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Kurzfassung

Abstract argumentation frameworks, eingeführt von Dung in 1995, stellen einen der am
weitesten verbreiten Formalismen zur Modellierung von Argumentationsprozessen im
Bereich der künstlichen Intelligenz dar. Ein solches Framework modelliert den Argumenta-
tionsprozess als gerichteten Graphen, wobei die Knoten die Argumente repräsentieren und
dessen gerichteten Kanten Attacken zwischen diesen Argumenten darstellen, während der
innere Aufbau der Argumente abstrahiert wird. Als Extensionen bezüglich einer Semantik
werden jene kohärenten Mengen an Argumenten bezeichnet, die bestimmte Eigenschaften
erfüllen und zusammen akzeptiert werden. Nachdem daher das Framework aus einer
Wissensbasis konstruiert wurde, hängt es nur noch von dieser abstrakten Struktur ab,
welche Extensionen das Framework, bezüglich einer Semantik, besitzt. Wir betrachten
im Folgenden zwei Generalisierungen solcher abstract argumentation frameworks.

Die erste Generalisierung die wir betrachten, abstract argumentation frameworks with
collective attacks, erlaubt Attacken von Mengen von Argumenten auf Argumente. Dies
ermöglicht es, Situationen auf eine sehr natürliche Art und Weise zu modellieren, in der
eine Menge von Argumenten ein anderes Argument widerlegt, während jedes dieser Argu-
mente einzeln dazu nicht im Stande wäre. Im Weiteren ermöglicht die zweite betrachtete
Generalisierung, claim augmented abstract argumentation frameworks, Argumente mit
claims zu augmentieren. Diese Augmentation ermöglicht es, die Extensionen anstelle von
Argumenten in claims auszudrücken, welche von mehreren Argumenten geteilt werden
können, wodurch auch die Abstraktion gelockert wird.

Im Fokus des ersten Teils der Arbeit steht die Komplexitätsanalyse dieser zwei Generali-
sierungen. Wir betrachten fünf Entscheidungsprobleme für diverse Semantiken für beide
Typen von Frameworks und verorten sie in der Polynomialzeithierarchie.

Der zweite Teil dieser Arbeit ist der effizienten Berechnung der Extensionen solcher
Frameworks gewidmet. Wir nutzen den weitverbreiteten Formalismus der Answer-Set
Programmierung und präsentieren Kodierungen für diverse Semantiken, wobei wir für
manche Semantiken unterschiedliche Möglichkeiten der Kodierung betrachten.

Abschließend befasst sich der dritte und letzte Teil mit den durchgeführten Experimenten.
Wir präsentieren die gesammelten Daten und diskutieren die Resultate sowie die daraus
gezogenen Schlüsse.
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Abstract

Abstract argumentation frameworks, as proposed by Dung in 1995, constitute one of the
most widely used formalisms to model argumentation processes in the field of artificial
intelligence. An abstract argumentation framework models an argumentation process as a
directed graph, representing arguments as vertices and attacks between those arguments
as directed arcs between the respective vertices, abstracting away the inner structure of
the arguments. Furthermore, the coherent sets of arguments that are jointly acceptable
under a given semantics, satisfying certain properties, are commonly called extensions.
Thus, after the argumentation frameworks has been constructed from a knowledge base,
the set of extensions under a given semantics will be solely determined by this abstract
structure. In the following, we consider two generalizations of such abstract argumentation
frameworks.

The first generalization that we consider, abstract argumentation frameworks with collec-
tive attacks, allows for attacks to be between sets of arguments and arguments, enabling a
natural way of modeling that a set of arguments might defeat another argument if consid-
ered together which, in general, is not the case if viewed individually. Furthermore, the
second considered generalization, claim augmented abstract argumentation frameworks,
introduces the augmentation of arguments using claims. Such augmented frameworks
allow for an intuitive way of expressing the extension in terms of claims, that might be
shared across multiple arguments, relaxing the abstraction to some extent.

In the first part of the thesis, we focus on the computational complexity of these
generalizations. To this end, we consider five common decision problems as well as
various semantics for both types of argumentation frameworks and locate their position
on the polynomial hierarchy.

The second part of the thesis is devoted to the efficient computation of the extension of
such argumentation frameworks. To achieve this, we make use of the well-established
formalism of answer-set programming and give encodings for the various semantics,
considering multiple approaches where applicable.

Finally, the third part is dedicated to the conducted experiments. We present our results
and the acquired data and discuss our findings and the drawn conclusions.

xiii
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CHAPTER 1
Introduction

The process of argumentation is one the most frequent types of communication between
humans. Therefore, it seems natural to utilize the advances in artificial intelligence to
assist us in this process.

1.1 Argumentation in artificial intelligence

Informally, ”the study of argumentation may [...] be considered as concerned with how
assertions are proposed, discussed, and resolved in the context of issues upon which several
diverging opinions may be held” [BD07]. Argumentation has been enjoying increasing
interests as core study within the field of artificial intelligence since the 1990s, including
areas as defeasible reasoning, multi-agent systems and legal argumentation [vEGK+14].
As a non-monotonic formalism, its use-cases range from single-agent systems, evaluating
their own knowledge base and trying to draw conclusions, to situations in which multiple
agents argue over some common field of interest.

The argumentation process typically consists of multiple steps, usually starting with
either some knowledge base or some document in natural language. If a knowledge
base serves as starting point, one might construct the arguments and conflicts using
classical logical [GH11]. In case of a document, the argument and conflicts might be
constructed using argumentation mining. Such a mining process can, for example, leverage
natural language processing to identify the arguments within a document as well as their
internal structure and interactions between them [PM11]. Next, especially in abstract
argumentation frameworks, one might abstract away from the internal structure of the
arguments and use the obtained framework to identify coherent sets of arguments that are
jointly accepted under some semantics and draw conclusions. This step is the main focus
of this thesis, especially how to compute such sets of arguments and the computational
costs associated in doing so. Finally, the extensions have to be reinterpreted in terms of
the original knowledge base or document.
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1. Introduction

Abstract argumentation frameworks

A Dung abstract argumentation framework, as introduced by Dung in 1995 [Dun95], can
be represented by a directed graph in which the vertices represent arguments, while the
directed edges model the conflicts between them. Such a framework is referred to as
”abstract”, as it makes no assertion regarding the internal structure of the arguments.
Furthermore, we consider two generalizations of such Dung abstract argumentation
frameworks, which extend the definition of such frameworks.

The first generalization that we consider, abstract argumentation frameworks with
collective attacks [NP06b], allows for attacks to be between sets of arguments and
arguments, enabling a natural way of modeling that a set of arguments might defeat
another argument if considered together which, in general, is not the case if viewed
individually. Thus, such abstract argumentation frameworks with collective attacks
differ from Dung abstract argumentation frameworks in terms of their attack relation.
Furthermore, abstract argumentation frameworks with collective attacks have recently
regained interest as topic of research [Pol17, DFW18, YVC18, FB19].

Moreover, claim augmented abstract argumentation frameworks [DW19], the second
considered generalization, introduce the augmentation of arguments using claims. Thus,
in addition to Dung abstract argumentation frameworks, each argument will be associated
a claim, reflecting its inner structure. Such augmented frameworks allow for an intuitive
way of expressing the extension in terms of claims, that might be shared across multiple
arguments, relaxing the abstraction to some extent. Therefore, this process is closer to
the pipeline mentioned previously and the resulting claims have to be reinterpreted in
term of the original context from which they have been constructed. Recently, claim
augmented abstract argumentation frameworks have attracted attention in use cases for
which the less abstract handle is beneficial [BGR16, BGLR16, DW19].

One of the most fundamental problems for such argumentation systems is to determine
which sets of arguments are considered to be the coherent sets of arguments that are jointly
acceptable under some semantic for a given argumentation framework, often referred
to as ”extensions”. Various semantics have been proposed in the literature [Dun95,
BCG11, BDG11, Cam07, DDW13]. One common approach to solve such problems
is to reduce the solving process to already well studied problems and use existing
solving techniques to efficiently solve the novel problem. Thus, different formalisms
have been studied to evaluate their suitability for the computation of extensions of
Dung abstract argumentation frameworks. Most prominently, these include SAT-solving
[BD04], QBF-solving [EW06], CSP-solving [AD13] as well as ASP-solving [EGW08].
Highly efficient solvers exist for the latter and the paradigm is well suited to encode
argumentation frameworks, thus answer-set programming is the approach that we focus on.
Furthermore, there exists a surprising relation between a class of claim augmented abstract
argumentation frameworks and abstract argumentation frameworks with collective attacks.
For some semantics, these coincide in term of their extensions and thus, the ASP encodings
for one of them can be used to compute the extensions of the other.
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1.2. Main contributions

1.2 Main contributions

Answer-set programming encodings already exist for Dung abstract argumentation frame-
works [EGW08]. However, such encodings are still missing for abstract argumentation
frameworks with collective attacks and claim augmented abstract argumentation frame-
works. To ensure that answer-set programming is also a suitable for those generalizations,
additional complexity analysis is required. Thus, we provide complexity results for
abstract argumentation frameworks with collective attacks and complement the known
complexity results for claim augmented abstract argumentation frameworks to cover all
the semantics that we consider. Furthermore, we then provide answer-set programming
encodings to enumerate the extensions of abstract argumentation frameworks with col-
lective attacks and claim augmented abstract argumentation frameworks, considering
multiple approaches where applicable.

1.3 Structure of the thesis

This thesis is divided into seven chapters, starting this with introduction as Chapter 1,
followed by

• Chapter 2, formal background. In this section, we will introduce the notations and
concepts required for the subsequent chapters. We will start with the basics of
complexity theory in Section 2.1, followed by Section 2.2 introducing the syntax
and semantics of answer-set programming and some extensions required. Finally,
in Section 2.3, we will formally define argumentation frameworks as well as the
considered semantics and decision problems. Moreover, this section will generalize
the definitions for Dung abstract argumentation frameworks to also cover abstract
argumentation frameworks with collective attacks and claim augmented abstract
argumentation frameworks.

• Novel complexity results for the five decision problems introduced in Chapter 2 will
be given in Chapter 3. In Section 3.1, we will present our results for abstract argu-
mentation frameworks with collective attacks, while Section 3.2 will be dedicated
to the results for claim augmented abstract argumentation frameworks.

• In Chapter 4, we will present our answer-set programming encodings to compute
the extensions of abstract argumentation frameworks with collective attacks in
Section 4.1 and claim augmented abstract argumentation frameworks in Section
4.2. Furthermore, for some encodings for claim augmented abstract argumentation
frameworks, we will provide more than one encoding, utilizing different approaches.

• The conducted experiments and the gathered data will be presented in Chapter 5.
Furthermore, in Section 5.1, we will outline how and which test case were selected
for our experiments and present our algorithms used to modify the selected in-
stances to obtain (well-formed) claim augmented abstract argumentation framework
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1. Introduction

instances. The experiments in Section 5.2 will be dedicated to non well-formed
claim augmented abstract argumentation frameworks, while the Sections 5.3 and 5.4
will present our findings for well-formed claim augmented abstract argumentation
frameworks. Moreover, in Section 5.5, we will present our results for the conversion
from well-formed claim augmented abstract argumentation frameworks to abstract
argumentation frameworks with collective attacks.

• Finally, in Chapter 6, we will summarize our results and conclude this thesis.

1.4 Published results and systems

The complexity results and encodings for abstract argumentation frameworks with collec-
tive attacks have already been published [DGW18] with slightly different notation and
have been presented at the SAFA 20181 workshop. Furthermore, the encodings have been
included in the ASPARTIX system and are available at https://www.dbai.tuwien.
ac.at/research/argumentation/aspartix/setaf.html and https://www.

dbai.tuwien.ac.at/research/argumentation/aspartix/caf.html.

1https://safa2018.argumentationcompetition.org
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CHAPTER 2
Formal Background

Within this chapter, we will introduce the basic concepts and formalisms used within the
subsequent chapters. More specifically, in Section 2.1, we will give the basic notations of
complexity theory and introduce some of the required concepts and complexity classes.
Section 2.2 will illustrate the syntax and semantics of answer-set programs as well as
the syntactic extensions and employed programming techniques. Finally, in Section
2.3, we will introduce the basic definitions of argumentation frameworks, starting with
Dung’s abstract argumentation frameworks, followed by two generalizations, namely
abstract argumentation frameworks with collective attacks and claim augmented abstract
argumentation frameworks.

2.1 Complexity theory

In this section, we will introduce the basic notation required for the complexity results
presented in subsequent parts of this thesis. One of the most central concepts of complexity
theory will be a computational model commonly referred to as Turing machine, proposed
by Alan Turing in 1937 [Tur37]. We will omit a formal definition of the Turing machine
and refer to [AB09] for a more in-depth discussion of the concepts introduced in this
section. Basically, a Turing Machine consists of a read/write head and an infinitely long
tape divided into cells, each containing either a symbol or being blank. Thus, a program
for such a Turing machine modifies the content of those cells and moves the read/write
head based on the read input and the current internal state of the machine.

The complexity classes we will introduce in this section are classes of decision problems, i.e.
problems that can be answered either by ”yes” or ”no”. An algorithm for such a decision
problem thus categorizes instances of that problem into ”yes”-instances, possessing some
set of properties and ”no”-instances, lacking those properties.
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2. Formal Background

Typically, one is most interested in the time- and space complexity of an algorithm. To
this end, the big-O notation is used to categorize the asymptotic, worst case complexity
of an algorithm such that for a function f , every instance of the considered problem
can be answered in space- or time O(f(n)), where n denotes the size of the instance.
Formally, f(n) = O(g(n)) if there are positive integers c and n0, such that for all n ≥ no,
f(n) ≤ c · g(n). Using this notation, one can define the three complexity classes that will
be most relevant in the scope of thesis, namely P, NP, and ΣP

2 .

The complexity class P consists of all decision problems P such that there is a deterministic
Turing machine TM that, for all instances I of P, gives the correct result and runs in
time O(|I|k) for some constant k, where |I| is the size of I. Furthermore, the class NP is
defined analogously for non-deterministic Turing machines.

Before introducing the last of the three before mentioned classes, we introduce two more
concepts, namely oracle augmented Turing machines and reductions. An oracle augmented
Turing machine has an additional oracle band and additional transition operations that
allow for constant-time testing of membership in the language of some decision problem.
Once again, we refer to [AB09] for a more detailed definition. Furthermore, we will focus
on polynomial-time many-one reductions, sometimes referred to as ”Karp reductions”. A
decision problem P is polynomial-time many-one reducible, usually denoted by P ≤p Q,
if there is a polynomial time computable function f such that x is a ”yes”-instance of P
if and only if f(x) is a ”yes”-instance of Q. For the rest of this thesis, we will refer to
”polynomial-time many-one reduction” simply as reduction.

Furthermore, we will call a decision problem P to be hard for a complexity class C if for
any problem Q in C it holds that Q ≤p P and we will call P complete for C, denoted by
C-c, if P is in C and P is C-hard. Furthermore, to show that a new problem is C-hard,
due to transitivity of reductions, it is sufficient to reduce a problem known to be C-hard
to the new problem.

Using this definitions, we can introduce the polynomial hierarchy, which consists of three
families of complexity classes ∆P

ℓ , ΣP

ℓ and ΠP

ℓ , where 0 ≤ ℓ, defined as follows:

• P = ΣP
0 = ΠP

0 = ∆P
0 ,

• ΣP

ℓ = NP
Σ
ℓ−1,

• ΠP

ℓ = coΣP

ℓ and

• ∆P

ℓ = P
Σ

P

ℓ−1

for ℓ ≥ 1, where the notation CD refers to the set of decision problems solvable by a
Turing machine of class C, augmented with an oracle for some D-complete problem. This
concept refers to the idea of relative computability. The relation between these classes is
illustrated in Figure 2.1.
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2.2. Answer-set programming

P = ∆P
1

NP = ΣP
1 coNP = ΠP

1

∆P
2

ΣP
2 ΠP

2

∆P
3

ΣP
3 ΠP

3

PSPACE

Figure 2.1: The polynomial hierarchy

2.2 Answer-set programming

Answer-set programming (ASP) [BET11] is a declarative problem-solving approach based
on the stable model semantics proposed by Gelfond and Lifschitz in 1988 [GL88]. The
term ”answer-set programming” was coined by Lifschitz in 1999 [Lif99] and proposed by
others at around the same time [MT99]. Due to its relation to the logic programming
paradigm, answer-set programming makes use of concepts of formal logic, such as non-
monotonic reasoning, and focuses on describing a problem and its solution instead of the
flow control, as in imperative programming languages.

Despite its similarities to Boolean satisfiability (SAT), some answer-set solvers, such
as ASSAT1, even make use of SAT solvers to solve answer-set programs, answer-set
programming offers some features that distinguish itself from SAT. Most notably, these
include the use of grounding to allow the use of variables, as well as model minimality due
to foundedness check, the negation-as-failure operator and the use of transitive closure.
Moreover, answer-set programming has been designed to be ”purely” declarative, in the
sense that the order of rules within a program and the order of sub-goals within a rule

1http://assat.cs.ust.hk/

7

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


2. Formal Background

do not matter. Moreover, termination of an answer-set program is less of a key-point as
it is in other logic programming formalisms such as prolog, enabling the user to focus
on specifying the problem and its solutions without the need to know the precise inner
workings of the employed solver.

Due to its expressiveness and the existence of efficient solvers such as DLV 2 and clasp3,
answer-set programming has experienced increasing popularity as problem-solving for-
malism. Therefore, answer-set programming has been employed for various use-cases,
including planning [TB01], diagnosis [BG03], argumentation [EGW08], the semantic web
[Pol05] and natural language processing [EGL16] and was used as part of the decision
support system for the space shuttle [NBG+01]. Moreover, competitions are held regularly
to evaluate the performance of competing answer-set solvers [GMR19].

2.2.1 Syntax

In order to define the syntax of answer-set programs, we assume some first-order vocabulary
Φ = (C,V,F ,P) with non-empty finite sets C of constant symbols, V of variables, F
function symbols and P predicate symbols. Function symbols as well as predicate symbols
have an associated arity n ≥ 0. By convention, we will denote constant symbols by
integers or identifiers starting with lowercase letters, while variables will start with
uppercase letters.

A term is either a variable, constant symbol or inductively built from terms using function
symbols. An atom is an expression of the form p(t1, . . . , tn) where

• p ∈ P with arity n and

• t1, . . . , tn are terms.

An atom or a term is referred to as ground if it contains no variables. Furthermore, an
answer-set program ΠΦ, with regard to some vocabulary Φ, is a set of rules of the form

r = a1 | . . . | an :- b1, . . . bl, not bl+1, . . . , not bm.

with {a1, . . . , an, b1, . . . , bm} literals from Φ. The expression ”not” is called the negation-
as-failure operator and refers to default negation. Moreover, the set {a1, . . . , an} is
referred to as the head H(r) of a rule r, while {b1, . . . , bl} is called the positive body B+(r)
and {bl+1, . . . , bm} is called the negative body B−(r), with the union B(r) = B+(r)∪B−(r)
of both constituting the body of the rule r. Finally, a rule is called a fact, if m = 0.

2http://www.dlvsystem.com/
3https://potassco.org/
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2.2. Answer-set programming

2.2.2 Semantic

In order to define the semantics of an answer-set program ΠΦ, we first have to define
some auxiliary concepts. The Herbrand universe HU(ΠΦ) of a program ΠΦ is the set of
all ground terms of ΠΦ constructible using the function and constant symbols from F in
Φ. Furthermore, the Herbrand base HB(ΠΦ) of a program ΠΦ is the set of all ground
atoms constructible using the predicate symbols from P in Φ and terms from HU(ΠΦ).

A first order interpretation IΦ = (D, ·′), with regard to some first-order vocabulary Φ, is
a pair where

• D is a non-empty domain and

• ·′ is an interpretation function assigning

– some c′ ∈ D to each constant symbol c ∈ C of Φ,

– some X ′ ∈ D to each free variable X and

– some subset p′ ⊆ Dn for each n-ary predicate symbol p ∈ P in Φ.

If not stated otherwise, we will implicitly use a Herbrand interpretation of a program ΠΦ

where D = HU(ΠΦ) and t′ = t for each term t ∈ HU(ΦΨ). Moreover, an interpretation
IΦ = (D, ·′) satisfies

• an n-ary ground atom p(t1, . . . , tn), denoted by IΦ |= p(t1, . . . , tn), if (t1, . . . , tn) ∈
p′,

• an n-ary ground default negated atom not p(t1, . . . , tn), denoted by IΦ |= not
p(t1, . . . , tn), if (t1, . . . , tn) 6∈ p′,

• a ground rule r, denoted by IΦ |= r, if

– IΦ |= a for some a ∈ H(r) or

– IΦ 6|= a for some a ∈ B+(r) or

– IΦ |= a for some a ∈ B−(r).

• a program ΠΦ, denoted by IΦ |= ΠΦ, if IΦ |= r for all rules r ∈ ΠΦ. Such an
interpretation is called a model of ΠΦ.

The central concept for the semantics of answer-set programs is the Gelfond-Lifschitz
(GL-) reduct. The GL-reduct ΠΦ

IΦ of a ground program ΠΦ, with regard to an interpre-
tation IΦ, is the program

{H(r) :- B+(r). | r ∈ ΠΦ such that IΦ 6|= a for all literals a ∈ B−(r)}
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2. Formal Background

To deal with possibly non-ground programs, the concept of grounding is used to define
which interpretations of such a programs are considered to be answer-sets.. Thus, by
groundHU(ΠΦ)(x), we denote the set of all possible instances of x, where all variables are
instantiated with all constants from HU(ΠΦ) for each atom, rule or program x. Using
this notation, we define an interpretation IΦ of a program ΠΦ to be an answer-set of ΠΦ

if and only if it is a subset-minimal model of groundHU(ΠΦ)(ΠΦ)IΦ .

