Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

FAKULTAT
FUR INFORMATIK

Exact and Heuristic Approaches
for Unrelated Parallel Machine
Scheduling

Faculty of Informatics

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Software Engineering & Internet Computing
eingereicht von

Maximilian Moser, BSc
Matrikelnummer 01326252

an der Fakultat fir Informatik

der Technischen Universitat Wien

Betreuung: Privatdoz. Dipl.-Ing. Dr.techn. Nysret Musliu

Wien, 8. Oktober 2019

Maximilian Moser Nysret Musliu

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

FAKULTAT
FUR INFORMATIK

Exact and Heuristic Approaches
for Unrelated Parallel Machine
Scheduling

Faculty of Informatics

DIPLOMA THESIS
submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Software Engineering & Internet Computing
by

Maximilian Moser, BSc
Registration Number 01326252

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Dipl.-Ing. Dr.techn. Nysret Musliu

Vienna, 8™ October, 2019

Maximilian Moser Nysret Musliu

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Erklarung zur Verfassung der
Arbeit

Maximilian Moser, BSc

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8. Oktober 2019

Maximilian Moser

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Acknowledgements

I want to express my sincere gratitude to my advisor Priv.-Doz. Dr. Nysret Musliu along
with DI Felix Winter and Dr. Andrea Schaerf for their valuable feedback and patience.
This thesis would not have been possible without their everlasting support.

Special thanks go to Georg Faustmann for motivating me to finish the work, and for
keeping the mood well above sea level in the office. Additional special thanks go to
Ines Beneder and Anais Golder for painstakingly proof-reading the entire document and
helping me with the formulations.

I would also like to express my thanks to my family for enabling me to pursue my studies
in the first place and supporting me under all circumstances.

Further, I would like to thank Mathias Cammerlander, Denise Berthold and Katrin Deisl
because I promised to mention them in the Acknowledgements.

The work in this thesis was performed in the Christian Doppler Laboratory for Artificial
Intelligence and Optimization for Planning and Scheduling. The financial support by the
Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation
for Research, Technology and Development is gratefully acknowledged.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Kurzfassung

Parallel-Machine-Scheduling-Probleme wurden vielfach in der wissenschaftlichen Literatur
untersucht und sind héufig in der Industrie anwendbar. Diese Diplomarbeit beschéftigt
sich mit einem praktisch auftretendem Problem, welches als Unrelated Parallel-Machine-
Scheduling-Problem mit sequenzabhéingigen Umriistzeiten, Félligkeitsterminen und Ein-
schrankungen fiir die Verwendung der Maschinen beschreiben léasst. Das Ziel ist die
Minimierung der gesamten Verspatung und Produktionsdauer.

Da bereits existierende mathematische Formulierungen nicht direkt auf unser Problem
anwendbar sind, erweitern wir verschiedene bestehende Formulierungen fiir verwandte
Probleme und passen sie auf unser Problem an. Des weiteren stellen wir mehrere Varianten
von Simulated Annealing vor, welche wir zum Lésen sehr grofier Problem-Instanzen
verwenden. Als Teil dieser Algorithmen verwenden wir verschiedene Suchnachbarschaften
und untersuchen die Verwendung zuséatzlicher innovativer Heuristiken zur Auswahl
benachbarter Losungen.

Wir verwenden die neu generierten Probleminstanzen zusammen mit bestehenden Instan-
zen aus der Literatur, um die vorgestellten mathematischen Modelle und metaheuristi-
schen Algorithmen auszuwerten. Die praktischen Resultate zeigen, dass unsere gewdhlten
Methoden in der Lage sind, die Resultate der bisher besten Methoden zu verbessern.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Abstract

Parallel Machine Scheduling problems have been subject of intensive research and have
many applications in the manufacturing industry. In this thesis, we study a real-life
scheduling problem that can be formulated as an Unrelated Parallel Machine Scheduling
Problem with Sequence-Dependent Setup Times, Due Dates, and Machine Eligibility
Constraints. The aim is to minimise total tardiness and makespan.

As existing formulations from the literature cannot be directly applied to our problem,
we extend and adapt different mathematical models for related problems to approach the
problem. Furthermore, we propose several variants of Simulated Annealing to solve very
large-scale problem instances as they appear in practice. In these algorithms, we utilise
several different search neighbourhoods and additionally investigate the use of innovative
heuristic neighbourhood move selection strategies. Further, we provide a set of real-life
problem instances as well as a random instance generator that we use to generate a large
number of instances.

Using the novel datasets together with existing instances from the literature, we perform
a thorough evaluation of the mathematical models and meta-heuristic algorithms that are
studied in this thesis. Experimental results show that our methods are able to improve
the results produced with state-of-the-art approaches for a large number of instances.

Xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

Kurzfassung ix
Abstract xi
Contents xiii

1 Introduction 1
1.1 Aims of This Thesis 2
1.2 Contributions of This Thesis 2
1.3 Organisation 3

2 Parallel Machine Scheduling 5
2.1 Related Work oo 6

3 Mixed-Integer Programming Approaches 9
3.1 Extended MIP Models from the Related Literature 9

4 Meta-Heuristic Approaches 15
4.1 Constructing Initial Solutions 15
4.2 Search Neighbourhoods 16
4.3 Simulated Annealing L Lo 19

5 Experimental Evaluation 25
5.1 Imstances 25
5.2 Computational Results 30

6 Conclusions 51
List of Figures 53
List of Tables 55
List of Algorithms 57
Bibliography 59
xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Introduction

Finding optimised machine schedules in manufacturing is an important and challenging
task, as a large number of jobs need to be processed every day. While a manual approach
performed by human experts can be used to deal with a small number of jobs, the
large-scale requirements of modern factories introduce the need for efficient automated
scheduling techniques. In the literature, such scheduling problems that deal with the
assignment of jobs to multiple machines which operate in parallel have previously been
described as Parallel Machine Scheduling Problems (PMSPs, e.g. Allahverdi et al. [2008],
Allahverdi [2015]).

As usually several types of machines are used in the industry that can perform different
sets of operations, each job can only be assigned to a specified set of eligible machines.
Furthermore, varying machine efficiency has to be considered. PMSPs that consider
eligible machines are well-known in the literature and have been studied in several
publications (e.g. Afzalirad and Rezaeian [2016], Perez-Gonzalez et al. [2019]). Similarly,
problems with varying machine efficiency have been previously described as Unrelated
PMSP (UPMSP, e.g. Vallada and Ruiz [2011], Avalos-Rosales et al. [2015], Allahverdi
[2015]). After a job has reached its completion on a machine, in practice it is often
required to perform a change of the tooling or machine maintenance before the next job
can be processed. The corresponding changeover times between jobs have been referred
to as sequence-dependent setup times in previous publications (e.g. Vallada and Ruiz
[2011], Perez-Gonzalez et al. [2019]).

In the problem we investigate in this thesis, which emerges from a company in the
packaging industry, each job corresponds to a customer order with an associated due
date. Therefore, the problem’s objective function aims to minimise the total tardiness of
all jobs in addition to the total makespan.

In summary, the real-life problem we investigate in this thesis can be characterised
as UPMSP with sequence-dependent setup times and eligible machines that aims to

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.

INTRODUCTION

minimise both tardiness and makespan. Although a large number of different variants of
UPMSP that feature all of the mentioned attributes to some extent have been described
in the literature, our problem includes a novel combination of the different constraints
and objectives.

1.1 Aims of This Thesis

The main objectives of this thesis are:

e Development of a random instance generator for the problem under study and
provision of a large set of instances.

e Adaptation and evaluation of Mixed-Integer Programming formulations for related
problems from the literature.

e Development and implementation of meta-heuristic approaches using several neigh-
bourhood operators and guidance strategies in the move generation procedure.

e Computational evaluation of the described approaches on generated instances and
instances from the literature.

e Comparison with state-of-the-art approaches for a related problem.

1.2 Contributions of This Thesis

We adapt existing mathematical models for related problems and compare several different
formulations for our problem. However, the evaluated exact approaches can only solve
small instances in reasonable time. To solve large practical instances, we deeply investigate
several variants of Simulated Annealing (SA, Kirkpatrick et al. [1983]). The variants
we investigate include different cooling schemes such as a dynamic cooling rate and a
reheating mechanism. We investigate different search neighbourhoods based on shift and
swap moves, which are commonly used in the context of PMSP. Additionally, we propose
a novel neighbourhood operator for UPMSP that operates on blocks of consecutively
scheduled jobs. To increase the effectiveness of the move generation procedure, we guide
the search towards more promising regions of the search space by incorporating domain
knowledge into the neighbourhood move selection strategy.

We provide realistic problem instances which are based on real-life scheduling scenarios
that have been provided to us by an industrial partner. Furthermore, we propose a
random instance generator to generate diverse datasets that together with the realistic
instances form a large pool of instances which we use in our experimental evaluation.
Experimental results show that the Simulated Annealing approach is able to generate
high-quality solutions for both randomly generated instances as well as real-life instances.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

1.3. Organisation

To show the robustness of our method we compare to the state-of-the-art approach
(Perez-Gonzalez et al. [2019]) that was proposed recently for a similar problem. The
problem specification provided by Perez-Gonzalez et al. [2019] uses the same set of
constraints as the problem that we investigate in this thesis and also aims to minimise
total tardiness. However, the authors do not consider the minimisation of the makespan.
As the minimisation of total tardiness is incomparably more important than the makespan
in our problem specification, we can use our solution methods to approach the problem
instances provided by Perez-Gonzalez et al. [2019] without problems. Our comparison on
a huge set of instances that have been provided by Perez-Gonzalez et al. [2019], shows
that our approach produces improved results for a large number of the instances.

1.3 Organisation

The structure of the thesis is as follows: In Chapter 2, we describe our problem and give
an overview of the existing related literature. We provide six different Mixed Integer
Programming models for the problem in Chapter 3. Our meta-heuristic algorithms are
presented in Chapter 4. Chapter 5 contains the description of our instance generation
procedure and the generated instances, and we give a detailed overview of our computa-
tional experiments and evaluations. Finally, we present our conclusions and remarks on
possible future research in Chapter 6.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Parallel Machine Scheduling

The problem we investigate in this thesis can be characterised as an Unrelated Paral-
lel Machine Scheduling Problem with Sequence-Dependent Setup Times and Machine
Eligibility Constraints with the objective of minimising both total tardiness as well as
makespan. A Parallel Machine Scheduling Problem (PMSP) aims to assign jobs to a given
number of machines to create an optimised production schedule, where every machine is
continuously available and can process one job at a time. The execution of jobs cannot
be interrupted and resumed later, and there are no precedence constraints between jobs.
Furthermore, every machine is assumed to start immediately the execution of its assigned
schedule without any break or interruption.

Instances of the PMSP are stated using a set of machines M and a set of jobs J. For every
job j € J, we have a due date d; denoting its latest acceptable completion time and a set
of eligible machines M; C M on which the job can be processed. The processing time
pji of each job j € J depends on the machine k£ € M on which it is executed. Further,
setup times s;;;, are defined for any pair of jobs 7 and j that are consecutively scheduled
on a machine k. Additionally, an initial setup time s¢;;, is required before the execution
of job j can begin when it is scheduled as the first job on machine k. Analogously, a
clearing time s;qy, is required after the execution of job j, if it is the last scheduled job
on machine k.

A solution to a PMSP assigns a schedule for every machine k, which is represented by a
permutation of a subset of all jobs J. If a job i occurs directly before another job j in the
schedule for machine k, then i is called the predecessor of j (and j is the successor of 7).
Since the solution representation of the schedule is sequence-based, the completion times
of the jobs can be computed as follows: The completion time C; of a job j is the sum
of the predecessor’s completion time Cj, the appropriate setup time s;;, and the job’s
processing time pj;. If a job is the first in its schedule, its completion time is defined by
the initial setup time sg;; plus its own processing time pj;. Furthermore, the tardiness
of a job is defined to be the difference between its completion time and its due date

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

PARALLEL MACHINE SCHEDULING

(Tj := max(0,Cj — dj)). The machine span Oy, for a machine k is set to the completion
time of the job [which is scheduled last plus the final clearing time s;p;. Note that the
final clearing times only affect the machine spans, but not the completion times of jobs.
Finally, the makespan Ci,q. is defined to be equal to the maximum of all machine spans.

Graham et al. [1979] propose a three-field «|3|y notation to categorise variants of the
PMSP, where «, 8 and v describe the machine environment, additional constraints and
the solution objectives, respectively. The machine environment for PMSPs typically
consists of identical machines (P,,) or unrelated machines (R,,). Because we are dealing
with an environment consisting of unrelated machines, the problem we investigate can,
therefore, be characterised as Ry,|s;jk, Mj|Lex(X;(T}), Cmaz). The objective function
Lex(X;(T;),Cpmaz) in this case means that both tardiness and makespan should be
minimised, with the tardiness being incomparably more important than the makespan
(i.e. the objectives are lexicographically ordered). This particular problem variant can be
seen as a generalisation of the basic PMSP with identical machines (Pp,||Ciuqaz), which
has been shown to be NP-hard even with only two machines (see Garey and Johnson
[1979)).

