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Abstract

Programmable Digital Signal Processing (DSP) is of paramount importance for the success of
contemporary space missions in support of earth observation, astro-sciences and telecommunica-
tions. The present thesis aims at contributing to solving the problem of combining intrinsically
contradicting requirements such as high signal processing performance, data throughput and
flexibility on the one hand with robustness and high availability in the hostile space environment
on the other. For economic reasons, the problem is tackled on systematic rather than technolog-
ical level giving preference to pure software solutions implemented on commercial off-the-shelf
(COTS) processing platforms. The applicability of commercial components to space applica-
tions is very limited due to ionizing radiation which may cause permanent modifications of the
used materials and consequently of the electrical characteristics, referred to as total-ionizing-
dose (TID) effects, as well as single-event effects, experienced as soft errors in form of bit-flips
or detrimentally as destructive latch-ups. Consequently, spaceborne signal processors are either
fast but highly optimized for particular applications, thus, inflexible or programmable, slow and
based on outdated semi-conductor technologies and processor architectures. The latter is due to
the fact that for a commercial component to become a real space component it must have ample
heritage, be screened or even modified for satisfying space-quality assurance requirements and
it must be applied long enough to justify these investments. On the other hand, modern deep-
sub-micron processes are not only superior with respect to low capacitances and, thus, high
processing speed but also with respect to TID and latch-up insensitivity so that they can be eas-
ier qualified for space. However, the vulnerability with respect to single-event upsets remains,
resulting in intolerably low system availability.

The objectives of the present thesis have been the selection of a modern programmable
DSP as well as the identification, derivation, evaluation and experimental validation of fault-
tolerance (FT) mechanisms such as software-based FT, an external FT-controller as well as a
combination thereof, to be applied to this component in order to establish a spaceborne DSP-
system satisfying payload dependability requirements. Typical applications of such a system
are data and image processing, including filtering, decimation, coding and spectral analysis.
Careful selection of FT-methods as well as optimal alloying of FT- and DSP-algorithms has
been shown to be crucial for maintaining the full performance of either algorithm class and for
ensuring software-product maintainability. Statistical measurements performed with the most
promising candidate FT-mechanisms integrated along with typical DSP-algorithms have shown
that software-only solutions, although economically attractive, fail in providing the required
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availability in combination with the desired processing power, while these goals can be fully
met, if software FT-techniques are combined with an external FT-controller.



Kurzfassung

Programmierbare digitale Signalverarbeitung (DSP) ist von außerordentlicher Bedeutung für
den Erfolg von Weltraummissionen zu Zwecken der Erdbeobachtung, astrophysikalischen For-
schung und Telekommunikation. Die vorliegende Arbeit liefert wesentliche Beiträge, beste-
hende Fortschrittsbarrieren, bewirkt durch die angesichts der Umweltbedingungen im Welt-
raum einander grundlegend widersprechenden Anforderungen von hoher Prozessorleistung, ge-
paart mit Flexibilität einerseits und hoher Zuverlässigkeit und Verfügbarkeit andererseits, zu
überwinden. Aus wirtschaftlichen Gründen wird nicht auf neue Halbleitertechnologien gesetzt
sondern auf Systemebene eingegriffen, wobei vorerst reine Software-Lösungen zur Anwen-
dung auf Standard-Prozessorplattformen der Vorzug gegeben wird. Der Gebrauch von Standard-
Elektronik im Weltraum ist aufgrund der dort herrschenden ionisierenden Strahlung nur sehr
eingeschränkt möglich. Neben permanenten Veränderungen der mechanischen und elektrischen
Eigenschaften durch Dosis-Effekte und Bauteilzerstörung durch Latch-Ups, sind so genannte
Single-Event-Effekte, die in Form spontaner Bit-Fehler wahrgenommen werden, von Bedeu-
tung. Aus diesen Gründen steht leistungsfähige weltraumtaugliche Signalverarbeitungselektro-
nik fast ausschließlich nur in Form von hochspezialisierten integrierten Schaltungen zur Ver-
fügung, während programmierbare, flexible Signalprozessoren auf veralteten Technologien be-
ruhen und daher bei weitem nicht den Anforderungen gerecht werden können. Zum Einsatz
veralteter Technologien kommt es wegen des in sie bestehenden Vertrauens und der langen Dau-
er einer Komponentenqualifikation, sowie wegen der wirtschaftliche Notwendigkeit, einmal für
den Weltraum qualifizierte Bauelemente möglichst lange einzusetzen. Allerdings haben tech-
nologische Verbesserungen zur Erhöhung der Taktraten digitaler Bausteine auch zu einer Ver-
ringerung von Dosiseffekten und Latch-Ups geführt, sodass moderne Komponenten leichter für
Weltraumanwendungen qualifiziert werden könnten, wären sie nicht nach wie vor empfindlich
in Bezug auf Single-Event-Effekte (SEEs).

Ziel der vorliegenden Arbeit war es, moderne Signalprozessoren in Bezug auf ihre Welt-
raumtauglichkeit zu untersuchen, eine potentiell geeignete Komponente auszuwählen sowie nach
Software-Algorithmen zur Erhöhung der Fehlertoleranz (FT) im Zusammenhang mit Single-
Event-Effekten zu forschen. Dazu wurden sowohl reine Soft- und Hardware-Lösungen wie auch
auch ein Hybridkonzept theoretisch untersucht sowie Messungen an einer Hardware-Realisierung
durchgeführt und evaluiert. Das Hauptanwendungsgebiet einer derartigen DSP-Plattform liegt
in den Bereichen der Datenkompression und Bildverarbeitung und umfasst unter anderem Fil-
terung, Dezimation, Kodierung und Spektralanalyse. Da es bei diesen Anwendungen um größt-
möglichen Datendurchsatz geht, FT-Algorithmen aber funktionsbedingt Prozessor-Ressourcen
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stark beanspruchen, war einerseits der FT-Algorithmenwahl besondere Beachtung zu schenken,
andererseits mussten innovative Methoden zur Verschränkung von FT- und DSP-Algorithmen
gefunden werden, um deren ursprünglich individuell optimierte Eigenschaften auch in der Kom-
bination zu erhalten und darüber hinaus die Möglichkeit zur Weiterentwicklung und Wartung
nach diesen Konzepten entstandener Flug-Software zu gewährleisten. Auf experimentellem Weg
konnte gezeigt werden, dass reine Software Lösungen zwar wirtschaftlich interessant sind, aber
den gestellten Anforderungen in Bezug auf Verlässlichkeit nicht gerecht werden. Demonstriert
wurde aber auch, dass alle zu Beginn der Arbeit gestellten Ziele erfüllt werden können, wenn die
Softwaremethoden durch externe Hardware in Form eines FT-Controllers unterstützt werden.
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CHAPTER 1
Introduction

In this chapter an introduction on motivation for the topic from a political perspective will be
presented. Industry has to deal with the fact that radiation-hard components originated from
the United States can only be used, if their usage is a-priori permitted by US-authorities. This
background lays the foundation for the problem which is present when working with radiation-
tolerant hardware.

1.1 Background

Space flight plays an important role in our daily life. The first European earth observation satel-
lite named ERS-1 was launched in 1991. Its success paved the way for future space missions,
especially for earth observation. ERS-2 followed while ERS-1 was still in orbit, which even
allowed for tandem operation of the two spacecraft. At their time of launch the two ERS satel-
lites were the most sophisticated earth observation spacecraft ever developed and launched by
Europe. These highly successful satellites collected a wealth of valuable data on Earth’s land
surfaces, oceans, and polar caps and were called upon to monitor natural disasters such as severe
flooding or earthquakes in remote parts of the world.

Because of the information gained from those missions, the European Space Agency (ESA)
decided to extend the Earth Observation program to investigate our planet in more detail. The
overall success of a mission depends on both quality and amount of science data generated dur-
ing flight and, therefore, on the total time all devices forming the instrument suite are fully oper-
ational. Consequently, space electronics is built from highly reliable components, designed with
apropriate margins (de-rating), incorporating redundancy concepts to further increase reliabil-
ity. Peculiar environmental conditions require careful consideration of mechanical and thermal
stress experienced during launch and cruise. In this context ionizing radiation is a particular
threat for space systems so that the radiation tolerance of electrical components is of paramount
importance. The malfunction of such an cost expensive spacecraft could result in a huge finan-
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cial loss or even the end of a mission.

Radiation induced Single Event Effects (SEEs) cause serious problems. Depending on the
mission profile, radiation effects may cause transient faults like a Single Event Transients (SETs)
which could be experienced as temporary “bitflips”, referred to as Single Event Upsets (SEUs),
or even as permanant faults such as Single Event Latchups (SELs), which usually result in the
destruction and therefore loss of the affected device. To cope with effects like these, special
radiation tolerant hardware can be used. Radiation tolerant devices are equipped with additional
logic to provide fault tolerance, e.g. via error detection and correction (EDAC), Triple Modular
Redundancy (TMR) or improved manufacturing processes. For historical, political and tech-
nological reasons, most radiation tolerant components are fabricated in the United States and
the International Traffic in Arms Regulation1 (ITAR) restricts the use of radiation hardened de-
vices outside the US. Many organizations and manufactures try to use components which are
not covered by ITAR. As a result the amount of hardware components actually available to the
European space engineering community is very limited.

Apparently, this problem is most pronounced for applications with demanding requirements
concerning processing speed, data throughput and storage as experienced in the context of Dig-
ital Signal Processing (DSP) desperately needed for on-board data reduction to guarantee suffi-
cient scientific return in spite of limited data-down-link capacity2. Possible technical solutions
are

Application Specific Integrated Circuits (ASICs) Respective state-of-the-art technology is avail-
able in Europe. However, as the channel widths have decreased, ASIC manufacturing
costs have increased to the extent that full custom implementations for individual mis-
sions have become unaffordable. Due to the nature of space systems engineering, ASIC
re-use (or even design re-use) is rarely possible for DSP-circuitry due to the fact that re-
quirements are highly specific for each mission and exhibit (unnecessary) differences for
diferent space agencies and customers.

Programmable Processors A European component with reasonable performance for control
applications is available with the LEON-FT3 micro-processor. A state-of-the-art European
DSP is not available. Respective US components are under ITAR and Japanese devices
are not sold as components but only as part of systems.

Field Programmable Gate Arrays (FPGAs) A good approach which is commonly chosen is
the use of reprogrammable logic devices. However, most companies providing space-
grade FPGAs are located in the United States which again leads to problems with ITAR.
There also exists a European company which produces space-grade FPGAs but these de-
vices can only be used at low clock frequencies, up to 20 MHz, and they can host only
very small designs.

1http://www.pmddtc.state.gov/regulations_laws/itar_official.html
2http://spacewire.esa.int/edp-page/presentations/ADCSS09_Trautner_NGDSP%

20V1.0.pdf
3http://www.esa.int/TEC/Microelectronics/SEMUD70CYTE_0.html
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A viable option seems to be a processor platform based on a Texas Instruments (TI) digital
signal processor. Although TI is an american company, the available space qualified DSPs are
not covered by ITAR which enables its free use. However, the radiation tolerance attained by
the rad-hard fabrication technology is not perfect and therefore the former mentioned radiation
effects can still affect the device in many ways.

This thesis will present a firm concept to ensure fault-tolerance on a TI-DSP based radia-
tion tolerant platform under the given constraints and demonstrate its capabilities by means of
a running prototype system which is capable of processing a high amount of data with high
performance, using optimized algorithms and fault olerance mechanisms.

1.2 Methodology

First of all an approach for the quantification and the rating of possible fault scenarios for the
used platform will be established. This information is mainly based on a radiation report from
Texas Instruments [30] and mission experience reported in other publications. Next, state of the
art hardware and software fault-tolerance approaches will be evaluated and discussed.

Although the aim is a pure software solution, approaches using additional hardware will be
discussed too. Because computation performance is constrained by the DSP and by the real-
time environment, a theoretical evaluation is undertaken to eliminate all infeasible solutions at
an early stage.

This is followed by the establishment of fundamental requirements which need to be satisfied
by the system. Based on the fact that it is clearly impossible to implement a software solution
without a cutback in performance, deductions which are necessary to ensure a given tolerance
level will be shown. To give an insight on performance and fault-tolerance, all evaluations
are done on typical signal processing algorithms, typical in the sense that they can be found
in most spaceborne data processing applications. The assessment of actual performance and
availability has been done via measurements on a physical prototype. To simulate SEU effects a
fault injection tool has been implemented and the results gained from fault-injection experiments
can be compared with theoretical predictions and simulations.

1.3 Structure of the Thesis

This thesis is structured into seven chapters. Following this introduction, Chapter two will reca-
pitulate the basics of failure models which apply to space-grade components and in particular to
the devices investigated within the frame of this thesis work. Chapter three will give an overview
on commonly used hardware and software fault tolerant approaches in combat to radiation ef-
fects in space. Followed by a brief introduction to failure modeling and a listing of likely threat
scenarios and their potential consequences, Chapter four will present the development platform
supporting the present investigations. The implementation of a fault tolerant system for the
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selected demonstrator application forms the focus of Chapter five. It will be shown that it is pos-
sible to implement the application with adequate availability. Based on the knowledge gained
in Chapter five, fault injection techniques will be used to evaluate the fault distribution, their
effects and their outcome. The results will be presented in Chapter six. Chapter seven concludes
the thesis and discusses open questions and future enhancements.
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CHAPTER 2
The Problem of Radiation in Space

“Space weather is working its way into the national consciousness as we see an increasing
number of problems with parts of our technological infrastructure such as satellite failures and
widespread electrical power brownouts and blackouts”1

2.1 Introduction

The physical space environment is markedly different from circumstances to which terrestrial
electronics is exposed. In space radiation based errors like single event effects (SEEs) have
become a major issue. However, it is the presence of ionizing radiation and its effect on semi-
conductors, that creates a fault environment which is unique to space applications, threatening
electronic circuit reliability.

Since their first observation by Guenzer and Wolicki in 1979 [19], the importance of soft-
error effects, their causes and the methods for their mitigation, have rapidly increased. In the
same year Ziegler and Lanford published an article [68] which presents a way to predict the
number of faults induced by cosmic rays. They also predicted that SEEs are not limited to mem-
ories and that a similar upset phenomena could arise even at sea level.

Concentrating on effects in space two main radiation sources need to be considered:

• High energy protons, especially for low earth orbits (LEO)

• Cosmic rays, a heavy ion compunds of either solar or galactic origin.

1The National Space Weather Program, 1999
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Figure 2.1: Geomagnetic field [Source: NASA Marshall Space Flight Center]

Plasma effects can be ignored in this context since plasma energies are in a range of less than 1
eV 2 to keV which is very low compared to the energy of ionizing radiation.
Due to the strong influence of the geomagnetic field, particle motion and location are also to
be considered. It is known that the sun also has an impact on ionizing radiation levels and
magnetic field characteristics, influenced by the eleven year solar cycle which is divided into
four years of solar min followed by seven years of solar max, it is known that sun flares are a
major contribution to the overall ionizing radiation level. Figure 2.1 shows particle motion and
location influenced by the geomagnetic field.

The regions of interest for an earth observation mission are mainly the Van Allen Belts. As
shown in Figure 2.2 the Van Allen Belts consist of the inner proton and the outer electron belt.
The south atlantic anomaly (SAA), which is also shown, causes an increased flux of energetic
particles at its location and therefore exposes a higher level of radiation to objects in this region.
Particles trapped in the SAA as well as electrons belonging to the outer electron belt, which
reaches down to the earth’s surface close to the polar regions are the greatest threat for satellites
in low-earth orbit (LEO). The trapped particles in the outer Van Allen Belt include electrons with
an energy level of up to 7 MeV. Due to the low energy level shielding, against these particles is
easy. On the other hand, there are mainly protons trapped inside the inner belt with an energy
level of less than 500 MeV, which roughly varies inversely with altitude. Consequently, dose is
affected by altitude and geomagnetic latitude.

Based on the information provided up to now, Table 2.1 aims at a classification of radiation
according to root cause and affected orbits.

2Energy Unit: Electron Volt (eV) one eV is the energy gained by an electron by acceleration due to a potential
difference of 1V. Energy in radiation is usually in the unit of MeV (106eV) or KeV (103eV). 1eV = 1.6 · 10−19J ,
1MeV = 1.6 · 10−13J
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Figure 2.2: Trapped Radiation Belts Around Earth [Source: NASA Jet Propulsion Laboratory]
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2.2 Single Event Effects (SEE)

The former mentioned physical effects create the basis for the following description. If radiation
exceeds a certain level their physical effects can cause electronic disturbances like SEEs, which
vary depending on their energy level and their location. Practically, space radiation is described
by the so called radiation spectrum, which is the density of particles of a particular radiation
type as a function of particle energy.

SEEs can be described as a function of the charge deposit into a node of an integrated circuit
in terms of linear energy transfer (LET) that denotes the energy imparted by the particle and is
directly proportional to the response of the circuit. In other words, LET expresses the relevant
characteristic of a particles passage through material. It gives up energy as a function of the
distance it travels through the material and the density of the material.

L∆ =
dE∆

dx
(2.1)

LET is typically expressed in MeV · cm2/mg. The linear energy transfer threshold of a device
– LETth is by definition the minimum amount of energy required to cause an SEE in this device
at a particle fluence of 107 ions/cm2. A device having a LETth > 100MeV · cm2/mg is
considered practically SEE immune. Conversely a low LETth implies high sensitivity.

The cross section CS, or σ, which is a function of the LET measures the probability for an
SEE to occur. To define the upper limit the saturation cross section CSsat or σsat is used. In
other words σ is referred as the number of upsets observed divided by the number of ions per
cm2. σsat and LETth are the key measures for SEEs. The following example shows how the
cross section is calculated:

Cross Section Estimation Example – SEU-Testing of 8 Bit Memory

1. write 0000.0000 into memory

2. irradiate device with a known number of particles per cm2 – (F)

3. stop irradiation

4. read out memory e.g. 0100.0010→ 2 upsets – (N)

The resulting cross section σ can be calculated using equation 2.2

σSEU =
N

F
[cm2] (2.2)

Because the cross section is measured for one particular LET, more experiments and calcu-
lations with different LET levels are necessary. Figure 2.3 shows the cross section as a function
of LET for a particular device. Also, threshold and the saturation are visible.

9



Figure 2.3: Cross section vs. LET

SEEs caused by energetic particles are divided into 2 categories:

• Permanent faults:

– Single Event Latchup (SEL)

– Single Event Burnout (SEB)

– Single Event Gate Rupture (SEGR)

• Transient faults:

– Single Event Upset (SEU)

– Single Event Functional Interrupt (SEFI)

Since for many of those terms slightly different definitions can be found in literature, this work
refers to the following space radiation definitions used by Ken LaBel, NASA Goddard Space
Flight Center3:

• Single Event Latchup (SEL) is a potentially destructive condition involv-
ing parasitic circuit elements forming a silicon controlled rectifier (SCR). In
traditional SEL, the current may destroy the device, if not limited and removed
“in time”. A “microlatch” is a subset of SEL where the device current remains

3http://klabs.org/richcontent/Tutorial/Radiation_Definitions.htm
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below the maximum specified for the device.
A removal of power to the device is required in all non-catastrophic SEL con-
ditions in order to recover device operation.

• Single Event Burnout (SEB) is a highly localized burnout of the drain-source
channel in power MOSFETs. SEB is a destructive condition.

• Single Event Gate Rupture (SEGR) is the burnout of a gate insulator in a
power MOSFET. SEGR is a destructive condition.

• Single Event Upset (SEU) is a change of state or transient induced by an
ionizing particle such as a cosmic ray or proton in a device. This may occur
in digital, analog and optical components or may have effects in surrounding
circuitry. These are “soft” bit errors in that a reset or rewriting of the device
causes normal behaviour thereafter. A full SEU analysis considers the system
effects of an upset.

• Single Event Functional Interrupt (SEFI) is a condition where the device
stops operating in its normal mode, and usually requires a power reset or other
special sequence to resume normal operations. It is a special case of SEU
changing an internal control signal. One example would be a DRAM enter-
ing the test mode defined by JEDEC 4. Another example is a microcircuit
with IEEE 1149.1 JTAG circuitry leaving the TEST_LOGIC_RESET state
and loading an unintended instruction into the instruction register (IR). Like
other SEUs, the system effects must be properly analyzed. For example, a
JTAG upset can cause the device to draw high currents or turn inputs into an
outputs. The latter could, for example, drive a clock line to ground; thus, an
independent clock signal should be used for the TCLK pin on devices without
the optional TRST pin.

A complete summary of faults based on radiation can also be found in the the European
standard E-ST-10-12C from the “European Cooperation for Space Standardization”.5

2.3 Total Dose Effects

Total ionization dose (TID) is the non-reversible effect of ionizing radiation accumulated on a
space mission over time. Ionizing radiation can generate electron-hole pairs in semiconductors
and in insulators such as silicon dioxide. In principle, it is possible for the electrons and holes to
recombine or to be transported away by an electric field. However, holes that have lower mobility
than electrons are often trapped at interfaces between semiconductor and insulator or within the
bulk material. The deposited charge changes the potential which can in turn cause an increase in
the leakage currents which may increase power consumption, change the devices time constants,
reduce gain, and change the threshold voltage of a metal-oxide semiconductor (MOS) transistor.
In addition electron can get caught in non-conductive material. With increasing exposure, there

4JEDEC standards http://www.jedec.org/
5European Cooperation for Space Standardization http://www.ecss.nl/
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is a continuing decrease in functionality until the device eventually fails. In other words, TID
to an electronic device is the equivalent of a sunburn to the human skin. The measurement is
done in terms of the absorbed dose which represents the absorbed energy. The unit for this
measurement is rad (radiation absorbed dose) or the SI unit gray (Gy).

1 Gy = 100 rad = 1 J/kg (2.3)

Dose must always be referred to the absorbing material. TID effects on semiconductors can be
summarized as follows:

• MOS transistors

– Threshold voltage shift (∆V t)

– Leakage currents between source and drain, and between adjacent MOS-transistors

– Transconductance decrease

– Weak inversion slope decrease

• Bipolar transistors

– Gain decrease

• JFET transistors

– Decrease of P-JFET transconductance

– No TID effect on N-JFET

• Silicon resistors

– Resistance of P-Silicon resistor increases

– No effect on N-silicon resistors

• MOS capacitors

– no TID effect

2.4 Displacement Damage

Displacement damage is the result of non-ionizing radiation that causes atomic displacements
when radiation interacts with atomic nuclei, displacing or removing them from their lattice sites.
This upsets the periodicity of the lattice in the material, creating lattice defects. Displacement
damage, also known as bulk damage, is caused by the cumulative effects of non-ionizing ra-
diation that include protons and ions at all energies, electrons greater than about 150 keV, and
neutrons from onboard radioactive power sources or secondary particles from the initial inter-
actions. In short, displacement damage is the accumulation of crystal lattice defects caused by
high energy radiation. The most important consequence of displacement damage in a semicon-
ductor is a reduction in the lifetime of the minority carriers. Displacement damage is similar to
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TID, which means that the effect is cumulative, although it is more complex to characterize than
TID. A commonly used method to quantify displacement damage is non-ionizing energy loss
(NIEL) [61].

