
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Diplomarbeit

Deep Learning in Life Insurance Risk

Prediction

ausgeführt zum Zwecke der Erlangung des akademischen Grades einer

Diplom-Ingenieurin

eingereicht an der Technischen Universität Wien, Fakultät für Mathematik und
Geoinformation

von

Caroline Gerharter, BSc

(Matr.Nr.: 01225897)

unter der Anleitung von

Univ.Prof. Dipl.-Math. Dr.rer.nat. Thorsten Rheinländer

Institut für Stochastik und Wirtschaftsmathematik
Technische Universität Wien

Wiedner Hauptstaße 8, 1040 Wien, Österreich

Wien, 20. Oktober 2019
(Betreuer) (Verfasser)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

This diploma thesis deals with the implementation of an artificial neural network to predict
life insurance risks. At first, general terms of deep learning are declared and defined. A brief
insight into life insurance risk, specifically into the crucial parameter, the probability of
dying, is given. Consequently, the structure of a deep neural network, the different activation
functions and optimisers are explained in detail. This also includes a precise explanation of
the training algorithm of a deep neural network. Finally, the calculation of the probability
of dying is performed. Several experiments are carried out to test different scenarios for the
neural network and the simulations are thoroughly analysed. In conclusion, the calculation
of the probability of dying via an artificial neural network worked exceptionally well. A
model with four hidden layers, overall 640 neurons, the Adam optimiser and either the
ELU, TanH or Softplus activation function yielded by far the best results for this problem.

Key words: Life insurance risk / Approximation Probability Of Dying / Life Table /
Artificial Neural Network / Training Algorithm / Activation Function / Optimiser

i

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

Diese Diplomarbeit beschäftigt sich mit der Implementierung eines künstlichen neuronalen
Netzes, um Lebensversicherungsrisiken vorauszusagen. Zu Beginn werden allgemeine Be-
griffe von maschinellem Lernen erklärt und definiert. Außerdem wird ein kurzer Einblick
in die Lebensversicherung und vorallem in den gesuchten Parameter - die Sterbewahr-
scheinlichkeit - gegeben. Die Struktur eines tiefen neuronalen Netzes, die verschiedenen
Aktivierungsfunktionen und Optimierer werden detailliert veranschaulicht, inklusive einer
genauen Darlegung des Trainingsalgorithmus. Zuletzt wird die Berechnung durchgeführt.
Mithilfe von einigen Experimenten werden verschiedene Szenarien getestet und anschlie-
ßend ausführlich analysiert. Insgesamt funktioniert die Approximation der Sterbewahr-
scheinlichkeit mithilfe eines künstlichen neuronalen Netzes außerordentlich gut. Ein Model
mit vier verdeckten Schichten, insgesamt 640 Neuronen, dem Adam Optimierer und entwe-
der der ELU, TanH oder Sofplus Aktivierungsfunktion liefert die weitaus besten Resultate
für das Problem.

Schlagworte: Lebensversicherungsrisiko / Berechnung Sterbewahrscheinlichkeit / Ster-
betafel / Künstliches neuronales Netz / Trainingsalgorithmus / Aktivierungsfunktion /
Optimierer

ii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Danksagung

Hiermit möchte ich mich bei allen bedanken, die mich während meines Studiums unterstützt
haben und deren Beistand zur Fertigstellung dieser Diplomarbeit beigetragen hat.

Besonders bedanken möchte ich mich bei Prof. Dipl.-Math. Dr.rer.nat.Thorsten Rheinländer,
welcher jederzeit für meine Anliegen da war. Durch seine ausgezeichnete Betreuung, kon-
struktive Kritik und zahlreichen Tipps hat er mich beim Verfassen dieser Arbeit tatkräftig
unterstützt.

Ferner möchte ich meiner Familie meinen außerordentlich Dank aussprechen. Meine Eltern,
meine Geschwister und mein Großvater haben mich durch das gesamte Studium begleitet
und standen mir stets mit gutem Rat zur Seite.

Mein allergrößter Dank jedoch gebührt meiner Mutter, Michaela, die mich stets ermutigt
hat und zu jeder Zeit für mich da war. Sie hat mir das Studium ermöglicht und mir dabei
geholfen, das Ziel im Auge zu behalten. Besonders in schwierigeren Zeiten war sie für mich
da, und ich werde ihr immer dafür dankbar sein.

iii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Eidesstattliche Erklärung

Ich, Caroline Gerharter, BSc, erkläre an Eides statt, dass ich die vorliegende Diplomar-
beit selbstständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und
Hilfsmittel nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche
kenntlich gemacht habe.

Wien, 20. Oktober 2019
(Caroline Gerharter, BSc)

iv

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Abstract i

Kurzfassung ii

Danksagung iii

Eidesstattliche Erklärung iv

1 Introduction 3

1.1 Machine learning - definition of terms . 4
1.1.1 Unsupervised learning . 4
1.1.2 Supervised learning . 4

2 Mortality risk prediction 6

2.1 Structure of life table . 6
2.2 Base table . 7
2.3 Generation life tables . 7

3 Deep neural network 8

3.1 Backpropagation . 10
3.1.1 Delta Rule . 10
3.1.2 Backpropagation for multilayer perceptrons 11
3.1.3 Learning rate . 13

3.2 Activation . 14
3.3 Optimisation strategies . 18

3.3.1 Momentum . 18
3.3.2 Adagrad . 18
3.3.3 Adadelta . 19
3.3.4 RMSProp . 20
3.3.5 Adam . 20
3.3.6 Nadam . 21

3.4 Error . 22

4 Preparation of model and experiments 23

4.1 Data preparation . 23
4.2 Experiment 1 - number of layers vs. number of nodes 24
4.3 Experiment 2 - activation functions . 26

4.3.1 Sigmoidal functions . 27
4.3.2 Rectifiers . 31

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

4.4 Experiment 3 - optimisers . 32
4.5 Experiment 4 - number of epochs . 33

5 Conclusion 35

Bibliography 37

List of Figures 39

List of Tables 40

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 1

Introduction

Over the last years, machine learning has become an immensely prominent subject. It is
a significant part of artificial intelligence and deals with the analysis of data followed by
prediction of future outcomes. In other words, it learns from given data, even though it is
not explicitly programmed to do so.
This can be applied to various areas. Amongst many other topics it includes classifica-

tion of objects, recognizing handwriting, email spam filtering, face detection or predicting
tomorrow’s stock market price by knowing current and historic market conditions and other
side information [Mur12].

The idea behind machine learning was inspired by the activities of the human brain to
solve quite complex problems.

Machine learning has been a research topic for many years. Nevertheless, it only recently
became THE topic for researchers and companies, because of its requirement of a great
deal of computational power. Previously computers were not nearly as powerful as they
are now, so compiling a machine learning program was a major issue. However, computa-
tional power has vastly improved in the last few years, eliminating this shortcoming.

A kind of machine learning application is the use of multilayer perceptrons, which is a class
of feedforward artificial neural networks. These perceptrons were introduced many years
ago and important statements were discovered in 1989 by both Kurt Hornik and George
Cybenko [HSW89, Cyb89]. Again, due to a lack of high computing capacity, the use of
these multilayer perceptrons was not feasible until more recently.

