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den. Besonders möchte ich hier Markus Aurada und Michael Karkulik erwähnen, deren
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CHAPTER 1

Introduction & Outline

1.1. What is adaptivity?

What is adaptivity? A question, which I heard very often during the process of writing
this work. My parents, the non-mathematicians among my friends, even my grandparents
were—up to a certain amount—interested in understanding what I am doing. Often, when
I tried to reply to that question, I gave the following answer.

In the beginning, there is always the problem, one wants to solve. In most of the prac-
tical cases, this would be some kind of differential equation, because these mathematical
objects are superbly suited to describe processes which take place in the real world. For
this introduction, however, I want to consider a much simpler problem, we all know from
school: Calculating the area of a geometric figure. Our task shall be to calculate the area
of the blue domain under the red curve in Figure 1. Maybe the first attempt would be
to find a formula which describes the curve, and perform integration by hand. What is
expedient in school, happens to be impossible in most of the practical cases. Even if one
knows the correct formula for the curve, one is hardly able to calculate the area except
for very simple cases. Furthermore, the curve is often described only by a set of data
points, and there is no chance to find a formula.

But one simple thing one can definitely do, is shown in the middle image in Figure 1.
One chooses a point on the axes between a and b and draws the biggest possible rectangles
which fit under the curve. The area of rectangles is easy to calculate, just width times
height, and it only remains to sum up. Of course one may argue that this is only an
approximation to the real area and even a pretty bad one. But an approximation to the
exact solution of a problem is often the best result, we can expect. So, lets refine this
approach and draw many rectangles under the curve as seen in the rightmost image in
Figure 1. This is called uniform refinement in literature because each rectangle has the
same width. Again, we calculate the area of the rectangles and sum up. Now, this seems
like a good solution. We are pretty close to the real area, and as mentioned before, a
good approximation is the best we can hope for. But although one could perform the
calculation of the rectangle area with a computer, one can imagine that every additional
rectangle increases the computational work. This might not be a problem for our simple
example, but in real world applications, computational resources are limited and cost
lots of money. Therefore, we are interested to deploy our resources as smart as possible.
When we go back to the middle image in Figure 1, we see that the approximation in the
left part of the image is not too bad. The problem is the right part, where the area of
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a b a b a b

Figure 1. A simple quadrature problem.

the rectangle is nowhere near the exact area. Maybe it would be sufficient to refine only
the right rectangle.

Here comes adaptivity into place. But how to quantify that some rectangles are better
than others? One could consider a so called uniform refinement of the two rectangles
into four rectangles as seen in the leftmost image in Figure 2. Now, we compare these two
approximations. We see that the refinement of the right rectangle yields a huge advantage
in accuracy, whereas the improvement for the left rectangle is moderate. This helps to
decide which rectangle we have to refine and which not. In literature, this strategy is
known as (h−h/2)-based error estimation, and it applies to a very wide field of interesting
problems.

Another approach is to consider a simpler problem. As mentioned before, we are not
able to calculate the area under the curve—which is not covered with the rectangles—
exactly. But we are able to calculate the distance between the upper edge of the rectangle
and the curve as depicted in the rightmost image in Figure 2. Again, we may use this
quantity (perhaps weighted with the width of the rectangles) to decide, whether we should
refine the rectangle or not. In both cases, we would end up with the approximation in
the middle image in Figure 2. Of course, one refinement is often not enough to reach the

a b a b a b

Figure 2. Smart improvement of the approximation.

desired quality of approximation. Thus, we iterate the described procedure until we are
satisfied with the outcome in Figure 3. There, we see that the rectangles are adaptively
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distributed. In regions with steep slope, many refinements have been performed, whereas
only a few refinements took place in regions, where the curve is flat. In contrast to
this example, in many practical application it is not possible to see the error between
approximation and the exact solution. Therefore, we are interested in reliable error
estimators, which means that the quantity we use to decide which rectangle to refine
gives also an upper estimate of the approximation error. In our particular case, the second
strategy depicted in the rightmost image in Figure 2 yields a reliable error estimate. In
order not to overestimate the real error—and consequently perform to many refinements
for the desired accuracy—we talk of efficient error estimators. In many applications,
(h− h/2)-based error estimators are efficient.

Now, as we thought of different error estimation strategies, two questions arise natu-
rally.

First: Does the strategy produce arbitrarily accurate approximations if we only per-
form sufficiently many iterations? Note that the answer to this question seems obvious if
we perform uniform refinements of the rectangles. But in context of adaptivity, it is not
clear that each rectangle is refined arbitrarily often.

Second: Is the strategy the best possible for particular situations and is it even better
than the naive approach of uniform refinement? This work tries to deal with these
questions in case of adaptive algorithms for general Galerkin schemes and particularly
for the boundary element method.

a b

Figure 3. Adaptive approximation of the area under the curve.

1.2. Outline

Recently, there was a major breakthrough in the mathematical understanding of conver-
gence and quasi-optimality of h-adaptive FEM for second-order elliptic PDEs. However,
many of the ingredients which appear in the proofs in [18, 23, 33] were mathematically
open for adaptive BEM. In Chapter 2 we consider a general adaptive algorithm (e.g.
BEM or FEM) and work out these ingredients to develop a fully abstract framework for
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proving convergence and quasi-optimality of general adaptive algorithms of the type:

solve −→ estimate −→ mark −→ refine

Moreover, we formulate a set of sufficient assumptions, which are used to prove the three
main results of this work:

• convergence of the adaptive algorithm,
• optimal convergence rate of the estimator,
• characterization of the approximation class and therefore optimal convergence
rate of the error.

In contrast to prior works on optimality of adaptive algorithms, we show that efficiency
of the error estimator is only needed to characterize the approximation class, whereas
convergence and optimality of the adaptive algorithm mainly depend on discrete local
reliability of the estimator. Chapter 4 applies the abstract analysis to a concrete model
problem, i.e. for a polygonal Lipschitz domain Ω ⊂ R2, we analyze Symm’s integral
equation

V φ = (K + 1
2
)g on the boundary ∂Ω

for some given boundary data g ∈ H1/2(∂Ω). We use the weighted-residual error estima-
tor from [17] to steer the mesh refinement. We prove discrete local reliability and a new
inverse estimate, which allows us to prove convergence of the adaptive algorithm. To get
optimality of the adaptive algorithm, we present two 1D mesh refining strategies in Sec-
tion 4.4 which guarantee uniform shape regularity of the constructed meshes and satisfy
several other properties which are needed to apply the abstract analysis of Chapter 2.
Whereas, e.g. newest vertex bisection fulfills all required properties for meshes in 2D and
3D, the proof in 1D is inherently different, because we cannot rely on the angle condition
to prevent the collapse of an element, but we need to bound the ratio of the diame-
ters of two neighboring elements. Under some additional regularity assumptions on the
boundary data g, we are able to prove efficiency of the weighted-residual error estimator
on locally refined meshes, which was priorly only known on quasi uniform meshes under
even slightly stronger regularity assumptions (see [13]). Chapter 5 incorporates the ap-
proximation of the Dirichlet data g by a discrete function Gℓ in each step of the adaptive
algorithm. Using the concept of modified Dörfler marking (cf. [42, 3]), we prove conver-
gence and quasi-optimality of the corresponding adaptive algorithm. Finally, Chapter 6
provides some numerical experiments, which underline the results of this work and give a
comparison to naive uniform mesh-refinement. We conclude the work with some remarks
on the saturation assumption and give a slightly weaker result in the Appendix.



CHAPTER 2

Abstract Analysis of Adaptive Algorithms

The goal of this section is to analyze and understand the mathematical framework of
quasi-optimal convergence rates for adaptive mesh-refining algorithms. Note carefully
that this chapter does not rely on adaptive BEM, but applies to general adaptive al-
gorithms. Emphasis is laid on the observation that quasi-optimality of the adaptive
algorithm with respect to a certain abstract approximation class introduced below does
not need efficiency of the error estimator. In particular, the marking parameter for the
optimality of the Dörfler marking does essentially depend only on the reliability constant
(see also e.g. [18, 42, 33], where also the efficiency constant is involved). Later-on, the
efficiency is used to characterize the approximation class involved.

2.1. Abstract setting

Suppose that H is a separable Hilbert space with scalar product 〈〈· , ·〉〉 and corresponding
norm ||| · |||, f ∈ H∗ is a linear and continuous functional on H, and φ ∈ H is the unique
solution of the variational formulation

〈〈φ , ψ〉〉 = f(ψ) for all ψ ∈ H. (2.1)

Note that existence and uniqueness of φ follow from the Lax-Milgram lemma. Based on
some triangulation T⋆, we assume that X⋆ = X (T⋆) is a finite dimensional subspace of H
with corresponding Galerkin solution Φ⋆, i.e.

〈〈Φ⋆ , Ψ⋆〉〉 = f(Ψ⋆) for all Ψ⋆ ∈ X⋆. (2.2)

As in the continuous setting, existence and uniqueness of Φ⋆ follow from the Lax-Milgram
lemma. We stress the Galerkin orthogonality

〈〈φ− Φ⋆ , Ψ⋆〉〉 = 0 for all Ψ⋆ ∈ X⋆ (2.3)

which, in fact, characterizes Φ⋆. Moreover, (2.3) implies the Pythagoras theorem

|||φ−Ψ⋆|||2 = |||φ− Φ⋆|||2 + |||Φ⋆ −Ψ⋆|||2 for all Ψ⋆ ∈ X⋆. (2.4)

In particular, this yields the best approximation property

|||φ− Φ⋆||| = min
Ψ⋆∈X⋆

|||φ−Ψ⋆||| (2.5)

of the Galerkin solution also known as Céa’s lemma. Finally, we assume that for each
element T ∈ T⋆ we can compute a corresponding refinement indicator η⋆(T ) which —at
least heuristically— measures the error between φ and Φ⋆ on T . Under these hypotheses,
the usual adaptive algorithm reads as follows:

9
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Algorithm 2.1. Input: Initial mesh T0, adaptivity parameter 0 < θ < 1, counter ℓ := 0

(i) Compute discrete solution Φℓ corresponding to Tℓ.
(ii) Compute refinement indicators ηℓ(T ) for all T ∈ Tℓ.
(iii) Determine set Mℓ ⊆ Tℓ of minimal cardinality such that Dörfler marking

θ
∑

T∈Tℓ

ηℓ(T )
2 ≤

∑

T∈Mℓ

ηℓ(T )
2. (2.6)

is satisfied.
(iv) Refine (at least) marked elements T ∈ Tℓ to obtain new mesh Tℓ+1.
(v) Increase counter ℓ 7→ ℓ+ 1 and iterate.

Output: Discrete solutions Φℓ and error estimators ηℓ :=
( ∑

T∈Tℓ

ηℓ(T )
2
)1/2

for ℓ ≥ 0.

In the following, we want to work out the properties of the error estimator ηℓ and
the mesh-refinement which guarantee convergence Φℓ → φ in H as ℓ → ∞ even with
quasi-optimal convergence rate.

2.2. Assumptions on discretization & mesh-refinement

We fix a mesh-refining strategy, e.g., red-green-blue refinement or newest vertex bisection
for triangular meshes in R2, see e.g. [43, Chapter 4] or bisection of elements for partitions
of a 1D manifold (see Section 4.4). For a given mesh T and M ⊆ T the set of marked
elements, we denote by

T ′ := refine(T ,M) (2.7)

the coarsest mesh such that all marked elements T ∈ M have been refined. Moreover,
we write

T ′ = refine(T ) (2.8)

if there exist finitely many meshes T (0), . . . , T (n+1) and M(j) ⊆ T (j) such that T = T (0),
T (j+1) = refine(T (j),M(j)) for all j = 0, . . . , n, and T ′ = T (n+1). Put differently, T ′

is obtained by finitely many steps of refinement. For the fixed initial mesh T0 from the
adaptive loop, we may now define

T :=
{
T ′ : T ′ = refine(T0)

}
(2.9)

as the set of all triangulations which can be obtained from T0 by use of the fixed refinement
strategy. Now, the assumptions on the discretization read as follows:

(D1) The discrete spaces are nested, i.e. T ′ = refine(T ) implies X (T ) ⊆ X (T ′) for
the corresponding spaces, as well as conforming, i.e. X (T ) ⊂ H for all T ∈ T.

(D2) Uniform mesh-refinement, i.e. T (0) = T0 and T (ℓ+1) = refine(T (ℓ), T (ℓ)) for
ℓ ≥ 0, yields convergence

|||φ− Φ(ℓ)||| ℓ→∞−−−→ 0 (2.10)
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with Φ(ℓ) ∈ X (T (ℓ)) being the corresponding Galerkin solution.

For the mesh-refinement, we state the following assumptions:

(R1) The mesh-refinement strategy guarantees that all constants involved in error
estimates in Section 2.3 remain bounded.

(R2) For T ′ = refine(T ), each refined element T ∈ T \T ′ is refined into at least two
sons, i.e. #(T \T ′) ≤ #T ′ −#T .

(R3) The additional refinements which ensure (R1) do not lead to substantially more
elements, i.e. for Tℓ = refine(T0)

#Tℓ −#T0 ≤ Cmesh

ℓ−1∑

j=0

#M(j) (2.11)

with some ℓ-independent constant Cmesh > 0 which depends only on T0.
(R4) For two meshes T , T ′ ∈ T, there is a coarsest common refinement T ⊕ T ′ ∈ T,

i.e. X (T ) ∪ X (T ′) ⊆ X (T ⊕ T ′), which satisfies

#(T ⊕ T ′) ≤ #T +#T ′ −#T0. (2.12)

We stress that (D1),(D2), and (R1) are used to prove convergence of the adaptive loop,
whereas (R2)–(R4) are only used to prove quasi-optimal convergence rates.

Remark. In practice, (R1) is satisfied if all meshes T ∈ T are, e.g., uniformly shape
regular, and (D1) is obvious for piecewise polynomials. (D2) is usually guaranteed by
Céa’s lemma (2.5) and approximation properties of the discrete spaces X (T ) since the
mesh-size tends to zero uniformly. Moreover, (D2) is necessary to allow for convergence of
the adaptive algorithm. Assumption (R2) is trivially satisfied in practice. Only (R3)–(R4)
are mathematically demanding: (R3) has first been proven for newest vertex bisection of
triangular meshes in 2D in [11]. The proof has been generalized to newest vertex bisection
of simplicial meshes and arbitrary dimension in [42]. Finally, (R4) has first been observed
for newest vertex bisection of triangular meshes in 2D in [42] and has been generalized
in [18] to arbitrary dimension. �

Remark. All assumptions (D1), (D2), (R1)–(R4) are satisfied for newest vertex bi-
section in arbitrary dimension if the initial mesh T0 satisfies a certain distribution of
the reference edges. For red-green-blue refinement, only (R4) fails to hold in general,
see [37]. In Section 4.4, we provide a local 1D refinement for adaptive 2D BEM, which
satisfies (D1), (D2) as well as (R1)–(R4) and additionally guarantees that the local mesh-
ratio κ(Tℓ) remains bounded. �

2.3. Assumptions on the error estimator

We assume that the error estimator ηℓ satisfies the following properties with certain
constants Cstab, Cred, Crel, Ceff , Chot, Cdlr, Cref ≥ 1 and 0 < qred < 1, which depend only
on the given meshes. Recall, that Assumption (R1) on the mesh refinement strategy
guarantees that the constants remain uniformly bounded for all meshes T ∈ T.
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(E1) For T⋆, Tℓ ∈ T, the error estimator is stable on joint elements
∣∣∣
( ∑

T∈T⋆∩Tℓ

η⋆(T )
2
)1/2

−
( ∑

T∈T⋆∩Tℓ

ηℓ(T )
2
)1/2∣∣∣ ≤ Cstab |||Φ⋆ − Φℓ|||, (2.13)

where Φ⋆ and Φℓ are the corresponding Galerkin solutions.
(E2) For Tℓ ∈ T and T⋆ = refine(Tℓ), the error estimator satisfies some reduction

property on refined elements
( ∑

T∈T⋆\Tℓ

η⋆(T )
2
)1/2

≤ qred

( ∑

T∈Tℓ\T⋆

ηℓ(T )
2
)1/2

+ Cred |||Φ⋆ − Φℓ|||. (2.14)

(E3) The error estimator is reliable, i.e. it provides an upper bound

C−1
rel |||φ− Φℓ|||2 ≤ η2ℓ =

∑

T∈Tℓ

ηℓ(T )
2. (2.15)

(E4) The error estimator satisfies the discrete local reliability

|||Φ⋆ − Φℓ|||2 ≤ Cdlr

∑

T∈Rℓ

ηℓ(T )
2 (2.16)

for all refinements T⋆ = refine(Tℓ) with corresponding Galerkin solution Φ⋆ and
a certain subset Rℓ ⊆ Tℓ which contains the refined elements Tℓ\T⋆ ⊆ Rℓ and
satisfies #Rℓ ≤ Cref#(Tℓ\T⋆).

(E5) The error estimator is efficient up to terms of higher order, i.e. it provides a lower
bound

C−1
eff η

2
ℓ ≤ |||φ− Φℓ|||2 + hot2ℓ . (2.17)

In addition, we assume that uniform mesh-refinement, i.e. T (0) = T0 and T (ℓ+1) =
refine(T (ℓ), T (ℓ)) for ℓ ≥ 0, yields convergence of the higher-order term with a
certain rate. This means that for Tℓ = refine(T (ℓ)), there holds

hotℓ ≤ Chot(#T (ℓ) −#T0)
−s⋆ (2.18)

for constants Chot ≥ 1 and s⋆ > 0 which depend only on T0 and (R1).

In the spirit of [18], the assumptions (E1)–(E3) are used to prove convergence and even
contraction of the adaptive loop. Moreover, (E1) and (E4) are used to prove optimality
of the marking strategy which generalizes the (concrete) analysis of [42] and [18], where
also efficiency (E5) is involved. Together with the contraction result which follows from
(E1)–(E3) and the Pythagoras theorem (2.4), the latter allows to prove that the adaptive
loop asymptotically leads to the best possible convergence rate for the estimator. Finally,
we only need the property of efficiency (E5) to characterize the approximation class and
to conclude that the best possible convergence rate for the error coincides with the one
of the estimator.

Remark. Assumption (E1) usually follows from the triangle inequality and certain scal-
ing arguments as e.g. inverse estimates and therefore explicitly exploits assumption (R1).
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The observation that the mesh-size decreases uniformly on refined elements, combined
with the foregoing arguments also proves (E2). Reliability (E3) is usually satisfied for
residual error estimators. Finally, (E4) has first been observed in [42] for lowest-order
adaptive FEM for the 2D Poisson problem, where Rℓ is the set of refined elements plus
an additional layer of elements, and Cref > 0 depends only on uniform shape regularity of
the meshes under consideration. In [18], one finds the improved result with Rℓ = Tℓ\T⋆

being the set of refined elements only. �

Remark. We stress that discrete local reliability (E4) and convergence (D2) for uni-
form mesh-refinement together with nestedness (D1) and shape regularity (R1) prove the
reliability (E3). To see this, we argue as follows: For fixed ℓ ∈ N and arbitrary ε > 0,
we may use (D2) to obtain that k uniform refinements of T0 provide a mesh T0,k which
satisfies

|||φ− Φ0,k||| ≤ ε |||φ− Φℓ|||
for the corresponding Galerkin solution Φ0,k. The nestedness assumption (D1) implies
that k uniform refinements of Tℓ provide a mesh Tℓ,k with X (T0,k) ⊆ X (Tℓ,k). In particular,
the Céa lemma (2.5) reveals

|||φ− Φℓ,k||| ≤ |||φ− Φ0,k||| ≤ ε |||φ− Φℓ|||.
Together with Xℓ = X (Tℓ) ⊆ X (Tℓ,k), the triangle inequality and the discrete local relia-
bility (E4) for T⋆ = Tℓ,k yield

|||φ− Φℓ||| ≤ |||φ− Φℓ,k|||+ |||Φℓ,k − Φℓ||| ≤ ε|||φ− Φℓ|||+
(
Cdlr

∑

T∈Tℓ

ηℓ(T )
2
)1/2

.

Hence, we see

|||φ− Φℓ|||2 ≤
Cdlr

(1− ε)2

∑

T∈Tℓ

ηℓ(T )
2 =

Cdlr

(1− ε)2
η2ℓ ,

which holds for all ε > 0. Altogether, we thus end up with (E3) even with Crel = Cdlr. �

2.4. Convergence of adaptive algorithm

We start with the observation that reduction of the error estimator (E2) and stability (E1)
lead to a perturbed contraction of the error estimator in each step of the adaptive loop.
From now on, we assume that boundedness of the constants (R1) holds for the chosen
discretization.

