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Kurzfassung

Blockchain-Technologien und Kryptowdhrungen haben in den letzten Jahren einen grofien
Aufschwung erlebt. Die erste Blockchain, Bitcoin, wurde im Jahr 2008 vorgestellt und
war auf die Anwendung fiir dezentrale Kapitaltransaktionen fokussiert. Spéter folgten
sogenannte Blockchains der zweiten Generation, wie z. B. Ethereum. Diese ermoglichten
das Ausfithren von Code auf Blockchains mittels Smart Contracts. Durch neue For-
schungsarbeiten werden immer mehr Anwendungsfille fiir Blockchains gefunden, was
aufgrund der verschiedenen Anforderungen in der Erstellung neuer Blockchains und
Kryptowdhrungen resultiert.

Dies fiihrt zu einer starken Fragmentierung des Forschungsfeldes und zu oftmals inkompa-
tiblen Technologien. Dem entgegenwirkend ermoglicht das Deterministic Cross-Blockchain
Token Transfers (DeXTT) Protokoll Interoperabilitit zwischen Blockchains. Es erlaubt
den Nutzern das Ubertragen von Tokens auf mehreren Blockchains durch sogenann-
te Token-Transfers. Momentan gibt es bereits eine Implementierung von DeXTT fiir
Ethereum-basierte Blockchains. Das Ziel dieser Arbeit ist es, das DeXTT-Protokoll um
eine Implementierung fiir eine weitere Blockchain-Technologie zu erweitern.

In dieser Arbeit fithren wir eine formale Definition fiir die Anforderungen des DeXTT-
Protokolls ein. Des Weiteren erstellen wir eine Erhebung der technischen Aspekte von
aktuellen Blockchain-Technologien in Bezug auf diese Anforderungen. Basierend auf dieser
Erhebung wurde Bitcoin als Basistechnologie fiir eine Erweiterung des DeXTT-Protokolls
ausgewahlt

Zusétzlich schlagen wir ein Designkonzept fiir DeXTT auf der Bitcoin-Blockchain vor, in
welchem wir DeXTT-Daten in Null Data Outputs von Bitcoin inkludieren und Bitcoin Co-
re zur Kommunikation mit der Blockchain nutzen. Eine konkrete Implementierung dieses
Designkonzepts wird mittels der Programmiersprache Java erstellt. Wir evaluieren diese
Implementierung in Bezug auf die erforderliche Giiltigkeitsdauer von Token-Transfers und
der dabei anfallenden Kosten. Diese Evaluierung liefert eine minimale Giiltigkeitsdauer
der Transfers von vier Blocken (3000 Sekunden) bei der Nutzung von unbestétigten
Transaktionen bzw. fiinf Blocken (2400 Sekunden) fiir die ausschlieflliche Nutzung von
bestétigten Transaktionen. Des Weiteren erbrachte die Evaluierung folgende konkrete
Kosten fiir den durchschnittlichen Bitcoin-Preis und die durchschnittlichen Transak-
tionengebiihren vom April 2020: 1,1451 USD fiir den Empfénger eines Transfers und
mindestens 0,2395 USD fiir jeden Zeugen des Transfers pro Blockchain.
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Abstract

Blockchain and cryptocurrency technologies have emerged rapidly in recent years. The
first proposed blockchain was Bitcoin in 2008, with the primary usage for decentralized
monetary transactions. Later, so-called second generation blockchains like Ethereum
emerged, introducing the concept of smart contracts that enable code execution within
blockchain. More recent blockchain research includes also completely other directions and
use cases. Since each use case yields potentially different requirements, current blockchain
technology is exposed to a fast pace in change, including the creation of completely new
blockchains and cryptocurrencies.

This results in a big fragmentation of the field and mostly incompatible blockchain tech-
nologies arise. The Deterministic Cross-Blockchain Token Transfers (DeXTT) protocol
ensembles an approach that provides means of blockchain interoperability and therefore
tackles the problem of blockchain fragmentation. It enables users to record the transfer
of tokens on an arbitrary number of blockchains simultaneously. Currently, an Ethereum
prototype for the DeXT'T protocol exists. The aim of this thesis is to extend the DeXTT
protocol by implementing the protocol on another suitable blockchain technology.

Within this thesis, we formally define the requirements on blockchains to support a
DeXTT implementation. Furthermore, we introduce a survey on current blockchain
technologies in regards to their technical aspects concerning the DeXTT requirements.
Based on this survey, Bitcoin was chosen as a base technology to extend the DeXTT
protocol.

In addition, we propose a design for DeXTT on the Bitcoin blockchain, where we embed
DeXTT payloads into null data outputs of Bitcoin transactions and utilize the Bitcoin
Core client to access the blockchain. A concrete implementation of this design concept
is created using the Java programming language. We evaluate the implementation in
regards of the required transfer validity period and costs of DeXTT token transfers. This
evaluation yields a minimum validity period of four Bitcoin blocks (2400 seconds) when
using unconfirmed transactions, and five blocks (3000 seconds) for the usage of confirmed
transactions only. Furthermore, the evaluation runs yield the concrete cost of DeXTT
transfers for the average Bitcoin transaction fees and price in April 2020: 1.1451 USD for
the receiver of a transfer and at least 0.2395 USD for each witness of the transfer per
blockchain.

X1
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CHAPTER

Introduction

1.1 Motivation

Since the introduction of Bitcoin [Nak08], blockchain and cryptocurrency technologies
have emerged rapidly and even gained more attention in recent years [Zoh15]. While in
the early stages of blockchain research and development, the utilization for decentralized
monetary transactions was primarily considered, second generation blockchains, like
Ethereum [Wool4], additionally introduced the concept of smart contracts, enabling code
execution within blockchains [T'S16]. To achieve this, these blockchains also introduce
a quasi Turing-complete language, such as Solidity for Ethereum, and an execution
environment for their smart contracts, such as the Ethereum Virtual Machine (EVM) for
Ethereum [Danl7].

Recent blockchain research also follows completely other directions, having in mind novel
use cases in different fields. Research includes general industrial applications [AM19],
various economic and engineering fields [FF18], but also more specialized directions such
as Business Process Management (BPM) [Pry+20; Men+18a], healthcare [LXS19] or
applications for anti automotive counterfeiting [Lu+19]. Generally speaking, blockchains
could potentially be applied anywhere where there is a need to execute transactions and
store data in a decentralized way [Sch+19].

Because each blockchain use case has potentially different requirements for its implemen-
tation and features, current blockchain technology is exposed to a fast pace in change.
This change includes the creation of completely new blockchains and cryptocurrencies or
the addition of changes to existing blockchains that enable new functionalities [Y1i+16].
Another possible way to introduce new features is the introduction of additional lay-
ers on top of an existing blockchain [Wil+19]. These practices inevitably lead to a big
fragmentation in research and development, resulting in mostly incompatible technologies.

1
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1.

INTRODUCTION

The number of listed blockchains or cryptocurrencies respectively on CoinMarketCap!
can be adducted as a way to illustrate this fragmentation. As of March 2020, there are
more than 5167 different cryptocurrencies listed on this platform.

As a result of this fragmentation, additional problems for users arise, as they must decide
which blockchain and cryptocurrency they want to use. New blockchain technologies
need to build a large user base first and also have a higher risk of containing undiscovered
potential security issues, leading to potential loss of funds [Nof+17], but they offer novel
features and technologies. In contrast, old blockchains do not offer novel features, but are
instead more likely to be secure, as they have already been analyzed more deeply [Li+17].
For developers of blockchain-based applications, there also arises the question of which
blockchain to base their applications on, as interoperability of blockchains is mostly not
given.

The size of a blockchain’s user base is also a crucial factor for the choice of an appropriate
blockchain. Not only does it define the number of users that can be interacted with, but
it is also an important part for the proper and secure functionality of a blockchain due
to the distributed consensus rules [Nar+16].

Because of this fragmentation in research and development of blockchain technologies
and also the competition for a high user base, there should be a different approach for
users to choose between blockchain technologies.

This leads to the conclusion that the ability to interoperate between different blockchains
needs to emerge, enabling users to select blockchains dynamically according to new trends
and needs. Currently available approaches for blockchain interoperability provide a very
limited set of possible interactions, which are represented mostly in the form of atomic
swaps [Her18], where assets of different cryptocurrencies are atomically swapped. These
swaps can happen without the need for a trusted third party but they still do not allow
real interoperability, as transactions on one chain do not affect other blockchains.

Due to these limitations, interoperability of blockchains is therefore still actively re-
searched [Bor+19b; Liu+19; Zam+19; ZAA19; Zam+18; JDX18; Sir+19; KP19] and new
projects [Met18; Wool6; ZW17] currently arise in the field.

Nevertheless, as of today, the following actions can still only be performed within a single
blockchain [Sch+19]:

o the sending of tokens between participants,

e the execution of smart contracts,

o the storing of data with guaranteed validity in a blockchain.

The ability to carry out these actions across multiple blockchains would ultimately lead
to less fragmentation and easier use of blockchain technologies.

"https://coinmarketcap.com/all/views/all/
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1.2. Aim of the Work

1.2 Aim of the Work

There is quite some research being done and ready-to-use software available, regarding
atomic swaps between blockchains where different protocols exist to swap funds on diverse
blockchains. Regarding further approaches of blockchain interoperability, some novel
research directions are currently explored, resulting in new protocols for interactions
between blockchains. One very promising candidate is the Deterministic Cross-Blockchain
Token Transfers (DeXTT) protocol [Bor+19b], which enables users to record the transfer
of tokens on an arbitrary number of blockchains simultaneously, while being completely
decentralized without the involvement of an untrusted third party. The DeXTT is
described in detail in Section 2.4.

There already exists a prototype? of the DeXTT protocol developed to use with Ethereum-
based blockchains, which is conceptually portable to other blockchains. The main aim of
this thesis is to extend the DeXTT protocol by implementing the protocol on another
suitable blockchain technology, evaluate the implementation and compare the outcome
with the already proposed implementation and its evaluation on the Ethereum blockchain.
The following aspects describe the problems to be solved within this thesis.

Requirements for DeXTT Implementations. To choose an appropriate blockchain
for a new DeXTT implementation, the protocol requirements have to be formally
defined. The exact technically specified demands of the protocol for an underlying
blockchain technology allows the comparison of the requirements with the specifi-
cations and functionalities of possible blockchain candidates. This corresponds to
the research questions: “What are the technical requirements on a blockchain to
support the DeXTT protocol?”.

Suitable Blockchain Candidate. Within this thesis, a suitable blockchain candidate
to serve as a platform for a new DeXTT implementation is chosen. For this, it
is necessary to take into account the formal requirements of the DeXTT protocol
and also the properties and features of different blockchain technologies currently
available. This can be formulated as the following research question: “Which
blockchain is currently best suited and yields the most research value for a new
DeXTT implementation?”.

DeXTT Design for Chosen Blockchain. A new implementation of the protocol re-
quires the creation of an appropriate design for the chosen blockchain. The details
of the newly created design are highly depending on the chosen blockchain and
yield a theoretical point of view of how DeXTT works within the bounds of the
blockchain’s features. The corresponding research question can be formulated as:
“What design choices are required to integrate the DeXTT protocol into the chosen
blockchain?”.

2https://github.com/pantos—io/dextt—prototype
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1. INTRODUCTION

DeXTT Implementation for Chosen Blockchain. The main outcome of this thesis
is an implementation of the DeXTT protocol. This artifact will be developed for
the blockchain platform that has been determined to be best suitable and will be
based on the already existing prototype and the elaborated design. The according
research question reads as follows: “How can the DeXTT protocol be implemented
to work with the chosen blockchain technology?”.

Evaluation and Comparison of Implementation. The newly implemented software
needs to be evaluated in detail. The evaluation includes a quantitative analysis
of the required DeXTT transaction durations and the actual execution cost on
the blockchain and also how the implementation compares to the already existing
prototype on Ethereum. This part corresponds to the following research questions:
“What DeXTT transaction durations are required for the new implementation?
How high are the cost for the DeXTT protocol on the chosen blockchain? How do
these values compare to the DeXTT Ethereum prototype?”.

1.3 Methodology and Approach

The used methodology and approach for this thesis can be roughly broken down into the
following parts.

Breakdown of Requirements for DeXTT Implementations. To define a detailed
collection of formal requirements for a DeXTT implementation, the protocol itself
and the currently available prototype have to be analyzed. The availability of a
certain possible computational complexity for programs and also the existence of
sufficient hash function implementations on a smart contract platform are important
parts for an implementation to be feasible. Furthermore, the requirements must be
distinguished between pure blockchain implementations, meaning that all of the
protocol’s logic runs on the blockchain, and implementations where parts or all of
the protocol’s logic run on the client side.

Survey on different blockchains. To be able to select a suitable and reasonable
blockchain technology for the DeXTT protocol implementation, a detailed survey of
qualified candidate blockchains have to be created. As there exists a high number of
different blockchains, it is crucial to already preselect promising candidates, which
are then analyzed concerning their technical aspects. The survey will ultimately
lead to the decision of which blockchain to use for the DeXTT implementation.
The main factor for the preselection of blockchains is their rank (based on their
market cap) on platforms such as CoinMarketCap?, as the significance of the chosen
blockchain is an important factor.

Design, Creation and Description of New DeXTT Implementation. The main
part of this work is the design and implementation of a new DeXTT prototype

3https://coinmarketcap.com/
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1.4. Structure

for the chosen blockchain platform. For this, the currently existing Ethereum
prototype, the technology behind DeXTT and also the technical aspects of the
chosen blockchain need to be analyzed and understood precisely. The prototype
will then be built making use of best practices in software engineering and solutions
specialized for the given platform and the chosen programming language. The
implementation will be designed to act as close to the prototype for the Ethereum
platform as possible, to ensure its compatibility and comparability.

Evaluation of New Implementation. For the evaluation of the newly created im-
plementation of the DeXTT protocol on the chosen blockchain platform, private
blockchains will be deployed to ensure a high level of controllability of the evaluation
environment. The use of private blockchains allows a high level of reproducibility
and controllability for the evaluation runs and does not introduce any additional
cost other than for the hardware on which the blockchains and the DeXTT clients
are executed. The data raised from the evaluation will then be compared to the
data of the already existing Ethereum prototype. Additionally, both data sets can
be joined to allow a more general perception and conclusions about the DeXTT
protocol, regarding its cost and transaction duration.

1.4 Structure

The structure of this thesis is constructed as follows:

Chapter 2 introduces all important background knowledge required for the main part
of this thesis. This includes a basic description of blockchain technology, followed by
the fundamentals about Bitcoin and Ethereum. The last part of the chapter presents
the DeXTT protocol in detail. Within Chapter 3, an overview about the current state
of the art concerning different blockchain interoperability techniques is presented. In
Chapter 4, requirements for the DeXTT protocol are presented and properties and
features of different currently available blockchain technologies are analyzed concerning
their technical aspects. Last, the selection rationale of the blockchain candidate for the
DeXTT protocol implementation is described.

Chapter 5 presents the design approaches for a DeXTT implementation for the Bit-
coin blockchain. The introduced design takes all specific implementation choices of
the Ethereum prototype into account. Within Chapter 6, details about the concrete
implementation of the DeXTT protocol on the Bitcoin blockchain are discussed. In
Chapter 7, the evaluation of the DeXTT-Bitcoin implementation is presented. The
evaluation includes a quantitative analysis of the required DeXTT transfer validity period
and the actual execution cost on the blockchain. Additionally, the results are compared
and combined with the results of the evaluation of the Ethereum prototype. The thesis is
concluded by Chapter 8, where the work and results are summarized and relevant future
work is discussed.
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CHAPTER

Background

This chapter gives an introduction to fundamental knowledge required for the later parts
of this thesis. First, the basics of blockchain technologies are described briefly, including
a short description of smart contract platforms. Furthermore, the basics of Bitcoin are
presented together with all relevant aspects of Bitcoin that are used in the following
chapters.

Next, the fundamentals of Ethereum are described, including all parts necessary for a good
understanding of the DeXTT Ethereum prototype and comparisons of the results with
the results on Ethereum. This part focuses on the aspects that differentiates Ethereum
from Bitcoin.

The chapter is concluded by a detailed breakdown of all relevant parts of the DeXTT
protocol.

2.1 Blockchain Basics

The principle of a blockchain as it is used in today’s cryptocurrencies was first introduced
by Nakamoto [Nak08] as part of the unveiling of the Bitcoin blockchain and cryptocurrency
in 2008. The blockchain itself in its core is actually a type of distributed data structure.
The basic ideas behind the technology will be presented in the following sections.

2.1.1 Hash Pointers

An important concept for blockchains is the use of hash pointers, which are simply
pointers to the location of stored information, as a regular pointer, but they additionally
provide a cryptographic hash of the information pointed at. This hash can be used to
check whether the information the hash pointer references, has changed [Nar+16].
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Figure 2.1: Simplified blockchain structure [TS16].

A hash function is a function that produces a fixed size output from an input of arbitrary
size and is efficiently computable [Nar+16]. A cryptographic secure hash function
additionally provides three additional properties: colliston-resistance, hiding and puzzle-
friendliness. Details about these properties can be found in [Nar+16].

Blockchains make use of such hash pointers in different ways, including the usage for
linking blocks as in a linked list and to build Merkle Trees, which are binary trees that
use hash pointers to reference the tree nodes.

2.1.2 Blockchain Structure

A blockchain can be seen as a ledger, containing all transactions of the corresponding
currency in a totally ordered manner. Contrary to traditional banking systems, there
is no centralized party where this ledger is stored. The ledger is distributed among all
participants, called nodes, each of them storing a local copy of the blockchain, making a
blockchain a distributed ledger [TS16].

The basic structure of a blockchain is a linked list of blocks, but utilizing hash pointers
instead of ordinary pointers. This means that each block also contains a cryptographic
hash value of the block it points to, which allows to check if the block pointed at has
changed values. Due to this verification ability, any attempts to tamper blocks in the
blockchain can be detected, thus enabling blockchains to be utilized as a tamper-evident
log [Nar+16]. Because existing blocks cannot be changed anymore, the only way of
adding data to the blockchain is to add new blocks, it can therefore be seen as a write-only
log [Zoh15].

A simplified illustration of the basic structure of a blockchain is shown in Figure 2.1,
where each block also holds the hash value of the previous block.
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2.1. Blockchain Basics

2.1.3 Distributed Consensus

A typical problem for a distributed currency system is achieving distributed consensus
among the participating nodes, which is required because there exists no trusted third
party like a bank for the consensus. Blockchains face two types of problems when trying
to achieve distributed consensus: The imperfection of the network that connects the
nodes and attempts of adversaries to subvert the protocol [Nar+16].

Distributed consensus is achieved in blockchain systems by two simple rules in their
consensus algorithm [Zoh15]:

1. The creator of a new block gets chosen at random at each round [Nar+16]. For
instance in Bitcoin, this is achieved by making block creation difficult by design,
called Proof of Work (PoW). The block creation in Bitcoin is called mining [Zoh15].

2. The adoption of the longest valid chain. If nodes receive conflicting blocks that
make up a longer consistent chain than before, they adopt to the longer chain and
abandon the blocks in the shorter branch of the blockchain [Zoh15].

The rule to adopt the longest valid chain is effectively preventing the double spending of
coins, where two transactions spending the same coins are created. Ultimately, provided
by the consensus rule, only one of these two conflicting transactions will end up in the
longest chain. The probability that the chain changes to the other transaction in a
possible longer chain decreases exponentially by the number of new blocks created after
the block that contains one of the two double spending transactions [Nar+16].

2.1.4 Transactions

The transactions that make up the content of the distributed ledger of a blockchain
are the mechanism of cryptocurrencies to change ownership rights of coins. Coins,
on blockchains like Bitcoin, are not ordinary coins, but rather a chain of transactions
making up the amount of coins that can be spent, called Unspent Transaction Output
(UTXO) [Nar+16]. In contrast, blockchains like Ethereum use the concept of account
balances as coins [AW18].

Each participant of a blockchain needs at least a public/private key pair to interact
with the blockchain. Using this key pair, the participant can create transactions and
cryptographically sign them to prove that they are allowed to spend the referenced
coins [T'S16].

A public/private key pair consists of matching asymmetric keys that can be used for
encryption and decryption of data. As their names suggests, the public key is meant to
be shared with others, whereas the private key should be kept secret by its owner.

Data that is encrypted by the public key of the key pair yields a message that can only
be read by the owner of the corresponding private key. Data that is encrypted by the
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private key of the key pair yields a message, called digital signature, that can be read
and verified by anyone who knows the public key, but it could have only been produced
by the owner of the key pair knowing the private key [Her19]. More details about digital
signatures can be found in [Nar+16].

2.1.5 Smart Contracts

Bitcoin and other first generation blockchains already support smart contracts to some
extent through a limited scripting language that is used to unlock UTXOs. More details
about its limitations are given in Section 2.2. Second generation blockchains additionally
introduce the concept of quasi Turing-complete smart contracts. The first blockchain to
utilize that feature was Ethereum [Wool4].

A blockchain that supports smart contracts in the style of second generation blockchains
provides the ability to deploy a compiled contract to the blockchain. Such a contract can
be seen as a program that lives on the blockchain and can be invoked by a user of the
blockchain or even by other smart contracts. If a contract is invoked, it is executed by
each blockchain node in its blockchain-specific execution environment, e.g., the EVM for
Ethereum [Men+18b].

Because such a smart contract resembles an object from an object-oriented perspective,
it also has a state, which can change after each invocation. Each new state of a contract
is recorded and therefore saved on the blockchain, after the contract has been executed
by the node creating a new block [Her19; Danl7].

Smart contracts are usually written in a high-level language, such as Solidity for the
Ethereum blockchain, which is then compiled to a low-level byte code that can be executed
in the given execution environment. Only the compiled byte code is deployed to the
blockchain.

Such quasi Turing-complete smart contracts can be used to model complex scenarios,
but there are also some pitfalls, mainly through software vulnerabilities in a contract’s
code. Because such contracts can be used to manage funds, vulnerabilities can lead to a
total loss of funds [Her19).

2.2 Bitcoin

Bitcoin, introduced by Nakamoto [Nak08], is the first peer-to-peer electronic cash system
that utilizes blockchain technology for its distributed ledger as described in Section 2.1.
Bitcoin is also by far the most popular cryptocurrency as of March 2020, being ranked
on first place based on its market cap on CoinMarketCap!.

Bitcoin is used to store payment information in a decentralized way in its blockchain in the
form of Bitcoin transactions. It also offers a stack-based scripting language called Script,

'https://coinmarketcap.com/currencies/bitcoin/
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2.2. Bitcoin
Table 2.1: Different Bitcoin address types [bit18a].

A L i

ddress Chain cading Example

type Symbol(s)
P2PKH Mainnet 1 17VZNX1SNSNtKa8UQFxwQbFeFc3igRYhem
P2SH Mainnet 3 3EktnHQD7RiAE6UzMj2ZifT9YgRrkSgzQX
Bech32 Mainnet bcl beclqw508d6gejxtdgdyS5r3zarvary0cbxw7kv8f3t4
P2PKH Testnet m orn mipcBbFg9gMiCh81Kj8tggdgoZublZJRfn
P2SH Testnet 2 2MzQwSSNBHWHQSAQt TVQ6v47XtaisrJalVce
Bech32 Testnet  tbl tblgw508d6gejxtdgdybr3zarvarylc5xw7kxpjzsx

which is utilized to determine if funds, or rather UTXOs, can be unlocked by a given
transaction. In contrast to smart contract languages of second generation blockchains
like Ethereum, Script is not Turing-complete and rather limited in its features [Nar+16].

2.2.1 Addresses

In Bitcoin, identities of its users are generated in a decentralized way by the users
themselves. Because the addresses that serve as identities are derived from a public key,
creating a new address requires only the generation of a new public/private key pair
using the given digital signature scheme, i.e., no central authority is necessary. Bitcoin
users can generate as many addresses as they desire. It is actually recommended to use
a fresh receiving address for each transaction to enhance the user’s privacy [Nar+16;
bit20d].

Bitcoin uses the Elliptic Curve Digital Signature Algorithm (ECDSA) [JMVO01] as
its digital signature scheme, which is an U.S. government standard. Moreover, the
standardized secp256k1 elliptic curve [Hes00] is used for its signature scheme [Nar+16].

Addresses in Bitcoin are derived from a public key by first hashing it with the SHA-256
hashing algorithm and then the RIPEMD-160 algorithm subsequently. Then, a version
number is prepended and a checksum is appended. A base58-encoding is then used to
eliminate any ambiguous characters from the address string. The address derivation is

done to shorten and obfuscate the public key and also to improve its readability [TS16].

Bech32 type addresses use base32-encoding instead of base58-encoding [WM17].

The version number prefix of addresses affects the leading symbol in the encoded address
string, different address types and Bitcoin blockchain networks use different leading
symbols as shown in Table 2.1.

There is a distinction between Pay to Public Key Hash (P2PKH) [bit20d], Pay to Script

Hash (P2SH) [And12] and Bech32 [WM17] addresses in Bitcoin, indicated by their prefix.

The distinction is needed because the transaction mechanism for these different types

differs from each other. More on different transaction types is presented in Section 2.2.5.

11
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Bitcoin address prefixes are also different for different blockchain networks, if using
another network than the Bitcoin mainnet, such as the Bitcoin testnet [bit19h; bit19i].
Additionally, there exists the Regtest mode [bit19i], which is similar to the testnet, but
uses a private blockchain. For Bech32 addresses, the address prefix for the Regtest mode
is different from the testnet prefix, having a value of bcrt12. More details on different
Bitcoin blockchain networks are discussed in Section 2.2.7.

2.2.2 Block Creation

In Bitcoin, there are two incentives that make it desirable to create new blocks that
include valid transactions. One incentive is a block reward, which allows the creator
of a block to include a special coin-creation transaction in the block. The recipient
address can be chosen arbitrary. Typically, it is the address of the node that created
the block. This can be seen as payment to the node for creating and validating a new
block. The block reward started with a value of 50 Bitcoins and halves every 210,000
blocks [Nar+16].

The second incentive to create blocks including valid transactions are transaction fees.
This is achieved by spending less coins on the total value of transaction outputs than on
the total value of transaction inputs, i.e., the sender of a transaction pays the fee. The
change is given to the creator of the block that includes the transaction [Nar+16]. More
details about transaction fees are discussed in Section 2.2.6.

The creator of the next new block is determined through a cryptographic hash puzzle,
which approximates the selection of a random node by selecting nodes in proportion to
their computing power. This process is called PoW [Nar+16]. This hash puzzle requires
that the hash of each block header is smaller than a threshold value called target. By
changing the nonce field in the block header, which can contain arbitrary data, the hash
of the header can be recomputed until the hash suffices to the target value [Zoh15].

The target is defined by the number of leading zeros for the binary hash value. The
SHA-256 function is used for the hash calculation. For n leading zeros for the hash target,
on average 2" attempts are needed to solve the hash puzzle. The number of leading zeros
therefore represents the difficulty to solve the cryptographic hash puzzle and to create
a new valid Bitcoin block [T'S16]. The process of repeatedly attempting to create new
valid blocks is called mining and the participating nodes are called miners [Nar+16].

There also exist other techniques to select random nodes in proportion to other means
than computing power, for instance when using Proof of Stake (PoS), the selection is
done in proportion to ownership of the currency [Nar+16].

When a transaction is included in a valid block, it is considered a confirmed transaction
(1 confirmation), otherwise it counts as unconfirmed (0 confirmations) and can generally
not be considered valid. The confirmation number of a transaction is defined by the
number of blocks in the blockchain after the block that includes the transaction (including

?https://github.com/bitcoin/bitcoin/issues/12314
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2.2. Bitcoin

the block that includes the transaction itself). A confirmation number of six is a
common heuristic to be sufficiently convinced that the transactions is included in the
blockchain [Nar+16].

To provide a certain stability and reasonable waiting times for transaction confirmations,
the target valid for the cryptographic hash puzzle for the block creation is adjusted every
2,016 blocks. It gets adapted to approximately meet a block creation rate of one block
every 10 minutes. This means, the target is recalculated every 2 weeks (2,016 10 minutes)
on average [TS16].

2.2.3 Block Structure

Transactions in Bitcoin are grouped in blocks as an optimization, because it is faster for
the participants to reach consensus on a block of transactions than on each transaction
individually. Furthermore, a hash pointer chain made up of blocks containing multiple
transactions is shorter than chaining up individual transactions, which makes it easier to
verify the data structure [Nar+16].

To store all transactions of a block, a Merkle tree is utilized. This is a binary tree that
uses hash pointers and allows to create a digest of all transactions in a block in an efficient
way. It also allows to check if a transactions is included in a block by searching a path in
the Merkle tree. The length of such a path is logarithmically bound by the number of
transactions in a block [Nar+16].

A Bitcoin block consists of a block header bundled together with all transactions of the
block, arranged in a tree structure [Nar+16]. The block header contains the following
data fields:

Block Version. The block version specifies which version of validation rules have to be
followed for the block. Rule changes can be introduced by soft forks. Currently,
version 4 is used [bit20c]|.

Previous Block Hash. Contains the SHA-256 hash of the block header of the previous
block and functions as a hash pointer for the blockchain structure. The hash ensures
that previous blocks cannot be changed without also changing the header of this
block [bit20c].

Merkle Root Hash. The root of the Merkle tree data structure used for the transac-
tiosns in the block. This hash value is derived from all hashes of the transactions
that are included in this block. This ensures that no transaction in the block can
be changed without also changing the block header [bit20c].