Although machine learning can deliver great results, the calculation process is not easily
comprehensible which might be an uncertainty issue, e.g., for auditors. Nevertheless, it
is a great method to achieve results in a fast and efficient way. Many ’regular’ statistical
methods use up significantly more time to compute than machine learning and can thus
not compete in today’s environment.

Currently machine learning is not widely used by life insurance companies. Tradition-
ally, they rely on actuarial calculations for prediction of premiums and mortality rates.
Researchers do try to embed it in future calculations in order to improve accuracy, effi-
ciency and speed of calculations. A growing number of insurers has also started to include
predictive analysis in their portfolio. Still, more research is required for the field to mature.
In order to analyse risk profiles, insurers have to go through an underwriting process

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 1 Introduction

supported by specialists in this field. The customer, or potential policy holder, must go
through various medical check ups and has to provide several documents to the insurance
agent to be considered for an application. Afterwards, the underwriting process begins,
where risks and premiums are calculated for the policy holder. For better determination,
policy holders are divided into different risk groups, commonly known as risk classification.
This underwriting process often takes over a month, involves various specialists and is very
expensive [BJ18].
This process should be reduced by using machine learning for better and faster calcula-

tions.

1.1 Machine learning - definition of terms

Machine learning can be divided into different approaches, namely the predictive or super-
vised learning approach and the descriptive or unsupervised learning approach. There also
is a less frequent approach - reinforcement learning.

In simple terms, supervised learning deals with pattern recognition between inputs and out-
puts. By contrast unsupervised learning only has input data and tries to find interesting
patterns merely by analysing these inputs [Mur12].

1.1.1 Unsupervised learning

Unsupervised learning deals with the observation only of a random vector x ∈ R
n without a

target value y ∈ R and tries to learn the unconditional probability distribution p(x) or find
notable properties of the distribution. In this case the vectors xi are features [GBC16].

A widely used application of unsupervised learning is clustering. Hereby, the goal is to
divide data into different groups by identifying interesting patterns in the data [Mur12].

1.1.2 Supervised learning

In supervised learning several examples of a random vector x ∈ R
n with its associated

target value y ∈ R are observed and then learn to predict y from x generally through
calculation of the conditional probability distribution p(y|x).

Classification is one of the most used applications of supervised learning whereas the target
value y ∈ 1, . . . ,K. K depicts the number of classes in the network. A famous and widely
used classification problem is the Iris flower classification introduced by statistician Ronald
Fisher. It includes four characteristics of the flower defining the vector x and classifies into
three different flowers y via machine learning. To estimate the distribution p(y|x) we can
use maximum likelihood estimation to find the best parameter vector φ for its family of
distributions p(y|x;φ). This concept of calculation is called logistic regression [GBC16].

The other main application is linear regression whereby, distinguished from classification,
the target variable is continuous. The prediction of the life insurance risk parameter in this
thesis forms a linear regression problem which is why we will focus on this problem from
now on. To train the neural network it will be fed with a training sample, followed by

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 1 Introduction

testing on existing data. The training works through back propagation, which is a gradient
descent method which we will illustrate in more detail later on.

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 2

Mortality risk prediction

Predictive modelling has already existed for a while. It deals with analysing big data
sets, followed by recognizing patterns in the data and using this information to predict
future outcomes. In life insurance predictive modelling often entails usage of applications
by means of life tables, which were first introduced by John Graunt and Edmund Halley
already in the 17th century [BTK+10].
By now, the use of, e.g., Generalized Linear Models and Credibility Theory, also known as

Empirical Bayes, which are forms of predictive modelling, are standardly used by insurance
companies. However, the relatively new goal for life insurance companies is to expand
predictive modelling, particularly with the assistance of machine learning techniques, in
order to solve various problems and reform business processes.

The main goal of this thesis is to simulate the parameter qx, which is the probability of
someone dying between the ages x and x+1. My focus on the prediction lies on employees
and workers with pension insurance. To predict this probability I have requested data
described in the documentation The Austrian Pension Insurance Table 2018-P (In german:
AVÖ 2018-P: Rechnungsgrundlagen für die Pensionsversicherung) [KHS18], from now on
referred to only as ’AVÖ 2018-P’. This data package includes a life table which has been
calculated with the help of ’non-machine learning’ predictive modelling. I will use these
calculations to compare the results and consequently minimize the error of the machine
learning model I will later on describe in detail to calculate qx.

I will explain the structure of the AVÖ 2018-P life table and calculations in the following
sections.

2.1 Structure of life table

The variable qx depicts an essential element of a life table and is used to calculate premiums
for life insurances.

The outputs in the AVÖ 2018-P result from calculations based on data from the legal
Austrian pension fund during the time period 2000-2017. The table depicts the probability
of dying of employees in Austria. It includes a decomposition of data into white-collar
workers and mixed stands. The mixed stands table contains both white-collar and blue-
collar workers, which actually reflects the whole population of Austria overall quite well.
The life table for white-collar workers shows a much lower probability of dying than the
composed one.

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 2 Mortality risk prediction

There are also different tables for male, female and unisex population. Each table in-
cludes probabilities of dying regarding active population, invalidity pension, age pension
and widow pension. I chose to include differentiations between active and invalidity pension
whilst training and testing my model.

2.2 Base table

The first step for construction of the AVÖ 2018-P were calculations to generate a base
table to later use as a reference calculator for other years.

The year chosen for the base table is 2008. To create the white-collar and blue-collar workers
table, data from the ’Allgemeines Sozialversicherungsgesetz (ASVG) (engl.: General social
security act) compulsory insured’ was used.

2.3 Generation life tables

Since there is a still ongoing trend in mortality improvement, it is vital to work with
generation life tables.

The probabilities in the AVÖ 2018-P table result from base year t0 = 2008 with a mortality
improvement trend νx. Therefore, the probability of dying of an x aged person in year t is
given as

qx(t) = qx(t0) · exp(−νx · F (t− t0)) (2.1)

whereby the support function is given as

F (t) =
1

λ
· arctan(λ · t) (2.2)

with trend reduction parameter λ = 0.005.

The half-life t1/2 of the reduction, so the time in which the trend will reduce to a quantity

half of its initial value, is equal to 1
ν years. With λ being 0.005 the half-life t1/2 = 200.

Therefore, the trend will reach half of its value after 200 years.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 3

Deep neural network

The model we are using to calculate the probability of dying qx is an artificial neural
network. This system was inspired by the functions of the human brain. It can detect
outputs that are dependent on many different inputs.
The feed forward neural network we are using is a multilayer perceptron. This is one of

the many applications of machine learning and notably one of the more popular ones.
There is also a single-layer perceptron, which only has an input and an output layer.

An input node sends a weighted linear function directly to the output. Therefore, the
possibilities of the perceptron are limited which is why we will use the superior multiple-
layer perceptron.
It consists of three or more layers, namely input, hidden and output layer. The hidden

layer is the intriguing part of a neural network and makes it a deep neural network. There
often are multiple hidden layers in between input and output. Each of the hidden layer
nodes uses a non-linear activation function. More precisely, those non-linear functions are
logistic regression models [NT16].