Lemma 2.2. Under assumptions (E1) and (E2), one obtains

η2ℓ+1 ≤ qest η
2
ℓ + Cest |||Φℓ+1 − Φℓ|||2 for all ℓ ≥ 0. (2.19)

The constants 0 < qest < 1 and Cest > 0 depend only on the constants in (E1) and (E2)
and on the marking parameter 0 < θ < 1 of the Dörfler marking (2.6).
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Proof. Recall the Young inequality (a + b)2 ≤ (1 + δ)a2 + (1 + δ−1)b2 for all a, b ∈ R
and δ > 0. This and the application of (E1) and (E2) gives

η2ℓ+1 =
∑

T∈Tℓ+1\Tℓ

ηℓ+1(T )
2 +

∑

T∈Tℓ+1∩Tℓ

ηℓ+1(T )
2

≤ (1 + δ)q2red
∑

T∈Tℓ\Tℓ+1

ηℓ(T )
2 + (1 + δ)

∑

T∈Tℓ∩Tℓ+1

ηℓ(T )
2 + Cest|||Φℓ+1 − Φℓ|||2,

where Cest = (1 + δ−1)(C2
red + C2

stab). Therefore, Mℓ ⊆ Tℓ\Tℓ+1 and the Dörfler mark-
ing (2.6) give

η2ℓ+1 ≤ (1 + δ)
( ∑

T∈Tℓ

ηℓ(T )
2 − (1− q2red)

∑

T∈Tℓ\Tℓ+1

ηℓ(T )
2
)
+ Cest|||Φℓ+1 − Φℓ|||2

≤ (1 + δ)
(
1− (1− q2red)θ

) ∑

T∈Tℓ

ηℓ(T )
2 + Cest|||Φℓ+1 − Φℓ|||2.

Finally, we choose δ > 0 sufficiently small so that qest = (1 + δ)
(
1− (1− q2red)θ

)
< 1. �

It has already been observed in the seminal work [9] that the Céa lemma (2.5) com-
bined with nestedness Xℓ ⊆ Xℓ+1 for all ℓ ≥ 0 implies a priori convergence

lim
ℓ→∞

|||Φ∞ − Φℓ||| = 0 (2.20)

towards a certain (unknown) limit Φ∞ ∈ H. Note that Φ∞ is the Galerkin solution with
respect to the subspace X∞ which is the closure of

⋃∞
ℓ=0Xℓ in H. In particular, this

proves that |||Φℓ+1 − Φℓ||| → 0 as ℓ → 0, and hence the sequence of error estimators is
contractive up to a non-negative zero sequence, see (2.19). It is therefore a consequence
of elementary calculus that (2.19) leads to convergence, see [4, Lemma 2.3].

Corollary 2.3. If the discrete spaces are nested (D1), the estimator reduction (2.19)
implies estimator convergence limℓ ηℓ = 0. Under reliability (E3), this proves convergence
of the adaptive algorithm limℓ |||φ− Φℓ||| = 0. �

This estimator reduction concept is studied in [4] and applies to a quite general class of
problems and estimators, e.g. non-symmetric or even nonlinear problems and residual as
well as (h−h/2)-type error estimators. Note carefully that the Pythagoras theorem (2.4),
i.e. symmetry of 〈〈· , ·〉〉 has not been used so far. In our framework of symmetric problems,
however, we may now use the Pythagoras theorem (2.4) to improve (2.19) and to obtain
even linear convergence of the adaptive loop in the spirit of [18].

Theorem 2.4. Assume that (2.19) holds true, since e.g. (E1) and (E2) are valid. Pro-
vided nestedness (D1) and reliability (E3), there exist constants 0 < γ, κ < 1 such that

∆ℓ+1 ≤ κ∆ℓ for all ℓ ≥ 0 and ∆ℓ := |||φ− Φℓ|||2 + γ η2ℓ . (2.21)

The constants 0 < γ, κ < 1 depend only on qest and Cest from (2.19).
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Proof. By use of nestedness (D1) and the Pythagoras theorem |||φ − Φℓ|||2 = |||φ −
Φℓ+1|||2 + |||Φℓ+1 − Φℓ|||2, we see

∆ℓ+1 = |||φ− Φℓ|||2 + γ η2ℓ+1 − |||Φℓ+1 − Φℓ|||2

≤ |||φ− Φℓ|||2 + γqest η
2
ℓ + (γCest − 1)|||Φℓ+1 − Φℓ|||2.

For sufficiently small 0 < γ < 1, it holds that γCest ≤ 1, and the last term can be
dropped. With an additional parameter ε > 0 and reliability (E3), we obtain

∆ℓ+1 ≤ |||φ− Φℓ|||2 + γqest η
2
ℓ = (1− ε) |||φ− Φℓ|||2 + γ(qest + εCrel) η

2
ℓ ≤ κ∆ℓ,

where κ := max
{
1− ε , qest + εCrel

}
satisfies 0 < κ < 1 for ε > 0 sufficiently small. �

2.5. Optimality of Dörfler marking

So far, we have seen that Dörfler marking (2.6) guarantees the (perturbed) contraction
properties (2.19), (2.21) and hence limℓ ηℓ = 0, see Lemma 2.2 resp. Theorem 2.4. Now,
we prove —in some sense— the converse.

Proposition 2.5. Suppose that the assumptions (E1) and (E4) hold. Then, for all
0 < κ⋆ < 1 there exists a constant 0 < θ⋆ < 1 such that for all 0 < θ ≤ θ⋆ and all
T⋆ = refine(Tℓ) it holds that

η2⋆ ≤ κ⋆η
2
ℓ =⇒ θ

∑

T∈Tℓ

ηℓ(T )
2 ≤

∑

T∈Rℓ

ηℓ(T )
2 (2.22)

with Tℓ \T⋆ ⊆ Rℓ ⊆ Tℓ from (E4). The constant θ⋆ depends only on the constants in (E1)
and (E4) as well as on κ⋆.

Proof. Note that the Young inequality, (E1), and (E4) give

η2ℓ =
∑

T∈Tℓ\T⋆

ηℓ(T )
2 +

∑

T∈Tℓ∩T⋆

ηℓ(T )
2

≤
∑

T∈Tℓ\T⋆

ηℓ(T )
2 + (1 + δ)

∑

T∈Tℓ∩T⋆

η2⋆ + (1 + δ−1)C2
stab|||Φ⋆ − Φℓ|||2

≤ (1 + δ)κ⋆η
2
ℓ +

(
1 + (1 + δ−1)C2

stabCdlr

) ∑

T∈Rℓ

ηℓ(T )
2.

Rearranging these terms, we see

1− (1 + δ)κ⋆
1 + (1 + δ−1)C2

stabCdlr
η2ℓ ≤

∑

T∈Rℓ

ηℓ(T )
2.

For arbitrary 0 < κ⋆ < 1 and sufficiently small δ > 0, we have

θ⋆ :=
1− (1 + δ)κ⋆

1 + (1 + δ−1)C2
stabCdlr

> 0. (2.23)

Then, 0 < θ⋆ < 1 concludes the proof of (2.22). �
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Remark. Under the assumption η2⋆ ≤ κ⋆η
2
ℓ , the preceding proof shows that stability (E1)

and discrete local reliability (E4) prove the optimality of the Dörfler marking (2.22). Pro-
vided the error estimator ηℓ is reliable (E3) and that the discrete spaces are nested (D1),
it is easy to show that Dörfler marking for Rℓ ⊆ Tℓ does also imply the discrete local
reliability:

θ⋆ |||Φ⋆ − Φℓ|||2 ≤ θ⋆ |||φ− Φℓ|||2 ≤ θ⋆Crel η
2
ℓ ≤ Crel

∑

T∈Rℓ

ηℓ(T )
2,

whence (E4) holds with Cdlr = θ−1
⋆ Crel. �

Therefore, the discrete local reliability (E4) is not only sufficient but in case of η⋆ ≤
κ⋆ηℓ even necessary to prove optimality of the Dörfler marking.

2.6. Quasi-optimality of adaptive algorithm

Finally, we aim to analyze the best possible algebraic convergence rate which can be
obtained by the adaptive algorithm. To that end, we define the set

TN :=
{
T⋆ ∈ T : #T⋆ −#T0 ≤ N

}

of all triangulations which have at most N ∈ N elements more than the initial mesh and
can be generated from T0 by use of the fixed mesh refinement strategy. Since the adaptive
algorithm is steered by the error estimator, it is natural to ask for the best algebraic
convergence rate O(N−s) for the error estimator. This is mathematically characterized
as follows: For given data f ∈ H∗ and exact solution φ ∈ H of (2.1), we write

(φ, f) ∈ Aη
s

def.⇐⇒ ‖(φ, f)‖Aη
s
:= sup

N∈N
inf

T⋆∈TN

(N sη⋆) <∞, (2.24)

where η⋆ denotes the error estimator corresponding to the triangulation T⋆. By definition,
a convergence rate η⋆ = O(N−s) is possible if the optimal meshes are chosen. Concep-
tually, we say that the adaptive algorithm is quasi-optimal if the sequence of adaptively
generated meshes Tℓ leads to ηℓ = O(N−s), whenever (φ, f) ∈ Aη

s . The precise result is
given in Theorem 2.7.

Lemma 2.6. Suppose that the mesh-refinement satisfies (R2) and (R4) and that (D1) is
satisfied by the discretization. Assume that the estimator fulfills the assumptions (E1)–
(E3). Then, for (φ, f) ∈ Aη

s , Tℓ ∈ T, and κ⋆ ∈ (0, 1), there is a certain refinement
T⋆ = refine(Tℓ) with

η2⋆ ≤ κ⋆η
2
ℓ and #T⋆ −#Tℓ ≤ C1η

−1/s
ℓ , (2.25)

where the set Rℓ ⊇ Tℓ \ T⋆ from Propostition 2.5 satisfies

#Rℓ ≤ C2η
−1/s
ℓ , (2.26)

as well as the Dörfler marking (2.6) for all 0 < θ ≤ θ⋆. The constants C1 > 0 and C2 > 0
depend only on ‖(φ, f)‖Aη

s
.
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Proof. Let λ > 0 be a free parameter which is fixed later-on. According to the definition
of the approximation class Aη

s , we find for given ε2 := λη2ℓ > 0 some triangulation Tε ∈ T
such that

#Tε −#T0 . ε−1/s and ηε ≤ ε. (2.27)

We now consider the coarsest common refinement T⋆ := Tε ⊕ Tℓ and first note that

#T⋆ −#Tℓ ≤ (#Tε +#Tℓ −#T0)−#Tℓ = #Tε −#T0 (2.28)

according to (R4). Due to T⋆ = refine(Tε), we may argue as in Lemma 2.2 to see, for
arbitrary δ > 0,

η2⋆ ≤ (1 + δ)η2ε + (1 + δ−1)(C2
red + C2

stab)|||Φ⋆ − Φε|||2, (2.29)

where we have roughly estimated qred ≤ 1. By use of nestedness (D1), reliability (E3),
and the Céa Lemma (2.5), one sees

|||Φ⋆ − Φε||| ≤ |||φ− Φ⋆|||+ |||φ− Φε||| . |||φ− Φε||| . ηε.

Together with (2.29), this proves

η2⋆ . η2ε ≤ λη2ℓ .

Choosing λ > 0 sufficiently small, we enforce η2⋆ ≤ κ⋆η
2
ℓ . Next, we employ Proposition 2.5

to obtain that Rℓ from (E4) satisfies the Dörfler marking. For fixed λ > 0, we obtain
ε ≃ ηℓ. Together with (2.27) and (2.28), this proves (2.25). To see (2.26), we use (R2) as
well as (2.28) and end up with

#Rℓ . #(Tℓ\T⋆) ≤ #T⋆ −#Tℓ ≤ #Tε −#T0 . ε−1/s ≃ η
−1/s
ℓ .

This concludes the prove. �

Now, the quasi-optimality for a general adaptive algorithm which fits in the framework
of this chapter is stated in the following theorem.

Theorem 2.7. Let the discretization satisfy (D1). Suppose that the mesh-refinement sat-
isfies (R1)–(R4) and that the Dörfler marking is optimal in the sense of Proposition 2.5.
Assume that ∆ℓ is equivalent to η

2
ℓ and contractive, i.e. ∆ℓ+1 ≤ κ∆ℓ for some 0 < κ < 1,

cf. Theorem 2.4, and that the error estimator satisfies (E1)–(E3). For 0 < θ ≤ θ⋆, then
there holds equivalence

(φ, f) ∈ Aη
s ⇐⇒ ηℓ ≤ Copt (#Tℓ −#T0)

−s for all ℓ ≥ 0 (2.30)

for all s > 0. The constant Copt > 0 depends only on ‖(φ, f)‖Aη
s
, and (R1).

Proof. First, we show that Mℓ . η
−1/s
ℓ . Therefore, we apply Lemma 2.6 to obain

#Rℓ . η
−1/s
ℓ from (2.26) and that the set Rℓ satisfies Dörfler marking (2.6). In step (iii)

of Algorithm 2.1, however, Mℓ was chosen to be the minimal set which satisfies the
Dörfler marking (2.6). We thus obtain

#Mℓ ≤ #Rℓ . η
−1/s
ℓ . (2.31)
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Now suppose that c η2ℓ ≤ ∆ℓ ≤ C η2ℓ and ∆ℓ+1 ≤ κ∆ℓ for some 0 < κ < 1, cf. Theorem 2.4.
We employ (2.31) and optimality (R3) of the mesh closure to see

#Tℓ −#T0 .

ℓ−1∑

j=0

#Mj .

ℓ−1∑

j=0

η
−1/s
j .

ℓ−1∑

j=0

∆
−1/s
j .

Inductively, we see ∆ℓ ≤ κℓ−j∆j and hence

#Tℓ −#T0 . ∆
−1/s
ℓ

ℓ−1∑

j=0

κ(ℓ−j)/s ≤ 1

1− κ1/s
∆

−1/s
ℓ . η

−1/s
ℓ

by use of the geometric series. For (φ, f) ∈ Aη
s , this proves the estimate

ηℓ . (#Tℓ −#T0)
−1/s for all ℓ ≥ 1.

The sufficiency of the condition (2.30) follows by definition of the approximation class
Aη

s . �

Finally, we want to characterize the abstract approximation class Aη
s in terms of the

Galerkin error.

Theorem 2.8. Suppose reliability (E3) and efficiency (E5) of ηℓ. Let 0 < s ≤ s⋆. For
given data f ∈ H∗ and corresponding solution φ ∈ H of (2.1), it holds

(φ, f) ∈ Aη
s ⇐⇒ φ ∈ As,

where the approximation class As is defined by

As :=
{
ψ ∈ H : ‖ψ‖As := sup

N∈N
min
T∗∈TN

inf
Ψ∗∈X (T∗)

|||ψ −Ψ∗|||N s <∞
}
,

i.e. the approximation class Aη
s is characterized by the optimal rate of convergence of the

best approximation in the natural energy norm.

Proof. First, we assume (φ, f) ∈ Aη
s . Then the reliability estimate (E3) together with

Céa’s lemma (2.5) prove

‖φ‖As ≤ Crel‖(φ, f)‖Aη
s
<∞,

i.e. φ ∈ As.
Second, we assume φ ∈ As for some s ∈ (0, s⋆]. The definition of the approximation

class As guarantees a mesh TN/2 ∈ T with

#TN/2 −#T0 ≤ N/2 and inf
ΨN/2∈X (TN/2)

|||φ−ΨN/2|||(N/2)s ≤ ‖φ‖As.

Because of the Céa Lemma (2.5), we get

|||φ− ΦN/2|||(N/2)s ≤ ‖φ‖As.
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For N > 4#T0, we construct a quasi-uniform mesh Tu ∈ T by splitting each element
T ∈ T0 uniformly in exactly k = ⌊N/(2#T0)⌋ parts. Then, it holds

#Tu −#T0 = (k − 1)#T0 ≤
N

2#T0

#T0 = N/2.

We define the overlay T+ := TN/2 ⊕ Tu. The mesh Tu has at least

k#T0 ≥
( N

2#T0
− 1

)
#T0 = N/2−#T0 ≥ N/4

elements. Therefore and by Equation (2.18), it holds that hot+ ≤ 4s⋆ChotN
−s⋆ . With the

Céa lemma (2.5)

|||φ− Φ+||| ≤ |||φ− ΦN/2|||,
we then obtain

(|||φ− Φ+|||2 + hot2+)N
2s ≤ |||φ− ΦN/2|||2(N2 )2s 22s + 4s⋆ChotN

2s−2s⋆

≤ 4s‖φ‖2As
+ 4s⋆Chot <∞.

Efficiency (E5) now gives

η2+ . |||φ− Φ+|||2 + hot2+ (2.32)

and therefore

η2+N
2s . (|||φ− Φ+|||2 + hot2+)N

2s . 4s‖φ‖2As
+ 4s⋆Chot. (2.33)

The overlay estimate (R4) finally yields #T+ −#T0 ≤ #TN/2 +#Tu − 2#T0 ≤ N . This
proves (φ, f) ∈ Aη

s . �





CHAPTER 3

A Short Introduction to the Boundary Element Method

The purpose of this section is to give a quick dive into the boundary element method
and to clarify notation for the following sections. Throughout, we consider the (formal)
Laplace operator

∆u(x) :=
d∑

j=1

∂2xj
u(x)

for a smooth function u ∈ C2(Ω) on a bounded domain Ω ⊂ Rd for d = 2, 3. As a model
problem serves the following elliptic partial differential equation: Find u ∈ C2(Ω) such
that

−∆u = 0 in Ω, (3.1)

and u fulfills some prescribed Dirichlet boundary conditions, i.e.

u|Γ = g on Γ := ∂Ω (3.2)

for a given function g ∈ C(Ω). We now aim to reformulate (3.1) and (3.2) equivalently.
Therefore, we introduce the Newton kernel

G(z) :=

{
− 1

2π
log |z| for d = 2,

+ 1
4π
|z|−1 for d = 3.

Obviously, the function G : Rd \ {0} → R is smooth. Now, the solution of (3.1) can be
characterized with the representation formula (see e.g. [39, Theorem 3.1.6]).

Proposition 3.1. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary Γ. Let
u ∈ C2(Ω) be a solution of (3.1). Then, there holds

u(x) =

∫

Γ

G(x− y)∂n(y)u(y) dy −
∫

Γ

∂n(y)G(x− y)u(y) dy (3.3)

for all x ∈ Ω. Here, n(y) denotes the outer normal unit field at y ∈ Γ.

This formula motivates the definition of the following formal integral operators:

• The simple-layer potential of ψ : Γ → R
(
Ṽ ψ

)
(x) :=

∫

Γ

G(x− y)ψ(y) dy (3.4)

for all x ∈ Ω.
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• The double-layer potential of v : Γ → R
(
K̃v

)
(x) :=

∫

Γ

∂n(y)G(x− y)v(y) dy (3.5)

for all x ∈ Ω.

With the definitions above, the representation formula (3.3) reads

u(x) =
(
Ṽ ∂n(y)u

)
(x)−

(
K̃u

)
(x).

for all x ∈ Ω.
Now, consider the Hilbert space

H1(Ω) :=
{
v ∈ L2(Ω) : ∇v ∈ L2(Ω)d

}
, (3.6)

equipped with the norm ‖v‖2H1(Ω) := ‖v‖2L2(Ω) + ‖∇v‖2L2(Ω). Here, the gradient ∇ is

understood in the weak sense. It is possible to define the trace v|Γ of a function v ∈ H1(Ω)
by continuous extension of the classical trace for smooth functions. To that end, we use
the famous result of Meyers-Serrin that C∞(Ω) is a dense subset of H1(Ω). In a
similar fashion, one may define a weak normal derivative ∂nv for functions v ∈ H1(Ω),

which additionally satisfy ∆v ∈ H̃−1(Ω). The space H̃−1(Ω) denotes the dual space of
H1(Ω). This allows the definition of

• the trace space of H1(Ω):

H1/2(Γ) :=
{
v ∈ L2(Γ) : exists w ∈ H1(Ω) with v = w|Γ

}
(3.7)

associated with the norm ‖v‖H1/2(Γ) := inf
{
‖w‖H1(Ω) : v = w|Γ for w ∈ H1(Ω)

}

as well as
• its dual space

H−1/2(Γ) := H1/2(Γ)∗.

We revisit the integral operators from (3.4) and (3.5) and continuously extend them to
the following boundary integral operators:

V ψ := (Ṽ ψ)|Γ : H−1/2(Γ) → H1/2(Γ),

(K − 1
2
)v :=

(
K̃v

)
|Γ : H1/2(Γ) → H1/2(Γ).

One can explicitly represent the boundary integral operators as

(V ψ)(x) :=

∫

Γ

G(x− y)ψ(y) dy and (Kv)(x) := p.v.

∫

Γ

∂n(y)G(x− y)v(y) dy

for all x ∈ Γ. Here, p.v.
∫
Γ
denotes Cauchy’s principal value. With this, we may refor-

mulate the representation formula (3.3) for functions u ∈ H1(Ω).

Theorem 3.2. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary Γ. Let u ∈
H1(Ω) be a weak solution of (3.1). Then, there holds

u = Ṽ φ− K̃u|Γ in H1(Ω), (3.8)
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where φ := ∂nu ∈ H−1/2(Γ) denotes the normal derivative of u.