Moreover, in order to guarantee some bounds of the solving in practice, we will introduce
the concept of rule safety. A rule r is called safe, if all of the variables that occur
within the rule also occur in the positive body B+(r) of the rule. Furthermore, an
answer-set program is called safe, if all its rules are safe. A safe program only has finitely
many models that are all finite. Thus, program safety guarantees termination for model
computation. For the rest of this thesis, we will only consider safe programs.

Furthermore, rules with an empty head are referred to as constraints. Such a rule will
eliminate all answer-sets candidates that satisfy the body of the rule. A constraint rule

:- B.

is the short-hand notation for a rule

p :- B, not p.

where B is the body of the rule without p and p does not occur elsewhere in the program.

2.2.3 Syntactic extensions and programming techniques

The ”basic” syntax and semantics of answer-set programs defined in the previous sub-
sections cover all constructs required for the answer-set encodings provided within this
thesis, with three exceptions that we will define here. Modern answer-set solvers and their
respective grounders support various extensions of the basic syntax defined so far, most
of them focusing on easing the use of the solver without increasing the expressiveness,
while some do [EIST05]. We will employ four such features, namely anonymous variables,
suppression of irrelevant atoms, model projection and conditional literals.

Anonymous variables can be used to increase readability, if a variable within a rule is
just used as a placeholder without actually requiring its value. Thus, a rule

p(A) :- q(A, B).

is equivalent to a rule

p(A) :- q(A, _).
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2.2. Answer-set programming

Suppression of irrelevant atoms can be used to output only the interesting atoms,
suppressing atoms that belong to the input or that are only required to compute those
atoms that we are interested in. The syntax we will use is the one the solver ”clasp” uses,
thus we will add rules of the form

#show p/n.

to state that the atoms over the n-ary predicate p should occur within the output. If
one such rule is given, all atoms that do not match such are rule will be suppressed.
However, if there are multiple answer-sets that only differ in atoms that are suppressed,
the output will still contain sets of literals for each such answer-set, which will then be
identical. To prevent this, we can use the model projection feature to ensure that we
will receive unique sets of literals as output. This feature can be used to project the
answer-set to sets of literals that are unique over predicates stated in the show-directives.
Model projection can also be taken into account within the solving algorithm, instead
of ensuring the uniqueness as a post-processing step after solving, which can be more
efficient [GKS09]. Using both features, it is possible to guarantee unique sets of literals
over the predicate p as output.

Furthermore, conditional literals can be used as the last literal in the body of a rule or
within the head of a rule. A rule with a conditional literal in the body has the form

H :- B, p : q1, . . . , qn.

where H is the head of the rule, B is the body of the rule without the conditional literal
and p : q1, . . . , qn being the conditional literal with {p, q1, . . . , qn} being literals. For a
given interpretation I, such a rule can be rewritten into a rule

H :- B, p1, . . . , pk.

where all pl are instantiation of p where all variables in pl, q1, . . . , qn are replaced by
ground terms such that I |= q1, . . . , qn.

Conditional body literals can be very useful for expressing a conjunction over arbitrarily
many ground atoms in the body of a rule, especially if the number of such literals is not
known at the time of modeling. In contrast to these, conditional head literals express a
disjunction within the head of a rule. A rule with a conditional literal in the head has
the form:

H | p : q1, . . . , qn :- B.

where H is the head of the rule without the conditional literal, B is the body of the rule
and p : q1, . . . , qn being the conditional literal with {p, q1, . . . , qn} being literals. For a
given interpretation I, such a rule can be rewritten into a rule
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2. Formal Background

H | p1 | . . . | pn :- B.

where all pl are instantiations of p where all variables in pl, q1, . . . , qn are replaced by
ground terms such that I |= q1, . . . , qn. Moreover, conditional head literals can be used
in conjunction with guards, to infer more than one such literal. The rules we will use will
be of the form

{p : q} > 0 :- B.

stating that an arbitrary, non-zero number of such instantiation of p might be inferred.

Besides of those features, there are two common modeling techniques that we will use
and thus want to introduce, starting with the guess-and-check paradigm [Lif02, calling it
generate/define/test]. The idea is to split the program into two parts: one that spans
the entire search space and one that eliminates all illegal solutions. Often times, an
additional part is added to hold the facts that specify a specific instance. Consider the
following example encoding for the vertex coloring problem:

Πinput =















vertex(a). vertex(b). vertex(c).

edge(a, b). edge(b, c). edge(c, a).

color(green). color(red). color(blue).

Πguess =
{

coloring(V, C) : color(C) :- vertex(V ).

Πcheck =
{

:- coloring(V 1, C), coloring(V 2, C), edge(V 1, V 2).

In this example, Πinput holds the input facts, while Πguess spans the search space using
a conditional head literal and Πcheck eliminates all answer-set candidates in which two
adjacent vertices share some color. Thus, the program Π = Πinput ∪Πguess ∪Πcheck in
conjunction with the rule #showcoloring/2. will yield the expected output:

AS(Π) =















































{coloring(a,blue), coloring(b,red), coloring(c,green)}

{coloring(a,blue), coloring(b,green), coloring(c,red)}

{coloring(a,red), coloring(b,blue), coloring(c,green)}

{coloring(a,red), coloring(b,green), coloring(c,blue)}

{coloring(a,green), coloring(b,red), coloring(c,blue)}

{coloring(a,green), coloring(b,blue), coloring(c,red)}

where AS(Π) denotes the set of all answer-sets of the program Π.

Finally, we will refer to second important programming paradigm as saturation technique
[EG95]. It will be used to ensure that guesses meet some maximality condition. The
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2.3. Argumentation frameworks

a b c

Figure 2.2: A Dung abstract argumentation framework

paradigm will be explained in subsequent chapters of the thesis, when it first becomes
relevant, having a proper example to illustrate the idea and propose in Subsection 4.1.2.

2.2.4 Complexity

The computational complexity of answer-set programming is well understood. Deciding
whether a normal program, i.e. a program without disjunction, has at least one answer
set is NP-complete in data size [DEGV97]. Moreover, for answer-set programs with
disjunction in general, this rises up to ΣP

2 -complete [EG93], one level above the complexity
for normal answer-set programs, in the polynomial hierarchy. Furthermore, diverse
extensions of answer-set programs exist, lifting the complexity to various higher levels.
HEX-programs [EKR+17], for example, can make use of external predicates querying
various data sources, such as imperative programs or web services, causing the query
answering to become potentially undecidable.

2.3 Argumentation frameworks

One approach of modeling an argumentation process has been proposed by Dung in
1995 [Dun95] and has since been refined by several authors. In the following subsections,
we will introduce and define Dung abstract argumentation frameworks, as well as two
generalizations thereof.

2.3.1 Dung abstract argumentation frameworks

An abstract argumentation framework (AF) is a pair (A, R), where

• A is a finite set of arguments and

• R ⊆ A×A is the attack relation representing conflicts between arguments.

Dung abstract argumentation frameworks can be represented by a directed graph G =
(V, E), where V is the set of arguments and the edges E correspond to the attacks. Thus,
an AF = ({a, b, c}, {(a, a), (a, b), (c, b)}) can be represented by the graph in Figure 2.2.

Multiple generalizations of Dung argumentation frameworks have been proposed, two of
which we will introduce the next two subsections.
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2. Formal Background

a

b

c

d

Figure 2.3: An abstract argumentation framework with collective attacks

2.3.2 Abstract argumentation frameworks with collective attacks

The first generalization we will introduce are abstract argumentation frameworks with
collective attacks (SETAF) [NP06b]. An abstract argumentation framework with collective
attacks (SETAF) is a pair (A, R), where

• A is a finite set of arguments and

• R ⊆ (2A \ ∅)×A is the attack relation representing conflicts between non-empty
sets of arguments and single arguments.

Analogously to Dung AFs, also abstract argumentation frameworks with collective attacks
can be represented using directed hypergraphs. A SETAF = ({a, b, c, d}, {({a, c}, b), ({b}, d)})
can be represented by the graph in Figure 2.3.

2.3.3 Claim augmented abstract argumentation frameworks

The second generalization we will consider are claim augmented abstract argumentation
frameworks (CAF) [DW19]. A claim augmented abstract argumentation framework
(CAF) is a triple (A, R, γ), where

• (A, R) is an abstract argumentation framework and

• γ : A 7→ C is a mapping from arguments to some set of claims C.

Such a claim augmented abstract argumentation framework is considered to be well-
formed if, for any two arguments {a, b} ⊆ A such that γ(a) = γ(b), {x | (a, x) ∈
R} = {x | (b, x) ∈ R}, i.e. arguments with the same claim attack the same arguments.
Moreover, claim augmented abstract argumentation frameworks can also by represented
using directed graphs. A CAF = ({a, b, c}, {(a, b), (b, c)}, (a 7→ α, b 7→ β, c 7→ α)) can be
represented by the graph in Figure 2.4.

Note that this claim augmented abstract argumentation framework is not well-formed,
as γ(a) = γ(c), but {x | (a, x) ∈ R} = {b} 6= ∅ = {x | (c, x) ∈ R}.
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2.3. Argumentation frameworks

a

α

b

β

c

α

Figure 2.4: A non well-formed claim augmented abstract argumentation framework

a b c d e

Figure 2.5: A Dung abstract argumentation framework

2.3.4 Semantics

Various semantics have been proposed in the literature [Dun95, BCG11, BDG11, Cam07,
DDW13], defining which sets of arguments E ⊆ A for a given argumentation framework,
satisfying certain properties, are considered to be the coherent sets of arguments that
are jointly acceptable under this semantics. Such sets of arguments are often referred
to as extensions. We will consider the following seven semantics for a Dung abstract
argumentation framework AF = (A, R). A set S ⊆ A is called

• conflict-free in AF , if there are no two arguments {a, b} ⊆ S such that (a, b) ∈ R.

• admissible in AF , if S in conflict-free in AF and each a ∈ S is defended by S in
AF , i.e. for each argument b ∈ A such that (b, a) ∈ R there is some argument c ∈ S
such that (c, b) ∈ R.

• complete in AF , if S is admissible in AF and it holds that for each argument a ∈ A
defended by S in AF , a ∈ S.

• preferred in AF , if S is admissible in AF and for each admissible extension T ⊆ A
of AF , it holds that S 6⊂ T .

• stable in AF , if S is conflict-free in AF and for each argument a ∈ A \ S there is
some argument b ∈ S such that (b, a) ∈ R.

• semi-stable in AF , if S is admissible in AF and for each admissible extension T ⊆ A
of AF , S+

R 6⊂ T +
R , where E+

R = E ∪ {a | ∃b ∈ E such that (b, a) ∈ R} is called the
range of E for some set of arguments E ⊆ A.

• stage in AF , if S is conflict-free in AF and for each conflict-free extension T ⊆ A
of AF , S+

R 6⊂ T +
R .

To illustrate these semantics, we will give the extensions for the Dung abstract argumen-
tation framework depicted in Figure 2.5. For this framework, the

• conflict-free extensions are: {∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}}
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2. Formal Background

• admissible extensions are: {∅, {a}, {c}, {d}, {a, c}, {a, d}}

• complete extensions are: {{a}, {a, c}, {a, d}}

• preferred extensions are: {{a, c} {a, d}}

• stable extensions are: {{a, d}}

• semi-stable extensions are: {{a, d}}

• stage extensions are: {{a, d}}

For an abstract argumentation framework with collective attacks (SETAF) AF = (A, R),
a set S ⊆ A is called

• conflict-free in AF , if there is no argument a ∈ S such that there is a set S′ ⊆ S
with (S′, a) ∈ R.

• admissible in AF , if S is conflict-free in AF and each a ∈ S is defended by S in
AF , i.e. for each set of argument S′ ⊆ A such that (S′, a) ∈ R there is some set of
argument S′′ ⊆ S such that (S′′, b) ∈ R for some argument b ∈ S′.

• stable in AF , if S is conflict-free in AF and for each argument a ∈ A \ S there is
some set of arguments S′ ⊆ S such that (S′, a) ∈ R.

The remaining semantics are defined analogously as for Dung abstract argumentation
frameworks, using a slightly adapted definition of the range: E+

R = E ∪ {a | ∃S ⊆
E such that (S, a) ∈ R}.

Furthermore, the extensions of claim augmented abstract argumentation frameworks
are defined in terms of claims instead of arguments: for a claim augmented abstract
argumentation framework (A, R, γ) and a semantics σ for Dung abstract argumentation
framework, the set of extensions under σ is defined as {claim(E) | E ∈ σ((A, R))} where
claim(E) = {γ(a) | a ∈ E}. This definition of the semi-stable and stage semantics for
claim augmented abstract argumentation frameworks requires maximality of their range,
which is defined in terms of arguments, while the extension itself is expressed in terms
of claims. Therefore, we will consider two additional variants for the semi-stable and
stage semantics for claim augmented abstract argumentation frameworks, focusing on
maximizing claims instead of arguments, related to a similar concept for logic programs
introduced in [CSAD15]. Thus, for a claim augmented abstract argumentation framework
CAF = (AF, γ), where AF = (A, R) is a Dung abstract argumentation framework,
claim(S) of a set S ⊆ A is called

• semi-stablec in CAF , if S is admissible in AF and for each admissible extension
T ⊆ A of AF , S+claim

R 6⊂ T +claim

R .
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2.3. Argumentation frameworks

a1

c1

a2

c1

a3

c2

a4

c3

a5

c4

Figure 2.6: A well-formed claim augmented abstract argumentation framework

• stagec in CAF , if S is conflict-free in AF and for each conflict-free extension T ⊆ A
of AF , S+claim

R 6⊂ T +claim

R .

where E+claim

R = claim(E)∪{c ∈ claim(A) | ∀a ∈ A(γ(a) = c→ ∃b ∈ E such that (b, a) ∈
R)} for some set of arguments E ⊆ A.

To illustrate that these semantics in fact differ from the traditional semantics, consider
the well-formed claim augmented abstract argumentation framework depicted in Figure
2.6, for which the

• the traditional semi-stable and stage extensions are {{c2}, {c3}} and

• the semi-stable and stage extensions with claim-centric range are {{c3}}.

2.3.5 Complexity

For a given semantics σ, we will consider five decision problems:

• Credulous acceptance, Credσ(AF, a): Is there some extension S of AF under σ such
that a ∈ S?

• Skeptical acceptance, Skeptσ(AF, a): Does a ∈ S hold for all extension S of AF
under σ?

• Verification, Verσ(AF, S): Is S an extension of AF under σ?

• Existence, Existsσ(AF ): Does AF have some extension under σ?

• Non-empty existence, Exists¬∅
σ (AF ): Does AF have some non-empty extension

under σ?

For these decision problems and the seven considered semantics, the complexity results
[DT96, DB02, DW09, DW10, Dvo12, DD18] for Dung abstract argumentation frameworks
as well as abstract argumentation framework with collective attacks, where C-c denoted
completeness for a complexity class C, are depicted in Table 2.1.

Furthermore, the complexity results [DW19] for claim augmented abstract argumentation
frameworks, are depicted in Table 2.2. Moreover, tighter upper bounds can be given
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2. Formal Background

σ Credσ Skeptσ Verσ Existsσ Exists¬∅
σ

conflict-free in P trivial in P trivial in P

admissible NP-c trivial in P trivial NP-c

complete NP-c P-c in P trivial NP-c

preferred NP-c ΠP
2 -c coNP-c trivial NP-c

stable NP-c coNP-c in P NP-c NP-c

semi-stable ΣP
2 -c ΠP

2 -c coNP-c trivial NP-c

stage ΣP
2 -c ΠP

2 -c coNP-c trivial in P

Table 2.1: Complexity landscape for Dung abstract argumentation frameworks

σ Credσ Skeptσ Verσ Existsσ Exists¬∅
σ

conflict-free in P trivial NP-c trivial in P

admissible NP-c trivial NP-c trivial NP-c

complete NP-c P-c NP-c trivial NP-c

preferred NP-c ΠP
2 -c ΣP

2 -c trivial NP-c

stable NP-c coNP-c NP-c NP-c NP-c

Table 2.2: Complexity landscape for non well-formed claim augmented abstract argu-
mentation frameworks

σ Credσ Skeptσ Verσ Existsσ Exists¬∅
σ

conflict-free in P trivial in P trivial in P

admissible NP-c trivial in P trivial NP-c

complete NP-c P-c in P trivial NP-c

preferred NP-c ΠP
2 -c coNP-c trivial NP-c

stable NP-c coNP-c in P NP-c NP-c

Table 2.3: Complexity landscape for well-formed claim augmented abstract argumentation
frameworks

for the verification of well-formed claim augmented abstract argumentation frameworks,
depicted in Table 2.3. The complexity results for the existence problem follow from the
results for Dung abstract argumentation frameworks.

In this work, we will complement these results by giving complexity results for abstract
argumentation frameworks with collective attacks as well as for the semi-stable and stage
semantics and their variants with claim-centric ranges in Chapter 3.
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2.3. Argumentation frameworks

2.3.6 Conversion of well-formed instances of claim augmented

abstract argumentation frameworks into instances of abstract

argumentation frameworks with collective attacks

As mentioned in the introduction, there is a relation between well-formed claim aug-
mented abstract argumentation frameworks and abstract argumentation frameworks
with collective attacks. Therefore, it is possible to convert instances of well-formed
claim augmented abstract argumentation frameworks to instances of abstract argumen-
tation frameworks with collective attacks such that the extensions are identical for the
conflict-free, admissible, complete, preferred and stable semantics [DRW19]. With such
a conversion at hand, one can compute the extensions of claim augmented abstract
argumentation frameworks using the encodings for abstract argumentation frameworks
with collective attacks. Thus, for the experiments in Subsection 5.5, the Algorithm 2.1
will be used to convert instance of well-formed claim augmented abstract argumentation
frameworks to instances of abstract argumentation frameworks with collective attacks.

Algorithm 2.1: CAFtoSETAFconversion

Input: A: set of arguments, R: set of attacks between claims and arguments, γ:
function mapping arguments to claims

Output: A′: new set of arguments, R′ new set of attack between sets of
arguments and arguments

1 claims← {γ(a) | a ∈ A} ;
2 A′ ← claims ;
3 foreach claim c in claims do
4 argumentsWithClaim← {a | γ(a) = c};
5 attackers← ordered set {{γ(b) | (b, a) ∈ R} | a ∈ argumentsWithClaim} ;
6 if ∅ ∈ attackers then

/* There is an argument of the current claim that is

not attacked, thus the claim will not be attacked

in the abstract argumentation framework with

collective attacks encoding */

7 continue ;

8 end
9 foreach pick one claim from each set in attackers and collect into attack do

10 add (attack, c) to R′ ;
11 end

12 end
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CHAPTER 3
Complexity Results

In this chapter, we will give the complexity results for the decision problems introduced
in Subsection 2.3.5. We will consider the semantics listed in Subsection 2.3.4 for abstract
argumentation frameworks with collective attacks and will give the results for the stage
and semi-stable semantics for non well-formed and well-formed claim augmented abstract
argumentation frameworks for the traditional and the claim-centric versions.

3.1 Abstract argumentation framework with collective

attacks

The complexity results for abstract argumentation frameworks with collective attacks are
depicted in Table 3.1. We will give proofs of these results in the following subsections.
Furthermore, we get hardness from the complexity results for Dung abstract argumenta-
tion frameworks, see Table 2.1, as each Dung abstract argumentation framework can be
interpreted as an abstract argumentation framework with collective attacks. Thus, we
will only give results for the respective upper bounds.

Definition 1. The characteristic function of an abstract argumentation framework with
collective attacks SETAF = (A, R) is the function F : 2A → 2A with F(S) = {a ∈ A :
a is defended by S}.

Furthermore, as for Dung abstract argumentation frameworks, deciding whether an
argument is defended by a set of arguments is still in P.

Proposition 1. Given an abstract argumentation framework with collective attacks
SETAF, a set of arguments S and an argument a. Deciding whether a ∈ F(S) is in P.

Proof. We simple iterate over all attacks (B, x) ∈ R and whenever x = a, we again
iterate over all attacks (B′, x′) ∈ R and test whether x′ ∈ B and B′ ⊆ S. If there is an
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3. Complexity Results

σ Credσ Skeptσ Verσ Existsσ Exists¬∅
σ

conflict-free in P trivial in P trivial in P

admissible NP-c trivial in P trivial NP-c

complete NP-c P-c in P trivial NP-c

preferred NP-c ΠP
2 -c coNP-c trivial NP-c

stable NP-c coNP-c in P NP-c NP-c

semi-stable ΣP
2 -c ΠP

2 -c coNP-c trivial NP-c

stage ΣP
2 -c ΠP

2 -c coNP-c trivial in P

Table 3.1: Complexity results for abstract argumentation frameworks with collective
attacks

attack (B, a) such that there is no defending attack (B′, x′), we have a 6∈ F(S) otherwise
a ∈ F(S). Clearly, the above can be implemented in polynomial time and thus deciding
whether a ∈ F(S) is in P.

3.1.1 Conflict-free semantics

In this subsection, we will show that the results for the conflict-free semantics depicted
in Table 3.1 hold. We first observe, that the empty set is always a conflict-free extension.
Thus, Skeptconflict-free(SETAF , a) is trivially false and Existsconflict-free(SETAF) is trivially
true for any abstract argumentation framework with collective attacks SETAF = (A, R)
and argument a ∈ A.

