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Abstract

Metamaterials allow complete control over the propagation of electromagnetic
waves. They consist of resonant circuits that are smaller than the wavelength
of the respective radiation.

In order to describe the transmission of a metamaterial composed of wires
on a grid, we apply a resonating dipole model [Petschulat et al., 2010], which
was introduced in the optical range, to the terahertz range. We use a terahertz
time-domain spectroscopy setup to experimentally verify that the model is
applicable in the frequency range between 0.1THz and 2.5THz. We fit the
model to the measured data by using a combination of automatic routines and
manual fitting. The gold on gallium arsenide samples were manufactured using
e-beam evaporation and standard semiconductor lithography techniques.

We deduce the scaling behavior of the model’s parameters by manufacturing
and measuring differently scaled structures. This is a first step towards a tool
that is able to predict the transmission spectrum of a structure, given only its
shape and physical dimensions.

The perpendicular coupling between the dipoles is described by a coupling
constant σ. Experimentally, we demonstrate that the coupling is primarily
conductive and that capacitive coupling is much weaker. To allow for coupling
along an axis, we introduce the longitudinal coupling constant τ and derive its
value.

The good results from our first set of samples encourage us to apply the
model to more complex structures. We devise an algorithm that allows us to
calculate the response of arbitrary grid-based structures. We demonstrate this
algorithm on a rectangular and a hexagonal grid.

To produce new kinds of structures, we integrate the algorithm on a rectan-
gular grid into the fitness function of a genetic algorithm. We present a result
that was produced by this method and compare its measured spectrum to our
simulations.

From the results of our measurements, we conclude that the model is very
well suited to the description of small structures, while its potential to predict
the behavior of larger, hence more complex, structures is limited. Given the
model’s simplicity, it provides remarkable results.
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Kurzfassung

Metamaterialien erlauben es, die Ausbreitung von elektromagnetischen Wellen
beliebig zu steuern. Sie bestehen aus Schwingkreisen, welche kleiner als die
Wellenlänge des verwendeten Lichtes sind.

Das in [Petschulat et al., 2010] vorgestellte Model beschreibt das Transmis-
sionsspektrum eines aus dünnen Stäben aufgebauten Metameterials bei opti-
schen Frequenzen mithilfe von schwingenden Dipolen. Durch Messungen mit
einem THz-TDS Aufbau beweisen wir experimentell, dass dieses Modell auch
im Bereich zwischen 0.1THz und 2.5THz anwendbar ist. Wir verwenden ei-
ne Kombination aus automatischen und manuellen Verfahren um das Modell
an die gemessenen Daten anzupassen. Die Proben bestehen aus Gold, welches
in einem Elektronenstrahlverdampfer auf Gallium Arsenid aufgebracht wurde.
Zur Strukturierung wurde ein übliches lithographisches Verfahren benutzt.

Weiters stellen wir unterschiedlich große Strukturen her und untersuchen
die Abhängigkeit der Parameter des Modelles von den physikalischen Längen.
Dies ist ein erster Schritt zu einer Theorie, die es, ausgehend von Form und
Größe einer Struktur, erlaubt ihr Transmissionsverhalten vorherzusagen.

Im Modell wird die Kopplung zwischen zwei Dipolen durch die Kopplungs-
konstante σ beschrieben. Anhand von modifizierten Strukturen untersuchen
wir ihr Verhalten und zeigen, dass diese Kopplung vorwiegend auf elektrischer
Leitung basiert. Die kapazitive Kopplung ist viel schwächer und spielt daher
nur eine untergeordnete Rolle.

Aufgrund der guten Ergebnisse, die das Modell bei einfachen Strukturen
erzielt, haben wir es auf kompliziertere Strukturen verallgemeinert. Wir zei-
gen eine Methode die es erlaubt das Transmissionsverhalten einer beliebigen
rechteckigen oder hexagonalen Struktur zu simulieren.

Um neue Arten von Strukturen herzustellen, haben wir das Modell mit
einem genetischen Algorithmus kombiniert. Wir zeigen ein Ergebnis dieses Op-
timierungsverfahrens und vergleichen das gemessene Spektrum mit den Vor-
hersagen unseres Modelles.

Wie durch unsere Messungen belegt wird, ist das Model dazu geeignet das
Verhalten einfacher Strukturen zu beschreiben. Je größer die Strukturen sind
und je komplizierter ihr Aufbau ist, desto mehr zeigen sich Abweichungen, die
in der Natur der elektromagnetischen Strahlung begründet sind. Wenn man
berücksichtigt, wie weitgehend die Vereinfachungen sind auf denen sich das
Modell gründet, liefert es erstaunlich gute Resultate.
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Chapter 1

Introduction

1.1 Motivation

This thesis combines two relatively young areas of interest: The terahertz
frequency range and metamaterials. Together, they promise exciting new ap-
plications in science, imaging and telecommunication.

Both areas saw an increase of academic interest in the 1990s and 2000s, due
to various innovations, including the invention of the quantum cascade laser
(QCL) [Faist et al., 1994] and the invention [Pendry et al., 1999] and fabrication
[Shelby et al., 2001] of negative refractive index metamaterials. Obviously,
these innovations would not have been possible without earlier inventions (e.g.
superlattices) and advances in manufacturing (e.g. molecular beam epitaxy)
as well as computing (e.g. electromagnetic simulations).

Research Goal

Our goal was to understand the behavior of arbitrary grid-based metamateri-
als in the terahertz range. The work is based on a coupled oscillator model
[Petschulat et al., 2010]. We wanted to apply this model to the terahertz fre-
quency range and examine different structures. Furthermore, we wanted to
create new types of meta-atoms by using the model inside the fitness function
of a genetic algorithm.

1.2 Methodology

Before the the start of this thesis, Juraj Darmo [2010] conducted numerical
simulations to verify the model proposed by Petschulat et al.. Since the simu-
lations showed promising results we manufactured various metamaterials. We
measured their transmission and compared the results to the predictions of
our model, proving experimentally that it is applicable in the terahertz range.
By fitting the model’s parameters and comparing the analytical equations to
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2 CHAPTER 1. INTRODUCTION

the experimental data, we analyzed how the fundamental parameters scale and
demonstrated the differences that arise between model and reality.

1.3 Structure of the Thesis

In the first chapter, we present the background of the basic ideas and technolo-
gies which this thesis is built upon. At the beginning of the second chapter,
we will present a short review of the model as given in the original paper
[Petschulat et al., 2010]. We will then elaborate on the extensions we added
to accommodate arbitrary structures on rectangular and hexagonal grids. The
focus of chapter three is the measurements we conducted to validate the model.
We will present the good consistency we found for simple structures as well as
the disagreements we discovered for more complex ones. The last chapter will
summarize our findings and give an outlook on future development paths. The
appendices contain additional information for the interested reader.

1.4 The Terahertz Frequency Range

Terahertz refers to a range of electromagnetic radiation. It is usually defined to
contain frequencies between 100GHz and 10THz. There is, however, no official
definition or even one that is universally agreed upon: the lower boundary is
the gigahertz range; the upper boundary is – depending on the definition – in
the far or mid infrared range.

Frequency 1THz = 1/ps
Wavelength (λ) ≈ 300 µm
Energy (hν) ≈ 6.62× 10−22 J ≈ 4.14meV
Temperature (E = kbT ⇒ T = hν/kb) ≈ 48K

Table 1.1: 1THz corresponds to approximately . . .

The highest named frequency band, defined by the International Telecom-
munication Union (ITU), is EHF, band 11,1 which goes up to 300GHz [ITU,
2008]. Frequencies up to 100GHz are routinely achieved with HF circuits, e.g.
in the ISM2 band at 60GHz. An additional band 12, between 300GHz and
3THz, is defined in the 2008 edition of the ITU radio regulations, but has no
associated symbol. This shows a lack of interest in frequencies above 300GHz

1The ITU bands are numbered according to the frequencies they define. A band with
number N extends from 0.3 × 10NHz to 3 × 10NHz. They were historically referenced by
wavelength. Since the speed of light in vacuum is c ≈ 3× 108 ms−1 and λ = c/f, band 11
(30GHz to 300GHz) corresponds to wavelengths between 10mm and 1mm.

2Industrial, Scientific, Medical. These bands can be used without applying for a license
and devices operating in them must tolerate interference. The most famous ISM band is the
one around 2.45GHz. It is used for wireless LAN according to IEEE 802.11 as well as for
many other applications, such as Bluetooth devices and baby phones.



1.4. THE TERAHERTZ FREQUENCY RANGE 3

and is mostly due to the fact that water vapor absorbs well in this range, so
that such signals cannot be transmitted over long distances in the earth’s at-
mosphere. Consequently, this frequency range was of limited interest to the
ITU.

In addition to the limited reach of terahertz radiation in the atmosphere,
there was a lack of sources and detectors for this region. This rendered it
inaccessible in practice and led to the term terahertz gap.
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Figure 1.1: Transmittance through 1m of air at sea level. Transmission in the
terahertz range is strongly attenuated, while there is high transmittance in the
optical and radio frequency ranges. The plot was generated from HITRAN
data.3The data points in the overview (above) were bunched. It shows the
smoothed average, minimal and maximal values in these bunches. The thin
grey line in the detail plot (below) indicates the position of a group of water
absorption lines at 1.7THz, which are sometimes visible in the measured data.

3The HITRAN 2008 [Rothman et al., 2009] data was obtained through the calculator
at http://hitran.iao.ru/gasmixture, using the default settings: Gas mixture: USA model,
mean latitude, summer, H=0; Optical path: 1m; WNmin 0 cm−1; WNmax 25 500 cm−1;
T296K; P 1.013 25 bar Icut1× 10−28 cmmol−1; Shape: Voigt; WNstep0.01 cm−1 Wing,
HW: 50; Optical path: 1m, App.Function (AF): Dirac; App.Resolution 0.01 cm−1; AF wing,
AR: 50.

http://hitran.iao.ru/gasmixture
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Closing the Terahertz Gap

The first scientists interested in the detection of terahertz radiation were radio
astronomers, as a large amount of extraterrestrial photons in this energy range:
it is estimated that “98% of the photons emitted since the big bang fall into
the submillimeter and far-IR” ([Leisawitz et al., 2000], quoted in [Siegel, 2002]).
Consequently, the first detectors were developed to meet their requirements.

In addition to astronomical applications, the terahertz spectral region is
interesting for spectroscopy. The energies of terahertz waves correspond to
rotational transitions in molecules as well as to phonon excitation energies. The
energy of the longitudinal optical phonon in GaAs, for example, is 35meV [Sze,
1981, p.39 and appendix H], which corresponds to a frequency of ≈ 8.5THz.

Yun-Shik Lee [Lee, 2008, ch.2.2, p.28] summarizes the different areas of
interest:4

Interactions of THz waves with matter involve low-energy excita-
tions corresponding to THz frequencies. Some elementary excita-
tions of cardinal interest include Rydberg transitions in atoms, tran-
sitions among impurity states in semiconductors, intraband transi-
tions in semiconductor nanostructures, many-body interactions in
strongly correlated electron systems, phonon modes in organic and
inorganic crystals, rotation-vibration transitions in molecules, and
collective large-amplitude motions in biological molecules.

Starting from the beginnings in astronomy, efforts to close the terahertz gap
were undertaken from both sides of it. Electrical engineers tried to generate
higher and higher frequencies from their HF sources, while physicists were
reaching toward lower energies using their optical sources.

Both sides soon reached fundamental limits. Engineering oscillating cir-
cuits for terahertz frequencies is impossible due to the small time constants,
which are in the picosecond range. Solid state sources could not offer the low
transition energies required for terahertz emission.

Sources in the optical and infrared frequency ranges are usually based on
electronic transitions5, with energies in the eV range. Energies of meV were
smaller than those used in optics, and were out of the reach of semiconduc-
tors. Band gaps of semiconductors at room temperature are in the range
of eV, between 0.17 eV (InSb, 41THz)6 and 6.12 eV (AlN, [Li et al., 2003],
1.48PHz). Silicon, the most widely used semiconductor material, has a band
gap of 1.11 eV, gallium arsenide has one of 1.43 eV. These band gaps correspond
to frequencies in the IR to UV range.

Even microwave engineering, with a broad body of experience and today’s
computational tools, is still more or less a black art. The sub-millimeter range,
where an even steeper learning curve is still ahead of us, amounts to alchemy.

4The original text includes references to primary sources, which are omitted here.
5Another important source is black body radiation.
6Unless noted otherwise, band gap energies are taken from the table “properties of semi-

conductor materials”, in [Streetman and Banerjee, 2000, p.439]
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From photonic and electronic roots, the field of photonics was born. It is
an area where optics and electronics struggle to meet.

An effect of the interdisciplinary nature of the field of photonics is the
mixture of preferred units. While frequencies are most often used as the unit
of choice in electrical engineering, wavelengths are preferred in optics. Few
people would say that their 2.45GHz WLAN uses a wavelength of 12 cm. At
the same time almost nobody thinks of a red laser with a wavelength of 750 nm
as emitting light at a frequency of 400THz, or that the wavelength of 1550 nm
that is popular in fiber optic telecommunications corresponds to a frequency
of 193THz.

Sources of Terahertz Radiation
Electromagnetic radiation can be generated from two fundamental principles:
State transitions and accelerated charges.7 The different ways to accelerate or
excite charge carriers give rise to a wide range of sources for terahertz radiation.
They vary in output power (mW to kW, peak powers up to MW [Carr et al.,
2002]), spectral width, beam shape, coherence and many other characteristics.

Depending on the method of generation they are based on, the sources can
be sub-classed into groups:

• Electronic transition (quantum cascade laser)

• Short laser pulses (photoconductive antenna, crystals, plasmas, optical
rectification)

• Acceleration of free electrons (free electron laser, backward wave oscilla-
tor)

• Thermal radiation (thermal background, glow bar)

In addition to these primary sources, there are also secondary sources. They
consist of a primary beam which is manipulated in such a manner that it creates
a secondary terahertz beam. These techniques are based on nonlinear8 optical
effects. Examples are optical rectification or sum- and difference-frequency
generation.

An exhaustive description of all the generation methods listed above can
be found in [Lee, 2008]. We will, for the sake of brevity, focus on a selection of
four sources:

7Daniel Dietze reminded me that even electronic state changes can be interpreted as the
movement of carriers. In a dipole transition, the center of mass of the wave function shifts.
Transitions where the center of mass stays in the same place are forbidden by selection rules,
since their dipole moment is zero.

8Nonlinear refers to the fact that these effects are proportional to a higher order suscep-
tibility χ(n). Most effects are second (n = 2) or third order (n = 3) effects. These effects
only occur at large field strengths, since the higher order susceptibilities are much weaker
than the linear susceptibility.
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• Thermal radiation, which is the dominating source of terahertz radiation
at room temperature.

• Photoconductive antennas, which allow for coherent detection and are a
building block of many time-domain spectroscopy setups, including the
one we used in our experiments.

• Quantum cascade lasers, which are a very promising candidate for a solid
state terahertz laser source.

• Free electron lasers, which produce the highest intensities and, hence, are
important sources for the examination of nonlinear effects.

Thermal Radiation

Figure 1.2: Spectrum of emitted radiation for black bodies at different temper-
atures (Planck’s law). The curves for lower temperatures had to be magnified,
since the total radiated power scales with T 4 (Stephan-Boltzmann law).

Planck’s law [1901] gives the amount of radiation emitted by a black body
of temperature θ at a frequency ν as

u = 8πhν3

c3
1

e
hν
kθ − 1

, (1.4.1)

where k = kb is Boltzmann’s constant.
A black body at room temperature emits a wide spectrum of radiation up

to ≈ 80THz, with a maximum at f = 17.6THz (for T = 300K, see figure 1.2).
The whole terahertz range is therefore flooded with thermal radiation.
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In order to conduct measurements in the terahertz range, this background
radiation has to be avoided. This is primarily done in two ways:

• Cooling to cryogenic temperatures

• Gated detection and/or phase sensitive amplification of the detector sig-
nal (e.g. lock-in)

Apart from generating these unwanted thermal radiations, however, black
body radiation can also be used as a source in so called glow bars. A com-
mon type of setup uses a chopper in combination with a lock-in amplifier to
distinguish the emitted terahertz radiation from the background.

Photoconductive Antenna

A brief description of the working principle of photoconductive antennas (PCA)
can be found in [Sherwin, 2002]:

An electric field of about 106 Vcm−1 is generated in a high-resis-
tance semiconductor by applying a d.c. voltage between a pair of
electrodes bonded to its surface. An ultrafast laser pulse illuminates
the semiconductor between the electrodes, creating a large density
of mobile charge carriers (electrons and ’holes’) through an effect
that is closely related to the photoelectric effect used in solar cells.
These charge carriers, sensing the large electric field, accelerate at
roughly 1017 ms−2 [. . . ]. All accelerating charges emit electromag-
netic radiation. These charge carriers, reaching their maximum ve-
locity in less than 10−12 s, emit a single electric-field pulse shorter
than 10−12 s that contains a broad range of frequencies, up to a few
terahertz. Typically, the average power generated by this method
is less than 10−6 W. But as this power is in a stable, coherent beam
with well-known temporal characteristics, it can be used for spec-
troscopy with high spectral resolution and excellent signal-to-noise
ratio, and even for imaging.

In order to increase the output power of a PCA, an interdigitated electrode
design is used. The phase of the emitted beam depends on the polarity of
the applied electric field. Adjacent fields have opposite polarity; therefore,
every other field is covered by a metal mask to prevent a cancellation of the
sub-beams that each field emits.

Quantum Cascade Laser

The Quantum Cascade Laser, invented at Bell Laboratories in 1994 [Faist et al.,
1994], is a fascinating piece of physics and technology. It consists of a series of
potential wells separated by tunneling barriers.
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(a) Band structure of a single period QCL.
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are shown.
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(b) Band structure of a two period QCL with applied external bias voltage
(after [Faist et al., 1994]).

Figure 1.3: The band scheme of a single period of a quantum cascade laser
(above) consists of a series of potential wells separated by barriers. The con-
finement is only one-dimensional in the direction of growth (z). The whole
QCL is made up of several periods. Applying an external voltage ∆U tilts the
bands (below). From the ground state of the dashed injector area, electrons
can tunnel into the excited state 3 and relax into level 2, emitting a photon.
They then tunnel resonantly into level 1 and are extracted into the dashed
area. From this area, they are again injected into level 3 of the next period
and the process continues. This way, a single electron can produce multiple
photons.

Two materials (M1 andM2)9 with different valence band energies (E1 < E2)
are epitaxially grown on a substrate in alternating layers, creating a het-
erostructure. This causes a one-dimensional confinement of the electrons in
the direction of growth: the layers of M1 (the material with the lower valence
band energy) serve as wells, the other layers as barriers. Inside these wells, the

9The first QCL used GaInAs–AlInAs, other commonly used systems are GaAs–AlGaAs,
GaAs–InGaAs, GaN–InGaN. GaAs is frequently used as a base material in epitaxial growth,
since there are many variations of it which have similar lattice constants.
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states are quantized, their energy depending on the width of the well. This
width corresponds to the thickness of the grown layer, allowing the grower to
determine the energies of the states.

The idea behind the QCL is to design the energies of the states in such a way
that tunneling causes population inversion (see figure 1.3). An external voltage
∆U is applied to the structure, tilting the bands. This shifts the levels inside
the wells, aligning levels 2 and 1 and enabling resonant tunneling between them.
Electrons are injected into level 3 and relax into level 2, emitting a photon.10
They then tunnel into level 1 and are extracted from there. Since resonant
tunneling is a very efficient process, a population inversion between the lower
and upper laser level is created. In the next period, they are again injected into
level 3, repeating the process. This way, a single electron can produce multiple
photons. The original QCL design [Faist et al., 1994] consisted of 500 layers
forming a cascade with 25 periods.