Applying the trace to the equation above and rearranging the terms, we obtain
Symm’s integral equation: Given g = u|Γ ∈ H1/2(Γ), find φ ∈ H−1/2(Γ) such that

V φ = (K + 1
2
)g in H1/2(Γ). (3.9)

The link between (3.9) and (3.1)–(3.2) is given via the representation formula (3.8), which
provides the solution u of (3.1)–(3.2) by the solution φ of (3.9), i.e.

u = Ṽ φ− K̃g in H1(Ω). (3.10)

Conversely, computing the normal derivative φ = ∂nu of the solution of (3.1) and (3.2)
yields the solution of (3.9).

Among others, the boundary element method denotes the approximation of the so-
lution φ of (3.9) with a Galerkin scheme, i.e. for a finite dimensional subspace X ⊂
H−1/2(Γ), we formulate the following problem: Find Φ ∈ X , such that

〈V Φ , Ψ〉Γ = 〈(K + 1
2
)g , Ψ〉Γ for all Ψ ∈ X . (3.11)

Here, 〈· , ·〉Γ denotes the L2(Γ) scalar product, which can be extended to the duality
pairing of H1/2(Γ) and H−1/2(Γ) by continuity. Elementarily, we observe that (3.11) is
equivalent to a finite dimensional linear system of equations if we expand the solution Φ
in terms of basis functions. It is well-known (see e.g. [41, Theorem 6.23]) that ||| · ||| :=
〈V · , ·〉1/2 admits an equivalent norm onH−1/2(Γ), provided that diam(Ω) < 1. Therefore,
〈〈· , ·〉〉 := 〈V · , ·〉 is even a scalar product on H−1/2(Ω), i.e. it holds

C−1
norm|||ψ||| ≤ ‖ψ‖H−1/2(Γ) ≤ Cnorm|||ψ||| for all ψ ∈ H−1/2(Γ) (3.12)

for some Γ dependent constant Cnorm > 0.
Thus, we may apply the Lax-Milgram lemma to prove that both, the continuous

problem (3.9) as well as the discrete formulation (3.11) allow for a unique solution.

Theorem 3.3. Let φ denote the solution of (3.9) and let Φ ∈ X denote its Galerkin
approximation (3.11). Then, there holds the Céa lemma

|||φ− Φ||| = inf
Ψ∈X

|||φ−Ψ|||, (3.13)

for all closed subspaces X ⊆ H−1/2(Γ). For a partition T of the boundary Γ with mesh-
width h > 0, consider the test space X := P0(Th) of T -piecewise constant functions.
Under the additional regularity assumption φ ∈ L2(Γ)∩Hν(T ) (see Section 4.5.1), there
holds the a priori error estimate

|||φ− Φ||| ≤ Ca priori h
1/2+min{ν,1}. (3.14)

The constant Ca priori > 0 depends only on Γ.
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Proof. For the proof of (3.13), see e.g. [41, Theorem 8.1]. To see (3.14), let Πh :
L2(Γ) → X denote the L2-orthogonal projection. With the approximation properties of
Πh (cf. [14]) and (3.13), we prove

|||φ− Φ||| ≤ |||(1− Πh)φ||| . ‖h1/2(1− Πh)φ‖L2(Γ).

Applying the elementwise Poincaré inequality, we end up with

|||φ− Φ||| . h1/2+ν .

This concludes the proof. �



CHAPTER 4

Application of Abstract Analysis to Symm’s Integral Equation
in 2D

4.1. Model problem

The remainder of this paper deals with the following concrete model problem and applies
the abstract results from Chapter 2: We consider Symm’s Integral equation

V φ = (K + 1
2
)g on Γ (4.1)

where Γ := ∂Ω is the boundary of a polygonal Lipschitz domain Ω ⊂ R2 with diam(Ω) <
1. To abbreviate notation, we will denote the right-hand side of Equation (4.1) by
f := (K + 1/2)g. Whereas g ∈ H1/2(Γ) is sufficient to guarantee the solvability of (4.1),
the weighted-residual error estimator needs the given boundary data to satisfy g ∈ H1(Γ).

This section provides an overview on this work and its main results. We start with
a discussion of the concrete realization of the modules which compose the adaptive algo-
rithm (Algorithm 2.1).

4.1.1. Algorithm 2.1, Step (i): solve. Let Tℓ denote a partition of the boundary Γ
generated from an initial partition T0 by local mesh–refinement with Algorithm 4.1. As
usual, we denote the L2-scalar product on the boundary Γ by 〈· , ·〉L2(Γ) and extend it

to the duality brackets of H−1/2(Γ)×H1/2(Γ) by continuity. The lowest-order Galerkin
discretization of the continuous model problem (4.1) reads: Find Φℓ ∈ X (Tℓ) := P0(Tℓ)
such that

〈〈Φℓ , Ψℓ〉〉 = 〈(K + 1
2
)g , Ψℓ〉L2(Γ) for all Ψℓ ∈ P0(Tℓ), (4.2)

where we use the polynomial spaces Pp([0, 1]) :=
{
v ∈ C∞([0, 1]) : ∂p+1

∂sp+1v = 0
}
to define

Pp(Tℓ) := {v ∈ L2(Γ) : v ◦ FT ∈ Pp([0, 1]) for all T ∈ Tℓ}.
Here, FT : [0, 1] → T is an affine transformation which maps the unit interval onto the
element T ∈ Tℓ. As in the continuous setting, it is well known that (4.2) allows for a
unique solution. For simplicity, we assume that the module solve computes the exact
discrete solution. However, it would be possible to include an approximate solver into
our analysis.

4.1.2. Algorithm 2.1, Step (ii): estimate. We recall the definition of the residual-
based error estimator ηℓ which dates back to the seminal work [19] for 2D and has been

25
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extended in [20] to 3D. The local contributions of ηℓ are defined by

ηℓ(T ) := diam(T )1/2‖ ∂
∂s
(V Φℓ − f)‖L2(T ) for all T ∈ Tℓ. (4.3)

Here, ∂
∂s

denotes the arclength derivative along Γ. We define the local mesh-width func-
tion hℓ ∈ L∞(Γ) by hℓ|T := diam(T ), where diam(T ) denotes the Euclidean length of an
element T ∈ Tℓ. Now, ηℓ reads

ηℓ :=
( ∑

T∈Tℓ

ηℓ(T )
2
)1/2

= ‖h1/2ℓ
∂
∂s
(V Φℓ − f)‖L2(Γ). (4.4)

Note that due to the assumption g ∈ H1(Γ), we obtain by use of the mapping properties
of V and K that f = (K + 1

2
)g ∈ H1(Γ) as well as V Φℓ ∈ H1(Γ) (cf. [34]). Therefore,

the estimator ηℓ is well defined.

4.1.3. Algorithm 2.1, Step (iii): mark. As in the abstract framework of chapter 2,
we use Dörfler markin (2.6).

4.1.4. Algorithm 2.1, Step (iv): refine. Locally refined meshes Tℓ are obtained
from an initial partition T0. For a given set Mℓ ⊂ Tℓ of marked elements, we refine Tℓ

such that at least all elements T ∈ Mℓ are refined and the K-mesh constant remains
bounded, i.e. for

κ(Tℓ) := max
{
hℓ|T/hℓ|T ′ : T, T ′ ∈ Tℓ with T ∩ T ′ 6= ∅

}
(4.5)

holds

κ(Tℓ) ≤ 2κ(T0) (4.6)

for all meshes Tℓ generated from T0. In contrast to the abstract setting in Chapter 2, we fix
the refinement routine and perform local mesh refinement with the following Algorithm,
which guarantees (4.6):

Algorithm 4.1. Input: Partition Tℓ, marked elements M(0)
ℓ := Mℓ, counter i := 0.

(i) Define U (i) :=
⋃

T∈M
(i)
ℓ

{
T ′ ∈ Tℓ\M(i)

ℓ neighbor of T : hℓ|T ′ > κ(T0) hℓ|T
}
.

(ii) If U (i) 6= ∅, define M(i+1)
ℓ := M(i)

ℓ ∪U (i), increase counter i 7→ i+1, and goto (i).

(iii) Otherwise, bisect all marked elements T ∈ M(i)
ℓ to obtain Tℓ+1.

Output: Refined boundary partition Tℓ+1 as well as M(i)
ℓ = Tℓ \ Tℓ+1.

A detailed analysis of this algorithm is given in Section 4.4.

4.2. Function spaces involved

The definition of H1/2(Γ) as the trace space of H1(Ω) is given in (3.7). For ν ∈ (0, 5/2],
we define Hν(Γ) as a trace space, i.e.

Hν(Γ) :=
{
v|Γ : v ∈ Hν+1/2(Ω)

}
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equipped with the norm

‖w‖Hν(Γ) := inf
{
‖v‖Hν+1/2(Ω) : w = v|Γ, v ∈ Hν+1/2(Γ)

}
.

In the sense that the corresponding sets are equal and the norms are equivalent, this
definition coincides with the classical definition of Hν(Γ) as a Sobolev space on the 1D
Lipschitz-manifold Γ for ν ∈ (0, 1). Moreover, we may use the Sobolev-Slobodeckij norm

|w|Hν(Γ) :=

∫

Γ

∫

Γ

|w(x)− w(y)|2
|x− y|1+2ν

dx dy

to define the equivalent norm (‖·‖2L2(Γ)+|·|2Hν(Γ))
1/2 onHν(Γ), for ν ∈ (0, 1). Furthermore

for ν = 1, H1(Γ) is equipped with the equivalent norm

‖w‖2H1(Γ) := ‖w‖2L2(Γ) + ‖ ∂
∂s
w‖2L2(Γ) for all w ∈ H1(Γ),

where ∂
∂s

denotes the arclength derivative along Γ.
Finally, for ν ∈ (0, 1), we may equivalently define Hν(Γ) as the real interpolation

space of L2(Γ) and H1(Γ) (cf. [10]). All mentioned definitions of Hν(Γ) are—at least
for ν ∈ (0, 1)—equivalent. The norm equivalence constants, however, depend on the
boundary Γ.

4.3. Main results

First, we prove convergence of adaptive BEM (see Theorem 2.4 for a more general version
of this result).

Theorem 4.2. Let the sequence of meshes Tℓ and the corresponding solutions of Φℓ of
Equation (4.2) be obtained from Algorithm 2.1. Then, there exist constants 0 < γ, κ < 1
such that

∆ℓ+1 ≤ κ∆ℓ for all ℓ ≥ 0 with ∆ℓ := |||φ− Φℓ|||2 + γ η2ℓ . (4.7)

The constants 0 < γ, κ < 1 are independent of ℓ ∈ N0.

Now, for given boundary data g ∈ Hsreg(Γ) for some sreg > 2, we are able to prove
efficiency of ηℓ.

Theorem 4.3. Let the given boundary data satisfy g ∈ Hsreg(Γ) for some sreg > 2. Let
φ denote the solution of (4.1). Then, for Tℓ ∈ T the error estimator ηℓ is efficient in the
following sense

C−1
eff ηℓ ≤ ‖φ− Φℓ‖H−1/2(Γ) + hotℓ. (4.8)

Here, Ceff > 0 depends only on Γ and κ(Tℓ). The higher-order term hotℓ is given in detail
in Definition 4.19. For all ε > 0, it satisfies

hotℓ =
( ∑

T∈Tℓ

hotℓ(T )
2
)1/2

and hotℓ(T ) ≤ Chot(hℓ|T )min{sreg,5/2}−1/2−ε, (4.9)

where Chot > 0 depends only on Γ, κ(Tℓ), sreg > 2, and ε > 0.
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Following the steps of adaptive FEM, we prove discrete local reliability for ηℓ, see
Proposition 4.9. With this results, we are able to prove the optimal rate of convergence
of the estimator. With fixed mesh refinement strategy, we recall the definition of

TN :=
{
T⋆ ∈ T : #T⋆ −#T0 ≤ N

}

and

(φ, f) ∈ Aη
s

def.⇐⇒ ‖(φ, f)‖Aη
s
:= sup

N∈N
inf

T⋆∈TN

(N sη⋆) <∞, (4.10)

from Chapter 2. Using the efficiency estimate in Theorem 4.3, we are able to characterize
the approximation class Aη

s in terms of the Galerkin error only. Therefore, we introduce

φ ∈ As
def.⇐⇒ ‖ψ‖As := sup

N∈N
inf

T∗∈TN

inf
Ψ∗∈P0(T∗)

|||ψ −Ψ∗|||N s <∞.

Precisely, this quasi-optimality is stated in the following theorem.

Theorem 4.4. Let (Φℓ)ℓ∈N denote the sequence of solutions generated by Algorithm 2.1
driven by the weighted residual-based error estimator ηℓ. Assume that the corresponding
sequence of meshes (Tℓ)ℓ∈N is created by local refinement as stated in Algorithm 4.1.
Then, for sufficiently small adaptivity parameter 0 < θ < 1, Algorithm 2.1 is optimal in
the following sense

φ ∈ Aη
s ⇐⇒ ηℓ ≤ C3 (#Tℓ −#T0)

−s for all ℓ ∈ N.

The constant C3 > 0 depends only on ‖(φ, f)‖Aη
s
and Γ. In addition, let the given

boundary data additionally satisfy g ∈ Hsreg(Γ) for some sreg > 2. Then, for 0 < s <
min{sreg, 5/2} − 1/2 and sufficiently small 0 < θ < 1, Algorithm 2.1 is optimal in the
following sense

φ ∈ As ⇐⇒ |||φ− Φℓ||| ≤ C4 (#Tℓ −#T0)
−s for all ℓ ∈ N,

where the constant C4 > 0 depends only on ‖φ‖As and Γ.

4.4. Optimal local mesh-refinement for 2D BEM

In this section, we aim to develop a local mesh-refinement strategy for 2D BEM which
mathematically guarantees the assumptions (D1), (D2) and (R1)–(R4). Clearly, emphasis
is laid on the mesh closure (R3) and the overlay estimate (R4). We stress that the
considered mesh-refining algorithms of Section 4.4.1 and Section 4.4.2 have first been
analyzed in the technical report [7], where the focus is, however, only on (R3). For
the sake of completeness, we elaborate the proofs of [7] and extend them by considering
also (R4).

Suppose that T0 = {T1, . . . , TN} is a given initial partition of Γ into affine boundary
segments Tj and that a sequence of meshes Tℓ is obtained inductively by local refinement,
where

Tℓ+1 = refine(Tℓ,Mℓ) (4.11)
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is generated from Tℓ by refinement of (at least) certain marked elements Mℓ ⊆ Tℓ. Here,
refinement of an element T ∈ Mℓ means that T is bisected into two elements T1, T2 ∈ Tℓ+1

of half length, i.e., there holds hℓ+1|T = 1
2
hℓ|T . In particular, assumption (R2) is already

satisfied. Moreover, we aim to guarantee that the K-mesh constant (4.5) satisfies the
uniform boundedness

κ(Tℓ) ≤ 2 κ(T0) for all ℓ ∈ N. (4.12)

We stress that, for our analysis below, the uniform boundedness (4.12) implies (R1).

Remark. Clearly, the boundedness estimate (4.12) cannot be improved in general. For
instance, let T0 be a uniform partition with #T0 > 1 and #M0 = 1. Provided that the
obtained partition satisfies #T1 < 2#T0, i.e., the local refinement does not lead to a
uniform refinement, there holds κ(T0) = 1, whereas κ(T1) = 2. �

4.4.1. Level-Based Mesh-Refinement. To use the analytical techniques developed
in [11, 42], we introduce the level of an element by induction: For T ∈ T0, let level(T ) :=
0. If T ∈ Tℓ is bisected into two sons T1, T2 ∈ Tℓ+1, we define level(T1) := level(T2) :=
level(T ) + 1.

Algorithm 4.5. Input: Partition Tℓ, marked elements M(0)
ℓ := Mℓ, counter i := 0.

(i) Define U (i) :=
⋃

T∈M
(i)
ℓ

{
T ′ ∈ Tℓ\M(i)

ℓ neighbor of T : level(T ′) < level(T )
}
.

(ii) If U (i) 6= ∅, define M(i+1)
ℓ := M(i)

ℓ ∪U (i), increase counter i 7→ i+1, and goto (i).

(iii) Otherwise, bisect all marked elements T ∈ M(i)
ℓ to obtain Tℓ+1.

Output: Refined boundary partition Tℓ+1 as well as M(i)
ℓ = Tℓ \ Tℓ+1.

Note that Algorithm 4.5 is well-defined in the sense that it terminates for some counter
0 ≤ i ≤ #Tℓ − 1. Moreover, the following lemma states that κ(Tℓ) ≤ 2 κ(T0).

Lemma 4.6 (Assumption (R1) for Algorithm 4.5). Assume that T0 is a given initial
partition and that the partitions Tℓ are inductively generated by Algorithm 4.5, where the
sets Mj ⊆ Tj of marked elements are arbitrary. Then, neighboring elements satisfy

|level(T )− level(T ′)| ≤ 1 for all T, T ′ ∈ Tℓ with T ∩ T ′ 6= ∅. (4.13)

Moreover, there holds κ(Tℓ) ≤ 2 κ(T0) for all ℓ ∈ N.

Proof. The estimate (4.13) easily follows from induction and the definition of the U (i)

in step (i) of Algorithm 4.5. Now, let T, T ′ ∈ Tℓ be neighbors, i.e., T 6= T ′ and T ∩T ′ 6= ∅.
Consequently, the unique ancestors T̂ , T̂ ′ ∈ T0 with T ⊆ T̂ and T ′ ⊆ T̂ ′ either coincide or
are neighbors as well. Moreover, according to bisection, there hold hℓ|T = 2−level(T )h0|T̂
and hℓ|T ′ = 2−level(T ′)h0|T̂ ′. Together with (4.13), we obtain

hℓ|T
hℓ|T ′

= 2level(T
′)−level(T ) h0|T̂

h0|T̂ ′

≤ 2κ(T0).
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Taking the supremum over all possible neighbors, we conclude κ(Tℓ) ≤ 2κ(T0). �

Theorem 4.7. Algorithm 4.5 satisfies (R2)–(R4) as well as uniform boundedness κ(T ) ≤
2κ(T0) for all meshes T that can be generated from T0.

Proof. The boundedness of κ(T ) was proved in Lemma 4.6. Moreover, the assump-
tion (R2) is satisfied by definition of the refinement strategy. We aim to use the arguments
from [42] to verify (R3). In the latter work, the focus is on newest vertex bisection for
simplicial meshes in Rd with d ≥ 2. To adopt the notation of [42], note that the sets Mj

are pairwise disjoint. Therefore, there holds #M =
∑ℓ−1

j=0#Mj with M :=
⋃ℓ−1

j=0Mj .

Finally, [42, Theorem 6.1] states the estimate

#Tℓ −#T0 ≤ #Tℓ −#(Tℓ ∩ T0) = #(Tℓ\(Tℓ ∩ T0)) . #M =
ℓ−1∑

j=0

#Mj,

where the notation . suppresses the constant Cmesh from (R3). From now on, our proof
only aims to point out the modifications to ensure that the proof of [42, Theorem 6.1]
applies to our case as well. — In our context, we call a partition T conforming provided
that the level property (4.13) holds. It is easily observed that Algorithm 4.5 provides the
coarsest conforming refinement Tℓ+1 of the partition Tℓ such that all elements T ∈ Mℓ

are refined. Moreover, we note that our refinement rule, i.e. refinement of an element
by bisection, leads to a binary refinement tree as does newest vertex bisection in Rd.
Therefore, we can even call the refinement routine elementwise: Suppose that T ′ =
refine(T ,M) is a realization of Algorithm 4.5 which applies refinement for the set
M∩T , where we define T ′ := T in case of M∩T = ∅. Suppose that Mℓ = {T1, . . . , Tm}.
By induction, we may define

T (0)
ℓ = Tℓ and T (i)

ℓ := refine(T (i−1)
ℓ , {Ti}) for i = 1, . . . , m.

Then, there holds Tℓ+1 := refine(Tℓ,Mℓ) = T (m)
ℓ . These observations provide the

framework for the analysis of [42].

• First, we note that the definition of

d := min
T̂∈T0

diam(T̂ ) and D := max
T̂∈T0

diam(T̂ ),

leads to

2−level(T ) d ≤ diam(T ) ≤ 2−level(T )D for all T ∈ Tℓ and ℓ ∈ N0, (4.14)

which follows from the fact that diam(T ) = 2−level(T )diam(T̂ ), where T̂ ∈ T0 is the unique

ancestor of T ∈ Tℓ, i.e. T ⊆ T̂ . This observation corresponds to [42, Equation (4.1)].

• Second, [42, Corollary 4.6] is satisfied due to Estimate (4.13).

• Third, suppose that T ′ ∈ Tℓ+1\Tℓ is generated by a call of refine(Tℓ, {T}) for some
T ∈ Mℓ. By definition of Algorithm 4.5, there are some elements T0, . . . , Tr ∈ Tℓ such
that Tj is a neighbor of Tj−1 with level(Tj) < level(Tj−1), T0 = T , and T ′ ⊂ Tr. This
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implies level(T ′) = level(Tr)+1 < level(T0)+1 = level(T )+1 for r > 0 and verifies
the analogon of [42, Theorem 5.1].

• Fourth, [42, Theorem 5.2] is a consequence of [42, Equation (4.1)] and [42, Theorem
5.1] and therefore holds in our case as well.

