
Tree-Decomposition based
Algorithms for Abstract

Argumentation Frameworks
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering/Internet Computing

eingereicht von

Günther Charwat
Matrikelnummer 0625026

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Privatdoz. Dipl.-Ing. Dr. Techn. Stefan Woltran
Mitwirkung: Projektass. Dipl.-Ing. Wolfgang Dvořák

Wien, 12. Februar 2012
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Tree-Decomposition based
Algorithms for Abstract

Argumentation Frameworks
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering/Internet Computing

by

Günther Charwat
Registration Number 0625026

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Privatdoz. Dipl.-Ing. Dr. Techn. Stefan Woltran
Assistance: Projektass. Dipl.-Ing. Wolfgang Dvořák

Vienna, 12. Februar 2012
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Günther Charwat
Zemlinskygasse 88, 1230 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

First of all, I want to thank my advisor Stefan for introducing me to the field of abstract argu-
mentation and for his invaluable support throughout this thesis. Furthermore I want to thank my
co-advisor Wolfgang who always took the time for giving me tips, especially when I got stuck
while working out the details of the correctness proofs.
Thanks also to Markus and my colleagues for providing a flexible working environment that
allowed me to focus on my thesis.
I am grateful for the continuous support of my parents Christine and Erich who made it possible
to study at the Vienna University of Technology. Furthermore I want to thank my siblings Silvia
and Verena for the fun we have together and for them being always there for me.
Many thanks to my friends, especially to Stefan, Clemens and Stefan for the free time we spend
together, providing a great balance to my studies. I also want to thank Paulus for whom I did not
have a lot of time in the last months but who, nevertheless, always cheered me up.

Günther

iii

Abstract

In recent years abstract argumentation frameworks (AFs) have emerged as an important research
field in artificial intelligence. AFs are defined as directed graphs consisting of arguments (nodes
in the graph) and attack relations (edges in the graph).

We are interested in the selection of ’appropriate’ arguments in an AF. The sets of appro-
priate arguments are then called the extensions of the AF. In abstract argumentation this ’ap-
propriateness’ can be defined by a wide variety of different semantics. For most semantics the
computation of extensions for an AF is in general computationally hard. But by binding a cer-
tain problem parameter to a fixed constant many of those intractable problems become tractable.
One important parameter for graph problems is the tree-width of a graph which represents the
tree-likeliness of the AF. The tree-width is defined on tree decompositions of an AF. A tree de-
composition is a mapping of a graph to a tree where the latter can be used to evaluate a certain
problem efficiently.

In this thesis we introduce novel algorithms for stable and complete semantics that are de-
fined on so-called normalized tree decompositions. Furthermore we present a novel algorithm
for admissible semantics based on semi-normalized tree decompositions that generalizes an ex-
isting algorithm on normalized tree decompositions. The advantage of semi-normalized (com-
pared to normalized) tree decompositions is that they consist of less nodes and thus the overall
depth of a semi-normalized tree decomposition is lower.

Besides the algorithms and the correctness proofs thereof we provide an implementation on
basis of a purpose-built framework for algorithms on tree decompositions. This allows us to
compare our novel algorithm for admissible semantics on semi-normalized tree decompositions
to the existing algorithm on normalized tree decompositions. Our experimental results show that
our novel implementation outperforms the existing one.

v

Kurzfassung

In den letzten Jahren gewannen Abstract Argumentation Frameworks (AFs) im Forschungsbe-
reich der künstlichen Intelligenz immer mehr an Bedeutung. AFs sind als gerichtete Graphen
definiert, welche aus Argumenten (Knoten im Graphen) und Angriffsbeziehungen (Kanten im
Graphen) bestehen.

Wir beschäftigen uns nun mit der Auswahl von „passenden“ Argumenten aus dem AF. Diese
werden auch als Extensions des AFs bezeichnet. Es existiert eine Vielzahl von Semantiken, die
definieren, welche Argumente als „passend“ angesehen werden. Allerdings ist die Selektion der
Argumente auf Basis einer Semantik in den meisten Fällen rechnerisch extrem aufwendig. Eine
Idee aus dem Bereich der Komplexitätstheorie besteht nun darin, einen Problemparameter zu
fixieren, wodurch das Problem im Allgemeinen leichter lösbar wird. Für Probleme auf Graphen
ist der Parameter der Tree-Width relevant, welcher, informell gesagt, angibt, wie sehr der Graph
einem Baum ähnelt. Die Tree-Width ist auf sogenannten Tree Decompositions definiert welche
dazu verwendet werden können, ein Problem effizient zu lösen.

In dieser Diplomarbeit werden neue Algorithmen für die Berechnung von Extensions für
die Semantiken Stable und Complete auf Basis von normalisierten Tree Decompositions präsen-
tiert. Weiters wird ein neuer Algorithmus für die Semantik Admissible auf semi-normalisierten
Tree Decompositions entwickelt. Der Unterschied zwischen normalisierten und semi-normali-
sierten Tree Decompositions besteht darin, dass letztere weniger Knoten enthalten und damit die
gesamte Baumtiefe geringer ist.

Zusätzlich zu den Korrektheitsbeweisen der Algorithmen werden diese mithilfe eines be-
reits existierenden Frameworks implementiert, welches speziell dafür entwickelt wurde, auf
Tree Decompositions basierende Algorithmen zu entwerfen. Der Algorithmus für die Seman-
tik Admissible auf semi-normalisierten Tree Decompositions wird mit dem Algorithmus auf
normalisierten Tree Decompositions verglichen. Die experimentellen Resultate zeigen, dass die
semi-normalisierte Implementierung durchwegs schneller als die bereits existierende ist.

vii

Contents

1 Introduction 1

2 Background 5
2.1 Argumentation . 6
2.2 Abstract Argumentation Frameworks . 9
2.3 Semantics of Argumentation Frameworks . 11
2.4 Decision Problems on Argumentation Frameworks 16
2.5 Dynamic Programming and Tree Decompositions 23

3 Tree-Decomposition based Algorithms 31
3.1 Overview . 32
3.2 Algorithm for Stable Semantics (Normalized) 41
3.3 Algorithm for Complete Semantics (Normalized) 51
3.4 Algorithm for Admissible Semantics (Semi-Normalized) 65
3.5 Evaluation of Decision Problems . 69

4 Implementation 71
4.1 The SHARP Framework . 72
4.2 Algorithm Implementation . 77
4.3 The dynPARTIX Project . 83

5 Experimental Results 85
5.1 Test Setup and Approach . 86
5.2 Test Instances . 87
5.3 Normalized vs. Semi-Normalized Algorithms 89
5.4 Analysis of Benchmarks . 93

6 Conclusion and Future Work 95

List of Figures 99

Bibliography 101

ix

CHAPTER 1
Introduction

Problem Overview

Argumentation plays an important role in our everyday lives: In order to persuade someone we
use arguments that support our own opinion or rebut our opponent’s arguments. In debates we
discuss a certain point of view with the ultimate goal of convincing our audience or compromis-
ing about a certain decision.

The research field of argumentation in artificial intelligence deals with the computer-based
evaluation of arguments with the ultimate goal of drawing conclusions from a set of arguments.
This can be described as a process that consists of the following tasks:

(1) Formalize the natural-language arguments.

(2) Identify conflicts between the arguments.

(3) Abstract away from the internal structure of arguments.

(4) Evaluate relations between arguments.

(5) Finally, draw conclusions.

The first step focuses on the translation of natural-language arguments into a computer-
understandable representation of the arguments. Next, the arguments have to be analyzed in
order to obtain information about the relations between arguments. In the third step the internal
information about the arguments is abstracted away. What remains are the relations between
arguments. Then, in the fourth step, it is possible to evaluate the arguments solely based on their
relations and conflicts in-between them. Finally, we can draw our conclusions.

In this thesis we focus on step (4), the evaluation of relations between arguments. We do not
have to deal with domain-specific characteristics of arguments (as this information is abstracted
away in the previous step). The main advantage is that it is possible to solely work on relations
between arguments. It is therefore possible to define a general-purpose strategy for the resolution
of conflicts that is not restricted to any domain. In artificial intelligence this field of research is
called abstract argumentation.

1

2 CHAPTER 1. INTRODUCTION

The main idea of abstracting away from concrete arguments and focusing on the relations
between arguments dates back to the work of Dung [1995]. Dung introduced abstract argu-
mentation frameworks (or AFs for short). An abstract argumentation framework is defined as
a directed graph that consists of arguments (nodes in the graph) and attack relations (directed
edges in the graph).

Based on the relations between arguments we are now interested in the selection of ’appro-
priate’ arguments of an AF. The sets of ’appropriate’ arguments are called the extensions of the
AF. There exists a wide variety of different semantics that define which arguments are consid-
ered to be ’appropriate’. As an example consider an argument a that attacks an argument b.
Intuitively, we can not select both arguments as there would be a conflict within our selected ar-
guments. Baroni and Giacomin [2009] give a good overview of proposed semantics for abstract
argumentation.

Different work (e.g. [Coste-Marquis et al., 2005; Dunne and Wooldridge, 2009; Dvořák and
Woltran, 2010]) showed that the computation of extensions for most semantics is, in general,
computationally hard. Now, the idea is to identify problem fragments for which the computation
of extensions becomes tractable. One approach is based on the observation that by binding some
problem parameter to a fixed constant many of the intractable problems can become tractable
[Courcelle, 1990]. An important parameter for graph problems is the tree-width which represents
the tree-likeliness of the graph (or, in our case, the argumentation framework). Dunne [2007]
showed that many argumentation problems can be solved in linear time for AFs of bounded tree-
width. The tree-width is defined on tree decompositions (originally introduced by Robertson and
Seymour [1984]) of an AF. A tree decomposition is a mapping of a graph to a tree where the latter
can be used to evaluate a certain problem efficiently. Informally, in a tree decomposition the
nodes of the tree contain vertices of the original graph. Furthermore, vertices that are connected
in the original graph have to appear together in at least one node of the tree. Finally, nodes that
contain the same vertex of the graph have to be connected.

It is then possible to define algorithms on tree decompositions for a certain semantics. The
tree is traversed in bottom-up order and the overall result is returned in the root node.

Main Contributions

In this thesis we introduce three novel algorithms for different semantics that are defined on
tree decompositions. The algorithms for stable and complete semantics are defined on so-called
normalized tree decompositions. The novel algorithm for admissible semantics is based on
semi-normalized tree decompositions. It generalizes the existing algorithm on normalized tree
decompositions as introduced by Dvořák et al. [2010a]. The advantage of semi-normalized tree
decompositions, compared to normalized tree decompositions, is that they consist of less nodes
and thus the overall depth of a semi-normalized tree decomposition is lower.

The algorithms are implemented on basis of the already-existing SHARP framework (Smart
Hypertree decomposition-based Algorithm fRamework for Parameterized problems) [Morak,
2012]. The framework provides the necessary interfaces for the implementation of algorithms
that are based on tree decompositions. It takes care of the overall workflow of the algorithm
and the generation of tree decompositions. We provide definitions of the data structures and

3

implementations for the nodes of the tree decomposition. The node implementations reflect the
algorithm definitions for the computation of stable, complete and admissible extensions.

The implementation of our algorithms is included in the dynPARTIX (Dynamic Program-
ming Argumentation Reasoning Tool) project and is publicly available1.

To sum it up, we provide

• novel algorithms for stable and complete semantics that are based on normalized tree
decompositions,

• a novel algorithm for admissible semantics that is based on semi-normalized tree decom-
positions,

• correctness proofs thereof,

• an implementation of the algorithms that is based on an already-existing framework for
algorithms on tree decompositions and

• experimental results that show that the the semi-normalized implementation for admissible
semantics outperforms the normalized implementation.

Related Work

Approaches based on fixed-parameter tractability are for example presented in [Ordyniak and
Szeider, 2011; Dvořák et al., 2010b,a]. Ordyniak and Szeider [2011] analyze special types of
argumentation frameworks, such as acyclic and noeven frameworks. Acyclic AFs do not contain
any directed cycles of attack relations whereas noeven AFs do not contain any cycles of even
length. For certain decision problems (namely skeptical and credulous acceptance which we
will introduce later on in this thesis) they show that the problems become tractable in case the
’distance’ of a given AF to such classes is bounded. Dvořák et al. [2010b] present algorithms
for argumentation frameworks that are not bound to tree-width but another parameter, namely
clique-width. The approach in [Dvořák et al., 2010a] provides the basis for our novel algorithms.
In there the complexity of admissible and preferred semantics for certain decision problems is
analyzed. All algorithms are defined on normalized tree decompositions.

The computation of extensions on basis of direct algorithms is, for example, elaborated in
[Modgil and Caminada, 2009; Verheij, 2007]. In there the presented algorithms are defined
directly on the underlying argumentation frameworks (instead of tree decompositions as in
our case). Furthermore, reduction-based algorithms are, for example, presented in [Egly and
Woltran, 2006; Amgoud and Devred, 2011; Egly et al., 2010]. Reduction-based algorithms de-
fine some kind of mapping between argumentation frameworks (or properties thereof) and other
languages.

1 http://www.dbai.tuwien.ac.at/research/project/argumentation/dynpartix/

http://www.dbai.tuwien.ac.at/research/project/argumentation/dynpartix/

4 CHAPTER 1. INTRODUCTION

Organization

In Chapter 2 we introduce argumentation frameworks. Furthermore we define semantics for
argumentation frameworks and especially focus on admissible, stable and complete semantics.
Furthermore we present important decision problems, namely the questions for the existence
of an extension, if an argument is contained in any extension (credulous acceptance) and if an
argument is contained in every extension (skeptical acceptance).

In Chapter 3 we present our novel algorithms. We first explain the general ideas behind
the algorithms on basis of admissible semantics. Then, we introduce our algorithms for stable
and complete semantics on normalized tree decompositions and our algorithm for admissible
semantics on semi-normalized tree decompositions.

Chapter 4 deals with the implementation of our algorithms. Thus, we first give a brief
overview on the SHARP framework that provides the basis for our algorithms. We furthermore
describe the implementation for the nodes in the tree decomposition. Finally, we give a system
description of the dynPARTIX software that includes the implementations of our algorithms.

In Chapter 5 we evaluate our implementation of admissible semantics for semi-normalized
tree decompositions and compare its run-time to that of the implementation for normalized tree
decompositions.

Finally, in Chapter 6, we discuss the obtained results and present ideas for future work on
the topics covered in this thesis.

CHAPTER 2
Background

Section 2.1 gives an overview of argumentation in artificial intelligence (AI). It provides the
necessary theoretical basis for algorithms on argumentation frameworks. Furthermore we out-
line the steps that are needed to evaluate natural-language arguments, analyze them and draw
conclusions.

In Section 2.2 we introduce abstract argumentation frameworks (AFs) which represent the
relations between arguments, abstracting away the concrete contents of arguments.

An important part of argumentation is the selection of ’appropriate’ arguments: This appro-
priateness can be defined by a wide range of different semantics. The selection of ’appropriate’
arguments for most semantics is computationally hard. In Section 2.3 we present different pro-
posed semantics for argumentation frameworks. We describe admissible, stable, complete and
preferred semantics in detail.

In Section 2.4 we present several decision problems, namely skeptical and credulous accep-
tance as well as the question for the existence of an extension. Furthermore we give a brief
overview of current complexity-theoretic results for decision problems.

In Section 2.5 we introduce the concept of tree decompositions and define normalized as
well as semi-normalized tree decompositions. The algorithms for the semantics presented in
this thesis are defined on these types of decompositions. Furthermore we introduce the concept
of fixed parameter tractability. By binding some problem parameter to a fixed constant it is
possible to reduce the overall complexity of the (decision) problem.

5

6 CHAPTER 2. BACKGROUND

2.1 Argumentation

Overview

Argumentation is of significant relevance in our daily lives: We have to make decisions based
on incomplete and contradicting information. In debates we have to convince our audience by
providing arguments that support our own goal or rebut our opponent’s arguments. Arguments
may be based on personal feelings or opinions which leads to an important observation:

It can be seen that the goal of arguments and argumentation (as opposed to mathematical
reasoning) lies on the persuasion of others (as opposed to mathematical proofs). Bench-Capon
and Dunne [2007] give a good comparison of the nature of argumentation and mathematical
reasoning:

• In mathematical reasoning, premises are consistent. They consist of closed concepts. In
argumentation, premises may rely on background assumptions.

• In contrast to mathematical reasoning, arguments may be incomplete or are subject to
change.

• A (correct) mathematical proof is final, the conclusion always remains valid. Arguments,
on the other hand, are defeasible. It may be the case that new or changed information
alters the output.

• As stated in [Bench-Capon and Dunne, 2007], “Proof is demonstration whereas argument
is persuasion“. Reasoning and conclusions are entirely objective whereas arguments are
based on personal opinions of feelings.

Let us consider the following example:

Example 2.1. After a hard day of work Peter wants to go out for food. A nice restaurant nearby
offers several dishes but Peter is unsure what he wants to eat: He likes both meat and fish but
does not want to eat them at the same time. Vegetarian food is ok for him as well but only if the
restaurant is out of the other dishes. A friend once told him that it is unhealthy to eat meat. But
Peter has not eaten any meat for weeks and he is sure that a big steak once in a while will keep
him healthy. He is convinced that vegetarian food would not help him staying healthy.

Let us analyze this example: It is solely Peter’s preference not to combine fish and meat in
one dish. By no means this represents a fact. Furthermore, his friend states that is is ’unhealthy
to eat meat’. According to that (and assuming that Peter wants to stay healthy) he should not eat
meat. We see that the argument ’meat is unhealthy’ attacks Peter’s choice for meat. He defeats
his friend’s argument by stating that a ’steak once in a while will keep him healthy’. ’Once in a
while’ is very vague. On could interpret that the way he wants and it also depends on the overall
context of the argumentation.

We can now introduce a new argument that attacks Peter’s choice for fish. This shows that
arguments may be incomplete and can change:

Example 2.2. (Example 2.1 extended) Peter is also worried about the environment: The oceans
are overfished and he feels that he should not order fish.

2.1. ARGUMENTATION 7

The new argument attacks Peter’s choice for fish. If we take it into account Peter may should
not eat fish. Furthermore it is possible to have inconsistent arguments:

Example 2.3. (Example 2.2 extended) Another friend of Peter always eats meat and thinks that
he is only healthy because of the positive correlation between meat and health. But his friend
does not feel healthy at all.

The premise of his friend’s argument (he is healthy) is immediately contradicted by ’him not
looking healthy at all’, i.e. the premises of the argument contradict themselves.

Reasoning and argumentation are of particular importance in many different fields. In
medicine, doctors have to decide which medical treatment is the best for their patients. The
symptoms may indicate a certain disease and the doctors have to decide for or against a treat-
ment. Some drugs may have side effects or are not compatible with other drugs. In law, judges
have to make decisions based on laws, evidence and statements. Oftentimes, laws are ambigu-
ously defined and statements from defendant and prosecutor contradict each other.

From Natural Language to Argumentation in Artificial Intelligence

We gave a brief introduction into the wide variety of arguments in real life and its comparison
to mathematical reasoning. In order to work on arguments we have to formalize them.

One approach is proposed by Besnard and Hunter [2001]. They use classical (propositional)
logic to represent argumentation.

What all arguments have in common is that they consist of premises and conclusions that
can be drawn from the supporting premises. The premises Φ are defined in a knowledge base ∆

that consists of propositional formalæ. These formulæ represent translations of natural-language
arguments. An argument is represented by a pair A = 〈Φ, α〉 such that Φ 6` ⊥, Φ ` α and Φ is
a minimal subset of a knowledge base ∆ satisfying Φ ` α. α represents the the conclusions (or
claim) drawn from Φ whereas Φ is also called the support for an argument.

Example 2.4. Let ∆ = {m, f,m→ ¬f, f → ¬m} be a knowledge base resulting from the first
part of Example 2.1. Informally, m represents that Peter eats meat, f stands for his choice for
fish and the formulæ m → ¬f and f → ¬m represent that if he chooses meat he does not eat
fish and vice versa. Possible formalized arguments could be

〈{m,m→ ¬f},¬f〉 (2.1)

〈{f, f → ¬m},¬m〉 (2.2)

We refer the interested reader to [Besnard and Hunter, 2001] for details on this translation
technique. In the paper, the authors define undercuts and rebuttals that describe the type of attack
on arguments. An argument is an undercut for another argument if its claim directly attacks the
support for another argument . In Example 2.4 we have an undercut because the claim ¬f in
(2.1) contradicts the support f of (2.2). A conflict between arguments is called rebuttal if the
claims of two arguments contradict each other.

Other approaches rely on defeasible logic programming (DeLP): García and Simari [2004]
propose the use of facts (ground atoms or negated ground atoms) and strict as well as defeasible
rules. Strict rules correspond to basic rules introduced by Lifschitz [1996]. In comparison to
strict rules, defeasible rules represent defeasible knowledge, i.e. tentative information that may

8 CHAPTER 2. BACKGROUND

be used if nothing could be posed against it. Every rule consists of a literal, the head, that
represents the claim and a body which is a non-empty set of literals. The body represents the
support for the argument. The symbolsHead← Body andHead ≺ Body syntactically denote
strict and defeasible rules.

Example 2.5. Let us consider the follow rules that may be derived from example 2.1:

∼ f ← m

u ≺ m

In natural language, ∼ f ← m would translate to ’If Peter eats meat he does not eat fish.’
Here, ∼ denotes the (strong) negation. u ≺ m says that ’usually, meat is unhealthy’.

This approach allows applications to deal with incomplete or contradicting information in a
natural way: By stating weak rules we can formally represent information that may be out-ruled.
In order to derive conclusions we have to look for counter arguments that defeat our arguments.

2.2. ABSTRACT ARGUMENTATION FRAMEWORKS 9

2.2 Abstract Argumentation Frameworks

In the last section we described two different approaches that can be used for the translation
of natural-language arguments into formal arguments and we described possible formal defini-
tions of arguments. In abstract argumentation we are not interested in the internal structure of
arguments. We abstract away the premises and conclusions and focus on the relations between
arguments. The arguments and their relations can be represented in an argumentation framework
(or AF for short). The most popular formalization for AFs was introduced by Dung [1995]:

Definition 2.1. An argumentation framework is a pair AF = 〈A,R〉 where A is a set of argu-
ments and R ⊆ A×A is the attack relation, representing attacks among arguments.

Remark 2.2. In the following we often write a� b in order to denote an attack (a, b) ∈ R. We
say that a attacks b if (a, b) ∈ R.

Furthermore we write S � a to denote that at least one argument s of the set of arguments
S attacks a, i.e. there exists an s ∈ S where s � a. Due to symmetry, a � S means that a
attacks at least one argument of S.

Finally, we write S � T to denote that there exists a s ∈ S and a t ∈ T such that s� t.

We see that the internal structure or meaning of arguments is of no relevance in abstract
argumentation frameworks. Thus, a single AF could represent many different situations: An
argument a could represent a politician’s statement or, at the same time, the weather forecast for
a region. What remains are the abstract arguments and the relations between them. The advan-
tage lies in the ability to analyze arguments independent from any specific context or situation.
This allows for more general definitions of semantics (as we will see in the next section) and
algorithms (see Chapter 3). On the other hand, we sometimes loose crucial information about
the concrete problem that could help in the evaluation step of arguments and counter arguments.

Based on Definition 2.1 we can construct one possible AF that could result from our example
of Peter’s choice for food (see Example 2.3):

Example 2.6. (Example 2.3 continued) Let F = 〈A,R〉 be an AF such that:

A = {a, b, c, d, e, f, g}
R = {(a, b), (b, a), (a, c), (b, c), (c, d), (d, e), (e, b), (f, a), (e, g), (g, g)}

Informally, we assign the following meaning to the labels used in Example 2.6:

a Peter orders fish.
b Peter orders meat.
c Peter orders vegetarian food.
d Eating meat once in a while is healthy.
e Meat is unhealthy.
f The oceans are overfished.
g Meat is healthy.

Table 2.1: Possible meaning for argument labels of Example 2.6

10 CHAPTER 2. BACKGROUND

Note that, as already mentioned, labels in an AF generally do not have a meaning. They
could represent any arguments as long as the attack relations ’fit’ the natural-language argu-
ments. In the following we will refer to the assignment of labels to nodes as it helps understand-
ing the idea behind different semantics on AFs (see Section 2.3).

A nice feature of argumentation frameworks is that they can be represented as graphs where
the nodes represent the arguments and the edges represent the attack relations. Hence, we can
continue Example 2.6 and construct a graph as depicted in figure 2.1.

a b

c d

ef g

Figure 2.1: Example Argumentation Framework, represented as Graph

2.3. SEMANTICS OF ARGUMENTATION FRAMEWORKS 11

2.3 Semantics of Argumentation Frameworks

Overview

The representation of argumentation frameworks as graphs is extremely helpful when it comes
to the analysis of relations between arguments and the selection of ’appropriate’ arguments.
Consider our example AF from Figure 2.1 and the argument g. Intuitively, it will never be
possible to select g because of the self-attack g � g: The argument somehow contradicts itself
(Note that we stated that g represents that ’meat is healthy’ but as stated in Example 2.3 ’Peter’s
friend does not look healthy at all’).

Another interesting observation can be gained from the attacks a � b and b � a. Obvi-
ously, there exists some kind of conflict between those two arguments: If we choose a we can
not choose b and vice-versa. If we follow our example this could represent that Peter does not
want to eat fish and meat at the same time. But what happens if we additionally consider argu-
ment f? As f � a, one could argue that if f is selected as an ’appropriate’ argument, a can
not be selected. Furthermore, consider the subgraph F ′ = 〈{a, b, f}, {(a, b), (b, a), (f, a)}〉. If
we select f , a is attacked. Then, it could be possible to select b because f defends b against the
attack from a.

Semantics on argumentation frameworks formally define which selection of arguments is
’appropriate’. Therefore we will now analyze our observations and give formal definitions of
several proposed semantics. Baroni and Giacomin [2009] state that we are interested in the
justification state of selected arguments. ’Intuitively, an argument is regarded as justified if it
has some way to survive the attacks it receives, as not justified (or rejected) otherwise’ [Baroni
and Giacomin, 2009].

We already identified several conflicts in our example AF. A main property of all seman-
tics presented in this thesis is the conflict-freeness of selected arguments. Intuitively, a set of
arguments is conflict-free if no argument in the set attacks another one from the set (or itself).

Definition 2.3. Let F = 〈A,R〉 be an AF. A set S ⊆ A is conflict-free (in F), iff there are no
a, b ∈ S, such that (a, b) ∈ R. We denote the collection of sets which are conflict-free (in F) by
cf (F).

Example 2.7. The conflict-free set of our example graph F (see figure 2.1) is

cf (F) = {∅, {a}, {b}, {c}, {d}, {e}, {f}, {a, d}, {a, e}, {b, d},
{b, f}, {b, d, f}, {c, e}, {c, e, f}, {d, f}}

Another important property is the notion of acceptable or defended arguments. Note that
in literature acceptable and defended are equivalently used. In our example AF b would be
defended if we select the arguments d and f , i.e. every argument that attacks b is attacked by
another argument from our selected set of arguments. Additionally, f is always defended as it is
not attacked by any other argument. Formally, this is defined as follows:

Definition 2.4. Let F = 〈A,R〉 be an AF. An argument a is defended by S in F iff for each
b ∈ A with b� a there exists a c ∈ S such that c� b.

12 CHAPTER 2. BACKGROUND

Notions of Argumentation Semantics

In literature two different styles for the notion of argumentation semantics exist.
Extension-based semantics describe how to obtain a set of extensions from an AF based

on certain criteria. An extension is a subset of arguments from an AF that are, based on the
definition of the semantics, ’acceptable’ or ’appropriate’. In [Baroni and Giacomin, 2007] the
evaluation of extension-based semantics is analyzed.

In labelling-based semantics a predefined set of labels is used. Each argument gets assigned
a label based on certain criteria specified by the semantics. Depending on the semantics one or
more labels can be assigned to an argument. Given an AF F = 〈A,R〉 a labeling is a func-
tion L : A → L where L is a set of labels. A set of labels can, for example, be of the form
L = {in, def , out}. In most cases the label in denotes that an argument is in the resulting set,
i.e. the arguments that are labeled with in in a labelling-based semantics correspond to the argu-
ments of an extension in extension-based semantics. Arguments labelled with out are normally
not included in the resulting set. Hence, all extension-based semantics can be represented equiv-
alently with labelling-based semantics consisting of the labels {in, out}. An in-depth analysis
of labelling-based semantics is given in [Wu et al., 2010].

Semantics

Most of the semantics presented here were introduced by Dung [1995]. In this section we
give a brief overview of the semantics and define them formally. We focus on the definition of
admissible, complete, preferred and stable semantics as they provide the basis for the algorithms
presented in Chapter 3. For other semantics like semi-stable, grounded or ideal we only give a
general overview.

Admissible Semantics

The notion of admissible semantics was introduced by Dung [1995]. A set of arguments S is
an admissible extension of an AF if no argument from S attacks another argument from the
set (conflict-free) and all arguments that attack the set are themselves attacked by the set (the
arguments in the set are defended). Formally, admissible semantics is defined as follows:

Definition 2.5. Let F = 〈A,R〉 be an AF. A set S ⊆ A is admissible if it is conflict-free in F
and each a ∈ S is defended by S in F . We denote the set of admissible extensions by adm(F).

Example 2.8. The set of admissible extensions for our example graph F (see Figure 2.1) is

adm(F) = {∅, {f}, {b, d}, {b, d, f}, {c, e, f}}

Let us analyze this example: We see that the empty set is an admissible extension of our
AF. Admissible semantics does not say anything about the maximality of arguments in the set.
Therefore, every AF has at least one admissible extension, namely the empty set. Furthermore,
f is not attacked by any other argument but it attacks a. What follows is that, based on the
definition, a can never be in an admissible extension of F or, if we follow the assignments from
Table 2.1, Peter will never order fish because the oceans are overfished and no counter-argument
against this argument exists.