Synchrotron Radiation

When electrons are guided on a circular path at relativistic energies, they emit
synchrotron radiation. At relativistic velocities, the emission pattern of moving
charges is transformed from a standard dipole pattern to a small beam focused
in the direction of movement. A derivation of this is given in most textbooks
on electrodynamics.

We will use the variables β and γ in their usual relativistic definition

β = v

c
, γ = E

mc2
= 1√

1− β
. (1.4.2)

In [Jackson, 1998, formula (14.21)], the angular distribution of the radiated
power of moving charges at low velocities is given as11

∂P

∂Ω = e2

4πc3 v̇
2 sin2 Θ, (1.4.3)

with the acceleration v̇ = ∂v/∂t and the angle of observation Θ.
For a linear movement at relativistic energies, this radiation pattern trans-

forms into [ibid, (14.39)]

∂P (t′)
∂Ω = e2v̇2

4πc3
sin2 Θ

(1− β cos Θ)5 , (1.4.4)

leading to the familiar slanted beam cones.
10In reality, scattering of the electron on an acoustical phonon is approximately ten times

more efficient than phonon emission [Bastard, 2012; Ferreira and Bastard, 1989; Bockelmann
and Bastard, 1990]. Therefore, the relaxation happens most often without the emission of a
photon. The even more efficient scattering on a longitudinal optical (LO) phonon is avoided
by designing the energy difference of the lasing transition to be below the energy of a LO
phonon.

11Please note that the following formulas are in Gaussian units. Those are deemed so
useful by theoretical physicists that they steadfastly refuse to let them die.
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Fourier transformation, followed by a lengthy derivation, leads to the spec-
tral distribution of radiation of a particle moving at a relativistic speed along
a circular path of radius ρ [ibid, (14.91)]

∂I

∂ω
=
√

3e
2

c
γ
ω

ωc

∫ ∞
ω/ωc

K5/3(x)dx, (1.4.5)

with the modified Bessel function K5/3, x = ω/ωc and the critical frequency ωc

ωc = 3
2γ

3 c

ρ
. (1.4.6)
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Figure 1.4: Normal and doubly logarithmic plot of the relative intensity of
emitted synchrotron radiation. The critical intensity ωc splits the spectrum
into two halves of equal weight. For ω < 0.02 × ωc and ω > 1.86 × ωc, the
intensity is below < 1/e of the maximum Intensity.

Centering the bandwidth (see figure 1.4) around a frequency of 1THz im-
plies an upper frequency limit of ωc = 2π× 1012/1.86 = 3.38× 1012. From the
definition of ωc, we get

γ = 3

√
2ρωc

3c . (1.4.7)

Given a medium sized accelerator of radius ρ = 100m, we need a Lorentz factor
γ = 3

√
1.24e5 ≈ 107 to reach ωc. This corresponds to a very low accelerator

energy of ≈ 55MeV. If we confine the electron on a much smaller path of radius
ρ = 1m, the result is even more favorable, namely γ ≈ 23 (E ≈ 10MeV).
Even if a critical frequency of 1THz is required (ωc = 6.28e12), with 50% of
synchrotron radiation emitted above this frequency, the values of γ are quite
small: γ ≈ 11. This shows that the generation terahertz synchrotron radiation
starts at low minimal energies.

To study nonlinear effects, very high output powers are required. The total
output power scales with a2γ4. Higher values of γ than these minimal ones
are therefore desirable in practice to increase the intensity of the source. Since
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the speed of the electron is already very close to c, the acceleration a = v/ρ
is determined mostly by the radius. Sharp bends and large energies are thus
desirable.

In regular accelerators, synchrotron radiation is mostly an unwanted energy
loss mechanism. After the realization that this radiation offers an intense and
brilliant12 source of radiation, different methods were devised to harness this
radiation for experimental purposes.

The crudest way to access synchrotron radiation is to provide a hole in
the shielding around an accelerator and build an experimental setup around
the provided beam line. In order to increase the radiation at such a spot,
the electrons need to be accelerated further. The easiest way to do this is to
introduce an artificial bend.

The next evolutionary step from a single artificial bend is the undulator
(or wiggler), a series of magnetic fields with alternating polarity, bending the
path in opposite directions. The synchrotron radiation emitted at the different
bends interferes, and at a certain resonance frequency, constructive interference
occurs. This provides a very intense, narrow-band and coherent source of
radiation: the free electron laser (FEL). By changing either the magnetic field
strength of the wiggler or the acceleration of the electrons the FEL can be
tuned.

While conventional accelerator based sources of synchrotron radiation guide
the electrons in a mostly circular path, this is not necessary for FELs. Undu-
lators are usually integrated into straight parts of the electron path.

Most free electron lasers are parts of huge facilities, such as the Linac Co-
herent Light Source (LCLS) at the Stanford Linear Accelerator (SLAC) or the
European X-Ray Free Electron Laser (XFEL) currently under construction in
Germany. Construction costs of these devices are in the range of 108−109 Euro.
Facilities of this type operate with peak powers of MeV, reaching average cw13

powers of 20W [Carr et al., 2002].
These facilities are top-of-the-line, but due to their extremely expensive

construction and high operational costs, they are difficult to access, and there-
fore out of reach for most researchers. As a light-weight alternative, offering
some of the benefits of these huge facilities, tabletop (1m× 2m) FELs [Jeong
et al., 2009] have been developed.

Detecting Terahertz Radiation
Most generation methods can also be used to detect radiation. It is, for in-
stance, possible to measure the photocurrent caused by a beam of terahertz
radiation hitting a photoconductive antenna.14

12Brilliance is the spectral radiance inside 10−3 of the total bandwidth. A high brilliance
corresponds to a large number of photons per second in a tightly focused beam of small
bandwidth.

13Continuous wave, in contrast to pulsed. Continuous sources typically reach higher
average but lower peak powers than pulsed ones.

14These currents, however, are very weak and require amplification.
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In addition to these dual-use methods, there are some methods unique to
detection. These include the big category of thermal detectors. For detailed
information on these, the interested reader is again referenced to [Lee, 2008,
ch.4.9].

We will only present electro-optic detection, the detection method used in
our measurement setup.

Electro-Optic Detection

Electro-optic detection is based on the Pockels effect. A static electromagnetic
field inside a birefringent crystal influences the strength of the birefringence,
changing the effective refractive index and rotating the polarization.

In the terahertz electro-optic detection scheme, an optical and a terahertz
beam co-propagate inside a birefringent crystal. The optical beam’s frequency
is three orders of magnitude higher than that of the terahertz beam. From its
perspective, the terahertz electromagnetic field is therefore almost static. The
field strength and polarity of the terahertz beam cause a rotation of the phase
of the optical beam.

If one would try to measure the changes in the polarization of a continuous
optical beam directly, one would only measure an average polarization, since
the detectors are too slow to measure in real time. Therefore, both beams have
to be pulsed with pulse durations shorter than 1THz−1 = 1ps. The shorter
the pulse, the higher the temporal resolution.15 Delaying one of the beams, it
is possible to measure the other beam and sample its transient by varying the
delay time.

Further information is given in [Lee, 2008].

1.5 Metamaterials

The basic idea of a metamaterial is best explained by looking at an older
incarnation of the same principle, the artificial dielectric [Collin et al., 1991,
ch.12 “Artificial Dielectrics”, p.749]:

An artificial dielectric is a large-scale model of an actual dielec-
tric, obtained by arranging a large number of identical conducting
obstacles in a regular three-dimensional pattern. [. . . ] Under the
action of an external applied electric field, the charges on each con-
ducting obstacle are displaced so as to set up an induced field [. . . ].
Each obstacle thus simulates the behavior of a molecule (or group
of molecules) in an ordinary dielectric [. . . ].

Like the artificial dielectric, an artificial material (metamaterial) is a much
larger model of an actual material.

15The temporal resolution limits the frequency resolution (see page 46).
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A fundamental description of the interaction of electromagnetic radiation
with matter is the Lorentz model. The bound electrons of the atoms that com-
pose the crystal lattice of a solid are modeled as classical harmonic oscillators.
These oscillators are excited by an incident plane electromagnetic wave and
radiate energy.

The key idea behind the metamaterial is to replace the oscillating atoms
by resonant elements, acting like small antennas. This is possible because the
nature of the oscillator is irrelevant, so long as its size is small compared to the
wavelength of the incident radiation. In this case, the wave is too “myopic”
to resolve the details of the oscillator. Instead of atoms the beam excites a
resonant circuit; the metamaterial becomes a much larger model of a material.

A normal solid is made up of atoms, in most cases aligned in a grid.16 A
metamaterial, analogously, is made up of resonant circuits, called meta-atoms.
A regular grid of these meta-atoms forms a meta-surface and a stack of meta-
surfaces becomes a metamaterial.17

Unlike a normal solid, the single oscillators can be designed and manipu-
lated at one’s whim. By choosing the resonant frequency of the meta-atoms
it is possible to create materials with an arbitrary refractive index.18 In addi-
tion, it is also possible to stack layers with different refractive indices, creating
a gradual change of the refractive index. The theory of transformation optics
allows the construction of a material that guides the light around an object –
the famous metamaterial cloak [Schurig et al., 2006].

More information on the theory and design of metamaterials can be found
in the standard works by Marqués et al. [2011] and Capolino [2009].

The reaction of a material to an incident electromagnetic wave is described
using the electric permittivity εr and the magnetic permeability µr. They
are effective parameters, describing average properties of the material. In the
general case, they take the form of tensors, but they can be simplified to scalars
for isotropic materials. Assigning these parameters to the layers of artificial
resonators justifies using the term metamaterial.

History of the Field19

The earliest ancestor of metamaterials are artificial dielectrics, invented in the
1940s20 and used as microwave antenna lenses in the 1950s and 1960s. The

16Exceptions include amorphous materials and quasi-periodic crystals.
17Strictly speaking, the designs presented in this thesis are meta-surfaces. We will, how-

ever, follow the example of many other authors and omit this fine distinction, using the more
familiar term (planar) metamaterial instead.

18In [Choi et al., 2011], a refractive index of n = 38.6 in the terahertz range is reported.
19This overview is structured according to Ziolkowski [2005].
20The term “artificial dielectric” was introduced by Kock [1948]. He also uses the analogy

of a natural material to describe his invention:
The artificial dielectric material [. . . ] was arrived at by reproducing, on a much
larger scale, those processes occurring in the molecules of a true dielectric [. . . ].

The same author already expressed this idea in an earlier paper [1946] without using the
term.
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wavelength in the microwave region is in the range of 10 cm and lenses need to
be large compared to the wavelength in order to avoid diffraction. This leads
to large and heavy lenses. As a light-weight alternative, artificial dielectrics
were created.

An introduction into the theory of artificial dielectrics can be found in
[Collin et al., 1991, ch.12 “Artificial Dielectrics”]. Most of it can also be applied
to metamaterials.

Another ancestor are artificial chiral materials, built in the 1980s and 1990s
for microwave radar absorption.21 Radar absorption was also one of the starting
points for John B. Pendry’s work. A colloquial description of the history of his
research in this area can be found in [Beech, 2012, p.139]:

As part of their research into minimizing the radar signature of
naval warships the Marconi [Materials Technology] engineers had
developed a new carbon material [. . . ]. The problem was, however,
that they had no clear idea as to why it worked. It was at this point,
then in the mid-1990s, that Pendry, as a renowned researcher in
solid state physics and electromagnetic theory, was called in. Could
he find out how the material functioned [. . . ]?

The answer [. . . ] lay within the fuzzy fiber strands out of which
the radar absorbing carbon material was made. These strands, it
transpired, were just the right length and shape to interact with the
electrical component of a wave with wavelength in the radar region
of the electromagnetic spectrum. The various strands in the fiber
essentially acted as small receiving antennas, and when the radar
beam fell upon them they were able to absorb part of its energy
[. . . ].

The results of this work [Pendry et al., 1996, 1998] on the unusual interaction
of certain materials with the electrical field spawned related research into the
manipulation of the magnetic field. The combination of these ideas led to the
split ring resonator [Pendry et al., 1999]. This design was subsequently adapted
to the microwave range and manufactured [Smith et al., 2000].

Applications
In the same year, Pendry [2000] proved that a slab of a medium with a negative
index of refraction (n < 0) would work like a perfect lens. As we will explain
later (see page 19), this is possible if εr < 0 and µr < 0.22

The invention of transformation optics ([Leonhardt, 2003, 2006; Pendry
et al., 2006]) allowed complete control of the propagation of electromagnetic

21The interested reader will find further references on this topic in [Ziolkowski, 2005].
22The best choice is εr = −1 and µr = −1, since this material would be perfectly matched

to vacuum (and very well matched to air), suppressing reflections on the surface. This choice
has the drawback that it leads to n = −1. Such a lens will just refocus the image without
magnifying it. It can therefore only be used in near field optics.
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Year Publication Theme
1948 [Kock, 1948] Artificial Dielectric
1968 [Veselago, 1968] Negative Index of Refraction
1996 [Pendry et al., 1996] Studies on plasmons
1998 [Pendry et al., 1998] in metal rods. εr < 0
1999 [Pendry et al., 1999] SLR Design

2000 [Smith et al., 2000] SLR Manufactured
[Pendry, 2000] Perfect Lens Theory

2001 [Shelby et al., 2001] n < 0 shown directly
2003 [Leonhardt, 2003] Transformation optics

2006
[Leonhardt, 2006]; Controlling the propagation
[Pendry et al., 2006] of EM Radiation
[Schurig et al., 2006] 2D Microwave Cloak

Table 1.2: Time line of influential metamaterial papers.

radiation.23 In this theory, wave propagation in a medium is described by
wave propagation in a warped vacuum space. The medium is replaced by a
transformed virtual space, the geometry of which is determined by εr and µr
[Leonhardt, 2003] “ Electromagnetic waves in a 2-D dielectric experience the
medium as effective space-time curvature.”

The concept of transformation optics is a generalization of the optical path
length, in which the delay that a beam of light experiences due to the lower
speed of light in a medium with a larger refractive index is explained by a
longer path length (a thicker virtual medium). The equivalent transformation
is a stretching in all directions.

This idea was later refined and led to the development of cloaks.24 They
were first demonstrated for hiding 2D objects in the microwave range [Schurig
et al., 2006], where the macroscopic wavelength makes manufacturing meta-
materials easier. The idea has since been extended to the infrared (“optical
frequencies”) [Gabrielli et al., 2009]. A 628 nm design was also proposed [Cai
et al., 2007]). Another manufactured cloak [Ergin et al., 2010] hides a 3D object
(a 1 µm high bump in a gold surface) at a wavelength of ≈ 1.5 µm− 2.6 µm.

As noted above, transformation optics allows full control over the path
of electromagnetic radiation. Cloaks connect current metamaterial research

23[Chen et al., 2010] is an accessible introduction into this topic.
24There are two ways to make an object invisible: Either by matching the refractive index

to that of the surrounding medium, thus preventing refraction, reflection and absorption,
(index matching) or by redirecting all radiation around the object (transformation optics).
In his lecture, Ulf Leonhardt [2011] likened them to two fictional characters: the protagonist
of “The Invisible Man” (H.G. Wells) swallows a chemical substance that changes his body
structure, so that his refractive index is the same as that of air. The “Invisible Woman”
(Stan Lee, Marvel Comics) is able to bend light, redirecting the rays around her.
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with its roots in stealth technology. They are, however, only one of the many
fascinating potential applications [Chen et al., 2010]:25

With the aid of metamaterials, the appeal of transformation op-
tics goes beyond invisibility: it can create fascinating effects such
as electromagnetic wormholes, hidden gateways and ‘optical black
holes’. Light-guiding and light-bending capabilities can give rise to
conceptual devices such as field concentrators (hyperlenses), field
rotators, field shifters, bending wave guides, as well as all types of
lens and advanced devices.

Frequency selective surfaces are another method to control wave propa-
gation. The structure of the manufactured surface leads to resonant absorption
or reflection. The position and width of the resonance can be tailored, allowing
very narrow-band mirrors, band-pass filters and almost perfect absorbers.

In principle, the conductive elements that metamaterials are made of are
antennas. Like any other antenna, they can be used to concentrate the field at
a certain point. This field enhancement can then be used to generate the high
field strengths necessary to study nonlinear effects.

The Lorentz Model of Solids
Metamaterial research is the physical realization of the oscillator model of a
solid. We will now give a quick introduction in order to explain its basic
features.

An electron is modeled as point particle of charge q and mass m, attached
to its equilibrium position with a spring. The stiffness of this spring influences
the resonance frequency ω0. The oscillation is dampened by the factor γ. An
electromagnetic wave, represented by the time dependent electric field E(t),
excites the system and causes the electron to move. This dampened driven
harmonic oscillator is described by the following differential equation26

∂2x

∂t2
+ γ

∂x

∂t
+ ω2

0x = q

m
E(t). (1.5.1)

The incoming radiation is assumed to be a plane wave

E(t) = E0e
−iωt (1.5.2)

that causes the electron to oscillate in phase

x(t) = x0(ω)e−iωt. (1.5.3)

The amplitude of the oscillation is described by x0. It is determined by the
field strength of the incoming wave E0 and the detuning between the frequency

25The original text includes references to primary sources that are omitted here.
26For the derivations in this section see [Jackson, 1998, ch.7.5 (p.309 – 313)] and [Lee,

2008, ch.2.1.4 (p.19 – 21)].
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ω of the incoming wave and the resonance frequency ω0 of the oscillator. The
amplitude function has a Lorentzian-like shape:

x0(ω) = qE0
m

1
ω2

0 − ω2 − iωγ
. (1.5.4)

Electric Susceptibility

0

ω0

Dielectric Dispersion

Re [χ]
Im [χ]

Figure 1.5: Real and imaginary part of the susceptibility around ω0 in the
Lorentz model. The amplitude of the peak depends on ω2

p, while the dampening
γ determines its width. The relation between susceptibility and permittivity
εr = 1 + χ also connects their real and imaginary parts: Re [χ] = Re [εr] − 1,
Im [χ] = Im [εr].

If a material with a density of N oscillators is hit by an incoming plane
wave, it will become polarized:

P (t) = Nqx(t) = Nq2

m

1
ω2

0 − ω2 − iγω
E0e

−iωt. (1.5.5)

As explained in appendix A.2, the polarization is linked to the electrical field
by P (t) = ε0χE(t). Comparing this to the above formula, we get the electric
susceptibility χ [Lee, 2008, eq.(2.51)]

χ = Nq2

mε0

1
ω2

0 − ω2 − iγω
. (1.5.6)

After extending the fraction with
(
ω2

0 − ω2 + iγω
)
, we can separate the real



18 CHAPTER 1. INTRODUCTION

and imaginary part:

Re [χ] = Nq2

mε0

ω2
0 − ω2

(ω2
0 − ω2)2 + ω2γ2

, (1.5.7)

Im [χ] = Nq2

mε0

ωγ

(ω2
0 − ω2)2 + ω2γ2

. (1.5.8)

Since εr = 1 + χ, this result is also valid for the relative electric susceptibility.
The sign of the real part Re [χ] is determined by ω2

0−ω2, becoming negative
for ω > ω0. If χ < −1, εr = 1 + χ will also be negative.