2.1 Related Work

PMSPs have been the subject of thorough research in the past, and two surveys by
Allahverdi et al. [2008] and Allahverdi [2015] give an overview of the related literature.
Sequence-dependent setup times on unrelated machines have been described for many
problems that have been studied in the literature. A well-known problem in this area is, for
example, the Unrelated Parallel Machine Scheduling Problem with Sequence-Dependent
Setup Times, aiming to minimise the makespan (R, |sijk|Crmaz)-

Among the first to investigate this problem variant is Al-Salem [2004], who proposes a
Partitioning Heuristic as solution method and Rabadi et al. [2006] who tackle the problem
using a Meta-Heuristic for Randomised Priority Search. Arnaout et al. [2010] propose an
Ant Colony Optimisation algorithm, which they further improved later (Arnaout et al.
[2014]). Vallada and Ruiz [2011] propose Genetic Algorithms for the problem and create a
set of benchmark instances for their experiments. Avalos-Rosales et al. [2015] propose two
new mathematical formulations and a Variable Neighbourhood Descent meta-heuristic.
They show that their proposed MIP models outperform existing models on the set of
benchmark instances provided by Vallada and Ruiz [2011]. More recent contributions
include Santos et al. [2019] who use Stochastic Local Searches on Vallada’s instances.
They find that Simulated Annealing offers good performance over all evaluated instance
sizes. Tran et al. [2016] apply both Logic-based Benders Decomposition and Branch and
Check as exact methods for solving the problem. Gedik et al. [2018] propose a Constraint
Programming formulation of the problem, leveraging the benefits of interval variables.
Fanjul-Peyro et al. [2019] propose a new MIP model for the problem and an algorithm
based on mathematical programming. They replace the sub-tour elimination constraints
in the MIP model from Avalos-Rosales et al. [2015] by constraints adapted from previous

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.1. Related Work

TSP formulations. This results in a more efficient mathematical formulation for the
problem which does not compute all of the jobs’ completion times. Other contributions for
this problem variant include a Tabu Search approach (Helal et al. [2006]) and Simulated
Annealing (Ying et al. [2012]).

PMSPs that include machine eligibility constraints have been considered several times in
the literature. Rambod and Rezaeian [2014] consider a PMSP with sequence-dependent
setup times and machine eligibility constraints that focuses on minimising the makespan
(Rmn|sijk, Mj|Crnaz). Additionally, they include the likeliness of manufacturing defects
in their objective function. Afzalirad and Rezaeian [2017] minimise a bi-criterion ob-
jective consisting of mean weighted tardiness (MWT) and mean weighted flow time
(MW FT) in a PMSP with sequence-dependent setup times and machine eligibility. They
assume different release times of jobs (r;) and precedence constraints (prec) among jobs
(R |sijis My, rj,precl MWT, MW FT). Afzalirad and Rezaeian [2016] try to minimise the
makespan for a similar problem where the execution of jobs requires additional resources
(res) with limited availability (R, |sijk, Mj,rj, prec, res|Cpaz). Bektur and Sarag [2019]
consider a problem variant similar to the one we investigate in this thesis, where they
minimise the total weighted tardiness. Additionally, they require the availability of a
single server (S1) to perform the setups between jobs (Ry,|sijk, Mj, S1|Xj(w; - T;)). Chen
[2006] considers a problem with machine eligibility, where fixed setup times are only
required if two consecutive jobs produce different product families. Their objective is
to minimise the maximum tardiness of all jobs. Afzalirad and Shafipour [2018] try to
minimise the makespan in a PMSP with machine eligibility and resource restrictions and
assume that setup times are included in the processing times.

The problem statements most closely resembling the problem considered in this thesis
are studied by Caniyilmaz et al. [2015], Adan et al. [2018] and Perez-Gonzalez et al.
[2019]. All three papers use Sequence-dependent setup times, due dates and machine
eligibility constraints. However, each of these papers focuses on the minimisation of a
slightly different objective function.

Caniyilmaz et al. [2015] try to minimise the sum of makespan and cumulative tardiness
(Crnaz + 2;T;). They implement an Artificial Bee Colony algorithm and compare its
performance against a Genetic Algorithm on a real-life instance originating from a quilting
work centre. This most closely resembles our objective of minimising tardiness as the
primary target and makespan as the secondary target. Adan et al. [2018] try to minimise
a three-part objective function, consisting of a weighted sum of total tardiness, setup
times and processing times (« - ;T + - Xjkpjk + ¥ - Zijksiji), where a, 8 and 7 are
weights. This objective function coincides with our objective function when there is only
a single machine available and the weights are chosen appropriately. They implement
a Genetic Algorithm very similar to the one described by Vallada and Ruiz [2011] and
apply it to three real-life datasets. Perez-Gonzalez et al. [2019] also consider a problem
that is similar to the problem investigated in this thesis, but they only take the tardiness
of jobs into consideration and disregard the makespan. Furthermore, they propose a MIP
model for their problem which is based on the mathematical formulation from Vallada

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.

PARALLEL MACHINE SCHEDULING

and Ruiz [2011], along with five different constructive heuristics and an immune-based
meta-heuristic. They are the first to create a dataset that is available for other researchers.

In summary, we can see that a large variety of PMSPs has been studied in the past.
However, the particular problem variant that considers a lexicographically ordered
minimisation of total tardiness and makespan under machine eligibility constraints and
sequence-dependent setup times has, to the best of our knowledge, not been investigated
yet.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

CHAPTER

Mixed-Integer Programming
Approaches

In this Chapter, we review Mixed-Integer Programming models for related Parallel
Machine Scheduling Problems from the literature and adapt them to be applicable to
our problem formulation. We adapt the model proposed by Perez-Gonzalez et al. [2019]
for the Rm\sijk,Mj\EjTj problem by constraints regarding the makespan as well as
explicitly modelled constraints for machine eligibility. Additionally, we adapt one of
the models proposed by Avalos-Rosales et al. [2015] for the Ry,|sijk|Cmas problem by
machine eligibility constraints and the calculation of tardiness. Furthermore, we replace
one of the constraint sets in the latter model with another formulation found in the
related literature to derive additional models.

3.1 Extended MIP Models from the Related Literature

In their work, Perez-Gonzalez et al. [2019] propose a mathematical formulation for a
similar Parallel Machine Scheduling Problem that is based on the model described by
Vallada and Ruiz [2011]. As their objective function does not consider the makespan, their
model does not include corresponding constraints. Therefore, we extend their proposed
model by constraint sets (3.5) and (3.8), to calculate the makespan (which includes the
clearing times). The variables used in the formulation are described in Table 3.1. The
set Jp includes in addition to all jobs a dummy job (0), that represents the start and
end points of each machine schedule. The predecessor of the first job assigned to each
machine is set to be the dummy job. Similarly, the successor of the last job assigned
to each machine is set to be the dummy job. X ;,, are binary decision variables which
are set to 1 if and only if job j is scheduled directly after job i on machine m (and 0
otherwise). C} , denotes the completion time of job j on machine m and variables T}

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3. MIXED-INTEGER PROGRAMMING APPROACHES

represent the tardiness of job j. Cjqz is set to the total makespan which includes the

clearing times.

Parameter \ Additional Information \ Description

J — Set of Jobs

Jo - Set of Jobs, including Dummy Job 0

M — Set of Machines

E; jeJ,E; C M Eligible Machines of job j

d; jedJ Due Date of job j

Djm jedJ,meM Processing Time of job j on machine m

Si.5.m 1, € Jo, me M Setup Time between jobs ¢ and j on machine m
’ Variable \ Additional Information \ Description

Xijm 1,j € Jo, me M Job i is the predecessor of job j on machine m

Cjm je€do,meM Completion time of job j on machine m

T} jedJ Tardiness of job j

Chrnax — Makespan

|4 - Large Constant, e.g. Upper Bound for Makespan

Table 3.1: Variables Used in MIP Models M1 and M2

The resulting model M1 can be stated as follows:

minimise Lex(Xje(T;), Cmaz), subject to

szCj,m—dj,VmeM,jEJ

YmeMmBicty,iziXijm = 1,Vj € J

EmEszGJo,i;éin,j,m <1LVielJ

YictoXojm < 1,Yme M

YmeM i Jo,i#j Xijm = SmeM25icJo,iAj Xjim, V) € J

EkEJo,kii(Xk,i,m) > Xi,j,m7Viaj € Jvm € Mal 7&]

Cj7m +V. (1 — Xi,j,m) > Ci’m + Sij,m +pj7m,Vi eJdo,jedmeM,i#j

10

(3.2)

(3.3)

(3.4)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.1. Extended MIP Models from the Related Literature

YicsoBjedo (8ijm + Pim) < Cmaz, Vm € M (3.8)
Com = 0,Ym € M (3.9)
Xijm€{0,1},Vi,j e Jme M (3.10)
T;>0,Vj€J (3.11)

Cim > 0,Ym € M (3.12)

Constraint set (3.1) binds the tardiness of each job. Constraint set (3.2) ensures that
every job has exactly one predecessor and is scheduled on one machine, while constraint
set (3.3) restricts every job to have only one successor. They are not instantiated for the
dummy job, because it is shared over all machines and thus can have multiple predecessors
(successors) in the solution. Constraint set (3.4) restricts every machine to schedule at
most one job at position one. Constraint set (3.5) forces each job (except for the dummy

job) to have a single predecessor and successor on the machine where it is scheduled.

Constraint set (3.6) checks that if a job j is scheduled after another job i on the same
machine, then i has at least one predecessor as well. Constraint set (3.7) calculates the
completion time Cj ,, for every job j on machine m. Note that V' - (1 — X ;) evaluates
to 0, if job ¢ is the predecessor of job j on some machine. Otherwise, it evaluates to V'
and thereby fulfils the inequality. Given that every job has a processing time greater than
zero on every machine, constraint set (3.7) also enforces sub-tour elimination regarding
the predecessor relations. Constraint set (3.8) calculates the makespan which includes
the clearing time after the final job. Constraint set (3.9) forces the completion time of
the dummy job to be 0 on every machine. Constraint sets (3.10) to (3.12) restrict the
domains of the decision variables.

Note that constraint set (3.2) does not ensure that jobs are scheduled on one of their
eligible machines. Instead, the original model from Perez-Gonzalez et al. [2019] handles
machine eligibility by assigning very high processing times to the jobs on their ineligible
machines. Machine eligibility can be included directly in the model by replacing constraint
set (3.2) by constraint sets (3.13) and (3.14). We refer to the resulting model as M2.

Ymer; Yiedo,izj Xigm = 1,Vj € J (3.13)

YimeM\E; Zie o izj Xijm = 0,Yj € J (3.14)

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

3.

MIXED-INTEGER PROGRAMMING APPROACHES

12

Constraint set (3.13) ensures that every job is scheduled on exactly one of its eligible
machines, while constraint set (3.14) prohibits the jobs from being scheduled on any
other machine.

Avalos-Rosales et al. [2015] propose new mathematical formulations for the problem
described by Vallada and Ruiz [2011]. Most notably, they include a new set of binary
decision variables Y}, to describe whether or not job j is scheduled on machine m
and they additionally introduce the notion of machine spans. Further, they replace the
decision variables for the completion time C} ,, of job j on machine m by the variables
C;.

In addition to the above-mentioned models M1 and M2, we extend the model proposed by
Avalos-Rosales et al. [2015] to our problem statement to derive alternative mathematical
formulations. These extensions include machine eligibility, due dates and the incorporation
of final clearing times.

The resulting model M3 can be stated as:

minimise Lex(Xje(T}), Crmaz), subject to

Emem(Yjm) =1,Vj € J (3.15)

Yicto,izi(Xijm) = Yjm,Vi € Jme M (3.16)

EjeJo,i;éj(Xi,j,m) = 1/;7m,v2. (S J,m cM (317)

Ci>Ci+Sijm+pjim+V- (Xi,j,m —1)Wiedy,jeJmeM (3.18)

Yies(Xojm) < 1,Yme M (3.19)

ZiEJo,jEJ,iij(Si,j,m : Xi,j,m) + EieJ(pi,m : Y;,m + Si,0,m ° Xi,O,m) < Cmamavm eM (320)

T; > C;—d;,Vj€J (3.21)

T; >0,¥jeJ (3.22)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.1. Extended MIP Models from the Related Literature

Co=0 (3.23)
Yim €{0,1},Vj € Jme M (3.25)

Constraint set (3.15) ensures that every job is scheduled on exactly one machine. Con-
straint sets (3.16) and (3.17) ensure that every job has predecessors and successors on a
machine if and only if the job is scheduled on this machine. Constraint set (3.18) connects
the completion time for each job to its predecessors. Constraint set (3.19) ensures that
there is at most one first job on each machine. Constraint set (3.20) binds the machine
span for each machine by summing up the setup times between its scheduled jobs and
their processing times. Constraint sets (3.21) and (3.22) involve the tardiness of each
job and force it to be non-negative. Constraint (3.23) sets the dummy job’s completion
time to 0. Constraint sets (3.24) and (3.25) enforce that variables X ;,,, and Y; ,,, have a
binary domain.

This model once again incorporates machine eligibility via penalisation of the corre-
sponding processing times. To explicitly model machine eligibility in the formulation,
constraint set (3.15) can be replaced by constraint sets (3.26) and (3.27). The resulting
model is labelled M4.

e, (Yim) = 1,Vj € J (3.26)

Constraint set (3.26) ensures that every job is scheduled on exactly one of its eligible
machines, while constraint set (3.27) prohibits jobs from being scheduled on any non-
eligible machines.

Helal et al. [2006] use a different formulation for constraint set (3.18) which aggregates the
machines via sums instead of instantiating the constraints for every machine. Replacing
constraint set (3.18) in models M3 and M4 by constraint set (3.28) result in models M5
and M6.

Cj > C;+ EmeM(Xi,j,m . (Si,j,m +pj7m)) +V. (EmeM(Xi,j,m) — 1),V’L' e Jy,j€J (3.28)

The implementation of models M1 - M6 and their effectiveness will be discussed in
Section 5.2.1.

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Meta-Heuristic Approaches

In addition to the Mixed-Integer Programming formulations, we propose several Simulated
Annealing variants to quickly find high-quality solutions for large instances as they appear
in the real world. We first describe how initial solutions for local search can be generated
in Section 4.1. Afterwards, we propose neighbourhood operators for the PMSP in
Section 4.2, and finally, we describe three Simulated Annealing variants in Section 4.3.