For the non-trivial results, we will start with the credulous acceptance problem.

Lemma 1. Deciding Credconflict-free(SETAF, a) for an arbitrary abstract argumentation
framework with collective attacks SETAF = (A, R) and an argument a ∈ A is in P .

Proof. In order to decide credulous acceptance for an argument a, we simply check
whether ({a}, a) /∈ R. If this is the case, then {a} ∈ conflict-free(F ) and thus a is
credulously accepted, otherwise a cannot be in any conflict-free set and thus is not
credulously accepted. Therefore, Credconflict-free(SETAF , a) is in P.

Next, we will prove the result for the verification problem.

Lemma 2. Deciding Verconflict-free(SETAF, S) for an arbitrary abstract argumentation
framework with collective attacks SETAF = (A, R) and a set of arguments S ⊆ A is in
P .

Proof. To verify that a set S is a conflict-free extension, we iterate over all (B, x) ∈ R
and test whether B ∪ {x} ⊆ S. If this is the case, then there is a conflict in S and we
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3.1. Abstract argumentation framework with collective attacks

terminate. Otherwise, if none of the attacks is contained in S, the set is conflict-free.
This, is clearly in P.

Finally, we will present a proof for the non-empty existence problem.

Lemma 3. Deciding Exists¬∅
conflict-free(SETAF) for an arbitrary abstract argumentation

framework with collective attacks SETAF = (A, R) is in P .

Proof. To decide whether there is a non-empty conflict-free set, we test each argument
for being credulously accepted. If one of them is, then there is some non-empty extension
and vice versa. Again, this is clearly in P.

3.1.2 Stable semantics

Analogously to the previous subsection, we will show in this subsection that the results
for the stable semantics, depicted in Table 3.1, hold.

From the remaining non-trivial results, we will first consider the verification problem.

Lemma 4. Deciding Verstable(SETAF, S) for an arbitrary abstract argumentation frame-
work with collective attacks SETAF = (A, R) and a set of arguments S ⊆ A is in
P.

Proof. One can verify that a given set S is a stable extension of SETAF , by first checking
in P, cf. Lemma 2, that it is conflict-free and then that for each a ∈ A \ S there is an
attack (B, a) ∈ R with B ⊆ S. As both can be done in P, we obtain P membership of
Verstable(SETAF , S).

Secondly, we will prove our results for the credulous acceptance problem.

Lemma 5. Deciding Credstable(SETAF, a) for an arbitrary abstract argumentation frame-
work with collective attacks SETAF = (A, R) and an argument a ∈ A is NP-c.

Proof. Recall that we get hardness from the complexity results for Dung abstract argu-
mentation frameworks, see Table 2.1, as each Dung abstract argumentation framework can
be interpreted as an abstract argumentation framework with collective attacks. This also
applies for the remaining proofs for abstract argumentation frameworks with collective
attacks.

We first use the non-determinism to guess a set S and then check whether the argument
a under question is in the set. Finally, we check that S is stable which can be done in P,
cf. Lemma 4, resulting in a NP procedure to decide Credstable(SETAF , a).

Next, we will present our proof for the skeptical acceptance problem.
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3. Complexity Results

Lemma 6. Deciding Skeptstable(SETAF, a) for an arbitrary abstract argumentation frame-
work with collective attacks SETAF = (A, R) and an argument a ∈ A is coNP-c.

Proof. As before, we first use the non-determinism to guess a set S and then, in order to
find a counter example, we check in P, cf. Lemma 4, that S is stable and verify that the
argument a under question is not in the set. Thus, Skeptstable(SETAF , a) is in NP.

Finally, we will give NP procedures for the Existsstable(SETAF) and Exists¬∅
stable(SETAF)

problems.

Lemma 7. Deciding Existsstable(SETAF) and Exists¬∅
stable(SETAF) for an arbitrary ab-

stract argumentation framework with collective attacks SETAF = (A, R) is NP-c.

Proof. Again, we first use the non-determinism to guess a set S and verify that it is
conflict-free, which can be done in P, cf. Lemma 2. Next, we iterate over all arguments
a ∈ A \ S and for each such argument we iterate over all attacks and check whether
there is an attack (B, a) ∈ R such that B ⊆ S. Moreover, for Exists¬∅

stable(SETAF), we
additional verify that S is not empty, giving NP-c procedures for Existsstable(SETAF)
and Exists¬∅

stable(SETAF).

3.1.3 Admissible semantics

In this subsection, we will prove our results for the admissible semantics, depicted in
Table 3.1. We first observe, that the empty set is always admissible. Thus, for any
abstract argumentation framework with collective attacks SETAF = (A, R) and argument
a ∈ A, Skeptadmissible(SETAF , a) is trivially false and Existsadmissible(SETAF) is trivially
true,.

Regarding the remaining decision problems, we firstly consider the verification problem.

Lemma 8. Deciding Veradmissible(SETAF, S) for an arbitrary abstract argumentation
framework with collective attacks SETAF = (A, R) and a set of arguments S ⊆ A is in P.

Proof. One can verify that a given set S is admissible, by first checking that it is conflict-
free and then, for each a ∈ S, that a ∈ F(S). Both can be done in P, cf. Lemma 2 and
Proposition 1, giving a P procedure for deciding Veradmissible(SETAF , S).

Next, we prove our results for the credulous acceptance problem.

Lemma 9. Deciding Credadmissible(SETAF, a) for an arbitrary abstract argumentation
framework with collective attacks SETAF = (A, R) and an argument a ∈ A is NP-c.

Proof. As for the stable semantics, we first use the non-determinism to guess a set S and
then check whether the argument a under question is in the set. Finally, we check that
S is admissible, which can be done in P, cf. Lemma 8, resulting in a NP procedure to
decide Credadmissible(SETAF , a).
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3.1. Abstract argumentation framework with collective attacks

Finally, we will give a NP procedure for the Exists¬∅
admissible(SETAF) problem.

Lemma 10. Deciding Existsadmissible(SETAF) for an arbitrary abstract argumentation
framework with collective attacks SETAF = (A, R) is NP-c.

Proof. Again, we first use the non-determinism to guess a non-empty set S. Next, we
check that S is admissible, which can be done in P, cf. Lemma 8, resulting in a NP

procedure to decide Exists¬∅
admissible(SETAF).

3.1.4 Complete semantics

As in the previous subsections, we will prove our results for the complete semantics,
depicted in Table 3.1, in this subsection. Furthermore, the extension obtained by iter-
atively applying the characteristic function F , starting with the empty set, until the
least fixed-point is reached, is called the ground extension of an abstract argumentation
framework with collective attacks. This is the unique minimal complete extension of
this abstract argumentation framework with collective attacks and thus can be com-
puted in polynomial time. Furthermore, such an extension always exists and therefore,
Existscomplete(SETAF) is trivially true for any abstract argumentation framework with
collective attacks SETAF = (A, R). Moreover, Skeptcomplete(SETAF , a) is decidable in P

as it is true if and only if a is contained in the ground extension.

Next, we consider the verification problem.

Lemma 11. Deciding Vercomplete(SETAF, S) for an arbitrary abstract argumentation
framework with collective attacks SETAF = (A, R) and a set of arguments S ⊆ A is in P.

Proof. We can verify that a given set S is a complete extension, by

• checking that it is admissible and

• for each a ∈ A \ S, check that a /∈ F(S).

Both can be done in P, cf. Lemma 8 and Proposition 1, resulting in a P procedure to
decide Vercomplete(SETAF, S).

Finally, we prove the results for the credulous acceptance and the non-empty existence
problem.

Lemma 12. Deciding Credcomplete(SETAF, a) and Exists¬∅
complete(SETAF) for an arbi-

trary abstract argumentation framework with collective attacks SETAF = (A, R) and an
argument a ∈ A is NP-c.
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3. Complexity Results

Proof. As for the admissible semantics, we first use the non-determinism to guess a set S.
For the Credcomplete(SETAF , a) problem we additional check, that the argument a under
question is in the set. Next, we check that S is admissible and iterate over all b ∈ A\S and
verify that b 6∈ F(S), which can be done in P, cf. Lemma 8 and Proposition 1, resulting
in a NP procedure to decide Credcomplete(SETAF , a) and Exists¬∅

complete(SETAF).

3.1.5 Preferred semantics

In this subsection, we will provide proofs for our complexity results for the preferred
semantics, depicted in Table 3.1. Firstly, as each abstract argumentation framework with
collective attacks SETAF = (A, R) has a preferred extensions, as there always is some
admissible extension, Existspreferred(SETAF) is trivially true.

Secondly, we will consider the verification problem.

Lemma 13. Deciding Verpreferred(SETAF, S) for an arbitrary abstract argumentation
framework with collective attacks SETAF = (A, R) and a set of arguments S ⊆ A is
coNP-c.

Proof. One can verify that a given set S is a preferred extension, by

• checking that it is admissible and

• verifying that each S′ ⊃ S is not admissible.

The former is in P, cf. Lemma 8. For the latter, in order to find a counter example, we
utilize the non-determinism to guess a set S′ ⊆ A and verify in P that it is admissible and a
proper superset of S, resulting in a coNP algorithm to decide Verpreferred(SETAF , S).

Next, we will prove our result for the credulous acceptance and the non-empty existence
problem.

Lemma 14. Deciding Credpreferred(SETAF, a) and Exists¬∅
preferred(SETAF) for an arbi-

trary abstract argumentation framework with collective attacks SETAF = (A, R) and an
argument a ∈ A is NP-c.

Proof. We can exploit the fact that an argument is contained in a preferred extension if
and only if it is contained in some admissible extension. Thus, Credpreferred(SETAF , a) =

Credadmissible(SETAF , a) and Exists¬∅
preferred(SETAF) = Exists¬∅

admissible(SETAF) and thus,

Credpreferred(SETAF , a) and Exists¬∅
preferred(SETAF) are decidable in NP, as both problems

Credadmissible(SETAF , a) and Exists¬∅
admissible(SETAF) are in NP, cf. Table 3.1.

Finally, we will provide a ΠP
2 algorithm for the skeptical acceptance problem.
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3.1. Abstract argumentation framework with collective attacks

Lemma 15. Deciding Skeptpreferred(SETAF, a) for an arbitrary abstract argumentation

framework with collective attacks SETAF = (A, R) and an argument a ∈ A is ΠP
2 -c.

Proof. In order to find a counter example, we utilize the non-determinism to guess a
set S ⊆ A \ {a} and verify in P that it is admissible, cf. Lemma 8. Next, we utilize
the non-determinism once more to verify that S is maximal admissible, by guessing
a set S′ ⊆ A and verifying that it is admissible and that S ⊂ S′, resulting in a ΠP

2

procedure.

3.1.6 Semi-stable semantics

We will present proofs for our complexity results for semi-stable semantics, depicted
in Table 3.1, in this subsection. Firstly, as there always is some admissible extension,
each abstract argumentation framework with collective attacks SETAF = (A, R) has a
semi-stable extension and thus, Existssemi-stable(SETAF) is trivially true.

Secondly, we consider the verification problem.

Lemma 16. Deciding Versemi-stable(SETAF, S) for an arbitrary abstract argumentation
framework with collective attacks SETAF = (A, R) and a set of arguments S ⊆ A is
coNP-c.

Proof. We can verify that a given set S is semi-stable by

• checking that it is admissible and

• verifying that each S′ ⊆ A with S′+
R ⊃ S+

R is not admissible.

The former is in P, cf. Lemma 8. For the latter, we utilize the non-determinism to guess
a set S′ ⊆ A and verify in P that it is admissible and that its range is a proper superset
of the range of S, resulting in a coNP algorithm to decide Versemi-stable(SETAF , S).

Thirdly, we will prove our result for the non-empty existence problem.

Lemma 17. Deciding Exists¬∅
semi-stable(SETAF) for an arbitrary abstract argumentation

framework with collective attacks SETAF = (A, R) is NP-c.

Proof. We have that there is a non-empty semi-stable extension if and only if there is a non-
empty admissible set. Therefore, Exists¬∅

semi-stable(SETAF , a) = Exists¬∅
admissible(SETAF , a)

and thus, Exists¬∅
semi-stable(SETAF , a) is decidable in NP as Exists¬∅

admissible(SETAF , a)
is.

Next, we will give a ΣP
2 procedure for the credulous acceptance problem.
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3. Complexity Results

Lemma 18. Deciding Credsemi-stable(SETAF, a) for an arbitrary abstract argumentation
framework with collective attacks SETAF = (A, R) and an argument a ∈ A is ΣP

2 -c.

Proof. We utilize the non-determinism to guess a set S ⊆ A such that a ∈ S and verify
in P, cf. Lemma 8, that it is admissible. Next, we make another non-deterministic guess
for a set S′ ⊆ A and verify that it is admissible and that S+

R ⊂ S′+
R , resulting in a ΣP

2

procedure.

Finally, we give an algorithm that decides the skeptical acceptance problem.

Lemma 19. Deciding Skeptsemi-stable(SETAF, a) for an arbitrary abstract argumentation
framework with collective attacks SETAF = (A, R) and an argument a ∈ A is ΠP

2 -c.

Proof. To find a counter example, we utilize the non-determinism to guess a set S ⊆ A
such that a 6∈ S and verify in P, cf. Lemma 8, that it is admissible. Next, we make
another non-deterministic guess for a set S′ ⊆ A and verify that it is admissible and that
S+

R ⊂ S′+
R , resulting in a ΠP

2 procedure.

3.1.7 Stage semantics

In this subsection, we will present proofs for our complexity results for stage semantics,
depicted in Table 3.1. Firstly, as there always is some conflict-free extension, each abstract
argumentation framework with collective attacks SETAF = (A, R) has a stage extension
and thus, Existsstage(SETAF) is trivially true.

Secondly, we consider the verification problem.

Lemma 20. Deciding Verstage(SETAF, S) for an arbitrary abstract argumentation frame-
work with collective attacks SETAF = (A, R) and a set of arguments S ⊆ A is coNP-c.

Proof. We can verify that a given set S is a stage extension by

• checking that it is conflict-free and

• verifying that each S′ ⊆ A with S′+
R ⊃ S+

R is not conflict-free.

The former is in P, cf. Lemma 2. For the latter, we utilize the non-determinism to guess
a set S′ ⊆ A and verify in P that it is conflict-free and that its range is a proper superset
of the range of S, resulting in a coNP algorithm to decide Verstage(SETAF , S).

Thirdly, we will prove our result for the non-empty existence problem.

Lemma 21. Deciding Exists¬∅
stage(SETAF) for an arbitrary abstract argumentation frame-

work with collective attacks SETAF = (A, R) is in P.
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3.2. Claim augmented abstract argumentation frameworks

Proof. We have that there is a non-empty stage extension if and only if there is a non-
empty conflict-free set. Therefore, Exists¬∅

stage(SETAF , a) = Exists¬∅
conflict-free(SETAF , a)

and thus, Exists¬∅
stage(SETAF , a) is decidable in P, as Exists¬∅

conflict-free(SETAF , a) is, cf.
Table 3.1.

Next, we will give a ΣP
2 procedure for the credulous acceptance problem.

Lemma 22. Deciding Credstage(SETAF, a) for an arbitrary abstract argumentation frame-
work with collective attacks SETAF = (A, R) and an argument a ∈ A is ΣP

2 -c.

Proof. We utilize the non-determinism to guess a set S ⊆ A such that a ∈ S and verify
in P, cf. Lemma 2, that it is conflict-free. Next, we make another non-deterministic
guess for a set S′ ⊆ A and verify that it is conflict-free and that S+

R ⊂ S′+
R , resulting in a

ΣP
2 procedure.

Finally, we give an algorithm that decides the skeptical acceptance problem.

Lemma 23. Deciding Skeptstage(SETAF, a) for an arbitrary abstract argumentation

framework with collective attacks SETAF = (A, R) and an argument a ∈ A is ΠP
2 -c.

Proof. To find a counter example, we utilize the non-determinism to guess a set S ⊆ A
such that a 6∈ S and verify in P, cf. Lemma 2, that it is conflict-free. Next, we make
another non-deterministic guess for a set S′ ⊆ A and verify that it is conflict-free and
that S+

R ⊂ S′+
R , resulting in a ΠP

2 procedure.

3.2 Claim augmented abstract argumentation frameworks

The complexity results of the semi-stable, stage, semi-stablec and stagec semantics for
non well-formed claim augmented abstract argumentation frameworks are depicted in
Table 3.2, while the results for well-formed claim augmented abstract argumentation
frameworks are depicted in Table 3.3.

For both, non well-formed and well-formed claim augmented abstract argumentation
frameworks, we get hardness from the results for Dung abstract argumentation frameworks,
cf. Table 2.1, for the Credσ, Skeptσ and Exists¬∅

σ problems for σ ∈ {semi-stable, stage,
semi-stablec, stagec}. For a given Dung abstract argumentation framework AF = (A, R),
we can construct a well-formed claim augmented abstract argumentation framework
CAF = (A, R, γ : a 7→ a) such that E = {a1, . . . , an} is an extension of AF under
the semi-stable and stage semantics if and only if E is an extension of CAF under the
same semantics or the respective claim-centric variant, as there is a one-to-one mapping
between arguments and claims. Furthermore, the Exists problem is trivial for semi-stable,
stage, semi-stablec, stagec, as there is always a conflict-free and an admissible extension.
Thus, in the following subsections, we will give upper bounds for the Credσ, Skeptσ, Verσ

and Exists¬∅
σ as well as additional lower bounds for the Verσ problem for non well-formed
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3. Complexity Results

σ Credσ Skeptσ Verσ Existsσ Exists¬∅
σ

semi-stable ΣP
2 -c ΠP

2 -c ΣP
2 -c trivial NP-c

stage ΣP
2 -c ΠP

2 -c ΣP
2 -c trivial in P

semi-stablec ΣP
2 -c ΠP

2 -c ΣP
2 -c trivial NP-c

stagec ΣP
2 -c ΠP

2 -c ΣP
2 -c trivial in P

Table 3.2: Complexity landscape for non well-formed claim augmented abstract argu-
mentation frameworks

σ Credσ Skeptσ Verσ Existsσ Exists¬∅
σ

semi-stable ΣP
2 -c ΠP

2 -c coNP-c trivial NP-c

stage ΣP
2 -c ΠP

2 -c coNP-c trivial in P

semi-stablec ΣP
2 -c ΠP

2 -c coNP-c trivial NP-c

stagec ΣP
2 -c ΠP

2 -c coNP-c trivial in P

Table 3.3: Complexity landscape for well-formed claim augmented abstract argumentation
frameworks

claim augmented abstract argumentation frameworks. While the lower bounds for the
Verσ problem of the semi-stable, stage, semi-stablec and stagec semantics for well-formed
claim augmented abstract argumentation frameworks carry over from Dung abstract
argumentation frameworks, by the method stated above.

3.2.1 Semi-stable semantics

In this subsection, we will prove our results for the semi-stable semantics for non well-
formed and well-formed claim augmented abstract argumentation frameworks, depicted
in the Tables 3.2 and 3.3.

Firstly, we will consider the verification problem for non well-formed claim augmented
abstract argumentation frameworks.

Lemma 24. Deciding Versemi-stable(CAF, S) for an arbitrary non well-formed claim
augmented abstract argumentation framework CAF = (A, R, γ) and a set of claims
S ⊆ claim(A) is ΣP

2 -c.

Proof. Recall that we get hardness from the results for Dung abstract argumentation
frameworks, cf. Table 2.1. This also applies for the remaining proofs for claim augmented
abstract argumentation frameworks.

We can verify that a given set S is a semi-stable extension, by

• guessing a set E ⊆ A with claim(E) = S,
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3.2. Claim augmented abstract argumentation frameworks

• checking that E is a semi-stable extension of (A, R).

The first is in NP, while the second is known to be in coNP from Dung abstract argu-
mentation frameworks, cf. Table 2.1, yielding a ΣP

2 algorithm.

Furthermore, we can show hardness by a reduction from Credsemi-stable for Dung abstract
argumentation frameworks. Let AF = (A′, R′) be a Dung abstract argumentation
framework and b an argument for the Credsemi-stable(AF, b) problem. We construct a
claim augmented abstract argumentation framework CAF ′ = (A′′ = A′ ∪ {x}, R′, γ′)
with x 6∈ A′ and γ′(b) = c1, γ′(b′) = c2 for all b′ ∈ A′′ \ {b}. Then, as the argument x
is not involved in any attack, it is contained in every semi-stable set of arguments of
CAF ′ and thus, as γ′(x) = c2, c2 is contained in every semi-stable extension of CAF ′.
Therefore, as CAF ′ only contains two claims, the only candidate sets for semi-stable
extensions are {c1, c2} and {c2} Moreover, as b is the only argument with claim c1,
{c1, c2} is a semi-stable extension if and only if the argument b is contained in some
semi-stable set of arguments of CAF ′. Thus, Credsemi-stable(AF, b) is true if and only
if Versemi-stable(CAF ′, {c1, c2}) is true. As the Credsemi-stable problem for Dung abstract
argument frameworks is known to be ΣP

2 -c, cf. Table 2.1, the Versemi-stable problem is
ΣP

2 -hard for non well-formed claim augmented abstract argumentation frameworks.

Next, we will consider the verification problem for well-formed claim augmented abstract
argumentation frameworks.

Lemma 25. Deciding Versemi-stable(CAF, S) for an arbitrary well-formed claim aug-
mented abstract argumentation framework CAF = (A, R, γ) and a set of claims S ⊆
claim(A) is coNP-c.

