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Kurzfassung

Automatisierte Softwareverifikation gewinnt durch die fortschreitende Digitalisierung zuneh-

mend an Bedeutung. Unter diesem Licht widmet sich diese Masterarbeit der automatisierten

Softwareverifikation mit Hilfe von automatisierten Beweissystemen in Prädikatenlogik.

Insbesondere werden Programme mit Arrays und Schleifen hinsichtlich funktionaler Korrekt-

heit für einfache, als auch relationale Spezifikationen untersucht. Vor allem werden relationale

Eigenschaften typischerweise verwendet, um Sicherheits- und Datenschutzgarantien in Anwen-

dungen der Systemsicherheit zu formulieren. Dies erfordert oftmals Quantorenalternierung.

Für die Verifizierung dieser Eigenschaften werden imperative Programme auf ein Gültigkeits-

problem in eine neue Logik, die sogenannte Trace Logic, reduziert. Durch Reasoningaktivitäten

über natürliche und ganze Zahlen, erfordern automatisierte Beweise in dieser Logik auch indukti-

ve Schlüsse, die nur schwer automatisch vollzogen werden können. In diesem Sinne widmet sich

diese Arbeit der Formulierung geeigneter Lemmata, genannt Trace Lemmas, die das automatische

Beweissystem bei Schlüssen, die Induktion erfordern, leitet. Das Ziel der Arbeit ist es geeignete

Sets an Trace Lemmas für verschiedene Eigenschaften zu definieren und zu formulieren, sodass

automatisierte Beweise mit Hilfe des VAMPIRE-Beweissystems generiert werden können ohne

von programmspezifischen Annotationen durch Experten abhängig zu sein.
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Abstract

This work is motivated by automating reasoning for program analysis and verification in full

first-order logic. We are interested in reachability and relational properties about functional

correctness of programs with loops and arrays. Particularly, relational properties are typically

used to formulate security and privacy guarantees in applications of system security, and often

require reasoning about first-order formulas with quantifier-alternations.

In our approach, we reduce the verification task of reachability and relational properties of

imperative programs to a validity problem into a new logic, called trace logic, that is an expressive

instance of first-order logic. Properties in trace logic involve reasoning about natural numbers

and integers, and thus impose the burden of automating inductive reasoning in the full first-order

setting of theorem proving.

We address this challenge by automatically instantiating a set of so-called trace lemmas that

guide first-order provers in inductive reasoning. The aim of this thesis is to identify a "reasonable"

set of sound trace lemmas that allow superposition-based automated theorem provers to prove

inductive (non-)relational properties, without relying on user-provided program annotations like

program-specific loop invariants. To discharge verification conditions we rely on the first-order

theorem prover VAMPIRE.
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CHAPTER 1
Introduction

1.1 Introduction

Software is an increasingly critical component of almost all areas of life. Be that in the profes-

sional world or in speaking to one’s smart assistant at home, people are more and more willing to

share their sensitive data. This gives rise to attacks exploiting any kind of bugs to willfully retrieve

private information of others. While testing is a necessary means to assuring the functionality of

software, it is often not enough to show that certain specifications are fully met. Hence, they do

not provide a proof that software is actually doing what it should, nor that it fulfills requirements

wrt. security, availability etc. Thus, the task of (automated) software verification is an ongoing

research effort in computer science.

The aim of this endeavour is to formally prove programs bug-free. It is obvious that in this

day of age the task of formally verifying programs and proving their correctness is of higher and

higher importance. Given the increased degree of digitalization and use of software for sensitive

data, recent bugs like Spectre [KHF+19] and Meltdown [LSG+18] highlight the importance

of formal methods. To this end, automation becomes more and more important as growing

codebases cannot be scaled to be proven manually with potentially thousands of changes a day.

Hence it is evident that new methods and tools are needed that increase the degree of automation

in software verification tasks that can be integrated during the developement of critical code.

While practically powerful, current automated approaches to software verification come with

a number of limitations. They (i) are restricted in the logical expressiveness of the software

properties they handle, that is only (decidable) first-order fragments, by a combination of SMT-

solving and model checking, (ii) produce false positives due to over-approximation used for

example in abstract interpretation and static analysis, (iii) require expert knowledge by providing

loop invariants/assertions to handle inductive reasoning, as is the case e.g. in Dafny [Lei10] or

(iv) need user guidance in proving software correct by using interactive theorem provers and

hence do not scale well.

While there exists some work on automating induction such as [Lei12], many approaches just

focus on a small set of programs or a decidable fragment. We address (some of) these limitations

1
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1. INTRODUCTION

and propose reasoning in trace logic L to analyze and prove properties over (sets of) sets of

program traces. We express program semantics in L and use superposition-based first-order

theorem proving to fully automate reasoning in many-sorted full first-order logic with equality.

For doing so, we automatically instantiate a set of so-called trace lemmas that guide first-order

provers in inductive reasoning.

In this thesis, we will introduce identified trace lemmas for different sets of program properties

and illustrate example by example on how trace lemmas are used for inductive reasoning tasks of

relational and non-relational program properties with the help of the superposition based prover

VAMPIRE. The work is based on the program semantics given by the RAPID-tool that can be

found in [BEG+19] and will also be given as background information in Section 2.3.

Contributions The main contributions are summarized below:

1. Chapter 3. We identified trace lemmas for reachability properties of programs containing

arrays and loops. Specifically we found a set of general inductive lemmas to automati-

cally prove properties that handle inductive reasoning over loops without depending on

program-specific loop invariants or user-defined annotations. We discharge these verifica-

tion conditions with the superposition-based VAMPIRE theorem prover.

2. Chapter 4. We extended this approach to so-called hyperproperties, that is relational

properties over multiple program traces of a program, and defined inductive trace lemmas

over time point and trace reasoning for security properties such as noninterference and

sensitivity.

3. The automatic instantiation of these lemmas is implemented in the software verification

tool RAPID
1. Together with its existing program semantics as defined in Chapter 2,

RAPID generates verification conditions including instantiations of trace lemmas that can

be automatically discharged with VAMPIRE.

1.2 Structure of the Thesis

The thesis will be structured as follows: After an overview of our method of using VAMPIRE for

software verification with RAPID as well as an introduction of the syntax and semantics of our

intermediate language and its encoding in first-order logic given in Chapter 2, we will dive into

software verification and particularly the trace reasoning for handling inductive reasoning tasks

involved in the process. Chapter 3 will focus on a standard non-relational setting, that is we will

show how we prove program properties as sets of traces with the help of so-called trace lemmas

in the superposition calculus. In Chapter 4, we will extend this approach to a more general setting,

allowing us to handle multiple traces and prove relational properties, that is program properties

as sets of sets of traces. As such we study particularly the trace reasoning that allows us to prove

so-called hyperproperties like noninterference and sensitivity. We illustrate this approach on

multiple examples. Afterwards Chapter 5 will give an introduction and overview of historical and

1https://github.com/gleiss/rapid
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1.2. Structure of the Thesis

current state-of-the-art research in software verification relevant to this work and finally conclude

in Chapter 6.
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CHAPTER 2
Preliminaries

2.1 First-order Logic with Theories

We consider standard many-sorted first-order logic with built-in equality denoted by ≃ , that is

≃ is not a symbol, modulo background theories. Besides standard boolean connectives as well as

existential and universal quantification, we allow to express inequalities and write s 6≃ t instead

of ¬(s ≃ t) for arbitrary terms s and t. For a valid formula of the form F1 ∧ . . . ∧ Fn → F , we

write F1, . . . , Fn � F . In particular, we say � F , if F is valid.

A signature Σ is any finite set of symbols. The signature of a formula F is the set of all

symbols occurring in F . Let F := ∀x � c ≃ f(x), then the signature of F is the set {f, c}. A

first-order background theory T is a set of all logical consequences of the theory axioms of T ,

i.e. a set of all valid formulas on a class of first-order structures. To this end, when making

use of a theory T we call symbols in the signature ΣT of T interpreted, and all other symbols

uninterpreted.

Specifically, we make use theory of linear arithmetic TI to reason over integers denoted by

sort I, as well as the theory of term algebras TA [KRV17] to encode loop iterations as natural

numbers denoted by sort N as discussed in 2.3.

The signature of natural numbers ΣN is the set of standard symbols {0, succ, pred, <}
interpreted as zero, successor, predecessor and less respectively. Note that the theory of term

algebras comes equipped with the symbols {0, succ, pred} which we extended with a proper

less-symbol < incompletely axiomatized to have an ordering on natural numbers N.

Theory Reasoning in the presence of full first-order quantification still tends to be a challenge

for automated reasoners, thus we could observe that differentiations in theory encodings lead

to different results. For example, while we could also encode loop iterations by integers using

sort I, due to a blow-up in theory axioms of linear arithmetic, encoding iterations as N has been

shown to dramatically increase performance and the number of problems we could solve. Thus,

as opposed to I, N does not contain interpreted symbols for arbitrary addition and multiplication.

The axiomatization of < is incomplete and only contains two axioms.

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2. PRELIMINARIES

The signature of integers ΣI is the set of integer constants 0, 1, 2, . . . and a set of operations

given by {+, ∗, <} to denote the function symbols for addition and multiplication as well as

the predicate symbol for less respectively. Sort I is used to represent and reason about program

variables such as integers or integer-valued arrays (see Section 2.3). We use incomplete but sound

axiomatizations supported by the built-in theory of linear arithmetic in VAMPIRE (with setting

VAMPIREoptions -tha to some or on for partial, that is considering mostly the axiomatization

of the less-symbol, or full axiomatization of I). As we will see in later sections 3 and 4, we extend

the built-in partial axiomatization provided by -tha some with specific integer theory axioms

needed.

Additionally, we consider two uninterpreted sorts to denote timepoints, that is sort (i) Time-

point denoted by L and sort (ii) Trace denoted as T used to refer to computation traces which we

use for relational verification (see Chapter 4).

Given a variable of first-order logic x and a sort S, we denote x is of sort S as xS . We use

standard first-order models modulo a background theory T . We write �T F to denote that F is

T -valid, that is F holds in all models of T . If I is a model of T , we write I �T F if F holds in

the interpretation I .

2.2 Input Language W

As input to the RAPID framework, we consider programs written in a while-like programming

language, denoted as W . W allows us to express mutable and immutable, that is constant, integer

variables and integer-valued arrays. W includes side-effect free expressions over booleans and

integers. Each program consists of a top-level function main without arguments and allows

for arbitrary nestings of program variable assignments and control-flow structures such as skip ,

if-then-else and while-statements. Hence, when we refer to loops we speak of while-loops. For

all statement s that occur in a loop, we refer to these loops as enclosing loops of s. The semantics

of W will be given in the next section.

2.3 Trace Logic

We now introduce the concept of trace logic for expressing semantics and (relational) properties

of W-programs as discussed in our recent work [BEG+19].

2.3.1 Syntax

Locations and Timepoints

Programs in W are considered as sets of program locations, where each location intuitively

corresponds to a step in the program execution, that is for each program statement s, we introduce

a symbol ls to denote the location. We use lend to denote the location corresponding to the end of

the program.

Since we consider programs with arbitrary nesting of loops, locations can be visited multiple

times throughout program execution. Thus, we model program locations as follows: (i) for each

6
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2.3. Trace Logic

location ls corresponding to a program statement s, we introduce a function symbol ls : Nn 7→ L,

that is ls is of sort L.

(ii) for each enclosing loop of statement s, ls gets an argument of sort N that represents the loop

iteration of each enclosing loop respectively.

(iii) for while-statements, we additionally equip the encoding with a function symbol ns : Nn 7→
N of sort N to denote the iteration where s terminates, i.e. the first iteration where the loop

condition of s does not hold anymore. Enclosing loops are handled as above as arguments to ns.

Further we introduce some terms to denote the most commonly used timepoints when discussing

semantics. Let its be a function that returns a unique variable of sort N for each while-statement

s. Let w1, . . . , wk denote the enclosing loops of some statement s and let it be an arbitrary term

of sort N.