Time. Contains the block time as an Unix epoch timestamp, meaning it is represented
as seconds since 1970-01-01T00:00 UTC. 1t is set usually to the time the miner
started hashing the header [bit20c]. To be valid, it must be strictly greater than
the median timestamp value of the last 11 blocks and at most 2 hours in the

13
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future compared to the network-adjusted time. The network-adjusted time of a
node is the median time of all nodes that are connected to this node. This means
that the timestamps in block headers are not accurate, allowing an error of a few
hours [bit19b].

NBits. This field encodes the target threshold that the hash of this blocks header must
be less or equal to in order to be valid. It therefore defines the difficulty for the
block creation. The value is encoded in a less precise format as the field only has a
size of 32 bit to represent a 256 bit value [bit20c].

Nonce. An arbitrary number that can be changed in the mining process to find a block
header hash that is less or equal to the current target threshold [bit20c].

A Bitcoin block is limited in its size. Before the Segregated Witness (SegWit) soft
fork [LLW15], the block size was limited to 1IMB (1,000,000 bytes) in total size. SegWit
introduced a new unit called block weight, which is defined as Basesize - 3 + Totalsize,
where Basesize is defined as the block size in bytes using the original block serializa-
tion without any witness-related data. The T'otalsize is the block size in bytes where
transactions are serialized including witness data as defined in [LW16].

The new rule after the SegWit soft fork is defined as blockweight < 4,000,000 [LLW15].

2.2.4 Transactions

The transactions on the Bitcoin blockchain do not make up an account-based currency
system, because that would mean if someone wants to verify if a transaction is valid, they
would have to keep track of these account balances. That would require to not only save
transactions that transfer coins themselves, but also to use more efficient data structures
that track balances after each transaction or block. Without additional data structures,
one would need to look backwards in time to scan all previous transactions of an account
to verify a new transaction [Nar+16].

The overcome these problems with account-based systems, Bitcoin uses another approach
for its ledger, that only requires to keep track of the transactions themselves. The
transactions specify a certain number of inputs and outputs, the inputs consume coins of
previous outputs and the outputs create new coins that can be consumed later, called
UTXOs (see Section 2.1.4). To reference other outputs, each transaction has a unique
identifier, the outputs are then indexed beginning with 0. Transactions that create new
coins are an exception that do not consume other coins of previous outputs [Nar+16].

Because previous outputs can only be used once as transaction inputs, the entire amount
of each input needs to be assigned to the new output of a transaction. Any amount that
is not consumed in an output will be collected by the miner of the block as a transaction
fee. Because it is often necessary to only transfer parts of the coins of a transaction input,
the remainder of the coins need to be assigned to a new output, effectively sending the
amount of Bitcoins back to the sender itself, creating a new UTXO that can be consumed
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2.2. Bitcoin

again. It is considered best practice to actually use a fresh change address for this new
output each time a transaction is made [Nar+16; bit20d].

To check whether a transaction output has been spent already, it is only necessary to
scan all transactions between the referenced output and the transaction that uses that
output as an input, as it is impossible to spend an output before it is created. Therefore,
it is not necessary to check to entire blockchain to verify a transaction [Nar+16].

Listing 2.1: A Bitcoin transaction [Nar+16].

—_—

"hash":"5a42590fb..."
"ver":1,

"vin_sz":2,
"vout_sz":1,
"lock_time":0,
"size":404,

in": [
{
"prev_out":{
"hash":"3bed4ac972...",
"n":o
}I
"scriptSig":"30440b6a7..."
}I
{
"prev_out": {
"hash":"7508e6ab2...",
"n":0
}I
"scriptSig":"3f3a4ce81..."
}
]I
"out": [

{
"value":"10.12287097",
"scriptPubKey":"OP_DUP OP_HASH160 69e02el8b... OP_EQUALVERIFY
— OP_CHECKSIG"

}

In Listing 2.1, a low-level example of an actual legacy Bitcoin transaction is shown
in human-readable format, which gets converted to a compact binary format on the
blockchain. A transaction is composed of three parts:

Metadata. This part of a transaction (line numbers 2-7 in Listing 2.1) is mainly used
for housekeeping. The metadata contains a hash value of the entire transaction, the
transaction ID, serving as a way to uniquely identify the transaction. Furthermore, a

15
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transaction contains information about its input and output sizes and the transaction
size. The lock_time is used to delay the publication of the transaction by the
miners until either a specific block number or a certain point in time [Nar+16].

Inputs. The inputs of a transaction (line numbers 8-23 in Listing 2.1) form an array,
each entry representing one transaction input. An input references a previous
transaction via its hash value and uses an index value to specify the referenced
output of that transaction. Each output can be used and therefore referenced only
once as an input, otherwise it is an attempt to spend the same coin twice, called
double spending, which is forbidden. An output can therefore only be either an
UTXO that has not been referenced yet or a Spent Transaction Output (STXO)
that has already been spent [T'S16]. Each input also contains a field scriptSig, where
in the simplest case, a signature is specified, that is used to claim the referenced
output. But this field actually contains a redeem script using Bitcoins Script
language and can therefore be more complex than just a single signature [Nar+16].
More details about these scripts are given in Section 2.2.5.

Outputs. Just as the inputs, the outputs (line numbers 24-29 in Listing 2.1) also form
an array of transaction outputs. Each of them contains a value that specifies the
amount of coins that output represents. The sum of the values of all outputs
have to be less or equal to the sum of the values of all referenced outputs of the
transaction inputs. If the output sum is less than the input sum, the difference
represents the transaction fee that can be claimed by the miner [Nar+16]. The
outputs additionally specify a field called scriptPubKey, which contains again a
Bitcoin Script that is used to specify how the output can be claimed. In the case
of the transaction in Figure 77, the script in the given output specifies a P2PKH
script, effectively only allowing the claiming of this output to the owner of a given
public key that is given in its hashed form inside the script [Nar+16]. More details
on how Script works are given in Section 2.2.5.

SegWit transactions [LLW15] that were introduced through a soft fork in 2017 [Fry17]
specify additional fields in the transaction structure. SegWit was proposed to solve the
malleability problem, doing so by redesigning the structure of transactions. Additionally,
through SegWit the maximum block size was also increased. The idea of SegWit is
to decouple the information needed for transaction verification from the rest of the
transaction. This detached data includes scripts and signatures that are than placed in a
new structure called witness [Pér+19]. Through the SegWit soft fork, the following new
fields for SegWit transactions are defined [LLW15]:

Marker. Must be a zero byte, having a value of 0x00.
Flag. Must be a single byte that is not zero. Currently, 0201 must be used.

Witness. This field includes the serialization of all the witness data of the transaction,
where each transaction id can be associated with one entry in the witness field.
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Additionally, a new hash value, called wtzid is included, which is the SHA-256 hash
of the traditional transaction data combined with the newly defined fields [LLW15].
Bech32 addresses represent native output addresses for SegWit transactions (see Sec-
tion 2.2.5) [WM17].

2.2.5 Bitcoin Script

The scripting language that Bitcoin uses is called Secript and was specially designed
for the use within Bitcoin, but is very similar to a language called Forth, which is
a simple stack-based programming language [Nar+416]. Script is also a stack-based
language, which means that a stack is used as memory layout and that each instruction
is only executed once. More precisely, Script does not support the concept of loops
and therefore the number of instructions gives an upper bound for the runtime and
memory consumption of a script [Nar+16]. This also means that the language is not
designed to be Turing-complete, making it easier to handle and avoiding unintended side
effects [TS16].

Functionality

The scripting language of Bitcoin gives a certain amount of programmability to what a
transaction actually does. The most common form of a Bitcoin transaction is to redeem a
previous output through a signature using the correct key. This is done by specifying the
public key or its hash respectively within the transaction output that is to be redeemed.
To encode such behavior, each output of a Bitcoin transaction contains a script called
scriptPubKey, that expects some arguments. These arguments are given by a script called
scriptSig inside the input within the transaction that wants to spend the output [Nar+16;
TS16].

To validate whether a transaction redeems the output of a previous transaction correctly,
the input script (scriptSig) of the new spending transaction is combined with the out-
put script (scriptPubKey) of the previous output by simply concatenating them. The
resulting combined script, {<scriptSig> <scriptPubKey>}, must run successfully,
yielding the output value true, for the spending transaction to be valid. Generally, there
are only two possible outcomes of a script execution, either it runs successfully yielding
(output true), making the transaction valid. Or the scripts execution yields an error, in
that case the transaction is invalid and must not be included in a block [Nar+16].

The Bitcoin Script language only allows for 256 different instructions, because such
opcodes are encoded within a single byte value. But not all of those 256 possible values
are actually assigned to a valid instruction, some of them are reserved, meaning that
they do not have any specific meaning yet, but might be added to the protocol in later
versions. There are also some instructions that existed in early versions of the Bitcoin
protocol, but were removed in later versions, because the clients might have a bug in
their implementations. The motivation of disabling those instructions comes from bugs
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such as the one found in the implementation of the OP__LSHIF'T instruction, that could
crash any Bitcoin node if exploited [bit19g].

Script includes many basic instructions that can be expected for a programming language,
such as basic arithmetics, flow control, although without the support for loops, throwing
errors or returning early. But there are some crucial limitations. Currently, all bitwise logic
operators except for the equality check are disabled and additionally, all multiplication,
division and shift instructions are disabled. The language also supports some important
cryptographic instructions for hashing and signature verification. The following hash
functions can be used natively via a single instruction: RIPEMD-160, SHA-1 and SHA-
256. There are also instructions for ECDSA [JMVO01] signature verification using the
secp256k1 elliptic curve [Hes00], including the OP_CHECKMULTISIG instruction that
checks multiple signatures using a single instruction [Nar+16; bit19g]. The signatures
must be encoded using strict DER encoding [Wuil5].

Standard Transactions

There are currently five script templates that can be used to create standard transactions.
Any non-standard transaction that contains anything besides a standard scriptPubKey
will neither be accepted, broadcast nor mined by peers and miners using the default
Bitcoin Core settings. If they are already included in a block, transaction will avoid the
IsStandard test and are therefore handled normally [bit20d]. Currently the standard
scriptPubKey script types are as follows [bit20d]:

Pay to Public Key Hash (P2PKH). This is probably the most common and es-
sential form of transaction script. It transfers coins to one or multiple Bitcoin
addresses [TS16; bit20d]. The script template used for that type of transactions is
shown in Listing 2.2.

Listing 2.2: P2PKH script template [T'S16].

scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY
— OP_CHECKSIG
scriptSig: <sig> <pubkey>

The output script specifies a public key hash <pubKeyHash> together with the
instructions of the script. Within the input script of its spending input, a signature
<sig> together with its public key <pubkey> are specified. The script checks
first, whether the <pubKeyHash> is indeed the hashed version of the <pubkey>,
followed by checking if the <pubkey> matches the given signature <sig>, meaning
that the according private key of the key pair was used to create the signature [TS16].

Pay to Script Hash (P2SH). Because of how Bitcoin Script works, the sender of coins
has to specify the script to redeem the coins later. This can be counter-intuitive.
For the sender it would be the easiest way to only specify an address to send coins
to. This led to the introduction of P2SH [And12] transactions [Nar+16]. They
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2.2. Bitcoin

move the responsibility for supplying the redeem condition from the sender to the
receiver. The sender merely has to specify the hash value of the script that is used
to redeem the coins [And12]. The template of a P2SH script is shown in Listing 2.3.

Listing 2.3: P2SH script template [TS16].

scriptPubKey: OP_HASH160 <redeemScriptHash> OP_EQUAL
scriptSig: [<sig> ...] <redeemScript>

The P2SH script first hashes the given <redeemScript> and checks whether
the result matches the specified <redeemScriptHash>. If it matches, a special
second step of validation is performed, the <redeemScript> is reinterpreted as a
sequence of instructions and executed, with the rest of the stack ([<sig> ...])
as its input [Nar+16].

Multisig. Multisig, or m-of-n multi-signature transactions, require m valid out of n

possible signatures for a transaction to be redeemed successfully. Because of
an off-by-one error in the original Bitcoin implementation, OP_CHECKMULTISIG
consumes one more element from the stack than indicated by m, therefore an extra
value of 0 is added on the stack [TS16; bit20d]. The m-of-n multi-signature script
template is shown in Listing 2.4.

Listing 2.4: m-of-n multi-signature script template [T'S16].

scriptPubKey: <m> <pubKey> [<pubkey> ...] <n>
— OP_CHECKMULTISIG
scriptSig: 0 [<sig> ...]

The output script specifies the number of required signatures m, followed by n
possible public keys <pubKey> and the number of possible signatures n. To redeem
the coins in the output, the input script must first specify a zero value due to the
bug in the opcode, followed by m signatures that each match a different public key
listed in the output script [TS16].

Pay to Public Key (P2PK). These transactions are a simplified form of P2PKH

transactions, where instead of a public key hash, the whole public key of the receiver
is specified in the output script [bit20d]. This allows for simpler scripts as shown in
the transaction template in Listing 2.5, but it comes with two downsides. First, the
information that has to be shared between receiver and sender to make a transaction
is significantly longer and second, the actual public key is revealed in advance,
providing less protection in case the used ECDSA becomes vulnerable [bit19g].

Listing 2.5: Pay to Public Key (P2PK) script template [bit19g].

scriptPubKey: <pubKey> OP_CHECKSIG
scriptSig: <sig>
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2. BACKGROUND

Null Data. This transaction type can be used to add arbitrary data to the blockchain
using a provable unspendable output script. There exists no input script that
can redeem coins in transaction outputs using Null Data. This also means that
the output can be pruned from the UTXO set although being unspent, i.e., the
output does not bloat the UTXO set as do other means of storing data on the
blockchain [bit20d; bit19g]. Because this transaction outputs can not be spent,
they usually contain a zero Bitcoin amount and there is a limit of one Null Data
output per transaction [Ant14]. The size limit for the Null Data transaction to
be relayed and mined in the network is currently 83 bytes in size for the whole
scriptPubKey as of Bitcoin Core 0.12.0. This means that a maximum of 80 bytes
of raw data can be included, because the Null Data opcode OP_RETURN (1 byte)
and also a data push (2 bytes) have to be included [bit20d]. The script template is
shown in Listing 2.6.

Listing 2.6: Null Data script template [TS16].
scriptPubKey: OP_RETURN <data>

Segregated Witness transactions

Through the introduction of SegWit transactions, there are now also adapted versions of
the standard scripts to support the new transaction structure. Bech32 addresses represent
native SegWit output addresses and allow the usage of native SegWit transactions. It is
also possible to nest SegWit transactions into P2SH transactions, using them non-natively
with P2SH addresses [LLW15]. Beginning with Bitcoin Core version 0.19.0.1, Bech32
addresses and therefore also native SegWit transactions are the default format when
using its GUI?. The following two adapted standard script templates are used for native
SegWit transactions.

Pay to Witness Public Key Hash (P2WPKH). The template for the version 0
Pay to Witness Public Key Hash (P2WPKH) script is shown in Listing 2.7. The 0
in the scriptPubKey indicates that this is a version 0 witness program, the type
is given by the length of the following data. The semantics stays the same as for
P2PKH transactions, but the signature and public key are now given in the witness
part of the spending transaction, i.e., there is no scriptSig anymore [LLW15].

Listing 2.7: P2WPKH script template [LLW15].
witness: <sig> <pubkey>

scriptSig: (empty)
scriptPubKey: 0 <20-byte pubKeyHash>

Pay to Witness Script Hash (P2WSH). Listing 2.8 shows the version 0 Pay to
Witness Script Hash (P2WSH) script template. Again, the 0 in the scriptPub-
Key indicates that this is a version 0 witness program, the transaction type is

3https://bitcoin.org/en/release/v0.19.0.1
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2.2. Bitcoin

distinguished by the length of the following data, being a 32 byte hash. The
semantics is the same as for the P2SH script without SegWit, but the input for the
<witnesScript> and the script itself are now included in the witness part of the
spending transaction, i.e., scriptSig is not needed anymore [LLW15].

Listing 2.8: P2WSH script template [LLW15].

witness: [<sig> ...] <witnesScript>
scriptSig: (empty)
scriptPubKey: 0 <32-byte witnessScriptHash>

2.2.6 Transaction Fees

An incentive for miners besides the block reward, are transaction fees (see Section 2.2.2).
Each transaction can give a certain amount of its input value to the miner of the block
that includes the transaction, by not spending the sum of all input amounts within its
outputs. The difference between the sum of Bitcoins of all inputs and the sum of Bitcoins
spent in all outputs can be claimed by the miner as a transaction fee [Nar+16]. Because
Bitcoin is designed to include transaction fees in that way, fees are defined and payed by
the sender of a transaction [bit19e].

Transactions compete for the limited available space in each block, therefore market
forces should eventually set the fee rate [Zoh15]. The minimum transaction fee that is
necessary for a transaction to confirm within a given number of blocks varies over time
and is determined through supply and demand of block space in Bitcoin’s free market.
The maximum block size is currently 1 million vbytes and as blocks are not produced on
a fixed schedule (see Section 2.2.2), the effective maximum block size varies over time.
This varying effective maximum block size defines the supply of block space. The demand
of block space is given by the number of spenders, how much they are willing to pay as
transaction fee and how long they are willing to wait for a confirmation. The demand
varies according to patterns, such as the current day of the week [bit19e].

One vbyte or virtual byte, is equal to 4 weight units. Each weight unit represents
a 1/4,000,000th of the maximum block size. The amount of vbytes a transaction
needs in a block depends on the type (SegWit or legacy) and the actual size of the
transaction [bit18c]|.

Miners want to maximize the total amount of transaction fees they can earn by creating
one block. Because the size of a block is limited, they try to include the transactions
with the highest fee per size unit (vbyte), called fee rate. By increasing the fee rates,

the probability that the transaction is included in a more recent block is also increased.

Many Bitcoin clients such as Bitcoin Core support some means for dynamic fee rate
estimates for a given amount of blocks that the sender can bear to wait, longer wait time
means a lower fee rate [EOB19; bit19¢]. There are also online services that analyse and

estimate fee rates over time, such as Feesim?.

‘https://bitcoinfees.github.io/

21


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

BACKGROUND

22

2.2.7 Blockchain Networks

Experimenting and testing with the Bitcoin blockchain is often needed, but when doing
so using the Bitcoin mainnet, i.e., the live Bitcoin network, real Bitcoins are needed and
therefore interactions are limited and expensive. One way to avoid testing applications
using the mainnet is to use the Bitcoin testnet [bit19h], which is essentially a global
playground to experiment with the Bitcoin protocol and its capabilities [TS16].

The testnet uses a distinct blockchain that is independent from the mainnet. Testnet
coins are supposed to never have any value and can be obtained from so-called faucets®
for free, although often the amount of coins that can be received in a certain amount of
time is limited. The Bitcoin testnet blockchain mimics the mainnet and runs the same
code as the peers on the mainnet, apart from slight changes in its parameters. These
changes include different port numbers and other address prefixes. The most important
change is done to the block creation difficulty, which resets back to the minimum value
for one block, if no block has been found in 20 minutes [T'S16; bit19h]. Additionally, in
testnet some restrictions are relaxed, such as standard transaction checks, meaning that
all transactions, standard or not, are treated equally [bit19i].

Another way of experimenting is the use of local testing environments, meaning that
a private blockchain is run locally, where there is no interaction with random peers
and blocks. Bitcoin Core has a built-in regression test mode (regtest mode) that can
be used as a local testing environment. It provides more control over the blockchain,
blocks can be generated instantly and coins, of course without having any value, can
be created [T'S16]. Apart from these differences, it follows the same basic rules as the
testnet [bit19i]. It is also possible to run multiple independent regtest mode instances
and therefore blockchains in parallel on the same machine®.

2.3 Ethereum

Ethereum [Woo14] is a second generation blockchain that utilizes the concept of quasi
Turing-complete smart contracts, which are programs that live on the blockchain (see
Section 2.1.5). These programs can be invoked by users or other contracts by sending
transactions to the blockchain. The effects of those invocations are then validated by the
network [BP17].

2.3.1 Cryptographic Primitives

In Ethereum, the Keccak-256 hash function is used throughout its whole design. Instead
of the final SHA-3 specification, the version 3 of the winning entry to the SHA-3 contest
by Bertoni et al. [Ber+11] is utilized [Wool4].

Se.g. https://coinfaucet.eu/en/btc-testnet/
Shttps://bitcoin.stackexchange.com/a/39168
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2.3. Ethereum

Just as Bitcoin, Ethereum uses the ECDSA [JMVO01] as its digital signature scheme
together with the standardized secp256k1 [Hes00] elliptic curve. The cryptographic
signatures that are produced by this signature scheme do not use DER encoding as in
Bitcoin, which only includes the r and s value of the signature [Bro09]. In Ethereum,
the signatures include the three values v, r and s of the signature, allowing the recovery
of the public key that was used to create the signature [Wool4; AW18|.

2.3.2 Accounts

In contrast to Bitcoin, balances or coins in Ethereum are account-based instead of the
usage of UTXOs. Ethereum has the concept of two different account types, externally
owned accounts (EOAs) controlled by their corresponding private keys and contract

accounts that have smart contract code. Contract accounts do not have a private key.

They are solely owned and controlled by their own logic within the contract on the
blockchain [AW18].

Each account is comprised of the following data [AW18]:

Ether balance. Represents the number of ether (native coins on Ethereum) the account
owns.

Nonce. Indicates the number of successfully sent transactions for EOAs or the number
of created contracts for contract accounts.

Accounts storage. A permanent data store, used by contract accounts to persist their
state. Is always empty for EOAs.

Program code. Includes the byte code of a smart contract if the account is a contract
account. For an EOA, it is always empty.

Both account types have addresses that are used for interactions. The address format of
Ethereum accounts is designed in a simple way. Ethereum addresses are represented as
hexadecimal numbers. They are derived from the last 20 bytes of the Keccak-256 hash of
the corresponding public key [AW18].

2.3.3 Ethereum Smart Contracts

A smart contract in Ethereum is essentially a program that lives on the blockchain.

This is achieved by deploying its byte code. The smart contract code is executed in its
own execution environment called EVM. A deployed contract has its own ether balance
and other users or contracts can make procedure calls through the Application Binary
Interface (ABI) that the contract exposes. An essential feature is the ability of a contract
to send and receive ether [Nar+16].

Contracts are usually written in a high-level language that is easier to write and read
than the byte code. The code of the high-level language is then compiled into EVM byte
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code before being deployed. There exist several compatible high-level languages. The
most established and important one is Solidity. Solidity is a procedural programming
language that utilizes a syntax that is very similar to JavaScript’s syntax [AW18].

In contrast to Bitcoin Script, Ethereum smart contracts support the concept of loops,
meaning that the execution of a contract is not bound by time or space. Furthermore, it
is generally undecidable if a contract will run forever, known as the Halting Problem. To
limit the execution of contracts, Ethereum uses a mechanism called gas. Each instruction
that is executed costs a small amount of ether (called gas in this context). The cost
depend on the given instruction. For instance, the computation of a hash value or
persisting data costs more than primitive instructions such as basic arithmetics and logic.
Each contract call must specify the maximum amount of gas that can be spent, called
gas limit [Nar+16].

2.3.4 Ethereum Blockchain

Ethereum uses the same consensus model as Bitcoin: PoW is used to create blocks
and determine the longest chain and therefore the current state of the Ethereum state
machine. There are plans for the near future to change to the PoS voting system. As a
result of the account-based balances and other state data on the blockchain, Ethereum
uses a serialized hashed data structure called Merkle Patricia tree to store the system
state, which is a specialized form of a Merkle tree [AW18].

Just as in Bitcoin, there is also a difficulty for block creation that is adjusted regularly
to meet the aimed block creation time of 15 seconds. This time is much shorter than in
Bitcoin and allows for faster transaction confirmations [Danl7].

Blocks in Ethereum contain similar data as Bitcoin blocks, such as the previous block
hash, transactions, difficulty, a nonce and a block timestamp. As a result of the state-
based approach, smart contract support and the shorter block creation time, Ethereum
includes additional data fields into each block, such as the hash of its uncle block, state
changes and gas limit and usage [Wool4]. Ethereum has stricter rules for valid blocks
regarding the block timestamp. In addition to other rules, for a block to be valid, the
timestamp has to be greater than the one on the previous block and less than two hours
into the future. This means that the time of a block must always be strictly greater than
the time of its preceding block, which is not the case in Bitcoin [Butl4].

2.4 DeXTT: Deterministic Cross-Blockchain Token
Transfers

Within this section, the DeXTT protocol [Bor+19b] is presented in a detailed manner,
as the main aim of this thesis is to extend the DeXTT protocol by implementing the
protocol on another suitable blockchain technology.
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2.4. DeXTT: Deterministic Cross-Blockchain Token Transfers

The DeXTT protocol can be used to record the transfer of tokens on multiple blockchains
simultaneously, while being completely decentralized. It enables blockchain interoperabil-
ity in the sense of cross-blockchain asset transfers, where tokens are not locked within an
individual blockchain. The tokens that can be transferred through the use of the protocol
are not native currencies (such as Bitcoin on the Bitcoin blockchain), but are a token
type that can exist on a given number of blockchains simultaneously. They can be traded
and are synchronized across all participating blockchains. In theory, DeXTT supports
the use of any number of blockchains and autonomously synchronizes its transactions
across them in a fully decentralized manner. The DeXTT protocol has its own means
to prevent double spending and to deal with the cross-blockchain proof problem. More
details about the protocol are described in the following sections [Bor+-19b].

2.4.1 Claim-First Transactions

To enable interaction between blockchains, as in asset transfers, consistency between
the blockchains is required. This consistency implies that the presence of data on one
blockchain must be a reliable indication that on another blockchain, related data is
contained. In the scenario of token transfers, in an approach where strict consistency
between blockchains would be supported, a token transfer on one blockchain could be
undoubtedly detected on another blockchain, enabling easy synchronization. In practice,
strict consistency is not possible between blockchains, meaning it is not possible to verify
on one blockchain whether specific data has been recorded on another blockchain. This
fact is called the cross-blockchain proof problem and poses a challenge for cross-blockchain
collaborations [Bor+18b; Bor+19b].

Because strict consistency between blockchains is not possible in practice, DeXTT only
requires eventual consistency for synchronizing data, accepting temporary disagreements
between the blockchains. This is a feasible approach, because blockchains themselves
only provide eventual consistency. The DeXTT protocol proposes to achieve eventual
consistency by using claim-first transactions. In contrast to traditional blockchain
transfers, where tokens can only be claimed after they have been marked as spent,
claim-first transactions allow the reversal of temporal order. This means that tokens can
be claimed before they have been spent, in the case of DeXTT for a certain period of
time, namely until the information has been propagated to the other blockchains. Within
this time window, tokens can exist on both the balance of the sender and receiver of a
transfer [Bor+19b].

Eventual spending of the tokens of the sender is enforced within DeXTT. To ensure
eventual consistency, the protocol relies on parties that observe transfers and propagate
them to other blockchains. These observers are given a monetary incentive called witness
reward, to ensure propagation. This is done through the witness contest, where one
observer is selected deterministically per transfer to receive a witness reward. For this
reward, part of the transferred tokens are used, therefore the transaction sender pays for
it [Bor+19b].
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2.4.2 Initiation of a Token Transfer

A wallet W in DeXTT consists of a pair of corresponding keys, a public/private key
pair. For a token transfer from the sending wallet W; (source) to the receiving wallet
Wy (destination), Wy signs the intent of the transfer to the destination using its private
key, confirming that the given amount of tokens are to be transferred to W,;. A validity
period for the transfer is additionally defined, denoting the time period for the witness
contest. The sender’s intent is shown in (2.1), where x denotes the amount of tokens to
be transferred, including the witness reward, [to, t1] expresses the validity period and «
stands for the signature of the entire content inside the brackets [Bor+19b].

W5 5 W to, 1] (2.1)

All this data of the sender’s intent is transferred to the receiving wallet. The transfer
itself can happen either on any of the participating blockchains, or using an off-chain
channel. The transfer does not need to be secure, because the data is meant to be
published later anyhow. Wallet W, countersigns the data of the sender’s intent after
receiving it using its private key. The result is the entire Proof of Intent (Pol) that is
shown in (2.2), where /3 is the newly created signature.

[WS Z Wy, to, t1, a]ﬁ (2.2)

The Pol includes all data necessary to prove that the transfer is authorized by both the
sender and accepted by the receiver. The receiver of the transfer can post this Pol on
any blockchain within the DeXTT ecosystem by using a transaction called CLAIM. This
transaction allows the receiver to publish the Pol in order to later claim it. It does not
need to be posted on more than one blockchain. The purpose of this transaction is to
publish the Pol to enable its propagation across all participating blockchains through the
later described witnesses. The CLAIM transaction is shown in (2.3). Wallet W, on the
left hand side denotes the wallet that posts and signs the transaction, CLAIM indicates
the transaction type [Bor+19b].

Wd :CLAIM {WS i) Wd, to, tl, a}ﬁ (2.3)
There are four preconditions for the CLAIM transaction [Bor+19b]:

1. The Pol needs to be valid, meaning that both signatures o and 8 are correct.
2. The balance of the source wallet must be sufficient for the amount to be transferred.

3. The Pol must not be expired, meaning that the time #; has not been reached yet.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.4. DeXTT: Deterministic Cross-Blockchain Token Transfers

4. No other Pol with overlapping validity period and the same source wallet WW; may
be known on the blockchain on which the new Pol is posted. This means a wallet
must not sign an outgoing Pol while still having another pending outgoing Pol.
This precondition is put in place to prevent the double spending of tokens.