4.1 Constructing Initial Solutions

One way to create an initial solution for local search is to randomly assign jobs to
machines. We can do this by selecting one of the eligible machines for each job randomly
and then scheduling all jobs in random order on the selected machines.

An alternative to using a random construction of initial solutions is to greedily build
an initial schedule. In our case, we propose a constructive greedy heuristic which aims
to minimise both tardiness and makespan as follows: First, we order the set of jobs in
ascending order by the due dates. Afterwards, we process the ordered jobs and schedule
one job after the other on one of its eligible machines. To decide which machine should
be selected for a job, the greedy heuristic compares the total machine spans that would
be caused by each of the feasible machine assignment and finally selects the assignment
that leads to the lowest machine span (ties are broken randomly). If multiple jobs exist
that have exactly the same due date, we will compare possible machine assignments for
all of these jobs in a single step instead of processing them in random order. In such a
case we then also select the job to machine assignment that leads to the lowest increase
in machine span. The detailed pseudo-code for this heuristic can be seen in Algorithm 1.

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4. META-HEURISTIC APPROACHES
Algorithm 1 Constructive Heuristic (CH)
1: function CONSTRUCTSOLUTION(Jobs, Machines)
2 for all m € Machines do
3 Schedule,, <+ empty schedule > initialise empty machine schedules
4: tm <0 > set machine span to 0
5: Im <0 > set last scheduled job ID to 0 (no job) at first
6 end for
7
8 G + sort and group Jobs by due dates
9: for all g € G do
10: while |g| > 0 do
11: Jym < argminge, e (tn + S1,im + Pin) > find job/machine resulting in lowest
machine span
12: tm <t + Slpjm + Dim
13: I, 7
14: Schedule,,. APPEND(j) > schedule job j on machine m
15: g« 9\ {j}
16: end while
17: end for
18: end function
4.2 Search Neighbourhoods
In this section, we introduce the neighbourhood relations that we use in our search
method. We begin with the atomic neighbourhoods Shift and Swap, and then we describe
the more complex block moves, called BlockShift and BlockSwap. Finally, we discuss the
general notion of guidance used to bias the random selection toward promising moves.
4.2.1 Shift Neighbourhood
A Shift move is configured to shift a given job j onto machine m at position p. In other
words, the job j is first removed from its original location in the current solution. Any
successor on the associated machine is then shifted by one position towards the front of
the schedule. Finally, job j is re-inserted into the solution at its target position p in the
schedule of machine m. Any job that is present on the target schedule at a later or equal
position is shifted towards the end of the schedule.
We call a shift move an intra-machine shift move if job j is already scheduled on machine
m in the current solution. Otherwise, if j is currently assigned to a machine different to
m, it is called an inter-machine shift move. An example of an inter-machine shift move
is visualised in Figure 4.1.
Shift moves are validity-preserving as long as the target machine m is eligible for the
selected job j.
16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.2. Search Neighbourhoods

e (1] oo (3])

(a) Before Move Application (b) After Move Application

Figure 4.1: An Example Inter-Machine Shift Move

4.2.2 Swap Neighbourhood

A Swap move swaps the position of two distinct jobs j; and jo» when applied to a
solution. If both jobs are scheduled on the same machine, we refer to such a move as
an intra-machine swap. Otherwise, if jobs are scheduled on different machines, we call
it an inter-machine swap. An example of an inter-machine swap move is visualised in
Figure 4.2.

NTachi . =
Machine 1) %) Macine 1 (o e

(=2}

s (1) —

(a) Before Move Application (b) After Move Application

Figure 4.2: An Example Inter-Machine Swap Move

Note that in the case of inter-machine swaps it is likely that the processing times and
associated setup times from both jobs will change. Furthermore, completion times of
all jobs that are scheduled on the affected machines after the swapped jobs need to be
updated. When performing intra-machine swaps, the processing times of the swapped
jobs do not change. However, the completion times of other jobs on the same schedule
still need to be updated.

To preserve solution validity for swap moves, it has to be ensured that the first job’s
machine has to be eligible for the second job and vice versa.

4.2.3 Block Moves

We introduce the notion of block moves, as a variant of the basic shift and swap neigh-
bourhoods: A block is defined as a set of jobs that are scheduled consecutively on a
single machine. Therefore, a block move operates on a set of jobs instead of a single
job. This concept can be applied to both Swap and Shift moves, leading to two new
neighbourhoods that we call BlockSwap and BlockShift respectively. BlockShift moves
are similar to regular shift moves but include an additional parameter [determining the
length of the block. In turn, every BlockSwap move uses two additional attributes [y and
lo representing the length of the blocks.

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

META-HEURISTIC APPROACHES

18

Block moves are motivated by our real-life application, where usually several jobs process
the same material type and thus are in the best case scheduled consecutively to avoid
any unnecessary setup times. Therefore, moving blocks of jobs at once can be beneficial
to preserve low setup times when searching for neighbourhood solutions. To the best of
our knowledge, using such block moves to approach parallel machine scheduling problems
has not been considered in the literature before.

To be validity-preserving, the target machine of a BlockShift move has to be included
in the intersection of all eligible machine sets of the affected blocks. For intra-machine
BlockSwap moves, the blocks may not overlap and the second block’s machine has to be
contained in the intersection of the eligible machine sets of all jobs in the first block and
vice versa.

4.2.4 Guidance in Random Move Generation

As customary for many practical scheduling problems, the size of the search neighbourhood
becomes tremendously large for real-world instances. Therefore, it might be infeasible
to explore all possible neighbourhood moves in reasonable time and the probability of
randomly guessing an improving move usually is very low. Thus, it can be beneficial
to introduce problem-specific strategies that guide neighbourhood exploration towards
promising areas in the search neighbourhood. The general idea is to preferably select
moves affecting jobs and machines that are currently involved in constraint or soft
constraint violations.

Santos et al. [2019] propose a guidance strategy for their Simulated Annealing approach
that focuses on reducing the makespan. They point out that a move can only improve the
makespan if it involves the machine with the longest machine span. For this reason, they
generate moves where at least one of the involved machines is fixed to be this machine,
in addition to randomly generated moves.

Similarly, in our problem, the tardiness of a solution can only be improved if a tardy job
is either rescheduled at an earlier time, or its predecessors are shifted to other machines
or later positions. Therefore, we propose a move selection strategy that is biased towards
moves that shift tardy jobs to earlier positions in the schedule as follows: Whenever a
tardy job exists in the schedule, either the job itself or one of its predecessors is selected
randomly. Otherwise, if no tardy job exists, any random job is chosen. Additionally, in
case of an intra-machine (block) shift move we restrict the target position to be earlier
in the schedule than the source position. The detailed procedure to select a job that if
moved can improve tardiness is described in Algorithm 2.

To generate the moves we include, in addition to a completely random move generation,
both the makespan guidance and the tardiness guidance strategies. One of the mentioned
generation strategies is chosen during a search iteration based on random probabilities
that are configured by parameters.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.3. Simulated Annealing

Algorithm 2 Job Selection Procedure Aiming to Minimise Tardiness

: function P1ckJOBTOIMPROVETARDINESS(M)
for i «+ | M| until 1 do > iterate backwards over all job positions scheduled on machine M
J = Mli]
if T; > 0 then
k < RANDOM(L, %) > select the tardy job or one of its predecessors
return M|k]
end if
end for
i «+ RanpboMm(1, |M]) > no tardy job could be found: pick one at random
10: return M|i]
11: end function

4.3 Simulated Annealing

Simulated Annealing is a meta-heuristic procedure which is inspired by the cooling

processes appearing in metallurgy and has first been proposed by Kirkpatrick et al. [1983].

The main idea is to generate random neighbourhood moves and determine the probability
of move acceptance based on the change in solution quality caused by the move. Moves
that lead to an improved objective function or no change in solution cost are accepted in
any case. To determine whether or not a move that weakens the solution quality should
be accepted, the notion of temperature is used. Simply put, the higher the temperature,
the higher is the probability to accept also worsening moves. As the search goes on, the
temperature lowers its value according to some cooling scheme and eventually reaches
values close to zero. Towards the end of search Simulated Annealing therefore evolves
into a Hill-Climber as only improving moves are accepted.

In the remainder of this section, we propose three different variants of Simulated Annealing
with different cooling schemes.

4.3.1 Reheating Simulated Annealing (SA-R)

This variant uses a geometric cooling scheme, i.e. t;11 := t; - &, where the cooling rate «
is a predefined constant. At each temperature, a number of moves N; is generated before
the next cooling step is applied. To determine the neighbourhood from which to sample
the next move, we use a set of hierarchical probabilities (ps, ps, and pg). When the
next move is determined to be a block move, we determine its size by uniformly sampling
from the set {2, ..., By }. Further options for move generation are whether or not to
enable guidance towards minimising tardiness or makespan. This is again handled by
corresponding probabilities, pr and pj;.

If the generated move improves the solution, it is accepted immediately. The probability of
accepting a non-improving move is calculated via eq. (4.1) where § denotes the cumulative
weighted delta cost introduced by the move and t. is the current temperature. Since
improving moves are accepted unconditionally, only positive values for ¢ can occur in this

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

META-HEURISTIC APPROACHES

20

formula. It should be noted that higher values for § lead to lower values in the exponent
and thus lower acceptance probabilities.

pi=e te (4.1)

When the algorithm reaches its minimum temperature T,;,, a reheat occurs and its
temperature is set to the initial temperature T},q:. Execution stops when a time limit is
reached. The pseudo-code for Reheating Simulated Annealing can be seen in Algorithm 3.

Algorithm 3 Simulated Annealing with Reheating

1: function SA-R(Solution)
2: ¢ < Solution

3 b« c

4: te < Th

5: while —timeout do
6

7

8

9

for ¢ < 0 until Ny do
x <~ GENERATENEIGHBOUR(c)
if ACCEPT(X, t.) then
: C<— T
10: if Cost(z) < CosT(b) then
11: b=z
12: end if
13: end if
14: end for
15: te <t «
16: if t. < T,in then
17: t. < 1o > reheat if the minimum temperature is reached
18: end if
19: end while
20: return b
21: end function

The parameters for this variant of Simulated Annealing are the following:

® T q.: Initial Temperature

® T in: Minimum Temperature
e Ng: Samples per Temperature
e «a: Cooling Rate

e pr: Probability of generating inter-machine moves (as opposed to intra-machine
moves)

e pg: Probability of generating shift moves (as opposed to swap moves)

e pp: Probability of generating block moves (as opposed to single-job moves)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.3. Simulated Annealing

e pr: Probability of applying tardiness guidance in the move generation
e pys: Probability of applying makespan guidance in the move generation

® B4.: Maximum size of blocks to generate

4.3.2 Simulated Annealing with Dynamic Cooling (SA-C)

This variant tries to continually adapt its cooling rate in such a way that the minimum
temperature is reached at the end of the algorithm’s time limit. Therefore, an estimate
of how many iterations can still be done within the time limit is calculated after each
iteration. Before every cooling step, the current cooling rate «; is computed according to
eq. (4.2), where x is the number of cooling steps left, T, and t. are the minimum and
current temperature respectively. Pseudo-code for this dynamic cooling procedure can
be seen in Algorithm 4.

Q= ' (4.2)

Algorithm 4 Dynamic Cooling Procedure

1: function COOLOFF(¢.)

2 1 + number of iterations done
3 e < elapsed time

4: 7 <= remaining time

5: I+ é -1 > estimate number of remaining iterations
6: g e

7 a4 \l/a
8: return ¢, - «

9: end function

In order to minimise the time spent in high temperatures, we further apply a cut-off
mechanic. This counts the number of accepted moves at every temperature and forces an
immediate cooling step if a specified threshold N, is exceeded. This threshold is often
specified as ratio p = % and a typical value is 0.05. Overall, SA-C requires the same set
of parameters as SA-R, except for a, which is replaced by p. The pseudo-code for SA-C
can be seen in Algorithm 5.

4.3.3 Simulated Annealing with Iteration Budget (SA-I)

This variant uses a constant cooling rate to determine the temperature for each iteration.
In addition to a time limit, it uses a fixed iteration budget Z to limit its run time.

The idea is to choose the value for Z is to estimate the possible number of iterations
within the given time limit, based on the execution speed of sample iterations on the
benchmark machine (in our experiments, we set Z to 185 - L, where L is the time limit
in milliseconds). The provided iteration budget is split evenly over the temperatures,

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4. META-HEURISTIC APPROACHES
Algorithm 5 Simulated Annealing with Dynamic Cooling
1: function SA-C(Solution)
2: ¢ < Solution
3 b+c
4: te < Th
5: while —timeout do
6 ng < 0
7 ng < 0
8 while ng, < Ng An, < N, do > apply cut-off if N, is exceeded
9: 2 + GENERATENEIGHBOUR(c)
10: if ACCEPT(X, t.) then
11: c<x
12: if Cost(z) < CosT(b) then
13: b+ =x
14: end if
15: Ng ¢ Ng + 1 > increase the counter of accepted moves
16: end if
17: ng < ng+1 > increase the counter of generated moves
18: end while
19: t. + COOLOFF(t.)
20: end while
21: return b
22: end function
such that the minimum temperature is reached when its iteration budget is exhausted.
As such, the number of samples per temperature is defined as the value of a function
depending on the maximum and minimum temperature, which can be seen in eq. (4.3).
z
P — 4.3
T log, (min) 3
Once again, we apply the same cut-off mechanism as in SA-C. Since the cooling rate
is adjusted differently than for SA-C, this may cause the temperature to fall below the
actual minimum temperature. Due to N, being calculated directly by SA-I, it does not
have to be provided as a parameter. However, the cooling rate « has to be stated as a
parameter for SA-I. Pseudo-code for SA-I can be seen in Algorithm 6.
22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.3. Simulated Annealing

Algorithm 6 Simulated Annealing with Iteration Budget

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

1
2
3
4:
5:
6
7
8
9

: function SA-I(Solution)
: ¢ + Solution

b+c

te + Tp

N, Z

log,, (72t
c+ 0
while —timeout A c <Z do > terminate when the iteration budget is exhausted
c+—c+1
ng <0
ng < 0
while ng < Ny An, < N, do
x <~ GENERATENEIGHBOUR(c)
if ACCEPT(X, t.) then
c T
if CosT(z) < Cost(b) then
b+ =x
end if
Ng — Ng + 1 > increase the counter of accepted moves
end if
ng < ng+1 > increase the counter of generated moves
end while
te +—t.
end while
return b
end function

> apply cut-off if N, is exceeded

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Experimental Evaluation

In this Chapter, we propose a random instance generator for the problem under investi-
gation and use it to generate a large set of instances. Automated parameter tuning is
performed for the meta-heuristics described in Chapter 4 using a subset of the generated
instances. We use another subset of the generated instances for conducting computational
experiments with the meta-heuristics and the Mixed-Integer Programming formulations
described in Chapter 3 and give a detailed evaluation of the results. Additionally, we
use instances from the related literature and show that our approaches improve the
state-of-the-art approaches.