We define the following macros to denote specific timepoints of the program execution:

tps := ls(itw1 , . . . , itwk) if s is not while-statement

tps(it) := ls(itw1 , . . . , itwk , it) if s is while-statement

lastIts := ns(itw1 , . . . , itwk) if s is while-statement

Further for an arbitrary program statement s, we define the start of its execution as

starts :=

{

tps(0) if s is while-statement

tps otherwise

and the end of its execution as

ends :=



























starts′ if s′ occurs after s in a context

ends′ if s is last statement in if-branch of s′

ends′ if s is last statement in else-branch of s′

tpw(succ(itw)) if s is last statement in body of w

where ends denotes the first timepoint after the completed execution of statement s.

Program Variables and Expressions

Our reasoning tasks involve reasoning about (arbitrary) values of program variables. To this

end, we model program variables v as functions over timepoints of sort L and for relational

verification also over execution traces of sort T. Precisely, for mutable variables we obtain the

following functions

(i) v : L 7→ I for integer-valued program variables,

(ii) v : (I × L) 7→ I for integer-valued array variables in the non-relational case,

(iii) v : (L × T) 7→ I for integer-valued program variables and

(iv) v : (I × L × T) 7→ I for integer-valued array variables in the relational case.
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2. PRELIMINARIES

Thus v(tp) and v(tp, tr) denote the value of program variable v at timepoint tp and at computation

trace tr for the latter. Note that for immutable program variables, we omit the timepoint as an

argument to the function. That is the value of a constant variable v remains unchanged throughout

computation is simply denoted as v or v(tr) in the relational case as constants might differ

depending on the computation trace.

We now consider arbitrary program expressions e. We write JeK(tp) and JeK(tp, tr) to denote

the value of e at timepoint tp, in trace tr for the latter. Further, we introduce two definitions

expressing properties about values of expressions e at arbitrary timepoints and traces for the

relational setting. Consider now v ∈ SV , where SV is the set of function symbols denoting

program variables, and let tp1, tp2 be two arbitrary timepoints. We define:

Eq(v, tp1, tp2) :=

{

∀posI. v(pos, tp1, tr) ≃ v(pos, tp2, tr), if v is array

v(tp1, tr) ≃ v(tp2, tr), otherwise
(2.1)

That is, Eq(v, tp1, tp2) in (2.1) states that the program variable v has the same values at tp1 and

tp2. We also define:

EqAll(tp1, tp2) :=
∧

v∈SV

Eq(v, tp1, tp2), (2.2)

asserting that all program variables have the same values at the timepoints tp1 and tp2.

Note that, the definitions refer to the relational case, that is the functions of program variables

take a trace argument tr. For the non-relational setting, we use the same definitions by omitting

the trace argument tr for program variables.

2.3.2 Semantics of W

Consider an arbitrary but fixed program P in W . We express semantics of W in trace logic L, by

firstly stating trace axioms of L that capture behavior of programs relative to P .

Note that for simplicity we state semantics in the relational setting, that is program variables

take a trace argument tr. As above, all definitions still hold for the non-relational case by omitting

the trace argument tr from all definitions.

Main-function Let s1, . . . ,sk be statements and P be a program with top-level function func

main {s1; . . . ;sk}. We define the semantics of P as the conjunction of the semantics of each

statement si, where 0 ≤ i ≤ k. That is:

JP K :=
k

∧

i=1

JsiK. (2.3)

Thus, the semantics of P are given by structural induction over each program statement s

defined as follows.

Skip Let s be a skip-statement. The evaluation of s has no effect on the value of the program

variables. Hence:

JsK :=
∧

v∈SV

Eq(v, ends, tps) (2.4)
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2.3. Trace Logic

Integer assignments Let s be an assignment

v = e

where v is an integer program variable and e is an expression. The assignment s is evaluated in

one step. After its evaluation, variable v has the same value as e before the evaluation. All other

variables remain unchanged. We have,

JsK := v(ends) ≃ JeK(tps, tr) ∧
∧

v′∈SV \{v}

Eq(v′, ends, tps) (2.5)

Array assignments Let s be an assignment

a[e1] = e2 ,

where a is an array variable and e1,e2 are expressions. As above, assignments are evaluated in

one step, such that after the evaluation a at position pos, corresponding to the value of e1 before

evaluation, corresponds to the value of e2 before the evaluation of s (2.6a). All other positions

of a and other program variables remain unchanged as defined in 2.6b and 2.6c respectively.

Hence,

JsK := a(ends, e1(tps, tr)) ≃ e2(tps, tr) (2.6a)

∧ ∀posI.(pos 6≃ e1(tps, tr) →

a(ends, pos, tr) ≃ a(tps, pos, tr)) (2.6b)

∧
∧

v∈SV \{a}

Eq(v, ends, tps) (2.6c)

Conditional if-then-else Statements Let s be the statement

if(Cond){s1; . . . ;sk} else {s′

1
; . . . ;s′

k′}.

The semantics of s is defined by the following two properties: (i) entering the if- or else-branch

does not change the values of variables as defined in 2.7a, (ii) the evaluation in each branch that is

entered is defined inductively according to the semantics of its respective statements (2.7b) Thus:

JsK := JCondK(tps) → EqAll(starts1
, tps)

∧ ¬JCondK(tps) → EqAll(start ′
s1′

, tps) (2.7a)

∧ JCondK(tps) → Js1K ∧ · · · ∧ JskK

∧ ¬JCondK(tps) → Js′
1K ∧ · · · ∧ Js′

k′K (2.7b)

While-Loops Let s be the while-statement

while(Cond){s1; . . . ;sk}.

We refer to Cond as the loop condition. The semantics of s is defined in terms of the following

properties: (i) the iteration lastIts denotes the first iteration where the loop condition does not

hold (2.8a), (ii) entering the loop body does not change variable values (2.8b), (iii) the evaluation

in the body proceeds according to the semantics of the statements in the body (2.8c), (iv) the
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2. PRELIMINARIES

variable values after the evaluation of s coincide with the values in iteration lastIt(s) at the

location of the beginning of the loop, that is the location of condition Cond (2.8d). We then have:

JsK := ∀its
N. (its < lastIts → JCondK(tps(its)))

∧ ¬JCondK(tp(lastIts)) (2.8a)

∧ ∀its
N. (its < lastIts → EqAll(starts1

, tps(its)) (2.8b)

∧ ∀its
N. (its < lastIts → (Js1K ∧ · · · ∧ JskK) (2.8c)

∧ EqAll(ends, tps(lastIts)) (2.8d)

2.3.3 Trace Logic L

We now define trace logic L, allowing us to reason about both reachability and relational

properties of programs.

For the relational setting, we define ST r to be a set {t1, t2, . . . } of nullary function symbols,

that is constants, of sort T. Intuitively, these symbols allow us to denote and express properties

over multiple traces. The signature of L contains the symbols of theories N and I together with

the symbols introduced in Section 2.3.1, notably a set of timepoints ST p, last iterations in loops

denoted by Sn, program variables SV and traces ST r. Formally,

Sig(L) := (SN ∪ SI) ∪ (ST p ∪ Sn ∪ SV ∪ ST r).

Recall that the semantics of W is defined by the trace axioms (2.4)-(2.8). By extending

standard small-step operational semantics with timepoints and traces, we obtain the small-step

semantics of W . Details and proof of soundness can be found in the Appendix of our recent

work [BEG+19].

For proving soundness, of this semantics, we rely on so-called execution-interpretation of

a program execution E: such an interpretation is a model in which for every (array) variable

v the term v(tpi) resp. v(tpi, pos) is interpreted as the value of v at the execution step in

E corresponding to timepoint tpi. We then refer to the soundness of the semantics of W as

W-soundness, defined as:

Definition 1 (W-Soundness). Let p be a program and let A be a trace logic property. We say

that A is W-sound, if for any execution-interpretation M we have M � A.

By using structural induction over program statements, we derive W-soundness of the

semantics of W . That is:

Theorem 1 (W-Soundness of Semantics of W). For a given terminating program p, the trace

axioms (2.4)-(2.8) are W-sound.

As a consequence, the semantics of any terminating program P expressed in L, as defined

in (2.3), is W-sound.
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2.3. Trace Logic

2.3.4 Program Correctness in Trace Logic L

Let P be a program and F be a first-order property of P , with F expressed in L. We use L to

express and prove that P “satisfies” F , that is P is partially correct w.r.t. F , as follows:

1. We express JP K in L, as discussed in Section 2.3.2;

2. We prove the partial correctness of P with respect to F ; that is, we prove

JP K �N∪I F.

2.3.5 Trace Lemmas

In what follows, we first discuss proving (non-relational) reachability properties F over programs

expressed in L (Chapter 3) and then focus on proving partial correctness for relational problems

using L (Chapter 4).

To this end, we defined different sets of trace lemmas guiding the prover in inductive reasoning

steps to automatically perform proofs over programs containing (nested) loops. Trace lemmas

are statically inferred from the program semantics. They express inductive properties about

the program behavior. We will illustrate how to use trace lemma reasoning for different sets of

programs and properties in nonrelational and relational settings.

2.3.6 Experiments and Tooling

To generate program semantics as described in the previous sections we rely on the RAPID frame-

work, where we also implemented this work, that is the automatic instantiation of trace lemmas.

The proofs of the problems in this work rely on the first-order theorem prover VAMPIRE [KV13]

based on the superposition calculus, notably a refutational full first-order prover with built-in

equality reasoning and theory support.
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CHAPTER 3
Non-relational Trace Lemma

Reasoning

In this chapter, we describe our approach to using first-order reasoning in trace logic L for

automating program analysis and verification. We illustrate our work using challenging examples

from the verification repository of the annual Competition on Software Verification (SV-COMP)1.

First, we will highlight some standard array reasoning examples and explain how our approach

is applied to two examples in detail. Second, we will showcase the power of our approach by

proving seemingly simple examples that simulate the break of a loop - a problem whose proofs

are still not completely automated. Finally, we showcase the scalability of the approach by

emphasizing a proof of a property with a quantifier alternation for a larger program with nested

loops. Note that, while the translation of the program semantics to first-order logic generates

many more trace lemmas, we will focus on the ones used by the refutational prover to find the

empty clause for each example individually to give a proof-of-concept of our approach and show

how proofs are performed.

3.1 Array Reasoning

We first discuss our approach for proving reachability properties, by illustrating our work on

examples involving reasoning over arrays.

3.1.1 Searching and finding elements in arrays

We consider programs as in, or similar to, Figure 3.1: such a program traverses an integer array

a until it finds the array element corresponding to the value v. We want to show that given the

array a is non-empty and the value of loop counter variable i is smaller than the length of array

1https://sv-comp.sosy-lab.org/
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3. NON-RELATIONAL TRACE LEMMA REASONING

1 func main()

2 {

3 const Int[] a;

4 const Int alength;

5 const Int v;

6 Int i = 0;

7

8 while (i < alength && a[i] != v)

9 {

10 i = i + 1;

11 }

12 }

13

Figure 3.1: Find an element v.

a after the computation, then we know that there exists a position pos in the array, such that the

value of a[pos] is equal to v. Formally we obtain property 3.1:

alength ≥ 0 → ∃posI � alength > i(end) → a(pos) = v (3.1)

where i(end) encodes the value of the loop counter i after the program execution and posI
denotes that pos is of sort integer.

Essentially, we can prove this example from the customized program semantics in trace logic

that encode with every non-constant program variable v used in the loop a function v : L → I over

program locations l and loop iterations it of sort N, thus allowing us to refer to iteration-specific

values of v.

Specifically, program semantics in trace logic allow us to infer that if i(l8(end)) < alength

holds, where l8 denotes the program location of the while-loop, we can infer that a at the position

defined of i(l8(end)) is equal to the sought value v, i.e. we obtain clause (1) i(l8(end)) <

alength → a(i(l8(end))) = v. This actually follows from the loop condition stating that

i < alength ∧ a(i) 6= v. At the end of the loop’s execution, i.e. at timepoint end, we know

that in case i < alength still holds, a(i) 6= v cannot hold at the same time, as this would

imply another loop iteration.

Now from the negation and clausification of the property, we obtain two clauses stating that

(2) a(x) 6= v) where x is a variable implicitly universally quantified, i.e. for any position x the

clause holds during saturation, and (3) i(end) < alength.

Now one can quickly see that unifying (1) and (2) is subsumed by a clause of the form

i(l8(end)) < alength → false which in combination with (3) is subsumed by false. Hence

we obtain the empty clause, and prove that the property is correct for the given program.