2.4.3 The Witness Contest

After the CLAIM transaction has been posted on a blockchain, the information about the
transfer is only available on that blockchain. To ensure consistency between blockchains,
the intent about this transfer must be propagated to all participating blockchains. This
propagation is achieved by a mechanism called witness contest.

Any party that observes the CLAIM transaction can become a contestant in this contest
by propagating the Pol to all blockchains in the ecosystem and therefore becoming a
candidate for receiving the reward. The transaction that is used for this propagation is
called CONTEST and is shown in (2.4). The specified wallet W, stands for an arbitrary
wallet that signs the message of the transaction, resulting in the signature w [Bor-+19b].

Wo : CONTEST [Wy & W, 1o, 1, a, f] (2.4)

The Pol must be valid and is not allowed to violate any Pol’s validity period. The CON-
TEST transaction can be posted multiple times by various contestants. The transaction
is eventually posted to all blockchains by every participating party, as contestants are
interested in participating on all blockchains in order to maintain consistency of their
own balances [Bor+19b].

2.4.4 Selection of the Winning Witness

Once the witness contest ends after the expiration of ¢1, a winning witness of the contest
has to be selected and be therefore rewarded with the witness reward. This is done by the
FINALIZE transaction, which is purely time-based and must be triggered after ¢;. It can
be posted by any party, but in the current approach it is assumed that the destination
wallet Wy is posting the FINALIZFE transaction to every blockchain. The transaction is
shown in (2.5). It only requires the parameter « that identifies the corresponding Pol.

FINALIZE | o] (2.5)

The FINALIZE transaction concludes the contest of the referred Pol and the winning
witness W, gets awarded the reward, currently being defined as I token. Additionally,
the actual transfer of tokens is performed, increasing the balance of W, by (x — 1) tokens
and decreasing the balance of W, by = tokens. Because FINALIZE is posted on all
blockchains, these actions are also performed on each of them [Bor+19b].

27


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

2.

BACKGROUND

28

Transfer
Information

Sender Wy

CLAIM FINALIZE

Receiver Wy

CONTEST

|
|
|
I
|
|
|
|
|
1
|
|
|
|
|
t
|
Contestant W, |
|
|
|
|
|
|
|
}
|
|
|
|
|
1
|
|
|
|

CONTEST

e_0
.
.-.
Other
Contestants

Chain C,

Chain Cy

Chain C,

-, e e e e e ——

Figure 2.2: Sequence of transactions of a DeXTT Transfer [Bor+19b].

The winner of the contest is deterministically assigned, being the contestant with the
lowest signature w, meaning the one with a value closest to zero. Since the signature is
only formed from the data of the Pol and the contestant’s private key, there is no way in
increasing the chance of winning, except for creating a large amount of wallets, which is
computationally expensive and therefore does not violate the protocol [Bor+19b].

In Figure 2.2, an overview of the different transactions posted by each party on various
blockchains for a DeXTT token transfer are illustrated. The winner of the contest is
shown separately as W,,. The sender W, must first provide the destination of the transfer
W, with the sender’s intent, then after ¢y has expired, Wy posts a CLAIM transaction
to one blockchain. All contestants post CONTEST transactions to all blockchain after
observing the CLAIM. This is done in no particular order, but before to. Finally, after
t1 is expired, Wy posts the FINALIZE transaction to all blockchains to conclude the
transfer [Bor+19b].

2.4.5 Double Spending Prevention

An attempt of double spending tokens by a malicious party is executed by signing two
different Pols that are conflicting with each other. Executing both transfers could result
in a negative balance for the malicious sender. Such double spending attempts are
prevented by the VETO transaction, which can be used by any party that notices two
conflicting Pols with the same source wallet and overlapping validity period. The same
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2.4. DeXTT: Deterministic Cross-Blockchain Token Transfers

incentive technique as for the witnesses, a contest, is used for this transaction. Any party
can report the conflicting Pols by posting the VETO transaction, as shown in (2.6), to
all blockchains in the ecosystem. The participant with the lowest signature w is assigned
a reward after the veto validity period. The original Pol is referred to by «, which is
already known on the blockchain. The remaining data describes the new conflicting
Pol [Bor+19b).

W : CONTEST |a, Wy 5 Wy, th, ), o (2.6)

w

Because on different blockchains, the order of Pols might be different, the VETO transac-
tions do not have to be the same on each blockchain, but the following preconditions must
hold: « must refer to a Pol already known on the blockchain and the Pols must actually
be conflicting with each other. The VETO then has the following effects [Bor+19b]:

1. The balance of the sender is set to zero to penalize the creation of conflicting Pols.

2. Every Pol of the sender that is not yet expired is canceled and therefore no
FINALIZE transaction for any of them is permitted anymore, meaning that the
transfers are not executed.

3. A new contest, called VETO contest, is started.

The VETO contest is very similar to the regular witness contest. Its purpose is the
propagation of conflicting Pols. Currently, the same reward of 1 token is awarded to its
winner, the validity period of the contest is defined as shown in (2.7) [Bor+19b].

tyero = max (t1, t) + maz (t1 — to, t) — tg) (2.7)

This makes the VETO contest valid until ¢y gro, which is defined by adding the later
expiration time of the conflicting Pols to the longer validity period of them, ensuring that

there is sufficient time for the contest. Similar to the regular witness contest, the VETO
contest is concluded by the FINALIZE-VETO transaction as defined in (2.8) [Bor+19b].

FINALIZE — VETO [a, o/] (2.8)

The effect of the FINALIZE-VETO transaction is essentially the same as for the FI-
NALIZE transaction, assigning the reward to the winning veto contestant, i.e., the
participating wallet with the lowest signature w. The FINALIZE-VETO transaction can

potentially be posted by anyone. The winner of the contest has again monetary incentive
to do so [Bor+19b].
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2.4.6 Ethereum Prototype

The change of state of blockchains through the transactions of the DeXTT protocol can
be implemented by using smart contracts, such as they are provided by the EVM on the
Ethereum blockchain. Borkowski et al. [Bor+19b] implemented a reference implementa-
tion of DeXTT for evaluation purposes using the Solidity language for Ethereum. The
prototype is freely available as Open Source software on Github”. They evaluated the
protocol in regards to its functionality, performance and cost on a blockchain ecosystem
by performing repeated token transfers using their prototype implementation [Bor-+19b].

For the evaluation, the implemented Solidity smart contracts were deployed on three
private Ethereum-based blockchains using geth nodes. A testing client software was used
to perform the transfers. The block times of the private blockchains were configured
to mimic the value of the real Ethereum blockchain as of January 2019, being 13s on
average. There were two experiment series, each one using ten clients that constantly
and simultaneously initiate transfers within the given blockchain ecosystem. The first
series of this experiment was used to evaluate the impact of the transfer validity period,
the second series was used to measure the average cost of a DeXTT transfer [Bor+19b].

The results of the experiment series of the DeXTT prototype implementation on the
private Ethereum blockchains show that it is sufficient, in order to avoid corrupted
transfers, to use a validity period of at least 4 blocks (52 seconds) when using the
reference implementation. Corrupted transfers are transfers that lead to permanently
inconsistent balances due to insufficient time to post all required DeXTT transactions
to all blockchain in the ecosystem. Eventual consistency is not guaranteed anymore
if corrupted transfers occur. Additionally, the experiment runs yield an upper bound
for DeXTT transfer cost on Ethereum, which depends on the number of participating
blockchains. For 10 blockchains, the total transaction cost for the receiver of a transfer
is 0.59 USD. Each observer posting contest transactions pays 0.94 USD, as of January
2019. Potential optimizations in the smart contract code could further reduce this upper
bound for the cost [Bor+19b].

"https://github.com/pantos—io/dextt—prototype
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CHAPTER

State of the Art

In this chapter, the state of the art of different blockchain interoperability techniques are
presented and discussed. The most relevant contribution in the context of this thesis
is the DeXTT protocol [Bor+19b] proposed by Borkowski et al., which is presented in
detail in Section 2.4. The presented techniques are therefore discussed in regard of the
DeXTT protocol, highlighting the differences in the approaches.

First, in Section 3.1 current approaches for exchanging and swapping assets across
different blockchains are discussed. Section 3.2 presents techniques that implement a
more generalized cross-blockchain communication approach, not being bound to the
swapping of assets in their functionality. They allow, among others, use cases similar to
the token transfer of the DeXTT protocol.

3.1 Exchange of Assets

This section introduces blockchain interoperability approaches that focus on the swapping
or exchanging of assets among its users. The assets are therefore not transferred between
the different blockchains, only their ownership is transferred amongst the blockchains.
The section is concluded by a comparison of the techniques and the DeXTT protocol.

3.1.1 Atomic Cross-Chain Swaps

Atomic cross-chain swaps as proposed by Herlihy [Her18| are distributed coordination
tasks, where assets are exchanged between multiple parties across multiple blockchains,
i.e., Alice wants to give Bob some assets on Blockchain A in exchange of assets on
Blockchain B that belong to Bob. The exchanged assets are traded and not actually
moved between blockchains. Such a trade introduces some risks, as the user who gives
the assets to the other one first, faces the risk that the other party does not obey the
agreement and keeps both assets [Sir+19].
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To prevent such risks, atomic swaps involve the publishing of transactions that utilize
hash-locks and time-locks via Hashed Time-Lock Contracts (HTLCs) to ensure the
atomicity of the trade [Sir+19]. These contracts ensure that either both transactions
of a swap or neither take place, without the need that the involved users trust each
other [Sir+19]. Hash-locks are cryptographic locks that can be unlocked by revealing
a secret s such that h = H(s), where h is the hash value used in the lock. Time-locks
prevent the redeeming of assets from a transaction until the specified time interval has
passed [Sir+19]. HTLCs make us of both kind of locks and require that the receiver claims
the payment by revealing the according hash before the time-lock expires. The assets
that were locked inside the contract can be refunded to the sender after the expiration of
its time-lock [bit19d].

Herlihy provides an analysis of atomic cross-chain swaps [Herl18] for the cases where
multiple parties exchange assets. The presented atomic swap protocol guarantees the
following [Her18]:

1. All swaps take place if all parties conform to the protocol.

2. If a party disobeys the protocol, none of the conforming parties ends up worse off,
except that their assets are temporarily locked up.

3. There is no incentive for any party to deviate from the protocol.

A cross-chain swap is modeled as a directed graph D = (V, A) in the work of Herlihy. The
vertices V' of D represent the involved parties, its arcs A are proposed asset transfers.
Herlihy shows that no atomic swap protocol is possible, if graph D is not strongly
connected. Further, it is shown that the protocol has time complexity of O(diam(D))
and a space complexity, as in bits stored on all blockchains, of O(|A|?) [Her18].

The protocol can introduce unwanted side effects, where coins might be potentially lost.
This can happen, if the contracts of the participants are deployed in a wrong order,
making it possible for some parties to redeem the coins without deploying their own
contracts to lock their assets. Another case, where coins might be lost, happens if the
time values of the time-locks expire almost at the same time. One party could then reveal
their secret s at the very last moment, leaving no time for the others to redeem their
assets before the time expires [Her18].

3.1.2 Atomic Commitment Across Blockchains

A decentralized all-or-nothing atomic cross-chain commitment protocol [ZAA19] was
introduced by Zakhary, Agrawal, and Abbadi as an improvement on existing atomic
cross-chain swapping protocols. They model the redeeming and refunding in the smart
contracts that exchange the assets as conflicting events. Additionally, a permissionless
network of witnesses is utilized, guaranteeing that such conflicting events can never
occur simultaneously. The witnesses also ensure that all smart contracts in an atomic
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3.1. Exchange of Assets

cross-chain transaction are either redeemed or refunded, therefore ensuring the property
named all-or-nothing [ZAA19].

The protocol overcomes the drawbacks by current atomic cross-chain transfer protocols
described in Section 3.1.1. One drawback is that such swaps do not guarantee the
all-or-nothing atomicity principle, making it possible that only one party can redeem
their assets, if a time-lock expired due to a crash failure or network delay of an honest
participant. Another drawback of previous approaches is the requirement of sequentially
publishing the smart contracts to ensure that no malicious participant can take advantage
of the protocol by declining the publication of an according contract [ZAA19].

The all-or-nothing atomic cross-chain commitment protocol overcomes these drawbacks
through the utilization of an open witness network. The protocol allows all participants
to publish their smart contracts for the asset exchange concurrently, resulting in a drastic
decrease in latency of the swap. The witness network is represented as a permissionless
blockchain, which decides whether a transaction should be committed or aborted. The
miners of this blockchain together represent the witnesses on the cross-chain transfers. It
is recommended that the witness blockchain network is chosen from the set of involved
blockchains. The proposed protocol reduced the latency of a transaction from O(diam(D))
to O(1) as it allows parallel execution of sub-transactions, decoupling the latency from
the size of the transaction graph D [ZAA19].

3.1.3 Republic Protocol

The Republic protocol [ZW17] proposed by Zhang and Wang represents a decentralized
dark pool exchange that provides atomic swaps. A dark pool refers to the concept that
the trades of its users are placed on a hidden order book, meaning that the details about
asset exchanges are kept secret. The trades are then automatically matched through
a computation protocol. The Republic protocol enables trades through atomic swaps.
The trade orders are matched through a decentralized network of nodes and can not be
reconstructed in a feasible way. The order matching nodes are organized by an Ethereum
smart contract called Registrar into a network topology that makes it infeasible for an
adversary to reconstruct a trade order [ZW17].

3.1.4 Discussion

All three presented approaches for blockchain interoperability enable its users to swap
and exchange coins across blockchains. The atomic cross-chain swap protocol by Her-
lihy [Her18] performs the exchange in an atomic way, but it is still possible to violate
the all-or-nothing property. In contrast, the atomic cross-chain commitment protocol
by Zakhary, Agrawal, and Abbadi [ZAA19] focuses on the overcoming of this drawback
and satisfies the all-or-nothing property while also reducing the latency of the asset
exchange. These advances come with a more complex protocol architecture, where a
witness network is used. The Republic protocol by Zhang and Wang [ZW17] has laid its
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focus on a completely different target, namely keeping the details about the exchanges of
users secret.

Compared to the DeXTT protocol by Borkowski et al. [Bor+19b], all three techniques
for blockchain interoperability can be distinguished from DeXTT in the same way. All of
them only enable the swapping or exchanging of assets, where only the owner of assets
changes, not the blockchain where they reside. In contrast, asset transfers in DeXTT
are synchronized and executed across all participating blockchains. The assets therefore
exist on all blockchains of the ecosystem.

3.2 Cross-Blockchain Transfers

Within this section, current blockchain interoperability approaches that are more advanced
and universally applicable than simple exchange protocols are presented. They allow
not only a change of ownership of assets across blockchains, but also the transfer of
actual coins from one blockchain to another. After presenting different interoperability
techniques, this section is concluded by a discussion, where the different approaches and
the DeXTT protocol are compared.

3.2.1 Leveraging Blockchain Relays for Cross-Chain Token Transfers

The DeXTT protocol emerged from the Token Atomic Swap Technology (TAST)! research
project, which also led to the publication of additional white papers [Bor+18a; Bor+18b;
BRS18; Bor+19a; Fra+19; Sig+19a; Sig+19b; Fra+20]. The most recently pursued
approach of the research project by Sigwart et al. aims to eliminate the drawbacks of the
DeXTT protocol. The drawbacks to be eliminated include the high synchronization cost
for balance changes, no means of adding a new blockchain later on and not being able to
hold different amounts of tokens on different blockchains [Fra+19].

Within the approach currently being researched, a token transfer only incorporates the
blockchains that are directly involved in a cross-blockchain token transfer. For a transfer
from blockchain A to blockchain B, only these two blockchains need to communicate with
each other to finalize the transaction [Sig+19a]. This is achieved by burning the tokens
that are meant to be transferred on the source blockchain A and recreating the same
amount on the destination blockchain B. For this, blockchain B needs a way to verify
that the tokens have actually been burned. The authors use the concept of blockchain
relays to achieve this verification, where the state of a source blockchain is replicated on
the destination blockchain. This replication happens in a decentralized way without the
need for a trusted third party [Fra4-20].

To verify the existence of certain pieces of state on the source blockchain, Simplified
Payment Verification (SPV) is used to proof that a certain transaction is part of the
source blockchain. For this verification, the destination chain performs a light validation

"https://dsg.tuwien.ac.at/projects/tast/
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using only block headers. The relaying of these block headers is done through the
relayers, which regularly submit block headers of the source blockchain to the destination
blockchain. Clients dispute any submitted illegal block to the destination chain [Sig+19a].
The submission of this information creates a cost for the relayers and clients that dispute
blocks, therefore an incentive structure is put in place to compensate these cost [Sig+19a;
Sig+19b]. The potential reward through this incentive structure motivates relayers to
submit block headers and clients to dispute illegal block headers [Sig+19a].

A first prototyp implementation of this protocol for Ethereum-based blockchains is
available on Github?. The concepts of the protocol are not only applicable to cross-
blockchain token transfers, but could potentially be utilized as a basis for arbitrary
cross-blockchain applications [Sig+19a).

3.2.2 XCLAIM: Trustless, Interoperable Cryptocurrency-Backed
Assets

An alternative to atomic cross-chain swaps are so-called cryptocurrency-backed assets.
This approach allows the locking of an asset x on blockchain B, while unlocking a
corresponding representation y(z) of the locked asset on blockchain B,. Asset y can
then be used natively on B, and can be redeemed on B, again in the same way later
on [Zam+19).

XCLAIM [Zam+18] is a generic framework that achieves trustless and efficient cross-
chain exchanges through the use of cryptocurrency-backed assets presented by Zamyatin
et al. They introduce protocols to issue, transfer, swap and redeem such assets in a
secure and non-interactive manner throughout existing blockchains. XCLAIM utilizes
publicly verifiable smart contracts together with chain relays to achieve cross-chain
state verification. Chain relays are used to provide external blockchain data from the
blockchain B, where assets are locked, to the blockchain I that issues the backed assets.
These relays are used to make the issuing of assets non-interactive. They are utilized
in a smart contract component on the issuing blockchain I and interpret the state of B
using functionality comparable to a SPV client, only using block headers of blocks from
B [Zam+18].

XCLAIM uses these techniques to construct a publicly verifiable audit log of user actions
on both participating blockchains. It enforces the correct behavior of its participants
through the utilization of collateralization and punishment through a proof-or-punishment
approach. This means that its users must proactively prove their adherence to the
protocol [Zam+18].

3.2.3 Metronome

Metronome [Met18] is a blockchain interoperability approach that claims to enable
cross-blockchain transfers of Metronome tokens (MET), which is an additionally in-

2https://github.com/pantos—io/go-testimonium
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troduced cross-chain currency. To transfer MET tokens from one blockchain A to
another blockchain B, the user first has to destroy and therefore remove the tokens on
blockchain A, receiving a proof of exit receipt. The destroyed tokens can then be claimed
on blockchain B by presenting this receipt to the according Metronome smart contract,
which then yields the correct amount of tokens on the target blockchain [Met18; JRB19].

The Metronome user manual only provides a high level description of the protocol,
describing the following components [Met18]:

Exporting. When a user calls the export function, it takes the provided MET of the
call and burns them on the local chain and issues an EzxportReceipt. The user which
burns the tokens will pay a small fee to be claimed by the validator.

Importing. Any user of the protocol can provide an EzportReceipt to the Metronome
smart contract on the destination blockchain. After the import is processed, the
tokens are delivered to the recipient. The party that completes the Metronome
import will be rewarded with a transaction fee.

Validation. For the export and import functionality, validators are required. Among
others, they are needed to provide additional information for validation of particular
imports. They play a role in the Metronome ecosystem similar to the concept of
miners, verifying and authenticating Metronome’s distributed source of truth.

As of April 2020, Metronome is already deployed on Ethereum [Wool4] and Ethereum
Classic3, the support for more blockchains is currently under research and development?.

3.2.4 Polkadot

The Polkadot project [Wool6] proposed by Wood represents a more generic multi-
blockchain framework. Its functionality is aimed to provide a framework for blockchain
interoperability through the use of a central relay blockchain for its maintenance [Woo16;
Sch+19]. It allows cross-blockchain communication between heterogeneous blockchains,
called parachains. The architecture additionally consists of a central relay blockchain that
manages transaction consensus and delivery [QAN19]. To include existing blockchains
that can not be included as a parachain directly, as they do not provide the according
interface, a so-called bridge blockchain has to be used for each of the existing blockchains
to integrate them [Sch+19]. There are four basic roles involved in the upkeep of the
Polkadot network [Woo1l6]:

Validators. A validator helps to seal new blocks on the network, its role is contingent to
a sufficient bond of tokens or by being nominated for the role. The validators of the
network run a relay blockchain client implementation. They must be ready at each

3https://ethereumclassic.org/
https://www.metronome.io/roadmap/
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3.2. Cross-Blockchain Transfers

block to be nominated to ratify a new block on a parachain, including receiving,
validating and republishing candidate blocks. A validator gives the taks of creating
new parachain blocks to another party called collator. After a new parachain block
has been created, they must ratify the new relay blockchain block themselves.

Nominators. They are simply a stake-holding party contributing to the security bond
of validators. They place risk capital to signal their trust on a particular validator.

Collators. Collators are used to assist the validators by producing parachain blocks.
Each collator maintains a full node for a particular parachain, enabling them to
have all available information to create new valid blocks and execute transactions.

Fishermen. The task of fishermen is to provide a proof that at least one bonded party
acted illegally, for which they get a reward. Such illegal actions include the signing
of two blocks with the same ratified parent block or in the case of parachains,
helping to ratify an invalid block.

3.2.5 Blockchain Router: A Cross-Chain Communication Protocol

Wang, Cen, and Li introduce blockchain router [WCL17], a network that empowers
blockchains to connect and communicate with each other. In this network, one blockchain
plays the role of the blockchain router, which has the task to analyze and transmit
communication requests. It also dynamically maintains a topology structure of the
network. The architecture of the protocol is inspired by how routing is done in the
Internet. A simple routing network consists of routers and terminal devices. In this
proposed protocol, the blockchains that want to communicate with each other correspond
to the terminal equipment, called sub-chains. Sub-chains can send messages to other
sub-chains via a chain router and receive messages from the chain router, but they can
not communicate directly with each other. Sub-chains are connected to a chain router
by following the cross-chain communication protocol [WCL17; JRB19]. The blockchain
router protocol distinguishes between four different types of participants [WCL17]:

Validators. The tasks of the validators consist of the verification, concatenation and
forwarding of blocks to the correct destination. They must run a full client of the
blockchain router and collect and ratify blocks from the sub-chains.

Nominators. A nominator contributes its own funds to validators. In doing so, nom-
inators obtain a corresponding payoff or punishment, based on how the funded
validators perform.

Surveillants. The surveillants are monitoring the blockchain router’s behavior, reducing
the incidents of malicious behavior.

Connectors. The task of a connector is to link blockchain routers with the sub-chains.
They are responsible for sending information between sub-chains and routers and

37


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

STATE OF THE ART

38

form a consensus system for each sub-chain. A connector maintains a full node
for its sub-chain and can therefore execute transactions on the sub-chain. The
connectors provide data about executed transactions to the validators.

3.2.6 HyperService

The HyperService platform [Liu+19] proposed by Liu et al. aims to extend the functional-
ity of blockchain interoperability from asset transfer to distributed computation [Zam+19].
It allows the building and execution of Decentralized Applications (DApps) across het-
erogeneous blockchains via a virtualization layer on top of the blockchains. The design
of HyperService consists of a developer-facing programming framework, which enables
the building of cross-blockchain applications in a unified programming model. Ad-
ditionally, a secure blockchain-facing cryptography protocol is used to realize those
applications on blockchains [Liu+19]. The architecture of HyperService consists of four
components [Liu+19]:

DApp Clients. The clients are the gateway for DApps to interact with the HyperService
platform.

Verifiable Execution Systems. These systems can be seen as blockchain drivers. They
compile high-level DApps programs, which are the runtime executables in Hyper-
Service, into transactions that are executable on the individual blockchains.

Network Status Blockchain. This part can be seen as the blockchain of blockchains,
providing a view onto the execution status of the DApps.

Insurance Smart Contracts. The correctness and violations of DApp executions are
arbitrated in a trust-free manner by these contracts. If an exception occurs, they
financially revert all executed transactions.

3.2.7 Distributed Cross-Blockchain Transactions

Zhao and Li propose two distributed commit protocols [ZL20] that are still in an early
research state. Their approaches enable nonblocking distributed commits for multi-party
cross-blockchain transactions. They mainly focus on the protocol specification and
assume that the participating blockchains either have an effective programmable way
to communicate via smart contracts or that a proxy to enable this communication is
available [ZL20]. The two protocols are designed as follows [ZL20]:

Synchronous Cross-Blockchain Transactions Protocol This protocol is very sim-
ilar to the two-phase commit protocol and designed to strictly enforce the Atomicity,
Consistency, Isolation and Durability (ACID) properties of cross-chain transactions,
resulting in a higher latency. It delays the global commit until none of the partici-
pating blockchains can unilaterally rollback the transaction. A specific blockchain,
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called coordinator, initiates a transaction by sending the precommit message to all
blockchains and then waiting for their ready replies. In the second phase of the
protocol, the initiating blockchain broadcasts a commit message. Each blockchain
then carries out the local action and waits for a specified amount of time before
returning the required done message. The wait time makes sure that the local
transaction has enough confirmations.

Redo-Log-Based Blockchain Protocol This approach follows the spirit of redo-logs.
The key change to the Synchronous Cross-Blockchain Transactions Protocol is
the omission of the wait time before the done message, replying instantly. If a
transaction is included in a blockchain branch that is later cut off, the protocol
takes according action and returns the transaction back to the request pool. This
results in eventual consistency.

3.2.8 Discussion

All of the approaches presented withing this section feature more universal and capable
blockchain interoperability techniques than the protocols for assets swaps and exchanges
shown in Section 3.1. The blockchain relay approach of Sigwart et al. [Sig+19a], XCLAIM
by Zamyatin et al. [Zam+18] and Metronome [Met18] implement similar approaches,
where tokens in a cross-blockchain asset transfer are first destroyed or locked on the
source blockchain and then re-issued on the target blockchain after their destruction has
been proofed. All three approaches rely on some sort of relay mechanism for the proof of
the destruction on the source blockchain. In comparison to the DeXTT protocol, they all
have in common that token transfers happen across blockchains. The difference lies in
the synchronization that is used in DeXTT, which achieves that all tokens and transfers
are recorded on all participating blockchains, whereas in the three relaying approaches,
tokens are transfered between two blockchains. This removes the need of synchronization,

which comes with a high cost, but also requires the use of some sort of relay for its proofs.

The approaches of Polkadot by Wood [Wool6] and the blockchain router by Wang, Cen,
and Li [WCL17] use another way to achieve cross-blockchain communication. Instead
of relays, they utilize a central blockchain that connects and communicates with the
participating blockchains. Both are explicitly designed to enable general cross-blockchain

communication instead of just token transfers, as it is the case for the DeXTT protocol.

HyperService by Liu et al. [Liu419] takes blockchain interoperability to another level
by providing a platform for distributed computation, whereas the DeXTT protocol only
supports transferring tokens. HyperService can of course also be used to transfer tokens
across blockchains by implementing this functionality as a DApp, although this comes
with the overhead of running the whole platform.

The distributed cross-blockchain transaction approach of Zhao and Li [ZL20] focuses only
on the protocol specifications and not on the cross-blockchain communication. They also

do not describe what token transfers or general transactions using their protocols look like.

The nature of their proposed protocols implies that the blockchains are synchronized as it
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is the case for the DeXTT protocol, although this does not necessarily mean that tokens
exist on all blockchains simultaneously as in DeXTT, as the synchronized transactions
can contain arbitrary data.
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CHAPTER

Requirements and Blockchain
Selection

Within this chapter, the requirements for the DeXTT protocol (see Section 2.4) are
collected and compared to the features of current blockchain technologies to select a
suitable and reasonable blockchain technology for the DeXTT protocol implementation.

First, the requirements for an underlying blockchain technology to support the adaption
of the DeXTT are analyzed and specified in Section 4.1. This is done with regards to
different approaches of where the protocol logic resides, on the blockchain itself or on
the DeXTT client-side. In Section 4.2, the properties and features of different currently
available blockchain technologies are analyzed concerning their technical aspects. This is
done in the form of a survey of preselected blockchains. At last, Section 4.3 describes the
selection rationale of the blockchain candidate for the DeXTT protocol implementation.

4.1 DeXTT Requirements

This section defines the formal requirements a blockchain technology must fulfill to
support an implementation of the DeXT'T protocol for its blockchain. An implementation
of the DeXTT protocol can be described as a DApp. Each DApp solution is composed of
at least two elements [Butl4]:
1. The smart contract or generally speaking, data and logic residing on the blockchain.
2. The client-side application, used to interact with the blockchain.

It is possible to choose different distributions for the logic and data of a DApp among
these two components [AW18]. This applies also for a DeXTT implementation.
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Having more parts of a DApp on the blockchain comes with the advantage, that is is
far easier to create the according client implementation, which is beneficial when there
are multiple different client implementations. The client-side is easier to understand
and develop and therefore less error-prone. A disadvantage of this approach is that the
underlying blockchain technology must potentially support more diverse features.

In contrast, having more parts of a DApp in the client-side application comes with
the downside that the clients are harder to understand and implement and therefore
more error prone. Additionally, if some parts of the logic are wrongfully implemented
differently among multiple client implementations, the clients might not be compatible
to each other. An advantage of moving DApp logic to the client-side is the potentially
lower requirements of features for the used blockchain technology. There are two edge
cases of the distribution among the parts of a DApp:

1. All of the logic and data of a DApp reside on the according blockchain. The
client-side application is solely used to manage the wallets and to interact with the
blockchain, e.g., calling methods of a smart contract.

