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Kurzfassung

Die Terminierung von Computerprogrammen zu entscheiden ist eines der ersten und
berüchtigtsten Probleme der Informatik. In dieser Arbeit automatisieren wir die Termi-
nierungsanalyse einer Klasse von probabilistischen Programmen, der Klasse sogenannter
Prob-solvable loops, mithilfe von Beweisregeln basierend auf Supermartingalen. Wir
konstruieren Algorithmen für almost-sure-termination, positive-almost-sure-termination,
sowie für die Negationen der Konzepte. Für diesen Zweck nutzen wir strukturelle Ei-
genschaften von Prob-solvable loops. Die Eigenschaften ermöglichen uns asymptotische
Schranken für polynomielle Ausdrücke über Programmvariablen automatisch zu berech-
nen. Diese Schranken werden dann benutzt, um die Bedingungen der probabilistischen
Beweisregeln, wie zum Beispiel die Bedingung für Supermartingale, zu überprüfen.

Um die Negation von almost-sure-termination festzustellen, verallgemeinern wir exis-
tierende Beweisregeln, die auf repulsiven Supermartingalen basieren. Dies ermöglicht
uns unbeschränkte, polynomielle Updates von Programmvariablen zu unterstützen. Die
verallgemeinerte Beweisregel ist für allgemeine probabilistische Programme verwend-
bar und nicht nur für Prob-solvable loops. Weiters, identifizieren wir eine Subklasse
von probabilistischen Programmen, für die wir einen vollständigen und korrekten Al-
gorithmus entwickeln, welcher almost-sure-termination für Programme der Subklasse
entscheidet. Unsere identifizierte Subklasse ist strikt größer als die Klasse sogenannter
constant-probability-programs, welches die größte derzeit bekannte Klasse ist, für die
almost-sure-termination entscheidbar ist.

Wir kombinieren die entwickelten Algorithmen für die probabilistische Terminierungs-
analyse in unserem neuen Softwaretool Amber. Experimentelle Ergebnisse zeigen, dass
Amber probabilistische Programme handhaben kann, die unerreichbar für andere state-
of-the-art Tools sind.
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Abstract

Deciding termination of computer programs is one of the most infamous challenges in
computer science. In this thesis, we automate the termination analysis of a class of
probabilistic programs, called Prob-solvable loops, through (super-)martingale based proof
rules. We establish incomplete but sound algorithms for almost-sure termination, positive-
almost-sure termination, and the negations thereof. We achieve this, by exploiting the
structural restrictions of Prob-solvable loops. The restrictions let us effectively compute
asymptotic bounds on polynomial expressions of program variables. These bounds are
then used to decide the preconditions of the probabilistic termination proof rules, like
the supermartingale condition.

For certifying the negation of almost-sure termination, we generalize existing proof
rules involving repulsing supermartingales, to handle unbounded polynomial variable
updates of programs. This generalization applies to general probabilistic programs even
beyond Prob-solvable loops. Moreover, we identify a subclass of probabilistic programs
and introduce a sound and complete procedure deciding almost-sure termination of
such programs. Our identified subclass strictly subsumes the class of so-called constant
probability programs, the largest decidable subclass currently known.

We combine our proposed algorithms for probabilistic termination analysis in our new
tool Amber. Experimental results demonstrate that Amber can handle probabilistic
programs that are out of reach for other state-of-the-art tools.
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CHAPTER 1
Introduction

1.1 Motivation & Problem Statement

The problem of deciding the termination behavior of traditional programs, first considered
by Alan Turing and known as the Halting Problem [Tur37], essentially initiated Computer
Science as well as Computability Theory and emerged from the field of Mathematical Logic.
Since first stated by Turing, it is well known that the Halting Problem is undecidable.
However, for which non-trivial subclasses of all possible instances, an effective procedure
deciding termination can be given, was heavily researched in the second half of the
twentieth century and still is to this day [CPR06], in the rise of new programming
languages and principles.

Probabilistic programming is one such emerging paradigm [Gha15]. In a nutshell, proba-
bilistic programming allows for specifying probabilistic models (e.g. Bayesian networks,
Markov decision processes) as programs in a suitable language and provides automatic
inference for the specified models. These programs are referred to as probabilistic pro-
grams (PPs). In the wider sense, also randomized algorithms can be thought of as PPs.
In [Gha15], Zoubin Ghahramani wrote that there are several reasons why probabilistic
programming could prove to be revolutionary for machine intelligence and scientific
modeling, such as Bayesian optimization, probabilistic data compression or automating
the discovery of plausible and interpretable models from data.

A natural question that arises in PPs is one of the most central problems in computer
science: How can PPs be proven terminating? What is the termination behavior of PPs?
For which subclasses of PPs can we effectively answer this question? Since PPs are
employed in safety-critical environments [ARS13] [BBR+15] [FDG+19], providing formal
guarantees for these programs is not only a natural challenge but a necessary task to
solve.

1
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1. Introduction

In this thesis we will study classes of PPs, in particular, the restricted class of Prob-
solvable loops [BKS19], with the overall goal of automating the termination analysis of
such programs.

1.2 Contributions

The contributions of this thesis are abundant. We provide the following results to improve
the state-of-the-art:

1. Proof Rules: A novel proof rule for certifying non-termination of PPs with polyno-
mial variable updates (Chapter 3, Section 3.4),

2. Complete Subclass: A characterization of a subclass of PPs for which the termination
rules are complete (Chapter 3, Section 3.6),

3. Automation: Methods enabling automation of selected proof rules together with
and implementations thereof in our tool Amber (Chapter 4).

1.2.1 Proof Rules

In the last few years, quite a few proof rules involving martingales, for example [CS13]
[FFH15] [MMKK17] [CNZ17] [ACN17], have been proposed (see Chapter 3). Applied
to a PP, they reveal something about its termination behavior. The proof rules for
non-termination (i.e. there is a non-zero probability of not terminating) come with
restricting assumptions, rendering them useless for PPs beyond constant variable updates.
We propose a new proof rule for non-termination applicable to a wider range of PPs than
the current state-of-the-art allows for.

1.2.2 Complete Subclass

Faced with an individual PP, a termination proof rule can be applied or not, depending
on the preconditions of the proof rule and the program. The termination behavior of
PPs containing just constant updates is known to allow for a simple decision procedure
[GGH19]. Testing membership of the identified subclass should, of course, be smaller
in complexity than deciding termination itself. In this master thesis, we characterize
a class of PPs strictly subsuming the class of constant update programs and provide a
decision procedure deciding its termination behavior.

1.2.3 Automation

Implementing several state-of-the-art termination proof rules for PPs has not yet been
done. In this thesis, we propose our new tool Amber, implementing several proof rules for
termination as well as non-termination. We extend the class of Prob-solvable programs
[BKS19] by adding loop guards and implement the proof rules for this class of programs.

2
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1.3. Methodology

Moreover, automating the mentioned proof rules is not merely an implementation task
but also requires lemmas and theorems providing shortcuts to the preconditions of the
rules. Developing these lemmas and theorems is also part of this thesis.

1.3 Methodology

We establish the results of this thesis using the following methodologies:

• Extending the state-of-the-art of probabilistic termination proof rules is done
through deduction. We give mathematical definitions of PPs and other required
notions. The new proof rules are stated in the form of theorems and justified with
deductive arguments. We make heavy use of the well-known mathematical theory
of martingales to state and prove our results.

• Deduction is also the method of choice for identifying the subclass of probabilistic
programs for which the proof rules are complete.

• Amber is evaluated empirically. We compare our tool against other existing
solutions, wherever available.

1.4 Structure of the Thesis

In Chapter 2 all notions on which the rest of the thesis builds are introduced. Concepts
from the area of programming languages as well as from probability theory are given.
Moreover, the chapter formalizes our research questions on the termination of PPs.

Subsequently, in Chapter 3 we state already existing proof rules for different probabilistic
termination properties. Furthermore, we introduce our new proof rule certifying non-
termination for probabilistic programs and characterize a fragment of programs for which
the presented proof rules constitute a complete decision procedure.

Chapter 4 automates the previously established proof rules for the fragment of Prob-
solvable loops. We provide sound relaxations of the mentioned proof rules enabling us to
decide the probabilistic termination properties from Chapter 2 automatically.

3
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CHAPTER 2
Preliminaries

2.1 Probabilistic Programs (PPs)

The syntax of PPs is usually defined in the form of a while-language [MM06] [CS13]
[CNZ17] [HKGK19]. Additionally to the typical language constructs present in a while-
language, PPs are equipped with a probabilistic branching mechanism branch1 [p] branch2.
Intuitively, branch1 [p] branch2 is interpreted as the program run of the program branch1

with probability p and with probability 1 − p as the program run of branch2.

Operationally, a PP constitutes a Markov Decision Process (MDP) [GKM12]. A PP can
be semantically described as a probabilistic transition system [CS13] or as a probabilistic
control flow graph [CNZ17] which in turn induce an MDP together with its associated
probability space.

In what follows, we introduce a class of PPs called Prob-solvable loops [BKS19]. Prob-
solvable loops are a restriction of general PPs expressible in a while-language as defined
for example in [MM06]. The major advantage of Prob-solvable loops is that their
program variables can be represented in an algebraically closed form only depending on
the loop counter. Moreover, these closed forms can be calculated automatically from
recurrence relations. This fact is heavily exploited when automating termination analysis
for Prob-solvable loops.

Afterwards, we will directly define the probability space represented by a Prob-solvable
loop. This process is not specific to Prob-solvable loops and can be analogously applied
to general PPs. Along the way, we will state some general notions and results from
probability theory. For a more detailed introduction to probability theory and MDPs,
we refer to [Wil91], [GGG+01], [KSK76].
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2. Preliminaries

2.2 Prob-solvable Loops

We will slightly modify the notion of Prob-solvable loops introduced in [BKS19] to be
able to study their termination behavior. In [BKS19], the authors were not concerned
with termination and only allowed the trivial loop guard true. Therefore, we extend the
original definition with non-trivial loop guards. Moreover, we restrict all coefficients to
be from R and do not allow probability distributions as coefficients. In what follows, we
refer with Prob-solvable loop to the following programs.

Definition 1 (Syntax of Prob-solvable loops). A Prob-solvable loop with variables
x1, ..., xm, where m ∈ N, is a program of the form

I while G do U end

such that

• I (initialization) is a sequence of m assignments x1 := r1, ..., xm := rm for ri ∈ R;

• G (guard) is a strict inequality P > Q, where P and Q are polynomials over the
program variables;

• U (update) is a sequence of m probabilistic updates of the form
xi := ai1xi + Pi1 [pi1] ai2xi + Pi2 [pi2] ... [pili ] ai(li+1)xi + Pi(li+1), where

aij ∈ R are real constants and Pij ∈ R[x1, ..., xi−1] are polynomials. Further, for
every i it has to hold that

∑

j pij < 1 and pij ∈ [0, 1], for all j.

For a Prob-solvable loop L we refer to its initialization, guard and update parts by IL,
GL and UL respectively. If the loop L is clear from context, the subscript will be omitted.
Throughout a Prob-solvable loop, symbolic constants can be used instead of concrete real
numbers.

Intuitively, an update like x := x + 2 [p] x − 3 means that the program variable x gets
incremented by 2 with probability p and decremented by 3 with probability 1 − p. The
semantics of Prob-solvable loops will be precisely stated in the next section by associating
a Prob-solvable loop with a probability space.

A notable property of Prob-solvable loops is that the statistical moments of program
variables can be expressed in closed-forms, that means just dependent on the loop counter
[BKS19]. Moreover, these closed-forms always exist. The main restriction enabling this
is that a program variable x is, figuratively speaking, only allowed to depend on other
variables preceding x in the loop body.

An example of a Prob-solvable loop is the following program which implements the
well-known symmetric 2D-random-walk.

6
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2.3. Canonical Probability Space

Example 1 (Symmetric 2D-random-walk).

left := 0

right := 0

top := 0

down := 0

x := x0

y := y0

while x2 + y2 > 0 do

left := 1 [1
4 ] 0

right := 1 − left [1
3 ] 0

top := 1 − (left + right) [1
2 ] 0

down := 1 − (left + right + top)

x := x + right − left

y := y + top − down

end

2.3 Canonical Probability Space

In order to define a canonical probability space for a given Prob-solvable loop, we
fix a Prob-solvable loop L for the remainder of this chapter. As already mentioned,
a PP operationally corresponds to an MDP. An MDP induces a special probability
space, known in the literature as its sequence space [KSK76]. We will associate to the
loop L the sequence space of its corresponding MDP. Our approach closely follows the
one in [HKGK19] where the authors also associate a PP with the sequence space of
its corresponding MDP. We begin by defining the notion of a state and a run for a
Prob-solvable loop.

Definition 2 (State). The state of the Prob-solvable loop L after a given number of loop
iterations i ∈ N is a vector s ∈ R

m where m is the number variables in L. With s[i]
or s[xi] we will denote the i-th component of the vector s representing the value of the
variable xi in state s.

Definition 3 (Run). A run ϑ of L is an infinite sequence of states. So ϑ = s0s1s2s3...

where every si is a state.

Note that any infinite sequence of states classifies as a run. Later on, however, infeasible
runs will be given measure 0.
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2. Preliminaries

A probability space (Ω, Σ,P) consists of a measurable space (Ω, Σ) and a probability
measure P for this space. Let us first define a measurable space for L and then equip it
with a probability measure.

Definition 4 (Loop Space). The Prob-solvable loop L induces a canonical measurable
space (ΩL, ΣL) where the sample space ΩL := (Rm)ω, that means ΩL is the set of all
infinite sequences of program states or in other words the set of all program runs.

ΣL is the smallest σ-field containing all cylinder sets Cyl(π) := {πϑ | ϑ ∈ (Rm)ω} for all
finite prefixes π ∈ (Rm)+, that is

ΣL = 〈{Cyl(π) | π ∈ (Rm)+}〉σ.

To complete the loop space to a proper probability space for which probabilistic questions
can be stated, we need to define a probability measure. We continue by defining the
probability p(π) of a finite non-empty prefix π of a program run.

p(s) = µI(s) (2.1)

p(πss′) =

{

p(πs) · [s′ = s], if s � ¬G

p(πs) · µU (s, s′), if s � G
(2.2)

In the definition above, µI(s) denotes the probability that after initialization the loop
L is in state s. Because probabilistic constructs are not allowed in I, µI(s) is a Delta-
distribution such that µI(s) = 1 for the unique state s defined by I and µI(s′) = 0
for s′ 6= s. Moreover, µU(s, s′) denotes the probability that after one iteration of the
loop body U starting from state s the resulting program state is s′. These probabilities
are, as notation suggests, solely determined by the initialization I and the loop body U
respectively.

Intuitively, for a finite non-empty prefix π of a program run, the value p(π) is the
probability that when running L, that π is the sequence of the first |π| program states.
Note that we are taking a loop-based approach where the effect of the initialization and
the effect of the loop-body are captured in a single states.