The output layer uses either another logistic regression function or a linear regression
function. Since the aim of this neural network is not to classify data which outputs a
logistic regression function, we will focus on the regression problem with a linear regression
function as the final outcome.

A deep neural network can be described as following [BGTW19]:

Definition 3.1 Let L,N0, N1, . . . , NL ∈ N, activation function ρ : R → R and affine
linear functions Wℓ : R

Nℓ−1 → R
Nℓ for ℓ = 1, . . . , L. Then a feed forward neural network

F : RN0 → R
NL is given by

F = WL ◦ FL−1 ◦ · · · ◦ F1 with Fℓ = ρ ◦Wℓ for ℓ = 1, . . . , L− 1

The activation function ρ is acting component-wise. L+1 stands for the number of layers.
N0 denotes the dimension of the input layer, whereas NL that of the output layer and
N1, . . . , NL−1 are the dimensions of the L− 1 hidden layers.

The neural network is a weighted acyclic directed graph with L layers that are filled with
nodes whereby edges only exist between adjacent layers, depicted in Figure 3.1. The nodes
in the network are called neurons.
The affine function Wℓ is defined by a matrix A ∈ R

Nℓ×Nℓ−1 and an affine part t ∈ R
n

by the function Wℓ(x) = Aℓx + tℓ for any ℓ = 1, . . . , L. For any i = 1, . . . , Nℓ−1 and

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 3 Deep neural network

j = 1, . . . , Nℓ the matrix (Aℓ)i,j depicts the weight of the edge which connects node i in

layer ℓ − 1 with node j in layer ℓ. The sum of Nℓ given by N :=
∑L

i=1Ni makes up the
total number of neurons.

Input Layer Hidden Layer Output Layer

Figure 3.1: Structure of a fully connected multilayer perceptron

A neural network can be fully connected or only partially. Partial connection means that
not all neurons from layer ℓ are connected with all nodes in layer ℓ+ 1. Then the network
has so called sparse connectivity [BGKP19], shown in figure 3.2.

The set of neural networks from R
d0 → R

d1 with activation function ρ is denoted by
N ρ

∞,d0,d1
. If we only choose a sequence of subset of N ρ

∞,d0,d1
, then this sequence is denoted

by {N ρ
K,d0,d1

}K∈N whereby the following properties hold:

�

⋃

K∈N

N ρ
K,d0,d1

= N ρ
∞,d0,d1

� N ρ
K−1,d0,d1

⊂ N ρ
K,d0,d1

∀K ∈ N.

Next, we will introduce an important theorem about N ρ
∞,d0,d1

.

Theorem 3.2 Let ρ be bounded and non-constant, then for any finite measure µ on
(Rd0 ,B(Rd0)) and 1 ≤ p < ∞, the set N ρ

∞,d0,1
is dense in Lp(Rd0 , µ).

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 3 Deep neural network

Input Layer Hidden Layer Output Layer

Figure 3.2: Structure of a sparsely connected multilayer perceptron

Theorem 3.3 If the conditions from the previous theorem hold and additionally ρ ∈ C(R),
then N ρ

∞,d0,1
is dense in C(Rd0) for the topology of uniform convergence on compact sets.

Since each component of an R
d1-valued neural network is an R-valued neural network,

Theorem 3.2 and 3.3 even hold for N ρ
∞,d0,d1

with d1 > 1 [BGTW19, Hor91].

3.1 Backpropagation

A multilayer perceptron is assigned random weights in its first layer. Then it calculates the
error. In the following, it propagates through all hidden layers until the first layer. There
it will adapt the weights to reduce the error. The process will be repeated several times.
This propagation algorithm is called backpropagation [GP17].

For better understanding of the backpropagation algorithm we will first consider a network
with no hidden units and one output unit. Therefore, the described network is a single
layer perceptron which uses a more special rule for gradient descent than the backpropa-
gation algorithm, namely the delta rule, often also known as Least-Mean-Squares (LMS)
algorithm [AZ14].

3.1.1 Delta Rule

We will limit the network to having a linear activation function. Then the output of the
network is the weighted sum of its input

ŷ =
∑

i

wixi + θ

with bias term θ. The error function of this problem with predicted output ŷ and target
output y is given by

E =
1

2

∑

r

(yr − ŷr)
2 (3.1)

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 3 Deep neural network

with r ∈ {1, . . . , n} describing n different training patterns. Therefore, this problem can
be seen as an optimisation problem, whereby the goal is to find the weights which reduce
the error function. To solve it the method of gradient descent is used. Gradient descent
means adjustment of the weight wi by a value ∆wi which is proportional to the negative
value of the partial derivative of the error corresponding to each weight. Thus, for weight
i and learning pattern r it is given as

∆rwi = −ν
∂Er

∂wi
(3.2)

whereby ν is the learning rate. We will now substitute Er by inserting formula 3.1 for the
rth learning pattern and then applying the chain rule to split the derivative

∂Er

∂wi
=

∂(12(yr − ŷr)
2)

∂ŷr

∂ŷr

∂wi

The left derivative is
∂(12(yr − ŷr)

2)

∂ŷr
= −(yr − ŷr) = σr (3.3)

whereby σr is the difference between the target output and the predicted output for learning
pattern r. Since we have a linear output unit the right derivative results in

∂ŷr

∂wi
= xri

which is the corresponding input to the rth weight and the jth training pattern. Assembling
both derivatives we obtain

∂Er

∂wi
= σrxri (3.4)

Finally inserting 3.4 into 3.2 we obtain

∆rwi = −νσrxri (3.5)

which defines the delta rule. Since this method is not very complex it is widely used.
However, it is not applicable on a multilayer perceptron due to not knowing each neurons’
output exactly. Therefore, we will focus on the more general backpropagation algortihm.

3.1.2 Backpropagation for multilayer perceptrons

Backpropagation [AZ14] for a feedforward neural network with at least one hidden layer
is just a more complex process of applying the delta rule recursively. At first, the error of
the output layer is calculated in the same way as the delta rule. Following, it is used to
calculate the error from the last hidden layer and then repeating the process recursively for
each hidden layer until all errors are estimated. In the next step the weights are altered with
a process similar to the delta rule. This procedure is done several times until a predefined
value for the error is reached.
Applying the delta rule to a single layer perceptron, we can be certain to find a global

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 3 Deep neural network

minimum, since the error surface has a convex shape. However, for the multilayer percep-
tron this statement does not hold, since there is no unique minimum and it might happen
to only obtain a local minimum.