3.1.2 Initializing arrays

Figure 3.2 shows an example for array initialization: given an array a of length alength, the

program initializes the array with some integer value v. The property we want to prove is that at

every position of a the stored value is v after the execution. More formally

14
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3.1. Array Reasoning

1 func main()

2 {

3 Int[] a;

4 const Int alength;

5 const Int v;

6 Int i = 0;

7

8 while(i < alength)

9 {

10 a[i] = v;

11 i = i+1;

12 }

13 }

14

Figure 3.2: Array initialization.

∀posI � (0 ≤ pos < alength ∧ 0 ≤ alength) → a(end, pos) = v (3.2)

where end denotes the last time point after the execution.

Intuitively, it is clear why proving this problem should succeed: (i) we know that due to the

incrementation of i from 0 to (alength − 1), every position of a in this range will be affected

by exactly one of the loop iterations. (ii) We also know that once v is assigned to a position in the

array, it will not be changed in the future. For proving (i), we need to ensure that i will have the

value of every integer in its range at least once, which is formalized by the following trace lemma:

∀itN8 , xI
�

(

i(l8(it8(zero))) ≤ x < i(l8(it8(lastIt8)))

∧ i(l8(s(it8)) = i(l8(it8)) + 1
)

→ ∃itN � i(l8(it)) = x ∧ it < lastIt8

(3.3)

where l8 (line 8) denotes the program location of the loop. Lemma (3.3) states that for

every integer x smaller than the last iteration of the loop, there exists an iteration where the value

of the loop counter i is equal to the value x.

To reason about (ii), we use a trace lemma similar to (3.3), intuitively asserting that an element

of a changed at a loop iteration i will not be changed in further iterations, i.e. that the value

of a at some position once assigned remains unchanged throughout computation. Particularly,

we need to express that if we know that a at some position is assigned v within some iteration

between 0 and (alength − 1), it will not be changed by any succeeding iteration of the loop. To

generalize this idea, we can deduce that for every position of a within these bounds, also for

any potentially larger left bound of the assignment and smaller right bound in this range, once

assigned, the value remains unchanged in all iterations it up to the right bound. We formalize

lemma (3.4):

15
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3. NON-RELATIONAL TRACE LEMMA REASONING

∀boundLN, boundRN, posI�
(

∀itN � (boundL ≤ it < boundR ∧ a(l8(boundL), pos) = a(l8(it), pos))

→ a(l8(boundL), pos) = a(l8(s(it)), pos)
)

→ a(l8(boundL), pos) = a(l8(boundR), pos)

(3.4)

This inductive lemma states that for any left and right bounds, if the value of a is the same

at each position within these bounds, then it is particularly also equal from the left to right

bound. With this lemma, we ensure the inductive step over the loop: once the value at some

position in the array is set, it is not changed after. With such trace lemmas about (i) and (ii), our

superpostion-based reasoning in trace logic automatically proves (3.2).

3.2 Simulating Break Statements

3.2.1 Break decrementing

1 func main()

2 {

3 Int x;

4 Int found = 0;

5

6 while(found == 0)

7 {

8 if(x > 0)

9 {

10 x = x - 1;

11 }

12 else

13 {

14 found = 1;

15 }

16 }

17 }

18

Figure 3.3: Break when x = 0.

To illustrate the advantages of using explicit timepoints in the encoding of program semantics

in trace logic, we consider the following two examples that simulate the functionality of a break

statement. In most imperative programming languages, the break command is a control statement

to preemptively terminate loops. Once break is executed within a loop, we immediately jump to

the next statement after the current loop - usually to terminate loops based on some condition.

To this end, the program in Figure 3.3 simulates this behavior by terminating the loop once

the program variable found is set to 1. Given the conditional in the loop, we know that found

16
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3.2. Simulating Break Statements

will have the value 1 once x is actually equal to or smaller than 0. Hence, this is also the property

we want to check for this program:

x(end) ≤ 0 (3.5)

Intuitively, the proof is very easy for humans to understand: (i) either x is already smaller

than or equal to 0 at the beginning of the program execution which means that there is only

one loop iteration immediately setting the variable found to 1 and terminating the program

execution. Property 3.5 is thus trivially satisfied. (ii) On the other hand, if x is greater than 0,

the loop will actually be executed due to the assignment right before the beginning of the loop

making the loop condition true. From this and the fact that we prove partial correctness, that is

we take termination for granted, we can infer that the if-statement will be executed until x is 0.

Similar to this reasoning, we need to make sure that the prover is equipped with the in-

formation that there must be at least on loop iteration, which we formalize as the following

lemma:

Let C be the expression that is the loop condition, then we know that there exists a loop

iteration it that is smaller than lastIt which refers to the timepoint, i.e. the first iteration, where

the loop condition does not hold anymore.

C → ∃itN � s(it) = lastIt (3.6)

Hence, the instantiated lemma for program 3.3 looks like the following:

found(l6(zero)) = 0 → ∃itN � s(it) = lastIt6 (3.7)

Now, together with the fact that every timepoint is smaller than its successor, which is

formalized by the following axiom

∀itN � it < s(it) (3.8)

we can actually infer that there is an iteration it < lastIt6, thus allowing the prover to deduce

that the loop is executed. Now the particularity of this proof is that all further reasoning over

the value of x can be deduced merely from the program semantics and the axiomatization of the

less-symbol for integers. Informally this works as follows: By knowing that there is an it that

is exactly one step away from lastIt6, the prover knows that this is the iteration where found

is set to 1. Now from the conditional in the loop, we know that the if-part is not executed, thus

x > 0 is not true anymore. Hence x(end) ≤ 0 is true. Now, for the refutational proof, the prover

negates the property, such that we also have the clause x(end) > 0 in the search space. Now

from the axiomatization of the less-symbol over the integers, particularly from the antisymmetry

axiom

∀xI
0 � x0 < x0 → false (3.9)

the prover can derive the empty clause from the fact that x(end) ≤ 0 < x(end) clearly cannot

hold.
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3. NON-RELATIONAL TRACE LEMMA REASONING

1 func main()

2 {

3 const Int k;

4 Int x;

5 Int found = 0;

6

7 while(found == 0)

8 {

9 if(x < k)

10 {

11 x = x + 1;

12 }

13 else

14 {

15 found = 1;

16 }

17 }

18 }

19

Figure 3.4: Break at k.

3.2.2 Break incrementing

A reasoning similar as in section3.2.1 can also be applied to the example in Figure 3.4 which is

another variation of a break simulation that simulates finding the k-th element and breaking once

it was found. The property is thus adjusted to the following:

x(end) ≥ k (3.10)

As in section3.2.1, the prover knows that there must be at least one iteration, hence we know

that at the last iteration of the loop, the conditional within the loop does not hold anymore which

translates to a clause of the x(end) ≥ k in the search space. Together with the negated property

x(end) < k, we immediately can derive the empty clause without needing any further loop

invariants that handle induction over the values of x. This clearly indicates the potential power of

reasoning over timepoints as other automated provers such as Dafny still require users to provide

the right loop invariants to automatically prove this property.

3.3 Quantifier Alternation

Consider the example in Figure 3.5: the program simulates the comparison of two arrays.

In our case we want to verify that the values of signatures and storedSignatures

coincide. For every stored signature, we compare the array values with a nested loop construct

and set foundMissing to 1 in case there exists a position in the storedSignatures

array such that there is no value in signatures corresponding to the value at this position of

storedSignatures. Given this specification it is natural to verify a property that states that

18
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3.3. Quantifier Alternation

1 func main()

2 {

3 const Int[] storedSignatures;

4 const Int[] signatures;

5 const Int storedSignaturesLength;

6 const Int signaturesLength;

7

8 Int foundMissing = 0;

9 Int i = 0;

10

11 while (i < storedSignaturesLength)

12 {

13 Int found = 0;

14 Int j = 0;

15 while (j < signaturesLength)

16 {

17 if (storedSignatures[i] == signatures[j])

18 {

19 found = 1;

20 }

21 else

22 {

23 skip;

24 }

25 j = j + 1;

26 }

27

28 if(found == 0)

29 {

30 foundMissing = 1;

31 }

32 else

33 {

34 skip;

35 }

36

37 i = i + 1;

38 }

39 }

40

Figure 3.5: Find missing signature.

in the case of a differentiation in the input arrays storedSignatures and signatures,

the variable foundMissing will be set to 1 at the end of the computation. Formally we obtain

the following property:

19
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3. NON-RELATIONAL TRACE LEMMA REASONING

(

∃posI � 0 ≤ pos < storedSignaturesLength ∧

∀iI � storedSignatures(pos) 6= signatures(i)
)

→ foundMissing(end) = 1

(3.11)

As we can see, we need a quantifier alternation to specify this behavior: there exists a position

in the storedSignatures array such that no value stored in signatures is equal.

This example highlights two major strengths of our approach:

• (1) Arbitrary Loop Nesting. By having explicit time points of loops, we can always extend

the sort of any timepoint of and within nested loops with the iteration of all outer loops as

well. Here, this means that time point l15 is a function over two natural numbers indicating

the iterations of the outer and inner loop respectively: l15 : N2 → L. With this encoding all

of our trace lemmas can be instantiated in the same way as before, thus still hold for nested

loops. However as we will see below, some specific reasoning is needed with nested loops.

• (2) Quantifier alternations. By using the full first-order theorem prover VAMPIRE, we can

handle statements like property 3.11 consisting of a ∃∀ alternation.

Intuitively, the proof works in the following way: Given that the variable in question

foundMissing is 0 in the beginning of the execution and 1 after the computation, there

must be some timepoint where the variable is updated. Since, this is exactly the case when the

execution of the inner loop does not find the appropriate match when comparing array values, we

know that this timepoint must exist. Further, if we can establish that if the variable is set to 1 and

is not updated after, we know that foundMissing is also 1 at the end. We can also easily infer

this, since there is no other update within the loops that would change the value of the variable.

To guide the prover in establishing this, we need to consider trace lemmas as follows.

The first lemma that needs to be instantiated in order to relate iterations of sort N and array

positions of sort I is the so-called intermediate value lemma for the loop counter variable i:

∀itN11, itN15, xI
�

(

i(l15(it11(zero))) ≤ x < i(l15(it11(lastIt15(it11))))

∧i(l15(it11(s(it15)))) = i(l15(it11(it15))) + 1
)

→ ∃itN � i(l15(it11(it))) = x ∧ it < lastIt15(it11)

(3.12)

where lastIt15(it11) denotes the last iteration of the inner loop in iteration it11 of the outer

loop. We have seen in this lemma in previous sections. However, in this particular case one can

see a major advantage of the explicit form of using timepoints in the encoding: we can explicitly

refer to the last iteration of the inner loop while also explicitly knowing the iteration of the outer

loop. This modularity technically allows us to nest loops arbitrarily.

Further, we need a way to establish that the value of found will be 0 after the execution

of the while loop. For this we need induction over the equality of the value of found in all

iterations of the inner loop, which is expressed in the following way:
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3.3. Quantifier Alternation

∀itN11�
(

∀itN15 � it15 < lastIt(it11) → found(l15(it11(it15))) = found(l15(it11(s(it15))))
)

→ found(l15(it(zero))) = found(l15(it11(lastIt(it15))))
(3.13)

where it11 is the iteration of the outer loop at line 11 and it15 represents the iterations of

the inner loop at line 15. This lemma comes into play exactly at the execution of the inner

loop, where found will never be 1, that is where the array signatures does not contain any

match for the current value of storedSignatures at position i. This lemma is key in finding

that there actually is an update of foundMissing after all.

Now that we know of the existence of an update, we need to consider the second part of

the reasoning, that is reasoning over the preservation of the value 1 for the program variable

foundMissing. To do so, we instantiate the following lemma expressing value preservation

over multiple iterations of the outer loop at position l11. Lemma 3.14 informally states that once

the variable is assigned to any value x, and it is not changed throughout further iterations, then it

will in particular have this value at the end of loop.

∀xI
�
(

∃itN � it < lastIt11 ∧ foundMissing(l11(s(it))) = x

∧ (∀itN11 � (it < it11 ∧ foundMissing(l11(it11)) = x)

→ foundMissing(l11(s(it11))) = x)
)

→ foundMissing(l11(lastIt11)) = x

(3.14)

While we are now equipped with the intuitive reasoning a human would perform, there is

one more thing humans do very implicitly when looking at such problems: we automatically

disregard the fact that for example variable i is never changed in the any iteration of the inner

loop. While this knowledge allows us to mentally "unroll" or rather statically infer information

about the inner and outer loop accordingly, the prover needs a lemma to establish this fact.