2.5 Mission Orbits

There are extremely large variations in the level of radiation effects depending upon the trajec-
tory through the radiation source. Satellites flying at Low Earth Orbits (LEOs), Highly Elliptical
Orbits (HEOs), Geostationary Orbits (GEOs) and planetary and interplanetary missions experi-
ence very different environmental conditions [29].

At the beginning of this Chapter the susceptibility of electronic components to space radia-
tion was explained. Also, a threshold for SEE immunity based on the energy level was derived.
The following description shall help to understand how the level of radiation depends on a space
vehicle’s location in space. Although the presentation is qualitative, it gives a good indication
for the probability of ocuurence of radiation induced effects.

2.5.1 Low Earth Orbit (LEO)

Satellites flying in LEO are passing regions of the Van-Allen Belts, filled with trapped protons
and electrons, several times a day. The resulting flux varies largely depending on inclination and
orbit. This is the most important characteristic of a LEO orbit with respect to radiation. The
greatest inclination dependencies occur in the range of 0◦ < I < 30◦. The largest variation
of the resulting flux is located between 200km up to 600km. At an altitude in excess of 600
km the flux only changes gradually. The location of the flux peaks depends on the energy of
the particles. For trapped protons with an energy of E > 10MeV it is found at about 4000km
altitude.

The geomagnetic field works as a shield protecting satellites against cosmic rays and solar
flare particles. This protection mechanism varies stronger with inclination than it does with alti-
tude. Consequently, the exposure to radiation increases with increasing altitude as well as with
increasing inclination. If the inclination reaches the pole regions, the spacecraft is outside the
geomagnetic field lines and therefore fully exposed to cosmic rays and to solar flare particles for
a significant portion of the orbit. Under normal space-weather conditions an inclination of 45◦

helps to shield the satellite completely against solar flare protons.

During strong solar events the geomagnetic field is distorted, resulting in cosmic ray and
solar flare particles reaching previously unattainable altitudes and inclinations. The same effect
applies to cosmic ray particles during strong magnetic storms.

2.5.2 Highly Elliptical Orbit (HEO)

Highly elliptical orbits are similar to LEO orbits, in that they pass through the Van Allen belts
every day. However, because of their high apogee altitude (greater than about 30,000km), satel-
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lites in this kind of orbit also have to endure long exposure to the cosmic ray and solar flare
environments, regardless of their inclination. The levels of trapped proton flux that HEOs en-
counter depend on the perigee position of the orbit including altitude, latitude, and longitude. If
this position drifts during the course of the mission, the degree of drift must be taken into ac-
count when predicting proton flux levels [29]. Because of the orbit altitude ranging from 400 km
(perigee) to 46,000 km (apogee) HEOs also accumulate high TID-levels due to both, the trapped
proton exposure and the electrons in the outer belts where the spacecraft spends a significant
amount of time during each apogee pass.

2.5.3 Geostationary Orbit (GEO)

At geostationary altitudes the only trapped protons that are present are below energy levels nec-
essary to initiate nuclear events that could cause SEEs in materials surrounding the sensitive
region of the device. However, GEOs are almost fully exposed to the galactic cosmic ray and
solar flare particles. Protons below 40-50 MeV are normally geomagnetically attenuated, how-
ever, this attenuation breaks down during solar flare events and during geomagnetic storms. Field
lines crossing the equator at about 7 earth radii during normal conditions can be compressed to
about 4 earth radii during these events. As a result, particles previously deflected have access to
much lower latitudes and altitudes.

2.5.4 Planetary and Interplanetary

The evaluation of the radiation environment for these missions can be extremely complex de-
pending on the number of times the trajectory passes through the earth’s radiation belts, how
close the spacecraft gets to the sun, and how well known the environment of other planets is.
Each of these factors must be very carefully taken into account along the exact mission trajec-
tory.
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CHAPTER 3
Hardware and Software Fault

Tolerance

In 1980 a joint committee on “Fundamental Concepts and Terminology” was formed by the
technical committee on Fault-Tolerant Computing of the IEEE Computer Society and the “In-
ternational Federation for Information Processing” (IFIP), Working Group 10.4, “Dependable
Computing and Fault Tolerance.” This laid the foundation for many important actions on de-
pendable systems.

Designing a reliable system requires finding a way to prevent failures caused by logical faults
arising from various problems. Available electronic components provide little support for error
detection and recovery and even less for the alleviation of strange behaviour caused by SEEs.
Therefore, some kind of replication is required to attain acceptable fault-coverage.

The optimal redundant configuration for the implementation of a reliable computational
component depends on the relative importance of operational correctness, life time and cost.
Uninterrupted operational correctness generally requires multiple devices to be simultaneously
on-line; long-life generally requires unpowered spares to be available. Both of these must be
weighed against mass, power, real estate and the cost associated with the use of multiple devices.
As described earlier, the primary goal of this thesis is to determine a DSP-platform architecture
offering affordable protection against high transient error rates which have to be expected, if
commercial or industry-standard electronic components are deployed in space.

This chapter summarizes the broad spectrum of techniques available to the designer of reli-
able digital systems. Techniques leading to increased reliability/availability can be divided into
two groups of basic approaches.

• Fault intolerance (or fault-avoidance)

• Fault tolerance

15



3.1 Fault-Error-Chain

Before continuing some basic definitions are necessary. It is mandatory to understand the differ-
ence between faults, errors and failures:

• Fault: adjudged or hypothesized cause of an error

• Error: that part of state which may lead to a failure

• Failure: occurs when delivered services deviate from the specification

fault→ error→ failure→ fault→ error→ failure→ · · ·

In other words it can be described as follows: An error is a manifestation of a fault in a system,
which could lead to system failure1.

In general the occurrence of the first failure does not end in contained behaviour. Although
a failure is the first deviation that can be observed from outside, it is necessary to consider that
a failure can propagate onto the next level. A failure in one service may propagate into another
service as a fault.

The next illustration shall increase the ability to recognize the importance of the fault-error-
chain.

· · · → event→ cause→ state→ event→ cause→ state→ · · ·

The goal is to break this fault-error-chain and thereby increase the dependability of a system.
The development of a dependable computing system calls for the combined utilization of a set
of methods and techniques which can be classed in the following manner [31]:

• Fault prevention: how to prevent fault occurrence or introduction

• Fault tolerance: how to ensure a service up to fulfilling the system’s function in the
presence of faults

• Fault removal: how to reduce the presence (number, seriousness) of faults

• Fault forecasting: how to estimate the present number, the future incidence, and the
consequences of faults

Depending on system and environment, not all of the above techniques may be applicable.

1Singhal/Shivaratri
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3.2 Basics of Fault Tolerance

Fault intolerance results from conservative design practices such as the use of highly reliable
components. The goal of fault intolerance is to reduce the possibility of a fault to occur in
the first place. Techniques in this category are aimed at defining methodologies and standards
that control the development process and prevent the introduction of faults. Some well known
methodologies we would like to mention here as examples are shielding and the application of
quality standards such as ISO90002, ECSS3, DO178B4, etc. are included here. However, even
with the most careful avoidance techniques faults cannot be completely avoided and system fail-
ures will occasionally occur.

Fault Tolerance aims at with putting mechanisms in place allowing a system to still deliver
the required service in the presence of faults, albeit some (graceful) degradation may have to be
taken into account. Additional information provided and exploitet with this technique allows for
interrupting the error chain at the transition from fault to error.

The necessary redundancy may be provided in two ways: time and space. Spatial redun-
dancy, always requires additional hardware, viz. the addition of extra gates and may introduce
additional information in form of coding. Hardware deals which the addition of extra gates,
memory cells, bus lines, functional units and also the supply of extra information (e.g. coding)
to guard against failures.

Time redundancy may be exclusively implemented in software and entails multiple or re-
peated execution of the same instruction and comparing the results in a straightforward or more
sophisticated manner. Table 3.1 summarizes some techniques presented in [59].

The fundamental theory of reliable system design states that a system may go through as
many as eight states in response to the occurrence of a fault [59]. Designing a reliable system
involves a selection of a coordinated fault response that combines several reliability techniques.
In the sequel, the following definitions will be used.

• Fault confinement: Limiting the spread of fault effects to one area of the system, thereby
preventing contamination of other areas. Can be achieved through liberal use of fault-
detection circuits, consistency checks before processing (“mutual suspicion”), multiple
requests/confirmations. May be implemented in both hardware and software.

• Fault/Error detection: Recognizing unexpected behaviour in the system. Many tech-
niques are available to detect faults, but an arbitrary period of time, called error detec-
tion latency, may pass before detection. Error detection techniques are divided into two
major classes: off-line detection and on-line detection. During off-line detection the sys-
tem is not able to perform useful operations until the detection process has finished. A

2International Organization for Standardization http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=42180

3European Cooperation for Space Standardization http://www.ecss.nl/
4 Radio Technical Commission for Aeronautics http://www.rtca.org/
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typical example is the execution during an idle-phase. Thus, off-line detection assumes
integrity before and possibly at intervals during operation, but not during the entire time
of operation. On-line detection provides a real-time detection capability that is performed
concurrent with application code.

• Diagnosis: This stage is necessary to gain information about the location and/or prop-
erties of errors. The information is sometimes provided already by the error detection
mechanism.

• Reconfiguration: In case a fault is detected and a permanent fault identified, the system
may be able to reconfigure its components either to replace the failed component or to
isolate it from the rest of the system. Alternatively, it may simply be switched off and the
system capability degraded in a process called graceful degradation.

• Recovery: Necessary to eliminate effects of faults. Two basic approaches of recovery are
based on the techniques of fault masking and retry. Fault masking techniques hide the
effects of faults by allowing redundant information to outweigh the incorrect information.
In retry a second attempt of an operation is made and may well be successful because
many faults are transient in nature, not causing any physical damage. One form of retry,
often called rollback, makes use of the fact that the system operation is backed up to some
point in its processing prior to fault detection and that operation can recommence from this
point. Error detection latency becomes an important issue because the rollback must go
far enough back to surpass all effects of undetected errors that may have occurred before
the detected one.

• Restart: Occurs after the recovery of undamaged information. A “hot” restart, which
is a resumption of all operations from the point of fault detection, is possible only if no
damage has occurred. A “warm” restart implies that some of the processes can be resumed
without loss. A “cold” restart corresponds to a complete reload of the system, without any
processes surviving.

• Repair: A component diagnosed as having failed is replaced. As with detection, repair
can be either on-line or off-line. In case of off-line repair the system must be shut down to
perform the repair. In case of on-line repair the component my be replaced immediately
by a backup spare in a procedure equivalent to reconfiguration. Alternatively operation
may continue without the component, as in the case with masking redundancy or graceful
degradation. In either case the failed component my be physically replaced or repaired
without interrupting system operation.

• Reintegration: The repaired module must be reintegrated into the system. For on-line
repair reintegration must be accomplished without interrupting system operation
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3.3 Research Objectives and Success Metrics

Before considering particular fault tolerance approaches or evaluating their performance, the
research objective and success criteria shall be defined.

Research Objectives:

• to determine fault tolerance techniques which are broadly applicable to the use of DSPs
in space (especially the DSP presented later)

• to experimentally validate these techniques

• to evaluate the effectiveness of these techniques

The success metrics will be written as requirements since it is common in space business to
specify the outcome by means of requirements.

Success Metrics:

• Candidate techniques shall be broadly applicable to existing DSPs for space applications.

• Techniques shall exhibit minimal intrusiveness with respect to single devices implemen-
tations

• System availability shall be at the level of typical contemporary (2011) space mission
requirements.

• System resource utilization (mass, power, envelope, cost) shall be substantially less than
for contemporary solutions achieving the same level of dependability.

3.4 Hardware Fault-Tolerance

The physical replication of hardware is perhaps the most common form of redundancy used. As
semiconductor components have become smaller and less expensive, the concept of hardware
redundancy has become more common and more practical. For terrestrial applications the cost
associated with the replication of hardware within a system is decreasing, simply because the
cost of hardware is decreasing. Hardware replication is also a convenient approach for the ap-
plication developer. It allows concentrating on the software development processes and, thus,
decreasing development costs. However, there is a price to pay in terms of additional hardware
area, power consumption and speed, which is critical, especially when considering space appli-
cations. The latter may benefit from the aforementioned theory of ever falling hardware prices
only, if commercial or at least industrial components can be used instead of space grade devices.
One can distinguish between three basic forms of hardware redundancy, passive, active and hy-
brid redundancy.
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The first two are often referred to as static and dynamic in literature. Passive redundancy
uses the concept of fault-masking to hide the occurrence of errors and, therefore, prevents their
manifestation. The passive approach is designed to achieve fault-tolerance without requiring
any additional action. The most common form of passive redundancy is called triple modular
redundancy (TMR) which uses three components in parallel. The fault masking is done via ma-
jority voting. Clearly, the single point of failure here is the voter. A more generalized approach
of TMR is N-modular redundancy or NMR were N components work concurrently.

Active or dynamic redundancy achieves fault-tolerance by detecting the existence of faults
and performing some action to isolate the effect. This can be described as

detection→ isolation→ reconfiguration or recovery

The last form is the hybrid approach. It combines the attractive features of both passive and
active redundancy to prevent erroneous results from being generated. Hybrid approaches are
often used in critical-computation applications were fault-masking and high reliability are re-
quired. Hardware fault-tolerance cannot only be achieved by just using additional hardware.
Information redundancy allows fault-detection, fault-masking or even fault-recovery by adding
redundant information to the data word. The most common approach is using error detection
and error correction coding (EDAC).

3.4.1 Radiation-Hard Components

Space systems are more or less permanently exposed to radiation which causes a reduction of
the lifetime of electronic components. Protection against radiation effects must be enforced by
design. Main sources for radiation were already mentioned in chapter two. The primary goal
of radiation hardening techniques is to increase the capability to handle specific radiation levels.
This can be split in two main categories, logical and physical techniques:

Physical techniques deal with customizing layout and manufacturing processes. Silicon on
insulator (SOI) is such a manufacturing technique. It adds a very thin insulating layer to the de-
vice which limits the sensitivity with respect to parasitic current. Because of this, layer capacity
and switching time of transistors can be decreased at the cost of increased complexity of the
manufacturing process.

A straightforward and inexpensive method for increasing radiation tolerance is shielding.
However, depending on the thickness of the used shielding, Bremsstrahlung will result out of
the deceleration of charged particles. In Chapter two the relation between material and LET was
already shown. Therefore, shielding is effective against TID effects but may even worsen the
situation with respect to SEEs.
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Figure 3.1: General structure of self-checking circuits

Other techniques which are often referred as Radiation Hardening by Design (RHBD) can
be spilt in those dealing with error masking and those concentrating on error detection and
correction. The latter will be treated in Section 3.4.3.3. Within the semiconductor design flow
RHDB may be accomodated on chip-layout level or on transistor level:

• RHBD on layout level: The basic idea is to increase the minimal charge needed for SEUs
to occur, which is referred to as critical charge (Qcrit). This can be achieved by increasing
capacitance in sensitive nodes, typically by increasing the physical size of transistors. The
bigger the capacitance the higher the resistance against SEUs. Increasing transistor size
increases power consumption and used chip area [15]. In [2] and [60], edgeless transistors,
referred to as Enclosed Layout Transistors (ELT), are used to eliminate radiation-induced
leakage currents (between source and drain). As proposed in [37], [2], [60] to introduction
of guard bands [3] around the devices is used to reduce the possibility of the latch-up
probability.

• RHBD on Transistor level: The former mentioned techniques are based on spatial and
temporal redundancy. On transistor level SEU tolerance can be improved by replicating
state-holding nodes. This method is used in Heavy Ion Tolerant (HIT) cells [4] and in
Dual Interlock Cells (DICE) [6].

3.4.2 Self-Checking Designs

Concurrent checking aims at verifying circuits during their normal operation. Self checking
designs are implemented using concurrent error detection by means of hardware redundancy. A
complex circuit is partitioned into functional blocks and block is implemented according to the
structure shown in Figure 3.1 [40].

The most obvious way to achieve fault tolerance is the duplication of functional blocks. This
method, referred to as duplication and comparison, benefits from the low engineering overhead
required for simple replication. However, for the ultimate achievement of simple error detection
the costs for this solution are more than 100% higher than for the unprotected design.

• Parity Code

• Dual-Rail Code

• Unordered Code
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• Arithmetic Code

The parity code is the cheapest because it only adds one check bit to the information part.
It can detect single errors (per information block) and even multiple errors, if the number of
errors (per information block) is an odd number. A dual-rail code is a variety of duplication
since check bits are the complements of the information bits. Dual-rail can detect any number
of errors exclusively affecting the information part or the complement part.

By definition, codes are unordered, if the case that a codeword x covers another codeword
z, denoted as x > z, meaning that x has a 1-bit at least in the 1-bit positions of z, does not
occur. This property allows the code to detect multiple errors with some constrains. Errors
affecting a single code-word must be unidirectional which means that only either (0 → 1)- or
(1→ 0)-errors are allowed. The most important unordered codes are the m-out-of-n codes and
the Berger codes. m-out-of-n code are non-separable codes which means that information and
check bits are merged in a single code-word. Code-words are composed by generating patterns
with exactly m 1-bits. For example, 1100, 1010 and 1001 are valid code-words for a 2-out-of-
4-code.

Berger codes are separable unordered codes. The check part represents the number of 0 bits
of the information part. For the information part I = 110011 coding would create check part C
= 010. For n information bits the number of check bits is equal to dlog2(n + 1)e. Both m-out-
of-n codes and Berger codes are arithmetic codes. They are interesting for checking arithmetic
functions because they are preserved under such operations. The most commonly used arith-
metic codes are separable. They are most often implemented as so called low cost arithmetic
codes [49].

In [36] an improved approach for soft-error coverage using data-path parity was presented.
The presented approach uses the “duplicate and compare” method on registers and logical el-
ements connected directly with memory elements. Regions where soft-error effects can cause
only little mutation to output registers were protected using coding techniques for cost rea-
sons. Figure 3.2 shows an approach for a self-checking circuit based on partial duplication. The
function of this approach can be summarized as follow: For intermediate results IR check bits
gen(IR) are generated. In parallel, the expected check-word pred(IR) for the corresponding in-
termediate result is calculated. It depends on the operand’s control code(x) and code(y) and the
operand based correction information from the arithmetic unit.
The technique allows for the generation of self-checking arithmetic units with hardware over-
heads between 3% and 16%. Compared to TMR this is much lower, however, the technique is
restricted to the detection of errors in registers and only used with distinct units rather than the
complete designs.

3.4.3 Hardware EDAC

Error Detection and Correction (EDAC) [7] coding introduces information redundancy to allow
for error correction in addition to pure error detection. The available methods can widely be
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Figure 3.2: Self-checking through partial duplication [36]

used to improve the reliability of storage structures, like finite state machines (FSMs) as well
as static and dynamic memories (SRAMs, DRAMs). Traditionally, a hamming code (39, 32)
is used for the protection of 32-bit data. In the theory of error control the designation (n, k)
denotes a block code that takes a k-bit data word and maps it to an n-bit code word. The most
popular coding techniques are introduced in the following section.

3.4.3.1 Parity Checking

The simplest but also weakest coding technique is parity checking by adding a single check-bit.
Apparently, it requires a low level of redundancy to ensure detection of single bit errors. Due to
the limited amount of redundant information, correction of false data is not possible. To generate
the parity information a simple XOR operation can be used. The same simple operation can also
be used to determine if an error has occurred. This makes the parity checking an attractive
solution if only single bit error detection is required. However, it is not powerful enough to
handle SEUs. To make it more attractive a modified version like hamming coding or rectangular
coding can be used. Parity checking is not obsolete since it is commonly used in the hamming
code (39, 32) to generate the overall parity information (7th redundancy bit).

3.4.3.2 Rectangular Codes

Rectangular codes are used for the protection of larger amounts of information and if the data
representation is in matrix form. An extra column and an additional row containing row and
column parity information are inserted. To enable detection and correction the row-column par-
ity intersection is used, which is demonstrated graphically in Table 3.2 to outline the basic idea
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Block of data (32 bit)
D0 D1 D2 D3 D4 D5 D6 D7 PR0

V
er

tic
al

pa
ri

ty

D8 D9 D10 D11 D12 D13 D14 D15 PR1
D16 D17 D18 D19 D20 D21 D22 D23 PR2
D24 D25 D26 D27 D28 D29 D30 D31 PR3
PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 P

Horizontal parity

Table 3.2: Basic idea of rectangular codes

behind rectangular codes.

As shown in Table 3.2 the flip of a single bit (D22) will affect two parity bits from which
the coordinates for locating the erroneous bit can be unambiguously derived. Triple errors can
neither be detected nor corrected. In fact they can mimic a single error of a correct bit.

The amount of redundancy required to achieve a certain level of error-detection and cor-
rection performance decreases as the (m × n)-matrix approaches a square matrix. Rectangular
codes are capable of correcting single bit errors and of detecting double bit errors. But as the
amount of data increases the performance decreases (with respect to the computational perfor-
mance due to the computational overhead).

Rectangular codes are the basis for a method refered to as Algorithm Based Fault Tolerance
(ABFT) [22], where the goal is to harden algorithms which operate on matrix structures like
matrix multiplications.

3.4.3.3 Hamming Codes

Hamming codes, named after their developer Richard Hamming, employ c check bits to detect
or correct erroneous information. Depending on the amount of chek bits, Hamming codes can
detect and correct multiple errors. The case of c = 1 corresponds to parity checking and has
already been discussed in subsection 3.4.3.1. For a better understanding some basic definitions
need to be introduced at this point.

Hamming Distance

Consider a binary string of specific length referred to by one of the following synonymous terms:
binary block, binary vector, binary word or just codeword. The hamming distance between to
vectors of the same length is the number of bits in which they differ. The code distance is the
minimum Hamming distance, which is the minimum amount of bits by which any code word
differs from another.
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Based on the Hamming distance of a code it is now possible to quantify its error-detection
and error-correction capabilities. This sections only deals with linear codes where the difference
and sum between two code words (in binary representation) results in a valid code word. The
parameters of a Hamming code are:

d . . . the hamming distance of a code (3.1)

D . . . the number of errors a code can detect (3.2)

C . . . the number of errors a code can correct (3.3)

n . . . the total number of bits in the code word (3.4)

m . . . the number of information bits (3.5)

c . . . the number of check (parity) bits (3.6)

where d,D,C, n,m, and c are all integers greater than or equal to zero. To detect D errors,
the Hamming distance must exceed D at least by one, expressed as

d ≥ D + 1. (3.7)

The most popular codes are the so called parity code with d = 3 and D = C = 1, which is
a single error-correction and single error-detection (SECSED) code as well as the single error-
correction and double error detection (SECDED) code with d = 4 , D = 2 and C = 1. A
SECDED code is mainly used for implementing hardware EDAC because of both its determin-
ism and its constant overhead.