2.3. SEMANTICS OF ARGUMENTATION FRAMEWORKS 13

Complete Semantics

In his seminal paper, Dung [1995] defined complete semantics. A set of arguments is a complete
extension if it is admissible in F and it contains every argument that is defended by the set. What
follows is that every complete extension of an AF is also an admissible extension of that AF.

Definition 2.6. Let F = 〈A,R〉 be an AF. A set S ⊆ A is a complete extension of F if it is
admissible in F and each a ∈ A that is defended by S in F is contained in S. We denote the set
of complete extensions by comp(F).

Example 2.9. The set of complete extensions for our example graph F (see Figure 2.1) is

comp(F) = {{f}, {b, d, f}, {c, e, f}}

We see that (set-inclusion based) maximality is not necessary for complete extensions. {f}
is a subset of {c, e, f} but still a valid extension. Furthermore, the empty set is only a complete
extension of an AF if there exists no argument that is not attacked. In our example this is not the
case. The idea behind complete extensions is that we do not want to ’waste’ defended arguments:
If an argument is not attacked at all or defended it is included in the extension.

Example 2.10. As a further example consider the AF F ′ = 〈{x, y, z}, {(x, y), (y, z), (z, x)}〉.

x y

z

Here we have that comp(F ′) = {∅}. As S = ∅ is conflict-free and there is no argument that
is defended by S (or not attacked at all) the properties for complete extensions are satisfied and
S = ∅ is a complete extension for F ′.

Preferred Semantics

Preferred extensions aim at the selection of a maximal number of arguments. As introduced by
Dung [1995], a set of arguments is a preferred extension if the set is an admissible extension and
there exists no other admissible extension that is a superset of the extension. Formally, Dung
defined preferred extensions as follows:

Definition 2.7. Let F = 〈A,R〉 be an AF. A set S ⊆ A is a preferred extension of F if it is
admissible in F and there exists no other admissible extension S′ of F such that S ⊂ S′. We
denote the set of preferred extensions by pref (F).

Example 2.11. The set of preferred extensions for our example graph F (see Figure 2.1) is

pref (F) = {{b, d, f}, {c, e, f}}

14 CHAPTER 2. BACKGROUND

Here, we are interested in the ’largest’ admissible sets of the AF, i.e. we do not want to
’waste’ any argument. {b, d} is an admissible extension that could represent that Peter orders
meat and that eating meat once in a while is healthy. As the argument f can also be selected
(considering admissible semantics) we want to include it in our result, e.g. our result, if looking
back to the possible meaning of the labels, additionally contains that the oceans are overfished.

Stable Semantics

Dung [1995] defined stable extensions as the sets of arguments where the arguments are conflict-
free and every argument that is not contained in the extension is attacked by the extension. Again,
we give the formal definition for this semantics:

Definition 2.8. Let F = 〈A,R〉 be an AF. A set S ⊆ A is a stable extension of F if it is conflict-
free in F and for each a ∈ A\S, there exists a b ∈ S, such that b � a. We denote the set of
stable extensions by stable(F).

Example 2.12. The set of stable extensions for our example graph F (see Figure 2.1) is

stable(F) = {{c, e, f}}

The set of arguments {b, d, f} is not a stable extension because g is not attacked by the ar-
guments from the extension. Stable semantics make sure that every argument that is not selected
has a counter-argument that is in the set of the extension. If we consider our example of natural
language arguments this means that Peter wants to make sure that he ’takes all arguments into
account’, i.e. that at least one of his selected arguments conflicts with the argument(s) he does
not choose. In {b, d, f} he has no argument that invalidates his friend’s statement of ’meat being
healthy’.

Further Semantics

In the following we present further semantics that are not directly related to the contributions of
this thesis. Hence, we refer the interested reader to the references of the corresponding seman-
tics.

Semi-stable semantics were introduced by Caminada [2006]. Every stable extension is also
a semi-stable extension. In contrast to stable extensions every AF has at least one semi-stable
extension. All semi-stable extensions are admissible extensions. Furthermore, the set of argu-
ments of a semi-stable extension combined with all arguments that are attacked by the extension
must be maximal (wrt. set-inclusion), i.e. no other admissible set, combined with the arguments
attacked by this set, is larger. The definition of stage extensions, as proposed in [Verheij, 1996],
is similar to semi-stable extensions with the difference that the arguments are conflict-free (in-
stead of admissible). Still, the property of maximality, as defined by semi-stable semantics, must
hold.

Dung [1995] defined grounded extensions as the minimal set (wrt. set-inclusion) that in-
cludes all arguments that are not attacked at all or defended by the set. Naive semantics [Bon-
darenko et al., 1997] simply asks for the maximal (wrt. set-inclusion) conflict-free sets in an

2.3. SEMANTICS OF ARGUMENTATION FRAMEWORKS 15

AF. A set of argument is ideal if it is admissible and it is contained in every preferred set of
arguments [Dung et al., 2007].

Many other semantics like eager [Caminada, 2007], Resolution-based grounded [Baroni and
Giacomin, 2008] and cf2 [Baroni and Giacomin, 2003] are proposed.

Relations between semantics

Based on the definition of the semantics, Wu et al. [2010] presented an overview of the rela-
tions between them. In Figure 2.2 we extend the original figure by further semantics that are
mentioned in this thesis. An arrow represents an is-a relationship between the semantics. We
see that all semantics are based on the conflict-freeness of arguments. In Figure 2.2 admissible,
complete, stable and conflict-free semantics are highlighted as they are especially relevant in
this thesis.

conflict-free

admissible

complete

preferred

semi-stable

stable

naive

stage cf2

ideal

eager

grounded

res-b. grounded

Figure 2.2: Relations between Semantics

16 CHAPTER 2. BACKGROUND

2.4 Decision Problems on Argumentation Frameworks

Given an AF and a semantics σ we can define several decision problems that are of significant
relevance in abstract argumentation. A decision problem takes certain input parameters and an-
swers with yes or no for a given question. In this section we present important decision problems
like credulous and skeptical acceptance as well as the question for the existence of an extension.
Furthermore, we recall some of the relevant complexity classes from the field of complexity
theory and give an overview of complexity-theoretic results for the decision problems.

Decision Problems

Credulous Acceptance for a Semantics σ

Sometimes we want to know if an argument a is contained in any σ-extension of a given AF.
This is described by the decision problem of credulous acceptance, denoted by Credσ.

Input: An AF F = 〈A,R〉 and an argument a ∈ A.

Question: Is a contained in at least one σ-extension of F ?

Let us consider Example 2.8 where we compute the set of admissible extensions adm(F) =

{∅, {f}, {b, d}, {b, d, f}, {c, e, f}} for our example graph. The arguments a and g are not con-
tained in any admissible extension, hence Credadm(F, a) and Credadm(F, g) returns false. b, on
the other hand, is contained in two admissible extensions and therefore it is credulously accepted
in F wrt. admissible semantics. But b is not contained in any stable extension stable(F) =

{{c, e, f}} of F and is therefore not credulously accepted in F (see Example 2.12) wrt. stable
semantics.

Skeptical Acceptance for a Semantics σ

The decision problem of skeptical acceptance asks if an argument a is contained in every σ-
extension of F , denoted by Skeptσ.

Input: An AF F = 〈A,R〉 and an argument a ∈ A.

Question: Is a contained in every σ-extension of F ?

Let us again recall Example 2.8: The set of admissible extensions always contains the
empty set ∅. Hence, the computation for credulous acceptance for admissible semantics al-
ways returns false. In Example 2.9 we computed the set of complete extensions comp(F) =

{{f}, {b, d, f}, {c, e, f}}. Here, f is skeptically accepted wrt. complete semantics because it
is contained in every complete extension, i.e. Skeptcomp(F, f) returns true. The other argu-
ments in this example are not skeptically accepted because they are either in no or only in some
complete extensions of our example AF F .

2.4. DECISION PROBLEMS ON ARGUMENTATION FRAMEWORKS 17

Existence for a Semantics σ

Another interesting problem is the question for the existence of an extension for a semantics σ.
We denote this decision problem by Existsσ.

Input: An AF F = 〈A,R〉.

Question: Does there exist a σ-extension for F ?

In our examples for admissible (see Ex. 2.8), complete (see Ex. 2.9), preferred (see Ex. 2.11)
and stable (see Ex. 2.12) semantics σ no set of extensions is empty. Therefore, Existsσ(F, x)

returns true for our example graph F and any argument x ∈ A. In fact, the decision problem
of existence for admissible, complete and preferred semantics is trivial. We already stated that
every AF has at least one admissible extension, namely the empty set. Furthermore, preferred
semantics asks for the maximal (wrt. set inclusion) set of admissible extensions. What follows is
that every AF must have at least one maximal admissible, or preferred, extension. For complete
semantics we can distinguish two cases: Either, some argument(s) are not attacked at all. Then,
by Definition 2.6, these arguments are contained in the complete extension(s). On the other
hand, if all arguments are attacked the empty set is always a complete extension of the AF.

Other Decision Problems

In literature, other decisions problems like the existence of a non-empty extension or the ver-
ification of an extension for a semantics σ have been considered. As we do not address these
problems in the following chapters directly we only give a short overview of the ideas behind
them here.

As shown before the answer to Existsσ is trivial for semantics whose extensions always
contain the empty set. We can address this by asking for the existence of a non-empty extension
for a semantics σ: This is denoted by Exists¬∅σ . This problem can not directly be answered
by the definition of the respective semantics; for all semantics presented here it is necessary to
compute the extensions. Hence, the question of Exists¬∅σ is not trivial anymore.

Another interesting problem is the verification of a given set of arguments with regard to a
given AF and a semantics σ. We want to know if the set of arguments S is a σ-extension of F .
This is denoted by Verσ.

Complexity Theory

In this section we give an overview of the complexity classes P, NP, co-NP and Πp
2. Furthermore

we recall the definition of NP-complete problems. For further details we refer to [Papadim-
itriou, 2003] where a brief overview on complexity theory is given. For an in-depth insight into
the field of complexity theory we refer the interested reader to the book Complexity Theory [Pa-
padimitriou, 1994].

One of the most important complexity classes is P, that is, the collection of all problems that
can be solved in polynomial time in the size of the input instance. P may be defined as follows:

18 CHAPTER 2. BACKGROUND

Definition 2.9. The complexity class P consists of all problems P that satisfy the following
conditions:

1. There exists a program Π that decides the problem P.

2. For all instances I of P the runtime of Π on I is polynomial in |I|.

In other words, a decision problem P is in the complexity class P if there exists a program Π

that solves the problem in O(|I|k) for all instances I , where k is a constant.

Another important complexity class is NP: Positive instances I of a problem P have solu-
tions (or certificates) whose size is at most polynomial in the size of the instance, i.e. they are
polynomially balanced. Given a possible certificate C for an I and P it is possible to check if C
is a positive instance of P in polynomial time, i.e. it is polynomially decidable.

Definition 2.10. The complexity class NP consists of all problems P that satisfy the following
conditions:

1. There exists a polynomially balanced certificate relation for P.

2. There exists a polynomially decidable certificate relation for P.

Remark 2.11. co-NP is the class to problems P such that the complement P of P is in NP.

Furthermore, we recall the definition of NP-complete decision problems. Besides satisfy-
ing the conditions for problems that are in NP (polynomially balanced and decidable), for NP-
complete problems there exists a polynomial time algorithm that can transform (reduce) other
problems from NP to the problem P .

Definition 2.12. A decision problem P is NP-complete if it satisfies the following conditions:

1. P is in NP.

2. every problem that is in NP is reducible to P in polynomial time.

Besides the complexity classes P, NP and co-NP we introduce the class Πp
2. It resides on the

second level of the polynomial hierarchy. The polynomial hierarchy can be defined inductively
where ΠP

0 = P and ΠP
i+1 = co-NPΠP

i for i ≥ 0. It is a group of classes where some part
of the problem is defined to be computed by an oracle. The intuition behind oracles is that
we can neglect the cost of the computation for a subroutine carried out by the oracle, i.e. we
assume that the cost is 1 (the call to the oracle). We can therefore study the complexity of a
problem where some part of the computation ’comes for free’. This is useful because we can
then identify independent sources of complexity that are computed by the oracle and can ask for
the complexity of the remaining parts of the problem. In the following we define the ΠP

i classes
that are relevant in this thesis:

Definition 2.13. The complexity classes ΠP
i for i ∈ {0, 1, 2} are defined by the polynomial

hierarchy where

• ΠP
0 = P

2.4. DECISION PROBLEMS ON ARGUMENTATION FRAMEWORKS 19

• ΠP
1 = co-NP and

• ΠP
2 = co-NPNP .

For co-NPNP the exponent NP of represents an oracle that answers a decision problem that
is in NP in constant time. The problem that asks the oracle is in co-NP. In other words, the class
Πp

2 contains problems that are in co-NP and whose co-NP routine asks an oracle that is in NP
arbitrarily many times. The oracle answers the question in constant time.

Decision problems that are in the complexity class P are considered to be tractable, i.e. there
exist efficient algorithms for the computation of solutions. Note that tractable does not neces-
sarily mean that there exists a practicable algorithm to compute the solution. If the exponent
k is very large the algorithm may be slow in practice. Problems that are NP-complete, co-NP-
complete or Πp

2-complete are considered to be computationally hard, i.e. they are intractable.

Complexity Results for Decision Problems in AA

We already stated the the computation of Skeptadm as well as Existsadm , Existscomp and
Existspref is trivial. In the following we present further complexity-theoretic results for the
decision problems and semantics that are defined in this thesis.

The complexity of the credulous and skeptical acceptance problems has been studied for
example in [Doutre and Mengin, 2004; Dimopoulos and Torres, 1996; Coste-Marquis et al.,
2005; Dunne and Bench-Capon, 2002]. A general overview is given by Dunne and Wooldridge
[2009] where the results for preferred and stable semantics are summarized.

For the semantics presented in this thesis is is shown that the credulous acceptance problem
is NP-complete. This can, for example, be done by a reduction from 3-SAT to Credσ. In
Dimopoulos and Magirou [1994] credulous acceptance for stable as well as preferred semantics
is analyzed. Although Dimopoulos et al. define their complexity proofs on graphs and use other
notions (They use the terminology of ‘semi-kernel’, ‘maximal semi-kernel’ and ‘kernel’ which
corresponds to ‘admissible set’, ‘preferred extension’ and ‘stable extension’ in this thesis) their
results are directly applicable for our AFs and our defined semantics and decision problems.
Dunne and Bench-Capon [2002] showed that Skeptpref is ΠP

2 -complete. Finally, the skeptical
acceptance problem for stable semantics is shown to be co-NP-complete while Existsskept is
NP-complete.

Table 2.2 summarizes the complexity results obtained from [Dimopoulos and Torres, 1996;
Coste-Marquis et al., 2005; Dunne and Bench-Capon, 2002].

σ Credσ Skeptσ Existsσ
adm(F) NP -c trivial trivial
comp(F) NP -c P -c trivial
pref (F) NP -c ΠP

2 -c trivial
stable(F) NP -c co-NP -c NP -c

Table 2.2: Overview: Complexity Results

20 CHAPTER 2. BACKGROUND

Algorithms for Abstract Argumentation Frameworks

In literature, many different approaches for the computation of extensions and the evaluation
of decision problems have been proposed. In here, we give an overview of direct as well as
reduction-based algorithms. Both approaches result in algorithms that reflect the complexity-
theoretic results from Table 2.2. In Section 2.5 we present a dynamic programming approach
based on tree decompositions that aims at the identification of certain fragments of AFs. It is
then possible to bind the complexity of the problem to a fixed parameter and therefore to reduce
the overall run-time. The dynamic programming approach provides the basis for our algorithms
in Chapter 3.

Direct Algorithms

The direct algorithm approaches we present here all rely on labelling-based notions (see Sec-
tion 2.3). They are defined directly on the underlying argumentation frameworks.

The approach presented by Modgil and Caminada [2009] can be described as an argument
game. The approach not only aims at the computation of a correct solution but also shows
(and hence proves) that the gained solution is indeed a correct one (i.e. the decision for or
against arguments in an extension is well defined and it can be shown that the selection of
these arguments is indeed a valid extension for a given semantics). In the argument game two
opponents play against each other. The proponent (PRO) selects an initial argument x and trys to
defend it. The opponent (OPP) selects an argument y that attacks x. What follows is that again
PRO selects an argument z that attacks y, thus defending his original argument x. The game is
played as long as arguments can be selected by PRO and OPP. If a player can not respond to a
move from his opponent (i.e. the last move in the game) then the player of the last move wins. If
such a game is won by PRO over an argument x this is called the line of defense for x. Because
every player answers on the last choice of his opponent, this argument game approach leads to
a depth-first consideration of the attacks. Figure 2.3 shows an example dispute tree where PRO
selects the argument a from the AF of the left side as the initial argument. The opponent can
then either choose b or c as both attack a.

b a c

PRO

OPP

PRO

OPP

PRO

a1

b2 c7

a3 a8

b4 c5 c9 b10

...

Figure 2.3: AF and Dispute Tree [Modgil and Caminada, 2009]

In contrast, Verheij [2007] proposes a breadth-first approach: It relies on the computation

2.4. DECISION PROBLEMS ON ARGUMENTATION FRAMEWORKS 21

of partial proofs and partial refutations of an underlying AF where partial refers to a sub-graph
of the original AF. An argument is partially proved if all attackers are again attacked by at least
one argument. Partial refutation describes that an argument that is not selected is attacked by at
least one selected argument. Depending on the depth of the partial proof selected arguments and
attackers take turns. For a complete proof the original AF is taken into account.

Reduction-Based Algorithms

Reduction-based algorithms define some kind of mapping between AFs (or properties thereof)
and other languages, i.e. the decision problem can be reduced (or translated) to another (logic)
language.

Caminada and Gabbay [2009] propose an interesting approach that combines direct compu-
tation with an reduction-based approach. First, they define labelings for nodes and show their
one-to-one relationship to extensions defined by a semantics, i.e. every extension corresponds to
one labeling and vice-versa. They then use a meta level language that describes the labelings.
The meta level language can be classical logic or modal logic. By proving that the labeling corre-
sponds to expressions of the meta level language they show that the semantics can be expressed
in this logic. It is therefore possible to

1. define an equivalent labeling for a semantics,

2. translate the labeling into another (logic) language and

3. solve the problem within this language.

Depending on the language existing tools may be used (such as SAT-solvers).
In [Egly and Woltran, 2006] the problems are translated to Quantified Boolean Formalæ

(QBF). A QBF is based on standard propositional formulæ but additionally allows to define
quantifiers on the propositional variables. The language contains the unary operators ∀x (univer-
sal quantifier) and ∃x (existential quantifier) where x is an atom that is bound by the quantifier.
The advantage is that there exist efficient QBF solvers that can be seen as a black box during the
computation of a decision problem.

Amgoud and Devred [2011] propose a reduction to Constraint Satisfaction Problems (CSP).
A CSP is defined by variables, a domain and a set of constraints. The constraints consist of
variables that define which values can be assigned to the variables. We are interested in a variable
assignment where all constraints are satisfied. Depending on the decision problem it is either
possible to compute all combinations of variable assignments (i.e. we enlist all solutions) or we
are only interested in the question of the existence of a solution for a CSP (recall, for example,
the decision problem Existsσ). Such problems are, in general, NP-complete but there is ongoing
work in the optimization of solvers for CSPs.

Other work focuses on the reduction of argumentation problems to anser-set programming
(ASP). One approach is proposed by Egly et al. [2010]. Answer-set programs follow a declara-
tive approach where the program consists of constants and rules. The rules can be used to derive
solutions (or answers) from a knowledge base for a given question.

Besnard and Doutre [2004] analyze the decision problem of Verσ, i.e. if a given set of
arguments is a σ-extension of an AF. They propose three different approaches. The first one

22 CHAPTER 2. BACKGROUND

analyzes if a set of arguments satisfies given equations where the equations represent attack and
defense relations between arguments. Another approach is based on model checking. In here,
all extensions of a semantics are characterized by a model that is defined in propositional logic.
’S is an extension if and only if S corresponds to a model of the formula’ [Besnard and Doutre,
2004]. The third approach is similar to [Caminada and Gabbay, 2009] where it is checked if a set
of arguments satisfies a given propositional formula. It is only a valid extension if the formula
is satisfied. To sum it up Besnard and Doutre [2004] elaborate equalities of formulæ and sets of
arguments.

2.5. DYNAMIC PROGRAMMING AND TREE DECOMPOSITIONS 23

2.5 Dynamic Programming and Tree Decompositions

As presented in Table 2.2 many decision problems like acceptance and the existence of exten-
sions for a given AF are computationally hard. In this section we present a dynamic program-
ming approach that is based on fixed parameter tractability (FPT). We introduce tree decompo-
sitions for graphs that allow us to bind the complexity of the algorithms to a constant, i.e. the
tree-width, which represents the tree-likeliness of an AF. By binding some problem parameter
to a fixed constant many of the intractable decision problems become tractable.

Furthermore, we introduce different variants of tree decompositions, namely normalized and
semi-normalized tree decompositions. Based on the tree decomposition, the tree contains more
or less nodes. This can affect the run-time of algorithms that are defined on the decomposi-
tion. We will make use of the different decomposed trees in our algorithms that we present in
Chapter 3.

Tree Decompositions

The intractability results from Table 2.2 lead to the question if we can reduce the complexity
of the decision problems. One idea is based on the fact that some hard problem on graphs can
become tractable if we restrict ourselves to trees. The notion of tree decompositions is one pos-
sible approach that aims at the translation of graphs to trees. It was proposed by Robertson and
Seymour [1984] and since then it has been well-studied by many authors (see e.g. [Bodlaender,
1993, 1997; Kloks, 1994]).

Definition 2.14. A tree decomposition of an undirected graph G = (V,E) is a pair (T ,X)

where T = (VT , ET). VT are the vertices in the tree and ET are the edges of the tree. X :

VT → 2V is a so-called labelling function that assigns to every vertex VT of the tree a set
of vertices V from the original graph. The sets of vertices X = (Xt)t∈VT have to satisfy the
following conditions:

(i)
⋃
t∈VT Xt = V

(ii) (vi, vj) ∈ E ⇒ ∃t ∈ Vt : {vi, vj} ⊆ Xt

(iii) v ∈ Xt1 ∧ v ∈ Xt2 ∧ t3 ∈ path(t1, t2)⇒ v ∈ Xt3

Remark 2.15. Xt is also called the bag for the vertex t ∈ VT .

Property (i) ensures that every vertex v ∈ V of the original graph is contained in at least
one bag Xt of the tree decomposition. This ensures that no vertex is ’lost’ when we decompose
the graph G. Furthermore, if the vertices vi, vj from the original graph are connected via an
edge, they have to appear together in at least one bag Xt of T . This is defined by condition (ii).
An algorithm that traverses the tree decomposition can therefore analyze the relations between
vertices of the bags (i.e. it can check if there exist edges between vertices) and it is guaranteed
that no edge of the original graph is ’lost’. The third property (iii) finally ensures that no vertex
can ’reappear’ on a path from the root to the leaf nodes, i.e. bags Xt that contain a vertex v are
connected: If a vertex v is removed somewhere on path we know that this vertex is completely
processed by the algorithm.

24 CHAPTER 2. BACKGROUND

In Figure 2.4 one possible tree decomposition of our example graph from Figure 2.1 is given.

{a, b, c}h1

{b, c, e}h2

{c, e}h3

{e, g}h4 {c, d, e}h5

{a, f}h6

Figure 2.4: Possible Tree-Decomposition for the Graph in Figure 2.1

The example tree is rooted in h1 and its bag Xh1 contains the vertices {a, b, c} from the
original graph. The vertex e is, for example, contained in the bags Xh2 and Xh4 . Hence, due to
property (iii) of Definition 2.14, it must also be contained in Xh3 . Note that tree decompositions
in general are not binary tree, i.e. nodes can have arbitrarily many children.

Definition 2.16. The width of a tree decomposition (T ,X) is defined as

max(|Xt∈Vt |)− 1

Definition 2.17. The tree-width of a graph G is the minimum width of all possible tree decom-
positions of G.

Hence, the width of our example tree is 2, i.e. the size of the largest bags Xh1 and Xh5 is 3,
minus 1. An interesting approach that describes the intuition behind tree-width is the cops-and-
robber game [Seymour and Thomas, 1993]: The game is played on an finite undirected graph.
The robber stands on a vertex and can move along the edges of the graph to any other vertex as
long as the path between the vertices is not occupied by a cop. There are k cops in the game that
try to catch the robber. Cops can move from vertex to vertex arbitrarily, i.e. their moves are not
bound to the edges of the graph. The robber sees the cops approaching and can move to another
vertex before the cops arrive. The cops try to corner the robber, i.e. they block all adjacent
vertices of the robber’s current position and an additional cop catches the robber. [Seymour and
Thomas, 1993] shows that the minimal number of cops needed to catch the robber minus one
corresponds to the tree-width of the graph.

The computation of an optimal tree decomposition (wrt. width) is known to be an NP-
complete problem [Arnborg et al., 1987]. Hence, there exist several algorithms that provide
’good’ tree decompositions in polynomial time. A general approach for the computation of tree
decompositions is as follows: First, an ordering (called the elimination ordering) of the vertices
from the original graph is defined. Afterwards, the vertices are processed via bucket elimina-
tion1 [Dechter, 2003]: (1) For each vertex vi from the ordering create a bucket Bvi . (2) For

1Buckets correspond to the bags we defined for tree decompositions.

2.5. DYNAMIC PROGRAMMING AND TREE DECOMPOSITIONS 25

every edge (vi, vj) in the graph, add the vertex with lower elimination ordering to the bucket of
the other vertex from the edge. (3) Traverse the bucketsBvi as given by the elimination ordering
and copy all vertices v ∈ Bvi\{vi} to the bucket Bvj where vj is the vertex with the highest
ordering. (4) Finally, connect the buckets Bvi and Bvj .

Furthermore there exist several heuristics that are based on bucket elimination. They es-
pecially try to improve the initial elimination ordering (see e.g. [Bodlaender and Koster, 2010;
Dermaku et al., 2008]).

Normalization of Tree Decompositions

As we want to develop algorithms that are based on tree decompositions we introduce normal-
ized as well as semi-normalized tree decompositions. The conditions for tree decompositions
as given in Definition 2.14 may result in trees that are not comfortable when it comes to the
definition of algorithms on them. Normalized and semi-normalized tree decompositions intro-
duce additional nodes in the tree that simplify the task of developing dynamic-programming
algorithms on them. The nodes can be introduced by a single traversal of the tree and hence the
additional effort is negligible, i.e. a tree decomposition with k width and n nodes of a graph G
can be transformed to a normalized or semi-normalized tree decomposition of O(n) nodes in
O(n) time [Niedermeier, 2006].

Normalized Tree Decompositions

Normalized tree decompositions comply with Definition 2.14 but they consist of four different
node types. Normalized tree decompositions are defined as follows [Kloks, 1994]:

Definition 2.18. A tree decomposition (T ,X) of a graph G is called normalized (or nice) if T
is a rooted tree and the following conditions are satisfied:

1. Every node t of T has at most two children.

2. If a node t has two children t1 and t2, then Xt = Xt1 = Xt2 . Then, t is called a JOIN or
BRANCH node.

3. If a node t has one child t1 one of the following conditions must hold:

a) |Xt| = |Xt1 |+ 1 and Xt1 ⊂ Xt. Here, t is called an INTRODUCTION node.

b) |Xt| = |Xt1 | − 1 and Xt ⊂ Xt1 . Here, t is called a FORGET or REMOVAL node.

4. If t has no child nodes, it is called a LEAF node.

Remark 2.19. Note that we we call such tree decompositions normalized. In literature, they
are sometimes called nice tree decompositions. Furthermore, in the following we will call nodes
that satisfy condition 2 branch nodes and nodes that satisfy condition 3b removal nodes.

Our example tree from Figure 2.4 can easily be transformed to a normalized tree decom-
position as depicted in Figure 2.5. The tree is rooted in the branch node n1. The bags of
nodes n2 and n11 contain the same nodes (from the original graph) as the branch node, i.e.
Xn1 = Xn2 = Xn11 = {a, b, c}. Furthermore, n2 is an example for an introduction node where
Xn3 ⊂ Xn3 . One argument (a) is introduced. n3, on the other hand, is a removal node.

26 CHAPTER 2. BACKGROUND

{a, b, c}n1

{a, b, c}n2

{b, c}n3

{b, c, e}n4

{c, e}n5

{c, e}n6

{e}n7

{e, g}n8

{c, e}n9

{c, d, e}n10

{a, b, c}n11

{a, b}n12

{a}n13

{a, f}n14

Figure 2.5: Normalized Tree-Decomposition

Semi-Normalized Tree Decompositions

For our purposes in this thesis we introduce a further kind of normalization. Semi-normalized
tree decompositions are something in between tree decompositions and normalized tree decom-
positions. They consist of two different types of nodes. We define semi-normalized decomposi-
tions as follows:

Definition 2.20. A tree decomposition (T ,X) of a graph G is called semi-normalized if T is a
rooted tree and the following conditions are satisfied:

1. Every node t of T has at most two children.

2. If a node t has two children t1 and t2, then Xt = Xt1 = Xt2 . Then, t is called a JOIN or
BRANCH node.

3. Otherwise, one of the following conditions must hold for a node t:

a) t has no child nodes.

b) t has exactly one child t1 andXt = (Xt1\S′)∪S′′ where S′ ⊆ Xt1 and S′∩S′′ = {}
hold.

Then, t is called an EXCHANGE node.

Remark 2.21. In literature the term semi-normalized tree decomposition is ambiguously de-
fined. Dorn and Telle [2009], for example, define three different node types, namely introduce,

2.5. DYNAMIC PROGRAMMING AND TREE DECOMPOSITIONS 27

forget and join nodes. Introduce and forget nodes correspond to the nodes of Definition 2.18 but
a join node t has two children t1 and t2 where only Xt = Xt1 ∪Xt2 must hold.