To this end, we instantiate so-called static analysis lemmas, that are used to exclude behav-

ior/updates of program variables that do not appear in loops. Here, the loop counter i of the outer

loop will never be changed within the inner loop at line 15. Thus, we can statically infer -

since these variables simply do not appear in the inner loop body - that certain program variables

are not influenced by any behavior in the loop, that is they stay the same over all iterations. The

following lemma is thus instantiated for both program variables i and foundMissing with

the location of the inner loop l15.

∀itN11, itN15 � i(l15(it11(zero))) = i(l15(it11(it15))) (3.15)

Finally, with this line of reasoning the prover is able to establish that in fact foundMissing

will be 1 at the end of the computation under the given circumstances defined in the property.

While this is clearly a toy example, the potential of automating this kind of reasoning together

with relational verification might have interesting implications for the automation of proving

security properties for protocol verifications.
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CHAPTER 4
Relational Trace Lemma Reasoning

In the following we overview our work in the relational setting. As in Chapter 3, we illustrate our

work on multiple examples categorized by the respective program property, namely noninterfer-

ence and sensitivity. These properties fall into the category of so-called k-safety properties, in our

case 2-safety properties, that is properties that are expressed over two sets of traces. Intuitively,

this means these properties might be violated by two program runs, for instance in the case

of noninterference running two arbitrary traces on the same inputs and computing different

results would be such a violation. Note that, while the translation of the program to trace logic

instantiates more trace lemmas, we will highlight the ones used by the refutational prover to find

the empty clause for each example individually.

4.1 Noninterference

In general, we want programs to be safe from attackers. Particularly we do not want attackers

to be able to access and read our sensible data. These kind of concerns are usually treated with

access control mechanisms. However, these do not guarantee that there are no loopholes that

can be exploited to access potentially sensitive data during program execution. We especially

want to exclude the possibility that secure data might flow into publicly accessible data during

program execution. To this end, we will discuss information flow policies and show how to ensure

confidentiality by proving noninterference [GM82] for some exemplary programs written in our

input language W .

Intuitively noninterference is the property that prevents secret data from flowing into the public

program state, that is accessible for an attacker. In other words, secret and public information do

not interfere with each other. Informally, we prove noninterference by ensuring for a program

P that if the public input of two arbitrary traces (i.e. the public program state of two program

executions) are equal before their respective execution, then the public output at the end will also

be equal, thus ensuring that any sensitive data that might differ in the traces does not interfere with

the result of the computation that is publicly accessible. Hence, we say that P is noninterfering.

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4. RELATIONAL TRACE LEMMA REASONING

Note that we assume termination of execution traces, thus we generally prove partial correctness

with our approach. Precisely, we divide the program state of P into high and low confidentiality

variables, denoted by H and L respectively. If the input for all L variables is the same in both

runs of P , then the output of L variables should also have the respective equal values in each

trace, independently of any values of the variables in H . Formally, we define noninterference in

trace logic L in the following.

Let l0 denote the timepoint before the program execution and let EqTr(v, tp) denote that

variable v has the same value in both traces at timepoint tp, precisely:

EqTr(v, tp) :=



























∀posI.v(tp, pos, t1) ≃ v(tp, pos, t2)) if v is a mutable array

∀posI.v(pos, t1) ≃ v(pos, t2)) if v is a constant array

v(tp, t1) ≃ v(tp, t2)) if v is a mutable variable

v(t1) ≃ v(t2) if v is a constant variable

Then noninterference is formalized as follows:

(
∧

v∈L

EqTr(v, l0)) → (
∧

v∈L

EqTr(v, lend)). (4.1)

4.1.1 Explicit flow

1 func main()

2 {

3 Int hi;

4 Int lo;

5 Int dec;

6

7 while (dec != 0)

8 {

9 hi = lo + 1;

10 lo = hi + 1;

11 dec = dec - 1;

12 }

13 }

14

Figure 4.1: Explicit flow.

Example 1. Consider the program illustrated in figure 4.1. The program contains a so-called

explicit flow [SM03], that is we directly store secret data, represented by variable hi in a

public channel lo. Type systems usually forbid such explicit flows as they easily make the

program unsafe. However in this case, we can still claim this program to be safe with regards to

noninterference as observational equivalence is not violated.
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4.1. Noninterference

Formally, we prove the following property stating that if all variables in L share the same

values in the beginning of the execution, then the values of lo are equal after the execution as

well:

(EqTr(lo, l0) ∧ EqTr(dec, l0) ∧ ∀trT � (dec, l0, tr) ≥ 0)
→ EqTr(lo, lend)

(4.2)

The proof of the example requires the following two trace lemmas that will be discussed

below:

(

(∀itN � it < lastIt(t2 ) → dec(l7(it), t1) 6= 0)

∧ dec(l7(lastIt(t2)), t1) = 0
)

→ lastIt(t1) = lastIt(t2)
(4.3)

Lemma 4.3 axiomatizes the case that there are equally many iterations in both program

executions. Intuitively, if for all iterations smaller than the last iteration in trace t2, denoted by

lastIt(t2), we have that variable dec representing a descending loop counter (of the loop at

location l7) is not equal to 0, that is the loop condition holds, and the value of dec in trace t1 at

the last iteration of trace t2 is 0, we can conclude that the last iteration occurs at the same time in

both traces. Hence, the lemma describes how iterations expressed as natural numbers N in terms

of term algebras [KRV17] relate to program variables of VAMPIRE’s built-in integer sort I over

multiple traces.

(

EqTr(v, l10(0))∧

∀itN � EqTr(v, lwhile(it)) → EqTr(v, lwhile(s(it)))
)

→ ∀itN � EqTr(v, lwhile(it))

(4.4)

Lemma 4.4 expresses induction of the equality of program values over traces and loop

iterations, where lwhile denotes the location of the corresponding while-loop. Note that v merely

serves as a placeholder to give the general scheme of Lemma 4.4. We instantiate it for both

program variables lo and dec at the location l7 of the loop. For both variables, this lemma is

needed to reason inductively about the equalities of the values in both traces during the execution

of a loop. It states that for some function v representing a program variable, if the values of v

are equal in both traces before the loop execution and they are step-wise equal for each iteration

during the loop execution - that is their equality is preserved for each following iteration up to the

last - then we can infer that the values of v are equal throughout all iterations, particularly also

that their values are equal in the last iteration which is essential for the proof.

To give an intuition about proofs of noninterference properties, we give details about how the

prover discharges the verification conditions generated by RAPID: Since VAMPIREis a refutational

prover, it negates the given property and by conjunctive normal form (CNF) transformation adds

the clause lo(end, t1) 6= lo(end, t2) to the clause set.

Further the prover establishes that the value of lo(end) is equal to the value of lo at the

last iteration of the loop in each trace respectively (or rather in all traces, i.e. a clause of the

form lo(end, x) = lo(l13(nl10(x)), x) is added to the clause set, where x is implicitly universally
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4. RELATIONAL TRACE LEMMA REASONING

quantified and l13 is the location of the assignment to lo within the loop and nl10 denotes the last

iteration of the loop, notably the first iteration where the loop condition does not hold anymore.

Additionally, Lemma4.4 for variable lo is used to establish that the values of lo are equal

in the same iteration in both traces, formally this is expressed by the clause lo(l13(x), t1) =
lo(l13(x), t2).

Finally the prover uses Lemma 4.3 to establish that nl10(t1) = nl10(t2). In fact, this is also

where Lemma4.4 for variable dec comes into play as we need to establish the same equalities

over traces for dec as for lo such that lemma 4.3 can effectively be applied.

Now, it is easy to see that we can simply substitute the equalities such that we end up with

a clause of the form lo(end, t1) = lo(end, t2) and obtain a refutation, hence a proof for the

original (non-negated) property.

1 func main()

2 {

3 const Int k;

4 const Int lo;

5 Int hi = lo;

6 Int counter = 0;

7 Int[] output;

8

9 while(hi < k){

10 output[counter] = hi;

11 counter = counter + 1;

12 hi = hi + 1;

13 }

14 }

15

16

Figure 4.2: Explicit flow with output array.

Example 2. Figure 4.2 illustrates a program outputting on a public channel modeled by the

array variable output ∈ L. As the naming of variables already implies, hi models a secret

variable while lo ∈ L. Clearly in the loop, we witness an explicit flow at location l10 as we

directly output the current value of hi. Besides, the program also contains a so-called implicit

flow, that is an insecure data flow that might give hints about secret variables by the means of the

program structure. In our case, using the secret in the guard of the loop, while outputting on a

public channel in the body, might reveal information about the secret not only in the content but

also in terms of the number of outputs. Indeed, value-insensitive type systems for information

flow analysis [SM03] would dismiss this program to be insecure. However, looking closer at the

program, the secret value in hi is overwritten before the execution of the loop with the L-value

stored in lo. Thus, the program effectively satisfies noninterference as no secret value stored in

hi influences any L variables which we can prove thanks to value-sensitivity being inherent to

our encoding with L.
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4.1. Noninterference

Formally, the property we prove is similar to 4.2:

(EqTr(k, l11) ∧ EqTr(lo, l11) ∧ EqTr(output, l11))
→ EqTr(output, lend)

(4.5)

Effectively, this example uses the same lemmas as example 1. Lemma 4.4 is instantiated for

variables counter and hi and in an array-variant for the array variable output. Formally for

arrays we have to specify the equality over traces over all integers representing the array position

as follows:

∀posI � (EqTr(output, pos, l9(0)) ∧
(∀itN � EqTr(output, pos, l9(it)) → EqTr(output, pos, l9(s(it))))
→ ∀itN � EqTr(output, pos, l9(it)))

(4.6)

The proof mechanism then works as in example 1: Lemma 4.4 for variables counter and

hi and lemma 4.6 handle the inductive reasoning over all variables used in the loop guiding the

prover in establishing equal values over traces. Trace lemma 4.3 establishes that the loops in both

program executions have equally many iterations. Thus, we can in the same way find a refutation

proving noninterference for problem 4.2.

4.1.2 Implicit flow

1 func main()

2 {

3 Int hi;

4 Int lo;

5

6 if(hi > 0)

7 {

8 lo = lo + 1;

9 }

10 else

11 {

12 lo = lo + 1;

13 }

14 }

15

Figure 4.3: Implicit flow with branching.

Example 3. Figure 4.3 shows an example which branches based on the value of an H variable.

While this is considered as a potential implicit flow and therefore rejected by information flow

type systems [SM03] as the repeated execution on different inputs might reveal details about

which branch is taken, this particular example is safe with regards to noninterference. The

problem lies in the fact that the branching decision might leak information about the secret used
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4. RELATIONAL TRACE LEMMA REASONING

in the condition. However, since L variables are updated in the same manner in both branches,

the public result of the computation will not differ. Particularly, state-of-the-art static analysis

tools based on dependency graphs, such as JOANA [GHM13] fail to prove the program correct

with regards to noninterference. Formally, we prove the following property:

EqTr(lo, l0) → EqTr(lo, lend). (4.7)

While this work is generally about trace reasoning, what makes this example interesting is

that the semantics of trace logic allow to prove the example without any trace lemmas as there is

no induction needed to prove the program correct. Merely two applications of the superposition

rule allow VAMPIREto find a refutation. First the prover finds that the value of lo is equal in

both traces at line 12. (Further, Vampire establishes that the value of lo at the end of the

computation in trace t1 is equal to the increment of lo at line 12. Note that according to

semantics (lo, l12) denotes the value before the assignment is executed. By a simple step of

demodulation, we now know that the values of (lo, lend) are the same in both traces and hence

obtain a refutation for the property.

1 func main()

2 {

3 const Int h;

4 const Int h2;

5 Int[] output;

6

7 Int counter = 0;

8 if(h > 0) {

9 output[counter] = 5;

10 counter = counter + 1;

11 }

12 else {

13 if (h2 > 0) {

14 output[counter] = 5;

15 counter = counter + 1;

16 } else {

17 output[counter] = 5;

18 counter = counter + 1;

19 }

20 }

21 output[counter] = 7;

22 counter = counter + 1;

23 }

24

Figure 4.4: Implicit flow with nested branching.