General Hamming Coding Scheme

A coding scheme prodives a mapping of input-data to codewords. As mentioned earlier, the
codeword contains extra check bits that are used for error-detection and error-correction. Con-
sider a 32-bit data word represented by the row vector D[d0d1 . . . d31]. A SECDED Hamming
Code, denoted as (39, 32)-code adds 7 check bits to these 32 bits and creates 39-bit codewords
(D[d0d1 . . . d31c0c1 . . . c6]). Using this coding scheme the data bits are not changed and remain
separable from the check bits so that this code type is referred to as systematic or separable
code. An example for this coding scheme is used in the LEON2-FT processor which has built-in
EDAC support for external memory interface, the integer-unit register file and the floating point
unit register files. Table 3.3 shows the syndrome bits generation used in the (39, 32)-code.

For the particular case of the LEON2-FT the check bits are transported over a 40-bit external
bus interface. Actually only 39-bits are required. The last bit is used for internal test procedures.
Although it sounds very cheap to implement the coding, additional hardware add costs. Power
and chip-area impact are almost as for triple modular redundancy (TMR) but coding is superior
with respect to clock loading5. The logic needed for the generation for the decoding of check
(or syndrome) bits adds further delay to the critical path.

5http://klabs.org/richcontent/MAPLDCon00/Presentations/Session_A/A4_Barto_
S.PDF
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c0 = d0 ⊕ d4 ⊕ d6 ⊕ d7 ⊕ d8 ⊕ d9 ⊕ d11 ⊕ d14 ⊕ d17 ⊕ d18 ⊕ d19 ⊕ d21 ⊕ d26 ⊕ d28 ⊕ d29 ⊕ d31
c1 = d0 ⊕ d1 ⊕ d2 ⊕ d4 ⊕ d6 ⊕ d8 ⊕ d10 ⊕ d12 ⊕ d16 ⊕ d17 ⊕ d18 ⊕ d20 ⊕ d22 ⊕ d24 ⊕ d26 ⊕ d28
c2 = d0 ⊕ d3 ⊕ d4 ⊕ d7 ⊕ d9 ⊕ d10 ⊕ d13 ⊕ d15 ⊕ d16 ⊕ d19 ⊕ d20 ⊕ d23 ⊕ d25 ⊕ d26 ⊕ d29 ⊕ d31
c3 = d0 ⊕ d1 ⊕ d5 ⊕ d6 ⊕ d7 ⊕ d11 ⊕ d12 ⊕ d13 ⊕ d16 ⊕ d17 ⊕ d21 ⊕ d22 ⊕ d23 ⊕ d27 ⊕ d28 ⊕ d29
c4 = d2 ⊕ d3 ⊕ d4 ⊕ d5 ⊕ d6 ⊕ d7 ⊕ d14 ⊕ d15 ⊕ d18 ⊕ d19 ⊕ d20 ⊕ d21 ⊕ d22 ⊕ d23 ⊕ d30 ⊕ d31
c5 = d8 ⊕ d9 ⊕ d10 ⊕ d11 ⊕ d12 ⊕ d13 ⊕ d14 ⊕ d15 ⊕ d24 ⊕ d25 ⊕ d26 ⊕ d27 ⊕ d28 ⊕ d29 ⊕ d30 ⊕ d31
c6 = d0 ⊕ d1 ⊕ d2 ⊕ d3 ⊕ d4 ⊕ d5 ⊕ d6 ⊕ d7 ⊕ d24 ⊕ d25 ⊕ d26 ⊕ d27 ⊕ d28 ⊕ d29 ⊕ d30 ⊕ d31

Table 3.3: Hamming code used in LEON2-FT

3.4.3.4 Reed-Solomon Codes

So far, only binary codes, where information and code symbols are single bits, were considered.
However, several bits can be summoned to form non-binary symbols and redundant non-binary
symbols can be added for protection. This is referred to as non-binary coding. Non-binary
coding appears naturally in systems with (naturally) non-binary data structures as, for example,
in computers with data widths of bytes (8-bit), words (16-bit), double- or quad-words. The
most famous non-binary codes are the Reed-Solomon codes, which are a special case of the
BCH-Code (Bose-Chaudhuri-Hocquenghem-Codes) which were first presented in 1960 [51].
These codes are employed, if double or even multiple bit-error correction is required. Like the
Hamming codes, the RS-code belongs to the group of systematic codes. Reed-Solomon codes
are block-codes, which means that both information and its associated parity symbols form a
block of n symbols. Individual blocks can be decoded without having to consider adjacent
blocks.
The parameters of a Reed-Solomon code are:

m . . . number of bits per symbol (3.8)

n . . . block length (3.9)

k . . . uncoded message length in symbols (3.10)

(n− k) . . . number of check symbols (3.11)

t . . . number of correctable symbol errors (3.12)

(n− k) . . . t = (n−k)
2 for (n− k) even, (3.13)

(n− k)− 1 . . . t = (n−k)−1
2 for (n− k) odd. (3.14)

Therefore, an RS code may be described as a (n, k)-code, where n ≤ 2m−1 and n−k ≥ 2t.
8-bit symbols (m = 8) coded in blocks of n = 255 symbols is a frequently used RS-code param-
eter set6. If t = 10 erroneous symbols are supposed to be correctable, the number of message

6http://s.eeweb.com/articles/2011/08/14/tutorial-reed-solomon-1313383355.
pdf
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symbols that can be used per block can be found from equation 3.13 to be 235.

An additional technique used to increase performance of block codes in general and of RS-
codes in particular is Interleaving. During this process the encoded bits are rearranged over a
span of several block lengths. This makes it very effective against burst errors. Clearly the re-
ceiver must know the bit arrangement to de-interleave the data before decoding. In contrast to
Hamming codes, the implementation complexity shows a great imbalance between coding and
decoding. The encoding process using a linear feedback shift register (LFSR) is easy to imple-
ment but the decoding requires about 10 times more resources.

Nowadays a variety of EDAC implementations exist since error control coding is a well-
developed field. A modified version of the Hamming code was presented by Hsiao in [21]
which allows faster generation of check bits. This was achieved by constraining the check
bits generation. The ongoing development focuses on low-power implementations [9], better
dependability [66] and adaptive coding [8]. Since the trend goes for multiple bit error-correction,
especially in deep-space missions, Reed-Solomon or BCH codes are becoming inevitable in
future space applications. Representative implementations can be found in [28], [18] or with the
EDAC implemented in Maxwel’s SCS750 spaceborne Power-PC based processor module7. For
protecting memory against transient errors hardware EDAC mechanisms have always been the
preferred choice, not only because of their attractive reliability and dependability but also for
their “transparent” behaviour and and their high throughput. Although the use of Commercial
Off-The-Shelf (COTS) components without hardware EDAC support grows rapidly, the need
for hardware supported error detection and correction is inevitable if high reliability is needed
in space.

3.4.4 Replication

A commonly known method for SEU mitigation is Triple Module Redundancy (TMR) with
majority voting. TMR concepts can be applied at gate level and on higher levels such as the
level of function blocks, also referred to as modules. Figure 3.3 presents the basic idea in form
of a logical diagram.

Among all of the proposed techniques at gate level, TMR is the most effective one. Typi-
cally, all sequential elements are triplicated and majority voting is added. Since not all elements
are replicated, this creates two single points of failures, viz. the voting circuitry and the combi-
natorial cloud. This can be solved using a different TMR approach. Figure 3.4 shows TMR for
sequential, combinatorial and voter circuitry at gate level.

If TMR at module level is considered, an existing VHDL design can easily be transformed
into a radiation-hardened one. One method proposed in [14] describes the automatic insertion
of radiation-hard modules at Register-Transer Level (RTL). For this purpose, a tool named Fault
Insertion Tool (FIT) was developed, which is able process an existing VHDL description and
generate a hardened one based on the user input and the technique selected. As a pre-requisite,

7http://about.maxwell.com/pdf/me/datasheets/sbc/scs750_rev7.pdf
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Figure 3.3: Gate-Level Triple Modular Redundancy with majority voting

Figure 3.4: TMR for sequential, combinatorial and voter circuitry at gate level

the FT-insertion tool requires the VHDL description to be synthesizable. Figure 3.5 shows the
schematic of the proposed tool.

Figure 3.5: Fault Insertion Tool Principle [14]
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Despite the good error mitigation capability of TMR, the main disadvantages of TMR are
threefold area- and power-consumption. In literature, several ideas for improving the efficiency
of TMR on implementation as well as on conceptional level have been presented. In [38], data
integrity was increased by changing the voting scheme to word-voting. A self checking TMR
circuit was presented in [16]. Also, partial or selective TMR was proposed as an alternative [47]
[56]. The key idea is to mitigate effects only in critical sections.

3.4.5 Watchdog

A watchdog is a dedicated hardware component or a mixed solution using a hardware-timer and
software to monitor a system by checking, if particular actions occur according to an expected
schedule. It is used to trigger a system reset in case of an error such as an infinite loop. Sys-
tem monitoring using watchdog timers has always been a reliable solution to deal with timing
anomalies or deadlocks arising from software or hardware failures. Two types of watchdog
can be distinguished: (i) built-in processor modules called watchdog or watchdog-timer which
decrements internal registers and asynchronously resetting the CPU in case of an underflow of
the counter, (ii) self-made watchdogs using a built-in timer. It is called software timer because
the reset of the CPU is done manually in software. To service the “watchdog” the CPU has to
reload the watchdog counting register periodically using software routines. In case the execution
gets stuck in an infinite loop, the watchdog counting register cannot be reloaded, thereby caus-
ing the CPU to pull the internal reset. In case of a self-built watchdog a self-written software
interrupt routine can be executed. Therefore, it is under full control of the user how execution is
continued. Depending on the used processor a watchdog can be found inside a device or as an
external component itself.

In addition to the fact that embedded designs for space cannot be easily restarted by human
interaction, deadlock of the device could result in permanent failure. Even if possible, a man-
ual restart by humans could be too slow to meet the availability requirements of the system. In
principle, such severe problems can be overcome by using a simple watchdog timer. However,
unpredictable effects resulting from transient faults may reset a standard watchdog unexpectedly.
To combat such problems, a more robust watchdog approache have been proposed in literature.
One approach aims at reducing the probability of occurrence of such an event by limiting the
time during which the system can be reset to a limited time window [67]. Nevertheless, win-
dowed watchdog timers are unable to detect undue resets within their safe window. To overcome
this problem, the windowed watchdog concept was extended to the sequenced watchdog timer
concept presented in [12]. Despite their simplicity, watchdog timers have become essential el-
ements even of the most complex self-reparable systems. It is also worth mentioning, that they
play an important role in the context of Control Flow Checking which will be discussed in more
detail in section 3.5.3. So called Hardened Cores (H-Cores) which are related to watchdog timers
are used in support of TMR to ensure safe and timely recovery from SEFIs.
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3.4.6 Hardware Based Scrubbing

Although EDAC helps increasing the tolerance with respect to single or multiple upsets, SEUs
can accumulate over time in high capacity memories and the number of errors, therefore, exceed
the EDAC detection and correction capabilities. Memory scrubbing aims at counteracting by pe-
riodic reading of data blocks. During this read process the decoder checks the information bits
against the syndrome bits, corrects them, if necessary, and writes them back to the same memory
location. Depending on the hardware support, this can either be part of the EDAC circuitry or
needs to be done using a simple software read-back function.

Periodic scrubbing can be used to avoid the accumulation of different SEEs and, thus, reduce
the probability of unrecoverable multiple errors. The efficiency does not exclusively depend on
the EDAC circuitry, but on the used scrubbing interval. A well-tuned scrubbing interval renders
the multiple failure probability almost to zero. Scrubbing mechanisms employ additional hard-
ware and and they introduce processing overhead, so that less consuming methods have been
devised [53].

Although scrubbing seems to be the solution for all memory related SEEs, there are still
some issues to be concerned of. Depending on the scrubbing strategy some errors may remain
undetected or false detections may occur. In case of autonomous scrubbing, where an dedicated
component (inside or outside the memory) performs the refresh process faults occurring between
read and write cycles may cause the generation of incorrect syndrome information. The conse-
quences are obvious: false alarms or data corruption enforced by the error-correction mechanism
during the next scrubbing iteration.

Therefore, scrubbing does not guarantee failure-free memory operation and should, there-
fore, be used in combination with other SEU mitigation techniques.

3.5 Software Implemented Fault-Tolerance

Software implemented fault-tolerance (SWIFT) plays an important role in the design of systems
for critical applications. Despite the fact that there may not be any alternative to SWIFT due
to lacking hardware support, in particular if COTS components are used, SWIFT solutions are
attractive because of their modularity and flexibility. In contrast to dedicated hardware solutions
which may be embedded as radiation hardened nuclei in the susceptible environment they are
supposed to protect, software modules for fault protection are fully affected by any vulnerabili-
ties of the taget hardware. In principle, during the execution of a software fault-tolerance module
a bit-flip inside the register file of the processor could well cause modification of the control flow.
Incorrect processing of the module without being noticed were the result. Aparently, a mixed
approach using different software techniques needs to be used concurrently to minimize the ef-
fects caused by SEEs.

This section briefly summarizes the basic techniques used for SWIFT. Most key concepts
were already introduced in Section 3.4. In this section the main differences, advantages and

31



limitations will be considered from a software point of view.

3.5.1 Software EDAC

The first approach for using software implemented EDAC for a space mission was attempted
in [58] by McCluskey, Saxena and Shirvani. Their goal was to evaluate performance and relia-
bility for software-only solutions within the frame of the Stanford ARGOS project. Motivated
by the fear of additional computation overhead, researchers studied the feasibility of using gen-
eral purpose microprocessors for EDAC software-only implementation [45] [46]. The simplest
approach is to use parity codes which, however, offer far less error detection and correction
capability than more complex types of coding. As already mentioned in Section 3.4.3.3, more
powerful error correction codes, add more check bits and tend to require more complex encoding
and decoding algorithms. Consequently, system design needs to be based on a trade-off between
performance overhead and error-performance.

3.5.2 Software Based Scrubbing

Similar to hardware based scrubbing its software equivalent allows minimizing the probability
of accumulated faults ensuring that error recovery based on the EDAC can be successful. The
crucial difference is that the software approach needs to access the memory and store the ac-
cessed information inside the register file of the processor. Consequently, it is indeed possible
to encounter SEE effects during scrubbing. While this problem is also encountered for the hard-
ware implementation, the software solution is more prone to faults since more components must
be used to implement the same function.

Consider the loading of consistent information from memory into the register file. This im-
plies correct decoding. If after correct loading the information gets modified inside the register,
a subsequent write instruction will write a different memory word into the memory. This would
result in a modification of the syndrome information and will thus create an undetectable loss of
information.

The overhead depends on the memory distribution and on the processor used and may be
extremely high if compared to a hardware implementation. Depending on the used memory and
the access time needed for loading data into registers, this method creates an enormous overhead
compared to a hardware solution. Consider these two solutions:

Memory Access Time CPU Tasks Data Transferred

no HW ECC protection fast Load, Check/Correct, (Syndrome gen.), Write (Data)
HW ECC protection slow Load, (Write) Data, Syndrome

Table 3.4: Scrubbing Solutions

In Table 3.4 enclosure in parentheses denotes CPU tasks that may be omitted for specific
implementations. For unprotected memory the syndrome generation may be omitted in case
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anomalies are not detected during the check phase. For the case of ECC protected memory the
error coding is done outside the processor. Therefore, a read instruction is enough for triggering
the ECC check routines of the external memory controller.

3.5.3 Control Flow Checking

Transient or permanent faults can cause an incorrect sequence of instruction execution and, thus,
result in the creation of a control flow error (CFE). In the introduction the requirement for op-
erational correctness was introduced. Since not all internal failures propagate to the system
boundaries where they could become observable, internal system state monitoring is mandatory.
Apparently external observers can only check deterministic behaviour visible from outside the
system.

Control Flow Checking using Software Signatures (CFCSS) [43] as proposed by McCluskey,
Shirvani and Oh in 2002 is such a technique for inherent run-time checking. Since the key con-
cepts are mostly the same for all control flow checking techniques and since primarily Control
Flow checking using Software Signature (CFCSS) has been evaluated within the frame of the
present thesis work, the main focus will be on this technique. For the sake of completeness the
other approaches will be listed as well.

3.5.3.1 Control Flow Checking Using Software Signatures

The information provided in this section is based on the terminology introduced in [43], which
is summarized in Table 3.5.

V {vi : i = 1, 2 . . . , n} set of vertices denoting basic blocks
E set of edges denoting possible control flow between basic blocks
P program graph {V,E}
si signature of vi
di signature difference in vi
G run-time signature
Gi value of G in vi
D run-time adjusting signature
bri,j a branch from vi to vj
suc(vi) set of sucessors of vi
pred(vi) set of predecessors of vi

Table 3.5: Notation for Control Flow Checking based on [43]

• Basic Block: A maximal set of ordered instructions whose execution be-
gins at the first instruction and terminates at the last instruction. There is no
branch instruction in a basic block except possibly the last one. A basic block

33



terminates at either an instruction branching to another basic block or an in-
struction receiving transfer of control flow from two or more places in the
program [65].

• Program Graph: From the definitions of V and E, a program can be repre-
sented by a program-graph (or control flow graph - CFG) P . The bri,j are
not necessarily explicit branch instructions; they also represent fall-through
execution paths, jumps, subroutine calls and returns.

• Illegal Branch: vj is in the suc(vi) if and only if bri,j is included in E. Sim-
ilarly, vi is in pred(vj) if and only if bri,j is included in E. If a program is
represented by its P = {V,E}, then bri,j (during the execution of P ) is
illegal if bri,j is not included in E. This illegal branch indicates a control flow
error which can be caused by transient or permanent faults in hardware such
as the program counter, address circuits, or memory system.

• Branch-Fan-in Node: If a node receives more than 2 transfers of CF it is a
branch-fan-in node, i.e., the number of nodes in pred(v) > 1.

• Branch Insertion: Branch-insertion occurs when one of the instructions in the
node is changed to a branch-instruction as the result of an error.

• Branch Deletion: Branch-deletion occurs when an error causes the branch-
instruction of a node to change to a nonbranch instruction. As a result, the
node without the branch-instruction merges with the node that is adjacent to it
in the memory address space.

• Node-Difference of vi and vj : the result of performing the bitwise XOR op-
eration of vi and vj , i.e., xor-difference vi ⊕ vj where vi and vj are binary
numbers.

CFCSS is able to check the control flow of programs using existing instructions based on the
given architecture but without using any special hardware. To do so, the program flow has to
be mapped to a control flow graph (CFG) representing the execution flow. Figure 3.6 shows the
mapping of instructions to a control flow graph.

Every node inside this graph represents a basic block. Every node in this graph receives a
unique number called signature. This signature can be embedded into the program code using
preprocessing or at compile time. One general purpose register is used as general signature-
register (GSR). During run-time, every time a transfer to a new node is done, the run-time
signature G stored inside the GSR is updated with the value of the signature of the target and
compared against the signature attached to the node currently processed and stored in the GSR.
This allows for checking the control flow associated with deterministic and, thus, unique transi-
tions from one node to another.

To allow for merging multiple branches into a single node, the so called runtime adjusting
signature D is introduced. If combined (XORED) with G, a correct signature can be computed
even for multi fan-in vertices. Due to the imperfect coverage of control-flow checking some
control flow errors sill arise, even for CFEs, viz.
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Figure 3.6: Sequence of instructions and its control flow graph [43]

• Aliasing

• Endless loops

If multiple nodes share multiple branch-fan-in nodes as their destination nodes, aliasing be-
tween legal and illegal branches may occur and cause undetectable control flow errors. The
threat of aliasing can be reduced by increasing the signature size and by increasing the hamming
distances between the addresses pointing to the storage locations of the first instructions of the
basic blocks.

For the endless loop case consider a valid endless loop which is indeed not an erroneous
control flow but also a unwanted (in many cases critical) situation. CFCSS behaviour in the
context of endless loops will be discussed in more detail as part of the experimental evaluation.

Although CFCSS was introduced for intra-procedure checking it can also be used for inter-
procedure checking. Assuming a standard signal processing algorithm following a deterministic
control flow, every function may be mapped on a basic block. In contrast to intra-procedure
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Hardware Techniques Software Techniques

Path Signature Analysis [39] assertions [35], [1]
Signature Instruction Streams (SIS) [57] watchdog task [35]
Asynchronous SIS [11] Block Signature Self-Checking [34]
Continuous Signature Monitoring (CSM) [63], [64] Error Capturing Instructions (ECI) [34]
extended-precision checksum method [54] timers to check the behaviour of the program [20]
On-line Signature Learning and Checking (OSLC) [34] Available Resource-driven Control-flow monitoring (ARC) [55]
Implicit Signature Checking (ISC) [44] temporal redundancy methods [23]
Signature Checking on Instruction Level [17] Hardware Assested Pre-emptive CFC [48]

Table 3.6: Classification of control flow techniques

checking the resulting graph represents the behaviour on functional level. Compared to intra-
procedure checking the overhead introduced is lower.

Comparing both methodologies, it becomes noticeable that both approaches do have their
advantages. Intra procedure checking allows for faster detection but introduces high overhead.
Inter procedure checking benefits from low overhead and easy implementation. Consequently, a
mixture of intra-procedure and inter-procedure CFCSS seems worth further investigation.

Algorithm details for CFCSS can be found in [43]. Since CFCSS has evolved from structural
integrity checking (SIC) [32], the underlying concepts are the same, with the main difference
that SIC needs a watchdog snooping on the data bus to perform signature checking. In another
technique, referred to as Block Signature Self-Checking [33] the need for a watchdog was re-
moved by replacing it with a subroutine. A drawback of this solution is the need for a memory
location dependent signature.

Many control flow checking techniques, –based on extra hardware or without–, can be found
in literature and the most importing methods are listed in Table 3.6 along with the references
where further information can be found.

Most of the techniques assign signatures on block level rather than on instruction level. In
particular, the ones presented in [17] and [57] allow for intra-block checking by calculating the
signature from the instruction. All techniques mentioned in Table 3.6 have in common that they
create additional overhead. In case the signature check is performed by the CPU additional
instructions need to be scheduled during runtime. Many hardware solutions allow concurrent
checking without additional instructions running in the CPU. Implementation feasibility hinges
on the granularity of the control flow graph. Beside the given terminology which states that a
basic block is branch free, it is also possible to apply more coarse-grained granularity in case of
hard deadlines or performance bottlenecks.