Illustrating the more general backpropagation algorithm we will now consider a multilayer
perceptron with a non-linear activation function ρ. The output function brk for each neuron
k is defined as

brk = ρ(ark) = ρ

(

∑

l

wlkbrl

)

(3.6)

The activation function ρ is non-linear and differentiable. Often the sigmoid function serves
as the activation function. It is given by

ρ(x) =
1

1 + e−x
(3.7)

It is quite practical, since the derivative is

dρ(x)

dx
= ρ(x)(1− ρ(x)) (3.8)

To apply the gradient descent method we will first use the chain rule to calculate the partial
derivative

∂Er

∂wik
=

∂Er

∂ark

∂ark

∂wik
(3.9)

We can easily solve the right derivative

∂ark

∂wik
=

∂

∂wik

(

∑

l

wlkbrl

)

=
∂wikbri

∂wik
= bri (3.10)

For the left derivative we apply the chain rule again to obtain

∂Er

∂ark
=

∂Er

∂brk

∂brk

∂ark
(3.11)

The right derivative is
∂brk

∂ark
=

∂ρ(ark)

∂ark
= ρ′(ark) (3.12)

straightforward corresponding to the derivative of the activation function. When calculat-
ing the left derivative we have to differentiate between two cases. Either brk corresponds
to a neuron in the output layer, or to one in a hidden layer. If we use the squared error as
the error measurement, then, for the first case, the derivative is equivalent to formula 3.3
(σr = −(yr − ŷr)), since brk = ŷ. The other case is a little more complex. We apply the
chain rule to the derivative

∂Er

∂br
=
∑

l

∂Er

∂arl

∂arl

∂br

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 3 Deep neural network

When substituting 3.6 in the right derivative we obtain

∂Er

∂br
=
∑

l

∂Er

∂arl

∂

∂br

(

∑

k

wklbrk

)

=
∑

l

∂Er

∂arl
wkl (3.13)

where the derivative ∂Er \ ∂arl is the same as in 3.11. We will now substitute 3.10, 3.11,
3.12 and 3.13 in formula 3.9, so we obtain

∂Er

∂wik
= bri · σrk

with

σrk =
∂Er

∂brk

∂brk

∂ark
=

{

(brk − yrk)ρ
′(ark) if k is an output neuron

(
∑

l σrlwkl) ρ
′(ark) if k is an inner neuron.

Finally, we will use the before proposed sigmoid activation function to show what the
derivative looks like in a practical case. We already defined the function and its derivative
in 3.7 and 3.8. So we obtain

σrk =

{

(brk − yrk)brk(1− brk) if k is an output neuron

(
∑

l σrlwkl) brk(1− brk) if k is an inner neuron.

Since we want to minimize the error with gradient descent, we have to change the weights
with a learning rate ν. In order to find a better global minimum the algorithm changes
the weights during each iteration. The equation for the change of each weight, similarly to
equation 3.5, has the form

∆rwrik = −ν
∂Er

∂wrik
= −ν · bri · σrk

Therefore, the learning rule is

w = w − ν
∂E

∂w
= w − ν∇E(w) (3.14)

3.1.3 Learning rate

Having a constant learning rate ν is generally not advisable. Usually, it poses a problem
for both low and high learning rates. If it is low, the process of finding the optimal solution
takes a long time. If it is high, it might work well in the beginning, but could very well
oscillate around a point for a while or diverge unstably [Agg18]. Therefore, many optimizers
use a variable learning rate. We will focus on different optimizers in section 3.3.

Having already introduced the sigmoid activation function we will now illustrate some other
ones.

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 3 Deep neural network

3.2 Activation

The activation function ρ maps from a node in layer ℓ− 1 to a node in layer ℓ. Hereby, the
resulting values will be in a desired range, depending on the chosen activation function.
There are several activation functions now used in neural networks. The one currently

most widely used is the rectified linear unit (ReLU) [GP17]. It is important to use the
right activation function for the multilayer perceptron so I will offer a brief insight on some
popular ones and ultimately those I tested in my model.

The first activation function I want to introduce is the sigmoid, which is referring to the
special case of the logistic function.

Definition 3.4 (Sigmoid) (Figure 3.3) Let D be the set of input data and ρ : D → (0, 1)
a C∞ function, then the sigmoid is given as

ρ(x) = σ(x) =
1

1 + e−x

The derivative is given as
ρ′(x) = ρ(x)(1− ρ(x))

The hard sigmoid [ten19] is a piecewise linear approximation of the logistic function.

Definition 3.5 (Hard Sigmoid) (Figure 3.4) Let D be the set of input data and ρ : D →
(0, 1) a C∞ function, then the hard sigmoid is given as

ρ(x) =











0 x < −2.5

0.2x+ 0.5 −2.5 ≤ x ≤ 2.5

1 x > 2.5.

The derivative is given as

ρ′(x) =

{

0.2 x < −2.5 ≤ x ≤ 2.5

0 else.

Another sigmoidal function is the Hyperbolic tangent (TanH) [KO11] which is also contin-
uously differentiable.

Definition 3.6 (Hyperbolic tangent (TanH)) (Figure 3.5) Let D be the set of input
data and ρ : D → (−1, 1) a C∞ function, then TanH is given as

ρ(x) = tanh(x) =
ex − e−x

ex + e−x

The derivative is given as
ρ′(x) = 1− ρ(x)2

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 3 Deep neural network

Sigmoid

Figure 3.3: Sigmoid

Hard Sigmoid

Figure 3.4: Hard Sigmoid

Definition 3.7 (Softsign) (Figure 3.6) Let D be the set of input data and ρ : D → (−1, 1)
a C1 function, then Softsign is given as

ρ(x) =
x

1 + |x|

The derivative is given as

ρ′(x) =
1

(1 + |x|)2

Definition 3.8 (Rectified Linear Unit (ReLU)) (Figure 3.7) Let D be the set of input
data and ρ : D → [0,∞) a C0 function, then the ReLU is given as

ρ(x) =

{

0 x < 0

x x ≥ 0.

The ReLU [LY17] is very popular despite its shortcoming that it is continuous, but not
continuously differentiable. The derivative is given as

ρ′(x) =

{

0 x < 0

1 x ≥ 0.

The next activation function we will consider is the exponential linear unit (ELU) [RZL17].

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 3 Deep neural network

tanH

Figure 3.5: Hyperbolic tangent

Softsign

Figure 3.6: Softsign

Definition 3.9 (Exponential Linear Unit (ELU)) (Figure 3.8) Let D be the set of
input data and ρ : D → (−a,∞), then the ELU is given as

ρ(a, x) =

{

a(ex − 1) x ≤ 0

x x > 0.

For a = 1 ρ is in C1 otherwise in C0.

The derivative is given as

ρ′(a, x) =

{

ρ(a, x) + a x ≤ 0

1 x > 0.

Definition 3.10 (Scaled exponential linear unit (SELU)) Let D be the set of input
data and ρ : D → (−λa,∞) a C0 function, then the SELU is given as

ρ(a, x) = λ

{

a(ex − 1) x < 0

x x ≥ 0.

with λ = 1.0507 and α = 1.67326.

The derivative is given as

ρ′(a, x) = λ

{

aex x < 0

1 x ≥ 0.

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 3 Deep neural network

ReLU

Figure 3.7: Rectified linear unit

ELU

Figure 3.8: Exponential linear unit

The SELU is evidently simply a scaled modification of the ELU.

Definition 3.11 (Softplus) (Figure 3.9) Let D be the set of input data and ρ : D →
(0,∞) a C∞ function, then the softplus is given as

ρ(x) = ln(1 + ex)

The derivative is given as

ρ′(x) =
1

1 + e−x

Softplus

Figure 3.9: Softplus

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 3 Deep neural network

3.3 Optimisation strategies

As explained in section 3.1 optimisation is the process of changing weights in the neural
network in order to find strategies with lower errors after each iteration.
Since the process of finding the optimal solution might end in oscillation, it is often

advisable to use optimisation other than stochastic gradient descent (SGD). There are
many optimisers inlcuding slight modifications of the basic SGD which for example include
momentum [Agg18], that yield far better results. Hence, I want to describe Momentum
before introducing the different optimisers.