Now we have everything at hand for defining the canonical probability measure for the
loop space.

Definition 5 (Loop Measure). For the Prob-solvable loop L a canonical probability
measure, called Loop Measure, on its loop space is given by P

L : ΣL → [0, 1] with

P
L(Cyl(π)) = p(π)

The loop space together with the loop measure forms a probability space, i.e. (ΩL, ΣL,PL) is
a probability space. Whenever the Prob-solvable loop is clear from context, the superscript
L will be omitted.
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2.4. Probabilistic Termination

2.4 Probabilistic Termination

Let R denote R ∪ {+∞, −∞}. Random variables X will be of central interest and are
as usual in probability theory defined as (Σ-)measurable functions X : Ω → R for a
probability space (Ω, Σ,P). As a reminder, X being measurable means that for every
open set U ⊆ R it holds that X−1(U) ∈ Σ. The expected value of X, denoted by E(X),
is defined as the Lebesgue integral of X over the whole space i.e. E(X) :=

∫

Ω XdP. In
the special case that X takes only countably many values we get:

E(X) =

∫

Ω
XdP =

∑

r∈X(Ω)

P(X = r) · r

An essential random variable is the Looping time which allows us to formalize different
termination properties for Prob-solvable loops.

Definition 6 (Looping Time). The random variable

T ¬G : Ω → N ∪ {∞}, ϑ 7→ inf{n ∈ N | ϑ[n] � ¬G}

is called the looping time of L.

Intuitively, the looping time maps a given program run to the index of the first state
falsifying the loop guard or to ∞ if no such state exists. With this notion at hand we
can finally formalize different termination properties.

Definition 7 (Termination). The Prob-solvable loop L is defined to be almost-surely-
terminating (AST) if P(T ¬G < ∞) = 1. If additionally E(T ¬G) < ∞ holds, then L is
said to be positively-almost-surely-terminating (PAST).

For traditional deterministic programs the notions AST and PAST coincide. If a determin-
istic program terminates with probability 1, it does so in a finite expected time. However,
for a probabilistic program it is possible to reach a terminating state with probability 1
and on average require an infinite amount of time. It is a well-known mathematical result
that this is the case for the previously introduced symmetric 2D-random-walk. A smaller
example which is AST but not PAST is the symmetric 1D-random-walk. Similar as for
the symmetric 2D-random-walk, also the symmetric 1D-random-walk can be encoded as
a Prob-solvable loop.

Example 2 (Symmetric 1D-random-walk).
x := x0

while x > 0 do

x := x + 1 [1
2 ] x − 1

end
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2. Preliminaries

The symmetric 1D-random walk is a random walk on the number line. Starting at some
positive number x0, x "walks" to the left or to the right with equal probability of 1

2 . x

reaches the point 0 with probability 1. However, the expected time for this event to occur
is ∞. Hence, the symmetric 1D-random walk is not PAST, but is AST.

2.5 Martingale Theory

In some cases, P(T ¬G < ∞) and E(T ¬G < ∞) can be effectively computed. For general
PPs, however, these quantities are uncomputable. The reason for that is that classical
deterministic programs are special PPs and the ability to compute either P(T ¬G < ∞) or
E(T ¬G < ∞) would imply the ability to solve the Halting Problem, which is undecidable.

As a result, sufficient conditions for AST, PAST and their negations have been developed
(see Chapter 3). Most of these sufficient conditions make use of some notion related to
(super-)martingales. Martingales are special stochastic processes.

Definition 8 (Stochastic Process). A stochastic process (Xi)i∈N is a sequence of random
variables. Every arithmetic expression E over the program variables of the Prob-solvable
loop L induces a stochastic process (Ei)i∈N:

Ei : Ω → R Ei(ϑ) := E(ϑi) (2.3)

That means, for a given program run ϑ, Ei(ϑ) is the evaluation of E in the i-th state of
the program run.

For a boolean proposition B containing program variables, we refer by Bi to the result of
substituting every program variable x by xi in the proposition B.

Consider again the 1D-random walk as an example, the stochastic process (xi)i∈N is such
that every xi maps a given program run to the value of the variable x in the i-th state of
the program run.

It is worth mentioning that up to this point no notion of execution of a PP has been
introduced. All that happened is, we considered all possible sequences of states as
program runs and defined a suitable probability measure ruling out impossible runs.
The σ-algebra ΣL contains the cylinder sets for finite program run prefixes of arbitrary
length. In ΣL we can differentiate between any two distinct program runs no matter at
which point they first become different. This does not capture the gradual information
gain when executing a program. After executing the initialization of the loop L we only
know the first state of the program run. We cannot differentiate between program runs
differing only after the first state. If afterward the loop body gets executed once, we gain
information about the second state of the run and so on. In probability theory, there is a
well-known notion to capture the information available at a certain point in time, called
filtration.
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2.5. Martingale Theory

Definition 9 (Filtration). For a probability space (Ω, Σ,P), a filtration is a sequence
(Fi)i∈N such that

• every Fi is a sub-σ-algebra,

• and Fi ⊆ Fi+1.

(Ω, Σ, (Fi)i∈N,P) is called a filtered probability space.

We can use this concept to define a specific filtration modeling the gradual information
gain inherent in executing a program. We further enrich the loop space with the loop
filtration to form a filtered probability space.

Definition 10 (Loop Filtration). The sequence (FL
i )i∈N is a filtration of ΣL, where

FL
i = 〈{Cyl(π) | π ∈ (Rm)+, |π| = n + 1}〉σ.

(FL
i )i∈N is called loop filtration. (ΩL, ΣL, (FL)i∈N,PL) forms a filtered probability space.

If L is clear from context, the superscript will be omitted.

¸

FL
0 is the smallest σ-algebra containing the cylinder sets of finite prefixes of program

runs of length 1. Therefore, the cylinder sets of finite prefixes of program runs of length
2 and higher are not present in FL

0 . This means FL
0 captures exactly the information

available about the program run after executing just the initialization of L. Similarly, FL
1

captures the information about the program run after the loop body has been executed
once, FL

2 after two executions and so on.

Going back to the stochastic process (xi)i∈N of the symmetric 1D-random-walk, we
observe that the event {ϑ ∈ Ω | xi(ϑ) = r} denoted by {xi = r} is FL

i -measurable for
every i ∈ N and every r ∈ R. Intuitively, this means that the value of xi depends only
on information available up to the i-th iteration of the loop body and not on future
information. This is captured in the following notion.

Definition 11 (Adapted Process). A stochastic process (Xi)i∈N is said to be adapted to
a filtration (Fi)i∈N if Xi is Fi-measurable for every i ∈ N.

In fact, it is easy to see that for every arithmetic expression E over the variables of
the Prob-solvable loop L, its stochastic process (Ei)i∈N is adapted to the loop filtration
because the value of Ei only depends on the information available up to the i-th loop
iteration.

With the loop filtration at hand, we may want to condition the expected values of random
variables on some FL

i . Naturally speaking, we would like to ask about the expected value
of a random variable X given the information about the first i loop iterations, in symbols
E(X | FL

i ). Formally, conditional expected values are defined as follows.
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2. Preliminaries

Definition 12 (Conditional Expected Value). For a probability space (Ω, Σ,P), an
integrable random variable X and a sub-σ-algebra ∆ ⊆ Σ, the expected value of X

conditioned on ∆, E(X | ∆), is any ∆-measurable function such that for every D ∈ ∆
we have

∫

D
E(X | ∆)dP =

∫

D
XdP. (2.4)

The random variable E(X | ∆) is almost surely unique.

Martingales and related notions are of central importance for probabilistic termination
proof rules, i.e. for sufficient conditions certifying AST, PAST or their negations. Up to
this point, all required concepts for defining martingales have been introduced.

Definition 13 (Martingale). Let (Ω, Σ, (Fi)i∈N,P) be a filtered probability space and
(Mi)i∈N be an integrable stochastic process adapted to (Fi)i∈N. Then (Mi)i∈N is a mar-
tingale if

E(Mi+1 | Fi) = Mi. (2.5)

Moreover, (Mi)i∈N is called a supermartingale (SM) if

E(Mi+1 | Fi) ≤ Mi. (2.6)

For an arithmetic expression E over the program variables, we refer by E’s martingale
expression to the expression E(Ei+1 − Ei | Fi).

Remark 1. Due to the linearity of the conditional expected value, the defining conditions
E(Mi+1 | Fi) = Mi and E(Mi+1 | Fi) ≤ Mi are equivalent to E(Mi+1 − Mi | Fi) = 0 and
E(Mi+1 − Mi | Fi) ≤ 0 respectively.

Returning to the symmetric 1D-random-walk and its stochastic process (xi)i∈N, we can
compute E(xi+1 | Fi) = 1

2(xi + 1) + 1
2(xi − 1) = xi, which means that x is a martingale.

Because every martingale is also a SM, x is of course also a SM. A Prob-solvable loop
and a stochastic process which is a SM but not a martingale is for example given by an
asymmetric 1D-random-walk favoring to decrease the value of x.

Example 3 (Asymmetric 1D-random-walk). Let ǫ > 0 be fixed.
x := x0

while x > 0 do

x := x + 1 [1
2 − ǫ] x − 1

end
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2.5. Martingale Theory

For this program we get with a simple calculation E(xi+1 | Fi) = (1
2 − ǫ)(xi + 1) + (1

2 +
ǫ)(xi − 1) = xi − 2ǫ < xi. Therefore, x is a SM but not a martingale.

Finally, we want to draw attention to the notion of a stopping time.

Definition 14 (Stopping Time). Let (Ω, Σ, (Fi)i∈N,P) be a filtered probability space. A
random variable T : Ω → N ∪ {∞} is called stopping time if {T = i} ∈ Fi for all i ∈ N.

A stopping time models the time at which a stochastic process exhibits a specific property
and should be stopped. Usually, a stopping time is defined by an underlying criterion,
which describes when a stochastic process should be stopped. The defining condition
{T = i} ∈ Fi states that this underlying criterion is only allowed to be based on the
present or past and must not consider information from the future. For a stochastic
process X and a stopping time T , the stopped process is denoted by XT and defined by

XT i(ϑ) := Xmin{i,T (ϑ)}(ϑ). (2.7)

Considering the filtered loop space (ΩL, ΣL, (FL)i∈N,PL), the random variable looping
time T ¬G is a stopping time for this space. That is because to determine whether or
not the looping time is n for a given run, it suffices to know the first n + 1 states of the
program run (initial state plus n loop iterations).

A central theorem connecting martingales and stopping times is the Optional Stopping
Theorem.

Theorem 1 (Optional Stopping Theorem [Wil91]). Let T be a stopping time and M a
SM. Assume T is bounded (i.e. for some N ∈ N, T (ϑ) ≤ N for all ϑ ∈ Ω) Then MT is
integrable and

E(MT ) ≤ E(M0)

If M is a martingale E(MT ) = E(M0).

In the literature, there are different versions of this theorem with different preconditions.
Most preconditions require the stopping time to be bounded in one way or another.
Other works also require bounds on M . In [Wil91, 10.10] the author lists the different
preconditions in a single theorem.
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CHAPTER 3
Proof Rules Certifying

Termination Properties

The two major termination properties for probabilistic programs are almost-sure-termination
(AST) and positive-almost-sure-termination (PAST). As explained in Chapter 2, these
notions are undecidable in general. An in-depth analysis of the hardness of AST and
PAST can be found in [KK15]. As a result, sufficient conditions (we will call them proof
rules) for these concepts have been developed. In this chapter, we give an overview
of some of these proof rules. After that, in Section 3.4, we state our first result, a
generalization of a proof-rule witnessing non-AST which applies to Prob-solvable loops
with polynomial variable updates. Following, we characterize the class of Prob-solvable
loops for which the considered proof rules provide a complete decision procedure.

For the remainder of this chapter we fix a Prob-solvable loop L together with its canonical
filtered probability space (Ω, Σ, (F)i∈N,P). With the term pure invariant, we refer to an
invariant in the classical deterministic sense, that means to a boolean expression holding
in all states on all computation paths. Because of the way we defined the probability
space corresponding to a Prob-solvable loop, this means that a pure invariant has to be
true before and after every loop iteration.

3.1 Positive-Almost-Sure-Termination (PAST)

A proof rule for PAST first introduced in [CS13] relies on the notion of ranking-
supermartingales (RSMs). The proof rule requires a SM to decrease by a fixed ǫ

on average at every step. At first glimpse, it seems to resemble the concept of a ranking
function that can be used to prove termination for deterministic programs. However, the
theory behind the rule and the techniques necessary for proving it are quite different
compared to ranking functions.
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3. Proof Rules Certifying Termination Properties

Theorem 2 (Ranking-Supermartingale-Rule (RSM-Rule) [CS13] [FFH15]). Let M :
R

m → R be an expression over the program variables of L and ǫ > 0. Moreover, let I be
a pure invariant of L. Assume the following conditions hold for all i ∈ N:

1. G ∧ I =⇒ M > 0
(terminates when ≤ 0)

2. Gi ∧ Ii =⇒ E(Mi+1 − Mi | Fi) ≤ −ǫ

(RSM condition)

Then L is PAST and E(T ¬G) < M0

ǫ
. In this case, M is called an ǫ-ranking supermartin-

gale.

The previously discussed asymmetric 1D-random-walk, biased towards decreasing x, can
be proved to be PAST with the RSM-Rule. A more complex example whose PAST can
be proven using Theorem 2 is the following.

Example 4. Consider the following Prob-solvable loop:
y := 1

x := 10

while x > 0 do
y := y + 1

x := x − y2 [1
2 ] x + y

end

For the expression over program variables, we choose M := x. It is easy to see that
G =⇒ M > 0 holds, because x > 0 =⇒ x > 0. Showing Gi ∧ Ii =⇒ E(Mi+1 − Mi |
Fi) ≤ −ǫ leads to the following:

E(Mi+1 − Mi | Fi) ≤ −ǫ

xi −
y2

i

2
−

yi

2
− xi ≤ −ǫ

ǫ −
y2

i

2
−

yi

2
≤ 0

Therefore, the RSM-condition holds when ǫ := 1 and using y ≥ 1 as the invariant I. As
a result, we conclude by the RSM-Rule that the program in this example is PAST.
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3.2. Almost-Sure-Termination (AST)

3.2 Almost-Sure-Termination (AST)

The symmetric 1D-random walk, as seen in Chapter 2, is a seemingly simple program
that is AST but on average needs an infinite amount of time doing so. This means the
program is not PAST. Therefore, it is out of reach for the RSM-rule. In [MMKK17], the
authors introduce a new proof rule which does not require the SM to be ranking and
applies to programs that are not PAST.