Proof. We can verify that a given set S is a semi-stable extension, by

• calculating the maximal admissible set E ⊆ A with claim(E) = S and

• verifying that each E′ ⊆ A with E+
R ⊂ E′+

R is not admissible.

The first is in P as shown in [DW19] because CAF is well-formed, while towards a counter
example, we can utilize the non-determinism to guess the set E′ ⊆ A, verify in P that
it is admissible, cf. Table 2.1, and that its range is a proper superset of the range of E,
yielding a coNP algorithm for deciding Versemi-stable(CAF , S).

Note that the complexity results for the remaining decision problems coincide for non
well-formed and well-formed claim augmented abstract argumentation frameworks, thus
we will not have to distinguish between those for the remaining proofs, starting with the
proof for the credulous acceptance problem.

Lemma 26. Deciding Credsemi-stable(CAF, c) for an arbitrary claim augmented abstract
argumentation framework CAF = (A, R, γ) and a claim c ∈ claim(A) is ΣP

2 -c.
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3. Complexity Results

Proof. We utilize the non-determinism to guess a set of arguments S ⊆ A such that there
is some argument a ∈ S with claim γ(a) = c. Next, we verify that S is a semi-stable
extension of (A, R), which is coNP-c, cf. Table 2.1, yielding a ΣP

2 -c algorithm.

Analogously, we provide a procedure for the skeptical acceptance problem.

Lemma 27. Deciding Skeptsemi-stable(CAF, c) for an arbitrary claim augmented abstract
argumentation framework CAF = (A, R, γ) and a claim c ∈ claim(A) is ΠP

2 -c.

Proof. To construct a counter example, we utilize the non-determinism to guess a set
of arguments S ⊆ A such that there no argument a ∈ S with claim γ(a) = c. Next, we
verify that S is a semi-stable extension, which is coNP-c, cf. Table 2.1, yielding a ΣP

2 -c
algorithm.

Finally, we present our algorithm for deciding the non-empty existence problem.

Lemma 28. Deciding Exists¬∅
semi-stable(CAF) for an arbitrary claim augmented abstract

argumentation framework CAF = (A, R, γ) is NP-c.

Proof. We have that there is a non-empty semi-stable extension if and only if there is a
non-empty admissible set, thus Exists¬∅

semi-stable(CAF) = Exists¬∅
admissible((A, R)). As the

latter is known to be NP-c, cf. Table 2.1, so is Exists¬∅
semi-stable(CAF).

3.2.2 Stage semantics

We will prove our results for the stage semantics for non well-formed and well-formed
claim augmented abstract argumentation frameworks, depicted in the Tables 3.2 and 3.3,
in this subsection.

Firstly, we will consider the verification problem for non well-formed claim augmented
abstract argumentation frameworks.

Lemma 29. Deciding Verstage(CAF, S) for an arbitrary non well-formed claim aug-
mented abstract argumentation framework CAF = (A, R, γ) and a set of claims S ⊆
claim(A) is ΣP

2 -c.

Proof. We can verify that a given set S is a stage extension, by

• guessing a set E ⊆ A with claim(E) = S,

• checking that E is a stage extension of (A, R).
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3.2. Claim augmented abstract argumentation frameworks

The first is in NP, while the second is known to be in coNP from Dung abstract argu-
mentation frameworks, cf. Table 2.1, yielding a ΣP

2 algorithm.

Furthermore, we can show hardness by a reduction from Credstage for Dung abstract
argumentation frameworks. Let AF = (A′, R′) be a Dung abstract argumentation
framework and b an argument for the Credstage(AF, b) problem. We construct a claim
augmented abstract argumentation framework CAF ′ = (A′′ = A′ ∪ {x}, R′, γ′) with
x 6∈ A′ and γ′(b) = c1, γ′(b′) = c2 for all b′ ∈ A′′ \ {b}. Then, as the argument x is not
involved in any attack, it is contained in every stage set of arguments of CAF ′ and thus,
as γ′(x) = c2, c2 is contained in every stage extension of CAF ′. Therefore, as CAF ′

only contains two claims, the only candidate sets for stage extensions are {c1, c2} and
{c2} Moreover, as b is the only argument with claim c1, {c1, c2} is a stage extension if
and only if the argument b is contained in some stage set of arguments of CAF ′. Thus,
Credstage(AF, b) is true if and only if Verstage(CAF ′, {c1, c2}) is true. As the Credstage

problem for Dung abstract argument frameworks is known to be ΣP
2 -c, cf. Table 2.1, the

Verstage problem is ΣP
2 -hard for non well-formed claim augmented abstract argumentation

frameworks.

Next, we will consider the verification problem for well-formed claim augmented abstract
argumentation frameworks.

Lemma 30. Deciding Verstage(CAF, S) for an arbitrary well-formed claim augmented
abstract argumentation framework CAF = (A, R, γ) and a set of claims S ⊆ claim(A) is
coNP-c.

Proof. We can verify that a given set S is a stage extension, by

• calculating the maximal conflict-free set E ⊆ A with claim(E) = S and

• verifying that each E′ ⊆ A with E+
R ⊂ E′+

R is not conflict-free.

The first is in P as shown in [DW19] because CAF is well-formed, while towards a counter
example, we can utilize the non-determinism to guess the set E′ ⊆ A, verify in P that it
is conflict-free, cf. Table 2.1, and that its range is a proper superset of the range of E,
yielding a coNP algorithm for deciding Verstage(CAF , S).

Note that the complexity results for the remaining decision problems coincide for non
well-formed and well-formed claim augmented abstract argumentation frameworks, thus
we will not have to distinguish between those for the remaining proofs, starting with the
proof for the credulous acceptance problem.

Lemma 31. Deciding Credstage(CAF, c) for an arbitrary claim augmented abstract argu-
mentation framework CAF = (A, R, γ) and a claim c ∈ claim(A) is ΣP

2 -c.
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3. Complexity Results

Proof. We utilize the non-determinism to guess a set of arguments S ⊆ A such that there
is some argument a ∈ S with claim γ(a) = c. Next, we verify that S is a stage extension,
which is coNP-c, cf. Table 2.1, yielding a ΣP

2 -c algorithm.

Analogously, we provide a procedure for the skeptical acceptance problem.

Lemma 32. Deciding Skeptstage(CAF, c) for an arbitrary claim augmented abstract

argumentation framework CAF = (A, R, γ) and a claim c ∈ claim(A) is ΠP
2 -c.

Proof. To construct a counter example, we utilize the non-determinism to guess a set
of arguments S ⊆ A such that there no argument a ∈ S with claim γ(a) = c. Next,
we verify that S is a stage extension, which is coNP-c, cf. Table 2.1, yielding a ΣP

2 -c
algorithm.

Finally, we present our algorithm for deciding the non-empty existence problem.

Lemma 33. Deciding Exists¬∅
stage(CAF) for an arbitrary claim augmented abstract argu-

mentation framework CAF = (A, R, γ) is in P.

Proof. We have that there is a non-empty stage extension if and only if there is a non-
empty conflict-free set, thus Exists¬∅

stage(CAF) = Exists¬∅
conflict-free((A, R)). As the latter

is known to be in P, cf. Table 2.1, so is Exists¬∅
stage(CAF).

3.2.3 Semi-stable semantics with claim-centric range

Before we give the complexity results for the semi-stablec semantics, we first show some
auxiliary results, adapting some of the translations defined in [DW11].

Definition 2. Given a claim augmented abstract argumentation framework CAF =
(A, R, γ). We define translation Tr1(CAF ) = (A′, R′, γ′) where

A′ = A ∪ {a′ | a ∈ A}

R′ = R ∪ {(a, a′), (a′, a), (a′, a′) | a ∈ A}

γ′(a′) = ca and γ′(a) = γ(a) for all a ∈ A such that ca 6∈ claim(A)

Lemma 34. For every claim augmented abstract argumentation framework CAF =
(A, R, γ), the following three propositions are equivalent:

1. C ∈ preferred(CAF )

2. C ∈ preferred(Tr1(CAF ))

3. C ∈ semi-stablec(Tr1(CAF ))
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3.2. Claim augmented abstract argumentation frameworks

Proof. We first show that C ∈ conflict-free(CAF ) if and only if C ∈ conflict-free(Tr1(CAF )):
⇒: Let E ⊆ A be conflict-free in CAF such that claim(E) = C. As E ⊆ A, it cannot con-
tain any a′. Thus, E is conflict-free in Tr1(CAF ), as all additional attacks contain at least
one argument a′, which are not contained in E and therefore C ∈ conflict-free(Tr1(CAF )).
⇐: Let E ⊆ A′ conflict-free in Tr1(CAF ) such that claim(E) = C. As all arguments a′

are self-attacking, they cannot be contained in any conflict-free set of Tr1(CAF ), thus
E cannot contain any such arguments. Furthermore, as R ⊆ R′, E is a conflict-free set
in CAF and thus C ∈ conflict-free(CAF ).
Moreover, clearly E ∈ admissible(A, R) if and only if E ∈ admissible(Tr1(A, R)), as
all attacks from any argument a′ are symmetric, i.e. every argument a attacked by
some argument a′ defends itself against a′. Furthermore, as preferred extensions are
subset maximal admissible sets, we obtain that E ∈ preferred(A, R) if and only if
E ∈ preferred(Tr1(A, R)). Thus, (1) ⇔ (2).
Next, for (2) ⇒ (3), let C be a preferred extension of Tr1(CAF ) and E ⊆ A′ be a
preferred set witnessing C. Furthermore, towards a contradiction, let F ⊆ A′ be an
admissible set and E+claim

R′ ⊂ F +claim

R′ . As E is a preferred set of CAF , there must be
some a ∈ E \ F . Furthermore, as all arguments b′ ∈ A′ \A are not conflict-free, it must
hold that a ∈ A and thus, by the construction of Tr1, there must be some argument a′

such that a is the only argument attacking a′ and a′ is the only argument with claim γ(a′).
Therefore, γ(a′) ∈ E+claim

R′ but γ(a′) 6∈ F +claim

R′ , contradicting that E+claim

R′ ⊂ F +claim

R′ .
Thus, such a set F cannot exist and therefore, (2) ⇒ (3).
Finally, for (3) ⇒ (2), let C be a semi-stablec extension of Tr1(CAF ) and E ⊆ A′ be
a admissible set witnessing C. Towards a contradiction, let F ⊆ A′ be a preferred set
such that E ⊂ F . Then, E+claim

R′ ⊆ F +claim

R′ . Furthermore, as E ⊂ F , there must be
some a ∈ F \ E and thus some a′ ∈ A′ attacked by a. As, by the construction of Tr1,
a′ is the only argument with claim γ(a′) and is only attacked by a (except for itself),
γ(a′) ∈ F +claim

R′ and γ(a′) 6∈ E+claim

R′ and thus E+claim

R′ ⊂ F +claim

R′ , contradicting that C is
a semi-stablec extension of Tr1(CAF ). Thus, such a set F cannot exist and therefore,
(3) ⇒ (2).

Using this lemma, we will prove our complexity results the semi-stablec semantics for
non well-formed and well-formed claim augmented abstract argumentation frameworks,
depicted in the Tables 3.2 and 3.3.

Firstly, we will consider the verification problem for non well-formed claim augmented
abstract argumentation frameworks.

Lemma 35. Deciding Versemi-stablec
(CAF, S) for an arbitrary non well-formed claim

augmented abstract argumentation framework CAF = (A, R, γ) and a set of claims
S ⊆ claim(A) is ΣP

2 -c.

Proof. We can verify that a given set S is a semi-stablec extension, by

• guessing a set E ⊆ A with claim(E) = S,
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3. Complexity Results

• checking that E is admissible and

• verifying that each E′ ⊆ A with E′+claim

R ⊃ E+claim

R is not admissible.

The first is in NP, while the second is known to be in P from Dung abstract argumentation
frameworks, cf. Table 2.1. Finally, checking that every proper superset is not admissible
can be solved in coNP by a standard guess & check algorithm, i.e. guess a set and verify
that it is admissible, compute the claims of its range and verify its a superset of the
range of the original set, yielding a ΣP

2 algorithm.

Furthermore, we can show hardness by a reduction from Verpreferred of claim augmented
abstract argumentation frameworks. As shown in Lemma 34, C ∈ preferred(CAF ) if and
only if C ∈ semi-stablec(Tr1(CAF )). Thus, we construct Tr1(CAF ) in polynomial time
and then Verpreferred(CAF, C) = Versemi-stablec

(Tr1(CAF ), C). Thus, as Verpreferred for
non well-formed claim augmented abstract argumentation frameworks is ΣP

2 -c, cf. Table
2.2, so is Versemi-stablec

for non well-formed claim augmented abstract argumentation
frameworks.

Next, we will consider the verification problem for well-formed claim augmented abstract
argumentation frameworks.

Lemma 36. Deciding Versemi-stablec
(CAF, S) for an arbitrary well-formed claim aug-

mented abstract argumentation framework CAF = (A, R, γ) and a set of claims S ⊆
claim(A) is coNP-c.

Proof. We can verify that a given set S is a semi-stablec extension, by

• calculating the maximal admissible set E ⊆ A with claim(E) = S,

• verifying that each E′ ⊆ A with E′+claim

R ⊃ E+claim

R is not admissible.

The first is in P as shown in [DW19], while the second can be solved in coNP by a
standard guess & check algorithm, i.e. guess a set and verify that it is admissible and its
range is a superset of the range of the original set, thus yielding a coNP algorithm for
deciding Versemi-stablec

(CAF , S) for well-formed claim augmented abstract argumentation
frameworks.

Note that the complexity results for the remaining decision problems coincide for non
well-formed and well-formed claim augmented abstract argumentation frameworks, thus
we will not have to distinguish between those for the remaining proofs, starting with the
proof for the credulous acceptance problem.

Lemma 37. Deciding Credsemi-stablec
(CAF, c) for an arbitrary claim augmented abstract

argumentation framework CAF = (A, R, γ) and a claim c ∈ claim(A) is ΣP
2 -c.
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3.2. Claim augmented abstract argumentation frameworks

Proof. We utilize the non-determinism to guess a set of arguments S ⊆ A such that there
is some argument a ∈ S with claim γ(a) = c. Next, we verify that S is admissible and
that its range is maximal by guessing another set S′ ⊆ A, verifying that it is admissible
and that its range is a superset of the range of S, yielding a ΣP

2 -c algorithm for deciding
Credsemi-stablec

(CAF , c) .

Analogously, we provide a procedure for the skeptical acceptance problem.

Lemma 38. Deciding Skeptsemi-stablec
(CAF, c) for an arbitrary claim augmented abstract

argumentation framework CAF = (A, R, γ) and a claim c ∈ claim(A) is ΠP
2 -c.

Proof. To construct a counter example, we utilize the non-determinism to guess a set
of arguments S ⊆ A such that there no argument a ∈ S with claim γ(a) = c. Next, we
verify that S is admissible and that its range is maximal by guessing another set S′ ⊆ A,
verifying that it is admissible and that its range is a superset of the range of S, yielding
a ΠP

2 -c algorithm for deciding Skeptsemi-stablec
(CAF , c).

Finally, we present our algorithm for deciding the non-empty existence problem.

Lemma 39. Deciding Exists¬∅
semi-stablec

(CAF) for an arbitrary claim augmented abstract
argumentation framework CAF = (A, R, γ) is NP-c.

Proof. We have that there is a non-empty semi-stablec extension if and only if there is a
non-empty admissible set, thus Exists¬∅

semi-stablec
(CAF) = Exists¬∅

admissible((A, R)). As the

latter is known to be NP-c, cf. Table 2.1, so is Exists¬∅
semi-stablec

(CAF).

3.2.4 Stage semantics with claim-centric range

Similarly as for the semi-stablec semantics, we first show some auxiliary results, adapting
some of the translations defined in [DW11].

Definition 3. Given a claim augmented abstract argumentation framework CAF =
(A, R, γ). We define translation Tr2(CAF ) = (A′, R′, γ′) where

A′ = A ∪ {a′ | a ∈ A}

R′ = R ∪ {(b, a), (a, b′), | (a, b) ∈ R}

∪ {(a, b) | a ∈ A, (b, b) ∈ R}

∪ {(a, a′), (a′, a′) | a ∈ A}

γ′(a′) = ca and γ′(a) = γ(a) for all a ∈ A such that ca 6∈ claim(A)

Lemma 40. For every claim augmented abstract argumentation framework CAF =
(A, R, γ), the following three propositions are equivalent:

1. C ∈ stage(CAF )
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3. Complexity Results

2. C ∈ stage(Tr2(CAF ))

3. C ∈ stagec(Tr2(CAF ))

Proof. First, observe that every set of arguments is conflict-free in CAF if and only if it
is conflict-free in Tr2(CAF ), as all added arguments are self-attacking and thus cannot
occur in any conflict-free set and we only add attacks between arguments {a, b} ⊆ A, if
there was already one in at least one direction or the attacked argument was self-attacking.
Moreover, {∅} is a, and then also the only, stage extension of CAF if and only if all
arguments are self-attacking which is the case if and only if {∅} is also the only stagec

extension of CAF .
Regarding (1) ⇔ (3): For a set of arguments E, let (E+

R )′ := {a′ ∈ A | a ∈ E+
R}. Clearly,

(E+
R )′ ⊆ E+

R′ , as for any (a, b) ∈ R we have that (a, b′) ∈ R′ and (a, a′) ∈ R′ for all
a ∈ A. Furthermore, for every maximal (with regard to ⊆) conflict-free set of Tr2(CAF ),
A ⊆ E+

R′ , as all arguments in A are either contained or, due to the fact that E is maximal,
are attacked by E. Thus, for every maximal conflict-free set E ⊆ A which, due to the
fact that all arguments a′ are self-attacking, are the only witnessing candidates for the
stage and stagec extensions, E+claim

R = claim(A)∪ claim((E+
R )′) which, as each argument

in (E+
R )′ has a unique claim, will be maximal if and only if (E+

R )′ is maximal.
Analogously, (1) ⇔ (2) follows by observing that E+

R = A∪ (E+
R )′ which will be maximal

if and only if (E+
R )′ is maximal.

In the following, using this lemma, we will prove our complexity results the stagec

semantics for non well-formed and well-formed claim augmented abstract argumentation
frameworks, depicted in the Tables 3.2 and 3.3.

Firstly, we will consider the verification problem for non well-formed claim augmented
abstract argumentation frameworks.

Lemma 41. Deciding Verstagec
(CAF, S) for an arbitrary non well-formed claim aug-

mented abstract argumentation framework CAF = (A, R, γ) and a set of claims S ⊆
claim(A) is ΣP

2 -c.

Proof. We can verify that a given set S is a stagec extension, by

• guessing a set E ⊆ A with claim(E) = S,

• checking that E is conflict-free and

• verifying that each E′ ⊆ A with E′+claim

R ⊃ E+claim

R is not conflict-free.

The first is in NP, while the second is known to be in P from Dung abstract argumentation
frameworks, cf. Table 2.1. Finally, checking that every proper superset is not conflict-free
can be solved in coNP by a standard guess & check algorithm, i.e. guess a set and verify
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3.2. Claim augmented abstract argumentation frameworks

that it is conflict-free, compute the claims of its range and verify its a superset of the
range of the original set, yielding a ΣP

2 algorithm.

Furthermore, we can show hardness by a reduction from Verstage. As shown in Lemma 40,
Verstage(CAF, C) is true if and only if Verstagec

(Tr2(CAF ), C) is true. Thus, we construct
Tr2(CAF ) in polynomial time and then Verstage(CAF, C) = Verstagec

(Tr2(CAF ), C).
Thus, as Verstage for non well-formed claim augmented abstract argumentation frameworks
is ΣP

2 -c, cf. Table 3.2, so is Verstagec
for non well-formed claim augmented abstract

argumentation frameworks.

Next, we will consider the verification problem for well-formed claim augmented abstract
argumentation frameworks.

Lemma 42. Deciding Verstagec
(CAF, S) for an arbitrary well-formed claim augmented

abstract argumentation framework CAF = (A, R, γ) and a set of claims S ⊆ claim(A) is
coNP-c.

Proof. We can verify that a given set S is a stagec extension, by

• calculating the maximal conflict-free set E ⊆ A with claim(E) = S,

• verifying that each E′ ⊆ A with E′+claim

R ⊃ E+claim

R is not conflict-free.

The first is in P as shown in [DW19], while the second can be solved in coNP by a
standard guess & check algorithm, i.e. guess a set and verify that it is conflict-free and
its range is a superset of the range of the original set, thus yielding a coNP algorithm
for deciding Verstagec

(CAF , S) for well-formed claim augmented abstract argumentation
frameworks.

Note that the complexity results for the remaining decision problems coincide for non
well-formed and well-formed claim augmented abstract argumentation frameworks, thus
we will not have to distinguish between those for the remaining proofs, starting with the
proof for the credulous acceptance problem.

Lemma 43. Deciding Credstagec
(CAF, c) for an arbitrary claim augmented abstract

argumentation framework CAF = (A, R, γ) and a claim c ∈ claim(A) is ΣP
2 -c.

Proof. We utilize the non-determinism to guess a set of arguments S ⊆ A such that there
is some argument a ∈ S with claim γ(a) = c. Next, we verify that S is conflict-free and
that its range is maximal by guessing another set S′ ⊆ A, verifying that it is conflict-free
and that its range is a superset of the range of S, yielding a ΣP

2 -c algorithm for deciding
Credstagec

(CAF , c).