Example 4. The same reasoning as in example 3 is applied in the proof of the program represented

in Figure 4.4. While this program contains nested branches and the proof takes certainly more
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4.1. Noninterference

reasoning steps than in the example above, we can establish noninterference without any additional

trace lemmas. VAMPIREbasically finds a refutation by on the one hand finding that the value of

output[1] is 7 for any trace and that if the outputs differ in both traces, than output[1]

cannot be 7 in exactly one of the traces. Thus, the prover is able to derive the empty clause and

exclude the possibility of the output differing in the traces.

4.1.3 Noninterference for security

1 func main()

2 {

3 const Int blength;

4 const Int n;

5 const Int[] b;

6 const Int a;

7 Int c = 0;

8 Int d = 1;

9 Int i = blength;

10

11 while (i >= 0){

12 i = i - 1;

13 c = 2 * c;

14 d = (d * d) mod n;

15

16 if (b[i] == 1) {

17 c = c + 1;

18 d = (d * a) mod n;

19 }

20 else {

21 skip;

22 }

23 }

24 }

25

Figure 4.5: Implicit flow with a loop.

Example 5. The last example in this section combines reasoning we have seen above seemingly

with arithmetic reasoning - particularly interesting with regards to security applications. Figure 4.5

represents a program that emulates RSA exponentiation where variables i, blength ∈ L.

Hence, we prove that if the values of blength and i, are equal in the beginning, then they are

also equal after the computation:

EqTr(i, l0) ∧ EqTr(blength) → EqTr(i, lend). (4.8)

However, none of the variables in L are actually involved in the arithmetic part of the program.

Consequently, this example does actually not require any arithmetic reasoning and noninterference
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4. RELATIONAL TRACE LEMMA REASONING

can be established with the help of the same two lemmas as in example 1. Particularly lemmas

4.4 and 4.3 need to be instantiated for i to handle induction over the value equality in the traces

for the loop at location l11.

Since the equality of blength is given by property 4.8 and i takes the value of blength

right at the beginning of the execution, we don’t need to reason about any arithmetic expressions

in the program, thus allowing VAMPIREto apply the same reasoning as can be seen in example1.

As we have seen, we only need at most two lemmas that are automatically instantiated accord-

ing to the program structure by RAPID. This allows to reason over a number of noninterference

properties for programs containing loops in an automated way.

4.2 Sensitivity

4.2.1 Differential Privacy

Related to the notion of noninterference, we will now discuss differential privacy. Basically

differential privacy [Dwo11] defines the property of preserving privacy up to a certain bound, that

is allowing a certain loss of privacy without compromising the confidentiality of the individual.

Essentially as a policy, differential privacy comes into play when data mining big quantities of

potentially sensitive data. As such, we want to ensure that when a large number of sensitive

information is gathered and published, we do not disclose information about an individual of a

statistical sample. Intuitively, this means that given a bounded variation in input, the published

output also varies at most up to this bound. Thus we define differentially private computation as a

program given inputs that differ up to a bound k, the "published" output may only differ in k as

well.

Formally, we express differential privacy in trace logic L as follows:

Let l0 denote the timepoint before the program execution and let EqTr(v, tp) denote that

variable v has the same value in both traces at timepoint tp analogously to section 4.1.

Moreover, let EqTrUpToK (v, tp) denote that variable v differs in value in both traces by k

at timepoint tp, precisely:

EqTrUpToK (v, tp, k) :=



























∀posI.v(tp, pos, t1) ≃ v(tp, pos, t2)) + k if v is a mutable array

∀posI.v(pos, t1) ≃ v(pos, t2)) + k if v is a constant array

v(tp, t1) ≃ v(tp, t2)) + k if v is a mutable variable

v(t1) ≃ v(t2) + k if v is a constant variable

Now, let Lk ⊆ L define the set of the inputs whose values differ by k and output denote the

result of the computation differing in both traces at the end by k. Then we define differential

privacy as follows:
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4.2. Sensitivity

∀kI
� (

∧

v ∈ L\Lk

EqTr(v, l0) ∧
∧

z ∈ Lk

EqTrUpToK (z, l0, k)) →

(
∧

v ∈ L\Lk

EqTr(v, lend) ∧ EqTrUpToK (output, lend , k)). (4.9)

Note that we use the distinct variable output instead of relying on the inputs z being trans-

formed by the computation to emphasize that the output variable might differ from the inputs.

4.2.2 Sensitivity

As a specific mechanism of differential privacy, we particularly investigate sensitivity - a measure

of distance within the lines of differential privacy for functions concerned with the question

of how far function results differ given similar but not equal inputs [DMNS06, RP10]. Both

notions have been discussed extensively in recent literature as in [BGG+16, BGA+14, BEG+17].

Specifically sensitivity denotes how changes in input affect the output of a program. Formally,

Barthe et. al. [BGG+16] defines the sensitivity of a function f : A → B relative to some metric

of A and B, denoted by δA, δB respectively, as δB(f(x1), f(x2) ≤ k ∗ δA(x1, x2) for every

x1, x2 ∈ I where I denotes the set of inputs. We thus say function f is k-sensitive since the

changes in output are parameterized by bound k on the inputs. Hence k-sensitivity bounds the

distance between the outputs of more or less similar inputs.

We now look at how to formalize and prove properties of this form for some exemplary

programs in our input language W . Further, while the definition above is generalized to a set of

inputs that differ, notably in the set Lk, the inputs in our examples generally differ in exactly one

program variable in one value for the simplicity of representation, thus being a special case of

1-sensitivity. This can, however, be generalized by adjusting the property that is to be proved.

While this might make the problem more complex in the number of needed proof steps, trace

reasoning remains the same.

Example 6. Consider the example in Figure 4.6: we compute the sum of integers stored in the

array a and save the value in variable x. As a first step, we want to capture the notion that in case

that the arrays are equal in both arrays, the sum will not differ in the end. The corresponding

property looks as follows:

(

EqTr(alength, l0) ∧ ∀jI.EqTr(a, j, l0)
)

→ EqTr(x, lend)
(4.10)

Given how closely this property is related to the notion of noninterference given that we only

deal with equalities over the two traces, we have to instantiate the same lemmas for the proof.

Notably we instantiate the induction lemma 4.4 for program variables x and i as these variables

are assigned and changed in each loop iteration. Further, as was the case for noninterference, the

prover needs to establish the same number of iterations for both traces, thus we need to instantiate

lemma 4.3 swith the loop counter variable i:
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4. RELATIONAL TRACE LEMMA REASONING

1 func main()

2 {

3 const Int[] a;

4 const Int alength;

5 Int x = 0;

6 Int i = 0;

7

8 while(i < alength){

9 x = x + a[i];

10 i = i + 1;

11 }

12 }

13

Figure 4.6: Sensitivity of sum computations.

(

(∀itN.it < lastIt(t2 ) → i(l6(it), t1) 6= 0)

∧ i(l6(lastIt(t2)), t1) = 0
)

→ lastIt(t1) = lastIt(t2)
(4.11)

Similarly to noninterference, by establishing that all values of variables i and x are equal in

all iterations of the two traces within the bounds of the loop, and the number of iterations is the

same, we can deduct that x is the same at the end of the computation.

Example 7. Consider example 4.7 that computes the sum of two arrays a and b and stores the

result in variable x. To enforce a difference in input, we establish in the property that k takes the

value 1 in the first trace t1 and 0 in the second trace t2. We then prove that the result saved in x

after the cmoputation differs by exactly 1. Formally,

(

EqTr(alength, l0) ∧ EqTr(blength, l0)

∧ ∀jI � (EqTr(a, j, l0) ∧ EqTr(b, j, l0))

∧ k(l0, t1) = 1 ∧ k(l0, t1) = 0
)

→ EqTrUpToK (x, lend , 1)

(4.12)

.

While the reasoning in this example follows a similar structure as the other hyperproperty

examples we discussed so far, there is some added complexity that makes it harder to prove. First,

we see that while we still use the same lemmas that we used for the other relational examples, we

need some additional lemmas. So to reason over the value equality of x over both traces in the

first loop, we need to instantiate lemma 4.4 for x as well as for the loop counter i. The same

needs to be instantiated for the second loop, but in this case for the variable y. As in the last

examples for both loops we need to establish that they have equally many iterations in both traces,

thus we instantiate lemma 4.3 for i at both loop locations, that is l12 and l21.
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4.2. Sensitivity

1 func main()

2 {

3 const Int[] a;

4 const Int[] b;

5 const Int alength;

6 const Int blength;

7 const Int k;

8 Int x = 0;

9 Int y = 0;

10 Int i = 0;

11

12 while(i < alength)

13 {

14 x = x + a[i];

15 i = i + 1;

16 }

17

18 x = x + k;

19

20 i=0;

21 while(i < blength)

22 {

23 y = y + b[i];

24 i = i + 1;

25 }

26

27 x = x + y;

28 }

29

Figure 4.7: Sensitive array.

However, we still miss a way to establish that x and y are not changed in the second and

the first loop respectively. Thus we include this statically inferred knowledge in the program

semantics, notably as the following lemmas:

∀trT � ∀itN � x(l21(zero), tr) = x(l21(it), tr) (4.13)

∀trT � ∀itN � y(l12(zero), tr) = y(l12(it), tr) (4.14)

where l12 denotes the location of the first loop and l21 denotes the location of the second

loop respectively. These lemmas seem obvious to the user as the variables x, y are not changed

throughout the respective loops. However, since this requires inductive knowledge about the loop

behavior, we so-to-speak need to nudge the prover at this point.
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4. RELATIONAL TRACE LEMMA REASONING

While these lemmas build the basis for the proof, since we do use arithmetic reasoning for

the difference in value at the end of the computation stored in x, we need to use theory reasoning.

Thus for the proof to work we actually need the following two theory axioms:

x0 + x1 = x1 + x0 (4.15)

x0 + (x1 + x2) = (x0 + x1) + x2 (4.16)

These axioms establish commutativity and associativity of addition provided by VAM-

PIRE’s theory reasoning option -tha on which includes the axiomatization of linear arith-

metic. They are for example needed to establish clauses of the following form x(end, t1) 6=
sum(1, x(end, t2)).

However, this is still not enough for the prover to establish validity of the problem since

theory axioms tend to blow up as we will also see in the following example. So in this case,

for VAMPIRE to prove the property with in-built theory reasoning we need to make use of the

AVATAR-architecture [Vor14] that basically forwards ground problems to a SAT or SMT-solver

in the backend while using propositional naming for the non-ground parts to produce models

that help the prover select the next sub-goal. Especially with the use of Z3 as SMT-solver this

enables discharging ground parts with regards to theory reasoning more easily as SMT-solvers

still remain stronger in this area of automated proving. The use of AVATAR has been shown to be

quite promising when reasoning in combination with theories. However a major drawback of the

architecture is that proofs are generally hard to read and understand due to propositional naming

of non-ground clauses. While this is of course not the main goal of an automated prover, it is still

important for the development of our approach to understand the reasoning to find appropriate

lemmas to guide the prover in automatically proving a large number of examples.

Note that the proof also works without AVATAR by manually adding the above two theory

axioms to the problem specification that is passed to the prover and switching in-built theory

reasoning off which indicates that the problem lies in the fact that small theory axioms are

preferred to be instantiated at some point during saturation. Some first experiments with ad-

justing the weight-to-age-ratio used during saturation to choose the active clause upon which

VAMPIRE resolves next, hence focusing more on age, that is on older clauses, have shown the

same tendency. This gives a general indication for future work of our approach as we need to

make adjustments to theory reasoning in VAMPIRE with the aim of using the prover for real

world verification problems.

4.2.3 Limitations of Superposition-based Theory Reasoning

Example 8. The program in the example illustrated in Figure 4.8 computes the sum of integer

values in the array a and adds an arbitrary value stored in z to this sum. The corresponding

program property that is proved is again a 2-safety property, i.e. can be expressed over two sets of

traces, constituting sensitivity of the computation. Intuitively for two program traces t1, t2 where

the arrays a share the same integer values and the absolute difference between the corresponding

values of z in both traces differs by at most k, we prove that the sum stored in variable x after

the computation differs by at most k.
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4.2. Sensitivity

1 func main() {

2 const Int[] a;

3 const Int alength;

4 const Int z;

5 const Int k;

6 Int x = 0;

7 Int i = 0;

8

9 while(i < alength) {

10 x = x + a[i];

11 i = i + 1;

12 }

13

14 x = x + z;

15 }

16

Figure 4.8: Sensitivity and limitations of theory reasoning.