Ideal Conductors

For metals, the situation is slightly different. They can be approximated as
ideal conductors, described by the equation of motion

mẍ = qE(t). (1.5.9)

This is equivalent to setting γ = 0 and ω0 = 0 in the original equation of
motion (1.5.4). Instead of repeating the same steps for this new equation, we
directly insert γ = 0, ω0 = 0 into the equation for the electric susceptibility χ
(1.5.6). We arrive at:

χ = −Nq
2

mε0

1
ω2 = −

ω2
p

ω2 . (1.5.10)

In this equation, we introduced the plasma frequency ωp:

ωp =

√
Nq2

mε0
. (1.5.11)

For frequencies below the plasma frequency (ω < ωp), εr < 0. Since the
plasma frequency is linked to an electronic resonance, the magnetic perme-
ability µr is still positive (µr > 0). The refractive index n = √εrµr will
therefore become imaginary, prohibiting propagation. This is the reason for
the high reflectivity of most metals. The permeability εr has large negative
values (< −2000), causing them to be practically opaque [Gao et al., 2012]:

When it comes to the negative permittivity, generally, the real per-
mittivity of metals is negative below the plasma frequency, which
is usually in the visible or near ultraviolet band. However, this
negative permittivity is meaningful only in the vicinity region of
plasma frequency because of the giant dissipation at much lower
frequencies.
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Negative Index of Refraction
In the previous section, we looked at the case of negative electric permittiv-
ity εr < 0 and positive magnetic permeability µr > 0. We showed that the
refractive index n becomes imaginary and the oscillations are attenuated.

But what happens if µr is negative at the same time? The well known rela-
tion n2 = (εrµr)2 would invite one to assume that n is, in this case, a positive
real number. But Veselago [1968] showed that this would violate causality. If
εr < 0 and µr < 0 we need to take the negative root of

n = ±√εrµr (1.5.12)

instead.
A medium with n < 0 has various interesting properties. Refraction will

obviously reverse its direction, an incident beam being refracted to the other
side of a perpendicular line. In addition to this, the Poynting vector ~S and the
wave vector ~k become anti-parallel. This leads to the counterintuitive effect
that the direction of propagation is opposite to that of energy transfer. In this
case, the Poynting vector ~S, the electric field ~E and the magnetic field ~B follow
a left-hand rule instead of the usual right-hand rule. A very good visualization
of the effects this causes can be found in the online materials that accompany
the paper by Ziolkowski [2003].

There are various names for materials with a negative refractive index.
Depending on the author, they are called “negative index materials” (NIM),
“doubly negative materials” (since εr < 0 and µr < 0), “left-handed materials”
(due to the left-hand rule explained above) or “Veselago media”.

1.6 Mathematical Methods

Finite-Difference Time-Domain (FDTD)
The Finite-Difference Time-Domain method (FDTD), first described by Yee
[1966], is the most popular algorithm for solving Maxwell’s equations. 27

A (finite) volume is divided into a grid of many small, discretized volume
elements. On this grid, the differential Maxwell equations are approximated by
equations containing only finite differences between neighboring grid points.28
In each volume element, the components of the ~H and ~E field are stacked in
the manner shown in figure 1.6 and figure 1.7, constructing the so called Yee
lattice.

Every time step is split in two halves and the time evolution of the system is
calculated in a leap-frog manner: In the first sub-step, the ~E field is calculated

27A detailed text on FDTD is [Taflove and Hagness, 2000]. An overview of many different
methods for solving the Maxwell equations, including sample implementations, can be found
in [Bondeson et al., 2005].

28This is based on a Taylor expansion that can be found in [Bondeson et al., 2005, ch.3
eq.(3.1) – (3.4)]. The gory details of three dimensions are explained in [Taflove and Hagness,
2000, ch.3.6.3]
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Figure 1.6: The reduced unit cell of the Yee lattice (right) is constructed
by stacking the components of the ~E and ~B field (left). The origins of the
two right-hand systems are offset by half a lattice length in each direction
(1/2, 1/2, 1/2).

using the stored values of the ~E and ~H field. The second sub-step uses the
fresh values of ~E and the stored values of ~H to calculate new values for ~H.

Compared to other Maxwell solvers, FDTD is computationally inexpen-
sive.29 The increase in computing power and available memory made it the
default method for the simulation of electromagnetic components.

Solving Systems of Linear Equations

The dipoles and their couplings are described by a large system of linear equa-
tions. It is convenient to write such a system as a matrix equation.

A general system of linear equations

a11x1 + a12x2+ · · ·+ a1nxn = y1

a21x1 + a22x2+ · · ·+ a2nxn = y2

...
an1x1 + an2x2+ · · ·+ annxn = yn (1.6.1)

29For a comparison of the asymptotic behavior (O) of different algorithms see [Davidson,
2005, ch.1.3–1.5].
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Figure 1.7: The Yee lattice as presented in [Yee, 1966].

can be written as a single matrix equation
a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann


︸ ︷︷ ︸

M


x1
x2
...
xn


︸ ︷︷ ︸

X

=


y1
y2
...
yn


︸ ︷︷ ︸

Y

(1.6.2)

M ·X = Y. (1.6.3)

If the system of equations can be solved, M−1 (the inverse of M) exists, so
that

M−1M︸ ︷︷ ︸
1

X = M−1Y (1.6.4)

X = M−1Y. (1.6.5)

LU Decomposition

Amore efficient way of solving matrix equations is LU Decomposition. It avoids
the calculation of the inverse matrix M−1 and instead decomposes M into a
lower (L) and an upper (U) triangular matrix, so that M = L ·U . The original
equation then becomes L ·U ·X = Y . After introducing U ·X = y, the equation
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becomes L · y = Y . These last two equations are then solved independently,
using back substitution and forward substitution. This process is explained in
[Press, 1992, ch.2.3], which also contains algorithms for LU decomposition.

Genetic Algorithms
Genetic algorithms are part of the wider field of heuristic optimization. These
algorithms try to solve a problem by taking only a limited subset of all possible
solutions into account. This is necessary, because there is a large class of
problems in which the search space increases exponentially with the number
of variables. For a large number of variables, these problems can no longer be
solved by conventional algorithms.

Heuristic algorithms avoid the – sometimes impossible – search in the com-
plete solution space and focus on regions that promise to contain good solutions.
The exact balance between taking into account as many solutions as possible
and focusing on promising ones is called the exploration-exploitation trade-off.

Blind spots are a part of their working principle; therefore, there are always
cases in which they cannot find the optimal solution. While this sounds like a
big drawback, in practice the best solution is not necessary and a sufficiently
good one can be used instead.

Heuristic algorithms can be divided in two classes, deterministic and non-
deterministic. The former produce the same result on every run, while the
latter contain an element of randomness so that the result can vary between
runs.

A genetic algorithm (GA) keeps track of a set of solutions and varies them
according to a number of fixed rules that can contain a random30 element. The
GA terminology is chosen in analogy to natural selection: The set of solutions
is called a population, consisting of individuals. The space of possible solutions
consists of all possible values of all variables. A variable of a solution is called a
gene and each solution is characterized by a chain of genes called the genome.

The first step of a GA is to create an initial population. Starting from
this, the next generation is generated until a termination condition (conver-
gence of solution, maximum number of generations, . . . ) is reached. The next
generation is calculated using the following steps:

1. Select

2. Combine

3. Mutate

The steps are, again, an analogy to the process of natural selection. The indi-
viduals in a population compete against each other to select mating partners.
The selected partners then exchange parts of their genome, creating a new in-
dividual from the combined parts. Mutations are added to randomly change
small parts of the genome and new individuals replace some of the old ones.

30Some authors prefer the term “aleatoric”.
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An important concept is the fitness of an individual. It is linked to the
quality of a solution so that individuals with a higher fitness represent better
solutions. The genetic algorithm tries to find the individual with the maximal
fitness.

There are different methods for each of the components of genetic algo-
rithms (encoding of the parameters, initialization, selection, combination, mu-
tation) resulting in many different implementations and an overwhelming mass
of publications that cover their theory and applications. A much more detailed
overview than the one we could give can be found in [Michalewicz, 1996].

Electromagnetic Applications

Genetic algorithms have been widely applied in the design of electromagnetic
elements [Weile and Michielssen, 1997] and have yielded a number of interest-
ing new antenna designs. Several groups have already combined them with
electromagnetic solvers to simulate metamaterials for various frequency ranges
[Bossard et al., 2009; Chen et al., 2008; Gingrich and Werner, 2005]. The main
disadvantage of this approach lies in the computational requirements. The
simulation of a single design takes several hours. Current computational power
makes this approach feasible, but a single run of the optimization still takes
days of processor time.31

Since the fitness function needs to be evaluated for every individual, it is
the bottleneck of the whole algorithm. The simple model presented in the next
chapter looked like a very promising candidate for this application. Section
2.6 explains how we used our model inside a fitness function and presents the
results.

31In [Bossard et al., 2009], the authors use a cluster with a total of 32 cores. They simulate
a population of 32 individuals (one per core) for 100-200 generations, a complete run taking
5 hours.





Chapter 2

Analytical Model

2.1 Introduction

We want to describe the reaction of a metamaterial in which the single meta-
atoms are composed of thin wires to electromagnetic radiation.

A thin wire is a conducting element whose width is small compared to its
length. Charges are confined to the inside, and are only allowed to move along
its axis.

An external electric field ~E causes charges inside each wire to move. One
way of simplifying the material’s response is to model the movement of the
charges within the wire by the movement of the center of charges. As a first
order approximation, we assume that it each wire is a dipole. The interactions
between the wires are thus replaced by the interactions between electrically
coupled dipoles.

Previous Work by Petschulat et al.

Figure 2.1: C, S and L – the three structures described in [Petschulat et al.,
2010]

.

This work is based on a model introduced by Petschulat et al. [2010],
which approximates a planar metamaterial by a system of conductively coupled
dipoles.

In their paper, Petschulat et al. describe the response of materials made up
of three simple meta-atoms. These structures, which they call C, S and L are
shown in figure 2.1.

We will present their derivation and carry the idea further by taking into
account more complex grid-based structures.

25
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Assumptions

The model as proposed by Petschulat et al. requires the following assumptions:

• The conductive elements are thin wires, i.e. their length l is much larger
than their width w (l� w). This allows us to assume that their charges
only move in longitudinal direction, leading to a single resonance.

• Only nearest neighbors couple.

For our extensions of the original model, we had to introduce additional
assumptions:

• We will only consider wires on a grid, i.e. only certain placements and
orientations are permitted.

• We assume a relative permeability close to 1 (µr ≈ 1).

No assumptions are made about the nature of the coupling. In our mea-
surements, we proved that conductive coupling dominates.

Parameters

The model has several parameters:

• f0[x|y], the resonance frequency of a dipole in x or y direction,

• q[x|y], the charge of a dipole in x or y direction,

• γ[x|y], the damping factor of a dipole in x or y direction,

• A, the amplitude of the whole curve,

• d, the thickness of the surface layer,

• σ, the perpendicular coupling constant, and

• τ , the longitudinal coupling constant.

In this chapter we will describe these parameters more closely. Furthermore,
we will compare their expected behavior with observations from our measure-
ments. In the structures that we manufactured, we varied the lengths of the
wires in x (Lx) direction (see 3.4 page 49). The length in y direction (Ly) was
kept constant.
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Applying the Model to the Terahertz Range
Petschulat et al. only validated their model for the optical range by comparing
its results to FDTD calculations.

The first step before using this model in the terahertz range was to check if
the model’s assumptions still hold for those frequencies. In order to do so, the
C, S and L structures from the paper were rescaled to show resonances around
0.5THz. A finite element analysis (using the commercial software COMSOL
Multiphysics) was employed to get an idea of the electrodynamic behavior.

The rescaled structures were then fabricated. We measured the structures
using our terahertz TDS (time-domain spectroscopy) setup and determined the
model’s parameters by fitting the model to the experimental data.

2.2 Basic Model

Forces on a Dipole
Starting from the equation ~F = m~a = m~̈x in a single dimension, we take into
account the following forces:

F = Fel − Fr − Fd − Ff (2.2.1)

with

Fel = Felectric field = qE, (2.2.2)
Fr = Frestore = kx = mω2

0x, (2.2.3)
Ff = Ffriction = mγẋ, (2.2.4)

Fd = Fdipole = q1q2
4πε0εr

1
r2 . (2.2.5)

Equation of Motion
Expressing the balance of forces (2.2.1) as a function of the external electrical
field ~E, we obtain

F + Fr + Fd + Ff = Fel. (2.2.6)

Single Dipole

As a first step, we only examine a single dipole, setting Fd = 0. Collecting all
the terms for this dipole and dividing by m we obtain

ẍ1 + ω2
01x1 + γ1ẋ1 = q1

m1
E1. (2.2.7)

In this equation, E1 represents the strength of the electric Field ~E in the
direction of dipole 1:

E1 = ~Ex̂1 with x̂1 = ~x1
|x1|

. (2.2.8)



28 CHAPTER 2. ANALYTICAL MODEL

Since we are interested in the resonant frequencies of our system, we perform a
Fourier transform to change from real space into frequency space. Transforming
the equation of motion (2.2.7), we obtain (see appendix A.1)(

ω2
01 − ω2 − iωγ1

)
x1 = q1

m1
E1 (2.2.9)

Introducing the abbreviation

Ak = ω2
0k − ω2 − iωγk (2.2.10)

and dropping all indices allows us to write the equation in a very compact form:

Ax = q

m
E. (2.2.11)

Perpendicular Coupled Dipoles
Estimating Fdipole

We now want to introduce a second dipole. The coupling between two dipoles
is described by Fd. Unfortunately, it contains a quadratic term; in order to
keep our model linear, we have to approximate it.

Consider two dipoles, d1 at position x1 and d2 at x2, separated by the
distance r. If no external electric field is present (E = 0) we assume that
the dipoles are unpolarized, i.e. the centers of charge are in the middle of the
dipoles. In this case, the dipoles are separated by the equilibrium distance r0.
For dipoles on a square grid, r0 =

√
L2
x+L2

y/2.
Using the approximation Fd = −σ(x1 − x2) that is derived using a Taylor

series (see appendix A.3), we will now try to estimate σ. We manufactured
the structures on top of gallium arsenide (GaAs) and they were therefore sur-
rounded by air and GaAs. We assume an effective εr = 1/2 (εair + εGaAs) ≈
13/2 ≈ 7.1 This allows us to calculate an approximate value of the dipole cou-
pling constant σ from basic values. For typical dipole lengths of Lx = Ly =
80 µm:

σ = q1q2
4πε0εr

8
r3
0
≈ 8.2× 1022 × q1q2. (2.2.13)

This value is within an order of magnitude from the one used in the fit:
σfit = 3.6× 1023 × q1q2, σ/σfit ≈ 1/5.

Since σ ∝ r−3, we would expect σ to increase if r0 decreases, i.e. if Lx
or Ly decrease (see table 2.1). The relation for the relative coupling constant
σrel = σ/f0xf0y is slightly more complicated and will be examined in section 2.3.

1This averaging assumes that the field is distributed uniformly in both media. In practice,
the field is concentrated in the medium with the higher permittivity. While the exact field
distribution may be complicate a simple model assumes the weighted average:

εr =
ε1

ε1 + ε2
ε1 +

ε2

ε1 + ε2
ε2 =

ε2
1 + ε2

2
ε1 + ε2

(2.2.12)

resulting in εr ≈ 9.4.
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Lx [µm] Ly [µm] r0 [µm] σ [(rad/s)2]
60 80 ≈ 50 ≈ 8.2× 1022

70 80 ≈ 53 ≈ 6.8× 1022

80 80 ≈ 57 ≈ 5.7× 1022

Table 2.1: Calculated coupling constant σ as a function of the equilibrium
distance r0 for different y wire lengths Ly.

.

Calculating Transmission
The model presented so far only calculates the permittivity χ. Since our setup
measured the transmission of a structure, we needed a way to calculate the
transmission from the permittivity.

Fortunately, this is straightforward. We start by calculating n from χ (re-
membering that we assumed µr ≈ 1):

n = √εrµr ≈
√
εr, (2.2.14)

εr = 1 + χ. (2.2.15)

We then calculate the transmission t through a slab of material of thickness
d with refractive index n using the Fresnel-Airy formulas (see [Born and Wolf,
1999, ch.1.6.4, eqs.(55), (56) and (58) on p.65-66]). The formulas assume a slab
with refractive index n2 between two media of refractive index n1 and n3. The
beam incides on the surface of the material at angle ϑ1. It is then refracted
twice, first at an angle of ϑ2 on the interface between 1 and 2, then at an angle
of ϑ3 between 2 and 3.

t = t12t23e
iβ

1 + r12r23e2iβ (2.2.16)

with

β = 2πfdn2 = 2πfd√εr, (2.2.17)

t12 = 2n1 cosϑ1
n1 cosϑ1 + n2 cosϑ2

, t23 = 2n2 cosϑ2
n2 cosϑ2 + n3 cosϑ3

, (2.2.18)

r12 = n1 cosϑ1 − n2 cosϑ2
n1 cosϑ1 + n2 cosϑ1

, r23 = n2 cosϑ2 − n3 cosϑ3
n2 cosϑ2 + n3 cosϑ3

. (2.2.19)

Note that we had to introduce the new parameter d, the thickness of the
slab. Since we only have a single layer of our metamaterial, this parameter is
not connected to a physical property and can be chosen at will. To arrive at a
value that we could use, we performed a fit for d and used its rounded result
in our calculations.
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In our experiment, the sample was manufactured on top of GaAs, leading to
a stack of layers l1 = Air, l2 = Structure, l4 = GaAs and l3 = Air. To exclude
the effect of the substrate, we used a piece of GaAs without any resonator
structures as a reference. We therefore had n1 = n3 = nAir ≈ 1. The incidence
of the beam was perpendicular to the surface (ϑi = 0, cosϑi = 1). Inserting
these conditions, we get a slightly simpler formula:

t =
2

1+n2
2n2
n2+1e

iβ

1 + 1−n2
1+n2

n2−1
n2+1e

2iβ . (2.2.20)

Alternative Method

The Nicholson-Ross-Weir method [Nicolson and Ross, 1970; Weir, 1974] offers
a different way of extracting the material parameters εr and µr. It is based
on a transmission matrix formalism. A relation between the transmission and
reflection coefficients, refractive index n and impedance Z is used [Smith et al.,
2002]. The material parameters are then given by εr = n/Z and µr = nZ.

To apply this method, we would have to modify our setup to measure
reflection spectra. Since we were only dealing with electric dipoles and therefore
only concerned with the relative electric permittivity εr, it offered no advantage
to us that would have justified this additional effort.

System of Two Coupled Dipoles

We now examine a system of two coupled dipoles, with Fd 6= 0. Starting once
again from the balance of forces, we obtain two coupled equations:

ẍ1 + ω2
01x1 + γẋ1 − σ(x1 − x2) = q1

m1
E1, (2.2.21)

ẍ2 + ω2
02x2 + γẋ2 − σ(x2 − x1) = q2

m2
E2. (2.2.22)

f0 [THz] ω2
0 [(rad/s)2] ω2

0/σ

0.5 ≈ 9.9× 1024 ≈ 20
1.0 ≈ 4.0× 1025 ≈ 80

Table 2.2: Comparison of ω2
0 and σ for a typical value of σ = 0.5× 1024 s−2.

A quick estimate (see table 2.2) shows that ω2
0 � σ. We can therefore

neglect the term σx1 in the first equation and the term σx2 in the second
equation. After Fourier transform, we finally obtain the familiar equations of
two coupled dipoles

(
ω2

01 − ω2 − iωγ1
)
x1 + σx2 = q1

m1
E1, (2.2.23)(

ω2
02 − ω2 − iωγ2

)
x2 + σx1 = q2

m2
E2. (2.2.24)



2.3. PARAMETER DEPENDENCE OF TRANSMISSION 31

Using the variable Ak defined in equation (2.2.10), we get a very compact
form:

A1x1 + σx2 = q1
m1

E1, (2.2.25)

A2x2 + σx1 = q2
m2

E2. (2.2.26)

This can be generalized to the equation of a dipole xk

Akxk + couplings = qk
mk

Ek. (2.2.27)

A method for constructing this system of equations for arbitrary grid-based
shapes will be shown in sections 2.5.