Theorem 3 (Supermartingale-Rule (SM-Rule) [MMKK17]). Let M : R
m → R≥0 be

an expression over the program variables. Let p : R≥0 → (0, 1] (for probability) and
d : R≥0 → R>0 (for decrease) be fixed functions, both of them being monotonically
decreasing (antitone) on strictly positive arguments. Moreover, let I be a pure invariant
of L. Assume the following conditions hold for all i ∈ N:

1. I ∧ G =⇒ M > 0
(terminates when ≤ 0)

2. for all r ∈ R>0 : Ii ∧ Gi =⇒ P(Mi+1 ≤ Mi − d(Mi) | Fi) ≥ p(Mi)
(decreases by at least d with probability at least p)

3. Gi ∧ Ii =⇒ E(Mi+1 − Mi | Fi) ≤ 0
(SM condition)

Then L is AST.

The requirement of d and p being antitone rules out that the progress towards termination
becomes infinitely small while still being positive. The SM-Rule can be used to certify
almost-sure-termination for the symmetric 1D-random-walk in the following way.

Example 5. Let us revisit the symmetric 1D-random walk:
x := x0

while x > 0 do

x := x − 1 [1
2 ] x + 1

end

Let M := x, p := 1
2 and d := 1.

Both p and d are trivially antitone.
Moreover, the SM-Rule can be applied because:

• Condition 1 holds because x > 0 =⇒ x > 0.

• Condition 2 holds because M decreases by at least d with probability p in every
iteration.
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3. Proof Rules Certifying Termination Properties

• Condition 3 holds because:

E(Mi+1 − Mi | Fi) ≤ 0

xi − xi ≤ 0

Therefore, we can conclude using the SM-Rule that the symmetric 1D-random-walk is
AST.

3.3 Non-Termination

Two sufficient conditions for certifying the negations of AST and PAST have been
introduced in [CNZ17], where the proof rule for non-PAST is a slight variation of the
non-AST rule. Both rules rely on the notion of a SM being repulsing. Intuitively, this
means that some expression M on average decreases in every step but when terminating
would have to be positive, so figuratively it repulses terminating states.

Theorem 4 (Repulsing-AST-Rule (R-AST-Rule) [CNZ17]). Let M : Rm → R be an
expression over the program variables of L, ǫ > 0 and c > 0. Moreover, let I be a pure
invariant of L. Assume the following conditions hold for all i ∈ N:

1. M0 < 0
(negative at beginning)

2. I ∧ ¬G =⇒ M ≥ 0
(≥ 0 on termination)

3. Ii ∧ Gi =⇒ E(Mi+1 − Mi | Fi) ≤ −ǫ

(RSM condition)

4. |Mi+1 − Mi| < c

(c-bounded differences)

Then L is not AST. The expression M is called an ǫ-repulsing supermartingale with
c-bounded differences.

Next is a simple program illustrating how the R-AST-Rule can be applied for certifying
that a program is not AST.

Example 6. Consider the following program:
x := x0

while x > 0 do

x := x − 1 [1
2 ] x + 2

end
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3.3. Non-Termination

Choose M := −x as the expression over the program variables. The R-AST-Rule can be
applied because condition 1 (−x0 < 0), condition 2 (x ≤ 0 =⇒ −x ≥ 0) and condition 4
(c-bounded difference) hold trivially. Investigating condition 3 gives us:

E(Mi+1 − Mi | Fi) ≤ −ǫ

−xi −
1

2
+ xi ≤ −ǫ

−
1

2
≤ −ǫ

Therefore, the RSM-condition of the R-AST-Rule holds when ǫ := 1
2 . As a result, we

conclude that the program is not AST.

As already proved by the SM-Rule, the symmetric 1D-random-walk is AST. However, we
have not yet shown that the symmetric 1D-random-walk on average requires an infinite
amount of time for termination, meaning the program is not PAST. In [CNZ17] the
authors also include a variation of the R-AST-Rule which can be used for certifying a
program not to be PAST.

Theorem 5 (Repulsing-PAST-Rule (R-PAST-Rule) [CNZ17]). Let M : Rm → R be an
expression over the program variables of L, ǫ ≥ 0 and c > 0. Moreover, let I be a pure
invariant of L. Assume the following conditions hold for all i ∈ N:

1. M0 < 0
(negative at beginning)

2. I ∧ ¬G =⇒ M ≥ 0
(≥ 0 on termination)

3. Ii ∧ Gi =⇒ E(Mi+1 − Mi | Fi) ≤ −ǫ

(RSM condition)

4. |Mi+1 − Mi| < c

(c-bounded differences)

Then L is not PAST.

The only difference between the conditions for the R-AST-Rule and the R-PAST-Rule is
that for the R-PAST-Rule ǫ ≥ 0 whereas for the R-AST-Rule ǫ > 0 has to hold. With the
R-PAST-Rule at hand, the symmetric 1D-random-walk can be shown not to be PAST.
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3. Proof Rules Certifying Termination Properties

Example 7. Returning once again to the symmetric 1D-random-walk:
x := x0

while x > 0 do

x := x − 1 [1
2 ] x + 1

end

This time choose M := −x, in comparison to x when certifying AST with the Super-
martingale Rule. M0 is negative. Moreover, condition 2 holds because x ≤ 0 =⇒ −x ≥ 0.
Furthermore, M has differences bounded by 1. Regarding condition 3 of the R-PAST-Rule,
we get:

E(Mi+1 − Mi | Fi) ≤ 0

−xi + xi ≤ 0

0 ≤ 0

Therefore, the R-PAST-Rule applies and we conclude that the symmetric 1D-random-walk
is not PAST.

3.4 Polynomial Non-Termination

The R-AST-Rule, certifying non-AST for PPs, requires a given SM M to have c-bounded
differences. However, in many situations, this precondition makes it unclear how to
apply the proof rule to PPs containing polynomial updates without non-trivial program
transformations. In [CNZ17], the proof rule was introduced for PPs with affine updates
only. The following example illustrates the explained limit of the R-AST-Rule.

Example 8 (Limits of R-AST-Rule).
x := 10

y := 0

while x > 0 do

x := x + y2 [2
3 ] x − y2

y := y + 1

end

M := −x is an ǫ-repulsing supermartingale. However, because |Mi+1 − Mi| = i2, the
differences of M cannot be bounded by a global constant. Therefore, regarding non-AST,
the R-AST-Rule cannot be applied to the loop with M , because it would require M to have
c-bounded differences. However, the program is not AST, as we argue and prove next.

In this section we will show that a generalization of the R-AST-Rule is possible, allowing
to prove non-AST of Prob-solvable loops containing polynomial updates. The basic
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3.4. Polynomial Non-Termination

idea is the following: At the heart of R-AST-Rule’s proof lies Azuma’s inequality, a
powerful concentration result for SMs. In [CNZ17] it is stated that to apply Azuma’s
inequality to a SM M , M has to have c-bounded differences. However, this is not the
most general form of Azuma’s inequality, as it only requires the differences of M to be
bounded, that means |Mi+1 − Mi| < ci+1 (compared to |Mi+1 − Mi| < c). Furthermore,
|Mi+1 − Mi| < ci+1 is always satisfied for Prob-solvable loops: Just take all possible
computation paths of length i + 1 and define ci+1 as an upper bound of |Mi+1 − Mi| over
all these computation paths. As long as M is well-defined and finite this upper bound
ci+1 exists.

Using the reasoning sketched above, we aim to generalize the R-AST-Rule by relaxing
the precondition which requires c-bounded differences for M . We replace the condition of
the R-AST-Rule involving c-bounded differences with a new condition. This modification
will prove to be a proper generalization and allow for proving non-AST for strictly more
programs. The generalization we propose in Theorem 7 is not restricted to Prob-solvable
loops, but can be used on any PP. To give a preview, the new condition will require the
bounds ci to asymptotically grow only as fast as ǫi (that means ci ∈ O(ǫi)), where ǫi

stems from a generalization of ǫ-repulsing supermartingales. We will start making our
ideas precise by generalizing repulsing supermartingales as follows.

Definition 15 (Generalized Repulsing Supermartingale). Let M be a supermartingale
and T be a stopping time (e.g. the looping time T ¬G). Moreover, let (ǫi)i∈N be a sequence
over R

+. M is ǫi-repulsing if it is ǫi-decreasing until T (i.e. i < T =⇒ E(Mi+1 − Mi |
Fi) ≤ −ǫi+1) as well as for all ϑ ∈ Ω and i ∈ N it holds that T (ϑ) = i =⇒ Mi(ϑ) ≥ 0.

Our definition of ǫi-repulsing supermartingales is a proper generalization of [CNZ17].
When restricting the sequence (ǫi)i∈N to be constant (i.e. ǫi = ǫ for all i), our ǫi-repulsing
supermartingale yields an ǫ-repulsing supermartingale as in [CNZ17].

Intuitively, Definition 15 states that a supermartingale M is ǫi-decreasing if, at the i-th
step, M is expected to decrease by at least ǫi until termination, and upon termination, M

takes a non-negative value. In the following, we say that M is a repulsing supermartingale
for a Prob-solvable loop L if M is a repulsing supermartingale with respect to the looping
time T ¬G .

Next, we state Azuma’s inequality, a powerful concentration result for SMs [Wil91].
Intuitively it states that for a SM M , the probability of M surpassing its starting value
by λ decreases exponentially in λ.

Theorem 6 (Azuma’s Inequality [Wil91]). Suppose M is a SM with bounded differences
(i.e. |Mi+1 − Mi| < ci+1 almost surely). Then for all n ∈ N and all λ > 0 the following
holds:

P(Mn − M0 ≥ λ) ≤ exp

(

−λ2

2
∑n

k=1 c2
k

)
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3. Proof Rules Certifying Termination Properties

With the help of Azuma’s inequality, we can now effectively impose a bound on the
probability that the Prob-solvable loop L terminates almost surely in exactly n steps.

Lemma 1. Let Fn be the set of all program runs of the Prob-solvable loop L having
looping time n, that means Fn = {ϑ ∈ Ω | T ¬G(ϑ) = n}. Moreover, assume M0 < 0 and
for all i ∈ N:

• M is an ǫi-repulsing supermartingale

• M has bounded differences (bounded by ci)

• ci ∈ O(ǫi)

Then, there is an N0 ∈ N and γ ∈ (0, 1) such that for all n > N0 it holds that P(Fn) ≤ γn.

Proof. First we define a stochastic process M̃ :

M̃i(ϑ) =

{

Mi(ϑ) +
∑i

k=1 ǫk if i ≤ T ¬G(ϑ)

M̃i−1(ϑ), otherwise

Because M is ǫi-decreasing, M̃ is a SM. Moreover, it is easy to verify that M̃ has
differences bounded by (ci + ǫi).

Assuming ϑ ∈ Fn it holds that M̃n(ϑ) = Mn(ϑ) +
∑i

k=1 ǫk ≥
∑n

k=1 ǫk, because M is
positive at termination and ϑ has termination time n by assumption. Subtracting M̃0(ϑ)
(= M0(ϑ) = M0) from both sides gives us:

ϑ ∈ Fn =⇒ M̃n(ϑ) − M̃0(ϑ) ≥
n
∑

k=1

ǫk − M0

Therefore, we can conclude:

P(Fn) ≤ P(M̃n − M̃0 ≥
n
∑

k=1

ǫk − M0)

Now, we can use Theorem 6 to arrive at

P(Fn) ≤ exp

(

−(
∑n

k=1 ǫk − M0)2

2
∑n

k=1(ck + ǫk)2

)

=: exp

(

−
1

2
f(n)

)

,

where
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3.4. Polynomial Non-Termination

f(n) =
(
∑n

k=1 ǫk − M0)2

∑n
k=1(ck + ǫk)2

To move forward we analyze the asymptotic behavior of the obtained bound. We start by
analyzing the fraction defining f(n). It holds that (

∑n
k=1 ǫk −M0)2 ∈ Θ(n2ǫ2

n). Moreover,
∑n

k=1(ck + ǫk)2 ∈ Θ(nǫ2
n). The last claim holds because of our assumption ci ∈ O(ǫi).

Therefore, we get f(n) ∈ Θ(n). Using the definition of Θ gives us:

∃N0 ∈ N, C1 > 0, C2 > 0 s.t. ∀n > N0 : C1n ≤ f(n) ≤ C2n

Therefore, we get that for all n > N0 it holds that P(Fn) ≤ exp(−Dn) for a constant
D > 0. Defining γ to be e−D (∈ (0, 1)) we get our desired result:

There is an N0 ∈ N and γ ∈ (0, 1) such that for all n > N0 it holds that P(Fn) ≤ γn.

Remark 2. Our Lemma 1 generalizes [CNZ17] - Lemma 3. In [CNZ17], ǫi and ci are
assumed to be constant and therefore also ci ∈ O(ǫi).

Using Lemma 1, we now impose a bound on the probability of termination.

Lemma 2. Let Fn, M , N0 and γ be as in Lemma 1. Then, for any n > N0 the following
holds:

P(T ¬G < ∞ | T ¬G ≥ n) ≤
γn

1 − γ

Proof.

P(T ¬G < ∞ | T ¬G ≥ n) =
∞
∑

k=n

P(Fn)

≤
∞
∑

k=n

γk (by Lemma 1)

=
γn

1 − γ

Remark 3. Note that for large enough n the bound is strictly smaller than 1.

Using basic rules of probability, we can also establish the next result.

Lemma 3. Let Fn, M , N0 and γ be as in Lemma 1. Then, for any n > N0 the following
holds:

P(T ¬G < ∞) ≤ 1 + (
γn

1 − γ
− 1) · P(T ¬G ≥ n)
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3. Proof Rules Certifying Termination Properties

Proof.

P(T ¬G < ∞) = P(T ¬G < ∞ | T ¬G ≥ n) · P(T ¬G ≥ n)

+ P(T ¬G < ∞ | T ¬G < n) · P(T ¬G < n)

= P(T ¬G < ∞ | T ¬G ≥ n) · P(T ¬G ≥ n) + P(T ¬G < n)

≤
γn

1 − γ
· P(T ¬G ≥ n) + P(T ¬G < n) (by Lemma 2)

=
γn

1 − γ
· P(T ¬G ≥ n) + 1 − P(T ¬G ≥ n)

= 1 + (
γn

1 − γ
− 1) · P(T ¬G ≥ n)

Note that for large enough n, the bound in Lemma 3 is strictly smaller than 1 if
P(T ¬G ≥ n) is non-zero. To establish this we will prove that under some assumptions,
such as assuming the existence of a repulsing supermartingale, P(T ¬G ≥ n) > 0 for all
n ∈ N.

Lemma 4. Assume M is a ǫi-repulsing supermartingale and M0 < 0. Then, for all
n ∈ N it holds that P(T ¬G > n) > 0.

Proof. Let n ∈ N be arbitrary. We define a stopping time T̃ by

T̃ (ϑ) = inf{i ∈ N | ϑ[i] � ¬G or i ≥ n}.

This means, for a given run of the program ϑ, T̃ (ϑ) is the first point in time when the
loop guard is falsified or n is reached or surpassed. T̃ is bounded by n, which means the
Optional Stopping Theorem (Theorem 1) applies, giving us:

E(MT̃ ) ≤ E(M0) < 0

Towards a contradiction, assume P(T ¬G > n) = 0. Then it follows that at time T̃ the
program is almost surely in a state falsifying the loop guard G. By definition of repulsing
supermartingales this entails that MT̃ ≥ 0 almost surely. However, this contradicts
E(MT̃ ) < 0, and we conclude P(T ¬G > n) > 0.