Thus, we prove that no information about sensitive/private data stored in the array can be

retrieved by running the program multiple times with different values of public inputs simulated

by variable z. Formally, we prove the following property:

(

∀posI � EqTr(a, pos, l0) ∧ EqTr(k, l0)

∧ EqTr(alength, l0)

∧ |z(t1) − z(t2)| < k(t1)
)

→ |x(end, t1) − x(end, t2)| < k(t1)

(4.17)

where posI specifies that pos is integer-valued, a(p, t) and k(t) denote the values of a at

position p and k at trace t respectively. Note a,k,z are not parameterized with a timepoint as

they are constant variables. Similarly, x(it, t) represents the value of x at timepoint it in trace t

and end specifically refers to the last timepoint after the loop execution.

For proving 4.17, we need to consider and instantiate again two trace lemmas expressing

relations among values of program variables at trace t1 and t2 as follows:

(

i(l9 (0), t1) = i(l9 (0), t2) ∧

∀itN � i(l9 (it), t1) = i(l9 (it), t2) → i(l9 (s(it)), t1) = i(l9 (s(it)), t2)
)

→ ∀itN � i(l9 (it), t1) = i(l9 (it), t2)

(4.18)

where l9 denotes the program location of the loop in line 9 and l9 (0), l9 (it) respectively

denote the program locations before the first and the it-th loop iteration.
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4. RELATIONAL TRACE LEMMA REASONING

(

(∀itN � it < lastIt(t2) → i(l9 (it), t1) < alength(t1))

∧ i(l9 (lastIt(t2)), t1) ≥ alength(t1))
)

→ lastIt(t1) = lastIt(t2)

(4.19)

where lastIt denotes the last iteration of the loop, i.e. the first iteration where the loop

condition fails.

Note that 4.18 is also instantiated for the program variable x. Once again, the lemma

intuitively states that if two values in two traces t1, t2 respectively are equal at the beginning

of the loop (indicated by iteration zero) at position l9, and they remain equal for all following

iterations (indicated by s(it)), then we can conclude that the values of i are the same in all

iterations for both traces. In this way, the trace lemma ensures the induction step over the equality

of a variable during loop execution in two different traces.

The trace lemma of 4.19 states that there are equally many iterations in both traces. This

lemma makes sure that the timepoints it are related to the values stored in the iterator variable

i. With this lemma at hand, we can automatically prove that x is equal up to line 13 in

Figure 4.8.

Our recent results in [BEG+19], show that our approach cannot yet verify Figure 4.8 due to

the limited theory reasoning support of the prover. Even the AVATAR-architecture does not allow

us to automatically find a proof. In particular, reasoning with linear arithmetic axioms makes proof

search in VAMPIRE challenging. However, by controlling built-in theory reasoning similarly

to the above example and providing additional theory axioms for linear integer arithmetic, our

reasoning in trace logic succeeded in proving (4.17). Particularly, we need to add the following

axiom:

∀x1, x2, x3, x4 � (x3 + x1) − (x3 + x2) = (x1 − x2)

This example illustrates that the explicit encoding of timepoints is itself quite powerful as it

can be combined with multiple approaches to theory reasoning, hence also leverage powerful

SMT-solvers that are very strong in this regard. Thus coupling our encoding with SMT-solvers

might be promising for such properties. However, the program semantics is primarily customized

for proving within the superposition calculus and enhancing theory reasoning in VAMPIRE is a

promising line of future work.

4.3 Hamming Distance

The following section illustrates one of the major advantages of using superposition-based provers

with our approach as we will be faced with a k-safety property involving a quantifier alternation.

Consider the simple program represented in Figure 4.9. The program computes the sum of integer

values stored in the array a by iterating over the array and stores the sum in the variable hw.

With regards to security, we can interpret a as a bit-string, thus the program actually stores the

so-called Hamming weight of a in the variable hw.

As we are still in the relational setting, the aim is to prove the following property over two

arbitrary computation traces t1 and t2 of Figure 4.9: if the elements of the array a in t1 are
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4.3. Hamming Distance

component-wise equal to the elements of a in t2 except for two consecutive positions k and k + 1,

for some k, and the elements of a in t1 at positions k, k + 1 are swapped versions of the elements

of a in t2 (that is, the k-th element of a in t1 is the (k + 1)-th element of a in t2 and vice-versa),

then the program variable hw is the same at the end of t1 and t2. We formalize this property as

1 func main()

2 {

3 const Int[] a;

4 const Int alength;

5

6 Int i = 0;

7 Int hw = 0;

8

9 while (i < alength)

10 {

11 hw = hw + a[i];

12 i = i + 1;

13 }

14 }

15

Figure 4.9: Computing

hamming weight.

∀kI.
(

(

∀posI.((pos 6≃ k ∧ pos 6≃ k + 1) →

a(pos, t1) ≃ a(pos, t2)) ∧ a(k, t1) ≃ a(k + 1, t2)
∧ a(k, t2) ≃ a(k + 1, t1) ∧ 0 ≤ k + 1 < alength

)

→ hw(end, t1) ≃ hw(end, t2)
)

,

(4.20)

where kI and posI respectively specify that k and

pos are of sort integer I.

The property (4.20) is particularly challeng-

ing to verify as it involves a quantifier alternation

as the array is unbounded and k is arbitrary and

requires theory reasoning over linear arithmetic

as well. To emphasize the difficulty in automat-

ing such a proof, let’s look at a high-level proof

idea first.

Basically we first have to split the problem

into three sub-goals:

(i) iteration 0 to k: from the first position of the array a up to the i-th iteration that has the

same value as k we need to prove that the elements in both traces t1, t2 are equal, that is

hamming weight hw is equal up to the k-th iteration of the loop.

(ii) iteration k to k + 2: for those loop iterations where i takes the values of k, k + 1, k + 2,

we need to prove that while hw might differ in the traces for the k + 1-th iteration, they are

again equal at the k + 2-th iteration

(iii) iteration k + 2 to the last iteration end: it remains to ensure that hw has the same value

in both traces in all iterations where i takes the values k + 2 to the arbitrary end, i.e.

(hw, i, t1) = (hw, i, t2) after the swapped array elements as well.

While we can apply the same inductive reasoning for the first and third interval that we

already saw in the last sections on relational reasoning, that is we deduce the equality of hw

over both traces at the end of the respective intervals from the equality at the beginning of each

interval and its step-wise preservation throughout the respective iterations. Particularly for the

second interval, this line of reasoning is broken at the end of the k-th or rather the beginning of

the k + 1-th iteration. Thus we need to use arithmetic reasoning that deals with the addition,

specifically we use commutativity of addition to conclude that the equality hw in traces t1 and t2

is preserved up to the k + 2-th iteration. By proving all of these subgoals, we may conclude that

the equality of hw is preserved until the end of the loop, that is until the end of the program, thus

that property 4.20 is valid.
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4. RELATIONAL TRACE LEMMA REASONING

While the above proof might be natural for humans, it is particularly challenging to automate

as one needs not only to relate loop iterations and equality over traces but also (i) split the loop

at the right intervals that depend on arbitrary values for k, (ii) apply similar reasoning as for

noninterference and sensitivity properties to the first and last interval and (iii) in the face of this,

also combine superposition-based reasoning with theory-specific reasoning, particularly to prove

the equality after the second interval.

It is thus not surprising, that given the restrictions on reasoning modulo theories with full

first-order solver, the proof requires to be split - proving each of the above intervals. Precisely, we

first prove the equality up to iteration k + 2 and use this proof as a lemma to prove the complete

property. Note that while this does indeed have the flavor of interactive theorem proving, this

is mostly necessary due to the blow up in theory axiomatization of integers. Moreover, we are

not required to prove every step manually but need to guide the automated prover in the right

direction by splitting up complex reasoning.

So in order to prove the first part, that is the equality of hw over iterations 0 to k + 2, we need

to instantiate the inductive scheme that was discussed in previous sections, i.e. we instantiate

lemma 4.4 for program variable i. Since Lemma 4.4 is insufficient to reason about trace equality

of hw as its premise is violated at iterations k and k + 1, we need to adjust the lemma to allow

the deduction the equality for hw up to position k + 2.

Formally this is achieved with the following lemma:

∀itBN.
(

(

EqTr(hw, 0) ∧ ∀itN.(it < itB ∧ EqTr(hw, it)) → EqTr(hw, succ(it))
)

→ EqTr(hw, itB)
)

.

(4.21)

Essentially, lemma 4.21 states that for any iteration itB, if the hw is equal at the beginning

and for all iterations smaller than itB, we can infer that the equality of hw is preserved from one

iteration to the next, we deduce its trace equality in iteration itB as well. This is essential to

prove the equality up to iteration k.

The reasoning about the shortly differing values of hw after the k-th iteration, that is the

second subgoal, needs theory-specific reasoning. Since we need to reason over sums of two

different iterations in the respective traces, that is we need to conclude that hamming weight in

iteration k in the first trace t1 is actually the same as the hamming weight in iteration k + 1 in

trace t2, we need to add the appropriate theory axiom manually to allow for Vampire’s reasoning

under -tha some, as full theory axiomatization for integers blows up during saturation. In this

case, what we need is associativity of addition:

(x0 + x1) + x2 = (x0 + x2) + x1 (4.22)

Secondly, what is actually crucial for the proof to work is to specify what iterator positions,

that is what natural numbers, respond to the iterations k and k +2 that are of sort integer. This can

be understood as relating values of sort integer with values of the natural numbers. To do so, we

indeed need to specify that the two specific iteration itK and itkP lus2 of sort N correspond to

those iterations where i in location l12 is equal to the value k and to the value k + 2 respectively.
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4.3. Hamming Distance

While this specification is added manually to the property we want to prove, we have to define a

lemma that lets the prover use this information for the proof up to iteration k + 2.

Then the following trace lemma that expresses how iterations are synchronized with the

integer values of the loop counter variable is enough to finish the proof up to iteration k + 2:

∀trT �
(

∀itN1 , itN2 � it1 < it2 → i(l12, it1, tr) < i(l12, it2, tr)
)

. (4.23)

In the above way, we can prove the first two subgoals and then use this proof as a lemma for

the main goal which follows essentially the same line of reasoning as the first subgoal.
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CHAPTER 5
State of the Art

In this chapter we overview the most related approaches to our work in automating program

analysis and verification. This chapter is separated in two parts: the first one focuses on dif-

ferent methods for formal verification apart from theorem proving in general. The second part

emphasizes particularly the state-of-the-art methods applied to hyperproperty verification.

5.1 Software Verification

Deductive Verification. Based on Hoare Logic [Hoa69], the task of software verification can be

deduced to proving the correctness of Hoare triples of the form {A}P{B} where A and B are

formulas that express pre- and postconditions respectively and P is a program. Depending on how

the triple is verified, we can express partial correctness or total correctness. Partial correctness of

a triple states that for a state σ where A holds, if the execution of P results in a state σ′ (i.e. P

does not necessarily terminate), σ′ satisfies B. Formally,

forall states σ, s.t. σ |= Aif 〈σ, P 〉 → σ′, then σ′ |= B s (5.1)

Similarly we can express this claim for total correctness which extends partial correctness with

termination resulting in: for any state σ where A holds, the execution of P results in σ′, st.

σ′ |= B holds. Formally, we have

forall states σ, if σ |= A, then 〈σ, P 〉 → σ′ ∧ σ′ |= B (5.2)

Hence, proving correctness of programs results in sequentially defining such triples for all

execution steps of a given program. Based on this paradigm, we use syntactic transformations,

so-called predicate transformers based on the work of Dijkstra [Dij78] to generate the necessary

verification conditions, i.e. first-order formulas, according to the structure of the program that

then need to be discharged either manually or as is more common by a potentially automated

theorem prover. Proving the validity of all proof obligations constitutes the validity of the given

Hoare triple with regards to the (partial or total) correctness claim.
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5. STATE OF THE ART

Satisfiability Modulo Theories. Many automated tools in the area of deductive verification are

based on SMT-solving. Satisfiability modulo theories is a decision problem for (quantifier-free)

first-order formulas with respect to reasoning with different background theories. Common

background theories are the theory of linear arithmetic (integers and reals), the theory of arrays,

bit vectors or other common (algebraic) data structures, as well as the theory of equality and

uninterpreted functions (EUF). Z3 [DMB08] and CVC4 [BCD+11] are state-of-the-art SMT

solvers that incorporate a number of decision procedures to enhance results.