3.5.4 Time Triple Modular Redundancy

Time Triple Modular Redundancy or (TTMR) [10] is a patented hybrid method combining two
different fault-tolerance approaches. First Dual Modular Redundancy (DMR) is used to intro-
duce spacial redundancy for all logic cells. As a second step, time redundancy is introduced:
two identical operations are performed by the same hardware at different times. After storing
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Figure 3.7: TTMR Algorithm executing three copies of programs/instructions [10]

those results gained from the DMR execution, a hardened voter resolves them.

TTMR is able to exploit the parallel executing units of a Very Long Instruction Word (VLIW)
processor as redundant units by executing identical instructions in parallel. A flow chart of the
algorithm is shown in Figure 3.7. To increase the overall performance DMR is used at the
beginning (“O” for the original instruction and “M” for the mirrored instruction). After compar-
ing both results, depending on the outcome of the test concerning the spatial redundancy, time
redundancy may be used to execute a third instruction (“I”) and to finally vote over all three
results. It is important to mention that space micro 8, who developed TTMR and H-Core, does
not licence its TTMR compiler suite for evaluation and testing. Therefore a detailed analysis
was not possible.

8http://www.spacemicro.com/
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3.5.5 Error Detection by inserting Duplicate Instructions - EDDI

Oh et al. proposed in [42] a novel software redundancy technique called EDDI wherein all in-
structions are duplicated and check instructions comparing the results are inserted. Because this
technique works on instruction level (Assembler level) a special compiler is used to transform
the “normal” code into a hardened one. Different registers and different memory regions are
used so that the “copy program” does not interfere with the original outcome. Synchronization
points are added at certain locations to guarantee consistency between original and redundant
output values. In principle, synchronization points can be placed before store instructions since
the correctness of a program is in relation to the memory output. However, this is insufficient
since branch instructions could skip a relevant store instruction. Therefore, jump or branch in-
structions are also synchronization points. Table 3.7 and Table 3.8 show an example of mapping
original code to EDDI code.

ld r12=[GLOBAL]

add r11=r12,r13

st m[r11]=r12

Table 3.7: Original Code

ld r12=[GLOBAL]
1: ld r22=[GLOBAL+offset]

add r11=r12,r13
2: add r21=r22,r23
3: cmp.neq.unc p1,p0=r11,r21
4: cmp.neq.or p1,p0=r12,r22
5: (p1) br faultDetected

st m[r11]=r12
6: st m[r21+offset]=r22

Table 3.8: EDDI Code

Although EDDI is able to detect transient faults effectively, it is expensive in terms of com-
putational and memory overhead necessary for saving the instrumented program copy. The
overall performance of EDDI can be improved if memory is protected by some error-detection
and correction mechanism. As a consequence, the amount of duplicate memory instructions can
be reduced by reducing the number of stores, thus, reducing overhead and increasing efficiency.

Oh et al. also proposed a slightly adapted version of EDDI, referred to as Error Detection
by Diverse Data and Duplicated Instructions (ED4I). However, ED4I is merely used to detect
software faults rather than hardware faults –both permanent and transient. Since permanent
hardware faults are not the scope of this thesis, this method will not be described in detail.
However, the interested reader can find additional information in [41].

Although these approaches seem to be both simple and effective, great care has to be taken
with a final judgement. The effectiveness of instruction replication techniques highly depends
on the instruction set architecture used in the particular platform. The schemes described above
assume that all computations are finished during one clock cycle. If this is not the case, overhead
appears multiplied by the number of needed clock-cycles. Most of today’s processors for space
use architectures inevitably demanding delay slots. The handling of delay slots is, thus, manda-
tory since simple code insertion would create non-conformal and, therefore, incorrect code.
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3.5.6 Undetected Faults

As already mentioned, some faults may always go undetected. For example, due to the fact
that redundancy is achieved solely through software instructions, one has to consider the delay
problem due to the time interval between the availability of the validation information and the
instant in time when the validated data are actually used. Potential problems could be the cor-
ruption of program code, the change of a random instruction into a store instruction or, even
worse, a change into a branching instruction. Apparently, the probability of a valid instruction
to be transformed into another valid instruction word depends on the Hamming distance of the
instruction set. It must be clear that not all sources and causes of fault-detection failure can be
listed here. The following examples shall give insight into typical undetected errors.

So called Multi-bit Architectural State Errors could arise through accumulation since the
state of the processor is not exposed to the software application. Orocessor control logic, for
example, is clearly not protectable with the exclusive use of software techniques. Consider such
faults causing a deadlock. An instruction ready for execution inside the pipeline could be marked
as stalled. The program execution could not continue and the program would never terminate or
move into the idle state [5].

In Section 3.5.3 the problem of infinite loops was mentioned. Control Flow Errors such
as infinite loops cannot be completely eliminated if the control flow is valid between the basic
blocks. The only solution to this would be temporal checking using timers or a watchdog. This
requires fully deterministic algorithm execution to have full knowledge of the execution time.
Nevertheless, it is still possible to encounter infinite loops, even with watchdog checking, for
example, if the infinite loop continues resetting the watchdog.

In Section 3.5.5, an improved version of EDDI using only one load instruction was pre-
sented. Because of this improvement the value inside the register gets duplicated into another
register. Since there is no replication of this value, a fault occurring between the end of the
load instruction and start of the copy could allow the fault to propagate to the redundant register.
Obviously such a fault cannot be detected.

3.6 Combined Hardware and Software Fault-Tolerance

Due to the imperfect coverage of techniques entirely relying on software and the fact that the
possibilities for adding hardware support may be very limited, it is clear that one method alone
is not the solution to all problems. In Chapter 6 it will be shown that software only techniques
require substantial overhead for reasonable coverage. Considering the postulated needs of next
generation Space-borne instruments for science and earth observation, the capacity of potential
candidate processors is just sufficient to fulfil the pure processing tasks without leaving margins
for accommodating fault-tolerance overhead. Therefore, processor load due to fault protection
must be at least partially off-loaded to dedicted hardware. This is the point where hybrid fault
tolerance becomes interesting.
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Just one example for an efficient implementation of this paradigm is TTMR in combination
with H-Core. Other examples are low-cost hybrid hardware/software redundancy techniques
proposed by Reis et al, referred to as CompileR Assisted Fault Tolerance (CRAFT) [52] and
CompileR Assisted Fault Tolerance with Recovery (CRAFTR) [24].

Three inexpensive concepts derived from CRAFT and CRAFTR are briefly presented in the
following sections.

Checking Store Buffer

In order to protect data that is written into memory the Checking Store Buffer (CSB) technique
can be used to duplicate store instructions in the same way it duplicates all other instructions,
except that store instructions are tagged with a single-bit version identifier, indicating whether a
store is an original or a duplicate. The modified code is then run on hardware incorporating an
augmented store buffer, which does not commit data to be written to memory until it is validated.
An entry becomes validated once the original and the duplicate version of the store have been
sent to the store buffer and the addresses and values of the two stores match perfectly. Although
this technique duplicates all stores extra memory traffic is not created, since there is only one
memory transaction for each pair of stores. Another benefit is that each pair of instructions can
now be scheduled independently, whereas in for other concepts, e.g. EDDI, store instructions
are synchronization points.

Load Value Queue

In traditional SWIFT techniques load values need to be duplicated to enable redundant compu-
tation. The principle is the same as before. Instead of multiple loads from memory a dedicated
buffer called Load Value Queue (LVQ) is used. The LVQ only accesses memory for the origi-
nal load instruction and bypasses the load value for the duplicate load from the LVQ. An LVQ
entry is deallocated if and only if both original and duplicate versions of a load have executed
successfully. A duplicate load can successfully bypass the load value from the LVQ if and only
if its address matches that of the original load buffered in the LVQ.

Checking Store Buffer and Load Value Queue

This technique duplicates both store and load instructions and adds both the checking store
buffer and the load value queue enhancements simultaneously. This allows to reduce the perfor-
mance degradation and to increase the level of fault coverage, if compared to traditional SWIFT
methods.

Since modifications of off-the-shelf Integrated Circuits (ICs) are almost impossible, the ad-
dition of external hardware, regardless if programmable or not, seems to be inevitable. This
issue will be retrieved in Section 5.7.
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CHAPTER 4
Digital Signal Processing Platform

After having reviewed SEEs as well as their origins and possible mitigation techniques, it is
possible to select the processing core to form a platform for evaluating the most promising can-
didates. Clearly, this choice is supposed to be ITAR-free and sustainable. Since the present work
is performed in a space industrial context, the freedom we have in this selection process is very
limited. On the one hand, the processing platform is supposed to be programmable in the strict
sense, asking for the possibility to use different programming languages – at least assembly lan-
guage and C – as well as for tool support in form of compilers, debugger, in-circuit-emulator,
evaluation board, etc. This excludes the implementation as configurable processing platform
such as an Application Specific Integrated Circuit (ASIC) containing data paths, optimized for
particular algorithms, e.g. multiply-accumulate, FIR-filtering, functional transforms, etc., con-
trolled by means of a simple state-machine-controller, but also Field Programmable Gate Arrays
(FPGAs), regardless, if re-programable in space or not. Nevertheless, in spite of the required
flexibility with respect to processing needs, the processing platform is supposed to directly target
classical DSP applications and, thus, not to be based on a Von-Neumann architecture. Finally,
mission targets are near future and operational, meaning that the selected platform will eventu-
ally have to be accepted by risk-aware mission primes and space agencies. This forbids selecting
the latest technologies, which, although very fast, are lacking heritage on the one hand and are
still prone to rapid obsolescence on the other.

The aforementioned near-future space missions also define the desired level of processing
performance. Based on mission analyses performed by ESA and on roadmapping done by Aus-
trian space industry, the following mission-types, listed along with their data processing require-
ments, may be taken as guidelines:

Science: Spectrometers (EUCLID, PLATO, SPICA) - up to a few 100 MFLOPS

Earth Observation - Optical: Infra-Red Interferometers (Infrared Atmospheric Sounder (IASI),
METEOSAT 3rd Generation) - 2.2 Gbps and 10 GFLOPS
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Earth Observation - Microwave: Synthetic Aperture Radars (SARs) - several Gbps

In ESA terminology science missions are directed towards astrophysics and fundamental physics
and are strictly distinguished from earth-observation missions which, however, may as well be
very scientific in nature. EUCLID, PLATO and SPICA are science missions forming part of
ESA’s Cosmic Vision program. EUCLID aims at mapping the geometry of the dark universe,
which accounts for the vast majority (76%) of the energy density of the universe, PLATO will
study PLAnetary Transits and Oscillations of stars and SPICA hopes to discover the origins of
galaxies, stars and planets.

The current state-of-the art in spaceborne digital signal processing is (still) represented by
the TSC21020 DSP developed by ESA almost two decades ago. At a clock-frequency of 20 MHz
it offers 40 MFLOPS sustained and 60 MFLOPS peak performance. The TSC 21020 was devel-
oped by licencing the design files of the commercial DSP ADSP 21020 by Analog Devices and
implementing this design in a European radiation tolerant ASIC process. A similar approach
for a successor to the TSC 21020 is currently under discussion but far from even being initiated
because Europen focus is on driving the evlution of SPARC-architecture based spaceborne gen-
eral purpose processors of the LEON type, which has been explicitely excluded from becoming
a candidate within the present context.

Among the limited number of programmable DSPs suitable for space from a reliability and
quality assurance point of view as well as exhibiting a minimum of radiation tolerance to the ex-
tent that radiation-effect mitigation techniques can in principle be successful, only devices from
Texas Instruments (TI) seem to satisfy our requirements at least partially. Although TI is a US
company, their devices are not explicitely produced for space applications and, thus, ITAR free.
The TI-component best suited for our applications is the SMV 320C6701, which has already at-
tained flight heritage during several space missions, e.g. GEZGIN [27] or the image-processing
subsystems of BILSAT-1 or SPHERES [13]. Since this component has the best chances to
qualify for upcoming space missions and since there is already a code-compatible successor
component, viz. the SM 320C6727, under development, it has been selected as platform for the
practical part of the present thesis work dedicated to the evaluation of the capabilities of candi-
date software enabled radiation mitigation techniques. In the following sections architecture and
relevant features are reviewed and references to detailed sources are provided.

4.1 SMV320C6701 Digital Signal Processor - DSP

The basis of this component is the TMS320C6701 DSP which was introduced in 1998 as the
world’s highest performance floating-point DSP at that time. The DSP consists of eight inde-
pendent functional units, each of which can execute a 32 bit instruction every clock cycle. The
instruction set architecture is a slightly modified Verly Long Instruction Word (VLIW) architec-
ture referred to as VelociTITM .
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Although the TMS320C6701 can operate at up to 167MHz the space version1 only achieves
140MHz clock rate, which gives a total throughput of 1.120 million instructions per second.
The instruction set is RISC-like and register based, which means that nearly all instructions op-
erate on registers located in the register file. Six out of the eight function units are capable of
performing floating point operations each clock cycle. Four of these independent function units
allow the processor to compute two single-point-precision operations and two multiply and ac-
cumulate (MAC) operations every clock cycle. Memory space is byte addressable using load
and store instructions allowing movement of 8-, 16-, 32- and 64-bit data. Two out of the eight
functional units support simultaneous memory access every cycle allowing, 128-bit information
transfers.

The on-chip memory consists of one megabit of Static Random Access Memory (SRAM)
organized as Harvard-architecture using different address ranges for program and data memory.
The memory is split equally, so that 64KB are available for each address range. The instruction
memory is able to hold 16K 32-bit instructions or 2K 256-bit VLIW instructions. Alternatively,
the program memory can be configured as program cache to improve external memory latency.

To ensure independent transfer of data during computation a Direct Memory Access (DMA)
controller consisting of four channels plus an additional auxiliary channel for the Host Processor
Interface (HPI) is available. Due to the internal bus structure, the core is able to perform only
one DMA-channel operation at time.

External memory interfaces are supported via the External Memory Interface (EMIF) logic
allowing glueless connection to different asynchronous and synchronous memory types. The
aforementioned fifth DMA channel is hard-wired to the HPI-port which allows internal access to
nearly the complete memory map of the DSP without CPU intervention. Through HPI a general
purpose processor or external fault tolerance controller is able to perform various actions on
the core such as bootloading, data-transfer, configuration and even fault-tolerance. Additional
information about the core, the instruction set and peripheral devices can be found on the Texas
Instruments product web-site 2. Figure 4.1 shows the functional diagram of the DSP.

4.1.1 Radiation Tolerance

SMV320C6701 properties concerning radiation, as provided in the data sheet [25] are:

• Rad-Tolerant: 100-kRad (Si) TID

• SEL Immune at 89MeV-cm2/mg LET Ions

• QML-V Qualified, SMD 5962-98661

• QML Processing according to MIL-PRF-38535

1http://www.ti.com/lit/ds/sgus030e/sgus030e.pdf
2http://www.ti.com/product/smj320c6701-sp
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Figure 4.1: Functional diagram of the C6701 core [25]

• Temperature range from −55◦C to 115◦C

To reach these values, the radiation tolerance of the commercial version was increased on
semiconductor-technology level, without the addition of extra fault tolerance logic. The QML-V
design is based on an epitaxial layer process, process which enhances SEL-tolerance. An evalu-
ation of TID and SEE behaviour of this DSP can be found in [30]. Figure A.1, A.2, A.3 and A.4
show the results of SEU estimation using a CREME96 model [62]. A summary of estimated
SEU-rates estimation published by TI can be found in Table A.1. The proton upset rates for
various LEO orbits are listed in Tables A.2, A.3, A.4.

4.1.2 Radiation Relevant Processor Behaviour

In the following sections some processor specific behaviour will be described. This is necessary
since the mapping of SWIFT-methods depends on the internal behaviour of the DSP.
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Figure 4.2: Delay Slots and Functional Unit Latencies [26]

4.1.2.1 Delay Slots and Functional Unit Latency

This property is limited to floating point and memory operations. The term delay slot refers
to additional cycles needed until results become available for reading after operands have been
fetched. A single cycle or single delay-slot instruction executed in cycle i reads all operands in
this cycle and stores the result so that it is available for reading in cycle i+ 1. A four delay slot
instruction would read operands in cycle i as well and produce the result ready for reading in
cycle i+ 4.

Functional Unit Latency (FUL) on the other hand corresponds to the amount of cycles the
unit is busy and, therefore, unable to accept new instructions. Notice that due to pipelining FUL
can be one, even for multi-cycle instructions. This knowledge is essential since many software
fault tolerance techniques deal with atomic replication and insertion of instructions. Figure 4.2
shows the number of delay slots associated with each type of instruction.

4.1.2.2 Instruction Fetching and Parallelism

An instruction fetch operation always fetches eight instructions at a time, coded in a single
VLIW. Since eight function units can operate in parallel, the basic format of a Fetch Packet
defines the execution of each instruction individually. The execution is partially controlled by
the p-bit (bit 0), which decides whether an instruction is executed in parallel or after another
instruction. If p-bit of instruction i is 1, then instruction i + 1 is executed in parallel within the
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Figure 4.3: Fetch packet p-bit pattern for fully sequential processing [26]

same cycle as i. On the other hand, if the p-bit of instruction i is 0, then instruction i + 1 is
executed after instruction i. All instructions executing in parallel constitute an execute packet.
Each instruction of an execute packet is assigned to a different functional unit. The combination
of different p-bit patterns allows for forming three different execution sequences, viz.

• Fully sequential

• Fully parallel

• Partially sequential

Figure 4.3 illustrates the meaning of the p-bit inside the VLIW execute packet.

4.1.3 Conditional Operations

Controlled by a 3-bit opcode field referred to as creg, most instructions can be conditional. This
enables the compiler to generate efficient code since conditional instructions can be scheduled
without prior checking of conditions. Not all registers are able to support the checking of con-
ditions. Only five registers inside the register file can be used for this purpose viz. B0, B1, B2,
A1 and A2.

[B0] ADD .L1 A1,A2,A3
|| ADD .L2x A1,B2,B3

Table 4.1: Conditional code execution example

Table 4.1 gives an example of two parallel instructions, where one of the instructions is only
executed if the value stored in register B0 is larger than zero. The other instruction is executed
in any case, regardless of the value stored in B0.

4.2 SEU Threat Scenarios

Although permanent faults are dangerous for electronic components, they will be treated as
negligible in this evaluation since they are relatively rare. The main focus will lie on transient
faults or soft errors and their possible location and effects:

• Program Memory:
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– Modification of program code without immediate detection: erroneous instruction
remains syntactically valid after impact

– Modification of program code with immediate detection: erroneous instruction be-
comes invalid opcode. The SMV320C6701 does not provide a dedicated exception
for ‘ìllegal opcode” as most processors do. The outcome of such opcode is classified
as undefined behaviour by the manufacturer.

– Result:

∗ Data related errors
∗ Control flow errors

– Code statements can be divided into two types regardless of their location:

IN1: Statements affecting data (assignments, arithmetic expressions, computations,
etc.)

IN2: Statements affecting the execution flow (e.g. tests, loops, procedure calls and
returns)

• Data Memory:

– Change of constant values (coefficients, state information)

– Change of data before, during or after processing (ready to transfer to data handling
unit (DHU))

– Result:

∗ Data related errors
∗ Control flow errors

• Register File:

– Basic registers: A,B 0-16 - Core registers including control service register and in-
terrupt control register

– Peripheral Registers: Timers mapped to Interrupts, GPIO, EMIF

– DMA: Input, Output, Internal state

– McBSP: Communication, Commanding and Telemetry

– Result:

∗ Data related errors
∗ Control flow errors

There are still additional fault locations that were not mentioned explicitly, although they can be
responsible for soft-errors. Such locations are combinatorial logic, internal registers, clock tree,
etc.
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A classification proposed in [50] permits good characterization of experienced behaviour. To
address the immediate effects caused by errors a distinction of two types of errors is proposed,
viz.3

ER1: Errors changing the operation to be performed by the statement, without changing the
code execution flow, e.g. changing an add into a sub

ER2: Errors changing the execution flow immediately, e.g. by transforming an add operation
into a branch or vice versa

This classification allows to characterize SEEs on a higher abstraction level, without loss of
information and with practical granularity. Through linking of the given statements and errors
all possible fault classes can emerge. To address error types ER1 and ER2 a short analysis of the
used instruction syntax and opcode is required. The reference for this can be found in the CPU
and Instruction Set Reference Guide4.

4.2.1 Opcode Hamming Distance

The Hamming-distance between two instructions is of interest because it gives an indication
on how many bit-flips are necessary to create another valid code word, for example to turn an
arithmetic operation into branching. The hamming distance between two instructions of the
same type is one. Consider two identical ADD instructions where the only difference is that the
operand register address of operand A is different. Within the frame of a DSP evaluation, a com-
plete analysis of all instructions with all possible parameters would be too complex. Therefore,
a test program using various signal processing algorithms to statistically evaluate the hamming
distance between different branch instructions and all other instruction inside the program was
used. The mean Hamming-distance found with this approach for the C6701 is 2.

4.3 Failure Model

In Section 4.2 the causes and consequences of failures in data and program memory were ad-
dressed. The main focus of the failure model presented in this section will be put on the well
known Single Event Upset described by the bit-flip fault model. This model is based on the
assumption that for a particular storage cell only a single bit-flip occurs during the circuit’s ex-
ecution. To evaluate the availability of the system, injected faults are classified according to the
effect the have on the program behaviour. Distinguished effects are:

• No error (unnecessary for correct execution)

• Error detected and correctly handled

• Error detected but incorrectly handled

• Error undetected
3delayed change in execution flow still possible by corrupting e.g. the counter!
4http://www.ti.com/lit/ug/spru733a/spru733a.pdf
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The model in this thesis is directed towards the description of SEU effects modifying the
program behaviour and on data errors. Although data errors were also analysed, the main focus
is on control-flow errors. For most data processing platforms used in space the main task is num-
ber crunching so that sporadic failures are tolerated up to a given level as long as the platform
continues processing data and remains open for receiving commands.

In Section 4.1.2.1,4.1.2.2 ,4.1.3 and 4.2.1 processor architecture dependent properties were
presented. These properties allow for a compact construction of higher level statements but also
introduce the threat of transforming low-level errors up to a higher level. Important examples
are:

• p-bit mutation,

• creg mutation and

• Opcode illegalisation.

4.3.1 p-bit mutation

In a radiation environment, the processor’s use of the p-bit pattern introduces considerable risk.
Imagine a highly optimized code. The compiler generated code is optimized such that during
each cycle new output values are generated. Concurrently new input operands are loaded. A
p-bit flip during execution would completely disturb instruction scheduling. While some part of
the fetch-packet had already been executed the other were still in the pipeline (many situations
create undefined behaviour inside the core and are also not documented).

These effects are unpredictable due to incomplete documentation. The possible outcome
could affect both, control flow and data consistency.