5.1 Instances

To evaluate the proposed approaches, we perform a large number of experiments with a
set of randomly generated instances, a set of real-life instances, and instances on a related
PMSP from the literature. In Section 5.1.1, we provide information on our instance
generator before we describe the set of randomly generated instances in Section 5.1.2.
Later in Section 5.1.3, we present the real-life instances that have been provided to us
by our industrial partner. Additional information on the problem instances from the
literature are given in Section 5.1.4.

5.1.1 Instance Generator

To describe the generation of instances we use the notion of materials, as our real-life
problem data determines the setup times using materials instead of jobs. As every job
processes a single material, converting a given material-based setup time matrix into a
job-based setup time matrix is a simple preprocessing step. The main reason for this kind
of specification of the setup times is to reduce space requirements of the instance files. A
similar instance format has also been used previously in the literature (e.g. Caniyilmaz
et al. [2015]).

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EXPERIMENTAL EVALUATION

26

To create a large pool of instances we implement a random instance generator which
is configured by parameters that specify the desired instance size (i.e. the number of
machines, materials and jobs) as well as a random seed. This instance generator is based
on a similar one proposed by Vallada and Ruiz [2011], but we extend it to include also
the generation of machine eligibility constraints and due dates. The detailed pseudo-code
is provided in Algorithm 7.

The processing time of each job on each machine and the setup time between every pair
of materials are drawn from uniform distributions [1, 100) and [1, 125) respectively. Setup
times between two jobs sharing the same material is set to zero.

Exactly one material is assigned to each job as follows: At first, one job after the other
gets matched to an unused material until every material has been assigned exactly once.
Afterwards, a randomly selected material is assigned to any job that has not been matched
to a material yet. Thus, no two jobs will process the same material if the number of jobs
is lower or equal to the number of materials.

For every job, the corresponding set of eligible machines is determined in the following
way: First, the eligible machine count m is sampled from a uniform distribution [1, M],
where M is the total number of machines. Then, the set of available machines is sampled
m times without replacement to determine the eligible machines for the job.

We further use three different procedures to assign randomly due dates to create different
sets of instances.

In the first two procedures, the due dates are determined by constructing a reference
solution for the problem and afterwards setting the scheduled completion time of each
job as the corresponding due date. Thus, it is ensured by construction that a feasible
schedule exists for every generated problem instance even though the generated reference
solution may not be optimal with respect to makespan. The construction of such a
reference solution consists of the following steps (see Algorithm 7, lines 34 - 44): First,
we determine a random order of jobs in which we will schedule them one after the other.
Then, for every job we randomly select one of its eligible machines according to an
independently specified selection strategy. The job is then appended to the selected
machine’s schedule and the job’s due date is set to its completion time based on the
current schedule.

Our first due date generation procedure (S-style) constructs a solution as described above
with the use of a random machine selection strategy.

The second due date generation procedure (T-style) also constructs a reference solution
but aims to obtain tighter due dates through the use of an alternative greedy machine
selection heuristic (see Algorithm 8). This alternative strategy greedily selects the
machine that causes the lowest setup time when the corresponding job is scheduled.

The third due date generation procedure (P-style) does not rely on constructing a
reference solution but assigns random due dates by sampling the values from a uniform
distribution [Cyaq - (1 = 7 — R/2), Cppas - (1 — 7+ R/2)]. The variables 7 and R in this

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.1. Instances

case are parameters determining the tightness and variance of the generated due dates.
For the calculation of the approximate makespan émax, we use the formula suggested by
Perez-Gonzalez et al. [2019] (see eq. (5.1)). Similar approaches to randomly sample due
dates have been used by Potts and Wassenhove [1982], Chen [2006] and Lee et al. [2013].

Sic (51

(5.1)

A

5.1.2 Generated Instances

Using the previously described instance generator, we generated 560 instances that can
be separated into six different categories. The instances of each category have been
generated with a differently configured random instance generator (see Table 5.1).

S-Style Due Dates

T-Style Due Dates

P-Style Due Dates

Unique Materials

110

110

60

Shared Materials

110

110

60

Table 5.1: Number of Generated Instances per Category

When every job in an instance is assigned to a different material (i.e. no pair of jobs use
the same material), then the instance is classified as using Unique Materials. In this case,
between any pair of jobs, the setup time is greater than zero. This is the case commonly
found in the literature.

Instances with less materials than jobs are classified as using Shared Materials because at
least one material is shared between multiple jobs. As mentioned earlier, in such a case
the setup time between pairs of jobs is zero, because no change in tooling is required.
This reflects the structure observed in real-life instances.

Two of the three due date generation variants use heuristics to arrive at reference solutions

from which we can derive the due dates (a random selection procedure and Algorithm 8).

For the third due date generation procedure, we set the parameters 7 = 0.25 and R = 0.5,

to generate instances that are unlikely to have zero-cost solutions with respect to tardiness.

We sample the input parameters for our instance generator (i.e. the number of jobs,
machines and materials) from the uniform distributions described in Table 5.2. For
instances with shared materials, both the number of jobs and number of materials are
sampled separately from a uniform distribution. For instances with unique materials, the
number of materials is set to be equal to the number of jobs. The bounds for the value
ranges have been chosen to generate instances with realistic size.

As our meta-heuristic approaches rely on a number of parameters, we use the automated
parameter configuration tool SMAC to find efficient parameter configurations. To avoid
over-fitting of the tuned parameters on the instances we use in our experiments, we

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.

EXPERIMENTAL EVALUATION

[\
co

Algorithm 7 Instance Generator

1: function GENERATEINSTANCE(NumMachines, NumMaterials, NumJobs)
2: Machines < list from 1 to NumM achines

Materials < list from 1 to NumMaterials

Jobs <« list of jobs from 1 to NumdJobs

n < UNIFORMRANDOM(1, NumMachines + 1)

3

4

5:

6: for i «+ 1 until NumJobs do

7.

8 E < select n random elements from Machines

9: p < empty dictionary

10: for all m € E do

11: processingTime < UNIFORMRANDOM(1, 100)

12: p.ADD(m, processingTime)

13: end for

14: t + select element from Materials

15: Jobsli].eligible M achines < E

16: Jobsi].processingTimes < p

17: Jobs|i].material + t

18: end for

19:

20: SetupTimes < array with dimensions (NumMaterials + 1) x (NumMaterials + 1) X
(NumM achines)

21: for all pred € Materials U {0} do

22: for all succ € Materials U {0} do

23: for all m € Machines do

24: if pred = succ then

25: st <0

26: else

27: st <= UNIFORMRANDOM(1, 125)

28: end if

29: SetupTimes[pred, succ,m] = st

30: end for

31: end for

32: end for

33:

34: S < empty dictionary
35: for all m € Machines do

36: S.ADD(m, empty schedule)

37: end for

38:

39: for all j € SHUFFLE(Jobs) do > Determine the Due Dates
40: m <— SELECTMACHINE(j)

41: S[m].APPEND(j)

42: ¢ < completion time of j on S[m)|

43: j.dueDate = ¢

44: end for

45:

46: return NEWINSTANCE(M achines, Materials, Jobs, SetupTimes)

47: end function

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.1. Instances

Algorithm 8 Greedy Machine Selection

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:

function SELECTGREEDYMACHINE(j)
m < null
s4+0
for all e € j.eligibleMachines do
1 < ID of last scheduled job on e or 0 if the schedule is empty
t + SetupTimesli, j, m] > SetupTimes as defined in Algorithm 7
if (m =null) v (t < s) then
st
m<e
end if
end for
return m
end function

split the 560 randomly generated instances into a training set for parameter tuning
and a validation set that is used in our final experimental evaluation. To create our
training set we uniformly sampled 90 S-style instances with shared materials and 90
S-style instances with unique materials from the randomly generated instances. Similarly,
we further sampled two sets of 90 instances from the T-style instances. Finally, we also
sampled 40 P-style instances with shared materials and another 40 P-style instances with
unique materials. Our training set therefore consists of 440 instances in total, while the
validation set consists of the remaining 120 instances. Further details on the parameter
tuning are given in Section 5.2.2.

The instance generator and the generated instances are available at http://cdlab-artis.

dbai.tuwien.ac.at/instances/parallel-machine-scheduling.

’ Variable ‘ Distribution Range ‘ Remarks ‘
Number of Machines | [1, 30] Max. % - |Jobs|
Number of Jobs [20, 1000] Step Size: 20
Number of Materials | [1,|Jobs|) Only with Shared Materials

Table 5.2: Ranges for Specifics of Generated Instances

5.1.3 Real-Life Instances

For testing purposes, our industrial partners provided us with three real-life instances

(A7

B and C) that represent planning scenarios from industrial production sites. The

characteristics of these instances can be seen in Table 5.3.

Based on the real-life instances, we further create additional instances as follows. Instances
A and B originally contained due dates that lie in the past and thus included negative
values. Therefore, we created two additional instances (A-fixed, B-fixed) by changing such
due dates to non-negative values. Based on instance C, we further created four additional

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EXPERIMENTAL EVALUATION

30

instances by scaling up instance C (up to 16 times the original size). Additionally, we
include instance C-assigned into our instance set. It uses the same set of jobs and
machines as instance C, but predetermines a machine assignment for each job. Similar
to instance C, we scaled up instance C-assigned to create another four instances. The set
of all real-life based instances used in our benchmark experiments can be seen in the first
Column of Table 5.10.

’ Instance ‘ Machines ‘ Jobs ‘ Materials

A 3 29 29
B 3 187 | 4
C 13 172 | 40

Table 5.3: Real-life Instance Specifics

5.1.4 Instances from the Literature

We evaluate the performance of our meta-heuristics on instances for another PMSP that
has been described by Perez-Gonzalez et al. [2019]. The only difference to the problem
we investigate is that their objective function only considers the minimisation of total
tardiness and does not include the makespan. Since the makespan is the secondary
objective in our problem and thus incomparably less important than total tardiness, we
can directly use our meta-heuristics to approach the problem from Perez-Gonzalez et al.
[2019] by simply ignoring any output on the makespan.

5.2 Computational Results

To evaluate our approaches we performed a large number of experiments based on two
sets of instances. The first set of instances contains 120 randomly generated instances as
well as 14 real-life instances that have been provided to us by an industrial partner. The
second set of instances was previously proposed by Perez-Gonzalez et al. [2019].

5.2.1 Comparison of Mixed-Integer Programming Formulations

We implemented the MIP models described in Chapter 3 with Gurobi 8.1.1. Experiments
with the MIP models were performed on a computer with an AMD Ryzen 2700X Eight-
Core CPU and 16GB RAM.

All six models were evaluated on the 25 smallest generated instances from the validation
set under a time limit of 1800 seconds. Table 5.4 summarises the results for each instance.
The upper values per entry denote the tardiness and the lower values denote the makespan
of the found solution. The best found solutions per instance are highlighted in bold and
asterisks mark proven optimal solutions.

!The instances we use in our experiments have been kindly provided to us by the authors

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Computational Results

It can be seen that the models with explicitly modelled machine eligibility constraints (M2,
M4, and M6) are able to provide solutions for more instances than their counterparts
that rely on pre-processed data. In fact, models M2 and M6 are able to provide
solutions for all 25 instances, while M4 can provide solutions for all instances except
one. Interestingly, the solutions found by M1 exhibit often higher quality than the
corresponding solutions found by M2. This is not the case when comparing models
M3 and M5 with their counterparts M4 and M6. The novel model adaptation M6
that we described in Chapter 3 is able to find the best solutions for 14 instances. Nine
of these instances are P-style instances, four are S-style and one is a T-style instance.
M4 provides the best solution two times for P-style instances, three times for S-style
instances and four times for T-style instances. Further, M4 is able to prove optimality
for two solutions, while M6 is able to find one optimal solution. Overall, M4 and M6
provide the best solutions for 22 instances. This indicates that both models outperform
the other in different areas of the instance space.

To calculate the relative performance, we use the Relative Percentage Deviation (RPD)
for every instance I and solution S as defined in eq. (5.2). RPD values have also been
used as a performance measure in publications on related problems (e.g. Vallada and
Ruiz [2011)).

costr s — besty

2
bestr (5:2)

RPD; g :=

Figure 5.1 visualises the RPD values of each model in the form of box plots. In Figure 5.1a,
results for all models except for M3 are presented. Figure 5.1b shows RPD values of
models with explicit machine eligibility constraints and Figure 5.1c shows RPD values
for models M4, M5 and M6. Model M3 is excluded from the comparisons, as it was
unable to solve most instances. Only those instances that could be solved by all compared
models within the time limit are included in the plots to avoid missing values.

Overall, we conclude that models M4 and M6 provide the best results for the majority
of instances in our experiments. The best model depends on the instance characteristics:
For T-style instances, M4 shows the best performance, while M6 produces the best
results for P-style instances.