Analogously, we provide a procedure for the skeptical acceptance problem.
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3. Complexity Results

Lemma 44. Deciding Skeptstagec
(CAF, c) for an arbitrary claim augmented abstract

argumentation framework CAF = (A, R, γ) and a claim c ∈ claim(A) is ΠP
2 -c.

Proof. To construct a counter example, we utilize the non-determinism to guess a set
of arguments S ⊆ A such that there no argument a ∈ S with claim γ(a) = c. Next,
we verify that S is conflict-free and that its range is maximal by guessing another set
S′ ⊆ A, verifying that it is conflict-free and that its range is a superset of the range of S,
yielding a ΠP

2 -c algorithm for deciding Skeptstagec
(CAF , c).

Finally, we present our algorithm for deciding the non-empty existence problem.

Lemma 45. Deciding Exists¬∅
stagec

(CAF) for an arbitrary claim augmented abstract ar-
gumentation framework CAF = (A, R, γ) is in P.

Proof. We have that there is a non-empty stagec extension if and only if there is a
non-empty conflict-free set, thus Exists¬∅

stagec
(CAF) = Exists¬∅

conflict-free((A, R)). As the

latter is known to be in P , cf. Table 2.1, so is Exists¬∅
stagec

(CAF).
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CHAPTER 4
Answer-Set Programming

Encodings

Within this chapter, we will present answer-set programming encodings for the conflict-
free, admissible, complete, stable, preferred, semi-stable and stage semantics for abstract
argumentation frameworks with collective attacks and claim augmented abstract argumen-
tation frameworks. In Section 4.1 we will discuss encodings for abstract argumentation
frameworks with collective attacks, while Section 4.2 will focus on claim augmented
abstract argumentation frameworks. Moreover, Subsection 4.2.2 will be dedicated to
encodings for non well-formed claim augmented abstract argumentation frameworks,
while the Subsection 4.2.3 and 4.2.4 will focus on argument-driven and claim-driven
encodings for well-formed claim augmented abstract argumentation frameworks. Finally,
in Subsections 4.2.5 and 4.2.6, we will propose encodings for the version of stage and
semi-stable semantics with claim-centric ranges.

4.1 Encodings for abstract argumentation frameworks

with collective attacks

4.1.1 Input and output format

All encodings for abstract argumentation frameworks with collective attacks will share a
common input and output format. The input will consist of facts

arg(X).

stating that X is an argument. Moreover, facts of the form

att(X, Y ).
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4. Answer-Set Programming Encodings

a

b

c

d

Figure 4.1: An abstract argumentation framework with collective attacks

state that the attack named X is direct at argument Y , while

mem(X, Y ).

encodes that argument Y is a member of attack X.

Furthermore, the output consists of facts

in(Y )

stating that the argument Y is in the respective extension of the abstract argumentation
framework with collective attacks specified in the input.

Thus, the abstract argumentation framework with collective attacks depicted in Figure
4.1 could be encoded as:

Πsetaf_ex =















arg(a). arg(b). arg(c). arg(d).

att(a1, b). att(a2, d).

mem(a1, a). mem(a1, c). mem(a2, b).

4.1.2 Encodings

All encodings given in this Subsection will share a common core fragment:

Πsetaf_core =















in(Y) :- arg(Y), not out(Y).

out(Y) :- arg(Y), not in(C).

#show in/1.

The first two rules of the core fragment model the first guess within the guess and check
paradigm, while the third rule projects the output to atoms over the unary predicate
”in”. Using this core fragment, we can define the encoding for conflict-free sets as
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4.1. Encodings for abstract argumentation frameworks with collective attacks

Πsetaf_cf = Πsetaf_core∪
{

:- in(Y), att(X, Y), in(Z) : mem(X, Z).

The additional constraint will eliminate all guesses of the core fragment Πsetaf_core for
which there is an argument Y in the extension of the unary predicate ”in” such that
there is an attack X direct at Y for which all member arguments Z1, . . . , Zn are also in
the extension of the unary predicate ”in” and thus are not conflict-free. Moreover, this
encoding can be extended to encode two further semantics. First, for stable sets as:

Πsetaf_st = Πsetaf_cf∪

{

blocked(X) :- att(X, _), mem(X, Y), out(Y).

:- out(Y), blocked(X) : att(X, Y).

where the first rule will introduce an auxiliary predicate ”blocked(X)”, encoding that the
attack X is blocked, i.e. cannot fire due to one of its members Y being ”out”. Thus, the
constraint in the second rule will eliminate all guesses that set an argument Y out for
which all attacks are blocked.

Secondly, for admissible sets,

Πsetaf_adm = Πsetaf_cf∪
{

defeated(X) :- att(X, _), mem(X, Y), att(Z, Y), in(Y2) : mem(Z, Y2).

:- in(Y), att(X, Y), not defeated(X).

encodes the set of all admissible extensions. The first additional rule defines the auxiliary
predicate ”defeated(X)” with the intended meaning that the attack X is defeated i.e.
does not fire. This is the case if the attack includes some argument Y such that there is
an attack Z for which all its members are in the extension of the unary predicate ”in”.
Using this auxiliary predicate, the constraint in the second rule eliminates all guesses
that include some argument Y in the extension of ”in” for which there is an attack that is
not defeated. Furthermore, this encoding can be extended to the encoding for complete
sets by adding one more constraint:

Πsetaf_co = Πsetaf_adm∪
{

:- out(Y), defeated(X) : att(X, Y).

This additional constraint will eliminate all guesses which set an argument Y ”out”, even
though all attacks on this argument are defeated, i.e. the argument Y is defended by the
guess encoded in the extension of ”in”.

Furthermore, to state the encoding for the preferred semantics, we will make use of the
saturation technique mentioned in Subsection 2.2.3. Therefore, we will first give the
encoding for the preferred semantics and then explain when and how the saturation
technique is used. Thus, the encoding for preferred sets can be implemented as:
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4. Answer-Set Programming Encodings

Πsetaf_pr = Πsetaf_adm∪














































































non_trivial :- out(_). (1)

sIn(X) : out(X) :- non_trivial. (2)

sIn(X) :- in(X), non_trivial. (3)

fail :- sIn(Y), att(X, Y), non_trivial, sIn(Z) : mem(X, Z). (4)

fail | needAttack(X2) : att(X2, Z), mem(X, Z) :- sIn(Y), att(X, Y), non_trivial. (5)

sIn(Y) :- att(X, _), needAttack(X), mem(X, Y), non_trivial. (6)

sIn(X) :- fail, arg(X), non_trivial. (7)

needAttack(X) :- fail, att(X, _), non_trivial. (8)

:- not fail, non_trivial. (9)

For the preferred semantics, we have to make sure that our guessed set is a maximal
admissible set. Thus, for each guess over ”in” made by Πsetaf_adm, we have to ensure
that this guess is maximal admissible and eliminate it otherwise. Therefore, for each
guess, additional guesses will be made trying to extend the original guess. Using the
saturation technique, we will then ensure that the original guess is either maximal or
eliminate it. Unfortunately, we will only be allowed to use stratified default negation in
the part where the saturation technique is used (2 - 9), which will make the encoding
of admissibility more cumbersome. The basic idea will be to make guesses via ”sIn”,
extending the original guess encoded in ”in” and ”out”. If all additional guesses derive
the predicate ”fail”, the original guess will be maximal admissible. If there is an extended
guess that does not derive ”fail”, the original guess cannot be admissible and thus has to
be excluded.

Therefore, we will have to define some auxiliary predicates to model the extended guess.
The first one will be ”non_trivial”, stating that the original guess does not already include
all argument. Such a original guess will be trivially maximal and thus there cannot be a
extended guess for it, which would cause this guess to be excluded, as there could be
no extended guess that could derive ”fail”. Therefore, to account for this technicality,
all rules of the saturation technique will contain ”non_trivial” in their positive bodies.
For all non-maximal original guesses, we will guess an extended set of arguments via the
rules 2 and 3. Furthermore, rule 4 will derive ”fail” for all extended guess that are not
conflict-free. Finally, the rules 5 and 6 will ensure that the extended guess is admissible
or try to extend it if possible or derive ”fail”. Unfortunately, as mentioned before, we
can only use stratified negation, causing the encoding to become more involved as the
encoding for Πsetaf_adm. Thus, the auxiliary predicate ”needAttack(X)” encodes that
we need to include all members of the attack X in order to defend some other argument
which is already in. To complete the encoding, rules 7 and 8 will saturate all extended
guesses deriving ”fail”, while rule 9 will eliminate all extended guesses not deriving ”fail”.

As the saturation technique is not quite intuitive, we will try to illustrate the idea behind
it. Let G = {in(a1), . . . , in(an)} be some initial guess of Πsetaf_pr and assume it encodes
a maximal admissible set. Then, if we ignore the trivial case that G is maximal, every
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4.1. Encodings for abstract argumentation frameworks with collective attacks

extended guess of G will derive ”fail”. Therefore, the model M containing G and all
the saturated atoms via rule 7 and 8 and ”fail” will be a minimal model of the reduct
ΠM

setaf_pr and thus an answer set. Furthermore, as we have started with a maximal
admissible original guess, this is the expected result, as it models a preferred extension.
Furthermore, assume G were a non-maximal admissible guess. Then, there would be
some admissible extended guess of G and thus an interpretation I modeling this extended
guess. However, as I does not derive ”fail”, the constraint in rule 9 will prevent it from
becoming an answer set. Moreover, any extended guess J of the initial guess G that does
contain ”fail” will, due to the saturation in rule 7 and 8, be an proper superset of I and,
as the only occurrence of default negation in the saturation part is in rule 9, which is
unsatisfied by I as it does not contain ”fail”, I will be a model of the reduct ΠJ

setaf_pr

and as I ⊂ J , J cannot be an answer set. Again, this is the expected behavior, as the
initial original guess did not model a preferred extension.

Furthermore, leveraging the saturation technique once again, we can define the encoding
for stage sets as:

Πsetaf_stg = Πsetaf_cf∪


























































































































range(Y) :- in(Y). (1)

range(Y) :- att(X, Y), in(Z) : mem(X, Z). (2)

notrange(Y) :- arg(Y), not range(Y). (3)

non_trivial :- notrange(_). (4)

extendedRange(Y) :- range(Y), non_trivial. (5)

extendedRange(Y) : notrange(Y) :- non_trivial. (6)

baseGuess(Y) | needAttack(X) : att(X, Y) :- extendedRange(Y), non_trivial. (7)

baseGuess(Y) :- att(X, _), needAttack(X), mem(X, Y), non_trivial. (8)

fail :- baseGuess(Y), att(X, Y), non_trivial, baseGuess(Z) : mem(X, Z). (9)

baseGuess(Y) :- fail, arg(Y), non_trivial. (10)

extendedRange(Y) :- fail, arg(Y), non_trivial. (11)

needAttack(X) :- fail, att(X, _), non_trivial. (12)

:- not fail, non_trivial. (13)

As the stage encoding aims to maximize the range of a set of argument, we first encode
the range in rules 1-3 using ”range(X)” and ”notrange(X)” to encode that an argument
X is in the range or not in the range of the original guess respectively. Furthermore,
similarly as for the preferred encoding, ”non_trivial” in rule 4 will be used to ensure
that the range of the original guess is not already maximal and rules 5 and 6 will guess
an extended range based on the original guess of Πsetaf_cf , although this time trying to
extend the range and not the original guess itself. The remaining part of the program,
except for the parts required for the saturation, will try to justify the guessed extended
range by finding a conflict-free base guess that will witness it or infer ”fail”. Thus, by
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4. Answer-Set Programming Encodings

rule 7, for every argument Y postulated to be in the extended range, we either require
Y to be in the base guess or require some attack X direct at Y to be supported by the
base guess, i.e. require all members of X to be in the base guess, which will be enforced
by rule 8. Finally, rule 9 will derive ”fail” for all base guesses that are not conflict-free,
while rules 10 to 13 saturate such base guesses as for the preferred encoding.

Finally, given the encoding for the stage semantics, the encoding for semi-stable sets can
be stated by adding the encoding for admissibility and one more rule:

Πsetaf_sst = Πsetaf_stg ∪Πsetaf_adm∪
{

fail | needAttack(Z) :- att(Z, Y1), mem(X, Y1) :- baseGuess(Y), att(X, Y), non_trivial.

The additional rule will ensure that the base guess is admissible. Thus, for every argument
Y attacked by some attack X, we need the base guess to support some attack Z directed
at a member Y1 of X or infer ”fail”.

4.2 Encodings for claim augmented abstract

argumentation frameworks

In this section, we will give answer-set encodings to compute conflict-free, admissible,
complete, preferred, stable, semi-stable and stage extension of a claim augmented abstract
argumentation frameworks. Furthermore, we will give encodings for non well-formed
claim augmented abstract argumentation frameworks as well optimized encodings for well-
formed claim augmented abstract argumentation frameworks, exploiting the uniqueness
property introduced in [DW19]. Moreover, for well-formed claim augmented abstract
argumentation frameworks, we will give argument-driven and claim-driven encodings,
one focusing on guessing on arguments, while the other will make guesses on claims.

4.2.1 Input and output format

Analogously as in the encodings for abstract argumentation framework with collective
attacks, all encodings for claim augmented abstract argumentation frameworks will share
a common input and output format. The input consists of facts

arg(X, C).

stating that C is the claim of argument X and

att(X, Y ).

stating that argument/claim X attacks argument Y for non well-formed/well-formed
claim augmented abstract argumentation frameworks.
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4.2. Encodings for claim augmented abstract argumentation frameworks

a

α

b

β

c

α

Figure 4.2: A non well-formed claim augmented abstract argumentation framework

a1

c1

a2

c1

a3

c2

a4

c3

a5

c4

Figure 4.3: A well-formed claim augmented abstract argumentation framework

Moreover, the output consists of facts

in(C)

stating that the claim C is in the respective extension of the claim augmented abstract
argumentation framework specified in the input.

Therefore, the non well-formed claim augmented abstract argumentation framework
depicted in Figure 4.2 can be encoded as:

Πnwf_ex =

{

arg(a, α). arg(b, β). arg(c, α).

att(a, b). att(b, c).

Furthermore, the well-formed claim augmented abstract argumentation framework de-
picted in Figure 4.3 can be encoded as:

Πwf_ex =
{

arg(a1, c1). arg(a2, c1). arg(a3, c2). arg(a4, c3). arg(a5, c4).

att(c1, a1). att(c1, a2). att(c2, a2). att(c2, a4). att(c3, a3). att(c3, a5). att(c4, a5).

4.2.2 Encodings for non well-formed claim augmented abstract

argumentation framework

All encodings in the subsection will share a common core component, encoding the initial
guess on the claims in via the predicates ”in” and ”out” and ensuring that all the guessed
claims are witnessed by at least one argument in the witnessing set of arguments encoded
by ”argIn”, as well as projecting on the predicate ”in”:
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4. Answer-Set Programming Encodings

Πnwf_core =



























in(C) :- arg(_, C), not out(C).

out(C) :- arg(_, C), not in(C).

{ argIn(X) : arg(X, C) } > 0 :- in(C).

#show in/1.

Using the core component Πnwf_core, we can define the encoding for conflict-free exten-
sions as

Πnwf_cf = Πnwf_core∪
{

:- argIn(X), argIn(Y), att(X, Y).

eliminating all original guesses containing two arguments in ”argIn” that are conflicting.
As for abstract argumentation frameworks with collective attacks, we can extend the
encoding for the conflict-free semantics to compute stable sets as

Πnwf_st = Πnwf_cf∪

{

defeated(X) :- att(Y, X), argIn(Y).

:- arg(X, _), not argIn(X), not defeated(X).

where the additional auxiliary predicate ”defeated” encodes that the argument X is
attacked by some member of the witnessing set. Furthermore, the constraint in the
second rule will eliminate all candidates that spare at least one argument that is not
defeated, ensuring that the witnessing set is stable.

Moreover, using the encoding for conflict-free extensions, we can also give the encoding
for admissible extensions as

Πnwf_adm = Πnwf_cf∪

{

notDefended(X) :- att(Y, X), not argIn(Z) : att(Z, Y).

:- argIn(X), notDefended(X).

The first rule introduces an auxiliary predicate ”notDefended(X)”, encoding that the
argument X is not defended i.e. there is some argument Y attacking X such that the
witnessing set encoded via ”argIn” does not contain any argument attacking Y. Finally,
the second rule enforces admissibility by eliminating all interpretations which witnessing
sets contain an argument X that is not defended.

Furthermore, using the encoding for admissible extensions, we can give the encoding for
complete extensions as

Πnwf_co = Πnwf_adm∪
{

:- arg(X, _), not argIn(X), not notDefended(X).

eliminating all candidates that spare at least one argument that is defended, ensure that
the witnessing set is complete.

For the remaining three encodings, we will employ the saturation technique once again.
Thus, the encoding for preferred sets can be implemented as:
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4.2. Encodings for claim augmented abstract argumentation frameworks

Πnwf_pr = Πnwf_adm∪


































































argOut(X) :- arg(X, _), not argIn(X). (1)

non_trivial :- argOut(X). (2)

eArgIn(X) : argOut(X) :- non_trivial. (3)

eArgIn(X) :- argIn(X), non_trivial. (4)

fail :- eArgIn(X), eArgIn(Y), att(X, Y), non_trivial. (5)

fail | eArgIn(Z) : att(Z, Y) :- eArgIn(X), att(Y, X), non_trivial. (6)

eArgIn(X) :- fail, arg(X, _), non_trivial. (7)

:- not fail, non_trivial. (8)

Rules 2 and 3 will encode an extended guess to the original guess of Πnwf_adm using
”eArgIn”. Rule 5 will ensure that the extended guess is conflict-free, while rule 6 will
ensure admissibility.

Moreover, the encoding for the stage semantics can be implemented as:

Πnwf_stg = Πnwf_cf∪






































































































range(X) :- argIn(X). (1)

range(Y) :- argIn(X), att(X, Y). (2)

notInRange(X) :- arg(X, _), not range(X). (3)

non_trivial :- notInRange(X). (4)

extendedRange(X) :- range(X), non_trivial. (5)

extendedRange(X) : notInRange(X) :- non_trivial. (6)

baseSet(X) | baseSet(Y) : att(Y, X) :- extendedRange(X), non_trivial. (7)

fail :- baseSet(X), baseSet(Y), att(X, Y), non_trivial. (8)

extendedRange(X) :- fail, arg(X, _), non_trivial. (9)

baseSet(X) :- fail, arg(X, _), non_trivial. (10)

:- not fail, non_trivial. (11)

Similarly to the encoding for abstract argumentation frameworks with collective attacks,
we will guess an extended range and try to find a conflict-free base set witnessing the
extended range. Thus, rules 5 and 6 will encode the extended range using the predicate
”extendedRange”, while rule 7 will try to find a witnessing base set for each argument X
in the extended range, either by adding X to the base set or by adding some argument Y
to the base set that attacks X. Finally, rule 8 will eliminate all base sets that are not
conflict-free.
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4. Answer-Set Programming Encodings

Similarly as before, the encoding for the stage semantics can be extended to compute
semi-stable sets:

Πnwf_sst = Πnwf_stg ∪Πnwf_adm∪
{

fail | baseSet(Z) : att(Z, Y) :- baseSet(X), att(Y, X), non_trivial.

The additional rule will try to defend each argument X in the base set or infer ”fail”.
Therefore, for each argument Y attacking X, some argument Z attacking Y is added to
the base set or ”fail” is inferred.

4.2.3 Argument-driven encodings for well-formed claim augmented

abstract argumentation framework

In this subsection, we will be giving the first set of encodings for well-formed claim
augmented abstract argumentation frameworks. These encodings will be focusing on
guessing on arguments, while the encodings in the next subsection will make guesses on
claims. Once again, all encodings of this subsection will share a core fragment, carrying
out the initial guess on arguments encoded using the predicates ”inArg” and ”outArg”,
inferring and projecting on the ”in” claims:

Πwfa_core =



























inArg(X) :- not outArg(X), arg(X, _).

outArg(X) :- not inArg(X), arg(X, _).

in(C) :- inArg(X), arg(X, C).

#show in/1.

Furthermore, using the core fragment, we can give the encoding for conflict-free sets as:

Πwfa_cf = Πwfa_core∪
{

:- inArg(X), in(C), att(C, X).

eliminating all guesses that include an argument X that is attacked by some claim C
which is in the extension of ”in”, i.e. there is some argument Y in the extension of ”inArg”
such that γ(Y ) = C. Thus, the encoding for stable sets can be constructed by adding
one more constraint:

Πwfa_st = Πwfa_cf∪
{

:- outArg(X), not in(C) : att(C, X).

eliminating all guesses that exclude an argument for which all attacking claims are not
witnessed by the guess itself.

Moreover, the encoding for the admissible semantics can be implemented as:

Πwfa_adm = Πwfa_cf∪
{

:- inArg(Y), att(C, Y), arg(X, C), not in(C1) : att(C1, X).
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4.2. Encodings for claim augmented abstract argumentation frameworks

The additional rule will eliminate all guesses that are not admissible. Thus, all guesses
will be eliminated for which there is an argument Y that is in and for which there is
an argument X with claim C attacking Y such that all claims C1 attacking X are not
witnessed by the guess.

Contrary to the previous two sets of encodings, the encoding for complete sets in this
subsection will not build upon the encoding for admissible sets but will be given as:

Πwfa_co = Πwfa_cf∪














not_defended(Y) :- arg(X, C), att(C, Y), not in(C1) : att(C1, X).