The above system of equations can be rewritten in matrix form as:(
A1 σ
σ A2

)
︸ ︷︷ ︸

M

(
x1
x2

)
︸ ︷︷ ︸
X

=
( q1
m1
E1

q2
m2
E2

)
︸ ︷︷ ︸

E

. (2.2.28)

And be solved for X by calculating the inverse of M : X = M−1 · E.
For numerical purposes, it is actually easier to solve the system of equations

using LU decomposition instead of the matrix inversion. In MATLAB, this is
done using the MRDIVIDE Operator (\): X = M\E.

2.3 Parameter Dependence of Transmission

To improve our understanding of the behavior of our model, we simulated the
transmission as a function of the model’s parameters.

Resonance Frequency
The plot in figure 2.2a shows the result of varying f0y while fixing the relative
value of γy and σrel. The frequency of the peak approaches f = 0 on a linear
tangent.

Fixing their absolute values would cause the relative values to increase for
lower frequencies, resulting in a higher relative damping. This would cause
the resonance in y direction to gradually disappear, vanishing below a cutoff
frequency.

It is clearly visible that the minima approach the tangents (dashed lines,
horizontal at f = 1THz for f0x and diagonal f = f0y for f0y).

If no coupling is present (σ = 0, as in figure 2.2b), the transmission minima
perfectly follow the tangents, crossing at f0y = f0x. For σ 6= 0, however, the
minima deviate more and more from their respective tangents the closer they
get to this crossing point. This behavior is a consequence of the coupling and
is called avoided crossing.2

2In quantum physical measurements an avoided crossing is often used to prove the pres-
ence of a coupling.
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(a) Coupled dipoles, σrel = 0.5 6= 0
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(b) Independent dipoles, σ = 0

Figure 2.2: Frequency dependent transmission of coupled (σ 6= 0, above) and
separated dipoles (σ = 0, below) in X polarization (tx, left), Y polarization
(ty, middle) and the difference between them (tx − ty, right) as a function of
the resonance frequency of the y dipole (f0y). All other parameters are kept
constant. The axes are scaled relative to f0x = 1THz. An avoided crossing is
visible in the graphs depicting the coupled dipoles.

The situation shown in figure 2.2a can be applied to the situation in the L
structures, which we will present in the next chapter (see section 3.2, especially
tables 3.3 and 3.2b). The Lx = Ly = 80 µm structure corresponds to the
transmission at x = f0y/f0x = 1. Lx = 70 µm and Lx = 60 µm are at slightly
higher values of x, 1.13 and 1.27, respectively.

Thickness d
Reviewing the formula for the transmission 2.2.20 we discover that the thickness
d only enters in the terms eiβ and e2iβ , with β = 2πfdn

Since we divide the transmission data by a GaAs reference without struc-
tures, we examine tsample/tref . This division results in a subtraction in the
exponents. Therefore, we can not separate between d and εr. Instead, we al-
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Figure 2.3: Transmission for f0x = f0y = 1THz and varying values of σrel =
σ/(f0xf0y). The split increases linearly with σ. For σrel → 1 the frequency of the
lower peak goes to → 0, vanishing for σrel = 1. This process slightly distorts
the linear relationship.

ways see a mixed parameter dnsample − dnref = d∆n. If we had chosen lower
values for qx and qy, resulting in a larger dielectric constant εr and thus a
larger refractive index n, we could have chosen a bigger d.

Perpendicular coupling σ

Comparing the transmission with and without coupling (figure 2.2) shows the
influence of the perpendicular coupling constant σ. It causes a split between the
resonance frequencies. The strength of the coupling influences the distance of
the split. In figure 2.3 we explore this process in more detail. The relationship
between the separation between the peaks and the value of σrel is practically
linear.

As demonstrated by our experimental results (see 3.2), we could directly
estimate σ from our measurements. We could also determine σ more closely
by fitting measured transmission data for simple shapes with calculations from
the analytical model.

Charge density q and dampening γ

The shape and depth of the dips in transmission are influenced by the damping
parameter γ and the charge density q. Higher values of q/γ result in sharper
(thinner) and deeper dips.
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2.4 Longitudinal Coupling

Two dipoles on a rectangular grid can either be collinear (they form a straight
line) or perpendicular (they meet at a right angle). The model discussed so
far only allowed for perpendicular coupling, described by the (perpendicular)
coupling constant σ. It does not contain any statement about longitudinal
coupling and is, therefore, only applicable to structures composed solely of
rectangular bends. Since these shapes are a very limited subset of all possible
structures on a grid, we extended this model to account for longitudinal cou-
pling (coupling along the axis of the dipole) as well. To this end, we introduced
the longitudinal coupling constant τ .

We call a system of N perpendicular coupled dipoles a long dipole of length
N. It is described by the equation M ·X = Ẽ. In x direction M , X and Ẽ are
given by

X =


x0
x1
...

xn−1
xn

 , Ẽ = qx
mx

E = qx
mx


Ex
Ex
...
Ex
Ex

 ,

M =



Ax τ 0 · · · 0

τ Ax τ
. . . ...

0 . . . . . . . . . 0
... . . . τ Ax τ
0 · · · 0 τ Ax


. (2.4.1)

The results for y are analogous.

Calculating τ

In order to determine τ , we examine the permittivity in x-direction

χxx = ηq2
x

ε0m
χ (2.4.2)

of a varying number of dipoles coupled along the axis.
In appendix A.5, we derive the eigenfrequencies of chains of one and two

dipoles. In the lossless case (γ = 0), they are:

ω1 = ω0, (2.4.3)

ω2,1/3 =
√
ω2

0 ± τ . (2.4.4)

Two dipoles of length L coupled in a straight line should behave like a
single dipole of length 2L. Since the eigenfrequency ω0 of a dipole is given by



2.5. TRANSMISSION OF ARBITRARY STRUCTURES 35

ω0 = cπ
L , the resulting ω should be ω0

2 .

ω2,3 =
√
ω2

0 − τ = ω0
2 (2.4.5)

ω2
0 − τ = ω2

0
4 (2.4.6)

τ = −3ω2
0

4 (2.4.7)

Inserting this into ω2,1 and ω2,3 yields

ω2,a = ω0
2 , (2.4.8)

ω2,b =
√

7ω0
2 . (2.4.9)
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Figure 2.4: Comparison of the transmission for τ > 0 (left) and τ < 0 (right).
The curves represent different numbers of longitudinally coupled dipoles. The
resonance frequency f0x was set to 1THz.

Solving the above set of equations for ω2,1 leads to a different sign, namely
τ = 3ω2

0
4 . To decide between these two different values for τ , we inserted them

into our model. From figure 2.4 we see that the negative sign leads to the
expected behavior.

2.5 Transmission of Arbitrary Structures

Algorithm
The algorithm to calculate the transmission of an arbitrary structure has the
following steps:

1. Generate the coupling matrix M , the vector of carrier displacements in-
side the dipoles X and the electric field applied to each dipole E.

2. Remove empty rows and columns
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3. Solve the matrix equation M ·X = E for X.

4. Calculate χ

χ =
(
χxx χxy
χyx χyy

)
= η

(∑
i qxxi|Ex=1,Ey=0

∑
i qyxi|Ex=0,Ey=1∑

i qxyi|Ex=1,Ey=0
∑
i qyyi|Ex=0,Ey=1

)
. (2.5.1)

5. Calculate the transmission (as explained in 2.2).

How to calculate the coupling matrix for structures placed on a rectangular
grid is explained in the next section. An implementation in MATLAB can be
found in appendix B.1.

Dipoles on a Rectangular Grid

. . .

. . .

. . .. . .

...
...

...

1 2 n

n+ 1 n+ 2 2n

(m− 2)n+ 1 (m− 1)n

(m− 1)n+ 1 mn

Figure 2.5: Enumerating grid positions.

After introducing the perpendicular and the longitudinal coupling, we will
now place the dipoles on a grid. We only allow two kinds of dipoles, in x and y
direction, and require all dipoles in one direction to have the same parameters
(f0, γ, q). Furthermore, they can only occupy discrete positions, creating a
grid.

The first step of the algorithm we presented in the previous section requires
calculating the coupling matrix. In order to apply it to arbitrary structures,
we need a systematic way to calculate this matrix.

We start by enumerating the grid left to right, top to bottom, beginning in
the top left corner. We choose to start with a row of x dipoles and enumerate
x and y rows alternately (see figure 2.5, an example is shown in 2.6). This
enumeration scheme maps grid positions to the positions inside a vector. If
there is a dipole at the kth position on the grid, there will be a 1 at position k
of the vector encoding the grid. Otherwise, the entry at position k will be 0.

For an example of the enumeration scheme see figure 2.6 where the vector
(0, 1, 0, 0, 1, 0, 1, 0, 0) encodes an S shape.

If the number of rows m and the number of columns n are different (m 6= n)
the values for m and n are written at the end of the vector, separated by
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0 1 0

0 1 0
1 0 0

Figure 2.6: The vector (0, 1, 0, 0, 1, 0, 1, 0, 0) encodes the S structure on a 3× 3
grid. The same structure could also be encoded as (0, 0, 1, 0, 0, 1, 0, 1, 0). On a
4×4 grid, the same structure is encoded by (0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0),
but can also be encoded in many equivalent vectors.

semicolons.3 Example: (1, 0, 0, 1, 1, 1; 3; 2) (note that the dipoles do not have
to be connected). In the case of a square grid (m = n) the values are inferred
from the length of the vector and can be omitted.

Nearest neighbor couplings
The next step is to map this placement vector to a coupling matrix. One of the
basic assumptions of our model (see section 2.1) is nearest neighbor coupling.
This greatly simplifies the task of creating the coupling matrix.
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Figure 2.7: The six possible nearest neighbors for a dipole on a grid in x and y
direction and their relative indices. The arrows indicate the direction of carrier
movement caused by an electric field in positive x and y direction, respectively.

A dipole on a grid has six nearest neighbors (see figure 2.7). If the dipole
is placed in x direction, four of them are y dipoles (top left, top right, bottom
left, bottom right) and two of them are x dipoles (left, right). Similarly, a
dipole in y direction has four x dipole neighbors (top left, top right, bottom
left, bottom right) and two y dipole neighbors (top, bottom).

The excitation of one dipole leads to carrier movements which in turn cause
the excitation of the neighboring dipoles. The sign of the coupling constant
can easily be understood from the movement of the carriers. The directions
indicated in figure 2.7 led to the couplings shown in table 2.3.

3When implementing this algorithm, the developer needs to decide how this information
is stored. For this text, we merely chose a compact notation.



38 CHAPTER 2. ANALYTICAL MODEL

Index M C
k +x
k − n −y −σ
k − n+ 1 +y +σ
k + n +y +σ
k + n+ 1 −y −σ
k − 1 +x +τ
k + 1 +x +τ

Index M C
k +y
k − n− 1 −x −σ
k − n +x +σ
k + n− 1 +x +σ
k + n −x −σ
k + 2n +y +τ
k − 2n +y +τ

Table 2.3: Induced carrier movements M for a central dipole in x (left) and y
(right) direction are modeled by the coupling C.

These couplings are described by the equations (in matrix form)

Ay 0 σ −σ 0 τ 0
0 Ay 0 σ −σ 0 τ
σ 0 Ax τ 0 σ 0
−σ σ τ Ax τ σ −σ
0 −σ 0 τ Ax 0 σ
τ 0 −σ σ 0 Ay 0
0 τ 0 −σ σ 0 Ay





y1
y2
x5
x0
x6
y3
y4


= 1
m



qyEy
qyEy
qxEx
qxEx
qxEx
qyEy
qyEy


, (2.5.2)



Ay σ −σ τ 0 0 0
σ Ax τ −σ 0 0 0
−σ τ Ax σ 0 0 0
τ −σ σ Ay σ −σ τ
0 0 0 σ Ax τ −σ
0 0 0 −σ τ Ax σ
0 0 0 τ −σ σ Ay





y5
x1
x2
y0
x3
x4
y6


= 1
m



qyEy
qxEx
qxEx
qyEy
qxEx
qxEx
qyEy


. (2.5.3)

The system of coupled differential equations for dipoles on a grid of the size
m×n can be written as a matrix with nm×nm entries. The matrix is a band
matrix – the non-zero entries are limited to diagonal bands – and its structure
is very similar to an adjacency matrix. The equation for x and y Dipoles are
of the form

−σσ . . . τ︸ ︷︷ ︸
−m

Ax τ . . . σ︸ ︷︷ ︸
m

−σ, (2.5.4)

−2m︷ ︸︸ ︷
τ . . .− σ σ . . .︸︷︷︸

−m

Ay

2m︷ ︸︸ ︷
. . . σ − σ︸ ︷︷ ︸

m

. . . τ . (2.5.5)

As an example of this procedure, the coupling matrices for the C and L
shapes are derived in appendix A.4.
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2.6 Metamaterial Design Using a Genetic Algorithm

The core of a genetic algorithm is the fitness function, providing a measure of
the quality of a solution. We devised a simple fitness function that allowed
us to tune metamaterials towards predefined transmission values ti for prede-
fined frequencies fi. We then used this fitness function in combination with
MATLAB’s Genetic Algorithm Toolbox (GAT)4 to develop new structures.

In analogy to natural processes, the convention in the genetic algorithm
community is to maximize the fitness function. The GAT defies this convention
and minimizes the fitness instead. A suitable candidate was therefore∑

i

|t(fi)− ti| , (2.6.1)

i.e. the sum of absolute distances5 between the transmission value of the struc-
ture at frequency fi and the target transmission value ti at this frequency. The
transmission function t(f) returns the absolute value of the complex transmis-
sion. For an implementation that maximizes the fitness, one would multiply
this function by −1.

Results
As an early test, we conducted several runs of the genetic algorithm. We
looked for a structure with t = 1 at f = 1THz in x polarization, for a x dipole
resonance frequency f0x = 1THz. While some runs produced only trivial
solutions (see figure 2.9), others produced interesting structures such as the
one shown in figure 2.8.

Figure 2.8: The solution (1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0,
1, 0, 0, 0) was produced by a run of the genetic algorithm.

To validate our result, we compared the predicted transmission spectrum
with a numerical simulation. The simulation was done by Daniel Dietze using
his custom FDTD solver [Dietze, 2010] (see figure 2.10).

The numerical calculation did not fully agree with the results of our model,
showing only the first, lower frequency, minimum but not the second, higher

4In recent versions of MATLAB, the GAT has been superseded by the Global Optimiza-
tion Toolbox, which contains a genetic algorithm solver.

5We chose the absolute values instead of the squared ones in order to create a linear
fitness function.
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Figure 2.9: A different run on the same day produced this trivial solution (0,
0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

Frequency [THz]

Tr
an

sm
iss

io
n

Model x
Model y
FDTD x
FDTD y

JKD01_90deg.dat
JKD01_00deg.dat

Figure 2.10: Analysis of the solution shown in figure 2.8. FDTD refers to the
results from [Dietze, 2010]. The design was rescaled to f0x = 0.5THz on a
80 µm× 80 µm grid, manufactured as JKD01 and measured.

frequency, one. We therefore decided to manufacture the structure and compare
the results with measured data.

Contrary to all our expectations, the structure showed no response, lacking
even the hint of a transmission minimum. We would have at least anticipated
a resonance corresponding to the single dipole mode.

Since terahertz fields do not penetrate deep into the structure, they are
very sensitive to surface roughness. This striking result could, therefore, be
due to a problem that arose during manufacturing. Another possible reason
could be that we did not properly space the single meta-atoms. Spacing was
found to greatly influence the response of a metamaterial [Gay-Balmaz and
Martin, 2002; Feth et al., 2010; Singh et al., 2010].

Other possible causes are related to the size of the structure. Because it
is so large, different parts could be excited by the beam with different relative
phases, causing the resulting currents to attenuate one another. The parts
could also oscillate out of phase relative to one another, canceling each other in
the far field. Our model only couples the oscillations of dipoles on a local scale,
without considering the total dipole moment. Some of the modes that it takes
into account lack a total dipole moment. These modes are “dark”, since they
can neither be excited by plane waves nor radiate in the far field. These “dark”
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modes could also help explain the differences between the FDTD calculation
and the model (see figure 2.10).

Regardless of the true cause, we strongly suspected that our model com-
pletely fails to predict large structures. This led us to the conclusion that the
model in its current form is not applicable to these kinds of problems.

It was out of the scope of this thesis to study the exact dynamics of the
model’s breakdown. Further research on this frontier, perhaps in combination
with an expansion of the model by a theory that takes global phase relations
into account, promises to produce exciting results.

2.7 Hexagonal Structures

In order to extend the range of structures we could model, we introduced
a hexagonal grid. This allows for more complex shapes, while keeping the
mathematical complexity simple.

In a hexagonal grid, each node connects three edges. The angle between
two edges is always 2/3π = 120◦.

We started constructing the grid by placing an edge parallel to the x-axis
at π (−180◦). This determines the placement of the other two axes at angles
of 1/3π = 60◦ and −1/3π = −60◦. The three edges, placed as in figure 2.11 in a

star like fashion, will be parallel to the vectors
(
−1
0

)
,
(

1/2√
3/2

)
and

(
1/2
−
√

3/2

)
respectively.

The symmetry of the hexagonal grid and the vectors introduced above sug-
gest using the base vectors6 x, ξ and ζ:

x =
(

1
0

)
ξ =

(
1/2√
3/2

)
ζ =

(
1/2
−
√

3/2

)
(2.7.1)

The same base vectors are used to describe the electric field:

Ex =
(
Ex
0

)
Eξ =

(
1/2Ex√
3/2Ey

)
Eζ =

(
1/2Ex
−
√

3/2Ey

)
(2.7.2)

Basic Forms
In this section, we will devise a model for the transmission of four basic elements
– the single dipole, two dipoles, three dipoles and a hexagonal ring.

The equations of motion in the hexagonal grid are derived in the same way
as those for the rectangular coordinates; see appendix A.6.

To validate our approach, we manufactured these basic shapes and mea-
sured their transmission spectra. Unfortunately the measurement was incon-
clusive (see figure C.5).

6These vectors are linearly dependent and, therefore, not base vectors in the strict math-
ematical sense. For lack of a better term, we will nevertheless refer to them as base vectors.
Note also that, instead of using −x like we did during the grid construction, we define x in
the usual sense. We thus avoide introducing an error prone x→ −x step.
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Figure 2.11: Basic forms of dipoles on a hexagonal grid.

Enumerating a Hexagonal Grid
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Figure 2.12: Hexagonal Geometry. All angles shown are π/3 = 60◦.

A hexagon can be composed from six equilateral triangles, as shown in
figure 2.12. In an equilateral triangle, all sides have the same length l and all
angles equal π3 = 60◦. Its height is h = sin(60◦)l =

√
3

2 l and the height of the
hexagon is 2h =

√
3l. The width of a hexagon is 2l.
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Figure 2.13: A hexagonal grid with n grid cells (3n dipoles) per row.

As a unit cell for our grid, we choose a star (c.f. the numbers in figure 2.13).
We enumerate its edges clockwise, starting from the left (180◦ = 1; 60◦ = 2;
−60◦ = 3). We place the first star at (0, 0). The next star of the same row
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is placed at (1 + cos(60◦), sin(60◦)) = (1.5,
√

3
2 ) (nos. 4,5 and 6), followed by

(2, 0) (nos. 7,8 and 9), (3 + cos(60◦),
√

3
2 ), and so on until the end of the row.