4.3.2 creg mutation

Similar to the p-bit pattern problem, conditional statements are both a blessing and a curse. The
curse is associated with a single hit on either the conditional register or the instruction itself,
which could result in an obviation of a conditional branch instruction or in the simultaneous
occurrence of two mutually exclusive instructions. The “||” prefix indicates parallel execution
in the C6X assembler. The .L1 and .L2x postfixes indicate the data-path (“1” for data-path A
and “2” for data-path B, the additional x indicates the cross path between two sides) and, thus,
reference the executing functional unit. This specific case is illustrated by means of program
code in Tables 4.2 and 4.3.

[B0] ADD .L1 A1,A2,A3
|| [!B0] ADD .L2x A1,B2,B3

Table 4.2: Original Code

[B0] ADD .L1 A1,A2,A3
|| ADD .L2x A1,B2,B3

Table 4.3: Modified Code
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4.3.3 Opcode Illegalisation

It has been mentioned already that illegal opcodes do not cause exceptions in the CPU and
pipeline conflicts are not 0-delay resolved. For such cases the behaviour is undocumented and
must, hence, be assumed undefined. Since even the insertion or modification of the simple NOP
instruction could result in undefined behaviour, possible outcomes and their consequences need
to be analyzed.

As already mentioned in Section 4.2

• an erroneous instruction may remain syntactically valid after impact or

• an erroneous instruction may become invalid opcode

In flight software the entire program memory space is hardly ever used and the unused space
is filled with jump instructions into the reset vector.

Consider a multi cycle NOP instruction in parallel with an ADD. The results of both opera-
tions will only be available after completion of the NOP cycle. In case a branch is scheduled in
parallel with a multi cycle NOP this can become a problem.

The former statements assume that the program code is modified before the execute packet
is fetched from memory. Although an unintended branch instruction may be created due to SEEs
it may never be executed. The decoding stage of the pipeline is split in two parts. First instruc-
tion dispatching is done and instructions are assigned to appropriate functional units. Second,
instruction decoding is performed. Source registers, destination registers and associated paths
are decoded in preparation of the execution of the instructions in the functional units. In case a
fetch packet contains two branches, a third branch resulting from an SEE would imply that one
of these three branches will not be serviced. Unfortunately, there is no information inside the
documentation available.

To sum up, it is not possible to estimate “typical” outcomes without resorting to statistical
analysis using fault injection. With fault injection experiments it is possible to assess the prob-
ability of illegal opcode and to determine how often illegal opcode will on average corrupt the
program flow or even destroy data consistency.

4.3.4 Architectural Barriers

The DSP’s architecture, optimized for high speed signal processing, complicates the implemen-
tation of SWIFT methods. A list of such barriers, found during the course of the present thesis
work, is provided as Table 4.4.

Access to L1P

Because of the DSP’s Harvard architecture, there is no possibility to access program code in
real-time. This prohibits checking for errors inside the program code directly via instructions.
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Issue Origin Proposed solution

no access to L1P Harvard architecture access L1P via DMA
no illegal opcode detection architecture weakness periodic check/re-programming (reduce probability)
missing register locking compiler software workaround

Table 4.4: Architectural implications complicating SWIFT implementation

Consequently, it is not possible to detect corrupted instructions. DMA can be used to access the
program memory and to transfer selected regions into the data memory for further inspection.
As a result of the inevitable transfer delay, the drawback of this solution is a consistency gap
introduced between information source and destination.

Detection of Illegal Opcode

Since the hardware does not provide exception mechanisms for illegal opcode, the programmer
must take into account that the execution code may not be free of errors. Software mechanisms
can be used for detecting a limited number of illegal instructions inside the program memory
before execution. The only one method for precise detection is to compare the code with a
representative copy which should be protected against SEEs.

The underlying idea is to store and access a protected representative copy of critical code
sections, which can be used to compare portions of the program memory before their execution.
Since the program memory is not directly accessible, a DMA transfer task can be used to copy
fragments of critical code sections into the data memory L1D. DMA transfers can be performed
current to CPU execution and, thus, the overhead is due to the latency introduced by the DMA.
Comparison of the code fragment retrieved by DMA and the protected copy must be completed
before the actual execution.

In spite of the existence of other ways to detect illegal opcode, the aforementioned solution
is the only one capable to locate the corruption. Other techniques rely on the fact that anomalies
during execution would cause collateral anomalies with higher detection probability.

A more probabilistic approach to reduce the sensitivity with respect to illegal opcode uses
the the program cache controller to permanently fetch instructions from an external ECC pro-
tected source. However, this only works if the size of the code running on the target exceeds the
internal program cache area, which is often not the case due to the simplicity of DSP algorithms.
Another solution could be the use a timed DMA transfer task to re-write portions of the program
memory.

Integrity checking or re-programming, whichever technique is used, can only reduce the
probability of executing illegal opcodes, but it does not completely solve the problem.
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Missing register locking

For many SWIFT methods a dedicated register to hold state information is needed. Since it
is not possible to lock a register for special purposes, the programmer must take care that the
required information is available during execution and stored safely if not needed. The created
overhead must not be underestimated, since the compiler must schedule additional load and store
operations.
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CHAPTER 5
Concept and Experimental

Implementation

5.1 Introduction

When implementing SWIFT methods, developers of applications or algorithms do not want to
rewrite their code. This is not unjustified due to immense costs for validating qualified flight-
code. The upcoming need for computational performance and the complexity of modern digital
signal processors demand huge creativity when it comes to the design of timing critical applica-
tions. Additionally one must think of the time needed to modify the existing code and to ensure
availability of the overall application. To support those actions automated solutions based on pre-
or post-compilation or automated code transformation are preferred solutions. Unfortunately the
availability of such commercial tools is rare. Those companies which provide automated solu-
tions only offer them combined with their platform design, which is unwanted in many cases.

The second unpleasant problem arises if the performance penalty gained from the additional
overhead created by SWIFT methods is to large. SWIFT methods were originally developed
for the use with COTS components. COTS components are obviously not designed to toler-
ate radiation nor have been considered especially for space usage. The reason for the usage of
COTS components was that their performance was often a multiple of today’s available space
components, which outweighs the performance reduction created by SWIFT methods through
their immense performance advantage.

However, since there is a huge encroachment to establish an ITAR free design, and their is
no comparably other DSP available, the Texas Instruments based DSP platform was selected.
Technically important however is that the platform used in this evaluation is neither COTS nor
radiation-hard. As already mentioned in Section 4.1.1, the DSP used has some advantages in
the field of radiation performance, but cannot compete with state-of-the-art COTS components
when it comes to performance or computational throughput.
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This Chapter demonstrates how some of the earlier theoretically shown methods can be im-
plemented for evaluation on the TMS320C6701 EVM (evaluation module) platform. It will be
shown how efficient different SWIFT methods can be implemented and what problems can arise
based on the used architecture. Additionally, the gained results will show that the fault coverage
can be improved but only with significant costs. Therefore hybrid approach using hardware and
software will be presented at the end.

Since the TMS320C6701 is the design base of the former mentioned SMV320C6701, the be-
haviour and the instruction set is identical with the space-grade version and therefore allows it to
use it for evaluation. The used eclipse based development environment named Code Composer
Studio1 was provided by TI. A complete compiler suite 2 is provided within this IDE.

5.2 Memory Layout

To ensure transparency during the evaluation process, a uniform memory layout has been devel-
oped, allowing the developer to evaluate and internally track the effects caused by SWIFT and
SEU simulations. Table 5.1 shows the memory layout provided by the evaluation module. Fot
this, a custom memory section layout was superimposed. Table 5.2 depicts the memory layout
defined in the linker file. The main disadvantage of using internal tracking is the reduction of
operational memory, resulting in a smaller cross-section for SEU simulations. This side effect
has to be taken into account since a non-invasive bus system, allowing to transfer information to
the DSP in a transparent manner, is not available.

Start Address End Address Size (Bytes) Description

0x00000000 0x0000FFFF 64K Internal program memory (IPM)
0x00400000 0x0043FFFF 256K SBSRAM
0x01780000 0x0178001F 32 DSP control/status registers
0x01800000 0x01BFFFFF 4M Internal peripherals
0x02000000 0x023FFFFF 4M SDRAM (bank 0)
0x03000000 0x03000000 4M SDRAM (bank 1)
0x80000000 0x8000FFFF 64K Internal data memory (IDM)

Table 5.1: C6701 EValuation Module memory map

Fault tolerance of COTS components is often achieved by adding a memory protection unit
between the memory interface and the external memory. If the cache controller is configured
to pre-fetch all instructions from this hardened memory, this allows to protect external memory
using dedicated logic and, thus, maintain consistency of the program code inside the internal
memory. With the Evaluation Module this approach is not possible.

1http://www.ti.com/tool/ccstudio
2code generation tools ver. 7.0.5
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1 void fir(short x[], short h[], short y[])
2 {
3 int i,j, sum;
4 for (j = 0; j < 100; j++)
5 {
6 sum = 0;
7 for (i = 0; i < 32; i++)
8 {
9 sum += x[i+j] ∗ h[i];

10 }
11 y[j] = sum >> 15;
12 }
13 }

Listing 5.1: FIR Filter - C Code

5.3 Programming Language

As listed in 5.3, three different programming languages are readily supported by the DSP tool-
chain. They are listed in Table 5.3. Texas Instruments classifies those techniques based on the
efficiency and the effort for programming in them. The information presented here is used later
in Section 5.6.

Source Optimization Efficiency Effort

Assembly By hand 100% High
Linear Assembly Assembly optimizer 95− 100% Medium

C/C++ Optimizing compiler 80− 100% Low

Table 5.3: Optimization efficiency (relative to hand optimization)

Appendix A.17 shows the recommended design flow for developing application software
for the Texas Instruments C6000 Architecture. It can be seen in Figure A.17 Phase 3, that the
final step is to create linear assembly code, which is the best trade off between coding efficiency
and the effort associated with code development and maintenance. Linear assembly is similar
to hand assembly except that there is no need for inserting NOP instructions to fill empty delay
slots, that the functional unit does not need to be specified, that the allocation of registers is done
automatically, that the grouping of instructions in parallel is performed automatically and that
symbolic variable names are accepted.

To give an example for hand optimized assembly vs. linear assembly, a finite impulse re-
sponse (FIR) filter implementation written in C is shown in Listing 5.1. The equivalent code
written in linear assembly is shown in Figure 5.1, while the use of hand assembly is demon-
strated in Figure 5.2.

As shown before, all SWIFT techniques are based on replication, modification or the inser-
tion of machine instructions. However, Listing 5.1 shows a C level implementation which has
become abstracted from the underlying machine instructions. Finer granularity is obtained by
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using linear assembly and conclusions concerning its efficiency can be drawn from Figure 5.1.

Although the code is linear and without general selection of functional units the programmer
can assign specific instructions to certain functional units. The code is still readable, due to the
non-parallel syntax. The assembly optimizer demands a high knowledge of the language primi-
tives. If code optimization is enabled, instructions introduced for the purpose of improving fault
tolerance but irrelevant from a functional point of view may be rescheduled or even removed by
the optimizer. Apparently, this complicates the implementation of software based fault tolerance
on this level.

The effort associated with both establishment and maintenance of hand assembly increases
exponentially with the instruction count. Figure 5.2 shows a part of the software for the same
filter written in hand assembly. In contrast to Figure 5.1, Figure 5.2 does not show the whole
function but only the internal loop filter - the difference is impressive.

Compared to linear assembly, partitioning and scheduling is entirely to the programmer.
Compared to C or linear assembly, the effort needed for programming in hand assembly is
huge. Simple modifications of existing code become a nightmare, in particular, if flight-software
design rules have to be applied. Otherwise, if it is required to instrument hand assembly code it
would be best doing it with automated tools instead of doing it by hand.

5.4 Software EDAC

Software error detection and correction was realised by implementing a SECDEC Hamming
Code (39, 32). As mentioned in Section 3.4.3.3, this code is able to detect up to two error and
to correct one. Since the overhead grows linearly with the amount of data to be protected, the
performance overhead can be calculated easily. The code was implemented in two different
versions.

First collecting redundancy information in 32-bit words, because it was believed to be faster
as the compiler is optimized for 32-bit data transfers, then in bytes, leaving 1 bit unused, since
the code has only 7-bit redundancy. The implementation consists of three separate functions
performing the following tasks:

• syndrome information calculation

• checking against syndrome information

• error correction (in case of a correctable error)

The first function takes address and the amount of data as input and stores the parity infor-
mation, starting at the address passed as third parameter during the function call. Meaning and
purpose of the second function obviously is search for bit-flips and, if any, their correction. In
case of an SEU, correctable or not, information regarding the fault is written into a dedicated
memory section labelled DMEM_FI_SPACE for post processing. Table 5.4 and 5.5 show the
results in terms of cycles for the two implementations.
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Figure 5.1: Equivalent FIR Filter - Linear Assembly Code [26]

Function total cycles cyles per 32-bit costs per 32-bit word
Calc Syndrome 8748 17.1 18

Check and Correct 17956 35.1 36
Conditional Check 21028 41.9 42

Table 5.4: Software EDAC - 512 x 32-bit with 32-bit redundancy
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Figure 5.2: Equivalent FIR Filter - Hand Assembly Code [26]

Function total cycles cyles per 32-bit costs per 32-bit word
Calc Syndrome 8776 17.1 18

Check and Correct 17956 35.1 36
Conditional Check 21540 42.7 43

Table 5.5: Software EDAC - 512 x 32-bit with 8-bit redundancy

Based on the information provided in Table 5.5 it is obvious that protecting the whole mem-
ory may not be practicable, but, of course, this depends on the application and on the timing.
Before considering software EDAC routines as ultimate solution, it must be carefully checked
which amount of data needs to be protected and how much time can be alloted to this function
during algorithm execution.

For classical FIR-filter, for example, it might be appropriate to protect the filter coefficients.
Of course, constant coefficients can be reloaded during idle phases, but practical algorithms used
in space instruments are adaptive, requiring on-line coefficient calculation. Calibration of non-
linearities, caused by variable environmental conditions, is just one example.

The minimum number of clock cycles c required to perform N -tap FIR-filtering on n input
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samples is

c =
N · n

2
(5.1)

because the SMV 320C6701 can perform 2 multiply-and-accumulates (MACs) in a single cycle.
Equation (5.1) is a lower bound because it does not take into account any overhead for branching
and stack operations and it is valid, if both input samples and coefficients are real-valued and all
calcualtions are performed in single-precision floating point arithmetics.

Table 5.5 may be used to decide upon the coefficient check-and-correct rate in relation to
the introduced overhead. Per input data sample 256 cycles are required to perform filtering for
each clock cycle associated with a signal-sample. 48272 cycles are required for applying EDAC
to 512 coefficients, according to Table 5.5. Assuming that an overhead of 100% - halving the
throughput - were acceptable, the coefficients could be updated after the processing of every
n = 188 signal samples. In this example, input- and output data are not protected at all.

Also, the EDAC function is not protected in the example above. This is possible by, for
example, control-flow checks, but will complicate software development and maintenance and
introduce further overhead.

In contrast to above example, EDAC code resides in the program memory, which implies that
overhead created by transferring data from program memory to into the data memory, where it
can be accessed for inspection, must be taken into account. This issue is dealt with in the next
section.

5.5 Mirror Checking

Mirror Checking or data diversity is one of the simplest methods to check consistency be-
tween two sets of data. Two identical or complementary sources are compared to detect differ-
ences. Apart from the fact that this technique doubles the processing system’s memory require-
ments, program-memory access for checking purposes can be difficult in a modified Harvard-
architecture as used in TI-DSPs. As mentioned earlier this can only be done by a-priori copying
via DMA. Although this method allows for detecting and overwriting multiple errors within the
frame of a single 32-bit read/write access, the method may be disturbed by the fact that SEEs
may affect both original and mirrored data, which requires additional measures to be taken.

In case a mismatch between two sets of information is detected one of the following solutions
may be used to enhance the global state view:

• checking both sets against a checksum like: parity, CRC, . . .

• checking both sets against redundant information like EDAC, which also allows for error
correction.

• checking both sets against a third set, which is protected and therefore slower in terms of
access time
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The resulting corrective action clearly depends on the situation. For example, if a parity
mismatch is detected on one set it is recommended to replace both sets since the check between
two sets cannot be faster than a reload via DMA. The only reason for checking rather than pe-
riodically overwriting data is the interest in actually gaining knowledge of error events so that
they can be thoroughly reported and that potentially affected data can be marked invalid.

The approach implemented for evaluation purposes does not just copy the memory contents
from one location to another, but for protection the copied version is modified by inverting each
bit of every data word. Consequently, the XORing on 32-bit words can be used on both data-sets
to detect anomalies. The reason why XORing is superior to comparing instructions with respect
to thoughtful resource utilization, because XORing is available in four different functional units
while only two calculation units support the compare function. It is not necessary to invert every
word to perform a check using XOR instructions, but it has been shown as helpful to distinguish
the two sets. In case of a mismatch and depending on the size of the set to be checked, it is up
to the programmer to decide how to continue. An example wout be to simply trigger a replace
routine. The programmer has the choice to replace sets upon the first uncorrectable mismatch to
minimize overhead or to trigger warm start routine to ensure a clean environment.

The proposed method allows for detecting and overwriting multiple errors, but has the dis-
advantage that at least one set needs to be replaced. If this method is applied to the protection
of larger memory areas, the associated overhead can be minimized, if the re-load process is trig-
gered by the first error event.

Mirror checking and software EDAC have in common that their overhead grows linearly
with the amount of data to protect. In great contrast to EDAC resorting to partial correction to
reduce the effort associated with the protective measure is not possible. Reloading of mirrored
sections accomplished by means of DMA. As mentioned earlier, the protection of program code
is only possible after a-priori transfer. Because the program memory is of the same size as the
data memory, a complete check is only possible piece by piece. Alternatively, program code
could in principle be executed directly from external memory which could be well protected.
However, this is practically unreasonable due to the considerable overhead introduced by the
EMIF. However, from Table 5.6, the overhead introduced by transferring data via DMA, the
EMIF disadvantage is not visible, since the average latency is very similar to the latency experi-
enced for DMA to internal data memory.

The size column presented in Table 5.6 represents the amount of Bytes transferred via 32-bit
block transfers. The quoted number of cycles per Byte is the average calculated from the total
number of cycles. The costs quotes the number of clock cycles to be needed for each 32-bit word.

The Table 5.6 also reveals an important behaviour of this platform. Comparison of the la-
tencies with and without involvement of the program memory brings forth that the experienced
access bandwidth to the program memory is lower than for other memories. This behaviour is
due to the fact that the program access controller fetches a VLIW every cycle. If the DMA con-
troller is configured to attain CPU priority mode, it is unable to service the program memory and

61



Memory Size (Bytes) total cycles cyles per Byte costs per 32-bit word

PRAM→ DRAM
512 796 1.55 7
1024 1440 1.40 6
2048 2716 1.32 6

PRAM→ EMIF:SDRAM 1024 1460 1.42 6
DRAM→ EMIF:SDRAM 1024 696 0.68 3
EMIF:SDRAM→ DRAM 1024 708 0.69 3

Table 5.6: DMA Transfer Latency

therefore, stalls. TI calls this Memory hit effect. Two modules want to access the same location
and since one of the modules has to give way, this severely effects transfer time.

The data memory is subdivided into two equally sized memory data banks. Because of this
bank concept, it is possible to perform two 64-bit loads into bank-0 and a 64-bit DMA transfer
into bank-1 at the same time. This knowledge is essential and needs to be taken into account
when planning software fault tolerance and performance overhead.

Memory Size (Bytes) total cycles cyles each Byte costs per 32-bit word

DRAM
512 172 0.36 2
1024 304 0.29 2

EMIF:SDRAM 512 3888 7.59 31
EMIF:SDRAM 1024 7744 7.56 31

Table 5.7: Memory-type dependent latency associated with data inversion

Data transfer is followed by data inversion, which is not effortless and adds to the overhead.
As Table 5.7 shows, the average effort for inverting data inside internal data memory is 2 cycles,
while it amounts to 32 cycles if working with external. EMIF encounters huge latency every
time an access is scheduled as CPU load/store instruction. Due to the poor data inversion per-
formance when working directly from external memory the preferred memory destination for
this technique is obviously internal memory. Table 5.8 provides a feeling for the effort needed
to compare two mirrors residing in the DSP’s internal data memory.

Memory Size (Bytes) total cycles cyles each Byte costs per 32-bit word
DRAM 512 1172 2.28 10
DRAM 1024 2296 2.24 10

Table 5.8: Internal data comparison latency
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5.5.1 Comparison of Software EDAC and Mirror Checking

Software EDAC and Mirror Checking may at least in principle be used for the same purpose.
Based upon the latency tables presented in previous sections a comparison of the two techniques
can be attempted by accumulating the latencies associated with all tasks necessary for error
correction. Initial overheads, as compared in Table 5.9, are associated with the establishment of
redundancy, viz. calculation and storage of check bits for EDAC and the establishment of the
mirror for mirror checking.

Method Cycle overhead Data overhead

Mirror checking 2716 for transferring + 608 for inverting 3 × 512 words
Software EDAC 8776 for calculating syndrome bits 128 words

Table 5.9: Initial overheads for protecting 512 filter taps

Mirror checking requires 2.716 cycles for transferring data from “block-a” to “block-b”, if
this is not already done by multiple linking in case of static coefficients, plus 608 cycles for
inverting the copied set. Compared to EDAC, this method is much faster although it has to be
stated that in case of constant data it is also possible to generate and store the check bits during
compile time.
Since both methods can tolerate different types of errors, the single bit flip case is assumed for
calculating the latencies associated with error detection and correction.

Method Cycle overhead for detection Cycle overhead for correction

Mirror checking 1024 cycles for comparing 1416 for reloading both sets
Software EDAC 17956 for checking and correcting none

Table 5.10: Cycle overhead for protecting 512 filter taps against single bit failures

Compared to EDAC the approach using mirror checking seems to be more efficient if the
data overhead can be neglected. However, mirror checking is inferior to EDAC if the data to be
protected is changing frequently. In addition, mirror checking inevitably requires DMA, which
is not the case for EDAC. The internal DMA controller is only able to service one DMA channel
per clock cycle. Consequently, periodic DMA transfer creates a bottleneck slowing down the
system. Frequently, DSP is implemented as streaming application fetching data by means of
DMA, processing and streaming the data, which may be spoilt by lacking DMA availability.

Preferably, both methods should be combined. Mirror checking can be used to protect con-
stant values like coefficients, while software EDAC can be used to protect processing results
which need to be held inside the internal memory for a longer period of time.
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5.6 Control Flow Checking by Software Signatures

This approach was already introduced in section 3.5.3. Having selected a particular platform,
some open questions may now be answered. The question what is best for which case will be
answered later. Also open is the question how the control graph gets mapped to code and why it
is still necessary to use a watchdog timer. To ease the implementation and the evaluation inter-
ruptible code is not considered. Before continuing, it is necessary to analyze how the theoretical
concept can be mapped to the instruction set. As mentioned often before the VLIW architecture
and the function unit delay averts limiting the impact of individual instruction to one cycle. This
complicates the mapping of the methods to hardware instructions. The following questions will
be clarified in this section.