:- inArg(X), not_defended(X).

:- outArg(X), not not_defended(X).

We introduce an auxiliary predicate ”not_defended(Y)” stating that an argument Y is
attacked by some argument X, which itself is not being attacked by the current guess.
This predicate will be used to ensure completeness and can be used to give a more concise
constraint for admissibility.

For the encoding of preferred sets, we once again make use of the saturation technique:

Πwfa_pr = Πwfa_adm∪














































































non_trivial :- outArg(_). (1)

eArgIn(X) :- inArg(X), non_trivial. (2)

eArgIn(X) : outArg(X) :- non_trivial. (3)

eIn(C) :- eArgIn(X), arg(X, C), non_trivial. (4)

fail :- eIn(C), eArgIn(X), att(C, X), non_trivial. (5)

fail | eArgIn(Z) : att(C1, Y), arg(Z, C1) :- eArgIn(X), att(C, X), arg(Y, C), non_trivial. (6)

eArgIn(X) :- fail, arg(X, _), non_trivial. (7)

eIn(C) :- fail, arg(_, C), non_trivial. (8)

:- not fail, non_trivial. (9)

Rules 2-4 make a guess encoded in ”eArgIn” to extend the original guess. Rule 5 ensures
conflict-freeness, while rules 6 and 7 ensure admissibility. Thus, for every argument in
the extension of ”eArgIn(X)” and for every argument Y attacking X, we need some claim
C1 in that attacks Y, thus protecting X against Y or infer ”fail”.

Moreover, the encoding for stage sets can be implemented as:
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4. Answer-Set Programming Encodings

Πwfa_stg = Πwfa_cf∪






































































































inRange(X) :- inArg(X). (1)

inRange(X) :- in(C), att(C, X). (2)

non_trivial :- arg(X, _), not inRange(X). (3)

eInRange(X) :- inRange(X), non_trivial. (4)

eInRange(X) : arg(X, _), not inRange(X) :- non_trivial. (5)

eIn(C) :- arg(X, C), baseSet(X), non_trivial. (6)

baseSet(X) | baseSet(Y) : att(C, X), arg(Y, C) :- eInRange(X), non_trivial. (7)

fail :- baseSet(X), eIn(C), att(C, X), non_trivial. (8)

eInRange(X) :- fail, arg(X, _), non_trivial. (9)

baseSet(X) :- fail, arg(X, _), non_trivial. (10)

:- not fail, non_trivial. (11)

We first compute the range of the original guess via the predicate ”inRange” and try
to guess an extended rage via the predicate ”eInRange” in rules 4-6 and try to find a
base set witnessing the extended range. Thus, in rule 7, for every argument X in the
extended range, we either need the argument to be in the base set or some argument Y
attacking X to be in the base set. Moreover, rule 8 derives ”fail” for all base sets that
are not conflict-free.

Furthermore, the encoding for semi-stable sets can be implemented as:

Πwfa_sst = Πwfa_adm ∪Πwfa_stg∪
{

fail | baseSet(Z) : att(C1, Y), arg(Z, C1) :- baseSet(X), att(C, X), arg(Y, C), non_trivial.

The additional rule will check for admissibility of the base guess, by ensuring that for
each argument X in the base set and every argument Y attacking X, either an argument
Z attacking Y is contained in the base set or derive ”fail”.

4.2.4 Claim-driven encodings for well-formed claim augmented

abstract argumentation framework

Like the previous sets of encodings, also the encodings of this subsection will share a
common core component, encoding the initial guess on the claims in via the predicates
”in” and ”out” and project on the predicate ”in”:

Πwfc_core =















in(C) :- arg(_, C), not out(C).

out(C) :- arg(_, C), not in(C).

#show in/1.
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4.2. Encodings for claim augmented abstract argumentation frameworks

The encodings of this subsection will make use of the way of computing the unique
maximal conflict-free and admissible extension introduced in [DW19]. Thus, the conflict-
free encoding can be implemented as:

Πwfc_cf = Πwfc_core∪

{

inArg(X) :- in(C), arg(X, C), not att(C1, X) : in(C1).

:- in(C), not inArg(X) : arg(X, C).

The first rule will encode the, if it exists, unique maximal conflict-free set of arguments
supporting the claims guess via ”in” into ”inArg”. Thus, the second rule will ensure that
the selected set of arguments supports the expected claims and eliminates all candidates
that do not.

Furthermore, the given encoding for conflict-free sets can be extended to encode the
stable semantics by adding one more constraint:

Πwfc_st = Πwfc_cf∪
{

:- arg(X, _), not inArg(X), not in(C) : att(C, X).

The constraint will eliminate all candidate extensions of ”inArg” that do not include
some argument X for which all attacking claims are not guessed ”in” the core component.

Moreover, the encoding for admissible sets does not build upon the encoding for conflict-
free sets this time, but instead builds upon the core component directly:

Πwfc_adm = Πwfc_core∪














notDefended(X) :- att(C, X), arg(Y, C), out(C1) : att(C1, Y).

inArg(X) :- in(C), arg(X, C), not notDefended(X), out(C1) : att(C1, X).

:- in(C), not inArg(X) : arg(X, C).

The auxiliary predicate ”notDefended(X)” has the intended meaning that the argument
X is not defended, i.e. there is some argument Y that attacks X which is not attacked by
the guessed claims. Moreover, the second rule, in addition to its analogue in the encoding
for conflict-free sets, also takes admissibility into account by excluding all not defended
arguments.

Building upon the encoding for admissible sets, one can implement the complete encoding
by adding one more constraints, eliminating all candidates that do not include some
defended argument:

Πwfc_co = Πwfc_adm∪
{

:- arg(X, _), not notDefended(X), not inArg(X).
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4. Answer-Set Programming Encodings

Likewise, the encoding for preferred sets can be stated by extending the encoding for
admissible sets using the saturation technique:

Πwfc_pr = Πwfc_adm∪


























































































































non_trivial :- arg(X, _), not inArg(X). (1)

claim(C) :- arg(_, C), non_trivial. (2)

eIn(C) | eOut(C) :- claim(C), non_trivial. (3)

eNotInArg(X) :- arg(X, C), eOut(C), non_trivial. (4)

eNotInArg(X) :- eIn(C), att(C, X), non_trivial. (5)

eNotInArg(X) :- att(C, X), arg(Y, C), non_trivial, eOut(C2) : att(C2, Y). (6)

fail :- eIn(C), non_trivial, eNotInArg(X) : arg(X, C). (7)

fail :- inArg(X), eNotInArg(X), non_trivial. (8)

fail :- non_trivial, eNotInArg(X) : arg(X, _), not inArg(X). (9)

eIn(C) :- fail, arg(_, C), non_trivial. (10)

eOut(C) :- fail, arg(_, C), non_trivial. (11)

eNotInArg(X) :- fail, arg(X, _), non_trivial. (12)

:- not fail, non_trivial. (13)

Rules 2 and 3 will guess another set of claims, while rules 4-6 will collect all argument into
the extension of ”eNotInArg” that are not part of the maximal admissible set belonging
to the guessed set of claims. Finally, rule 7 will derive ”fail” if one ore more of the
guessed claims is not witnessed by the remaining, not excluded arguments while rules 8
and 9 will derive ”fail” if the guessed set of claims does not yield a proper superset of
the respective set of the original guess of Πwfc_adm.

Moreover, the encoding for the stage semantics, building upon the encoding for conflict-
free sets, can be implemented as:

Πwfc_stg = Πwfc_cf ∪Πwfc_stgcore

where
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4.2. Encodings for claim augmented abstract argumentation frameworks

Πwfc_stgcore
=


























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


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






























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

































































range(X) :- inArg(X). (1)

range(X) :- in(C), att(C, X). (2)

non_trivial :- arg(X, _), not range(X). (3)

partialBaseSet(X) | eIn(C) : att(C, X) :- range(X), non_trivial. (4)

partialBaseSet(X) : arg(X, _), not range(X) |

eIn(C) : arg(X, _), not range(X), att(C, X) :- non_trivial. (5)

eIn(C) :- partialBaseSet(X), arg(X, C), non_trivial. (6)

fail :- eNotInArg(X), partialBaseSet(X), non_trivial. (7)

eNotInArg(X) :- eIn(C), att(C, X), non_trivial. (8)

fail :- eIn(C), non_trivial, eNotInArg(X) : arg(X, C). (9)

eIn(C) :- fail, arg(_, C), non_trivial. (10)

eNotInArg(X) :- fail, arg(X, _), non_trivial. (11)

partialBaseSet(X) :- fail, arg(X, _), non_trivial. (12)

:- not fail, non_trivial. (13)

For each argument X in the range of the original guess, rule 4 will either postulate X to
be included in the base set of the extended guess via the predicate ”partialBaseSet(X)”
or by adding some claim C to the set of claims ”eIn(C)” of the extended guess. Moreover,
rule 5 will do the same for one argument not in the range of the original guess, thus
producing a proper superset. Note that the encoding will not compute the base set, thus
the use of the predicate ”partialBaseSet”, and instead compute the arguments excluded
from it, as due to the fact that the underlying claim augmented abstract argumentation
framework is well-formed, having on argument not excluded per required claim is sufficient.
Nonetheless, for each argument forced into the base set via the predicate ”partialBaseSet”,
rule 6 will include its claim into the set of claims of the extended range. Moreover, rule
7 will derive ”fail” if the current candidate excludes some argument from the extended
range that has to be included via the argument ”partialBaseSet”, while rule 8 will exclude
all arguments are attacked by the guessed claims and thus are not conflict-free. Finally,
rule 9 will derive ”fail” if all arguments have been excluded that could support some
claim in the extension of ”eIn”.

Finally, the encoding for semi-stable sets can be constructed by replacing Πwfc_cf by
Πwfc_adm and adding one more rule:

Πwfc_sst = Πwfc_adm ∪Πwfc_stgcore
∪

{

eNotInArg(X) | eIn(C1) : att(C1, Y) :- att(C, X), arg(Y, C), non_trivial.

The additional rule will ensure, that each argument X attacked by some argument Y is
either excluded from the base set or that some claim attacking Y is required for it.
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4. Answer-Set Programming Encodings

4.2.5 Argument-driven encodings for well-formed claim augmented

abstract argumentation framework with claim-centric range

The argument-driven encoding for the stagec semantics can be implemented as:

Πwfa_stgc
= Πwfa_cf∪






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
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
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
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


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
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




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
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


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


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






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








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
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









attacked(X) :- in(C), att(C, X). (1)

inRange(C) :- in(C). (2)

inRange(C) :- arg(_, C), attacked(X) : arg(X, C). (3)

non_trivial :- arg(_, C), not inRange(C). (4)

eInRange(C) :- inRange(C), non_trivial. (5)

eInRange(C) : arg(_, C), not inRange(C) :- non_trivial. (6)

baseSet(X) : arg(X, C) | eNeedAttacked(C) :- eInRange(C), non_trivial. (7)

eIn(C) :- arg(X, C), baseSet(X), non_trivial. (8)

fail | eNeedClaim(C1) : att(C1, X) :- eNeedAttacked(C), arg(X, C), non_trivial. (9)

fail | baseSet(X) : arg(X, C) :- eNeedClaim(C), non_trivial. (10)

fail :- baseSet(X), eIn(C), att(C, X), non_trivial. (11)

eInRange(C) :- fail, arg(_, C), non_trivial. (12)

baseSet(X) :- fail, arg(X, _), non_trivial. (13)

eNeedAttacked(C) :- fail, arg(_, C), non_trivial. (14)

eNeedClaim(C) :- fail, arg(_, C), non_trivial. (15)

:- not fail, non_trivial. (16)

In contrast to Πwfa_stg, this encoding defines the range in term of claims instead of
arguments. Thus, in rule 5 and 6, we guess an extended range and justify it via rule 7
by, for each claim, either adding some argument of that claim into the base set or by
attacking all arguments with that claim via the auxiliary predicate ”eNeedAttacked” and
further forcing some argument with that claim into the base set using another auxiliary
predicate ”eNeedClaim”.

Moreover, the encoding for semi-stablec sets can be constructed by starting with the
encoding for admissible sets and adding one more rule:

Πwfa_sstc
= Πwfa_adm ∪Πwfa_stgc

∪
{

fail | eNeedClaim(C1) : att(C1, Y) :- baseSet(X), att(C, X), arg(Y, C), non_trivial.

The additional rule will ensure admissibility by defending each argument X of the base
set against all attackers Y by requiring some claim attacking Y to be witnessed by the
base set.
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4.2. Encodings for claim augmented abstract argumentation frameworks

4.2.6 Claim-driven encodings for well-formed claim augmented

abstract argumentation framework with claim-centric range

The claim-driven encoding for the stagec semantics can be implemented as:

Πwfc_stgc
= Πwfc_cf ∪Πwfc_stgccore

where

Πwfc_stgccore
=


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


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
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
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
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
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


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
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
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





attacked(X) :- in(C), att(C, X). (1)

range(C) :- in(C). (2)

range(C) :- out(C), attacked(X) : arg(X, C). (3)

non_trivial :- arg(_, C), not range(C). (4)

eIn(C) | eNeedAttacked(C) :- range(C), non_trivial. (5)

eIn(C) : arg(_, C), not range(C) |

eNeedAttacked(C) : arg(_, C), not range(C) :- non_trivial. (6)

eNotInArg(X) :- eIn(C), att(C, X), non_trivial. (7)

fail | eIn(C1) : att(C1, X) :- eNeedAttacked(C), arg(X, C), non_trivial. (8)

fail :- eIn(C), non_trivial, eNotInArg(X) : arg(X, C). (9)

eIn(C) :- fail, arg(_, C), non_trivial. (10)

eNeedAttacked(C) :- fail, arg(_, C), non_trivial. (11)

eNotInArg(X) :- fail, arg(X, _), non_trivial. (12)

:- not fail, non_trivial. (13)

Once again, we guess and extended range in rules 5 and 6, without explicitly building
the base set but instead collecting all excluded arguments via ”eNotInArg” and ensuring
that not all arguments are excluded for each required claim in rule 9.

Finally, the encoding for semi-stablec sets can be implemented as:

Πwfc_sstc
= Πwfc_core ∪Πwfc_stgccore

∪


































attacked(X) :- in(C), att(C, X). (1)

notDefended(X) :- att(C, X), arg(Y, C), not attacked(Y). (2)

inArg(X) :- in(C), arg(X, C), not notDefended(X), out(C1):att(C1, X). (3)

:- in(C), not inArg(X) : arg(X, C). (4)

eNotInArg(X) | eIn(C1) : att(C1, Y) :- att(C, X), arg(Y, C), non_trivial. (5)

Similarly as for the regular claim-driven semi-stable encoding, rules 1-4 differ slightly
from the stage semantics, due to the reuse of the predicate ”attacked”. The addition rule
5 finally ensures admissibility by excluding all not defended arguments.
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CHAPTER 5
Experiments

In this chapter, we will present the algorithms that were used to modify the base instances
to obtain the test cases that were used for our experiments. Moreover, we will present
the results of the experiments, enumerating extensions of argumentation frameworks,
that have been conducted. The experiments will focus on claim augmented abstract
argumentation frameworks, except for the Section 5.5, which will also utilize the encodings
for abstract argumentation frameworks with collective attacks.

All experiments have been carried out on a machine equipped with an AMD OpteronTM

6128 and 32GB RAM using clingo1 4.5.4. Furthermore, each run has been performed with
a 30 minutes time limit and exceeding the time limit is punished with an assumed run
time of 60 minutes. Moreover, other errors, such as exceeding memory capabilities, were
ignored and do not appear in the figures and tables provided in the following sections.
Finally, the parameters for all clingo calls, in addition to the paths of the encoding and
instance files, were ”–models=0”, ”–project”, ”–time-limit=1800” and ”–q=2”.

5.1 Instance selection and modification

To conduct the experiments discussed in this chapter, we required some, as close as
possible to, real-world test cases to properly test competing implementation of the various
semantics. Thus, as a starting point, we used some of the benchmarks instances of the
International Competition on Computational Models of Argumentation (ICCMA) 2017,
available at: https://argumentationcompetition.org/2017/results.html.
We have selected 20 test cases for each semantics randomly, namely:

• For the complete semantics:
admbuster_100000.tgf, afinput_exp_acyclic_indvary2_step2_batch_yyy07.tgf,

1https://potassco.org/
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5. Experiments

BA_120_30_3.tgf, BA_120_40_4.tgf, BA_180_10_2.tgf, BA_180_30_5.tgf,
BA_60_70_3.tgf, bw2.pfile-4-02.pddl.2.cnf.tgf, ferry2.pfile-L2-C3-01.pddl.1.cnf.tgf,
ferry2.pfile-L2-C4-05.pddl.1.cnf.tgf, irvine-shuttle_20091229_1547.gml.80.tgf,
los_angeles_2016-01.gml.80.tgf, scc_1476_70_15_24.tgf, sembuster_60.tgf,
stb_340_455.tgf, thecomet_20131025_1906.gml.20.tgf, WS_200_28_90_50.tgf,
WS_300_32_30_70.tgf, WS_400_32_50_10.tgf, WS_500_16_30_70.tgf

• For the stable semantics:
admbuster_20000.tgf, admbuster_500000.tgf,
afinput_exp_acyclic_indvary2_step2_batch_yyy10.tgf,
BA_120_20_2.tgf, BA_120_40_3.tgf, bw2.pfile-3-06.pddl.5.cnf.tgf, commuteorg-
shuttle_20150308_1938.gml.20.tgf, ER_300_100_7.tgf, ER_300_30_9.tgf,
ER_400_50_4.tgf, ER_500_100_8.tgf, scc_1213_40_10_3.tgf,
scc_840_40_20_24.tgf, sembuster_1500.tgf, sembuster_7500.tgf, stb_522_11.tgf,
stb_531_83.tgf, stb_792_333.tgf, WS_400_16_30_50.tgf, WS_400_24_70_10.tgf

• For the preferred semantics:
admbuster_1000000.apx, admbuster_4000.apx,
afinput_exp_acyclic_indvary2_step2_batch_yyy10.apx,
afinput_exp_cycles_depvary_step4_batch_yyy03.apx,
BA_140_30_4.apx, BA_160_20_3.apx, BA_200_30_2.apx, BA_80_70_5.apx,
bw3.pfile-3-01.pddl.1.cnf.apx, ER_200_40_8.apx, ER_300_100_4.apx,
ER_400_70_1.apx, ER_500_60_10.apx, scc_1109_50_10_5.apx,
sembuster_300.apx, sembuster_3600.apx,
translink-archiver_20151219_0124.gml.80.apx, tursib_20110626_1306.gml.20.apx,
view2gt_20150927_1744.gml.50.apx, WS_100_12_10_70.apx

• For the semi-stable semantics:
afinput_exp_acyclic_depvary_step6_batch_yyy04.apx,
afinput_exp_acyclic_indvary2_step2_batch_yyy07.apx,
afinput_exp_cycles_indvary2_step1_batch_yyy04.apx, BA_120_40_4.apx,
BA_180_30_5.apx, bw2.pfile-3-08.pddl.5.cnf.apx, ER_200_30_8.apx,
ER_200_70_5.apx, ER_400_60_4.apx, ER_500_60_10.apx, ER_500_80_10.apx,
ferry2.pfile-L2-C1-04.pddl.4.cnf.apx, ferry2.pfile-L2-C2-04.pddl.1.cnf.apx, ferry2.pfile-
L2-C4-05.pddl.1.cnf.apx, grd_10745_1_4.apx, grd_13651_2_3.apx,
grd_1790_4_8.apx, sembuster_6000.apx, WS_500_16_30_70.apx,
WS_500_24_30_70.apx

• For the stage semantics:
admbuster_1000000.apx, BA_120_40_4.apx, BA_160_90_1.apx, BA_60_60_3.apx,
el-dorado-transit_20151217_1024.gml.20.apx, ER_100_50_6.apx,
ER_400_30_4.apx, ER_500_80_10.apx, ferry2.pfile-L3-C3-010.pddl.1.cnf.apx,
grd_12259_4_5.apx, grd_1790_4_8.apx, grd_3018_3_7.apx, scc_7123_70_5_5.apx,
scc_8752_70_20_1.apx, stb_593_45.apx, tursib_20110626_1306.gml.20.apx,
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5.1. Instance selection and modification

view2gt_20150927_1744.gml.50.apx, WS_300_16_70_30.apx,
WS_300_24_50_50.apx, WS_400_32_70_30.apx

As our empirical testing required benchmark instances for claim augmented abstract argu-
mentation frameworks, we needed benchmark instances that represent such frameworks.
Unfortunately, we were unable to find real-world benchmarks for this use case and thus
decided to use the aforelisted benchmarks as a starting point and modify them in such
a way, that they can be used for our testing purposes. Therefore, we implemented two
algorithms in Java 11 to modify the selected ICCMA 2017 Dung abstract argumentation
frameworks into non well-formed and well-formed instances. We will introduce those two
algorithms in the next two subsections.

5.1.1 Generation of non well-formed instances

We generated nine test instances t1, . . . , t9 for each benchmark instance from the set
of selected ICCMA 2017 instances and use those to test two competing encodings
against each other. The Algorithm 5.1 randomly distributes i

10 × k claims over the
arguments of instance ti, where k is the number of arguments of the original benchmark
instance. Therefore, the Algorithm 5.1 initializes the list workingClaims with the claims
c1, . . . , c⌊|A|×f⌋, where |A| is the number of arguments and f is the factor of claims to
distribute in relation to the number of argument. Next, the Algorithm 5.1 randomly
select a claim c from this list and removes it. Finally, c is assigned to some argument
and the list is re-initialized whenever it is empty. Thus, the Algorithm 5.1 expects a set
of arguments A as input over which the claims are supposed to be distributed, as well as
a factor f between 0.1 and 0.9 representing the number of claims to distribute.