The definition of branch nodes for semi-normalized tree decompositions corresponds to that
of normalized tree decompositions. Leaf, introduction and removal nodes, however, are com-
bined in exchange nodes. Exchange nodes allow us to introduce or remove arbitrarily many
vertices v from the original graph G. This is captured by condition 3b of Definition 2.20: S′ is
the set of vertices that are removed from the bag of the child Xt1 and S′′ contains all vertices
that are introduced. In Figure 2.6 we depict a possible semi-normalized tree that could result
from the original tree decomposition in Figure 2.4.

{a, b, c}s1

{a, b, c}s2

{b, c, e}s3

{c, e}s4

{c, e}s5

{e, g}s6

{c, e}s7

{c, d, e}s8

{a, b, c}s9

{a, f}s10

Figure 2.6: Semi-normalized Tree-Decomposition

The node s9 of the semi-normalized tree decomposition represented in Figure 2.6 is a good
example for an exchange node: The set S′ of removed vertices contains f whereas the set of
introduced vertices S′′ = {b, c}.

Semi-normalized tree decompositions have several advantages compared to general tree de-
compositions and normalized tree decompositions: They simplify the definition of algorithms
because we only have to deal with at most two child nodes at a time. Furthermore, in branch
nodes, the bags of the children contain the same vertices. This restriction allows us to apply
certain optimizations during the evaluation of branch nodes (as we will see in Chapter 4). Per-
mutation nodes, on the other hand, reduce the overall size of the tree (compared to normalized
tree decompositions) which leads to a better run-time of algorithms (see Chapter 5).

Fixed Parameter Tractability

In classical complexity theory problems are oftentimes analyzed solely based on the size of the
input instance. Although many problems are intractable in general it is sometimes possible to
identify instances for which the problem is tractable. We want to formally define these tractable
instances. One idea is based on the definition of an additional parameter that serves as a bound

28 CHAPTER 2. BACKGROUND

for the problem. We already identified tree-width as an important parameter of tree decomposi-
tions. In this section we introduce fixed parameter tractability (FPT) and outline how intractable
problems can become tractable when bound to a constant.

A brief overview for FPT is, for example, given in Bodlaender [1997]. For further details we
recommend the book Invitation to Fixed-Parameter Algorithms written by Niedermeier [2006].
First, we give the theoretical background to FPT that is based on the ideas by Downey and
Fellows [1995]:

Definition 2.22. A parameterized problem is a language L ⊆ Σ∗ × Σ∗. The first component Σ

of Σ∗ × Σ∗ is a finite alphabet. The second component is called the parameter of the problem.

In almost all cases the parameter is a nonnegative integer or a set thereof. In the case of
tree decompositions we will use the tree-width as parameter. The complexity class FPT is then
defined as follows:

Definition 2.23. The complexity class FPT consists of problems that can be computed in f(k) ·
nO(1) time where f is a function that depends on the fixed parameter k and n is the input size.
The problem L is then called fixed-parameter tractable.

The run-time of fixed-parameter tractable problems heavily depends on k. It may be the
case that FPT problems are not solvable efficiently enough in practice. Hence, parameterized
problems are generally useful if the constant k is a low value. Recall our definition of width (see
Definition 2.16) and tree-width (see Definition 2.17). If we find a width of a tree decomposition
that is equal to the tree-width of the original graph the fixed-parameter algorithm performs rel-
atively good. For graphs with high tree-width, however, the tree decomposition based approach
is oftentimes of little use.

Courcelle’s Theorem

The fact that many NP-hard problems are tractable for graphs of bounded tree-with was shown
by Courcelle. Essentially, Courcelle’s Theorem states that every problem defined in Monadic
Second Order (MSO) logic can be solved in linear time on graphs of a bounded tree-width [Cour-
celle, 1990].

Monadic Second Order logic has high expressiveness. It is an extension of propositional and
first order logic. Propositional logic consists of variables and logic operators such as ∧, ∨ and ¬.
First order logic additionally introduces predicates and quantifiers. Predicates can, informally,
be interpreted as functions that return true or false based on their variables. Quantifiers ’bind’
the variables where for the universal quantifier ∀xP all x have to satisfy the formula P and for
∃xP at least one x has to satisfy P . x is a variable that can have values from the domain. In
Monadic Second Order we additionally have ’set variables’ that can range over sets of elements
from the domain. It is therefore not only possible to quantify over single objects but also over
sets of objects.

Courcelle’s famous theorem then reads as follows [Courcelle, 1990]:

Theorem 2.24. Let Φ be an MSO formula and k ≥ 1. Given a graphG and a tree decomposition
of width at most k, there is a linear-time algorithm that decides wether G satisfies the MSO
formula.

2.5. DYNAMIC PROGRAMMING AND TREE DECOMPOSITIONS 29

This result does not necessarily mean that we can find efficient algorithms for our decision
problems. MSO logic has very large expressiveness and it is possible to define rather short MSO
formulæ to express some NP-hard problems. But the complexity may be hidden in the big-O
notation and algorithms may be slow in practice.

Algorithms based on Fixed Parameter Tractability

Before we introduce our own algorithms we give an overview of other fixed-parameter tractabil-
ity based algorithms that can be found in literature.

Ordyniak and Szeider [2011] analyze acyclic as well as noeven argumentation frameworks.
Acyclic argumentation frameworks do not contain any directed cycles whereas noeven frame-
works do not contain directed cycles of even length. They analyze skeptical as well as credulous
acceptance and show that these fragments can be solved in polynomial time for AFs that are
bound to the distance to the respective fragments. Furthermore they present negative results
for bipartite and symmetric argumentation frameworks, i.e. they show that even with distance
1 from these fragments the problems Skeptσ and Credσ do not become tractable. Symmetric
frameworks consist only of symmetric attacks, i.e. every argument a that attacks an argument b
is itself attacked by b. Bipartite AFs are frameworks that can be partitioned into two independent
conflict-free sets.

Dvořák et al. [2010b] present algorithms for argumentation frameworks of bounded clique-
width. Clique-with is a measurement of the complexity of a graph. It is defined via a construction
process of the graph where only a limited number of vertex labels is available. If some vertices
share the same labels somewhere during construction they can be treated uniformly in the fol-
lowing steps of the construction process. They analyze the problem of acceptance with respect
to admissible and preferred semantics.

The tree-decomposition based approaches presented in [Dvořák et al., 2010a] and [Dvořák
et al., 2011] are directly related to the algorithms presented here. Dvořák et al. [2010a] define
algorithms for the computation of admissible as well as preferred extensions of argumentation
frameworks. Furthermore they show a possible way to answer the decision problems of credu-
lous as well as skeptical acceptance for these semantics. Their approach is based on normalized
tree decompositions. In the following chapter we will introduce their main ideas and will ex-
tend them to stable and complete semantics. Furthermore we will elaborate an algorithm for
admissible semantics on semi-normalized tree decompositions. In [Dvořák et al., 2011] a soft-
ware framework is presented that allows us to directly work on tree decompositions, i.e. the
framework handles the tree decomposition step and we can focus on the implementation of
the algorithms. A software, dynPARTIX is presented that efficiently computes admissible and
preferred extensions for an AF. As a result of this thesis we extend this framework by further
semantics and improve the overall performance (in particular by using semi-normalized tree
decompositions).

CHAPTER 3
Tree-Decomposition based

Algorithms

In this chapter we present three novel algorithms that are based on tree decompositions. The
algorithms compute admissible, stable and complete extensions for argumentation frameworks.
Then we can either enumerate all extensions for a semantics or count the overall number of
extensions. Furthermore, the definition of the algorithms supports the evaluation of decision
problems, namely credulous and skeptical acceptance.

In Section 3.1 we introduce general definitions that are shared by all algorithms and give an
introduction to the general concepts behind the algorithms. We furthermore outline the execution
steps of our algorithms. The algorithms traverse the tree decompositions in bottom-up order. In
every step we analyze the arguments in the bag of the current node based on the arguments in
the bags below in the tree decomposition. The extensions for the input instance can be obtained
by the final computation step in the root node. In order to be able to represent the intermediate
results in every node we introduce the concept of colorings as well as labelings (for complete
semantics). Then we can encode the relations between arguments. We present the definitions
and the general idea of our algorithms on basis of admissible semantics for normalized tree
decompositions as presented by Dvořák et al. [2010a].

We continue with the definition of algorithms for stable (see Section 3.2) and complete
semantics (see Section 3.3). These algorithms are defined on normalized hypertrees.

In Section 3.4 we propose a novel algorithm on semi-normalized tree decompositions for
admissible semantics. This allows us to compare it with an implementation on normalized tree
decompositions as developed by Dvořák et al. [2010a].

Furthermore in Section 3.5 we outline how the decision problems of credulous and skeptical
acceptance can be answered on basis of our defined algorithms.

31

32 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

3.1 Overview

Basic Definitions

First, we introduce some basic definitions and notions that are needed for all algorithms de-
veloped in the context of this thesis. Until now we defined argumentation frameworks (see
Definition 2.1) and defined tree decompositions on graphs (see Definition 2.14). As tree decom-
positions are defined on graphs it remains to formally define the relation between argumentation
frameworks and graphs:

Definition 3.1. Let F = 〈A,R〉 be an AF. A tree decomposition of an AF F is a tree decompo-
sition of the undirected graph G = (A,R′) whereA are the arguments of the AF and R′ are the
edges of R without orientation.

Remark 3.2. Analogous to the definition of tree-width for graphs we can define the tree-width
for an AF F as the is the minimum width of all possible tree decompositions for F .

In order to work on the tree decompositions we have to introduce several notions for parts
of the decomposition that are similar to the work of Dvořák et al. [2010a].

Definition 3.3. Let (T ,X) be a tree decomposition of an AF F and let t ∈ T . For a subtree of
T that is rooted in t we defineX≥t as the union of all bags within this subtree, e.g.X≥t contains
all arguments of this subtree.

Furthermore, X>t denotes X≥t\Xt, i.e. all arguments from the bags in the subtree without
the arguments from the bag of t.

In Figure 3.1 we present a semi-normalized tree decomposition of our original AF from Fig-
ure 2.1. X≥s3 , for example, contains the arguments {b, c, d, e, g}. X>s3 contains the arguments
{d, g}. Furthermore, we define sub-frameworks within the decomposition as follows:

Definition 3.4. For a tree decomposition (T ,X) of an AF F = 〈A,R〉 let t ∈ T be a node of
the tree. Then, the sub-framework in t, denoted by F |Xt or Ft, consists of all arguments x ∈ Xt

and the attack relations(x1, x2) where x1 ∈ Xt, x2 ∈ Xt and (x1, x2) ∈ R.
Furthermore, the sub-framework induced by the subtree rooted in t, denoted by F |X≥t

or
F≥t, consists of all arguments x ∈ X≥t and the attack relations (x1, x2) where x1 ∈ X≥t,
x2 ∈ X≥t and (x1, x2) ∈ R.

Let us again consider the example tree depicted in Figure 3.1. For each node t, the arguments
that are contained in bag Xt are marked with solid cycles. Ft, the sub-framework in t, consists
of the arguments in solid cycles and all solid attack arrows. In combination with the dashed parts
we obtain the induced sub-frameworks F≥t.

The dashed parts in a node can be considered as processed parts of the original AF, i.e. the
corresponding arguments where already removed from the tree decomposition and they will not
reappear in parent nodes of T (remember the connected property of tree decompositions, see
(iii) in Definition 2.14). The solid parts (arguments) have to be analyzed when the algorithm
traverses the respective node.

3.1. OVERVIEW 33

a b

c d

ef g

s0

a b

c d

ef g

s1

a b

c d

e g

s2

b

c d

e g

s3

c d

e g

s4

c

e g

s5

e gs6

c d

e

s7

c d

e

s8

a b

c

f

s9

afs10

Figure 3.1: Semi-normalized Tree Decomposition with Sub-Frameworks

Note that we introduce an additional node s0 as the root node of the tree decomposition.
This node has an empty bag Xs0 = {} of arguments. Hence, in the final computation step
for a semantics all arguments are removed. This allows a more comprehensive definition of
algorithms because the final removal step yields towards equivalence of the computation for
F≥s0 and extensions of the original argumentation framework.

Working on Tree-Decompositions

In here we online the general steps that are taken by our algorithms. As all our algorithms
follow an approach similar to [Dvořák et al., 2010a] we recall their definitions for admissible
semantics and explain the ideas behind them in detail. A nice feature of tree decompositions

34 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

is that it is possible to only work on local information that is available in the respective nodes.
The dynamic programming approach allows us to discard information as early as possible (i.e.
we know that arguments that are removed from a bag will never reappear in a bag above in the
tree). We can then obtain extensions or answers to decision problems by completely traversing
the tree decomposition in bottom-up order and due to the definitions of the algorithms and their
correspondence to extensions we obtain the solution in the root node.

Algorithm Definitions

In this section we outline the definitions of our algorithms. As an example, we give the defini-
tions for admissible semantics that can be found in Dvořák et al. [2010a]. Our definitions follow
a uniform approach:

Restricted Sets: In every node t of the tree decomposition we can analyze the (sub)-frame-
work F≥t. X>t denotes all arguments that were already completely processed by the algorithm
(within the sub-tree rooted at t). Hence, in every node we can define X>t-restricted σ sets
of arguments that fulfill the conditions of the respective semantics σ. As an example, let us
consider admissible semantics: A X>t-restricted admissible set S for a sub-framework F≥t has
to be conflict free and it has to defend itself against the arguments in X>t\S. These conditions
have to be satisfied by all arguments in X>t. Arguments in Xt ∩ S have to be conflict-free but
they can be attacked by arguments in Xt\S as they can still be defended somewhere above in
the tree decomposition. Formally, this is defined as follows:

Definition 3.5. Let F = 〈A,R〉 be an AF and B ⊆ A a set of arguments from A. A set S ⊆ A

is a B-restricted admissible set for F , if S is conflict-free in F and S defends itself against all
a ∈ B\S.

Note that if B = X>t we have that S is conflict-free and that S defends itself against all
a ∈ X>t\S, i.e. there is no attack between completely processed arguments in X>t\S and
arguments in S.

Example 3.1. Let us consider the the sub-framework F≥s3 from our example tree decomposition
(see Figure 3.1) as shown below.

b

c d

e g

TheX>s3 (or {d, g})-restricted admissible sets forF≥s3 are {∅, {b}, {c}, {d}, {b, d}, {c, e}}.

Note that selected arguments only have to be defended against d and g in the example
sketched above. As e is attacked by d, {e} is not a X>s3-restricted admissible set. Furthermore,
the X>s0-restricted admissible sets for F≥s0 (of our example tree decomposition) correspond to
the admissible sets of our example AF.

3.1. OVERVIEW 35

Colorings: Every bag Xt of a node t in the tree decomposition contains the arguments whose
attack relations have to be considered during the computation of this node. As we traverse
the decomposition in bottom-up order and due to the properties of tree decompositions, the
arguments of X>t have already been completely considered in at least one sub-node of t. On
basis of the arguments that were already considered we want to analyze the arguments of the
current bag Xt: We introduce colorings that allow us to specify selected arguments from Xt and
their relationship to other arguments in X≥t. In other words the concept of colorings allows us
to store the information of relationships between arguments in X≥ solely by assigning colors to
arguments in Xt. For admissible semantics we define the colorings as follows:

Definition 3.6. Let t be a node of a tree decomposition for an AF F and Xt the bag of argu-
ments in t. The colorings for t (for admissible semantics) are defined as functions C : Xt →
{ina , defa , atta , outa}.

Remark 3.7. Given a coloring C for a node t, we denote the set [C]ia = {a | C(a) = ina},
i.e. [C]ia contains all arguments that are marked with ina . The colorings defa , atta and outa
describe the relationship between between [C]ia and the other arguments of X\[C]ia .

If an argument is marked with ina it is contained in the set of selected arguments S. Further-
more, all arguments from X>t that were colored with ina are also contained in S. In a coloring
for arguments, [C]ia contains all selected arguments fromXt. The coloring defa for an argument
a denotes that it is attacked by [C]ia . Furthermore, an argument is colored with atta if it attacks
the set [C]ia but is not attacked by [C]ia . Finally, outa describes that the respective argument is
neither attacked by [C]ia nor attacks [C]ia .

Valid Colorings: It remains to formally define sets of colorings that we consider to be valid
within a node t for the respective semantics.

Definition 3.8. [Dvořák et al., 2010a] Let t be the node of a tree decomposition for an AF
F . Given a coloring C for t, we define the extensions of C, et(C), as the collection of X>t-
restricted admissible sets S for F≥t which satisfy the following conditions for each a ∈ Xt:

C(a) = ina iff a ∈ S
C(a) = defa iff S � a

C(a) = atta iff S 6� a and a� S

C(a) = outa iff S 6� a and a 6� S

If et(C) 6= ∅, C is called a valid coloring for t. We denote the set of valid colorings by Ct.

Example 3.2. Let us again consider the node s3 of our example tree decomposition. Further-
more, assume the colorings C(b) = ina , C(c) = defa and C(e) = defa . We already identified
the X>s3 (or {d, g})-restricted admissible sets for F≥s3 as ∅, {b}, {c}, {d}, {b, d} and {c, e}.
{b, d} is the only set S that additionally fulfills the conditions from Definition 3.8. It is there-
fore a valid coloring. On the other hand, consider for example S = {b}. Then, condition 2 of
Definiton 3.8 is violated as C(e) = defa but {b} does not attack e.

36 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

Goal: We want to compute the extensions of an AF F = 〈A,R〉 for a given semantics σ.
The tree decomposition (T ,X) is traversed in bottom-up order where we can compute the valid
colorings Ct for every node t ∈ T . Furthermore, our tree decompositions have a root node r
with an empty bag Xr = ∅ of arguments. Hence, X>r = A holds. If we now compute the
valid colorings Cr we obtain the X>r-restricted admissible sets for F≥r which correspond to the
admissible sets of arguments for F (as shown by Dvořák et al. [2010a]).

V-Colorings: The computation and definition steps outlined above demand that et(·) is com-
puted explicitly in every node of the decomposition. This is computationally expensive (we have
to analyze the sub-framework F≥t in every node) and fixed-parameter tractability with respect
to tree-width is no longer guaranteed. Therefore we introduce the concept of v-colorings: The
v-colorings are efficiently computed in every node t of the tree decomposition for all arguments
in Xt. This computation is solely based on the v-colorings of the successor node(s) and the
arguments in Xt. Hence it is not necessary to explicitly compute et(C). Obvioulsy, we have to
prove that the defined v − colorings are equivalent to valid colorings.

Algorithms on Tree Decompositions

Our algorithms consist of three main parts, namely preparation, computation and result delivery.
In the preparation step the problem instance is read and the tree decomposition is computed:

1. First, read in the argumentation framework F = 〈A,R〉 in a predefined format. We can
read arguments as well as attack relations between arguments.

2. From the argumentation framework, that is internally represented as a graph, obtain a tree
decomposition (T ,X) where T = (AT , RT). In this thesis, we do not directly focus on
how to gain ’good’ decompositions (See Section 2.5 for a brief overview).

3. Based on the definition of the algorithm, obtain a normalized or semi-normalized tree
decomposition. This can be achieved by simply traversing the tree in top-down order. If a
branch node has several children, introduce new branch nodes until all of them are binary.
For normalized tree decompositions, add insert nodes until only at most one argument is
introduced in these nodes. Additionally, make sure that at most one argument is removed.
For semi-normalized tree decompositions this step can be skipped.

The computation is defined on the tree decomposition where the tree is traversed in bottom-
up order. Based on the type of node different actions are defined. We outline the intuition behind
the computation of v-colorings within the different node types on basis of admissible semantics.
The idea originates from Dvořák et al. [2010a]. They additionally proved that v-colorings and
valid colorings coincide in every node of the tree decomposition.

Leaf Node: At each leaf node t compute all combinations of the arguments from the bag Xt.
Discard any combination where two adjacent arguments are selected. This corresponds to the
conflict-freeness of arguments: Two arguments that are connected can never be contained in a
final solution. Note that this holds for all semantics that are defined in this thesis. Furthermore,

3.1. OVERVIEW 37

− et(C)
ε {∅, {f}, {b, d}, {b, d, f}, {c, e, f}}n0a

a et(C)
defa {{f}, {b, d}, {b, d, f}, {c, e, f}}
atta {{c, e}}
outa {∅}

n0b

a c et(C)
defa ina {{c, e, f}}
atta ina {{c, e}}
defa defa {{b, d}, {b, d, f}}
defa atta {{d, f}}
outa atta {{d}}
defa outa {{f}}
outa outa {∅}

n0c

a b c et(C)
defa defa ina {{c, e, f}}
atta defa ina {{c, e}}
defa atta ina {{c, f}}
atta atta ina {{c}}
defa ina defa {{b, d}, {b, d, f}}
defa outa atta {{d, f}}
outa outa atta {{d}}
defa outa outa {{f}}
outa outa outa {∅}

n1

a b c et(C)
atta defa ina {{c, e}}
atta atta ina {{c}}
defa ina defa {{b, d}}
ina defa defa {{a, d}}
outa outa atta {{d}}
ina defa defa {{a}}
outa outa outa {∅}

n2

b c et(C)
defa ina {{c, e}}
atta ina {{c}}
ina defa {{b, d}}
outa atta {{d}}
outa outa {∅}

n3

b c e et(C)
defa ina ina {{c, e}}
atta ina outa {{c}}
ina defa defa {{b, d}}
outa atta defa {{d}}
ina defa atta {{b}}
outa outa outa {∅}

n4

c e et(C)
ina ina {{c, e}}
ina outa {{c}}
atta defa {{d}}
outa outa {∅}

n5

c e et(C)
ina ina {{c, e}}
ina outa {{c}}
outa ina {{e}}
outa outa {∅}

n6

e et(C)
ina {{e}}
outa {∅}

n7

e g et(C)
ina defa {{e}}
outa outa {∅}

n8

c e et(C)
ina ina {{c, e}}
ina outa {{c}}
atta defa {{d}}
outa outa {∅}

n9

c d e et(C)
ina defa ina {{c, e}}
ina defa outa {{c}}
atta ina defa {{d}}
outa atta ina {{e}}
outa outa outa {∅}

n10

a b c et(C)
defa ina defa {{b}, {b, f}}
defa atta ina {{c, f}}
defa outa outa {{f}}
atta atta ina {{c}}
outa outa outa {∅}

n11

a b et(C)
defa ina {{b}, {b, f}}
defa outa {{f}}
outa outa {∅}

n12

a et(C)
defa {{f}}
outa {∅}

n13

a f et(C)
ina atta {{a}}
defa ina {{f}}
outa outa {∅}

n14

Figure 3.2: Normalized Tree Decomposition with V-Colorings for Admissible Semantics

38 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

assign v-colorings to the arguments: The colorings are defined by the respective algorithms
(Depending on the semantics different colorings are assigned). For admissible semantics it is
sufficient that arguments that are colored with ina are conflict-free as X>t = ∅ in the leaf node.
The v-colorings are defined as follows:

Definition 3.9. [Dvořák et al., 2010a] Let t be a leaf node of the tree decomposition and con-
sider the colorings Xt → {ina , defa , atta , outa} . If

C(x) = ina ⇒ C(y) ∈ {atta , defa} for all y � x

C(x) = defa ⇔ ∃y : C(y) = ina and y � x

C(x) = atta ⇒ ∃y : C(y) = ina and x� y

holds for all x ∈ Xt, the coloring is a v-coloring for t.

Figure 3.2 shows a normalized tree decomposition of our example AF. Consider, for exam-
ple, the leaf node n10: The bag Xn10 contains the arguments for the sub-framework Fn10 =

〈{c, d, e}, {(c, d), (d, e)}〉. Every row represents a v-coloring for n10. The conflict-free sets
consist of all arguments colored with ina . The sets of valid colorings are given on the right side.
Now, consider for example a coloring C(c) = defa , C(d) = ina and C(e) = defa . {d} is a
conflict-free set but C(c) = defa violates the second condition for v-colorings in leaf nodes: It
is not attacked but attacks the conflict-free set. Hence, a valid v-coloring would be C(c) = atta ,
C(d) = ina and C(e) = defa .

Introduction Node: For each introduction node t with child node t1 (in normalized tree de-
compositions), combine the new argument with the arguments from Xt1 . Based on the defini-
tion of the algorithm colors of old arguments may change. Only colors for arguments of the
sub-framework Ft have to be considered, e.g. one has to check if there exists an attack relation
between the new argument and the other arguments in Xt. Hence, we can obtain the v-colorings
for Xt using the v-colorings from Xt1 . Note that we do not explicitly compute the extensions
et(C) for the sub-framework F≥t.

Definition 3.10. [Dvořák et al., 2010a] Let t be an introduction node of a tree decomposition,
t1 be the child node of t and let a be the argument that is introduced in Xt. If C is a v-coloring
for t1 then C + a is a v-coloring for t. If also a 6� a, [C]ia 6� a and a 6� [C]ia then C+̇a is
a v-coloring for t as well. For C : A → {ina , outaatta , defa}, C + a and C+̇a are defined as
follows:

(C + a)(b) =

C(b) if b ∈ A
defa if b = a and [C]ia � a

atta if b = a and [C]ia 6� a and a� [C]ia
outa otherwise

3.1. OVERVIEW 39

(C +̇ a)(b) =

ina if b = a or C(b) = ina
defa if a 6= b and ((a, b) ∈ Ft or C(b) = defa)

outa if a 6= b and C(b) = outa and (a, b) 6∈ Ft and (b, a) 6∈ Ft
atta otherwise

Consider the introduction node n12 of the tree decomposition in Figure 3.2 for admissible
semantics where the argument b is introduced. Then, b can be colored with one of atta , defa or
outa and, if [C]ia 6� a and a 6� [C]ia it can be colored with ina . In the child node n13 a is
colored with defa (in the coloring of the first row). For C + b we can assign the coloring outa to
the introduced argument b. Furthermore, for C+̇b we can color b with ina as it is not attacked
by [C]ia = ∅ in n13 or attacks [C]ia = ∅ in n13 (of the coloring in the first row).

Removal Node: For each removal node t (in normalized tree decompositions), delete the col-
oring of the removed argument from all sets of colorings. Depending on the algorithm, it may
be possible to delete a complete set of colorings. This is due to the fact that we know that the
removed argument is completely processed: Because of the properties of tree decompositions an
argument that is removed can not reappear in a bag of another node upwards the tree. Further-
more, all arguments that that are connected via attack relations in the original AF have to appear
together somewhere in a bag of the tree. For admissible semantics, this is defined as follows:

Definition 3.11. [Dvořák et al., 2010a] Let t be a removal node of a tree decomposition, t1 be
the child node of t and let a be the argument that is removed in Xt. If C is a v-coloring for t1
and C(a) 6= atta then C − a is a v-coloring for t. For C : A→ {ina , outa , atta , defa}, C − a
is defined as follows:

(C − a)(b) = C(b) for each b ∈ A \ {a}

Now, consider the removal node n13 of Figure 3.2 where argument f is removed. In the first
coloring of the child node n14 a is colored with ina . As f attacks a it is colored with atta . As f
is removed in n13 we know that it will never reappear above in the tree and can never be attacked
by another argument, i.e. a will never be defended against f . This contradicts the definition of
admissible semantics. Hence, we can remove the complete coloring.

Branch Node: For each branch node t combine the v-colorings of the child nodes t1 and t2.
How to combine the v-colorings heavily depends on the respective algorithm. A nice feature of
normalized and semi-normalized tree decompositions is that the bags of the child nodes contain
the same arguments. This property simplifies the computation of v-colorings and certain opti-
mizations can be applied in branch nodes. A detailed analysis of optimization strategies is given
in Chapter 4. For admissible semantics, the computation is defined as follows:

Definition 3.12. [Dvořák et al., 2010a] Let t be branch node of a tree decomposition, and let
C be the v-coloring for the child node t1 and D be the v-coloring for the child node t2. If

40 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

[C]ia = [D]ia , then C 1 D is a v-coloring for t. For C,D : A → {ina , outa , atta , defa},
C 1 D is defined as follows:

(C1D)(b) =

ina if C(b) = D(b) = ina
outa if C(b) = D(b) = outa
defa if C(b) = defa or D(b) = defa
atta otherwise

Let us again consider our example tree decomposition (see Figure 3.2). n5 is a branch node
where the v-colorings of the child nodes are combined. Based on the definition we combine all v-
colorings C (from n6) and D (from n9) where [C]ia = [D]ia , i.e. where the same arguments are
colored with ina . Then, we compute the colorings of the remaining arguments: If an argument
is colored with defa in one child node it is defended in the the current sub-framework Fn5 . If
it is only attacked (in at least one child node) but not defended in the other it attacks the set of
selected arguments [C]ia in node n6. If it is neither defended (colored with defa) or attacks the
set (colored with atta) in the child nodes (and hence colored with outa in both nodes) it must be
colored with outa in n5.

Result Delivery: After the root node r, only a v-coloringC of the empty set remains (Note that
in every node t the v-colorings for the current arguments in Xt are (re)-computed. As the bag
Xr for the root node is always empty, the v-colorings just color the empty set). The extensions
of C, er(C) are the A-restricted σ sets for the sub-framework induced by r, i.e. F≥r. This sub-
framework corresponds to the original argumentation framework F as well as the A-restricted σ
sets correspond to the σ extensions of F . Hence, the σ extensions of F are given by er(C).