• Finally, the proof of [42, Theorem 6.1] only relies on [42, Theorem 5.1–5.2] and [42,
Equation (4.1)] and therefore applies to our mesh-refinement as well.

• It remains to prove the overlay estimate (R4). We aim to proof even a little bit more,
i.e. for meshes T , T ′ ∈ T, there holds T ⊕ T ′ ∈ T and

T ⊕ T ′ = T⊕ :=
{
T ∈ T : exists T ′ ∈ T ′ with T ⊆ T ′

}

∪
{
T ′ ∈ T ′ : exists T ∈ T with T ′ ⊆ T

}
.

(4.15)

If the characterization of T ⊕T ′ above holds true, the estimate in (R4) is fulfilled trivially.
First, we show that T⊕ as defined in (4.15) is a refinement of T and T ′. Assume it exists
T ∈ T with T /∈ T⊕. Then, for all T

′ ∈ T ′, it holds T 6⊆ T ′. Because, the refinement rule
generates a binary refinement tree, this implicates T ′ ⊆ T or |T ∩ T ′| = 0 for all T ′ ∈ T ′.
Therefore, we have T ′

1, . . . , T
′
k ∈ T ′ with

T =
k⋃

i=1

T ′
i .

By definition of T⊕, T
′
i ∈ T⊕ for all i = 1, . . . , k and therefore T⊕ is a refinement of T .

The same argumentation for T ′ yields that T⊕ is a refinement of T ′. Obviously, T⊕ is the
coarsest common refinement of T and T ′. Next, we show by contradiction that

|level(T )− level(T ′)| ≤ 1 for all T, T ′ ∈ T⊕ with T ∩ T ′ 6= ∅. (4.16)

Therefore, assume neighbors T, T ′ ∈ T⊕ with level(T ) > level(T ′)+1. Because T, T ′ ∈
T⊕ ⊆ T ∪T ′ and (4.16) is guaranteed for T and T ′ by Lemma 4.6, we obtain immediately

T ∈ T and T ′ ∈ T ′. By definition of T⊕, it exists T̂ ∈ T with T ′ ⊆ T̂ . Thus, we have

level(T̂ ) ≤ level(T ′) < 1 + level(T ), i.e. |level(T̂ )− level(T ′)| > 1.

This contradicts Lemma 4.6 because T̂ , T ∈ T are neighbors or coincide. Therefore, we
prove (4.16). Consequently, we may generate T⊕ by iterative refinement of T0 := T

Ti+1 := refine(Ti, Ti \ T⊕)

for all i ≥ 0 with Ti \ T⊕ 6= ∅. This yields T⊕ ∈ T and therefore T⊕ = T ⊕ T ′, which
concludes the proof. �

4.4.2. κκκ-Based Mesh-Refinement. In this section, we use the level-based mesh-
refinement to prove that the mesh-refinement proposed in [25, 26, 30] (see Algorithm 4.1)
is also optimal. The advantage of this is that there is no need to compute or store the
level function.
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Remark. For the implementation of Algorithm 4.1, it pays to sort the elements Tℓ =
{T1, . . . , TN} by its diameter, i.e., one determines a permutation π with diam(Tπ(j)) ≤
diam(Tπ(j+1)) for j = 1, . . . , N−1. Up to O(N logN) for sorting, Algorithm 4.1 can then
be realized in linear complexity. �

We note that, by definition, Algorithm 4.1 provides the coarsest refinement Tℓ+1 of a
partition Tℓ with κ(Tℓ) ≤ 2 κ(T0) such that all elements T ∈ Mℓ are refined and that there
holds κ(Tℓ+1) ≤ 2 κ(T0). The following theorem states optimality of the mesh-refinement
from Algorithm 4.1. The proof will be achieved by comparison of Algorithm 4.1 with
Algorithm 4.5.

Theorem 4.8. Algorithm 4.1 satisfies (R2)–(R4) as well as uniform boundedness κ(T ) ≤
2κ(T0) for all T ∈ T.

Proof. First, we prove the uniform boundedness (4.12) of the K-mesh constant. To
that end, let T, T ′ ∈ Tℓ+1 be neighbors, i.e., T 6= T ′ and T ∩ T ′ 6= ∅. Consequently,

the fathers T̂ , T̂ ′ ∈ Tℓ of T and T ′ either coincide or are neighbors as well. We aim to

provide an upper bound for the quotient hℓ+1|T ′/hℓ+1|T . In case of T̂ = T̂ ′, there holds

hℓ+1|T = hℓ+1|T ′. Therefore, we may assume that T̂ 6= T̂ ′. We now consider four cases:

(a) If T̂ , T̂ ′ are both not refined, there holds hℓ+1|T = hℓ|T̂ and hℓ+1|T ′ = hℓ|T̂ ′.

(b) If T̂ , T̂ ′ are both refined, there holds hℓ+1|T = hℓ|T̂/2 and hℓ+1|T ′ = hℓ|T̂ ′/2.

(c) If T̂ ′ is refined and T̂ is not, there holds hℓ+1|T ′ = hℓ|T̂ ′/2 and hℓ+1|T = hℓ|T̂ .
(d) If T̂ ′ is not refined and T̂ is refined, there holds hℓ+1|T ′ = hℓ|T̂ ′ and hℓ+1|T =

hℓ|T̂/2. Moreover, Algorithm 4.1 implies hℓ|T̂ ′ ≤ κ(T0)hℓ|T̂ .
In the cases (a)–(c), we thus observe hℓ+1|T ′/hℓ+1|T ≤ hℓ|T̂ ′/hℓ|T̂ ≤ κ(Tℓ). In case (d),
there holds hℓ+1|T ′/hℓ+1|T = 2 hℓ|T̂ ′/hℓ|T̂ ≤ 2 κ(T0). Altogether, this proves

hℓ+1|T ′

hℓ+1|T
≤ max{κ(Tℓ), 2 κ(T0)} for all neighboring elements T, T ′ ∈ Tℓ+1,

whence κ(Tℓ+1) ≤ max{κ(Tℓ), 2 κ(T0)}. By induction, we conclude κ(Tℓ+1) ≤ 2 κ(T0).
Second, the optimality (R3) for the κ-based mesh-refinement is obtained via the

estimate for the level-based mesh-refinement from the previous section. To that end, let

r̃efine denote the level-based mesh-refinement from Section 4.4.1. By induction, we now
define an additional sequence of partitions by

T̃ℓ+1 := r̃efine(T̃ℓ,M̃ℓ) with M̃ℓ := Mℓ ∩ T̃ℓ,

where T̃0 := T0 and M̃0 := M0. In the following, we prove that the partitions Tℓ generated

by Algorithm 4.1 are coarser than the partitions T̃ℓ generated by Algorithm 4.5 in the

sense that each element T ∈ Tℓ is the union of elements from T̃ℓ, i.e.,

∀ℓ ∈ N0 ∀T ∈ Tℓ ∃Vℓ ⊆ T̃ℓ T =
⋃

T̃∈Vℓ

T̃ . (4.17)
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This implies #Tℓ ≤ #T̃ℓ. Moreover, there holds #M̃ℓ ≤ #Mℓ by definition of the set

M̃ℓ. Using the optimality (R3) of the level-based refinement, we therefore infer optimality
of the κ-based refinement

#Tℓ −#T0 ≤ #T̃ℓ −#T̃0 .

ℓ−1∑

j=0

#M̃j ≤
ℓ−1∑

j=0

#Mj.

Here, the symbol . suppresses the constant Cmesh from (R3). Altogether, it thus only
remains to verify (4.17).

This is done by induction on ℓ ∈ N0: The case ℓ = 0 follows by definition T0 = T̃0.

Now, suppose that (4.17) holds for Tℓ and T̃ℓ and consider an arbitrary element T ∈ Tℓ+1.
We have to distinguish certain cases:

• First, let T ∈ Tℓ ∩ Tℓ+1. By the induction hypothesis, there is some V ⊆ T̃ℓ such that

T =
⋃
T̃∈V

T̃ .

For any T̃ ∈ V, there holds either T̃ ∈ T̃ℓ+1 or T̃ = T̃ ′ ∪ T̃ ′′ for some T̃ ′, T̃ ′′ ∈ T̃ℓ+1.
Consequently, this implies

T =
⋃
T̃∈Ṽ

T̃ with Ṽ :=
{
T̃ ′ ∈ T̃ℓ+1 : ∃T̃ ∈ V T̃ ′ ⊆ T̃

}
.

• Second, let T ∈ Tℓ+1\Tℓ, fix the unique T̂ ∈ Tℓ with T $ T̂ , and assume that T̂ ∈ Tℓ\T̃ℓ.

By the induction hypothesis, there is some V ⊆ T̃ℓ such that

T̂ =
⋃
T̃∈V

T̃ .

Moreover, T̂ ∈ Tℓ\T̃ℓ implies V ⊆ T̃ℓ+1. Now, recall that bisection leads to a binary

refinement tree. Consequently, the two sons of T̂ have an analogous representation. In
particular, this implies

T =
⋃
T̃∈Ṽ

T̃ with Ṽ :=
{
T̃ ∈ V : T̃ ⊆ T

}
⊆ T̃ℓ+1.

• Finally, let T ∈ Tℓ+1\Tℓ, fix the unique T̂ ∈ Tℓ with T $ T̂ , and assume that T̂ ∈
Tℓ∩T̃ℓ. In particular, T̂ is refined by the κ-based mesh-refinement from Algorithm 4.1. We

now aim to show that T̂ will be marked for refinement by the level-based mesh-refinement
from Algorithm 4.5 as well. To that end, we again consider all possible cases:

• First, we note that T̂ ∈ Mℓ implies T̂ ∈ M̃ℓ due to T̂ ∈ Tℓ ∩ T̃ℓ. Therefore, we

obtain T ∈ T̃ℓ+1.

• Second, assume that T̂ ∈ Tℓ\Mℓ has a marked neighbor T̂ ′ ∈ Mℓ which leads

to the additional marking of T̂ , i.e., hℓ|T̂ > κ(T0)hℓ|T̂ ′. Let T̂0, T̂
′
0 ∈ T0 be the —not

necessarily distinct— unique elements with T̂ ⊆ T̂0 and T̂ ′ ⊆ T̂ ′
0. By definition of

κ(T0), there holds h0|T̂0
≤ κ(T0)h0|T̂ ′

0
. From the definition of the level-function, we infer
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hℓ|T̂ = 2−level(T̂ )h0|T̂0
and hℓ|T̂ ′ = 2−level(T̂ ′)h0|T̂ ′

0
. Combining these relations, we obtain

2−level(T̂ )h0|T̂0
= hℓ|T̂ > κ(T0)hℓ|T̂ ′ = κ(T0)2

−level(T̂ ′)h0|T̂ ′

0
and end up with

κ(T0) ≥
h0|T̂0

h0|T̂ ′

0

> κ(T0)2
level(T̂ )−level(T̂ ′)

and hence level(T̂ ′) > level(T̂ ). According to the induction hypothesis for T̂ ′ ∈ Tℓ and

the level-estimate (4.13), we infer that T̂ ′ ∈ T̃ℓ. Consequently, T̂
′ ∈ Mℓ implies T̂ ′ ∈ M̃ℓ

according to our first observation. Now, T̂ ′ ∈ M̃ℓ and level(T̂ ′) > level(T̂ ) enforces

refinement of T̂ by the level-based Algorithm 4.5. This and T̂ ∈ T̃ℓ imply T ∈ T̃ℓ+1.

• Finally, for any element T̂ ∈ Tℓ\Mℓ which is refined by Algorithm 4.1, we find a

marked element T̂ (0) ∈ Mℓ and a chain of elements T̂ (1), . . . , T̂ (i) ∈ Tℓ\Mℓ such that

κ(T0) hℓ|T̂ (j−1) < hℓ|T̂ (j) for j = 1, . . . , i and T̂ (i) = T̂ .

In particular, all these elements will be refined by call of Algorithm 4.1. Proceeding as

in the previous step, we see that there holds T̂ (j) ∈ T̃ℓ for all j = 0, . . . , i as well as

T̂ (0) ∈ M̃ℓ and that all these elements will be refined by the level-based mesh-refinement

as well. As above, we thus obtain T ∈ T̃ℓ+1.

• To verify the overlay estimate (R4), we propose for T , T ′ ∈ T

T ⊕ T ′ = T⊕ (4.18)

with T⊕ from (4.15). Analogously to the last step of the proof of Theorem 4.7, we see
that T⊕ is a refinement of T and T ′. It remains to show κ(T⊕) ≤ 2κ(T0). We argue
by contradiction. Therefore, assume neighbors T, T ′ ∈ T⊕ with diam(T )/diam(T ′) >
max{κ(T ), κ(T ′)}. By definition of the K-mesh constant κ, we obtain T ∈ T and

T ′ ∈ T ′. The definition of T⊕ thus gives an element T̂ ′ ∈ T ′ with T ⊂ T̂ ′. Now, we
obtain the contradiction

max{κ(T ), κ(T ′)} < diam(T )

diam(T ′)
≤ diam(T̂ ′)

diam(T ′)
≤ κ(T ′),

where we used that T and T̂ ′ are neighbors in T ′ or coincide. The remainder of the proof
follows analogously to the last step of the proof of Theorem 4.7. �

4.5. Proof of main results

This section applies the abstract analysis from Chapter 2 to the concrete model problem
from Section 4.1. Therefore, φ ∈ L2(Γ) and Φℓ ∈ P0(Tℓ) denote the solutions from (4.1)
and (4.2), respectively. The estimator ηℓ was defined in Section 4.1.2.

4.5.1. Notation. As stated in Section 4.1, Tℓ denotes a partition of the boundary
Γ into affine line segments T ∈ Tℓ generated by refinement of the initial mesh T0 with
Algorithm 4.1 or Algorithm 4.5. By Nℓ, we denote the set of nodes of Tℓ. For any element
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T ∈ Tℓ, we define an affine transformation FT : T̂ → T , where T̂ := [0, 1] denotes the
reference interval. We define the L2-orthogonal projection Πℓ : L

2(Γ) → P0(Tℓ) for all
ℓ ∈ N. For any subset Γ′ ⊆ Γ, the patch is

ωℓ(Γ
′) :=

{
T ∈ Tℓ : T ∩ Γ′ 6= ∅

}
, (4.19)

and consequently for any subset Eℓ ⊆ Tℓ, we define

ωℓ(Eℓ) := ωℓ

(⋃
Eℓ
)
. (4.20)

Furthermore, the first-order spline space with respect to Tℓ is defined as

S1(Tℓ) := {v ∈ H1(Γ) : v|T ◦ FT ∈ P1([0, 1]) for all T ∈ Tℓ},
i.e. S1(Tℓ) is the space of piecewise affine and global continuous functions on Γ. For ν > 0,
we define broken Sobolev spaces as

Hν(Tℓ) := {v ∈ L2(Γ) : v|T ∈ Hν(T ) for all T ∈ Tℓ}.
Finally,

Tℓ,k := unif(k)(Tℓ) (4.21)

denotes a mesh which is generated by bisecting all elements T ∈ Tℓ k-times and unif(k)(T )

denotes the set of sons Ti ∈ unif(k)(Tℓ), i = 1, . . . , 2k of T ∈ Tℓ.

4.5.2. Scott-Zhang quasi-interpolation. We recall the definition of the Scott-Zhang
projection Jℓ : L2(Γ) → S1(Tℓ) from [40] for our particular situation: For all nodes
z ∈ Nℓ, we choose an element Tz ∈ Tℓ with z ∈ Tz. For v ∈ L2(Γ), Jℓv ∈ S1(Tℓ) is then
defined nodewise

(Jℓv)(z) := 〈ψz , v〉L2(Tz)

for all nodes z ∈ Nℓ. Here, ψz ∈ P1(Tz) denotes the L2-dual basis function defined by
〈ψz , ζz′〉L2(Tz) = δzz′. The hat-function ζz′ with respect to the node z′ ∈ Nℓ is given by

ζz′ ∈ S1(Tℓ) and ζz′(z) :=

{
1 z = z′

0 z 6= z′
(4.22)

for all z ∈ Nℓ. By definition, Jℓ is a projection, i.e.

JℓVℓ = Vℓ for all Vℓ ∈ S1(Tℓ).

Additionally, for T ∈ Tℓ, we have the following local stability properties (cf. [40, Corol-
lary 4.1])

‖(1− Jℓ)v‖L2(T ) ≤ Csz‖v‖L2(
⋃

ωℓ(T )) for all v ∈ L2(Γ),

‖(1− Jℓ)v‖H1(T ) ≤ Csz‖ ∂
∂s
v‖L2(

⋃
ωℓ(T )) for all v ∈ H1(Γ),

(4.23)

as well as the local approximation property

‖(1− Jℓ)v‖L2(T ) ≤ Csz diam(T )‖ ∂
∂s
v‖L2(

⋃
ωℓ(T )) for all v ∈ H1(Γ), (4.24)



36

where the constant Csz > 0 depends only on κ(Tℓ) and Γ. H1/2-stability of Jℓ follows
from interpolation arguments.

4.5.3. Proof of estimator related assumptions (E1)–(E4). The purpose of this
section is to prove that the residual based error estimator ηℓ satisfies the assumptions
(E1)–(E4) given in Section 2.3, which are sufficient for the optimality of the adaptive
algorithm. The discrete local reliability (E4) has first been proved for a more general
model problem in [28, Proposition 4.3]. For our particular situation in 2D, we provide a
simplified proof.

Proposition 4.9 (discrete local reliability (E4)). Let T⋆ = refine(Tℓ) denote an refine-
ment of Tℓ ∈ T with associated Galerkin solution Φ⋆ ∈ P0(T⋆). Let Rℓ := ωℓ(Tℓ \ T⋆)
denote the enriched set of refined elements. Then, it holds

|||Φ⋆ − Φℓ||| ≤ Cdlr

( ∑

T∈Rℓ

ηℓ(T )
2
)1/2

(4.25)

with some constant Cdlr > 0 which depends only on Γ and κ(Tℓ). Moreover, we have
Tℓ \ T⋆ ⊆ Rℓ with #Rℓ ≤ C5#(Tℓ \ T⋆) for some constant C5 > 0, which depends only on
κ(Tℓ) and therefore is uniformly bounded due to (4.6).

Proof. For each node z ∈ Nℓ, let ζz ∈ S1(Tℓ) denote the nodal hat function from (4.22).
To abbreviate notation, we define for a function ξ : Γ → R and a subset ω ⊆ Γ

ξ|ω :=

{
ξ in ω,

0 in Γ \ ω.
Recall f = (K + 1/2)g. For Ψ⋆ ∈ P0(T⋆), the Galerkin orthogonality of Φℓ yields

〈f − V Φℓ , Ψ⋆〉L2(Γ) = 〈f − V Φℓ , (1− Πℓ)Ψ⋆〉L2(Γ). (4.26)

Note that (1− Πℓ)Ψ⋆ = 0 in
⋃
(Tℓ ∩ T⋆) = Γ \⋃(Tℓ \ T⋆). With Nℓ,⋆ := Nℓ ∩

⋃
(Tℓ \ T⋆),

we may write
∑

z∈Nℓ,⋆
ζz = 1 on

⋃
(Tℓ \ T⋆). Therefore, it holds

〈f − V Φℓ , Ψ⋆〉L2(Γ) =
〈 ∑

z∈Nℓ,⋆

ζz(f − V Φℓ) , (1− Πℓ)Ψ⋆

〉
L2(Γ)

=
〈 ∑

z∈Nℓ,⋆

ζz(f − V Φℓ) , Ψ⋆

〉
L2(Γ)

−
〈 ∑

z∈Nℓ,⋆

ζz(f − V Φℓ) , (ΠℓΨ⋆)|⋃Sℓ

〉
L2(Γ)

(4.27)

where Sℓ := Rℓ \ (Tℓ \ T⋆) ⊆ Tℓ ∩ T⋆. In the last equality, we used
( ∑

z∈Nℓ,⋆

ζz

)∣∣∣⋃
(Tℓ\Rℓ)

≡ 0 as well as 〈f − V Φℓ , (ΠℓΨ⋆)|⋃(Tℓ\T⋆)〉L2(Γ) = 0.
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By use of hℓ = h⋆ on Sℓ and elementwise stability of Πℓ on Sℓ ⊂ Tℓ ∩ T⋆, one derives

〈f − V Φℓ , Ψ⋆〉L2(Γ) ≤
∥∥∥

∑

z∈Nℓ,⋆

ζz(f − V Φℓ)
∥∥∥
H1/2(Γ)

‖Ψ⋆‖H−1/2(Γ)

+
∥∥∥h−1/2

ℓ

∑

z∈Nℓ,⋆

ζz(f − V Φℓ)
∥∥∥
L2(Γ)

‖h1/2⋆ ΠℓΨ⋆‖L2(
⋃

Sℓ)

≤
∥∥∥

∑

z∈Nℓ,⋆

ζz(f − V Φℓ)
∥∥∥
H1/2(Γ)

‖Ψ⋆‖H−1/2(Γ)

+
∥∥∥h−1/2

ℓ

∑

z∈Nℓ,⋆

ζz(f − V Φℓ)
∥∥∥
L2(Γ)

‖h1/2⋆ Ψ⋆‖L2(Γ).