The next row is constructed in the same way, starting from −2
√

3
2 = −

√
3

(nos. 3n+ 1,3n+ 2,3n+ 3).

Nearest neighbors

k + 3n− 2
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k + 2

k − 2
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k − 2
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k − 1

k

k + 1k + 3n− 1

Figure 2.14: Nearest neighbors for the different elements in a hexagonal grid.
The relative indices differ for odd (star in lower position, left) and even (star
in upper position, right) cases. Each row of the grid consists of n stars and 3n
dipoles. Therefore, the dipole in the same orientation one row above (below)
is at k − 3n (k + 3n).

Every dipole in a hexagonal grid has four nearest neighbors. Analogously to
section 2.5, we look at the movements of carriers. We now have to differentiate
between three types of dipoles: horizontal (180◦; —), slanted upwards (60◦;/)
and slanted downwards (−60◦;\). Furthermore, there are now two possible
positions for a horizontal dipole, “upper” (in even columns) and “lower” (in
odd columns), in which the indices of its neighbors differ. The relative indices
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Index M –
(odd, if different)
k + 3n− 2 (k − 2) +x −y
k − 1 (k − 3n− 1) +x +y
k + 1 +x +y
k + 2 +x −y

Index M /
(odd, if different)
k − 3n− 1 +x −y
k + 2 (k − 3n+ 2) +x
k + 1 +x −y
k − 1 +x

Index M \
(odd, if different)
k − 1 +x +y
k + 1 (k + 3n+ 1) +x
k + 3n− 1 −x −y
k − 2 +x

Table 2.4: Induced carrier movements for the hexagonal grid. The carrier
movements M for a central dipole k in horizontal (−, top), upwards (/, bottom
left) and downwards (\, bottom right) direction are shown.

of the neighbors are shown in figure 2.14. The induced movements of charges
are listed in tab. 2.4.



Chapter 3

Measurements

3.1 Experimental Setup

Figure 3.1: The THz-TDS setup used for our measurements.

A standard terahertz time-domain spectroscopy (THz-TDS) setup was used
to measure the transmission of THz Radiation through the samples. The basic
layout of the experiment is outlined in figure 3.1.

A commercial femtosecond laser was used to produce laser pulses with a
duration of ≈ 100 fs at a wavelength of 800 nm. The femtosecond laser uses a
mode locked laser (Ti:sapphire) that is pumped by a Nd:YAG laser which in
turn is pumped by a solid state laser diode. The Ti:sapphire laser produces
femtosecond pulses with a repetition rate of ≈ 80MHz.

The primary beam is split into two parts; one of them is used as a refer-
ence beam, the other passes through a delay line and is guided through the
experiment. The length of the delay line is varied by moving two mirrors that
are mounted on a motorized stage. After passing through the delay line, the
beam incides on a photoconductive antenna (PCA) that is biased with a mod-
ulated voltage (18 kHz), producing amplitude modulated terahertz radiation.

45
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Because this radiation is very well absorbed by water vapor, the terahertz part
of the setup is purged with dry air. This reduces the humidity and leads to a
lower absorption of the terahertz beam.

The divergent terahertz beam is collimated into a broad beam by a spheri-
cal mirror and focused by another mirror. The sample is mounted in the focus.
After the beam crosses the sample, it is, once more, collected and focused onto
a lithium niobate non-linear optical crystal (NLOC). The reference beam is
also directed onto the NLOC and the slowly varying terahertz beam causes
a rotation of polarization due to the Pockels effect. The details of this mea-
surement principle are described in the section on electro-optic detection, p.
12.

After crossing the NLOC, the beam is split into two orthogonally polarized
beams. The amplitude of these two beams is detected, its difference serving as
detector signal.

To distinguish the signal from the infrared and terahertz background present
at room temperature, the detector is connected to a lock-in amplifier (tuned
to the same modulation frequency of approximately 18 kHz) which is read out
using a standard PC running LabView.

Advantages and Disadvantages of TDS

The room temperature operation mentioned above is arguably the biggest ad-
vantage of the TDS setup. Furthermore, it consists of relatively few parts,
making it easy to build and align. Whereas many other detectors are only
power sensitive, TDS detects phase and field strength.

In order to scan the terahertz pulse, the delay length needs to be varied.
In the standard TDS setup, this is done by physically moving the mirrors on
an optical stage. The speed of this movement limits the scanning time. In our
setup, a single scan takes approximately ten minutes. The main reason for this
is the time spent moving the mirrors. This includes a delay that is inserted
after each move, so that the vibrations in the moved mirrors subside.

Detailed information on the properties and applications of THz-TDS can
be found in [Sakai, 2005, ch.4, p.203ff].

Resolution and bandwidth

The theoretical bandwidth limit of our setup is governed by the minimum and
maximum frequency it can resolve. The theoretical maximum frequency is
limited by the timestep ∆t = 50 fs. This is equivalent to a sampling frequency
fs = 1/∆t = 20THz. According to the Shannon sampling theorem, this leads
to a theoretical maximum frequency fmax = fs/2 = 10THz.

Using very short pulses (15 fs), photoconductive antennas can generate ra-
diation up to 60THz [Sakai, 2005, p.6] while electro-optic detection is sensitive
up to 70THz [Sakai, 2005, p.34]. Since we used longer pulses (100 fs) the
highest frequencies in our setup are likely around 5THz to 7THz.
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Figure 3.2: Detail of one field of a manufactured sample (CSL7080, C struc-
ture). The name 7080 stands for the lengths Lx and Ly, as indicated in figure
3.4, which are 70 µm and 80 µm, respectively. Examples for the other two
shapes and structures are included in the appendix (figures C.6 and C.7). The
color is due to the green light used in the microscope to illuminate the sample.
Under natural light, the structured areas are golden.

The practical limit is governed by the signal to noise ratio of our detection
system. While the noise floor is very constant, showing practically no change,
the detector signal changes significantly. It depends on the power of the beam,
which in turn depends on the quality of the purge, the output power of the
primary laser and the current alignment. Depending on these factors, our setup
can resolve a minimum frequency between 0.1THz and 0.2THz. The maximum
frequency is between 2.5THz and 3THz, leading to an approximate bandwidth
of 2.5THz.

In our measurements, we usually evaluated 512 data points, resulting in
a time window length of 25 600 fs and a frequency resolution of ≈ 0.04THz
(40GHz).

Sample Manufacturing
The samples were made by depositing a layer of titanium and gold on gallium
arsenide (GaAs) using standard semiconductor processes.
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Figure 3.3: Processing of measurement data. The data shown is the SLC8060
C shape and reference field and was recorded on 20100929. Note the different
depth of the water line at 2.7THz that is visible in the fft data (below, left),
indicating different water content during the two measurements.

The GaAs pieces were bought from a commercial supplier. After cleaning
in acetone and isopropyl alcohol, the photo resist (AZ 5214 untinned) was de-
posited by spin coating at 9000RPM for 35 s and soft baked at 100 ◦C for 60 s.
To transfer the structures onto the sample, a laser writer (Heidelberg Instru-
ments DWL 66fs, 2 µm write head) exposed the resist. For the development,
MIF726 was used.

A 10 nm layer of titanium, followed by a 150 nm layer of gold, were deposited
using an e-beam evaporation system. The titanium served as an adhesion layer,
since it is hard to directly attach gold to GaAs.

The last step was the lift off procedure: the sample was immersed in Acetone
for 15min to dissolve the undeveloped resist. The deposited layers were then
removed from the undeveloped parts of the sample in an ultrasonic bath. After
rinsing in isopropyl, alcohol the sample was dried using N2.

Using this process, we manufactured several samples of varying shapes and
sizes. As an example, a detail of a C shape is shown in figure 3.2.
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Data processing

The transient through a sample and a reference is measured (figure 3.3a). This
data is then Fourier transformed (figure 3.3b). To remove the influence of the
bulk substrate the FT data of the sample is weighted by that of the reference
(figure 3.3c).

If the Fourier transformed data is very noisy, it is smoothed by convolution
with a Hanning window. This is done for both the data and the reference
before weighting. The (smoothed) data is then weighted with the (smoothed)
reference.

3.2 CLS Measurements

Lx = 60 µm

Ly = 80 µm

10 µm

10 µm

60 µm

40 µm

120 µm

120 µm

Figure 3.4: Dimensions of the structure 8060C, showing the dimensions of the
structure, including the lengths Lx and Ly. Lx was varied between 60 µm
(shown here) and 160 µm.

To apply the model introduced in [Petschulat et al., 2010] to the THz range,
we manufactured rescaled versions of the C, S and L structures presented in
the paper and measured their frequency response using THz time domain spec-
troscopy (TDS). We designed three versions with varying sizes in order to study
the behavior of the different parameters. Each sample consisted of four fields,
containing the C, L and S structure as well as an empty reference field.

Peak Positions

While the shape and depth of the dips in transmission varied between measure-
ments of the same structure and showed poor reproducibility (see figure C.1),
the position of the peaks was stable. From the absolute position of the peaks,
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we can obtain information about the resonant frequencies of the oscillators,
while the split between the peaks informs us about the coupling strength.

Shape Peak 8060 8070 8080
C X 1 0.70 0.65 0.60

S X
1 0.35 0.30 0.30
2 0.90 0.80 0.75

split 0.55 0.50 0.45

L X
1 0.45 0.45 0.40
2 0.75 0.70 0.65

split 0.30 0.25 0.25

C Y
1 0.35 0.30 0.25
2 0.75 0.70 0.65

split 0.40 0.40 0.40
S Y 1 0.35 0.30 0.30

L Y
1 0.45 0.45 0.40
2 0.75 0.70 0.65

split 0.30 0.25 0.25

Lx

∆f [THz]

60 70 80
0

0.5

(b) ×=S X, += L X = L Y, ◦= C Y

Table 3.1: Peak frequencies and splits between peaks. All frequencies in THz.
The plot on the right visualizes the split between peaks.

Fit parameters

To get a rough estimate of the parameters (see section 2.1, page 26), we used
the simplex hill climbing algorithm implemented in MATLAB’s fminsearch
command. As starting parameters, we rescaled the values given in [Petschulat
et al., 2010, tab. 1]. We then iterated several times, using the results from a
previous run as start values for the next one.

Since A is only a scaling parameter, it was set to 1. The thickness pa-
rameter d was set to a fixed value (7.22× 10−10 m) that was also found using
fminsearch.

For a fixed value of d, the position of the transmission minima only depends
on f0x, f0y and σ. The depth of the minima is mainly influenced by q[x|y] and
γ[x|y], although the relationship between f0x, f0y and σ also plays a role.
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Lx[µm] f0x[THz]
60 0.80 (≈ 80/60)
70 0.70 (≈ 80/70)
80 0.60
100 0.50 (≈ 80/100)
120 0.40 (≈ 80/120)
160 0.30 (≈ 80/160)

(a) Expected

Ly[µm] Lx[µm] f0x[THz] ∆f0x[THz]
80 60 0.70 0.05
80 70 0.65 0.05
80 80 0.60
80 100 0.50 2× 0.05
80 120 0.45 2× 0.025
80 160 0.35 4× 0.025

(b) Measured

Table 3.2: Expected (left) and measured f0x for C structures of different sizes,
under the assumption that f0x = 0.6THz for Lx = 80 µm. Note that the
increase in Lx is not equidistant. Between the penultimate and the last sample
it is 40 µm.

X Dipole Resonance Frequency f0x

According to Petschulat’s model, the effective susceptibility χ for the C struc-
ture in X polarization [Petschulat et al., 2010, eq. (7)] is given by

χxx (ω) = q2
xη

mε0

2
ω2

0x − ω2 − iωγx
. (3.2.1)

This only depends on f0x (with ω0x = 2πf0x). Since the transmission is deter-
mined by χ, the frequency of the transmission minimum in a measurement of
a C structure in X polarization (C X) equals f0x.

From the model of an oscillating dipole we would expect that the wavelength
λ, at which a resonance occurs, has to be a multiple of the electrical length of
the dipole. The first order resonance would be expected at

(
lelectrical = λ

4
)
.

Starting from f0x = 0.60THz for Lx = 80 µm, we expect a linear scaling
(see table 3.2a). Comparing the measured values of f0x for the three samples
SLC8060, SLC8070 and SLC8080 (see table 3.2b), we observe a decrease by
≈ 0.05THz if the length of the arm in X direction increases by 10 µm. This
is a linear decrease, but the slope is only half of the expected value (table
3.2a). The shift can be observed most clearly by looking at the 8060 sample
and comparing fits for f0x = 0.6THz and f0x = 0.7THz (see figure 3.7a and
3.7b). In the 8070 sample they are less pronounced, but still visible.

In order to study this more closely, structures with longer Lx lengths of
100 µm, 120 µm and 160 µm were manufactured (see table 3.2b and figure C.4a).
For the first length the change in f0x continues at the same rate. For the longest
two lengths, this process slows down. We assume that this happens because
the length becomes comparable to the wavelength. The most distant parts of
the structure are therefore exposed to a different phase of the electric field,
effectively shortening the structure.
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To further study the onset of this slowdown, we manufacturing structures
with Lx lengths of 130 µm, 140 µm and 150 µm. Unfortunately we could not
measure them due to a long lasting breakdown of our setup.

Y Dipole Resonance Frequency f0y and Coupling σ

For a dipole in Y direction the resonance frequency cannot be measured directly.
Instead, it has to be inferred from the split between two transmission minima,
which is influenced by both f0y and σ.

An exception to this rule are the 8080 structures. There, f0y is known, since
it is identical to f0x. In this case, σrel = σ/f0xf0y can be determined directly to
be ≈ 0.5. The effect of f0y and σ are hard to separate.

Within the frequency resolution of our setup, we could not determine a clear
change in σrel. Even for the shortest length Lx = 60 µm, a smaller σrel = 0.45
does not lead to a better fit. We therefore concluded that σrel is constant
across the range of frequencies that we examined.

Lx[µm] f0y[THz]
60 0.55
70 0.55
80 0.60

Table 3.3: Since Ly is constant, the model would predict a constant f0y. The
values that lead to the best fit (right), however, change with Lx.

Since the length Ly does not change, we would expect a constant f0y. In
our measurements, however, we found that f0y shifts to lower frequencies for
longer lengths of the x dipole Lx. This introduces a cross dependency between
f0x and f0y and represents a deviation from the model.

The fact that f0y shifts to lower frequencies for larger values of Lx is easily
visible when comparing the fits created for f0y = 0.6THz (the value found in
the 8080 structure, figure 3.8a and C.3a) with those where f0y has the values
indicated in table 3.3 (figures 3.8b and C.3b).

Although this shift can not be explained by the model, it can easily be
deduced from the equivalent LC resonator circuit, the resonance frequency ω0
of which is given by

ω0 = 1√
LC

. (3.2.2)

Thus, an increase of either L or C leads to a decrease of the resonant frequency.
In the case of a measurement in Y polarization, the arm in x direction does

not contribute to the inductance, since it is perpendicular to the polarization
of the electromagnetic field. The decrease of f0y is therefore caused only by
the increase in capacitance.
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Size dependence of the fit parameters

Combining the results that we obtained so far, we can estimate the values of
all parameters as a linear function of the dipole length Lx. Relative to the
reference resonance frequency f (80)

0 = 0.6THz for Lx = 80 µm, the parameters
change as

f0x = f
(80)
0 + (80 µm− Lx)× 5× 1015 Hzm−1,

f0y = f
(80)
0 − (80 µm− Lx)× 2.5× 1015 Hzm−1,

σ = f0x · f0y · σrel,
γx = f0x · γx,rel,
γy = f0y · γy,rel,
qx = const,
qy = const,
d = const. (3.2.3)

(3.2.4)

In this very simple model, the deviation that we found for long Lx lengths
was not taken into account. The frequency shift of the y resonance frequency
f0y was distributed homogeneously between 60 µm and 70 µm.

Using this formula we can predict the model’s parameters as a function of
Lx. The actual position of the transmission minima can then be found from
our model by numerical calculation.

We assumed the simplest possible, linear relationship. Since the effects we
found are in the range of the frequency resolution of our experimental setup,
the explanatory and predictive power of this parameter model is limited. To
validate it, one could manufacture structures with intermediate Lx lengths. To
see their, smaller, frequency changes, one would have to measure these samples
with a better frequency resolution, perhaps even in a different experimental
setup.

It would also be interesting to simultaneously vary Lx and Ly in order to
explore the cross dependencies that this could introduce.

Further Results
We found good agreement between theory and experiment for all measure-
ments. As predicted by the theory, C and S shape show the same behavior in
Y polarization.

Examining the results for the S structure, deviations become apparent.
In Y polarization, the model predicts a second transmission minimum that is
missing in the experimental data. This dip is absent in all the differently scaled
S structures that we manufactured.

Examining the difference between the two dips for L and S shape in the other
polarization (X), a slight shift in the center frequency of the splits for the two



54 CHAPTER 3. MEASUREMENTS

different structures is visible (compare the dashed to the solid green and the red
lines in figure 3.7b). The exact magnitude of this shift is below our resolution.
From the measured peak positions we can infer that it is ≈ 0.02THz. It
seems that the optimal fit would have the resonance frequencies for the S
shape shifted to slightly higher frequencies as compared to those of the L shape
(f (S)

0x > f
(L)
0x and f

(S)
0y > f

(L)
0y ). Of course, this would mean that the dipole

resonance frequencies are no longer independent of the structure, which would
violate a basic assumption of our model.

In the other polarization (X) of the same (S) structure, the model predicts
a second transmission minimum that is missing in the experimental data. Both
of these results occur for all structures.

Since the resonance frequencies were determined from the C structure, the
fit agrees well to the data.
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3.3 Structures Containing Gaps

Figure 3.5: C, S and L with gaps

In order to study the influence of capacitive coupling on the behavior of
the structure, we manufactured variations of the design with gaps between the
dipoles (see figure 3.5). We varied the length of the gaps between 2 µm and
10 µm. The minimal size of the gap was limited by the smallest structures we
could write with our laser writer.
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Figure 3.6: Normal vs. interdigitated gap design

To increase the capacitance of the gap and observe capacitive coupling, we
devised a variation of the original structure with an interdigitated design of
the conductors surrounding the gaps (similar to a key and slot joint, see figure
3.6). The larger surface inside the gap leads to a higher coupling capacitance.
The area of the gap is effectively tripled: it is increased from 10 µm to 30 µm
for a length of the “fingers” of 10 µm and a width of 2 µm.

For a general interdigitated design with n fingers of length l on both sides
of a gap between conductors of width b, the length of the gap increases from b
to nl + b. In the case of l = b, the length of the interdigitated gap is (n+ 1)l.

The design with an interdigitated gap and two fingers, as shown in figure
3.6, was manufactured with a gap size of 2 µm as sample SLC8060G. The
measurements show a weak coupling.

The resolution of our laser writer limited the width of the fingers, deter-
mining the maximum number we could write. Increasing the longer slot length
would reduce the effective length of the dipole, shifting the resonance frequency.
A further increase of the gap capacitance was therefore not possible with this
method.

A promising way to further increase this capacitance consists of filling the
gap with a dielectric. We did this by depositing SiN on the surface of ex-
isting samples. These samples could, however, not be measured due to the
aforementioned technical difficulties.
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Shape Gap fx1 fx2 fy1 fy2

C

g00 0.65 0.30 0.75
gi2 0.75 0.45 0.70
g02 0.55 0.35 0.75
g04 0.75 0.60 -
g10 0.60 0.75 -

S

g00 0.35 0.85 0.35 -
gi2 0.70 - 0.55 -
g02 0.70 - 0.60 -
g04 0.70 - 0.60 -
g10 0.60 - 0.85 -

L

g00 0.40 0.70 0.40 0.70
gi2 0.45 0.75 0.50 -
g02 0.60 0.90 0.60 -
g04 0.85 - 0.60 -
g10 0.70 - 0.60 -

Table 3.4: Frequencies (in THz) of the lower and higher frequency transmission
minimum in x and y polarization for different gap sizes and gap designs, sorted
by decreasing coupling (increasing gap distance, samples SLC8060, SLC8060G,
SLC806002, SLC806004 and SLC806010). Dashed entries indicate peaks that
would be expected from the model, but are absent in the measurement.