For admissible semantics we have that er(C) contains the A-restricted admissible sets for
F≥r = F . This, in turn, is equivalent to all admissible extensions of F as for each S ∈ er(C)

we have that S must be conflict-free and S attacks all arguments A\S of F .
In the following we will introduce novel algorithms for stable and complete semantics on

normalized tree decompositions and an algorithm for admissible semantics on semi-normalized
tree decompositions. We will define the computation of v-colorings for sub-frameworks within
the tree decomposition and prove that the solutions er(C) in the root node r correspond to
the extensions of the respective semantics. Furthermore, we outline how credulous as well as
skeptical acceptance can be computed within the algorithms.

3.2. ALGORITHM FOR STABLE SEMANTICS (NORMALIZED) 41

3.2 Algorithm for Stable Semantics (Normalized)

Restricted Sets:

Definition 3.13. Let F = 〈A,R〉 be an AF and B ⊆ A a set of arguments from A. A set S ⊆ A
is a B-restricted stable set for F , if S is conflict-free in F and S attacks all a ∈ B\S.

Colorings:

Definition 3.14. Let t be a node of a tree decomposition for an AF F and Xt the bag of argu-
ments in t. The colorings for t (for stable semantics) are defined as functions

Ct : Xt → {ins , defs , outs}.

Furthermore, in a coloring C, we define the set of arguments a that are colored with ins as

[C]is = {a | C(a) = ins}.

Definition 3.15. Let t be the node of a tree decomposition for an AF F . Given a coloring C for
t, we define the extensions of C, et(C), as the collection of X>t-restricted stable sets S for F≥t
which satisfy the following conditions for each a ∈ Xt:

C(a) = ins iff a ∈ S
C(a) = defs iff S � a

C(a) = outs iff S 6� a and a 6∈ S

If et(C) 6= ∅, C is called a valid coloring for t. We denote the set of valid colorings by Ct.

By definition, all extensions of C, et(C), areX>t-restricted stable sets S for F≥t. It remains
to show that also the other direction holds:

Lemma 3.16. Let t be a node of a tree decomposition for an AF F and S be an X>t-restricted
stable set for F≥t. Then, there is a coloring C ∈ Ct such that S ∈ et(C).

Proof. By assumption, S is an X>t-restricted stable set for F≥t. It remains to show that we can
define a coloring C for S such that S ∈ et(C). For an argument a ∈ Xt we can distinguish
three different cases and can assign the following colorings:

if a ∈ S : C(a) = ins
if S � a : C(a) = defs
if a 6∈ S and S 6� a : C(a) = outs

As S is an X>t-restricted stable set and due to the construction of C, S satisfies the condi-
tions of Definition 3.15. Hence, S ∈ et(C), i.e. for every X>t-restricted stable set S for F≥t
there exists an extension for C.

42 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

Next, we want to show that two different colorings C and C ′ for a node t represent different
X>t-restricted stable sets.

Lemma 3.17. Let t be a node of a tree decomposition for an AF F andC andC ′ be two different
colorings for the bag Xt. Then, the extensions of C and C ′ are disjoint, i.e. et(C)∩ et(C ′) = ∅.

Proof. Suppose that there exist two distinct colorings C and C ′ for a bag Xt of a node t in a
tree decomposition and that there exists a set S such that S ∈ et(C) ∩ et(C ′). Then, given an
argument a ∈ Xt, at least one colorC(a) must be different fromC ′(a). Towards a contradiction,
we can distinguish three cases:

1. Suppose that C(a) = ins and C ′(a) = defs . By Definition 3.15, C(a) = ins implies that
a ∈ S. C ′(a) = defs , on the other hand, implies that S � a. Due to the conflict-freeness
of X>t-restricted stable sets, S � a implies that a 6∈ S, a contradiction.

2. Suppose that C(a) = ins and C ′(a) = outs . Again, C(a) = ins implies that a ∈ S but
due to Definition 3.15, for C ′(a) = outs a 6∈ S must hold, we have a contradiction.

3. Suppose that C(a) = defs and C ′(a) = outs . Then, due to Definition 3.15, C(a) = defs
implies that S � a butC ′(a) = outs implies that S 6� a. Again, we have a contradiction.

The other cases, where the colors for a are exchanged in C and C ′, follow by symmetry.
Hence, et(C) ∩ et(C ′) = ∅.

We defined that all extensions of C, et(C), are X>t-restricted stable sets S for F≥t (by
Definition 3.15). Furthermore we proved that for all X>t-restricted stable sets S for F≥t there
exists a valid coloring C (see Lemma 3.16). Finally, we proved that different valid colorings
C and C ′ do not represent any S where S ∈ et(C) and S ∈ et(C ′). For every X>t-restricted
stable set we thus have a unique coloring.

Leaf Node:

Definition 3.18. Let t be a leaf node of the tree decomposition and consider the colorings
Xt → {ins , defs , outs} . If

C(x) = ins ⇒ C(y) ∈ {defs , outs} for all y � x

C(x) = defs ⇔ [C]is � x

C(x) = outs ⇒ [C]is 6� x

holds for all x ∈ Xt, the coloring is a stable v-coloring for t.

Lemma 3.19. For any leaf node t in a tree-decomposition of an AF, valid colorings and v-
colorings for stable semantics coincide.

3.2. ALGORITHM FOR STABLE SEMANTICS (NORMALIZED) 43

Proof. In every leaf node t the set of arguments X>t is the empty set. Hence, the X>t (or
∅)-restricted stable sets for F≥t correspond to the conflict-free sets.
⇒: Given a valid coloring C we have to prove that C is also a v-coloring for t. If C is a

valid coloring it satisfies the conditions of Definition 3.15. Hence, there exists a conflict-free set
S ∈ et(C). Now, consider an argument a ∈ S. Then, due to the definition it is colored with
ins . Furthermore, all attackers b of a, where b � a can not be colored with ins , i.e. they must
be colored with defs or outs . Hence, the first implication of Definition 3.18 for v-colorings is
satisfied. Now, consider an argument a that satisfies S � a. Due to the second condition of
Definition 3.15 it must be colored with defs . As all arguments a ∈ S are colored with ins , S
is exactly the set [C]is (as defined in Def. 3.14). Hence, the second condition for v-colorings is
satisfied. Due to the third condition of Definition 3.15 for valid colorings arguments colored with
outs are neither in S nor are attacked by S. As S = [C]is , the third condition for v-colorings is
satisfied.
⇐: Now, consider a v-coloring C for t. We have to prove that C is also a valid coloring for

t. We claim that [C]is ∈ et(C). Suppose the opposite, i.e. that C is not a valid coloring for t.
Then, either the set [C]is is not conflict-free or one of the other conditions of Definition 3.15 is
not satisfied.

• If [C]is is not conflict-free, there exist two arguments C(a) = ins , C(b) = ins where
a� b. But, by Definition 3.18 for v-colorings, all arguments a that attack an argument b
with C(b) = ins are either colored with defs or outs .

• Now, assume that condition 2 for valid colorings is not satisfied, i.e. C(a) = defs but
S 6� a or vice versa. But as S = [C]is and due to condition 2 of Definition 3.18 we have
a contradiction.

• Finally, we show that condition 3 of Definition 3.15 is always satisfied: If C(a) = outs
then a 6∈ [C]is and by condition 3 of Definition 3.18 also [C]is 6� a holds. As a 6∈ [C]is
C(a) 6= ins must hold. Furthermore, as [C]is 6� a, condition 2 of Definition 3.18 can
not be satisfied. Hence, C(a) 6= defs . Hence, condition 3 of Definition 3.15 is always
satisfied.

Introduction Node:

Definition 3.20. Let t be an introduction node of a tree decomposition, t1 be the child node of
t and let a be the argument that is introduced in Xt. If C is a v-coloring for t1 then C + a is a
v-coloring for t. If also a 6� a, [C]is 6� a and a 6� [C]is then C+̇a is a v-coloring for t as
well. For C : A→ {ins , defs , outs} we define C + a and C+̇a as follows:

(C + a)(b) =

C(b) if b ∈ A
defs if b = a and [C]is � a

outs if b = a and [C]is 6� a

44 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

(C +̇ a)(b) =

ins if b = a or C(b) = ins
defs if a 6= b and ((a, b) ∈ Ft or C(b) = defs)
outs if a 6= b, C(b) = outs , (a, b) /∈ Ft

Lemma 3.21. For any introduction node t in a tree-decomposition of an AF, valid colorings and
v-colorings for stable semantics coincide if they coincide in the child node t1 of t.

Proof. Let t be an introduction node of a tree decomposition and let t1 be the child node of t.
Furthermore, assume that Xt = Xt1 ∪ {a} where a 6∈ Xt1 , i.e. the argument a is the introduced
argument. Then, X≥t = X≥t1 ∪ {a}. Furthermore, by Definition 2.18 of normalized tree
decompositions, we know that a does not appear in the sub-framework F>t = F>t1 . Hence,
X>t = X>t1 and there do not exist any attack relations between X>t and the new argument a.
⇒: Suppose there exists a valid coloring C for t. Furthermore, by assumption, there exists

a valid coloring (and v-coloring) C1 for the child node t1. We want to prove that C is a v-
coloring for t. Then, there exists a set S ∈ et(C) that is an X>t-restricted stable set for F≥t.
As X>t = X>t1 , S is also an X>t1-restricted stable set for F≥t. Furthermore, as a 6∈ Xt1 , a
can not attack any argument in Xt1 . Then, S\{a} must also be an X>t1-restricted stable set
for F≥t1 . Now, the approach is as follows: We define a coloring C1 that fulfills the properties
for valid colorings as defined in Definition 3.15. If we can define this coloring, based on S, we
furthermore know that is a v-coloring for t1. Finally, we simply have to check if C = C1 + a

(for a 6∈ S) and C = Ct1+̇a (for a ∈ S) hold. Then, C is a v-coloring for t. For an argument
b ∈ Xt1 we define the coloring for C1 as follows:

if b ∈ S\{a} : C1(b) = ins
if b 6∈ S and S\{a}� b : C1(b) = defs
if b 6∈ S and S\{a} 6� b : C1(b) = outs

The conditions for our defined colorings C1 correspond to the conditions of Definition 3.15
for colorings. Furthermore, as S\{a} is an X>t1-restricted stable set, all properties for valid
colorings are satisfied and we have that C1 is a valid coloring and a v-coloring for t1. Finally,
we have to distinguish two cases:

• Consider the case a ∈ S. We have to show that C = C1+̇a is a v-coloring for t. By
assumption, C is a valid coloring. Therefore, C is conflict-free which means that a 6� a,
S 6� a and a 6� S must hold. Furthermore, by Definition 3.15, if a ∈ S, C(a) = ins
and by Definition 3.14, [C]is ⊆ S. Hence, the conditions of Definition 3.20 for C1+̇a are
met and we have that (C1+̇a)(a) = ins . But then, (C1+̇a)(a) = ins = C(a) holds. It is
easy to see that (C1+̇a)(b) = C(b) also holds for any other argument b ∈ S.

• Consider the case a 6∈ S. We have to show thatC = Ct1 +a is a v-coloring for t. We know
that C1 is conflict-free by assumption. Furthermore, as a 6∈ S, a can not be colored with
ins . Then, S = [C1 + a] must also be conflict-free. In here, we outline the equivalence
of C = C1 + a for the introduced argument a where S � a. Then, by Definition 3.15,
C(a) = defs . Furthermore also [C]is � a holds, i.e. , as defined in Definition 3.20, also

3.2. ALGORITHM FOR STABLE SEMANTICS (NORMALIZED) 45

(C1 + a)(a) = defs . It’s easy to see that, by similar argumentation, C = C1 + a holds for
the colors ins and outs as well.

⇐: Suppose there exists a v-coloring C for t, i.e. there exists a v-coloring C1 for the child
node t1 where either C = C1 + a or C = C1+̇a holds. By assumption, C1 is also a valid
coloring. We want to prove that C is a valid coloring for t. As C1 is a valid coloring, there exists
an X>t1-restricted stable set S ∈ et1(C1) for F≥t1 . As X>t1 = X>t it is also an X>t-restricted
stable set.

• For C1 +a, we have that by Definition 3.20 the colors for each argument b 6= a remain the
same. Furthermore, as a 6∈ et(C) (because it is not colored with ins) S must be conflict-
free and is either colored with defs or outs (if S � a or S 6� a). Then, S must be an
extension for C1 + a, i.e. S ∈ et(C1 + a), in other words C1 + a is a valid coloring.

• For C1+̇a, by Definition 3.20 we have that a 6� a, [C1]is 6� a and a 6� [C1]is and
hence [C1]is ∪ {a} is conflict-free. Furthermore, due to the connectedness condition of
tree decompositions (see Definition 2.14) there is no attack between X>t and a. Hence, it
is easy to see that S ∪ {a} is conflict-free and we have that S ∪ {a} ∈ et(C1+̇a).

Finally, we obtain that C is a valid coloring for t.

Removal Node:

Definition 3.22. Let t be a removal node of a tree decomposition, t1 be the child node of t and
let a be the argument that is removed in Xt. If C is a v-coloring for t1 and C(a) 6= outs then
C − a is a v-coloring for t. For C : A→ {ins , defs , outs} we define C − a as follows:

(C − a)(b) = C(b) for each b ∈ A \ {a}

Lemma 3.23. For any removal node t in a tree-decomposition of an AF, valid colorings and
v-colorings for stable semantics coincide if they coincide in the child node t1 of t.

Proof. ⇒: Suppose there exists a valid coloring C for t. Furthermore, by assumption, there
exists a valid coloring C1 that is also a v-coloring for t1. We want to prove that C is a v-coloring
for t. If C is a valid coloring for t then, by Definition 3.15, there exists an X>t-restricted
stable set S for F≥t and the conditions of Definition 3.15 for C are satisfied, i.e. S ∈ et(C).
Furthermore, as t is a removal node, we know that exactly one argument a is removed in Xt

and hence Xt ∪ {a} = Xt1 . Furthermore, X≥t = X≥t1 and F≥t = F≥t1 must hold (because
removed arguments remain in X≥t and F≥t).

First, we show that we can define a valid coloring C1 for t1 where C = C1−a and C1(a) 6=
outs . The first condition is easily met by setting each argument, except a (the removed one),
b ∈ Xt1\{a} to C1(b) = C(b). Hence, C = C1 − a is always satisfied. It remains to define the
color of a, C1(a):

46 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

• First, assume that a ∈ S. Then, we set C1(a) = ins . By assumption, S is an X>t-
restricted stable set S for F≥t. As X>t = X>t1 ∪ {a}, S is also an X>t1-restricted stable
set for F≥t = F≥t1 (By removing a the condition must still be satisfied). For the same
reason, as S ∈ et(C), S ∈ et1(C1) must hold (The conditions of Definition 3.15 are
satisfied for S ∈ et(C) and hence for S ∈ et1(C1)). By assumption, C1 is a valid coloring
and a v-coloring, and hence, due to Definition 3.22 and C1(a) 6= outs , C = C1 − a is a
v-coloring for t.

• Now, assume that S � a. Then, we setC1(a) = defs . As S is anX>t-restricted stable set
for F≥t (by assumption) it must also be a X>t1-restricted stable set for F≥t1 (for the same
reason as above). Furthermore, by assumption, S ∈ et(C). As S � a and C1(a) = defs
the conditions of Definition 3.15 are satisfied and it follows that S ∈ et(C1). As C1 is a
valid coloring and v-coloring (by assumption) for t1, we have that C s a v-coloring for t.

⇐: Suppose that there exists a v-coloring C for t. Furthermore, by assumption, there exists
a v-coloring C1 for t1 such that C = C1 − a and C1(a) 6= outs . Then, C1 is also a valid
coloring for t1, i.e. there exists an X>t1-restricted stable set S ∈ et(C1). As C1(a) 6= outs , we
know that S � a or a ∈ S (by Definition 3.15). But then, as defined in 3.13, S must attack all
(X>t1 ∪ {a})\S. As Xt1 ∪ {a} = X>t, S is also an X>t-restricted stable set for F≥t. Then,by
Definition 3.15, S ∈ et(C), i.e. S is a valid coloring for t.

Branch Node:

Definition 3.24. Let t be branch node of a tree decomposition, and let C be the v-coloring for
the child node t1 and D be the v-coloring for the child node t2. If [C]is = [D]is , then C 1 D is
a v-coloring for t. For C,D : A→ {ins , defs , outs} we define C 1 D as follows:

(C1D)(b) =

ins if C(b) = D(b) = ins
defs if C(b) = defs or D(b) = defs
outs if C(b) = D(b) = outs

Lemma 3.25. For any branch node t in a tree-decomposition of an AF, valid colorings and
v-colorings for stable semantics coincide if they coincide in the child nodes t1 and t2 of t.

Proof. Let t be a branch node of a normalized tree decomposition and t1 and t2 be the child
nodes of t. By Definition 2.18 of branch nodes (for normalized tree decompositions) we have
thatXt = Xt1 = Xt2 ,Xt = X≥t1∩X≥t2 andX≥t = X≥t1∪X≥t2 . Then, we can partitionX≥t
into three disjoint sets X>t1 , X>t2 and Xt. Furthermore, we can define a set S ⊆ X≥t as the
union of two sets S1 and S2, S = S1∪S2, where S1 ⊆ X≥t1 , S2 ⊆ X≥t2 and S1∩Xt = S2∩Xt.
In the following we prove that S is an X>t-restricted stable set for F≥t iff S1 is an X>t1-
restricted stable set for the sub-framework F≥t1 , S2 is an X>t2-restricted stable set for the sub-
framework F≥t2 and S1 ∩Xt = S2 ∩Xt:

Lemma 3.26. Let S1 ⊆ X≥t1 and S2 ⊆ X≥t2 , such that

• S1 is an X>t1-restricted stable set for F≥t1

3.2. ALGORITHM FOR STABLE SEMANTICS (NORMALIZED) 47

• S2 is an X>t2-restricted stable set for F≥t2

• S1 ∩Xt = S2 ∩Xt.

Then, S = S1 ∪ S2 is an X>t-restricted stable set for F≥t.

Proof. As arguments that attack one another must be contained together in one bag and due to
the connectedness condition of tree decompositions (see Definition 2.14) we know that there is
no attack between arguments in X>t1 and X>t2 . S is an X>t-restricted stable set for F≥t if it is
(1) conflict-free in F≥t and (2) S attacks all arguments a ∈ X>t\S (see Definition 3.13).

(1) Suppose there exists a conflict where a, b ∈ S and a � b. As S ⊆ X≥t1 ∪ X≥t2 we can
distinguish between two cases:

(a) The arguments a and b are contained in a, b ∈ X≥t1 (or a, b ∈ X≥t2). Then, we get
that also a, b ∈ S1 (or a, b ∈ S2) and therefore S1 (or S2) is not conflict-free in F≥t1 (or
F≥t2), i.e. we have a contradiction to assumption 1 (or 2) of Lemma 3.26. (Note that
this also holds if a, b ∈ X≥t1 ∩X≥t2).

(b) The argument a is contained in a ∈ X≥t1 whereas the argument b is contained in b ∈
X≥t2 (or vice-versa). As there is an attack a� b (by assumption) and due to Condition
(ii) of Defintion 2.14 of tree decompositions we have that a and b have to appear together
somewhere in a bag of the decomposition. Furthermore, due to (iii), the connectedness
condition, we have that a or b must appear in Xt, i.e. {a} ⊆ Xt or {b} ⊆ Xt. Hence,
we have that {a, b} ⊆ X≥t1 or {a, b} ⊆ X≥t2 , and assuming that S1∩Xt = S2∩Xt we
have that {a, b} ⊆ S1 (or {a, b} ⊆ S2), contradicting our assumption of S1 (resp. S2)
being an X>t1 (resp. X>t2)-restricted stable set for F≥t1 (resp. F≥t2).

(2) Now we show that all arguments a ∈ X>t\S are attacked by S.

By assumption, S1 attacks all arguments X>t1\S1 in F≥t1 and hence also in F≥t. Further-
more, S2 attacks all arguments X>t2\S2 in F≥t. Due to the connectedness condition of
tree decompositions we have that X>t1 ∩ X>t2 = ∅. Hence, as S = S1 ∪ S2, we have
that S attacks all arguments X>t1\S in F≥t. Due to symmetry, S also attacks all argu-
ments X>t2\S in F≥t. As S attacks all arguments X>t1\S and X>t2\S it also attacks all
arguments (X>t1 ∪ X>t2)\S in F≥t. But, as X>t1 ∪ X>t2 = X>t, we have that S is an
X>t-restricted stable set for F≥t.

Hence, based on our assumptions, we have that S = S1 ∪ S2 is an X>t-restricted stable set for
F≥t.

Lemma 3.27. Let S be anX>t-restricted stable set for F≥t, S1 = S∩X≥t1 and S2 = S∩X≥t2 .
Then,

(1) S1 is an X>t1-restricted stable set for F≥t1

(2) S2 is an X>t2-restricted stable set for F≥t2

(3) S1 ∩Xt = S2 ∩Xt.

48 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

Proof. Let S be an X>t-restricted stable set for F≥t.

(1, 2) As S is conflict-free in F≥t we have that the subset S1 = S ∩ X≥t1 (respectively S2 =

S∩X≥t2) must be conflict-free in F≥t1 (F≥t2). It remains to show that S1 attacks all argu-
ments X>t1\S1. Then, by symmetry, it also holds that S2 attacks all arguments X>t2\S2.
Suppose to the contrary that there exists an argument a ∈ X>t1 with a 6∈ S1 and S1 6� a

in F≥t1 . Since S is X>t-restricted stable we know that S � a in F≥t or, in other words,
there must exist an argument b ∈ S\S1 that attacks a. As a 6∈ Xt1 (= Xt), a and b can
not appear together in a bag (due to the connectedness condition of tree decompositions).
But by Definition 2.14 a and b must appear together in a bag of the decomposition, i.e. we
have a contradiction.

(3) Immediate by Xt = X≥t1 ∩ X≥t2 and the definition of S1 and S2 it follows that also
S1 ∩Xt = S2 ∩Xt.

For our proof of Lemma 3.25 it remains to show that valid colorings and v-colorings for
stable semantics of a branch node t coincide if they coincide in the child nodes t1 and t2.
⇐: Suppose that we have v-coloring C for t where C = C1 1 C2 and C1 is a v-coloring

for t1 and C2 is a v-coloring for t2. Furthermore, by assumption, we have [C1]is = [C2]is .
As C1 and C2 are valid colorings we have that there exists an extension S1 ∈ et1(C1) and
S2 ∈ et1(C1). Furthermore, as [C1]is = [C2]is , we have that S1 ∩ Xt = S2 ∩ Xt. Hence, by
Lemma 3.26 we have that S = S1 ∪ S2 is an X>t-restricted stable set for F≥t. It remains to
show that the properties for valid colorings (as defined in 3.15) are satisfied, i.e. we prove that
S ∈ et(C):

• By Definition 3.24 we have that C(a) = ins iff C1(a) = ins and C2(a) = ins . As C1

and C2 are valid colorings we have (by Definition 3.15) that a ∈ S1 and a ∈ S2. As
S = S1 ∪ S2 we have that C(a) = ins iff a ∈ S.

• By Definition 3.24 we have that C(a) = defs iff C1(a) = defs or C2(a) = defs . As C1

and C2 are valid colorings this is equivalent to S1 � a or S2 � a (by Definition 3.15).
As S = S1 ∪ S2 we obtain C(a) = defs iff S � a.

• By Definition 3.24 we have that C(a) = outs iff C1(a) = outs and C2(a) = outs . As C1

and C2 are valid colorings we have (by Definition 3.15) that a 6∈ S1, S1 6� a, a 6∈ S2 and
S2 6� a. Hence, we have that C(a) = outs iff a 6∈ S and S 6� a.

⇒: Suppose we have a valid coloring C for t. Then, there exists an extension S ∈ et(C).
Furthermore, we define S1 = S ∩X≥t1 and S2 = S ∩X≥t2 . Then, by Lemma 3.27, we have
that S1 is an X>t1-restricted stable set for F≥t1 , S2 is an X>t2-restricted stable set for F≥t2 and
S1 ∩Xt = S2 ∩Xt.

By Lemma 3.16 we have colorings C1 and C2 such that S1 ∈ et1(C1) and S2 ∈ et2(C2).
Furthermore, as S1 ∩Xt = S2 ∩Xt, we have that [C1]is = [C2]is . Hence, C∗ = C1 1 C2 is a
v-coloring. In the following we prove that C∗ = C and thus C is also a v-coloring.

3.2. ALGORITHM FOR STABLE SEMANTICS (NORMALIZED) 49

• First, consider C(a) = ins . Then, by Definition 3.15, a ∈ S. Then, a ∈ Xt and as
Xt = Xt1 = Xt2 we have that a ∈ S1 and a ∈ S2. Furthermore, due to Definition 3.15,
we have that C1(a) = C2(a) = ins . By Definition 3.24 of v-colorings we finally have
that C∗(a) = (C1 1 C2)(a) = ins .

• Next, consider C(a) = defs . Then, by Definition 3.15, S � a. As S = S1 ∪ S2, either
S1 � a or S2 � a. We consider the first case, S1 � a. Due to Definition 3.15, we have
that C1(a) = defs . But then, due to Definition 3.24 of v-colorings we finally have that
C∗(a) = (C1 1 C2)(a) = defs .

• Finally, consider C(a) = outs . Then, by Definition 3.15, S 6� a and a 6∈ S. As
S = S1 ∪ S2, S1 6� a, a 6∈ S1, S2 6� a and a 6∈ S2. Due to Definition 3.15, we have that
C1(a) = C2(a) = outs . But then, due to Definition 3.24 of v-colorings we finally have
that C∗(a) = (C1 1 C2)(a) = outs .

Theorem 3.28. Let (T ,X) be a normalized tree decomposition of an AF F = 〈A,R〉. Then, for
each coloring C for a node t ∈ T , it holds that C is a valid coloring for t iff C is a v-coloring
for t.

Proof. Lemma 3.19 to 3.25 state that valid colorings and v-colorings for stable semantics coin-
cide in the four different node types of normalized tree decompositions. By induction over the
tree decomposition we have that they coincide in every node of a normalized tree decomposi-
tion.

A normalized tree decomposition of our running example (see Example 2.6) with v-colorings
for stable semantics is given in Figure 3.3.

Example 3.3. Consider the leaf node n8: g can not be colored with ins as it attacks itself and
thus the first condition of Definition 3.18 is not satisfied. Then, we have the colorings C

′
n8

where C
′
n8

(e) = ins and C
′
n8

(g) = defs , and respectively, C
′′
n8

where C
′′
n8

(e) = outs and
C
′′
n8

(g) = outs . In the removal node n7 where g is removed we only have the coloring C
′
n7

with
C
′
n7

(e) = ins . C
′′
n8

does not satisfy the condition C
′′
n8

(g) 6= outs . In n6 where c is introduced
we have that Xt = {c, e}. As there do not exist any attack relations between the two arguments
c can either be colored with ins or outs . In the branch node n5 only the colorings from the child
nodes n6 and n9 are combined if [Cn6]is = [Cn9]is .

50 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

− et(C)
ε {{c, e, f}}n0a

a et(C)
defs {{c, e, f}}n0b

a c et(C)
defs ins {{c, e, f}}n0c

a b c et(C)
defs defs ins {{c, e, f}}n1

a b c et(C)
outs defs ins {{c, e}}n2

b c et(C)
defs ins {{c, e}}n3

b c e et(C)
defs ins ins {{c, e}}n4

c e et(C)
ins ins {{c, e}}n5

c e et(C)
ins ins {{c, e}}
outs ins {{e}}

n6

e et(C)
ins {{e}}n7

e g et(C)
ins defs {{e}}
outs outs {}

n8

c e et(C)
ins ins {{c, e}}
ins outs {{c}}
outs defs {{d}}

n9

c d e et(C)
ins defs ins {{c, e}}
ins defs outs {{c}}
outs ins defs {{d}}
outs outs ins {{e}}
outs outs outs {}

n10

a b c et(C)
defs ins defs {{b, f}}
defs outs ins {{c, f}}
defs outs outs {{f}}

n11

a b et(C)
defs ins {{b, f}}
defs outs {{f}}

n12

a et(C)
defs {{f}}n13

a f et(C)
ins outs {{a}}
defs ins {{f}}
outs outs {}

n14

Figure 3.3: Normalized Tree Decomposition with V-Colorings for Stable Semantics

3.3. ALGORITHM FOR COMPLETE SEMANTICS (NORMALIZED) 51

3.3 Algorithm for Complete Semantics (Normalized)

Complete Labelings: For the definition and proof of our algorithm for complete semantics
we borrow the concept of labelings from Caminada and Gabbay [2009].

Definition 3.29. Given an AF F = 〈A,R〉 a labeling L is a function A → {in, def , out}.
We denote such a function by a triple L = 〈Lin ,Ldef ,Lout〉 where Lin is the set of arguments
labeled with in , Ldef is the set of arguments labeled with def and Lout is the set of arguments
labeled with out .

A triple L = 〈Lin ,Ldef ,Lout〉 is a complete labeling if it satisfies the following conditions:

i a ∈ Lin ⇔ {b | (b, a) ∈ R} ⊆ Ldef

ii a ∈ Ldef ⇔ Lin � a

iii a ∈ Lout ⇔ Lin 6� a ∧ Lout � a

The following theorem follows from results presented in [Caminada and Gabbay, 2009]:

Theorem 3.30. Let F = 〈A,R〉 be an argumentation framework. There is a one-to-one map-
ping between the complete labelings of F and the complete extensions of F , such that a complete
labeling L = 〈Lin ,Ldef ,Lout〉 corresponds to a complete extension Lin .

Restricted Labelings:

Definition 3.31. Let F = 〈A,R〉 be an AF and B ⊆ A a set of arguments from A. A labeling
L = 〈Lin ,Ldef ,Lout〉 for F is a B-restricted complete labeling for F , if Lin is conflict-free in
F , Lin 6� Lout , Lout 6� Lin and for each a ∈ B

i a ∈ Lin ⇔ {b | (b, a) ∈ R} ⊆ Ldef ,

ii a ∈ Ldef ⇔ Lin � a,

iii a ∈ Lout ⇔ Lin 6� a ∧ Lout � a.