5.2.2 Comparison of Meta-Heuristic Approaches

Both parameter tuning and benchmark experiments for the meta-heuristics have been
executed on a computer with an Intel Xeon E5-2650 v4 12-Core processor that has 24
logical cores and 250 gigabytes of RAM.

Parameter Tuning

As our methods include various parameters which have an impact on the final results,
we performed automated parameter tuning for each proposed meta-heuristic algorithm

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5. EXPERIMENTAL EVALUATION

[Instance i M1 M2 i M3 M4 i M5 M6
P 13-80-80_1 5620810 12(7)51)5 - 2512205 4627334 12’?'17
P_15-60-60_1 1307996 1334:1 19 14%860 igi 1433203 %5781
P_15-63-80_1 4516586 8991081 - 1499060 12953 259650
P_16-100-100_1 12328 133;2 - 35?56 4559075 25?21;
P_16-180-180_1 - 610973%9 - 728595450 - 417333
P01 || 0| 11T - o s sz
P 18-80-80_ 2 44359,; 5686195 13778 27 2432272 2336283 14(13 g Isl)
P_ 20-180-180_1 - 42902163 - 624105691 - 3:?2;3
P_22-140-140_1 - 214202961 - 1%58432 ’ 1é$?5
Pt | - 1375 - - e
P_3-17-20_1 95222 1507269 2?; %222 %222 1507269
P_7-19-40_1 12 fi 2429074 1495736 2417723 2542199 2520337
P_o180-180_1 - 15861 - - "2645
S_10-120-180_1 - 520486679 - 527999082 - 3312?
S 13100 1 35660 35660 34442 34442 56919 56919

— — 7664 7664 7589 7589 8097 8097

S 138050 2 57 6108 - o o 734
S_15-80-80_3 19(1844 1867819 6134118 328 921 3022
S_22-149-160_1 - 42158833 - 61?772 - 1@1825
S_4-16-20_1 4(?9 X 45)9 % 4(;)9 . 4(?9 * 4(?9 * 4(;)9 *
T_10-24-40_1 3;)3 « 3703 X 53122 3;)3 * 3703 * 44576
T_15-77-80_1 700 818 B aas 51 1t
T_18-56-100_1 215511657 111132635 - 1;32 1686720 1753452
T_20-76-100_1 - 9621376 - 852:) 152333 1512066
T_28-34-100_1 - 2446785 - ;1:,23 - 338
il T - - - a0

Table 5.4: Comparison of Solutions Found by MIP Formulations. Tardiness and makespan

are denoted by the top and bottom values respectively. The best results per instance are

highlighted in boldface and asterisks mark solutions that have been proven optimal by

MIP. Dashes mean that no valid solution was found within the time limit.

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

5.2. Computational Results

16

144

12 4

10+

—_—

M1 4

o
=

[ts]
=

(a) All Models (Except M3)

M6 4

2

0.8 +

0.7 1

0.6

0.5 1

0.4 4

0.3 4

0.2 1

0.1+

0.0 1

M2

(b) M2, M4, and M6

=
=

M6

M4 -

Figure 5.1: RPD Values of MIP Models

0
-

(c) M4, M5, and M6

M6

using Sequential Model-based Algorithm Configuration (SMAC) as proposed by Hutter

et al. [2011].

l [Trmax [Trmin [Ns [pr [ps [pPB [pr [Y4 [Bmaaz [o [p l
Minimum Value 500 0.0001 | 1000 0.0 | 0.0 | 0.0 | 0.0 | 0.0 2 0.75 0.01
Maximum Value | 10000 | 10.0 250000 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 200 0.999 | 1.0
Default Value 1000 0.01 10000 09 |05 |01 01] 0.1 100 0.9 0.05

Table 5.5: Parameter Value Ranges for SMAC

For every Simulated Annealing variant, we started 24 parallel SMAC runs with a wallclock
time limit of 18 hours per run. The initial configurations used for the starting point of
SMAC are based on intuition about plausible parameter values. Table 5.5 shows the
value ranges for all parameters as well as their initial values. The best tuned parameters
from all parallel SMAC runs are listed in Table 5.6.

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.

EXPERIMENTAL EVALUATION

o
i~

l Configuration [Trmax [Trmin [Ns [pr [ps [pPB [pT [Y271 [Bmags [[& [P l
SA-I 5485.42 | 9.17 - 049 | 0.78 | 0.01 | 0.31 | 0.81 100 0.95 | 0.78
SA-C 6188.72 | 5.18 191058 | 0.53 | 0.81 | 0.02 | 0.47 | 0.27 | 32 - 0.42
SA-R 2764.93 | 6.73 20339 0.66 | 0.84 | 0.04 | 0.85 | 0.71 | 26 093 | —

Table 5.6: Configurations Obtained from Automated Parameter Tuning

500

300

|

|
200 | ’ |
ﬂ JRANLN ﬁ &H =========================

Figure 5.2: RPD Values for All Incumbent Configurations

To investigate the robustness of the SA variants against different configurations, we
conducted additional experiments for the so-called incumbent configurations (i.e. the
best found configurations) of each parallel SMAC run. We let every SA variant run
20 times with every incumbent configuration on the validation set. Box plots for the
resulting RPD values can be seen in Figure 5.2. It can be seen that SA-T and SA-R (on
the left and right thirds of the plot respectively) are much more robust against changes
in the configuration than SA-C. Figure 5.3 shows the RPD values for all incumbents,
grouped per SA variant for a clearer visual representation. Inspection of the plot scales
shows that SA-C and SA-R are the least and most robust of the compared SA variants,
respectively. Figures 5.3a and 5.3c show that most configurations result in a very similar
performance for both SA-I and SA-R. However, some configurations lead to significantly
better results than the others. This suggests that both SA-I and SA-R are largely robust
against changes in the configuration, but still have the potential for some optimisation.

Results on Randomly Generated Instances

In this section, we present the results produced by the proposed Constructive Heuristic
(Algorithm 1) and Simulated Annealing variants. For each of the investigated Simulated
Annealing variants, we performed experiments with a randomly constructed initial
solution (R) and initial solutions produced by our Constructive Heuristic (CH). All

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

5.2. Computational Results

3.5

3.0

2.5 1

2.0

1.04

0.5 A i 1 é
0.0 1

600
150
500
125
400
1.00
300
0.75 |
2001 0.50 1
100 ﬁ [5 0.25 g é
Jelala LI 00 el L

(b) Incumbents for SA-C (¢) Incumbents for SA-R

Figure 5.3: RPD Values for All Incumbent Configurations per SA Variant

experiments were performed within a time limit of 60 seconds per run regardless of
the instance size. For SA-I, we set an iteration budget of 11 100 000 iterations, as this
corresponds to the average number of iterations that the other Simulated Annealing
variants performed within the 60 seconds time limit.

Tables 5.7 to 5.9 show the detailed experimental results for all SA variants as tardi-
ness / makespan pairs. The entries represent the low median solution cost found by
the compared algorithms and the best results per instance are highlighted in boldface.
Figure 5.4 further visualises an overview of the relative algorithm performances on the
entire validation set as box plots. As expected, all Simulated Annealing variants are able
to significantly improve the quality of their initial solution (Algorithm 1). Further, we
can see in Figure 5.4b that SA produces significantly better results when starting from a
good initial solution as opposed to a randomly constructed initial solution. Figure 5.4c
shows box plots over the median RPD values per instance for each algorithm. The fact

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

5.

EXPERIMENTAL EVALUATION

36

that the median RPD values are not notably different from the mean RPD values for SA
(CH) indicates its robustness.

Comparing the SA variants with random initial solution, we conclude that SA-R shows a
slightly better performance compared to the other two SA variants. We further observe
that all SA variants produce similar results when starting from a greedily constructed
initial solution.

30000 +

25000 +

20000 A

15000 A

10000 -

5000 A

o4 —— = —_— = — =

T T
T = I = T = S
=) = = -~ = vt
= z < v 2 o
x & < < o <
wi <L Wi S i

w w

(a) Means, Including Solutions from CH

200 1 200 1
0+ 0+

ILh

— =]
T z T z T = T = T = T =
5 = S = <] = S = S = 5} =
= [I g = = < 9 = =
e & b4 x % < I & b £ % <
& £ & P &] < & £ &
& & & &

=
1)
©
jm}
v

(b)

Figure 5.4: RPD Values for SA Variants, with Constructive Heuristic (CH) and Random
Initial Solution (R)

(¢) Medians

For a more detailed evaluation, we divide the instances in the validation set into categories,
according to their due date (S-style, T-style and P-style) and material usage (shared and
unique) characteristics. The mean RPD values for S-style, T-style and P-style instances
can be seen in Figures 5.5 to 5.7 respectively.

Table 5.7 shows that the majority of algorithm runs find solutions for S-style instances
with zero tardiness, which means that the relevant objective in these instances is the

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Computational Results

minimisation of the makespan. As can be seen in Figure 5.5a, all SA variants find solutions
that are significantly better than those provided by the Constructive Heuristic. However,
the solutions created by CH provide a better starting point for SA than randomly
generated solutions, which can be seen in Figure 5.5b. The relative performances of
the SA variants with CH on S-style instances with unique and shared materials can be
seen in Figure 5.5¢ respectively. In both cases, SA-R outperforms the other SA variants
significantly.

Table 5.8 shows that it is harder to find zero-tardiness solutions for T-style than it is for
S-style instances, as many results contain tardiness. The fact that the meta-heuristics
struggle with finding zero-tardiness solutions in combination with the high penalty for
tardiness leads to high RPD values (as can be seen in Figure 5.6). The results regarding
the Constructive Heuristic and random initial solutions are similar to those for S-style
instances. Simulated Annealing is again able to significantly improve solutions provided
by the Constructive Heuristic (see Figure 5.6a) and CH again provides a better starting
point for the search than random solutions (see Figure 5.6b). Interestingly, the compared
meta-heuristics exhibit a much more consistent behaviour on T-style instances with
shared materials than on instances with unique materials, resulting in significantly lower
RPDs (see Figures 5.6¢ and 5.6d).

In contrast to the other instances, there are no guarantees for the existence of solutions
without tardiness in P-style instances. This fact is underlined in Table 5.9, which
shows that the compared meta-heuristics could find zero-tardiness solutions for only
one instance. As almost all found solutions contain tardy jobs, the RPD values are
dominated by the differences in total tardiness. From Table 5.9 we observe that the
difference between solutions in terms of tardiness is usually only a fraction of the best
solution’s tardiness, which leads to the small RPD values that can be seen in Figures 5.7b
to 5.7d. Even though the differences are much less pronounced than for S-style and
T-style instances, it can still be seen that SA benefits from greedily constructed initial
solutions.

Overall, it can be seen that Simulated Annealing is able to produce high-quality solutions
and that it benefits significantly from good initial solutions. Further, we observe that
the performance of the compared meta-heuristics is more consistent on instances with
shared materials, as opposed to instances with unique materials.

Comparison with Generated Reference Solutions

For both S-style and T-style instances, our instance generator constructs reference
solutions which have zero total tardiness per construction. Figures 5.8a and 5.8b compare
the mean RPD of the SA variants on S-style and T-style instances with the RPD values
of the reference solutions.

It can be seen that the SA variants are able to generate solutions that are considerably
better than the sample solutions for S-style instances. For the majority of T-style instances,
the SA meta-heuristics produce solutions with low total tardiness. The solutions produced