2. The blockchain itself contains no logic and is solely used to store some required
data for the DApp. All of the logic concerning verifications, transactions and other
parts of the DApp are implemented in the client-side application.

The existing Ethereum implementation® of DeXTT resembles an implementation close to
the first edge case, having all its relevant logic and data reside on the blockchain. Only
the creation of DeXTT transactions and the interactions are handled off-chain. The
specification of requirements are based on the existing literature of the DeXTT protocol
and on the given Ethereum implementation. The main focus will be put on the Ethereum
prototype, as this gives a better inside of how DeXTT can be implemented.

Because of the implied variations in the possible implementations of the DeXTT protocol,
the requirements analysis in the following sections is split into two parts, resembling the
two edge cases of how a DApp can be implemented. The specified requirements must not
be seen as proven minimal features a blockchain must provide for DeXTT, but rather as
an attempt to approach a small set of requirements that are sufficient to enable a correct
implementation of the DeXTT protocol for a blockchain technology.

4.1.1 Blockchain-Side Logic - Smart Contract Solution

This section describes the requirements a blockchain needs to fulfill in order to support a
DeXTT implementation, if all of the logic and data resides on the given blockchain as
a smart contract (see Section 4.1). This is also done by the already existing Ethereum
implementation. The requirements are split into two parts, the ones that apply for the
DeXTT protocol in general and additional requirements to also ensure the compatibility
with the Ethereum prototype.

https://github.com/pantos—io/dextt-prototype
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4.1. DeXTT Requirements

General Requirements

The generally applicable requirements for a blockchain or smart contract platform to
support DeXTT (see Section 2.4), without providing guaranteed compatibility with the
Ethereum Prototype can be defined as follows:

Signature Verification. Some DeXTT transactions contain a signature that needs to
be verified in order to classify it as valid. To support the use of the concept of
claim-first transactions, a functionality to verify cryptographic signatures is required.
The used signatures are not bound to a specific algorithm, any digital signature
algorithm that provides sufficient cryptographic security can be applied [BRS18].

Cryptographic Hash Function. In practice, data is hashed to reduce it to a fixed
size before it is being signed. There exist also certain limitations on the size of data
to be signed, e.g., for ECDSA [Nar+16]. Therefore, the availability of an according
cryptographic hash function is required, such that arbitrary data can be verified via
the available signature verification scheme.

Timestamp. The DeXTT protocol relies on specific timings of transactions. To verify
these transaction times, some means of accessing the execution time of a certain
transaction or block on the blockchain are required. This is often achieved by
the inclusion of a timestamp in the block header of each block (see Section 2.2.3).
This timestamp must be available during the execution of the according smart
contract. Without the availability of such timing information, it is not possible to
deterministically process and verify DeXTT transactions.

Dynamic Data Structures. A DeXTT implementation relying purely on a smart con-
tract has to store all relevant data within the blockchain and access and manipulate
the data via the contract. This is demonstrated in the according smart contract of
the DeXTT Ethereum implementation?. The stored data includes among others
the current balances, all relevant information of ongoing transactions, contests
and veto-contests. These types of data are bound in their size to the number of
users of the DeXTT protocol, which is not constant and can grow over time. To
store such data, some means of dynamically adding new data entries must exist.
This can be done by dynamic data structures such as arrays or mapping types in
Solidity [Foul9a]. Furthermore, to access and manipulate the dynamically sized
data by a given key or value in the smart contract, there must exist at least one of
two options:

1. Providing direct access by the data structure itself through the use of a given
access parameter such as a key. This is for instance the case for mapping
types [Foul9a] in Solidity.

?https://github.com/pantos—io/dextt-prototype/blob/master/truffle/
contracts/PBT.sol

43


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4. REQUIREMENTS AND BLOCKCHAIN SELECTION

2. The existence of some form of loop to iterate over all data entries until the
desired one is found.

Control Structures. The smart contract must be able to compare values and make
decisions that are needed to follow the DeXTT protocol, e.g. checking signatures
and taking different actions according to the outcome of the verification. To provide
this functionality, some means of control structures are required. It must be at least
possible to introduce conditional branches, as possible through e.g. an if statement
in Solidity [Fou20f].

Operators. Another requirement is the availability of certain operators. For compar-
isons, at least one variation of a smaller than (“ < ”) or bigger than (“ > 7)
must exist and be able to compare the contest signatures of DeXT'T, certain time
constraints and token values. Additionally, there must be some means of equality
operator (“ == 7) for verifications and checks to enable conditional branching.
Basic arithmetic operators, at least in the form of addition (“ 4 ”) and subtraction
(“ —7) are also required. This is among others needed for the calculation of the
validity period of veto contests. All of these operators are for instance available for
Solidity [Foul9a] on Ethereum.

Concluding from these requirement specifications, a language for smart contracts on a
blockchain must not be Turing-complete [BRS18]. More specifically, no forms of loops are
required if certain dynamic data structures such as mapping types in Solidity [Foul9a]
are available as described above.

Additional Compatibility Requirements

The following specific requirements additionally need to be fulfilled to ensure full compati-
bility between DeXTT on the given blockchain and the existing Ethereum implementation:

Signature Verification. To be able to verify the same signatures as the ones used with
the Ethereum implementation, the ECDSA [JMVO01] digital signature scheme using
the standardized secp256k1 elliptic curve [Hes00] must be supported for signature
verifications within smart contracts on the blockchain. The need to provide the
same signature verification scheme is not required to be able to re-use the same
DeXTT transactions with the identical signatures. Instead, it is crucial to support
the same signatures, because they are used for the witness selection within the
DeXTT protocol. The selection of witnesses can only be deterministic across
blockchains that use the same signature scheme, otherwise the signature values
would be different for the same transactions, leading to different winners of the
witness contests and therefore to inconsistencies.

Cryptographic Hash Function. In the existing DeXTT implementation, different
data is hashed using the Keccak-256 hash function before its being signed. As in
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4.1. DeXTT Requirements

Ethereum itself, not the final SHA-3 specification, the version 3 of the winning
entry to the SHA-3 contest by Bertoni et al. [Ber+11] is used. Again, it is crucial to
support the same hash function to enable the protocol to select the same winners
for witness contests deterministically across the blockchains.

Converting Data Fields to Raw Bytes. Within the Ethereum prototype, data that
is hashed and signed is first encoded and packed using the abi.encodePacked ()
function of Solidity [Fou20e]. To verify signatures for deterministic witness selection,
it is therefore necessary to support the same encoding functionality for the used
data types. In the case of the implementation using Solidity, the used data types
are: bytes, address, uint256 and bytes32 [Foul9a]. The encoding and
packing itself does not include any complex computation, simple byte conversions
and manipulations suffice to achieve the same functionality for the given use
case [Fou20e].

4.1.2 Client-Side Logic

This section discusses the requirements a blockchain needs to fulfill in order to support
a DeXTT implementation, if all logic and relevant data of the protocol resides on the
client-side application. This resembles the second edge case for DApp implementations
described above.

The requirements for this type of implementation are more relaxed than for a pure smart
contract implementation. Because every part of logic, computation and handling of
data is done on the client-side of the DApp, the only involvement of the blockchain in
the protocol is to provide a secure and tamper-evident way of logging the used DeXTT
transactions. This can be achieved by including the DeXTT transactions as blockchain-
specific transactions into the blocks of the blockchain, because blockchains can be utilized
as a tamper-evident log (see Section 2.1). The specific requirements can be defined as
follows:

Secure On-Chain Storage. There must exist a secure way of storing arbitrary data
within the blocks of the given blockchain. The minimum required size to store
DeXTT transactions themselves depends on how their data is encoded and what
signature scheme is used. It is also possible to only store a hash of DeXTT
transactions on the blockchain to reduce the size of the stored data. A drawback
of this approach is that the actual transactions must be distributed among the
client-side applications in another way, as only the hash values are shared via the
blockchain. Additionally, the used hash function should be secure with an approxi-
mately uniform distribution, such as it is the case for the Keccak-256 [GM11] or
SHA-256 [GHO4] hash functions. It is also possible to split the DeXTT transactions
into multiple parts and put them into multiple blockchain-specific transactions to
overcome possible size limits.
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4. REQUIREMENTS AND BLOCKCHAIN SELECTION
Table 4.1: Top-17 ranked entries on CoinMarketCap.
Rank Platform
1 Bitcoin
2 Ethereum
3 XRP
4 Tether
5 Bitcoin Cash
6 Litecoin
7 EOS
8 Binance Coin
9 Bitcoin SV
10 Stellar
11 Tron
12 Cardano
13 UNUS SED LEO
14 Monero
15 ChainLink
16 Tezos
17 Neo
Timestamp. As for an implementation that uses smart contracts for its logic, this
approach also requires the inclusion of timing information bundled with the DeXTT
transaction, because the protocol relies on specific timings of transactions. This
timing information can be given in the form of timestamps that are included in the
blocks of the blockchain.
4.2 Blockchain Survey
This section presents a survey of qualified candidate blockchains for a DeXTT implemen-
tation including the properties and features of different blockchain technologies currently
available. The technical aspects discussed are focused on details that are relevant in
regards to the requirements of the DeXTT protocol. Furthermore, the features are
compared to the different requirements for DeXTT implementations.
There exists a vast number of different blockchains, therefore the blockchains to be
analyzed are preselected based on their rank (based on the market cap of the according
cryptocurrencies) on CoinMarketCap® because the significance of the chosen blockchain
is an important factor. The ranking order taken into account for the survey resembles
the state of CoinMarketCap as of the 23rd of November 2019. The top-17 ranked entries
shown in Table 4.1 are discussed below.
3https://coinmarketcap.com/
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4.2. Blockchain Survey

4.2.1 Bitcoin

Bitcoin [Nak08] offers Script, which is a simple and stack-based language. It does not
support any means of loops and is therefore not Turing-complete [Nar+16]. The same
signature scheme as in Ethereum is used, i.e., ECDSA using the secp256k1 elliptic curve.
Script also offers cryptographic hash functions, but the Keccak-256 hash function is not
included. Additionally, to the best of our knowledge, it is not possible to implement
Keccak-256 within Script, because crucial operators such as multiplications, divisions,
bit-shifting operations and most bitwise logic operations are disabled [bit19g]. Another
limitation of Script is the circumstance that is it not possible to change the blockchain
state and therefore store data. The only possible outcome of a Script execution is the
failing or succeeding of the execution. This outcome can only be utilized to decide
whether the according transaction is valid or not [Nar+16]. Concerning data storage on
the blockchain, Bitcoin offers a standardized way to store arbitrary data of a maximum
size of 80 bytes within one transaction. More details about Bitcoin Script are given in
Section 2.2.5.

Due to the various limitations of Bitcoin Script, Bitcoin does not fulfill the requirements
for a DeXTT implementation using blockchain-side logic. The biggest limitation is given
by the lack of the ability to store, access and manipulate data on the blockchain via
Script and to achieve any other output than the validity of a Script run. Because of
these limitations, a possible DeXT'T implementation for Bitcoin is limited to a client-side
logic approach. This is possible, because the blockchain supports both secure on-chain
storage, although limited to 80 bytes per transaction, and timestamps (see Section 2.2.3)
of blocks and therefore transactions.

4.2.2 XRP

XRP is a digital asset native to the XRP Ledger blockchain [SYB14; CM18]. Its technology
is utilized to power the RippleNet payments network®. The XRP Ledger is an open-source
blockchain technology that focuses on fast transaction times but does not support the
concept of universal smart contracts, as only predefined contracts can be utilized [Pro19d;
Jam18]. The blockchain supports the storing of arbitrary data up to a size of 1kB natively
via the Memo field included in transactions [Prol9c]. The ledger of the blockchain also
contains a timestamp for each version of the ledger via the close time data field [Prol9b).
From the given limitations and features of the blockchain, it can be concluded, that
for the XRP ledger, solely a DeXTT implementation using client-side logic would be
possible.

4.2.3 EOS

EOS is the native token on the EOSIO blockchain platform [Blo18]. The EOSIO
blockchain utlizes the C++ programming language together with a smart contract Ap-
plication Program Interface (API) for its smart contract platform. As an execution

https://ripple.com/ripplenet/
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environment for smart contracts, a WebAssembly Virtual Machine (VM) called EOS VM
is used [Blo20b].

The smart contract API offers support for various hash functions and signature verification
using ECDSA with the secp256k1 elliptic curve®, but the Keccak-256 hash function is
not natively supported [Blo19]. It is of course possible to implement the Keccak-256
hash function using the C++ programming language and therefore utilize it in a smart
contract. An example of how such an implementation could look like can be found on
Github%. The blocks of EOSIO contain a timestamp that is accessible through smart
contracts [Blo20a]. The timestamp is not allowed to lie more than 7 seconds in the

future”.

Due to the capabilities of the C++ programming language [Str13], it is therefore possible
to implement the DeXTT protocol for the EOSIO blockchain using the blockchain-side
logic approach. Furthermore, all requirements for an implementation that provides
compatibility with the Ethereum prototype are fulfilled by EOSIO.

4.2.4 Binance Coin

The Binance Coin (BNB) is the cryptocurrency of the Binance platform [Binl7] and
native to the Binance Chain blockchain [Bin20a]. The blockchain provides decentralized
exchange features, but does not support smart contracts [Bin20a; Bin20b]. The Binance
Chain includes a timestamp in its block headers, but does not include a native way to
store arbitrary data in its blocks [Bin20a]. It is still possible to store data, using encoding
approaches as the ones that are utilized by the Omni Protocol that builds a protocol
layer on Bitcoin [Wil+19]. It can therefore be concluded, that only a client-side logic
approach of the DeXTT protocol would be possible for the Binance blockchain.

4.2.5 Stellar

The Stellar blockchain technology [Maz16] is based on the XRP Ledger platform, but
introduces a few changes, such as a different consensus algorithm [BS18|. Smart contracts
in Stellar are not given by conventional programming languages, but are expressed as
compositions of transactions. These compositions are connected and executed by various
constraints. The following constraints can be implemented by Stellar smart contracts:
Multisignature, Batching/Atomicity, Sequence and Time Bounds [Foul9b; BP17].

Stellar allows the storage of arbitrary data in the memo data field inside transactions. It
can hold up to 28 bytes of a string encoded in ASCII or UTF-8 or a 32 byte raw hash
value [Foul9c]. Just as the XRP ledger, Stellar also contains a timestamp for each ledger
version, called close time [Foul6.

Shttps://github.com/E0SIO/eosjs—ecc/blob/master/src/key_public. s
Shttps://github.com/ethereum/ethash/blob/master/src/libethash/sha3.c
"https://github.com/EOSIO/eos/issues/7447
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4.2. Blockchain Survey

Due to the given constraints on Stellar smart contracts and the best of our knowledge,
the smart contract concept of Stellar does not allow a DeXTT implementation with more
blockchain involvement than in the client-side logic approach, for which all requirements
are fulfilled.

4.2.6 Cardano

The Cardano blockchain uses a research-first driven approach for its development®? [Kia+17;
Dav+18; DDL18; CD17; KMZ17]. It is planned that it becomes a smart contract
platform utilizing a purely functional programming language called Plutus [Fou20d).
The support for smart contracts is currently under development and not documented
extensively [Fou20b]. Therefore, no precise statement about DeXTT support via a
blockchain-side logic approach can be made.

In Cardano, it is possible to encode arbitrary data into addresses [Fou20a]. Therefore,
data can be added to the blockchain, e.g., by sending a small amount of coins to such an

address in a transaction!V.

Cardano divides times into epochs, which are further divided into slots. Both are
numbered, starting with zero and included in each block [Fou20c|. This concludes that
at least a client-side logic approach for a DeXTT implementation is possible for Cardano.
It is likely that in the near future, the currently developed smart contracts will allow for
an implementation utilizing blockchain-side logic.

4.2.7 Monero

The Monero blockchain is built to enhance the privacy of its users, including the concept
of untraceable transactions''. The blockchain technology does not provide any means of
smart contracts, therefore no blockchain-side logic approach of the DeXTT protocol is
possible [Pro19a].

Monero transactions include a field called extra, which usually includes the transaction
public key or an extra nonce. Because the field is not verified on the blockchain, it can be
utilized to include arbitrary data [Alo18]. Additionally, blocks on the Monero blockchain
contain timestamps which are added by the miners [Alo18]. Therefore, Monero fulfills
the requirements for a client-side logic DeXTT protocol implementation.

4.2.8 Tezos

Tezos is a blockchain technology that comes with support for Turing-complete smart
contracts [Gool4]. Tezos supports the writing of such smart contracts in multiple different

8https://www.cardano.org/en/home/

%https://www.cardano.org/en/academic-papers/

10https ://forum.cardano.org/t/can-i—-associate-a-message-with-a-wallet-or—
transaction-on-the-blockchain/17892

HUyttps://web.getmonero.org/
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languages, including Pascal, OCaml, Python, Haskell and a domain-specific language
called Archtype. Such contracts can then be compiled into the smart contract language
of Tezos, called Michelson [Tez20b].

Michelson supports access to the timestamp of the current block, includes a Map data
type natively and also provides signature verification through ECDSA with the secp256k1
elliptic curve. The Keccak-256 hash function is not provided, but can be implemented
due to Michelson’s Turing-completeness [Tez20a].

The capabilities of Tezos fulfill all requirements for a blockchain-side logic DeXTT
implementation approach including means to provide compatibility to the already existing
Ethereum implementation.

4.2.9 Neo

The Neo blockchain [Neo20b] offers the support of a vast variety of different programming
languages for its smart contract platform. Languages such as C#, Java, C++, GO or
JavaScript can be utilized and compiled for Neo’s execution environment, the Turing-
complete Neo VM [Neo20b; Neo20c|. To limit resources within a smart contract, GAS
tokens are charged for the operation and storage of smart contracts [Neo20b].

Within a Neo smart contract, the timestamp of the current block can be obtained via a
system-call [Neol9]. Although some hash functions are included natively, the Keccak-256
hash function is not among them, but can be implemented [Neo20a]. Neo utilizes ECDSA
with the secp256r1 elliptic curve. Therefore, signature verification for the secp256k1 must
be implemented by hand to provide compatibility between a new DeXTT implementation
and the Ethereum DeXTT prototype [Neo20d; Neo20a].

Due to Neo’s features, all requirements for a blockchain-side logic DeXTT implementation
including compatibility to the existing prototype are fulfilled, although some cryptographic
functions must be reimplemented as they are not provided natively.

4.2.10 Other Blockchains Inside Top-17 Ranking

Not all top ranked entries are discussed and presented in detail in the previous sections,
because some are not relevant in the context of this thesis or are too similar to already
discussed blockchain technologies.

Ethereum [Wool4] is not discussed in detail concerning DeXTT compatibility, because
such a DeXTT implementation already exists. More details of Ethereum are presented in
Section 2.3.4. The codebase of the Tron blockchain was originally a fork form Ethereum.
Tron is generally very similar to Ethereum, also utilizing Solidity as a smart contract
language and offering similar features, such as a Turing-complete virtual machine [Foul8].
It is therefore implied that DeXTT could be implemented for Tron in a similar fashion.
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4.3. Discussion of Blockchain Selection

Some Blockchains are very similar to Bitcoin and therefore the same conclusions con-
cerning DeXTT implementations are implied. Bitcoin Cash'? was forked from Bitcoin
and thereby the block size limit was increased to SMB. Litecoin'® also emerged from the
Bitcoin code base. Its changes compared to Bitcoin comprise a different PoW algorithm
called scrypt and a shorter targeted block creation time of 2.5 minutes [Prol8|. Another
derivate of Bitcoin is Bitcoin SV, which claims to be the only Blockchain that follows
the original vision of the Bitcoin white paper by Nakamoto [Nak08].

Some top ranked entries on CoinMarketCap contain cryptocurrencies that are not coupled
to an own blockchain and are therefore not relevant in the context of this survey. The
following entries are not discussed any further: Tether [Tetl16], UNUS SED LEO or
LEO [Bit19] and ChainLink [EJN17].

4.3 Discussion of Blockchain Selection

In this section, the results of the blockchain survey in Section 4.2 are discussed and the
aspects for the selection of a blockchain technology for a new DeXT'T implementation
are presented.

The previous section provides a survey of 17 technologies. Three of those are not relevant in
regards to a new DeXTT implementation, as they do not provide an own blockchain. Out
of the discussed blockchains, FOS, Tron, Tezos and Neo provide all means to implement
DeXTT for their platforms using a blockchain-side logic approach (see Section 4.1.1)
while also providing compatibility to the existing Ethereum implementation. Additionally,
Bitcoin, the XRP Ledger, Bitcoin Cash, Litecoin, the Binance Chain, Bitcoin SV, Stellar,
Cardano and Monero fulfill all requirements for a DeXTT implementation following a
client-side logic approach (see Section 4.1.2). More details about the fulfillment of the
DeXTT requirements by the different blockchains are shown in Table 4.2.

The ranking of blockchains according to their market cap is an important factor, as

highly ranked blockchains are typically more popular and used throughout the community.

Therefore it is preferable to implement DeXTT on a highly ranked blockchain platform
rather than on a less known and used platform. Furthermore, because an implementation
for DeXTT using a blockchain-side logic approach on Ethereum already exists, creating an
implementation utilizing the opposite approach of using client-side logic would generally
be more valuable in regards of the expected results. This comes from the fact that
another blockchain-side logic approach will most likely be built in a similar fashion to
the existing one. In contrast, for a client-side logic solution, other novel design choices
have to be made, revealing valuable results of how DeXTT can be implemented in this
way and how the implementation differs from the previous approach.

Phttps://www.bitcoincash.org/
Bhttps://litecoin.org/
Myttps://bitcoinsv.com/
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4. REQUIREMENTS AND BLOCKCHAIN SELECTION
Table 4.2: Fulfillment of the DeXTT requirements by the surveyed blockchains.
)
% 2 @
o ]
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5 B2E £ 2 zE S | 2% @
&5 8 b n °SE = = S S £ 0
=% B4 2 fz 22 5§ 29 |2E2 E&
5% =% £ E5 EE & S = S & = a
ne> OHE & AA Own O ©n O M <t o<
Bitcoin ‘ v v v X v v v ‘ X v
Etheresm | v vV V V / / o | v v
XRP | X X v X X X | X v
Bitcoin Cash ‘ v v v X v v v ‘ X v
Litecoin ‘ v v v X v v v ‘ X v
EOS ‘ v v v v v v v ‘ v v
Binance Coin | X X v X X X | ox v
Bitcoin SV ‘ v v v X v v v ‘ X v
Stellar | x X v X X X oo ox v
Tron 2 A ol v v
Cardano ‘ X X v X X X v ‘ X v
Monero ‘ X X v X X X v ‘ X v
Tezos ‘ v v v X v v v ‘ X v
Neo ‘ v v v X v v v ‘ X v
Due to these observations, we choose Bitcoin as a blockchain platform for the DeXTT
implementation. Most crucially, because Bitcoin is by far the most popular cryptocurrency
as of March 2020, being ranked on first place based on its market cap on CoinMarketCap'®.
Another important factor for the selection process is not only that Bitcoin requires a client-
side logic implementation (see Section 4.2), but also that many very similar derivatives of
Bitcoin exist, such as Bitcoin Cash and Litecoin. A DeXTT implementation for Bitcoin
can therefore be applied in a very similar fashion to many other existing blockchains.
Bhnttps://coinmarketcap.com/currencies/bitcoin/
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CHAPTER

DeXTT-Bitcoin Design

In this chapter, the design approaches for a DeXTT implementation for the Bitcoin
blockchain are presented. The overall design and concept is generally applicable and
forms an abstraction from the actual implementation details, which are later described
in Chapter 6. The concept of our design takes into account all specific implementation
choices of the Ethereum prototype! that are required to provide compatibility between
the two DeXTT protocol designs of both blockchains.

The chapter starts with Section 5.1, presenting the concept of embedding the various
DeXTT transactions in the Bitcoin blockchain, as it is required for a client-side logic
DeXTT approach as described in Section 4.1.2. To the best of our knowledge, this is the
approach with the most blockchain involvement possible for Bitcoin (see Section 4.2.1).
Thereafter, the handling of the communication between the client-side application and
the Bitcoin blockchain is discussed in Section 5.2. The subsequent Section 5.3 presents
the different aspects of the participation in witness contests. Next, an approach of
including unconfirmed transactions in the design concept is introduced in Section 5.4.
This chapter is concluded by Section 5.5, where the client logic regarding the timing of
sending transactions in multi-blockchain environments is presented.

5.1 Embedding DeXTT Transactions in Bitcoin

Within this section, the solution approach for the inclusion and embedding of DeXTT
transactions in the Bitcoin blockchain is presented. Such functionality is required to store
and log all DeXTT transactions via the blockchain in a secure and tamper-evident way.
To achieve this, a suitable data inclusion method for the blockchain has to be designed
and a way to embed the different data needed by DeXTT has to be found.

"https://github.com/pantos—io/dextt—prototype
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To embed arbitrary DeXTT payloads in Bitcoin, first, a way of generally storing data in
the blockchain has to be defined. Such an approach is presented in Section 5.1.1. Next,
Section 5.1.2 is comprised of a discussion of how the different transactions needed for
the DeXTT protocol can be embedded and included in Bitcoin utilizing our presented
method. Furthermore, the precise structure of our solution approach is presented in the
same section.

5.1.1 Bitcoin Transaction Format

This section discusses the inclusion of arbitrary data in the Bitcoin blockchain, which is
required for a client-side logic DeXTT implementation.

Problem Statement

The DeXTT protocol defines multiple different transactions that are utilized for its
execution (see Section 2.4). To adopt the protocol for the Bitcoin blockchain, these
transactions have to be included in some way in the blockchain, to allow the secure and
tamper-evident storage and access of these transactions. Each Bitcoin block automatically
includes the timestamp of its creation (see Section 2.2.3). Therefore, together with the
inclusion of the various DeXTT transactions, such a storage mechanism of transaction
logs that allows the deterministic execution of the transactions can be created.

Solution Approach

In our design approach, the null data standard transaction of Bitcoin is utilized (see
Section 2.2.5). Such transactions allow the storage of arbitrary data in a transaction
output. No further parts of the Script language of Bitcoin is used for our approach
of integrating the DeXTT protocol into Bitcoin. The main reason to choose this way
of including arbitrary data is that is the recommended way to do so [bit20d]. Using a
null data transaction, the UTXO database of Bitcoin does not include the according
output, immediately marking the output as not spendable. Apart from storing data
off-chain, null data transactions represent the best approach for data inclusion regarding
the blockchain ecosystem [bit20d; bit19g]. A similar approach of including a protocol
merely through data inclusion in Bitcoin is used by e.g. the Omni Protocol [Wil+19] or
Counterparty [Coul9], effectively building a protocol layer on Bitcoin.

One downside of using null data transaction outputs is the size limit of 80 bytes for its
payload [bit20d]. This limitation can easily be overcome by simply using multiple null
data outputs. The data can then be assembled off-chain. Because null data outputs are
limited to one per transaction, multiple transactions have to be utilized to write more
than 80 bytes of data onto the blockchain [Ant14].

Every Bitcoin transaction needs to include at least one input to be considered valid [bit17a].
Furthermore, for a transaction to be included in a new block with higher probability,
an according transaction fee has to be paid [EOB19; bit19e]. Therefore, the sum of all
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5.1. Embedding DeXTT Transactions in Bitcoin

Bitcoin Transaction

Input #0 Output #0

value: x value: x — fee

signed by: Alice to: Alice

Output #1

value: 0

OP_RETURN <Payload>

Figure 5.1: Illustration of the format of a Bitcoin transaction in DeXTT.

inputs of a Bitcoin transaction with embedded DeXTT data has to be high enough for
the required transaction fee. In our approach, the number of inputs is fixed at one to
reduce the complexity of searching UTXOs and building the transactions. Additionally,

this simplification reduces the size of the actual transaction, effectively lowering the fee.

As a result of how Bitcoin transactions are designed (see Section 2.2.4), the change of
coins (input value — transaction fee) has to be put in an additional transaction output.

The overall Bitcoin transaction structure that is used for DeXTT transactions is illustrated
in a simplified form in Figure 5.1. The transaction consists of one input that pays for
the transaction fee and two outputs. The first output returns the change of coins to
the sender. The second output represents the null data output used to embed DeXTT
transactions. It has an output value of zero and utilizes the OP__ RETURN opcode in its
output script as described in Section 2.2.5.

The Bitcoin transaction structure that handles the DeXTT payload is designed to utilize
native SegWit transactions for the transaction input and the change output. Therefore
Bech32 addresses and P2WPKH standard transactions are used (see Section 2.2.5). This
method is also used as the default format for transactions since Bitcoin Core version
0.19.0.1%.

2https://bitcoin.org/en/release/v0.19.0.1
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By using native SegWit transactions, the size and therefore the required fee for such a
Bitcoin transaction is reduced (see Section 2.2.3). The size of the Bitcoin transactions to
handle DeXTT payloads averages out at about 121 vbytes without any included data.
The actual size is variable, because the length of the used signatures in the DER format
is not fixed and variable length integers are used to describe different length fields in
transactions [ITU15; bit20c]. The base size of about 121 vbytes is composed of 109 vbytes
for a transaction with one SegWit input and one SegWit output and 12 vbytes for an
empty null data output?® [bit20c; LLW15].