3.3.1 Momentum

When using momentum the learning rule differs from equation 3.14, namely with a different
update rule for its weights w

w = w +∆w

while ∆w is given as
∆w = µ∆w − ν∇E(w)

with error function E(w), learning rate ν and smoothing parameter µ ∈ (0, 1), often also
called the momentum parameter.
This process accelerates the learning, since it helps the algorithm to go in the correct

direction. It is supposed to make the algorithm rather go in the consistent direction over
multiple steps during the gradient descent, than to unnecessarily oscillate around a point.
Therefore, gradient descent with momentum will reach the optimal solution sooner.

A slight adjustment to the regular momentum presents the Nesterov momentum. The
difference between the two lies in where the gradient is computed.

∆w = µ∆w − ν
∂E(w + µ∆w)

∂w

Thus, the gradient already includes the update parameter ∆w with its smoothing param-
eter µ. Those parameters have better comprehension of the change of gradients, so this
incorporation might lead to even faster convergence.

Now, we will introduce a few optimizers and the differences among them.

3.3.2 Adagrad

The first optimiser, besides the basic SGD, we want to introduce is AdaGrad (adaptive
gradient algorithm) [DHS11]. The purpose of the AdaGrad optimiser is to reduce the
learning rate, if the gradient change is small and increase the learning rate if the gradient
change is large. The small steps prevent the algorithm to jump over the optimum. All
things considered, this algorithm makes the neural network find its optimum faster.

To define the learning rule for the AdaGrad optimiser we have to define a few auxiliary
variables first. Lets say the gradient of the error at iteration t with respect to a parameter

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 3 Deep neural network

wi is given as g
(t)
i = ∇E(t)(wi). The outer product matrix is then given as

G(t) =
t
∑

τ=1

g(τ)g(τ)⊤

We need the diagonal of the outer product matrix G(t) to define the learning rule. The

diagonal elements G
(t)
ii of the matrix represent the sum of the squares of the gradients with

respect to wi until time step t. The learning rule then is defined as following

w
(t+1)
i = w

(t)
i − ν

√

G
(t)
ii − ǫ

· g(t)i (3.15)

where ǫ is simply a term to prevent from division by zero.

The major problem that the AdaGrad optimiser has is the way the learning rule is defined.

Since G
(t)
ii in the denominator in formula 3.15 denotes the squared gradients, the value is

always positive. Hence, each iteration G
(t)
ii increases, which leads to a smaller and smaller

learning rule. A critical point will be reached when the learning rate is so small, that it
will stop learning overall.

An improved version of the Adagrad optimiser is the Adadelta [Zei12].

3.3.3 Adadelta

The Adadelta fixes the AdaGrad’s main issue, which reaches an infinitesimally small learn-
ing rate, by limiting the number of accumulated past gradients to a fixed size m, instead
of summing up until iteration t.
For the method to be practical, Adadelta does not just accumulate the m previous

squared gradients, but uses exponentially decaying average of the squared gradients. With
a decay constant γ we declare this moving average as M (t)[g2] which can be calculated as
following

M (t)[g2] = γM (t)[g2] + (1− γ)(g2)(t)

To now update the learning rule of the AdaGrad optimiser (formula 3.15) we need the
square root of M (t)[g2] which becomes

RMS(t)[g] =
√

M (t)[g2] + ǫ

The term ǫ serves as a parameter to prevent from division by zero. Collectively the param-
eter update is

∆w(t) = − ν

RMS(t)[g]
· g(t)

Next, we need to define another exponentially decaying average, since the units of w(t) and
∆w(t) do not match. This moving average is then defined as

M (t)[∆w2] = γM (t)[∆w2] + (1− γ)(∆w(t))2

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 3 Deep neural network

The square root of M (t)[∆w2] is given as

RMS(t)[∆w] =
√

M (t)[∆w2] + ǫ

Under assumption of local smoothness of the curvature of ∆w(t) and, since we do not know
its value at time step t, we approximate it by computing the RMS until the previous time
step. This yields the parameter update

∆w(t) = −RMS(t−1)[∆w]

RMS(t)[g]
· g(t)

with lerning rule
w(t+1) = w(t) +∆w(t)

Another optimiser which had the aim to eliminate AdaGrad’s flaws is the RMSProp.

3.3.4 RMSProp

The RMSProp (Root Mean Square Propagation) [HSS12, Rud16] is a hitherto unpublished
optimiser by Geoffrey Hinton.
It uses exponential averaging to update its weights. This means, the learning rate is

adapted for each iteration by dividing the learning rate with the square root of the expo-
nentially averaged value of w. Therefore the moving average is the same as for the Adadelta
optimiser. We introduce an m(t) := M (t)[g2], so we obtain

m(t) := γm(t−1) + (1− γ)(g2)(t) (3.16)

with a decay factor γ ∈ (0, 1). This is evidently the same update vector as for Adadelta.
Hinton suggests to set γ = 0.9 and the learning rate ν = 0.001. Therefore, we obtain the

learning rule

w(t+1) = w(t) − ν
g(t)

√

m(t) + ǫ
.

Combining RMSProp and Momentum yields the Adam optimizer.

3.3.5 Adam

Adam (Adaptive Moment Estimation) [KB14] is currently the most used optimizer for
neural networks.
It not only uses the exponentially decaying average of the past squared gradients, but

also of the past gradients. Hence, as for Adadelta and RMSprop we have

m(t) := γm(t−1) + (1− γ)(g2)(t)

In addition to this we introduce a parameter n, which is an exponentially smoothed value
of the gradient. The smoothing of n is a modification of the momentum method and is

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 3 Deep neural network

given as
n(t) := δn(t−1) + (1− δ)(g2)(t)

The bias-corrected second raw moment estimate is

m̂(t) =
m(t)

1− γt

and the bias-corrected first moment estimate is

n̂(t) =
n(t)

1− δt

Then the tth iteration of the update with learning rate ν is given as

w(t+1) = w(t) − ν
n√

m+ ǫ

where ǫ is a small scalar to prevent division by zero.

The default setting of the Adam parameters for machine learning methods is

� ν = 0.001

� γ = 0.9

� δ = 0.999

� ǫ = 10−8

Another optimizer closely related to Adam and RMSProp is Nadam.

3.3.6 Nadam

Nadam (Nesterov ac-cellarated Adaptive Moment Estimation) [Her16, Doz16] operates as
the name already reveals like the Adam optimizer, but with Nesterov momentum. There-
fore, the moments are given as

m̂(t) =
γm(t)

1−∏t+1
i=1 δ

(i)
+

(1− δ(t))∇E(t)(w)

1−∏t
i=1 δ

(i)

and

n̂(t) =
δ(t+1)n(t)

1− δt

The default settings of the Nadam optimizer are usually the same as for Adam, but with
learning rate

� ν = 0.002

which anyway is an adaptable factor.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 3 Deep neural network

3.4 Error

When performing a linear regression problem a common measurement of error is the mean
squared error (MSE) [GBC16]. Suppose we have a train set of size m with the target vector
ytrain and a test set of size n with target vector ytest. Then the machine learning algorithm
will be trained and try to predict a vector ŷtest for the real vector ytest. The MSE is then
given by

MSE =
1

n

n
∑

j=1

(ŷtest − ytest)
2
j .