Interpretation

The absorption profile of the designs showed only small variations between 2 µm
and 10 µm (see figures 3.9a to 3.10c). However, a closer look at the frequencies
of the peaks (see table 3.4 reveals some interesting details.

The gap measurements show that the S structure is very sensitive against
changes in the coupling. The other two structures are less sensitive and still
show coupling for the two smaller gap widths. This could be caused by the
different symmetry of the two structures. In the C structure, the geometric
center is to the right of the vertical dipole, while it is in the center of this
dipole for the S structure.

The data indicates that the resonances in the L structure are more sensitive
to a change in the coupling in Y polarization. In this polarization, the shorter
dipole resonates. Since the energy coupled into the dipole is proportional to
the area of the antenna, the induced energy in the shorter dipole is lower. It
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is not sufficient to excite the second dipole across the gap.
The capacitance C of a plate condensator is given by C = εAd . In our case,

the surface A is given by the cross section of the gold conductors (width: 10 µm,
height: 0.15 µm, cross section: 1.5 µm2). The dielectric constant εr for GaAs
is ≈ 12.1 For the 2 µm gap this leads to: C = 12 · ε0

1.5 µm2

2 µm = ε0 · 0.9 µm ≈
8× 10−18 F = 8 aF

From the measurements, we can conclude that this capacitance is sufficient
to cause a weak coupling between the dipoles. As soon as the gap disappears,
conductive coupling dominates the interaction and capacitive coupling is neg-
ligible. For the intermediate capacitances (corresponding to gaps larger than
2 µm) the split is below the resolution of our setup. The largest gap width of
10 µm corresponds to completely decoupled dipoles. In this case, the transmis-
sion minima occur at the resonance frequencies f0x and f0y.

3.4 Summary of Results

From the measured data we conclude that the model is applicable to the tera-
hertz range without modifications. The differences between theory and exper-
iment that we discovered are not unique to this range and will also occur at
other frequencies.

We could include the dependence of the model’s parameters on the physical
length Lx in a simple linear model. More detailed measurements are needed
to validate this approach.

The unexpected fact that f0y is also influenced by Lx could be explained
from basic oscillating circuit theory.

From the gap measurements we concluded that the shape of the structure
influences how strong the position of the transmission minima depends on the
strength of the coupling σ. The S shape showed the largest σ-dependence.

1We are only interested in an order of magnitude estimate, and therefore assume that
the conductors are completely surrounded by GaAs. For a better estimate we would have to
calculate an effective εr to account for the field distribution in GaAs and air.
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3.5 Plots
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Figure 3.7: Comparison of fits for different dipole resonance frequencies f0x
and f0y (X polarization). The resonance frequency of the C structure (blue)
corresponds to f0x and is better approximated by the second fit.
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Figure 3.8: Comparison of fits for different dipole resonance frequencies f0x
and f0y (Y polarization). For the C and S shape, the first set of parameters
overestimates the resonance frequency of the lower peak. Furthermore, f0x =
f0y leads to a symmetric peak shape in the above fit.
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(c) L X

Figure 3.9: Variations of the SLC8060 structure with different gap widths (X
polarization). Comparing the structures with increasing gap widths, we see
that the lower peak of the S structure vanishes before that of the L structure.
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Figure 3.10: Variations of the SLC8060 structure with different gap widths (Y
polarization).
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3.6 Software

In the course of this thesis, several utilities were written to facilitate data
analysis. They span 54 MATLAB files, containing approximately 2300 lines of
code (excluding nearly 500 lines of comments).

Furthermore, a tool to plot the measured data and compare measurements
with fits was developed in Python. Together with several utilities that helped
create the plots in this thesis, the Python software is contained in 16 files (2000
lines of code and 550 lines of comments).

Data was acquired with an existing LabVIEW program that controlled the
motorized stages of the delay line and read out the measurement results from
the Lock-In amplifier.

Since this amount of software cannot be adequately presented here, we
include only a selected few core components in appendix B.

Python GUI Application
We developed a GUI application to compare measurements with each other
as well as with theoretic fits. The tool uses wxPython to create a graphi-
cal user interface, matplotlib for plotting and numpy and scipy for numerical
calculations.

Figure 3.11: Main window of “compareMeasurements”, showing three curves
of measured data, two fits (dashed lines) and two annotations. The legend
entries for the fits were removed to create a clearer picture.
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Figure 3.12: Dialog for editing a fit in “compareMeasurements”. Multiple fits
(two in this screenshot) can share the same set of model variables. This screen-
shot was taken in Windows 7 using enlarged fonts (150%).





Chapter 4

Conclusion

Traditional numerical approaches like FDTD are a reliable way to simulate
metamaterials and their electromagnetic responses, illuminating the question
of how they work. They can, however, only offer limited clues as to why the
metamaterial’s behavior arises. Our model tries to close this gap.

4.1 Strengths and Weaknesses of the Coupled Dipole
Model

The oscillating dipole model is an important extension to the toolkit of the
metamaterial researcher and allows new insights into the metamaterial’s behav-
ior. We were able to show that the coupled dipole approach is applicable in the
terahertz range. By an in-depth study of simple structures, we demonstrated
its qualities for prediction and interpretation of transmission measurements.

Since the model is analytical, it can link changes in the transmission sig-
nal to changes in the fundamental parameters of the oscillators. Compared
to traditional numerical algorithms, this offers a better understanding of the
expected behavior. Because it approximates a whole wire by a single oscillator,
only a very small system of equations has to be solved. It is therefore orders of
magnitude faster than FDTD simulations: the equations are solved in seconds
instead of hours.

However, the model assumes that the dipoles do not influence each other
apart from a direct coupling. We discovered a deviation from this assumption
by varying the length of dipoles, proving that its assumptions are not sufficient.
The model neglects many properties of electromagnetic radiation.

While the model works well for simple cases, we also showed that it failed
to predict the behavior of more complex ones. The aforementioned deviation
may be one reason why large structures, in which additional interactions play
a bigger role, cannot be simulated. Other reasons are phase effects, which arise
when the the assumption that the structure is smaller than the wavelength is
violated.

65
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Furthermore, large structures are composed of more dipoles. Hence, they
have an increased number of eigenmodes, some of which have no resulting
dipole moment and cannot radiate in the far field. Since our model is based
on local dipole interactions, it cannot take the global dipole moment of the
structure’s resonances into account. Therefore, it systematically overestimates
the number of resonances.

The short computation time would make the model a good candidate for
combining it with a genetic algorithm to design novel metamaterials. Our hopes
for developing new types of meta-atoms were shattered by the cruel hand of
reality, due to the aforementioned difficulties modeling large structures.

Extensions
The original model only allowed perpendicular coupling, severely restricting the
choice of available shapes. We extended it by introducing longitudinal coupling
and transfered it to a hexagonal grid, allowing a wider range of shapes. The
long dipoles, which caused troubles on a rectangular grid, do not occur on a
hexagonal one.

4.2 Behavior of Grid Based Metamaterials

We proved that the nature of the coupling between dipoles in a grid based meta-
material is almost exclusively conductive. Dipoles separated by a gap larger
than 4 µm are decoupled. A weak capacitive coupling can only be observed
for small gaps or by artificially increasing the gap capacitance. We therefore
concluded that capacitive coupling plays an, albeit limited, role.

From the comparison with our analytical model, we were able to determine
the scaling behavior of the different parameters. While some parameters scaled
as expected, others showed counterintuitive effects. We showed that these
effects can be explained using basic electromagnetic theories.

4.3 Further Work

There are several interesting extensions to our model which could not be pur-
sued in the course of this thesis.

A promising approach to the problem of large structures lies in replacing the
dipole equations of our model with more complex ones. A suitable candidate
would be magneto-hydrodynamic equations. This could increase the descriptive
power of our model with only a modest increase in complexity.

Increasing the complexity of the model, however, offers diminishing returns.
The model is only useful as long as it stays faster and simpler than the numerical
alternatives. As soon as run-times are comparable, the more mature algorithms
are at an advantage.
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Appendix A

Additional Equations

A.1 Fourier Transform of Differential Equations

Mathematical Definition

In mathematics, the Fourier transform and its inverse are usually defined as
[Weisstein, 2004]

F (f) =
∫ ∞
−∞

f(t)e−i2πftdt, (A.1.1)

f(t) =
∫ ∞
−∞

F (f)ei2πftdf. (A.1.2)

It maps a derivative in real space
(
∂x
∂t = ẋ

)
to a multiplication in frequency

space. Because of the integration over ex, differential operators become linear.
This is described by the relations [Weisstein, 2004, eqs.(34)–(44)]

F [f(t)′] = 2πifF (f(t)), (A.1.3)
F [f(t)′′] = (2πif)2F (f(t)) = −(2πf)2F (f(t)), (A.1.4)

F
[
f(t)(n)

]
= (2πif)nF (f(t)). (A.1.5)

Applying this to the equation of motion (2.2.7)

ẍ1 + ω2
01x1 + γ1ẋ1 = q1

m1
E1, (A.1.6)

leads to

−(2πf)2x1 + ω2
01x1 + (2πif)γ1x1 = q1

m1
E1, (A.1.7)[

ω2
01 − (2πf)2 + (2πif)γ1

]
x1 = q1

m1
E1. (A.1.8)
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Another common definition of the Fourier Transform uses the angular fre-
quency ω = 2πf

F (ω) =
∫ ∞
−∞

f(t)e−iωtdt, (A.1.9)

f(t) = 1
2π

∫ ∞
−∞

F (ω)eiωtdω. (A.1.10)

Alternative Definition
Petschulat et al. seem to use yet another variant (note the sign in the exponent)

F (ω) =
∫ ∞
−∞

f(t)eiωtdt, (A.1.11)

f(t) = 1
2π

∫ ∞
−∞

F (ω)e−iωtdω. (A.1.12)

If this alternative definition of the Fourier transform is used, the relations
shown earlier have different signs

F [f(t)′] = −iωF (f(t)), (A.1.13)
F [f(t)′′] = (−ωif)2F (f(t)) = −ω2F (f(t)), (A.1.14)

F
[
f(t)(n)

]
= (−iω)nF (f(t)). (A.1.15)

This also leads to a sign change in the equation of motion[
ω2

01 − (2πf)2 − (2πif)γ1
]
x1 = q1

m1
E1, (A.1.16)[

ω2
01 − ω2 + ωγ1

]
x1 = q1

m1
E1, (A.1.17)

which is equivalent to [Petschulat et al., 2010, eq.(5)].
This choice of signs is conventionally used to describe harmonic oscillators

– such as the equation of motion in the Lorentz model (1.5.4).
Comparing the two equations of motion ( A.1.8) and (A.1.17) shows that the

usual mathematical definition leads to unphysical behavior, namely an increase
in transmission above 1. We therefore need to use the second variant.

A.2 Electric Permittivity

The electric permittivity εr is the proportionality factor introduced to link the
electric displacement ~D and the electrical field ~E1

~D = εr ~E. (A.2.1)

1This section follows the explanations given in [Jackson, 1998, ch.4.3, p.153–154,
eq.(4.34)–(4.38)]. Jackson uses χe instead of χ and ε instead of εr.
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Figure A.1: Different variations of the Fourier transform result in different
signs of the dampening term iωγ. The positive sign is an unphysical result.

The displacement is defined as

~D = ε0 ~E + ~P . (A.2.2)

The polarization ~P is assumed to be isotropic and a linear relation to ~E is
postulated, introducing the permittivity

~P = ε0χ~E. (A.2.3)

Combining these assumptions leads to

εr = ε0 (1 + χ) . (A.2.4)

A.3 Tailor Expansion of the Dipole Interaction

The force Fdipole between these two dipoles can be approximated by a Taylor
series around the equilibrium distance r0

1
r2

∣∣∣∣
r=r0

=
∞∑
n=0

f (n)(r0)
n! (r − r0)n (A.3.1)

= 1
r2
0

+ −
2/r3

0

1 (r − r0) +
6/r4

0

2 (r − r0)2 + · · · .

For a first order approximation, we only collect the terms up to O(r)

1
r2

∣∣∣∣
r=r0

≈ 1
r2
0
− 2r
r3
0

+ 2r0
r3
0
− 6rr0

r4
0

+ 3r2
0

r4
0

= 6
r2
0
− 8r
r3
0
. (A.3.2)
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With this expansion, we obtain

Fd (r − r0) ≈ q1q2
4πε0εr

[
6
r2
0
− 8r
r3
0

]
. (A.3.3)

The first term in the square brackets is independent of r. It only causes a
constant offset that can be omitted, since it is irrelevant for the dynamics of
the system. We therefore get

Fd (r − r0) ≈ − q1q2
4πε0εr

8
r3
0
r = −σr = −σ(x1 − x2). (A.3.4)

A.4 Coupling Matrices for Petschulat Shapes

In this section, we will demonstrate the steps of the algorithm that was out-
lined in section 2.5. To validate our approach we take two of the shapes from
[Petschulat et al., 2010] and show that our algorithm yields the same results.

Example - S-shape

As an example, let us look at the vector (0, 1, 0, 0, 1, 0, 1, 0, 0) (see figure 2.6).
The resulting equations are

1
m



0
qxEx

0
0

qyEy
0

qxEx
0
0


=



0 0 0 0 0 0 0 0 0
0 Ax 0 0 σ 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 σ 0 0 Ay 0 σ 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 σ 0 Ax 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0





x1
x2
x3
y1
y2
y3
x4
x5
x6


. (A.4.1)

Removing empty rows and columns leads to the equivalent system

1
m

qxExqyEy
qxEx

 =

Ax σ 0
σ Ay σ
0 σ Ax

x2
y2
x4

 . (A.4.2)

The inverse of M is

1
AxAy − 2σ2

Ay − σ2
/Ax −σ σ2

/Ax
−σ Ax −σ
σ2
/Ax −σ Ay − σ2

/Ax

 , (A.4.3)

leading to the solutions

x2 = x4 = 1
m

AyqxEx − σqyEy
AxAy − 2σ2 , y2 = 1

m

AxqyEy − 2σqxEx
AxAy − 2σ2 . (A.4.4)
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This leads to

χ = η

mε0

1
AxAy − 2σ2

(
2Ayq2

x 2σqxqy
2σqxqy Axq

2
y

)
, (A.4.5)

which is the same result as [Petschulat et al., 2010, eq. (11)].

Example - C-shape

The C Shape is defined by (1, 0, 0, 1, 0, 0, 1, 0, 0), resulting in the system of
equations

1
m



qxEx
0
0

qyEy
0
0

qxEx
0
0


=



Ax 0 0 σ 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
σ 0 0 Ay 0 0 −σ 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −σ 0 0 Ax 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0





x1
x2
x3
y1
y2
y3
x4
x5
x6


. (A.4.6)

Removing empty rows and columns leads to the equivalent system

1
m

qxExqyEy
qxEx

 =

Ax σ 0
σ Ay −σ
0 −σ Ax

x1
y1
x4

 . (A.4.7)

The inverse of M is

1
AxAy − 2σ2

Ay − σ2
/Ax −σ −σ2

/Ax
−σ Ax σ
−σ2

/Ax σ Ay − σ2
/Ax

 , (A.4.8)

leading to the solutions

x1 = qxEx
mAx

− 1
m

σqyEy
AxAy − 2σ2 , y1 = 1

m

AxqyEy
AxAy − 2σ2 , (A.4.9)

x4 = qxEx
mAx

+ 1
m

σqyEy
AxAy − 2σ2 . (A.4.10)

This leads to

χ = η

mε0

(
2q2
x/Ax 0
0 Axq

2
y/AxAy−2σ2

)
, (A.4.11)

which is equivalent to [Petschulat et al., 2010, eq. (7)].
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A.5 Longitudinally Coupled Dipoles

Single Dipole

M = (Ax) , X = Ex
Ax

, χ = 1
Ax

. (A.5.1)

This results in the eigenfrequency

ω1/2 = iγ

2 ±
√
−γ

2

4 + ω2
0 . (A.5.2)

Two Dipoles

M =
(
Ax τ
τ Ax

)
, X = Ex

τ +Ax

(
1
1

)
, (A.5.3)

det(M) = A2
x − τ2, χ = 2

Ax + τ
. (A.5.4)

Solving the equation det(M − λ1) = (Ax − λ)2 − τ2 = 0, one obtains the
eigenfrequencies of the dipoles

ω1−4 = iγ

2 ±
√
−γ

2

4 + ω2
0 ± τ . (A.5.5)

Looking only at the positive frequencies for the lossless case (γ = 0), one
obtains

ω1 =
√
ω2

0 + τ , (A.5.6)

ω3 =
√
ω2

0 − τ . (A.5.7)

Three Dipoles

M =

Ax τ 0
τ Ax τ
0 τ Ax

 , X = Ex
A2
x − 2τ2 ,

 Ax − τ
Ax − 2τ
Ax − τ

 , (A.5.8)

det(M) = A3
x − 2Axτ2, χ = 3Ax − 4τ

A2
x − 2τ2 . (A.5.9)

the eigenfrequencies are obtained by solving det(M − λ1) = 0, resulting in

ω1−4 = iγ

2 ±
√
−γ2

4 + ω2
0 ±
√

2τ , (A.5.10)

ω5/6 = iγ

2 ±
√
−γ2

4 + ω2
0 . (A.5.11)



A.6. PERMITTIVITY OF BASIC HEXAGONAL SHAPES 79

For positive frequencies in the lossless, case using τ = 3ω2
0

4 leads to

ω1 =
√
ω2

0 +
√

2τ =
√

4 +
√

18
2 ω0, (A.5.12)

ω3 =
√
ω2

0 −
√

2τ =
√

4−
√

18
2 ω0 ∈ C, (A.5.13)

ω5 = ω0. (A.5.14)

Modifying the coupling matrix to allow coupling over long distances leads to

M =

Ax τ τ
τ Ax τ
τ τ Ax

 , X = Ex
Ax + 2τ

1
1
1

 , (A.5.15)

det(M) = A3
x − 3Axτ2 + 2τ3, χ = 1

Ax + 2τ . (A.5.16)

In this case the eigenfrequencies are

ω1/2 = iγ

2 ±
√
−γ2

4 + ω2
0 + 2τ , (A.5.17)

ω3−6 = iγ

2 ±
√
−γ2

4 + ω2
0 − τ . (A.5.18)

Again, we look at the positive frequencies in the lossless case and use the value
for τ that we obtained from the equations of two dipoles (τ = 3ω2

0
4 , see section

2.4). This leads to

ω1 =
√
ω2

0 + 2τ =
√

10ω0
2 , (A.5.19)

ω3 = ω5 =
√
ω2

0 − τ = ω0
2 . (A.5.20)

A.6 Permittivity of Basic Hexagonal Shapes

In this section, we derive the analytical equations for hexagonal shapes. This
can be used to predict the response of metamaterials.