(4.28)

With the local inverse inequality from [32, Theorem 3.6], we finally prove

〈f − V Φℓ , Ψ⋆〉L2(Γ)

.
(∥∥∥

∑

z∈Nℓ,⋆

ζz(f − V Φℓ)
∥∥∥
H1/2(Γ)

+
∥∥∥h−1/2

ℓ

∑

z∈Nℓ,⋆

ζz(f − V Φℓ)
∥∥∥
L2(Γ)

)
‖Ψ⋆‖H−1/2(Γ).

(4.29)

Now, we use that the function
∑

z∈Nℓ,⋆
ζz(f − V Φℓ) ∈ H1(Γ) is continuous on Γ. Due to

〈(f − V Φℓ) , Ψℓ〉L2(Γ) = 0 for all Ψℓ ∈ P0(Tℓ), the function has a zero on each element.
Analogously to [20, Theorem 3.3], Friedrich’s inequality allows us to estimate the right-
hand side of the above estimate by

〈f − V Φℓ , Ψ⋆〉L2(Γ) .
∥∥∥h1/2ℓ

∂
∂s

∑

z∈Nℓ,⋆

ζz(f − V Φℓ)
∥∥∥
L2(

⋃
Rℓ)

‖Ψ⋆‖H−1/2(Γ)

≤
(∥∥∥h1/2ℓ

( ∑

z∈Nℓ,⋆

ζz

)
∂
∂s
(f − V Φℓ)

∥∥∥
L2(

⋃
Rℓ)

+ ‖h−1/2
ℓ (f − V Φℓ)‖L2(

⋃
Rℓ)

)
‖Ψ⋆‖H−1/2(Γ),

where we used the pointwise estimate ∂
∂s

∑
z∈Nℓ,⋆

ζz . h−1
ℓ . Again, we apply Friedrich’s

inequality and finally end up with

〈f − V Φℓ , Ψ⋆〉L2(Γ) . ‖h1/2ℓ
∂
∂s
(f − V Φℓ)‖L2(

⋃
Rℓ)‖Ψ⋆‖H−1/2(Γ).

Plugging in Ψ⋆ = Φ⋆ − Φℓ, we get

|||Φ⋆ − Φℓ|||2 = 〈f − V Φℓ , Ψ⋆〉L2(Γ) . ‖h1/2ℓ
∂
∂s
(f − V Φℓ)‖L2(

⋃
Rℓ)‖Ψ⋆‖H−1/2(Γ).

Canceling the term ‖Ψ⋆‖H−1/2(Γ) and norm equivalence (3.12) prove the statement. �

As a next step, we prove a new inverse estimate which is the heart of the matter to
verify (E1), (E2), and (E5). We need a slightly more general version than in [28]. The
main difference to [28, Proposition 3.3] is that this result holds for ψ ∈ L2(Γ) instead of
discrete ψ = Ψℓ ∈ P0(Tℓ) only. Note that with adapted notation, the arguments of the
proof also hold in the 3D case.
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Lemma 4.10. Let Tℓ ∈ T. For ψ ∈ L2(Γ), it holds

C−1
V ‖h1/2ℓ

∂
∂s
V ψ‖L2(Γ) ≤ ‖ψ‖H−1/2(Γ) + ‖h1/2ℓ ψ‖L2(Γ), (4.30)

where the constant CV > 0 depends only on Γ and the fixed mesh-refinement strategy of
Algorithm 4.1 resp. Algorithm 4.5.

Proof. First, we define the reference element T̂ := [0, 1]. For δ > 0 and for all T ∈ Tℓ,
let BT :=

⋃
x∈T

{
z ∈ R2 : |z − x| ≤ δ

}
⊂ R2 denote a certain neighborhood of T . We

choose δ > 0 sufficiently small such that

BT ∩ Γ ⊂ ωℓ(T ) for all T ∈ Tℓ.

Note that δ depends only on the shape of Γ. Let Ṽ : H−1/2(Γ) → H1
ℓoc(R2) (cf. [34,

Theorem 6.11]) denote the simple-layer potential corresponding to V . Furthermore, for

all T ∈ Tℓ let u
near
T := Ṽ (ψχ⋃

ωℓ(T )) and u
far
T := Ṽ (ψχΓ\

⋃
ωℓ(T )) denote the near-field resp.

the far-field of Ṽ ψ. Here χω denotes the characteristic function with respect to the set
ω ⊂ R2. We observe with hT := diam(T )

‖h1/2ℓ
∂
∂s
V ψ‖2L2(Γ) =

∑

T∈Tℓ

hT‖ ∂
∂s
V ψ‖2L2(T ) .

∑

T∈Tℓ

(
hT‖ ∂

∂s
unearT ‖2L2(T ) + hT ‖ ∂

∂s
ufarT ‖2L2(T )

)
,

(4.31)

where we used unearT |Γ = V (ψχ⋃
ωℓ(T )) as well as u

far
T |Γ = V (ψχΓ\

⋃
ωℓ(T )). First, we treat

the near-field term in the estimate using the stability of V : L2(Γ) → H1(Γ)
∑

T∈Tℓ

hT‖ ∂
∂s
unearT ‖2L2(T ) .

∑

T∈Tℓ

hT ‖ψ‖2L2(ωℓ(T )) . ‖h1/2ℓ ψ‖2L2(Γ). (4.32)

Second, we treat the far-field term. With [28, Lemma 3.6], we obtain
∑

T∈Tℓ

hT ‖ ∂
∂s
ufarT ‖2L2(T ) .

∑

T∈Tℓ

|ufarT |2H1(BT )

.
∑

T∈Tℓ

(
‖Ṽ ψ‖2H1(BT ) + |unearT |2H1(BT )

)

. ‖Ṽ ψ‖2H1(S) +
∑

T∈Tℓ

|unearT |2H1(BT )

. ‖ψ‖2H−1/2(Γ) +
∑

T∈Tℓ

|unearT |2H1(BT ),

(4.33)

with S :=
⋃

T∈Tℓ
BT and where we used the stability of Ṽ : H−1/2(Γ) → H1(S). It remains

to take care of the near field terms in the estimate above. For T ∈ Tℓ, we consider the
affine transformation

FT : R2 → R2, x 7→ hTAx+ b
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with b ∈ R2 and A ∈ R2×2 being orthonormal such that FT (T̂ × {0}) = T . We define

B̂T := F−1
T (BT ). Because FT is affine, we may write F−1

T (ωℓ(T )) := T̂0 ∪ T̂ ∪ T̂1 as union

of three affine line segments. The angles between T̂0, T̂ , and T̂1 are determined by the
finitely many corners of Γ. Additionally, for two neighboring elements T , T ′ holds

hT /hT ′ ∈
{
2khT0/hT ′

0
: k ∈ Z, T0, T ′

0 ∈ T0 such that 2khT0/hT ′

0
∈ [κ(Tℓ)

−1, κ(Tℓ)]
}
.

Since the mesh-refinement ensures 1 ≤ κ(Tℓ) ≤ 2κ(T0), we obtain #
{
diam(T̂i) : i =

0, 1, T ∈ Tℓ, ℓ ∈ N
}
< ∞. Therefore ω̂ℓ(T ) := F−1

T (ωℓ(T )) belongs to a finite set of
reference patches. We compute

−2π
(
unearT ◦ FT

)
(x) =

∫

ωℓ(T )

log |FT (x)− y|ψ(y) dsy

= hT

∫

ω̂ℓ(T )

log |hTA(x− ŷ)|ψ(FT (ŷ)) dsŷ

= hT

(∫

ω̂ℓ(T )

log |hT |ψ(FT (ŷ)) dsŷ +

∫

ω̂ℓ(T )

log |x− ŷ|ψ(FT (ŷ)) dsŷ

)

= hT

(∫

ω̂ℓ(T )

log |hT |ψ(FT (ŷ)) dsŷ − 2πV̂T (ψ ◦ FT )(x)
)
,

where V̂T : H̃−1/2
(
ω̂ℓ(T )

)
→ H1(B̂T ) denotes one of finitely many single-layer potentials

on the reference patches. Note that the first term in the last line of the equation above
doesn’t depend on x ∈ R2. This and the stability of V̂T give

|unearT |2H1(BT ) . |unearT ◦ FT |2H1(B̂T )
. h2T‖ψ̂‖2H̃−1/2(ω̂ℓ(T ))

. h2T‖ψ̂‖2L2(ω̂ℓ(T )) ≃ hT‖ψ‖2L2(ωℓ(T )).
(4.34)

Plugging the estimates (4.32), (4.33), and (4.34) into (4.31), we end up with

‖h1/2ℓ
∂
∂s
V ψ‖2L2(Γ) . ‖h1/2ℓ ψ‖2L2(Γ) + ‖ψ‖2H−1/2(Γ) +

∑

T∈Tℓ

|unearT |2H1(BT )

. ‖h1/2ℓ ψ‖2L2(Γ) + ‖ψ‖2H−1/2(Γ).

This yields the assertion. �

The last result allows us to prove the assumptions (E1) and (E2).

Proposition 4.11 (stability assumption (E1)). The weighted-residual error estimator
satisfies (E1) and Cstab ≥ 1 depends only on κ(Tℓ), Γ, and the constant CV > 0 from
Lemma 4.10.

Proof. With the reverse triangle inequality and hℓ = h⋆ on Tℓ ∩ T⋆, we see
∣∣∣
( ∑

T∈Tℓ∩T⋆

ηℓ(T )
2
)1/2

−
( ∑

T∈Tℓ∩T⋆

η⋆(T )
2
)1/2∣∣∣ ≤ ‖h1/2⋆

∂
∂s
V (Φℓ − Φ⋆)‖L2(

⋃
(Tℓ∩T⋆)).
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The next step is to apply the inverse inequality from Lemma 4.10 as well as the inverse
inequality from [32, Theorem 3.6]

‖h1/2⋆
∂
∂s
V (Φℓ − Φ⋆)‖L2(

⋃
(Tℓ∩T⋆)) ≤ ‖h1/2⋆

∂
∂s
V (Φℓ − Φ⋆)‖L2(Γ)

. ‖Φℓ − Φ⋆‖H−1/2(Γ) + ‖h1/2⋆ (Φℓ − Φ⋆)‖L2(Γ)

. ‖Φℓ − Φ⋆‖H−1/2(Γ) ≃ |||Φℓ − Φ⋆|||,

where we used norm equivalence (3.12). The combination of the last two estimates proves
the result. �

Proposition 4.12 (reduction assumption (E2)). The weighted-residual error estimator

satisfies (E2) with qred =
√
1/2 and Cred > 0 depends only on κ(Tℓ), Γ and the constant

CV > 0 from Lemma 4.10.

Proof. The triangle inequality shows

( ∑

T∈T⋆\Tℓ

η⋆(T )
2
)1/2

≤ ‖h1/2⋆
∂
∂s
(V Φℓ − f)‖L2(

⋃
(T⋆\Tℓ)) + ‖h1/2⋆

∂
∂s
V (Φ⋆ − Φℓ)‖L2(Γ). (4.35)

To treat the first term on the right-hand side of the above estimate, we use h⋆ ≤ hℓ/2 on
T⋆ \ Tℓ and obtain

‖h1/2⋆
∂
∂s
(V Φℓ − f)‖L2(

⋃
(T⋆\Tℓ)) ≤

√
1/2

( ∑

T∈Tℓ\T⋆

ηℓ(T )
2
)1/2

.

The second term on the right-hand side of (4.35) is estimated as in the previous proof,
by help of Lemma 4.10

‖h1/2⋆
∂
∂s
V (Φ⋆ − Φℓ)‖L2(Γ) . ‖Φℓ − Φ⋆‖H−1/2(Γ) + ‖h1/2⋆ (Φℓ − Φ⋆)‖L2(Γ)

. ‖Φℓ − Φ⋆‖H−1/2(Γ) ≃ |||Φℓ − Φ⋆|||.

Plugging everything together, we conclude the proof. �

Now, as we have proved the assumptions (E1), (E2), and (E4), we see that convergence
(Theorem 2.4) and quasi-optimality (Theorem 2.7) hold true for our particular situation.
The next step is to characterize the approximation class As in terms of the energy norm
error. Therefore, we need an efficiency estimate for ηℓ.

4.5.4. Proof of Efficiency (E5). The key to efficiency is again Lemma 4.10. We want
to use the statement with ψ := φ− Φℓ, which gives us

ηℓ = ‖h1/2ℓ
∂
∂s
V (φ− Φℓ)‖L2(Γ) . ‖φ− Φℓ‖H−1/2(Γ) + ‖h1/2ℓ (φ− Φℓ)‖L2(Γ). (4.36)
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With the L2-orthogonal projection Πℓ : L
2(Γ) → P0(Tℓ), we see

‖h1/2ℓ (φ− Φℓ)‖L2(Γ) ≤ ‖h1/2ℓ (1− Πℓ)φ‖L2(Γ) + ‖h1/2ℓ (Πℓφ− Φℓ)‖L2(Γ)

. ‖h1/2ℓ (1− Πℓ)φ‖L2(Γ) + ‖Πℓφ− Φℓ‖H−1/2(Γ)

≤ ‖h1/2ℓ (1− Πℓ)φ‖L2(Γ) + ‖(1− Πℓ)φ‖H−1/2(Γ) + ‖φ− Φℓ‖H−1/2(Γ)

. ‖φ− Φℓ‖H−1/2(Γ) + ‖h1/2ℓ (1− Πℓ)φ‖L2(Γ),
(4.37)

where we used the approximation properties of Πℓ (cf. [14, Theorem 4.1]). Note, that the
last term on the right-hand side of the estimate above is a priori at least of order O(h1/2)
on uniform meshes. This allows us to formulate the next proposition.

Proposition 4.13. Let the solution of (4.1) additionally satisfy φ ∈ L2(Γ)∩Hν(T0) for
some ν > 0. Then, for all 0 < s ≤ min{ν, 1}+ 1/2, it holds (φ, f) ∈ Aη

s . Moreover, for
0 < θ < 1 sufficiently small, it also holds

|||φ− Φℓ||| ≤ C̃opt(#Tℓ −#T0)
−s

for all ℓ ≥ 0 and hence φ ∈ As. The constant C̃opt > 0 depends only on ‖(φ, f)‖Aη
s
. In par-

ticular, this states that the adaptive algorithm yields at least the same rate of convergence
as uniform mesh refinement (cf. Theorem 3.3).

Proof. The estimate (4.37) gives an efficiency estimate (E5) with higher-order term

‖h1/2ℓ (1 − Πℓ)φ‖L2(Γ). Let Tℓ = refine(T (ℓ)) for a uniform mesh T (ℓ) with mesh-width

h(ℓ) ≃ (#T (ℓ) − T0)
−1. Without loss of generality, assume ν ≤ 1. We aim to prove (2.18)

by use of the elementwise Poincaré inequality

‖h1/2ℓ (1−Πℓ)φ‖2L2(Γ) ≤ h(ℓ)
∑

T∈T0

‖(1−Π(ℓ))φ‖2L2(T ) .
(
h(ℓ)

)1+2ν
∑

T∈T0

‖φ‖2Hν(T )

≃ (#T (ℓ) − T0)
−1−2ν

∑

T∈T0

‖φ‖2Hν(T ).

This proves s⋆ = min{ν, 1}+ 1/2 in (E5). Together with the a priori convergence result
in Theorem 3.3, the estimate above yields (φ, f) ∈ Aη

s for 0 < s ≤ s⋆. Therefore, we may
employ Theorem 2.7 to prove the assertion. �

Because the regularity of the solution φ is influenced by the boundary Γ, this result

is not fully satisfactory. Thus, we aim to estimate the term ‖h1/2ℓ (φ − Φℓ)‖L2(Γ) to get a
better result. To formulate the next statement, recall the definition of the uniform refined
mesh unif(k)(Tℓ) given in (4.21).

Proposition 4.14. Let the given boundary data satisfy g ∈ Hsreg(Γ) for some sreg > 2.
We consider a mesh Tℓ ∈ T. Then, the unique solution of (4.1) can be decomposed
as φ = φ0 + φsing. The smooth part satisfies φ0 ∈ Hνreg−1−ε(Tℓ) for all ε > 0, where
νreg := min{sreg, 5/2}. The singular part fulfills φsing ∈ L2(Γ). Moreover, it exists h0 > 0
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such that for all Tℓ with mesh-width ‖hℓ‖L∞(Γ) < h0 and for all κ > 0, there exists k ∈ N
such that

‖h1/2ℓ (1− Πℓ,k)φ‖L2(Γ) ≤ κ‖h1/2ℓ (1− Πℓ)φ‖L2(Γ) + C6‖h1/2ℓ (1− Π
(1)
ℓ )φ0‖L2(Γ) (4.38)

where Πℓ,k : L2(Γ) → P0(unif(k)(Tℓ)) and Π
(1)
ℓ : L2(Γ) → P1(Tℓ) denote the respective

L2-orthogonal projections. The constants C6 > 0, h0 > 0, and k ∈ N depend only on Γ
and κ(Tℓ). The function φ0 depends on Tℓ and sreg > 2, but for all ε > 0 the elementwise
norm is bounded uniformly, i.e.

∑

T∈Tℓ

‖φ0‖2Hνreg−1−ε(T ) ≤ Chot <∞ (4.39)

and Chot > 0 depends only on Γ, κ(Tℓ), sreg > 2, and ε > 0.

The proof of this proposition needs several preliminary lemmata and the definition
of the space of singularity functions: Let βj ∈ (−1/2, 2], j = 1, . . . , m, with βj 6= βi for
i 6= j. Then, for an interval T ⊆ R

Hsing(T, (βj)
m
j=1) := span

({
s 7→ sβj : j = 1, . . . , m

}

∪
{
s 7→ sβj log(s) : j = 1, . . . , m

})
⊕P1(T )

(4.40)

is called the singularity space for (βj)
m
j=1.

Lemma 4.15. Assume h > 0 and r ≥ h/ν for some ν > 0. Let x0, s1, s2 ∈ [r, r + h].
For |s2 − x0| ≥ h/4 and β ∈ (−1/2, 2], it holds

|
∫ s1
s2
tβ−2dt|

|
∫ s2
x0
tβ−2dt| ≤ C7. (4.41)

where C7 = 4/(1 + ν)β−2 > 0.

Proof. Because β − 2 ≤ 0, we may estimate

max
t∈[r,r+h]

tβ−2 = rβ−2 and min
t∈[r,r+h]

tβ−2 = (r + h)β−2 ≥ (1 + ν)β−2rβ−2.

With |s2 − x0| ≥ h/4, we see

|
∫ s1
s2
tβ−2dt|

|
∫ s2
x0
tβ−2dt| ≤

hrβ−2

h/4(1 + ν)β−2rβ−2
≤ 4

(1 + ν)β−2
.

This concludes the proof. �

In the following, we will write (·)′ = ∂
∂s

to abbreviate the notation.

Lemma 4.16. Assume h > 0 and r ≥ h/ν for some ν > 0. Consider the interval
T := [r, r + h] and ψ ∈ Hsing(T, (βj)

m
j=1). Then, there exists r0 > 0 such that for r < r0

max
T

|ψ′| ≤ C8min
T ′

|ψ′|, (4.42)
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where T ′ := [r, r + h/4] or T ′ := [r + 3h/4, r + h]. The constants C8 > 0 and r0 > 0
depend only on ν > 0 and (βj)

m
j=1 ∈ (−1/2, 2].

Proof. The function ψ can be written as

ψ(s) =

m∑

j=1

ajs
βj + bjs

βj log(s) + aT , (4.43)

with aT ∈ P1(T ) and aj , bj ∈ R. First, we observe that (s 7→ s1) ∈ P1(T ). Therefore, we
assume aj = 0 for βj = 1. Note that the statement (4.42) is trivial if ψ′ is constant. Due
to the last observation, this happens only if all coefficients aj, bj are zero. Therefore, we
may additionally assume that at least one coefficient aj or bj is non-zero. Let |ψ′(x0)| =
minx∈T |ψ′(x)| for x0 ∈ T . We use the minimality of |ψ′(x0)| to show that, for all s ∈ T ,
either one of the terms |ψ′(x0)| and

∫ s

x0
ψ′′(t)dt is zero or that both terms must have the

same sign. We argue by contradiction and assume ψ′(x0)
∫ s

x0
ψ′′(t)dt < 0, i.e. both terms

have opposite sign for some s ∈ [r, r + h]. We choose x1 ∈ [r, r + h] such that
∣∣∣
∫ x1

x0

ψ′′(t)dt
∣∣∣ < |ψ′(x0)| and ψ′(x0)

∫ x1

x0

ψ′′(t)dt < 0. (4.44)

This is possible because
∫ x1

x0
ψ′′(t)dt→ 0 for x1 → x0. With (4.44), we obtain

|ψ′(x1)| =
∣∣∣ψ′(x0) +

∫ x1

x0

ψ′′(t)dt
∣∣∣ = |ψ′(x0)| −

∣∣∣
∫ x1

x0

ψ′′(t)dt
∣∣∣ < |ψ′(x0)|, (4.45)

which is a contradiction to the minimality of |ψ′(x0)|. We just proved

ψ′(x0)

∫ s

x0

ψ′′(t)dt ≥ 0 for all s ∈ T

i.e. both terms have the same sign or at least one of them is zero. With this result, we
may write

|ψ′(s)| =
∣∣∣ψ′(x0) +

∫ s

x0

ψ′′(t)dt
∣∣∣ = |ψ′(x0)|+

∣∣∣
∫ s

x0

ψ′′(t)dt
∣∣∣ (4.46)

for all s ∈ T .
Now, we fix the index j0 with the smallest exponent βj0 ∈ (−1/2, 2] and aj0 6= 0 or

bj0 6= 0 in (4.43). Note that we can explicitly compute ψ′′, i.e.