SMT-Solving is based on common decision procedures for SAT-solving. Early approaches to

SMT-solving [ACG99, ABC+02, BDS02, DMRS02] were based on identifying a propositional

model with a SAT-solver and then use theory-specific solvers to prove the consistency of the

given model within the background theory. Now, there are multiple approaches following these

lines and often differentiate in when to call the theory solver on a given model, i.e. after a full

model has been found or throughout the SAT-solvers procedure to reduce the depth of necessary

backtracking in case a conflict is found.

Most modern SMT-solvers are based on the DPLL(T ) decision procedure [Tin02] which com-

bines theory reasoning with the Davis-Putnam-Logemann-Loveland (DPLL) procedure [DP60,

DLL62] for SAT-solving. The SAT-based DPLL-algorithm is a depth-first search to prove satisfia-

bility of a ground (quantifier-free) logical formula in conjunctive normal form (CNF) by trying

to find a model by consecutively assigning a truth value to a chosen literal. Unit propagation,

that propagating the truth value of so-called unit clauses, which are clauses that contain only a

single literal, is used to prune the search space. Precisely, for a given set of clauses, we apply

unit propagation with backward subsumption, hence removing redundant clauses subsumed by

smaller (unit) clauses until all variables are assigned. Thus a model that proves satisfiability

could be constructed, or the empty clause is derived, hence showing that the original clause

set is unsatisfiable. The idea is to keep track of a partial assignment and extend this assignment

until all variables are assigned or a conflict, that is a logical contradiction, is reached. In case

of a conflict the algorithm backtracks and branches differently, i.e. changes the truth value of a

certain assignment according to the chosen branching heuristics. A lemma excluding the possible

conflict is then added to make sure that it will not happen again. This last approach is commonly

referred to as conflict-driven clause learning in the literature. This procedure is complete, thus,

will either prove or disprove satisfiability of a propositional/ground clause set.

SMT-solvers extend this idea for theory reasoning. Based on the theoretical results captured

in a sequent-style calculus by Tinelli [Tin02], a general architecture for the combination of theory

solvers and SAT-solvers is given by the DPLL(T ) [GHN+04] framework. Note that sometimes the

core SMT-system is referred to as CDCL(T ) instead of DPLL(T ) highlighting that conflict-driven

clause learning is widely applied among standard SAT and SMT-solvers. The main difference to

early approaches is that theory reasoning is built-in in the DPLL decision procedure. In other

words, the background theories are used to decide satisfiability instead of finding a propositional

model and checking its consistency with the theory in hindsight.

On the theoretic level, to give an idea how this works, we will examine how unit resolution

with backward subsumption is used in this way. The idea is expressed in a sequent calculus-style

as in [Tin02] as follows: for a given set of clauses {φ, l ∧ C}, a context Λ used to store assigned
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5.1. Software Verification

literals and a background theory T , such that Λ ⊢ φ, l ∧ C, if we want to resolve on literal l,

the necessary side condition is that ¬l is entailed by the background theory in a given context,

i.e. Λ |=T ¬l holds, yielding Λ ⊢ φ, C after resolving on literal l. Note that the difference to

SAT-procedure lies in the side condition asserting that ¬l is entailed in the theory instead of the

side condition being that ¬l is in the set Λ of already asserted literals. This way any asserted

literal is also already asserted in the theory instead of having to check with a theory solver at

a later point. This theoretical framework was firstly applied in the aforementioned DPLL(T )

framework by [GHN+04] for the theory of equalities and uninterpreted functions (EUF) which

relies on interfacing a theory solver for T in a way to drive the search for a satisfying model.

While the work is practically based on integrating a solver for EUF, the framework has been

interfaced with multiple theories, most notably with a solver for the theory of linear arithmetic

in [DDM06]. Since then theory reasoning has been made possible for multiple theories, namely

EUF, linear arithmetic, fixed-size bit-vectors, the theory of arrays.

Note that these approaches mainly target theories with decidable decision procedures, i.e.

ground (quantifier-free) fragment of first-order logic. While there are some attempts to reason in

undecidable fragments of logic such as non-linear arithmetic e.g. in [JdM12], most SMT-solvers

work in decidable fragments of many-sorted first-order logic with built-in theories. Hence, they

are often limited in their expressiveness as quantifier alternation is in general not expressible which

is one of the major drawbacks compared to the use of full first-order logic and superposition-based

reasoning.

However, this is a major limitation for software verification as many specifications cannot

be expressed without universal quantification. Particularly for reasoning over loops in a static

way it is often necessary to use universal quantification to express invariants needed to discharge

conditions. Further, many theory axiomatizations rely on universal quantification, such as the

theory of linear arithmetic. To this end, modern SMT-solvers allow for quantifier instantiation,

i.e. instantiating a universal formula to ground instances in the hopes of finding the necessary

one to prove unsatisfiability/validity during proof search. This allows at least for the use of

"simple" formulas involving quantifiers, i.e. without quantifier alternation(s). In state-of-the-

art SMT-solvers like Z3 and CVC4 quantifiers are handled by so-called E-matching abstract

machines [DMB07] based on a matching algorithm that matches existing ground terms in the

conjecture with sub-terms of the quantified formula to find appropriate instances for further

resolving. Note that this is possible since any formula ∀x.F can be interpreted as an infinite

conjunction over all possible substitutions θ for x:
∧

θ θ(F ).

While this allows for higher degrees of automation, the user of such systems is still required to

come up with their own loop invariants to prove different specifications about programs involving

loops and is restricted to formulas without quantifier alternations.

SMT-Solving and Intermediate Verification Languages. A noteworthy application of SMT-

solving along the lines of this research that needs to be addressed is software verification with

an intermediate verification language and an SMT-solver to discharge verification conditions.

One prominent example in this line of work is the language and verifier Dafny [Lei10] using a

combination of the intermediate verification language Boogie and SMT-solver Z3 for automatically

proving functional correctness.
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5. STATE OF THE ART

Dafny is a typed imperative programming language that allows for automated deductive

verification for total correctness by providing the user with built-in specification mechanism for

pre- and postconditions, loop invariants, variants for termination in the style of Hoare logic and

some other helpful features such as ghost variables that help in the specification process. Dafny

code is then compiled to the Boogie 2 [Lei08,BCD+05] intermediate verification language (IVL),

that is the semantics of Dafny programs are based on the semantics of the Boogie IVL.

Boogie further provides a tool to generate proof obligations in first-order logic that are passed

to SMT-solver Z3 to be discharged. Note that the translation from a Dafny to a Boogie program

is sound in the sense that a correctness proof of the Boogie code implies the correctness of

the original Dafny program. Dafny has been proven to be very powerful and is able to prove

pointer-based programs as it allows for definitions of (algebraic) data types and function calls.

Apart from that, Boogie 2 comes with a type system [LR10] allowing for static type checks of

built-in and user-defined types.

All in all the integrated Dafny environment can already be seen as a very powerful verification

suite. However, while it offers many features, a major difference compared to RAPID is found

in the program semantics: Dafny/Boogie’s program semantics program semantics are based on

standard Hoare logic/Dijkstra’s predicate transformers while RAPID’s semantics extend this idea

with explicit timepoints - standard Hoare Logic can be seen as an instantiation of Trace Logic.

The power of this new approach to semantics allowed us to prove a rather simple set of programs

– the break examples at section 3.2 – that traverses an array and breaks the while-loop once a

specific element has been found while the Boogie 2 specification needed an invariant specified by

the user to prove functional correctness of the program.

The combination of semantics with powerful trace lemmas therefore is able to prove a simple

program out of the box where other approaches still need appropriate invariants that handle the

inductive part of reasoning over loops. While Dafny/Boogie leverages the power of SMT-solvers,

one can understand the combination of RAPID with first-order solver Vampire as a new approach

for automated software verification enhancing the degree of automation and expressiveness in the

sense that our approach (1) leverages powerful first-order solvers with theories and (2) provides

more fine-grained program semantics by making program timepoints explicit paving the way for

automating inductive reasoning. This entails multiple new problems such as the incompleteness

of theory reasoning in the non-ground case that SMT-solvers don’t face but also offers new

opportunities such as (1) automatically proving complex properties with quantifiers as well as

(2) decreasing the need of an expert user to find appropriate invariants/variants to make software

verification an integral part of the development process of highly-secure and "at risk" systems.

Another prominent example is the combination of the WhyML verification language and the

Why3 tool [FP13] for deductive verification. Why3 makes use of multiple automated (Simplify,

CVC as well as interactive theorem provers (Coq, Isabelle/HOL, HOL etc.) to discharge ver-

ification conditions. WhyML is a simple imperative programming language equipped with a

type system based on ML - comparable to Boogie 2. However, for verification reasons language

features are limited to first-order reasoning, thus, do not include higher-order functions. As with

Boogie 2, Why3 requires the user to specify pre- and postconditions as well as invariants for

reasoning over loops. By providing variants also termination can be proved. Proof obligations

are generated by standard weakest-precondition transformers. Why3 also allows for extraction
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5.1. Software Verification

of executable code by providing a translation from WhyML specifications to OCaml executables.

Thus, both approaches have similar advantages and drawbacks in comparison with our approach.

The KeY-Project [BHS07, ABB+16] is another example of functional verification but also

extends to analysis of information flow. Since the KeY framework originated as a tool for Java, it

is now mainly used for Java source code in combination with annotations in the Java Modelling

Language (JML) [LBR98]. The intermediate verification language of the tool is Java Dynamic

Logic [Bec00] - hence the proof calculus which is based on sequent calculus adheres to Java

semantics. The KeY prover environment tries to prove the verification conditions automatically

with its own prover as well as external sources such as SMT-solvers. In case that no proof was

found, the user can also guide the proof search by manuelly guiding the proof steps such as

in interactive theorem proving. The project is thus more guided by industry-needs instead of

theoretical research.

Model Checking for Software Verification. Another standard technique for formal verification is

model checking [CJGK+18]. The idea relies on interpreting programs as finite state transition

systems and their specifications as temporal properties formalized with temporal logics such as

CTL*, CTL or LTL. In case of showing functional correctness, the model checker ensures that

there is no path in the transition system such that the property gets falsified. In case such a path

exists, the model checker reports a counterexample to the given property.

Model checking applies to both safety and liveness properties. The former ensures that

something bad will never happen, i.e. there’s no execution path that is a counterexample to the

safety property - an unsafe state can never be reached. The latter is employed to ensure that

something good is going to happen at some point in the future, i.e. we will always reach a state

such that the property holds.

A major problem for liveness properties lies in the infinity of the property that something

will always happen since efficient model-checking methods mainly apply to finite state systems.

While there exist approximative methods to turn an infinite system into a finite one, the problem

of finding a counterexample for debugging is far easier than proving that no counterexample

exists. The challenge here originates from the size of the given state transition system. While

there are methods to abstract an infinite transition system into a finite one (with some loss of

precision) e.g. in [CGL94], adding state variables to standard state transition systems still leads to

a major blowup. Hence, model checking is faced with what is commonly referred to as the state

explosion problem. Thus, modern model checkers are equipped with a multitude of mechanisms

for abstraction of states such as interpolation [McM03] and counterexample guided abstraction

refinement (CEGAR) [CGJ+00] and ultimately bounded model-checking (BMC) [BCC+03].

The latter leverages the power of SAT-solvers by encoding systems and properties in propo-

sitional logic to find counterexamples of bounded length, that is in some k transitions of the

model. Particularly, for loops this is an interesting approach since loops are iteratively unrolled

until a counterexample is found. Hence the BMC allows for efficient bug finding in programs

with loops. However the limitation of bounded loops makes this method incomplete for proving

functional correctness. This method is also employed in state-of-the-art model checkers such

as CBMC [KT14] and Alloy [VD12]. There are also some approaches such as [MK11] using

SMT-solvers which allows to express properties in combination with theories.
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5. STATE OF THE ART

While these abstractions make model checkers very efficient in practice, they introduce

the problem of imprecision due to overapproximation - specifically overapproximation of the

post-image (overapporoximated set of reachable states from some state). Hence, abstraction

might lead to spurious counterexamples which introduces the need to backtrack and refine the

level of abstraction in order to find a true counterexample (or exclude the existence of it).