Algorithm 5.1: GeneratedNonWellformedInstance

Input: A: set of arguments,
f : float factor between 0.1 and 0.9 representing the number of claims to distribute
Result: Augments the set of arguments A with claims

1 C ← c1, . . . , c⌊|A|×f⌋ ;

2 workingClaims← copy(C) ;
3 foreach argument a in A do
4 if workingClaims is empty then
5 workingClaims← copy(C);
6 end
7 i← randomBetweenExclusiveUpper(0, |workingClaims|) ;
8 c← workingClaims.getAndRemove(i) ;
9 assign claim c to argument a ;

10 end
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5. Experiments

5.1.2 Generation of well-formed instances

Similarly, as the Algorithm 5.1 for non well-formed test instances, the Algorithm 5.2
for well-formed instances generates nine test instances per base benchmark, varying in
the amount of claims distributed, depending on the number of arguments of the base
benchmark. However, as those instances have to be well-formed, we modify the attacks
of the base benchmark to ensure well-formedness. Furthermore, in an effort to preserve
the original structure of the instance as much as possible, we try to keep the number
of attacks of the generated instance as close as possible to the amount the original one.
Therefore, attacks are either removed or added, depending on the current delta of attacks
between the original benchmark and the generated test instance.

Thus, the Algorithm 5.2 requires the same arguments as the Algorithm 5.1 with an
additional set R, representing the attacks of the original framework. It starts by invoking
the Algorithm 5.1, randomly distributing claims over the arguments. Thus, as the
resulting framework will not be well-formed in general, the remaining parts of the
Algorithm 5.2 will construct a new set of attacks to ensure well-formedness. As we will
try to preserve the original structure of the instance as much as possible, the algorithm
uses the variable counter to keep track of the number of attacks added or removed in
comparison to the original framework. Therefore, for each claim c, the Algorithm 5.2
collects all arguments a attacked by any of the arguments with that claim and decides,
based on the counter variable, whether or not the claim c will attack the argument a
or not. If the attack is added, the counter is increased by number of arguments with
claim c that were not attacking the argument a and if not, then the counter is decreased
by the number of arguments with claim c that did attack the argument a. Finally, this
process is repeated for all claims and the new set of attacks from claims on arguments R′

is returned.

5.2 Non well-formed claim augmented abstract

argumentation framework

For the first set of tests, we have used the encodings presented in Subsection 4.2.2, labeled
”adapted”, and the ones available at 2 for Dung abstract argumentation frameworks with
an additional projection on claims, labeled ”naive”, depicting the results in Table 5.1.

For the ”naive” encodings, we renamed the already existing predicate ”in” of the encodings
into ”inArg” and then added the following three rules to ensure compatibility with the
instances for claim augmented abstract argumentation frameworks and return claims
instead of arguments:

arg(X) : - arg(X, _).

in(C) : - inArg(X), arg(X, C).

#show in/1.

2https://www.dbai.tuwien.ac.at/proj/argumentation/systempage/dung.html
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5.2. Non well-formed claim augmented abstract argumentation framework

Algorithm 5.2: GeneratedWellformedInstance

Input: A: set of arguments,
R: set of attacks between arguments and arguments,
f : float factor between 0.1 and 0.9 representing the number of claims to distribute
Result: Augments the set of arguments A with claims and returns R′, a new set

of attacks between claims and arguments
1 GeneratedNonWellformedInstance(A, f) ; /* Distribute claims */

2 C ← claims(A) ;
3 counter ← 0 ;
4 doAdd← randomBoolean() ;
5 foreach claim c in C in random order do
6 arguments← arguments of A with claim c ;
7 attacked← {b | ∃a ∈ arguments such that (a, b) ∈ R} ;
8 foreach argument a in attacked do
9 if doAdd then

10 add (c, a) to R′ ;
11 counter ← counter + |{b | b ∈ arguments such that (b, a) 6∈ R}| ;

12 else
13 counter ← counter − |{b | b ∈ arguments such that (b, a) ∈ R}| ;
14 end
15 if counter > 0 then
16 doAdd← false ;
17 else if counter < 0 then
18 doAdd← true ;
19 else
20 doAdd← randomBoolean() ;
21 end

22 end

23 end

STG SST PR CO ST

# Instances 180 180 180 180 180

Solved
adapted 101 135 107 148 118
naive 45 78 93 159 128

Exclusively solved
adapted 56 57 23 0 0
naive 0 0 9 11 10

Count timeout
adapted 52 18 46 32 62
naive 63 29 51 21 52

Avg time solved (s)
adapted 1355,27 625,49 1143,48 666,28 1253,76
naive 2207,12 1325,22 1506,56 431,18 1085,21

Median time solved (s)
adapted 93,52 45,39 67,24 1,75 6,27
naive 3600,00 542,89 506,95 1,41 6,29

Avg ratio solve time 0,28 0,11 0,71 11,46 1,42

Median ratio solve time 0,03 0,02 0,28 1,26 1,00

Table 5.1: Experiment results for non well-formed claim augmented abstract argumenta-
tion frameworks with a timeout of 1800s and additional 1800s penalty
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5. Experiments

The line ”# Instances” give the number of instances tested for each semantics. Thus, as
we have used 20 base instances and created 9 variants for each of those, as described in
Section 5.1, this gives 180 for all semantics. The line labeled ”Solved” gives the number
of instances that were solved within the time-limit for both encodings and for each
semantics. Analogously, the line ”Exclusively solved” gives the number of instances that
were solved by the respective encoding and not by the other one. Furthermore, the line
”Avg time solved (s)” and ”Median time solved (s)” give the average and median solving
times in seconds for both encodings and each semantics. Finally, the lines ”Avg ratio
solve time” and ”Median ratio solve time” give the average and median ratio between
the solving time of the ”adapted” encoding and the ”naive” encoding.

Overall, the adapted approach outperformed the naive approach for the stage, semi-stable
and preferred semantics, while the naive approach performed slight better for the complete
and stable semantics. In the following five subsections, we will give more detailed results
for the stable, complete, preferred, stage and semi-stable semantics. The tables in the
subsections of this Section will start with a column ”% c”, indicating the percentage of
claims distributed in relation to the amount of arguments. Furthermore, the column
”#” indicates the number of instances for the given percentage of claims. Moreover, the
columns ”solved”, ”ex.” and ”t.o.” give the number of solved and exclusively solved
instances and the number of instances that hit the time-out limit for a given percentage
of claims and a given approach. Next, the columns ”avg t (s)” and ”med t (s)” give the
average and median solving time in seconds for a given percentage and approach. Finally,
the column ”ratio” gives the average and median ratios between the solving time of the
two approaches for a given percentage of claims.
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5.2. Non well-formed claim augmented abstract argumentation framework

5.2.1 Stable semantics

The results for the stable semantics are depicted in Table 5.2 and Figure 5.1:

% c # solved ex. t.o. avg t (s) med t (s) ratio

a n a n a n a n a n avg med

10% 20 14 15 0 1 6 5 1093,08 935,02 4,61 4,74 1,36 1,00

20% 20 13 15 0 2 7 5 1272,84 1022,38 11,59 11,60 1,38 1,00

30% 20 13 14 0 1 7 6 1272,94 1114,98 11,60 11,60 1,39 1,00

40% 20 13 14 0 1 7 6 1274,70 1116,63 10,66 10,70 1,41 1,00

50% 20 13 14 0 1 7 6 1273,95 1115,67 11,62 11,65 1,37 1,00

60% 20 13 14 0 1 7 6 1273,96 1114,86 11,59 11,67 1,46 1,00

70% 20 13 14 0 1 7 6 1273,96 1115,81 11,55 11,65 1,42 1,00

80% 20 13 14 0 1 7 6 1274,17 1116,21 12,56 12,64 1,48 1,00

90% 20 13 14 0 1 7 6 1274,24 1115,33 12,48 12,53 1,47 1,00

Table 5.2: Experiment results for non well-formed stable extensions with a timeout of
1800s and additional 1800s penalty
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Figure 5.1: Experiment results for non well-formed stable extensions with a timeout of
1800s and additional 1800s penalty

The naive approach was superior for the stable semantics, while the was no clear scaling
observable in regard to the percentage of claims, except for a slightly better performance
for the instances with 10%.
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5. Experiments

5.2.2 Complete semantics

The results for the complete semantics are depicted in Table 5.3 and Figure 5.2:

% c # solved ex. t.o. avg t (s) med t (s) ratio

a n a n a n a n a n avg med

10% 20 17 18 0 1 3 2 572,95 373,00 0,14 0,12 4,08 1,07

20% 20 17 17 0 0 3 3 573,88 545,05 0,15 0,14 3,00 1,00

30% 20 17 18 0 1 3 2 590,58 392,62 0,29 0,28 12,43 1,21

40% 20 16 18 0 2 4 2 733,24 368,09 0,77 0,64 15,43 1,22

50% 20 16 18 0 2 4 2 734,93 370,12 1,14 1,10 14,38 1,30

60% 20 16 17 0 1 4 3 729,07 545,74 1,95 1,88 11,36 1,27

70% 20 16 17 0 1 4 3 733,31 545,73 5,34 4,10 12,82 1,29

80% 20 17 18 0 1 3 2 593,42 369,37 5,78 4,35 13,76 1,33

90% 20 16 18 0 2 4 2 735,15 370,93 10,12 7,64 15,87 1,35

Table 5.3: Experiment results for non well-formed complete extensions with a timeout of
1800s and additional 1800s penalty
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Figure 5.2: Experiment results for non well-formed complete extensions with a timeout
of 1800s and additional 1800s penalty

As before, the naive approach was superior for the complete semantics. Moreover, both
approaches did not scale with the percentage of claims and even showed different behavior.
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5.2. Non well-formed claim augmented abstract argumentation framework

5.2.3 Preferred semantics

The results for the preferred semantics are depicted in Table 5.4 and Figure 5.3:

% c # solved ex. t.o. avg t (s) med t (s) ratio

a n a n a n a n a n avg med

10% 20 12 12 1 1 5 4 1092,87 1046,80 55,13 246,78 0,70 0,28

20% 20 12 10 3 1 5 6 1201,23 1491,18 67,24 374,78 0,73 0,34

30% 20 11 10 2 1 6 6 1343,24 1537,00 67,85 472,75 0,77 0,79

40% 20 12 10 3 1 5 6 1104,03 1556,21 67,38 593,22 0,69 0,27

50% 20 12 10 3 1 5 6 1107,59 1576,26 66,71 689,92 0,69 0,28

60% 20 12 11 2 1 5 5 1110,02 1475,07 67,03 825,44 0,70 0,30

70% 20 12 11 2 1 5 5 1110,37 1491,82 67,43 794,35 0,70 0,29

80% 20 12 10 3 1 5 6 1110,75 1626,64 67,82 903,08 0,70 0,28

90% 20 12 9 4 1 5 7 1111,26 1758,08 66,79 962,72 0,69 0,27

Table 5.4: Experiment results for non well-formed preferred extensions with a timeout of
1800s and additional 1800s penalty
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Figure 5.3: Experiment results for non well-formed preferred extensions with a timeout
of 1800s and additional 1800s penalty

For the preferred semantics, the adapted approach outperformed the naive approach and
the naive approach seemed to scale with the percentage of claims, while the adapted
approach did not.

67

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


5. Experiments

5.2.4 Stage semantics

The results for the stage semantics are depicted in Table 5.5 and Figure 5.4:

% c # solved ex. t.o. avg t (s) med t (s) ratio

a n a n a n a n a n avg med

10% 20 13 8 5 0 4 4 949,79 1261,23 20,75 29,59 0,17 0,02

20% 20 12 6 6 0 5 6 1174,02 1805,69 73,99 1822,56 0,14 0,03

30% 20 11 6 5 0 6 6 1315,22 1902,00 38,16 2135,84 0,27 0,02

40% 20 11 5 6 0 6 7 1399,14 2178,32 66,94 3600,00 0,30 0,02

50% 20 11 5 6 0 6 7 1453,80 2238,54 71,15 3600,00 0,30 0,02

60% 20 11 5 6 0 6 7 1471,83 2348,23 236,62 3600,00 0,30 0,03

70% 20 10 3 7 0 7 9 1524,97 2741,17 129,29 3600,00 0,35 0,04

80% 20 11 3 8 0 6 9 1477,95 2739,27 251,59 3600,00 0,30 0,03

90% 20 11 4 7 0 6 8 1430,75 2649,65 211,98 3600,00 0,34 0,03

Table 5.5: Experiment results for non well-formed stage with a timeout of 1800s and
additional 1800s penalty

10 20 30 40 50 60 70 80 90

0

1,000

2,000

3,000

percentage claims

se
co

n
d
s

Adapted average time
Naive average time

Adapted median time
Naive median time

Figure 5.4: Experiment results for non well-formed stage extensions with a timeout of
1800s and additional 1800s penalty

As for the preferred semantics, the adapted approach clearly outperformed the naive
approach for the stage semantics. Especially the naive approach seemed to hit the
time-limit more often when increasing the percentage of claims.
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5.2. Non well-formed claim augmented abstract argumentation framework

5.2.5 Semi-stable semantics

The results for the semi-stable semantics are depicted in Table 5.6 and Figure 5.5:

% c # solved ex. t.o. avg t (s) med t (s) ratio

a n a n a n a n a n avg med

10% 20 15 10 5 0 2 2 616,86 878,48 17,51 154,87 0,11 0,02

20% 20 15 10 5 0 2 2 625,96 904,73 17,69 179,02 0,12 0,02

30% 20 15 9 6 0 2 3 623,15 1263,30 19,35 400,80 0,12 0,02

40% 20 15 9 6 0 2 3 626,08 1295,41 33,50 775,83 0,12 0,01

50% 20 15 8 7 0 2 3 621,11 1330,97 50,93 542,89 0,04 0,02

60% 20 15 8 7 0 2 4 616,21 1539,73 51,73 883,25 0,12 0,02

70% 20 15 8 7 0 2 4 647,28 1516,16 51,37 787,32 0,12 0,02

80% 20 15 8 7 0 2 4 625,81 1610,01 45,39 1097,95 0,11 0,01

90% 20 15 8 7 0 2 4 626,92 1588,72 48,96 1078,29 0,11 0,01

Table 5.6: Experiment results for non well-formed semi-stable extensions with a timeout
of 1800s and additional 1800s penalty
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Figure 5.5: Experiment results for non well-formed semi-stable extensions with a timeout
of 1800s and additional 1800s penalty

For the semi-stable semantics, the adapted approach outperformed the naive approach.
Moreover, while the adapted approach produced very stable results over all test-instances,
the performance of the naive approach seemed to degrade when increasing the percentage
of claims.
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5. Experiments

5.2.6 Discussion

The naive encodings performed better for the stable and complete semantics, while the
adapted encodings where superior for the preferred, semi-stable and stage semantics.
Interestingly, those are the ones that require an additional maximization. Moreover,
especially the curves for the complete semantics are quite erratic and do not indicate any
correlation with the percentage of claims distributed over the arguments.

5.3 Well-formed claim augmented abstract

argumentation framework

In this section, we will present the results of the tests for well-formed claim augmented
abstract argumentation frameworks. For these tests, the competing encodings used
were the claim-driven encodings presented in Subsection 4.2.4 and the argument-driven
encodings presented in Subsection 4.2.3.

As before, we will give an overview over all semantics in Table 5.7 and present the detailed
results for the individual semantics in the following subsection, finishing with a discussion
of the results. Furthermore, the tables in the subsections of this Section will share the
same structure as those in the subsections of the Section 5.2.

STG SST PR CO ST

# Instances 180 180 180 180 180

Solved
claim-driven 80 101 160 162 151
argument-driven 101 141 141 164 170

Exclusively solved
claim-driven 0 6 19 0 1
argument-driven 21 46 0 2 20

Count timeout
claim-driven 88 33 11 18 10
argument-driven 61 19 16 16 10

Avg time solved (s)
claim-driven 1910,69 941,43 277,60 365,26 288,03
argument-driven 1408,26 670,53 485,44 333,30 248,02

Median time solved (s)
claim-driven 3600,00 8,78 1,89 0,04 2,37
argument-driven 6,59 15,67 6,36 0,03 1,27

Avg ratio solve time 89,18 4,33 0,43 1,13 9,19

Median ratio solve time 2,50 2,40 0,30 1,00 3,00

Table 5.7: Experiment results for well-formed claim augmented abstract argumentation
frameworks with a timeout of 1800s and additional 1800s penalty

The structure of the Table 5.7 is the same as for the Table 5.1. While the argument-driven
approach was superior for the stage semantics, the claim-driven approach performed
better for the preferred semantics. Furthermore, the
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5.3. Well-formed claim augmented abstract argumentation framework

5.3.1 Stable semantics

The results for the stable semantics are depicted in Table 5.8 and Figure 5.6:

% c # solved ex. t.o. avg t (s) med t (s) ratio

c a c a c a c a c a avg med

10% 20 19 20 0 1 0 0 43,65 9,03 0,31 0,10 34,67 3,00

20% 20 18 19 1 2 0 1 47,39 184,53 0,61 0,32 4,78 2,51

30% 20 17 19 0 2 1 1 218,65 186,91 1,24 0,94 6,09 3,00

40% 20 17 19 0 2 1 1 228,84 190,78 1,71 1,04 6,91 3,00

50% 20 17 19 0 2 1 1 247,93 199,69 4,32 2,65 6,59 3,58

60% 20 17 19 0 2 1 1 263,08 273,13 4,60 3,11 6,89 3,67

70% 20 17 19 0 2 1 1 297,49 223,61 4,80 2,47 7,22 4,20

80% 20 15 19 0 4 2 1 469,78 299,84 8,11 7,06 4,17 2,12

90% 20 14 17 0 3 3 3 829,15 664,69 25,90 15,72 3,42 1,42

Table 5.8: Experiment results for well-formed stable extensions with a timeout of 1800s
and additional 1800s penalty
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Figure 5.6: Experiment results for well-formed stable extensions with a timeout of 1800s
and additional 1800s penalty

While the claim-driven approach was superior for instances with a low number of claims,
the argument-driven approach performed better for instances with a larger number of
claims. Both encodings seemed to scale with the percentage of claims.