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5. EXPERIMENTAL EVALUATION
Instance | SA-I (CH) | SA-I(R) | SA-C (CH) | SA-C (R) | SA-R (CH) | SAR (R)]
1-3-100_1 | 0 / 10746 | 48 /6362 | 0 / 10746 | 43 / 6328 | 0 / 10746 | 438 / 6362
10-120-180_1 | 0/ 771 0 /761 0 /838 0 / 806 0/ 771 0/ 732
10-468-800_1 | 0 /4539 | 23 /5294 | 0/3860 | 15/3798 | 0 / 3640 | 23 / 3879
11-680-680_1 | 0/ 3538 0 /3823 0 /3110 0/2944 | 0 /2833 | 0/2906
12-380-380_2 | 0 / 1407 | 65/ 1442 5 / 1535 0 /1576 5 / 1471 0 / 1465
12-700-700_1 | 0 / 3351 0 /3727 0 / 2935 0/2804 | 0 /2682 | 47 /2788
12-720-720_1 | 0/ 3730 0 / 3948 0 / 3044 0/2945 | 0 /2846 | 0/ 2851
13-476-540_1 | 0 /1875 | 0 /1814 | 0/ 2044 0 / 2026 0 /1832 0/ 1851
14-940-940_1 | 0 /4716 | 43 / 5009 0/3628 | 26 /3311 | 0 /3141 | 0/ 3164
15-500-500_1 | 0/ 1512 0 / 1486 0/ 1622 0 / 1631 0/1495 | 0/ 1477
15-80-80_2 0 / 336 0 /333 0 /337 0 / 340 0 / 314 0 / 320
15-80-80_3 0/ 272 0 /275 0 / 283 0/ 282 0/ 274 0/ 271
16-646-660_1 | 0 / 2437 0 / 2632 0 / 2101 0 / 2015 0/1875 | 0/ 1837
18-460-660_1 | 0/ 1679 0 /2271 0 /1883 0 /1823 0/1666 | 0/ 1617
18-763-800_1 | 0 /2830 0 /3194 0 / 2430 0 / 2157 0/2094 | 0/ 2031
19-800-800_1 | 41 /2624 | 0 /3055 33 /2193 | 0/2193 | 0 /1881 | 0/ 1977
20-794-800_1 | 0 /2710 | 42 / 2888 0 / 2186 2/1998 | 0 /1873 | 0/ 1883
21-530-560_1 | 0/ 1261 0 / 1504 0 / 1309 0/1319 | 0/1186 | 0/1195
22-149-160_1 | 0/ 363 0 /369 0 / 396 0 / 402 0 / 350 0 /352
22-519-740_1 | 0/ 1815 0 / 2334 0 /1772 | 40 /1756 | 0 /1503 | 0/ 1522
22-600-600_1 | 0 / 1408 0/ 1774 0 / 1360 0 / 1392 0/1220 | 0 / 1208
23-612-640_1 | 0/ 1718 0/ 1790 0 / 1429 0 / 1392 0/1272 | 0/ 1231
24-900-900_1 | 0 / 2701 0 / 2807 0 / 2025 0 / 1856 0/1731 | 0/ 1695
25-300-300_1 | 0/ 575 0 /576 0/ 655 0/ 631 0/ 558 0 / 535
25-660-660_1 | 0 / 1476 0 /1819 0 / 1410 0/1345 | 0/1133 | 0/1190
26-181-500_1 | 0 / 810 0 / 904 0 /992 0 /977 0 /836 0 /833
26-414-460_1 | 3/ 768 0/ 777 0/885 0/ 898 0/ 796 0/ 785
27-249-660_1 | 0 /1089 | 0 /1238 0 / 1268 0 /1253 0 /1105 0 /1105
28-105-420_1 | 0/ 667 0/ 635 0/771 0 /787 0 / 668 0 /652
29-580-580_1 | 0/ 1284 0 / 1266 0 /1093 0 /1032 0/ 876 0 /892
3-500-500_1 | 5/ 11156 | 23 /11373 | 2 /8205 | 40 /8167 | 0 / 8485 | 2 /9237
30-720-720_2 | 0/ 1611 | 43 / 1746 0/ 1278 7 /1200 | 0/ 1081 | 7 /1105
30-760-760_1 | 0 / 1615 0 / 1912 0 / 1433 0/ 1291 0/1160 | 0/ 1157
4-16-20_1 0 / 409 0 / 409 0 / 409 0 / 409 0 / 409 0 / 409
4-460-460_1 | 0 / 6886 5/7018 | 0 /5741 | 0 /5779 0 / 5962 0 / 6046
5-14-620_1 0 / 7499 0/ 7737 0/5583 | 0/5462 | 0 /5672 0/ 5570
5-500-500_1 | 0 / 5669 0/5834 | 0/4907 | 0 /4909 0 / 5048 0 /4978
7-166-600_1 | 0/ 4304 0 / 4829 0 /4118 0 /4108 | 0 /4072 | 67] 4282
7-50-360_1 | 0 /2221 | 0/ 2274 0/ 2332 0 / 2344 0 / 2267 0 / 2245
8-780-780_1 | 0/ 6717 0 / 7034 0 / 4892 0 /4785 | 0 /4769 | 0/ 4847
Table 5.7: Median Results as Tardiness / Makespan Pairs for S-style Instances in the
Validation Set. The best results per instance are highlighted in boldface.
38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Computational Results

Tnstance SAT(CH) | SAT(R) | SA-C(CH) [SA-C(R) [SA-R (CH) | SAR (R) |
1-73-620_1 0/51539 | 0/51486 | 0/36170 | 0 / 35794 | 0/ 37602 | 0/ 37505
10-230-700_1 | 1/ 3246 | 36/ 3813 | 5573126 | 167 /3100 | 2/ 3137 | 68/ 3444
10-24-40_1 18 /319 | 33/ 319 18 / 319 63 / 341 68 / 319 18 / 319
10-389-940_1 | 45 / 4996 | 101 / 5641 | 53 /4274 | 222 /4239 | 156 / 4706 | 234 / 4929
11-400-400_1 | 46 / 1795 | 345 / 1565 | 214/ 1682 | 76 / 1654 | 95/ 1771 | 365 / 1610
12-351-1000_1 | 74 / 4648 | 449 / 4876 | 42 / 3726 | 79 /3696 | 75] 4086 | 278 / 5058
13-040-940_1 | 26 / 4029 | 598 / 4262 | 30 /3290 | 222 /3120 | 66/ 3272 | 141/ 4416
14-520-520_1 | 3/ 1470 8/ 1451 18 / 1634 13 /1582 | 0/ 1502 | 0/ 1537
14-680-680_1 | 65 / 2625 | 230 / 2555 | 60 / 2273 50 /2149 | 31 / 2206 | 190 / 2989
14-680-680_2 | 0 /2342 | 364 /2755 | 0/ 2209 146 / 2160 | 0 / 2108 | 115 / 2409
15-400-400_1 | 0 / 1081 | 5/ 1128 29 / 1233 3/ 1189 29 /1162 | 29 / 1190
15-740-740_2 | 0 /2242 | 388 /2763 | 1/ 2192 50 /2003 | 0/ 2231 | 93/ 2345
15-77-80_1 0/ 317 0 /337 0/ 335 0/ 334 0 /313 0/ 317
17-520-520_1 | 138 / 1250 | 325 / 1376 | 124 / 1332 | 464 / 1331 | 147 / 1331 | 403 / 1706
18-56-100_1 64 / 318 51 / 316 15 / 318 110 / 340 10 / 316 5 / 313
18-820-820_2 | 45 /2557 | 271 /2570 | 34 /2110 | 253 /1937 | 25 / 2071 | 247 / 2053
18-90-880_1 | 14 /2415 | 123 /2560 | 14 / 2099 | 205 / 2096 | 23]/ 2157 | 122 / 2276
2-380-380_1 | 0 /12602 | 98 / 12371 | 0 / 9408 0 / 9325 0/9835 | 51/ 10619
2-490-800_1 | 0 /30975 | 7 /30893 | 0 /21557 | 0 / 21226 | 0 /31120 | 0/ 22518
20-76-100_1 0/ 282 0 /291 0 /294 35 / 300 0/ 270 0/ 261
22-471-480_1 | 130 / 864 | 80 / 892 92 / 996 126 /945 | 33 / 967 | 292] 974
22-760-760_1 | 22/ 1720 | 200 / 1941 | 40 / 1561 | 205 / 1516 | 8 / 1489 | 31 / 1597
24-280-280_1 4/ 508 8 / 512 11/ 558 92 / 571 0/ 512 43 / 700
24-400-400_1 | 34 / 663 | 119/ 817 35 / 742 301 / 734 34 / 678 173] 747
25-352-680_1 | 5/ 1061 | 189 / 1463 | 0 / 1206 174 /1178 | 0/ 1122 | 122 / 1182
26-220-240_1 | 0 / 388 67 / 421 0/ 452 62 / 461 0 / 400 62 / 591
26-334-480_1 | 49 / 720 89 / 902 5 / 828 45 / 809 52 / 1030 9 /977
26-540-540_1 10 /787 | 134 /1003 | 10 / 875 26 / 864 10 / 837 9 / 833
27-360-360_1 | 22 / 544 65 / 537 4 /597 69 / 607 2 / 550 51 / 595
27-540-540_1 | 35/ 784 94 / 997 0 / 863 257 / 873 29 / 835 93 / 907
28-189-240_1 0/ 384 54 /371 0 /419 0/ 418 0/ 379 65 / 383
28-34-100_1 0/ 231 0/ 241 0 / 231 0 / 231 0/ 231 39 / 237
28-371-520_1 | 0/ 714 | 110/ 858 6 / 808 16 / 781 0/ 741 135 / 788
28-620-620_1 | 2/ 980 | 72/ 1266 85 / 990 73 / 1004 37934 154 / 1193
29-137-340_1 | 21/ 454 52 / 469 5 / 521 79] 524 2 / 492 6/ 479
3-12-200_1 273133 | 107 /3138 | 2/ 3006 | 109/ 3067 | 107 / 3210 | 86 / 3241
30-580-580_1 16 /929 | 104 /1040 | 11 / 872 175 / 838 16 /812 | 141/ 1017
6-540-540_1 | 10 /4516 | 146 /4944 | 0 / 4131 54/ 4105 | 54 / 4243 | 54 / 4267
6-860-860_1 | 92 /9345 | 87 /9744 | 45] 6971 | 111 /6861 | 45 /7966 | 78 / 7911
8-3-260_1 178 / 1229 | 299 / 1250 | 162 / 1266 | 221 / 1182 | 189 / 1259 | 220 / 1231

Table 5.8: Median Results as Tardiness / Makespan Pairs for T-style Instances in
Validation Set. The best results per instance are highlighted in boldface.

the

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EXPERIMENTAL EVALUATION

40

[Tnstance [SAI(CH [SAI(R) | SA-C(CH | SAC(R) | SA-R(CH | SAR(R) |
1-364-580_1 0/ 41388 0 / 41487 0 / 32825 0 / 32504 0 / 33940 0/ 34177
1-820-860_1 | 3314 / 62953 | 15353 / 62253 | 5432 / 51146 | 8441 / 50725 | 4194 / 60661 | 7716 / 57869
10-376-680_1 | 418 / 4076 473 / 3755 527 / 3270 582 / 3154 438 / 3590 667 / 3550
13-760-760_1 710 / 3583 934 / 3467 749 / 2806 701 / 2730 698 / 3157 776] 2950
13-80-80_1 665 / 359 618 / 377 436 / 359 414 / 334 514 / 361 423 / 370
15-60-60_1 656 / 313 778] 392 656 / 313 626 / 326 658 / 398 718 / 307
15-63-80_1 548 / 369 536 / 386 600 / 369 515 / 424 488 / 339 540 / 391
15-640-640_1 340 / 2607 281 / 2536 | 298 / 2034 350 / 1960 406 / 2105 324 / 2598
16-100-100_1 350 / 335 492 / 359 314 / 334 599 / 326 321 / 336 354 / 327
16-180-180_1 597 / 577 566 / 572 564 / 571 552 / 577 623 / 540 605 / 540
16-233-260_1 | 430 / 932 487 / 781 485] 776 136 / 768 503 / 759 543] 785
17-100-100_1 1346 / 353 1213 / 350 1342 / 355 1110 / 330 1287] 342 901 / 322
18-80-80_2 851 / 306 931 / 327 803 / 307 756 / 307 805 / 307 752 / 312
19-540-540_1 565 / 1656 551 / 1670 552 / 1337 546 / 1307 659 / 1783 544 / 1411
2-760-760_2 1874 / 26221 | 2215 / 26225 | 2190 / 20551 | 1208 / 20646 | 1177 / 23483 | 1267 / 22758
20-180-180_1 487] 416 552 / 426 419 / 483 523 / 460 497] 462 547] 465
20-340-340_1 658 / 685 830 / 686 621 / 794 679 / 791 709 / 799 664 / 796
21-62-740_1 444 / 1929 641 / 1977 525 / 1591 158 / 1627 562 / 2190 602 / 2118
22-140-140_1 456 / 317 631 / 324 474] 333 431 / 318 457] 315 375 / 341
23-394-420_1 294 / 792 285 / 899 205 / 817 246 / 908 335 / 868 349 / 863
23-840-840_1 | 282 / 2214 705 / 2311 290 / 1743 910 / 1714 347 / 2056 553 / 2181
26-223-260_1 673 / 411 599 / 428 593 / 482 803 / 486 591 / 491 755 / 469
27-268-860_1 113 / 1786 146 / 1925 | 104 / 1498 | 148 / 1462 134 / 1862 224 / 1434
28-340-340_1 808 / 576 662 / 615 823 / 598 749 / 605 563 / 719 884 / 709
28-594-760_1 512 / 1590 616 / 1621 443 / 1277 690 / 1258 430 / 1682 507 / 1363
29-140-140_1 665 / 307 546 / 305 630 / 307 742] 310 814 / 307 634 / 287
29-170-760_1 885 / 1432 1406 / 1540 751 / 1187 840 / 1210 714 / 1303 | 1110/ 1549
3-17-20_1 937 / 525 1212 / 546 945 / 568 1073 / 527 954 / 512 957 / 611
3-580-580_1 | 293 / 12336 | 611 / 12517 626 / 9913 424 / 9683 602 / 10740 | 367 / 10852
30-13-560_1 658 / 954 674 / 957 656 / 800 678 / 795 643 / 819 640 / 946
30-148-220_1 | 490 / 312 622 / 316 500 / 359 591 / 337 500 / 348 555 / 338
30-332-340_1 | 396 / 489 483 / 518 399 / 565 172 [521 431] 552 564 / 660
30-52-420_1 147] 666 327 / 606 327 / 595 349 / 628 357 / 644 465 / 637
4-620-620_1 8435 / 9794 8864 / 9925 | 7571/ 7772 | 7259 / 7829 | 7011 / 9728 | 7931 / 9793
5-83-360_1 218 / 3271 458 /4520 | 208 / 3398 | 290 / 3341 261 / 3736 233 / 3688
6-680-680_2 30 / 6559 212 / 6874 185 / 5179 96 / 5125 142 / 5577 140 / 6027
7-19-40_1 2002 / 520 1937 / 507 | 1999 / 511 2188 / 483 2035 / 477 2134 / 533
7-249-980_1 898 / 8503 1487 / 8748 | 1092 / 6388 | 1146 / 6262 1035 / 7311 1026 / 8730
7-431-480_1 985 / 4200 886 / 4159 977 / 3440 897 / 3316 832 / 3625 876 / 4332
9-180-180_1 769 / 898 797 / 889 835 / 952 929 / 961 711 / 994 1160 / 1237

Table 5.9: Median Results as Tardiness / Makespan Pairs for P-style Instances in the
Validation Set. The best results per instance are highlighted in boldface.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2. Computational Results

16000 1400

14000 4 1200 4

12000 4
1000 4

10000 +

8000 1

600 -
6000 -
400
4000 4
2000 2009
ol L == ol
z
x
&

—_ == ==
= R : E 5 z z = g z z
5 & = [< <] < [s [=
; ¢ iz T
3 3 3 3
(a) Means Including Constructive Heuristic (b) Means without Constructive Heuristic
0.6 0.6
0.5 0.5
0.4 0.4
0.3 4 0.3 4
0.2 4 0.2 4
0.1+ 0.1+
004 —_ 004 ==
z 3 3 ? 3 3
(c) Means over Instances with Unique Mate- (d) Means over Instances with Shared Mate-
rials rials

Figure 5.5: RPD Values for S-style Instances

by SA with greedily constructed initial solutions have 33 total tardiness on average (and
a median of 13). On average, these SA variants produce zero-tardiness solutions for 13
instances. However, the makespans in the reference solutions are significantly higher than
in the solutions produced by SA, as can be seen in Figure 5.8c.