Alternative Approaches

There are also other means of including arbitrary data in Bitcoin transactions to store
the data on the blockchain. A simple approach is to encode data in fake Bitcoin addresses
that are then used in transaction outputs [Wil+19]. This solution bloats the UTXO
database by creating unspendable outputs and therefore should be avoided. A more
advanced way of storing data in transactions without bloating the UTXO database of
Bitcoin can be achieved by using 1-of-n multi-signature transactions (see Section 2.2.5)
and encode arbitrary data in n — 1 fake public keys. The n'* public key can be used
to redeem the transaction output later on [Wil+19]. This approach is more complex
compared to the simple and recommended approach of using null data outputs.

5.1.2 DeXTT Transaction Format

Within this section, the data format of the different DeXTT transactions is presented.
This representation is used to embed the transactions in the Bitcoin blockchain, utilizing
Bitcoin transactions as described in the previous section. Therefore, for each individual
DeXTT transaction the protocol is comprised of, a suitable data representation has to be
defined, which can then be included in the blockchain. In our design, the sender’s intent
of a DeXTT token transfer is handled off-chain (see (2.1) in Section 2.4.2). Therefore, no
data format for blockchain inclusion of this data has to be defined. The details about
the off-chain sharing of sender intent data is implementation specific and described in
Section 6.2.2.

In our design approach, the entire data of DeXTT transactions themselves is included
in the blockchain via the specified format within this section. Another approach to
securely include data in the blockchain to allow deterministic execution of those specific
protocol transactions would be to only store hash values of the actual transactions on
the blockchain [Wil+19]. The hashes would still allow to verify which transaction was
included and therefore executed on the blockchain in which block. Furthermore, this
approach only requires a small and fixed size of data to be stored on the blockchain, e.g.,
a 32 byte hash value. This can potentially lower the actual transaction size and cost.
The downside of this alternative solution is that the actual transaction data has to be

3https ://www.reddit.com/r/Bitcoin/comments/7m8ald/how_do_i_calculate_my_
fees_for_a_transaction_sent/


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.1. Embedding DeXTT Transactions in Bitcoin

distributed among all participating clients, effectively building a custom network for data
exchange between all clients, similar to the one used for the actual blockchain [Wil4-19].
This brings the overhead of building, managing and maintaining this additional network.
Therefore, this alternative approach is not considered in the context of this thesis and
prototype implementation.

Addresses

The DeXTT protocol requires the encoding of the source and destination wallet of a token
transfer in its transactions. This can be achieved by providing the public part of the
used cryptographic public/private key pair or by deriving some form of address from this
public key as it is done in Bitcoin or Ethereum (see Chapter 2). For compatibility reasons,
ECDSA [JMV01] with the secp256k1 elliptic curve [Hes00] is used for the public/private
key pair. Furthermore, the same key pair that is used to interact with the Bitcoin
blockchain is also used for DeXTT by each participant. This enables the concept of
utilizing the sender of Bitcoin transactions as a form of signature (see Section 5.3.1).

In the already existing DeXTT Ethereum prototype implementation?, the source and
destination wallets are encoded using Ethereum addresses that are derived from the
according public key. These addresses are also used to derive the contest signatures for
the witness contests in the DeXTT Ethereum implementation®. Therefore it is required
for a new implementation to utilize the same address format to encode the wallets to
reach compatibility with the Ethereum prototype. If another format is used, the contest
signatures are different across the implementations, leading to inconsistencies between
the blockchains.

Compatible addresses must therefore use the address format of Ethereum, being derived
from the last 20 bytes of the Keccak-256 hash of the corresponding public key [AW18]. In
addition to the achieved compatibility, these addresses also come with the advantage of
needing only 20 bytes of storage space, effectively reducing the transaction cost compared
to an approach where the whole public key is included [JMVO01; Hes00].

Signature Format

The signatures that are used in various DeX'T'T transactions also need to be encoded
using the same format as the Ethereum prototype to provide compatibility between the
implementations. A public/private key pair for ECDSA [JMVO01] with the secp256k1
elliptic curve [Hes00] is used to create the digital signatures for the protocol. Furthermore,
the signatures are composed of the concatenation of the three values v, r and s of the
signature.

In contrast to, e.g., the DER signature encoding used in Bitcoin, the utilized signatures
allow the recovery of the public key that was used to create it. For this key recovery,

“https://github.com/pantos-io/dextt-prototype
Shttps://github.com/pantos—io/dextt-prototype/blob/master/truffle/
contracts/Cryptography.sol
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Algorithm 5.1: Signature Verification

Input: Signature sig, Signed data msg, Address addr
Result: Validity of Signature, either True or False
recoveredK ey = recover(signature, msg);
recoveredAddress = ethereumAddress(recoveredKey);
if recoveredAddress == addr then

‘ return True;
else

‘ return False;
end

N OO R W =

the signature and the signed data is needed. This property allows the omitting of the
public keys from DeXTT transactions, if the according addresses of the signers of the
signatures are included. The signature verification can then be achieved as illustrated in
Algorithm 5.1. First, the public key that was used to sign is recovered from the given
signature in line number 1. Next, its corresponding address is calculated in line number
2. The calculation of the corresponding address is done by taking the last 20 bytes of
the Keccak-256 hash of the recovered key. The recovered address is then compared to
the actual address of the party who supposedly signed the data in line number 3. If the
addresses match, the signature is considered valid and True is returned (line number 4),
if they do not match the algorithm returns False (line number 6).

Transaction Prefix

Each DeXTT transaction that is embedded in Bitcoin needs to be marked in a way to
recognize it as a DeXTT payload among all existing null data outputs that are included
in the Bitcoin blockchain. This allows for easy filtering of DeXTT payloads without
the need to try to fully parse each individual null data output. To achieve this, a
marker prefiz is included as the first bytes of each DeXTT transaction, containing the
word “DeXTT” as bytes using the according American Standard Code for Information
Interchange (ASCII) representation. This yields the raw byte values in hexadecimal
format of 0x4465585454, consisting of five bytes [INC17]. Furthermore, each DeXTT
payload contains one byte to indicate the protocol version. This allows to upgrade
the specification of the DeXTT-Bitcoin design later on, while being able to provide
compatibility with older versions. For the current design, the hexadecimal byte value
0x01 to indicate version 1 is used. The prefix of each embedded transaction additionally
contains one byte that indicates the DeXTT transaction type that is represented by it.

Each DeXTT payload data fragment therefore contains a prefix consisting of seven bytes,
leaving room for additional 73 bytes of data per null data output. The remaining data of
the payloads depend on the used transaction type and differ in their size and structure.
Through the encoding of the type, the remaining structure of transactions can be different
for each type. The different transaction types and how they are encoded in our design
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5.1. Embedding DeXTT Transactions in Bitcoin

approach to be included in the Bitcoin blockchain are presented in the next sections.

Claim Transaction

The claim transaction as defined in the DeXTT protocol (see (2.3) in Section 2.4.2)
contains a Pol that consists of the following data elements: source (Ws) and destination
wallet (W;), the token amount (x) that is transferred, start (f9) and end time (¢1)
of the validity period and the signatures created by the source («) and destination
wallet () [Bor+19b].

Both source and destination wallet are represented by using Ethereum addresses, therefore
each of them requires 20 bytes of storage space. Each of the two signatures of the claim
transaction use the format as described in the previous section. Storing a signature in
this way requires a fixed size storage space of 65 bytes [Wool4]. The signatures are
produced the same way as in the Ethereum prototype. The source wallet’s signature « is
created by signing the output of the Keccak-256 hash of the data comprosed of [“a”, W,
W, x, to, t1]. The destination wallet’s signature /3 is generated by signing the output of
the Keccak-256 hash of [“b”, a.

The inclusion of destination and source addresses and the two signatures alone requires
170 bytes (2-20 4 2 - 65) of blockchain storage space. Because one null data output in
Bitcoin can at most hold 80 bytes of data, at least three such outputs are required to
fit one DeXTT claim transaction in the blockchain. The structure and encoding of the
remaining data for a claim transaction is not strictly given by compatibility constraints.
When using three null data outputs, after considering the 170 bytes for addresses and
signatures together with 21 bytes (3 - 7 bytes) for the transaction prefixes, 49 bytes
(240 — 170 — 21) out of the 240 totally available bytes are free to be occupied by the
remaining parts of the claim transaction.

In our design approach, we therefore choose to split each claim transaction into three
individual parts to be stored in the Bitcoin blockchain. The data is split into the following
three DeXTT-Bitcoin Claim transactions:

DeXTT-Bitcoin Claim data transaction. The first partition of the claim transac-
tion contains the actual data of the token transfer. The actual structure of the
payload data is shown in Table 5.1. The DeXTT-Bitcoin Claim data transaction
contains the transaction prefix with the according transaction type in the field
Type. Furthermore, both the source and destination addresses are included. The
amount of tokens of the transfer is represented by a 16 byte value, interpreted as
an unsigned integer. This allows token transfers of up to 2'?® — 1 tokens in one
transaction which should be sufficient for must use cases. The start and end times
of the validity period are represented using 4 bytes per timestamp. These 4 bytes
are used to encode a 32 bit unsigned integer value that is interpreted as a Unix
epoch timestamp. This is the same format as is used for timestamps in the Bitcoin
blockchain (see Section 2.2.3). Therefore, the used format does not introduce any
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5. DEXTT-BITCOIN DESIGN

Table 5.1: DeXTT-Bitcoin Claim data transaction.

‘ Marker Version Type Source Destination Amount tg t1 Hash
Value | 0x4465585454 0x01 0x01 < addr> < addr> <wint> <t> <t> < hash>
Size 5 bytes 1 byte 1 byte 20 bytes 20 bytes 16 bytes 4 bytes 4 bytes 8 bytes
Table 5.2: DeXTT-Bitcoin Claim Signature « transaction.
‘ Marker Version Type Source Signature Hash
Value | 0x4465585454 0x01 0x02 < signaturea > < hash >
Size 5 bytes 1 byte 1 byte 65 bytes 8 bytes
Table 5.3: DeXTT-Bitcoin Claim Signature § transaction.
‘ Marker Version Type Destination Signature Hash
Value | 0x4465585454 0x01 0x03 < signaturef > < hash >
Size 5 bytes 1 byte 1 byte 65 bytes 8 bytes

loss of accuracy or range for the timings of DeXTT transactions. In addition to the
transaction prefix and the data values needed by the claim transaction, an 8 byte
hash value is included in each DeXTT-Bitcoin Claim data transaction. The usage
of this hash value is discussed later on. The total size of a DeXTT-Bitcoin Claim
data transaction therefore amounts to 79 bytes (7 + 20+ 20 + 16 + 4 + 4 + 8).

DeXTT-Bitcoin Claim Signature a transaction. The second partition of the claim
transaction is comprised of the signature « of the source of the token transfer. The
structure of the transaction part is shown in Table 5.2. In addition to the transaction
prefix that contains the according transaction type, the 65 byte signature « of the
transaction sender is included. The last data field in this transaction again includes
an 8 byte hash value that is further discussed later on. The DeXTT-Bitcoin Claim
Signature « transaction therefore requires 80 bytes (7 4 65 + 8) of storage.

DeXTT-Bitcoin Claim Signature § transaction. The last partition of the claim
transaction comprises the second needed signature S created by the receiver of
the token transfer. The transaction structure is presented in Table 5.3. First, the
transaction prefix with the according transaction type value is included. Besides
the included signature (3, again an 8 byte hash value is contained in the transaction.
The usage of this hash is discussed in the following paragraph. This transaction
structure results in a total size of 80 bytes (7 + 65 + 8) for the DeXTT-Bitcoin
Claim Signature B transaction.

A claim transaction can only be executed by the client-side application after all partitions
of the same claim are combined again. To optimize this assembly process, all three
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5.1. Embedding DeXTT Transactions in Bitcoin

transactions that are used to include a claim transaction in Bitcoin contain the same
8 byte hash value. The hash value is created by first calculating the Keccak-256 [Ber+11]
hash of the data that is also used to create the signature «. This data is comprised
of the following parts: [“a”, Ws, Wy, x, to, t1]. Next, the last 8 bytes of the 32 byte
Keccak-256 hash are taken to form the desired hash value. The size of 8 bytes is chosen in
our design as it is the maximum size that could be included in both the DeXTT-Bitcoin
Claim Signature o transaction and the DeXTT-Bitcoin Claim Signature 5 transaction
without the need to reduce any other parts of the transaction in its size. Furthermore,
although an 8 byte hash does not provide the same strength as the whole 32 byte hash
value [GM11], there exist 254 different possible values, therefore a hash collision is still
expected to occur very rarely. The likelihood of a collision reaches 50% after around 232
transactions [Smal6].

This 8 byte hash is utilized in our design approach to identify the according claim
transaction. Through this identification, the complexity to assemble the whole claim
transaction from the three DeXTT-Bitcoin transactions is massively reduced for the client-
side application. Instead of matching transaction parts by trying to verify the signatures
of all currently unassembled transaction parts with each other, only the parts with
matching hash values have to be considered for the signature verification. This reduces
the complexity to constant time, if no hash collisions occur. A hash collision does simply
increase the matching effort slightly, raising the need to try to validate the signatures of
multiple transaction parts with each other. More details of how the partitions of a claim
transaction are combined in our client-side application implementation is presented in
Section 6.3.

Contest Transaction

The contest transaction as it is formally defined in the DeXTT protocol (see (2.4) in
Section 2.4.3) consists of the whole Pol data of the token transfer as it is included in the
claim transaction [Bor+19b]. Additionally, the signature w of the contestant is included.
This additional signature results in the need for an additional DeXTT-Bitcoin transaction.
To reduce the cost and transactions needed for DeXTT on the Bitcoin blockchain, we
choose to reuse existing claim transactions on the blockchain and introduce one additional
DeXTT-Bitcoin Contest transaction that takes advantage of the existing data. More
details on how the reuse of claim transactions is done in our design is discussed in detail
in Section 5.3.2.

Because it is assumed for the De X TT-Bitcoin Contest transaction that the entire Pol data
is already present on the blockchain, the contest transaction only needs to incorporate a
signature of the contestant that verifies that the contestant indeed wants to participate in
the contest. In our design of DeXTT for Bitcoin, we aim to provide full compatibility with
the Ethereum prototype. In contrast to the formal protocol specification, this prototype
does not use the cryptographic signature w for the selection of the winning witness, but
rather a hash value is utilized for the contest signature for the selection. This hash is
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Algorithm 5.2: Calculation of contest signature.

Input: Address contestant Address, Pol data: [Ws, Wy, z, to, t1]
Result: Contest Signature of contestant

1 poiHash = keccak256(“a”, Ws, Wy, x, to, t1);

2 return keccak256(contestantAddress, poiHash);

Table 5.4: DeXTT-Bitcoin Contest transaction.

‘Marker Version Type Full Hash

Value | 0x4465585454 0x01 0x04 < hash >
Size 5 bytes 1 byte 1 byte 32 bytes

calculated from the contestant’s address and the Pol data as shown in Algorithm 5.26.
The participant with the smallest contest signature wins the contest.

Because the contest signature is created without the usage of the signature w, another
way of providing a proof that the contestant wants to participate in the contest can
be used. In our approach, we take advantage of the fact that a Bitcoin transaction
needs to be signed by the sender, therefore the data included in the transaction is also
cryptographically signed by the sender. More details on how this information is embedded
and can be used to verify the transaction sender are shown in Section 5.3.1. Because
the contest transaction is posted to the blockchain by the contestant and therefore is
also signed by her, only some data to identify the according claim transaction must be
included. In our approach, the Keccak-256 hash of [“a”, Ws, Wy, x, to, t1] is embedded
in the contest transaction, which effectively references the according Pol data [GM11].
The data that is hashed is the same as for the signature o and the 8 byte hash value in
the DeXTT-Bitcoin Claim transactions. The structure of the DeXTT-Bitcoin Contest
transaction is shown in Table 5.4. This approach of only including a 32 byte hash value
instead of a 65 byte signature reduces the transaction size and therefore also the cost of
a contest participation. The total size of a DeXTT-Bitcoin Contest transaction consists
of 39 bytes (7 + 32).

Finalize Transaction

The finalize transaction that is defined in the DeXTT protocol (see (2.5) in Section 2.4.4)
formally only consists of the signature « of the sender of the token transfer [Bor+19b].
The purpose of this signature is to uniquely identify the corresponding token transfer
and claim transaction. To reduce the size of the DeXTT-Bitcoin Finalize transaction,
the same mechanism as in the DeXTT-Bitcoin Contest transaction to identify the Pol
data is utilized. Therefore, instead of a 65 byte signature, a 32 byte hash value of

Shttps://github.com/pantos—io/dextt-prototype/blob/master/truffle/
contracts/Cryptography.sol
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5.1. Embedding DeXTT Transactions in Bitcoin

Table 5.5: DeXTT-Bitcoin Finalize transaction.

‘ Marker Version Type Full Hash
Value | 0x4465585454 0x01 0x05 < hash >
Size 5 bytes 1 byte 1 byte 32 bytes

Table 5.6: DeXTT-Bitcoin Finalize-Veto transaction.

‘ Marker Version Type Conflicting Sender
Value | 0x4465585454 0x01 0x06 < addr >
Size 5 bytes 1 byte 1 byte 20 bytes

the Pol is included in the finalize transaction. The structure including the according
transaction type byte value is presented in Table 5.5. Just as the contest transaction,
the DeXTT-Bitcoin Finalize transaction takes up 39 bytes (7 4+ 32) of storage on the
blockchain.

Veto Transaction

To embed veto transactions (see (2.6) in Section 2.4.5) in the Bitcoin blockchain, the same
approach as in the Ethereum prototype implementation is utilized. Veto transactions are
implicitly included by using the ordinary contest transactions. The client-side application
automatically interprets the contest transaction as a veto transaction if a conflicting
Pol exists. Therefore, protocol users that participate in all possible witness contests
automatically participate in the veto contests.

Finalize-Veto Transaction

In the finalize-veto transaction of the DeXTT protocol (see (2.8) in Section 2.4.5), both sig-
natures o and o by the sender that created both conflicting Pols are included [Bor+19b].
The finalize transaction is utilized in the design in our client-side application, just as in
the Ethereum implementation, to identify the sender’s address of the conflicting token
transfers. Therefore, it is sufficient to only include the address of the sender of the
conflicting Pols instead of the signatures. This effectively reduces the size and complexity
of the transaction. The structure of the DeXTT-Bitcoin Finalize-Veto transaction is
shown in Table 5.6. The resulting transaction occupies 27 bytes (7+20) on the blockchain.

Additional Transaction: Mint Transaction

The formal specifications of the DeXTT protocol do not provide any means of token
creation or minting [Bor+19b]. Such functionality is required in the design of the Bitcoin
implementation, because there must exist a way of minting tokens to excessively test
and evaluate the protocol implementation (see Chapter 7). Therefore an additional
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Table 5.7: DeXTT-Bitcoin Mint transaction.

‘ Marker Version Type Receiver Amount
Value | 0x4465585454 0x01 0x06 <addr> <wnt>
Size 5 bytes 1 byte 1 byte 20 bytes 16 bytes

transaction for the minting of tokens is introduced. The same concept is utilized within
the Ethereum implementation.

Instead of such an additional transaction, it would also be possible to hard-code certain
amounts of tokens into the testing environment in the client-side application. But that
approach does not allow the same properties as transactions that are included in the
blockchain. Most importantly, the minting of tokens would not be stored and distributed
through the blockchain, making it impossible to dynamically mint additional coins and
synchronize the information between all clients.

The mint transaction contains the same transaction prefix as the other transactions
and additionally includes two data fields. Its structure is shown in Table 5.7. First,
the address of the receiver of the minted tokens is specified. Furthermore, the amount
of tokens that is created through the mint transaction is included, again as a 16 byte
unsigned integer value. When the mint transaction is executed, the specified amount
of tokens is added to the balance of the wallet that is indicated through the receiver
address.

To prevent every participating client to mint an arbitrary amount of tokens, within the
client-side application of the DeXTT implementation for Bitcoin a special address is
hard-coded. This address represents the only participant that is allowed to mint tokens,
therefore only mint transaction that are posted by this participant are executed. All
other minting attempts are ignored. The same concept of minting transactions is used in
the Ethereum implementation of DeXTT, including the same restrictions on its sender’.
Details of how the sender of the transaction is verified are discussed in Section 5.3.1.

5.2 Blockchain Interaction

This section presents the means of communication between the client-side application for
DeXTT and the Bitcoin blockchain. To include DeXTT transactions in the blockchain
and read and execute them later on, a way of sending valid transactions to the blockchain
and accessing transactions that were included in the blockchain is required. Section 5.2.1
presents and discusses the chosen way of communicating with the blockchain. Furthermore,
Section 5.2.2 shows how the general interaction sequence of the client-side application
with the blockchain is designed to achieve the intended functionality of the client.

"https://github.com/pantos—io/dextt-prototype/blob/master/truffle/
contracts/PBT.sol
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5.2. Blockchain Interaction

5.2.1 Communication Approach

In this section, the communication with a blockchain is discussed. This communication
is mainly comprised of writing and reading transactions to and from the blockchain.

Problem Statement

The client-side application of the DApp that represents the DeXTT implementation for
the Bitcoin blockchain needs to communicate with the blockchain to store and access
data that is included on the blockchain-side of the DApp. This is achieved by sending
valid transactions to the blockchain and reading transactions that were sent to the
blockchain. To create valid transactions that contain DeXTT payloads via null data
outputs, information about previous transactions needs to be available to be able to
use a valid UTXO for the input of the transaction. Furthermore, to execute DeXTT
transactions and to create new ones according to the protocol, the previous DeXTT
transactions are needed in the client-side application. Otherwise, it is not possible to
recreate the correct state of open token transfers and user balances that is required for
future protocol compliance. Therefore, at least a certain subset of blockchain state needs
to be accessible via the client, containing UTXOs data of the according Bitcoin wallet

and all relevant DeXTT-Bitcoin transactions that are already included on the blockchain.

Solution Approach

To provide the required means of communication between the client-side application
and the Bitcoin blockchain, our design approach utilizes the Bitcoin Core [bit20b] client
software that yields an implementation of a full Bitcoin node [bit19a]. Because Bitcoin
Core represents a full node, the program stores and validates the state of the entire
Bitcoin blockchain and can also send newly created transactions to the Bitcoin blockchain
network [bit19¢c|. Bitcoin Core can operate on the Bitcoin mainnet or testnet and also

allows the usage of privately managed blockchains via its regtest mode (see Section 2.2.7).

The interaction between the client-side application of the DeXTT-Bitcoin DApp and
Bitcoin Core is handled by using the Remote Procedure Call (RPC) interface that is
offered by Bitcoin Core. This interface provides access to the APIs of Bitcoin Core
through the use of Hypertext Transfer Protocol (HTTP), where JavaScript Object
Notation (JSON) objects are embedded in the request and response messages. The data
format that is used for the JSON-RPC interface is based on version 1.0 of the JSON-RPC
specification® [bit20c; bit20a].

In our design of the DeXTT protocol for Bitcoin, this JSON-RPC interface it used to
communicate with Bitcoin Core and therefore also to interact with the Bitcoin blockchain
by using the according methods of the API provided by Bitcoin Core. The overall
design approach of the communication means between these components in illustrated in
Figure 5.2. It shows that the DeXTT-Bitcoin client only needs to store DeXTT-specific

8https://www. jsonrpc.org/specification_vl
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Figure 5.2: Communication between DeXTT-Bitcoin client and Bitcoin Core.

data. All required data from the Bitcoin blockchain is stored and managed by Bitcoin
Core and accessed by the DeXTT client via the JSON-RPC interface. Moreover, Bitcoin
Core is connected to the actual nodes of the Bitcoin blockchain network and handles the
according communication with the blockchain.

The JSON-RPC interface of Bitcoin Core is used for all communication means with
the Bitcoin blockchain. Furthermore, Bitcoin Core and its APIs are also utilized to
manage the Bitcoin wallets and addresses that are needed to post new transactions to the
blockchain. All of the RPC calls that are used throughout our design and implementation
of the DeXTT protocol are described as follows [bit20c; Corl9]:

CreateRawTransaction. This RPC creates a new transaction that spends the specified
inputs and creates the specified outputs. The return value of the call contains a
hex-encoded raw transaction. The inputs of the created transaction do not get
signed and the transaction is not transmitted to the Bitcoin network by calling this
method. The required arguments include the inputs and outputs of the transaction.

DecodeRawTransaction. By calling this RPC, a given hex-encoded raw transaction
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5.2. Blockchain Interaction

is decoded and the serialized representation of the transaction is returned. This
returned transaction contains all relevant transaction data in decoded serialized
form.

DumpPrivKey. This call reveals the private key that corresponds to the specified
Bitcoin address.

EstimateSmartFee. This function returns an estimation for the current transaction
fee per kB that is required for a transaction to be confirmed within the specified
number of blocks.

GenerateToAddress. This RPC method immediately mines the specified number of
blocks and sends the newly created Bitcoin to the given address. The required
arguments of this call comprise the number of blocks to be mined and the Bitcoin
address to which the generated amount of Bitcoin is sent to. This RPC is only
available in regtest mode.

GetBlock. RPC that returns the data of a Bitcoin block. The desired block is specified
by providing the according hash value of the block as a hex-encoded string value as
an argument to the call.

GetBlockCount. This call returns the number of blocks that are contained in the
currently longest blockchain.

GetBlockHash. This RPC returns the hash value of a Bitcoin block. The block is
specified via its height in the currently longest blockchain.

GetRawTransaction. Returns a hex-encoded raw Bitcoin transaction that is identified
by its transaction id as a parameter to the RPC.

ListSinceBlock. This RPC returns all confirmed transactions that were included in
the blockchain since the specified block was generated. This block is identified via
its block hash that is provided via an argument to the RPC.

ListUnspent. Via this call, a list of UTXOs is provided as an array. The transactions
can be filtered to have a certain number of confirmations. This can be specified
by providing a minimum confirmation count or a maximum confirmation count or
both to which the UTXOs must comply.

SendRawTransaction. This RPC can be utilized to send a serialized hex-encoded raw
Bitcoin transaction to the Bitcoin network.

SignRawTransactionWithKey. This call is used to sign the inputs of a serialized
hex-encoded raw transaction. Both the transaction that should be signed and the

private key to be utilized for the signature are provided via arguments to the RPC.

The result of this call includes a hex-encoded raw transaction including the newly
created signatures.
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WalletPassphrase. This RPC stores the decryption key of the currently used Bitcoin
wallet in memory for the specified amount of time. While the decryption key is
stored in memory, tasks that require private keys can be performed, e.g., dumping
the private key via the DumpPrivKey RPC. The WalletPassphrase RPC requires
two arguments: the passphrase of the wallet and a timeout value.

Discussion of Alternatives

It is also possible to apply other approaches to achieve the desired communication with
the Bitcoin blockchain. One possible solution is the usage of a slim node or client that
communicates with an external service. The blockchain data itself is therefore not stored
by the client but only accessed through a service that stores the data. One example of
such a blockchain web service is BlockCypher?. The advantage of this approach is that less
data has to be stored locally. A disadvantage of this method is that the communication
and accesses to these services are often limited, e.g., only allowing a certain number of
requests within a given period of time. Additionally, it is not possible to use something
similar as the regtest mode of Bitcoin Core (see Section 2.2.7). Therefore, this limits the
client to use either the Bitcoin mainnet or testnet. Another disadvantage is that the data
provided by the blockchain web service must be fully trusted using such an approach.

It would also be possible to go without any additional software or service, effectively
implementing a custom Bitcoin node that handles all of the communication with the
network itself [bit19c]. This approach results in an implementation overhead through
which also additional errors might be introduced. It is therefore a better approach to
rely on third party software such as Bitcoin Core, that is used and tested thoroughly.

5.2.2 Blockchain Interaction Overview

This section gives an abstract overview of how the client-side DeXTT application inter-
acts with Bitcoin Core and therefore with the Bitcoin blockchain. The description of
interactions is reduced to the core functionality of the client software, namely the reading
and execution of DeXTT transactions. The client design of DeXTT for Bitcoin includes
the functionality to work on multiple Bitcoin blockchains simultaneously. This ability is
needed to allow the interaction and therefore the execution of the DeXTT protocol in
an environment that consists of multiple blockchains, such as it is possible by using the
regtest mode of Bitcoin Core (see Section 2.2.7).

A DeXTT client in a client-side logic implementation must continuously process all newly
created Bitcoin blocks and transactions. For this, it must filter each transaction output
in search for a null data output that contains a DeXTT payload. All found DeXTT
transactions must then be executed, effectively changing the state of DeXTT wallets and
open transactions. Furthermore, a client implementation must react to the transactions
accordingly, e.g., send contest transactions if a new valid claim transaction is processed.

%https://www.blockcypher.com/
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Figure 5.3: Block diagram of interaction between the DeXTT and Bitcoin Core.

Figure 5.3 gives a simplified view on how the client-side application of our DeXTT
implementation processes transactions. The shown block diagram of actions represents
a loop that is active as long as the client is running. Such a loop is executed for each
different blockchain in a multi-blockchain scenario, e.g., by using the regtest mode of
Bitcoin Core with multiple blockchains. The body of the loop first checks if a new block
was generated, by using the GetBlockCount RPC. The returned number of blocks is then
compared to the number of already processed blocks to determine, if a new block was
created that has to be processed by the client. The number of already processed blocks
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can be initially set to the genesis block of DeXTT to prevent the scanning of the whole
blockchain (see Section 7.1.1). If new blocks were found, each transaction of each block
is accessed through the according RPCs. These transactions are all confirmed with at
least one confirmation. Every new transaction is then searched for null data outputs that
contain DeXTT payloads. If this search yields DeXTT payloads, they are parsed and
executed by the client, effectively updating its state.