Equation of Motion

The basic elements are described by linear equations obtained by Fourier trans-
formation of the equation of motion. With the same procedure that was used
in section 2.2 we get a system of coupled differential equations. We will reuse
the coupling parameter σ. Since the dipoles are no longer perpendicular, we
expect a different value for σhexagonal 6= σrectangular.
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As an example we examine the Fourier transformation of

ẍ1 + γxẋ1 + ω2
0xx1 + σξ2 + σζ3 = qx

m
Ex, (A.6.1)

ξ̈2 + γξ ξ̇2 + ω2
0ξξ2 + σx1 + σζ3 = qξ

m
Eξ, (A.6.2)

ζ̈3 + γζ ζ̇3 + ω2
0ζζ3 + σx1 + σξ2 = qζ

m
Eζ , (A.6.3)

which yields (
ω2

0x − ω2 + iγxω
)
x1 + σξ2 + σζ3 = qx

m
Ex, (A.6.4)(

ω2
0ξ − ω2 + iγξω

)
ξ2 + σx1 + σζ3 = qξ

m
Eξ, (A.6.5)(

ω2
0ζ − ω2 + iγζω

)
ζ3 + σx1 + σξ2 = qζ

m
Eζ . (A.6.6)

To further simplify these equations we introduce

Ax =
(
ω2

0x − ω2 + iγ
)
, (A.6.7)

Aξ =
(
ω2

0ξ − ω2 + iγ
)
, (A.6.8)

Aζ =
(
ω2

0ζ − ω2 + iγ
)

(A.6.9)

and write the equations in matrix formAx σ σ
σ Aξ σ
σ σ Aζ

x1
ξ2
ζ3

 = 1
m

qxExqξEξ
qζEζ

 . (A.6.10)

Single Dipole
The single dipole is the most basic case; using the notation introduced above,
it can be described by the equation

Axx = q

m
Ex, (A.6.11)

leading to the solution

χ = 1
Ax

. (A.6.12)

Two Dipoles
Two dipoles coupled as shown in figure 2.11 can be described by the following
equations (again in matrix form)(

Ax σ
σ Aξ

)(
x1
ξ2

)
= 1
m

(
qxEx
qξEξ

)
. (A.6.13)
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For simplicity, we omit the factor qi
m for the rest of this section. We obtain

the solution (
x1
ξ2

)
= 1
AxAξ − σ2

(
AξEx − σEξ
AxEξ − σEx

)
. (A.6.14)

We examine the two cases Ey = 0 and Ex = 0. The definition of ξ =
(x/2,

√
3y/2)T in (2.7.1) leads to Eξ = 1/2Ex and Eξ =

√
3/2Ey, respectively.

After introducing a2 = AxAξ − σ2, we obtain(
x1
ξ2

)
= 1
a2

(
Aξ − 1

2σ1
2Ax − σ

)
Ex, (A.6.15)(

x1
ξ2

)
= 1
a2

(
−
√

3
2 σ√

3
2 Ax

)
Ey. (A.6.16)

We substitute the vectors ξ and ζ and reintroduce qx and qξ

χxx = q2
x

a2

[(
Aξ −

σ

2

)
+
(
Ax
4 −

σ

2

)]
(A.6.17)

= q2
x

a2

(
Ax
4 +Aξ − σ

)
, (A.6.18)

χxy = qxqξ
a2

√
3

2

(
Ax
2 − σ

)
, (A.6.19)

χyx = qxqξ
a2

√
3

2

(
Aξ
2 − σ

)
, (A.6.20)

χyy =
q2
ξ

a2

3
4Ax. (A.6.21)

Assuming Ax = Aξ = A and qx = qξ = q leads to

χxx = q2

A2 − σ2

(
5
4A− σ

)
, (A.6.22)

χxy = χyx = q2

A2 − σ2

√
3

2

(
A

2 − σ
)
, (A.6.23)

χyy = q2

A2 − σ2
3
4A. (A.6.24)

We get the eigenvectors (
−1

1

)
,

(
1
1

)
, (A.6.25)

representing the cophasal and antiphasal modes of oscillation (see figure A.2).
The associated eigenvalues are(

A− σ
0

)
,

(
0

A+ σ

)
. (A.6.26)
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Figure A.2: The eigenmodes of two dipoles on a hexagonal grid. The arrows
show the direction of carrier movement, while the color indicate the sign relative
to the base vectors. Red stands for an oscillation, which is anti-parallel to the
base vector.

Remembering that A = ω2 − ω2
0 − iγω and solving for ω yields the eigen-

frequencies

ω1/2 = ω3/4 = iγ

2 ±
√
−γ

2

4 + ω2
0 + σ, (A.6.27)

(A.6.28)

Three Dipoles
Three dipoles are described by the equationsAx σ σ

σ Aξ −σ
σ −σ Aζ

x1
ξ2
ζ3

 =

ExEξ
Eζ

 , (A.6.29)

leading to the solutionx1
ξ2
ζ3

 = 1
a3

 (
AξAζ − σ2)Ex − (Aζσ + σ2)Eξ − (Aξσ + σ2)Eζ
−
(
Aζσ + σ2)Ex +

(
AxAζ − σ2)Eξ +

(
Axσ + σ2)Eζ

−
(
Aξσ + σ2)Ex +

(
Axσ + σ2)Eξ +

(
AxAξ − σ2)Eζ

 ,

(A.6.30)

with a3 = AxAξAζ −Axσ2 −Aξσ2 −Aζσ2 − 2σ3.
Assuming A = Ax = Aξ = Aζ , the solution (A.6.30) simplifies tox1
ξ2
ζ3

 = 1
a′3

 (
A2 − σ2)Ex − (Aσ + σ2)Eξ − (Aσ + σ2)Eζ
−
(
Aσ + σ2)Ex +

(
A2 − σ2)Eξ +

(
Aσ + σ2)Eζ

−
(
Aσ + σ2)Ex +

(
Aσ + σ2)Eξ +

(
A2 − σ2)Eζ

 , (A.6.31)

with a′3 = A3 − 3Aσ2 − 2σ3.
We substitute Eξ =

(
1/2Ex,

√
3/2Ey

)T and Eζ =
(

1/2Ex,−
√

3/2Ey
)T

x1
ξ2
ζ3

 = A2 −Aσ − 2σ2

A3 − 3Aσ2 − 2σ3

 Ex
1
2Ex +

√
3

2 Ey
1
2Ex −

√
3

2 Ey

 . (A.6.32)

The final step is to substitute ξ =
(

1/2x,
√

3/2y
)T and ζ =

(
1/2x,−

√
3/2y

)T
x = 3

2
A2 −Aσ − 2σ2

A3 − 3Aσ2 − 2σ3Ex, (A.6.33)

y = 3
2
A2 −Aσ − 2σ2

A3 − 3Aσ2 − 2σ3Ey. (A.6.34)
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Figure A.3: The eigenmodes of three hexagonal dipoles aligned in a star struc-
ture. The first one (left) has no resulting dipole moment. It can, therefore, not
radiate in the far field. Such a mode is called “dark”.

From the coupling matrix, we calculate the eigenvectors

 −1
1
1

 ,

 1
1
0

 ,

 1
0
1

 , (A.6.35)

eigenvalues

A− 2σ
0
0

 ,

 0
A+ σ

0

 ,

 0
0

A+ σ

 . (A.6.36)

They represent three different modes of oscillation: from the center to the
outside, from left to top right, from left to bottom right (see figure A.3).

Solving for ω yields the eigenfrequencies

ω1/2 = ω3/4 = iγ

2 ±
√
−γ

2

4 + ω2
0 + σ, (A.6.37)

ω5/6 = iγ

2 ±
√
−γ

2

4 + ω2
0 − 2σ, (A.6.38)

where ω1/2 belongs to the first, ω3/4 to the second and ω5/6 to the third eigen-
mode.

Hexagonal Ring

We solve the equation


Aξ −σ σ 0 0 0
−σ Aζ 0 0 σ 0
σ 0 Ax σ 0 0
0 0 σ Aζ 0 −σ
0 σ 0 0 Ax σ
0 0 0 −σ σ Aξ




ξ1
ζ2
x3
ζ4
x5
ξ6

 = 1
m


qξEξ
qζEζ
qxEx
qζEζ
qxEx
qξEξ

 . (A.6.39)
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Again, we omit the factor qi
m . With a6 = AxAζAξ−Aζσ2−2σ3−Axσ2−σ2Aξ,

we obtain the solution
ξ1
ζ2
x3
ζ4
x5
ξ6

 = 1
a6


AxσEζ +AxAζEξ + σ2Eζ − σ2Eξ − σ2Ex −AζσEx
AxAξEζ +AxσEξ −AξσEx − σ2Ex − σ2Eζ + σ2Eξ
−
(
AξσEζ + σ2Eξ + σ2Eζ +AζσEξ +AζAξEx + σ2Ex

)
AxAξEζ +AxσEξ −AξσEx − σ2Ex − σ2Eζ + σ2Eξ
−
(
AξσEζ + σ2Eξ + σ2Eζ +AζσEξ −AζAξEx + σ2Ex

)
AxσEζ +AxAζEξ + σ2Eζ − σ2Eξ − σ2Ex −AζσEx

 .

(A.6.40)

It is easy to see that x3 = x5, ξ1 = ξ6 and ζ2 = ζ4; we therefore writexξ
ζ

 = 2
a6

− [(AζAξ + σ2)Ex +
(
Aζσ + σ2)Eξ +

(
Aξσ + σ2)Eζ]

−
(
Aζσ + σ2)Ex +

(
AxAζ − σ2)Eξ +

(
Axσ + σ2)Eζ

−
(
Aξσ + σ2)Ex +

(
Axσ + σ2)Eξ +

(
AxAξ − σ2)Eζ

 .

(A.6.41)

We assume Ax = Aξ = Aζ = A, and with a6 simplified to A3−3Aσ2−2σ3 = a′6,
we obtain

xξ
ζ

 = 2
a′6

− [(A2 + σ2)Ex +
(
Aσ + σ2)Eξ +

(
Aσ + σ2)Eζ]

−
(
Aσ + σ2)Ex +

(
A2 − σ2)Eξ +

(
Aσ + σ2)Eζ

−
(
Aσ + σ2)Ex +

(
Aσ + σ2)Eξ +

(
A2 − σ2)Eζ

 . (A.6.42)

The next step is to substitute Eξ =
(
Ex/2,

√
3Ey/2

)T and Eζ =
(
Ex/2,−

√
3Ey/2

)T
xξ
ζ

 = 2
A3 − 3Aσ2 − 2σ3


(
−A2 −Aσ − 2σ2)Ex(

A2 −Aσ − 2σ2) ( 1
2Ex +

√
3

2 Ey

)
(
A2 −Aσ − 2σ2) ( 1

2Ex −
√

3
2 Ey

)
 (A.6.43)

and to resubstitute ξ =
(

1/2x,
√

3/2y
)T and ζ =

(
1/2x,−

√
3/2y

)T
x = 1

A3 − 3Aσ2 − 2σ3

(
−A2 − 3Aσ − 5

2σ
2
)
Ex, (A.6.44)

y = 3
A3 − 3Aσ2 − 2σ3

(
A2 −Aσ − 2σ2)Ey, (A.6.45)

which leads to

χxx = 1
A3 − 3Aσ2 − 2σ3

(
−A2 − 3Aσ − 5

2σ
2
)
, (A.6.46)

χxy = χyx = 0, (A.6.47)

χyy = 3
A3 − 3Aσ2 − 2σ3

(
A2 −Aσ − 2σ2) . (A.6.48)
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1 2 3 4 5 6

Figure A.4: The eigenmodes of the hexagonal ring. The first eigenmode has
no electric dipole moment. The current flow, however, represents a magnetic
mode. The second, fifth and sixth mode have no resulting dipole moment and
are dark in the far field. The third and fourth mode are the only ones that
possess an electrical dipole moment. They represent the same kind of carrier
movement, an oscillation along the sides of the ring.

The eigenvectors are:
−1

1
−1
−1

1
1

 ,


1
1
−1

1
−1

1

 ,


0
1
1
1
1
0

 ,


1
−1

0
−1

0
1

 ,


0
−1
−1

1
1
0

 ,


−1
−1

0
1
0
1

 . (A.6.49)

It is more instructive to visualize them, instead of trying to describe their
properties. This was done in figure A.4.

The eigenfunctions
A+ 2σ

0
0
0
0
0

 ,


0

A− 2σ
0
0
0
0

 ,


0
0

A+ σ
0
0
0

 ,


0
0
0

A+ σ
0
0

 ,


0
0
0
0

A− σ
0

 ,


0
0
0
0
0

A− σ

 ,

(A.6.50)

led to the eigenfrequencies

ω1−4 = iγ

2 ±
√
−γ

2

4 + ω2
0 − σ, (A.6.51)

ω5−8 = iγ

2 ±
√
−γ

2

4 + ω2
0 + σ, (A.6.52)

ω9/10 = iγ

2 ±
√
−γ

2

4 + ω2
0 + 2σ, (A.6.53)

ω11/12 = iγ

2 ±
√
−γ

2

4 + ω2
0 − 2σ. (A.6.54)





Appendix B

Selected Code Fragments

Some of the lines of code in this section are too long to fit on the page. These
lines contain additional line breaks that are not part of the code and marked
with ↵ (a carriage return symbol).

B.1 Calculating Transmission

Rectangular Grid Enumeration
This is the simplified MATLAB code that was used to calculate the transmis-
sion of an arbitrary grid placement. The original version also allowed the use
of symbolic computation.

The output of xyDipoleEquations, stored in partX and partY, is the near-
est neighbor coupling matrix, as explained in section 2.5.

The function epsilonForGridPlacement calculates εr of a given placement
vector. The placement vector, containing m rows and n columns, has length
l = mn. If a position in the m×n grid is occupied, the corresponding position
in the placement vector contains a 1; otherwise, it contains a 0. We used
a linear vector instead of a two-dimensional array so that we could use the
placement vector as the genome of a genetic algorithm. We therefore had to
apply some arithmetic conversions to access the nearest neighbors.

The function creates an (m×n)× (m×n) = l× l coupling matrix. At every
occupied position, the nearest neighbor coupling matrix (source) is copied into
it (couplings). After copying all the couplings into the matrix, the rows and
columns representing unoccupied edges are removed.

The simplified system of equations is then solved using the \ operator
(MRDIVIDE) and summed up.

87
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1 function [partX partY] = xyDipoleEquations(cols, Cx, Cy, Csigma, Ctau_x, Ctau_y)
2 %Generate the equations that describe the nearest neighbor coupling for
3 % dipoles in x and y direction.
4 % The resulting matrix is very similar to an adjacency matrix.
5 %
6 % PARAMETERS:
7 % cols is the number of columns in the matrix. The row above the current one
8 % is at -2*cols.
9 partX = zeros(cols,3*cols);

10 partY = zeros(cols,4*cols);
11 end;
12 for row = 1:cols
13 xcol = cols+row;
14 ycol = 2*cols+row;
15 partX(row, xcol) = Cx; %center
16 partX(row, xcol-cols) = -Csigma; %-m; yDipole above left;
17 partX(row, xcol+cols) = Csigma; %+m; yDipole below left;
18 partY(row, ycol) = Cy; %center
19 %-2*m; yDipole above = 2 grid rows above
20 partY(row, ycol-2*cols) = Ctau_y;
21 %+2*m; yDipole below = 2 grid rows below
22 partY(row, ycol+2*cols) = Ctau_y;
23 partY(row, ycol-cols) = Csigma; %-m; xDipole above right
24 partY(row, ycol+cols) = -Csigma; %-m; xDipole below right
25 if(row > 1) %exclude first col
26 partX(row, xcol-1) = Ctau_x; %xDipole left
27 %-m-1; xDipole above left
28 partY(row, ycol-cols-1) = -Csigma;
29 %+m-1; xDipole below left
30 partY(row, ycol+cols-1) = Csigma;
31 end;
32 if(row<cols) %exclude last col
33 partX(row, xcol+1) = Ctau_x; %xDipole right
34 %-m+1 yDipole above right
35 partX(row, xcol-cols+1) = Csigma;
36 %+m+1 yDipole below right
37 partX(row, xcol+cols+1) = -Csigma;
38 end;
39 end;
40 end
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1 function eps = epsilonForGridPlacement(placement, cols, isXPolarized, freq)
2 % Calculate epsilon from a placement vector.
3 % cols is the number of columns
4 % isXPolarized determines polarization (X=true, Y=false)
5 % params contains the model variables:
6 % [f0x gamma_x q_x f0y gamma_y q_y sigma thickness];
7
8 rows = floor(length(placement)/cols);
9 if cols*rows ~= length(placement)

10 display(’Parameters cols and rows do not match length of placement vector.’);
11 return;
12 end;
13 %initialize Variables
14 couplings = zeros(cols*rows);
15 eField = zeros(cols*rows,1);
16 Ex = 0;
17 Ey = 0;
18 if isXPolarized == 1 %calculate chi_{xx}
19 Ex = 1*params(3)^2;
20 else %calculate chi_{yy}
21 Ey = 1*params(6)^2;
22 end;
23 Ax = params(1)^2 - freq^2 -1i*params(2)*freq;
24 Ay = params(4)^2 - freq^2 -1i*params(5)*freq;
25 tau_x = -(0.75*params(1))^2;
26 tau_y = -(0.75*params(4))^2;
27 %%create coefficient matrix
28 [partX partY] = xyDipoleEquations(cols, Ax, Ay, params(7), tau_x, tau_y);
29 %outerColStartVal: position where in the outer Matrix m the first entry
30 % of the inner Matrix part[X|Y] should be stored, i.e. the column offset
31 % of the outer matrix to the inner matrix.
32 outerColStartVal = 1;
33
34 for row = 1:rows
35 %check if X or Y Dipole
36 if mod(row, 2) == 1 %odd, dipole in X direction
37 sourceData = partX;
38 outerColStartVal = outerColStartVal + 2*cols;
39 eField((row-1)*cols+1:row*cols) = Ex;
40 else %even, dipole in Y direction
41 sourceData = partY;
42 eField((row-1)*cols+1:row*cols) = Ey;
43 end;
44 [innerRows innerCols] = size(sourceData);
45 innerColStartVal = 1;
46 %special case for first two rows
47 if row == 1 || row==2
48 %row1 is a x row, remove sigma coupling to y row above
49 & (-m and -m+1)
50 %row2 is a y row, remove tau coupling to y row above (-2*m)
51 innerColStartVal = cols+1;
52 outerColStartVal = 0;
53 elseif row == 3
54 %the first time we only jump by cols instead of 2*cols
55 outerColStartVal = cols;
56 end;
57 %special cases for last two rows
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58 %second to last row is an y dipole
59 if row == rows-1 && mod(row, 2) == 0
60 %remove/skip coupling to missing y dipole below
61 innerCols = 3*cols;
62 if row == 1 || row == 2
63 %we alread start 1 col to the right --> add column
64 innerCols = 4*cols;
65 end;
66 end;
67 if row == rows %last row
68 if mod(row, 2) == 1 %odd, dipole in X direction
69 innerCols = 2*cols;
70 else %even, dipole in Y direction
71 innerCols = 3*cols;
72 end;
73 end;
74
75 %copy equations from source to couplings.
76 for innerRow = 1: innerRows
77 outerRow = (row-1)*cols+innerRow;
78 if placement(outerRow) == 0
79 eField(outerRow) = 0;
80 continue; %skip row if dipole is not present.
81 end;
82 for innerCol = innerColStartVal:innerCols
83 outerCol = outerColStartVal+innerCol-innerColStartVal+1;
84 if placement(outerCol) == 0 %skip couplings to empty rows
85 continue;
86 end;
87 couplings(outerRow, outerCol) = sourceData(innerRow, innerCol);
88 end;
89 end;
90 end;
91 %% remove empty rows/cols from Matrix
92 deletedRows = 0;
93 for row = 1:rows*cols
94 if placement(row) == 0
95 couplings(:,row-deletedRows) = [];
96 couplings(row-deletedRows,:) = [];
97 eField(row-deletedRows) = [];
98 deletedRows = deletedRows + 1;
99 end;

100 end;
101 eps = 1 + sum(couplings\eField); %epsilon = 1 + chi
102 end
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Hexagonal Grid Enumeration
For the hexagonal grid, we followed a slightly different approach. Instead
of copying a predefined nearest neighbor coupling matrix at the appropriate
places, we set the coupling coefficients manually, using a small helper function.