Colorings:

Definition 3.32. Let t be a node of a tree decomposition for an AF F and Xt the bag of argu-
ments in t. The colorings for t (for complete semantics) are defined as functions

Ct : Xt → {inc , defc , defpc , outc , outpc}.

Furthermore, in a coloring C, we denote the set of arguments, based on their color, as follows:

[C]ic = {a | C(a) = inc}
[C]dc = {a | C(a) = defc or C(a) = defpc}
[C]oc = {a | C(a) = outc or C(a) = outpc}

52 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

Definition 3.33. Let t be the node of a tree decomposition for an AF F . Given a coloring C for
t, we define the labelings of C, lt(C), as the collection of X>t-restricted complete labelings L
for F≥t which satisfy the following conditions for each a ∈ Xt:

C(a) = inc iff a ∈ Lin
C(a) = defc iff a ∈ Ldef and Lin � a

C(a) = defpc iff a ∈ Ldef and Lin 6� a

C(a) = outc iff a ∈ Lout and Lin 6� a and a 6� Lin and Lout � a

C(a) = outpc iff a ∈ Lout and Lin 6� a and a 6� Lin and Lout 6� a

If lt(C) 6= ∅, C is called a valid coloring for t. We denote the set of valid colorings by Ct.

By definition, all labelings of C, lt(C), are X>t-restricted complete labelings L for F≥t. It
remains to show that also the other direction holds:

Lemma 3.34. Let t be a node of a tree decomposition for an AF F and L be an X>t-restricted
complete labeling for F≥t. Then, there is a coloring C ∈ Ct such that L ∈ lt(C).

Proof. By assumption, L is an X>t-restricted complete labeling for F≥t. It remains to show
that we can define a coloring C for L such that L ∈ lt(C). For an argument a ∈ Xt we can
distinguish different cases and can assign the following colors:

if a ∈ Lin : C(a) = inc
if a ∈ Ldef and Lin � a : C(a) = defc
if a ∈ Ldef and Lin 6� a : C(a) = defpc
if a ∈ Lout , Lin 6� a, a 6� Lin and Lout � a : C(a) = outc
if a ∈ Lout , Lin 6� a, a 6� Lin and Lout 6� a : C(a) = outpc

As L is an X>t-restricted complete labeling and due to the construction of C, L satisfies the
conditions of Definition 3.33. Hence, L ∈ lt(C), i.e. for every X>t-restricted complete labeling
L for F≥t there exists a labeling for C.

Next, we want to show that two different colorings C and C ′ for a node t represent different
X>t-restricted complete labelings.

Lemma 3.35. Let t be a node of a tree decomposition for an AF F andC andC ′ be two different
colorings for the bag Xt. Then, the labelings of C and C ′ are disjoint, i.e. lt(C) ∩ lt(C ′) = ∅.

Proof. Suppose there exist two different colorings C and C ′ for a bag Xt of a node t in a tree
decomposition and there exists a labeling L such that L ∈ lt(C)∩ lt(C ′). Then, there must exist
an argument a ∈ Xt where C(a) 6= C ′(a). Towards a contradiction, we analyze the following
cases where C(a) 6= C ′(a):

3.3. ALGORITHM FOR COMPLETE SEMANTICS (NORMALIZED) 53

• Suppose thatC(a) = inc whereasC ′(a) = defc . By Definition 3.33, we have thatC(a) =

inc implies a ∈ Lin . C ′(a) = defc , on the other hand, implies that a ∈ Ldef , a contradic-
tion. The same argument holds for C(a) = inc and C ′(a) ∈ {defpc , outc , outpc}. It is
easy to see that for C(a) ∈ {defc , defpc} and C ′(a) ∈ {outc , outpc} a similar argument
holds.

• Now, suppose that C(a) = defc whereas C ′(a) = defpc . By Definition 3.33, we have that
C(a) = defc implies Lin � a. C ′(a) = defpc , on the other hand, implies that Lin 6� a,
a contradiction.

• Finally, suppose that C(a) = outc whereas C ′(a) = outpc . By Definition 3.33, we have
that C(a) = outc implies Lout � a. C ′(a) = outpc , on the other hand, implies that
Lout 6� a, a contradiction.

The other cases, where the colors for a are exchanged in C and C ′, follow by symmetry.
Hence, lt(C) ∩ lt(C ′) = ∅.

We defined that all L ∈ lt(C) are Xt-restricted complete labelings for F≥t (by Defini-
tion 3.33). Furthermore, there exists a one-to-one mapping between labelings and complete
extensions. We proved that there exists a valid coloring C for every L (see Lemma 3.34). Fi-
nally, we proved that different valid colorings C and C ′ do not represent any L where L ∈ lt(C)

and L ∈ lt(C ′). For every Xt-restricted complete labeling we have a unique coloring.

Leaf Node:

Definition 3.36. Let t be a leaf node of the tree decomposition and consider the colorings
Xt → {inc , defc , defpc , outc , outpc} . If

C(x) = inc ⇒ y ∈ [C]dc for all y � x

C(x) = defc ⇔ [C]ic � x

C(x) = defpc ⇒ [C]ic 6� x

C(x) = outc ⇔ [C]ic 6� x and x 6� [C]ic and [C]oc � x

C(x) = outpc ⇒ [C]ic 6� x and x 6� [C]ic and [C]oc 6� x

holds for all x ∈ Xt, the coloring is a complete v-coloring for t.

Lemma 3.37. For any leaf node t in a tree-decomposition of an AF, valid colorings and v-
colorings for complete semantics coincide.

Proof. For any leaf node t, X>t = ∅. Hence, the X>t-restricted complete labelings L for F≥t
correspond to the labelings that are conflict-free inLin and satisfyLin 6� Lout andLout 6� Lin .
⇒: Suppose that we have a valid coloring C in the leaf node t. We have to prove that C is

also a v-coloring in t. As C is a valid coloring, by Definition 3.33 we know that there exists a
labeling L ∈ lt(C) where Lin of L is conflict-free, Lin 6� Lout and Lout 6� Lin . For each
a ∈ Xt we can distinguish the following cases:

54 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

• Consider C(a) = inc : Then, by Definition 3.33, a ∈ Lin . Due to the conflict-freeness
of Lin , we have that an attacker b � a can not be colored with Lin . Furthermore, as
Lin 6� Lout , we have thatC(b) 6= outc andC(b) 6= outpc . Hence,C(b) ∈ {defc , defpc},
which is equivalent to b ∈ [C]dc , must hold. This exactly corresponds to the first condition
in Definition 3.36 of v-colorings.

• Now consider the case C(a) = defc : By Definition 3.33 we have that this is equivalent to
a ∈ Ldef and Lin � a. This, on the other hand, means that there must exist an argument
b ∈ Lin that attacks a. As b ∈ Lin , it follows that C(b) = inc . In total we have that
[C]ic � a which is equivalent to C(a) = defc , corresponding to the second condition of
Definition 3.36 of v-colorings.

• In case C(a) = defpc we have that a ∈ Ldef and Lin 6� a. It is easy to see that then
there can not be any any argument b ∈ Lin , hence C(b) = inc , that attacks a. In total we
have that C(a) = defpc ⇒ [C]ic 6� a, the third condition of v-colorings.

• Next, we analyze the caseC(a) = outc : By Definition 3.33, this is equivalent to a ∈ Lout ,
Lin 6� a (and therefore [C]ic 6� a), a 6� Lin (hence a 6� [C]ic) and Lout � a. Hence,
there must exist an argument b ∈ Lout where b � a. By Definition 3.33 we have that an
argument b ∈ Lout must be colored with either outc or outpc , in other words [C]oc � a.
Hence, condition four of v-colorings is satisfied.

• Finally, consider the case C(a) = outpc : Then, we have that a ∈ Lout , Lin 6� a,
a 6� Lin and Lout 6� a. Now, towards a contradiction, consider an argument b where
C(b) = outc and b � a. Then, by Definition 3.33 we have that b ∈ Lout and Lout � a.
But this contradicts Lout 6� a.

⇐: Now, suppose that we have a v-coloring C for t. We have to prove that C is also a valid
coloring for t. Hence, we claim that there exists a L = 〈Lin ,Ldef ,Lout〉 where L ∈ lt(C) .
Towards a contradiction, suppose that C is not a valid coloring. Then, (1) Lin is not conflict-
free, (2) Lin � Lout , (3) Lout � Lin or (4) one of the conditions of Definition 3.33 is not
satisfied.

(1) Suppose there exists a conflict in Lin . Then, there must exist two arguments a and b where
a � b and C(a) = C(b) = inc . In other words, a, b ∈ Lin . But this contradicts the first
condition of Definition 3.36 where a ∈ Ldef must hold, i.e. C would not be a v-coloring.

(2) Now, suppose that Lin � Lout : Then there exist two arguments a and b where a ∈ Lin
(or, in other words, C(a) = inc), b ∈ Lout (or, in other words, C(b) ∈ {outc , outpc}) and
a � b. For leaf nodes, this corresponds to a ∈ [C]ic and b ∈ [C]oc . We can distinguish
two cases: First, let C(b) = outc . Then, by Definition 3.36 of v-colorings we have that
[C]ic 6� a, a contradiction. Otherwise, if C(b) = outpc , we also have that [C]ic 6� a,
again a contradiction to our assumption of C being a v-coloring.

(3) Suppose that Lout � Lin : Then there exist two arguments a and b where a ∈ Lout (or,
in other words, C(a) ∈ {outpc , outc}), b ∈ Lin (or, in other words, C(b) = Lin) and

3.3. ALGORITHM FOR COMPLETE SEMANTICS (NORMALIZED) 55

a � b. For leaf nodes, this corresponds to a ∈ [C]oc and b ∈ [C]ic . We can distinguish
two cases: First, let C(a) = outc . Then, by Definition 3.36 of v-colorings we have that
a 6� [C]ic , a contradiction. Otherwise, if C(a) = outpc , we also have that a 6� [C]ic ,
again a contradiction to our assumption of C being a v-coloring.

(4) Finally, we analyze the conditions for valid colorings of Definition 3.33. As an example, we
outline the case C(a) = defc . Then, by Definition 3.36, [C]ic � a. As [C]ic = Lin for leaf
nodes and as a ∈ Ldef , this exactly correspond to condition 2 of valid colorings. It is easy
to see that a similar argument yields the equivalence of the other colors that can be assigned
to a.

Introduction Node:

Definition 3.38. Let t be an introduction node of a tree decomposition, t1 be the child node of
t and let a be the argument that is introduced in Xt. If C is a v-coloring for t1 then C + a is
a v-coloring for t. Furthermore, if [C]ic 6� a and a 6� [C]ic , then C+̇a is a v-coloring for t.
Finally, if a 6� a, [C]ic 6� a, a 6� [C]ic , [C]oc 6� a, a 6� [C]oc , then C+̈a is a v-coloring
for t as well. For C : A → {inc , defc , defpc , outc , outpc} we define C + a, C+̇a and C+̈a as
follows:

(C + a)(b) =

C(b) if b ∈ A
defc if b = a and [C]ic � a

defpc if b = a and [C]ic 6� a

(C +̇ a)(b) =

C(b) if b ∈ A and C(b) ∈ {inc , defc , defpc , outc}
outc if (b = a and [C]oc � a) or (a 6= b and a� b and C(b) = outpc)

outpc otherwise

(C +̈ a)(b) =

inc if b = a

C(b) if b ∈ A and C(b) ∈ {inc , defc , outc , outpc}
defc if b 6= a and (a, b) ∈ Ft and C(b) = defpc
defpc if b 6= a and (a, b) 6∈ Ft and C(b) = defpc

Lemma 3.39. For any introduction node t in a tree-decomposition of an AF, valid colorings and
v-colorings for complete semantics coincide if they coincide in the child node t1 of t.

Proof. Let t be an introduction node of a tree decomposition and let t1 be the child node of t.
Furthermore, let a be the argument that is introduced in t, i.e. Xt = Xt1 ∪ {a} where a 6∈ Xt1 .
By the properties of tree decompositions (see Definition 2.18) we know that a 6∈ F>t = F>t1 .
Furthermore, X>t = X>t1 and there is no attack relation between a and X>t.
⇒: Suppose that we have a valid coloring C for t. Then there exists a labeling L =

〈Lin ,Ldef ,Lout〉 ∈ lt(C) that is an X>t-restricted complete labeling for F≥t. Furthermore,
as a 6∈ Xt1 , L\{a} = 〈Lin\{a},Ldef \{a},Lout\{a}〉 is an X>t1 restricted complete labeling

56 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

for F≥t1 . Based on L we now define a coloring C1 for every argument b ∈ Xt1 that fulfills the
properties for valid colorings as defined in Definition 3.33:

if b ∈ Lin\{a} : C1(b) = inc
if b ∈ Ldef \{a} and Lin\{a}� b : C1(b) = defc
if b ∈ Ldef \{a} and Lin\{a} 6� b : C1(b) = defpc
if b ∈ Lout\{a} and Lin\{a} 6� b and Lout\{a}� b : C1(b) = outc
if b ∈ Lout\{a} and Lin\{a} 6� b and Lout\{a} 6� b : C1(b) = outpc

As the definition ofC1 exactly corresponds to Definition 3.33 of valid colorings we have that,
by assumption, C1 is also a v-coloring for t1. It remains to prove the equivalence of C (being a
valid coloring by assumption) and C∗ which is a v-coloring by construction of C∗ = C1 + a,
C∗ = C1+̇a (in case of [C]ic 6� a and a 6� [C]ic) and C1+̈a (in case a 6� a, [C]ic 6� a,
a 6� [C]ic , [C]oc 6� a and a 6� [C]oc hold). We can distinguish three cases:

• Consider the case C(a) = inc . By Definition 3.33 we have that a ∈ Lin . Furthermore,
as C is a valid coloring and by Definition 3.31, we have that Lin is conflict-free. Hence,
a 6� a, Lin 6� a and a 6� Lin . As [C]ic ⊆ Lin , we have that [C]ic 6� a and a 6� [C]ic .
Furthermore, Lin 6� Lout and Lout 6� Lin and as [C]oc ⊆ Lout therefore a 6� [C]oc
resp. [C]oc 6� a. Hence, the conditions for C∗ = C1+̈a being a v-coloring are satisfied.
For C∗(a) = (C1+̈a)(a) we have C∗(a) = inc = C(a). It remains to analyze the colors
for the arguments b ∈ Xt\{a}: For C(b) ∈ {inc , defc , outc , outpc} we have that C∗(b)
maps to the same color. Now, consider the case where C(b) = defc . Then, Lin � b.
We can distinguish two cases: Either, C1(b) = defc , i.e. there exists an attack relation in
X≥t1 . Then, also C∗(b) = defc . In the other case, C1(b) = defpc . Then, there exists an
attack a � b, i.e. (a, b) ∈ Ft. But then, C∗(b) = defc . Finally, for C(b) = defpc , we
have Lin 6� b. But then, a 6� b in Ft. Hence, C∗(b) = defpc .

• Now, consider the case C(a) ∈ {defc , defpc}: By assumption, C1 is conflict-free and as
a 6∈ Lin , also [C1 + a]ic is conflict-free. Furthermore, as a 6∈ Lout , and as C1 is a valid
coloring, we also have that [C1 + a]ic 6� [C1 + a]oc and [C1 + a]oc 6� [C1 + a]ic . It
remains to prove the equivalence of C = C∗, where C∗ = C1 + a. Consider the case
C(a) = defc . Then, a ∈ Ldef and Lin � a. But then, due to the properties of tree
decompositions, also [C1]ic � a must hold, i.e. C∗(a) = (C1 + a)(a) = defc . It is easy
to see that also C(a) = C∗(a) for C(a) = defpc holds. The colors of the other arguments
remain the same within C1 + a, hence, the equivalence of the other colors is trivial.

• Finally, consider the case C(a) ∈ {outc , outpc}: By assumption, C1 is conflict-free and
as a 6∈ Lin , also [C1+̇a]ic is conflict-free. Furthermore we have that a ∈ Lout . By
assumption, C is a valid coloring and hence we have that Lin 6� Lout and Lout 6� Lin .
As [C]oc ⊆ Lout it follows that [C]ic 6� a and a 6� [C]ic . Now, we outline the the
case C(a) = outc . Then, Lout � a. This corresponds to [C1]oc � a and hence
C∗(a) = (C1+̇a)(a) = outc .

⇐: Suppose that we have a v-coloring C for t, i.e. there exists a v-coloring for C1 for the
child node t1 such that C = C1 + a, C = C1+̇a or C = C1+̈a. As C1 is a valid coloring there

3.3. ALGORITHM FOR COMPLETE SEMANTICS (NORMALIZED) 57

exists anX>t1-restricted complete labelingL ∈ lt1(C1) for F≥t1 . Furthermore, asX>t1 = X>t,
L is also an X>t-restricted complete labeling for F≥t.

We want to prove that C is a valid coloring for t.

• For C1 + a the colors of each argument b 6= a remain the same. As the introduced
argument a is either colored with defc or defpc , we have that Lin remains conflict-free,
Lin 6� Lout and Lout 6� Lin . In case [C1]ic � a we have that b is colored with
defc . This corresponds to condition 2 of Definition 3.33 where Lin � a. Furthermore, if
[C1]ic 6� a we have that (C1 + a)(b) = defpc = C(b). Hence, 〈Lin ,Ldef ∪ {a},Lout〉
must be a labeling for lt(C1 + a) and we have that C1 + a is a valid coloring.

• For C1+̇a, if C1(b) ∈ {inc , defc , defpc , outc}, the colors remain the same for C+̇a.
Therefore, Lin remains the same and hence, remains conflict-free. Furthermore, by Defi-
nition 3.38, we have that [C1]ic 6� a and a 6� [C1]ic . As C1 is a valid coloring and every
argument that is colored with outc or outpc in C1 is also colored with outc or outpc in
C1+̇a we have that Lout ∪ {a} 6� Lin and Lin 6� Lout ∪ {a}. It is easy to check that
〈Lin ,Ldef ,Lout ∪{a}〉 is a labeling for C1+̇a and we have that C1+̇a is a valid coloring.

• For C1+̈a we have that a 6� a, [C]ic 6� a and a 6� [C]ic . Hence, [C1]ic∪{a} is conflict-
free. Furthermore, due to the connectedness condition of tree decompositions it is easy to
see that also Lin ∪{a} is conflict-free. Furthermore, as [C]oc 6� a, a 6� [C]oc and due to
the fact thatC1+̈a does not change the colors of arguments whereC1(b) ∈ {outc , outpc},
it is obvious that Lin 6� Lout and Lout 6� Lin and hence〈Lin ∪ {a},Ldef ,Lout〉 is a
labeling for lt(C1+̈a).

Finally, we obtain that valid colorings and v-colorings for complete semantics of a node t
coincide if they coincide in the child node t1.

Removal Node:

Definition 3.40. Let t be a removal node of a tree decomposition, t1 be the child node of t and let
a be the argument that is removed in Xt. If C is a v-coloring for t1 and C(a) 6∈ {defpc , outpc}
then C − a is a v-coloring for t. For C : A → {inc , defc , defpc , outc , outpc} we define C − a
as follows:

(C − a)(b) = C(b) for each b ∈ A \ {a}

Lemma 3.41. For any removal node t in a tree-decomposition of an AF, valid colorings and
v-colorings for complete semantics coincide if they coincide in the child node t1 of t.

Proof. As t is a removal node there exists exactly one argument a that is removed in t. Hence,
Xt ∪ {a} = Xt1 . As a remains in X≥t, we have that X≥t = X≥t1 and F≥t = F≥t1 .
⇒: Suppose that there exists a valid coloring C for t. We show that there exists a valid

coloring C1 for t1 with C1(a) 6∈ {defpc , outpc} and C = C1 − a. We define C1 as follows:

58 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

• For each argument b ∈ Xt1\{a} we set C1(b) = C(b). Hence, C = C1 − a is always
satisfied.

It remains to define the color for C1(a). For this, consider a labeling L ∈ lt(C):

• Suppose that a ∈ Lin : Then we set C1(a) = inc . By assumption, L is an X>t-restricted
complete labeling for F≥t. AsX>t = X>t1∪{a}we have thatL is also anX>t1-restricted
complete labeling for F≥t1 . Hence, L ∈ lt1(C1). Furthermore, by assumption, C1 is a
v-coloring for t1 and therefore, C = C1 − a is a v-coloring for t, by definition.

• Suppose that a 6∈ Lin : IfLin � awe setC1(a) = defc . In this case, L ∈ lt1(C1). AsL is
an X>t restricted complete labeling for F≥t it can never occur that we set C1(a) = defpc
in case Lin 6� a. If Lin 6� a, a 6� Lin and Lout � a we set C1(a) = outc . Again,
L ∈ lt1(C1). As L is an X>t restricted complete labeling for F≥t it can never happen that
Lout � a, hence C1(a) is never set to outpc . As C1 is a valid coloring and it is also a
v-coloring for t1 we have that C = C − a is a v-coloring for t.

⇐: Suppose that there exists a v-coloring C for t. Furthermore, by assumption, there ex-
ists a v-coloring C1 for t1 such that C = C1 − a and C(a) 6∈ {defpc , outpc}. As C(a) 6∈
{defpc , outpc} there exists a labeling L such that (1) a ∈ Lin , (2) a ∈ Ldef and Lin � a or (3)
a ∈ Lout , Lin 6� a, a 6� Lin and Lout � a. This corresponds to Definition 3.31 of restricted
labelings. As Xt1 ∪ {a} = Xt, L is an X>t-restricted complete labeling for F≥t. Then, as
L ∈ lt(C), i.e. L is a valid coloring for t.

Branch Node:

Definition 3.42. Let t be branch node of a tree decomposition, and letC be the v-coloring for the
child node t1 and D be the v-coloring for the child node t2. If [C]ic = [D]ic , [C]dc = [D]dc and
[C]oc = [D]oc , thenC 1 D is a v-coloring for t. ForC,D : A→ {inc , defc , defpc , outc , outpc}
we define C 1 D as follows:

(C1D)(b) =

inc if C(b) = D(b) = inc
defc if C(b) = defc or D(b) = defc
defpc if C(b) = D(b) = defpc
outc if C(b) = outc or D(b) = outc
outpc if C(b) = D(b) = outpc

Lemma 3.43. For any branch node t in a tree-decomposition of an AF, valid colorings and
v-colorings for complete semantics coincide if they coincide in the child nodes t1 and t2 of t.

Proof. Let t be a branch node of a normalized tree decomposition and t1 and t2 be the child
nodes of t. Then, we have that Xt = Xt1 = Xt2 , Xt = X≥t1 ∩X≥t2 and X≥t = X≥t1 ∪X≥t2
(see Definiton 2.18). As in the proof for stable semantics we can then partition X≥t into three
disjoint sets Xt, X>t1 and X>t2 . We can then define a labeling L ⊆ X≥t where L ⊆ X≥t ⇔
Lin ,Ldef ,Lout ⊆ X≥t and Lin ∩ Ldef ∩ Lout = ∅.

3.3. ALGORITHM FOR COMPLETE SEMANTICS (NORMALIZED) 59

Additionally, we define L = L′ ∪ L′′ as Lin = L′in ∪ L
′′
in , Ldef = L′def ∪ L

′′
def and

Lout = L′out ∪ L
′′
out .

Furthermore, L′ ⊆ X≥t1 and L′′ ⊆ X≥t2 where L′ ∩ Xt = L′′ ∩ Xt where L′ ∩ Xt =

〈L′in ∩Xt,L
′
def ∩Xt,L

′
out ∩Xt〉.

Now we prove that L is an X>t-restricted complete labeling for F≥t iff L′ is an X>t1-
restricted complete labeling for the sub-framework F≥t1 , L′′ is an X>t2-restricted complete
labeling for the sub-framework F≥t2 , L′in ∩ Xt = L′′in ∩ Xt, L

′
def ∩ Xt = L′′def ∩ Xt and

L′out ∩Xt = L′′out ∩Xt.

Lemma 3.44. Let L′in ,L
′
def ,L

′
out ⊆ X≥t1 and L′′in ,L

′′
def ,L

′′
out ⊆ X≥t2 , such that

• L′ is an X>t1-restricted complete labeling for F≥t1 ,

• L′′ is an X>t2-restricted complete labeling for F≥t2 ,

• L′in ∩Xt = L′′in ∩Xt,

• L′def ∩Xt = L′′def ∩Xt,

• L′out ∩Xt = L′′out ∩Xt.

Then, L = L′ ∪ L′′ is an X>t-restricted complete labeling for F≥t.

Proof. L is an X>t-restricted complete labeling for F≥t if Lin is (1) conflict-free in F≥t, (2)
Lin 6� Lout , (3) Lout 6� Lin and (4) for each argument a ∈ X>t (i) a ∈ Lin ⇔ {b | (b, a) ∈
R} ⊆ Ldef , (ii) a ∈ Ldef ⇔ Lin � a and (iii) a ∈ Lout ⇔ Lin 6� a ∧ Lout � a.

(1) Suppose that there exists a conflict where a, b ∈ Lin and a � b. As Lin = L′in ∪ L
′′
in we

can distinguish two cases:

(a) Consider the case where a, b ∈ X≥t1 . Then we have that a, b ∈ L′in . But then, F≥t1 is
not conflict-free and we have a contradiction to the first assumption of Lemma 3.44. By
symmetry, the same argument holds for the case a, b ∈ X≥t2 where we have a conflict
in F≥t2 , contradicting assumption 2 of Lemma 3.44.

(b) Now, consider the case where a ∈ X≥t1 , b ∈ X≥t2 and there exists an attack a � b.
Due to the properties of tree decompositions, a and b have to appear together in at least
one bag. Furthermore, due to the connectedness condition we have that a or b must
appear in the bag Xt. But as {a} ⊆ L′in and {b} ⊆ L′′in and by the assumption that
L′in ∩Xt = L′′in ∩Xt we have that {a, b} ⊆ L′in (or {a, b} ⊆ L′′in) and hence, a conflict
in L′in or L′′in which contradicts assumption 1 and 2 of Lemma 3.44. It is obvious that
the case where b ∈ X≥t1 , a ∈ X≥t2 also results in a contradiction of our assumptions.

(2) Suppose that there exists an attack between two arguments a and b where a ∈ Lin and
b ∈ Lout . We have that Lin = L′in ∪ L

′′
in and Lout = L′out ∪ L

′′
out . Hence, we can

distinguish the following cases:

60 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

(a) Consider the case where a ∈ L′in and b ∈ L′out where a� b. Then, L′in � L′out in the
sub-framework F≥t1 , i.e. we have a contradiction to assumption 1. Furthermore, in the
case where a ∈ L′′in and b ∈ L′′out we again have a contradiction (to assumption 2).

(b) Now consider a ∈ L′in and b ∈ L′′out where a� b. Hence, we know that a ∈ X≥t1 and
b ∈ X≥t2 . Furthermore, due to the properties of tree decompositions, {a, b} ⊆ Xt must
hold. As {a} ⊆ L′in and assuming that L′in ∩Xt = L′′in ∩Xt we have that {a} ⊆ L′′in .
But as also b ∈ L′′out , we have that L′′in � L′′out which contradicts assumption (2) of
Lemma 3.44. The case where a ∈ L′′in and b ∈ L′out follows by symmetry.

(3) As the case Lout 6� Lin follows the same line of argument as (2) we do not work it out in
detail here.

(4) Finally, we have to prove that for each argument a ∈ X>t (i) a ∈ Lin ⇔ {b | (b, a) ∈ R} ⊆
Ldef , (ii) a ∈ Ldef ⇔ Lin � a and (iii) a ∈ Lout ⇔ Lin 6� a ∧ Lout � a holds.

(i) For each a ∈ L′in we have that {b | (b, a) ∈ R} ⊆ L′def . In other words, for each
argument b that attacks a in X>t1 we know that b ∈ L′def . The same holds for argu-
ments in X>t2 that are in L′′in . Due to the connectedness condition of tree decompo-
sitions we know that there is no c ∈ X>t2 where c � a (and vice-versa). Hence, as
L′in ∪L

′′
in = Lin , L′def ∪L

′′
def = Ldef and X>t1 ∪X>t2 = X>t but X>t1 ∩X>t2 = ∅

we have that each argument inX>t that is in Lin is only attacked by arguments of Ldef
in F≥t. Hence, condition (i) is satisfied.

(ii) Now, consider an argument a ∈ L′def for X>t1 in F≥t1 . Then, we know that also
L′in � a holds. Furthermore, each for each argument b ∈ L′′def for X>t2 in F≥t2
we know that also L′′in � b holds. As L′in ∪ L

′′
in = Lin , L′def ∪ L

′′
def = Ldef and

X>t1 ∪ X>t2 = X>t we have that each argument in Ldef is attacked by Lin (and
vice-versa) in X>t for F≥t. Hence, condition (ii) is satisfied.

(ii) Finally, consider an argument a ∈ L′out for X>t1 in F≥t1 . Then, we know that L′in 6�
a. Furthermore, due to the connectedness condition, we know that no argument b ∈
L′′in attacks a. Hence, L′in ∪ L

′′
in = Lin does not attack a. Furthermore, as L′out � a,

we know that also L′out ∪ L
′′
out = Lout attacks a. For arguments in L′′out the same

follows by symmetry. Hence, (iii) is satisfied.

Hence, based on our assumptions, we have that L = L′ ∪ L′′ is an X>t-restricted complete
labeling for F≥t.

Lemma 3.45. Let L = L′ ∪ L′′ be an X>t-restricted complete labeling for F≥t with L′in =

Lin ∩X≥t1 , L′′in = Lin ∩X≥t2 , L′def = Ldef ∩X≥t1 , L′′def = Ldef ∩X≥t2 , L′out = Lout ∩X≥t1
and L′′out = Lout ∩X≥t2 . Then

(1) L′ is an X>t1-restricted complete labeling for F≥t1 ,

(2) L′′ is an X>t2-restricted complete labeling for F≥t2 ,

(3) L′in ∩Xt = L′′in ∩Xt,

3.3. ALGORITHM FOR COMPLETE SEMANTICS (NORMALIZED) 61

(4) L′def ∩Xt = L′′def ∩Xt,

(5) L′out ∩Xt = L′′out ∩Xt.