Now we have all ingredients to prove our main theorem yielding a new proof rule for
non-AST.

Theorem 7 (Generalized-Repulsing-AST-Rule (GR-AST-Rule)). A Prob-solvable loop
L is not AST, if M0 < 0 and the following conditions are true for all i ∈ N:
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3.4. Polynomial Non-Termination

• M is an ǫi-repulsing supermartingale with respect to T ¬G

• M has bounded differences (bounded by ci)

• ci ∈ O(ǫi)

Proof. By Lemma 3, we know that

P(T ¬G < ∞) ≤ 1 + (
γn

1 − γ
− 1) · P(T ¬G ≥ n)

for some γ ∈ (0, 1) and all n bigger than some N0. The bound is strictly smaller than 1
for large enough n if P(T ¬G ≥ n) > 0.

Lemma 4 tells us that P(T ¬G ≥ n) > 0 is true for any n. Therefore, we can conclude that
P(T ¬G < ∞) < 1.

As already mentioned, Theorem 7 generalizes [CNZ17]. The result of [CNZ17] can be
obtained from our result by restricting ǫi and ci to be constant. To show that it is a
proper generalization, we will revisit Example 8 for which the result in [CNZ17] is not
directly applicable. However, our GR-AST-Rule from Theorem 7 applies and certifies
that Example 8 is not AST.

Example 9.

x := 10

y := 0

while x > 0 do

x := x + y2 [2
3 ] x − y2

y := y + 1

end

Choosing M := −x we have:

• E(Mi+1 − Mi | Fi) = − i2

3

• On termination M is non-negative

• |Mi+1 − Mi| = i2

• M0 = −10 < 0

Therefore, all preconditions of Theorem 7 are satisfied: M is a repulsing supermartingale
with ǫi = i2

3 . The differences of M are bounded by ci = i2. Thus, also ci ∈ O(ǫi) holds.
Therefore, we conclude that the program is not AST.

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3. Proof Rules Certifying Termination Properties

3.5 Relaxations of Proof Rules

When considering PPs containing polynomial updates, an important relaxation of the
termination proof rules is to allow for the conditions of the proof rules to only hold
eventually. A property P (i) parameterized by a natural number i ∈ N holds eventually
means, there is an i0 ∈ N such that P (i) holds for all i ≥ i0. Informally, if a PP, after a
fixed number of steps, almost surely reaches a state from which the program is PAST
(AST), then the whole program is PAST (AST). The following two examples illustrate
this fact for PAST and AST.

Example 10 (Limits RSM-Rule).
x := x0

n := 0

while x > 0 do
n := n + 1

x := x + 4n [1
2 ] x − n2

end

For the loop and x, we have the martingale expression E(xi+1 − xi | Fi) = − i2

2 + i + 3
2 .

Therefore, x cannot be a RSM, because for i ∈ {0, 1, 2, 3} the expression is non-negative.
However, the program either terminates within the first three iterations or after three
iterations is in a state such that the RSM-Rule is applicable. Therefore, the whole program
is PAST.

Example 11 (Limits SM-Rule).
x := x0

n := 0

while x > 0 do
n := n + 1

x := x + (n − 5) [1
2 ] x − (n − 5)

end

The martingale expression for the loop and x is E(xi+1 − xi | Fi) = 0, meaning x is a
martingale. However, defining the decrease function d for the SM-Rule cannot be done,
because for example in the 5th loop iteration there is no progress at all. The variable x

just gets updated with its previous value.

Yet, after the 5th iteration, x always decreases by at least 1 with probability 1
2 . Therefore,

all conditions for the SM-Rule are satisfied and the rule certifies the loop to be AST from
that point onward. Moreover, the whole loop either terminates in the first 5 steps or
reaches a state from which it terminates almost surely. Consequently, the whole loop is
AST.
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3.5. Relaxations of Proof Rules

We capture the relaxations of the RSM-Rule and the SM-Rule illustrated in Example 10
and Example 11 with the following theorem.

Theorem 8 (Relaxation Termination Rules). For the RSM-Rule to certify PAST (Theo-
rem 2), as well as for the SM-Rule to certify AST (Theorem 3), it is sufficient for the
conditions to hold eventually (instead of all i ∈ N).

Proof sketch. Given the Prob-solvable loop L = I while G do U end, satisfying the
conditions for the RSM-Rule (the SM-Rule) after some i0 ∈ N. Construct the following
probabilistic program P, where i is a new variable not appearing in L:

I; i := 0

while i < i0 do
U ; i := i + 1

end

while G do
U

end

To begin with, we observe that by construction of P, if P is PAST (AST) then L is
PAST (AST): Assume P is PAST (AST). Then by construction of P , L’s looping time is
either bounded by i0 or it is PAST (AST). In both cases L is PAST (AST).

Now, P is PAST (AST) if and only if its second while-loop is. For the second while-loop
PAST (AST) can be certified using the RSM-Rule (SM-Rule) and additionally using
i ≥ i0.

In the remainder of this work, when referring to the RSM-Rule or the SM-Rule we refer
to the respective proof rule together with its relaxation stated in Theorem 8.

We establish a similar relaxation for non-termination proof rules. However, in comparison
to the termination proof rules, it is not enough for a non-termination proof rule to certify
non-AST from some point onward, because the program may never reach this point
and always terminate earlier. Therefore, it has to be additionally assumed that the
program has a positive probability of reaching the point after which a proof rule witnesses
non-AST. The following example illustrates this idea.
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3. Proof Rules Certifying Termination Properties

Example 12 (Limits GR-AST-Rule).
x := 1

n := 0

while x > 0 do
n := n + 1

x := x + n2 − 1 [2
3 ] x − n2 + 1

end

Calculating the martingale expression for the loop and M := −x leaves us with E(Mi+1 −

Mi | Fi) = − i2

3 − 2i
3 . For i = 0, the expression is 0 and so −x cannot be an ǫi-repulsing

supermartingale such that ei > 0 for all i ∈ N. However, after the first iteration, −x

satisfies all requirements of an ǫi-repulsing supermartingale and also all other conditions
of the GR-AST-Rule hold. Moreover, the loop always reaches the second iteration because
in the first iteration x does not change at all. From this follows that the loop is not AST.

We capture the concept illustrated in Example 12 with the following theorem.

Theorem 9 (Relaxation Non-Termination Rules). For the GR-AST-Rule to certify
non-AST (Theorem 7), if P(T ¬G > i0) > 0 for some i0 ≥ 0, it suffices that Mi0

< 0 holds
instead of M0 < 0. For the remaining conditions it suffices for them to hold for all i ≥ i0

(instead of for all i ∈ N).

Proof sketch. Given the Prob-solvable loop L = I while G do U end, assume all conditions
of the GR-AST-Rule to be satisfied for all i ≥ i0 for some fixed i0. Moreover, assume
P(T ¬G > i0) > 0.

We repeat the same construction as in the proof of Theorem 8 and get the following
probabilistic program P:

I; i := 0

while i < i0 do
U ; i := i + 1

end

while G do
U

end

The GR-AST-Rule certifies the second while-loop of P not being AST, using that L
satisfies all conditions of the proof rule for i ≥ i0 and the fact that for the second
while loop i ≥ i0. From this and by the definition of P it follows that if there is a
Cyl(π) ∈ FL

i0
such that P

L(Cyl(π)) > 0 and T ¬G(ϑ) > i0 for all ϑ ∈ Cyl(π), then
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3.6. Completeness

P(T ¬G = ∞) > 0. By the assumption that P(T ¬G > i0) > 0 such a Cyl(π) exists, and
we get that P

L(T ¬G = ∞) > 0, meaning L is non-AST.

As with the proof rules for AST and PAST, in the remainder of this work, when referring
to the GR-AST-Rule, we refer to the proof rule together with its relaxation stated in
Theorem 9.

3.6 Completeness

Having established proof rules for AST as well as for non-AST, a natural question arising
is, for what class of PPs these proof rules constitute a complete decision procedure. Is
there a class of Prob-solvable loops whose AST can be decided effectively? In this section,
we will positively answer this question.

In [GGH19] the authors mention the RSM-Rule, the SM-Rule and the R-AST-Rule
constituting a complete decision procedure for so-called constant probability programs.
The authors provide a transformation of constant probability programs to random walk
programs preserving the termination behavior and supply a decision procedure for the
termination of random walk programs.

Informally, a random walk program contains a single variable x, consists of an initialization
part and a while-loop with the loop guard x > 0. The loop body is a single probabilistic
update of the form x := x+c1 [p1] ... [pl] x+cl+1, where cj and pj are constants. Random
walk programs fall into the class of Prob-solvable loops. Using our GR-AST-Rule instead
of the R-AST-Rule, we provide a decision procedure deciding AST for a larger class of
programs than in [GGH19].

Instead of allowing constants to be added to a variable x, we allow the product of
polynomials in the loop counter with an exponential function. The product poly(i) · bi

for b ≥ 1 cannot converge to 0 without being identical to 0, because this property is true
for polynomials and bi is always positive. Restricting the updates to the variable x to
this sort of functions is particularly useful because figuratively it rules out the behavior
that the progress towards termination is positive but becomes smaller and smaller. This
leads us to the following class of Prob-solvable loops.

Definition 16 (Poly-Exponential Random-Walk). A Prob-solvable loop L is a poly-
exponential random-walk (PE-RW) if it has the form
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3. Proof Rules Certifying Termination Properties

x := x0

i := 0

e := 1

while x > 0 do
i := i + 1

e := b · e

x := x + q1(i) · e [p1] ... [pl] x + ql+1(i) · e

end

where l ≥ 0, x0 ∈ R, b ≥ 1 and every qj ∈ R[i] is a polynomial. The polynomials qj are
assumed to be pairwise different. The loop L is called trivial if l = 0 and q1 ≡ 0, which
means the update for x has the form x := x + 0 [1].

The functions UL := {qj(i) · bi | 1 ≤ j ≤ l + 1} are called L’s updates. With EL(i) we
denote the function

EL(i) :=





l+1
∑

j=1

pj · qj(i + 1)



 · bi+1. (3.1)

For a PE-RW L, the function EL(i) is the martingale expression for the variable x:

E(xi+1 − xi | Fi) =





l+1
∑

j=1

pj · (xi + qj(i + 1) · ei+1)



− xi

=
l+1
∑

j=1

pj · qj(i + 1) · ei+1

=
l+1
∑

j=1

pj · qj(i + 1) · bi+1

=





l+1
∑

j=1

pj · qj(i + 1)



 · bi+1

= EL(i)

Moreover, the martingale expression EL(i) is the product of the polynomial poly(i) =
∑l+1

j=1 pj · qj(i + 1) and bi+1. Therefore, the zeros of EL(i) correspond to the zeros of
poly(i) and hence are computable. In addition, the limit limi→∞ EL(i) is computable and
equals:

• 0, if EL ≡ 0;
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3.6. Completeness

• +∞, if limi→∞ poly(i) = +∞ or poly(i) ∈ R
+ and b > 1;

• −∞, if limi→∞ poly(i) = −∞ or poly(i) ∈ R
− and b > 1;

• c ∈ R, if poly ≡ c and b = 1.

Our approach for deciding AST for PE-RWs is to first check whether a PE-RW L
immediately terminates (x0 ≤ 0), in which case L is AST, or whether L is trivial, in
which case L is not AST. If none of those cases apply, we consider the limit of EL(i). If
the limit is positive, x eventually is a RSM, and we can certify AST with the RSM-Rule.
If the limit is zero, x is a SM, and AST is certified by the SM-Rule. If the limit is
negative, −x eventually is an ǫi-repulsing supermartingale after some iteration i0. In
this case, the loop L is only non-AST by the GR-AST-Rule if the i0-th iteration can be
reached with positive probability and the condition ci ∈ O(ǫi) of the GR-AST-Rule is
satisfied. However, the condition ci ∈ O(ǫi) is not necessarily satisfied for PE-RWs as the
following example illustrates.

Example 13. Consider the following PE-RW:
x := x0

i := 0

while x > 0 do
i := i + 1

x := x + i3 + 2i2 [1
2 ] x − i3 − i2

end

Computing the expression EL(i) leads to: EL(i) = i2

2 + i + 1
2 . Therefore, −x is an ǫi-

repulsing supermartingale with ǫi ∈ Θ(i2). However, the bounds ci on |xi+1 − xi| are of
order Θ(i3). Consequently, the condition ci ∈ O(ǫi) of the GR-AST-Rule does not hold
and the proof rule cannot be applied.

Therefore, we have to further restrict our class for which we give a complete decision
procedure for AST to ensure that the condition ci ∈ O(ǫi) of the GR-AST-Rule holds
when necessary.

Definition 17 (Admissible PE-RW). A PE-RW L is called admissible if limi→∞ EL(i) >

0 implies Θ(EL(i)) = max{Θ(f(i)) | f ∈ UL}.

The maximum is with respect to the order f(i) ≤ g(i) ⇐⇒ f(i) ∈ O(g(i)).

The notion of a PE-RW being admissible ensures that if the limit of EL(i) is positive and
therefore −x eventually is an ǫi-repulsing supermartingale, the dominating term among all
f ∈ UL does not cancel out when computing EL(i). This ensures, the condition ci ∈ O(ǫi)
of the GR-AST-Rule to always be satisfied when it is needed. Note, that verifying a PP
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3. Proof Rules Certifying Termination Properties

to be a PE-RW can be done by purely syntactic means. Moreover, checking a PE-RW
to be admissible amounts to the simple computation of limi→∞ EL(i) and comparing
the dominant term of EL(i) with the dominant terms of all f ∈ UL. We note that all
random-walk programs as defined in [GGH19] fall into the class of admissible PE-RWs.
Yet, not all admissible PE-RWs are captured by [GGH19]. For instance, Example 14 and
Example 15 show limitations of [GGH19] whereas our work decides their AST.

Our approach deciding AST for admissible PE-RWs is summarized in Algorithm 3.1.

Algorithm 3.1: Deciding AST for admissible PE-RWs

Input: An admissible PE-RW L
Output: true if L is AST; false otherwise

1 if x0 ≤ 0 then

2 return true
3 end

4 if L is trivial then

5 return false
6 end

7 limit := limi→∞ EL(i)
8 if limit ≤ 0 then

9 return true
10 end

11 max0 := ⌈max({r ∈ R | EL(r) = 0} ∪ {0})⌉

12 M := x0 +
∑max0

i=1 max{f(i) | f ∈ UL}
13 if M ≤ 0 then

14 return true
15 else

16 return false
17 end

The termination of Algorithm 3.1 is trivial: There are no loops present in the algorithm.
The limit on line 7 as well as the calculations of the zeros of EL on line 11 are computable,
as previously argued. Moreover, the sum in line 12 is finite, and also the maximum is
over finitely many values. The correctness of the algorithm is proved next.