One of the major advantages of all these techniques is that they are fully automated since they

work on a finite domain and are in case of failure ready to provide an execution path that leads

to a counterexample - in general a hard task for theorem proving. Hence the main application

of model-checking approaches lies in debugging software (and hardware) systems. However,

due to the limitation to finite systems as well as the state explosion problem, model-checking is

usually not suited for purely proving functional correctness and thus exists alongside other formal

techniques.

Abstract Interpretation and Static Analysis. Abstract interpretation was firstly introduced in the

70ies by Patrick and Radhia Cousot [CC77, CC92] and aims at proving properties over runtime

program behavior in a static manner, that is without executing the code. The main applications

lie in type, control flow and data flow analysis to show for example that programs are free of

runtime exceptions, such as nullpointers and buffer overflows or that a program terminates. Many

such methods are applied to compiler optimization and bug finding tools.

Abstract interpretation provides a theory for correctly approximating program behavior in

order to automate an analysis task. An example for this is type checking where a set of type

equality constraints are established from a given syntax tree of a program such that all expressions

and variables are evaluated under the semantics. The program is considered to be typable if it

satisfies those constraints (which can in this case be checked by unification).

Formally, for a given programming language L and an abstract domain D, we need to define

semantics S of the language such that SJpK ∈ D, that is each expression p ∈ L obtains a

semantic value. Further, one has to define an abstract domain D# and an abstract semantics

S# such that S# ∈ L → D#. To prove soundness for an abstract interpretation of program

P we need to show that abstract semantics S# is computable for each expression p ∈ P , i.e.

that SJpK ∈ {S|σ(S, S#JpK)} where σ is a soundness relation that necessarily satisfies for all

expressions p ∈ L that σ(SJpK, S#JpK). Since all of the mentioned program properties are

known to be undecidable by Rice’s famous theorem, abstract interpretation is a very hard task that

requires finding sound approximations for program semantics and abstract domains that are coarse

enough to prove many programs correct but also conservative enough to remain sound. Hence,

one of the challenges in approximating program behavior is that it might lead to false negatives,

that is the rejection of correct programs based on the violation of some constraints that in the

end were too conservative to prove the program correct. Hence balancing overapproximation

for problem-specific domains is an widespread and still ongoing research area that is based on

finding useful abstract domains for many different problems. This task can be related to our

efforts in finding problem-specific sets of trace lemmas that can automatically be instantiated for

programs with properties of a certain kind. Hence one can understand the search for such lemmas

as finding the abstract domain for superposition-based automated theorem proving.

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5.2. Relational Verification

5.2 Relational Verification

Hyperproperty Verification. Given the rise of using formal methods for security properties, rela-

tional verification is becoming a hot topic in software verification research. Hyperproperties are

generally properties that are expressed as sets of sets of execution traces, i.e. they relate multiple

execution traces with each other. Since many security properties are in general such relational

properties, we will look into the current methods for relational verification of noninterference,

sensitivity and other k-safety properties as there exist multiple approaches for various properties

based on the methods defined above.

Type Systems. Starting with static analysis, Sabelfeld [SM03] propose type systems for ana-

lyzing noninterference in programs and protocols that annotate program variables and expressions

with security types, e.g. high and low to refer to the level of confidentiality. On a policy level,

the type system ensures that low-level inputs don’t interfere with highly confidential outputs,

that is an attacker having knowledge of any low inputs/outputs cannot make assumptions about

any high data. One of the major drawbacks of this method is its limitation to static analysis that

dismisses many safe programs as potentially unsafe due to overapproximation. For instance, the

above mentioned method fails to prove our example3 since high program variables are generally

disallowed for soundness reasons.

Type systems are successfully applied to various properties concerning information security

like secrecy and authentication in cryptographic protocols such as [BFG+14, CEK+15, CGLM17,

CGLM18] e.g. for the verification of electronic voting systems. Applications of these methods

mostly concern equivalence/indistinguishability properties, for instance anonymity of a protocol

where we want to verify that an attacker cannot differentiate between a protocol session of Alice

or Bob. Type systems for these kinds of properties have been proven more efficient than standard

tools of protocol verification such as ProVerif [B+01, BAF08] based on Horn clause resolution

or term-rewriting based tool Tamarin [MSCB13]. While we’re dipping our feet into verification

of hyperproperties, RAPIDis not yet fully set out for protocol verification. Adapting the input

modelling language with some extensions for function calls and a session model might be an

interesting line of future work that would allow handling protocol verification and might speed

up current results on an unbounded number of executed sessions.

Relational Hoare Logic. Another interesting aspect that relates to our ongoing research

efforts is relational Hoare logic [Ben04], self-composition [BDR04] and the use of product

programs [BCK11] for verification of hyperproperties. Relational Hoare logic gives a theoretical

extension of Hoare triples to Hoare quadruples for deductive verification of two programs

or two executions of the same program with the same termination behavior but is limited in

expressiveness as properties involving quantifier alternations are generally not captured.

Based on composing two different programs or two runs P1, P2 of a program in a sequential

manner into a single program P , self-composition reduces the task of proving a property for

the compositional program in a standard non-relational way based on Hoare triples. Product

programs extend this idea by simulating the execution of two programs simultaneously in lock

step. This approach was extended in [BCK13] for asymmetric products, that is for two different

programs P1, P2, we want to check that for all traces of P1, there exists a trace in P2 where some
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5. STATE OF THE ART

property holds. However, while especially the last approach seems very promising to cover many

security properties as non-determinism can be captured as well, all of the approaches suffer from

lack of expressivity when it comes to k-safety properties for more than two program traces. Also

all of these approaches are based merely on the syntactical content of a program.

HyperLTL. Checking hyperproperties with temporal logics and model-checking algorithms is

also ongoing research: HyperLTL [CFK+14] is an extension of linear temporal logic with so-

called trace quantifiers allowing to relate multiple execution traces of a program. Thus, HyperLTL

enables proving information flow properties such as noninterference which is captured by the

following formula F :

∀π, π′
�

(

G
∧

i∈I\{h}

iπ ↔ iπ′

)

→ G(oπ ↔ oπ′)

where π, π′ are the respective execution traces, the set I is the set of inputs, o are the

respective outputs and h is an input value of high security value, that is a secret variable, and Gφ

is a temporal operator intuitively specifying that the formula φ holds everywhere, hence globally,

on the subsequent path. Hence F specifies that for all execution traces, if the low security input

values are equal everywhere but in the high security context, then also the outputs will be the same.

Tools such as in [FRS15] have been developed to use model-checking algorithms on specifications

such as above. While HyperLTL was not yet fit to prove properties with quantifier alternation, the

recent work [CFST19] has been shown to be very expressive and allows handling of HyperLTL-

formulas with one quantifier alternation. They particularly established a proof-of-concept by

proving generalized noninterference, formally expressed as follows:

∀π, π′
� ∃π′′

�

(

G(hπ ↔ hπ′′) ∧ G(oπ′ ↔ oπ′′)
)

The property specifies that the public outputs of traces π and π′ don’t depend on any value of h

simulated by existential quantification on a third trace π′′ used to "inject" high-security values.

The work relies on a game theoretic approach that creates two players for universal and existential

quantification respectively such that the existential player has to match every move made by

the forall-player which implies satisfiability of the formula at hand. Formally, they can prove

formulas of the form ∀π � ∃π′
�φ, where a winning strategy of the existential player implies that φ

is satisfied by the pair (π, π′). Every move made can be interpreted as stepwise computation of an

execution trace. This is further automatically enabled by eliminating this existential quantification

with the help of known synthesis algorithms. While this is an impressive result, HyperLTL

remains highly undecidable - there are no decision procedures for the satisfiability problem of the

∀∃ fragment [FH16] - and the model-checking problem on finite Kripke structures and HyperLTL

formulas is non-elementary in terms of worst-case complexity.

F*/Interactive theorem proving. Another popular approach is using interactive theorem

provers such as Coq, Isabelle/HOL. As for security properties, F* [SHK+16] is a state-of-the-art

prover of relational properties by the use of refinement types. While this approach is promising

for relational verification, it remains for the user to find program-dependent invariants/lemmas to

find a proof which is not required with our approach.
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CHAPTER 6
Conclusion

6.1 Conclusion

Based on the new framework RAPID that encodes imperative programs in trace logic L, an

instance of full first order logic, we show how to automatically discharge verification conditions

with superposition-based first-order automated theorem provers, in particular the VAMPIRE

theorem prover. To this end, we illustrated how inductive reasoning over loops with arrays is

automated by instantiating a set of trace lemmas, allowing us to express inductive loop properties,

that are more general than loop-specific invariants. By doing so, we do not rely on users to

provide loop specific invariants.

The major driver behind this approach is the custom encoding that allows to explicitly express

timepoints as functions over program locations and loop iterations. This allows to express

properties in such a way that we can address loop iterations and quantify over them as pleased,

that is we can add to our encoding assertions over all or some loop iterations. Furthermore, we

can reason about arbitrary program values of integer and array variables. The combination of our

encoding in L with full first-order theorem provers equips our work with four major advantages:

(i) Loop nesting. A major advantage of the formalism is its simple extension for nested

loops. By allowing to extend timepoints over multiple iterations according to the program

structure, all trace lemmas can be generated for arbitrarily nested loops, thus allowing to

reason over such loops in the same way.

(ii) Relational verification. By extending the encoding of timepoints with traces, we can also

handle so-called hyperproperties relating multiple sets of traces. With this approach we

showed how to prove common security properties such as noninterference and sensitivity.

(iii) Quantifier Alternation. VAMPIRE’s superposition-based first-order reasoning allows us to

prove complex properties that possibly involve quantifier alternations as can be seen in 3.3

for single trace reasoning and in 4.3 for relational verification.
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6. CONCLUSION

(iv) Automated Trace Reasoning. The automatic instantiation of trace lemmas over all relevant

program variables allows us to prove properties that would otherwise need inductive

reasoning manually handled by proving with interactive theorem provers or equipping

an automated prover with a program-specific invariant. While statically inferred from

semantics, thus requiring some manual work, once found, they allow us to prove sets of

problems instead of a specific property about a single program.

Our results show that the combination of RAPID and VAMPIRE provide a promising tool

chain for proving in particular hyperproperties 4. Results of our recent paper [BEG+19] showed

that RAPID’s semantics is more expressive than state-of-the-art noninterference verification tools

and that Vampire is better suited to the verification of security-relevant hyperproperties such as

noninterference and sensitivity than state-of-the-art SMT-solvers like Z3 and CVC4.

6.2 Challenges and Future Work

Ongoing work focuses on designing (theory-)specific inference rules in the superposition calculus

that identify redundant inequalities during proof search. We also intend to improve clause

selection during proof search. As trace lemmas might in general be quite long formulas, their

assigned weights are usually much higher than those of small theory axioms such as axioms of

linear arithmetic. Thus, at a certain point during proof search, trace lemmas are not used anymore

as smaller clauses (such as theory axioms) are usually preferred by superposition-provers, and

hence VAMPIRE. Adjusting clause selection to use trace lemmas at arbitrary steps during proof

search is a challenging task we aim to address.

Another idea is to extend the superposition calculus to reasoning over inequalities, as this

would allow to leverage the power of superposition-based inferences for inequality reasoning.

Note that many arithmetic inequalities of the form s(0) > 0, s(s(0)) > 0, ... are generated during

saturation. While they mostly get handled by redundancy, hence do not enter the active clause

set - that is the set to be resolved upon - they still pose a threat to efficiency of the prover and

thus also finding a proof in a given time limit. Superposition over inequalities might help to make

logically "stronger" inferences. Future experiments need to be made to evaluate the impact of

such rules.

Another line of work is the extension of our simple input language and thus program semantics

to more complicated constructs like function calls. At the moment, we handle exactly one function

with arbitrary loop nesting. Extending the semantics would allow us to look into complex

examples with wide applications to security verification such as verifying smart contracts.
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