Overall, it can be seen that it is indeed more difficult to find zero-tardiness solutions
for the T-style instances than for S-style instances. Further, the fact that the solutions
produced by the meta-heuristics have significantly lower makespan than the reference
solutions while having relatively low tardiness values suggests that there exist solutions
with a lower cost than the reference solutions.

Results on Real-Life Instances

To evaluate our approaches on the real-life instances, we use the same computational
environment and time limits as in Sections 5.2.1 and 5.2.2. Table 5.10 shows the best
solution costs obtained by MIP and the median solution costs provided by each SA variant.
All methods obtained the same solution costs for instances A-fixed and C-assigned, which

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.

EXPERIMENTAL EVALUATION

W
o

350000 25000

300000 1
20000 4

250000 4

15000
200000
150000 4 10000 4

100000 1
5000 1

50000

|

[
|

[
b
I
)

oA

CH

=
-
&

SA-l (CH)
SA-C (CH)
SAC (R)
SAR (CH)
SAR (R)
SA-l (CH)
SA-l (R)
SA-C (CH)
SAC (R)
SAR (CH)
SAR (R)

(a) Means Including Constructive Heuristic (b) Means without Constructive Heuristic

1400 1400
1200 4 T 1200 1

1000 1000 4

200 200 4

(c) Means over Instances with Unique Mate- (d) Means over Instances with Shared Mate-
rials rials

|
i
|

SA-l (CH)
SA-C (CH)
SA-R (CH)
SA-l (CH)
SA-C (CH)
SAR (CH)

Figure 5.6: RPD Values for T-style Instances

also could be solved to optimality by MIP. For the rest of the instances, SA produced
better results than MIP in our experiments. All SA variants achieved the same result in
all 20 runs for six of the instances (A, A-fixed, B, B-fixed, C-restricted and C-restricted
x2). Only for the larger instances, we observe varying solution qualities between the
different solution approaches. SA-R exhibits a slightly better performance on the larger
instances (C-x8, C-x16 and C-assigned-x8), while SA-I performs best on smaller instances
(C-x2 and C-x4). The box plots in Figure 5.9 show that all SA variants perform very
similarly, with RPDs close to zero.

Comparison of Configurations

As can be seen in Section 5.2.2, the chosen configuration for an algorithm can have a large
impact on its performance. Thus, the possibility exists that the configuration proposed by
SMAC for one of the SA variants is significantly better or worse than the configurations for
the other variants. To exclude this case, we conducted experiments for all combinations
of SA variants and configurations. We label each of the algorithm/configuration pairs

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Computational Results
] Instance MIP SA-T SA-C \ SA-R
A i 1476042115 1476042115 1476042115
1091223 1091223 1091223
5 338062834 334900552 334900552 334900552
3128548 3128548 3128548 3128548
C 12884400 12884400 12884400 12884400
2671200 2394000 2404800 2394000
Afived 76593 76593 76593 76593
1091223 * 1091223 1091223 1091223
Bfixed 15328158 11634212 11634212 11634212
3128548 3128548 3128548 3128548
_ B 25768800 25768800 25768800
4748400 4766400 4777200
ol B 51537600 51537600 51537600
9511200 9565200 9608400
(g B 344577600 346960800 343814400
19152000 19425600 19407600
s B 5000468400 4951357200 4867243200
39020400 39369600 39106800
. 12884400 12884400 12884400 12884400
C-assigned 5094000 * 5094000 5094000 5094000
C-assigned-x2 40485600 25952400 25952400 25952400
10512000 9907200 9907200 9907200
C-assignedod B 96285600 96285600 96285600
19598400 19598400 19598400
Cassigned-x8 B 1601834400 1601834400 1600657200
38851200 38851200 38829600
C-assigned-xl B 11827620000 11811006000 11812179600
77421600 77464800 77486400

Table 5.10: Median Solution Cost of MIP and SA (with CH) on Real-Life Instances.
Tardiness and makespan are denoted by the top and bottom values respectively. The
best results per instance are highlighted in boldface and asterisks mark solutions that
have been proven optimal by MIP. Dashes mean that no valid solution was found within

the time limit.

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

5.

EXPERIMENTAL EVALUATION

44

80 14

70 12

601
1.0 4
50 4
0.8 1
40
0.6 1
30 4

0.4 4

I
I
|
|
I
l

0.0 1

SA-l (CH) {
SA- (R)
SA-C (CH)
SAC (R)
SAR (CH) |
SA-R (R) 4
SA-l (CH) 4
SA-l (R)
SA-C (CH) {
SAC (R) 4
SAR (CH) 4
SAR (R)

(a) Means Including Constructive Heuristic (b) Means without Constructive Heuristic

14 14

124 124
1.0 4 1.0 4
0.8 1 0.8 1

0.6 1 0.6 1
0.4 4 0.4 4

0.2 4 0.2 4

RS

=

0.0 1 T 0.0 1
T T T T T

T = = = T = T = = = T =

g z g b g = Y < g I 2 %

5 L 3 5 5 5 3 L 3 5 5 %
(c) Means over Instances with Unique Mate- (d) Means over Instances with Shared Mate-
rials rials

Figure 5.7: RPD Values for P-style Instances

with the algorithm name as prefix and the configuration name in square brackets as suffix
(e.g. SA-I with the tuned configuration for SA-C is labelled SA-I [C]). The results in
Figure 5.10 show that none of the configurations leads to better results for all algorithms.
Further, comparing the mean and median RPD values in Figures 5.10a and 5.10b shows
that the results for both SA-I and SA-R are relatively stable as opposed to SA-C.

Influence of the Features

To investigate the influence of block moves and guidance strategies on the performance
of the meta-heuristics, we performed additional experiments with different configurations
on the validation set. We created further configurations for each SA variant by changing
the value for a single feature in the configuration while leaving everything else fixed. The
derived configurations are the following:

e Standard: The configuration proposed by SMAC

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

5.2. Computational Results

b s

SERICIEIEN]

[(HD) ¥-vs

[(HD) 2-vs

r (H2) IF¥s

7000

6000 1

5000 +

4000 -

3000 4

2000 1

1000 4

ECENCIEIEN]

[(HD) ¥-vs

[(HD) O-vs

[(HD) IF¥S

N
o)
S
=]
<
A n
=] g
= =)
o =
E E
@ Q
= g A
— g = 8
3 t 2duasesey [} r (HD) ¥-vs
~— < =
7 9]
4 =
e 2 8
)
= &
Tg.‘ [(d) ¥-vs &u =
g=
,.=‘ F(HD) v = =
[S) < F (HD) 2-¥S
0
HH o : 2
r (¥) O-vS (3
@ o
v =]
 (HD) 2-¥sS
L = 3
—
TAGHT F(4) 1-vs m. m
rDl m F (HD) I-¥S
@]
F (HD) IS [a
0 H
g | . 2
m 2 02 4 3 5 3 8 3 @ 0 . . T T T : T
3 10 o] 3 3] 3 5] 2
wn o o o o o o o
—_ r o o o o o o o
=
3 an
> o
= &
»
—~
<
N

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

Figure 5.9: RPD Values for SA on Real-Life Instances

45

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

EXPERIMENTAL EVALUATION

46

~
~

-
"

SA- 1] 4
sa- [C] |
SA- [R]
sa-c 1]
SA-R[1]4
sa-c 1]
SA-R[1]4
SA-R [C]4 _D:]_Q
SA-R [R] {

gadllobes padlda

(a) Mean RPD Values (b) Median RPD Values

sA-C [C]4
SA-C [R]
SA-R [R] {
SA- 11 4
sa- [C] |
SA-I [R]
sA-C [C]
SA-C [R] 4

Figure 5.10: RPD Values for the SA Variants, with All Configurations

e X% Blocks: The probability for generating block moves pg is set to 10%, 20%
and 30%

e G-T: The probability for applying guidance towards minimising makespan pys is
set to zero

e G-M: The probability for applying guidance towards minimising tardiness pr is
set to zero

e G-None: Both guidance probabilities (pas and pr) are set to zero

The RPD values for all three SA variants over the validation set instances can be seen in
Figure 5.11. For SA-I, any modification of the standard configuration leads to performance
degradation as can be seen in Figure 5.11a. For SA-C and SA-R, the results are not as
obvious (see Figures 5.11b and 5.11c). In the case of SA-C, block moves apparently have
the most negative impact, as increases in block move probabilities lead to increases in
RPD values. SA-R loses some performance when the guidance is reduced in any way but
does not perform significantly different with higher probabilities for block moves.

Overall, there is no configuration for any of the SA variants that outperforms the standard
configuration. Thus, we conclude that a limited amount of guidance towards minimisation
of both makespan as well as tardiness is favourable over a purely unguided search. The
block moves in their current implementation, however, do not provide a benefit and are
even detrimental to the performance of SA-T and SA-C.

Comparison to Results from the Literature

To show the robustness of our methods, we compare them to the state of the art approach
that was proposed recently for a similar problem provided by Perez-Gonzalez et al.
[2019]. The particular problem uses the same constraints and also aims to minimise total

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2. Computational Results

e e e
o N O
S w °

"
o o

PR

(a) SA-I (b) SA-C

i
(i

G-Nohe
Standard 4

10% Blocks
20% Blocks
30% Blocks
GT
GM
G-None
standard
10% Blocks
20% Blocks
30% Blocks
GT
G-M

1.6

1.4

1.2

1.04

0.8 1

0.6 1

0.4 4

0.2 4

0.0 1

=
Sy

10% Blocks
20% Blocks

30% Blocks

GT

G-M

G-None

Standard

(c) SA-R

Figure 5.11: RPD for the SA Variants, with Different Features

tardiness, but does not consider the minimisation of the makespan. However, we can
still use our meta-heuristics to approach the problem, as the makespan objective can
simply be ignored in this case. The instances used in our experiments were provided by
Perez-Gonzalez et al. [2019].

Since the optimal solutions for the majority of these instances have an objective function
value of zero, we use the Relative Deviation Index (RDI, eq. (5.3)) as performance
measure instead of the RPD. Similar performance measures have been used in previous
publications (e.g. Perez-Gonzalez et al. [2019]).

costr s — best;

RDI; g = (5.3)

worst; — besty

We ran each of our SA variants 20 times on every instance within a time limit that is
based on the run time formula used by Perez-Gonzalez et al. [2019]. The parameters for
each of our meta-heuristics are set to the ones determined by SMAC.

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

EXPERIMENTAL EVALUATION

48

The results for the Clonal Selection Algorithms (CSA t and CSA_f) described by Perez-
Gonzalez et al. [2019] have been kindly provided to us by the authors. Publicly available
CPU benchmarks? show that the CPU used in our experiments is roughly 1.5 times
faster than the Intel i7 7700 processor that was used by Perez-Gonzalez et al. [2019]
with respect to single-thread performance. Therefore, we used a time limit of M - N - %
milliseconds per instance, where M is the number of machines and N is the number of

jobs (Perez-Gonzalez et al. [2019] used a time limit of M - N - 22 in their experiments).

For the majority of instances (2469 small, 5058 medium and 5909 big), all runs of
the Simulated Annealing variants and all runs of the state-of-the-art Clonal Selection
Algorithms produced solutions with the exact same solution cost. Figures 5.12 to 5.14
show box plots and histograms for all evaluated algorithms on the remaining 1371 small,
702 medium and 91 big instances, respectively. In the aggregated results it can be
seen that all SA variants outperform the state-of-the-art CSA algorithms regarding
solution quality for most of the instances. This observation is further supported by
Mann-Whitney-Wilcoxon tests using a confidence level of 0.95 which show that the
proposed SA variants produce significantly improved results than both CSA_t and
CSA_ f in our experiments. Figures 5.12 to 5.14 show that the SA variants with greedily
constructed initial solution significantly outperform those which use a random initial
solution. Comparing the different SA variants with the same initial solution generation
procedure shows no statistically significant differences.

When looking at the best results per instance for all SA and both CSA variants respectively,
we observe that in 3291 small, 5548 medium and 5979 big instances, the best SA result
has the same cost as the best CSA result. For 506 small, 208 medium and 21 big instances,
the best SA result is better than the best CSA result. On the other hand, for 43 small and
4 medium instances, the best CSA result is better than the best SA result. Figure 5.15
shows the number of instances where CSA outperforms SA, grouped by the number of
jobs per instance. We observe that the number of instances where CSA outperforms SA
declines with instance size, which indicates that SA scales better with increasing instance
size.

Detailed results of all our experiments are available for download at http://cdlab—artis.

dbai.tuwien.ac.at/instances/parallel-machine-scheduling.