• Protection of loop kernels

• Intra or inter procedure checking or both?

• How to deal with delay slots?

• How to deal with endless loops?

• What can be done in case of a CFE?

• At which level should CFCSS be implemented (trade-off between performance and com-
plexity?)

• How can CFCSS be optimized?

Loop kernel protection is not straight-forward. Due to the nature of signal processing algo-
rithms, data is mostly processed in loops, simplifying the code and increasing code readability.
Assuming DMA tasks like data streaming, the underlying loops consume the greatest part of
the overall execution time. Consequently, optimization of loop performance is key in a DSP
system and several solutions have been proposed. The one straightforwardly provided by the
selected DSP is instruction level parallelism facilitated by means of VLIW instruction handling,
enabling the computation of multiple statements during a single clock cycle and, thus, boosting
computational efficiency – not only during loop executions.

The problem is to introduce SWIFT functions for protecting these kernels without interfer-
ing with the optimizations built into the processing platform. Since a branch delay slot is five
cycles long, the minimum number of instructions inside the loop kernel is four. This can be con-
firmed by inspecting optimized example code provided by Texas Instruments within a frame of
assembly-optimized general-purpose signal processing routines within the TMS320C67X DSP
Library3. These library functions can be used as a lower-bound on execution performance since
they are optimized with respect to execution time for the given platform.

Since most computations are done within a loop kernel it is clear that during these cycles
most or all of the available functional units are utilized. If there are not enough free and appropri-
ate “slots” inside a VLIW execute packet it is not possible to simply add additional instructions.

3http://www.ti.com/tool/sprc121
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G = G⊕ dk
br G 6= sk error

Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Cycle 6

⇐⇒

G = G⊕ dk
br G 6= sk error

NOP
NOP
NOP
NOP
NOP

Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Cycle 5

Figure 5.3: introductory checking instruction; theoretical implementaion (left) vs. practical
implementation on a pipelined processor with a branch delay slot of δ br = 5 (right).

Therefore, the only choice is to increase the loop size and, therefore, complicate both scheduling
and partitioning.

According to the basic block definition forming part of the CFCSS terminology, stating that
branching instructions must not occur in a basic block with the exception of its last instruction,
it is impossible to simply separate between branching- and standard-instructions without per-
formance loss. Consequently, a clean implementation would have to utilize all functional units
with NOP instructions during a branch delay. In the context of highly optimized loop kernels
this concept would severly cut on the computational performance. For optimal performance up
to eight functional units need to be utilized during each clock cycle. This leads to two problems,
viz. branch delay slot handling and functional unit delay handling.

5.6.1 Branch Delay Slot Handling

CFCSS assumes that instructions are executed sequentially and a strict cut between distinct ap-
plication instructions and instructions dedicated to control-flow checking is in principle possible.
However, as the example depicted in Figure 5.3 reveals, strict separation of application and er-
ror protection introduces considerable overhead and is, thus, impractical due to the absence of
single-cycle branch instructions in pipelined processors.

If each basic block starts with a check sequence which is supposed to be strictly separated
from application instructions and if the processor architecture imposes on the one hand a branch
delay of δbr cycles and offers Nu parallel instruction units on the other, the number of wasted
instructions is ins lost = δ br ·Nu. For the SMV 320C6701 processor δ br = 5 cycles and up to
Nu = 8 instructions could be executed in parallel, resulting in a loss of 40 instructions.

To take advantage of the instruction level parallelism ofered by the DSP, the instructions
necessary for control flow checking must be scheduled in parallel with application instructions.
On the other hand, it must be guaranteed that all instructions in support of control flow checking
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are executed in the way and the order intended by the programmer, which limits the possibility to
use higher level languages and optimization tools. As explained in section 5.3, DSP software for
the SMV 320C6701 can be developed on (hand) assembly, linear-assembly or C-code level. To
ensure a simpler modification of existing algorithms a macro library written in linear assembly
was developed. In case that no automated tool support is available the effort needed for manually
rescheduling and repartitioning of a code section increases depending on the programming level.
The costs would involve expensive re-coding since the algorithm is assumed to be optimal and
therefore written in hand-assembly. In case of linear assembly, an application developer could
insert macro instructions that fulfil the operations necessary. Because the assembly optimizer
does the scheduling and partitioning automatically code modifications tend to be easier. For
better understanding, refer to Figure 5.1 and Figure 5.2.

5.6.2 Loop Kernels

To utilize all functional units of the DSP in the best possible way, software pipelining techniques
are used to schedule instructions of a loop so that multiple iterations of the loop can execute in
parallel. This technique, illustrated in Figure 5.4 is often called loop-unrolling and it is essential
if high throughput is of interest. However, as the most efficient implementations are based on 4
cycle loop kernels, the major computation is done during the inner loop of the algorithm (loop
kernel). Since branching introduces a delay of 5 cycles, multiple branches need to be placed
inside the loop kernel, creating three problems to be tackled.

As explained earlier, the theory of control flow checking assumes a strict cut between appli-
cation and control flow checking code. The implications of such a strict separation, discussed in
detail for branch delay slot handling in section 5.6.1, are far more severe for loop kernels due to
the fact that the latter contain multiple branch instructions. Additionally, it has to be taken into
account that there are at least 3 more instructions necessary to calculate the checksum. In total,
an overhead of at least 75% for all control-flow checking instructions would have to be accepted,
provided appropriate loop-scheduling can be at all accomplished by the compiler. More detailed
overhead estimations will be provided later.

The second problem is related to the actual placement of control flow instructions within
the program code. Loop kernels are written in a way that as many functional units as possible
are used concurrently, which reduces the options for adding additional instructions in parallel
without re-partitioning and re-scheduling.

The third problem is related to the register usage. During execution of kernel routines it is
often the case that all available registers are engaged, forcing the compiler to allocate stack space
for temporarily storing register information outside the register file. The resulting overhead is
large. Assuming that at least 2 more registers are needed to store the global signature register
GSR and the runtime signature register D, 2 load and 2 store instructions4 have to be added to

4requires that the pointer to this stack address is stored inside a register
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the overhead budget.

The loop pattern show in Figure 5.4 can be found in almost every signal processing algorithm
so that finding a solution for the proper implementation of loop kernels, as presented in the next
section, is of paramount importance. A way to handle this situation will be presented in the next
section.

...
OLoop: Cycle 1

Cycle 2 Branch to Loop
Cycle 3

Loop: Cycle 4
Cycle 5
Cycle 6 [conditional] Branch to Loop
Cycle 7 [conditional] Branch to OLoop
Cycle 8
Cycle 9
Cycle 10
Cycle 11

Epilog: Cycle 12
...

Figure 5.4: Branch pipeline effects

5.6.3 CFCSS Software Coding

The present section aims at investigating how efficient two CFCSS checking algorithms pro-
posed in [43] can be implemented with the SMV 320C6701 DSP. The algorithms, referred to as
A and B, are described by means of the terminology explained by Table 3.5, where N denotes
the total number of nodes in the program.

5.6.3.1 Algorithm A

Algorithm A assigns signatures and check instructions to each node in a program.
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1. Identify all basic blocks, build program flow-graph and number all nodes in the program
flow-graph

2. Assign si to vi in which si 6= sj if i 6= j, i, j = 1, 2, . . . N

3. For each vj , j = 1, 2, . . . N

3.1 For vj , whose pred(vj) is only one node vi, then dj = si ⊕ sj
3.2 For vj , whore pred(vj) is a set of nodes vi,1, vi,2, . . . , vi,M - therefore, vj is a branch-

fan-in node - the signature difference is determined by one of the nodes (picked arbitrar-
ily) as dj = si,1⊕sj . For vi,m, m = 1, 2, . . .M , insert an instructionDi,m = si,1⊕si,m
into vi,m This instruction should be located after the “br (G 6= sj) error” instruction in
vi,m.

3.3 Insert instruction G = G⊕ dj at the beginning of vj
3.4 If vj is a branch-fan-in node, then insert an instruction G = G ⊕D after G = G ⊕ dj

in node vj
3.5 Insert an instruction “br (G 6= sj) error” after the instructions placed in steps 3.3 or 3.4

Every node needs to fulfill the following synthetic instructions:

1. dj = si ⊕ sj
2. G = G⊕ dj
3. “br (G 6= sj) error”

Since not every node is a branch-fan-in node this is valid for each node. The first operation
calculates the signature difference between two different nodes. Since the control flow is known
this may be implemented at compile time, saving this instruction at run time. The second in-
struction requires two clock cycles. First, the signature difference must be loaded as a constant
value into a general purpose register. Then an XOR instruction using the global signature reg-
ister and the signature difference is executed. The last two cycles contain the check sequence.
First the global signature register is compared with the node signature to determine its validity.
In case of a mismatch a branch to an error handler is executed. The signature difference dj is
loaded as constant value into a register to minimize the load delay, which amounted to four clock
cycles, if the value were retrieved from memory. The XOR operation does not have an immediate
field so that the fastest solution is to load it as a constant using a Move-Signed-Constant-into-
Register (MVK) instruction. Due to the 16-bit address field of the opcode of this instruction
65536 nodes can be addressed. Assuming that the branch instruction delay slots are negligible,
the minimum cycle count associated with the processing of one node is 4. If the node is also a
branch-fan-in node two additional instructions are necessary, resulting in a total cycle count of 6.
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It can be concluded that adding 4 cycles of overhead to a 4-cycle internal loop is not efficient
at all.

According to algorithm A every node contains one (synthetic) instruction responsible for
comparing the run-time signature with the signature of the node. In the actual implementation
this synthetic instruction requires two code instructions. If immediate error detection were not
necessary, signature comparison could be postponed. Once an illegal branch is taken run-time
signature and node signature will be different. All nodes have distinct node signatures so that
the divergence will sustain. Therefore, signature comparison does not have to be accomplished
for all but only for selected nodes. This leads to algorithm B which reduces the cycle delay to 2
cycles at nodes without check procedure.

5.6.3.2 Algorithm B

1. Identify all basic blocks, build program flow-graph, and number all nodes in the program
flow-graph

2. Assign an si to vi, in which si 6= sj if i 6= j, i, j = 1, 2, . . . N

3. For each vj , j = 1, 2, . . . N

3.1 For vj , whose pred(vj) is only one node vi, then dj = si ⊕ sj
3.2 For vj , whore pred(vj) is a set of nodes vi,1, vi,2, . . . , vi,M - therefore, vj is a branch-

fan-in node - the signature difference is determined by one of the nodes (picked arbitrar-
ily) as dj = si,1⊕sj . For vi,m, m = 1, 2, . . .M , insert an instructionDi,m = si,1⊕si,m
into vi,m This instruction should be located after the “br (G 6= sj) error” instruction in
vi,m.

3.3 Insert instruction G = G⊕ dj at the beginning of vj
3.4 If vj is a branch-fan-in node, then insert an instruction G = G ⊕D after G = G ⊕ dj

in node vj
3.5 Insert an instruction “br (G 6= sj) error” only into vj where to comparison between the

run-time signature G = Gi and the signature si is wanted

The difference between algorithm A and B is mostly due to step 3.5. Instead of comparing
the signatures for every node, algorithm B limits this task at nodes where immediate control-flow
error detection is absolutely necessary. However, this also increases the fault detection delay.
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v1start

v2

v3

v4

v5 Check node

v1start

v2

v3

v4

v5

v6

v7

v8

Check node

Figure 5.5: Two examples of algorithm B, only two nodes v5 (left) and v6 (right) are performing
the check sequence

5.6.4 Infinite loops

Infinite loops, regardless if wanted or not desired, cannot be detected using the before mentioned
techniques. Endless transition between nodes v2 → v3 → v4 → v2 → v3 → . . ., as shown
in the left example of Figure 5.5, could be the result of an SEU inside the loop counter. To
handle infinite loops additional information must be embedded into the application code. One
approach presented in [54], originally intended to make use of hardware assistance could be
purely implemented in software by exploiting the instruction level parallelism supported by the
hardware.

Checksum
Cycle 1 → susbtract
Cycle 2 → susbtract

...
Cycle n → susbtract
Zero Check

Figure 5.6: Checksum based control-flow checking

The basic idea is that the number of clock cycles required to execute a block consiting of
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several nodes is known so that it can be loaded as a type of checksum into a register before the
first clock cycle of the block gets executed. Every cycle the checksum is decremented using
a parallel SUB instruction so that the checksum should become zero at the end of the block.
Control-flow error detection can then be based on checking if this condition is satisfied. The
disadvantage of this technique resides in implementation constraints. Since the method depends
on exact knowledge of the program execution schedule it can only be implemented in hand
assembly. In addition, considerable overhead is created due to the necessity of

• one MKV instruction,

• one SUB instruction in parallel with the application code and

• one branch instruction, directing towards an error handler (assuming that the checksum
is located inside a conditional register, which would allow a branch without a previous
compare instruction)

Resource requirements for this approach are a free functional unit and a free conditional reg-
ister throughout the entire block processing time. Since only 5 out of 32 registers are conditional
and these registers are essential for conditional branching used during loop execution and other
conditional statements, e.g. if-else, free register availability is implausible.

Therefore, a transparent handling using a watchdog timer, still seems to be the best solution.
However, this requires fast handshaking between the CPU and the external watchdog.

5.6.5 Intra- versus Inter-Procedure Checking

Until now, the basic block definition was used to represent parts of the code at instruction or, in
our case, at cycle level. As seen before, the overhead introduced at this level is high. Some per-
formance improvement can be expected, if the basic block definition is used to model function
call rather than instructions. Due to the coarser granularity the introduced overhead is reduced
by decreasing the instructions-to-nodes ratio (INR). Integrating the control-flow checking into
DSP-algorithms is simplified to the extent that programming in C becomes possible. Besides
the loss of granularity, the main disadvantage is the increased fault-detection delay. The severity
of this clearly depends on the application and how important it is to detect a fault as early as
possible. Just imagine the output generated by a processing stage of a spaceborne instrument.
In case the internal data processing for a specific block has finished delayed detection would
cause a serious amount of additional communication between different parts of the instrument
control units. Such high-level behaviour had to be incorporated in the instrument controller in
form of an error-handling routine which in turn would require additional testing on instrument
level. This example shows that cost considerably increases, if problems are deferred from a
lower to a higher level in a system due to the fact that test costs grow with the number of system
components involved.

To choose the right method one should consider that most signal processing applications
have to deal with huge amounts of data and that this data is always processed in the same way.
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Inter-procedure Intra-procedure Intra/Inter-procedure

Granularity low high medium
Overhead low high medium
Availability low high high
Efficiency high low high
Fault detection latency high low low
Complexity low high medium
Application specific no yes yes

Table 5.11: Intra procedure vs. Inter procedure checking

If most of the time is spent with the processing of a specific function, it is best to consider intra
procedure checking. On the other hand, a more complex state-machine processing the input
samples differently at each stage can be optimized by means of inter-procedure checking. In
conclusion we can state:

The overall time spent within a specific region of the code determines the vulnerability to
control flow errors during execution of this segment.

As an example, we may assume an FIR-filter processing image-frames of 1 ms duration. In case
the filter processing takes about 600µs and the processing is done without interruption, this im-
plies that 60% of the computation time are spent repeatedly executing 640 Bytes of code5. This
illustrates why it is important to clearly distinguish between intra and inter procedure checking.
Apparently, mixing both approaches leads to an interesting and important extension.

Table 5.11 compares the costs and benefits of the three approaches. Inter-procedure check-
ing benefits from low overhead, low complexity and the fact that it is application independent
because existing signal processing routines do not need modifications. Nevertheless, although
inter-procedure checking enables algorithm independent mapping it remains application with
respect to the systematic effects resulting from control-flow error detection delays.

Intra-procedure checking on the other hand benefits from finer granularity, resulting in lower
fault detection delay and, thus, higher availability.

If a clear conclusion concerning the overall computational effort of different routines cannot
be made or if the selection of just one granularity level is insufficient, the mixed approach can
be used. Candidates for the application of the mixed approach are cases were input block size
is a-priori not known so that simple decisions about the execution time cannot be taken. Other
examples go beyond just protecting the signal processing routines, in particular, if it is essential
that the signal processing procedures are called in the correct sequence. The combination of both
approaches reveals a relationship between efficiency and total overhead which offers plenty of

5DSP_sp_fir_gen taken from the TI DSPLIB
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opportunities for customization and optimization.

One property not covered by Table 5.11 is the effort needed for generating the control flow
graph. Besides the fact that there may exist some proprietary tools for various platforms, all
control flow graphs found in this thesis were constructed by hand. To keep the complexity of
the mixed approach low both techniques can be implemented in a self-contained manner, just
sharing a common error routine. This avoids intransparent and non-serviceable control flow
graphs. It is of paramount importance that intermediate signature results or register states are
not overwritten by other control flow functions.

5.6.6 The Error Case

The handling of detected control flow errors is done by calling a common error handling func-
tion. This function is the same for inter and intra procedure checking. Control flow checking
does not store any information concerning older states or events which makes it impossible to
determine the transition causing the error and to recover without loss of information. Because
the source of the experienced CFE could be in any of three different regions viz. program mem-
ory, data memory or core registers, the only solution is to reload all memory sections, reinitialise
the CPU and begin with a clean boot preceeded by a small test routine. Since this is the only
possible solution without adding any checkpoint mechanism, the time required for restarting
directly impacts system availability. The faster this procedure can be exercised the better the
resulting availability.

Error handling requires calling the corrective function within a potentially unstable stack
environment. Unstable because, the control flow error could have been triggered by a previously
corrupted stack. Under such conditions safe function calls are not possible. In order to be able
to call functions, regardless if coded in C or assembly language, a non-corrupted stack and a
correct stack pointer are essential. This would imply a complex error handling routine and is
thus far away from efficient. The problem can be overcome by means of a simple trick based on
non-maskable interrupts (NMI). During an NMI the program counter address of the last executed
instruction gets stored in the non-maskable-interrupt-return-pointer register (NRP). Because the
CPU is allowed to write to this register it can be configured to point to an error handling routine.
Using the built-in B NRP6 routine the jump can be performed without even resorting to a stack
or frame pointer.

5.6.7 Undetectable Faults

Even if considerable effort is taken some faults will never be detected. Considering the in-
ternal program memory size of 64KB along with the DSP’s addressing scheme a 17 bit pro-
gram counter implemented in hardware would be a reasonable expectation. However, various
tests have shown that all 32 bits can be written and read via JTAG, indicating that the program
counter actually features 32 bits. For bit-flips affecting the upper 15 bits of the register the re-

6which means branch to address stored in NRP
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sulting address would exceed the internal memory space. Even worse the program fetch address
is incremented every cycle regardless, if data can get fetched or not due to the non-existence of
addresses. While overflows of the program counter were not observed during testing a complete
halt of the processor was encountered for various addresses. Upon the occurrence of such events,
resetting the device was the only solution for recovery.

Another undetectable fault would be a jump within a basic block. Although this is contra-
dicting the definition of a basic block it is nevertheless possible. If a basic block is longer than
the pipeline size, a jump within the basic block and therefore, before the next check function will
pass undetected with all CFCSS algorithms considered within the frame of the present work. The
effect was even observed for an optimized CFCSS implementation based on algorithm B, where
not all nodes include a check function.

5.6.8 Macro Library

To enable faster code instrumentation, a macro library written in linear assembly was developed.
This library allows modifying existing linear assembly code by introducing various CFCSS
macros between existing code parts. The macros are written at a granularity such that the assem-
bly optimizer is not able to remove the statements needed for control flow checking. However,
the creation of the control flow graph has still to be done by hand. Depending on the basic block
granularity, the selected assembly optimization level and the selected algorithm, this approach
allows for inexpensive protection of code execution.

5.6.9 Intra-Procedure Checking Timing Performance Simulations

To evaluate the overhead produced by different approaches different signal processing algo-
rithms were taken and modified to support control flow checking. The outcome of these sim-
ulations shall give insight into the efficiency of control flow checking implementations with
the selected platform. The following algorithms were modified to incorporate intra-procedure
control flow checking:

• single precision matrix multiplication

• single precision matrix transpose

• single precision maximum of vector

• single precision radix-2 FFT with complex input samples

These algorithms were selected because they are essential for almost every signal processing
chain and allow due to their structure straightforward reasoning concerning the induced over-
head, which may be leveraged to other - more complex - algorithms.

For the aforementioned the following information, relevant with respect to the implementa-
tion of control-flow checking, will be provided:

• equivalent C code
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Matrix size
Implementation level 3x3 4x4 7x7

Hand assembly without FT 180 420 712
Linear assembly without FT 248 856 1516
Linear assembly with FT macros 372 832 1380

Table 5.12: CFCSS clock cycle measurement for the given matrix multiplication algorithm

• constructed control flow graph containing signatures for every node

• signature differences between nodes

• real-time signature, in case of a necessary update

Although the code of each function is shown as C code for the sake of clarity, the implemen-
tation for all intra-procedure test cases was done at linear assembly level using the macro library
mentioned earlier. Furthermore, the presented control-flow graphs do not directly match the C
code but were derived at linear assembly level where most loops were unrolled for performance
purposes.

Single Precision Matrix Multiplication

The original matrix multiplication algorithm was taken from the DSPLIB provided by Texas
Instruments. The function written in linear assembly was modified by adding the necessary
control flow checking instructions using a macro library. Due to the register count loop unrolling
was not performed. The resulting control graph consists of three loops where each label node
represents a multiple-branch-fan-in node. Since Algorithm B was implemented only the most
outer node was selected as check node. Detailed information about the loop structure and the
signatures can be found in Appendix A.2.1. The resulting performance measures are shown in
Table 5.12

It can be seen that compared to linear assembly the fault tolerant version is at most 1.5
times slower than the non-tolerant one when multiplying two 3x3-matrices. However, when
multiplying larger matrices, e.g. 4x4 or 7x7, the fault tolerant version is faster than the non-
tolerant one. This effect is related to the assembly optimizer. During the compilation process the
assembly optimizer cannot assume a distinct matrix size and, therefore, schedules the algorithm
in a more generic manner. Compared to the unprotected hand assembly version without FT the
performance loss is about twice the time assuming the given input size.

Single Precision Matrix Transpose

The original matrix transpose algorithm was taken from the DSPLIB provided by Texas Instru-
ments. Like before, the function written in linear assembly was modified by adding the necessary
control flow checking instructions using a macro library. Algorithm B was implemented. Due to
the small frame window and the resulting smaller register count, loop unrolling was attempted.
The resulting graph consists of a single loop. The node containing the loop instructions was
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implemented as a multiple-branch-fan-in node. Detailed information about the loop structure
and the signatures can be found in Appendix A.2.2. The resulting performance measures are
shown in Table 5.13.