Proof. Let L = L′ ∪ L′′ be an X>t-restricted complete labeling for F≥t.

(1,2) As Lin is conflict-free in F≥t and L′in = Lin ∩ X≥t1 , we have that L′in must be
conflict-free in F≥t1 . Furthermore, as Lin 6� Lout and L′out = Lout ∩X≥t1 we have that
also L′in 6� L′out must hold. Furthermore, L′out 6� L′in must hold. By the same line of
argument these properties are also satisfied in L′′ .

It remains to show that for an argument a ∈ X>t1 (i) a ∈ L′in ⇔ {b | (b, a) ∈ R} ⊆ L′def ,
(ii) a ∈ L′def ⇔ L

′
in � a and (iii) a ∈ L′out ⇔ L

′
in 6� a∧L′out � a are satisfied. Then,

by symmetry, this also holds for arguments in X>t2 and L′′ .

(i) Towards a contradiction, suppose that there exists an argument a ∈ L′in and an argu-
ment b 6∈ L′def where b � a in X>t1 . Due to the properties of tree decompositions
there can not be any argument x ∈ Xt1 (or anywhere else above in the tree decom-
position) where x � b and hence, b 6∈ Ldef . But, due to the construction of Lin ,
we have that a ∈ Lin . Then, we have that a ∈ Lin but b 6∈ Ldef with b � a, a
contradiction.

Now, suppose that a 6∈ L′in and {b | (b, a) ∈ R} ⊆ L′def , i.e. there exists an argument
a 6∈ L′in that is only attacked by arguments in L′def for X>t1 . As there can not be an
argument x ∈ Xt where x � a and since L′in ⊆ Lin we have that a 6∈ Lin but all
arguments that attack a are in Ldef . This contradicts our assumption of L being an
X>t-restricted labeling for F≥t.

(ii) Towards a contradiction, suppose that there exists an argument a ∈ L′def and there
is no argument b ∈ L′in such that b � a in X>t1 . As there can not be an attack
between arguments in X>t2 and a there can not be any argument x ∈ L′′in where
x � a. But then, also L′in ∪ L

′′
in = Lin does not contain any argument that attacks

a ∈ L′def ∪ L
′′
def = Ldef .

Now, suppose that a 6∈ L′def and there is an argument b ∈ L′in such that b � a in
X>t1 . But then, due to the construction of Lin , b ∈ Lin and b� a inX>t. But then,
a ∈ Ldef = L′def ∪ L

′′
def . Due to the properties of tree decompositions, a 6∈ L′′def .

Hence, a ∈ L′def , i.e. we have a contradiction.

(iii) Towards a contradiction, suppose that a ∈ L′out , L
′
in 6� a and L′out 6� a. Following

the same approach as above (taking the connectedness condition and the condition
of two arguments that attack each other appearing in at least one bag together) we
achieve that L′′out 6� a. But then, a ∈ Lout but Lout 6� a which contradicts our
assumption of L being an X>t-restricted labeling for F≥t as Lout 6� a must hold.
It is easy to see that by introducing other contradictions in a ∈ L′out ⇔ L

′
in 6�

a ∧ L′out � a we have that a ∈ Lout ⇔ Lin 6� a ∧ Lout � a can not be satisfied.

62 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

(3,4,5) In here, we prove that (3) L′in ∩ Xt = L′′in ∩ Xt holds for L = L′ ∪ L′′ being
an X>t-restricted complete labeling for F≥t. We have that Xt = X≥t1 ∩ X≥t2 and
L′in = Lin ∩ X≥t1 as well as L′′in = Lin ∩ X≥t2 . But then, we have that L′in ∩ Xt =

L′′in ∩ Xt ⇔ Lin ∩ X≥t1 ∩ Xt = Lin ∩ X≥t2 ∩ Xt ⇔ Lin ∩ X≥t1 ∩ X≥t1 ∩ X≥t2 =

Lin ∩X≥t2 ∩X≥t1 ∩X≥t2 ⇔ Lin ∩X≥t1 ∩X≥t2 = Lin ∩X≥t1 ∩X≥t2 .

The other cases (4) L′def ∩ Xt = L′′def ∩ Xt and (5) L′out ∩ Xt = L′′out ∩ Xt follow the
same line of argument.

For our proof of Lemma 3.43 it remains to show that valid colorings and v-colorings for
complete semantics of a branch node t coincide if they coincide in the child nodes t1 and t2 of t.
⇐: Suppose that we have a v-coloring C for t, a v-coloring C1 for t1 and a v-coloring C2 for

t2. Furthermore, let C = C1 1 C2. By assumption, we have [C1]ic = [C2]ic , [C1]dc = [C2]dc
and [C1]oc = [C2]oc . Furthermore, by assumption, C1 and C2 are also valid coloring and hence
there exists a labeling L′ ∈ lt1(C1) and L′′ ∈ lt2(C2). Furthermore, we have that L′in ∩Xt =

L′′in ∩Xt, L
′
def ∩Xt = L′′def ∩Xt and L′out ∩Xt = L′′out ∩Xt.

Hence, by Lemma 3.44, we have that L = L′ ∪ L′′ is an X>t-restricted complete labeling
for F≥t. It remains to show that the properties of valid colorings (see Definition 3.33) for L =

L′ ∪ L′′ are satisfied, i.e. L ∈ lt(C). For an argument a ∈ Xt we analyze the following cases:

• By Definition 3.42 we have that C(a) = inc iff C1(a) = inc and C2(a) = inc . As
C1 and C2 are valid colorings we have (by Definition 3.33) that a ∈ L′in and a ∈ L′′in .
Furthermore, as Lin = L′in ∪ L

′′
in we have that C(a) = inc iff a ∈ Lin .

• By Definition 3.42 we have that C(a) = defc iff C1(a) = defc or C2(a) = defc . As C1

and C2 are valid colorings we have (by Definition 3.33) that a ∈ L′def and L′in � a or
a ∈ L′′def and L′′in � a. As Lin = L′in ∪ L

′′
in we have that Lin � a and as Ldef =

L′def ∪ L
′′
def it follows that C(a) = defc iff a ∈ Ldef and Lin � a.

• By Definition 3.42 we have that C(a) = defpc iff C1(a) = defpc and C2(a) = defpc . As
C1 and C2 are valid colorings we have (by Definition 3.33) that a ∈ L′def and L′in 6� a

and a ∈ L′′def and L′′in 6� a. As Lin = L′in ∪ L
′′
in we have that Lin 6� a and as

Ldef = L′def ∪ L
′′
def it follows that C(a) = defc iff a ∈ Ldef and Lin 6� a.

• By Definition 3.42 we have that C(a) = outc iff C1(a) = outc or C2(a) = outc . As
C1 and C2 are valid colorings we have (by Definition 3.33) that a ∈ L′out , L

′
in 6� a,

a 6� L′in , L′out � a or a ∈ L′′out , L
′′
in 6� a, a 6� L′′in , L′′out � a. As Lin = L′in ∪ L

′′
in

and Lout = L′out ∪ L
′′
out we have that C(a) = outc iff a ∈ Lout , Lin 6� a, a 6� Lin and

Lout � a.

• It is easy to check that by the same line of argument as above we have that C(a) = outpc
iff a ∈ Lout , Lin 6� a, a 6� Lin and Lout 6� a.

⇒: Now, suppose that we have a valid coloring C for t. Then there exists a labeling L ∈
lt(C). Furthermore, we define L′ = 〈L′in ,L

′
def ,L

′
out〉 and L′′ = 〈L′′in ,L

′′
def ,L

′′
out〉where L′in =

3.3. ALGORITHM FOR COMPLETE SEMANTICS (NORMALIZED) 63

Lin ∩X≥t1 , L′′in = Lin ∩X≥t2 , L′def = Ldef ∩X≥t1 , L′′def = Ldef ∩X≥t2 , L′out = Lout ∩X≥t1
and L′′out = Lout ∩X≥t2 . Then, by Lemma 3.45, we have that L′ is anX>t1-restricted complete
labeling for F≥t1 , L′′ is an X>t2-restricted complete labeling for F≥t2 , L′in ∩Xt = L′′in ∩Xt,
L′def ∩Xt = L′′def ∩Xt and L′out ∩Xt = L′′out ∩Xt.

By Lemma 3.34 we have two colorings C1 and C2 such that L′ ∈ lt1(C1) and L′′ ∈ lt2(C2).
Furthermore, due to Lemma 3.45, we have that [C1]ic = [C2]ic , [C1]dc = [C2]dc and [C1]oc =

[C2]oc . Hence, C∗ = C1 1 C2 is a v-coloring. It remains to show that C = C∗, i.e. that the
valid coloring C is also a v-coloring. Due to brevity, we only outline the case C(a) = inc :

• Consider the case C(a) = inc . Then, by Definition 3.33, we know that a ∈ Lin . Fur-
thermore, as Xt = Xt1 = Xt2 and L′in = Lin ∩ X≥t1 as well as L′′in = Lin ∩ X≥t2
we have that a ∈ L′in and a ∈ L′′in . But then, due to Definition 3.33, we know that
C1(a) = C2(a) = inc . This, in turn, means that C∗(a) = (C1 1 C2)(a) = inc and hence
C(a) = C∗(a).

Theorem 3.46. Let (T ,X) be a normalized tree decomposition of an AF F = 〈A,R〉. Then,
for each complete coloring C for a node t ∈ T , it holds that C is a valid coloring for t iff C is
a v-coloring for t.

Proof. We showed that valid colorings and v-colorings for complete semantics coincide in ev-
ery node type of normalized tree decompositions. Hence, by structural induction over the tree
decomposition, they coincide in every node of a normalized tree decomposition.

A normalized tree decomposition of our running example (see Example 2.6) with v-colorings
for complete semantics is given in Figure 3.4. For all L ∈ lt(C) where L = 〈Lin ,Ldef ,Lout〉
we denote the sets of arguments that are in Lin by lit(C).

64 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

− lit(C)
ε {{c, e, f}, {f}, {b, d, f}}

n0a

a lit(C)
defc {{c, e, f}, {f}, {b, d, f}}

n0b

a c lit(C)
defc inc {{c, e, f}}
defc outc {{f}}
defc defc {{b, d, f}}

n0c

a b c lit(C)
defc defc inc {{c, e, f}}
defc defpc outpc {{f}}
defc outc outc {{f}}
defc inc defc {{b, d, f}}
defc defpc defpc {{d, f}}
defc outpc defpc {{d, f}}

n1

a b c lit(C)
defpc defc inc {{c, e}}
defpc defpc outpc {∅}
outpc defpc outc {∅}
defpc outc outc {∅}
outc outc outc {∅}
defc inc defc {{b, d}}
inc defc defc {{a, d}}

defpc defpc defpc {{d}}
outpc defpc defpc {{d}}
defpc outpc defpc {{d}}
outc outc defpc {{d}}

n2

b c lit(C)
defc inc {{c, e}}
defpc outpc {∅}
outc outc {∅}
inc defc {{b, d}}

defpc defpc {{d}}
outpc defpc {{d}}

n3

b c e lit(C)
defc inc inc {{c, e}}
defpc inc outpc {{c}}
defpc outpc outc {∅}
outc outc outc {∅}
defpc inc inc {{c, e}}
defc inc defpc {{c}}
inc defc defc {{b, d}}

defpc defpc defc {{d}}
outpc defpc defc {{d}}
defpc outpc defpc {∅}
outpc outc defpc {∅}

n4

c e lit(C)
inc inc {{c, e}}
inc outpc {{c}}

outpc outc {∅}
inc defpc {{c}}

defpc defc {{d}}
outpc defpc {∅}

n5

c e lit(C)
defpc inc {{e}}
outpc inc {{e}}
inc inc {{c, e}}

defpc outpc {∅}
outpc outpc {∅}
inc outpc {{c}}
inc defpc {{c}}

defpc defpc {∅}
outpc defpc {∅}

n6

e lit(C)
inc {{e}}

defpc {∅}
outpc {∅}

n7

e g lit(C)
inc defc {{e}}

defpc defpc {∅}
defpc outc {∅}
outpc defpc {∅}
outpc outc {∅}

n8

c e lit(C)
inc inc {{c, e}}
inc defpc {{c}}

defpc defc {{d}}
inc outpc {{c}}

outpc defpc {∅}
outpc outc {∅}

n9

c d e lit(C)
inc defc inc {{c, e}}
inc defc defpc {{c}}

defpc inc defc {{d}}
defpc defpc inc {{e}}
defpc defpc defpc {∅}
inc defc outpc {{c}}

outpc defpc inc {{e}}
defpc defpc outpc {∅}
defpc outpc defpc {∅}
outpc defpc defpc {∅}
defpc outpc outc {∅}
outpc defpc outpc {∅}
outpc outc defpc {∅}
outpc outc outc {∅}

n10

a b c lit(C)
defc inc defc {{b, f}}
defc defpc inc {{c, f}}
defc defpc defpc {{f}}
defc defpc outpc {{f}}
defc outpc defpc {{f}}
defc outpc outc {{f}}

n11

a b lit(C)
defc inc {{b, f}}
defc defpc {{f}}
defc outpc {{f}}

n12

a lit(C)
defc {{f}}

n13

a f lit(C)
inc defpc {{a}}
defc inc {{f}}
defpc defpc {∅}
defpc outpc {∅}
outpc defpc {∅}
outc outpc {∅}

n14

Figure 3.4: Normalized Tree Decomposition with V-Colorings for Complete Semantics

3.4. ALGORITHM FOR ADMISSIBLE SEMANTICS (SEMI-NORMALIZED) 65

3.4 Algorithm for Admissible Semantics (Semi-Normalized)

In this section we present a novel algorithm for admissible semantics on semi-normalized tree
decompositions. Dvořák et al. [2010a] already presented an algorithm for normalized tree de-
compositions. Thus, we have to define v-colorings for exchange nodes where, compared to
introduction and removal nodes of normalized tree decompositions, several arguments can be
introduced or removed.

In Section 3.1 we already defined B-restricted admissible sets (see Definition 3.5) and valid
colorings for admissible semantics (see Definition 3.8). Furthermore, Dvořák et al. [2010a]
proved that there exists a one-to-one mapping between the extensions of the colorings C, et(C),
in a node t and the X>t-restricted admissible sets S for F≥t. In other words, the valid color-
ings for a node t represent the X>t-restricted admissible sets S for F≥t and different colorings
represent different X>t-restricted admissible sets.

As we do not want to compute et(C) explicitly in every node t it remains to define v-
colorings for the different node types in semi-normalized tree decompositions and to prove that
they correspond to valid colorings.

Branch Node: In this thesis the definition of v-colorings for branch nodes is given in Defini-
tion 3.12. As shown by Dvořák et al. [2010a] the following lemma holds for branch nodes:

Lemma 3.47. [Dvořák et al., 2010a] For any branch node t in a tree-decomposition of an AF,
valid colorings and v-colorings for admissible semantics coincide if they coincide in the child
nodes t1 and t2 of t.

It remains to define v-colorings for exchange nodes.

Exchange Node:

Definition 3.48. Let t be an exchange node of a tree decomposition and t1 be the child node of
t. Furthermore, let S′ ⊆ Xt1 , S′′ ⊆ A and S′ ∩S′′ = ∅ such that Xt = (Xt1\S′)∪S′′. Finally,
let T ∈ cf (F |S′′) (i.e. T is a conflict-free in the sub-framework of F induced by S′′).

If

• C is a v-coloring for t1,

• ∀a ∈ S′ : C(a) 6= att and

• [C]ia ∪ T is conflict-free.

then (C − S′) + T is a v-coloring for t.

For C : Xt1 → {ina , defa , atta , outa} and D : U → {ina , defa , atta , outa} where U =

Xt1\S′ we define C − S′ over U and D + T over Xt:

66 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

(C − S′)(b) = C(b) for each b ∈ Xt1\S′

(D + T)(b) =

ina if C(b) = ina ∨ b ∈ T
defa if C(b) = defa ∨ T � b

atta if b ∈ U : T 6� b ∧ ((C(b) = atta) ∨ (C(b) = outa ∧ b� T))

if b ∈ S′′: ([C]ia ∪ T 6� b) ∧ (b� [C]ia ∪ T)

outa if b ∈ U : C(b) = outa ∧ T 6� b ∧ b 6� T

if b ∈ S′′: ([C]ia ∪ T 6� b) ∧ (b 6� [C]ia ∪ T)

Lemma 3.49. For any exchange node t in a tree-decomposition of an AF, valid colorings and
v-colorings for admissible semantics coincide if they coincide in the child node t1 of t.

Proof sketch. S′ = {a1, a2, ..., ai} are the removed arguments in Xt and S′′ = {b1, b2, ..., bj}
are the introduced arguments inXt. We can define intermediate nodes r0, r1, ..., ri and i0, i1, ..., ij
between t1 and t where:

• Xr0 = Xt1 ,

• Xrk = Xrk−1
\{ak} for 0 < k ≤ i,

• Xi0 = Xri ,

• Xil = Xil−1
∪ {bl} for 0 < l ≤ j and

• Xij = Xt.

Due to our construction of the intermediate nodes we have that r0, r1, ..., ri correspond to
removal nodes of normalized tree decompositions and i0, i1, ..., ij correspond to introduction
nodes of tree decompositions. Dvořák et al. [2010a] showed that v-colorings and valid colorings
for nodes of type introduction and removal coincide. Hence, in particular they coincide in Xij

for F≥ij . Due to the construction of the bags we have that the X>r0-restricted admissible sets
for F≥r0 correspond to the X>t1-restricted admissible sets for F≥t1 and the X>ij -restricted
admissible sets for F≥ij correspond to the X>t-restricted admissible sets for F≥t. Note that F≥t
for semi-normalized tree decompositions corresponds to F≥ij of our construction for normalized
tree decompositions. Furthermore, Xij = Xt. Hence we have that valid colorings for Xij and
Xt coincide. As already showed the v-colorings forXij in F≥ij coincide. To prove Lemma 3.49
it remains to show that v-colorings for Xij correspond to v-colorings for Xt.
⇒: Suppose that Cij is a v-coloring the node ij . Then we know that there exists a v-coloring

Ct1 = Cr0 such that Cij = (...(((...((Cr0 − a1) − a2)... − ai) ⊕1 b1) ⊕2 b2)... ⊕j bj) where
⊕l ∈ {+, +̇}. Consider T = {bl : ⊕l = +̇}. We show that Cij = (Ct1 − S′) + T .

• Within our construction of Cij we have that for each node rk with 0 < k ≤ i where
Xrk = Xrk−1

\{ak} and Crk−1
(ak) 6= atta as we know that Crk = Crk−1

− ak (see
Definition 3.11) is a v-coloring for rk (This is proved in [Dvořák et al., 2010a]). Moreover,
we haveCrk−1

(ak) = Cr0(ak). Then, in node t, we have that for all a ∈ S′ : C(a) 6= atta .
Especially note that Cri = Ci0 is a v-coloring for i0.

3.4. ALGORITHM FOR ADMISSIBLE SEMANTICS (SEMI-NORMALIZED) 67

• Furthermore, in the nodes il with 0 < l ≤ j exactly one argument bl is introduced. We
define Tl = {by : ⊕y = +̇ for 0 < y ≤ l}, i.e. Tl for a node il contains the arguments
by that are introduced with the operation +̇. Now, towards a contradiction, suppose that
[Ci0]ia ∪ Tl is not conflict-free where l is minimal, i.e. [Ci0]ia ∪ Tl−1 is conflict-free but
[Ci0]ia∪Tl is not conflict-free. If [Ci0]ia contains a conflict this contradicts our assumption
ofCi0 being a v-coloring. Furthermore, it can be the case that either by � by, [Cil−1

]ia �
by or by � [Cil−1

]ia . But due to the definition of Cil−1
+̇by we again have a contradiction.

Hence, [Ci0]ia ∪ Tl is conflict-free and we have that also [C]ia ∪ T is conflict-free for t.

Now we show that the computation of v-colorings over Crk for 0 < k ≤ i and Cil for
0 < l ≤ j where Xr0 = Xt1 , Xij = Xt and Crk = Ct1 is equivalent to the computation of
v-colorings for Ct = (Ct1 − S′) + T , i.e. we show that Cij = Ct.

1. First, consider C − S′: C − S′ is a coloring over Xt1\S′. Cri is a coloring over Xt1\S′.
By definition they both coincide withCr0 = Ct1 onXt1\S′ . Hence, we have thatC−S′ =
Cri .

2. Now, for an argument a ∈ Xt we want to show that Cij (a) = Ct(a) where Cij (a) =

(Cri ⊕1 ...⊕j bj)(a) and Ct(a) = (Cri +T)(a). We exemplify this for the case Cij (a) =

ina . Then, either a ∈ [Cr0]ia (respectively a ∈ [Cri]) or a is added with the Cil+̇a
operation somewhere along the nodes il where 0 < l ≤ j. But then, either Ct1(a) = ina
or a ∈ Tt and therefore Ct(a) = ina .

⇐: Now suppose that Ct is a v-coloring for Xt. Then, there exists a Cr0 , T such that
(Cr0 − S′) + T = Ct. We have to show that Cij = Ct where Cij = (...(((...((Cr0 − a1) −
a2)...− ai)⊕1 b1)⊕2 b2)...⊕j bj) with ⊕l = +̇ if bi ∈ T and ⊕l = + if bi 6∈ T . We first show
that Cij is a v-coloring:

• We know that ∀ak ∈ S′ : C(ak) 6= att. But then it it easy to see that for each Crk−1
we

have that Crk−1
(ak) 6= att (as Crk−1

= Cr0(a)). Then we have that all Crk = Crk−1
−ak

for 0 ≤ k ≤ i are v-colorings.

• [C]ia ∪T is conflict-free by assumption. But then, every subset [Cik−1]∪{by} for by ∈ T
is conflict free, i.e. we have for each Cil−1

+̇by that by 6� by, Cil−1
6� by and by 6� Cil−1

.
Then we have that all Cil for 0 ≤ l ≤ j are v-colorings. In particular, Cij is a v-coloring.

It remains to show that Ct = Cij . We exemplify this for an argument a ∈ Xt where
Ct(a) = ((Cr0 − S′) + T)(a) = ina . Then, either Cr0(a) = ina or a ∈ T . But then, either
a ∈ [Cr0]ia and we have that a is not removed in any node and maintains its color over our
construction of Cij . Or, if a ∈ T then a is colored with ina in one of Cil−1

+̇a.

Then we have that the following theorem holds:

Theorem 3.50. Let (T ,X) be a semi-normalized tree decomposition of an AF F = 〈A,R〉.
Then, for each admissible coloring C for a node t ∈ T , it holds that C is a valid coloring for t
iff C is a v-coloring for t.

68 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

− et(C)
ε {∅, {f}, {b, d}, {b, d, f}, {c, e, f}}s0

a b c et(C)
defa defa ina {{c, e, f}}
atta defa ina {{c, e}}
defa atta ina {{c, f}}
atta atta ina {{c}}
defa ina defa {{b, d}, {b, d, f}}
defa outa atta {{d, f}}
outa outa atta {{d}}
defa outa outa {{f}}
outa outa outa {∅}

s1

a b c et(C)
atta defa ina {{c, e}}
atta atta ina {{c}}
defa ina defa {{b, d}}
ina defa defa {{a, d}}
outa outa atta {{d}}
ina defa defa {{a}}
outa outa outa {∅}

s2

b c e et(C)
defa ina ina {{c, e}}
atta ina outa {{c}}
ina defa defa {{b, d}}
outa atta defa {{d}}
ina defa atta {{b}}
outa outa outa {∅}

s3

c e et(C)
ina ina {{c, e}}
ina outa {{c}}
atta defa {{d}}
outa outa {∅}

s4

c e et(C)
ina ina {{c, e}}
ina outa {{c}}
outa ina {{e}}
outa outa {∅}

s5

e g et(C)
ina defa {{e}}
outa outa {∅}

s6

c e et(C)
ina ina {{c, e}}
ina outa {{c}}
atta defa {{d}}
outa outa {∅}

s7

c d e et(C)
ina defa ina {{c, e}}
ina defa outa {{c}}
atta ina defa {{d}}
outa atta ina {{e}}
outa outa outa {∅}

s8

a b c et(C)
defa ina defa {{b}, {b, f}}
defa atta ina {{c, f}}
defa outa outa {{f}}
atta atta ina {{c}}
outa outa outa {∅}

s9

a f et(C)
ina atta {{a}}
defa ina {{f}}
outa outa {∅}

s10

Figure 3.5: Semi-normalized Tree Decomposition with V-Colorings for Admissible Semantics

A semi-normalized tree decomposition of our running example with v-colorings for each
node is given in Figure 3.5.

Example 3.4. Consider the exchange node s9 where the argument f is removed and the argu-
ments b and c are introduced. The coloring C

′
s10 where C

′
s10(a) = ina and C

′
s10(f) = atta is

removed. Furthermore consider the coloring C
′′
s10 where C

′′
s10(a) = defa and C

′′
s10(f) = ina .

In s9, the conflict-free sets of the introduced arguments b and c are {∅, {b}, {c}}. Thus, for
C
′′
s10(a) = defa we have three colorings in s9 as shown in Figure 3.5.

3.5. EVALUATION OF DECISION PROBLEMS 69

3.5 Evaluation of Decision Problems

In the previous sections we presented the algorithm definitions for admissible, stable and com-
plete semantics. These algorithms define how the σ-extensions for a given problem instance can
be obtained. Additionally, the algorithm definitions support the evaluation of decision problems.
In here we outline the ideas for the evaluation of Credσ and Skeptσ (as described in Section 2.4).
These ideas are based on the work of Dvořák et al. [2010a].

As the approach for the evaluation of Credσ and Skeptσ is almost identical for all of our
semantics σ ∈ {adm, stable, comp} we present the overall idea and give for each problem an
example for one of the semantics.

Credulous Acceptance

The decision problem of credulous acceptance for an argument a can be answered with help of
the computation of v-colorings: Each v-coloring where C(a) is set to in (which corresponds
to either ina , ins or inc for the respective semantics) is marked. Additionally, we pass the
information of marked v-colorings up to the root: If a v-coloring somewhere above in the tree
is constructed on basis of a marked v-coloring it is marked as well. Finally, if the v-coloring in
the root node is marked we know that a is credulously accepted (wrt. to a certain semantics and
a problem instance).

Example 3.5. Consider the argumentation framework F of our running example (see Exam-
ple 2.6) and the normalized tree decomposition with v-colorings for complete semantics as de-
picted in Figure 3.4. We want to know if d is credulously accepted wrt. to complete semantics,
i.e. if Credcomp(F, d) holds.

Consider node n10 of the tree decomposition and consider the coloring where Cn10(c) =

defpc , Cn10(d) = inc and Cn10(e) = defc . This coloring is marked because C(d) = inc . Now,
consider the parent node n9 which is a removal node. The coloring where Cn9(c) = defpc and
Cn9(e) = defc is marked as well because it results from the marked coloring of the child node.

Skeptical Acceptance

Again, we make use of the computed v-colorings in the nodes of the tree decomposition. Skep-
tical acceptance asks if an argument a is contained in every σ-extension of an AF. In this case
we mark all v-colorings where C(a) 6= in (for nodes where a ∈ Xt). Again, we pass this infor-
mation upwards along the tree decomposition. If a coloring is constructed on basis of a marked
coloring we mark this coloring as well. If the v-coloring in the root node is marked we know
that there exists an extension that does not contain a. Otherwise, a is skeptically accepted.

For admissible semantics this decision problem is trivial as the empty set is always an exten-
sion of the AF and thus a can not be skeptically accepted.

Example 3.6. Again, consider the argumentation framework F of our running example (see
Example 2.6) and the normalized tree decomposition with v-colorings for stable semantics as
depicted in Figure 3.3. We want to know if b is skeptically accepted wrt. to stable semantics, i.e.
if Skeptstable(F, b) holds.

70 CHAPTER 3. TREE-DECOMPOSITION BASED ALGORITHMS

In node n12 b is introduced. Hence, we mark the coloring where C(b) 6= ins , that is, the
coloring C

′
n12

where C
′
n12

(a) = defs and C
′
n12

(b) = outs . The coloring C
′′
n12

where C
′′
n12

(a) =

defs and C
′′
n12

(b) = ins is not marked.
In n11 we then mark the colorings that are constructed on basis of C

′
n12

, that is, the coloring
C
′
n11

with C
′
n11

(a) = defs , C
′
n11

(b) = outs and C
′
n11

(c) = ins and the coloring C
′′
n11

with
C
′′
n11

(a) = defs , C
′′
n11

(b) = outs and C
′′
n11

(c) = outs . The coloring C
′′′
n11

with C
′′′
n11

(a) = defs ,
C
′′′
n11

(b) = ins and C
′′′
n11

(c) = defs is not marked.
In n4, b is introduced as well: The only coloring is marked and hence the only colorings in

n3 and n2 are marked as well.
Now, in the branch node n2, we have that only marked colorings can be joined (due to the

definition of branch nodes) and hence the only resulting is marked as well. Finally, we obtain
that b is not skeptically accepted.

CHAPTER 4
Implementation

The algorithms that were presented in the last chapter are implemented on basis of the already-
existing SHARP framework (Smart Hypertree decomposition-based Algorithm fRamework for
Parameterized problems). SHARP provides the necessary interfaces for the implementation of
tree decomposition based algorithms. For a problem instance the framework builds the tree de-
composition (in our case a normalized or semi-normalized tree decomposition) and executes the
user-defined implementation for each node of the decomposition. The framework is described
in Section 4.1.