ψ′′(s) =

m∑

j=1

ajβj(βj − 1)sβj−2 + bjs
βj−2

(
βj(βj − 1) log(s) + 2βj − 1

)
.

Now, we have to distinguish two cases:
Case 1: It holds that bj0 = 0. Due to our assumptions, we have βj0 6= 1, since aj0 6= 0.

Then, we choose r0 < 1/(1+ν) sufficiently small such that for all 0 < s < r0(1+ν) holds

0 < 1
2
|aj0βj0(βj0 − 1)sβj0

−2| ≤ |ψ(s)′′| ≤ 2|aj0βj0(βj0 − 1)sβj0
−2|, (4.47)
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which is possible because βj − 2 ≤ 0 and the term with the smallest exponent dominates
the function ψ′′.

Case 2: It holds that bj0 6= 0. If βj0 6= 1, we choose r0 < 1/(1+ ν) sufficiently small
such that for all 0 < s < r0(1 + ν) holds

0 < 1
2
|bj0βj0(βj0 − 1) log(s)sβj0

−2| ≤ |ψ(s)′′| ≤ 2|bj0βj0(βj0 − 1) log(s)sβj0
−2|, (4.48)

which is possible because βj − 2 ≤ 0 and the term with the smallest exponent dominates
the function ψ′′. If βj0 = 1, the log-term vanishes and we get

0 < 1
2
|bj0s−1| ≤ |ψ(s)′′| ≤ 2|bj0s−1|, (4.49)

i.e. case 1 with different constants. All arguments for case 1 in the proof below work
analogously for this case.

In either case, we see that for r < r0, we get r+ h ≤ r(1 + ν) ≤ r0(1 + ν). Therefore,
s ∈ T satisfies s ≤ r0(1 + ν), and we get with (4.47)–(4.48) that ψ′′ has no zero on T .
Using this and (4.46), we get for s1, s2 ∈ T , s2 6= x0

|ψ′(s1)|
|ψ′(s2)|

=
|ψ′(x0)|+ |

∫ s1
x0
ψ′′(t)dt|

|ψ′(x0)|+ |
∫ s2
x0
ψ′′(t)dt| ≤

|ψ′(x0)|+ |
∫ s2
x0
ψ′′(t)dt|+ |

∫ s1
s2
ψ′′(t)dt|

|ψ′(x0)|+ |
∫ s2
x0
ψ′′(t)dt|

≤ 1 +
|
∫ s1
s2
ψ′′dt|

|ψ′(x0)|+ |
∫ s2
x0
ψ′′dt| ≤ 1 +

|
∫ s1
s2
ψ′′dt|

|
∫ s2
x0
ψ′′dt| .

(4.50)

Again we use (4.47) and (4.48), to estimate

|ψ′(s1)|
|ψ′(s2)|

≤ 1 +
2|aj0βj0(βj0 − 1)

∫ s1
s2
tβj0

−2dt|
1
2
|aj0βj0(βj0 − 1)

∫ s2
x0
tβj0

−2dt| = 1 + 4
|
∫ s1
s2
tβj0

−2dt|
|
∫ s2
x0
tβj0

−2dt| , (4.51)

for case 1, and by use of r + h ≤ r0(1 + ν) < 1

|ψ′(s1)|
|ψ′(s2)|

≤ 1 +
2|bj0βj0(1− βj0)

∫ s1
s2
tβj0

−2 log(t)|dt
1
2
|bj0βj0(1− βj0)

∫ s2
x0
tβj0

−2 log(t)dt| ≤ 1 + 4
|
∫ s1
s2
tβj−2dt|

|
∫ s2
x0
tβj−2dt|

| log(r)|
| log(r + h)|

(4.52)

for case 2. If we restrict ourselves to |s2 − x0| ≥ h/4, all assumptions of Lemma 4.15 are
satisfied, and we get for case 1

|ψ′(s1)|
|ψ′(s2)|

≤ 1 + 4C7. (4.53)

by help of Equation (4.51). For case 2, we additionally have to bound | log(r)/ log(r+h)| ≤
C9 in (4.52) by

C9 = sup
0<r<r0

| log(r)|
| log(r + h)| ≤ sup

0<r<r0

| log(r)|
| log(r) + log(1 + ν)| <∞,
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where we used r + h ≤ r(1 + ν) ≤ r0(1 + ν) < 1. With the definition

T ′ :=

{
[r, r + h/4] for x0 ∈ [r + h/2, r + h]

[r + 3h/4, r + h] for x0 ∈ [r, r + h/2)

and s2 ∈ T ′, we ensure |s2 − x0| ≥ h/4. Plugging everything together, we use (4.53) to
prove the statement (4.42). �

Lemma 4.17. Assume h > 0 and r ≥ h/ν for some ν > 0. Consider the interval
T := [r, r + h] and ψ ∈ Hsing(T, (βj)

m
j=1). Then, there exists r0 > 0 such that for r < r0,

it holds

‖(1− Πk)ψ‖2L2(T ) ≤ C102
−2k‖(1− Π)ψ‖2L2(T ), (4.54)

where the constants C10 > 0 and r0 > 0 depend only (βj)
m
j=1 ∈ (−1/2, 2] and ν > 0.

Here, Πk : L2(T ) → P0(unif(k)(T )) and Π : L2(T ) → P0(T ) denote the L2-orthogonal
projections.

Proof. The statement is trivial for constant ψ, i.e. we may assume ψ′(s) 6= 0 for at least
one s ∈ T . For r < r0, Lemma 4.16 proves

0 < max
T

|ψ′| ≤ C8min
T ′

|ψ′|. (4.55)

Next, we use that (1−Πk)ψ has a zero sTi
on each Ti ∈ unif(k)(T ), i = 1, . . . , 2k. Therefore

|(1− Πk)ψ(s)| =
∣∣∣
∫ s

sTi

((1− Πk)ψ)
′dt

∣∣∣ =
∣∣∣
∫ s

sTi

ψ′dt
∣∣∣ ≤ hTi

max
Ti

|ψ′|

for s ∈ Ti. With (4.55) and hTi
= hT1 = 2−kh, we conclude

‖(1−Πk)ψ‖2L2(T ) .

2k∑

i=1

h3Ti
max
Ti

|ψ′|2 . h3T1
2k max

T
|ψ′|2 . h3T1

2k min
T ′

|ψ′|2

= 2−2kh3min
T ′

|ψ′|2.
(4.56)

Now, we calculate for s0, s ∈ T ′

h3 min
T ′

|ψ′| ≃
∫

T ′

(∫ s

s0

min
T ′

|ψ′|dt
)2

ds ≤
∫

T ′

∣∣∣∣
∫ s

s0

ψ′dt

∣∣∣∣
2

ds, (4.57)

where we used 4|T ′| = |T | = h and the fact that ψ′ doesn’t change sign on T ′ because
of (4.55). To bound the last term in the estimate above, we introduce the L2-orthogonal
projection Π′ : L2(T ′) → P0(T ′). Let s0 ∈ T ′ denote the zero of (1−Π′)ψ and note that
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((1−Π′)ψ)′ = ψ′ on T ′. With this and the estimates (4.56) and (4.57), we end up with

‖(1− Πk)ψ‖2L2(T ) . 2−2k

∫

T ′

∣∣∣∣
∫ s

s0

((1−Π′)ψ)′dt

∣∣∣∣
2

ds

= 2−2k‖(1−Π′)ψ‖2L2(T ′) ≤ 2−2k‖(1− Π)ψ‖2L2(T ′)

≤ 2−2k‖(1− Π)ψ‖2L2(T ),

(4.58)

due to the best-approximation property of Π′ on T ′. This proves the assertion. �

Lemma 4.18. Assume h > 0. Consider the interval T := [0, h] as well as ψ ∈
Hsing(T, (βj)

m
j=1). Then, there holds

‖(1−Πk)ψ‖2L2(T ) ≤ C112
−2εk‖(1−Π)ψ‖2L2(T ), (4.59)

where the constant C11 > 0 and ε > 0 depend only on (βj)
m
j=1 ∈ (−1/2, 2]. Here, Πk :

L2(T ) → P0(unif(k)(T )) and Π : L2(T ) → P0(T ) denote the L2-orthogonal projections.

Proof. For ε = (minj=1,...,m βj + 1/2)/2, we consider µ ∈ Hsing(T, (βj)
m
j=1) ⊂ Hε(T )

(cf. [22, Corollary 4.9]). We define the fractional Sobolev norms by interpolation. Recall
that all definitions of the fractional Sobolev norms are equivalent on the whole space
Hε(Γ). But as the constants depend on the domain, we get some elementwise properties
like the Poincaré inequality (cf. [10])

‖(1− Π)v‖L2(T ) . ‖hεv‖Hε(T ) for all v ∈ Hε(T )

more easily if we choose the definition by interpolation. Let µ̂(s) := µ(hs). First we
prove that µ̂ belongs to a finite dimensional space:

µ̂(s) =

m∑

j=1

ajh
βjsβj + bj

(
hβjsβj log(s) + hβj log(h)sβj

)
+ aT (hs) ∈ Hsing([0, 1], (βj)

m
j=1),

where dimHsing([0, 1], (βj)
m
j=1) ≤ 2m+ 2. With this and standard scaling arguments, one

obtains

‖µ‖2Hε(T ) . h1−2ε‖µ̂‖2Hε([0,1]) . h1−2ε‖µ̂‖2L2([0,1]) . h−2ε‖µ‖2L2(T ), (4.60)
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where the second estimate holds because of norm equivalence on finite dimensional spaces.
By use of (4.60) with µ = (1− Π)ψ, we conclude

‖(1− Πk)ψ‖2L2(T ) = ‖(1−Πk)(1−Π)ψ‖2L2(T )

=
2k∑

i=1

‖(1− Πk)(1− Π)ψ‖2L2(Ti)

. h2εT1

2k∑

i=1

‖(1− Π)ψ‖2Hε(Ti)

. h2εT1
‖(1− Π)ψ‖2Hε(T )

. (hT1/h)
2ε‖(1− Π)ψ‖2L2(T ) . 2−2εk‖(1−Π)ψ‖2L2(T ),

(4.61)

where we used the Poincaré inequality for fractional Sobolev norms and the fact that∑2k

i=1 ‖w‖2Hε(Ti)
. ‖w‖2Hε(T ) for all w ∈ Hε(T ) (see [10]). �

Now, we are ready to prove Proposition 4.14.

Proof of Proposition 4.14. According to [22, Theorem 4.8], the solution φ has the
form

φ(x) = φ̃0(x) + φsing := φ̃0(x) +
m∑

j=1

χj(x)φj(|x− cj |) for all x ∈ Γ, (4.62)

where m ∈ N is the number of corners cj of Γ and φ̃0 ∈ Hνreg−1−ε(T0) for all ε > 0. The
singularity functions φj satisfy

φj(s) =
M∑

i=1

ai,js
βi,j + bi,js

βi,j log(s) ∈ Hsing

(
[0,∞],

(
(βi,j)

M
i=1

)m
j=1

)
, (4.63)

where the exponents βi,j > −1/2 are determined by the inner angle αj in cj through
βi,j + 1 = kiπ/αj for some non-negative integer ki ∈ N. χj is a smooth cutoff function
with ci /∈ supp(χj) for all i 6= j. For each χj , it exists a neighborhood Uj ⊂ Γ of cj such
that χj ≡ 1 in Uj . We choose h0 > 0 sufficiently small so that the ball Bh0(cj) ∩ Γ ⊂ Uj

for all j = 1, . . . , m. Additionally, we observe that for βi,j > 2 the corresponding term

in (4.63) is smoother than φ̃0. Thus, it is sufficient to consider βi,j ∈ (−1/2, 2]. Of course,
we want to exploit Lemma 4.17 and Lemma 4.18. We prove estimate (4.38) elementwise,
i.e.

‖h1/2ℓ (1− Πℓ,k)φ‖2L2(Γ) =
∑

T∈Tℓ

hℓ|T‖(1− Πℓ,k)φ‖2L2(T ). (4.64)

By use of an affine transformation, we can treat each element that appears in the sum
as an interval on the real axis, i.e. we identify the corner cj with zero and T = [r, r + h]
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for some r ≥ 0, h = hℓ|T . If r > 0, there exists at least one element T ′ with T ′ ∩ T 6= ∅,
which is located between the corner cj and T . Mesh regularity thus gives

r ≥ hℓ|T ′ ≥ hℓ|T
κ(Tℓ)

. (4.65)

Now, we consider equation (4.64) and distinguish three cases:

(i) If T = [0, h], the assumption on the mesh-width shows h < h0 and therefore

‖(1− Πℓ,k)φ‖2L2(T ) . ‖(1−Πℓ,k)(φj + aT )‖2L2(T ) + ‖φ̃0 − aT‖2L2(T ).

We choose aT = (Π
(1)
ℓ φ̃0)|T ∈ P1(T ) and apply Lemma 4.18 to estimate the first

term

‖(1− Πℓ,k)φ‖2L2(T )

. 2−2εk‖(1− Πℓ)(φj + aT )‖2L2(T ) + ‖(1− Π
(1)
ℓ )φ̃0‖2L2(T )

. 2−2εk‖(1− Πℓ)φ‖2L2(T ) + ‖(1−Π
(1)
ℓ )φ̃0‖2L2(T ).

(ii) If T = [r, r+h] with r+h < h0 and additionally r < r0 with the constant r0 > 0
from Lemma 4.17, we obtain

‖(1−Πℓ,k)φ‖2L2(T )

. 2−2k‖(1−Πℓ)(φj + aT )‖2L2(T ) + ‖(1− Π
(1)
ℓ )φ̃0‖2L2(T )

. 2−2k‖(1−Πℓ)φ‖2L2(T ) + ‖(1− Π
(1)
ℓ )φ̃0‖2L2(T )

by use of Lemma 4.17.
(iii) If T = [r, r + h] with r ≥ r0 or r + h ≥ h0, we obtain by use of mesh regularity

rκ(Tℓ) ≥ h that r ≥ min{r0, h0/(1 + κ(Tℓ))} > 0. Therefore, φsing|T is smooth

and φ|T ∈ Hνreg−1−ε(T ). We apply Lemma 4.17 with ψ = aT := (Π
(1)
ℓ φ)|T to see

‖(1− Πℓ,k)φ‖2L2(T )

. 2−2k‖(1−Πℓ)aT ‖2L2(T ) + ‖(1−Π
(1)
ℓ )φ‖2L2(T )

. 2−2k‖(1−Πℓ)φ‖2L2(T ) + ‖(1− Π
(1)
ℓ )φ‖2L2(T ).

Finally, we define φ0 elementwise by

φ0|T :=

{
φ̃0|T for cases (i),(ii)

φ|T for case (iii)

and obtain φ0 ∈ Hνreg−1−ε(Tℓ) for all ε > 0. Choosing k ∈ N sufficiently large in the
estimates above, we insert in (4.64) to prove the assertion. �

With this result, we may prove the first estimate (4.8) of Theorem 4.3.
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Proof of Theorem 4.3. Due to (4.36), it remains to estimate the term ‖h1/2ℓ (φ −
Φℓ)‖L2(Γ). Let Πℓ,k : L

2(Γ) → P0(unif(k)(Tℓ)) denote the L2-orthogonal projection. First,
note that due to the approximation properties of Πℓ,k (cf. [14, Theorem 4.1]), it holds

‖Πℓ,kφ− Φℓ‖H−1/2(Γ) ≤ ‖(1−Πℓ,k)φ‖H−1/2(Γ) + ‖φ− Φℓ‖H−1/2(Γ)

≤ C‖h1/2ℓ,k (1−Πℓ,k)φ‖L2(Γ) + ‖φ− Φℓ‖H−1/2(Γ)

= C2−k/2‖h1/2ℓ (1− Πℓ,k)φ‖L2(Γ) + ‖φ− Φℓ‖H−1/2(Γ)

(4.66)

for all k ∈ N. Here, the constant C > 0 stems from the inverse estimate in [32, Theorem
3.6] and is independent of ℓ, k ∈ N. Consequently, we may estimate

‖h1/2ℓ (φ− Φℓ)‖L2(Γ) ≤ ‖h1/2ℓ (φ−Πℓ,k1φ)‖L2(Γ) + ‖h1/2ℓ (Πℓ,k1φ− Φℓ)‖L2(Γ)

≤ ‖h1/2ℓ (φ− Πℓ,k1φ)‖L2(Γ) + C‖hℓ/hℓ,k1‖1/2L∞(Γ)‖Πℓ,k1φ− Φℓ‖H−1/2(Γ)

≤ (1 + C)‖h1/2ℓ (φ− Πℓ,k1φ)‖L2(Γ) + C2k1/2‖φ− Φℓ‖H−1/2(Γ),

(4.67)

where C > 0 again stems from the inverse estimate in [32, Theorem 3.6]. With h0 > 0
from Proposition 4.14, we choose k1 sufficiently large such that ‖hℓ,k1‖L∞(Γ) < h0 for all
ℓ ∈ N. For k2 ∈ N, we get

‖h1/2ℓ (1−Πℓ,k1)φ‖L2(Γ)

≤ ‖h1/2ℓ (1−Πℓ,k1+k2)φ‖L2(Γ) + ‖h1/2ℓ (1−Πℓ,k1)Πℓ,k1+k2φ‖L2(Γ)

≤ ‖h1/2ℓ (1−Πℓ,k1+k2)φ‖L2(Γ) + ‖h1/2ℓ Πℓ,k1+k2(φ− Φℓ)‖L2(Γ)

≤ ‖h1/2ℓ (1−Πℓ,k1+k2)φ‖L2(Γ) + C2(k1+k2)/2‖Πℓ,k1+k2(φ− Φℓ)‖H−1/2(Γ)

≤ (1 + C)‖h1/2ℓ (1− Πℓ,k1+k2)φ‖L2(Γ) + C2(k1+k2)/2‖φ− Φℓ‖H−1/2(Γ),

(4.68)

where we applied the inverse inequality from [32, Theorem 3.6] as well as (4.66). Given
κ > 0, Proposition 4.14 now provides k2 ∈ N such that

‖h1/2ℓ,k1
(1−Πℓ,k1+k2)φ‖L2(Γ)

≤ κ‖h1/2ℓ,k1
(1− Πℓ,k1)φ‖L2(Γ) + C6‖h1/2ℓ,k1

(1− Π
(1)
ℓ,k1

)φ0‖L2(Γ)

≤ κ‖h1/2ℓ,k1
(1− Πℓ,k1)φ‖L2(Γ) + C6‖h1/2ℓ,k1

(1− Π
(1)
ℓ,k1

)φ0‖L2(Γ).

(4.69)

Plugging (4.69) into (4.68) and rearranging the terms, we get

(1− (1 + C)κ)‖h1/2ℓ (1− Πℓ,k1)φ‖L2(Γ) . ‖φ− Φℓ‖H−1/2(Γ) + ‖h1/2ℓ (1− Π
(1)
ℓ,k1

)φ0‖L2(Γ).

For κ > 0 sufficiently small, combine the estimate above with (4.67) to prove the assertion.
Note that κ > 0 determines k2 ∈ N as well as h0 determines k1 ∈ N. Therefore, the hidden
constants in the estimate above are fixed uniformly. �
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Definition 4.19. Let the given boundary data satisfy g ∈ Hsreg(Γ) for some sreg > 2.
With νreg := min{sreg, 5/2}, we define the higher-order term hotℓ by

hotℓ := ‖h1/2ℓ (1−Π
(1)
ℓ,k)φ0‖L2(Γ) with hotℓ(T ) := ‖h1/2ℓ (1− Π

(1)
ℓ,k)φ0‖L2(T )

for all T ∈ Tℓ. Here, k = k1 ∈ N as in the proof of Theorem 4.3 depends only on Γ. As
stated in Proposition 4.14, the function φ0 ∈ Hνreg−1−ε(Tℓ,k) for all ε > 0 depends on Tℓ

and sreg > 2, but the piecewise norm is uniformly bounded, i.e.
∑

T∈Tℓ,k

‖φ0‖2Hνreg−1−ε(T ) ≤ Chot <∞, (4.70)

where Chot > 0 depends only on Γ, κ(Tℓ), sreg > 2, and ε > 0. Therefore, the Poincaré
inequality for fractional Sobolev norms yields

hotℓ(T )
2 =

∑

Ti∈unif
(k)(T )

‖h1/2ℓ (1− Π
(1)
ℓ,k)φ0‖2L2(Ti)

. (hℓ|T )2(νreg−1/2−ε)C2
hot, (4.71)

for all ε > 0. Note that νreg − 1/2− ε > 3/2 for ε > 0 sufficiently small. Considering the
generic rate of convergence O(h3/2) of lowest-order BEM for Symm’s integral equation
and smooth solutions (cf. Theorem 3.3), we confirm that hotℓ is indeed a term of higher
order.