Matrix size
Implementation level 3x3 4x4 7x7

Hand assembly without FT 48 104 132
Linear assembly without FT 60 140 184
Linear assembly with FT macros 152 476 636

Table 5.13: CFCSS clock cycle measurement for the examined matrix transpose algorithm

It can be seen in Table 5.13 that the linear assembly version with fault tolerance is at least
2.5 times slower than the linear assembly version without FT-support. This results from the
small number of internal loop operations during each iteration. In case fewer instructions are
executed inside each iteration the resulting overhead by inserting additional instructions is huge.
Compared to hand assembly without FT the performance loss is between 3 and 4.8, growing
along with the matrix size.

Single Precision Maximum Value of a Vector

Like before the “maximum of a vector” algorithm was taken from the DSPLIB provided by
Texas Instruments. The function written in linear assembly was modified by adding necessary
control flow checking instructions using a macro library. As before, it was possible to unroll
the loop to increase performance. Algorithm B was implemented. The node containing the loop
instructions was implemented as multiple-branch-fan-in node. Detailed information about the
loop structure and the signatures can be found in Appendix A.2.3. The resulting performance
measures are shown in Table 5.14.

Vector length
Implementation level 39 99 198

Hand assembly without FT 76 104 156
Linear assembly without FT 68 108 176
Linear assembly with FT macros 232 512 976

Table 5.14: CFCSS clock cycle measurement for the “maximum value of vector” algorithm

Table 5.14 shows that the linear assembly version with fault tolereance is at least 3.4 times
slower than the unmodified version. This can also be explained by the small number of instruc-
tions inside the actual loop. It can also be seen that the induced overhead increases with the
input size so that compared to hand assembly without FT the resulting loss factors range from 3
to 6.2 for the considered vector lengths.
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Single Precision Floating-Point Radix-2 FFT With Complex Input

The original Fast Fourier Transform algorithm was taken from the DSPLIB provided by Texas
Instruments. The function written in linear assembly was modified by adding control flow check-
ing instructions, using a macro library. Due to the register count loop unrolling was applied.
The resulting control graph consists of two loops where each node represents a multiple-branch-
fan-in node. Algorithm B was implemented and the two loop label nodes were selected as
check-nodes. Detailed information about the loop structure and the signatures can be found in
Appendix A.2.4. The measured performance is shown in Table 5.15.

FFT size
Implementation level 128 256 512

Hand assembly without FT 1852 4160 9284
Linear assembly without FT 6304 14260 30912
Linear assembly with FT macros 13448 30612 68704

Table 5.15: CFCSS clock cycle measurements for the FFT algorithm

Table 5.15 shows that the linear assembly version with fault tolerance is at least twice as
slow as the unmodified version. Relative efficiency increases with growing input-vector size.
Compared to the hand-assembly version without FT the fault tolerant version is about 7.2 times
slower almost regardless of the FFT-length.

5.6.10 Inter-Procedure Checking Timing Performance Simulations

As mentioned earlier, inter-procedure checking is a technique for improving system reliability,
modelling function calls as basic blocks of a control-flow graph. This method depends very little
on the underlying algorithms and in combination with hand optimized assembly it can be made
very efficient. Due to the coarse granularity the execution time between consecutive checks
(or function calls) contributes to the fault detection delay. Unlike for Intra-Procedure Checking
(IAPC), the temporal behaviour of Inter-Procedure Checking (IEPC) can be estimated without
having to perform simulations involving the potential DSP-algorithms. From simulation runs
the mean overhead introduced by IEPC was found to be about 52 cycles per checked block. In
a first approximation, the fault-detection delay is equal to the interval between two checks. If
checks are performed for all basic blocks, the fault-detection time is determined by the execu-
tion time of the individual procedures and its maximum corresponds to the procedure with the
longest execution time.

5.7 Fault Tolerance Controller

Although SWIFT methods have been shown to be very effective with respect to mitigating the
effects of radiation induced upsets, their implementation creates considerable overhead, reducing
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processing performance and data throughput. In addition, the investigations have brought forth
that certain error-types cannot be detected at all, viz.

• infinite loops

• Deadlock

• Consistency of large data sets and/or over longer periods of time

• Program memory mutations not resulting in detectable control-flow errors

• Register modifications not leading to control-flow errors

As reasoned earlier, the problem of infinite loops cannot be solved without external hard-
ware. The same applies to procssor hang-up. For both cases neither error detection nor taking
an appropriate action is possible, leaving an externally triggered reset as only solution. Further,
memory contents and registers need to be protected, taking into consideration that the imple-
mentation of error correction coding is much more efficient in hardware than in software as long
as delays and latencies introduced by off-chip access stay within reasonable limits.

As a consequence of the gained experience, the present section introduces a combination of
hardware- and software fault tolerance techniques aiming at the minimization of computational
overhead in the DSP and at filling the residual fault-coverage gap. For this purpose an external
logic function, the so called Fault Tolerance Controller (FTC), is introduced. The main tasks
of this controller are the monitoring of the DSP’s current state, taking care of its configuration
and the handling error cases. In a first step, this function is specified independent of a partic-
ular processor selection and the anticipated work sharing between FTC and micro-processor is
summarized in Table 5.16.

Fault Tolerance Controller Task Processor Task

Scrubbing Register Dump into Memory
Interfacing/Data streaming Watchdog reset
Bootloader CFC at inter-procedure level
Watchdog Periodic dump of critical variables
EDAC/Memory Controller

Table 5.16: Task allocation for a combined HW/SW-Platform approach

To overcome the problem of data inconsistency or program memory mutations the FTC can
perform scrubbing. This decreases the probability of uncorrectable multi-bit errors and, there-
fore, the amount of uncorrectable faults. Further, the FTC can also be used to periodically check
the program memory consistency to eliminate the occurrence of CFEs.

The block diagram depicting both function sharing and interaction between FTC and the
target DSP is provided in Figure 5.7.
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Figure 5.7: Implementation of the combined HW/SW-approach for the SMV 320C6701

TI-DSPs feature a host processor interface (HPI), providing access to DSP’s internal mem-
ory. This allows the FTC to download portions of the internal memory and to compare them
with protected copies during run-time. HPI transfers are transparent to the CPU, can be done
in parallel to the signal processing and do not create any overhead in the DSP. In case of simul-
taneous arbitration of program- or data-memory locations by HPI and CPU, the latter is given
higher priority and HPI-data output will be delayed for one cycle. In this way, the FTC is able
to monitor and reconfigure various parts of the DSP as long as they reside in the DSP’s memory
map. DSP areas containing valuable information but not directly reachable via the memory map
may still be monitored by means of a software workaround using a timer controlled dump rou-
tine. Based on information retrieved this way, critical configuration registers, like the interrupt
control register or the external memory interface control register, can be re-loaded. However,
this can only be done at a limited rate and not continuously so that part of the responsibility is
left with the DSP-software, inevitably performing control-flow checking to further reduce the
probability of control-flow errors to the desired level.

Any code executing on the DSP is susceptible to SEEs. Therefore, it must be taken into
account that routines autonomously providing information to an external observer may fool the
FTC. Such a situation could be caused by register faults which can only be covered by means of
EDDI. From a practical point of view SEEs affecting program execution can only be detected
in case of a manifestation being an error consequence and prior to manifestation in case of un-
successful comparison or successful pre-checking. To cover these cases a two step approach
is proposed. The first step is to prevent errors by means of code replication and successive
checking, which is frequently referred to as code replication or code diversity. The second step
foresees transformation of critical code into equivalent hardened code, using EDDI methods.

With respect to the practical FTC implementation in space hardware it is important to note
that spaceborne instrument data processing often requires pre- and post-processing for assem-
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bling and disassembling packetized, multiplexed, staggered or concatenated data - typical fixed-
point arithmetics tasks. The same applies to coarse filtering, scaling and look-up-table based
non-linearity correction. Typically, high data volumes are processed in that way prior to being
transferred to a decimation stage. With the DSP’s internal memory being limited, external mem-
ory must be used, shared with the DSP and protected by means of feed-through EDAC, which
in a state-of-the-art spaceborne FPGA can be implemented with as little as one wait state. Ap-
parently, it is beneficial to combine these inevitable hardware functions with the FTC in a single
FPGA.

One may be tempted to compare the FTC approach with other techniques such as H-Core and
TTMR. However, in contrast to H-Core, the FTC is able to directly derive information concerning
both availability and functionality of the DSP without having to draw general conclusions on
a high level of abstraction. Compared to TTMR, the FTC approach offers the same level of
availability with much lower latency and superior efficiency.
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CHAPTER 6
Fault Injection

So far, candidate failure mitigation concepts were evaluated by means of reasoning and their
suitability in terms of overhead, latencies and delays was assessed by experiments. To obtain
an estimate of the overall performance of the proposed techniques, in particular on their prac-
tical soft-error mitigation capability, fault injection experiments were performed as well, using
the test environment described in Section 6.1. Lacking the possibility to directly inject physical
effects like sudden SEEs, the key idea was to inject faults as bit flips into storage elements. This
restricts the simulated failure cases to SEUs inside three different regions, viz. program memory,
data memory and the register file.

One aim of the experiments was to quantify the effectiveness of the proposed software-only
solutions. Another goal was to attain a better understanding of the effects of SEEs acting upon
the selected DSP-platform potentially unveiling particularly unfavourable operating conditions
and providing indications for the improvement of the platform with respect to SEE-robustness.

The experiments were supposed to answer the following questions:

• How many CFEs are detected using the given fault tolerance?

• How many SEUs create errors in the output data (Data Errors - DEs)?

• How is the relation between CFEs and DEs?

• How many faults do create no measurable effect?

• How often is illegal opcode encountered and what is its outcome?

• How is the distribution of faults locations that were activated?

6.1 Fault Injection Environment

The focus of this injection experiment was split in two parts. First a functionality validation was
done for all implemented SWIFT methods and secondly, a statistical measurement of failure
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probabilities was attempted. Since, the development of such tools can be time consuming, a
lightweight but nevertheless performant solution was developed. Based on Debug Server Script-
ing (DSS), which is provided by the Texas Instruments IDE, referred to as Code Composer
Studio, a scripting environment for injecting different kind of faults was implemented. DSS
allows JAVA-scripting or the use of other third party tools such as Javascript, Phyton or TCL.
Because Javascript is the default scripting language as a well understand tool, it was chosen for
the present application.

The connection between the Fault-Injection-Toolchain and the DSP was established via
JTAG. To gain access to the DSP the target has to be halted. Consequently, a run-time injection
of faults is not possible, which is a limitation that is caused by the JTAG interface. Newer inter-
faces like the Nexus standard would allow run-time access. Unfortunately, a nexus power space
DSP is not available at the moment. In principle, there are two possibilities for error insertion
under this constraint:

1. Timing based processing: After storing the fault list in an internal database structure the
target is being started as normal. At a configurable time the target is halted and the first
fault of the database is injected. Both original and modified value are written into an
XML log file for later analysis. Thereafter the execution of the target is resumed for a
given interval and effects caused by the fault are searched for and monitored. This process
is repeated until the last fault in the database is encountered.

2. Breakpoint based processing: Along with the preparation of the fault database, breakpoint
locations for faults to be injected have to be set. The target is started and after halting at
the first breakpoint the corresponding fault is retrieved from the database. The actual
injection process is the same as in the timing based version. A log file entry is created for
further analysis. The approach is, however, limited by the amount of memory available
for storing hardware breakpoints in the JTAG debugger. If larger sets of faults need to
be processed, breakpoints have to be grouped for piecewise loading into the target. This
requires exact knowledge of the control flow. Breakpoint based processing requires a
preparatory analysis of the application code and, therefore, closely couples the fault set
with the application code. The main advantage, however, is the reproducibility injection
experiments.

The method used in the present project is based on timing based processing. With this choice
the injection process has become independent of the executed code and it was not necessary to
analyze the code before the fault injection campaign. Due to the asynchronous behaviour of this
method, the injection process is more random since program execution is fully asynchronous
to the IDE. Injection experiments of this type cannot be reproduced due to the asynchronous
execution.

Both methods have their benefits. Further, a mixed approach could also be of service.

The following types of faults can be injected:
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• Type: Single and double bit-flips

• Program memory:

– Fixed address
– Random address

• Data memory:

– Fixed address
– Random address

• Registers:

– Fixed register

– Random register

Run-time Fault Injector

As discussed before, the hardware environment available for the present activity does not allow
for injecting faults without interrupting the DSP. This limitation is not due to the DSP but due to
the off-the-shelf evaluation board, which does not allow external memory access other than by
the JTAG interface.

For follow-on activities we propose another approach based on additional hardware to pro-
vide such features. The capabilities of the host processor interface (HPI), allowing for transpar-
ently reading and writing internal memory allows development of a lightweight fault injector
which is able to inject faults without causing interference to the program execution. Inducing
faults during run time will reduce test time and simplify timing measurements, e.g. error detec-
tion latencies, although it has to be noted that realistic and fully representative statistical error
simulation is in fact possible with the JTAG based approach, albeit with higher post-processing
effort. It is proposed to base such a lightweight fault injector on commercial off-the-shelf USB
modules, such as the QuickUSB1 module, featuring general purpose pins that can be used to
create waveforms for direct communication with the HPI interface.

6.2 Experiment Setup

Several experiments were conducted using arbitrary faults as well as different application loads.
All experiments share a similar flow as shown in Figure 6.1. All workloads have common that
they were all derived from a simple test application containing the same initialisation routines as
well as a small state machine switching through its states in a fully deterministic manner. They
are, however, different in the way the control flow checking mechanisms are deployed. Depend-
ing on the workload this can either be inside a particular function called within one of the states

1http://www.bitwisesys.com/
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in case of intra-procedure checking, or every time a transition from one state to another is made
in case of inter-procedure checking. Based on the same approach also workloads for a mixed
approach, using both intra- and inter-procedure checking, were generated.

Basic Experiment Flow

For each experiment iteration a reset of the device is performed first. Then the object file con-
taining the memory information is loaded into the target. Next, the target is configured to run
until an arbitrarily chosen instant in time and to stop thereafter. The execution-time interval was
split in two parts. First, enough time to execute all required initialisation routines is provided to
guarantee that faults were not injected during this phase.

Upon expiration of the fault-injection delay d the injection process was activated and after
completion of the injection process the target execution was continued until time t.

Figure 6.1: Experiment flow

Output Classification

After execution over time t the reaction of the target is observed and written into an XML-log
file. In particular, the following issues are evaluated: (i) A check is performed whether the ap-
plication workload running on the target has produced correct results, and (ii) error-detection
information is logged. The available error detection mechanisms are divided into two classes,
i.e. internal and external. Internal mechanisms describe the detection capabilities of the imple-
mented error detection mechanism. External methods are used as counter measures to evaluate
the functionality and the correctness. Additionally, external methods are used to detect failures
resulting from undetectable conditions. Based on this information four different outcomes of an
experiment can be distinguished:

1. No error: The result of the application is correct. This means that the fault injection has
not been effective, which may be due to injection into an unused location or caused by
logical masking of the injected fault.

2. Error detected and correctly handled: The error was successfully detected by at least
one of the available error detection routines. After detection the intended action was taken.
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3. Error detected but incorrectly handled: The error was successfully detected by at least
one of the available error detection routines. After detection incorrect data was still gen-
erated.

4. Error undetected: The application produces incorrect output but none of the error detec-
tion routines was triggered.

The no-error case does not provide any insight in the target’s inherent robustness against
SEUs. It only shows that either the fault location was inappropriate or that the fault was over-
written shortly after injection. However, due to the data generated by the fault injector, this case
can be further analyzed.

Anticipated Results

Two types of faults are expected, viz. errors related to the generated output and control flow
variations. Which of these two error-types prevails strongly depends on the fault location. Given
that there is a huge amount of general purpose registers and only small portions of executable
code mainly register induced faults will be experienced. Since the application code processes
within an infinite loop, latent faults inside looping segments are impossible.

Experiment Parameter Space

Based on the above considerations suitable values for fault injection delay d and execution win-
dow t have to be determined. In order to inject the fault during application execution, the mini-
mal fault injection delay is set to the amount of time needed for initialisation. Since the applica-
tion code executes inside an infinite loop the maximum value of d can be chosen arbitrarily. In
order to cover a complete application execution cycle, the time t must be twice the time needed
for one application cycle. This ensures that faults injected into critical regions are in any case
activated.

6.3 Experiment Flow

The basic experiment flow was already mentioned earlier. Now, more details and the reasoning
concerning fault effects are provided. This is applicable for all taken experiments. Although
it seems that different experiments were made most of their outcome was gathered during a
workload-specific experiment.

After initialisation, which is of little importance for the overall analysis and after a delay d
the fault is injected. A fault location is randomly selected from the following options:

• Program memory

• Data memory

• Register file
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In case of a register induced fault, an element vector of possible registers is built. A particu-
lar register is then selected via the element number, using random number generation. Memory
locations are selected in the same way. Memory locations required for post-processing purposes
(see section 5.2) were excluded from the random-number generation.Exclusively single-bit flip
faults were considered.

Every run of each experiment was conducted according to the following plan:

• For each run:

1. Reset CPU

2. Load Code into memory

3. Run until an arbitrary time d

4. Halt the target

5. Generate a random SBF containing a random location and a random bit

6. Resume execution for time t

7. Read out diagnosis database

8. Read out the results processed during execution

9. Write information into XML log-file

The list above shows the experiment flow sufficient for the evaluation of the results delivered
by the internal detection mechanisms. However, above steps are insufficient for the evaluation
of these mechanisms with respect to their capabilities in terms of counter measures. Therefore, a
mixing approach using both, “timing based processing” and “breakpoint based processing” was
used. The addition of breakpoints allows the fault-injection environment to act as an “external
observer”. This helps to attain a better understanding of fault effects and shall provide an indi-
cation which faults could have been detected if external logic would have been present.

According to the detailed experiment flow, the target is stopped after time t. Due to the
asynchronous execution of the target it is impossible to determine, if the actual program counter
location is correct. However, with the additional breakpoints the virtual external observer is
able to detect the existence of faults invisible to the fault-tolerance mechanisms implemented in
software. In this way it is possible to determine how often CFEs are not detected.

The analysis of the internal mechanisms contains two steps:

• The dump of the diagnosis database, which is used to track all errors that were detected by
internal mechanisms. Every time a CFE is detected the fault is documented in the database
and the reset vector is executed.

• The dump of the generated data, which provides insight into the availability of the target.
This dump depends on the specific workload executed during the experiment. The appli-
cation flow is deterministic and the input data is constant during the whole experiment so
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that the generated output can be compared easily with a failure free data-set. Since it is
possible that after calling the reset vector the falsified output is overwritten, the target is
halted immediately after jumping into the initialisation routine. This guarantees that false
information is not overwritten during the upcoming application cycle.

6.4 Experimental Results

6.4.1 Experiment 1: Detected CFEs

A first series of fault injections was carried out to investigate how many activated faults, can
be detected using the earlier mentioned control flow checking technique and how the detection
probability depends on the fault location. For this purpose, different workloads based on the
test-applications as shown in Section 5.6.9 were used. The number of injected faults for each
workload is denoted by n. Table 6.1 shows the results gained from the experiment.

Data Integrity Fault Location
Workload Detected CFEs OK NOK Reg L1D L1P Total DEs

Matrix-Multiplication with Inter Check 11 10 1 7 1 3 1.472
Matrix-Multiplication with Intra Check 15 15 0 15 0 0 94
Matrix-Transpose with Intra Check 0 0 0 0 0 0 159
Max of Vector with Intra Check 74 74 0 74 0 0 141
Complex FFT with Intra Check 207 207 0 207 0 0 1.475

Table 6.1: Detected CFEs, n = 12000

Before drawing any conclusions it is necessary to explain how the values presented in Table
6.1 were gathered. Each workload derived from the earlier mentioned base program represents
a distinct application and can be considered independent since the workloads were executed se-
quentially, each one being afflicted with n injected faults.

The “Detected CFEs” column represents the amount of CFEs that were detected during ex-
ecution using internal software mechanisms. In particular, every time CFC routines detected an
anomaly it was logged inside the fault database. Since the dump of this database is scheduled at
the end of each iteration and since one error cannot be detected twice (stop inside reset vector),
it is not necessary to correct errors if still remanent. This value may be different from the num-
ber of CFEs that have really occurred during execution due to the possibility of undetected CFEs.

The “Data Integrity” columns represent how often false data was generated in combination
with a detected CFE. This can only happen in two cases. First, an incorrect handling of CFEs
due to a software error inside the CFC routines or, secondly, due to a late detection of the error.
The first case can be caused by a fault injected directly into parts of the CFC code. Because
of the non-atomicity of the CFC instructions the resulting CFE may be detected in the second
iteration. The second case can originate from an inappropriate injection time. Although all rou-
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tines protected by CFC contain at least 3 “nodes” it is not necessary that the last one performs
the check routine. In case that the fault was injected during the execution of the last node, it
may corrupt the output data shortly before exiting. The check if data was processed correctly is
done by dumping the generated data into the fault injection environment and comparing it with
a known error-free result.

The “Fault Location“ column represents the fault distribution of all detected CFEs. This
information was derived by automated post-processing of the log-files containing an excessive
amount of manifold information. The “Total DEs” column represents the number of data errors
detected during the whole workload. There is no specific assignment to any action or event in-
side the system. Although this information has to be interpreted with care it is shown here to
provide insight on how often false data is generated.

Not surprisingly, the number of detected CFEs which are shown in the “Detected CFEs”
columns is quite small, which reflects the fact that one or two check-nodes distributed over the
whole code are not enough. Also, the number of detected faults corresponding to the data in-
tegrity meets the expectations. Nearly every time a CFE was detected the output was uncorrupted
and, therefore, falsified data was not generated. Although the column “Detected CFEs” consti-
tutes the main outcome of this experiment, faults that are detected as data errors (DEs) without
detected CFE cannot simply be ignored. Without further knowledge about their manifestation
they must be considered as data errors which cannot be detected using control flow checking.

By looking at the fault distributions shown in Appendix A.4 it can be seen that the fault
location has not much impact on the error detection ratio. This can either be related to the
small memory utilization or to a lack of observability. An important conclusion of experiment
1 is that the distribution of check-nodes has a significant impact on the CFE detection ratio.
By doubling the amount of check nodes, as it is the case in the FFT workload, the resulting
detection ratio becomes a multiple compared to all other workloads. Another result is that the
ratio between detected CFEs and correct data output shows that using this technique the overall
system availability can be increased. It is also important to note that nearly all of the detected
CFEs originate from faults injected into the register file. This somehow unexpected result is an
indication that the implemented technique is more powerful than expected.