To also make use of existing transactions that are not yet included in a block, i.e.,
unconfirmed transactions, the ListSinceBlock RPC is utilized to get all transactions since
the most recent block. This call therefore only returns unconfirmed transactions. These
transactions are then again parsed and executed. Generally, unconfirmed transactions are
treated differently by our DeXTT client to still ensure determinism for their execution.
More details about the handling of unconfirmed transactions is presented in Section 5.4.

After all new transactions have been processed, the resulting state of the DeXTT protocol
is checked to determine if any actions must be taken, e.g., finalizing a token transfer
or participating in a witness contest. Details about the logic to check if actions are
required are discussed in Section 5.3.3 and Section 5.5. After all necessary actions such
as the sending of transactions have been taken, the client waits a specified amount of
time before repeating the polling of data from the blockchain. This is done to reduce
the communication effort and the Central Processing Unit (CPU) workload. Because
the expected time between new blocks in Bitcoin is ten minutes, it is expected that a
wait time of a few seconds does not introduce any disadvantages for the client, while still
lowering the communication and CPU effort. The lower communication load also reduces
the workload of Bitcoin Core, which is utilized for the communication.

The blockchain interaction design presented in this section enables the DeXTT client to
deterministically build and maintain the state of DeXTT protocol execution on the given
blockchains by using a polling approach via the RPCs provided by Bitcoin Core. By
utilizing this state information, the client can act accordingly, e.g., finalizing a transaction
after the validity period of a token transfer expired.

5.3 Contest Participation

In this section, different aspects of the participation in witness contests are elaborated.
First, the verification process of signatures of Bitcoin transactions is presented in Sec-
tion 5.3.1. This is required to determine the sender of a transaction, who thereby shows
her agreement with the content of the transaction through this signature. In the next
section, the concept of regarding claim transactions also as contest participations is
discussed. Followed by details on how claim transactions are reused for contest trans-
actions. The last section discusses the introduction of different waiting periods by the
client between the observation of a valid claim and the sending of a contest participation.
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5.3. Contest Participation

5.3.1 Contest Sender Verification

The commitment to the content of a Bitcoin transaction and therefore also to the
contained DeXTT payload is assumed to be given by the sender of a transaction. In our
design, the sender of a transaction is determined through the identity that was used to
unlock to input of the Bitcoin transaction through its signature. This identity is given
in the form of the public key of the participant, which has to be extracted from the
transaction. From this public key, the according address for DeXTT transactions can be
constructed. It can then be guaranteed that the according DeXTT transaction inside
the Bitcoin transaction originates from the calculated address. This information can be
regarded as equivalent to a signature of the DeXTT payload by the same party.

In our approach, we use P2WPKH standard transactions for all transactions that embed
DeXTT payloads. P2WPKH transactions include a witness program in its inputs to
unlock outputs to be spent. The currently used version 0 witness program that is present
in each input of the transaction consists of two data items, a signature and a matching
public key that are used to unlock the referenced transaction output [LLW15].

In our design, the DeXTT client therefore parses the witness program of each input
to extract the given public key and therefore determines the sender of each DeXTT
transaction. The sender is required to be known for contest participations through both
claim and contest transactions (see Section 5.3.2) and for the mint transaction.

The utilized approach only works for P2WPKH transactions that use the current version
0 witness program. For future versions of the witness program, the public key might be
included in some other ways. Therefore, an alternative solution to determine the sender
of a transaction would consist of extracting the information from the spent transaction
output'?. The downside of that approach is that for each transaction, also the transaction
that contains the referenced output must be retrieved from the blockchain, resulting in
more communication overhead.

5.3.2 Claim Transaction as Contest Participation

In our DeXTT-Bitcoin design approach, a claim transaction automatically also counts as
a contest participation. This is possible because the formal definitions of a claim and a
contest transaction (see Section 2.4) contain the same data relevant for the participation,
a Pol [Bor+19b]. The same concept is applied in the Ethereum prototype of the DeXTT
protocol.

The conceptional merging of the transactions brings the advantage that the receiver of
a token transfer who posts the claim on the blockchain does not need to send another

separate contest transaction. The contest participation is done through the claim itself.

As a result, in contrary to the formal definition of DeXTT, the claim must be posted on all
participating blockchains, because otherwise inconsistencies could occur [Bor+19b]. This

Onttps://bitcoin. stackexchange.com/questions/88526/find-senders-public—
key—-in-segwit-transaction

71


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

DEXTT-BITCOIN DESIGN

72

fact does not introduce any disadvantages, because otherwise the contest transactions
would have been posted on all blockchain. Furthermore, it can be assumed that the
receiver of a transfer wants to participate in the contest anyhow, because otherwise she
would miss out on a potential witness reward.

Because a claim is automatically considered as a contest participation, it is possible to
design the protocol without an explicitly defined contest transaction. Instead, only claim
transactions can be used for both purposes. This brings the disadvantage of posting the
same data multiple times per blockchain. Furthermore, each claim transaction consists
of three null data outputs, resulting in a higher cost than for a single null data output
(see Section 5.1.2).

The concept of the contest transaction that consists only of one null data output,
effectively containing only a reference to the claim data in the form of a hash, tackles
those drawback of the claim transaction (see Section 5.1.2). In our design, it is possible to
use this contest transaction on any blockchain that has already seen a claim transaction
containing the data of the Pol. The transaction then has the same effect as posting the
claim transaction, participating in the according witness contest. By using this approach,
less data is written to the blockchain, resulting in lower cost for the participant.

5.3.3 Waiting Period for Contest Participation

One concept of DeXTT is that the protocol participants do only participate in a witness
contest, if they still have a chance to win it. That information can be determined by
comparing their own contest signature (see Section 5.1.2) with the signatures of parties
that already participate in the contest. This results in a theoretical average of loga(n)
candidates posting contest participations [Bor+19b].

This result would require that each participant knows the signatures of some contestants
in advance. To enable such a behavior, in the design of our DeXTT client a waiting
period for contest participations is introduced. Instead of posting contest participations
immediately after observing a claim on a blockchain, each client waits a random amount
of time out of a specified time interval. This potentially results in a variation of when
clients want to participate in contests, therefore part of the contestants and their contest
signatures are already known by the clients that wait longer than the others. These
clients can then first check if they still have a chance to win, as they already have some
information about other contestants.

When only confirmed Bitcoin transactions are considered for the execution of DeXTT,
clients learn about other transactions and therefore also contest participations only if
a new block is generated. Therefore, the waiting period is expressed in the number of
blocks to wait when only confirmed transactions are used. Our design also comprises
the concept of processing unconfirmed transactions (see Section 5.4). If this concept is
utilized, a traditional waiting period can be applied, because clients learn about other
transactions as soon as they are sent to the Bitcoin network, no newly generated block is
necessary.
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5.4. Greedy Approach: Utilizing Unconfirmed Transactions

5.4 Greedy Approach: Utilizing Unconfirmed
Transactions

This section presents the utilized concept of handling and processing unconfirmed trans-
actions, without introducing indeterminism in the execution of DeXTT transactions.
Indeterministic execution can generally occur by executing unconfirmed transactions,
because they are not yet included in a block and therefore have no timestamp associated
with them. For instance, a contest transaction might be executed as an unconfirmed
transaction, but is included later in a block that contains a timestamp after the expira-
tion of the validity period of the according Pol. The same transaction will therefore be
processed differently after it is included in such a block. The only timing information
that can be used for unconfirmed transaction is given by the block timestamp of the last
generated block. In our approach, it is assumed that timestamps in blocks are always
greater or equal to the timestamp of the previous block, otherwise no meaningful timing
reasoning can be made. To provide determinism for transaction execution, the different
DeXTT-Bitcoin transactions are treated as follows:

Claim Transaction A claim transaction needs to occur after the finalize transaction
of the previous token transfer by the same sender. Furthermore, the start time
to of the validity period must have already passed and the end time ¢; must not
be reached yet. This means that for the transaction execution time t, tg <t < t;
must suffice for the transaction to be valid regarding its timing [Bor+19b]. The
constraint of ¢ty <t can be enforced for unconfirmed transactions. Its validity can
be achieved by requiring that the timestamp t,cwest Of the newest known block
suffices to g < tpewest- Therefore, any newly generated block will have a timestamp
greater or equal to tg. The second timing constraints regarding the end time ¢; of
the transaction validity period can not be enforced for the usage of unconfirmed
transactions. Although it can be checked if ,cpest < t1 and therefore it is possible
that the transaction gets included in a block before t1, the next block could still
be generated with a timestamp greater or equal to t;. Therefore, it can not be
determined with certainty if a claim transaction is valid considering its timing by
only utilizing the unconfirmed claim transaction. The same reasoning about the
timings applies for the contest participation, which is automatically included in the
execution of a claim transaction in our design approach.

The execution of unconfirmed claim transactions would yield an advantage for clients,
because there is more time to react to the claim by sending a contest participation
and therefore a higher chance that the contest participation is included in a block
with a timestamp before ¢;. Therefore, another approach for handling unconfirmed
claim transactions is introduced. Instead of executing the claim transaction and
therefore changing the state of the DeXTT wallets and data, the clients only use
the information to react to the claim by sending contest participations, before the
claim is confirmed. This results in still utilizing the advantage of unconfirmed claim
transactions, without introducing additional indeterminism.
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Contest Transaction The necessary timings to execute contest transactions are the
same as for claim transactions in our approach. Therefore, it is not possible
to execute contest participations provided by unconfirmed transactions, without
introducing the possibility of indeterminism of transactions executions. As a result,
we utilize unconfirmed contest transactions solely for the purpose of determining
the contest signatures of other contestants before a client sends its own contest
participation to the blockchain. This allows the observation of other contestant’s
transactions without waiting for the generation of new blocks. Details about when
contest participations are sent are discussed in Section 5.3.3. Unconfirmed contest
transactions are therefore not executed in the client and do not change the DeXTT
wallets and other state information.

Finalize Transaction A finalize transaction must occur after the end time ¢; of the
corresponding token transfer has expired. This can only be checked for unconfirmed
finalize transactions, if the newest block of the blockchain has a timestamp ¢ for
which ¢; < t holds. However, because a finalize transaction must occur before
the claim for another new token transfer by the same sender, an indeterminism of
transaction execution might occur, if such a claim is added to a new block before
the previous finalize. By executing the finalize as an unconfirmed transaction, the
claim is considered valid, whereas without such a premature execution, the claim is
considered invalid. Furthermore, executing unconfirmed finalize transactions does
not yield additional value. Therefore, we did not implement any means of executing
unconfirmed finalize transactions.

Finalize-Veto Transaction The same reasoning as for finalize transactions applies for
finalize-veto transactions with regards to the veto contest end time ¢ty gro instead
of t1. Therefore, unconfirmed finalize-veto transactions do not get executed in our
DeXTT client.

Mint Transaction The newly introduced mint transaction that is utilized to create
tokens for testing means, does not introduce any additional timing constraints. Due
to this and the fact that it is only utilized for testing purposes, unconfirmed mint
transactions get executed instantly within our client.

The handling and execution of unconfirmed transactions can also be designed in a
way that eagerly executes every observed unconfirmed transaction. That could result
in inconsistencies and indeterminisms. Therefore, there must be a way of undoing
already executed transactions and reevaluate the correct state of the DeXTT client if
such transactions are included in blocks in a way that do not fulfill the presumptions
made by the unconfirmed execution. This alternative approach therefore introduces
an implementation overhead together with the introduction of potentially temporary
wrong state information. As a result, we decided to design the Bitcoin DeXTT client-side
application without eager execution of unconfirmed transactions.
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5.5.  Multi-Blockchain Client Logic

5.5 Multi-Blockchain Client Logic

This section gives an overview of how our DeXTT client is designed with regards to its

logic for handling multiple Bitcoin blockchains that are used for the DeXTT protocol.

Such a multi-blockchain scenario can be achieved, e.g., by utilizing the regtest mode of
Bitcoin core. The client-side application of the DeXTT DApp must therefore consider the
different timings of DeXTT transactions on multiple blockchains. An important factor
for the design of how the client reacts to different events are the different timings across

the blockchains. Generally, blocks are not generated at the same time on all blockchains.

Additionally, the timestamps across the blockchains may differ. The only assumption
that is made about a timestamp ¢ that is included in a block, consists of the expectation
that for each block i and its subsequent block 7 + 1 the constraint of ¢, < t;, ., holds,
i.e., the timestamps progress in a monotonic manner.

Timings and therefore the execution of transactions differ across the different blockchains.

Therefore, the logic of when to react to the current DeXTT state and send according
transactions, e.g., participate in a contest, is handled considering a global view of the
blockchain ecosystem. For this, the timestamps of blocks of all participating blockchains
are taken into account to determine if certain actions should be taken. This is done to
prevent inconsistencies across the blockchains, e.g., by sending contest participations that
are not valid on all blockchains, due to time constraints of the corresponding Pol.

In Section 5.5.1, definitions for two concepts of global time constraints are presented.

The subsequent sections discuss approaches to handle client logic in regards to those
global timing concepts.

5.5.1 Global Timings Across Blockchains

To handle different timing constraints within the logic that determines when to send
which transactions, two concepts of global timing information across the blockchains are
introduced. Figure 5.4 illustrates both global time concepts by an example using three

blockchains, C, , Cp and C.. The block B, ; represents the ith block on blockchain C,.

In this example, the timestamp of block B ;11 represents the earliest blockchain time

teartiest and the timestamp of block B. ;14 represents the latest blockchain time t44est-

The global time concepts are further discussed below.

Latest Blockchain Time

The concept of the latest blockchain time is needed to check if a certain point of time ¢ has
been reached on any of the participating blockchains, e.g., to check if a claim transaction
might be already invalid on any of the blockchains before sending it. Therefore, the client
can decide to not send the transaction to any of the blockchains, effectively preventing a
certain inconsistency across the blockchains.

The latest blockchain time is defined to be represented by the timestamp ¢ with the latest
value of all timestamps across all blockchains, i.e., the timestamp of the most recently
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Figure 5.4: Global timings across multiple blockchains.

created block out of all blockchains. Therefore, for all blocks b with the timestamp tp,
tp <t holds.

Earliest Blockchain Time

The concept of the earliest blockchain time is required to check if a point in time ¢ has
passed on all participating blockchains, e.g., to check if the validity of the start time of a
Pol has been reached on all blockchains and therefore the according claim transaction
does not end up invalid due to its start time on any of the blockchains.

The earliest blockchain time is defined as the latest timestamp ¢ for which it holds
that each blockchain has blocks with greater or equal timestamps. Therefore, it can be
regarded as the timestamp of the blockchain with the globally earliest block as its latest
block. Therefore, t is the latest timestamp of any block for which it holds, that on any
blockchain there exists a block b with the timestamp t; such that ¢ < .

5.5.2 Initial Claim Transactions

Before a receiver of a token transfer sends a claim transaction based on the given Pol, the
time constraint of the start time of the validity period of the transfer must be checked
first. Otherwise, there exists the possibility to introduce inconsistency across blockchains.
This can happen, if on one blockchain the claim transaction gets included in a block with
time t < tg whereas on another blockchain, the same transaction is included in a block
with ¢ > t,.

To comply with the time constraint regarding tg, for the earliest blockchain time t. it
must hold that ¢, > to when the initial claim transaction of a token transfer is sent to the
blockchains. This infers that the claim transaction is included in a block with timestamp
t > to on all blockchains.
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5.5.  Multi-Blockchain Client Logic

5.5.3 Finalize and Finalize-Veto Transactions

For the logic to determine if a finalize or finalize-veto transaction has to be sent due to
the expiration of the according validity period, an additional assumption is introduced.
It is expected that if on one blockchain, a block with a timestamp t; is generated, the
next block generated by any participating blockchain has a timestamp ¢;41 such that
t; < t;11. This assumption holds for, e.g., the regtest mode of Bitcoin Core, where newly
generated blocks are created with the current local time as their timestamp. Furthermore,
if the client is used solely on the mainnet or testnet of Bitcoin, this assumption does not
introduce any drawbacks, as not more than one Bitcoin blockchain is used.

After each iteration of transaction executions (see Section 5.2.2), the DeXTT client
checks if any token transfer needs to be finalized or veto-finalized by comparing the
according end time t.,q to the current latest block time t;. For each not yet finalized
token transfer for which t.,q < t; holds, the according finalize transactions are then sent
to each blockchain.

By using the earliest blockchain time instead of the latest blockchain time, the additional
timing assumption could be dropped, but it would take a longer time until finalize
transactions could be sent, waiting for each blockchain to generate a new block first.

5.5.4 Contest Participations

If a client receives a claim transaction on any blockchain for a new token transfer, it first
waits for a certain amount of time as discussed in Section 5.3.3. After the waiting period,
the validity end time t; is compared to the latest blockchain time t;. Only if t; < t1, the
DeXTT client sends its contest participation to all blockchains.

This is done due to possible inconsistencies across blockchains if there exists a block on
any blockchain B with a timestamp tp greater than ¢;. This could potentially result in
the contest transaction being treated as valid on all blockchains except on blockchain B,
yielding a different witness contest winner on B and therefore being inconsistent with
the other blockchains.
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CHAPTER

Implementation Details

This chapter presents details about the concrete implementation of the DeXTT protocol
on the Bitcoin blockchain. The focus of this chapter lies on specific architectures and
concepts that are used within the implementation. The source code of the DeXTT
Bitcoin prototype that was created in the scope of this thesis is freely available as Open
Source software on Github!.

The chapter is started by the presentation of the used technologies in Section 6.1. The
subsequent Section 6.2 gives an overview about the general architecture of the prototype
implementation. Section 6.3 elaborates how claim transactions are assembled from the
three DeXT'T-Bitcoin claim transaction parts.

6.1 Technology Stack

This section presents the utilized technologies for the client-side application of the
DeXTT-Bitcoin implementation. For the communication with the Bitcoin blockchain,
the Bitcoin Core [bit20b] client software is used as described in Section 5.2. We decided
to implement the Bitcoin prototype of DeXTT using Java together with several Java
libraries that enable us to realize the client-side application efficiently while applying
best practices of software engineering. The details of all used technologies within the
design and implementation of DeXTT for Bitcoin are listed below.

Bitcoin Core. As described in detail in Section 5.2, the client-side utilizes the Bit-
coin Core [bit20b]? client software to communicate and interact with the Bitcoin
blockchain. For our implementation, Bitcoin Core version 0.19.0.1 is employed.

"https://github.com/MatthiasKuehne/dexxt-bitcoin-prototype
?https://bitcoincore.org/
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Java. The DeXTT client is developed using the Java language with the Java SE 12.0.1
Oracle JDK?. Java was chosen because it allows object-oriented programming,
provides a big community, many third-party libraries and can be run on any system
that runs the Java VM.

Maven. To manage the different dependencies for third-party Java libraries and the
build lifecylce of the client implementation, Apache Maven? 3.6.1 is used. Maven
automatically loads the specified libraries and includes them in the software project
and the build artifacts.

log4j. Apache log4j® is a logging framework that enables global settings for the format,
output stream and categories for different log messages. It is used in version 2.12.1
within the DeXTT client.

bitcoin-rpc-client. This library is used to access the JSON-RPC interface of Bitcoin
Core from the Java client implementation. It offers wrapper functions to access
the API of Bitcoin Core and therefore takes care of parsing, type conversions and
the communication via HTTP. There exist several Java libraries to offer similar
functionality [bit20a]. We choose the bitcoin-rpc-client® in version 1.1.1 because it
offers wrappers for all utilized RPCs and is still actively developed.

Web3j. Web3j” that is used in version 4.5.14 is a Java library to work with smart
contracts and blockchains such as Ethereum. In our implementation, it is utilized
for cryptographic functions such as signature creation and verification, the Keccak-
256 hash function and the derivation of Ethereum addresses from public keys.

bitcoinj. The bitcoinj® 0.15.6 library offers means to work with the Bitcoin protocol.
Although it includes sophisticated features such as maintaining a Bitcoin wallet
or sending and receiving transactions, in our implementation it is only used to
create a public/private key pair from a given Wallet Import Format (WIF) private
key [bit17b] as it is returned by the DumpPrivKey RPC of Bitcoin Core.

Picocli. Picocli? 4.1.4 is included in the DeXTT client to provide an efficient way within
the application source code to offer a Command Line Interface (CLI). Annotations
are used to specify commands and the usage help for the interface is automatically
generated by this library.

Guava. Guava'® by Google offers a wide variety of core libraries to enhance the func-
tionality provided by Java. Within the DeXTT implementation, Guava 28.2-jre is

Shttps://www.oracle.com/java/
‘https://maven.apache.org/
Shttps://logging.apache.org/logdj/2.x/
Shttps://github.com/Polve/bitcoin-rpc-client
"https://www.web3labs.com/web37
8https://bitcoinj.github.io/
%https://picocli.info/
Onttps://github.com/google/guava
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6.2. Software Architecture

included for the usage of its event bus implementation'!. Such an event bus offers
publish-subscribe communication between different components without explicitly
registering to each other and therefore allows loosely coupled components.

JUnit. JUnit!'2 5.6.0 is used as a testing framework. The library offers functionality to
write unit tests for the DeXTT client application.

AssertJ. The AssertJ'® 3.15.0 Java library provides a rich set of assertions that are
used for writing unit tests.

6.2 Software Architecture

This sections gives an overview of the software architecture of the DeXTT-Bitcoin
prototype.

The client implementation is designed to not only feature all details that are needed to
run the DeXTT protocol together with the Bitcoin blockchain via Bitcoin Core, but also
includes all necessary code to excessively run the software for testing and evaluation
means. Because this prototype is currently solely utilized for such evaluation means,
the actual core to run DeXTT including all logical details is wrapped by parts that are
responsible to execute evaluation runs. Therefore, our implementation represents an all
in one solution that bundles the DeXTT protocol execution together with the evaluation
runs.

This allows a simpler design of the overall system to evaluate the DeXTT implementation.
Another approach would be to provide an extensive interface by a DeXTT protocol
application and utilize that interface by a separate software artifact that executes the
evaluation runs. This approach comes with a decent implementation overhead and is not
necessary in the context of this thesis.

The DeXTT client application is structured into different functional responsibilities
through the introduction of various packages. The Java packages that make up the
implementation are described below.

6.2.1 Communication.Bitcoin Package

The Communication.Bitcoin package only contains one Java class called Bitcoin—
Communicator that is responsible to handle all direct communication with Bitcoin Core
through the API calls that are offered by the bitcoin-rpc-client library. The class offers
functions that can be utilized to send a DeXTT payload to the blockchain or to retrieve
all DeXTT transactions of specified blocks. Therefore, the BitcoinCommunicator
yields all implementations to build and embed data into Bitcoin transactions. In ad-
dition, it includes all relevant code to parse Bitcoin transactions and find DeXTT

HMhttps://github.com/google/guava/wiki/EventBusExplained
2https://junit.org/junits/
Bhttps://assertj.github.io/doc/
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m getSender() DeXTTAddress
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m getStartTime() Date ] *
m getEndTime() Date i
m = getSigA() SignatureData !
K |
1 1 i
|
c RMIProvider !
|
m ‘& addPol(ProofOflntentRMI) void |
m removeUnhandledPols() List<ProofOfIntentRMI> i
m startRMIServer(DeXTTAddress) void i
m stopRMIServer(DeXTTAddress) void | |
|
m = getRemoteObjectStub(DeXTTAddress) PolMessengerinterface |
|
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E PoIMessenger
m registerPol(ProofOfintentRMI) void
Figure 6.1: Communication.RMI Package.
payloads and corresponding meta-data such as the public key of the sender of the
transaction. All relevant data that is parsed from Bitcoin transactions is packed into a
RawBitcoinTransaction for each DeXTT payload.
6.2.2 Communication.RMI Package
The Communication.RMI package includes all necessary implementation details for
the usage of the Java Remote Method Invocation (RMI) API [Oral9f]. We use RMI
for the off-chain sharing of the sender’s intent of a DeXTT token transfer. In contrast
to the Ethereum prototype'?, the data of the sender’s intent is not shared via the used
blockchain. The usage of RMI allows each running client to call methods of an exposed
interface of other clients. This allows the sending of a sender’s intent as an call argument
to such an exposed method.
The structure of the classes and methods inside the Communication.RMI package are
shown in Figure 6.1. The ProofOfIntentRMI class is used to encapsulate all data of
a sender’s intent. The PoIMessengerInterface interface is exposed by all clients
Myttps://github.com/pantos-io/dextt-prototype
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6.2. Software Architecture

to allow the calling of the registerPoI method, which is used to transfer the data.
The PoIMessenger implements this interface by saving the received data inside the
RMIProvider class. In addition to storing all received RMI data, the RMIProvider
class also provides all required functionality to start and stop the RMI server. The
currently pending received sender’s intents are processed by the client by polling the
removeUnhandledPoIs method regularly.

Because the actual approach to share the data of a sender’s intent is not specified in
the DeXT'T protocol, there exist also other means to achieve this off-chain data transfer
besides the usage of Java RMI. One possible alternative approach would be to utilize
network transfers by using sockets to establish a raw communication link between the
DeXTT clients [Oral9g]. Compared to our RMI approach, the usage of sockets introduces
additional implementation overhead, because more details of sending and receiving data
have to be dealt with. Additionally, it does not offer a real benefit over the RMI
implementation. Although sockets allow for more control over the communication and
server parts, it is also possible to introduce new errors within a socket implementation.

6.2.3 Configuration Package

The Configuration package bundles all relevant parts that are used to represent
the current configuration and constant data parts of the DeXTT client. Inside the
ConfigCommand class, all logic and functionality to provide the CLI for the application
are included by utilizing the Picocli library. The current configuration data given by
the command line call of the program is then saved inside the Configuration class,
which is globally available as a singleton object [Gam-+94]. Details about the possible
configurations via the CLI are presented in Chapter 7.

Furthermore, all data that can be considered constant, meaning that it stays the same
for all application runs of the clients, are available through the Constants class. This
constant data includes among others the byte values for the different DeXTT-Bitcoin
transaction types (see Section 5.1.2).

6.2.4 DeXTT Package

Inside the DeXTT package, all relevant parts for the execution of the DeXTT protocol are
contained. Its sub-packages are presented in the following sections. Figure 6.2 shows the
classes and sub-packages of the DeXTT package without details about their public interface
to reduce the complexity of the illustration. The BitcoinParser class provides the
functionality to parse any given DeXT'T payload, given as a RawBitcoinTransaction
and to create the according parsed version of the DeXTT-Bitcoin transaction called
a BitcoinTransaction (see Section 6.2.8). Inside the Cryptography class, all
necessary cryptographic functionality of the application is included, such as signature
creation and verification. The Helper class is a collection of small functions that are
used throughout the DeXTT client. Most of these functions provide means to copy data
into byte buffers.
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Figure 6.2: DeXTT Package.

The class called Client sService represents a service that contains the multi-blockchain
logic as described in Section 5.5. It contains the method loopIteration which rep-
resents one iteration of the loop for the DeXTT logic and execution (see Figure 5.3 in
Section 5.2.2). This function should therefore be called repeatedly to achieve the polling
approach of the main loop of the DeXTT client (see Section 6.2.10). In addition to polling
blockchain data and applying appropriate actions, it also checks if any new sender intents
were received via RMI (see Section 6.2.2) and sends the according claim transactions
if necessary. To maintain a global state about ongoing DeXTT witness contests and
their end times and participants, the ContestManager class is utilized. If a contest
participation is required by the rules of the multi-blockchain logic, a new instance of the
ContestParticipationTask is created and scheduled to run and send the participa-
tion after a random wait time through a ScheduledExecutorService [Oral9d].

The ClientsService also encapsulates an instance of the Client class for each
participating Bitcoin blockchain. The Client handles all data that are specific to
one blockchain in the ecosystem for which the instance is responsible. It also controls
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6.2. Software Architecture

the communication to the blockchain via a BitcoinCommunicator instance and is
responsible to process blocks and transactions of the specified blockchain. For managing
the state of processed transactions for the blockchain, a TransactionManager instance
is used. More details on the usage of the TransactionManager are given in Section 6.3.
The actual execution of DeXTT transactions and the handling of the DeXTT protocol
state is done through an instance of the Wallet class for each blockchain. The Wallet
class is designed to represent and mimic the PBT . sol smart contract of the Ethereum
implementation!®. It therefore stores DeXTT state such as wallet balances or current
winners of ongoing witness contests. The Wallet class triggers events (see Section 6.2.9)
through the event bus provided by the Guava library for each relevant successful change
of DeXTT state, such as a new contest participation. There are multiple event buses
used within the application: One global event bus to forward events to the global state
managing class ClientsService and one additional event bus for each blockchain to
deliver events from the Wallet of a specific blockchain to the corresponding Client
instance.

6.2.5 DeXTT.DataStructure Package

Inside the DeXTT.DataStructure package, DeXTT-specific data structures are defined.
Theses additional types include a DeXTTAddress class that is based on the Ethereum
address type of the Web3j library and several Data Transfer Objects (DTOs), e.g., to
encapsulate data of Pols or elements that are used within a Sortedset [Oral9e].

6.2.6 DeXTT.Exception Package

Additional checked exceptions [Oral9a] to add more semantics to thrown exceptions
within the DeXTT execution are specified inside the DeXTT .Exception package. These
exceptions include among others the FullClaimMissingException, which is thrown
if a contest transaction is tried to be executed without a previous claim transaction on
the given blockchain.