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 4

Preparation of model and experiments

To create a deep neural network I used Python with the Keras tool.

To train my model I had to prepare the data derived from AVÖ 2018-P properly. Since the
data I requested from the AVÖ 2018-P table is only for scientific use, including calculations
for my model, and I am not permitted to publish it, I did not release any values for the
parameter qx.

4.1 Data preparation

At first I calculated probabilities of dying for several years and after various tests chose to
focus on training data from the years 1986 to 2000 and testing data from year 2016. Since
the probability of dying for a 120 year old person will be set to 1 by default I decided to
leave out age 120, while training my model.
In the pension insurance data table AVÖ 2018-P there are calculations for people be-

ginning with age 14, since it does not make sense to calculate probabilities of dying for
pensions for younger children than that. Therefore, the starting age in my model is 14.
The final matrix that I used for training the machine learning algorithm looked as fol-

lowing, whereby the qRx represent the values I calculated with the AVÖ 2018-P table.

Beginning of Table

Age Year of Death State qR
x

14 1986 1 q198614

15 1986
... q198615

...
...

...

119 1986 q1986119

14 1987 q198714

15 1987 q198715
...

...
...

119 1987 q1987119
...

...
...

...
...

...

14 2000 q200014

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 4 Preparation of model and experiments

Continuation of Table 4.1

Age Year of Death State qR
x

15 2000 q200015
...

...
...

119 2000 q2000119

14 1986 2 q198614

15 1986
... q198615

...
...

...

119 1986 q1986119

14 1987 q198714

15 1987 q198715
...

...
...

119 1987 q1987119
...

...
...

...
...

...

14 2000 q200014

15 2000 q200015
...

...
...

119 2000 q2000119

End of Table

Table 4.1: Data Preparation for Python

The variables in column State are 1 for active population, which is the same as old-age
pension and 2 for invalidity pension. I made the same data preparation for year 2016 to
compare the predicted data with the expected output.
Since the values from the input data vary widely, I normalized it. The normalization

helps the network to operate faster and produce better results.

Ideally, the model should have a low mean squared error and be fast. To receive best results
I tested various scenarios, which I will describe in the following sections.

4.2 Experiment 1 - number of layers vs. number of nodes

In my first experiment I focused on figuring out how a low amount of layers with a high
amount of nodes and vice versa affected the neural network.

To receive meaningful results, I solely used the Adam optimiser and fixed the activation
function. Further, I let the algorithm run through 800 epochs each time.

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 4 Preparation of model and experiments

At first I focused on finding out how many neurons altogether where needed for the
network to work properly. If there are too little neurons in the network the predicted
values are just an average of what the values should be and do not represent the data
properly. On the other hand, if there is a very high amount of neurons, the network takes
a lot of time and might even overfit the data. After balancing those shortcomings I came
to the conclusion to train my network with overall 640 neurons.

With all these initial conditions I finally examined the effects the number of nodes and
number of layers had on the network. After several tests I came to the conclusion that it is
best to have at least four hidden layers, since the mean squared error was rather high with
less layers. Moreover, qx for invalidity pension is, after slightly decreasing in the beginning,
not strictly increasing over age like the qx for active population, but has a local maximum
at age 54 and then strictly decreases until reaching a local minimum at age 61. This drop
in qx also has to be represented by the trained data which usually only is the case when
using at least four hidden layers. Otherwise the network might not identify the curve and
the result might look like graph 4.1.

14 20 30 40 50 60 70 80
age x

0.01

0.02

0.03

0.04

0.05

0.06

q x

Expected
Predicted

Figure 4.1: NN invalidity pension, ages 14 to 80, two hidden layers

After testing various scenarios I came to the conclusion that it is the best choice to use
four hidden layers. This has two reasons, on the one hand the MSE does not really improve
for more layers and on the other hand the network needs much more time to compile, while
using more layers and less nodes.
When training the model with 512 nodes in its first layer and four hidden layers with

each 32 nodes I received excellent results, shown in Figures 4.2, 4.3 and 4.4.

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 4 Preparation of model and experiments

14 20 40 60 80 100 119
age x

0.0

0.2

0.4

0.6

0.8

q x
Expected
Predicted

Figure 4.2: NN old-age pension, four hidden layers

14 20 40 60 80 100 119
age x

0.0

0.2

0.4

0.6

0.8

q x

Expected
Predicted

Figure 4.3: NN invalidity pension,
four hidden layers

14 20 30 40 50 60 70 80
age x

0.01

0.02

0.03

0.04

0.05

0.06

q x

Expected
Predicted

Figure 4.4: NN invalidity pension,
ages 14 to 80, four hid-
den layers

4.3 Experiment 2 - activation functions

Experiment 2 focuses on testing various activation functions. I created a network containing
four hidden layers and used the Adam optimiser. I also fixed the number of nodes in each
layer to obtain comparable results. After testing each activation function five times and
taking an average over the mean squared error I obtained results shown in table 4.2.

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 4 Preparation of model and experiments

Table 4.2: Comparison of different activation functions with MSE value

Activation Function Mean Squared Error

Sigmoid 5.55× 10−5

Hard Sigmoid 2.72× 10−2

Hyperbolic Tangent (TanH) 2.85× 10−5

Softsign 1.42× 10−4

Rectified Linear Unit (ReLU) 1.48× 10−4

Exponential Linear Unit (ELU) 3.30× 10−5

Scaled Exponential Linear Unit (SELU) 7.52× 10−5

Softplus 2.59× 10−5

0.020

0.025

0.030

0.035

Sig
moid

Hard
 Si

gm
oid Ta

nH

So
fts

ign ReLU ELU SE
LU

So
ftp

lus
0.00000

0.00005

0.00010

0.00015

0.00020

Figure 4.5: Comparison of different activation functions with MSE value

4.3.1 Sigmoidal functions

To analyse the results from table 4.2 the activation functions should be split up into two
categories. On the one hand we consider sigmoidal functions. In that category belongs

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 4 Preparation of model and experiments

the sigmoid, the hard sigmoid, the hyperbolic tangent and the softsign. The other type of
activation functions are rectifiers. Those include the rectified linear unit, the exponential
linear unit, the scaled exponential linear unit and the softplus.

At first we consider the sigmoid activation function. It is very popular for simple problems,
but suffers from the vanishing gradient problem [GHV17] which leads to poorer results. The
vanishing gradient problem concerns the backpropagation algorithm and how it operates.
Since it uses gradients to change its weights to optimize the algorithm it is quite impractical
that the gradients for the sigmoidal function can be vanishingly small. Due to the fact,
that the range of the sigmoid function is between 0 and 1, and the derivation uses the
chain rule, it leads to multiplying very small numbers with each other, while following
the backpropagation algorithm. As a result this might lead to obtaining vanishingly small
numbers, so that the weight will not be changed at all and, therefore, might stop the
backpropagation algorithm altogether.
The same problem does apply to all of the sigmoidal functions. Nevertheless, it has less

impact on the hyperbolic tangent, than on the sigmoid. Hence, the hyperbolic tangent is
a far better choice of sigmoidal activation functions, than the sigmoid function. As we can
see in figure 4.5 the sigmoid activation function did not yield terrible results, but does not
belong with the three activation functions that yielded best results either.
Then again, the rectifiers do not have the shortcoming of suffering under vanishing gradi-

ent problem at all, which is why their overall performance was better than of the sigmoidal
activation functions.