Theorem 10 (Correctness of Algorithm 3.1). If Algorithm 3.1 terminates on input L
with return value v, then v is true if and only if L is AST.

Proof. We make a case distinction at which line Algorithm 3.1 terminates.

Algorithm 3.1 terminates at line 2:
By the definition of the loop measure P and the looping time T ¬G , we have P(T ¬G = 0) = 1
and therefore L is PAST, hence also AST. ¸
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3.6. Completeness

Algorithm 3.1 terminates at line 5:
We have x0 > 0. Moreover, by the defining criteria of trivial, the update of x in the
loop-body UL is x := x + 0 [1]. Then by the definition of the loop measure P and the
looping time T ¬G , we deduce P(T ¬G = ∞) = 1, meaning L is not AST.

Algorithm 3.1 terminates at line 9:
We have x0 > 0 and L is not trivial. Consider the following two cases:

1. limi→∞ EL(i) < 0: Then x is eventually a RSM and we conclude by the RSM-Rule
that L is PAST and therefore also AST.

2. limi→∞ EL(i) = 0: In this case, as previously established, EL ≡ 0 and therefore x

is a martingale. Because, L is not trivial, there is at least one update function
qj(i) · bi ∈ UL such that limi→∞ qj(i) · bi < 0. That is because, if all f ∈ UL would
have a limit ≥ 0, L would either have to be trivial or EL’s limit would necessarily
be > 0 which is not possible.

Therefore, eventually x decreases by at least some constant d with probability at
least pj , which is also constant. Consequently, we conclude by the SM-Rule that L
is AST.

Algorithm 3.1 terminates at line 14:
We have x0 > 0, limi→∞ EL(i) > 0 and M ≤ 0 for M = x0 +

∑max0
i=1 max{f(i) | f ∈

UL} and max0 ∈ N. By the definition of the loop measure P, for all cylinder sets
Cyl(π) ∈ Fmax0 such that P(Cyl(π)) > 0, it holds that πmax0[x] ≤ M ≤ 0. Therefore,
P(T ¬G ≤ max0) = 1, meaning L is PAST and hence also AST.

Algorithm 3.1 terminates at line 16:
We have x0 > 0, limi→∞ EL(i) > 0 and M > 0 for M = x0 +

∑max0
i=1 max{f(i) | f ∈ UL}

and max0 = ⌈max({r ∈ R | EL(r) = 0} ∪ {0})⌉.

Because limi→∞ EL(i) > 0, the expression −x is an ǫi-repulsing supermartingale after
max0. The fact that M > 0 witnesses that there is a Cyl(π) ∈ Fmax0 such that
P(Cyl(π)) > 0 and T ¬G(ϑ) > max0 for all ϑ ∈ Cyl(π). Therefore, P(T ¬G > max0) > 0.
Moreover, because L is admissible, the condition ci ∈ O(ǫi) of the GR-AST-Rule is
satisfied. Therefore, we conclude by the GR-AST-Rule that L is not AST.

The class of admissible PE-RWs contains various programs of interest. Additionally to
the random walk programs, as defined in [GGH19], the class also contains random walk
programs where the step size is defined by a monomial or by an exponential.
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3. Proof Rules Certifying Termination Properties

Example 14.

x := x0

i := 0

while x > 0 do
i := i + 1

x := x + c1 · ik [p] x + c2 · ik′

end

x := x0

i := 0

e := 1

while x > 0 do
i := i + 1

e := b · e

x := x + c1 · e [p] x + c2 · e

end

Both programs fall into the class of admissible PE-RWs, where c1, c2 ∈ R, k, k′ ∈ N and
b ≥ 1. Therefore, their termination behavior can be decided by Algorithm 3.1.

Example 15 (Gambling Strategy). The following program models the gambling strategy
of a player playing a fair game with two possible outcomes. The player has an infinite
amount of wealth and the goal of winning 1 $ in total. She has the strategy to always
double her previous bet as long as she loses and stops as soon as she wins. The program
is an admissible PE-RW and can be verified to be AST by Algorithm 3.1.

goal := 1

bet := 1
2

while goal > 0 do
bet := 2 · bet

goal := goal − bet [1
2 ] goal + bet

end

Changing the probability of winning from 1
2 to 1

2 −ǫ for some ǫ > 0, changes the termination
behavior of the program to non-AST, which can also be computed by Algorithm 3.1.

Remark 4. In [GGH19] the authors provide a transformation from constant probability
programs to random walk programs preserving the termination behavior of the transformed
programs. A constant probability program contains multiple variables and its loop guard is
a linear inequality. In comparison, a random walk program contains only a single variable
x and has loop guard x > 0.

A similar transformation could be developed for our setting of PE-RWs. The class of PE-
RWs could be extended to allow for more than a single variable x and linear inequalities
as loop guards. A program from the extended class could then be transformed to a PE-RW
with a single variable x with the same termination behavior, using ideas motivated by
[GGH19]. We leave this for future work.
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CHAPTER 4
Automating Termination Analysis

of Probabilistic Programs

Arguably, the two major challenges when automating the proof rules introduced in
Chapter 3 are (i) settling on an expression M over the program variables and (ii) proving
an inequality involving E(Mi+1 −Mi | Fi). Considering the GR-AST-Rule, the martingale
expression needs additionally to be bounded by a sequence (E(Mi+1 − Mi | Fi) ≤ −ǫi+1),
in comparison to the RSM-Rule and the SM-Rule for which the martingale expression only
needs to be bounded by a constant (E(Mi+1 −Mi | Fi) ≤ −ǫ and E(Mi+1 −Mi | Fi) ≤ 0).
In this chapter, we address these two challenges for Prob-solvable loops.

For the loop guard GL = P > Q of a Prob-solvable loop L, we denote with GL the
polynomial P − Q. For enhanced legibility, if L is irrelevant or clear from context, we
omit the subscript L. It holds that G > 0 is equivalent to G. For a Prob-solvable loop,
the polynomial G is a natural candidate for the expression M in termination proof rules
(RSM-Rule, SM-Rule) and −G for the expression M in the non-termination proof rules
(GR-AST-Rule, R-PAST-Rule):

In this thesis, we address the aforementioned challenge (i) arising from automating
termination analysis of Prob-solvable loops, by choosing the expression M to be G for
the termination proof rules and −G for the non-termination proof rules. That is, we set
M := G for the RSM-Rule as well as the SM-Rule and M := −G for the GR-AST-Rule
as well as the R-PAST-Rule. The property G =⇒ G > 0, that is one precondition of
the RSM-Rule as well as the SM-Rule, holds trivially. Moreover, for the GR-AST-Rule
and R-PAST-Rule the preconditions ¬G =⇒ −G ≥ 0 and −G0 < 0 are always satisfied,
assuming the loop’s initial state does not violate the loop guard.

The remaining preconditions of the proof rules are the following:

• RSM-Rule:
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4. Automating Termination Analysis of Probabilistic Programs

∗ Gi =⇒ E(Gi+1 − Gi | Fi) ≤ −ǫ for some ǫ > 0

• SM-Rule

∗ Gi =⇒ E(Gi+1 − Gi | Fi) ≤ 0

∗ Gi =⇒ P(Gi+1 ≤ Gi − d | Fi) ≥ p for some p ∈ (0, 1] and d ∈ R+. For the
purpose of efficient automation, in this chapter we restrict the functions d(r)
and p(r) from the SM-Rule to be constant.

• GR-AST-Rule

∗ Gi =⇒ E(−Gi+1 + Gi | Fi) ≤ −ǫi+1 for a sequence (ǫi)i∈N over R
+

∗ ci ∈ O(ǫi) where (ci)i∈N are a bounds on the absolute differences of G (|Gi+1 −
Gi| ≤ ci)

All non-trivial preconditions express bounds over the stochastic process Gi. Namely,
either bounds for E(Gi+1 − Gi | Fi) or for Gi+1 − Gi have to be established. The
martingale expression E(Gi+1 − Gi | Fi) is an expression over program variables, whereas
Gi+1 − Gi cannot be interpreted as a single expression but through a distribution of
expressions.

Definition 18 (One-step Distribution). For a Prob-solvable loop L and an expression H

over the program variables of L, let UH
L denote the distribution E 7→ P(Hi+1 = E | Fi).

UH
L is called the one-step distribution of H.

We denote with supp(UH
L ) the support of the distribution UH

L , that means supp(UH
L ) :=

{B | UH
L (B) > 0}. We refer to expressions B ∈ supp(UH

L ) by branches of H.

The notation UH
L is chosen to suggest that the loop body UL is "applied" to the expression

H, leading to a distribution of expressions. Intuitively, the support supp(UH
L ) of an

expression H contains all possible updates of H when executing a single iteration.
Following is an example stating UH

L for a loop L and an expression H.

Example 16 (One-step Distribution). Consider the following Prob-solvable loop:
x := 1

y := 1

while x > 0 do

y := y + 1 [1
2 ] y + 2

x := x + y [1
3 ] x − y

end

For the expression H := x2, the one-step distribution UH
L is as follows:
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Expression E Probability UH
L (E)

x2
i + 2xiyi + 2xi + y2

i + 2yi + 1 1
6

x2
i + 2xiyi + 4xi + y2

i + 4yi + 4 1
6

x2
i − 2xiyi − 2xi + y2

i + 2yi + 1 1
3

x2
i − 2xiyi − 4xi + y2

i + 4yi + 4 1
3

Any other E 0

The first entry in the table can be derived as follows:

x2
i+1 = (xi + yi+1)2 = x2

i + 2xiyi+1 + y2
i+1 with probability

1

3

= x2
i + 2xi(yi + 1) + (yi + 1)2 with probability

1

2
·

1

3

= x2
i + 2xiyi + 2xi + y2

i 2yi + 1 with probability
1

6

Ultimately, to automate the termination analysis with the proof rules from Chapter
3 for Prob-solvable loops, we need to be able to compute bounds for the expression
E(Gi+1 − Gi | Fi) as well as for branches of G. Moreover, because of the relaxations
of the proof rules established in Section 3.5, only asymptotic bounds are needed, that
means bounds which hold eventually.

In Section 4.2, we propose a procedure computing asymptotic lower and upper bounds
on any polynomial expression over the program variables of a Prob-solvable loop. This
procedure allows us to derive bounds for E(Gi+1 − Gi | Fi) and the branches of G. Using
the procedure of Section 4.2, we are able to automate the proof rules from Chapter 3 for
certifying termination and non-termination of Prob-solvable loops.

Before formalizing our procedure and its required notions, the following examples illustrate
how reasoning with asymptotic bounds helps to apply termination and non-termination
proof rules to Prob-solvable loops.

Example 17 (Bounds & RSM-Rule). Consider the following Prob-solvable loop:
x := 1

y := 0

while x < 100 do
y := y + 1

x := 2x + y2 [1
2 ] 1

2x

end
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4. Automating Termination Analysis of Probabilistic Programs

Observe yi = i. The martingale expression for G = −x + 100 is E(Gi+1 − Gi | Fi) =

−xi

4 − i2

2 − i − 1
2 and contains the probabilistic variable x:

E(Gi+1 − Gi | Fi) =
1

2
(100 − 2xi − (i + 1)2) +

1

2
(100 −

1

2
xi) − (100 − xi)

= −
xi

4
−

i2

2
− i −

1

2

Note that if the term −xi

4 was not present in E(Gi+1 − Gi | Fi), we could immediately

certify the program to be PAST using the RSM-Rule because − i2

2 − i − 1
2 ≤ −1

2 for all
i ≥ 0.

However, by taking a closer look at the variable x we observe that it is almost-surely
lower bounded by some function α · 2−i for some α ∈ R

+. Therefore, −xi

4 ≤ −β · 2−i for
some β ∈ R

+. From this follows that eventually E(Gi+1 − Gi | Fi) ≤ −γ · i2 for some
γ ∈ R

+ This means, G is eventually a RSM and the program is PAST by the RSM-Rule.

Remark 5. For Example 17, it would in fact be enough to impose a lower bound of 0 on
x. However, for more complex examples, tight asymptotic bounds are needed to reach the
desired result.

Example 18 (Bounds & GR-AST-Rule). Consider the following Prob-solvable loop:
x := 0

y := 1

z := 5

while z > 0 do
x := x + 1

y := 2y + x2 [1
2 ] 2y + 3x

z := z + y [2
3 ] z − y

end

The martingale expression for −G = −z is E(Gi − Gi+1 | Fi) = −2yi

3 − i2

6 − 5i
6 − 2

3 .

We observe that almost-surely yi is eventually lower bounded (and upper bounded) by a
function α · 2i for some α ∈ R

+. Therefore, eventually E(Gi − Gi+1 | Fi) ≤ −β2i holds
for some β ∈ R

+. Consequently, −z is eventually an ǫi-repulsing supermartingale with
ǫi ∈ Θ(2i).

Bounds ci on the differences |zi+1 − zi| can be established by a similar style of reasoning:
We have |zi+1 − zi| = |yi+1| = yi+1 almost-surely. Moreover, yi+1 is eventually upper
bounded by a function α · 2i for some α ∈ R

+. Hence, eventually |zi+1 − zi| ≤ ci almost-
surely for some ci ∈ Θ(2i). Therefore, also the condition ci ∈ O(ǫi) of the GR-AST-Rule
is satisfied.
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4.1. Prob-solvable Loops and Monomials

Because all the conditions of the GR-AST-Rule are satisfied and there is a positive
probability of reaching any iteration (necessary for the relaxation of the GR-AST-Rule),
we conclude that the program is not AST.

Example 19 (Bounds & SM-Rule). Consider the following Prob-solvable loop:
x := 10

y := 0

while x > 0 do

y := y + 1 [1
3 ] y + 2 [1

3 ] y + 3

x := x + y2 − 1 [1
2 ] x − y2 + 1

end

The martingale expression for G = x is E(Gi+1 − Gi | Fi) = 0, which means x is a
martingale. In order to be able to apply the SM-Rule and certify AST for the program,
we need to provide a p ∈ (0, 1] and a d ∈ R+ such that eventually x decreases by at least
d with a probability of at least p. For that, we consider all branches B ∈ supp(UG

L ). In
this example we have supp(UG

L ) = {xi + y2
i + 2yi, xi + y2

i + 4yi + 3, xi + y2
i + 6yi + 8, xi −

y2
i − 2yi, xi − y2

i − 4yi − 3, xi − y2
i − 6yi − 8}. All branches occur with the same probability

of 1
6 .

Considering the branch xi − y2
i − 2yi, we get that x changes by −y2

i − 2yi in this case.
Moreover, yi is eventually lower bounded (and upper bounded) by some function α · i for
some α ∈ R

+. This leads to the fact that eventually −y2
i − 2yi ≤ −β · i2 for some β ∈ R

+.
Hence, it holds that eventually x decreases by at least 1 with a probability of at least 1

6 .
Therefore, we conclude the program to be AST by the SM-Rule.