The index arithmetic used to access the nearest neighbors is visualized in
figure 2.14.

1 function coupling = setCoupling(coupling, placement, i, j, value)
2 % Set the coupling between "i" and "j" to "value".
3 %Check if i and j are valid indices and if there are dipoles at these positions.
4 if i < 1 || j < i || i > length(placement) || j > length(placement) || placement↵

(i) == 0 || placement(j) == 0
5 return;
6 end;
7 coupling(i,j) = value;
8 coupling(j,i) = value;

1 function eps = hexGridEpsilon(placement, unitCellsPerRow, fieldDirectionX, freq, ↵

params)
2 %hexGridEpsilon(5) - calculate epsilon for dipoles placed on a hexagonal grid.
3 % Epsilon is the relative dieelectric permittivity.
4 % Parameters:
5 % placement - a vector of bits that signify which grid positions are occupied.
6 % unitCellsPerRow - the number of unit cells per row. One unit cell consists
7 % of three dipoles.
8 % fieldDirectionX - true if the field is in x direction, otherwise a field
9 % in y direction is assumed.

10 % freq - the current frequency
11 % params - all other parameters
12 % params = [f0x gamma_x q_x f0y gamma_y q_y sigma thickness];
13
14 %define function setC to set the coupling coefficients
15 setC = @(coupling, i,j,val) setCoupling(coupling, placement, i,j, val);
16 Ax = params(1)^2 - freq^2 -1i*params(2)*freq;
17 Ay = params(4)^2 - freq^2 -1i*params(5)*freq;
18 tau = 0.75*params(1);
19
20 len = length(placement);
21 rowLength = unitCellsPerRow * 3;
22 coupling = zeros(len,len);
23 eField = zeros(len,1);
24
25 E1 = 0;
26 E2 = 0;
27 E3 = 0;
28 if fieldDirectionX == 1 %calculate eps_{xx}
29 E1 = 1*params(3)^2;
30 E2 = 0.5*params(3)^2;
31 E3 = -0.5*params(3)^2;
32 else %calculate eps_{yy}
33 E1 = 0
34 E2 = sqrt(3)/2*params(6)^2;
35 E3 = sqrt(3)/2*params(6)^2;
36 end;
37
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38 rows = len / (3*unitCellsPerRow);
39 index = 1;
40 row = 1;
41 col = 0;
42 sigma = params(7);
43 for index=1:len-2
44 col=col+1;
45 if(col > unitCellsPerRow) col=1; end;
46
47 %first one is "flat" -
48 if placement(index) ~= 0
49 eField(index) = E1;
50 coupling(index, index) = Ax;
51 coupling = setC(coupling, index, index+1, sigma);%right /
52 coupling = setC(coupling, index, index+2, -sigma);%right \
53 if mod(col, 2) == 1 %"low"
54 coupling = setC(coupling, index, index-1, -sigma);%left \
55 coupling = setC(coupling, index, index-rowLength-2, sigma); %left /
56 else %"high"
57 coupling = setC(coupling, index, index-rowLength-1, -sigma); %left \
58 coupling = setC(coupling, index, index-2, sigma);%left /
59 end;
60 end;
61
62 index = index + 1; %%next one is "up" /
63 if placement(index) ~= 0
64 eField(index) = E2;
65 coupling(index, index) = Ay;
66 coupling = setC(coupling, index, index-1, sigma);%lower left _

67 coupling = setC(coupling, index, index+1, tau);%lower left \
68 if mod(col, 2) == 1 %"low"
69 coupling = setC(coupling, index, index+2, sigma);%upper right _

70 else %"high"
71 coupling = setC(coupling, index, index-rowLength+2, sigma);%upper right _

72 end;
73 coupling = setC(coupling, index, index-rowLength+1, tau); %upper right \
74 end;
75
76 index = index + 1; %%next one is "down" \
77 if placement(index) ~= 0
78 eField(index) = E3;
79 coupling(index, index) = Ay;
80 coupling = setC(coupling, index, index-2, sigma);%upper left _

81 coupling = setC(coupling, index, index+1, tau);%upper left /
82 if mod(col, 2) == 1 %"low"
83 coupling = setC(coupling, index, index+rowLength+1, sigma); %lower right _

84 else %"high"
85 coupling = setC(coupling, index, index+1, sigma); %lower right _

86 end;
87 coupling = setC(coupling, index, index+rowLength-1, tau); %lower right /
88 end;
89 end;
90 deletedItems = 0;
91 for index = 1:len
92 if placement(index) == 0
93 coupling(:,index-deletedItems) = [];
94 coupling(index-deletedItems,:) = [];
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95 eField(index-deletedItems) = [];
96 deletedItems = deletedItems + 1;
97 end;
98 end;
99 eps = 1 + sum(coupling\eField);

100 end

B.2 Fit Calculation

The calculation of fits for different parameters was first implemented in MAT-
LAB. This implementation was used to verify the first couple of measurements.
The parameters of the model function were determined by minimizing the sum
of squared differences between the calculated fit and the measured data. The
minimization was done using the MATLAB function fminsearch that imple-
ments the Nelder-Mead simplex algorithm.

It soon became apparent that a more flexible solution would be useful. The
fit functions were therefore reimplemented in Python. One of the advantages
of this programming language are the powerful features for list manipulation.
Since the fits are lists (vectors of data points) this proved useful and allowed
for compact notation inside the code.

Following the principles of object oriented programming, the fit functions
were defined inside a class hierarchy. The textbook architecture would use an
abstract interface and one class for each fit function implementing it. Each fit
class would be registered at a central body that would dispatch the requests to
the fit functions. Since we only required a small set of fit functions, we omitted
the central registry and opted for a simpler solution.

All fit functions inherit from FitFunction. This class provides the method
curValue that calculates the fitValue for the given data point. The fit func-
tions were collected in the two classes (PetschulatModelFitFunction and
HexagonalFitFunction). The latter class inherits all methods of the former
and is used as the source of the fits. The type of fit function that is used is
determined by calling setShape.
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1 class TransmissionFitFunction:
2 def __init__(self):
3 self.coeffs = {}
4
5 def curValue(self, frequency):
6 """the current value of the fit"""
7 epsilon = self.calculateEpsilon(frequency)
8 return self._transmissionFromEpsilon(epsilon, frequency)
9

10 def setCoefficients(self, coefficients):
11 """set the coefficients of the fit.
12 coefficients is a dict. Valid Keys:
13 thickness - thickness of the material - results in phase factor
14 """
15 if ’thickness’ in coefficients:
16 self.coeffs[’thickness’] = coefficients[’thickness’]
17
18 def calculateEpsilon(self, frequency):
19 pass
20
21 def _transmissionFromEpsilon(self, epsilon, frequency):
22 """calculate the transmission of a material
23
24 frequency - the frequency in Hertz (omega=2*pi*f)
25 epsilon - scalar value of the electric permittivity
26 assumes mu=1! If this assumption is not valid the
27 formulas used probably need to be changed - in this case review them
28 See Principles of Optics, $1.6.3, (54)-(56),(60); p.65-66
29
30 This function is limited to a surface surrounded by air and an angle
31 of incidence of 90 degrees.
32 """
33 p1 = cmath.sqrt(epsilon)
34 beta = 2*math.pi*frequency*self.coeffs[’thickness’]*p1;
35 t_1_2 = 2.0/(1.0+p1);
36 t_2_3 = 2.0*p1/(p1+1.0);
37 r_1_2 = (1.0-p1)/(1.0+p1);
38 r_2_3 = (p1-1.0)/(p1+1.0);
39 t = t_1_2*t_2_3*cmath.exp(1j*beta) / (1.0 + r_1_2*r_2_3*cmath.exp(2j*beta));
40 return numpy.abs(t)
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1 class PetschulatModelFitFunction(TransmissionFitFunction):
2 """A Fit for a "petschulat like" model.
3
4 see Petschulat et.al, Phys Rev B 82, 075102 (2010) - Simple and
5 versatile analytical approach for planar metamaterials (5), (6)
6 """
7 AVAILABLE_SHAPES = [’C’, ’S’, ’L’]
8 AVAILABLE_POLARIZATIONS = [’X’, ’Y’]
9

10 def setCoefficients(self, coefficients):
11 """set the parameters of the fit.
12 Only sets the parameters that are given in coefficients, others are not ↵

changed
13
14 Coefficients (keys):
15 f0x - resonance frequency in x direction
16 gamma_x - dampening in x direction
17 q_x - charge in x direction
18 f0y - resonance frequency in y direction
19 gamma_y - dampening in y direction
20 q_y - charge in y direction
21 sigma - coupling strength between x and y direction
22 amplitude - eta/(m*epsilon_0) - only affects total amplitude.
23 e_vector - the direction of the e vector as a 3x1 vector
24 measurement_direction - direction in which the measurement is done
25 """
26
27 TransmissionFitFunction.setCoefficients(self, coefficients) #parent
28 for key, value in coefficients.iteritems():
29 self.coeffs[key] = value
30 #end of setCoefficients
31
32 def calculateChiC(self, a_x, a_y, q_x, q_y, amplitude, sigma):
33 #Petschulat et.al, (7)c
34 chi = numpy.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]], dtype=numpy.complex)
35 chi[0, 0] = (q_x**2 *amplitude *2) /a_x;
36 chi[1, 1] = (q_y**2 *amplitude *a_x) /(a_x*a_y- 2*sigma**2);
37 return chi
38
39 def calculateChiS(self, a_x, a_y, q_x, q_y, amplitude, sigma):
40 #Petschulat et.al, (11)
41 chi = numpy.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]], dtype=numpy.complex)
42 chi[0, 0] = (q_x**2 *amplitude) *(2*a_y/ (a_x*a_y-2*sigma**2))
43 chi[1, 1] = (q_y**2 *amplitude) *(a_x/ (a_x*a_y-2*sigma**2))
44 chi[0, 1] = (q_x*q_y*amplitude) *(2*sigma/ (a_x*a_y-2*sigma**2))
45 chi[1, 0] = chi[0, 1]
46 return chi
47
48 def calculateChiL(self, a_x, a_y, q_x, q_y, amplitude, sigma):
49 #Petschulat et.al, (14)
50 chi = numpy.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]], dtype=numpy.complex)
51 chi[0, 0] = (q_x**2 *amplitude) *(a_y/ (a_x*a_y-sigma**2))
52 chi[1, 1] = (q_y**2 *amplitude) *(a_x/ (a_x*a_y-sigma**2))
53 chi[0, 1] = (q_x*q_y *amplitude) *(sigma/ (a_x*a_y-sigma**2))
54 chi[1, 0] = chi[0, 1];
55 return chi
56
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57 def calculateEpsilon(self, frequency):
58 eye = numpy.array([[1,0,0],[0,1,0],[0,0,1]])
59 f0x = self.coeffs[’f0x’]
60 f0y = self.coeffs[’f0y’]
61 gamma_x = self.coeffs[’gamma_x’]
62 gamma_y = self.coeffs[’gamma_y’]
63 a_x = f0x*f0x-frequency*frequency-1j*frequency*gamma_x;
64 a_y = f0y*f0y-frequency*frequency-1j*frequency*gamma_y;
65
66 chi = self.calculateChi(a_x, a_y, self.coeffs[’q_x’], self.coeffs[’q_y’],
67 self.coeffs[’amplitude’], self.coeffs[’sigma’])
68 epsilon = eye + chi
69
70 direction_of_e_vector = self._normalize(self.coeffs[’e_vector’])
71 direction_of_measurement = self._normalize(self.coeffs[’measure_vector’])
72 eps = numpy.dot(numpy.dot(direction_of_measurement, epsilon), ↵

direction_of_e_vector)
73 return eps
74
75 def setShape(self, shape):
76 if type(shape) == str:
77 shape = self.AVAILABLE_SHAPES.index(shape)
78
79 self.shape = shape
80 if self.AVAILABLE_SHAPES[shape] == ’C’:
81 self.calculateChi = self.calculateChiC
82 elif self.AVAILABLE_SHAPES[shape] == ’S’:
83 self.calculateChi = self.calculateChiS
84 elif self.AVAILABLE_SHAPES[shape] == ’L’:
85 self.calculateChi = self.calculateChiL
86
87 def _normalize(self, vector):
88 norm = math.sqrt(sum([a*a for a in vector]))
89 return [a/norm for a in vector]
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1 class HexagonalFitFunction(PetschulatModelFitFunction):
2 AVAILABLE_SHAPES = PetschulatModelFitFunction.AVAILABLE_SHAPES + [’Single ↵

Dipole’, ’Hex Two arms’, ’Hex Star’, ’Hex Ring’]
3 def calculateChiSingleDipole(self, a_x, a_y, q_x, q_y, amplitude, sigma):
4 b = (a_x**2-sigma**2)
5 chi = numpy.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]], dtype=numpy.complex)
6 chi[0, 0] = (q_x**2 * amplitude)/a_x
7 chi[1, 1] = (q_y**2 * amplitude)/a_y
8 return chi
9 def calculateChiTwoArms(self, a_x, a_y, q_x, q_y, amplitude, sigma):

10 b = (a_x**2-sigma**2)
11 chi = numpy.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]], dtype=numpy.complex)
12 chi[0, 0] = (q_x**2 *amplitude) *((1.25*a_x-sigma)/ b)
13 chi[1, 1] = (q_x**2 *amplitude) *((numpy.sqrt(3)/2.0)*((a_x/2.0)-sigma)/ b)
14 chi[0, 1] = (q_x**2 *amplitude) *(0.75*a_x/ b) #(q^2/b) * 3/4 * A
15 chi[1, 0] = chi[0, 1]
16 return chi
17
18 def calculateChiStar(self, a_x, a_y, q_x, q_y, amplitude, sigma):
19 chi = numpy.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]], dtype=numpy.complex)
20 chi[0, 0] = 3.0*amplitude*(1.0*q_x**2*(0.5*a_x+sigma)) / (a_x**2 + a_x*sigma↵

-2.0*sigma**2)
21 chi[1, 1] = chi[0, 0]
22 return chi
23
24 def calculateChiHexRing(self, a_x, a_y, q_x, q_y, amplitude, sigma):
25 chi = numpy.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]], dtype=numpy.complex)
26 chi[0, 0] = (3.0*q_x**2*(a_x-2.0*sigma)) / (a_x**2-a_x*sigma-2.0*sigma**2)
27 chi[1, 1] = chi[0, 0]
28 return chi
29
30 def setShape(self, shape):
31 #[...]
32 if self.AVAILABLE_SHAPES[shape] == ’Single Dipole’:
33 self.calculateChi = self.calculateChiSingleDipole
34 elif self.AVAILABLE_SHAPES[shape] == ’Hex Two arms’:
35 self.calculateChi = self.calculateChiTwoArms
36 #[...]
37 else:
38 PetschulatModelFitFunction.setShape(self, shape)
39 #end setShape





Appendix C

Further Measurements

C.1 Measured Data

Most structures were measured several times. Since those measurements pro-
vided very similar data, only selected examples were included in the main part
of this thesis. In this section, we present a selected number of additional plots

Comparing measurements of the same structure done on different days, we
get an idea about their reproducibility (see figure C.1). While peak positions
did not change between measurements the depth and width of peaks did change
significantly. We identified several reasons for this:

• Differences in the output power of the primary laser

• Changes in the alignment of our setup (due to temperature fluctuations
and sample mounting)

• Variations in the humidity in the terahertz path (depending on the flow
rate and duration of the purge and fluctuations in the water content of
our dry air supply).

99
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Figure C.1: Measurements of the same structures (8060 L, X Polarization) on
three different days. While the depth of the resonances varies, the position
shows almost no change.
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101012_07_SLC8070_S_90deg.dat smoothed
Fit for S X (f0x=0.6 THz,f0y=0.6 THz,γy =0.14,σrel=0.45)
101012_10_SLC8070_L_90deg.dat smoothed
Fit for L X (f0x=0.6 THz,f0y=0.6 THz,γy =0.14,σrel=0.45)

(a) f0x = 0.60 THz, σ = 0.45
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Fit for C Y (f0x=0.65 THz,f0y=0.55 THz,γy =0.14,σrel=0.5)
101012_06_SLC8070_S_0deg.dat smoothed
Fit for S Y (f0x=0.65 THz,f0y=0.55 THz,γy =0.14,σrel=0.5)
101012_09_SLC8070_L_0deg.dat smoothed
Fit for L Y (f0x=0.65 THz,f0y=0.55 THz,γy =0.14,σrel=0.5)

(b) f0x = 0.65 THz, σ = 0.5

Figure C.2: Comparison of fits for two different x resonance frequencies (f0x)
for SLC8070 in X polarization. The higher frequency yields a slightly better
fit, although the difference is less clear than that between figures 3.7a and 3.7b.
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Figure C.3: Comparison of fits for two different x resonance frequencies (f0x)
for SLC8070 in Y polarization. The higher frequency yields a slightly better
fit, although the difference is less clear than that between figures 3.8a and 3.8b.
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Figure C.4: SLC80100+ C structures with lengths of 100 µm, 120 µm and
160 µm.



104 APPENDIX C. FURTHER MEASUREMENTS

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency [THz]

0.0

0.5

1.0

1.5

2.0

2.5

In
te

ns
ity

110627_02_reference_holder.dat
110627_03_hexa01_twoArms_0deg.dat
110627_06_hexa02_star_0deg.dat
110627_09_hexa03_ring_0deg.dat

Figure C.5: Hexagonal structures. The transmission data of the reference is
lower than that of the structures, indicating a problem during the measure-
ment. We would usually retry this measurement, but the experimental setup
is unavailable for the foreseeable future.
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Figure C.6: CSL6080, L structure.

C.2 Images

In addition to the C structure shown in figure 3.2 we present microscope images
of the other two structures (L and S). Note that the size of each structure is
different. In order to provide an idea of their scale, we included a picture of
one sample (SLC8080).
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Figure C.7: CSL8080, S structure.
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(a) Sample

(b) Detail

Figure C.8: Sample CSL8080. All samples consist of four fields. Here, they
contain C (top left), S (top right) and L (bottom left) structures as well as
an empty reference field (bottom right) inside a patch of gold on a gallium
arsenide substrate. The detail (below) shows the top right field, which contains
S structures. The same structures are also shown in the microscope image in
figure C.7.



A
ctum

est,
com
ites!


	Introduction
	Motivation
	Methodology
	Structure of the Thesis
	The Terahertz Frequency Range
	Metamaterials
	Mathematical Methods

	Analytical Model
	Introduction
	Basic Model
	Parameter Dependence of Transmission
	Longitudinal Coupling
	Transmission of Arbitrary Structures
	Metamaterial Design Using a Genetic Algorithm
	Hexagonal Structures

	Measurements
	Experimental Setup
	CLS Measurements
	Structures Containing Gaps
	Summary of Results
	Plots
	Software

	Conclusion
	Strengths and Weaknesses of the Coupled Dipole Model
	Behavior of Grid Based Metamaterials
	Further Work

	Bibliography
	Additional Equations
	Fourier Transform of Differential Equations
	Electric Permittivity
	Tailor Expansion of the Dipole Interaction
	Coupling Matrices for Petschulat Shapes
	Longitudinally Coupled Dipoles
	Permittivity of Basic Hexagonal Shapes

	Selected Code Fragments
	Calculating Transmission
	Fit Calculation

	Further Measurements
	Measured Data
	Images