The fact that the network did not work at all with the hard sigmoid activation function
was to be expected, since it is only an approximation of the sigmoid. This means it works
faster, but at the same time it is less precise and the error is bound to be higher. Therefore,
it is not a good choice for regression problems, but might be fine to be used for classification
tasks due to the calculation speed.
An example of a result of the neural network with a hard sigmoid activation function

with a MSE of 1.49 × 10−04 is shown in Figures 4.6, 4.7 and 4.8. Evidently the predicted
outputs are just piecewise linear functions, which shows the calculation for qx did not work
well at all.

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 4 Preparation of model and experiments

14 20 40 60 80 100 119
age x

0.0

0.2

0.4

0.6

0.8

q x
Expected
Predicted

Figure 4.6: NN old-age pension, hard sigmoid activation function

14 20 40 60 80 100 119
age x

0.0

0.2

0.4

0.6

0.8

q x

Expected
Predicted

Figure 4.7: NN invalidity pension,
hard sigmoid activation
function

14 20 30 40 50 60 70 80
age x

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

q x

Expected
Predicted

Figure 4.8: NN invalidity pension,
ages 14 to 80, hard sig-
moid activation function

Many times, while compiling the neural network with the hard sigmoid activation func-
tion, the network output would even only be a constant line over the whole data (Figure
4.9). Therefore, the hard sigmoid should not be chosen as the activation function.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 4 Preparation of model and experiments

14 20 40 60 80 100 119
age x

0.0

0.2

0.4

0.6

0.8

q x
Expected
Predicted

Figure 4.9: NN old-age pension, hard sigmoid activation function 2

The MSE for the hyperbolic tangent is very low. One reason for such a good result
is that the vanishing gradient problem is a much smaller issue for the function, since its
range is between −1 and 1. The fact that the data is centred around 0 leads to higher
derivatives. The other benefit of the range being (−1, 1) and not just (0, 1) is that with
the inclusion of (−1, 0) the outputs are rather unbiased, meaning that the average is close
to zero [LBOM12].

The MSE for using softsign as the activation functions is a bit higher. It is a continuous
approximation of the sign function.

Overall, the hyperbolic tangent is definitely the best choice of a sigmoidal activation func-
tion (Figures 4.10, 4.11 and 4.12).

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 4 Preparation of model and experiments

14 20 40 60 80 100 119
age x

0.0

0.2

0.4

0.6

0.8

q x
Expected
Predicted

Figure 4.10: NN old-age pension, TanH activation function

14 20 40 60 80 100 119
age x

0.0

0.2

0.4

0.6

0.8

q x

Expected
Predicted

Figure 4.11: NN invalidity pension,
TanH activation func-
tion

14 20 30 40 50 60 70 80
age x

0.01

0.02

0.03

0.04

0.05

0.06

q x

Expected
Predicted

Figure 4.12: NN invalidity pension,
ages 14 to 80, TanH ac-
tivation function

4.3.2 Rectifiers

The rectified linear unit is probably the most used activation function. Nevertheless, in
my model it yielded good, but not the best results. It might be the lack of continuous
differentiability that causes it to yield worse results, which is why I also tested the softplus.
The softplus is a smooth version of the ReLU. As you can see in figure 4.5, the softplus did
perform better than the ReLU.

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 4 Preparation of model and experiments

The exponential linear unit is also a modification of the ReLU. The neural network using
the ReLU runs through all epochs faster, than with using the ELU, because it tries to make
its mean activations closer to zero. Its mean squared error is really low and belongs to the
three best activation functions for my neural network.

The scaled exponential linear unit did not perform quite as well as the exponential linear
unit, but is still a good activation function. This was foreseeable, since it only is a slight
modification of the ELU.

At last, I tested the softplus. As already mentioned, the softplus is just a modification of
the ReLU and the smoothness caused better performance than when using the ReLU. With
a mean squared error of 2.59× 10−5 it has the best performance of all activation functions.

4.4 Experiment 3 - optimisers

In this section I am trying to find the best optimizer for my neural network. This time, I
fixed the number of layers and nodes and the activation function.

After testing the various optimisers several times, I took an average over the results for
each optimiser and want to present these results in table 4.3.

Table 4.3: Comparison of different optimisers with MSE value

Activation function Mean squared error

Stochastic gradient descent (SGD) 1.04× 10−3

Adagrad 2.32× 10−4

Adadelta 5.12× 10−4

RMSProp 4.19× 10−4

Adam 2.32× 10−5

Nadam 4.34× 10−4

The neural network yielded abysmal results for basic stochastic gradient descent. It was
expected that the MSE would be quite high, since it does not include any adaptations for
the learning rate.

That AdaGrad performs surprisingly well. The MSE for the AdaGrad is the second best
despite the fact that its learning rule is quite flawed as outlined in subsection 3.3.2. Since
the denominator increases at each iteration the learning rule becomes vanishingly small.
Therefore, running the network with AdaGrad was expected to yield bad results.
This decrease of the learning rate is generally fixed with the Adadelta optimiser, which

predicted the data quite badly nonetheless. The same accounts for the RMSProp, which
also is often described as an ’improved AdaGrad’ and still has a higher mean squared error
than the Adagrad.

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 4 Preparation of model and experiments

SG
D

Ad
ag
rad

Ad
ad
elt
a

RM
SP
rop

Ad
am

Na
da
m

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Figure 4.13: Comparison of different optimisers with MSE value

The by far best performance yielded the Adam optimiser. It is also by far the most popular
and most used one.
The Nadam did not perform so well, which shows that the Nesterov momentum might

not be better than ’normal’ momentum.

Another factor for choosing an optimiser might be the time it takes the algorithm to
compile. SGD and RMSProp are the fastest optimisers. Adagrad, Adadelta and Adam
take a bit longer and Nadam takes almost double the time compared to SGD and RMSProp
to compile the neural network.

4.5 Experiment 4 - number of epochs

For deciding on how many epochs my neural network should use I analysed the loss over
time. I set the number of epochs to 800. Often the network’s loss converged early on,
seen in figure 4.14. Although sometimes the error converged slower and there was still
improvement at later epochs, which is why I decided to generally let it run through 800
epochs.

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 4 Preparation of model and experiments

0 100 200 300 400 500 600 700 800
epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12
m

ea
n

sq
ua

re
d

er
ro

r
Train
Test

Figure 4.14: MSE over 800 epochs

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 5

Conclusion

In this diploma thesis we investigated the use of a neural network in the insurance business.
The approach of using deep learning in insurance is currently not widely spread. Hence,
this thesis should act as a stepping stone for implementing this method in actuarial math-
ematics and contribute to this nascent research field.