Proof of Theorem 4.4. We proved all the needed assumptions on the error estima-
tor (E1), (E2), (E4) in Proposition 4.11, Proposition 4.12, and Proposition 4.9. The
assumptions (R3) and (R4) are proven in Theorem 4.7 and Theorem 4.8, respectively. As
mentioned in Chapter 2, the remaining assumptions are fulfilled trivially, or follow from
the proven assumptions. Therefore, we may apply Theorem 2.7 to derive the equivalence

(φ, f) ∈ Aη
s ⇐⇒ |||φ− Φℓ||| . (#Tℓ −#T0)

−s for all ℓ ∈ N.

This proves the first statement of Theorem 4.4 With efficiency (E5) proved in Theo-
rem 4.3, Equation (4.71) states

s⋆ = νreg − 1/2− ε for all ε > 0.

Together with the characterization of Aη
s in Theorem 2.8, we prove the second statement

of Theorem 4.4. �



CHAPTER 5

Approximation of Dirichlet Data

So far, we assumed that we are able to compute the right-hand side (K+1/2)g of (4.1)
exactly. However, in practical applications, this may turn out to be quite demanding.
Therefore, we take a different approach and approximate the Dirichlet data g with a dis-
crete function Gℓ ∈ S1(Tℓ). Due to the assumption g ∈ H1(Γ), Kondrachov’s embedding
theorem states that g is continuous on the 1D manifold Γ. Therefore, the simplest choice
is Gℓ := Iℓg, where Iℓ is the nodal interpolation operator with respect to the nodes Nℓ of
Tℓ. According to [12, Theorem 1], Gℓ satisfies the approximation property

‖g −Gℓ‖H1/2(Γ) ≤ C12‖h1/2ℓ
∂
∂s
(g −Gℓ)‖L2(Γ) for all ℓ ∈ N (5.1)

with some constant C12 > 0 which depends only on κ(T0). The well-known identity
∂
∂s
Iℓg = Πℓ

∂
∂s
g in 1D gives the following elementwise best approximation result

‖h1/2ℓ
∂
∂s
(g −Gℓ)‖L2(T ) = inf

Vℓ∈S1(Tℓ)
‖h1/2ℓ

∂
∂s
(g − Vℓ)‖L2(T ) for all ℓ ∈ N, T ∈ Tℓ. (5.2)

For this section, we introduce the perturbed discrete formulation of (4.1) with ap-
proximated Dirichlet data, i.e.

〈〈Φ̃ℓ , Ψℓ〉〉 = 〈(K + 1
2
)Gℓ , Ψℓ〉Γ for all Ψℓ ∈ P0(Tℓ). (5.3)

Next, we define the data oscillations

oscℓ := ‖h1/2ℓ
∂
∂s
(g −Gℓ)‖L2(Γ),

and the error indicators

η̃ℓ := ‖h1/2ℓ
∂
∂s
(V Φ̃ℓ − (K + 1

2
)Gℓ)‖L2(Γ).

The combination of error indicators and data oscillations gives the error estimator for
the perturbed problem (5.3):

ρ̃ 2
ℓ := η̃ 2

ℓ + osc2ℓ .

As in the previous chapters, we denote the elementwise contributions by ρ̃ℓ(T )
2 = η̃ℓ(T )

2+
oscℓ(T )

2. To regain optimality of the adaptive algorithm, we use a slightly different
approach and replace the Dörfler marking criterion with the stronger (cf. Lemma 5.4)
modified Dörfler marking, which was proposed firstly in [42] and has been employed for
adaptive FEM with inhomogeneous Dirichlet data in [3]. The adaptive algorithm now
reads:
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Algorithm 5.1. Input: Initial mesh T0, adaptivity parameters 0 < θ1, θ2, ϑ < 1, counter
ℓ := 0

(i) Compute discrete solution Φ̃ℓ of (5.3) corresponding to Tℓ and Gℓ = Iℓg.
(ii) Compute refinement indicators η̃ℓ(T ) and oscℓ(T ) for all T ∈ Tℓ.
(iii) Provided that osc2ℓ ≤ ϑη̃ 2

ℓ , choose Mℓ ⊆ Tℓ of minimal cardinality such that

θ1
∑

T∈Tℓ

η̃ℓ(T )
2 ≤

∑

T∈Mℓ

η̃ℓ(T )
2. (5.4)

(iv) Provided that osc2ℓ > ϑη̃ 2
ℓ , choose Mℓ ⊆ Tℓ of minimal cardinality such that

θ2
∑

T∈Tℓ

oscℓ(T )
2 ≤

∑

T∈Mℓ

oscℓ(T )
2. (5.5)

(v) Refine (at least) marked elements T ∈ Tℓ to obtain new mesh Tℓ+1.
(vi) Increase counter ℓ 7→ ℓ+ 1 and iterate.

Output: Discrete solutions Φ̃ℓ and error estimators ρ̃ℓ for ℓ ≥ 0.

Next, we state an inverse inequality similar to Lemma 4.10.

Lemma 5.2. Let v ∈ H1(Γ) and Tℓ ∈ T denote a mesh. Then, it holds

C−1
K ‖h1/2ℓ

∂
∂s
Kv‖L2(Γ) ≤ ‖v‖H1/2(Γ) + ‖h1/2ℓ

∂
∂s
v‖L2(Γ), (5.6)

where CK > 0 depends only on κ(Tℓ) and Γ.

Proof. Following the proof of [5, Theorem 1, Eq. (22)], we see that the statement (5.6)
is proven as a preliminary result and no restriction on the data besides v ∈ H1(Γ) is
needed. �

To recycle the analysis from the previous sections, we give some dependence between

the solutions Φℓ and Φ̃ℓ of (4.2) and (5.3), respectively.

Proposition 5.3. Let Gℓ ∈ S1(Tℓ) satisfy (5.1). Then, it holds

C−1
13

(
|||φ− Φℓ|||+ oscℓ

)
≤ |||φ− Φ̃ℓ|||+ oscℓ ≤ C13

(
|||φ− Φℓ|||+ oscℓ

)
(5.7)

as well as

C−1
13

( ∑

T∈Eℓ

ηℓ(T )
2 + osc2ℓ

)
≤

∑

T∈Eℓ

η̃ℓ(T )
2 + osc2ℓ ≤ C13

( ∑

T∈Eℓ

ηℓ(T )
2 + osc2ℓ

)
(5.8)

for all ℓ ∈ N and for each subset Eℓ ⊆ Tℓ. The constant C13 ≥ 1 depends only on κ(Tℓ)
and Γ.

Proof. We start with the first statement. The triangle inequality shows

|||φ− Φℓ||| ≤ |||φ− Φ̃ℓ|||+ |||Φℓ − Φ̃ℓ|||.
The second term is treated by use of the stability of equation (5.3), i.e.

|||Φℓ − Φ̃ℓ|||2 = 〈(K + 1
2
)(g −Gℓ) , Φℓ − Φ̃ℓ〉Γ ≤ ‖g −Gℓ‖H1/2(Γ)‖Φℓ − Φ̃ℓ‖H−1/2(Γ),
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where we use the continuity K : H1/2(Γ) → H1/2(Γ). With norm equivalence (3.12), we

may cancel |||Φℓ − Φ̃ℓ||| on both sides and use the approximation property (5.1) to obtain

|||φ− Φℓ||| . |||φ− Φ̃ℓ|||+ oscℓ.

The converse estimate follows analogously.
To prove the second estimate, we apply the inverse inequalities from Lemma 4.10 and

Lemma 5.2. This gives
( ∑

T∈M

ηℓ(T )
2
)1/2

≤
( ∑

T∈M

η̃ℓ(T )
2
)1/2

+ ‖h1/2ℓ
∂
∂s
V (Φℓ − Φ̃ℓ)‖L2(

⋃
M)

+ ‖h1/2ℓ
∂
∂s
(K + 1

2
)(g −Gℓ)‖L2(

⋃
M)

.
( ∑

T∈M

η̃ℓ(T )
2
)1/2

+ |||Φℓ − Φ̃ℓ|||+ oscℓ.

Again, we apply (5.1) and the inverse inequality from [32, Theorem 3.6]. Stability of (5.3)
proves the first inequality of (5.8). The converse inequality follows the same lines. �

The result above shows, that η̃ℓ is even locally equivalent to ηℓ up to oscillation terms.

Lemma 5.4. For arbitrary θ1, θ2 ∈ (0, 1) and sufficiently small ϑ ∈ (0, 1), there is some
0 < θ < 1 such that the marking criterion (5.4)–(5.5) for ρ̃ 2

ℓ = η̃ 2
ℓ + osc2ℓ implies the

Dörfler marking

θ
∑

T∈Tℓ

ρℓ(T )
2 ≤

∑

T∈Mℓ

ρℓ(T )
2 (5.9)

for ρ2ℓ := η2ℓ + osc2ℓ . The parameter 0 < θ < 1 depends on 0 < θ1, θ2, ϑ < 1 as well as on
C13 > 0.

Proof. First, assume osc2ℓ ≤ ϑη̃2ℓ . By use of Proposition 5.3, we see

ρ2ℓ ≤ (1 + C2
13)(η̃

2
ℓ + osc2ℓ) ≤ (1 + C2

13)(1 + ϑ)η̃ 2
ℓ . (5.10)

Again, with Proposition 5.3 and (5.4), we conclude

θ1η̃
2
ℓ ≤

∑

T∈Mℓ

η̃ℓ(T )
2 ≤ C2

13

( ∑

T∈Mℓ

ηℓ(T )
2 + osc2ℓ

)
≤ C2

13

∑

T∈Mℓ

ρℓ(T )
2 + C2

13ϑη̃
2
ℓ

and therefore

(θ1 − C2
13ϑ)η̃

2
ℓ ≤ C2

13

∑

T∈Mℓ

ρℓ(T )
2.

The combination of (5.10) and the estimate above now yield

θ1C
−2
13 (1 + C2

13)
−1(1 + ϑ)−1(θ1 − C2

13ϑ)ρ
2
ℓ ≤

∑

T∈Mℓ

ρℓ(T )
2.

With ϑ > 0 sufficiently small, we obtain t1 := θ1C
−2
13 (1 + C2

13)
−1(1 + ϑ)−1(θ1 − C2

13ϑ) ∈
(0, 1).
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Second, assume osc2ℓ > ϑη̃ 2
ℓ . Now, we exploit (5.5) to see

θ2ρ
2
ℓ ≤ θ2(1 + C2

13)(η̃
2
ℓ + osc2ℓ) ≤ θ2(1 + C2

13)(1 + ϑ−1)osc2ℓ

≤ (1 + C2
13)(1 + ϑ−1)

∑

T∈Mℓ

oscℓ(T )
2 ≤ (1 + C2

13)(1 + ϑ−1)
∑

T∈Mℓ

ρℓ(T )
2,

where t2 := θ2(1 + C2
13)

−1(1 + ϑ−1)−1 ∈ (0, 1) for ϑ > 0 arbitrarily. Now, we define
θ := min{t1, t2} to prove (5.9). �

Lemma 5.5. The extended error estimator ρ2ℓ := η2ℓ+osc2ℓ satisfies the assumptions (E1)–
(E4).

Proof. First, note that (E1)–(E4) hold for ηℓ (see Proposition 4.9, Proposition 4.11,
Proposition 4.12). Therefore, the assumptions (E3) and (E4) follow obviously from
ηℓ(T )

2 ≤ ρℓ(T )
2 for all T ∈ Tℓ. To prove (E1) and (E2), it remains to show the as-

sumptions for the oscillation term. Let therefore T⋆ = refine(Tℓ) ∈ T. Then, it holds
∣∣∣
( ∑

T∈T⋆∩Tℓ

osc2⋆(T )
)1/2−

( ∑

T∈T⋆∩Tℓ

osc2ℓ(T )
)1/2∣∣∣

= ‖h1/2ℓ
∂
∂s
(g −G⋆)‖L2(

⋃
T⋆∩Tℓ) − ‖h1/2ℓ

∂
∂s
(g −Gℓ)‖L2(

⋃
T⋆∩Tℓ)

≤ ‖h1/2ℓ
∂
∂s
(G⋆ −Gℓ)‖L2(

⋃
T⋆∩Tℓ) = 0,

because G⋆ = I⋆g = Iℓg = Gℓ on T⋆ ∩ Tℓ. This proves (E1). To see (E2), we exploit
h⋆|T ≤ hℓ|T/2 on refined elements T ∈ Tℓ \ T⋆. This gives

∑

T∈T⋆\Tℓ

osc2⋆(T ) ≤
1

2
‖h1/2ℓ

∂
∂s
(g −G⋆)‖2L2(T⋆\Tℓ)

≤ 1

2
‖h1/2ℓ

∂
∂s
(g −Gℓ)‖2L2(T⋆\Tℓ)

,

where we used the Tℓ-elementwise best approximation property (5.2) of the nodal inter-
poland G⋆ = I⋆g. This concludes the proof. �

Let Aρ
s denote the approximation class according to (5.3)

(φ, f, g) ∈ Aρ
s

def.⇐⇒ ‖(φ, f, g)‖Aρ
s
:= sup

N∈N
inf

T⋆∈TN

N sρℓ <∞.

Theorem 5.6. Let Tℓ denote the sequence of meshes generated by Algorithm 5.1. Then,
for arbitrary θ1, θ2, ϑ ∈ (0, 1), it holds convergence

|||φ− Φ̃ℓ||| → 0, as ℓ→ ∞. (5.11)

Furthermore, for sufficiently small 0 < θ1, ϑ < 1 but arbitrary 0 < θ2 < 1, Algorithm 5.1
guarantees the existence of a constant C14 > 0 such that

(φ, f, g) ∈ Aρ
s ⇐⇒ ρ̃ℓ ≤ C14 (#Tℓ −#T0)

−s for all ℓ ≥ 0 (5.12)

for all s > 0. The constant C14 > 0 depends only on ‖(φ, f, g)‖Aρ̃
s
, the shape regularity

κ(Tℓ), and Γ.
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Proof. Lemma 5.5 shows that the extended error estimator ρℓ satisfies (E1)–(E3).
Therefore, Theorem 2.4 states for ∆ℓ := |||φ− Φℓ|||2 + γρ2ℓ

∆ℓ+1 ≤ κ∆ℓ

for all ℓ ∈ N and for some γ, κ ∈ (0, 1). Particularly, we obtain limℓ→∞ ρℓ = 0. Proposi-
tion 5.3 now yields

|||φ− Φ̃ℓ|||2 ≃ |||φ− Φℓ|||2 + osc2ℓ . ρ2ℓ → 0, as ℓ→ ∞,

where we used reliability (E3) of ρℓ (Lemma 5.5). This proves the first statement (5.11).
To see (5.12), we apply Lemma 2.6 with 0 < κ⋆ < 1 arbitrary. For (φ, f, g) ∈ Aρ

s ,
Lemma 2.6 guarantees the existence of a mesh T⋆ ∈ T such that

#T⋆ − Tℓ . ρ
−1/s
ℓ and ρ2⋆ ≤ κ⋆ρ

2
ℓ ,

as well as Dörfler marking

θ⋆ρ
2
ℓ ≤

∑

T∈Rℓ

ρℓ(T )
2,

where the set Rℓ ⊃ Tℓ \T⋆ satisfies #Rℓ . ρ
−1/s
ℓ . Now, we want to show that this implies

the modified Dörfler marking (5.4)–(5.5) for ρ̃:

• In case of osc2ℓ ≤ ϑη̃ 2
ℓ , we obtain

θ⋆η̃
2
ℓ . θ⋆ρ

2
ℓ ≤

∑

T∈Rℓ

ρℓ(T )
2 .

∑

T∈Rℓ

η̃ℓ(T )
2 + ϑη̃ 2

ℓ .

Put differently, we have

(θ⋆C
−2
13 − ϑ)η̃ 2

ℓ ≤
∑

T∈Rℓ

η̃ℓ(T )
2. (5.13)

For θ1, ϑ > 0 sufficiently small, η̃ℓ satisfies the marking criterion (5.4).
• In case of osc2ℓ > ϑη̃2ℓ , we use the local definition of oscℓ, i.e.

∑

T∈Tℓ∩T⋆

oscℓ(T )
2 =

∑

T∈Tℓ∩T⋆

osc⋆(T )
2 ≤ osc2⋆ ≤ ρ2⋆ . κ⋆(1 + ϑ−1)osc2ℓ .

This estimate yields
(
1− C13κ⋆(1 + ϑ−1)

)
osc2ℓ ≤

∑

T∈Tℓ\T⋆

oscℓ(T )
2 ≤

∑

T∈Rℓ

oscℓ(T )
2.

For κ⋆ > 0 small enough, oscℓ satisfies the marking criterion (5.5) with Rℓ ⊃
Tℓ \ T⋆. Note carefully, that θ⋆ and therefore ϑ (Equation (5.13)) depend on the
the choice of κ⋆, but as one can check in Equation (2.23), θ⋆ becomes larger for
smaller κ⋆. Thus, we may fix ϑ ∈ (0, 1) sufficiently small and choose κ⋆ ∈ (0, 1)
afterwards.
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The conclusions above and the minimal choice of Mℓ in (5.4) and (5.5) show

#Mℓ ≤ #Rℓ . ρ
−1/s
ℓ ≃ ∆

−1/(2s)
ℓ for all ℓ ∈ N.

With Proposition 5.3, we obtain equivalence

ρ̃ℓ ≃ ρℓ ≃ ∆ℓ.

With this, we prove analogously to the proof of Theorem 2.7

ρ̃ℓ . (#Tℓ −#T0)
−1/s for all ℓ ∈ N.

The converse implication in (5.12) is obvious. This concludes the proof. �

Corollary 5.7. Let the given boundary data satisfy g ∈ Hsreg(Γ) for some sreg > 2. Let
φ denote the solution of (4.1). Then, the error estimator ρ̃ℓ is efficient in the following
sense

C−1
15 ρ̃ℓ ≤ ‖φ− Φ̃ℓ‖H−1/2(Γ) + oscℓ + hotℓ. (5.14)

Here, C15 > 0 depends only on Γ and κ(T0). The higher-order term hotℓ is given in detail
in Definition 4.19. For all ε > 0, it satisfies

hotℓ =
( ∑

T∈Tℓ

hotℓ(T )
2
)1/2

and hotℓ(T ) ≤ Chot(hℓ|T )min{sreg,5/2}−1/2−ε,

where Chot > 0 depends only on Γ, κ(Tℓ), and sreg > 2.

Proof. We apply Proposition 5.3 as well as Theorem 4.3 and conclude

ρ̃ℓ . ηℓ + oscℓ . ‖φ− Φ̃ℓ‖H−1/2(Γ) + oscℓ + hotℓ

for all ℓ ∈ N. �

Now, we are able to characterize the approximation class Aρ
s and refine the optimality

result in Theorem 5.6. Therefore, we define

(φ, g) ∈ Ãs
def⇐⇒ ‖(φ, g)‖Ãs,osc

<∞ and ‖(φ, g)‖Ãs,err
<∞,

with

‖(φ, g)‖Ãs,err
:= sup

N∈N
inf

T⋆∈TN

inf
Ψ⋆∈P0(T⋆)

N s|||φ− ψ⋆|||

‖(φ, g)‖Ãs,osc
:= sup

N∈N
inf

T⋆∈TN

inf
W⋆∈S1(T⋆)

N s‖h1/2⋆
∂
∂s
(g −W⋆)‖L2(Γ).

Note that additionally to the Galerkin error, only the oscillation term

oscℓ := ‖h1/2ℓ
∂
∂s
(g −Gℓ)‖L2(Γ) = inf

Wℓ∈S1(Tℓ)
‖h1/2ℓ

∂
∂s
(g −Wℓ)‖L2(Γ)

appears in the definition of the approximation class and these two contributions are
decoupled, i.e. it is sufficient that there exist optimal sequences of meshes for the Galerkin
error and for the oscillation term separately.
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Corollary 5.8. Let (Φ̃ℓ)ℓ∈N denote the sequence of solutions generated by Algorithm 5.1
driven by the weighted residual-based error estimator ρ̃ℓ. Assume that the corresponding
sequence of meshes (Tℓ)ℓ∈N is created by local refinement as stated in Algorithm 4.1 or
Algorithm 4.5. Let the given boundary data additionally satisfy g ∈ Hsreg(Γ) for some
sreg > 2. Then, for 0 < s < min{sreg, 5/2} − 1/2 and sufficiently small parameters
θ1, ϑ ∈ (0, 1) but arbitray θ2 ∈ (0, 1), Algorithm 5.1 is optimal in the following sense

(φ, g) ∈ Ãs ⇐⇒ (|||φ− Φ̃ℓ|||+ oscℓ) ≤ C16(#Tℓ −#T0)
−s for all ℓ ∈ N,

where the constant C16 > 0 depends only on ‖(φ, g)‖Ãs
and Γ.