In Section 4.2 we present the implementation of the algorithms for admissible semantics on
normalized as well as semi-normalized tree decompositions. We focus on the implementation
of the different node types (leaf, introduction, removal, exchange and branch node) and present
strategies for the optimization of the different node types. We present ideas for the optimization
of exchange nodes that can not be applied to leaf, introduction and removal nodes of normal-
ized tree decompositions. Furthermore we focus on branch nodes as this node type is the most
complex one.

In the course of this thesis the implementation of the novel algorithms for admissible seman-
tics on normalized as well as semi-normalized tree decompositions and the implementation of
stable and complete semantics on normalized tree decompositions are included in the dynPAR-
TIX (Dynamic Programming Argumentation Reasoning Tool) project. In Section 4.3 we give
a system description of dynPARTIX. Furthermore we describe the input format for argumen-
tation problems and present the currently-available command line options for the dynPARTIX
software.

71

72 CHAPTER 4. IMPLEMENTATION

4.1 The SHARP Framework

The SHARP1 (Smart Hypertree decomposition-based Algorithm fRamework for Parameter-
ized problems) framework provides the basis for the implementation of our algorithms. It
was originally implemented by Michael Morak and was first used in his project on a dynamic
programming-based Answer Set Programming solver (dynASP2). In here we outline the most
relevant aspects of the SHARP framework [Morak, 2011]:

The SHARP framework is based in the observation that most algorithms for fixed-parameter
problems where the problem is parameterized by tree width follow a uniform approach:

1. Read in an input instance of a fixed tree width and obtain a tree decomposition of a certain
width.

2. Traverse the tree decomposition in bottom-up order and compute the intermediate results
for each node based on the intermediate results of the sub-node(s).

3. Do a second traversal in top-down order and compute the relevant solution(s). In our case
the solutions may be an enumeration of all extensions for a given semantics, the overall
number of extensions (counting) or a yes or no answer to a decision problem.

The SHARP framework is implemented in C++. It handles the program flow and provides
the tree decompositions of input instances. In the following we present the relevant parts of the
framework and the interfaces that have to be implemented for our algorithms.

The Problem Class

The Problem class serves as the main interface between the user-specified algorithm and the
overall workflow of the program. A simplified version of the header file for the Problem class
is depicted in Listing 4.1. In order to maintain readability the listing only contains the most
relevant methods and variables. The header file includes the following methods that have to be
implemented by the user:

• parse(): This method is responsible for reading in the problem instance. The frame-
work does not restrict the user to any input format. It then should save the data in an
user-defined internal format.

• preprocess(): This method is intended for optimizations on the input and may alter
the data that was read in by the parse() method.

• buildHypergraphRepresentation(): This method should convert the previ-
ously stored data into a format on which the SHARP framework can work on, namely
an instance of the Hypergraph class.

Furthermore, the most important methods that are implemented within the SHARP frame-
work are:

1http://www.dbai.tuwien.ac.at/research/project/sharp/
2http://www.dbai.tuwien.ac.at/research/project/dynasp/

http://www.dbai.tuwien.ac.at/research/project/sharp/
http://www.dbai.tuwien.ac.at/research/project/dynasp/

4.1. THE SHARP FRAMEWORK 73

• calculateTreeWidth(): This method calls the methods parse(), preprocess()
and buildHypergraphRepresentation(). Then, it generates a tree decomposi-
tion and the width of the tree decomposition is returned.

• calculateSolution(): This method calls the methods parse(), preprocess()
and buildHypergraphRepresentation(). It generates a tree decomposition and
executes the user-specified AbstractHTDAlgorithm implementation. Finally, it re-
turns a Solution instance for the problem.

1 c l a s s Problem
2 {
3 p u b l i c :
4 Problem (boo l c o l l e c t B e n c h m a r k I n f o r m a t i o n = f a l s e) ;
5 v i r t u a l ~ Problem () ;
6
7 p u b l i c :
8 / / computes t h e wid th o f t h e t r e e d e c o m p o s i t i o n
9 i n t c a l c u l a t e T r e e W i d t h () ;

10 / / computes t h e s o l u t i o n f o r a problem wi th a g i v e n a l g o r i t h m
11 S o l u t i o n ∗ c a l c u l a t e S o l u t i o n (Abs t rac tHTDAlgor i thm ∗ a l g o r i t h m) ;
12
13 p r o t e c t e d :
14 / / r e a d s i n t h e problem i n s t a n c e
15 v i r t u a l vo id p a r s e () = 0 ;
16 / / c a l l e d a f t e r p a r s i n g , o p t i o n a l o p t i m i z a t i o n s
17 v i r t u a l vo id p r e p r o c e s s () = 0 ;
18 / / c r e a t e s t h e i n t e r n a l SHARP r e p r e s e n t a t i o n o f t h e problem i n s t a n c e
19 v i r t u a l Hypergraph ∗ b u i l d H y p e r g r a p h R e p r e s e n t a t i o n () = 0 ;
20
21 p r i v a t e :
22 / / o m i t t e d h e r e
23 } ;

Listing 4.1: Problem header file (simplified) [Morak, 2012]

A user then has to derive his own *Problem class and provide implementations of the
parse(), preprocess() and buildHypergraphRepresentation() methods. In
our case we implemented the methods within the ArgumentationProblem class.

The Abstract*HTDAlgorithm Classes

The Abstract*HTDAlgorithm classes provide the necessary interface for the algorithm
implementation. Based on the normalization type of the tree decomposition the SHARP frame-
work provides different class definitions. In our case, the AbstractHTDAlgorithm, the
AbstractSemiNormalizedHTDAlgorithm and the AbstractNormalizedHTDAl-
gorithm are relevant. A simplified version of the AbstractHTDAlgorithm header file is
depicted in Listing 4.2.

In the following we analyze the most relevant methods that are declared in the header file of
Listing 4.2 and have to be implemented in the Abstract*HTDAlgorithm classes.

74 CHAPTER 4. IMPLEMENTATION

1 / / For a l g o r i t h m s on non−n o r m a l i z e d t r e e d e c o m p o s i t i o n s
2 c l a s s Abs t rac tHTDAlgor i thm
3 {
4 p u b l i c :
5 Abst rac tHTDAlgor i thm (Problem ∗problem) ;
6 v i r t u a l ~ Abs t rac tHTDAlgor i thm () ;
7
8 / / e v a l u a t e s a problem based on a t r e e d e c o m p o s i t i o n and a problem t y p e
9 S o l u t i o n ∗ e v a l u a t e (c o n s t E x t e n d e d H y p e r t r e e ∗ r o o t , I n s t a n t i a t o r ∗ i n s t a n t i a t o r =

NULL) ;
10
11 p r o t e c t e d :
12 / / r e t u r n s t h e t r e e d e c o m p o s i t i o n (a s i s)
13 v i r t u a l c o n s t E x t e n d e d H y p e r t r e e ∗ p r e p a r e H y p e r t r e e D e c o m p o s i t i o n (c o n s t

E x t e n d e d H y p e r t r e e ∗ r o o t) ;
14 / / e v a l u a t e a node of t h e t r e e d e c o m p o s i t i o n
15 v i r t u a l T u p l e S e t ∗ e v a l u a t e N o d e (c o n s t E x t e n d e d H y p e r t r e e ∗node) = 0 ;
16 / / c a l l e d a f t e r a l l nodes i n t r e e a r e e v a l u a t e d
17 v i r t u a l S o l u t i o n ∗ s e l e c t S o l u t i o n (T u p l e S e t ∗ t u p l e s , c o n s t E x t e n d e d H y p e r t r e e ∗ r o o t

) = 0 ;
18
19 p r i v a t e : / / o m i t t e d h e r e
20 } ;
21
22 / / For a l g o r i t h m s on semi−n o r m a l i z e d t r e e d e c o m p o s i t i o n s
23 c l a s s Abs t rac tSemiNormal izedHTDAlgor i thm : p u b l i c Abs t rac tHTDAlgor i thm
24 {
25 p u b l i c :
26 Abst rac tSemiNormal izedHTDAlgor i thm (Problem ∗problem) ;
27 v i r t u a l ~ Abs t rac tSemiNormal izedHTDAlgor i thm () ;
28
29 p r o t e c t e d :
30 / / r e t u r n s a semi−n o r m a l i z e d t r e e d e c o m p o s i t i o n
31 v i r t u a l c o n s t E x t e n d e d H y p e r t r e e ∗ p r e p a r e H y p e r t r e e D e c o m p o s i t i o n (c o n s t

E x t e n d e d H y p e r t r e e ∗ r o o t) ;
32 / / c a l l s t h e e v a l u a t e ∗Node () methods
33 v i r t u a l T u p l e S e t ∗ e v a l u a t e N o d e (c o n s t E x t e n d e d H y p e r t r e e ∗node) ;
34
35 v i r t u a l T u p l e S e t ∗ e v a l u a t e B r a n c h N o d e (c o n s t E x t e n d e d H y p e r t r e e ∗node) = 0 ;
36 v i r t u a l T u p l e S e t ∗ e v a l u a t e P e r m u t a t i o n N o d e (c o n s t E x t e n d e d H y p e r t r e e ∗node) = 0 ;
37 } ;
38
39 / / For a l g o r i t h m s on n o r m a l i z e d t r e e d e c o m p o s i t i o n s
40 c l a s s Abs t rac tNormal i zedHTDAlgor i thm : p u b l i c Abs t rac tSemiNormal izedHTDAlgor i thm
41 {
42 p u b l i c :
43 Abs t rac tNormal i zedHTDAlgor i thm (Problem ∗problem) ;
44 v i r t u a l ~ Abs t rac tNormal i zedHTDAlgor i thm () ;
45
46 p r o t e c t e d :
47 / / r e t u r n s a n o r m a l i z e d t r e e d e c o m p o s i t i o n
48 v i r t u a l c o n s t E x t e n d e d H y p e r t r e e ∗ p r e p a r e H y p e r t r e e D e c o m p o s i t i o n (c o n s t

E x t e n d e d H y p e r t r e e ∗ r o o t) ;
49 / / c a l l s t h e o t h e r e v a l u a t e ∗Node methods
50 v i r t u a l T u p l e S e t ∗ e v a l u a t e P e r m u t a t i o n N o d e (c o n s t E x t e n d e d H y p e r t r e e ∗node) ;
51
52 v i r t u a l T u p l e S e t ∗ e v a l u a t e I n t r o d u c t i o n N o d e (c o n s t E x t e n d e d H y p e r t r e e ∗node) = 0 ;
53 v i r t u a l T u p l e S e t ∗ eva lua teRemovalNode (c o n s t E x t e n d e d H y p e r t r e e ∗node) = 0 ;
54 v i r t u a l T u p l e S e t ∗ e v a l u a t e L e a f N o d e (c o n s t E x t e n d e d H y p e r t r e e ∗node) = 0 ;
55 } ;

Listing 4.2: AbstractHTDAlgorithm header file (simplified)

4.1. THE SHARP FRAMEWORK 75

• prepareHypertreeDecomposition(): Each class contains a method prepare-
HypertreeDecomposition(). It is responsible for the normalization of the tree
decomposition. In case of the AbstractHTDAlgorithm class it simply returns the
ExtendedHypertree instance.

The AbstractSemiNormalizedHTDAlgorithm class implementation returns a hy-
per tree that consists of binary branch nodes that contain the same elements as their re-
spective child nodes.

In the AbstractNormalizedHTDAlgorithm implementation additional nodes are
added such that either one element is introduced or removed in each node (except for the
leaf nodes).

• evaluate*Node(): Depending on the Abstract*HTDAlgorithm class there ex-
ist different evaluate*Node()methods. If, for example, a user wants to develop an al-
gorithm based on the AbstractNormalizedHTDAlgorithm class, he has to imple-
ment the evaluateBranchNode(), evaluateIntroductionNode(), evalu-
ateRemovalNode() and evaluateLeafNode() methods. In this case the class
contains an implemented version of the evaluatePermuationNode()method: This
method simply calls the other node implementations based on their node type.

Furthermore note that exchange nodes as defined in the previous chapters exactly corre-
spond to permutation nodes within the SHARP framework.

• selectSolution(): This method is used by all algorithm classes and is called after
the evaluation of the tree decomposition. It allows to implement special code that has to
be applied to the tuples within the root node.

• evaluate(): The evaluate()method simply prepares the tree decomposition based
on the normalization type (e.g. prepareHypertreeDecomposition() is called),
calls evaluate*Node() for the root node and finally returns the value of the select-
Solution() method.

The main task for an algorithm developer is to implement evaluate*Node() of the
respective Abstract*HTDAlgorithm class. Note that the bottom-up traversal of the tree
decomposition has to implemented by the algorithm developer: In each evaluate*Node()
method the evaluate*Node() method(s) of the child node(s) are called first. Then, the
evaluate*Node() method can work on the intermediate results of its child node(s).

Data Representation

Intermediate results of each computation within the evaluate*Node() methods are stored
in instances of the Tuple class. As these results heavily depend on the algorithm defini-
tion an algorithm developer has to define his own *Tuple class. In each node the currently
’possible’ tuples are computed on basis of the tuples that were returned form a call to the
evaluate*Node() method(s) of the child node(s). New tuples may be created or old ones
removed (this reflects the dynamic programming approach that all algorithms on tree decompo-
sitions have in common).

76 CHAPTER 4. IMPLEMENTATION

Each tuple can represent one or more partial solutions to the overall problem. It is not
feasible to compute and store all associated (partial) solutions directly as this would result in
exponential run-time and we would lose the property of fixed-parameter tractability. Hence, the
framework contains the Solution and SolutionContent classes. Each tuple is associated
with an instance of the SolutionContent class. This instance represents the partial solu-
tion(s) for the respective tuple. The framework provides implementations for different types of
SolutionContent classes, e.g. for enumeration or counting problems. The main purpose of
the SolutionContent class is that it does not store the partial solution directly but contains
information about how to compute a solution. The SolutionContent class must provide
three different method implementations that define how a solution is created:

• calculateUnion(): This method is called when two tuples within a node coincide
after the evaluation of this node.

• calculateCrossJoin(): This method defines how solutions are combined within a
branch node.

• calculateAdd(): This method is called if a value is added to a solution.

After the computation of the tuples and their respective SolutionContent instances
the tree is traversed in top-down order and the information within the SolutionContent
instances is evaluated. This results in the computation of all solutions. This approach allows
a lazy computation of all solutions and it furthermore guarantees that no partial solutions are
computed that are not part of the overall solution.

4.2. ALGORITHM IMPLEMENTATION 77

4.2 Algorithm Implementation

In this section we describe the implementation of our algorithms for admissible semantics. The
algorithms for stable and complete semantics follow a similar approach.

Parsing

The input is parsed with help of a lexer (Flex3) and a parser (Bison4). The lexer is responsible
for breaking down the input into a list of tokens that can be handled by the parser. The syntax is
as follows:

arg(a) defines the argument a
att(a,b) defines an attack relation between the arguments a and b
% Everything after % is a comment and hence ignored

The parser then reads the tokens and calls methods that add the arguments and attack rela-
tions to the internal representation of the the argumentation framework. This representation is
defined within the ArgumentationProblem class. When the SHARP framework calls the
parse() method the parser and the lexer are executed.

The preprocess() method removes any arguments that do not appear in any attack re-
lation. Furthermore, it warns about any argument that is not explicitly defined within the input.
Finally, the buildHypergraphRepresentation() method converts the arguments and
attack relations into the internal data format of the SHARP framework, i.e. a Hypergraph
instance.

Coloring Representation

Each computed coloring within a node of the tree decomposition is represented as an instance
of the AdmissibleArgumentationTuple. The header file is depicted in Listing 4.3.

1 c l a s s A d m i s s i b l e A r g u m e n t a t i o n T u p l e : p u b l i c Tuple
2 {
3 p u b l i c :
4 A d m i s s i b l e A r g u m e n t a t i o n T u p l e () ;
5 v i r t u a l ~ A d m i s s i b l e A r g u m e n t a t i o n T u p l e () ;
6
7 ArgumentSet inArguments ;
8 ArgumentSet ou tArguments ;
9 ArgumentSet a t t A r g u m e n t s ;

10 ArgumentSet defArguments ;
11
12 v i r t u a l boo l o p e r a t o r <(c o n s t Tuple &o t h e r) c o n s t ;
13 v i r t u a l boo l o p e r a t o r ==(c o n s t Tuple &o t h e r) c o n s t ;
14 v i r t u a l i n t hash () c o n s t ;
15 } ;

Listing 4.3: ArgumentationTuple header file

3http://dinosaur.compilertools.net/flex/index.html
4http://dinosaur.compilertools.net/bison/index.html

http://dinosaur.compilertools.net/flex/index.html
http://dinosaur.compilertools.net/bison/index.html

78 CHAPTER 4. IMPLEMENTATION

The arguments are stored within four disjoint sets, based on their assigned color. An instance
of AdmissibleArgumentationTuple then represents a valid coloring (and v-coloring)
for the current node in the tree decomposition.

ArgumentSet is defined as a set of unsigned integers. The std::set implementa-
tion of C++ allows fast access to the arguments (e.g. finding an argument takes logarithmic
time). Furthermore, we override the operations < and =: Within a set of tuples we have that
they are primarily ordered by their arguments in inArguments. This allows us to apply cer-
tain optimizations, for example within the branch node. The decision for using sets within the
AdmissibleArgumentationTuple class yields towards better performance but it has to
be noted that this data structure needs more memory than simple arrays of arguments.

Another advantage is that the choice for sets allows us to use the efficient Standard Template
Library (STL) algorithm implementations for the set difference (set_difference), set in-
tersection (set_intersection) and set union (set_union). These algorithms perform at
most 2 ∗ (|A|+ |B|)− 1 comparisons of arguments where A and B are the respective sets.

Node Implementation

Each node implementation first calls the evaluate*Node() method for its child node(s) (if
there are any child nodes). It then computes its set of tuples (or colorings) based on the set(s)
of tuples from the child nodes and the introduced or removed arguments. In the following we
analyze the implementations of the different node types.

Conflict-Free Sets

The computation of the conflict-free sets of arguments is needed within the leaf and exchange
nodes. It is implemented as a recursive call:

1 v e c t o r <ArgumentSet > c o n f l i c t F r e e S e t s (ArgumentSet a r g s)
2 {
3 / / i n i t i a l i z e empty s e t o f a rgumen t s t h a t a r e i n t h e c o n f l i c t−f r e e s e t
4 ArgumentSet i n Ar gs = ArgumentSet () ;
5 / / i n i t i a l i z e empty s e t o f a rgumen t s t h a t a r e n o t i n t h e c o n f l i c t−f r e e s e t
6 ArgumentSet ou tArgs = ArgumentSet () ;
7 r e t u r n recCFS (inArgs , outArgs , a r g s) ;
8 }

Listing 4.4: Computation of conflict-free sets conflictFreeSets() (simplified)

In each call of recCFS() one argument currentArg of the set openArgs is added to
the conflict-free set in case it does not attack any argument in inArgs, is attacked by inArgs
or attacks itself (see line 16-23 of Listing 4.5). recCSF() is not called if adding currentArg
to inArgs would result in a conflict. Furthermore, currentArg can always be added to
outArgs as inArgs remains conflict-free (see line 25-29).

4.2. ALGORITHM IMPLEMENTATION 79

1 v e c t o r <ArgumentSet > recCFS (ArgumentSet inArgs , ArgumentSet outArgs , ArgumentSet
openArgs)

2 {
3 v e c t o r <ArgumentSet > r e s u l t ;
4
5 i f (open . empty ())
6 r e s u l t . i n s e r t (inArguments) ;
7 e l s e
8 {
9 Argument c u r r e n t A r g = openArgs . f i r s t () ;

10 ArgumentSet c u r r e n t O p e n = openArgs . remove (c u r r e n t A r g) ;
11
12 / / check i f c u r r e n t A r g and in Ar gs a r e c o n f l i c t−f r e e
13 i f (! a r g u m e n t A t t a c k s S e t (c u r r e n t A r g , i nA rg s) && ! a r g u m e n t I s A t t a c k e d B y S e t (

c u r r e n t A r g , i nAr gs) && ! argumen tAt t acksArgumen t (c u r r e n t A r g , c u r r e n t A r g))
14 {
15 / / Argument i s added t o in Ar gs
16 ArgumentSet newIn = in Ar gs . i n s e r t (c u r r e n t A r g) ;
17 v e c t o r <ArgumentSet > newCFS = recCSF (newIn , outArgs , c u r r e n t O p e n) ;
18 r e s u l t . i n s e r t (newCFS) ;
19 }
20
21 / / Argument i s added t o ou tArgs
22 ArgumentSet outNew = ou tArgs . i n s e r t (c u r r e n t A r g) ;
23 v e c t o r <ArgumentSet > newCFS = recCSF (inArgs , outNew , c u r r e n t O p e n) ;
24 r e s u l t . i n s e r t (newCFS) ;
25 }
26 r e t u r n r e s u l t ;
27 }

Listing 4.5: Recursive call recCFS() (simplified)

Leaf Node

The leaf node is defined for normalized tree decompositions. It has no child nodes.

1. Call conflictFreeSets() for the arguments within the leaf node.

2. For each conflict-free set , cfset, do the following:

1) Create a new tuple and set the inArguments to cfset.

2) All arguments that are attacked by inArguments are added to defArguments.

3) All arguments that are not attacked by inArguments but attack inArguments are
added to attArguments.

4) The other arguments are added to outArguments.

5) Create a new leaf solution that contains the inArguments.

3. Return the set of tuples for the leaf node.

Introduction Node

It is defined for normalized tree decompositions where exactly one argument is introduced in an
introduction node.

80 CHAPTER 4. IMPLEMENTATION

1. Call the evaluateNode() method for the child node. This returns the set of tuples
from the child node, childTuples.

2. For each childTuple in childTuples do the following:

1) Assume that the introduced argument, introducedArg, is not added to the argu-
ments inArguments of the new tuple. Copy the sets of arguments of childTuple
to the sets of newTuple. Add introducedArg to the set defArguments, att-
Arguments or outArguments of newTuple, based on its attack relations to
inArguments (see Definition 3.10, C+a). Use the calculateUnion() method
to compute the solution of the new tuple based on the solution of the child tuple.

2) If introducedArg and inArguments is conflict-free, create an additional tu-
ple, additionalTuple. Compute the sets of arguments for additionalTuple
based on Definition 3.10, C+̇a. Use the calculateAdd() method to add the intro-
duced argument to the solution of the child tuple.

3. Delete the tuples of the the child node.

4. Return the set of tuples for the introduction node.

Removal Node

The removal node is defined for normalized decompositions. Exactly one argument is removed.

1. Call the evaluateNode() method for the child node. This returns a set of all tuples
from the child node, childTuples.

2. For each childTuple in childTuples do the following:

1) If the removed argument, removedArg, is in attArguments of childTuple,
do nothing.

2) Otherwise, create a new tuple for the current node and copy the sets of arguments for
the child node, without the removedArg. Use the calculateUnion() method
to compute the solution of the new tuple based on the solution of the child tuple.

3. Delete the tuples of the the child node.

4. Return the set of tuples for the removal node.

Exchange Node

Compared to the leaf, introduction and removal nodes of normalized tree decompositions the
exchange node is defined for semi-normalized tree decompositions where distinct sets of argu-
ments are removed and introduced.

1. Call the evaluateNode() method for the child node. This returns a set of all tuples
from the child node, childTuples. It the exchange node does not have a child node,
create an empty tuple and add it to childTuples.

4.2. ALGORITHM IMPLEMENTATION 81

2. Compute the conflict-free sets of all introduced arguments, cfsets.

3. For each childTuple in childTuples do the following:

1) If any of the removed arguments, removedArgs, is in attArguments of the child
tuple, delete the complete tuple.

2) Otherwise, remove the removedArgs from the sets of arguments of childTuple
and do the following for each conflict-free set, cfset:

(1) If the union of inArguments in childTuple and cfset is conflict-free, cre-
ate a new tuple where inArguments is the union of both sets. Furthermore,
compute sets of arguments in the new tuple based on Definition 3.48.

(2) Use the calculateAdd() method to add the introduced arguments to the solu-
tion of the child tuple and the calculateUnion() method if no argument was
added to inArguments.

4. Delete the tuples of the the child node.

5. Return the set of tuples for the exchange node.

Within the exchange node, several arguments can be removed within one loop over the
childTuples. If at least one removed argument is contained in attArguments of a child
tuple the complete tuple can be deleted immediately. Furthermore, the conflict-free sets of intro-
duced arguments only have to be computed once. Then, the childTuples can be joined with
the conflict-free sets if their union if inArguments and cfset is again conflict-free. As the
exchange node is defined on sets of arguments the efficient C++ implementations for set union,
difference and intersection can be used.

Branch Node

The branch node is defined for both normalized and semi-normalized tree decompositions.
Hence, the two implementations for admissible semantics share the same code that executes
the following steps:

1. Call the evaluateNode() method for the two child nodes. This returns two tuple sets,
leftTuples and rightTuples.

2. Initialize two iterators, leftIt and rightIt with the first tuples, leftTuple and
rightTuple, from the tuple sets.

3. Until the end of one set is reached, do the following:

1) Compare the set inArguments of leftTuple with the set inArguments of
rightTuple.

2) If one set is of inArguments is smaller than the other one, increase the iterator
leftIt or rightIt of the smaller tuple and assign the new value to leftTuple
or rightTuple.

82 CHAPTER 4. IMPLEMENTATION

3) If inArguments of both tuples is equal we have to compute a new tuple and have
to join the (partial) solutions of the two tuples. The inArguments of the new tu-
ple are the same as the inArguments of the child tuples. If an argument is in
defArguments of one child tuple it is in defArguments of the new tuple. If
an argument is in outArguments of both child tuples it is in outArguments of
the new tuple. Otherwise the argument is in attArguments of the new tuple. This
corresponds to Definition 3.12 for the computation of v-colorings in a branch node for
admissible semantics.

4) Finally, combine the (partial) solutions of the child nodes with the crossJoin oper-
ation and add the new tuple to the tuple set of the current node.

5) Increase the iterator rightIt.

4. Delete the tuples of the the child nodes.

5. Return the set of tuples for the branch node.

This algorithm takes advantage of the fact that the tuple sets are ordered primarily by their
inArguments. Then, it is not necessary to compare each tuple of leftTupleswith each tu-
ple of rightTuples (which would result in |leftTuples| ∗ |rightTuples| comparisons
in total).

4.3. THE DYNPARTIX PROJECT 83

4.3 The dynPARTIX Project

The implementation of the algorithms for admissible, stable and complete semantics as defined
in the previous chapter and described in this chapter is included in the dynPARTIX5 project.
dynPARTIX (Dynamic Programming Argumentation Reasoning Tool) is based on the SHARP
framework. The software can currently be called with the following parameters:

dynpartix [-b] [-t] [-d] [-r <seed>] [-f <file>]
[-n <normalize>] [-s <semantics>]
[--enum[=number] | --count | --cred <arg> | --skept <arg>]

-b Prints benchmark information.
-t Only perform the tree decomposition step. The width of the tree

decomposition is printed.
-d Prints a comma-separated list consisting of filename, seed, time

and solution.
-r <seed> Initialize the random number generator with <seed>.
-f <file> Specify an input file <file> containing the AF.
-n <normalize> Specify the tree decomposition normalization type, one of {norm

(default), semi}.
-s <semantics> Specify the semantics, one of {admissible (default), stable, com-

plete}.
--enum[=number] Prints an enumeration of all solutions. Optionally, number limits

the number of printed solutions.
--count Prints the number of solutions.
--cred <arg> Checks if <arg> is credulously accepted or not.
--skept <arg> Checks if <arg> is skeptically accepted or not.

Table 4.1: dynPARTIX Call Options

The listing below shows the input for our example AF (see Figure 2.1).

1 % d e f i n e a rgumen t s
2 a r g (a) .
3 a r g (b) .
4 a r g (c) .
5 a r g (d) .
6 a r g (e) .
7 a r g (f) .
8 a r g (g) .
9

10

11

12

13

14 % d e f i n e a t t a c k r e l a t i o n s
15 a t t (a , b) .
16 a t t (b , a) .
17 a t t (a , c) .
18 a t t (b , c) .
19 a t t (c , d) .
20 a t t (d , e) .
21 a t t (e , b) .
22 a t t (f , a) .
23 a t t (e , g) .
24 a t t (g , g) .

5http://www.dbai.tuwien.ac.at/research/project/argumentation/dynpartix/

http://www.dbai.tuwien.ac.at/research/project/argumentation/dynpartix/

84 CHAPTER 4. IMPLEMENTATION

In here we now present some examples for program calls. The examples are based on the
input file example.graph that contains the argumentation framework of our running exam-
ple. A simple program call for the computation of admissible extensions (on normalized tree
decompositions) is as follows:

dynpartix -f example.graph
Solutions: 5
{{},{e,f,c},{f},{f,b,d},{b,d}}

Next, if we want to benchmark the computation of admissible extensions on semi-normalized
tree decompositions we can call dynPARTIX outline in the next listing. Besides the extensions
this gives us the used seed for the tree decomposition (for a given seed, specified with the option
-r <seed> we always obtain the same tree decomposition. Furthermore the time for the
evaluation of the solutions and the overall run-time is given.

dynpartix -f example.graph -s admissible -n semi -b
Using seed: 1328877763
Calculating solution content... done! (took 0 seconds)

Overall time: 0 seconds
Solutions: 5
{{},{e,f,c},{f},{f,b,d},{b,d}}

In order to obtain the width of the tree decomposition we can use the parameter -t. Then, only
the tree decomposition is generated and the width is returned. Thus we know that the largest bag
of the decomposition contains width + 1 arguments.

dynpartix -f example.graph -t
Width: 2

Finally, we give examples for program calls that compute the overall number of extensions and
check for credulous as well as skeptical acceptance.

dynpartix -f example.graph -s stable --count
Solutions: 1

dynpartix -f example.graph -s stable --skept b
NO

dynpartix -f example.graph -s stable --cred c
YES

dynpartix -f example.graph -s admissible --skept c
NO

dynpartix -f example.graph -s admissible --cred c
YES

Note that for admissible semantics the skeptical acceptance of an argument is always answered
with NO.