6.4.2 Experiment 2: Errors in the Output data (Data Errors - DEs)

The aim was to evaluate the correlation between injected faults and resulting data errors. The
experiment was conducted in order to attain a detailed insight on how different fault locations
are related to DEs. DEs were expected to mainly occur in case of faults injected to either the
data memory or the register file. Another goal was to illustrate how many DEs could have been
covered using error detection and error correction techniques. The number of faults for each
workload is denoted by n. Table 6.2 shows the results gained from the experiment, which were
gathered in the same way as for Experiment 1.

The “Total DEs” column represents the amount of errors detected by dumping the generated
data and comparing it with an error-free data-set. Recalling experiment 1, it has been shown
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Fault Location
Workload Total DEs Reg L1D L1P

General Purpose with Inter Check 1.472 751 364 347
Matrix-Multiplication with Intra Check 94 58 14 22
Matrix-Transpose with Intra Check 159 150 4 5
Max of Vector with Intra Check 141 128 9 4
Complex FFT with Intra Check 1475 1445 20 10

Table 6.2: Measured DEs, n = 12000

earlier that nearly all detected CFEs also prevented the generation of false data. In this particu-
lar case the total amount of DEs represents all faults that can either not be related to internally
detected CFEs nor can they be classified using external mechanisms2.

The “Fault location” column represents the distribution of the origin of the measured DEs.
Due to the vast amount of logged data, this information again had to be derived using post-
processing of the injector log-files.

The number of DEs related to register based faults is very high. This confirms that due to
the large amount of registers the usage of ECC would not suffice. Apparently, compared to all
other intra-procedure tests, the FFT workload experiences the highest amount of data errors re-
lated to the fault count. There are two reasons: first, the total amount of data produced during
execution is higher and second, the greater amount of time needed for processing expands the
fault injection window compared to all other intra-procedure workloads.

The result illustrates the vulnerability with respect to SEUs occurring in registers. In search
of a counter measure recall the FFT workload of experiment 1. Due to the increased amount of
check nodes it was possible to increase the detection ratio and, therefore, to decrease the amount
of false data generated. Applying this knowledge to the current experiment and looking at the
particular fault distribution of the FFT workload, it appears as if further increasing the check
node ratio would decrease false data generation. Apparently, this is not really a solution. By
neglecting the loss of external observability, an appropriate solution would be the use of EDDI,
TTMR or an embedded checksum based on rectangular coding.

6.4.3 Experiment 3: No Effect-Faults

For every iteration of each experiment, the injection location and the outcome after a given
period of time was analyzed. This allows to determine the amount of faults not activated or
overwritten due to a recent write to the fault location. The number of faults for each workload is
denoted by n. Table 6.3 shows the results gained from the experiment.

2problem of external observability
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Fault Location
Workload No Error Faults Reg L1D L1P

General Purpose with Inter Check 10796 5465 2604 2722
Matrix-Multiplication with Intra Check 11609 5938 2993 2974
Matrix-Transpose with Intra Check 11841 5956 2928 2957
Max of Vector with Intra Check 11859 5843 2999 3017
Complex FFT with Intra Check 10525 4615 2984 2926

Table 6.3: No-Effect faults, n = 12000

The “No Error” column represents the amount of faults that did not create any measurable
effect. Testing of this hypothesis was accomplished by comparing the generated data with a
clean reference and by checking the fault database inside the target. However, this does not
guarantee that the executional trace was exactly as intended. It only illustrates how many faults
were not creating any measurable effect. Two cases cannot be covered: (i) Errors inside other
regions of the memory and (ii) control flow errors without the scope of the implemented tech-
niques. The first case can only be covered by comparing the whole memory of the target against
an error-free one. Due to the unstable debug interface of the development tool-chain this is only
possible with extreme effort. The second case originates from the lack of observability. It could
be covered by implementing an extensive breakpoint strategy. Since this is workload dependent
and highly time consuming (in terms of engineering time) this was not pursued.

The fault location definition is the same as for all other experiments. Again, it was gathered
by means of post-processing.

As expected, the number of faults without measurable effect is dominant, which partly re-
flects that the application only exercises parts of the available resources and, hence, faults in-
jected into unused resources remain inactive. The bigger part, however, is believed to be the
result of limited observability both external and internal. Nearly half of the no-effect-faults are
related to registers. Of course, this result does not prove that all faults were really inactive.
Their inactivity can only be proven by dumping the whole memory and by comparing it with a
representative copy after every iteration.

6.4.4 Experiment 4: Illegal Opcode

The aim was to find out how often a modification of a single bit within an instruction word
results in a syntactically incorrect instruction. Therefore, the internal opcode detection unit of
the IDE was used. Every time syntactically invalid opcode was executed an error message was
generated. However, this does not give any insight into the overall count of illegal instructions
since a measurable effect can only be in case the instruction is executed. To evaluate the amount
of total illegal instructions the entire memory must be dumped. Due to the unstable behaviour
of the debugger, this was omitted. The conducted experiment was supposed to give an insight
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into the appearance of executed illegal opcode constrained by the size of periodically executed
code. It is expected that the execution of illegal instructions mainly creates data errors. The
reason for this is the distribution of conditional bits (creg) over various instructions, e.g. branch
instructions. The number of faults for each workload is denoted by n. Table 6.4 shows the
results gained from the experiment.

Workload Illegal opcode CFEs DEs

General Purpose with Inter Check 59 0 9
Matrix-Multiplication with Intra Check 78 0 13
Matrix-Transpose with Intra Check 110 0 36
Max of Vector with Intra Check 100 0 38
Complex FFT with Intra Check 29 29 0

Table 6.4: Illegal Opcode and their effects, n = 12000

The experiment results shown in Table 6.4 have been obtained using a slightly different fault
injection environment. Due to fact that illegal opcode is not detected by the DSP and that the
outcome is not easily observable, the experiment setup was changed from “injection in target”
into “injection into a simulator” based execution using Texas-Instrument’s cycle accurate DSP
simulator. This does not show what is really going on inside the target but can be used to deter-
mine how often illegal opcode is encountered.

The column labelled “Illegal opcode” represents how often illegal opcode was executed us-
ing the simulator. It does not show how often illegal opcode was produced, but how often
this problematic situation was encountered. The “CFEs” and “DEs” columns connect observed
warnings and their outcome.

The results shown in Table 6.4 confirm our expectations concerning the occurrence of DEs.
It is surprising that the outcome of illegal opcode is either dedicated to a CFE or to a DE but
never to both. But this can also be related to the lack of observation. The FFT workload was
the only one detecting CFEs. The reason for this can be the larger code size or the longer time
necessary time needed for executing the function.

6.4.5 Experiment 5: Mixed Intra/Inter Procedure Checking

The aim of this experiment was to evaluate the benefit created by an mix of intra and inter pro-
cedure control flow checking. For this purpose, a workload containing the aforementioned base
program was created. The experiment contains parts of the “General Purpose with Inter check”
and the “Matrix-Multiplication with Intra check” workload. The environment setup was rear-
ranged from simulation to target evaluation. It was presumed that the CFE detection ratio would
increase due to the more frequent occurrence of CFC instructions. Additionally, several break-
points were inserted to enhance the “perception” of the external observer. These breakpoints
were supposed to give insight on how often undetected CFEs were encountered and how often

91



they could have been detected using external logic. As before, it is necessary to explain how the
values presented in Table 6.5 were gathered.

Detected CFEs Undetected CFEs
Workload Reg L1D L1P Reg L1D L1P Total CFEs

Mat-Mult with Inter/Intra Check 598 1 12 374 0 48 1038

Table 6.5: CFE detection ratio, n = 23258

The column “Detected CFEs” represents the amount of control flow errors that were de-
tected using the internal detection mechanisms. The first breakpoint was inserted at the reset
vector. This breakpoint is only triggered in case of a detected CFE. As already mentioned, every
detected CFE is followed by a jump into the reset routine. Next, two breakpoints were added
to ensure that the calculation routines were only executed twice. These two breakpoints ensure
that in the absence of CFEs the target stops within one of these two.

The presented numbers were gathered in the following manner: (i) After injection of a fault
the target is continuing its asynchronous execution. (ii) after time t the execution is stopped and
the current program counter is analyzed. If the program counter matches the reset vector, the
internal mechanisms have successfully detected the control flow anomaly. The location of the
error origin was determined using post processing of the fault injector logfile.

The column “Undetected CFEs” represents the number of CFEs that were not detected using
internal software mechanisms. It was derived by performing an analysis of the current program
counter value. If the program counter is not matching any of the breakpoints mentioned before,
an undetected CFE can be reported.

The results shown in Table 6.5 illustrate the effectiveness of the mixed approach. Due to the
fact that the overhead caused by adding the inter-checking routines is constant and moderate,
the amount of detected CFEs was increased several times without adding substantially to the
execution-time budget. Compared to all other workload examples, this approach seems to be
most effective in terms cost and benefit. One might think that the fairly high number of un-
detected CFEs is still a show stopper, but by looking at the workload in more detail it can be
seen that relative to the small number of CFC instructions (small compared to all instructions
executed) the outcome is indeed reasonable.

Although there is still room for improvement using internal mechanisms it has also been
shown that external logic like the FTC presented in Section 5.7 can be used to substantially
improve the overall detection ratio. A detailed analysis of the injected faults can be found in
Appendix A.22.
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6.5 Test Evaluation

The tests have shown that by using software only techniques it is not possible to achieve a rea-
sonable availability level. As expected, the CFCSS techniques are able to detect control flow
errors and can, thus, prevent the generation of data faults if the fault was introduced in a region
modifying the control flow. On the other hand it has become apparent that the main cause for
data errors based on register faults cannot be reduced, in spite of the great effort taken. As pre-
sumed, this effect cannot be covered using CFC methodologies. However, it has been shown
that the use of an external fault tolerance controller can significantly decrease the gap left by the
software-only routines.

A more differentiated view has revealed that it is indeed possible to detect a respectable
amount of SEE related faults using software-only techniques but that they do not have enough
power to be used in a stand alone manner. The following conclusions can be drawn from the
experiments:

• Control Flow Checking can be used to reduce the occurrence of CFEs and consequently
also reduce the number of data related faults

• Finer CFCSS granularity helps increasing the detection ratio

• The amount of externally detected data errors is directly related to the induced register
faults

• Illegal opcode mainly causes data errors

• A CFCSS-only solution is not adequate to provide the high availability required for use in
space

• Resource intensive solutions like TTMR or EDDI do have their justification in spite of
their impractical appearance

Recalling the success metrics shown in Section 3.3 it can be stated that nearly all goals
have been reached. None of the presented techniques is bound to the platform selected for
the present work, but may be applied to a broad spectrum of present and future space-grade
DSPs. Conclusions concerning about the intrusiveness of the implemented techniques must
be considered ambiguous. On the one hand, the induced overhead varies strongly depending
on the selected granularity. On the other hand it has been shown that more or less good SEU
performance can be achieved with finer granularity.
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CHAPTER 7
Conclusions and Outlook

The proposed spaceborne DSP platform in form of Texas Instrument’s SMV 320C6701 DSP
represents an economically efficient way of implementing fault tolerance without being affected
by ITAR, which is not the case for all other platforms equivalent with respect to provided ser-
vices and performances. To estimate the risk of radiation induced SEEs their outcome and their
consequences were analyzed. In a first step the quantification process was decomposed into two
steps, namely occurrence and effects. Furthermore, existing application code for typical signal
processing algorithms was modified and extended, as its original form would have been prone
to faults.

Three mechanisms based on control flow checking were distinguished, i.e. inter-procedure-,
intra-procedure- and inter/intra-procedure-checking. With respect to data integrity, two mech-
anisms viz. software EDAC and Mirror Checking, were distinguished. Since the overhead
introduced by both data-integrity methods was enormous, the techniques were soon removed
from the list of potential candidates to be further examined for practical use in space systems.

Control Flow Errors were studied in more detail and evaluated using different fault injection
experiments. Interestingly enough, it was found that data related errors tend to have register
based faults as origin. On the other hand, it has been shown that it is indeed possible to detect
a reasonable count of CFEs using a software-only solution. Also, the threat of executed illegal
opcode was eased.

SWIFT methods can be seen as a first step towards fault tolerance using the given architec-
ture. It has been shown that without external observation it is implausible to provide an adequate
level of availability. The risk of implementing a software-only architecture on a radiation tolerant
DSP seems to be higher than might be initially anticipated, and it seems reasonable to consider
such solution with the appropriate care. The usage of the proposed fault tolerance controller
increases error detection capabilities and reduces fault detection delays to the extent rendering
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the approach attractive for space-mission deployment.

Apparently, due to the limited scope of the present undertaking this thesis leaves some open
issues as well as points which require further analysis. A more detailed look has to be taken at
the effects related to register faults. Also, fault-detection delay or fault-activation delay should
be investigated in more detail. Moreover an example for a combined approach using EDDI or
TTMR should be analyzed. Furthermore a physical prototype using the FTC can be used to ex-
perimentally analyze the overall sensitivity to SEEs.

With respect to mass, power consumption and total costs, the presented solution can easily
keep up with current state-of-the art spaceborne technology offering the same level of radiation
tolerance but considerably less processing performance and data throughput.

Direct comparison of the presented solution with other state-of-the art DSPs both spaceborne
and terrestrial was out of the scope of the present activity and would have been difficult even on
paper-level, due to the lack of comparable information.

To allow for a more practicable conclusion recall the information presented in Section A.1
and [30]. It shows that the DSP has an average background SEU rate of less than 7.710−3 upsets
per day, corresponding to approximately 130 days of upset free operation in geo-stationary orbit
(GEO. Augmenting this information by the knowledge gained through the experiments, the DSP
in combination with an FTC can be considered virtually fault tolerant and very attractive for most
practical space applications.
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APPENDIX A
Appendix

A.1 SMV320C6701 - Radiation performance

Figure A.1: SEU Characteristics - Data Memory Verification using BIST

Environment

EMIF, McBSP, DMA,
Power Down Logic, Data

Access Controller,
Program/Cache Memory,

Data Memory, Boot Modes

Program/Cache and Data,
Memory Program

Access/Cache Controller
and Data Access Controller

Data Memory Verification
using BIST CPU

solar min 4.11E-05 3.32E-04 6.39E-03 7.94E-04
solar max 9.17E-06 6.83E-05 1.12E-03 1.13E-04

worst 5-min 3.78E-02 2.44E-01 1.80E-02 5.83E-01
worst day 3.59E-04 2.43E-03 1.44E-00 5.40E-03

worst week 1.85E-04 1.42E-03 3.4E-00 3.79E-03

Table A.1: Summary of the SEU Rate (Upsets/day) for the SVM320C6701
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Figure A.2: SEU Characteristics - EMIF, McBSP, DMA, Power Down Logic, Data Access
Controller, Program/Cache Memory, Data Memory, Boot Modes

Figure A.3: SEU Characteristics - CPU

Figure A.4: SEU Characteristics - Program/Cache and Data Memory, Program Access/Cache
Controller and Data Access Controller
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Functional Block 1,000 km 5,000 km 10,000 km 15,000 km
Data Memory Verification using BIST 1.6E-04 1.7E-01 2.0E-02 1.9E-05

CPU 1.03E-07 8.04E-05 3.97E-06 7.90E-11
Program/Cache and Data, Memory Program Access/Cache

Controller and Data Access Controller 1.77E-06 3.54E-03 2.15E-04 2.07E-07

EMIF, McBSP, DMA, Power Down Logic, Data Access Controller,
Program/Cache Memory, Data Memory, Boot Modes 2.75E-06 6.67E-03 4.11E-04 3.95E-07

Table A.2: Proton upset rates (Upsets/day) at various altitudes and 0 deg inclination angle

Functional Block 1,000 km 5,000 km 10,000 km 15,000 km
Data Memory Verification using BIST 7.9E-04 8.4E-01 4.8E-02 5.8E-05

CPU 2.38E-06 4.05E-05 1.54E-06 2.91E-11
Program/Cache and Data, Memory Program Access/Cache

Controller and Data Access Controller 8.85E-06 9.14E-03 5.28E-04 6.33E-07

EMIF, McBSP, DMA, Power Down Logic, Data Access Controller,
Program/Cache Memory, Data Memory, Boot Modes 6.51E-05 1.05E-03 8.15E-05 1.46E-07

Table A.3: Proton upset rates (Upsets/day) at various altitudes and 28.5 deg inclination angle

Functional Block 1,000 km 5,000 km 10,000 km 15,000 km
Data Memory Verification using BIST 9.0E-04 4.6E-01 4.4E-03 4.1E-06

CPU 1.39E-06 2.20E-05 8.71E-07 1.70E-11
Program/Cache and Data, Memory Program Access/Cache

Controller and Data Access Controller 9.85E-06 5.06E-03 4.77E-05 4.45E-08

EMIF, McBSP, DMA, Power Down Logic, Data Access Controller,
Program/Cache Memory, Data Memory, Boot Modes 3.91E-05 5.90E-04 9.11E-05 8.50E-08

Table A.4: Proton upset rates (Upsets/day) at various altitudes and 51.6 deg inclination angle

A.2 Control Flow Checking using Software Signatures - Intra
Procedure

The following section shall give a detailed insight of how the different function were modelled
and implement using control flow checking techniques. The including Tables and Figure are
self-explanatory.
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A.2.1 Single Precision Matrix Multiplication - CFCSS sheet

1 void DSPF_sp_mat_mul(float ∗x, int r1, int c1, float ∗y, int c2, float ∗r)
2 {
3 int i, j, k;
4 float sum;
5 // Multiply each row in x by each column in y.
6 // The product of row m in x and column n in y is placed
7 // in position (m,n) in the result.
8 for (i = 0; i < r1; i++)
9 {

10 for (j = 0; j < c2; j++)
11 {
12 sum = 0;
13 for (k = 0; k < c1; k++)
14 {
15 sum += x[k + i∗c1] ∗ y[j + k∗c2];
16 }
17 r[j + i∗c2] = sum;
18 }
19 }
20 }

Listing A.1: Matrix multiplication in C taken from the DSPLIB

Transition Signature dk

From → To
1 2 0x3333
2 3 0x1111
3 4 0x7777
4 5 0x1111

Figure A.5: Signature difference

RT-Signature update function

Function Di si,1 ⊕ si,m
RT-1 0x5555 (4⊕ 1)
RT-2 0x6666 (4⊕ 2)
RT-3 0x7777 (4⊕ 3)

Figure A.6: Real-time signature

Prolog - s1 = 0x1111start

ILoop - s2 = 0x2222

JLoop - s3 = 0x3333

KLoop - s4 = 0x4444

Epilog - s5 = 0x5555

RT-3

RT-2 RT-1

Figure A.7: Control Flow Graph
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A.2.2 Single Precision Matrix Transpose - CFCSS sheet

1 void DSPF_sp_mat_trans(const float ∗restrict x, int rows, int cols, float ∗restrict r)
2 {
3 int i,j;
4 for(i=0; i<cols; i++)
5 {
6 for(j=0; j<rows; j++)
7 {
8 r[i ∗ rows + j] = x[i + cols ∗ j];
9 }

10 }
11 }

Listing A.2: Matrix transpose in C taken from the DSPLIB

Transition Signature dk

From → To
1 2 0x3331
2 3 0x1117

Figure A.8: Signature difference

RT-Signature update function

Function Di si,1 ⊕ si,m
RT-1 0x3331 (1⊕ 2)

Figure A.9: Real-time signature

Prolog - s1 = 0x1112start

Loop - s2 = 0x2223

Epilog - s3 = 0x3334

RT-1

Figure A.10: Control Flow Graph
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A.2.3 Single precision maximum value of vector - CFCSS sheet

1 float DSPF_sp_maxval(const float∗ x, int nx)
2 {
3 int i,index;
4 float max;
5 ∗((int ∗)&max) = 0xff800000;
6 for (i = 0; i < nx; i++)
7 {
8 if (x[i] > max)
9 {

10 max = x[i];
11 index = i;
12 }
13 return max;
14 }
15 }

Listing A.3: Maximum value in C taken from the DSPLIB

Transition Signature dk

From → To
1 2 0x3337
2 3 0x1111

Figure A.11: Signature difference

RT-Signature update function

Function Di si,1 ⊕ si,m
RT-1 0x3337 (1⊕ 2)

Figure A.12: Real-time signature

Prolog - s1 = 0x1113start

Loop - s2 = 0x2224

Epilog - s3 = 0x3335

RT-1

Figure A.13: Control Flow Graph
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A.2.4 Single precision floating-point radix-2 FFT with complex input - CFCSS
sheet

1 void DSPF_sp_cfftr2_dit(float∗ x, float∗ w, short n)
2 {
3 short n2, ie, ia, i, j, k, m;
4 float rtemp, itemp, c, s;
5 n2 = n;
6 ie = 1;
7 for(k=n; k > 1; k >>= 1)
8 {
9 n2 >>= 1; ia = 0;

10 for(j=0; j < ie; j++)
11 {
12 c = w[2∗j];
13 s = w[2∗j+1];
14 for(i=0; i < n2; i++)
15 {
16 m = ia + n2;
17 rtemp = c∗x[2∗m] + +s ∗ x[2∗m+1];
18 itemp = c∗x[2∗m+1] − s∗ x[2∗m];
19 x[2∗m] = x[2∗ia] − rtemp;
20 x[2∗m+1]= x[2∗ia+1] − itemp;
21 x[2∗ia]= x[2∗ia] + rtemp;
22 x[2∗ia+1] = = x[2∗ia+1] + itemp;
23 ia++;
24 }
25 ia += n2;
26 }
27 ie <<= 1;
28 }
29 }

Listing A.4: Single precision floating-point radix-2 FFT with complex input taken from the
DSPLIB

Transition Signature dk

From → To
1 2 0x3331
2 3 0x1113
3 4 0x7771

Figure A.14: Signature difference

RT-Signature update function

Function Di si,1 ⊕ si,m
RT-1 0x1113 (3⊕ 3)
RT-2 0x2222 (3⊕ 1)

Figure A.15: Real-time signature

Prolog - s1 = 0x1114start

OLoop - s2 = 0x2225

Loop - s3 = 0x3336

Epilog - s4 = 0x4447

RT-1

RT-2

Figure A.16: Control Flow Graph
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A.3 Texas Instruments Software Design Flow

Figure A.17: Texas Instruments Software Design Flow [26]
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A.4 Fault Injection Experiments

Figure A.18: Fault Distribution for Inter-Procedure Workload

Figure A.19: Fault Distribution for Intra-Procedure Matrix Multiplication Workload
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Figure A.20: Fault Distribution for Intra-Procedure Matrix Transpose Workload

Figure A.21: Fault Distribution for Intra-Procedure Maximum Value of Vector Workload
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Figure A.22: Fault Distribution for Intra-Procedure Complex FFT Workload

Figure A.23: Fault Distribution for Intra/Inter-Procedure Workload
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