4.1 Prob-solvable Loops and Monomials

In Section 4.2 we state a procedure computing bounds on polynomial expressions over
program variables of a Prob-solvable loop. The procedure computes bounds on monomials
of program variables. Because every polynomial is a linear combination of monomials, the
procedure can be used to retrieve bounds on any polynomial expressions by replacing every
monomial by its upper bound or lower bound depending on the sign of the monomial’s
coefficient.

For the termination of the proposed procedure, it is important that there are no circular
dependencies among monomials. By the definition of Prob-solvable loops, this fact holds
for program variables (monomials of order 1). Every Prob-solvable loop L comes with an
ordering on its variables and every variable is restricted to only depend linearly on itself
or polynomially on previous variables. In this section, we prove that the fact of acyclic
dependency extends naturally to monomials over program variables.

Definition 19 (Monomial Ordering). Let L be a Prob-solvable loop with variables
x1, ..., xm. Let y1 =

∏m
j=1 x

pj

j and y2 =
∏m

j=1 x
qj

j , where pj , qj ∈ N, be two monomials
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4. Automating Termination Analysis of Probabilistic Programs

over the program variables. We define an order � on monomials over the program
variables of L by

y1 � y2 ⇐⇒ (pm, ..., p1) ≤lex (qm, ..., q1) (4.1)

where ≤lex is the lexicographic order on N
m. The order � is total because ≤lex is total.

With y1 ≺ y2 we denote y1 � y2 ∧ y1 6= y2.

Example 20 (Monomials). Let L be a Prob-solvable loop with variables x1, ..., xm. The
following statements hold for the monomial order �:

• 1 ≺ x1 ≺ x2 ≺ ... ≺ xm−1 ≺ xm

• xk
1 ≺ x2 for any k ∈ N

• x2
1 ≺ x3

1

• x4
3x100

2 x99
1 ≺ x5

3x2
2x3

1

Before proving acyclic dependencies for monomials we establish the following fact.

Lemma 5. Let y1, y2, z1, z2 be monomials over the program variables of a Prob-solvable
loop L. If y1 � z1 and y2 � z2 then y1 · y2 � z1 · z2.

Proof. Let (am, ..., a1), (bm, ..., b1), (cm, ..., c1) and (dm, ..., d1) be the exponents of y1, y2, z1

and z2 respectively.

Case 1 — y1 = z1 and y2 = z2: trivial

Case 2 — y1 ≺ z1 and y2 = z2:

There is a j ∈ {1, ..., m} such that aj < cj and al = cl for all l > j. Therefore,
aj + bj < cj + dj and al + bl = cl + dl for all l > j, which means y1 · y2 ≺ z1 · z2.

Case 3 — y1 = z1 and y2 ≺ z2: symmetric to Case 2

Case 4 — y1 ≺ z1 and y2 ≺ z2:

There is a j ∈ {1, ..., m} such that aj < cj and al = cl for all l > j. Moreover, there is
a k ∈ {1, ..., m} such that bk < dk and al = cl for all l > k. W.l.o.g. let j ≥ k. Then,
aj + bj < cj + dj and al + bl = cl + dl for all l > j, which means y1 · y2 ≺ z1 · z2.

Using Lemma 5, we now proceed justifying the fact that cyclic dependencies among
monomials over program variables of Prob-solvable loops cannot happen.

Lemma 6. (Monomial Acyclic Dependency) Let x be a monomial over the program
variables of a Prob-solvable loop L. For every branch B ∈ supp(Ux

L) and every monomial
y in B it holds that y � x.
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4.2. Asymptotic Bounds for Prob-solvable Loops

Proof. The proof is by structural induction over monomials. The base case for which x

is a single variable holds by the definition of Prob-solvable loops.

Let x := s · t where s and t are monomials over the variables of L and

• for every Bs ∈ supp(Us
L) and every monomial u in Bs it holds that u � s,

• for every Bt ∈ supp(U t
L) and every monomial w in Bt it holds that w � t,

Let B ∈ supp(Ux
L) be an arbitrary branch of x. By definition of Ux

L we get B = Bs · Bt,
where Bs is a branch of s and Bt is a branch of t. Note that Bs and Bt are polynomials
over program variables or equivalently linear combinations of monomials. Therefore, for
every monomial y in B we have y = u · w where u is a monomial in Bs and w a monomial
in Bt.

By the induction hypothesis, u � s and w � t. Using Lemma 5, we get u · w � s · t which
means y � x.

Lemma 6 basically states that the value of a monomial x over the program variables of L
only depends on the value of monomials y which precede x in the monomial ordering �.
This ensures the dependencies among monomials to be acyclic, as for a cycle to exist
there would have to be a dependency of a monomial x to a monomial succeeding x.

For every monomial x, every branch B ∈ supp(Ux
L) is a polynomial over the program

variables. With Rec(x) we denote the set of coefficients of the monomial x in all branches
of a Prob-solvable loop. That means, Rec(x) := {coefficient of x in B | B ∈ supp(Ux

L)}.
With Inhom(x) we denote all the branches of the monomial x without x and its coefficient.
That means, Inhom(x) := {B − c · x | B ∈ supp(Ux

L) and c = coefficient of x in B}.

4.2 Asymptotic Bounds for Prob-solvable Loops

Throughout this section, all arising recurrence relations are C-finite [KP11] [BKS19].
Closed-form solutions of C-finite recurrence relations are called C-finite expressions.
C-finite expression can be characterized as exponential polynomials, that means sums
of products of polynomials with exponential functions

∑

j pj(x) · cx
j Therefore, for any

C-finite expression f and any constant r ∈ R, the following important property holds:

∃α, β ∈ R
+, ∃i0 ∈ N : ∀i ≥ i0 : αf(i) ≤ f(i + r) ≤ βf(i) (4.2)

Intuitively, the property states that constant shifts do not change the asymptotic behavior
of f . We make use of this property at various proof steps in this section. Another
essential property of C-finite recurrences is that their closed-form always exists and can
be computed [KP11].
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4. Automating Termination Analysis of Probabilistic Programs

The standard Big-O notation does not differentiate between positive and negative func-
tions, as it considers the absolute value of functions. We, however, need to differentiate
between functions like 2i and −2i. Therefore, we introduce the following notions.

Definition 20 (Domination). Let F be a finite set of functions from N to R.

A function g : N → R is dominating F if eventually α · g(i) ≥ f(i) for all f ∈ F and
some α ∈ R

+.

A function g : N → R is dominated by F if all f ∈ F dominate {g}.

Definition 21 (Bounding Function). Let L be a Prob-solvable loop and X an arithmetic
expression over the program variables of L.

A lower bounding function for X is a monotone function l : N → R such that eventually
P(α·l(i) ≤ Xi | T ¬G > i) = 1 for some α ∈ R

+. Moreover, l is assumed to be non-negative
or non-positive.

An upper bounding function for X is a function u : N → R such that eventually
P(Xi ≤ α · u(i) | T ¬G > i) = 1 for some α ∈ R

+. Moreover, u is assumed to be
non-negative or non-positive.

An absolute bounding function for X is an upper bounding function for |X|.

We define P( . | A) = 1 if P(A) = 0.

Intuitively, a function f dominates a function g if f eventually surpasses g in its value
modulo a positive constant factor. For a finite set F of exponential polynomials, a function
dominating F and a function dominated by F are easily computable with standard tech-
niques, by analyzing the terms of the functions in the finite set F . With dominating(F )
we denote an algorithm computing an exponential polynomial dominating F . With
dominated(F ) we denote an algorithm computing an exponential polynomial dominated
by F . Moreover, we assume the functions returned by the algorithms dominating(F )
and dominated(F ) to be monotone and either non-negative or non-positive.

Example 21 (Domination). The following statements are true:

• 0 dominates {−i3 + i2 + 5}

• i2 dominates {2i2}

• i2 · 2i dominates {i2 · 2i + i9, i5 + i3, 2−i}

• i is dominated by {i2 − 2i + 1, 1
2 i − 5}

• −2i is dominated by {2i − i2, −10 · 2−i}
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4.2. Asymptotic Bounds for Prob-solvable Loops

A bounding function, either lower, upper, or absolute, imposes a bound on an expression
X over the program variables holding eventually, almost-surely, and modulo a positive
constant factor. Moreover, bounds on X only need to hold as long as the program has
not terminated.

Given a Prob-solvable loop L and a monomial x over the program variables of L, we
propose with Algorithm 4.1 a procedure computing a lower and upper bounding function
for x. Because every polynomial expression is a linear combination of monomials, the
procedure can be used to compute lower and upper bounding functions for any polynomial
expression over L’s program variables by substituting every monomial with its lower
or upper bounding function depending on the sign of the monomial’s coefficient. Once
a lower bounding function l(i) and an upper bounding function u(i) are computed, an
absolute bounding function can be computed by dominating({u(i), −l(i)}).

With Algorithm 4.1, we propose a procedure for computing bounding functions for
monomials. The symbols c1, c2 and d are symbolic constants representing elements in
R

+. Ŝign(x) is an over-approximation of the sign of the monomial x, that means, if
∃i : P(xi > 0) > 0 then + ∈ Ŝign(x) and if ∃i : P(xi < 0) > 0 then − ∈ Ŝign(x).

Algorithm 4.1: Computing bounding functions for monomials

Input: A Prob-solvable loop L and a monomial x over L’s variables
Output: Lower and upper bounding functions l(i), u(i) for x

1 inhomBoundsUpper := {upper bounding function of P | P ∈ Inhom(x)}
2 inhomBoundsLower := {lower bounding function of P | P ∈ Inhom(x)}
3 U(i) := dominating(inhomBoundsUpper)
4 L(i) := dominated(inhomBoundsLower)
5 maxRec := max Rec(x)
6 minRec := min Rec(x)
7 I := ∅

8 if + ∈ Ŝign(x) then

9 I := I ∪ {c1}
10 end

11 if − ∈ Ŝign(x) then

12 I := I ∪ {−c2}
13 end

14 upperCandidates := closed-forms of recurrences
{yi+1 = r · yi + d · U(i) | r ∈ {minRec, maxRec}, y0 ∈ I}

15 lowerCandidates := closed-forms of recurrences
{yi+1 = r · yi + d · L(i) | r ∈ {minRec, maxRec}, y0 ∈ I}

16 u(i) := dominating(upperCandidates)
17 l(i) := dominated(lowerCandidates)
18 return l(i), u(i)

Lemma 6 states that for Prob-solvable loops there are no cyclic dependencies among
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4. Automating Termination Analysis of Probabilistic Programs

monomials. Lemma 6, the computability of closed forms of C-finite recurrences and the
fact that within a Prob-solvable loop there are only finitely many monomials present,
implies the termination of Algorithm 4.1. The correctness is stated in the next theorem.

Theorem 11 (Correctness of Algorithm 4.1). The functions l(i), u(i) returned by Algo-
rithm 4.1 on input L and x are bounding functions for x, where l(i) is a lower bounding
function and u(i) is an upper bounding function.

Proof. Intuitively, we have to show that regardless of the paths through the loop body
taken by any program run, the value of x is always eventually upper bounded by
some function in upperCandidates and eventually lower bounded by some function in
lowerCandidates (almost-surely and modulo constant factors). We only show that x is
always eventually upper bounded by some function in upperCandidates. The proof for
the lower bounding function is analogous.

Let ϑ ∈ Σ be a possible program run, that means P(Cyl(π)) > 0 for all finite prefixes π

of ϑ. Then, for every i ∈ N, if T ¬G(ϑ) > i, the following holds:

xi+1(ϑ) = a(1) · xi(ϑ) + P(1)i(ϑ)

or

xi+1(ϑ) = a(2) · xi(ϑ) + P(2)i(ϑ)

or ... or

xi+1(ϑ) = a(k) · xi(ϑ) + P(k)i(ϑ),

where a(j) ∈ Rec(x) and P(j) ∈ Inhom(x) are polynomials over program variables or
equivalently, linear combinations of monomials.

Let u1(i), ..., uk(i) be upper bounding functions of P(1), ..., P(k), which are computed
recursively at line 14. Moreover, let U(i) := dominating({u1(i), ..., uk(i)}), minRec =
min Rec(x) and maxRec = max Rec(x).

Let l0 ∈ N be the smallest number such that for all j ∈ {1, ..., k} and i ≥ l0:

P(P(j)i ≤ αj · uj(i) | T ¬G > i) = 1 for some αj ∈ R+, and (4.3)

uj(i) ≤ β · U(i) for some β ∈ R
+ (4.4)

That means, all inequalities from the bounding functions uj and the dominating function
U hold after l0.

Because U is a dominating function, it is by definition either non-negative or non-positive.
Assume U(i) to be non-negative, the case for which U(i) is non-positive is symmetric.

Using the facts (4.3) and (4.4), we establish the following: For the constant γ :=
β · maxj=1..k αj it holds that P(P(j)i ≤ γ · U(i) | T ¬G > i) = 1 for all j ∈ {1, ..., k} and
all i ≥ l0.
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4.2. Asymptotic Bounds for Prob-solvable Loops

Let l1 be the smallest number such that l1 ≥ l0 and U(i + l0) ≤ δ · U(i) for all i ≥ l1 and
some δ ∈ R+.

Case 1 — xi is almost-surely negative for all i ≥ l1:

Consider the recurrence relation y0 = m, yi+1 = minRec·yi+η·U(i), where η := max(γ, δ)
and m is the maximum value of xl1(ϑ) among all possible program runs ϑ. Note that
m exists because there are only finitely many values xl1(ϑ) for possible program runs ϑ.
Moreover, m is negative by our case assumption.

By induction, we get P(xi ≤ yi−l1 | T ¬G > i) = 1 for all i ≥ l1.

Therefore, for a closed-form solution s(i) to the recurrence relation yi, we get P(xi ≤
s(i − l1) | T ¬G > i) = 1 for all i ≥ l1. We emphasize that s exists and can effectively
be computed because yi is C-finite. Moreover, s(i − l1) ≤ θ · s(i) for all i ≥ l2 for some
l2 ≥ l1 and some θ ∈ R

+. Therefore, s satisfies the bound condition of an upper bounding
function

Also, s is present in upperCandidates by choosing the symbolic constants c2 and d to
represent −m and η respectively.

The function u(i) := dominating(upperCandidates), at line 16, is dominating upperCandidates

(hence also s), is monotone and either non-positive or non-negative. Therefore, u(i) is an
upper bounding function for x.

Case 2 — xi is not almost-surely negative for all i ≥ l1:

That means, there is a possible program run ϑ′ such that xi(ϑ
′) ≥ 0 for some i ≥ l1. Let

l2 ≥ l1 be the smallest number such that xl2(ϑ̂) ≥ 0 for some possible program run ϑ̂.
This number certainly exists, as xi(ϑ

′) is non-negative for some i ≥ l1.

Consider the recurrence relation y0 = m, yi+1 = maxRec·yi+η·U(i), where η := max(γ, δ)
and m is the maximum value of xl2(ϑ) among all possible program runs ϑ. Note that
m exists because there are only finitely many values xl2(ϑ) for possible program runs ϑ.
Moreover, m is non-negative because m ≥ xl2(ϑ̂) ≥ 0.