Proof. For this proof, we define

‖(φ, g)‖Ãs
:= sup

N∈N
inf

T⋆∈TN

inf
Ψ⋆∈P0(T⋆)

N s(|||φ− ψ⋆|||+ osc⋆) <∞.

First, we show the following equivalence

‖(φ, g)‖Ãs
<∞ ⇐⇒ ‖(φ, g)‖Ãs,osc

<∞ and ‖(φ, g)‖Ãs,err
<∞, (5.15)

for all s > 0. The first implication is trivial due to

max
{
‖(φ, g)‖Ãs,osc

, ‖(φ, g)‖Ãs,err

}
≤ ‖(φ, g)‖Ãs

<∞.

To see the converse implication, fix N ∈ N. The definition of Ãs guarantees meshes
T⋆,err, T⋆,osc ∈ TN/2 with

inf
Ψ⋆,err∈P0(T⋆,err)

(N/2)s|||φ− ψ⋆,err||| ≤ ‖(φ, g)‖Ãs,err
<∞,

inf
W⋆,osc∈S1(T⋆,osc)

(N/2)s‖h1/2⋆,osc
∂
∂s
(g −W⋆,osc)‖L2(Γ) ≤ ‖(φ, g)‖Ãs,osc

<∞.

Now, consider the overlay TN := T⋆,err ⊕ T⋆,osc. With (R4), we obtain

#TN −#T0 ≤ #T⋆,err −#T0 +#T⋆,osc −#T0 ≤ N.

Therefore, we have TN ∈ TN and conclude with the best approximation property of
Gℓ = Iℓg (5.2) and Céa’s lemma

inf
ΨN∈P0(TN )

N s(|||φ− ψN |||+ oscN) ≤ inf
Ψ⋆,err∈P0(T⋆,err)

(N/2)s|||φ− ψ⋆,err|||

+ inf
W⋆,osc∈S1(T⋆,osc)

(N/2)s‖h1/2⋆,osc
∂
∂s
(g −W⋆,osc)‖L2(Γ)

≤ ‖(φ, g)‖Ãs,err
+ ‖(φ, g)‖Ãs,osc

.

This proves (5.15). With efficiency of ρ̃ℓ ≃ ρℓ (Corollary 5.7) and the characterization of

Ãs in (5.15) , the remainder of the proof follows analogously to the proof of Theorem 4.4.
�





CHAPTER 6

Numerical Examples

6.1. Preliminaries

The aim of this chapter is on the one hand to underline the results from the previous
chapters and on the other hand to provide a fair comparison between the adaptive ap-
proach from Algorithm 5.1 and the more obvious uniform approach from Algorithm 6.1
to approximate solutions. To achieve this, we consider the model problem (4.1) with dif-
ferent data g, and approximate the solution with Algorithm 5.1. To visualize the results,
we plot the following quantities with respect to the number of elements:

• Instead of the energy norm error |||φ−Φ̃ℓ||| which can hardly be computed analytically,
we plot the following reliable error bound:

errℓ := ‖h1/2ℓ (φ− Φ̃ℓ)‖L2(Γ).

Due to Céa’s Lemma (2.5) and Proposition 5.3, we may prove

|||φ− Φ̃ℓ||| ≤ |||φ− Φℓ|||+ oscℓ ≤ |||φ− Πℓφ|||+ oscℓ

. ‖h1/2ℓ (φ− Πℓφ)‖L2(Γ) + oscℓ ≤ errℓ + oscℓ,

where the hidden constant depends only on the shape regularity κ(Tℓ). The integral is
computed via Gauss-Legendre quadrature. Note that under the regularity assumptions
of Theorem 4.3 resp. Corollary 5.7, we obtain that errℓ is up to terms of higher order and
oscillation terms even a lower bound for the energy norm error, i.e.

errℓ . |||φ− Φ̃ℓ|||+ oscℓ + hotℓ

for all ℓ ∈ N.
• We plot the error indicator η̃ℓ = ‖h1/2ℓ

∂
∂s
(V Φ̃ℓ − (K + 1

2
)Gℓ))‖L2(Γ). The functions

(V Φ̃ℓ)(x) and (KGℓ)(x) are computed analytically, which is possible, since Φ̃ℓ ∈ P0(Tℓ)
and Gℓ ∈ S1(Tℓ) are discrete functions.

• An important quantity in our analysis is the term of higher order hotℓ from Defini-
tion 4.19. Even if we prescribe the solution φ, we do not know φ0 in general. Therefore,
we aim to visualize the behavior of hotℓ as follows: First,

hot1,ℓ := ‖h1/2ℓ (1− Π
(1)
ℓ )φ‖L2(Γ)
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is intuitively an upper bound of hotℓ because φ is less regular than φ0. Second,

hot2,ℓ := ‖h1/2ℓ (1− Π
(1)
ℓ )φ‖L2(Γreg),

where Γreg = Γ\⋃m
j=1Bδ(cj). Here, δ > 0 is small compared to the size of the domain (for

the depicted domain sizes in Figure 1, we chosse δ = 0.01) and cj , j = 1, . . . , m denote
the corners of the boundary, i.e. the generic singularities of φ. From the expansion (4.62),
we know that φ|Γreg has the same regularity as φ0|Γreg . Therefore, hot2,ℓ should give a
good representation of hotℓ.

• The data oscillation term oscℓ := ‖h1/2ℓ
∂
∂s
(g − Gℓ)‖L2(Γ) must be considered because

we only compute the right-hand side of (4.1) for discrete functions.
Next, we give a brief illustration of the uniform strategy.

Algorithm 6.1 (Uniform mesh-refinement). Input: Initial mesh T0, counter ℓ := 0

(i) Compute discrete solution Φ̃(ℓ) of (5.3) corresponding to T (ℓ) and G(ℓ) = I(ℓ)g.
(ii) Refine all elements T ∈ Tℓ to obtain new mesh T (ℓ+1) = refine(T (ℓ), T (ℓ)).
(iii) Increase counter ℓ 7→ ℓ+ 1 and iterate.

Output: Discrete solutions Φ̃(ℓ) for all ℓ ∈ N.

To compare the adaptive approach presented in Algorithm 5.1 and the uniform ap-
proach above, we want to consider the computational times:

• The time tunif to compute the solution Φ̃(ℓ) of the uniform approach in Algo-
rithm 6.1 is the time needed to perform ℓ uniform refinements of the initial mesh
T0, plus the time needed to build and solve the linear system corresponding to
T (ℓ). Obviously, the second contribution is vastly dominant.

• The time tadap to compute the solution Φ̃ℓ of the adaptive approach in Algo-
rithm 5.1 is the time to build an solve the system corresponding to the mesh Tℓ

plus the time needed to compute all the previous solutions, to compute the error
estimators, to discretize the data g, and to mark and refine the meshes.

Although this definition seems to favor the uniform approach, we think that it provides a
fair comparison between those strategies. All the following experiments where conducted
by use of the Matlab-BEM library HILBERT. See the web page

http://www.asc.tuwien.ac.at/abem/hilbert/

for detailed information. Throughout, all the occurring linear systems were solved directly
with the Matlab backslash operator.

6.2. Experiments

Unless stated otherwise, the adaptivity parameters in Algorithm 5.1 are set as

θ1 = θ2 = ϑ = 1/2.
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Figure 1. Different domains Ω with initial partitions of the boundary T0.

6.2.1. Experiment on L-shape with singular solution. Here, Γ is the boundary of
the L-shaped domain Ω in Figure 1. We prescribe the solution u of

−∆u = 0 in Ω,

u = g on Γ,
(6.1)

as u(x, y) := r2/3 cos(2α/3) with polar coordinates (r, α) with respect to (0, 0) ∈ R2. It
is easy to check that u|Γ = g is smooth and therefore meets the regularity assumptions
of Theorem 4.3 resp. Corollary 5.7. We compute the data and solution thereof. Figure 2
shows that the error and the error estimator converge with optimal order O(N−3/2) on
adaptively generated meshes. The terms hot1,ℓ and hot2,ℓ converge with even higher or-
der, which underlines that the error estimator is efficient. Recall that u ∈ H1+2/3−ε(Ω)
for all ε > 0 has a generic singularity in the reentrant corner. Therefore, uniform re-
finement leads to a suboptimal rate of convergence O(N−2/3). Figure 3 compares the
two approaches in terms of computational time. We see that despite the computational
overhead which comes with adaptive refinement, this strategy is superior to uniform
refinement after only a few iterations.

In Figure 4, we vary the adaptivity parameters θ1, θ2, ϑ between zero and one. We
observe that each choice yields the optimal rate of convergence O(N3/2). Although all
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Figure 2. Experiment on L-shape with singular solution. The quantities
errℓ, ηℓ, hot1,ℓ, hot2,ℓ, and oscℓ are plotted versus the number of elements
N = #Tℓ for adaptive mesh-refinement (left) and uniform mesh-refinement
(right).
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Figure 3. Experiment on L-shape with singular solution. Error of uni-
form and adaptive mesh-refinement is plotted over the computational time
measured in seconds.

choices of the adaptivity parameters behave asymptotically similar, we see slight advan-
tages for parameter choices θ1 = θ2 = ϑ ≥ 1/2.

6.2.2. Experiment on Z-shape with singular solution. Next, Γ is the bound-
ary of the Z-shaped domain Ω in Figure 1. We prescribe the solution u of (6.1) as
u(r, α) := r4/7 cos(4α/7). As in previous case, the boundary data g is smooth and fulfills
the regularity assumptions of Theorem 4.3 resp. Corollary 5.7. Figure 5 and Figure 6 show
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Figure 4. Experiment on L-shape with singular solution. Error of adap-
tive mesh-refinement is plotted over the number of elements N = #Tℓ (left)
and over the computational time measured in seconds (right). The adap-
tivity parameters are chosen equally as θ1 = θ2 = ϑ := θ, where θ varies in
(0, 1).

the results of the experiment. Now, the solution has an even stronger singularity than in
the examples on the L-shape (u ∈ H1+4/7(Ω)). Therefore, the uniform mesh-refinement
converges only with suboptimal rate O(N−4/7), whereas adaptive mesh-refinement con-
verges with optimal rate O(N−3/2). Superiority of adaptive mesh-refinement can already
be observed for meshes with approximately 200 elements.

6.2.3. Experiment on square with smooth solution. Here, Γ is the boundary of
the square Ω in Figure 1. We prescribe the smooth solution u of (6.1) as u(x, y) :=
sinh(2πx) cos(2πy). Figure 7 and Figure 8 show the results of the experiment. Note
that for a smooth solution, uniform mesh-refinement is asymptotically the best strategy
to approximate the solution. This can be easily confirmed with results from a priori
analysis. Nevertheless, Figure 8 shows that adaptive mesh-refinement does not need
significantly more computational time to reach the same accuracy.

6.2.4. Experiment on L-shape with singular solution and singular data. Again
Γ is the boundary of the L-shaped domain Ω in Figure 1. We prescribe the solution u
of (6.1) as u(x, y) := v2/3(x, y) + v7/8(x − z1, y − z2), where vδ(x, y) := rδ cos(δα) and
z = (z1, z2) is the uppermost corner of the L-shape in Figure 1. The solution φ has a
generic singularity in the reentrant corner and in addition a singularity resulting from the
singular data g. Note that vδ ∈ H1+δ−ε(Ω) for all ε > 0. Therefore, g ∈ H1/2+7/8−ε(Γ) 6⊆
H2+ε(Γ) for all ε > 0. Hence, g does not meet the regularity assumptions of Theorem 4.3
resp. Corollary 5.7. Nevertheless, Figure 9 and Figure 10 show that the error bound errℓ
and the error estimator behave perfectly in case of adaptive refinement. Even hot1,ℓ and
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Figure 5. Experiment on Z-shape with singular solution. The quantities
errℓ, ηℓ, hot1,ℓ, hot2,ℓ, and oscℓ are plotted versus the number of elements
N = #Tℓ for adaptive mesh-refinement (left) and uniform mesh-refinement
(right).
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Figure 6. Experiment on Z-shape with singular solution. Error of uni-
form and adaptive mesh-refinement is plotted over the computational time
measured in seconds.

hot2,ℓ converge with higher order, which gives us errℓ ≃ |||φ−Φℓ||| for the computed steps.
This indicates that the regularity assumptions in Theorem 4.3 are not fully necessary.
The error for uniform mesh-refinement converges with suboptimal rate O(N−2/3) and the
data oscillations show suboptimal rate O(N−7/8), too.
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Figure 7. Experiment on square with smooth solution. The quantities
errℓ, ηℓ, hot1,ℓ, hot2,ℓ, and oscℓ are plotted versus the number of elements
N = #Tℓ for adaptive mesh-refinement (left) and uniform mesh-refinement
(right).
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Figure 8. Experiment on square with smooth solution. Error of uniform
and adaptive mesh-refinement is plotted over the computational time mea-
sured in seconds.

6.2.5. Experiment on slit. Finally, we define Γ := [−1, 1] as the boundary of R2 \
[−1, 1] in Figure 1. In contrast to our model problem, we consider indirect BEM, i.e.

V φ = f,

with f(x, y) := −x and φ(x, y) = −2x/
√
1− x2. Therefore, we do not need to approxi-

mate the right-hand side f and may use Algorithm 2.1 with θ = 1/2 instead. Again, as
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Figure 9. Experiment on L-shape with singular solution and singular
data. The quantities errℓ, ηℓ, hot1,ℓ, hot2,ℓ, and oscℓ are plotted versus
the number of elements N = #Tℓ for adaptive mesh-refinement (left) and
uniform mesh-refinement (right).
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Figure 10. Experiment on L-shape with singular solution and singular
data. Error of uniform and adaptive mesh-refinement is plotted over the
computational time measured in seconds.

shown in Figure 11 and Figure 12, the adaptive strategy is much superior compared with
uniform mesh-refinement.
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Figure 11. Experiment on slit. The quantities errℓ, ηℓ, hot1,ℓ, and hot2,ℓ
are plotted versus the number of elements N = #Tℓ for adaptive mesh-
refinement (left) and uniform mesh-refinement (right).
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Figure 12. Experiment on slit. Error of uniform and adaptive mesh-
refinement is plotted over the computational time measured in seconds.





APPENDIX A

Some Remarks on the Saturation Assumption

The saturation assumption for the Boundary Element Method states that there exists
q ∈ (0, 1) such that

|||φ− Φℓ,1||| ≤ q|||φ− Φℓ||| for all ℓ ∈ N, (A.1)

where Φℓ,1 is the Galerkin solution with respect to the uniformly refined mesh Tℓ,1 :=
refine(Tℓ, Tℓ). In terms of (h − h/2) based error estimators as proposed in [4], the
saturation assumption (A.1) is equivalent to the reliability of these error estimators.
Therefore, it is of certain interest to confirm this assumption. Up to data oscillation
terms, (A.1) was proved for the finite element method and the Poisson problem, but still
remains open for BEM. In this appendix, we attempt to prove a slightly weaker version
of (A.1).

We assume the given boundary data to satisfy g ∈ Hsreg(T0) for some sreg > 2 through-
out the whole section.

Lemma A.1. Let Tℓ ∈ T denote a mesh and let φ denote the solution of (4.1). Then, it
holds the following discrete efficiency estimate

C−1
17 ηℓ ≤ |||Φℓ,k − Φℓ|||+ hotℓ,

where k ∈ N and C17 ≥ 1 depend only on κ(Tℓ) and Γ. Here, Φℓ,k denotes the solution

of (4.2) with respect to the mesh Tℓ,k := unif(k)(Tℓ).

Proof. Recall the Céa Lemma and norm equivalence (3.12), to see

‖φ− Φℓ,k‖H−1/2(Γ) . |||φ− Φℓ,k||| ≤ |||(1− Πℓ,k)φ||| . ‖(1−Πℓ,k)φ‖H−1/2(Γ).

With the approximation properties of the L2-projection (see [14, Theorem 4.1]), we
conclude

‖φ− Φℓ,k‖H−1/2(Γ) . ‖h1/2ℓ,k (1−Πℓ,k)φ‖L2(Γ) ≤ 2−k/2‖h1/2ℓ (1− Πℓ)φ‖L2(Γ). (A.2)

Now, we argue as in the proof of Theorem 4.3 and conclude together with (A.2)

‖h1/2ℓ (φ− Φℓ)‖L2(Γ) . ‖φ− Φℓ‖H−1/2(Γ) + hotℓ

≤ ‖φ− Φℓ,k‖H−1/2(Γ) + ‖Φℓ,k − Φℓ‖H−1/2(Γ) + hotℓ

. 2−k/2‖h1/2ℓ (1−Πℓ)φ)‖L2(Γ) + ‖Φℓ,k − Φℓ‖H−1/2(Γ) + hotℓ

. 2−k/2‖h1/2ℓ (φ− Φℓ)‖L2(Γ) + ‖Φℓ,k − Φℓ‖H−1/2(Γ) + hotℓ.
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Hence, for k ∈ N sufficiently large, there holds

‖h1/2ℓ (φ− Φℓ)‖L2(Γ) . ‖Φℓ,k − Φℓ‖H−1/2(Γ) + hotℓ. (A.3)

With (4.36) and the approximation properties of the Galerkin solution, we prove

ηℓ . ‖φ− Φℓ‖H−1/2(Γ) + ‖h1/2ℓ (φ− Φℓ)‖L2(Γ)

. ‖h1/2ℓ (φ− Φℓ)‖L2(Γ)

. ‖Φℓ,k − Φℓ‖H−1/2(Γ) + hotℓ,

where we inserted (A.3) to obtain the last estimate. Norm equivalence (3.12) proves the
result. �

Now, we are able to prove the following result.

Proposition A.2 (weak saturation assumption). There exist constants k ∈ N and 0 <
q < 1 which depend only on κ(T0) and Γ such that for all Tℓ ∈ T with corresponding
Galerkin solution Φℓ, it holds

|||φ− Φℓ,k|||2 ≤ q|||φ− Φℓ|||2 + hot2ℓ .

Proof. We combine reliability (2.15), Lemma A.1, and the Galerkin orthogonality to
see

|||φ− Φℓ,k|||2 = |||φ− Φℓ|||2 − |||Φℓ,k − Φℓ|||2

≤ |||φ− Φℓ|||2 − 1
2
C−2

17 η
2
ℓ + hot2ℓ

≤ |||φ− Φℓ|||2 − 1
2
C−2

17 C
−2
rel |||φ− Φℓ|||2 + hot2ℓ

≤ q|||φ− Φℓ|||2 + hot2ℓ .

for 0 < q := 1− 1
2
C−2

17 C
−2
rel < 1. Here, we used Crel, C17 ≥ 1 to guarantee q > 0. �

In contrast to (A.1), the result above needs a certain number of uniform refinements
to achieve a contraction. This raises the question if one could construct examples in
which one uniform refinement is actually not sufficient. Obviously, one can construct
examples, for which assumption (A.1) fails to hold for an arbitrarily large number of
steps by choosing

φ ∈ P0
(
T (n+1)

)⊥
,

where T (n+1) := unif(n+1)(T0). Then, there holds Φℓ,1 = Φℓ = 0 for at least all meshes Tℓ

with ℓ ≤ n.
We conclude this appendix with a numerical example which underlines this result.

Consider the example on the L-shape from Section 6.2.1. We plot the following quantities:

• The ratio between the two Galerkin error bounds errℓ and errℓ,1.
• The ratio between the higher order terms hot1,ℓ and hot2,ℓ and the Galerkin error
bound errℓ.
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For the definition of errℓ and hot1,ℓ, hot2,ℓ, see Chapter 6. Figure 1 shows the results of the
experiment. We see that the ratio errℓ,1/errℓ levels out at approximately q = 0.35 in case of
the adaptive algorithm. Combined with the observation that the ratios hoti,ℓ/errℓ, i = 1, 2
tend to zero, this indicates that the saturation assumption (A.1) holds for this example.
For uniform mesh refinement, we see that the ratio is approximately q = 0.63. A heuristic
computation as proposed in [30] may even predict the value of q. Assume therefore that
the adaptive scheme has reached the asymptotic regime, i.e. |||φ−Φℓ||| ≈ C(#Tℓ−#T0)

−s

for all ℓ ≥ ℓ0 and some s > 0. Then, it is plausible to calculate

q =
|||φ− Φℓ,1|||
|||φ− Φℓ|||

≈
(
2(#Tℓ −#T0)

)−s

(#Tℓ −#T0)−s
= 2−s.

In case of the L-shape experiment from 6.2.1, we saw that the adaptive algorithm con-
verges with s = 3/2. Therefore, this calculation predicts q ≈ 0.3536. Analogously, we
get s = 2/3 and therefore q ≈ 0.6299 for uniform mesh refinement. Both cases coincide
very well with the experimental results.
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Figure 1. Test for saturation on the L-shape with adaptive mesh refine-
ment (left) and uniform mesh refinement (right). The corresponding quan-
tities are plotted over the number of elements N .
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