings of the 12th Euromicro Conference
on Digital System Design, August 2009, pp. 100–107.

[6] W. Friesenbichler, T. Panhofer, and A. Steininger, “A deterministic approach for
hardware fault injection in asynchronous QDI logic,” in Proceedings of the 13th In-
ternational Symposium on Design and Diagnostics of Electronic Circuits and Sys-
tems, April 2010, pp. 317–322.

[7] T. Panhofer, W. Friesenbichler, and A. Steininger, “Implementation of self-healing
asynchronous circuits at the example of a video-processing algorithm,” in Proceed-
ings of the 2010 International Conference on Dependable Systems and Networks
Workshops, June 2010, pp. 125–130.

Curriculum Vitae

Werner Friesenbichler

Personal Data

Address: Rosengasse 10/7, A-2700 Wiener Neustadt

Email: wer.fri@gmail.com

Date of Birth: 17 December 1977

Place of Birth: Neunkirchen

Citizenship: Austria

Employment

7/2002–present RUAG Space GmbH
Design engineer (2002 – 2008)
System engineering, project lead engineer (since 2008)

9/2002–present Fachhochschule Wr. Neustadt (University of Applied Science)
External lecturer, conducting courses in control systems, part time

7/2000–6/2001 Siemens Automotive GmbH
Design of automatic test systems, part time

Education

10/2005–present Vienna University of Technology, Faculty of Informatics
Computer Science, Doctoral Programme (ISCED Level 6)
Thesis: Effects and Mitigation of Transient Faults in Quasi Delay-
Insensitive Logic

10/1998–6/2002 Fachhochschule Wr. Neustadt (University of Applied Science)
Precision Engineering, Diploma Programme (ISCED Level 5A)
Thesis: Development of the Readout Electronics for the Beam Loss
Monitors of the LHC

7/2001–4/2002 European Organization for Nuclear Research (CERN), Genf
Technical Student Programme

9/1992–6/1997 HTBLuVA Wr. Neustadt (Polytechnic Institute)
Electrical Engineering (ISCED Level 4A)

	Introduction
	Motivation
	Scope
	Contribution
	Outline and Methodology

	Background
	Asynchronous Logic
	General
	Classification
	Operating Modes
	Handshake Protocols
	Quasi Delay-Insensitive Logic

	Faults and Errors in QDI Circuits
	Definitions and terms
	Fault Classification
	Logic Fault Models
	Masking Effects
	Fault Model
	Error Classification

	Fault Description
	Related Work
	Transition Based Fault Description
	Token Based Fault Description

	Circuit Definition
	Signal Transition Graph
	State Graph
	Trace Theory
	Delay-Insensitivity

	Nominal Behavior of QDI Circuits
	Combinational Circuits
	Sequential Circuits
	Nominal Trace Description

	Trace Based Fault Description
	Introduction
	Boundary Conditions
	Token Classes

	Fault Effects
	Effects at Block Interconnections
	Effects in Combinational Logic
	Effects in Sequential Logic

	Summary

	Fault Mitigation
	Introduction
	Soft Error Rate
	Fault Trace Propagation
	Assessment of Soft Error Probability
	Principle of Redundancy

	Related Work
	Hardware redundancy methods
	Duplication
	Rail synchronization
	Re-calculation
	Forcing deadlocks
	Concurrent error detection

	Trace Based Fault Assessment
	Evaluation of Fault Propagation
	Trace Re-ordering
	Dependency on the encoding
	Impact of the handshake protocol
	Multiple rail transitions

	Duplication and Rail Cross-coupling
	Principle
	Evaluation of Fault Masking
	Synchronized rail cross-coupling
	Tolerance against multiple errors
	Fault propagation and storage in cross-coupled circuits
	Rail comparison
	Summary

	Fault Injection Overview

	Simulation
	Related Work
	Fault Simulation in QDI Logic
	The FOSTER Tool
	Description of the Tool
	Error detection
	Random Tests
	Evaluation of Token Classes
	Interpretation of Soft Error Probability

	Simulation of DRXS Hardened Circuits
	Test Setup
	Test Circuit Selection
	Results

	Summary

	Emulation
	Related Work
	Fault Emulation in QDI Logic
	Error Coverage
	Reproducibility

	The STEFAN Tool
	Description of the Tool
	A Versatile Saboteur
	Usage

	Application: The GAIA Video Pre-Processing Algorithm
	The GAIA Mission
	The GAIA Pre-Processing Algorithm
	FSL Implementation
	Emulation of the GAIA Algorithm

	Summary

	Conclusion
	Summary
	Outlook

	Bibliography