By induction, we get P(xi ≤ yi−l2 | T ¬G > i) = 1 for all i ≥ l2.

Therefore, for a solution s(i) to the recurrence relation yi, we get P(xi ≤ s(i − l2) | T ¬G >

i) = 1 for all i ≥ l2. We again emphasize that s exists and can effectively be computed
because yi is C-finite. Moreover, s(i − l2) ≤ θ · s(i) for all i ≥ l3 for some l3 ≥ l2 and
some θ ∈ R

+. Therefore, s satisfies the bound condition of an upper bounding function

Also, s is present in upperCandidates by choosing the symbolic constants c1 and d to
represent m and η respectively.

The function u(i) := dominating(upperCandidates), at line 16, is dominating upperCandidates

(hence also s), is monotone and either non-positive or non-negative. Therefore, u(i) is an
upper bounding function for x.
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4. Automating Termination Analysis of Probabilistic Programs

Next, we illustrate Algorithm 4.1 by computing bounding functions for x and the Prob-
solvable loop from Example 17.

Example 22 (Bounding functions). Consider again the Prob-solvable loop from Example
17:

x := 1

y := 0

while x < 100 do
y := y + 1

x := 2x + y2 [1
2 ] 1

2x

end

We have Rec(x) := {2, 1
2} and Inhom(x) = {y2, 0}. Computing bounding functions

recursively for P ∈ Inhom(x) is simple, in this example, as we can give exact bounds for
y2 and 0 leading to inhomBoundsUpper = {i2, 0} and inhomBoundsLower = {i2, 0}
on line 1 and 2 of Algorithm 4.1. Consequently, we get

• U(i) = i2,

• L(i) = 0,

• maxRec = 2 and

• minRec = 1
2

in the lines 3 to 6.

With a rudimentary static analysis of the loop, we determine the (exact) over-approximation
Sign(x) := {+} by observing that x0 > 0 and all P ∈ Inhom(x) are strictly positive.
Therefore, upperCandidates is the set of closed-form solutions of the recurrences

• y0 := c1, yi+1 := 2yi + d · i2 and

• y0 := c1, yi+1 := 1
2yi + d · i2.

Similarly, lowerCandidates is the set of closed-form solutions of the recurrences

• y0 := c1, yi+1 := 2yi and

• y0 := c1, yi+1 := 1
2yi.

Using any algorithm for computing closed-forms of C-finite recurrences we can determine
upperCandidates = {c12i − di2 − 2di + 3d2i − 3d, c12−i + 2di2 − 8di − 12d2−i + 12d}
and lowerCandidates = {c12i, c12−i}
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4.3. Algorithms for Proof Rules

This leads to the upper bounding function u(i) = 2i on line 16 and the lower bounding
function l(i) = 2−i on line 17.

The bounding functions l(i) and u(i) can be used to compute bounding functions for
expressions containing x linearly by replacing x by l(i) or u(i) depending on the sign of
the coefficient of x. For instance, eventually and almost-surely the following inequality
holds:

−
xi

4
−

i2

2
− i −

1

2
≤ −

1

4
· α · 2−i −

i2

2
− i −

1

2

for some α ∈ R+. The inequality results from replacing xi by its lower bounding function.
Therefore, eventually and almost-surely we get −xi

4 − i2

2 − i− 1
2 ≤ −β · i2 for some β ∈ R

+,

which means −i2 is an upper bounding function for the expression −xi

4 − i2

2 − i − 1
2 .

4.3 Algorithms for Proof Rules

With Algorithm 4.1 computing bounding functions for polynomial expressions over
program variables at hand, we are now able to formalize our algorithmic approaches
automating the termination analysis of Prob-solvable loops using the proof rules from
Chapter 3. Given a Prob-solvable loop L and a polynomial expression E over L’s variables,
we denote with lbf(E), ubf(E) and abf(E) functions computing a lower, upper and
absolute bounding function for E respectively. Our algorithmic approach for proving
PAST using the RSM-Rule is given in Algorithm 4.2.

Algorithm 4.2: Ranking-Supermartingale-Rule

Input: Prob-solvable loop L
Output: If true then L with G satisfies the RSM-Rule; hence L is PAST

1 E := E(Gi+1 − Gi | Fi)
2 u(i) := ubf(E)
3 limit := limi→∞ u(i)
4 if limit < 0 then

5 return true
6 else

7 return false
8 end

The following example illustrates Algorithm 4.2 for the Prob-solvable loop from Examples
17 and 22.

Example 23 (Algorithm 4.2). Consider again the Prob-solvable loop L from Examples
17 and 22:
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4. Automating Termination Analysis of Probabilistic Programs

x := 1

y := 0

while x < 100 do
y := y + 1

x := 2x + y2 [1
2 ] 1

2x

end

Applying Algorithm 4.2 on L leads to E = −xi

4 − i2

2 − i − 1
2 on line 1. On line 2, we get

the upper bounding function u(i) := −i2 for E. Because limi→∞ u(i) < 0, Algorithm 4.2
returns true on line 5. This is valid because u(i) having a negative limit witnesses that
the martingale expression E eventually decreases by a constant and therefore is a RSM.

Correctness of Algorithm 4.2: When returning true at line 5 we have P(Ei ≤ α ·u(i) |
T ¬G > i) = 1 for all i ≥ i0 and some i0 ∈ N, α ∈ R

+. Moreover, u(i) < −ǫ for all i ≥ i1

for some i1 ∈ N, by the definition of lim. From this follows that ∀i ≥ max(i0, i1) we
almost-surely have Gi =⇒ E(Gi+1 − Gi | Fi) ≤ −αǫ, which means G is eventually a
RSM and the program L is PAST by the RSM-Rule.

Our approach proving AST using the SM-Rule is captured with Algorithm 4.3

Algorithm 4.3: Supermartingale-Rule

Input: Prob-solvable loop L
Output: If true, L with G satisfies the SM-Rule with constant d and constant p;

hence L is AST
1 E := E(Gi+1 − Gi | Fi)
2 u(i) := ubf(E)
3 if not eventually u(i) ≤ 0 then

4 return false

5 end

6 for B ∈ supp(UG
L ) do

7 D := B − G

8 d(i) := ubf(D)
9 limit := limi→∞ d(i)

10 if limit < 0 then

11 return true
12 end

13 end

14 return false

The following example illustrates Algorithm 4.4 for the Prob-solvable loop from Example
19.
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4.3. Algorithms for Proof Rules

Example 24 (Algorithm 4.3). Consider again the Prob-solvable loop L from Example
19:

x := 10

y := 0

while x > 0 do

y := y + 1 [1
3 ] y + 2 [1

3 ] y + 3

x := x + y2 − 1 [1
2 ] x − y2 + 1

end

Applying Algorithm 4.3 on L we get E ≡ 0 on line 1 and therefore u(i) = 0 on line 2,
which means the if-statement on line 3 is not executed.

The expression G (= x) has six branches. One of them is xi − y2
i − 2yi, which occurs

with probability 1
6 . When the for-loop reaches this branch B = xi − y2

i − 2yi on line 6,
it computes the difference D = −y2

i − 2yi on line 7. An upper bounding function for D

on line 8 is given by d(i) = −i2. Because limi→∞ d(i) < 0 Algorithm 4.3 returns true
on line 11. This is valid because of the branch B witnessing that G eventually decreases
by at least a constant with probability 1

6 . Therefore, all conditions of the SM-Rule are
satisfied and L is AST.

Correctness of Algorithm 4.3: With the same reasoning as for the correctness of
Algorithm 4.2, G is a supermartingale if Algorithm 4.3 returns true at line 11. Moreover,
there is a branch B ∈ supp(UG

L ) such that G changes eventually and almost-surely by at
most d(i). In addition, because limi→∞ d(i) < 0, it follows that d(i) ≤ −ǫ for all i ≥ i0

for some i0 ∈ N, ǫ ∈ R
+. Therefore, eventually G decreases by at least the constant

ǫ with probability of at least constant UG
L (B) > 0. Hence, by the SM-Rule, the input

program is AST.

As established in Section 3.5, the relaxation of the GR-AST-Rule requires that there
is a positive probability of reaching the iteration i0 after which the conditions of the
proof rule hold. Regarding automation, we strengthen the condition to: There is a
positive probability of reaching any iteration, that means ∀i ∈ N : P(T ¬G > i) > 0.
Obviously, from ∀i ∈ N : P(T ¬G > i) > 0 follows P(T ¬G > i0) > 0. Furthermore, with
ČanReachAnyIteration(L) we denote a computable under-approximation of ∀i ∈ N :
P(T ¬G > i) > 0. That means, ČanReachAnyIteration(L) implies ∀i ∈ N : P(T ¬G >

i) > 0. Our approach proving non-AST is summarized in Algorithm 4.4.

The following example illustrates Algorithm 4.4 for the Prob-solvable loop from Example
18.

Example 25 (Algorithm 4.4). Consider again the Prob-solvable loop L from Example
18:
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4. Automating Termination Analysis of Probabilistic Programs

Algorithm 4.4: Generalized-Repulsing-AST-Rule

Input: Prob-solvable loop L
Output: if true, L with −G satisfies the GR-AST-Rule; hence L is not AST

1 E := E(−Gi+1 + Gi | Fi)
2 u(i) := ubf(E)
3 if not eventually u(i) ≤ 0 then

4 return false

5 end

6 if ¬ČanReachAnyIteration(L) then

7 return false

8 end

9 ǫ(i) := −u(i)

10 differences := {B + G | B ∈ supp(U−G
L )}

11 diffBounds := {abf(d) | d ∈ differences}
12 c(i) := dominating(diffBounds)
13 if c(i) ∈ O(ǫ(i)) then

14 return true
15 else

16 return false
17 end

x := 0

y := 1

z := 5

while z > 0 do
x := x + 1

y := 2y + x2 [1
2 ] 2y + 3x

z := z + y [2
3 ] z − y

end

Applying Algorithm 4.4 on L leads to E = −2yi

3 − i2

6 − 5i
6 − 2

3 on line 1 and to the upper
bounding function u(i) = −2i for E on line 2. Therefore, the if-statement on line 3 is
not executed, which means −G is eventually a repulsing supermartingale. Moreover, with
a simple static analysis of the loop, we establish ČanReachAnyIteration(L) to be true,
as there is always a positive probability to increase the loop guard. This means, also the
if-statement on line 6 is not executed.

E eventually decreases by ǫ(i) = 2i (modulo a constant factor), because u(i) = −2i is an
upper bounding function for E. The sets differences and diffBounds on the lines 10
and 11 contain the following expressions representing all possibilities of −Gi+1 + Gi and
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4.4. Rule out Rules

their corresponding absolute bounding functions:

differences E diffBounds

x2
i + 2xi + 2yi + 1 2i

3xi + 2yi + 3 2i

−x2
i − 2xi − 2yi − 1 2i

−3xi − 2yi − 3 2i

As a result on line 12 we have c(i) = 2i, which eventually and almost-surely is an upper
bound on | − Gi+1 + Gi| (modulo a constant factor). Therefore, also c(i) ∈ O(ǫ(i)) and
the algorithm returns true on line 14. This is correct, as all the preconditions of the
GR-AST-Rule are satisfied and therefore L is not AST.

Correctness of Algorithm 4.4: With the same reasoning as for the correctness of
Algorithm 4.3, −G is a supermartingale if Algorithm 4.4 returns true at line 14. Moreover,
−G0 < 0 (assuming L does not terminate in its initial state) and if L terminates −G ≥ 0.
Therefore, −G eventually is an ǫi-repulsing supermartingale. The sequence (ǫi)i∈N is given
by ǫi := −u(i) because u(i) is an upper bounding function for E(−Gi+1 + Gi | Fi). The
function c(i), assigned to dominating(diffBounds) on line 12, is a function dominating
absolute bounding functions of all branches of −Gi+1 + Gi. Consequently, c(i) is a bound
on the differences of G, meaning for ci := c(i), we have | − Gi+1 + Gi| ≤ ci. Hence, at
line 14 additionally ci ∈ O(ǫi) holds. Thus, all preconditions of the GR-AST-Rule are
satisfied and L is not AST if Algorithm 4.4 returns true at line 14.

We finally provide Algorithm 4.5 for the R-PAST-Rule. The algorithm is a variation
of Algorithm 4.4 (for the GR-AST-Rule). The if-statement on line 2 forces −G to be a
martingale. Therefore, after the if-statement −G is an ǫi-repulsing supermartingale with
(ǫi)i∈N ≡ 0. Moreover, the condition on line 8 ensures, if the algorithm returns true, the
absolute differences of −G to be bounded by a constant.

4.4 Rule out Rules

A question arising when combining the algorithms of Section 4.3 into a single procedure
is, given a Prob-solvable loop L, what algorithm to apply first for determining L’s
termination behavior. In [BKS19] the authors provide an algorithm for computing an
algebraically closed-form of E(Mi) for a Prob-solvable loop L, where M is a polynomial
over L’s variables. The following simple lemma explains how the expression E(Mi+1 −Mi)
relates to the expression E(Mi+1 − Mi | Fi).

Lemma 7 (Rule out Rules). Let (Mi)i∈N be a stochastic process. If E(Mi+1 −Mi | Fi) ≤
−ǫ then E(Mi+1 − Mi) ≤ −ǫ, for any ǫ ∈ R

+.
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4. Automating Termination Analysis of Probabilistic Programs

Algorithm 4.5: Repulsing-PAST-Rule

Input: Prob-solvable loop L
Output: If true, L with −G satisfies the R-PAST-Rule; hence L is not PAST

1 E := E(−Gi+1 + Gi | Fi)
2 if E 6≡ 0 then

3 return false

4 end

5 differences := {B + G | B ∈ supp(U−G
L )}

6 diffBounds := {abf(d) | d ∈ differences}
7 c(i) := dominating(diffBounds)
8 if c(i) ∈ O(1) then

9 return true

10 else

11 return false
12 end

Proof.

E(Mi+1 − Mi | Fi) ≤ −ǫ =⇒ (Monotonicity of E)

E(E(Mi+1 − Mi | Fi)) ≤ E(−ǫ) ⇐⇒ (Property of E(· | Fi))

E(Mi+1 − Mi) ≤ E(−ǫ) ⇐⇒ (−ǫ is constant)

E(Mi+1 − Mi) ≤ −ǫ

The contrapositive of Lemma 7 provides a criterion to rule out the viability of a given
proof rule. For a Prob-solvable loop L, if E(Gi+1 − Gi) 6≤ 0 then E(Gi+1 − Gi | Fi) 6≤ 0,
meaning G is not a supermartingale. The expression E(Gi+1 − Gi) depends only on i

and can be computed by E(Gi+1 − Gi) = E(Gi+1) − E(Gi), where E(Gi) is computed by
the algorithm in [BKS19]. Therefore, in some cases, proof rules can automatically be
deemed nonviable, without actually having to apply the proof rule and computing the
required bounding functions.