71

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


5. Experiments

5.3.2 Complete semantics

The results for the complete semantics are depicted in Table 5.9 and Figure 5.7:

% c # solved ex. t.o. avg t (s) med t (s) ratio

c a c a c a c a c a avg med

10% 20 19 19 0 0 1 1 180,58 180,60 0,02 0,02 1,06 1,00

20% 20 19 19 0 0 1 1 180,82 180,86 0,03 0,03 1,05 1,00

30% 20 19 19 0 0 1 1 189,39 191,85 0,03 0,03 1,15 1,00

40% 20 18 18 0 0 2 2 362,10 361,94 0,05 0,04 1,07 1,00

50% 20 17 17 0 0 3 3 542,15 542,19 0,08 0,06 1,02 1,00

60% 20 17 18 0 1 3 2 544,67 406,20 0,10 0,10 1,28 1,00

70% 20 17 18 0 1 3 2 543,12 392,76 0,11 0,10 1,30 1,00

80% 20 18 18 0 0 2 2 375,87 376,32 0,13 0,12 1,07 1,00

90% 20 18 18 0 0 2 2 368,65 366,98 0,25 0,26 1,14 1,00

Table 5.9: Experiment results for well-formed complete extensions with a timeout of
1800s and additional 1800s penalty
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Figure 5.7: Experiment results for well-formed complete extensions with a timeout of
1800s and additional 1800s penalty

Both approaches performed very similar, except for the 60% and 70% instances, for which
the argument-driven approach performed better. While both approaches scaled with
the number of claims for the lower percentage instances, they both peaked at 50% and
decreased afterwards.
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5.3. Well-formed claim augmented abstract argumentation framework

5.3.3 Preferred semantics

The results for the preferred semantics are depicted in Table 5.10 and Figure 5.8:

% c # solved ex. t.o. avg t (s) med t (s) ratio

c a c a c a c a c a avg med

10% 20 19 19 0 0 0 0 1,81 127,65 0,32 2,65 0,25 0,12

20% 20 19 17 2 0 0 0 4,38 103,30 0,58 0,69 0,30 0,19

30% 20 18 17 1 0 1 1 199,87 403,74 0,78 3,90 0,33 0,21

40% 20 18 16 2 0 1 2 215,30 468,16 0,93 5,13 0,37 0,25

50% 20 18 16 2 0 1 1 221,65 305,73 1,89 6,31 0,44 0,31

60% 20 18 15 3 0 1 2 256,68 485,42 2,92 10,35 0,41 0,30

70% 20 17 14 3 0 2 3 457,94 727,35 5,74 16,87 0,43 0,34

80% 20 17 14 3 0 2 3 459,81 802,95 6,77 62,91 0,43 0,36

90% 20 16 13 3 0 3 4 680,95 992,57 7,30 72,07 0,91 0,45

Table 5.10: Experiment results for well-formed preferred extensions with a timeout of
1800s and additional 1800s penalty
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Figure 5.8: Experiment results for well-formed preferred extensions with a timeout of
1800s and additional 1800s penalty

For the preferred semantics, the claim-driven approach outperformed the argument-driven
approach. Both encodings scaled with the percentage of claims, with the argument-driven
approach experiencing a dip down for the 50% instances.
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5. Experiments

5.3.4 Stage semantics

The results for the stage semantics are depicted in Table 5.11 and Figure 5.9:

% c # solved ex. t.o. avg t (s) med t (s) ratio

c a c a c a c a c a avg med

10% 20 13 14 0 1 6 4 1159,96 801,03 1,36 0,16 25,61 2,24

20% 20 12 14 0 2 7 4 1331,46 822,83 7,58 0,17 59,01 3,88

30% 20 9 11 0 2 10 7 1911,28 1452,88 3600,00 3,85 49,63 2,36

40% 20 9 11 0 2 10 7 1898,41 1402,56 3600,00 10,43 58,98 3,25

50% 20 8 9 0 1 11 9 2084,65 1800,38 3600,00 1803,13 38,17 2,25

60% 20 8 9 0 1 11 9 2099,89 1801,24 3600,00 1808,35 38,81 1,75

70% 20 8 13 0 5 11 5 2113,30 1101,17 3600,00 12,61 426,33 5,75

80% 20 7 10 0 3 11 8 2272,94 1740,60 3600,00 1250,52 43,74 1,67

90% 20 6 10 0 4 11 8 2394,30 1751,63 3600,00 1296,35 60,75 1,22

Table 5.11: Experiment results for well-formed stage extensions with a timeout of 1800s
and additional 1800s penalty
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Figure 5.9: Experiment results for well-formed stage extensions with a timeout of 1800s
and additional 1800s penalty

The argument-driven approach was superior for the stage semantics, with the claim-
driven encoding predominantly hitting the time-limit except for the instance with a low
percentage of claims.
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5.3. Well-formed claim augmented abstract argumentation framework

5.3.5 Semi-stable semantics

The results for the semi-stable semantics are depicted in Table 5.12 and Figure 5.10:

% c # solved ex. t.o. avg t (s) med t (s) ratio

c a c a c a c a c a avg med

10% 20 16 19 0 3 2 0 526,49 245,18 2,45 7,20 3,13 1,35

20% 20 13 17 1 5 3 1 788,54 418,05 1,60 5,25 3,75 1,74

30% 20 11 16 0 5 4 1 983,52 446,16 1,69 2,42 2,86 1,88

40% 20 11 16 0 5 4 2 976,93 565,94 11,48 11,77 4,19 2,50

50% 20 10 16 0 6 5 1 1221,91 517,43 63,79 10,78 4,48 3,67

60% 20 10 14 0 4 4 3 1048,05 825,25 18,44 11,15 4,56 2,92

70% 20 10 15 1 6 4 3 1083,87 931,22 162,84 138,93 5,74 2,94

80% 20 10 14 1 5 4 4 1065,04 986,50 70,61 124,45 5,18 3,47

90% 20 10 14 3 7 3 4 889,57 1110,27 15,69 290,08 5,65 3,74

Table 5.12: Experiment results for non well-formed semi-stable extensions with a timeout
of 1800s and additional 1800s penalty
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Figure 5.10: Experiment results for well-formed semi-stable extensions with a timeout of
1800s and additional 1800s penalty

The argument-driven approach performed better up until the 80% instances, for which
on the claim-driven encoding outperformed the argument-driven approach. While the
claim-driven approach did not scale with the number of claims, the argument-driven
approach did.
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5. Experiments

5.3.6 Discussion

Interestingly, the claim- and argument-driven encodings performed very similarly for the
stable and complete semantics. Furthermore, while the claim-driven encoding performed
slightly better for the preferred semantics, the argument-driven encodings outperformed
the claim-driven encodings for the range-based semantics, i.e. the stage and semi-stable
semantics.

5.4 Well-formed claim augmented abstract

argumentation framework with claim-centric ranges

In this section, we will present the results of the tests for the semi-stablec and stagec

semantics for well-formed claim augmented abstract argumentation frameworks. For
these tests, the competing encodings used were the claim-driven encodings presented in
Subsection 4.2.6 and the argument-driven encodings presented in Subsection 4.2.5. As
before, we will give an overview over all semantics in Table 5.13 and present the detailed
results for the individual semantics in the following subsection, finishing with a discussion
of the results. Furthermore, the tables in the subsections of this Section will share the
same structure as those in the subsections of the Section 5.2.

STGc SSTc

# Instances 180 180

Solved
claim-driven 89 109
argument-driven 106 166

Exclusively solved
claim-driven 0 0
argument-driven 17 57

Count timeout
claim-driven 79 26
argument-driven 61 6

Avg time solved (s)
claim-driven 1741,81 794,52
argument-driven 1377,91 287,54

Median time solved (s)
claim-driven 623,49 12,23
argument-driven 9,31 6,98

Avg ratio solve time 26,99 11,58

Median ratio solve time 1,20 3,67

Table 5.13: Experiment results for stagec and semi-stablec for well-formed claim aug-
mented abstract argumentation frameworks with a timeout of 1800s and additional 1800s
penalty

The structure of the Table 5.13 is the same as for the Table 5.1. Overall, the argument-
driven approach outperformed the claim-driven approach for both semantics.
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5.4. Well-formed claim augmented abstract argumentation framework with claim-centric ranges

5.4.1 Stagec semantics

The results for the stagec semantics are depicted in Table 5.14 and Figure 5.11:

% c # solved ex. t.o. avg t (s) med t (s) ratio

c a c a c a c a c a avg med

10% 20 13 14 0 1 6 5 1136,92 949,75 0,08 0,05 5,29 1,00

20% 20 10 13 0 3 9 6 1705,31 1187,74 0,39 0,16 6,27 1,20

30% 20 9 11 0 2 10 8 1900,40 1579,11 3600,00 285,85 3,13 1,00

40% 20 10 11 0 1 9 8 1733,61 1542,46 484,72 6,73 9,15 1,50

50% 20 11 13 0 2 8 6 1602,83 1182,47 439,36 9,25 43,18 4,04

60% 20 9 11 0 2 10 8 1949,16 1576,85 3600,00 40,29 106,95 1,41

70% 20 10 12 0 2 9 7 1799,70 1466,86 1014,60 65,78 12,40 2,25

80% 20 10 11 0 1 8 6 1702,35 1296,92 806,62 11,84 28,09 4,00

90% 20 7 10 0 3 10 7 2191,21 1637,87 3600,00 1284,14 28,80 1,68

Table 5.14: Experiment results for well-formed stagec extensions with a timeout of 1800s
and additional 1800s penalty
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Figure 5.11: Experiment results for well-formed stagec extensions with a timeout of 1800s
and additional 1800s penalty

For the semi-stablec semantics, the argument-driven approach outperformed the claim-
driven approach. Moreover, the claim-driven approach timed out for nearly half the
instances for all percentages, causing the median time to spike frequently.
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5. Experiments

5.4.2 Semi-stablec semantics

The results for the semi-stablec semantics are depicted in Table 5.15 and Figure 5.12:

% c # solved ex. t.o. avg t (s) med t (s) ratio

c a c a c a c a c a avg med

10% 20 18 20 0 2 0 0 151,66 27,56 2,19 0,80 13,98 1,98

20% 20 14 20 0 6 2 0 566,66 62,13 0,96 1,44 12,90 1,92

30% 20 12 19 0 7 4 0 974,60 108,39 3,63 1,26 14,41 4,07

40% 20 12 19 0 7 3 0 787,22 166,69 11,31 4,16 9,53 3,66

50% 20 12 18 0 6 3 1 891,78 349,19 45,35 5,26 8,33 3,50

60% 20 10 17 0 7 4 2 1055,86 539,69 37,74 11,35 9,59 4,81

70% 20 10 18 0 8 4 1 1072,74 420,96 70,51 12,20 11,53 5,05

80% 20 10 17 0 7 4 1 1080,18 496,59 46,08 14,90 9,69 3,75

90% 20 11 18 0 7 2 1 750,97 453,21 16,79 28,57 13,52 4,98

Table 5.15: Experiment results for non well-formed semi-stablec extensions with a timeout
of 1800s and additional 1800s penalty
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Figure 5.12: Experiment results for well-formed semi-stablec extensions with a timeout
of 1800s and additional 1800s penalty

For the semi-stablec semantics, the argument-driven approach clearly outperformed the
claim-driven approach. Both encodings seem to scale loosely with the percentage of
claims, although the claim-driven approach dipped significantly for the 90% instances.
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5.4. Well-formed claim augmented abstract argumentation framework with claim-centric ranges

5.4.3 Discussion

Interestingly, the claim-driven encodings performed worse than the argument-driven
encodings for both semantics, even though their ranges are defined in terms of claims and
the well-formedness allows to compute the conflict-free and admissible sets in polynomial
time. Maybe an extension of answer-set programming that allows for them to be computed
more directly would be beneficial to the performance of the claim-driven encodings.
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5. Experiments

5.5 Conversion to abstract argumentation frameworks

with collective attacks

In this section, we will present the results of the tests of the conversion approach from well-
formed claim augmented abstract argumentation framework to abstract argumentation
framework with collective attacks introduced in Subsection 2.3.6. For these test, we
selected the argument-driven encodings for the complete and stable semantics presented
in Subsection 4.2.3 and the claim-driven preferred encoding presented in Subsection 4.2.4,
referred to as ”standard”. Furthermore, the encodings given in Section 4.1 were used in
conjunction with our conversion algorithm presented in Subsection 2.3.6, referred to as
”conversion”. The conversion was aborted when the output reached a size of 1 gigabyte
and such cases were ignored when compiling the runtime results. As before, we will give
an overview over all semantics in Table 5.16 and present the detailed results for the
individual semantics in the following subsection, finishing with a discussion of the results.
However, the standard approach outperformed the conversion approach for all semantics,
with the conversion itself either hitting the 1 gigabyte limit or finishing fast. Furthermore,
the tables in the subsections of this Section will share the same structure as those in
the subsections of the Section 5.2 with an additional column ”c total t (s)”, giving the
average and median conversion times in seconds for a given percentage of claims.

ST CO PR

# Instances 180 180 180

Solved
standard 170 165 158
conversion 118 148 80

Exclusively solved
standard 52 17 80
conversion 0 0 2

Count timeout
standard 10 15 13
conversion 17 14 11

Avg time solved (s)
standard 239,19 325,13 318,17
conversion 570,40 333,54 451,06

Median time solved (s)
standard 1,17 0,03 2,13
conversion 1,62 0,02 0,16

Avg ratio solve time 1,22 1,22 6,27

Median ratio solve time 0,35 1,00 1,78

Count conversion aborted 45 18 37

Average total time (s) 451,42 334,13 578,54

Median total time (s) 0,50 0,33 2,71

Table 5.16: Experiment results for the conversion of well-formed claim augmented abstract
argumentation frameworks to abstract argumentation frameworks with collective attacks
with a timeout of 1800s and additional 1800s penalty

The structure of the Table 5.16 is the same as for the Table 5.1, with 3 additional lines.
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5.5. Conversion to abstract argumentation frameworks with collective attacks

Thus, the line ”Count conversion aborted” gives the number of conversions that were
aborted due to the resulting encoding exceeding the file-size limit of 1 gigabyte. Moreover,
the lines ”Average total time (s)” and ”Median total time (s)” give the total time, i.e.
the solving time plus the conversion time in seconds for the conversion approach and
each semantics.
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5. Experiments

5.5.1 Stable semantics

The results for the stable semantics are depicted in Table 5.17 and Figure 5.13:

% c solved ex. t.o. avg sv t (s) med sv t (s) ratio c total t (s)

s c s c s c s c s c avg med avg med

10% 20 11 9 0 0 0 10,92 0,16 0,10 0,00 5,75 3,00 0,75 0,30

20% 19 11 8 0 1 1 184,62 300,53 0,37 0,10 2,48 1,00 301,23 0,52

30% 19 11 8 0 1 2 186,60 554,92 0,52 0,31 1,41 0,42 555,78 0,99

40% 19 12 7 0 1 2 191,48 593,51 0,74 0,49 0,80 0,24 596,26 1,40

50% 19 15 4 0 1 2 198,29 590,83 1,18 4,46 0,49 0,17 602,66 5,65

60% 19 16 3 0 1 1 241,56 496,25 1,69 15,88 0,45 0,23 510,60 17,32

70% 19 14 5 0 1 3 228,83 764,21 1,65 6,52 0,40 0,16 779,30 7,81

80% 18 14 4 0 2 3 408,99 743,03 8,70 70,28 0,55 0,29 754,94 78,24

90% 18 14 4 0 2 3 501,46 809,96 15,64 79,51 0,61 0,42 817,6 96,17

Table 5.17: Experiment results for the conversion approach for stable extensions with a
timeout of 1800s and additional 1800s penalty
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Figure 5.13: Experiment for the conversion approach for stable extensions with a timeout
of 1800s and additional 1800s penalty

The standard approach outperformed the conversion approach for the stable semantics.
Both approaches seemed to scale with the percentage of claims, with the conversion
approach experiencing a dip for the 60% instances.
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5.5. Conversion to abstract argumentation frameworks with collective attacks

5.5.2 Complete semantics

The results for the complete semantics are depicted in Table 5.18 and Figure 5.14:

% c solved ex. t.o. avg sv t (s) med sv t (s) ratio c total t (s)

s c s c s c s c s c avg med avg med

10% 19 18 1 0 1 0 180,59 0,46 0,02 0,00 3,43 1,00 0,87 0,27

20% 19 18 1 0 1 0 180,88 19,90 0,03 0,01 1,98 1,00 20,53 0,32

30% 19 17 2 0 1 1 181,19 224,35 0,03 0,02 1,22 1,00 224,93 0,30

40% 18 16 2 0 2 2 362,00 442,25 0,05 0,05 0,87 1,00 442,82 0,37

50% 18 15 3 0 2 3 426,95 601,50 0,06 0,04 0,84 1,00 601,99 0,35

60% 18 16 2 0 2 2 450,28 440,22 0,10 0,04 0,71 1,00 440,83 0,37

70% 18 16 2 0 2 2 399,66 420,50 0,10 0,07 0,62 0,63 421,16 0,41

80% 18 16 2 0 2 2 377,33 428,48 0,12 0,08 0,65 0,91 429,16 0,44

90% 18 16 2 0 2 2 367,33 424,21 0,15 0,15 0,65 0,67 424,92 0,52

Table 5.18: Experiment results for the conversion approach for complete extensions with
a timeout of 1800s and additional 1800s penalty
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Figure 5.14: Experiment for the conversion approach for complete extensions with a
timeout of 1800s and additional 1800s penalty

As for the stable approach, the standard approach outperformed the conversion approach
for the complete semantics. However, the conversion approach performed better for
instances with a small number of claims. Both approaches scaled with the number of
claims until the 60% instances, when both approaches tapered off.
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5. Experiments

5.5.3 Preferred semantics

The results for the preferred semantics are depicted in Table 5.19 and Figure 5.15:

% c solved ex. t.o. avg sv t (s) med sv t (s) ratio c total t (s)

s c s c s c s c s c avg med avg med

10% 19 11 9 1 0 0 1,68 0,58 0,32 0,00 38,51 3,00 1,24 0,27

20% 19 10 9 0 0 0 7,49 0,44 0,58 0,01 7,19 3,00 0,75 0,27

30% 18 10 9 1 1 0 199,56 106,24 0,97 0,02 2,60 3,00 106,59 0,29

40% 18 9 9 0 1 1 216,50 360,58 1,15 0,04 2,21 2,00 360,88 0,35

50% 18 9 9 0 1 1 243,85 362,02 1,97 0,16 1,48 1,41 362,35 0,53

60% 18 9 9 0 1 1 250,83 366,00 2,66 0,27 1,21 1,13 366,35 0,63

70% 17 8 9 0 2 2 457,92 729,12 4,86 1,08 1,17 1,07 729,44 1,44

80% 15 7 8 0 4 3 822,01 1084,76 5,53 2,05 1,09 1,00 1085,04 2,04

90% 16 7 9 0 3 3 663,68 1094,85 8,16 17,69 0,97 1,00 1095,15 18,03

Table 5.19: Experiment results for the conversion approach for preferred extensions with
a timeout of 1800s and additional 1800s penalty
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Figure 5.15: Experiment for the conversion approach for preferred extensions with a
timeout of 1800s and additional 1800s penalty

As for the previous encodings, the standard approach outperformed the conversion
approach for the preferred semantics, except for instances with a small number of claims.
Both approaches seem to scale with the percentage of claims, with the standard approach
experiencing a dip for the 90% instances.
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5.5. Conversion to abstract argumentation frameworks with collective attacks

5.5.4 Discussion

The standard approach clearly outperformed the conversion approach, with many in-
stances hitting the 1 gigabyte limit and thus not being taken into account. Nevertheless,
an improved conversion algorithm might be able to produce an improved conversion
result faster, which could render the conversion approach more viable.
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CHAPTER 6
Conclusion

In this final chapter, we give a summary of the results of this thesis and an outlook for
future work.

In Chapter 3, we gave complexity results for abstract argumentation frameworks with
collective attacks, summarized in Table 6.1, and for the semi-stable, stage, semi-stablec

and stagec semantics for claim augmented abstract argumentation frameworks, sum-
marized in Table 6.2 and Table 6.3. Most notably, we showed that the complexity
for abstract argumentation frameworks with collective attacks is the same as for Dung
abstract argumentation frameworks. Furthermore, the improved upper bounds for the
Verσ problem for well-formed claim augmented abstract argumentation frameworks in
comparison to non well-formed, coNP-c vs ΣP

2 -c, also hold for the semi-stable, stage,
semi-stablec and stagec semantics.

Furthermore, in Chapter 4, we presented encodings for the conflict-free, admissible,
stable, complete, preferred, semi-stable and stage semantics for abstract argumentation
frameworks with collective attacks and claim augmented abstract argumentation frame-
works as well as encodings for the stagec and semi-stablec semantics for claim augmented
abstract argumentation frameworks. These encodings have been integrated into the
ASPARTIX1 system to also handle abstract argumentation frameworks with collective
attacks and claim augmented abstract argumentation frameworks.

Moreover, recall that we have considered multiple approaches, cf. Chapter 4, to enumerate
the extensions of claim augmented abstract argumentation frameworks. However, our
experiments in Chapter 5 suggest, that no approach seems to be superior for every
semantics. Choosing the right approach for a given semantics can result in a significant
performance increase.

1https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/
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6. Conclusion

σ Credσ Skeptσ Verσ Existsσ Exists¬∅
σ

conflict-free in P trivial in P trivial in P

admissible NP-c trivial in P trivial NP-c

complete NP-c P-c in P trivial NP-c

preferred NP-c ΠP
2 -c coNP-c trivial NP-c

stable NP-c coNP-c in P NP-c NP-c

semi-stable ΣP
2 -c ΠP

2 -c coNP-c trivial NP-c

stage ΣP
2 -c ΠP

2 -c coNP-c trivial in P

Table 6.1: Complexity landscape for abstract argumentation frameworks with collective
attacks

σ Credσ Skeptσ Verσ Existsσ Exists¬∅
σ

conflict-free in P trivial NP-c trivial in P

admissible NP-c trivial NP-c trivial NP-c

complete NP-c P-c NP-c trivial NP-c

preferred NP-c ΠP
2 -c ΣP

2 -c trivial NP-c

stable NP-c coNP-c NP-c NP-c NP-c

semi-stable ΣP
2

-c ΠP
2

-c ΣP
2

-c trivial NP-c

stage ΣP
2

-c ΠP
2

-c ΣP
2

-c trivial in P

semi-stablec ΣP
2

-c ΠP
2

-c ΣP
2

-c trivial NP-c

stagec ΣP
2

-c ΠP
2

-c ΣP
2

-c trivial in P

Table 6.2: Complexity landscape for non well-formed claim augmented abstract argu-
mentation frameworks. Novel results are highlighted in boldface

Future work includes possible optimizations of our encodings, for example utilizing
domain-specific heuristics [GKR+13]. Furthermore, for well-formed claim augmented
abstract argumentation frameworks, computation of the unique maximal conflict-free
and admissible sets of arguments for a given set of claims might be done more efficiently
using external, imperative functions [EFKR12]. Moreover, the computation of a DNF
for the conversion approach from well-formed claim augmented abstract argumentation
frameworks to abstract argumentation frameworks with collective attacks, cf. Subsection
2.3.6, could probably be improved, resulting in a more concise encoding and/or improved
conversion and/or solving time.
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σ Credσ Skeptσ Verσ Existsσ Exists¬∅
σ

conflict-free in P trivial in P trivial in P

admissible NP-c trivial in P trivial NP-c

complete NP-c P-c in P trivial NP-c

preferred NP-c ΠP
2 -c coNP-c trivial NP-c

stable NP-c coNP-c in P NP-c NP-c

semi-stable ΣP
2

-c ΠP
2

-c coNP-c trivial NP-c

stage ΣP
2

-c ΠP
2

-c coNP-c trivial in P

semi-stablec ΣP
2

-c ΠP
2

-c coNP-c trivial NP-c

stagec ΣP
2

-c ΠP
2

-c coNP-c trivial in P

Table 6.3: Complexity landscape for well-formed claim augmented abstract argumentation
frameworks. Novel results are highlighted in boldface

Related work

The work probably most closely related to ours is [EGW08], also utilizing answer-set
programming compute extension of argumentation frameworks. However, the most
important difference to our work is, that that their work focused on Dung abstract
argumentation frameworks, while we focused on abstract argumentation frameworks with
collective attacks and claim augmented abstract argumentation frameworks. Moreover,
other encodings and algorithms for abstract argumentation frameworks with collective
attacks have been proposed [NP06a, SR17].
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