CHAPTER 5
Experimental Results

In this chapter we compare the run-time of algorithms on normalized tree decompositions and
semi-normalized tree decompositions. We run the algorithms for admissible semantics and count
the overall number of admissible extensions for our test instances. Besides the overall run-
time we are interested in a direct comparison between leaf, introduction and removal nodes of
normalized decompositions and exchange nodes of semi-normalized decompositions.

In Section 5.1 we describe the test environment. Furthermore we outline the methodological
approach for the generation of reliable test data: Although we can generate test data of fixed
tree width and a fixed number of nodes we do not necessarily obtain tree decompositions of
fixed width (where, in the best case the tree width of the input instance graph corresponds to
the width of the tree decomposition). This is due to the fact that it is computationally hard to
generate optimal tree decompositions. The implementation of the tree decomposition makes use
of a heuristics and therefore returns tree decomposition instances of variable width for a fixed
tree width.

In Section 5.2 we describe two types of test instances that are used for the evaluation of
our algorithms, namely grid-based instances and clique-based instances. Grid-based instances,
where every argument in the graph can be connected to all of its neighbors, have an upper bound
for the tree width. Clique-based instances consist of several cliques (every node is connected
with every other node within the clique). They have a fixed tree-width which corresponds to the
number of nodes within a clique, minus one.

In Section 5.3 we compare the normalized and semi-normalized implementation on basis of
the two different test instance types. We vary the (theoretical, maximal) tree width of grid-based
instances and compute the run-time for tree-decompositions of a certain width (or a range of
width values). Furthermore we evaluate the algorithms on clique-based instances for a certain
tree width (which corresponds to the with of the tree decomposition).

Finally, in Section 5.4, we summarize our experimental results. We analyze the benefits of
algorithms based on semi-normalized tree decompositions compared to those defined on nor-
malized tree decompositions. Furthermore we identify input instances where the benefit may
not be significant.

85

86 CHAPTER 5. EXPERIMENTAL RESULTS

5.1 Test Setup and Approach

The general approach for the generation of reliable test instances and the automatic generation
of benchmark information is as follows:

1. Based on the instance type (grid or clique) initial test instances are generated. These
instances have a fixed number of nodes (arguments) and have a fixed (maximal) tree width.

2. In a first run, several tree decompositions for every initial test instance are computed. The
reason for this is that the tree decomposition step is based on a heuristics. Hence, the
width of the decomposition may vary. All tree decompositions with a fixed width (or a
small range of widths) are used later on as the basis for our benchmarks.

3. The normalized and semi-normalized implementation for admissible semantics is exe-
cuted on the same tree decomposition instances. We compute the overall run-time, the
preparation time, the time that is spent within the branch node and the time within the other
nodes of the decomposition (either exchange or leaf, introduction and removal nodes). For
every input instance size we guarantee that at least 20 different tree decompositions are
executed.

4. We compute the average run-time for each instance type, width (or range of widths) and
number of nodes.

We are interested in the execution time of the algorithms. As we want to keep side effects
minimal during the execution of our benchmark tests we measure the CPU-time, not the elapsed
real time. Although not perfect, the CPU-time supplies us with sufficiently accurate run-time
information.

The following metrics are measured for each input instance:

• The total time gives the overall execution time of the algorithm.

• The preparation time includes the time that is needed for parsing the input data. Further-
more, it includes the computation of the normalized or semi-normalized tree decomposi-
tion.

• The branch node time is the time that is spent within all branch nodes.

• The exchange node time gives the overall time that is needed for the computation of ex-
change nodes in semi-normalized tree decompositions. The leaf, intro, rem node time
gives the overall execution time within leaf, introduction and removal nodes of normal-
ized tree decompositions.

The exchange node time and the leaf, intro, rem node time are the most relevant benchmark
metrics as they allow a direct and reliable comparison of normalized and semi-normalized tree
decompositions.

The benchmark tests are executed on an openSUSE 11.4 machine with two Intel Xeon CPUs
(E5345, QuadCore, 2.33 GHz). The current implementation is single-threaded and thus only
makes use of one core at a time.

5.2. TEST INSTANCES 87

5.2 Test Instances

Grid Structure

Grid-based test instances are defined on basis of grid graphs: A grid graph consists of a matrix
of n × m vertices. Each vertex can be connected with its neighbors. In here, we use 8-grid
graphs: Then, a vertex is connoted with all eight vertical and horizontal as well as diagonal
neighbors. As we have directed edges that represent the attack relations each argument attacks
all neighbors.

1

2

3

4

...

1 2 3 4 5 6

x

Figure 5.1: 8-Grid, (6×m), Tree Width 7

An (n ×m) grid where n = 6 is depicted in Figure 5.1. For any m ≥ n, the tree width of
the graph is n+ 1. In our case, the tree width for m ≥ 6 is 7. This is due to the properties of tree
decompositions. We have that arguments that attack each other have to be contained in a bag.
Furthermore an argument that is removed can never be introduced anywhere above in the tree
decomposition. Finally, every argument has to appear in at least one bag. The dotted parts of
Figure 5.1 represent arguments that where already removed, X>t. Arguments that are encircled
with dashed lines were not yet introduced. Finally, the yellow part shows the arguments that are
in the current bagXt. In an optimal tree decomposition we have that at least n+2 arguments have
to appear together in a node of the tree decomposition. Consider the argument x in Figure 5.1.
It is the only argument that can be removed after Xt as it is the only argument where all attack
relations where either considered in X>t or Xt. If we would introduce a new argument this

88 CHAPTER 5. EXPERIMENTAL RESULTS

would result in a larger bag size. In other words, for an 8-grid (n×m) and m ≥ n we have that
the minimal bag size is n+2. The tree width is n+1. If we obtain an optimal tree decomposition
the width corresponds to the tree width.

For our benchmarks we generate the grid-based instances on basis of a certain edge proba-
bility p. p defines the probability of an attack relation between two nodes (arguments) appearing
in the test instance. Then, n+ 1 (for m ≥ n) is an upper bound for the tree width.

Clique Structure

Clique-based test instances consist of one or more independent cliques. In general, a clique is an
undirected graph where all vertices of the graph are connected. In our case, as we have directed
attack relations, we have that each argument attacks all other arguments of the clique. The tree
width of a clique with x vertices is x− 1 as all arguments attack each other. Hence they have to
appear together in a bag of the tree decomposition.

Then, our test instances consist of n independent cliques (there is no attack relation between
them) of size tw + 1. An example instance is given in Figure 5.2. Here, every clique consists of
6 arguments. hence, the tree width is 5. The yellow parts mark arguments that have to appear
together in a bag of the tree decomposition.

1 2 . . .

. . .

Figure 5.2: Clique Structure, Tree Width 5

5.3. NORMALIZED VS. SEMI-NORMALIZED ALGORITHMS 89

5.3 Normalized vs. Semi-Normalized Algorithms

Grid-Based Instances

In this section we compare the algorithm for semi-normalized tree decompositions to that for
normalized tree decompositions. We analyze the run-time performance on basis of instances
with different width, size (number of arguments) and edge probability.

Benchmark for 8-Grid Instances, Width 4 and Edge Probability 1

In this case the width is relatively small. The tree width of all instances is 4 and we obtained a
width of 4 for all input instances. In Figure 5.3 the results for instances with 600 to 9600 nodes
are presented.

On average, the preparation of the tree decompositions took about 73 percent of the total
run-time (for both algorithms). Therefore, with 3 percent of performance gain on average the
semi-normalized implementation is only slightly faster than the normalized implementation. But
when we analyze the average performance gain of the exchange node implementation to the leaf,
introduction and removal node implementation we have that the exchange node needs about 12.5
percent less time. Another interesting result is that the branch node needs almost no time.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

3.5

Total Time (SN) Preparation (SN) Branch (SN) Exchange (SN)

Total Time (N) Preparation (N) Branch (N) Leaf, Intro, Rem (N)

Input Instance Size (Arguments)

T
im

e
(s

e
c)

Figure 5.3: Benchmark Results for (3,m) 8-Grid, Width 4, Probability 1

90 CHAPTER 5. EXPERIMENTAL RESULTS

Benchmark for 8-Grid Instances, Width 13-15 and Edge Probability 0.6

The instances for this benchmark test where generated from graphs with a theoretical (maximal)
tree width of 7. Hence, the graph consists of a 6 × m matrix. For a range of 200 to 3200
arguments we compare the run-time performance. The results are depicted in Figure 5.4.

For these instances the preparation of the tree decompositions needed almost no time. Not
surprisingly, time for the computation within branch nodes of normalized and semi-normalized
tree decompositions is almost identical. This is due to the fact that both implementations share
the same branch node code. Furthermore the branch node takes about 60 percent of the overall
computation time.

This test case shows that a semi-normalized implementation can outperform the normalized
implementation: On average, the semi-normalized implementation of exchange nodes is 51 per-
cent faster than the implementation of the respective nodes for semi-normalization. Furthermore,
the overall runtime increases by 20 percent.

0 500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

50

60

70

Total Time (SN) Preparation (SN) Branch (SN) Exchange (SN)

Total Time (N) Preparation (N) Branch (N) Leaf, Intro, Rem (N)

Input Instance Size (Arguments)

T
im

e
(s

e
c)

Figure 5.4: Benchmark Results for (6,m) 8-Grid, Width 13-15, Probability 0.6

5.3. NORMALIZED VS. SEMI-NORMALIZED ALGORITHMS 91

Benchmark for 8-Grid Instances, Width 10-12 and Edge Probability 0.3

For this benchmark test we generated instances of theoretical (maximal) tree width 9 and an
edge probability of 30 percent. The tree decompositions we use inhere all have a width between
10 and 12. The number of arguments ranges from 600 to 6600. The results can be seen in
Figure 5.5.

As in the previous benchmark the costs for the preparation of the tree decompositions is
negligible. The branch node of both implementations is responsible for about 70 percent of the
total run-time.

On average, the exchange nodes of the semi-normalized implementation need about 40 per-
cent less time than the leaf, introduction and removal nodes of the normalized implementation.
Furthermore, the semi-normalized implementation is about 11.5 percent faster than the normal-
ized implementation.

0 1000 2000 3000 4000 5000 6000 7000
0

10

20

30

40

50

60

70

80

90

Total Time (SN) Preparation (SN) Branch (SN) Exchange (SN)

Total Time (N) Preparation (N) Branch (N) Leaf, Intro, Rem (N)

Input Instance Size (Arguments)

T
im

e
(s

e
c)

Figure 5.5: Benchmark Results for (8,m) 8-Grid, Width 10-12, Probability 0.3

92 CHAPTER 5. EXPERIMENTAL RESULTS

Clique-Based Instances

In this section we compare the implementation of the semi-normalized algorithm to that of the
normalized algorithm for admissible semantics. For the clique based test instances we have that
the tree decomposition computation always returns decompositions where the width is equal to
the tree width of the original graph.

Benchmark for Clique Instances, Tree Width 100

The test instances all have a width of 100 (and a tree width of 100 for the original graph). We
test the performance on instances where the number of cliques ranges from 1 to 10. As there are
101 arguments in each clique we have that this corresponds to an overall number of 101 to 1010
arguments.

The results are depicted in Figure 5.6. Most notably, the preparation needs by far the most of
the run-time, i.e. about 90 percent of the run-time of the normalized implementation and about
93 percent of the run-time of the semi-normalized implementation.

Hence, although we have a performance gain of 24.5 percent when comparing the exchange
node implementation to the implementation of leaf, introduction and removal node the overall
run-time only decreases by about 2.5 percent.

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

Total Time (SN) Preparation (SN) Branch (SN) Exchange (SN)

Total Time (N) Preparation (N) Branch (N) Leaf, Intro, Rem (N)

Input Instance Size (Cliques)

T
im

e
(s

e
c)

Figure 5.6: Benchmark Results for Cliques, Width 100, Tree Width 100

5.4. ANALYSIS OF BENCHMARKS 93

5.4 Analysis of Benchmarks

The benchmarks show that the implementation for admissible semantics on semi-normalized tree
decompositions performs better than the implementation on normalized tree decompositions. A
reason for this is that the semi-normalized tree decompositions contain less nodes. Furthermore
it is possible to implement optimizations for removed or introduced sets of arguments within the
exchange node.

The overall performance gain heavily depends on the input instance: For clique-based in-
stances the preparation consumes most of the overall execution time. A reason for this is prob-
ably the extremely high number of edges: In a clique with x vertices every vertex is connected
to all other x− 1 vertices. As we have directed edges it contains x(x− 1) edges. This not only
results in large input files but also the tree decomposition generation takes a long time.

Furthermore the computation within the branch node is extremely time consuming in case
the number of partial results within the child nodes is large. All partial results of the two child
nodes have to be combined.

On the other hand, if we compare the exchange node implementation directly to the imple-
mentation of leaf, introduction and removal node we have a huge performance gain. For our
grid-based instances with width 13 to 15 and an edge probability of 0.6 the exchange node com-
putation is 51 percent faster. For instances with width 10 to 12 and an edge probability of 0.3
the exchange node performs 40 percent better.

Another interesting observation is that the preparation of the tree decompositions needs al-
most the same time for both algorithms although the normalized tree decomposition consists of
much more nodes. As nodes can be introduced in time O(n) the performance difference is not
notable.

CHAPTER 6
Conclusion and Future Work

Conclusion

In this thesis we presented three novel algorithms for abstract argumentation frameworks that
are based on tree decompositions.

For our algorithms we made use of the properties of tree decompositions. Each argument
of the original argumentation framework appears in at least one bag of the decomposition. Fur-
thermore, if there exists an attack relation between arguments they are contained together in at
least one bag. Additionally, bags containing the same argument are connected upwards the tree
decomposition. Then, we defined B-restricted sets where B contains all arguments that were al-
ready completely considered in the sub-tree of the respective node and that fulfill the properties
of the respective semantics. Furthermore we defined valid colorings on basis of the arguments
in the current bag of a node and the arguments in the B-restricted sets. In the root node we
obtained that the B-restricted sets correspond to the extensions of the AF for a given semantics.
For complete semantics we additionally introduced the concept of labelings. This allowed us to
characterize B-restricted labelings where we do not only have information about the arguments
in the extensions of the (sub)-frameworks but also about arguments that are not in the extensions.

As the valid colorings are defined on basis of the B-restricted sets (or labelings) for a node
we defined, towards fixed-parameter tractability, v-colorings that are defined solely on basis of
the arguments in the current bag and the colorings of the child node(s). For the different node
types (leaf, introduction, removal, branch and exchange node) we proved that the v-colorings
correspond to valid colorings. Thus we did not have to compute the extensions of the sub-
frameworks explicitly. With this approach we achieved that the computational costs for the
computation of extensions is bound by the tree-with of the original argumentation framework.
Hence, we can compute extensions in

f(k) · nO(1)

time where k is the tree-width and n is the size of the AF.
Furthermore we proved the correctness of our algorithm for admissible semantics on semi-

normalized tree decompositions by showing that the computation of v-colorings in a semi-
normalized tree decomposition corresponds to the computation over introduction and removal
nodes in a normalized tree decomposition.

95

96 CHAPTER 6. CONCLUSION AND FUTURE WORK

We implemented two algorithms for stable and complete semantics for normalized tree de-
compositions and the algorithm for admissible semantics on semi-normalized tree decomposi-
tions. The implementation is included in the dynPARTIX1 project.

Furthermore we compared the already-existing algorithm for admissible semantics on nor-
malized tree decompositions to our novel algorithm for semi-normalized tree decompositions.
It turned out the semi-normalized decomposition performed better in all test cases. The overall
run-time, however, only decreased significantly if the preparation time for the tree decomposi-
tion and the evaluation of the branch nodes did not take too much time. This was the case for
our grid-based instances with width 13-15 (edge probability 0.6) and width 10-12 (edge prob-
ability 0.3). Our benchmark tests for clique-based instances showed that the preparation of the
tree decomposition took a lot of time. One reason was probably the fact that these instances
consist of many attack relations and the algorithm for the generation of tree decompositions has
to consider all of those.

Future Work

Our benchmark results show that the implementation on semi-normalized tree decompositions
with an exchange node where several arguments can be removed and introduced performs bet-
ter than the normalized tree decomposition with separate nodes for each removed or introduced
argument. Thus, it is expected that the development of algorithms for stable and complete se-
mantics on semi-normalized tree decompositions results in better performance as well.

On the other hand, considering our benchmark results, we also have to improve the per-
formance of the other components. In some cases the generation of the tree decomposition
takes about 90 percent of the overall run-time. It is therefore necessary to investigate how the
heuristics for the generation of tree decompositions can be improved. Furthermore the applied
heuristics provide us with tree decompositions where the width is much higher than the theoret-
ical tree-with of the problem instance. It is expected that a lower width (which, in the best case,
corresponds to the tree-width of the input instance) results in a far better performance. Smarter
heuristics could, of course, also need more run-time. This has to be investigated.

Furthermore, it may be possible to improve the overall performance of the branch nodes.
In this thesis we restricted ourselves to normalized and semi-normalized tree decompositions.
An evaluation of algorithms on tree decompositions without normalization would be interesting.
This, of course, results in more complicated definitions and proofs of the respective algorithms.

In this thesis we did not give a detailed complexity analysis for the decision problems of
credulous and skeptical acceptance. The complexity-theoretic results state the the problems are
fixed-parameter tractable but as the real run-time of algorithms may be hidden by the big-O-
notion it may be of great interest to narrow down the theoretical run-time of the algorithms.

Additionally, there exist many more semantics for abstract argumentation. It would be of
great interest to develop algorithms for further semantics such as naive, stage or ideal semantics
that are based on fixed-parameter tractability.

1http://www.dbai.tuwien.ac.at/proj/argumentation/dynpartix/

http://www.dbai.tuwien.ac.at/proj/argumentation/dynpartix/

List of Figures

2.1 Example Argumentation Framework, represented as Graph 10
2.2 Relations between Semantics . 15
2.3 AF and Dispute Tree [Modgil and Caminada, 2009] 20
2.4 Possible Tree-Decomposition for the Graph in Figure 2.1 24
2.5 Normalized Tree-Decomposition . 26
2.6 Semi-normalized Tree-Decomposition . 27

3.1 Semi-normalized Tree Decomposition with Sub-Frameworks 33
3.2 Normalized Tree Decomposition with V-Colorings for Admissible Semantics . . . 37
3.3 Normalized Tree Decomposition with V-Colorings for Stable Semantics 50
3.4 Normalized Tree Decomposition with V-Colorings for Complete Semantics 64
3.5 Semi-normalized Tree Decomposition with V-Colorings for Admissible Semantics 68

5.1 8-Grid, (6×m), Tree Width 7 . 87
5.2 Clique Structure, Tree Width 5 . 88
5.3 Benchmark Results for (3,m) 8-Grid, Width 4, Probability 1 89
5.4 Benchmark Results for (6,m) 8-Grid, Width 13-15, Probability 0.6 90
5.5 Benchmark Results for (8,m) 8-Grid, Width 10-12, Probability 0.3 91
5.6 Benchmark Results for Cliques, Width 100, Tree Width 100 92

99

Bibliography

Amgoud, L. and Devred, C. (2011). Argumentation frameworks as constraint satisfaction prob-
lems. In Proceedings of the 5th international conference on Scalable uncertainty manage-
ment, SUM’11, pages 110–122. Springer Berlin / Heidelberg.

Arnborg, S., Corneil, D. G., and Proskurowski, A. (1987). Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete Methods, 8:277–284.

Baroni, P. and Giacomin, M. (2003). Solving semantic problems with odd-length cycles in
argumentation. In Nielsen, T. and Zhang, N., editors, Symbolic and Quantitative Approaches
to Reasoning with Uncertainty, volume 2711 of Lecture Notes in Computer Science, pages
440–451. Springer Berlin / Heidelberg.

Baroni, P. and Giacomin, M. (2007). On principle-based evaluation of extension-based argu-
mentation semantics. Artificial Intelligence, 171:675–700.

Baroni, P. and Giacomin, M. (2008). Resolution-based argumentation semantics. In Proceedings
of the 2008 conference on Computational Models of Argument: Proceedings of COMMA
2008, pages 25–36, Amsterdam, The Netherlands. IOS Press.

Baroni, P. and Giacomin, M. (2009). Semantics of abstract argument systems. In Simari, G. and
Rahwan, I., editors, Argumentation in Artificial Intelligence, pages 25–44. Springer US.

Bench-Capon, T. and Dunne, P. E. (2007). Argumentation in artificial intelligence. Artificial
Intelligence, 171(10-15):619 – 641.

Besnard, P. and Doutre, S. (2004). Checking the acceptability of a set of arguments. In Del-
grande, J. P. and Schaub, T., editors, 10th International Workshop on Non-Monotonic Rea-
soning (NMR 2004), pages 59–64.

Besnard, P. and Hunter, A. (2001). A logic-based theory of deductive arguments. Artificial
Intelligence, 128(1-2):203 – 235.

Bodlaender, H. (1997). Treewidth: Algorithmic techniques and results. In Prívara, I. and
Ružicka, P., editors, Mathematical Foundations of Computer Science 1997, volume 1295 of
Lecture Notes in Computer Science, pages 19–36. Springer Berlin / Heidelberg.

101

102 BIBLIOGRAPHY

Bodlaender, H. L. (1993). A tourist guide through treewidth. Acta Cybernetica, 11:1–23.

Bodlaender, H. L. and Koster, A. M. (2010). Treewidth computations I. Upper bounds. Infor-
mation and Computation, 208(3):259 – 275.

Bondarenko, A., Dung, P., Kowalski, R., and Toni, F. (1997). An abstract, argumentation-
theoretic approach to default reasoning. Artificial Intelligence, 93(1-2):63 – 101.

Caminada, M. (2006). Semi-stable semantics. In Proceedings of the 2006 conference on Com-
putational Models of Argument: Proceedings of COMMA 2006, pages 121–130, Amsterdam,
The Netherlands. IOS Press.

Caminada, M. (2007). Comparing two unique extension semantics for formal argumentation:
ideal and eager. In Proceedings of the 19th Belgian-Dutch Conference on Artificial Intelli-
gence, pages 81–87. BNAIC 2007.

Caminada, M. and Gabbay, D. (2009). A logical account of formal argumentation. Studia
Logica, 93:109–145.

Coste-Marquis, S., Devred, C., and Marquis, P. (2005). Symmetric argumentation frameworks.
In Godo, L., editor, Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
volume 3571 of Lecture Notes in Computer Science, pages 471–471. Springer Berlin / Hei-
delberg.

Courcelle, B. (1990). Graph rewriting: An algebraic and logic approach. In van Leeuwen,
J., editor, Handbook of theoretical computer science (vol. B), pages 193–242. MIT Press,
Cambridge, MA, USA.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.

Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B., Musliu, N., and Samer, M. (2008). Heuris-
tic methods for hypertree decomposition. In Gelbukh, A. and Morales, E., editors, MICAI
2008: Advances in Artificial Intelligence, volume 5317 of Lecture Notes in Computer Sci-
ence, pages 1–11. Springer Berlin / Heidelberg.

Dimopoulos, Y. and Magirou, V. (1994). A graph-theoretic approach to default logic. Informa-
tion and Computation, 112(2):239 – 256.

Dimopoulos, Y. and Torres, A. (1996). Graph theoretical structures in logic programs and default
theories. Theoretical Computer Science, 170(1-2):209 – 244.

Dorn, F. and Telle, J. A. (2009). Semi-nice tree-decompositions: The best of branchwidth,
treewidth and pathwidth with one algorithm. Discrete Applied Mathematics, 157(12):2737 –
2746.

Doutre, S. and Mengin, J. (2004). On sceptical versus credulous acceptance for abstract argu-
ment systems. In Alferes, J. and Leite, J., editors, Logics in Artificial Intelligence, volume
3229 of Lecture Notes in Computer Science, pages 462–473. Springer Berlin / Heidelberg.

BIBLIOGRAPHY 103

Downey, R. G. and Fellows, M. R. (1995). Fixed-parameter tractability and completeness I:
Basic results. SIAM J. Comput., 24:873–921.

Dung, P., Mancarella, P., and Toni, F. (2007). Computing ideal sceptical argumentation. Artificial
Intelligence, 171(10-15):642 – 674.

Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321 – 357.

Dunne, P. E. (2007). Computational properties of argument systems satisfying graph-theoretic
constraints. Artificial Intelligence, 171(10-15):701 – 729.

Dunne, P. E. and Bench-Capon, T. (2002). Coherence in finite argument systems. Artificial
Intelligence, 141(1-2):187 – 203.

Dunne, P. E. and Wooldridge, M. (2009). Complexity of abstract argumentation. In Simari, G.
and Rahwan, I., editors, Argumentation in Artificial Intelligence, pages 85–104. Springer US.

Dvořák, W., Pichler, R., and Woltran, S. (2010a). Towards fixed-parameter tractable algorithms
for argumentation. In Lin, F., Sattler, U., and Truszczynski, M., editors, Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Twelfth International Conference,
KR 2010, pages 112 – 122. AAAI Press.

Dvořák, W., Szeider, S., and Woltran, S. (2010b). Reasoning in argumentation frameworks of
bounded clique-width. In Baroni, P., Cerutti, F., Giacomin, M., and Simari, G. R., editors,
Proceedings of the 2010 conference on Computational Models of Argument: Proceedings of
COMMA 2010, volume 216 of FAIA, pages 219–230. IOS Press.

Dvořák, W., Morak, M., Nopp, C., and Woltran, S. (2011). dynPARTIX - A dynamic program-
ming reasoner for abstract argumentation. CoRR, abs/1108.4804.

Dvořák, W. and Woltran, S. (2010). Complexity of semi-stable and stage semantics in argumen-
tation frameworks. Information Processing Letters, 110(11):425 – 430.

Egly, U., Gaggl, S. A., and Woltran, S. (2010). Answer-set programming encodings for argu-
mentation frameworks. Argument and Computation, 1(2):147–177.

Egly, U. and Woltran, S. (2006). Reasoning in argumentation frameworks using quantified
boolean formulas. In Dunne, P. E. and Bench-Capon, T. J. M., editors, Proceedings of the 2006
conference on Computational Models of Argument: Proceedings of COMMA 2006, volume
144 of FAIA, pages 133–144. IOS Press.

García, A. J. and Simari, G. R. (2004). Defeasible logic programming: an argumentative ap-
proach. Theory Pract. Log. Program., 4:95–138.

Kloks, T. (1994). Treewidth: computations and approximations, volume 842 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg.

Lifschitz, V. (1996). Foundations of logic programming, pages 69–127. Center for the Study of
Language and Information, Stanford, CA, USA.

104 BIBLIOGRAPHY

Modgil, S. and Caminada, M. (2009). Proof theories and algorithms for abstract argumentation
frameworks. In Simari, G. and Rahwan, I., editors, Argumentation in Artificial Intelligence,
pages 105–129. Springer US.

Morak, M. (2011). A Dynamic Programming-based Answer Set Programming Solver. Master’s
thesis, Vienna University of Techology.

Morak, M. (2012). SHARP - A Smart Hypertree decomposition-based Algorithm fRame-
work for Parameterized problems. http://www.dbai.tuwien.ac.at/research/
project/sharp/ (Accessed: Jan 12, 2012).

Niedermeier, R. (2006). Invitation to Fixed-Parameter Algorithms, volume 31. Oxford Lecture
Series in Mathematics and its Applications.

Ordyniak, S. and Szeider, S. (2011). Augmenting tractable fragments of abstract argumentation.
In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI
2011), pages 1033–1038.

Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley.

Papadimitriou, C. H. (2003). Computational complexity. In Encyclopedia of Computer Science,
pages 260–265. John Wiley and Sons Ltd., Chichester, UK.

Robertson, N. and Seymour, P. (1984). Graph minors. III. Planar tree-width. Journal of Combi-
natorial Theory, Series B, 36(1):49 – 64.

Seymour, P. D. and Thomas, R. (1993). Graph searching and a min-max theorem for tree-width.
J. Comb. Theory Ser. B, 58:22–33.

Verheij, B. (1996). Two approaches to dialectical argumentation: Admissible sets and argu-
mentation stages. In In Proceedings of the biannual International Conference on Formal and
Applied Practical Reasoning (FAPR) workshop, pages 357–368. Universiteit.

Verheij, B. (2007). A labeling approach to the computation of credulous acceptance in argumen-
tation. In Veloso, M. M., editor, Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI 2007), pages 623–628.

Wu, Y., Caminada, M., and Podlaszewski, M. (2010). A labelling-based justification status of
arguments. Proceedings of the 13th International Workshop on Non-Monotonic Reasoning
(NMR 2010), Studies in Logic, 3 (2010)(4):12–29.

http://www.dbai.tuwien.ac.at/research/project/sharp/
http://www.dbai.tuwien.ac.at/research/project/sharp/

	Introduction
	Background
	Argumentation
	Abstract Argumentation Frameworks
	Semantics of Argumentation Frameworks
	Decision Problems on Argumentation Frameworks
	Dynamic Programming and Tree Decompositions

	Tree-Decomposition based Algorithms
	Overview
	Algorithm for Stable Semantics (Normalized)
	Algorithm for Complete Semantics (Normalized)
	Algorithm for Admissible Semantics (Semi-Normalized)
	Evaluation of Decision Problems

	Implementation
	The SHARP Framework
	Algorithm Implementation
	The dynPARTIX Project

	Experimental Results
	Test Setup and Approach
	Test Instances
	Normalized vs. Semi-Normalized Algorithms
	Analysis of Benchmarks

	Conclusion and Future Work
	List of Figures
	Bibliography