The following example illustrates how Lemma 7 can be used to rule out the GR-AST-Rule.

Example 26. Consider the following Prob-solvable loop:
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4.5. Implementation and Evaluation

x := 0

y := 0

while x2 + y2 < 10 do

x := x + 1 [1
2 ] x − 1

y := y + x [1
2 ] y − x

end

We have G := 10−x2−y2. The algorithm from [BKS19] reveal that E(−Gi+1−Gi) = i+2.
By Lemma 7, we can conlcude that −G cannot eventually satisfy the supermartingale
condition E(−Gi+1 − Gi | Fi) ≤ 0. Therefore, −G cannot eventually be an ǫi-repulsing
supermartingale and it is not viable to apply the GR-AST-Rule. In fact the loop is PAST,
provable by the RSM-Rule using Algorithm 4.2.

4.5 Implementation and Evaluation

Implementation We implemented and combined the algorithms from Section 4.2 and
Section 4.3 in the new software tool Amber, to stand for Asymptotic Martingale Bounds.
Amber together with all the following benchmarks is available at github.com/mmsbrggr/
amber. Amber uses Mora [BKS19] for computing the first-order moments of program
variables and the diofant package1 as its computer algebra system.

The over-approximation Ŝign(x) of the signs of a monomial x used in Algorithm 4.1,
is implemented by a simple static analysis: For a monomial x consisting soley of even
powers, we have Ŝign(x) = {+}. For a general monomial x, if x0 ≥ 0 and all monomials
on which x depends, together with their associated coefficients are always positive, then
− 6∈ Ŝign(x). For example, if supp(Ux

L) = {xi + 2yi − 3zi, xi + ui}, then − 6∈ Ŝign(x) if
x0 ≥ 0 as well as − 6∈ Ŝign(y), + 6∈ Ŝign(z) and − 6∈ Ŝign(u). Otherwise, − ∈ Ŝign(x).
The over-approximation for + 6∈ Ŝign(x) is analogous.

In addition to Algorithm 4.1, which computes bounding functions for monomials of
program variables, we implemented the following improvements in Amber.

1. A monomial x is deterministic, which means it is independent of probabilistic choices,
if x has a single branch and only depends on monomials having single branches. In
this case, the exact value of x in any iteration is given by its first-order moments
and bounding functions can be obtained by using these exact representations.

2. Bounding functions for an odd power p of a monomial x can be computed by u(i)p

and l(i)p, where u(i) is an upper bounding function for x and l(i) a lower bounding
function.

1github.com/diofant/diofant
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4. Automating Termination Analysis of Probabilistic Programs

In situations where the aforementioned two enhancements apply, they allow for computing
the bounding functions faster than Algorithm 4.1.

The under-approximation ČanReachAnyIteration(L), used in Algorithm 4.4, needs to
satisfy the property that if ČanReachAnyIteration(L) is true, then there is a positive
probability that the loop L reaches any iteration. In Amber, we implemented the
under-approximaiton in the following way: ČanReachAnyIteration(L) is true if there
is a branch B of the loop guard polynomial GL such that B − GLi is non-negative
for all i ∈ N. Otherwise, ČanReachAnyIteration(L) is false. In other words, if
ČanReachAnyIteration(L) is true, then in any iteration there is a positive proba-
bility of GL not decreasing. Because the loop guard of L is equivalent to GL > 0, for any
iteration, there is a positive probability of having a next iteration. Now, the property
that if ČanReachAnyIteration(L) is true then there is a positive probability that L
reaches any iteration, follows from the Markov property of the loop L.

Benchmarks We evaluated Amber against 37 PPs which can be modeled as Prob-
solvable loops. These programs have either been introduced in the literature on probabilis-
tic programming [BKS19], [GGH19], [MMKK17], [NCH18], are adaptations of well-known
probabilistic processes or have been designed specifically to test unique features of Amber,
like the ability to handle polynomial real arithmetic.

Our benchmarks are separated into the three categories: (1) programs which are PAST
(Table 4.1), (2) programs which are AST (Table 4.2) but not necessarily PAST and (3)
programs which are not AST (Table 4.3).

Evaluation Concerning programs which are PAST, we compare Amber against the
tool Absynth [NCH18]. Absynth uses a system of inference rules over the syntax of
PPs, to derive bounds on the expected resource consumption of a program and can,
therefore, be used to certify PAST. In comparison to Amber, Absynth requires the
degree of the bound to be provided upfront. Moreover, Absynthnth cannot refute the
existence of a bound and therefore cannot handle programs that are not PAST. To the
best of our knowledge, Amber is the first tool capable of certifying AST for PPs which
are not PAST as well as the first tool able to prove non-AST.

With Amber-Light we refer to an implementation of Amber without the relaxations of
the proof rules introduced in Section 3.5. That is, with Amber-Light the conditions of
the proof rules need to hold for all i ∈ N, whereas with Amber the conditions are allowed
to only hold eventually. For all benchmarks, we compare Amber against Amber-Light

to show the effectiveness of the respective relaxations. Every benchmark has been run on
a machine with a 2.2 GHz Intel i7 (Gen 6) processor and 16 GB of RAM and finished
within a timeout of 20 seconds.

Our experimental results from Tables 4.1, 4.2 and 4.3 demonstrate the following:

• Amber outperforms the state-of-the-art in automating PAST certification (Table
4.1).
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4.5. Implementation and Evaluation

Program Amber Amber-Light Absynth

2d_bounded_random_walk ✓ ✓ ✗

biased_random_walk_constant ✓ ✓ ✓

biased_random_walk_exp ✓ ✓ ✗

biased_random_walk_poly ✓ ✗ ✗

binomial_past ✓ ✓ ✓

complex_past ✓ ✗ ✗

consecutive_bernoulli_trails ✓ ✓ ✓

coupon_collector_2 ✓ ✗ ✗

coupon_collector_4 ✓ ✗ ✗

dueling_cowboys ✓ ✓ ✓

exponential_past_1 ✓ ✓ NA

exponential_past_2 ✓ ✓ NA

geometric ✓ ✓ ✓

linear_past_1 ✓ ✓ ✗

linear_past_2 ✓ ✓ ✗

polynomial_past_1 ✓ ✗ ✗

polynomial_past_2 ✓ ✗ ✗

Total ✓ 17 11 5

Table 4.1: Benchmarks for Amber and Prob-solvable loops which are PAST. ✓ symbolizes
that the respective tool successfully certified PAST for the given program. ✗ means it
failed to certify PAST. NA indicates that the program is out-of-scope for the respective
tool because real or rational numbers are necessary to model the program.

• Complex PPs which are AST and not PAST as well as PPs which are not AST can
automatically be certified as such by Amber (Tables 4.2 and 4.3).

• The relaxations of the proof rules we introduced in Section 3.5 are crucial in
automating the termination analysis of PPs.
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4. Automating Termination Analysis of Probabilistic Programs

Program Amber Amber-Light

gambling ✓ ✓

symmetric_random_walk_constant_1 ✓ ✓

symmetric_random_walk_constant_2 ✓ ✓

symmetric_random_walk_exp_1 ✓ ✗

symmetric_random_walk_exp_2 ✓ ✗

symmetric_random_walk_linear_1 ✓ ✗

symmetric_random_walk_linear_2 ✓ ✓

symmetric_random_walk_poly_1 ✓ ✗

symmetric_random_walk_poly_2 ✓ ✗

Total ✓ 9 4

Table 4.2: Benchmarks for Amber and Prob-solvable loops which are AST and not
necessarily PAST. ✓ symbolizes that the respective tool successfully certified PAST for
the given program. ✗ means it failed to certify PAST.
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4.5. Implementation and Evaluation

Program Amber Amber-Light

biased_random_walk_nast_constant ✓ ✓

biased_random_walk_nast_exp ✓ ✓

biased_random_walk_nast_linear ✓ ✗

biased_random_walk_nast_poly ✓ ✗

binomial_nast ✓ ✓

exponential_nast_1 ✓ ✓

exponential_nast_2 ✓ ✓

linear_nast_1 ✓ ✗

linear_nast_2 ✓ ✗

polynomial_nast_1 ✓ ✗

polynomial_nast_2 ✓ ✗

Total ✓ 11 5

Table 4.3: Benchmarks for Amber and Prob-solvable loops which are not AST. ✓

symbolizes that the respective tool successfully certified PAST for the given program. ✗

means it failed to certify PAST.
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CHAPTER 5
Related Work

Probabilistic Termination Proof Rules

In Chapter 3 of this thesis we stated several proof rules based on (super-)martingales.
Martingale based techniques were first recognized to be applicable for verification of
PPs and probabilistic termination analysis in [CS13]. The authors introduced the notion
of a RSM as well as the RSM-Rule. [FFH15] extended the work of [CS13] to allow for
non-determinism and continuous probability distributions. Moreover, [FFH15] showed
completeness of the RSM-Rule for their class of PPs.

More recently, [ACN17] advanced RSMs to Lexicographic Ranking Supermartingales. The
authors determined that for some programs there are no linear RSMs, however, linear
lexicographic ranking supermartingales do exist.

The SM-Rule from Chapter 3 was introduced in [MMKK17]. A proof rule similar to the
SM-Rule was given in [HFC18]. Both proof rules are based on supermartingales which do
not need to be ranking. They both can certify AST for programs that are not necessarily
PAST. In [HFC18] the authors confirmed that their proof rule is independent of the
SM-Rule.

[TOUH18] examined martingale based techniques for probabilistic reachability from an
order-theoretic viewpoint. This led the authors to the notions of Nonnegative Repulsing
Supermartingales and γ-Scaled Submartingales. These notions are accompanied by their
own proof rules for which the authors proved soundness and completeness.

The R-AST-Rule, which we generalize in Section 3.4, is able to refute AST and was
proposed in [CNZ17]. The paper introduced Repulsing Supermartingales not only for
refuting AST but mainly for obtaining bounds on the probability of stochastic invariants.

A different method, not based on martingales, for the probabilistic termination analysis
of PPs, was given by a weakest-precondition-style calculus in [KKMO16]. The calculus
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5. Related Work

is defined over the syntax of a probabilistic while-language and can be used to calculate
bounds on the expected termination time of a PP.

Automation of Martingale Techniques

[CS13] proposed a procedure for synthesizing linear martingales and supermartingales
using Farkas’ Lemma. Azuma’s Inequality is then applied to the discovered martingales
and supermartingales to obtain concentration results. In [CFNH18] the algorithmic
construction of supermartingales was extended to allow for non-determinism and in
[CFG16] to polynomial supermartingales.

[CNZ17], which introduced repulsing supermartingales and stochastic invariants, also
provided an algorithmic approach for constructing linear repulsing supermartingales for
a stochastic invariant. However, the R-AST-Rule, as such, was not automated.

Other Related Work

In [GGH19] the authors developed a procedure for computing the expected runtime
of constant probability programs. Moreover, the paper suggested a complete decision
procedure for AST and PAST for constant probability programs. In this thesis, in Section
3.6, we discovered a fragment of Prob-solvable loops for which AST can be decided and
generalized the corresponding result of [GGH19].

A sound and complete procedure deciding AST for weakly finite programs was given in
[EGK12]. Weakly finite programs are probabilistic programs such that the number of
states reachable from any initial state is finite.

[NCH18] gave an algorithmic approach, based on potential functions, for computing
bounds on the expected resource consumption of PPs. The paper is accompanied by the
tool Absynth, against which we compared our tool Amber in Section 4.5.

Finally, the class of Prob-solvable loops was first studied in [BKS19]. The authors
provided a procedure for computing moment-based invariants as well as the tool Mora

which we use in our tool Amber.
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CHAPTER 6
Conclusion

The question of termination for traditional programs is one of the oldest and most
infamous challenges in computer science. The generalization of this question to PPs
through the notions of AST and PAST can be conquered with techniques based on
martingales.

In chapter 3, we introduced several existing proof rules, involving (super-)martingales,
for AST, PAST and their negations. The R-AST-Rule, first studied in [CNZ17] and
based on the concept of repulsing supermartingales, can be used to certify non-AST. We
generalized the R-AST-Rule in Section 3.4 to allow for repulsing supermartingales without
c-bounded differences. This allowed us to witness non-AST for PP with unbounded
polynomial updates.

In Section 3.6, we established the fragment of admissible PE-RWs, a class of PPs. We
relaxed the previously introduced proof rules and combined them with our generalization
of the R-AST-Rule into a decision procedure effectively deciding AST for PE-RWs. Our
class of PE-RWs strictly subsumes the class of constant probability programs for which
AST was shown to be decidable in [GGH19].

Concerning automation of the aforementioned proof rules for a more general class of PPs,
in Chapter 4, the class of Prob-solvable loops proved to be a suitable candidate. Various
relevant PPs can be modeled as Prob-solvable loops. Moreover, we established that the
structural constraints defining Prob-solvable loops allow for automatically computing
almost-sure asymptotic bounds on polynomial expressions over program variables. This
fact enabled us to automate various probabilistic termination proof rules and bring them
together in the tool Amber.

Experimental evaluations verified the improvement over the state-of-art provided by
Amber. Amber is the first tool to automate the SM-Rule and the GR-AST-Rule for
any class of PPs and can automatically determine the probabilistic termination behavior
of programs which are out of reach for other tools.
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6. Conclusion

Future Work An interesting direction for future research is program transformations
which simplify programs while preserving their termination behavior. Specifically, trans-
formations which convert a PP outside of Prob-solvable loops into a Prob-solvable loop,
as this would expand the applicability of the automation techniques from Chapter 4.
Moreover, transforming PPs into PE-RW, while preserving their termination behavior,
allows for enlarging the class of PPs for which AST can be effectively decided.
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Acronyms

AST almost-surely-terminating. 9, 10, 12, 15, 17–21, 24–29, 31–34, 39, 48–51, 54–57,
59–62

GR-AST-Rule Generalized-Repulsing-AST-Rule. 24, 28, 29, 31, 33, 35, 36, 38, 39,
49–53, 61

MDP Markov Decision Process. 5, 7

PAST positively-almost-surely-terminating. 9, 10, 12, 15–20, 26, 27, 29, 32, 33, 38, 47,
48, 52–57, 59–61

PE-RW poly-exponential random-walk. 29–34, 61, 62

PP probabilistic program. 1–3, 5, 7, 10, 20, 21, 26, 29, 31, 54, 55, 59–62

R-AST-Rule Repulsing-AST-Rule. 18–21, 29, 59–61

R-PAST-Rule Repulsing-PAST-Rule. 19, 20, 35, 51, 52

RSM ranking-supermartingale. 15–19, 26, 31, 33, 38, 48, 59

RSM-Rule Ranking-Supermartingale-Rule. 16, 26, 27, 29, 31, 33, 35, 37, 38, 47, 48, 53,
59

SM supermartingale. 12, 13, 15, 17, 18, 20–22, 31

SM-Rule Supermartingale-Rule. 17–19, 26, 27, 29, 31, 33, 35, 36, 39, 48, 49, 59, 61
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