6.2.7 DeXTT.Transaction Package

The DeXTT.Transaction package contains classes to represent the different types of
transactions of the DeXTT protocol. Its sub-package DeXTT.Transaction.Bitcoin
is described in the following sections. The structure of the various DeXTT transaction
classes is shown in Figure 6.3. The abstract class HashReferenceTransaction is
introduced to bundle parts of the implementation of contest and finalize transactions,
which both utilize references to a Pol through a hash (see Section 5.1.2). All transactions
implement the Transaction interface, which offers all necessary functionality to handle
transactions. The concrete transactions overwrite the methods of the interface accordingly

Bhttps://github.com/pantos-io/dextt-prototype/blob/master/truffle/
contracts/PBT.sol
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Figure 6.3: DeXTT.Transaction Package.

to enable their usage through dynamic binding [Boo07] by only utilizing functionality
provided by the interface.

A transaction is executed calling its tryToExecute method, which takes a Wallet
instance as its argument. This enables the execution of all transaction types through the
same method call of their interface. The transaction implementations choose the according
method of the provided Wallet themselves. By using this dynamic binding approach,
the caller, in this case a Client instance, does not have to know and differentiate the
type of the transaction to be executed. This differentiation is handles by the dynamically
bound method implementation.

By using an approach, where dynamic binding is not used in such a way, additional
implementation overhead to execute transactions is required inside the Client. Such
an approach could be to store different types of transactions individually or by checking
the concrete type of a transaction and casting its type to use a method of the transac-
tion implementation explicitly. Both of those ways of handling transactions introduce
unnecessary overhead.

6.2.8 DeXTT.Transaction.Bitcoin Package

Inside the DeXTT.Transaction.Bitcoin package, the different types of DeXTT-
Bitcoin transactions as defined in Section 5.1.2 are represented through different classes.
The structure of these classes is shown in Figure 6.4. The abstract classes BitcoinHash-
ReferenceTransaction and BitcoinClaimTransaction are introduced to bun-
dle functionality that is required by multiple transaction implementations. The Raw-
BitcoinTransaction class represents a DeXTT-Bitcoin payload that is extracted
from a Bitcoin transaction. It contains the raw bytes of the payload together with meta-
data. Such raw transactions are parsed by the BitcoinParser to create an according
BitcoinTransaction. The BitcoinTransaction interface is implemented by all
DeXTT-Bitcoin transactions and provides methods to build corresponding DeXTT trans-
actions from them or to convert them back into a raw DeXTT payload to be included in
a Bitcoin transaction. Again, dynamic binding [Boo07] is applied to utilize those con-
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version methods without the need to differentiate between the different DeXTT-Bitcoin
transaction implementations inside the caller. More details about the conversion to
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Figure 6.4: DeXTT.Transaction.Bitcoin.

DeXTT transactions are given in Section 6.3.

6.2.

The Events package contains classes to represent different event types and also de-
fines a globally usable event bus as a singleton object [Gam+94] represented by the
GlobalEventBus class. The events themselves are built as DTOs, only encapsulating
the required data to handle the according event. Furthermore, events are differentiated
by the utilized Guava library simply by the type of object that is handled in the event.
Therefore, for each individual event, a different type must be utilized. The class definitions

9 Events Package

include events for:

1

2.

3.

. contest participations,

started witness contests,

new processed blocks within a main loop iteration,

. finalized token transfers,

. new unconfirmed DeXTT-Bitcoin claim transactions,

. new unconfirmed DeXTT-Bitcoin contest transactions,
started veto contests and

. finalized veto contests.
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All these events are triggered within the Wallet class. Each event is sent to the global
event bus to be processed by the cross-blockchain client logic. In addition, the events
are also transmitted to the according event bus of the blockchain to which the Wallet
instance corresponds and can be processed by the Client instance that handles the
state of the given blockchain.

Another approach of distributing such event data could be achieved by manually calling
methods of all event listeners providing the relevant data as arguments. This would
require the emitter of events to know all listeners for all its emitted event types and
therefore introduces an implementation overhead and additional coupling between the
different components of the application. To counteract theses drawbacks, an event bus is
utilized for such communication means. To further reduce the implementation effort and
the potential introduction of errors, the event bus implementation of the Guava library
is used.

6.2.10 Runners Package

The Runners package contains classes that are used to run the application. The
EvaluationRunner class simulates a client for the implementation evaluation by repet-
itively sending token transfers to other participants. More details about the evaluation
are given in Chapter 7. The BlockGenerateRunner runs the application in block
generation mode for the regtest mode of Bitcoin Core. It therefore only periodically gen-
erates new blocks on the participating blockchains. The MintRunner sends a specified
mint transaction to all blockchains to create tokens that can be used for the evaluation
runs.

6.3 Matching DeXTT-Bitcoin Claim Transactions

This section shows how different DeXTT-Bitcoin claim transactions are matched by their
included hash values (see Section 5.1.2) to form an executable claim transaction.

The matching of different claim transaction parts is not as trivial as putting together
transactions with the same hash value. The main problem for such a simple approach is
the fact that this hash value can only be considered as a way to simplify the matching.
It is not secured in any way, meaning that transactions can possibly contain any byte
sequence as the hash value, e.g., if a malicious party sends a wrong hash value in a
transaction intentionally. Another possibility is the occurrence of a hash collision, where
two different Pols happen to have the same 8 byte hash value. In both cases, the hash
values of unrelated claim transaction parts match. The wrongful matching can only be
detected by validating the signatures contained in the DeXTT-Bitcoin Claim Signature o
and DeXTT-Bitcoin Claim Signature [ transactions.

Due to the data used for creating the signatures « and 8 in a claim transaction, the «
signature can only be verified via the data provided by a DeXTT-Bitcoin claim data
transaction. The verification of the 3 signature requires to know the « signature, as « is
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6.3. Matching DeXTT-Bitcoin Claim Transactions

used to create the 3 signature. This introduces dependencies between the three parts of
the claim transactions that have be verified and matched, e.g., a DeXTT-Bitcoin claim
data and a DeXTT-Bitcoin Claim Signature 5 can can only be matched by their included
hash values, because the verification through the § signature is not possible without
knowing the corresponding « signature.

In our implementation, storing incomplete claim transactions is done through an instance
of the TransactionManager class that is contained within the Client instance of the
corresponding blockchain. After a DeXTT-Bitcoin transaction has been parsed within
the processRawTransaction method in the Client, the TransactionManager
is queried for already processed incomplete transactions that have the same hash value
as the newly parsed transaction. If the returned list of transactions is not empty, it is
tried to match the newly parsed DeXTT-Bitcoin transaction with the already created
incomplete DeXTT transactions.

The matching process is illustrated in a simplified form in Figure 6.5. In our imple-
mentation design, all transactions are only known by the type of their interface, not
the concrete transaction implementation. Therefore, we utilize a dynamic binding ap-
proach [Boo07] to still match transactions correctly according to their type. As shown in
Figure 6.5, the list of transactions with the same hash value is given as an argument to the
putIntoDeXTTTransaction method of the newly parsed BitcoinTransaction in-
stance. The type of the BitcoinTransaction is not known within the Client.
The putIntoDeXTTTransaction method is given as a default method [Oral9b]
inside the BitcoinTransaction interface, therefore a dynamically bound method
named tryToAddDeXTTBitcoinTransaction is called for each transaction within
the transaction list. Inside this method, the current object of a concrete type of the
BitcoinTransaction is given through the this keyword [Oral9h]. The keyword
is used as a parameter to the tryToAddDeXTTBitcoinTransaction method of the
current Transaction that is used to try to match the BitcoinTransaction. This
method is overloaded [Oral9c|, therefore the concrete method implementation is defined
by the type of the given argument. This allows to differentiate between different types of
BitcoinTransaction instances.

The tryToAddDeXTTBitcoinTransaction method then performs the actual match-
ing of transactions utilizing signature verifications and returns the matched transactions.
It is necessary to allow the returning of multiple transactions, because it is possible
that a split of a currently incomplete claim transaction is required. This can happen
if it contains the data part and (8 signature part of the claim, which are added to the
same transactions if their hash matches, without verifying any signatures. If in such a
case, the according « signature transaction is tried to be matched, it is possible that the
signature verification utilizing « is only valid for one of the two parts, therefore requiring
the splitting of the claim into two separate claim transactions. If no match is found for a
new BitcoinTransaction, a new Transaction is created from it. All matched or
created transactions are then returned to the calling Client, where all newly completed
transactions are executed.
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Figure 6.5: DeXTT-Bitcoin claim transaction matching.
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CHAPTER

Evaluation

This chapter presents the evaluation of the DeXTT-Bitcoin implementation described in
the preceding chapters. The evaluation includes a quantitative analysis of the required
DeXTT transfer validity period and the actual execution cost on the blockchain. The
required data for the evaluation analysis is gathered through the usage of the private
blockchains offered by the regtest mode of Bitcoin Core (see Section 2.2.7). This approach
allows a high level of reproducibility and controllability for the evaluation runs and does
not introduce any additional cost other than for the hardware on which the blockchains
and the DeXTT clients are executed.

The first section gives an overview of the different running modes and CLI parameter of
the DeXTT client implementation. The succeeding Section 7.2 presents the computational
environment that is used to run the evaluation of the client application together with the
different run configurations. Section 7.3 presents the analysis of the evaluation runs using
multiple private blockchains through the regtest mode of Bitcoin Core. In Section 7.4,
details of a single evaluation run of the DeXTT client on the Bitcoin testnet are presented.
The last part of this chapter is presented in Section 7.5, including the comparison of the
evaluation with the Ethereum implementation' of DeXTT.

7.1 Client Application Modes

To enable a seamless evaluation of the DeXTT-Bitcoin client design and the DeXTT
protocol on Bitcoin, the client implementation is built to support the configuration of
evaluation runs through a CLI. Through this interface, the mode of the application run
can be chosen and all relevant parameters are set. The running of the evaluation is
bundled together with the core DeXTT-Bitcoin implementation, yielding one software

"https://github.com/pantos—io/dextt—prototype
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application that includes all functionality. It is currently designed to only support its
usage for evaluation runs.

For the evaluation runs, the client application supports multiple running modes, each
designed to handle a different task (see Section 6.2.10) and each featuring its own set of
CLI parameters. The relevant parameter that are required to be provided to the CLI for
all modes and the subcommands to choose the application mode are presented below:

Client Address. The address that is specified via the —a or ——address option repre-
sents the Bitcoin address of the client. This address is used for all communication
with the Bitcoin Core API. The private/public key pair that is utilized throughout
the DeXTT client application is the one that corresponds to that Bitcoin address.
Its private key is requested by the DumpPrivKey RPC.

Blockchain Mode. The used Bitcoin blockchain is specified by the —c or ——chain
option. The three values REGTEST, TESTNET and MAINNET are allowed. This
option is only relevant for internal calculations regarding Bitcoin addresses and
keys. The actual blockchains that are used for the DeXTT protocol are specified
by their according Uniform Resource Locator (URL) of the Bitcoin Core RPC
interface as described below.

Bitcoin Core RPC URLs. The —u or ——urlrpc option is used to define the URLs
that are used to access the RPC interface of Bitcoin Core. At least one URL
must be specified. If multiple URLs are given as arguments to the client, each
of the given URLs is considered to belong to a different instance of Bitcoin Core
and therefore to different blockchains. This enables the specification for multi-
blockchain evaluation runs. An URL to access the Bitcoin Core API must be formed
as http://<user>:<pw>@<host>:<port>/, whereas <user> and <pw> are
used for authentication means and <host> and <port> specify the location of
the API. All of these values can be configured in a configuration file for Bitcoin
Core called bitcoin.conf [bit19f].

Subcommands. To choose a running mode for the DeXTT client application, an
according subcommand must be given to the CLI. The subcommand must be one out
of evaluationrun, generateblocks or mint. The former two subcommands
are described in more detail in the following sections. The mint subcommand
enables the minting of tokens (see Section 5.1.2) for use by the DeXTT protocol by
sending the according transactions to the specified blockchains.

7.1.1 Evaluation Mode

The evaluation mode of the DeXTT client implementation is specified by the subcommand
evaluationrun of the CLI. It is used to execute evaluation runs by simulating a client
that is sending and receiving tokens. Such an evaluation run includes the execution of
the DeXTT protocol as described in Chapter 5, together with the periodical creation of
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7.1. Client Application Modes

new Pols, which are sent to their destination through Java RMI. The evaluation runs
are therefore intended to be run with multiple clients and instances of the application
simultaneously. After the specified amount of time for the evaluation has passed, the
application stops executing the protocol and saves the gathered evaluation data before
exiting. The evaluation mode of the DeXTT client can be parameterized through
additional options and parameters. The relevant configuration options are listed below.

Client Addresses. The DeXTT addresses (see Section 5.1.2) of all participating clients
are specified through the —c or ——clientAddresses option. These addresses
are used for the periodical creation and sending of Pols via Java RMI.

DeXTT Genesis Block. The height of the first block that contains DeXTT payloads
on a blockchain can be declared by the —g or ——genesisBlock option. This
enables the client to skip the retrieving and parsing of all previous blocks that are
known to not contain any DeXTT transactions. For large blockchains, this will
result in a much faster DeX'T'T protocol initialization for the client.

Contest Participation Mode. By specifying the -m or ——contestMode option, the
mode for contest participations can be chosen. The value must be either FULL
or HASHREFERENCE. The FULL mode sends all contest participations through
the usage of DeXTT-Bitcoin claim transactions, whereas the HASHREFERENCE
mode utilizes the DeXTT-Bitcoin contest transactions if possible as specified in
Section 5.3.2.

Evaluation Runtime. The time set via the —r or ——runt ime option defines the total
runtime for the evaluation run.

Transfer Validity Period. The time span for the validity period of a DeXTT trans-
action is given by the -t or ——transactionTime option. This validity period
defines the time period for the witness contest of a DeXTT transfer (see Section 2.4).

Unconfirmed Transactions. The —u or ——processUnconfirmed option defines if
the application should utilize unconfirmed transactions as described in Section 5.4.

Contest Participation Waiting Period. The maximum waiting period for clients
until they participate in a witness contest (see Section 5.3.3) is split into two
options, depending on whether unconfirmed transactions are utilized or not. If only
confirmed transactions are used, the maximum waiting period is specified by the
-b or ——contestBlocksWait option and given in the number of blocks to wait.
For the usage of unconfirmed transactions, the maximum waiting period can be
defined in milliseconds by using the —w or ——contestTimeWait option.

Force Veto Transactions. By default, an evaluation run only creates valid transac-
tions, i.e., no veto contests are needed. To also evaluate veto contests, the forcing
of double spending attempts needs to be enabled by the —f or ——forceVetos
option. This creates two instead of one token transfer periodically. These Pols are
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Figure 7.1: Block generation mode timings.

therefore invalid because they feature the same sender and overlapping validity
periods and trigger a veto contest. In our implementation, clients that receive
a sender’s intent check it for its validity first, before sending an according claim
transaction. Therefore, the checking for double spendings of tokens must also be
disabled by specifying the ——allowDoubleSpend option. Because the sender of
double spending token transfers is locked from further transfers by default in our
implementation, the ——enableAutoUnlocking must be specified for multiple
double spending token transfers that trigger veto contests by the same sender.

7.1.2 Block Generation Mode

The block generation mode of the DeXTT client enables the periodical creation of new
Bitcoin blocks when using Bitcoin Core in regtest mode. This is achieved through the
GenerateToAddress RPC of Bitcoin Core which is only enabled for regtest mode.
Just as the evaluation mode, the block generation mode can operate on multiple instances
of Bitcoin Core and blockchains simultaneously. The periodical generation of blocks is
required for the evaluation runs, because without the creation of blocks, no transaction
will ever be confirmed and therefore the DeXTT protocol implementation can not be
evaluated correctly. The block creation times can be configured by CLI parameters as
described below.

Block Generation Runtime. The time set via the —r or ——runtime option defines
the total runtime for the block generation run.

Block Creation Interval. The block generation mode creates new Bitcoin blocks at
a fixed rate. The time between each newly created block on each blockchain is
specified as t;pterval Via the —1i or ——blockInterval option. The block creation
interval timing is illustrated in Figure 7.1.
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7.2. Evaluation Setup and Environment

Blockchain Offset. When multiple blockchains are used for an evaluation, the block
generation mode must generate blocks for all participating blockchains. To enable
an approach where blocks are not created simultaneously across all blockchains,
an additional timing information is introduced. The time Z,fts.¢ defines how much
time lies between the creation of a block on blockchain C, and the creation of a

new block on blockchain Cy. The concept can be applied to multiple blockchains.

Each blockchain still maintains the same t;,ter0q1 time, but the block creation is
shifted by t,f st into the future compared to the previous blockchain. If for a
number of blockchains n, (n — 1) - toffset > tintervar holds, a wrap around occurs
and the creation of blocks across blockchains overlaps. The concept of the different
timings of block creations across blockchains is shown in Figure 7.1.

To achieve the biggest possible time between each newly generated block, the

tinterval

blockchain offset must be specified as t,f st = . To create blocks on one

n J—
blockchain with the biggest possible gap to another blockchain, the offset must be

interval

specified as toffser = . This timing implies of course that the big offset only

applies to half of the blockchains, whereas the other half will have an offset of zero
to each other.

7.2 Evaluation Setup and Environment

This section gives an overview of the setup including settings and timings for the
evaluations runs. In addition, the evaluation environment and different configurations
are discussed. For the actual evaluation runs, a suitable execution setup and environment
have to be specified. The evaluation setup is aimed to be as similar as possible to the

setup that was applied for the evaluation of the Ethereum implementation [Bor+19b].

The Bitcoin blockchain has an expected median block creation rate of one block every
ten minutes (see Section 2.2.2), whereas the block creation time that was used for the
Ethereum evaluation was fixed at 13 seconds. Therefore, the timings and durations have
to be adopted and scaled accordingly to be both similar to the Ethereum evaluation but
also using the according timings that are suitable for the Bitcoin blockchain.

7.2.1 General Evaluation Setup

In our evaluation, we use a fixed block creation time of ten minutes to mimic the aimed
median block time of Bitcoin. This results in a factor of about 46.15 between the 13

seconds of the Ethereum evaluation and our approach of ten minutes (600 seconds).

Because we aim to have evaluation runs with the same relative duration as it was done for
Ethereum, the run time has to be scaled up using this factor between the block creation
times. This is required because the run time defines the number of blocks that will be
created during the evaluation run and therefore also the number of DeXTT transactions
that are possible. To run the evaluation with the same amount of created blocks, the run
time is increased from 30 minutes in Ethereum to 83,077 seconds or 23 hours 4 minutes
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and 37 seconds in our Bitcoin evaluation. Just as in the Ethereum evaluation, the clients
create and send new token transfers at a random time out of an interval after the previous
transfer of the sender has been finalized and therefore terminated successfully. This
interval is defined to be between 15 and 30 seconds in Ethereum [Bor+19b]. Therefore,
we scale it up by about 46.15 in our approach, which results in a time interval between
692 and 1385 seconds.

For the rest of the evaluation that is done through private Bitcoin blockchains that
are provided by the regtest mode of Bitcoin Core, the same setup as for the Ethereum
evaluation is used. The evaluation runs consists of ten clients, each running an instance
of the DeXTT-Bitcoin implementation. In addition, three private Bitcoin blockchains are
used simultaneously for each run to create a multi-blockchain setup. This is done by using
three instances of Bitcoin Core in regtest mode, where each is started using a different
data directory [bit19f] to enable the differentiation between the blockchains of the Bitcoin
Core instances. Furthermore, each Bitcoin Core instance must be configured by its own
configuration file, to assign different network ports to the instances. Additionally, for each
evaluation run, one instance of the DeXTT-Bitcoin implementation has to be started to
periodically create blocks by using its block generation mode.

7.2.2 Evaluation Configurations

Throughout the evaluation process, different evaluation runs utilizing different sets of
configurations are used. The main parameter to be adjusted for different runs is the
transfer validity period to allow the evaluation of its impact on the success of token
transfers. The validity period is adjusted for runs with different configurations and the
amount of successful and corrupt token transfers is measured. A corrupt token transfer
occurs, if the transfer results in inconsistencies across the participating blockchains.

The block creation interval that defines the time between the generation of new blocks
on a blockchain is set to be fixed at ten minutes as described above. Additionally, the
parameter for the blockchain offset time t,¢rse; (see Section 7.1.2) is adjusted across
different runs. Three different values for the offset are used, all representing a certain
edge case. For a blockchain offset of 0 seconds, blocks across blockchains are generated
at about the same time, an offset value of 200 seconds represents the edge case of the
maximum time between each generated block across the blockchains. At last, an offset
value of 300 seconds is used to achieve the edge case of the maximum time between
blocks of the first and second utilized blockchains. As a result, the third blockchain
generates new blocks at about the same time as the first one. For the transaction period
evaluation, the last configuration parameter that is adapted for different runs is the usage
of unconfirmed transactions. All evaluation runs are once executed with and without
utilizing unconfirmed transactions.

In addition to the evaluation of the impact of the transfer validity period, the impact of
the maximum wait time for contest participations (see Section 5.3.3) is also evaluated.
For these evaluations, the transfer validity period is fixed and only the maximum wait
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7.2. Evaluation Setup and Environment

time and the usage of unconfirmed transactions is adapted throughout the evaluation
runs.

Throughout all evaluation runs, the relevant sizes of the underlying Bitcoin transactions
for all DeXTT-Bitcoin transactions are measured. These transaction sizes are proportional
to the transaction costs of the transactions, because for each vbyte, a certain amount of
transaction fee has to be paid (see Section 2.2.6). In our evaluation, it is assumed that
transactions get included in the next generated block, therefore for a later cost analysis,
the according fee rate has to be used. Because no veto contest transactions occur in the
evaluation runs described above, an additional evaluation run that forces veto contests is
used to measure the transaction sized.

In the following paragraphs, all configurations of evaluation runs that are executed for
the evaluation of the DeXTT-Bitcoin client implementation are listed. For the transfer
validity period evaluation, runs that include all combinations of the following parameters
are executed:

e The usage of unconfirmed or only confirmed transactions, resulting in two different
configurations.

e Three different values for the blockchain offset as described in Section 7.1.2 are
used throughout the configuration: zero, 200 and 300 seconds. The blockchain
offsets enable the gathering of data that is less generic and closer to real blockchain
ecosystems than only generating blocks in a synchronized manner.

e The transfer validity period is step-wise increased, starting at 231 seconds and being
increased by 231 seconds for each configuration until the value of 3234 seconds is
reached. This results in 14 different configuration values. The values are again
scaled up by a factor of about 46.15 from the 5 seconds increase interval that was
used for Ethereum. Considering the results of the Ethereum evaluation [Bor+19b],
3234 seconds is assumed to be a high enough validity period to only generate
successful token transfers.

The total number of evaluation runs for the transaction period evaluation is calculated

by combining all above configurations, resulting in 84 (2 -3 - 14) different configurations.

All of these runs are executed with the same maximum waiting period for contest
participations, namely one block when using only unconfirmed transactions and ten
seconds for configurations that utilize unconfirmed transactions. For the additional runs
for the contest participation waiting period evaluation, the following configurations are
used:

e Again two different configurations for unconfirmed or only confirmed transactions
are applied.

e The same three blockchain offset values of zero, 200 and 300 seconds are used.
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e The transfer validity period is fixed at 3,234 seconds throughout these evaluation
runs, because the evaluation of this time period is not the aim of these evaluation
runs. Rather, the impact on different contest participations is measured.

e For the usage of only confirmed transactions, five different values for the maximum
contest participation waiting period are used: zero, two, three, four or five blocks.
This results in five different configurations for confirmed transactions. For the
usage of unconfirmed transactions, three different maximum waiting periods are
considered: zero, 20 or 30 seconds. The configurations for one block and ten seconds
are already included in the evaluation runs for the transaction period evaluation.

The total number of additional configurations for the waiting period evaluation is again
given by the combination of the above configurations, resulting in 24 configurations. Nine
(1-3-1-3) for the usage of unconfirmed transactions and 15 (1-3-1-5) configurations that
only utilize confirmed transactions. One additional evaluation configuration is applied to
measure transaction sizes for veto contests. This evaluation run is configured as follows:
only confirmed transactions, a block creation offset of zero seconds, a maximum contest
participation wait time of one block and a transfer validity period of 3234 seconds. The
overall number of different configurations and therefore of required evaluation runs for
the specified parameter combinations amount to 109 (84 + 24 + 1).

In addition to the 109 different evaluation runs for a multi-blockchain setup using Bitcoin
Core’s regtest mode, one additional evaluation run is executed on the Bitcoin testnet
(see Section 2.2.7), representing a single-blockchain setup that utilizes a real deployed
blockchain instead of private ones. The following configuration was used for the single
testnet evaluation run: utilize unconfirmed transactions, ten seconds maximum wait time
for contest participations and a transfer validity period of 6,468 seconds. The validity
period was chosen to be double the value of the maximum period that was used for the
evaluation using the regtest mode, because the testnet has an expected block creation
time of about 20 minutes (see Section 2.2.7), instead of the used ten minutes for the
multi-blockchain setup. Because only a single blockchain is used and blocks are not
generated by our application, no blockchain offset must be specified.

7.2.3 Execution Environment

One evaluation run needs more than 23 hours to execute and our evaluation is aimed
to consist of many different runs. Therefore, it is not feasible to execute all runs in
a sequential order on one machine. A sequential execution order would require a vast
amount of time, e.g., 100 different evaluation runs would take up more than 96 days.
Because of this limitation, we execute our evaluation runs in a parallel manner, executing
all runs at the same time. This approach only requires the specified 83,077 seconds to be
executed plus any overhead for initialization of the runs. But the parallel execution of
evaluation runs comes with the drawback of requiring more computational resources.
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7.3.  Multi-Blockchain Evaluation Analysis

As described in Section 7.2.1, one evaluation run with one single configuration consists
of executing eleven DeXTT-Bitcoin client instances and three Bitcoin Core instances
simultaneously. These instances not only require a certain amount of CPU power, but
additionally a significant amount of memory is needed. To limit the memory usage of
the Java client instances, we set the maximum size of the heap for each instance to
256MB [Ora20], which was measured to be sufficient. Each instance of Bitcoin Core was
measured to require up to 100MB of memory. Together, all program instances for one
evaluation run require at least 3116MB of memory. Therefore, the number of feasible
evaluation runs that can be performed in a parallel manner is bound by the memory
resources of the underlying machine.

As described in Section 7.2.2; 109 different configurations and therefore evaluation runs
should be executed. The parallel execution of these 109 configurations results in a memory
requirement of at least 339,664MB (109 - 3116MB) or about 331.68GB. To content these
memory demands, a VM instance running Debian? 10 was used on the Google Cloud
Platform?. The chosen instance provides 512GB of memory and 64 virtual CPU cores,
providing enough margin for higher memory demands. Because by default, the used
Debian 10 operating system does not allow enough threads to run all 109 configurations
in parallel, its system settings have to be adapted accordingly®:°.

To start all parallel evaluation runs, bash scripts are used®. For each configuration, a folder
that contains a data directory and configuration file for Bitcoin Core is created [bit19f].
Additionally, in each folder for the different configurations, an argument file for each
DeXTT-Bitcoin client instance is created. These argument files contain all according
CLI arguments for the client and can be used to specify the included arguments to the
application by using @<file> instead of specifying the arguments directly’. These
brings the advantage that the files can be reused to run the application with the same
arguments again.

Before the instances of a configuration are started, initial blocks are generated on the
according private blockchains by the GenerateToAddress RPC to provide enough
Bitcoin funds for each client to post Bitcoin transactions on the blockchains.

7.3 Multi-Blockchain Evaluation Analysis

Within this section, the gathered data of the evaluation runs using a private multi-
blockchain setup enabled through regtest mode of Bitcoin Core is analyzed. The different
configurations of the evaluation runs are presented in Section 7.2.2. The analysis is

?https://www.debian.org/

3https://cloud.google.com/

“https://askubuntu.com/questions/845380

Shttps://stackoverflow.com/questions/344203

Shttps://github.com/MatthiasKuehne/dexxt-bitcoin-prototype/tree/master/
scripts

"https://picocli.info/#AtFiles
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Figure 7.2: Transfer validity period evaluation with confirmed transactions (logarithmic
scale).

split into three parts. First, the evaluation of the impact of the transfer validity period
of DeXTT transactions regarding the percentage of corrupt transactions is presented.
Second, different values for the maximum waiting period for contest participations is
analyzed regarding the percentage of total contest participations and the percentage of
contest participations through DeXTT-Bitcoin contest transactions. Third, the cost of
the different DeXTT transactions are analyzed based on the size of the measured Bitcoin
transactions.

7.3.1 Transfer Validity Period Analysis

For the analysis of the impact of the transfer validity period, the percentage of corrupt
transactions is measured. Corrupt transactions include all token transfers that lead to
inconsistencies across the blockchains and therefore do not achieve eventual consistency.
This can happen if not all claim or contest transactions are registered and executed on all
blockchains within the transfer validity period. Inconsistencies can then occur if either a
different witness contest winner is chosen or if the contest is not even started on some of
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7.3.  Multi-Blockchain Evaluation Analysis

the blockchains.