It is crucial to evaluate a proper setting for a neural network to yield the best performance.
Therefore, I tested between varying amount of nodes and layers, different activation func-
tions and different optimisers.
For this problem I established it was best to use 640 neurons in the neural network.

When using less neurons the results were not satisfying. With more than 640 neurons
the network would still return good results, but the running time of the model extended
drastically. I also found, that it was best to train the data with four layers.
All of the activation functions showed promising results, except for Hard Sigmoid, which

definitely should not be used for a linear regression problem. Nevertheless, TanH, ELU
and Softplus are the best activation functions to be used for the problem.
Although there are quite a few optimisers, the Adam optimiser is definitely the best

choice for this problem. This is in line with much of the literature that finds the Adam
optimiser to be the ideal optimiser for a variety of problems. It was quite unexpected that
also the AdaGrad optimiser performed very well, since it has its flaw of having a constantly
decreasing learning rule until it becomes vanishingly small.
It should also be noted that the convergence of the error, while running through epochs,

should be tested and then a judgement call should be made of how many epochs make
most sense to use.

Consequently, I could eliminate various scenarios due to bad results and found that the
calculation of the parameter qx via an ideal neural network shows exceptionally promising
results. The process of finding the right model did take some time, but once it is built, it
is an immensely fast and precise approach to calculate qx.

All in all, solving this problem with an artificial neural network is a great solution and
could affect the whole insurance business. Not only the insurance itself would profit from
a fast and straightforward approach to calculate the probability of dying, but also insurers
would benefit, since it would lead to better calculations for premiums. The insurers would
benefit from reduced cost and can improve their bottom line and the customer receives a
better and more affordable product. Hence, the results achieved in this thesis show a high
potential to further the research in this field and apply the method of calculation in the

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 5 Conclusion

insurance business.

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[Agg18] Charu C Aggarwal. Neural networks and deep learning. Springer, 2018.

[AZ14] Antonios K Alexandridis and Achilleas D Zapranis. Wavelet neural networks:
with applications in financial engineering, chaos, and classification. John Wiley
& Sons, 2014.

[BGKP19] Helmut Bölcskei, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. Op-
timal approximation with sparsely connected deep neural networks. SIAM
Journal on Mathematics of Data Science, 1(1):8–45, 2019.

[BGTW19] Hans Buehler, Lukas Gonon, Josef Teichmann, and Ben Wood. Deep hedging.
Quantitative Finance, pages 1–21, 2019.

[BJ18] Noorhannah Boodhun and Manoj Jayabalan. Risk prediction in life insurance
industry using supervised learning algorithms. Complex & Intelligent Systems,
4(2):145–154, 2018.

[BTK+10] Mike Batty, Arun Tripathi, Alice Kroll, Cheng-sheng Peter Wu, David Moore,
Chris Stehno, Lucas Lau, Jim Guszcza, and Mitch Katcher. Predictive Mod-
eling for Life Insurance, Ways Life Insurers Can Participate in the Business
Analytics Revolution. Deloitte Consulting LLP, 2010.

[Cyb89] George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303–314, 1989.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121–2159, 2011.

[Doz16] Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[GHV17] Garrett B Goh, Nathan O Hodas, and Abhinav Vishnu. Deep learning for
computational chemistry. Journal of computational chemistry, 38(16):1291–
1307, 2017.

[GP17] Antonio Gulli and Sujit Pal. Deep Learning with Keras. Packt Publishing Ltd,
2017.

[Her16] Andres Hernandez. Model calibration with neural networks. Available at SSRN
2812140, 2016.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[Hor91] Kurt Hornik. Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251–257, 1991.

[HSS12] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for
machine learning lecture 6a overview of mini-batch gradient descent. Cited on,
14:8, 2012.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural networks, 2(5):359–366,
1989.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[KHS18] Reinhold Kainhofer, Jonas Hirz, and Alexander Schubert. AVÖ 2018-P: Rech-
nungsgrundlagen für die Pensionsversicherung. 2018.

[KO11] Bekir Karlik and A Vehbi Olgac. Performance analysis of various activation
functions in generalized MLP architectures of neural networks. International
Journal of Artificial Intelligence and Expert Systems, 1(4):111–122, 2011.

[LBOM12] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Ef-
ficient backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer,
2012.

[LY17] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks
with relu activation. In Advances in Neural Information Processing Systems,
pages 597–607, 2017.

[Mur12] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press,
2012.

[NT16] Thembinkosi Nkonyana and Bhekisipho Twala. An empirical evaluation of ma-
chine learning algorithms for image classification. In International Conference
on Swarm Intelligence, pages 79–88. Springer, 2016.

[Rud16] Sebastian Ruder. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747, 2016.

[RZL17] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation
functions. arXiv preprint arXiv:1710.05941, 2017.

[ten19] tf.keras.backend.hard sigmoid Tensorflow, 2019. URL: https://www.

tensorflow.org/api_docs/python/tf/keras/backend/hard_sigmoid.

[Zei12] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Figures

3.1 Structure of a fully connected multilayer perceptron 9
3.2 Structure of a sparsely connected multilayer perceptron 10
3.3 Sigmoid . 15
3.4 Hard Sigmoid . 15
3.5 Hyperbolic tangent . 16
3.6 Softsign . 16
3.7 Rectified linear unit . 17
3.8 Exponential linear unit . 17
3.9 Softplus . 17

4.1 NN invalidity pension, ages 14 to 80, two hidden layers 25
4.2 NN old-age pension, four hidden layers . 26
4.3 NN invalidity pension, four hidden layers 26
4.4 NN invalidity pension, ages 14 to 80, four hidden layers 26
4.5 Comparison of different activation functions with MSE value 27
4.6 NN old-age pension, hard sigmoid activation function 29
4.7 NN invalidity pension, hard sigmoid activation function 29
4.8 NN invalidity pension, ages 14 to 80, hard sigmoid activation function . . . 29
4.9 NN old-age pension, hard sigmoid activation function 2 30
4.10 NN old-age pension, TanH activation function 31
4.11 NN invalidity pension, TanH activation function 31
4.12 NN invalidity pension, ages 14 to 80, TanH activation function 31
4.13 Comparison of different optimisers with MSE value 33
4.14 MSE over 800 epochs . 34

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Tables

4.1 Data Preparation for Python . 24
4.2 Comparison of different activation functions with MSE value 27
4.3 Comparison of different optimisers with MSE value 32

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Abstract
	Kurzfassung
	Danksagung
	Eidesstattliche Erklärung
	Introduction
	Machine learning - definition of terms
	Unsupervised learning
	Supervised learning

	Mortality risk prediction
	Structure of life table
	Base table
	Generation life tables

	Deep neural network
	Backpropagation
	Delta Rule
	Backpropagation for multilayer perceptrons
	Learning rate

	Activation
	Optimisation strategies
	Momentum
	Adagrad
	Adadelta
	RMSProp
	Adam
	Nadam

	Error

	Preparation of model and experiments
	Data preparation
	Experiment 1 - number of layers vs. number of nodes
	Experiment 2 - activation functions
	Sigmoidal functions
	Rectifiers

	Experiment 3 - optimisers
	Experiment 4 - number of epochs

	Conclusion
	Bibliography
	List of Figures
	List of Tables