?https://www.cpubenchmark.net/compare/Intel-i7-7700-vs-Intel-Xeon-E5-2650-v4/

2905vs2797

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2. Computational Results

1.0+

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

10+

0.8 4

0.6

0.4 4

0.2 4

0.0 1

1.0

0.8 1

0.6

0.4 1

0.2 1

0.0 1

° & ° 5 ° o CSA-f CSA-t SA-C (CH)
§ S 8 1000 4 1 1 i
(3 Yol o g 500 4 l 4
] o]
5 g g 8 ? D’D.ﬂ 0.5 1.0 70.0 U.‘S 1.0 70.0 0.5 1.0
2 % SA-C (R) SA-l (CH) SA-1 (R)
1000 | | i1 B
o 8 ’II
070.0 0.5 10 70.0 0.5 10 70.0 0.5 10
SA-R (CH) SA-R (R)
—8 1000 i g i
s © gz & = & 1 1 %01 1
H 0, 9 PR g g L L
<] ‘ < - < o 1
o z o % @ 0.0 0.5 1.0 0.0 0.5 1.0
(a) Box Plots for All Meta-Heuristics (b) Histograms
Figure 5.12: RDI Values over 1371 Small Perez Instances
& & 5 CSA-f CSA-t SA-C (CH)
500
Q
o o 5 ° ? 20
e 8 [0} 00.0 0.5 1.0 00 0.5 10 00 0.5 1.0
Q SA-C (R) SA-l (CH) SA-I (R)
[e]
® © i g ? 500
g S 8 g 8 250
? E 8 6 g 00.0 0.5 10 00 0.5 10 00 0.5 1.0
500
5} z s} = o = X 5 250
i < o < o 0.0 0.5 1.0 0.0 0.5 1.0
(a) Box Plots for All Meta-Heuristics (b) Histograms
Figure 5.13: RDI Values for 702 Medium Perez Instances
p—— CsA f CSA t SA-C (CH)
[}
50
e [}
o 007.0 0.5 10 0.0 0.5 10 0.0 0:5 10
o) SA-C (R) SA-l (CH) SA-l (R)
o) o]
° 50
o & o o] o 8
? ¢ g ? ¢ ? 00.0 0:5 1.0 00 0:5 1.0 oo 0:5 10
8 g 2 & ° SA-R (CH) SA-R (R)
o 8 8 o 8 o
3 b Q p] I e © 0 . -
o] & o b » 0.0 0.5 1.0 0.0 0.5 1.0

(a) Box Plots for All Meta-Heuristics

(b) Histograms

Figure 5.14: RDI Values for 91 Big Perez Instances

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

EXPERIMENTAL EVALUATION

5.

20

Jobs

20 A
16
12 4
8
4
0

Figure 5.15: Number of Instances Where CSA Outperforms SA

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

=]
O

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Conclusions

In this thesis, we have investigated several solution approaches for a novel variant of
the Unrelated Parallel Machine Scheduling Problem. To approach the problem, we
proposed several variants of Simulated Annealing that utilise different neighbourhood
operators and cooling schemes, and we adapted several Mixed-Integer Programming
formulations for related problems. The adapted models include the formulation proposed
by Perez-Gonzalez et al. [2019] for the R,,|s;jk, M;|3;T; problem and a formulation for
the Ry,|8ijk|Cmae problem proposed by Avalos-Rosales et al. [2015]. Additionally, we
derived further models by replacing one set of constraints by another formulation found
in the related literature.

To evaluate the effectiveness of our approaches, we implemented an instance generator
for the problem and created a large pool of instances. Based on the set of randomly
generated and real-life instances, we performed a thorough evaluation of all investigated
methods. Furthermore, we compared the performance of the proposed techniques to the
state-of-the-art on a set of existing instances.

From the experiments conducted in Section 5.2.1, we can see that the models which we
adapted from the work of Avalos-Rosales et al. [2015] outperform those that we adapted
from Perez-Gonzalez et al. [2019]. Also, we see that the reformulation of constraints
leads to performance improvements in some areas of the instance space.

Regarding the meta-heuristics, the experimental results show that the compared SA
variants produce high-quality solutions within short run times and outperform the exact
approaches for the large majority of instances. All Simulated Annealing variants produce
significantly better and more consistent results when they are provided with greedily
constructed instead of randomly generated initial solutions. Comparing the different
Simulated Annealing variants shows only minor differences when they are paired with the
same Constructive Heuristic. Furthermore, we observe that the behaviour of all compared
Simulated Annealing variants is more consistent on instances with shared materials.

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.

CONCLUSIONS

52

Further, we conclude that a limited amount of guidance towards the minimisation of both
makespan and tardiness in the generation of neighbourhood moves is preferable to purely
random move generation. In contrast to the guidance, Block Moves do not provide a
significant benefit to Simulated Annealing in our implementation and are mostly ignored
by SMAC. We think that the generation of Block Moves requires additional information
about the current solution in order to be effective.

A closer inspection of the results shows that it is significantly more difficult for the
meta-heuristics to find zero-tardiness solutions for the T-style instances than for the
S-style instances. Furthermore, we observe that most solutions produced by SA have
a significantly lower makespan than the reference solutions. This suggests that the
generated reference solutions are generally not the global optimum. Overall, we conclude
that our instance generator is well-suited for the generation of hard instances.

Finally, our experiments on the instances provided by Perez-Gonzalez et al. [2019]
show that Simulated Annealing is able to improve many of the solutions produced by
state-of-the-art approaches.

For future work, it may be interesting to use Block Moves in a more systematic context
than Simulated Annealing. For instance, a more sophisticated heuristic for the selection
of job blocks could be employed by defining a distance measure between jobs and building
blocks based on this measure. Additionally, it would be interesting to investigate new
neighbourhood operators and hybrid algorithms for this problem.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

List of Figures

4.1 An Example Inter-Machine Shift Move
4.2 An Example Inter-Machine Swap Move

5.1 RPD Values of MIP Models
5.2 RPD Values for All Incumbent Configurations . .
5.3 RPD Values for All Incumbent Configurations per

5.4 RPD Values for SA Variants, with Constructive Heuristic (CH) and Random

Initial Solution (R)

5.5 RPD Values for S-style Instances

5.6 RPD Values for T-style Instances
5.7 RPD Values for P-style Instances
5.8 Comparison of SA with Reference Solutions . . .
5.9 RPD Values for SA on Real-Life Instances
5.10 RPD Values for the SA Variants, with All Configu
5.11 RPD for the SA Variants, with Different Features
5.12 RDI Values over 1371 Small Perez Instances . . .
5.13 RDI Values for 702 Medium Perez Instances . . .
5.14 RDI Values for 91 Big Perez Instances
5.15 Number of Instances Where CSA Outperforms SA

SA Variant

rations

17
17

33
34
35

36
41
42
44
45
45
46
47
49
49
49
50

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

List of Tables

3.1 Variables Used in MIP Models M1 and M2

5.1 Number of Generated Instances per Category
5.2 Ranges for Specifics of Generated Instances
5.3 Real-life Instance Specifics L.
5.4 Comparison of Solutions Found by the MIP Models
5.5 Parameter Value Ranges for SMAC
5.6 Configurations Obtained from Automated Parameter Tuning
5.7 Median Results on S-style instances
5.8 Median Results on T-style Instances
5.9 Median Results on P-style Instances
5.10 Median Solution Cost of MIP and SA on Real-life Instances

10

27
29
30
32
33
34
38
39
40
43

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

0 ~J O T i W N

List of Algorithms

Constructive Heuristic (CH)
Job Selection Procedure Aiming to Minimise Tardiness
Simulated Annealing with Reheating
Dynamic Cooling Procedure
Simulated Annealing with Dynamic Cooling
Simulated Annealing with Iteration Budget

Instance Generator

Greedy Machine Selection

16
19
20
21
22
23
28
29

o7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Bibliography

Ali Allahverdi, C. T. Ng, T. C. Edwin Cheng, and Mikhail Y. Kovalyov. A survey
of scheduling problems with setup times or costs. Furopean Journal of Operational
Research, 187(3):985-1032, 2008.

Ali Allahverdi. The third comprehensive survey on scheduling problems with setup
times/costs. Furopean Journal of Operational Research, 246(2):345-378, 2015.

Mojtaba Afzalirad and Javad Rezaeian. Resource-constrained unrelated parallel machine
scheduling problem with sequence dependent setup times, precedence constraints and
machine eligibility restrictions. Computers € Industrial Engineering, 98:40-52, 2016.

Paz Perez-Gonzalez, Victor Fernandez-Viagas, Miguel Zamora Garcia, and Jose M.
Framinan. Constructive heuristics for the unrelated parallel machines scheduling
problem with machine eligibility and setup times. Computers € Industrial Engineering,
131:131-145, 2019.

Eva Vallada and Rubén Ruiz. A genetic algorithm for the unrelated parallel machine
scheduling problem with sequence dependent setup times. Furopean Journal of Opera-
tional Research, 211(3):612-622, 2011.

Oliver Avalos-Rosales, Francisco Angel-Bello, and Ada Alvarez. Efficient metaheuristic
algorithm and re-formulations for the unrelated parallel machine scheduling problem
with sequence and machine-dependent setup times. The International Journal of
Advanced Manufacturing Technology, 76(9-12):1705-1718, 2015.

Scott Kirkpatrick, D. Gelatt Jr., and Mario P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671-680, 1983.

Ronald L. Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: a survey.
In Annals of discrete mathematics, volume 5, pages 287-326. Elsevier, 1979.

M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

A. Al-Salem. Scheduling to minimize makespan on unrelated parallel machines with
sequence dependent setup times. Engineering Journal of the University of Qatar, 17
(1):177-187, 2004.

Ghaith Rabadi, Reinaldo J. Moraga, and Ameer Al-Salem. Heuristics for the unrelated
parallel machine scheduling problem with setup times. J. Intelligent Manufacturing,
17(1):85-97, 2006.

Jean-Paul Arnaout, Ghaith Rabadi, and Rami Musa. A two-stage ant colony optimization
algorithm to minimize the makespan on unrelated parallel machines with sequence-
dependent setup times. J. Intelligent Manufacturing, 21(6):693-701, 2010.

Jean-Paul Arnaout, Rami Musa, and Ghaith Rabadi. A two-stage ant colony optimiza-
tion algorithm to minimize the makespan on unrelated parallel machines - part II:
enhancements and experimentations. J. Intelligent Manufacturing, 25(1):43-53, 2014.

Haroldo G. Santos, Ttlio A. M. Toffolo, Cristiano L. T. F. Silva, and Greet Vanden
Berghe. Analysis of stochastic local search methods for the unrelated parallel machine
scheduling problem. ITOR, 26(2):707-724, 2019.

Tony T. Tran, Arthur Araujo, and J. Christopher Beck. Decomposition methods for the
parallel machine scheduling problem with setups. INFORMS Journal on Computing,
28(1):83-95, 2016.

Ridvan Gedik, Darshan Kalathia, Gokhan Egilmez, and Emre Kirac. A constraint
programming approach for solving unrelated parallel machine scheduling problem.
Computers & Industrial Engineering, 121:139-149, 2018.

Luis Fanjul-Peyro, Rubén Ruiz, and Federico Perea. Reformulations and an exact algo-
rithm for unrelated parallel machine scheduling problems with setup times. Computers
& OR, 101:173-182, 2019.

Magdy Helal, Ghaith Rabadi, and Ameer Al-Salem. A tabu search algorithm to minimize
the makespan for the unrelated parallel machines scheduling problem with setup times.
International Journal of Operations Research, 3(3):182-192, 2006.

Kuo-Ching Ying, Zne-Jung Lee, and Shih-Wei Lin. Makespan minimization for scheduling
unrelated parallel machines with setup times. J. Intelligent Manufacturing, 23(5):
1795-1803, 2012.

Mahdi Rambod and Javad Rezaeian. Robust meta-heuristics implementation for unrelated
parallel machines scheduling problem with rework processes and machine eligibility
restrictions. Computers & Industrial Engineering, 77:15-28, 2014.

Mojtaba Afzalirad and Javad Rezaeian. A realistic variant of bi-objective unrelated
parallel machine scheduling problem: NSGA-II and MOACO approaches. Appl. Soft
Comput., 50:109-123, 2017.

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Gulcin Bektur and Tugba Sarag. A mathematical model and heuristic algorithms for an
unrelated parallel machine scheduling problem with sequence-dependent setup times,
machine eligibility restrictions and a common server. Computers €& OR, 103:46—63,
2019.

Jeng-Fung Chen. Minimization of maximum tardiness on unrelated parallel machines with
process restrictions and setups. The International Journal of Advanced Manufacturing
Technology, 29(5):557-563, 2006.

Mojtaba Afzalirad and Masoud Shafipour. Design of an efficient genetic algorithm for
resource-constrained unrelated parallel machine scheduling problem with machine
eligibility restrictions. J. Intelligent Manufacturing, 29(2):423-437, 2018.

Erdal Caniyilmaz, Betiil Benli, and Mehmet S. Ilkay. An artificial bee colony algorithm
approach for unrelated parallel machine scheduling with processing set restrictions, job
sequence-dependent setup times, and due date. The International Journal of Advanced
Manufacturing Technology, 77(9):2105-2115, 2015.

Jelle Adan, Ivo J. B. F. Adan, Alp Akcay, Rick Van den Dobbelsteen, and Joep Stokker-
mans. A hybrid genetic algorithm for parallel machine scheduling at semiconductor
back-end production. In ICAPS, pages 298-302. AAAI Press, 2018.

Chris N. Potts and Luk N. Van Wassenhove. A decomposition algorithm for the single
machine total tardiness problem. Oper. Res. Lett., 1(5):177-181, 1982.

Jae-Ho Lee, Jae-Min Yu, and Dong-Ho Lee. A tabu search algorithm for unrelated
parallel machine scheduling with sequence-and machine-dependent setups: minimizing
total tardiness. The International Journal of Advanced Manufacturing Technology, 69
(9-12):2081-2089, 2013.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In LION, volume 6683 of Lecture
Notes in Computer Science, pages 507-523. Springer, 2011.

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aims of This Thesis
	Contributions of This Thesis
	Organisation

	Parallel Machine Scheduling
	Related Work

	Mixed-Integer Programming Approaches
	Extended MIP Models from the Related Literature

	Meta-Heuristic Approaches
	Constructing Initial Solutions
	Search Neighbourhoods
	Simulated Annealing

	Experimental Evaluation
	Instances
	Computational Results

	Conclusions
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