Figure 7.2 shows the results of the evaluation of the transfer validity period for the
configurations that only utilized confirmed Bitcoin transactions. Each line represents
the percentage of corrupt transactions for a different blockchain offset value Z,ffses
(see Section 7.1.2). The marked data points that make up the line each represent one
evaluation run with the given configuration. Every 600 seconds time interval as marked
on the x-axis of the shown diagram represents the time of ten minutes for the creation of
one Bitcoin block. It can be observed that the blockchain offset time makes a difference
in the percentage of corrupt transactions. For a blockchain offset of zero seconds, the
percentage of corrupt transactions stays at zero for transfer validity periods of 2079
seconds and higher values. The corrupt transaction percentage for blockchain offsets of
200 and 300 seconds is very similar and consistently higher than for a zero seconds offset.
The difference in the results for the given blockchain offsets can be explained by the delay
of the initial claim transaction between the blockchains. Clients on later blockchains
can therefore also react later to the claim transaction. Generally, about 5 Bitcoin blocks
or 3000 seconds are required for the transfer validity period to only produce successful
token transfers that ensure eventual consistency.

In Figure 7.3, the results of the evaluation of the transfer validity period for the configu-
rations that utilized unconfirmed Bitcoin transactions are presented. It can be observed
that the difference between the evaluated blockchain offset times is not significantly
apparent when using unconfirmed transactions. The reason for this behavior is given by
the design of the processing of unconfirmed transactions, which allows clients to react to
claim transactions immediately, without the need for a new block to be generated first.
Therefore, the timing of block creations is not as relevant as it is for configurations using
only confirmed transactions. Generally, for transfer validity periods of about 4 Bitcoin
blocks or 2400 seconds, no corrupt and therefore inconsistent transactions occur.

The difference between the usage of only confirmed transactions and the inclusion of
unconfirmed transactions is shown in Figure 7.4. The shown percentages of corrupt trans-
actions are aggregated values of the percentages of the different blockchain offset values
for each transaction execution type. The data shows that the utilization of unconfirmed
transactions (see Section 5.4) within the DeXTT-Bitcoin client implementation gives a
significant advantage on the required minimum transfer validity period. The percentage
of corrupt transactions is much lower for the same validity periods by using unconfirmed
transactions. The transfer validity period and therefore the amount of Bitcoin blocks
that are minimally required to generate only consistent token transfers based on our
data also differs between the two approaches. When using unconfirmed transactions, an
about 600 seconds or one Bitcoin block lower validity period is required compared to
only processing confirmed transactions. The reason for this difference is again given by
the fact that clients can react to claim transactions faster and therefore sending their
contest participations earlier.

101


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

7. EVALUATION

102

Blockchain Offset [s] —+ 0 200 —— 300

100

50

10 A

Corrupt Transactions [%]

1
A m )
< <

2 &

| T v < <
1
T

<

e e e = e = e = e = e e e e e e = e e e e = = = = = [ o

1
1200 1800 2400 3000 3600
Transfer validity period [s]

Figure 7.3: Transfer validity period evaluation with unconfirmed transactions (logarithmic
scale).

7.3.2 Contest Participation Waiting Period Analysis

The analysis of the impact of the maximum waiting period for contest participations is
done by observing how contest participations differ for different waiting periods. Two
different values regarding contest participations are gathered:

Contest Participations Represents the percentage of overall contest participations
among all clients that take part in the evaluation. The value excludes the receiver
of a token transfer who automatically always participates in the according witness
contest due to the design for our approach (see Section 5.3.2). In theory, for n
overall clients, an average of loga(n) witness candidates will participate in the
witness contests (see Section 5.3.3). The waiting period was introduced in our
approach to enable a similar behavior. To analyze the impact on the introduced
waiting period, the percentage of all contest participations has to be evaluated.
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Figure 7.4: Difference between confirmed and unconfirmed transaction regarding the
transfer validity period (logarithmic scale).

Contest Transaction Participations The waiting period has also a theoretical impact
on the number of contest participations that are executed through DeXTT-Bitcoin
contest transactions (see Section 5.3.2). The longer a client waits, the higher
the probability that a DeXTT-Bitcoin claim transaction is already present on
each blockchain and therefore a DeXTT-Bitcoin contest transaction suffices to
participate in the witness contest. To analyze such an impact of the maximum
waiting period, the percentage of contest participations through DeXTT-Bitcoin

contest transactions out of all contest participations is recorded for the evaluation.

In the context of this evaluation, the theoretical average number of witness contest
participations of loga(n) can be quantified for the given number of participating clients
in the evaluation runs. This results in a theoretical number of participations per contest
of about 3.32 (log2(10)) clients or 33.2% for the total number of ten clients.

The impact of the maximum waiting period on the number of contest participations as it
was observed in our evaluation runs for configurations using only confirmed transactions
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Figure 7.5: Contest participations with confirmed transactions.

is shown in Figure 7.5. Again, each line represents the observed values for the given
blockchain offset time. It can be seen that the different blockchain offset times do not
have a significant impact on the observed contest participations. Generally, the number
of contest participations per witness contest is a lot higher than the theoretical value, but
is getting lower for longer maximum waiting periods. The reason for the gap between the
theoretical and observed values lies in the nature of the design of DeXTT for the Bitcoin
blockchain, where contest participations are not sent in a sequential manner and not all
other participations are known by the time of the participation (see Section 5.3.3).

In contrast, in Figure 7.6 the same evaluation is shown for configurations that utilize
unconfirmed transactions. Again, the blockchain offset time does not introduce any
significant difference in the number of contest participations and the measured values
are still higher than the theoretical average of contest participations. The number of
contest participations falls once from the maximum waiting period of zero seconds to ten
seconds significantly and then remains about the same for the remaining waiting times.
This can be explained by the nature of the waiting periods when using unconfirmed
transactions. The waiting period is chosen randomly from a big amount of different time
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Figure 7.6: Contest participations with unconfirmed transactions.

values, therefore the chosen waiting times are expected to be distributed uniformly across
the possible values, leaving enough time between the participations for other clients to
observe the previous participations. Therefore, a further increase in the waiting period
does not introduce any significant additional gains for a lower contest participation
percentage.

When comparing the results for the run using only confirmed transactions in Figure 7.5
with the results of using unconfirmed transactions in Figure 7.6, it can be seen that the
number of contest transactions is smaller when using unconfirmed transactions even for
the same maximum waiting period of zero seconds or blocks respectively. The reason for
this difference again lies in the nature of how unconfirmed transactions are processed in
our design approach. It is possible for a client to have already observed other unconfirmed
participations at a waiting period of zero because the timing of the execution of clients are
not synchronized, therefore waiting period zero still means a small difference in absolute
time between the clients.

The impact of the maximum waiting period for contest participations on the percentage

105


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

7. EVALUATION

106

Blockchain Offset [s] —+ 0 200 —— 300

100

80 1

60 4

40 1

20 1

Contest Transaction Participations [%]

2 3 4
Maximum waiting period [blocks]

o~
[EY
ol -

Figure 7.7: Contest transaction participations with confirmed transactions.

of contest participations through DeXTT-Bitcoin contest transactions for configurations
using only confirmed transactions is shown in Figure 7.7. It can be observed that
the percentage of DeXTT-Bitcoin contest transaction participations significantly differs
between different values of the blockchain offset time. The reason for this behavior is
given by the design of how contest participations are sent and processed. If a client sends
a claim transaction as a contest participation, it needs to be confirmed on the blockchain
before it is seen by the other participants. Therefore, for a certain point in time and
a given blockchain offset greater than zero, it is more likely that the previous claim
transaction is not yet confirmed on all blockchains, resulting in another participation
using a claim transactions.

In contrast, the impact of the maximum waiting period on the number of contest partici-
pations through contest transactions for configurations using unconfirmed transactions is
shown in Figure 7.8. For the usage of unconfirmed transactions, the different blockchain
offset times do not introduce any significant change in the number of contest transaction
participations in contrast to the evaluation runs using only confirmed transactions. The
blockchain offset does not affect the participations, because to determine the way of
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Figure 7.8: Contest transaction participations with unconfirmed transactions.
participation, only unconfirmed claim transactions are needed to be observed. Therefore,

it does not matter when the transactions are included in blocks. The contest transaction
participation percentage does not reach 100% for higher maximum waiting periods,

because the waiting period is chosen randomly between zero and the maximum value.

On average, this will always result in a few very small waiting times, where the clients
did not yet observe the claim transactions on all blockchains.

In general, it can be concluded that a larger waiting time comes with significant advantages
considering the average witness contest participation cost. Both a lower percentage of
overall participations and the usage of contest transactions instead of claim transactions
lower the amount of data that must be included in the blockchain and therefore reduce
the cost to follow the protocol. For the usage of unconfirmed transactions, this advantage
can already be achieved by choosing a relatively small waiting period of ten seconds
without introducing any disadvantages. When using only confirmed transactions, a higher
maximum waiting period does increase the impact of the cost advantages, but comes with
relative long waiting times of a few blocks. Therefore, the waiting period can influence
the minimal required transfer validity period and must be chosen carefully.
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Table 7.1: Measured DeXTT-Bitcoin transaction sizes.

Transaction Mean [vbytes] o [vbytes] Number of Observations

Claim 604.98 0.150 162975
Contest/Veto 159.99 0.088 141825
Finalize 159.99 0.090 69528
Finalize-Veto 147.99 0.092 234

7.3.3 Cost Analysis

For the analysis of the costs of DeXTT token transfers on the Bitcoin blockchain, the
costs of the different DeXTT-Bitcoin transactions that are required for the DeXTT
transactions have to be evaluated. Because the cost for posting Bitcoin transactions is
based on the size of the transactions, the according sizes for the Bitcoin transactions that
embed the various DeXTT-Bitcoin transactions are measured. For this measurement of
transaction sizes, no additional evaluation runs are required, because the sizes can be
acquired while executing the evaluation runs for the previous analysis as described in
Section 7.2.2.

Because we utilize P2WPKH standard transactions (see Section 2.2.5), the size that is
taken into account for the fee calculation given in virtual bytes (vbytes) is measured for
each transaction. The results of these measurements, given as the mean and standard
deviation (o) of all measurements combined, are presented in Table 7.1 together with
the number of observed transactions that the calculation is based on. Because the length
difference for Bitcoin transaction varies only on a very small scale (see Section 5.1.1), the
standard deviation of the measured transaction sizes is negligible small.

The actual costs for these transactions not only depends on their size. In addition, the
current fee rate per vbyte defines the cost for inclusion into the Bitcoin blockchain (see
Section 2.2.6). For our evaluation, we assume that the according fee for inclusion into
the next generated Bitcoin block is paid. If a fee rate for a later inclusion, defined by
the number of blocks, is used, the evaluated transfer validity period has to be adjusted
accordingly. Because the fee rate is adopted constantly, for our calculations, we took the
average fee rate in April 2020 amounting to 20.93 satoshis per vbyte. A satoshi is the min-
imum possible transaction value of Bitcoin and represents 0.00000001 Bitcoins [Nar+16;
bit18b]. The change in the fee rate for inclusion in the next block from January 2019
until April 2020 is shown in Figure 7.9 based on the Bitcoin transaction fee data from
BillfodI®.

The average Bitcoin price in April 2020 was 7150.611 USD per Bitcoin or 0.00007150611 USD
per satoshi according to CoinMarketCap?. The resulting costs for DeXTT-Bitcoin trans-
actions based on the average fee rate in April 2020 for inclusion in the next block and the

Shttps://billfodl.com/pages/bitcoinfees
%https://coinmarketcap.com/currencies/bitcoin/historical-data/
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Figure 7.9: Estimated Bitcoin transaction fees for inclusion in next block.

Table 7.2: DeXTT-Bitcoin transaction costs for April 2020.

Transaction Mean [satoshis] o [satoshis] Mean [USD] o [USD]

Claim 12665 4 0.9056 0.0003
Contest/Veto 3350 2 0.2395 0.0001
Finalize 3350 2 0.2395 0.0001
Finalize-Veto 3098 2 0.2215 0.0001

average Bitcoin price in April 2020 are shown in Table 7.2. The evaluated costs are given
both in satoshis and in USD, each entry consisting of the mean cost and its standard
deviation. Note that the entry for contest and veto transactions are combined, because
we do not differentiate between the two transaction types in our design.
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Theoretical Token Transfer Cost

For a Bitcoin token transfer on m blockchains with n total observers, the following
transactions are theoretically required to be posted on the blockchains when using our
design of the protocol in an optimal environment and setting: m DeXTT-Bitcoin claim
transactions, m - loga(n) DeXTT-Bitcoin contest transactions and m DeXTT-Bitcoin
finalize transactions [Bor+19b]. The receiver of the transfer bears the cost for m claim
and m finalize transactions, whereas each of the loga(n) observers pays for m contest
transactions.

Based on the previous cost evaluation, for an ecosystem of ten blockchains and ten
observers that participate in the protocol, the token transfer cost for the receiver amounts
to 11.4517 USD. The cost for each of the loga(10) observers is 2.3954 USD. The total
amount that is payed by all observers together amounts to 7.9575 USD, resulting in total
costs of 19.4092 USD among all parties of the transfer.

The used number of transactions in the above calculations are based on the theoretically
best assumptions about the number of contest participations. Additionally, it is assumed
that each contest participation as done through a DeXTT-Bitcoin contest transaction
and no additional DeXTT-Bitcoin claim transactions are required.

In comparison, a P2WPKH standard Bitcoin transaction with one input and two outputs
requires about 140 vbytes of storage that have to be paid by transaction fees'® [bit20c;
LLW15]. 109 vbytes for one input and one output as used for DeXTT payloads (see
Section 5.1.1) and additional 31 vbytes for the second output, which is required for the
change of the transaction input (see Section 2.2.4). For the average fee rate in April 2020
for inclusion in the next block and the average Bitcoin price in April 2020, this results in
a price of 0.2096 USD for a P2WPKH Bitcoin transfer. Compared to the example of ten
Bitcoin blockchains as described above, a transfer performed on all blockchains would
cost 2.0956 USD to be paid by the transaction sender.

Token Transfer Cost with Confirmed Transactions

The cost calculations in the previous part are based on the theoretically best number
of DeXTT-Bitcoin transactions for a token transfer. The transactions that are required
when relying on the evaluated data of our implementation for the configuration that
uses only confirmed transactions and a maximum waiting period of 5 blocks are as
follows: m DeXTT-Bitcoin claim transactions posted by the receiver, m - 57.25% - n
contest participations and m DeXTT-Bitcoin finalize transactions. Out of these contest
transactions, 81.19% consist of a DeXTT-Bitcoin contest transaction and the remaining
18.81% are achieved through a DeXTT-Bitcoin claim transactions.

For ten participating blockchains and ten observers, the cost for the receiver amounts to
11.4517 USD. Each of the 57.25% - n contest participants on average pays 3.6485 USD,

101’1ttps ://www.reddit.com/r/Bitcoin/comments/7m8ald/how_do_i_calculate_my_
fees_for_a_transaction_sent/
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7.4. Bitcoin Testnet Evaluation

resulting from 1.9448 USD for contest transactions and 1.7037 USD for additional claim
transactions. The total amount payed by all observers together amounts to 20.8873 USD.
Therefore, the total token transfer cost among all parties is 32.3390 USD.

The token transfer cost based on the data of the evaluation runs for confirmed transactions
is significantly higher than the theoretical cost for the best case, because more client
participate in contests and some participations require an additional DeXTT-Bitcoin
claim transaction.

Token Transfer Cost with Unconfirmed Transactions

The required transactions for a token transfer based on the evaluated data for the
configurations that utilize unconfirmed transactions and a maximum waiting period of
30 seconds are as follows: m DeXTT-Bitcoin claim transactions posted by the receiver,
m - 48.36% - n contest participations and m DeXTT-Bitcoin finalize transactions. 93.16%
of the contest participations are done through a DeXTT-Bitcoin contest transaction,
whereas the other 6.84% require an additional DeXTT-Bitcoin claim transaction.

For a setup consisting of ten blockchains and ten observers, the receiver of the transfer pays
11.4517 USD. Each contestant pays 2.8514 USD on average, resulting from 2.2315 USD
for contest transactions and 0.6199 USD for additional claim transactions. Therefore,
all contest participations combined cost 13.7893 USD, yielding a total cost for a token
transfers among all parties of 25.2411 USD.

This result shows that the usage of unconfirmed transactions not only allows for a shorter
transfer validity period (see Section 7.3.1). They additionally introduce cheaper contest
participations on average, resulting in a lower cost for token transfers, when compared to
the usage of only confirmed transactions.

7.4 Bitcoin Testnet Evaluation

The evaluation run on the Bitcoin testnet is not executed to gather evaluation data,
but rather as a proof of concept for the DeXTT implementation to work also on a real
deployed blockchain that is more similar to the Bitcoin mainnet as the private blockchains
utilized through the other evaluation runs.

The single run using the configurations presented in Section 7.2.2 yielded only successfully
finalized token transfers. Because of the single blockchain scenario using unconfirmed
transactions, during the execution all contest participations were done through DeXTT-
Bitcoin contest transactions. The average contest participation rate was observed to be at
26.05% and therefore significantly lower than for the evaluation runs in multi-blockchain
environments (see Section 7.3.2). This is most likely also a result of the single-blockchain
environment, meaning that there are no delays across multiple blockchains. Another
possible factor might be the low number of only 81 token transfers throughout the
evaluation run, possibly skewing the data.
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Table 7.3: Ethereum implementation transaction costs for April 2020.

Transaction Mean [USD] o [USD]

Claim 0.1312 0.0252
Contest 0.1853 0.1459
Finalize 0.1034 0.0002
Veto 0.2985 0.2089
Finalize-Veto 0.1105 0.0039

From the execution of the DeXTT client with the Bitcoin testnet, it can be concluded that
the DeXTT-Bitcoin implementation not only works on private predictable blockchains,
but is also executing as expected on a deployed blockchain network.

7.5 Comparison with Ethereum Implementation

In this section, the results of the evaluation analysis of the DeXTT-Bitcoin implementation
are compared to the raised data for the Ethereum implementation'! of DeXTT.

7.5.1 Transfer Validity Period

In our evaluation, the minimum transfer validity period of token transfers was found
to be five Bitcoin blocks (3000 seconds) for confirmed transactions and four blocks
(2400 seconds) for unconfirmed transactions (see Section 7.3.1). The evaluation of
the Ethereum implementation resulted in a minimum validity period of four blocks
(52 seconds) [Bor+19b]. In terms of the number of required blocks for all transactions to
be executed successfully across all blockchains, the results of both evaluations yield similar
results, only the Bitcoin implementation that exclusively uses confirmed transactions
needs one block more. The reason why a slightly longer validity period is required by
our evaluation is most probably attributed to the utilized blockchain offset time. No
comparable approach is mentioned in the evaluation of the Ethereum prototype [Bor-+19b].

In terms of absolute transfer validity period, due to the nature of the blockchains,
Ethereum requires a much shorter minimum validity period. Therefore, in a setting where
both blockchains are used, the validity period that is required for Bitcoin determines the
overall validity period.

7.5.2 Transaction Costs

To compare the costs of both DeXTT implementations, the measured costs for the
Ethereum implementation given in Ethereum Gas were used to calculate more recent costs
in USD. For this recalculation, the average values in April 2020 were taken into account,

Hyttps://github.com/pantos-io/dextt-prototype
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7.5. Comparison with Ethereum Implementation

Table 7.4: Combined transaction costs of Bitcoin and Ethereum for April 2020.

Transaction Bitcoin [USD] Ethereum [USD] Combined [USD]

Claim 0.9056 0.1312 1.0368
Contest 0.2395 0.1853 0.4248
Finalize 0.2395 0.1034 0.3429
Veto 0.2395 0.2985 0.5380
Finalize-Veto 0.2215 0.1105 0.3320

yielding a Gas price of 13.22 Gwei'? (1 Ether = 10° Gwei = 10'® wei) and an Ether
price of 171.89 USD!3. The resulting transaction costs for the Ethereum implementation
are shown in Table 7.3. Compared to the cost analysis of the Bitcoin implementation
(see Section 7.3.3), it can be seen that the transaction costs are significantly lower for
all transaction types except the veto transaction. The much higher cost for a claim
transaction in Bitcoin comes from the structure of the transaction, requiring three null
data outputs. Otherwise, the general higher costs for transactions in Bitcoin is mainly
the result of the fee structures of the underlying blockchains and the higher price of
Bitcoin compared to Ether.

The comparison of the costs for the two different blockchain technologies additionally
allows the cost analysis of the combination of DeXTT for both blockchains. The combined
mean costs for DeXTT transactions to be included in both blockchains simultaneously
are shown in Table 7.4 [Bor+19b]. Based on these costs, the combined costs for a token
transfer can be calculated for an exemplary scenario of five Bitcoin and five Ethereum
blockchains and ten observers as follows. The receiver of the transfer needs to send five
Bitcoin claim and five Bitcoin finalize transactions and additionally five Ethereum claim
and five Ethereum finalize transactions. This results in a total cost of 6.8985 USD for
the receiver. Each of the theoretical logs(10) observers pays for five Bitcoin and five
Ethereum contest transactions, bearing a total cost of 2.124 USD. Therefore, all observers
together pay 7.0558 USD for all contest participations. This results in a total token
transfer cost of 13.9542 USD.

It can be observed, that due to the significantly lower cost on Ethereum, the transfer
costs for an ecosystem consisting of ten blockchains is also significantly lower than for a
pure Bitcoin ecosystem (see Section 7.3.3).

2pttps://etherscan.io/chart/gasprice
Bhttps://etherscan.io/chart/etherprice
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CHAPTER

Conclusion

Blockchain research and development have resulted in a big fragmentation of the field
and mostly incompatible blockchain technologies. This fragmentation leads to additional
problems for users, as they must decide which blockchain and cryptocurrency they want
to use. Users must find a balance between novel features of new technologies and the
time-proven security of well-established blockchains.

Due to the problems that arise from the fragmentation and incompatibility of blockchain
technologies, the ability to interoperate between different blockchains needs to emerge,
enabling users to select blockchains dynamically according to new trends and needs.

The DeXTT protocol ensembles an approach that provides means of blockchain interop-
erability and therefore tackles the aforementioned problems. DeXTT enables users to
record the transfer of tokens on an arbitrary number of blockchains simultaneously, while
being completely decentralized. There is no untrusted third party involved in executing
the protocol. Blockchain interoperability is provided in the sense of cross-blockchain asset
transfers, where tokens are not locked within an individual blockchain. These tokens can
be traded and are synchronized across all participating blockchains.

A prototype implementation of the DeXTT protocol had already been implemented for
FEthereum-based blockchains. Within this thesis, the DeXTT protocol was extended by
implementing the protocol on another suitable blockchain technology.

Before choosing a suitable blockchain technology, a detailed requirements analysis for an
underlying blockchain technology to support the adaption of the DeXTT protocol was
created. The requirements were split into two parts: an approach where the protocol logic
resides on the blockchain and one where all logic is handled off-chain on the client-side.
Additionally, the requirements on a new implementation to be compatible with the
existing Ethereum prototype were defined. It was shown that for a blockchain to support
the client-side logic approach of DeXTT, it is sufficient for the blockchain to support
secure on-chain data storage and provide timestamp data within its blocks.
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To determine the most suitable blockchain in regards of yielding the biggest additional
research value, the properties and features of different currently available blockchain
technologies were analyzed concerning their technical aspects. This analysis was done in
the form of a survey that focused on technical details that are relevant for the requirements
of the DeXTT protocol. Within this survey, the top-17 ranked entries on CoinMarketCap'
were considered and analyzed. The survey yielded that EOS, Tron, Tezos and Neo provide
all means to implement DeXTT for their platforms using a blockchain-side logic approach
(see Section 4.1.1). Furthermore, Bitcoin, the XRP Ledger, Bitcoin Cash, Litecoin, the
Binance Chain, Bitcoin SV, Stellar, Cardano and Monero fulfill all requirements for a
DeXTT implementation following a client-side logic approach (see Section 4.1.2). We
concluded that a DeXTT implementation for Bitcoin would be the best choice regarding
its research value.

Our elaborated design for DeXTT on the Bitcoin blockchain utilizes a client-side logic
approach, where the blockchain is merely used as a secure and tamper-evident storage of
DeXTT transactions. The transaction data is included in blocks on the Bitcoin blocks
by utilizing the null data outputs of Bitcoin. Because null data outputs are limited to
a 80 byte payload, we introduced a method of splitting the data of claim transactions
into multiple null data outputs. For the communication with the Bitcoin blockchain, our
design approach makes use of the Bitcoin Core client software, which is accessed by its
JSON-RPC interface.

Within the context of this thesis, we created a concrete implementation of the proposed
design of the DeXT'T protocol for the Bitcoin blockchain. For this implementation, we
decided to employ the Java programming language together with several Java libraries that
allowed us to realize the client-side application efficiently while applying best practices of
software engineering. Among others, the utilized Java library included the bitcoin-rpc-
client library, which offers wrapper functions to access the JSON-RPC API of Bitcoin
Core. Our presented implementation approach was designed to not only feature all
details that are needed to run the DeXTT protocol together with the Bitcoin blockchain
via Bitcoin Core, but also includes all necessary code to excessively run the software
for testing and evaluation means. Therefore, the DeXTT-Bitcoin implementation that
was created in the context of this thesis represents a solution that bundles the DeXTT
protocol execution together with the evaluation runs.

We utilized the created DeXTT-Bitcoin implementation excessively to execute a variety
of evaluation runs to evaluate both the design and implementation of the DeXTT
protocol for Bitcoin. The executed evaluation runs were comprised of 109 different
run configurations for multi-blockchain setups. Each evaluation run consisted of three
privately-managed Bitcoin blockchains via Bitcoin Core in regtest mode, ten DeXTT-
Bitcoin client instances that periodically initiated token transfers and one DeXTT-Bitcoin
client instance to periodically generate new Bitcoin blocks. The results of these evaluation
runs yielded a minimum transfer validity period for DeXTT token transfers of four Bitcoin

'https://coinmarketcap.com/
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blocks (2400 seconds) for configurations where the clients utilized unconfirmed Bitcoin
transactions (see Section 5.4). For the configurations that only used confirmed Bitcoin
transactions, a minimum transfer validity period of five Bitcoin blocks (3000 seconds)
was found to be sufficient.

These results regarding the transfer validity period match the minimum validity period
that was found to be sufficient for the Ethereum prototype, where four blocks were
required, although the absolute time was much shorter (52 seconds) due to the difference
of the block creation times between Bitcoin and Ethereum.

Concerning the costs for DeXTT token transfers on Bitcoin, the gathered data concerning
the sizes of the underlying Bitcoin transactions combined with the average Bitcoin fee
for inclusion in the next block and the average Bitcoin price in April 2020 resulted in the
following values:

e (0.9056 USD for a claim transaction,
e 0.2395 USD for a contest, veto, or finalize transaction and

e 0.2215 USD for a finalize-veto transaction.

Compared to the transaction cost of Ethereum based on the average Gas and Ether prices
in April 2020, the contest, finalize and finalize-veto transactions are about a factor of two
more expensive on Bitcoin. The claim transaction on Bitcoin costs about seven times as
much as on Ethereum. Only the veto transaction was found to be slightly cheaper on
Bitcoin compared to Ethereum.

In addition to the evaluation runs using privately-managed blockchain instances, one test
run was executed on the Bitcoin testnet, which showed that the DeXTT-Bitcoin client
implementation is also suitable to be applied to a real deployed blockchain network.

There are still some open questions and topics for possible future work:

Eager Execution of Unconfirmed Transactions. Within the context of this thesis,
the design for DeXTT on the Bitcoin blockchain was created with the execution
of confirmed transactions in mind. Additionally, we introduced the processing of
unconfirmed Bitcoin transactions in a limited way to gather information about
claim and contest transactions before a new block is found. This limited processing
of unconfirmed transactions does not include any means of actually executing
DeXTT transactions and therefore does not change the state of the client and
wallet. The handling and execution of unconfirmed transactions can also be designed
in a way that eagerly executes every observed unconfirmed transaction, but this
approach could result in inconsistencies and indeterminisms. Therefore, to enable
the eager execution of unconfirmed transactions, meaning that all unconfirmed
DeXTT transactions are processed and executed leading to a change in state,
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One

additional features including the undoing of already executed transactions and the
reevaluation of the correct state of the DeXTT client need to be introduced.

Global Claim Transaction. In our current design of DeXTT for Bitcoin, on
each participation blockchain at least one claim transaction for every token transfer
is required. This claim can then be referenced by the DeXTT-Bitcoin contest
transaction, effectively enabling contest participations for less cost. It is also
possible to reduce the required claim transactions to one global claim transaction,
which can be included on any of the participation blockchains. Therefore, on
the other blockchains, this global claim can be referenced through its hash value
inside contest transactions. This approach can further reduce the cost for contest
participations and for the receiver of a token transfer, who then only needs to
send one claim transaction to one blockchain and only contest transactions to the
other blockchains, instead of sending a more expensive claim transaction to all
blockchains.

Inclusion of DeXTT Transaction hashes in Blockchain. We designed the inclu-

sion of DeXTT transaction in the transactions of Bitcoin through the insertion
of all relevant data of the transactions in null data outputs. An approach which
requires less data to be included and therefore reduces the overall cost, is to only
include the hash values of DeXTT transactions in null data outputs of Bitcoin. For
such an approach to be feasible, there must additionally exist a way of distributing
the actual transaction data among the participation clients. This can be achieved
by building a custom network for data exchange between all clients.

Additional DeXTT Implementations. Another interesting DeXTT implementation

that builds upon both the Ethereum and newly created Bitcoin clients, is a client that
combines both implementations into a global approach that can actually run DeXTT
on both Bitcoin and Ethereum simultaneously. This enables the evaluation of an
approach that bridges token transfers across different blockchain technologies. In
addition, a DeXTT design and implementation for a completely different blockchain
technology can yield additional results on how the protocol performs on various
blockchains. Some possible candidates for future implementations on different
blockchain technologies include FOS, Tezos or Neo.
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